
Creating degenerate two-dimensional Bose gases with

tunable interaction strength

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik

und Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von
Alexandra Mozdzen

Hamburg
2024



Gutachter der Dissertation Prof. Dr. Henning Moritz

Prof. Dr. Klaus Sengstock

Zusammensetzung der Prüfungskommission Prof. Dr. Michael Potthoff

Prof. Dr. Henning Moritz

Prof. Dr. Klaus Sengstock

Prof. Dr. Ludwig Mathey

Prof. Dr. Ralf Riedinger

Vorsitzender der Prüfungskommission Prof. Dr. Michael Potthoff

Datum der Disputation 04.09.2024

Vorsitzender des Fach-Promotionsausschusses Physik Prof. Dr. Markus Drescher

Leiter des Fachbereichs Physik Prof. Dr. Wolfgang J. Parak

Dekan der Fakultät MIN Prof. Dr.-Ing. Norbert Ritter



Abstract

This thesis describes the experimental realisation of versatile and highly controllable quan-
tum systems with ultracold quantum gases with the aim to study quantum many-body
physics.

In the first part we present the implementation of mesoscopic Fermi-Hubbard-type
systems with potassium-40 in a bottom-up approach employing optical tweezers. The
experimental setup features an in-vacuo microscope objective with a numerical aperture
of 0.75 enabling high-resolution imaging, and allows for tunable interaction strengths
via Feshbach resonances as well as for rapid repetition rates due to all-optical cooling
schemes. However, reaching quantum degeneracy via Raman-sideband cooling turned out
to be very challenging. The achieved 3D ground state fractions of ∼ 40% is not sufficient
to make the study of quantum physics in the Hubbard model feasible.

In the main part of the thesis we discuss how the experimental setup was re-designed
and re-built in order to create two-dimensional bosonic bulk systems with potassium-39.
The key feature is the rare combination of highly tunable interaction strengths via a
variety of intra- as well as interstate Feshbach resonances with the ability to study spin
mixtures with high-resolution imaging. We have been able to realise a three-dimensional
quasi-pure Bose-Einstein condensate of ∼ 5 · 103. The sample is then brought into the
quasi-two-dimensional regime by first pre-shaping it with a light sheet-like trap and then
transferring it into a single layer of a blue-detuned optical lattice. As a result a degenerate
two-dimensional Bose gas of ∼ 3 · 103 with a temperature of ∼ 50 nK corresponding to
∼ 0.2TBKT is created, where TBKT is the BKT critical temperature. Finally, we discuss
how 2D quantum droplets might be realised with the setup.



Zusammenfassung

Die vorliegende Arbeit beschreibt die experimentelle Umsetzung vielseitiger und hoch-
gradig kontrollierbarer Quantensysteme mithilfe ultrakalter Quantengase mit dem Ziel,
Quanten-Vielteilchenphysik zu untersuchen.

In dem ersten Teil wird die Realisierung von mesoskopischen Fermi-Hubbard-Systemen
mit Kalium-40 in einem Bottom-up Ansatz unter Verwendung optischer Pinzetten vorge-
stellt. Eine der Hauptkomponenten des Aufbaus ist ein im Vakuum platziertes Mikrosko-
pobjektiv mit einer numerischen Apertur von 0,75, welches hochauflösende Abbildungen
erlaubt. Der experimentelle Aufbau ermöglicht es zudem, die Wechselwirkungsstärke
mithilfe von Feshbach-Resonanzen durchzustimmen sowie durch die Verwendung rein op-
tischer Kühltechniken hohe Wiederholungsraten zu erreichen. Es hat sich jedoch als sehr
schwierig erwiesen, mithilfe von Raman-Seitenbandkühlen Quantenentartung zu errei-
chen. Die erzielte Besetzungswahrscheinlichkeit des 3D Grundzustandes von ∼ 40% ist
nicht ausreichend, um die Untersuchung quantenphysikalischer Phänomene im Rahmen
des Hubbard-Modells zu ermöglichen.

In dem Hauptteil dieser Arbeit wird erörtert, wie der experimentelle Aufbau umgebaut
wurde, um zweidimensionale bosonische Bulk-Systeme mit Kalium-39 zu erzeugen. Das
Hauptmerkmal ist die seltene Kombination aus hochgradig durchstimmbaren Wechselwir-
kungsstärken mithilfe einer Vielzahl an Feshbach-Resonanzen sowohl zwischen gleichen
als auch zwischen verschiedenen Spinzuständen mit der Möglichkeit Spinmischungen zu
untersuchen und mit hoher Auflösung abzubilden. Es ist uns gelungen, ein dreidimensio-
nales Bose-Einstein-Kondensat aus ∼ 5 · 103 Atomen zu realisieren. Die Atomwolke wird
dann in das quasi-zweidimensionale Regime überführt, indem sie mit einer stark aniso-
tropen Dipolfalle vorgeformt und dann in eine einzelne Schicht eines blau-verstimmten
optischen Gitters eingeladen wird. Dadurch wird ein entartetes zweidimensionales Bose-
gas aus ∼ 3 · 103 Atomen mit einer Temperatur von ∼ 50 nK ≃ 0.2TBKT erzeugt, wobei
TBKT der BKT kritischen Temperatur entspricht. Schließlich diskutieren wir, wie 2D
Quanten-Droplets mit diesem Aufbau realisiert werden könnten.
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Chapter 1

Introduction

Over the last decades, ultracold quantum gases of neutral atoms have established them-
selves as one of the major tools to study quantum many-body physics. These isolated,
defect-free systems exhibit intrinsic long time and length scales compared to e. g. solid-
state systems and have evolved into a versatile and highly controllable platform for e. g.
quantum simulations of strongly correlated physics, thanks to groundbreaking milestones
and innovations.

A fundamental milestone was the first realisation of Bose-Einstein condensation in
dilute quantum gases in 1995 [1, 2], a phase transition solely driven by particle statis-
tics. Reaching quantum degeneracy laid the foundation for studying quantum phenomena
where the particle statistics play a fundamental role. In 1999 degeneracy was also achieved
for fermionic quantum gases [3] and nowadays, a variety of fermionic and bosonic species
are utilised.

The next important accomplishment was the realisation of the first dual-component
Bose-Einstein condensate in 1997 by employing two different spin states [4]. The ability
to create mixtures allows to increase the complexity of the system which gives rise to new
phenomena [5] like different zero-temperature phases [6] or even novel liquid-like states of
matter [7, 8]. Mixtures can be prepared with different spin states, different isotopes, or
different atomic species which also allows to realise Bose-Fermi mixtures [9, 10].

The achievement of tunable interaction strengths in ultracold gases via Feshbach res-
onances [11] was another breakthrough: Since their first observation in a Bose-Einstein
condensate in 1998 [12, 13] Feshbach resonances have developed into a well-established
tool to tune the interaction strength between weakly and strongly interacting, and even to
switch between repulsive and attractive interactions. Although not every atomic species
exhibits Feshbach resonances suitable for tuning interactions, this feature had a signif-
icant impact on the field of ultracold quantum gases as it greatly increases the control
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over the system. Feshbach resonances were crucial to reach the strong-coupling regime in
2000 [14], and to observe phenomena like the famous BEC-BCS crossover in 2004 [15–18].

The versatility of ultracold quantum gases is also a consequence of the flexibility
given by the optical confinement. Since the first optical confinement of a Bose-Einstein
condensate in 1998 [19], huge progress has been made in terms of the potential shaping,
not only allowing to study both bulk systems as well as lattice systems [20], but also to
change the dimensionality of the system. This gave access to numerous new phases and
phenomena such as the realisation of a Tonks-Girardeau gas in one dimension [21, 22] and
the observation of the celebrated BKT transition in two dimensions [23].

A new level of precision was achieved with the implementation of microscope objec-
tives. In 2009, the first quantum gas microscope demonstrated single-site resolution in
optical lattices [24] and also for bulk systems microscope objectives with high numerical
aperture provide unprecedented accuracy for the observation and also manipulation of
ultracold quantum gases.

In the experimental work presented in this thesis, we combine these features in or-
der to create highly controllable quantum systems that can be imaged with high spatial
resolution.

In chapter 2 we present progress in the early stages of the experimental work and dis-
cuss the possibility to realise mesoscopic Fermi-Hubbard systems with K40. This species
features multiple suitable spin states with tunable interstate interaction strengths via
magnetic Feshbach resonances. Section 2.1 and 2.2 provide an overview of the experimen-
tal apparatus built in the course of a previous dissertation [25]. This setup features an
in-vacuo microscope objective with high numerical aperture allowing for high-resolution
imaging and allows to prepare ultracold fermionic gases. In section 2.3, building on this
previous work, we motivate and discuss our work towards an implementation of small,
degenerate Fermi-Hubbard-like systems. However, Raman sideband cooling to the vibra-
tional ground state turned out to be very challenging and we did not achieve sufficient
ground state fractions to make studying Hubbard systems feasible.

The subsequent main part of this thesis focusses on the realisation of degenerate two-
dimensional bosonic bulk systems with K39. The setup combines the ability to prepare
spin mixtures with tunable interactions with high resolution imaging and the possibility to
reduce the dimensionality and hence represents a promising platform to gain new insights
into many-body phenomena.

In chapter 3 and 4 we describe how the experimental setup was re-designed and re-
built in order to switch from small fermionic tweezer systems to two-dimensional bosonic
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Chapter 1. Introduction

bulk systems. In chapter 3 we discuss the realisation of a three-dimensional Bose-Einstein
condensate, while chapter 4 focusses on entering the quasi-two-dimensional regime.

Chapter 5 proceeds with the presentation of scientific perspectives, starting with an
overview of previous work on two-dimensional bosonic bulk systems with atomic Bose-
Einstein condensates. Next, some particularly interesting quantum phenomena that can
be studied with Bose mixtures are presented, especially focussing on the potential reali-
sation of two-dimensional quantum droplets in our experimental setup. Finally, chapter 6
provides a conclusion and outlook.
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Chapter 2

Creating mesoscopic fermionic systems

In this chapter we will discuss the preparation of small tweezer systems with fermionic
potassium. The chapter is divided into two parts.

In the first part we will describe the experimental setup that was designed and built
in the course of a previous dissertation [25]. We will present the main components of
the apparatus whose key feature are two in-vacuo twin microscope objectives with high
numerical aperture that enable a high spatial resolution, both for manipulating as well as
for imaging the atomic sample. We will then give an overview of the experimental sequence
from generating an atomic beam to trapping atoms in an optical lattice or crossed dipole
trap with a temperature of ∼ 25 µK. Unless stated otherwise, this part is mostly a partial
summary from [25].

In the second part we will focus on our work towards the preparation of Fermi-
Hubbard-like systems following a bottom-up approach. First, we will briefly provide re-
search perspectives that motivated us to pursue the investigation of small Fermi-Hubbard-
like systems. Then, building on the experimental sequence presented in the first part, we
will discuss the technical realisation of these systems. We will mainly focus on our efforts
towards reaching the vibrational ground state via Raman-sideband cooling which turned
out to be very challenging. In a tweezer array we achieved a 3D ground state fraction of
∼ 40% which is not sufficient to efficiently perform experimental studies.

2.1 An apparatus for high resolution imaging and prob-

ing of potassium

This section provides a brief overview of the main technical parts of the apparatus. It
was designed and set up in the course of a previous dissertation [25] and no significant
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Chapter 2. Creating mesoscopic fermionic systems

changes were made to the vacuum system and the coil assembly. The laser system on
the other hand has been improved and expanded over the course of this work. The main
changes are marked as such, but not further elaborated here. Details on them will be
given in later chapters, the respective references are provided.

2.1.1 Vacuum system

The complete vacuum system of the experiment is shown in fig. 2.1. It can be roughly
divided into three sections: the main chamber, the oven and 2D MOT section and the
UHV pumping section.

Figure 2.1: Overview of the complete vacuum system of the experiment. The core part is the main
chamber in which the degenerate quantum systems are prepared. The key component is a pair of two
high-resolution microscope objectives located inside the vacuum. Optical access is provided by eight
large as well as several smaller viewports. Furthermore, the main chamber features two in-vacuo
antennas allowing to drive RF transitions between the F - and mF -states. On the right side the
main chamber is connected to the oven and 2D MOT section which contains both a K39 as well
as an enriched K40 sample. The atoms are transferred to the main chamber in form of an atomic
beam created by a 2D MOT. The UHV pumping section shown in the left ensure a low pressure of
∼ 2× 10−11 mbar in the main chamber. Adapted from [25].

Main chamber The main chamber is the core part of the vacuum system. Here, the
atomic quantum systems are prepared and investigated. The key components are the
in-vacuo high resolution twin microscope objectives enabling the creation of single atom
tweezers, single-site addressability and single-site resolution imaging. The microscope
objectives share the same housing, but facing opposite directions such that they have
a common focal plane. Placing the microscope objectives inside the vacuum chamber
circumvents the need to compensate aberrations from the viewport windows and greatly
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2.1. An apparatus for high resolution imaging and probing of potassium

simplifies the adjustment. It furthermore allows to place the microscope objectives closer
to the atoms making it possible to achieve an effective focal length of 20mm and especially
a high numerical aperture of 0.75. Drawback of the in-vacuo microscope objectives is the
necessity to use a large steel main chamber: the base flange is an CF300 flange with a
corresponding outer diameter of 355.6mm.

Another implication of the microscope objectives is to split the science position, where
the desired quantum systems are created and studied, from the MOT position in order to
achieve reasonably large MOT beams which also improves the optical access. Both science
and MOT position are located inside the main chamber separated by a short distance of
4 cm.

Optical access to MOT and science position is provided mainly by six CF63 viewports
with an outer diameter of 114.3 mm in the horizontal plane, two CF100 viewports with
an outer diameter of 152.4mm as well as several smaller viewports with a small angle to
the horizontal plane as can be seen in fig. 2.1.

Additionally, the main chamber features an RF- as well as a microwave antenna.
Placing them inside the vacuum chamber ensures a reasonable signal strength at the
atom position. Apart from the fact that the sheer spatial distance due to the size of the
vacuum chamber reduces the amplitude, the chamber also shields the atoms from antennas
outside the chamber as it acts as a Faraday cage. The RF-antenna is essentially a coil
with 31 windings printed on a circuit board and was intended to drive transitions between
different mF -states of the ground state manifold.1 The microwave antenna is a single-loop
coil with a large surface area resulting in a low surface resistance in order to achieve large
magnetic fields.2 The microwave antenna was intended to enable transitions between the
F -states of the ground state manifold. However, after switching to the bosonic isotope
K39 the microwave antenna was also used for the transitions between the mF -states.

Oven and 2D MOT section In the oven and 2D MOT section the atomic beam is
created that is used to load the 3D MOT. It has two separate ovens: one with a K39 sample
and one with an enriched sample for K40.3 Each oven section has an individual valve in
order to be able to switch between the atom sources. The 2D MOT chamber features four
large rectangular windows allowing for highly elliptical 2D MOT beams. Additionally,
there is a small viewport along the axis towards the main chamber to allow for a ’push
beam’ (see sec. 2.2). A differential pumping stage ensures a high vapour pressure inside

1Details on the antenna design can be found in [26].
2The design was inspired by [27].
3In principle the enriched sample could also be used for K39, but since it is quite expensive it makes

sense to use a separate, less expensive sample for K39.
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the oven sections to achieve acceptable loading rates while still maintaining a low pressure
in the main chamber. The oven and 2D MOT section is separated from the main chamber
by a mechanical shutter in order to make maintenance easier.

UHV pumping section The purpose of the UHV pumping section is to ensure a low
pressure of ∼ 2 × 10−11 mbar in the main chamber in order to achieve a vacuum lifetime
in the order of 95 s. This section is not involved in the experimental sequence.

2.1.2 Magnetic coils

There are four main sets of coils which are depicted in fig. 2.2: The MOT coils and
the experiment coils, capable of generating high magnetic fields for trapping and tuning
interactions, and the Raman coils and the Bias coils to provide quantisation and offset
fields.

Figure 2.2: Overview of the main coil assembly. The coils are mounted outside the main vacuum
chamber. For more clarity the main chamber is not included in the picture. The MOT position is
indicated by the red sphere. The science position next to it is surrounded by the white housing of the
microscope objectives. The MOT coils and the experiment coils are mainly used for trapping. The
experiment coils furthermore provide sufficient magnetic field strength to exploit suitable Feshbach
resonances. The Raman coils and the Bias coils address orthogonal horizontal axes and generate
much smaller fields, mainly employed as quantisation fields and for alignment. Adapted from [25].

MOT coils The MOT coils are a pair of vertically oriented coils centered around the
MOT position. The current direction can be switched for the upper coils such that the
MOT coils can be used both in Helmholtz and Anti-Helmholtz configuration. Their main
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2.1. An apparatus for high resolution imaging and probing of potassium

purpose is to provide the magnetic gradient for the MOT as well as for the magnetic trap
that is used to transport the atoms from MOT to science position.

experiment coils The experiment coils are very similar to the MOT coils, also vertically
oriented, but centered around the science position. They can be used in Helmholtz and
Anti-Helmholtz configuration as well, but since they are closer to the atoms, they can
create a higher magnetic field in the atoms plane than the MOT coils. Their main purpose
is to create the magnetic gradient for the magnetic trap required for the transport as well
as to provide the magnetic field for tuning interactions via Feshbach resonances.

Raman coils The Raman coils are a pair of coils that are oriented perpendicular to the
MOT and the experiment coils. They are aligned with the so-called transport axis, i. e.
the axis defined by MOT and science position. Both coils have the same current direction
and create much weaker fields than MOT and experiment coils. The main purpose is to
provide a quantisation axis along the transport axis for optical pumping, imaging and
Raman cooling.

Bias coils The Bias coils are intended to provide a magnetic field along the horizontal
axis perpendicular to the transport axis. The 2D MOT section and the UHV pumping
section of the vacuum system prevent to use the same geometry as for the Raman coils,
therefore the Bias coils employ a different design using four coils. The current direction
can be set individually for each of these coils allowing to create both offset as well as
gradient fields.

2.1.3 Laser system

The two main transitions of potassium are the D1 line at 770.1 nm and the D2 line at
766.7 nm as shown in fig. 2.3, which we mainly utilise for cooling, manipulating and
imaging the atoms. For trapping potentials we additionally employ far detuned light at
850 nm, 1064 nm and 532 nm along several axes. The main laser axes are sketched in
fig. 2.4.

D2 transition Our D2 laser system is mainly used for the realisation of a 2D and
3D MOT as well as for absorption imaging. Since the MOT scheme requires to address
both a cooling as well as a repumping transition, we employ two D2 lasers: The so-called
repumper laser is locked to a vapour cell via modulation transfer spectroscopy and is used
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Chapter 2. Creating mesoscopic fermionic systems

Figure 2.3: Level schemes of K39 and K40. The hyperfine splittings are given in units of MHz. The
main transitions are the D1 transition |42S1/2⟩ ↔ |42P1/2⟩ and the D2 transition |42S1/2⟩ ↔ |42P3/2⟩.
Noteworthy are the tight level spacing, especially for K39, and the inverted level structure of K40.
More details on the optical properties are given in sec. 3.1.2. Adapted from [28].
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2.1. An apparatus for high resolution imaging and probing of potassium

to lock the so-called cooler laser via a beat lock.4 Both lasers address the atoms in the
2D MOT cell (see fig. 2.1) along two orthogonal axes as well as the MOT position in the
main chamber along three axes, each retro-reflected to form a proper MOT configuration.
The cooler laser can also be applied to the science position along every main axis, mainly
to enable absorption imaging for alignment and diagnostics. Additionally, there is an
auxiliary D2 beam, the so-called push beam, roughly along the axis defined by 2D MOT
and 3D MOT position that allows to transfer momentum to the atomic beam created in
the 2D MOT section in order to increase the 3D MOT loading rate.

Note that the difference in the transition frequencies for K39 and K40 can be com-
pensated via an AOM and a different selection of the locking slope of the beat lock such
that the D2 laser system is suitable for creating both a K39 as well as a K40 MOT with
just minor manual adjustments.

D1 transition The D1 transition is mainly used for molasses cooling, optical pumping
and fluorescence imaging. We employ three D1 lasers: The so-called D1 reference laser
that solely serves as a frequency reference, the so-called molasses laser mainly used for
molasses cooling and the so-called D1 pump laser mainly used for optical pumping. The
molasses laser can be modulated via an EOM in order to add a D1 repumping transition
for the molasses scheme. Both the molasses and the D1 pump laser are locked to the D1
reference laser via a beat lock while the D1 reference laser is locked to a vapour cell. The
locking scheme used to rely on doppler-free absorption spectroscopy, but was rebuilt to
a modulation transfer spectroscopy in the course of this thesis. D1 light can be applied
along every main axis, in most cases retroreflected beams, in order to enable molasses-like
schemes at MOT and science position as well as fluorescence imaging. Along the transport
axis, the D1 light is mainly employed for optical pumping and is not retro-reflected.

850 nm 850 nm light is employed to create trapping potentials. It is only applied at
the science position along three orthogonal axes, including retroreflectors such that both
running wave trap as well as lattice configuration can be realised. The horizontal beams
have a Gaussian beam waist of ∼ 30 µm, the vertical beam a waist of ∼ 50 µm. The maxi-
mal radial trapping frequency is ∼ 1 kHz (∼ 0.5 kHz) for horizontal (vertical) beam(s), the
corresponding trap depths are ∼ 100 µK (∼ 30 µK). While the lattices can be a convenient
tool for alignment and diagnostics, we mainly employ the horizontal beams in running
wave configuration as a crossed dipole trap in the experiment. Additionally, there used to

4For details on the D2 laser system and the locking techniques see [25, 29].
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Figure 2.4: Sketch of the main laser axes from top view. Not depicted are the vertical axes both for
science and MOT position along which D1 and D2 light can be applied. Additionally, a retroreflected
850 nm beam is implemented along the vertical axis of the science position. MOT and science position
are separated by 4 cm and are located in the main chamber.

be an array of 2x2 optical tweezers along the vertical axis that was removed in the course
of this thesis. Details on these traps can be found in sec. 2.3.1.

1064 nm The 1064 nm light is used for trapping the atoms. There are two separate
optical traps at 1064 nm: the so-called 1064 nm ODT and the so-called squeeze trap
which were both set up in the course of this thesis.

The 1064 nm ODT is a deep optical dipole trap at the science position and employed
for the collisional loading scheme discussed in sec. 3.6. It has waists of 14.5 µm x 17.0 µm
corresponding to a Rayleigh range of ∼ 620µm. The full trap depth is ∼ 6mK, the radial
trapping frequencies are 25 kHz and 19 kHz, the axial trapping frequency is 350 Hz. The
beam axis has a 5◦ angle to the transport axis in the horizontal plane.

The squeeze trap is a highly anisotropic dipole trap also at the science position, aligned
with the transport axis and part of the setup for the 2D confinement. The squeeze trap
will be discussed in detail in chapter 4.

532 nm The purpose of the 532 nm light is to create the so-called vertical lattice at the
science position and was also set up in the course of this thesis. The vertical lattice is
formed by two interfering beams with a vertical angle of 10◦ with respect to each other,
while the beams are horizontally aligned with the transport axis. The vertical lattice
provides the 2D confinement and will be discussed in detail in chapter 4.
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2.2. Overview of the experimental sequence for K40

2.1.4 Imaging system

One of the key components of the experimental setup are the in-vacuo high-resolution
microscope objectives. The high NA of 0.75 allows for a spatially resolved imaging along
the vertical axis both with absorption imaging via the D2 transition and fluorescence
imaging typically performed on the D1 transition. The corresponding diffraction-limited
resolution for the imaging wavelengths of ∼ 767 nm (D2) and ∼ 770 nm (D1) is ∼ 0.62 µm.

The imaging system consists of two telescopes. The first telescope is formed by one
of the microscope objectives and a 2” achromat with a focal length of f = 1000mm.
The long focal length is chosen due to the large steel chamber and in order to improve
the optical access. The microscope objective has an effective focal length of 20mm,
which yields a magnification of the telescope of 50. The diffraction-limited resolution
of ∼ 0.62 µm then corresponds to 31 µm behind the first telescope while the employed
sCMOS camera features a pixel size of 6.5µm. Placing the camera in the imaging plane
of the first telescope would therefore result in a very weak signal. In order to improve
the signal-to-noise ratio we employ a second telescope which de-magnifies the imaging
beam. It consists of an f = 500mm and an f = 150mm achromat corresponding to a
magnification of 0.3, resulting in a total magnification of the imaging system of 15. Thus,
the pixel size of 6.5µm of the camera translates to a effective pixel size of 0.43 µm at
the atom plane which roughly matches the diffraction-limited resolution. This increases
the signal-to-noise ratio while still maintaining the high spatial resolution as the effective
pixel size is slightly smaller than the diffraction-limited resolution.

Furthermore, the experimental setup features auxiliary imagings along every main
axis of the science position denoted in fig. 2.4 as well as an additional auxiliary imaging
addressing the MOT position. The auxiliary imagings are mostly intended for absorp-
tion imaging due to their low NA < 0.07,5 and are mainly for alignment and diagnostic
purposes.

2.2 Overview of the experimental sequence for K40

In this section we briefly discuss the experimental sequence to prepare ultracold K40 atoms
in optical traps aiming towards mesoscopic Fermi-Hubbard systems. As small system
sizes are associated with an increased need for repetitions, the sequence focusses on short
cycle times. We employ all-optical cooling methods which allows to reduce the cycle

5The MOT as well as the magnetic trap that are discussed later can be imaged via fluorescence
imaging since their atom number is high enough to emit sufficient photon numbers despite the low
collection efficiency of the auxiliary imagings.
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time by an order of magnitude to < 2 s compared to conventional approaches employing
evaporative cooling, thus ensuring a rapid repetition rate. The main steps are the initial
trapping in a 3D MOT followed by a grey molasses scheme, a magnetic transport from the
MOT position to the so-called science position in between the microscope objectives (see
sec. 2.1.1) where the atoms are loaded into an optical trap, and finally a Raman sideband
cooling scheme to achieve degeneracy.

In the following we provide a brief overview of the experimental steps to obtain ul-
tracold atoms in optical traps. A more detailed discussion of these steps can be found
in [25, 29]. The final cooling step, i. e. Raman sideband cooling in optical tweezers, was
implemented in the course of this work and will be discussed in sec. 2.3.

• The first step is the generation of an atomic beam via a 2D MOT [30, 31]. Therefore,
the oven section, containing the potassium sample, is heated to ∼ 60◦C in order to
create an atomic vapour which serves as an atom source. The 2D MOT, realised
by a static quadrupole field and two orthogonal retroreflected D2 beams, then cools
and traps the atoms along two axes, while they can still freely move along the third
axis, i. e. towards or away from the main chamber. By applying a so-called D2
push beam along the third axis, the atomic flux towards the main chamber can be
increased by one order of magnitude. The push beam furthermore reduces the atom
number fluctuation in the following step.

• After reaching the main chamber the atoms are trapped via a 3D MOT [32]: Six
circularly polarised, slightly red-detuned D2 beams in combination with a magnetic
gradient field create a spatially and velocity dependent radiation force that traps the
atoms. Additionally applying near-resonant, blue-detuned D1 light along the same
axes reduces the density and leads to a significant increase of the MOT capacity
[33] resulting in a maximum loaded atom number of ∼ 3 · 107 with a loading rate of
∼ 7 · 106 s−1. The temperature is limited by the Doppler temperature of ∼ 145 µK.

• To further cool the atoms a Λ-enhanced grey molasses scheme6 [36–38] is applied:
A Sisyphus cooling mechanism and motionally coupled bright and dark states allow
to reach temperatures below the Doppler limit. Note, though, that the molasses
cooling scheme exerts no trapping force. This cooling scheme requires a periodic
modulation of the polarisation, which is provided by six counter-propagating, circu-
larly polarised, near-resonant D1 beams7, as well as degenerate mF -states, i. e. the

6A detailed explanation of this scheme can be found in [34, 35].
7In principle a grey molasses scheme can also be performed on the D2 transition. In the case of

potassium the D2 hyperfine splitting is too narrow to allow for an efficient molasses scheme, though.
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2.3. Realising small Fermi-Hubbard systems

absence of magnetic fields. In practice, the magnetic quadrupole field of the previ-
ous 3D MOT scheme has a decay time in the order of ∼ 20ms, though. However,
the configuration of the D1 molasses beams, i. e. polarisation and sign of the detun-
ing, is suitable to form a blue-detuned MOT [39] when combined with a quadrupole
field. This enables a smooth transition between MOT and grey molasses via a blue
MOT which results in higher densities after the grey molasses as the atoms are both
cooled and trapped during the decay of the magnetic field. With this cooling step
temperatures of ∼ 10µK are achieved.

• In the next step the atoms are magnetically transported from the MOT position to
the science position over a distance of ∼ 4 cm. Therefore, the atoms are optically
pumped into the magnetically trapped |2S1/2, F = 9/2,mF = 9/2⟩ ground state by
applying resonant D1 light and subsequently captured in a magnetic trap created
by the MOT coils. The actual transport is then performed by ramping down the
gradient field of the MOT coils while simultaneously ramping up a gradient field
created by the experiment coils and thus shifting the magnetic trap from the MOT
position to science position. The transport is smoothened by using a cos2- (sin2-)
shaped ramp for the MOT (experiment) coils in order to reduce heating.

• At the science position the atoms are loaded from the magnetic trap into the fi-
nal optical trap, i. e. either a crossed dipole trap, an optical lattice or into optical
tweezers, via a D1 assisted loading scheme: the optical potential is ramped up, blue-
detuned D1 light in molasses configuration is applied for ∼15ms while its intensity
is linearly decreased and subsequently the magnetic trap is adiabatically ramped
down. With this loading scheme ∼ 2 · 105 atoms are loaded into the lattice, ∼ 5 · 104

atoms into the crossed dipole trap, each with a temperature of ∼ 25 µK.

2.3 Realising small Fermi-Hubbard systems

The Fermi-Hubbard model is one of the simplest microscopic model of electrons in a solid
state system [40]. As it is based on the tight-binding model the Fermi-Hubbard model
essentially describes localised fermions in a lattice potential. The Hamiltonian consists
of only two terms: a kinetic term, i. e. tunnelling of the particles between the lattice
sites described by the tunnelling parameter t, and a potential term, corresponding to
an on-site energy term U due to interacting particles on the same lattice site. Despite
being conceptually simple, it rapidly becomes more difficult to solve theoretically with
increasing system size since the Hilbert space grows exponentially with the number of
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lattice sites. Hence, neutral atoms in optical lattices, featuring a high degree of control
over t and U , prove highly useful as quantum simulators for Hubbard systems.

In contrast to quantum gas microscopes where large number of atoms are trapped
in optical lattices we were focussing on a bottom-up approach: keeping the single site
addressability and single site imaging, but generating small flexible potentials that are
assembled site by site by using optical microtraps. The tunnelling parameter t can be
controlled by changing the shape of the potential while a Feshbach resonance allows to
tune the onsite interaction U . Starting from the smallest instances, where the observed
dynamics can be compared to theoretic solutions to validate and calibrate the experiment,
the system size and thus the complexity can then be gradually increased to observe how
many body effects emerge.

The flexible potential geometry enables to easily implement different tunnelling rates
between different pairs of neighbouring sites. This is of particular interest for the study
of topological systems such as the Su-Schrieffer-Heeger model [41] where topologically
protected states are localised on the edges of a one dimensional chain of lattice sites
with alternating tunnel coupling strength [42]. By extending the potential to ladder type
systems and modulating the positions of the lattice sites, even complex tunnelling can be
introduced. This gives rise to artificial gauge fields [43] which would allow to implement
and study for example the Harper-Hofstadter model [44–47].

Another exciting research direction arises when considering the t,t′ Hubbard model
which includes not only nearest-neighbour tunnelling t, but also next-nearest neighbour
tunnelling t′. Within this model a plaquette, i. e. 2×2 lattice sites, features a quantum
critical point where a crossing of the ground state energies of atom number N = 2, 3, 4

occurs, suggesting that the plaquette is the fundamental building block for d-wave super-
conductivity. [48]

To be able to generate such a plaquette potential we started out with four sites.
Each site is created by an individual optical tweezer [49–51], i. e. an optical microtrap,
providing a nearly harmonic potential. The experimentally critical part is to cool the
atoms to the motional ground state of these potentials in order to achieve a quantum
degenerate system. To ensure a high repetition rate we employ an optical cooling scheme,
i. e. Raman sideband cooling, to remove all motional quanta of the atom in the tweezer
[52–54]. While we achieved ground state fractions close to 90% in a 1D lattice8 with
this cooling technique, it turned out that we did not achieve high enough ground state
fractions in the tweezer potentials to efficiently perform experimental studies, especially

8The 1D lattice was used to set up and pre-optimise the Raman sideband cooling scheme since the
larger atom number exhibits a larger signal and requires less statistics.
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2.3. Realising small Fermi-Hubbard systems

considering increasing system sizes.
Nonetheless, in the following we will give some details on the creation of the tweezer

potentials, the detection of atoms in tweezers and on Raman sideband cooling in a tweezer.

2.3.1 Creating and loading into the tweezer potentials

Initially, we set up four optical tweezers, i. e. four tightly focussed optical dipole traps, the
minimum required to investigate the quantum critical point in the t,t′ Hubbard model.9

Each tweezer is created by an individual laser beam that is focussed down to a waist of
∼ 0.7 µm by one of the two high NA microscope objectives, where the beam angle on the
objective determines the tweezer position. In our setup the four beams are completely
independent which allows to independently set position and depth of each tweezer, giving
full control over each site and thus also full flexibility on the geometry.10 Details on the
plaquette potential and its stability can be found in [55].

The atoms are loaded into the tweezers with the D1 assisted loading scheme briefly
described in sec. 2.2 with a small adaption: The size of the tweezer potentials is on the
same length scale as the interference pattern of the molasses beams. To avoid a spatial
dependence of the loading efficiency the position of the interference pattern is modulated
by ’shaking’ the retro-reflectors of the molasses beams via a piezo [53]. With this scheme
one or zero atoms are loaded into each tweezer with a loading probability of 50%: Due
to light-assisted collisions atoms scatter pairwise out of the tweezer. Odd initial numbers
result in one atom in the tweezer, even initial numbers result in an empty tweezer.11

2.3.2 Tweezer detection

To detect whether a tweezer is occupied or not the atom needs to be imaged via fluo-
rescence imaging. Conveniently, the Raman sideband cooling process, discussed in the
following section, is associated with fluorescence. However, despite the high NA of the
microscope objective, not enough photons were collected to get a reliable signal. This
is due to a large background signal, probably originating from light that is scattered by
the in-vacuo objectives. Instead a molasses imaging scheme proved to be more effective:
The atoms are illuminated with D1 molasses light along the x’ and y’ axis as well as

9The setup was designed to allow for a future extension for increasing the system size.
10While this is useful for small system sizes, using independent beams becomes impracticable when

increasing the systems size since the required laser power scales badly with the number of sites because
every additional site requires an additional beamsplitter cube to add the additional laser beam to the
setup.

11The loading probability can be increased via a ’blue-shielding’ scheme [56, 57].
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Figure 2.5: Histogram of the detected fluorescence signal when imaging a tweezer via molasses
imaging. The left peak corresponds to an empty tweezer, the right peak corresponds to one atom in
the tweezer. By fitting the two peaks with a Gaussian (red line) the false positive and false negative
error rates can be calculated as plotted in the right inset. The left inset exemplarily shows an image
of a plaquette with one atom per site.

D1 F repump light12 along the transport axis. Thereby, a 2D molasses is formed which
yields enough fluorescence to reliably detect the tweezer occupation.13 A histogram of the
collected fluorescence signal in units of camera counts is shown in fig. 2.5. It features two
peaks: The left peak is present even when the tweezer potential is disabled. We hence
attribute it to dark counts of the camera. The right peak only occurs when properly
applying the previously described loading scheme with enabled tweezer potential. Ac-
cordingly, we attribute it to the fluorescence of a single atom. The separability of the
two peaks depends on the molasses parameters, and only after optimisation the peaks are
clearly distinguishable allowing to binarise the signal into an occupation number of zero
or one by defining a detection threshold.

To determine the detection fidelity of this scheme one would need to know the true
occupation for each fluorescence image. As this is not known, we instead estimate the
error rates by modelling the two fluorescence count peaks as Gaussian shaped probability
distributions. The false positive (negative) error rate is then derived by calculating the

12The repumper for the molasses scheme is modulated onto the molasses beam via an EOM. Therefore,
the additional D1 F pump beam along the transport axis is not required for the molasses scheme. However,
we experimentally found that it enhances the signal.

13We cannot apply a 3D molasses since the third molasses axis equals the imaging axis and hence would
saturate the camera.
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part of the distribution of the empty (occupied) tweezer that is above (below) the detection
threshold. The thereby determined error rates are plotted in fig. 2.5 (right inset). It is
apparent that the false positive error rate is particularly low since it has a much higher
slope than the false negative error rate. This is due to the fact that the width of the
zero atom peak is much lower, i. e. nearly half the width of the atom peak. However,
these low false positive error rates are probably too optimistic as the right wing of the
zero atom peak shows a slower drop-off than predicted by the Gaussian model. Thus,
we conservatively estimate the error rates to be ≲ 10−3. The error rates can be further
reduced by defining two different detection thresholds for identifying a site as empty or
occupied. This increases the statistical error, though, since every measurement run with
a fluorescence signal in between the two thresholds is not taken into account.

2.3.3 Raman sideband cooling

The Raman sideband cooling scheme

To prepare a degenerate quantum system the atoms need to be cooled to the motional
ground state of the respective tweezer potential. This can be achieved via Raman sideband
cooling14. A scheme of the cooling process is depicted in fig. 2.6. The basic idea is to lower
the vibrational level by driving a coherent two-photon transition, the so-called Raman
transition, that allows to address specific vibrational levels. Thereby, motional quanta
can be removed one by one over several iterations until the atom reaches the motional
ground state.

The Raman transition requires two Raman beams, both detuned from the D2 line
by some ten GHz, that couple the states |2S1/2, F = 9/2,mF = −9/2⟩ and |2S1/2, F =

7/2,mF = −7/2⟩ via a virtual state indicated in fig. 2.6 by the dotted horizontal line.
Due to the state being virtual the Raman transition has a very narrow linewidth allowing
to address a single vibrational level |n⟩ of the harmonic potential. The relative detuning
of the two Raman beams determines which ∆n is addressed. A transition with ∆n = 0

is referred to as carrier transition, transitions with ∆n ̸= 0 as sidebands. To be able
to drive the sidebands the Raman beams need to transfer a sufficient momentum kick
which is why the Raman beams cannot be parallel, but are orthogonal to each other. For
increasing |∆n| the overlap of the wave functions decreases which makes transitions with
|∆n| > 1 inefficient. Therefore, only one motional quantum per iteration is removed.

The Raman transition is a coherent transition and hence leads to Rabi oscillations
between the states |2S1/2, F = 9/2,mF = −9/2, n⟩ and |2S1/2, 7/2,−7/2, n−1⟩. To break

14A detailed explanation of Raman sideband cooling can be found in [58].
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Figure 2.6: Raman sideband cooling scheme. The cooling is achieved by reducing the vibrational
level via the coherent two-photon Raman transition |2S1/2, F = 9/2,mF = −9/2, n⟩ → |2S1/2, F =
7/2,mF = −7/2, n−1⟩. Subsequently, the atom is pumped to the state |2P1/2, F = 9/2,mF = −9/2⟩
from where it decays back to the state |2S1/2, F = 9/2,mF = −9/2⟩, but with a lower vibrational
level. The motional quanta can thus be removed one by one until the atom reaches the ground
state of the harmonic potential. As the atom can decay from |2P1/2, F = 9/2,mF = −9/2⟩ to
|2S1/2, F = 9/2,mF = −7/2⟩ the scheme requires an additional pumping beam denoted as ’mF -
pump’. Adapted from [25].
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the coherence and in order to pump the atom back into the initial state, D1 F -pump light
is simultaneously applied. The pumping beam drives the transition |2S1/2, 7/2,−7/2⟩ →
|2P1/2, 9/2,−9/2⟩ from where the atom can decay back to the state |2S1/2, 9/2,−9/2⟩. As
the atom can also decay to the state |2S1/2, 9/2,−7/2⟩, we additionally employ a repumper
that drives the transition |2S1/2, 9/2,−7/2⟩ → |2P1/2, 9/2,−9/2⟩. For these transitions the
atom is unlikely to change its motional state when operating in the so-called Lamb-Dicke
regime (see e. g. [58]). In total, the atom then changes its state from |2S1/2, 9/2,−9/2, n⟩
to |2S1/2, 9/2,−9/2, n−1⟩ over the course of one iteration, i. e. loses one motional quantum
per iteration and can thus be cooled to the motional ground state which is then dark to
the Raman transition.

Optimisation

As only a single atom is trapped within a tweezer, it is non-trivial to measure a temper-
ature to assess the cooling success and optimise the parameters for the Raman sideband
cooling. In our experiment, we used three different approaches to estimate the tempera-
ture that are presented in the following.

Spilling technique For the so-called spilling technique, the trapping depth is adiabat-
ically lowered such the number of vibrational levels in the trapping potential is decreased.
The lower the final trapping potential, the lower the remaining number of levels. Atoms
above the threshold level get spilled out of the trap. Hence, the survival probability after
the spilling corresponds to the motional state of the atom before the spilling.

This technique is fast and convenient for a rough optimisation. However, spilling down
to low n and especially calibrating the relation between the set final trap depth and the
number of remaining vibrational levels is challenging. Hence, this method is unfavourable
for atoms in a low mean vibrational level n̄.

Release and recapture Another method is the so-called release and recapture tech-
nique [59] where the trapping potential is switched off for ∼ 10 µs and then switched back
on. The probability to recapture the atom in the trapping potential depends on its initial
velocity which again depends on its energy. Performing several iterations yields an energy
distribution that can be used to estimate the mean occupied vibrational level n̄.

The release and recapture technique is an easy and fast method to extract an estimate
for the temperature, but has a drawback when optimising Raman sideband cooling: The
extracted temperature is only meaningful when assuming thermal equilibrium. Raman

21



Chapter 2. Creating mesoscopic fermionic systems

sideband cooling, on the other hand, addresses the vibrational levels nx, ny and nz indi-
vidually. Consequently, the technique provides an estimate on the overall Raman cooling
efficiency, but it does not allow to differentiate between the different axes.

Raman spectra As a third method we employed Raman spectra. The basic idea is
to use the Raman transition as a diagnostic tool since the ground state of the trapping
potential is dark to the red sideband |n⟩ → |n− 1⟩. Therefore, after applying the Raman
cooling scheme, a π/2 Raman pulse with variable frequency fprobe of one of the Raman
beams is applied to drive the transition |2S1/2, F = 9/2,mF = −9/2⟩ → |2S1/2, 7/2,−7/2⟩.
Depending on fprobe, which determines the relative detuning of the two Raman beams,
the carrier transition |n⟩ → |n⟩, the blue sideband |n⟩ → |n + 1⟩ or the red sideband
|n⟩ → |n − 1⟩ is driven. A subsequent resonant, so-called blowout pulse on the D2 line
then removes all remaining atoms in the state |2S1/2, 9/2,−9/2⟩ that were not affected
by the Raman transition. In the last step the remaining atoms that were hidden from
the blowout pulse in the state |2S1/2, 7/2,−7/2⟩ are imaged via D1 fluorescence imaging.
Hence, a Raman spectrum essentially probes the probability that an atom is affected by
the Raman transition at a variable relative detuning of the Raman beams.
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Figure 2.7: Raman spectrum after Raman sideband cooling in a tweezer. A π/2 Raman pulse is
applied where the frequency fprobe of one of the Raman beams is varied. The frequency fcarrier at
which the carrier transition is driven acts as a reference. Subsequently, all atoms that were not
addressed by the Raman transition are removed via a blowout pulse and the remaining atoms are
then imaged. Plotted is the corresponding probability to detect an atom in the tweezer (black). The
axial sidebands are visible at a detuning of ∼ 30 kHz. The radial trapping frequencies are degenerate
and visible at a detuning of ∼ 170 kHz. To extract the amplitude of the sidebands, the data is fitted
(red) with a sum of five Gaussians where the position of the sidebands is forcibly symmetric. The
mean vibrational level per axis and thus the ground state fractions can then be derived from the
ratio of the fitted amplitudes of the sidebands. Radially ground state fractions of 91.3% are achieved,
axially a ground state fraction of 43.3%, yielding a 3D ground state fraction of 36.1%.
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A thereby derived Raman spectrum is shown in fig. 2.7. It was taken after Raman side-
band cooling in a tweezer potential and features five peaks: The central one corresponds
to the carrier transition. To the left, i. e. at lower frequencies, are the red sidebands,
to the right, i. e. at higher frequencies, the blue sidebands. The spectral distance of the
sidebands to the carrier corresponds to the trapping frequency.15 As the tweezer poten-
tial has two degenerate radial trapping frequencies and one axial trapping frequency, the
spectrum features two red and two blue sidebands.16 The axial sidebands are closer to
the carrier than the radial ones due to the lower trapping frequency. As can be seen in
the plot, the amplitude of the red sidebands are lower than the amplitudes of the blue
sidebands. This so-called sideband asymmetry is caused by atoms in the motional ground
state. While these atoms contribute to the blue sideband, they are not addressed by the
red one as the ground state is dark to the red sideband. Hence, from the amplitude ratio
r = Ar/Ab of red and blue sidebands the mean vibrational level n̄ = r/(1 − r) can be
derived [52] as well as the ground state fraction, i. e. the probability PGS = 1− r that an
atom is in the motional ground state.17

This method yields more information compared to the previously described methods
since it allows to differentiate between non-degenerate axes and to directly extract the
ground state fraction. However, this method is much more time-consuming.

Performance

While we achieved ground state fractions of 87% in a 1D lattice, cooling in three dimen-
sions turned out to be more difficult. As assessed from the fitted data shown in fig. 2.7
we were able to get a ground state fraction of up to 91% in the radial axes, but only
43% in the axial direction yielding a 3D ground state fraction of 36%. When increasing
the axial trapping frequency by an additional confinement, resulting in all three trapping
frequencies being nearly degenerate, the achieved 3D ground state fraction was slightly
higher with 40%, but still similar. In principle this could be compensated via reasonable
post-selection and accordingly taking more statistics, but in practice this gets unfeasible
for increasing atom number N as the ground state fraction of the total system scales with
(PGS)

N .
Despite thorough investigation of potential issues such as laser frequency noise, lat-

tices formed by surface reflections, fictitious magnetic fields, and heating from intensity

15Hence, Raman spectra are also a useful tool to extract the trapping frequencies.
161D Raman spectra as taken in 1D lattices or Raman spectra in a tweezer with all three trapping

frequencies being degenerate result in a total of three peaks: a carrier, one red sideband and one blue
sideband.

17This relation can be easily derived from the Maxwell-Boltzmann statistics.
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instabilities, we were not able to exceed a ground state fraction of ∼ 40% . This is sur-
prising since we are not aware of any factor that should fundamentally limit the ground
state fraction in our system to such relatively low values. With rubidium, strontium
and sodium ground state fractions of more than 90% were achieved in optical tweezers
[53, 60, 61]. With potassium Raman sideband cooling was successfully performed in a 3D
lattice with a resulting ground state fraction of 72% [62]. After we performed our mea-
surements on Raman cooling described above, ground state fractions of 69% [63, 64] were
furthermore reported for potassium in a tweezer array. The lower ground state fractions
achieved in our setup might be connected to spurious interference from the lens surfaces
of our in-vacuo microscope objectives or to transitions from the 4p- to the 5p-manifold
at ∼ 852 nm [65] which is very close to the wavelength of ∼ 850 nm we employ for the
tweezer potentials.18 Although these transitions are dipole-forbidden, the high intensity
at the atom position due to the small focal waist of the tweezers of < 1 µm might result
in a non-negligible transition probability.

18In contrast to our setup, the experimental setup of [63, 64] employs 1064 nm light for the trapping
potential.
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Chapter 3

Realising a K39 BEC

In the previous chapter we introduced the experimental apparatus and described how we
prepared small Fermi-Hubbard systems employing the fermionic potassium isotope K40.
As it proved very challenging to achieve the required high ground state fractions, we then
decided to take a new direction towards two-dimensional bosonic bulk systems.

In this chapter we will discuss how the experimental setup introduced in the previous
chapter was adapted in order to make a three-dimensional K39 Bose-Einstein condensate.
We will first give an overview on the bosonic potassium isotope K39, focussing on why it is
the most favorable choice for our research endeavour and on its main properties, especially
in comparison to the previously employed K40. We will see that the optical properties are
very similar and although switching from K40 to K39 requires some technical modifications
of the laser system, the main changes arise from switching from small tweezer systems to
large bulk systems as this requires significant adaptions of the experimental sequence: For
small tweezer systems we focussed on short cycle times as these systems are associated
with an increased need for repetitions, which prevents to employ non-optical cooling
techniques such as evaporation. Bulk systems, on the contrary, require to focus on large
atom numbers instead which are, on the one hand, favorable in terms of an enhanced
signal and on the other hand, also for achieving high phase-space densities via evaporation.
Consequently, while the experimental sequence for K40 and K39 is similar up to the three-
dimensional magneto-optical trap, it significantly differs for the steps thereafter.

Hence, after introducing the atomic species, we will discuss the re-designed experi-
mental sequence allowing to prepare a three-dimensional Bose-Einstein condensate. We
will first give a brief overview of the sequence and then discuss improvements and the
main steps after the three-dimensional magneto-optical trap in more detail.
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3.1 The atomic species

3.1.1 Why K39?

As we were not designing a bosonic ultracold quantum gas experiment from scratch,
but re-building an existing quantum gas experiment that was operating with fermionic
potassium K40, it appears natural that we employ the same element and switched to the
bosonic isotope K39.1 However, K39 is not only most convenient from a technical point
of view, but also the most suitable choice to enable a combination of spin mixtures and
tunable interactions.

As an alkali metal, K39 possesses one valence electron and thus a hydrogen-like struc-
ture. This simplifies the manipulation making alkali metals the most common choice for
ultracold quantum gas experiments. Almost all alkali metals have been used to realise
degenerate bosonic systems. Only francium has not been employed as it is one of the
most unstable naturally occurring elements with a half-life on less than half an hour [66].
Every other alkali metal, i. e. lithium, sodium, potassium, rubidium and caesium, has been
successfully utilised to study ultracold Bose gases (see sec. 5.1). However, most of these
elements are not well suited for our experimental setup as we are especially interested in
spin mixtures with tunable interactions while most alkali metals only provide one of these
features.

Cs133, the only stable isotope of caesium2, features a variety of intrastate Feshbach
resonances, especially a low-field, broad Feshbach resonance in the energetically lowest-
lying state |6S1/2, F = 3,mF = 3⟩ and thus features easily tunable intrastate interac-
tions. However, Cs133 suffers from high two- and three-body loss rate coefficients which,
especially in combination with the high mass3, makes it very challenging to achieve
(quasi-)condensation in any state other than the absolute ground state where inelastic
two-body losses are energetically suppressed [67].4 Hence, Cs133 is not suitable for the
study of spin mixtures.

Rb875 as well as Na23, which is the only stable isotope of sodium, both allow to use

1K41, the other bosonic isotope of potassium, has a substantially lower natural abundance which
makes K39 more favorable.

2Cs135 is radioactive, but with a half-life of ∼ 106 years. However, the natural abundance is extremely
low.

3The high mass reduces the thermal de Broglie wavelength and hence the phase-space density. There-
fore, the temperature required to achieve degeneracy is much lower for species with a high mass.

4Only very recently, a BEC in the |6S1/2, F = 3,mF = 2⟩ state has been realised [67].
5Rubidium has two naturally occuring isotopes: Rb85 and Rb87, both of them are bosonic. While the

natural abundance of Rb85 is higher, it suffers from an extremely large, negative background scattering
length [68]. Therefore, Rb87 is typically preferred.
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a spin degree of freedom. However, although Feshbach resonances are reported for both
species [11, 69], to our knowledge all of them are narrow and hence not suitable for tuning
interactions as they are associated to severe losses.

Hence, lithium6 and potassium are the only atomic species in the group of the alkali
metals that are suitable to create bosonic spin mixtures while also featuring Feshbach res-
onances that are suitable for tuning the interaction strength. However, although suitable
intra- as well as interstate Feshbach resonances are reported both for Li7 [70] and K39
(see sec. 3.7.1), Li7 suffers from high three-body loss coefficients. Especially for scattering
lengths in the order of 102 a0, where a0 is the Bohr radius, as required for evaporation,
the three-body loss coefficients for Li7 are more than one order of magnitude higher than
for K39 [71, 72] limiting the density and making the preparation of Li7 more difficult.
[73, 74].

Therefore, of all alkali metals, K39 provides the highest flexibility in terms of tunable
interactions for bosonic spin mixtures. Note, though, that the tunability is, nonetheless,
subject to some constraints as the intra- and interstate scattering lengths cannot be tuned
individually. The achievable combinations of the intra- and interstate coupling strengths
depend on the properties, e. g. the location, of the respective Feshbach resonances.7 Details
on the viable regimes are given in sec. 4.6.2.

3.1.2 From K40 to K39

The main general properties of K39 and K40 relevant in the context of this thesis are stated
in tab. 3.1. The most fundamental difference is that K40 follows Fermi-Dirac statistics,
while K39 follows Bose-Einstein statistics. Consequently, K40 is subject to Pauli blocking

K39 K40
statistics bosonic fermionic
natural abundance 93.258% 0.012%
lifetime stable 1.28 · 109 y
nuclear spin 3/2 4
s-wave scattering length ∼ − 33 a0 ∼ 170 a0

Table 3.1: General properties of K39 and K40. The background s-wave scattering length is approx-
imated by the triplet scattering length [75]. Data is taken from [28].

6Lithium has only one bosonic isotope which is Li7.
7Most notably, K39 does not yield a regime where all three scattering length of any spin combination

of the lowest hyperfine state are positive. Nonetheless, K39 allows to study spin mixtures with attractive
as well as repulsive interstate interactions when focussing on strongly imbalanced spin mixtures.
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and will form a Fermi gas in a degenerate bulk system. K39 atoms, on the other hand,
are able to occupy the same states, and will undergo a phase transition to Bose-Einstein
condensation in a degenerate 3D bulk system. An important consequence of the different
statistics is that K39 allows for an efficient spin-polarised evaporation which is prevented
for K40 due to Pauli blocking.

The level schemes of K39 and K40, depicted in fig. 3.1, exhibit the same basic struc-
ture. The main transitions are the D1- and D2-line, the respective optical properties are
stated in tab. 3.2. A noteworthy difference is the normal hyperfine structure of K39 as
opposed to the inverted hyperfine structure of K40. Due to the lower nuclear spin, the
hyperfine ground states F = 1 and F = 2 exhibit less Zeeman states than the hyperfine
ground states F = 9/2 and F = 7/2 of K40. Furthermore, the lower nuclear spin results
in a tighter level spacing of K39. This can be convenient from a technical point of view
as it allows to employ the same laser, tuned via an offset lock, for several transitions.
However, the hyperfine states in the D2 manifold are separated only by a few Γ or by
even less than Γ. This makes it challenging to address these states without being affected
by the respective other states as we will see e. g. in sec. 3.5. As the transition frequencies
are shifted between the two isotopes, switching from K40 to K39 requires some technical
modifications of the laser system that are not further discussed here.8

D1 D2
wavelength 770.1 nm 766.7 nm
natural linewidth Γ 2π · 5.96MHz 2π · 6.04MHz
recoil temperature 0.4 µK 0.4 µK
Doppler temperature 145 µK 145 µK

Table 3.2: Optical properties of potassium. Within the given precision the values are valid for both
K39 and K40. Data is taken from [28].

Both isotopes feature Feshbach resonances that allow for tunable interactions. Despite
the larger number of Zeeman states, K40 exhibits only few suitable Feshbach resonances,
the most relevant being between the two lowest-lying Zeeman states at ∼ 200G [77],
while intrastate resonances are suppressed due to Pauli blocking. K39 features a variety
of suitable Feshbach resonances, both inter- as well as intrastate, that are discussed in
more detail in sec. 3.7.1.

8For a brief discussion see [76].
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Figure 3.1: For convenience we again present the level scheme of K39 and K40 already shown in
fig. 2.3. The hyperfine splittings are given in units of MHz. Adapted from [28].
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3.2 Overview of the experimental sequence for K39

In contrast to the experimental sequence to prepare small tweezer systems with K40
presented in sec. 2.2 where we focussed on short cycle times, the K39 sequence aims
towards 2D bulk systems and hence focusses on achieving larger atom numbers. The
central cooling step is evaporation where large atom numbers are then translated to
high phase space densities allowing to cross the threshold of Bose-Einstein condensation.
Thus, while the steps of the K39 sequence up to the three-dimensional magneto-optical
trap (MOT) are essentially the same as for the K40 sequence, the steps thereafter differ
significantly: The 3D MOT is followed by a hybrid MOT and a subsequent grey molasses
phase to further cool the atoms which are then magnetically transported to the science
position located between the two microscope objectives. There the atoms are loaded from
the magnetic confinement into a far-detuned optical dipole trap via a collisional loading
scheme and evaporated in a crossed dipole trap to achieve quantum degeneracy resulting
in a 3D BEC. The collisional loading scheme is chosen and optimised to provide large
atom numbers for the evaporation, while the previous steps are optimised to achieve high
densities required for the collisional loading scheme. The degenerate atomic sample is
then transferred from the three-dimensional into a quasi-two-dimensional regime.

In the following we provide an overview of the experimental sequence and parameters
to prepare a K39 BEC. A more detailed discussion of individual steps and implemented
improvements and schemes is given in the subsequent sections. The transformation from
a three-dimensional to a quasi-two-dimensional system will be discussed in chapter 4, an
overview of the corresponding experimental steps is given in sec. 4.6.1

• In a first step an atomic beam, generated via a 2D MOT [30, 31], is used to load a
3D MOT [32] where three pairs of counter-propagating beams create a cooling force
via Doppler cooling [78–81] and in combination with a magnetic quadrupole field
also a trapping force.
The cooling light addresses the D2 transition |2S1/2, F = 2⟩ → |2P3/2, F = 3⟩ and is
red-detuned typically by ∼ 5.5Γ. Additionally, repumping light on the D2 transition
|2S1/2, F = 1⟩ → |2P3/2, F = 2⟩ is applied which is also red-detuned by ∼ 1.5Γ. The
vertical magnetic gradient is typically 9.5G/cm.
With these parameters a loading rate of up to ∼ 8 · 109 atoms/s is achieved. The
loading process saturates already after ∼ 1.7 s at an atom number of ∼ 9 · 109. The
achieved phase-space density is ∼ 4 · 10−9.
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• The ’red’ MOT is directly followed by a hybrid MOT [33] where the red-detuned
D2 cooling light is replaced by blue-detuned D1 cooling light. Thereby, a different
cooling scheme is applied that allows to reach higher phase-space densities. A more
detailed explanation is given in sec. 3.3.
This hybrid MOT scheme is applied for 50ms during which the vertical magnetic
gradient is ramped to a higher value of typically 15.5G/cm. The D1 cooling light
addresses the transition |2S1/2, F = 2⟩ → |2P1/2, F = 2⟩ and is blue-detuned typi-
cally by ∼ 9Γ. The D2 repumper addresses the same transition as for the ’red’ MOT
and is red-detuned by ∼ 1.75Γ which is barely different compared to the ’red’ MOT
phase. However, it is crucial to reduce the intensity of the repumper, typically by a
factor of 4. Compared to the previous ’red’ MOT the central density is increased by
a factor of ∼ 5, the temperature is decreased even by a factor of ∼ 10. The achieved
phase-space density is then ∼ 5.4 · 10−7.

• The third step is a Λ-enhanced grey molasses scheme9 [36–38], i. e. a polarisation
gradient cooling scheme with motional coupling of bright and dark states which is
not trapping, but allows to further cool the atoms.
As required for the grey molasses scheme, the magnetic field is switched off and D1
cooling light is applied as well as D1 repumping light which is modulated onto the
cooling light via an EOM. Just as the hybrid MOT, the molasses scheme requires
blue-detuned cooling light, the detuning is typically ∼ 9Γ. After a waiting time of
24ms during which the cooling efficiency increases due to the decay of the magnetic
field, the D1 light is ramped down within 5ms in order to reduce the photon scat-
tering rate towards the end of the cooling scheme.
During this step, the central density decreases by a factor of ∼ 4, partially due to
atom losses, partially due to an expansion of the cloud since the molasses does not
exert a trapping force. However, the temperature is significantly reduced to ∼ 13 µK,
resulting in a phase-space density of ∼ 3.3 · 10−5.

• The fourth step is a magnetic transport of the atoms from the MOT position to
the science position. Therefore, the atoms are first optically pumped into the state
|2S1/2, F = 2,mF = 2⟩ as this is the ground state in which the atoms have the
highest magnetic moment and hence experience the strongest confinement by the
magnetic trap. For the optical pumping we apply a quantisation field of ∼ 4G and
employ an F -pump beam as well as an mF -pump beam. The F -pump beam is
resonant to the D1 transition |2S1/2, F = 1⟩ → |2P1/2, F = 2⟩ from where the atoms

9A detailed explanation of this scheme can be found in [34] or [35].
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can then decay to the desired |2S1/2, F = 2⟩ state. The mF -pump beam is resonant
to the D2 transition |2S1/2, F = 2⟩ → |2P3/2, F = 3⟩ from where the atoms can
also decay to the |2S1/2, F = 2⟩ state. It is circularly polarised in order to transfer
the atoms into the desired mF -state. We achieved best results when applying both
pumping beams for 15 µs and the D1 F-pump light for additional 20µs.
After the optical pumping the atoms are captured in a magnetic trap by switching
on a quadrupole field with a vertical gradient of 22.5G/cm. After a short waiting
of 4ms for the magnetic field to settle, the magnetic trap is tightened by increasing
the gradient to 85G/cm within 200ms. A further discussion of the behaviour of the
atoms in the magnetic trap can be found in sec. 3.5.
The transport is then performed by slowly shifting the magnetic trap from MOT to
science position by ramping down the field created by the MOT coils centered on
the MOT position while simultaneously ramping up a gradient field generated by
the experiment coils centered on the science position. The MOT (experiment) coil
current ramp is cos2- (sin2-) shaped in order to smoothen the transfer and performed
within 500 ms to reduce heating. This step, especially capturing the atoms in the
magnetic trap, decreases the phase-space density to ∼ 1.1 · 10−6.

• After the transport to the science position the atoms are loaded from the magnetic
trap into a tightly focussed 1064 nm optical dipole trap (ODT). In contrast to the
magnetic trap, optical traps allow to exploit Feshbach resonances which is necessary
to achieve a sufficient collision rate for an efficient evaporation in the following step.
The atoms are loaded into the 1064 nm ODT via elastic collisions. In order to
increase the density and hence the collision rate, the magnetic trap is tightened
by increasing the magnetic gradient to 99G/cm within 100ms, while the ODT is
switched on and ramped to a depth of ∼ 6mK. After a loading time of 2 s the
magnetic trap is then ramped down within 100ms. A more detailed discussion of
the loading scheme can be found in sec. 3.6.
With this scheme ∼ 1.1 · 106 atoms are loaded into the ODT with a temperature of
∼ 500 µK yielding a phase-space density of ∼ 1.6 · 10−4.

• In the final step quantum degeneracy is achieved via evaporation. A more de-
tailed discussion of this step can be found in sec. 3.7. The atoms are first trans-
ferred either to the |2S1/2, F = 1,mF = +1⟩ state or the |2S1/2, F = 1,mF = −1⟩
state depending on which of these states is preferred for the subsequent experiment.
Both states exhibit suitable intrastate Feshbach resonances to achieve sufficiently
high scattering rates for the evaporation. Typically, we prepare the atoms in the
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|2S1/2, F = 1,mF = −1⟩ state as this is favorable for studying spin mixtures. Due
to the optical density of the atomic cloud in the 1064 nm ODT, optical pumping is
not very effective, instead the spin preparation is realised via RF transfers.
After the spin preparation, the atoms are transferred from the single-beam 1064 nm
ODT into a 850 nm crossed dipole trap (CDT). While the 1064 nm ODT is well
adapted to the collisional loading scheme, it is less favorable for the evaporation
due to the axially and radially drastically different trapping frequencies. The actual
evaporation is then performed in the 850 nm CDT which is ramped down from its
full depth of ∼ 100µK to a relative depth of 4.5 % within 2.7 s. During the trans-
fer into the 850 nm CDT as well as during the evaporation a magnetic gradient of
∼ 25G/cm is applied in order to reduce the effective trap depths without lowering
the trapping frequency.
With this procedure ∼ 1.9 · 105 atoms are loaded into the full depth 850 nm CDT.
The achieved temperature is ∼ 10 µK yielding a phase-space density of ∼ 4.2 · 10−2.
During the evaporation in the 850 nm CDT the atomic cloud crosses the condensa-
tion threshold and forms a quasi-pure BEC of ∼ 5 · 103 atoms.

3.3 Hybrid MOT

The hybrid MOT [33] is a specific MOT configuration with increased phase-space density
compared to the typically used type-I red-detuned MOT. Eventually, its purpose is to
improve the collisional loading.

Motivation

For an effective collisional loading from the magnetic trap into the 1064 nm optical dipole
trap a high density nb in the magnetic trap is required (see sec. 3.6). nb is in turn
determined by temperature and density nf of the atom cloud loaded into the magnetic
trap. The phase-space density in the 3D MOT is not sufficient for directly loading into the
magnetic trap due to the comparatively high temperature.10 Hence, the atoms are cooled
via a Lambda-enhanced grey molasses before loading them into the magnetic trap.11 The
grey molasses requires the absence of magnetic fields, while the MOT scheme, on the other
hand, requires a magnetic quadrupole field. Therefore, a waiting time ∆t in between 3D

10For K39 the temperatures achieved with a typical red MOT scheme are rather high due to the tight
level spacing of the D2 manifold [87].

11The presence of dark states in this scheme significantly reduces the heating caused by photon scat-
tering which enables much lower temperatures of ∼ 13 µK. The absence of magnetic fields is required in
order to protect the ’darkness’ of the dark states.
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MOT and molasses phase needs to be introduced, whose time scale is set by the decay
time of the magnetic field. During this waiting time - and also during the molasses - the
atoms are not trapped, the cloud expands and thus the density decreases. Accordingly,
the corresponding final density nf depends on ∆t, T and the initial density n0.

We substantially increased the final density and hence the density in the magnetic
trap by two measures: We reduced ∆t by reducing the eddy currents in our experimental
setup (see sec. 3.4) and we significantly reduced T and increased n0 by introducing a
hybrid MOT subsequent to the MOT.

The hybrid MOT scheme

The hybrid MOT is a hybrid in two respects: it combines the typical red-detuned MOT
(red MOT) with a blue-detuned MOT (blue MOT) [39] and it employs both the D1 and
the D2 transition.

Red MOT A red MOT utilizes light that is red-detuned to a type-I transition, i. e. a
transition F → F ′ with F ′ > F , to induce a trapping force as well as a cooling force. The
cooling mechanism is simply Doppler cooling [78–81]. The trapping force is provided by
a magneto-optical scheme that relies on a magnetic gradient causing a spatially and mF -
state dependent energy shift, and on a σ±σ∓ polarisation configuration. This leads to a
spatially dependent absorption probability resulting in a restoring force. This is typically
performed in a type-I system, i. e. in our case on the D2 line, such that there are no dark
states where the atoms elude the cooling and trapping forces. The sign of the cooling
force depends on the sign of the detuning, but is independent of the polarisation. The
sign of the trapping force, on the other hand, depends on the sign of the detuning and
on the orientation of the polarisation.12 Therefore, trapping can also be achieved with
blue-detuned light by reversing the polarisation. This is exploited to create a blue MOT.

Blue MOT While a blue MOT utilizes the same trapping mechanism as a red MOT,
the cooling mechanism cannot be adopted. Instead it relies on polarisation gradient
cooling (PGC). For type-I transitions PGC is strongly suppressed in the presence of
magnetic fields. However, type-II transitions, i. e. transitions F → F ′ with F ′ ≤ F , are
more robust in that respect: For low magnetic fields in the order of a few Gauss the PGC

12It also depends on the sign of the Landé-factor g′ of the excited state, but that can only be changed
by addressing a different transition.
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scheme still exerts a significant cooling force [82].13

In contrast to Doppler cooling, PGC in type-II systems requires blue-detuned light.
Furthermore, in blue MOTs PGC and Doppler cooling compete against each other due
to the different sign of the respective cooling force. Above the equilibrium velocity the
atoms are heated by the Doppler mechanism. Hence, blue MOTs require a lower initial
velocity. However, due to exploiting dark states, photon scattering is significantly reduced
and thus much lower temperatures and higher densities are achieved.14

Hybrid MOT The hybrid MOT is a mixture of red and blue MOT: the cooler light
is blue-detuned to a type-II transition on the D1 line, while the repumping light is red-
detuned to a type-I transition on the D2 line. The predominant cooling mechanism stems
from the cooler and is PGC which yields the advantages of a blue MOT, i. e. a lower
temperature as well as a higher density, while the repumper mainly provides additional
trapping. Just as the blue MOT the hybrid MOT requires a lower initial velocity for the
PGC to outweigh the heating caused by the Doppler mechanism. Hence, the hybrid MOT
cannot replace the red MOT, but is introduced as a subsequent step.

Blue MOT with K39? Potassium, especially K39, has a tight level spacing that pre-
vents to address the hyperfine states individually. This makes the system more complex
compared to other species as for example rubidium.15 Fully analysing the cooling/heating,
anti-/trapping contributions for every configuration of cooler and repumper in terms of
detuning, polarisation and addressed transition would go beyond the scope of this thesis,
though.

In our experimental setup, we did not observe a properly operating blue MOT with
K39.16 However, the number of viable configurations is limited in our setup: The D1
repumper is implemented by modulating the D1 cooler light via an EOM, i. e. the orien-
tation of the polarisation is forcibly the same for D1 cooler and D1 repumper. Decoupling
these parameters might allow to find a suitable blue MOT configuration.

Performance While we cannot compare the experimental performance of the hybrid
MOT scheme to the blue MOT scheme, the absence of a dark state for the type-I transition

13Note, that the cooling force is reduced with respect to the cooling force in the absence of magnetic
fields and decreases with increasing magnetic field.

14In contrast to Doppler cooling PGC exhibits velocity dependent motional coupling of dark and bright
states which is why dark states are advantageous for PGC, but need to be avoided for Doppler cooling.

15This also applies to the analysis.
16For K40 the inverted level structure allows to find a suitable blue MOT configuration. Also, the

level spacing of the D1 transitions is three times larger than for K39 which significantly reduces the
contribution from nearby transitions.
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in the hybrid MOT scheme suggests a higher temperature compared to a type-II blue
MOT due to increased photon scattering. However, the simulations in [82] indicate that
the hybrid MOT is favorable in terms of the trapping force: According to the simulations
the strength of the trapping force increases significantly with increasing ratio g′/g where
g′ (g) is the g-factor of the excited (ground) state. This ratio is a factor of 4 higher for
the D2 transition addressed in the hybrid MOT compared to the D1 transition addressed
in the blue MOT.

Compared to the red MOT we gained a factor of ∼ 5 in the density and reduced the
temperature by a factor of ∼ 10 yielding an improvement of the phase-space density of
more than two orders of magnitude.

3.4 Eddy currents: achieving shorter decay times

The decay times of the magnetic fields in our experimental setup are limited by eddy
currents: When switching off the coil current the changing magnetic field induces current
loops in electrically conducting components of the experimental setup.17 These eddy
currents in turn generate a secondary magnetic field and hence, the decay time of the
magnetic field is given by the decay time of the eddy currents. We were able to reduce the
measured 1/e2 decay time from ∼ 30ms to ∼ 10ms by altering the path of the dominant
eddy currents by cutting one of the breadboards used for mounting the optics such that a
current flow in a continuous circle is prevented.18 This allowed to reduce the temperature
and to increase the density in the magnetic trap (see sec. 3.3 and 3.5) which was crucial
for the collisional loading of the optical dipole trap (see sec. 3.6).

The dominant component: the upper breadboard

In our case the main contribution is given by the so-called upper breadboard, i. e. a
horizontally mounted, 25mm thick aluminium breadboard with a size of 700mm x 900mm
located right above the upper coils which is used to mount optics. This can be concluded
from the following considerations:

Approximating the coil current Icoil as a step function where the current is switched off
immediately at t = 0, the corresponding eddy currents as well as the secondary magnetic
flux induced by them can each be estimated by an exponential decay with time constant

17This section exemplarily describes the scenario of switching off the coil current. The case of switching
on the coil current is completely analogous.

18Note that for technical reasons the time-dependent magnetic flux was not measured at the atom
position. However, FEM simulations performed with COMSOL Multiphysics indicate that the decay
time at the atom position is even stronger reduced.
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Figure 3.2: Simulation of the magnetic flux for an uncut upper breadboard. Depicted is a cut through
the experimental setup in front view. The magnetic flux is indicated by a logarithmic colour scale
covering nearly four orders of magnitude where red (blue) corresponds to a high (low) flux. (a): The
magnetic flux induced by the coils. Highlighted are the components of the experimental setup that
are included in the simulation: the horizontally oriented pair of copper coils (red) that are generating
the initial magnetic field, the upper and the lower breadboard made of aluminium (black), parts of
the steel vacuum chamber (blue, solid) and the surface of the optical table also made of steel (blue,
dashed). (b): The magnetic flux induced by eddy currents 12 ms after switching off the coil current.
It is clearly visible that the main contribution stems from the upper breadboard.

τ = L/R where L and R = l/σA are the inductance and resistance of the conducting
component, respectively. l corresponds to the path length of the current, A to the cross-
sectional area of the current and σ to the electrical conductivity of the component [83].
Accordingly, the dominant eddy currents in terms of amplitude and decay time are induced
in thick components with high conductivity that are close to the (horizontally aligned)
high-field coils and have a comparably large horizontal area.

Consequently, the most relevant parts of our experimental setup are the upper bread-
board, the so-called lower breadboard, also made of aluminium and located around the
vacuum chamber, parts of the steel vacuum chamber, and the surface of the optical table
which is also made of steel. However, it is to be expected that the dominant contribution
stems from the upper breadboard: The breadboards are made of aluminium which has a
roughly one order of magnitude higher electrical conductivity than stainless steel result-
ing in a significantly larger time constant for the eddy currents within the breadboards.
From these breadboards the lower one is less critical than the upper one since it is much
further away from the coils. Furthermore, the lower breadboard is actually composed of
two separate breadboards, hence it can be essentially considered as cut twice.

Finite element method (FEM) simulations performed with COMSOL Multiphysics
confirm that the secondary magnetic field induced by the eddy currents in the upper
breadboard are dominant as can be seen in fig. 3.2. Note that the experimental setup
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also includes copper gaskets that are not included in the simulation in favour of the
computing time. Their contribution is negligible compared to the breadboards: Although
the conductivity of copper is roughly twice as high as of aluminium, the gaskets are more
than one order of magnitude thinner than the breadboards and also the relevant width is
more than one order of magnitude lower, leading to a significantly shorter decay timescale.

Cutting the breadboard: why does it help?

As previously discussed the dominant eddy currents stem from the upper breadboard.
The amplitude and the decay time of these currents could be significantly reduced by
cutting the breadboard which can be explained by considering the geometry of the eddy
currents in the upper breadboard which are illustrated in fig. 3.3.

Figure 3.3: Simulated current density in the cut and uncut upper breadboard (top view) located
above the upper coils for different times after switching off the coil current. The logarithmic colour
scale covers two orders of magnitude where red (blue) corresponds to a high (low) current density.
In the uncut breadboard (top row), the eddy currents can form a closed loop around the central
cut-out resulting in a rather slow decay time. The cut breadboard (bottom row) prevents such a
circular current loop and instead causes an inner current close to the cut-out and an outer current
close to the edges. These inner and outer currents have opposite directions causing a clearly visible
C-shaped zero-crossing of the current density. The altered geometry of the eddy currents results in
a much faster decay time.

Details on the breadboard The shape of the original upper breadboard can be seen in
fig. 3.3 (top row). The basic shape is rectangular with edge lengths of 700mm and 900mm.
It has a circular cut-out roughly in the middle which is centered on the top viewport of
the vacuum chamber to allow optical access along the vertical axis. Accordingly, it is
also roughly centered on the upper coils. The diameter of the cut-out is 120mm, which
is smaller than the diameter of the coils of ∼ 200mm. The original breadboard already
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features two additional slits to increase the effective diameter of the cut-out to 400mm
which were intended to reduce eddy currents. The breadboard furthermore exhibits a
square-shaped cut-out on the side with an edge length of 100mm in order to grant physical
access to the mechanical shutter used to separate the oven and 2D MOT section from the
main chamber (see sec. 2.1.1).

In order to reduce the amplitude and the time scale of induced eddy currents the
breadboard was cut such that one of the original slits extends to the square-shaped cut-
out at the edge as can be seen in fig. 3.3 (bottom row)

Geometry of the eddy currents in the uncut upper breadboard In accordance
with Lenz’s law the geometry of the eddy current is such that the secondary magnetic field
it induces opposes the change of the initial magnetic field. Since the initial magnetic field
is turned off this essentially means that the eddy current tries to keep up the magnetic
field, i. e. the geometry of the eddy current follows the geometry of the coil current. Hence,
the uncut breadboard exhibits roughly circular eddy currents around the central cut-out
as depicted in fig. 3.3 (top row). The slits cause a deviation from the circular shape as
they exceed the radius of the coils below, but do not prevent a closed loop current around
the central cut-out. Due to this approximately circular current flow close to the coils, the
breadboard essentially acts as another coil that is switched on when the actual coils are
switched off. The close proximity of the breadboard to the coils results in a rather large
secondary magnetic field generated by the eddy currents and the low resistance of the
thick breadboard leads to rather long decay times.

Geometry of the eddy currents in the cut upper breadboard In the cut upper
breadboard the eddy currents cannot follow a circular path anymore, but instead are
forced to follow the edges of the connected cut-outs and the edges of the breadboard as
shown in fig. 3.3 (bottom row). Essentially, the current path can be considered to consist
of an outer and an inner C-shaped part that are connected around the square shaped
cut-out. Importantly, the inner and outer current have opposite directions, resulting in
a zero-crossing of the current density. As a direct consequence, the secondary magnetic
fields induced by inner and outer current partially cancel each other which reduces the
total amplitude. According to Lenz’s law this effect is minimised which is why the current
paths are as far away from each other as possible, i. e. much more localised on the edges
of the breadboard than in the uncut case. The different geometry of the eddy currents
compared to the uncut case reduces the inductivity and significantly increases thee path
length which in turn increases the resistance. Consequently, the eddy currents decay much
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faster. According to the simulation, after 22ms the maximum current density of the cut
breadboard is ∼ 5 times lower than compared to the uncut case, after 42ms even ∼ 15
times lower.

Decay times

0 20 40 60
t [ms]

0.1

1.0

B 
[a

.u
.]

cut, both coils
uncut, both coils
uncut, upper coil
uncut, lower coil

Figure 3.4: The magnetic flux B at time t af-
ter switching off the coil current for different con-
figurations of un-/cut breadboard and connected
coils. Depicted is the vertical component of the
magnetic flux as measured with a Hall sensor at
the height of the upper breadboard ∼ 20 cm away
from the central cut-out. For comparison the re-
spective offset of each curve was subtracted and
the curves were normalised to their respective ini-
tial value. The decay of the magnetic field is
significantly faster after cutting the breadboard.
More details are given in the main text.

Complementary to the simulations, we mea-
sured the magnetic flux via a Hall sensor in
dependence of the time after switching off the
coil current in order to extract the decay time.
We considered four different configurations:
the uncut and the cut breadboard where both
lower and upper coil were employed, and fur-
thermore the uncut breadboard with both
coils individually where the respective other
coil was disconnected from the power supply
and hence open-circuited. Note that the mag-
netic flux was not measured at the atom po-
sition, but at the height of the upper bread-
board ∼ 20 cm away from the central cut-out.
A measurement position significantly closer to
the atom position is prevented by the size of
vacuum chamber. However, we are mainly
interested in comparing the different configu-
rations.

The corresponding data is shown in
fig. 3.4. As can be seen the time evolution
of the magnetic flux roughly follows an expo-
nential decay. The 1/e decay times τ as well as the 1/e2 decay times τ2 as determined
from the data are listed in tab. 3.3. The cut breadboard exhibits the shortest decay time
constant: cutting the breadboard reduced τ by a factor of 2, τ2 even by a factor of 3.
Comparing the uncut configurations reveals that when using only one of the coils the
time constant increases, just slightly for the upper coil and by a factor of 2.5 for the lower
coil compared to using both coils (red). While the reason is not understood at present,
we suspect that this might be connected to cancellation of fields in an approximately
symmetric setup which is broken when using only one coil.

In the cases of an uncut upper breadboard we obtain τ2/τ ≈ 2 as expected for a
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cut,
both coils

uncut,
both coils

uncut,
upper coil

uncut,
lower coil

1/e time τ [ms] 7.96 13.24 16.90 32.05
1/e2 time τ2 [ms] 10.48 29.56 35.84 57.55
τ2/τ 1.3 2.2 2.1 1.8

Table 3.3: Decay times of the magnetic field derived from the measured time-dependent magnetic
flux shown in fig. 3.4. For a purely exponential decay, one obtains τ2/τ = 2.

pure exponential decay. However, the ratio is significantly lower after cutting the upper
breadboard. As the measured magnetic flux is given by the sum of all secondary magnetic
fields induced by several eddy currents with different time scales, this indicates that the
upper breadboard is no longer determining the time scale.

The simulations depicted in fig. 3.5 (d) support the hypothesis that the cut upper
breadboard is no longer the dominant component. The magnetic flux is overall much
lower than compared to uncut case and the lower breadboard becomes relevant. The
changed weighting of the eddy currents of upper and lower breadboard as well as the
altered path of the eddy current in the upper breadboard results in a more complex
geometry of the secondary magnetic field. The different geometry further reduces the
magnetic flux at the atom position. According to the simulation the magnetic flux at the
atom position at t = 12ms is a factor of ∼ 20 lower with a cut upper breadboard compared
to the uncut case. So while the measurement at the position of the upper breadboard
already indicates a decrease of the decay time constant by a factor 2-3, the simulation
indicates an even stronger improvement at the atom position.

Vertical shift of the atom position

Apart from prolonging the decay time of magnetic fields, the eddy currents induced in our
setup have another important effect: For magnetic confinements they introduce a vertical
shift of the atom position due to the asymmetry of our setup both for cut and uncut
upper breadboard.

In the uncut case, the main contribution to the secondary magnetic field stems from the
upper breadboard. Consequently, while the coil pair and hence the symmetry axis of the
initial magnetic field is centered on the atom position, the symmetry axis of the secondary
field is strongly shifted towards the upper breadboard as can be seen in fig. 3.5 (b). This
effect is less pronounced for the cut breadboard since the amplitude of the eddy currents
is reduced and due to the lower breadboard becoming relevant as illustrated in fig. 3.5 (d).

Nonetheless, this shift has important consequences, especially when using a quadrupole
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Figure 3.5: Simulated magnetic flux induced by the coils (0ms) and by the eddy currents 12 ms after
switching off the coil current both for cut and uncut upper breadboard. Shown is a cut through
the experimental setup in front view. The magnetic flux is indicated by a logarithmic colour scale
covering more than four orders of magnitude where red (blue) corresponds to a high (low) flux. The
data from (a) and (c) was already shown in fig. 3.2 and is included for comparison. (a),(c): At t=0
the magnetic field is determined by the coils. The magnetic dipole field generated by the exemplarily
displayed Helmholtz configuration is not affected by the geometry of the upper breadboard. (b):
The secondary magnetic field is mainly determined by the uncut upper breadboard which essentially
acts as a coil featuring a dipole field similar to the initial field. The main differences are the reduced
amplitude due to the decay of the magnetic field and the vertical shift of the symmetry axis of
the magnetic field since it is now centered roughly around the upper breadboard. (d): For the
cut breadboard the overall amplitude is much lower compared to the uncut case due to the lower
decay time. The eddy currents in the upper breadboard are reduced to such an extent that the
lower breadboard becomes relevant. This, together with the altered path of the eddy currents in the
upper breadboard, results in a more complex geometry of the secondary magnetic field. The different
geometry further reduces the magnetic flux at the atom position. Although the eddy currents still
cause a vertical shift of the atom position for magnetic confinements, this effect is less pronounced
than for the uncut breadboard.

field, e. g. for the MOT or the magnetic trap. In these cases the magnetic zero and thus
the atom position is suddenly shifted when switching on or off the coils. Although the
magnetic zero moves back as the eddy currents decay, the sudden jump heats the atomic
sample. However, the vertical shift can be partially compensated with a time-dependent
offset field (see sec. 3.5).
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3.5. Magnetic trap

3.5 Magnetic trap

The magnetic trap is required for the magnetic transport from the MOT position to the
science position. After the grey molasses, the atoms are therefore optically pumped into
the magnetically trapped |2, 2⟩ state and, subsequently, caught in the magnetic trap by
suddenly switching on the coil current to the so-called catch current. Then, the magnetic
gradient is slowly increased to the transport value. This two-step gradient ramp up is
chosen in order to decouple the catch process from the transport. Subsequently, the atoms
are transported from the MOT position to the science position by shifting the magnetic
trap by simultaneously ramping down (up) the magnetic gradient at the MOT (science)
position. After the transport the atoms are loaded from the magnetic trap into an optical
trap via a collisional loading scheme (see sec. 3.6).

In order for this loading scheme to be efficient, a high density of the atom cloud in the
magnetic trap is required. The density can be increased by increasing the magnetic gradi-
ent leading to a stronger confinement and, more importantly, by reducing the temperature.
It is therefore important to optimise the mode matching, i. e. to adjust the catch gradient
to the temperature, determined by the molasses phase, and to the size of the atom cloud,
given by the expansion time before switching on the magnetic trap. When the size of the
atom cloud at the time it is caught by the magnetic trap matches the equilibrium size in the
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Figure 3.6: Center position of the atomic
cloud after catching the atoms in a mag-
netic trap. Due to eddy currents the mag-
netic zero experiences a time-dependent
shift which causes an oscillation of the cen-
ter position.

magnetic trap determined by temperature and mag-
netic gradient, then heating e. g. due to breathing
excitations is minimised. In our system the quality
of the mode matching is limited by the switching
time, though, or more precisely by the time scale
for the build-up of the magnetic field due to eddy
currents (see sec. 3.4).

A further consequence of the eddy currents is a
vertical shift of the symmetry axis and thus of the
magnetic zero when switching on or off the magnetic
field. This vertical offset is time-dependent since it
is determined by the time-dependent eddy currents.
This results in a ’sloshing’ of the atom cloud, i. e. an
oscillation of the center position as shown in fig. 3.6
which heats the atom cloud. Although the symme-
try axis shifts along the vertical axis we also observe
a less pronounced sloshing along the transport axis,
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i. e. the axis along which the magnetic transport is performed. This oscillation is slower
because of the lower magnetic gradient compared to the vertical axis due to the geom-
etry of the quadrupole field. The horizontal sloshing is not affected by the strength of
the quantisation field applied during the optical pumping which is oriented along the
transport axis and is switched off shortly before the magnetic trap is switched on. This
indicates that the Raman coils that are used to create the quantisation field do not in-
duce significant eddy currents. Instead, we suspect that the eddy currents in the upper
breadboard induced by the MOT coils used to generate the magnetic trap also introduce
a horizontal shift since the cut-out in this breadboard is not centered around the MOT
position, but around the science position. However, the sloshing can be partially com-
pensated by a simultaneous linear ramp of the current through offset coils. With this
compensation the vertical temperature is reduced by ∼ 40%, the horizontal temperature
by ∼ 20%. The peak density increases by a factor of ∼ 2, the corresponding phase-space
density by a factor of ∼ 3.

In order to optimise the mode matching as well as the sloshing compensation, the
temperature is a useful figure-of-merit. Especially for the sloshing compensation the
temperature is a more convenient figure-of-merit than e. g. the peak density since the
temperature can be obtained individually for the different axes.19 In the following we will
explain how the temperature in the magnetic trap is derived.

3.5.1 Thermometry

In contrast to optical traps the magnetic trap cannot be switched off in a fast way due to
eddy currents that limit the decay time of any magnetic field (see sec. 3.4). This prevents
to acquire meaningful time-of-flight measurements which is a common method to extract
the temperature since this method requires a sudden release of the atoms.20 Instead,
the temperature can be extracted from in situ images of the atoms in the magnetic trap
since the temperature is related to the density distribution as can be derived from the
Maxwell-Boltzmann statistics:

19Due to the small background scattering length of potassium, the thermalisation time in the magnetic
trap is in the order of a few seconds. Hence, the temperature extracted for different axes is not necessarily
the same.

20Although it introduces a systematic error for low magnetic gradients one can still use time-of-flight
measurements as a figure of merit for the temperature. For high gradients on the other hand the trajectory
of the atoms after switching off the magnetic field is significantly affected by the remaining magnetic field.
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Figure 3.7: (a) Cross-section (cs) through the calculated potential V given by the magnetic trap
including gravity. (b) Calculated density distribution n in a linear trapping potential as given by
the magnetic trap for y = z = 0 (black). For comparison the density distribution in a harmonic
potential (green) is shown as well.

Assuming thermal equilibrium the probability distribution f(x,p) is given by

f(x,p) = N ′ exp

[
−E(x,p)

kBT

]
(3.1)

where N ′ is a normalisation constant such that
∫ ∫

f(x,p)dxdp is unity. Integrating over
the momentum p and proper normalisation yields the spatial density distribution

n(x) = n0 exp

(
−V (x)

kBT

)
(3.2)

where n0 is the central density. The potential V (x) is given by the magnetic poten-
tial Vmag(x) = gFmFµBB(x) as well as by the gravitational potential and is plotted in
fig. 3.7(a). Its shape is predominantly determined by the quadrupole field generated by
the MOT or experiment coils in Anti-Helmholtz configuration. Close to the center of the
respective coil pair the magnetic field strength can be approximated by

|B| = B′
√

(x/2)2 + (y/2)2 + z2 (3.3)

where B′ is the magnetic gradient in the vertical direction. Due to the coil geometry this
axis is tighter confined than the radial direction. The vertical axis furthermore displays an
asymmetry caused by the additional gravitational potential. Along the main axes, e. g. for
x = y = 0, eq. 3.3 simplifies to a linear relation. In contrast to most optical traps where
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the approximately harmonic potential leads to a Gaussian density distribution n(x) ∝
exp(−Vharm(x)/kBT ) ∝ exp(−x2), the corresponding linear potential of the magnetic
trap results in an exponential decay n(x) ∝ exp(−Vmagn(x)/kBT ) ∝ exp(−x) as depicted
in fig. 3.7(b).
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Figure 3.8: (a),(b) Cross-section at y = z = 0 (a) and at x = y = 0 (b) through the calculated
imaged density distribution, i. e. taking into account that the effective imaging detuning is spatially
dependent due to the Zeeman effect. The calculation is performed for different nominal imaging
detunings ∆ which is referenced to the resonance of the imaging transition at the trap center, i. e.
B = 0. For comparison a cross-section through the true density distribution (black) neglecting any
effect from the imaging is shown as well. (c) Images of the density distribution of the atom cloud
in the magnetic trap for different nominal imaging detunings. The images are rotated by 90◦, i. e.
gravity acts along the horizontal axis of the images. The density distribution is derived by extracting
the optical density via absorption imaging. Details on the observed shapes are given in the main
text.

While eq. 3.2 describes the true density distribution it does not describe the imaged
density distribution since it does not take into account that the magnetic gradient affects
the imaging: The magnetic field introduces a Zeeman shift of the imaging transition,
i. e. the spatially dependent gradient field results in a spatially dependent scattering rate
γ(x) = Γ

2
· s
[
1 + s+ (2∆(x)/Γ)2

]−1
where Γ is the natural linewidth, s the saturation
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parameter and ∆ the difference between the laser frequency and the resonance frequency
of the imaging transition. Assuming s ≪ 1 the imaged density distribution can be ap-
proximated by

nimg = n0,img exp

(
−V (x)

kBT

)
· 1

1 +
(

2∆(x)
Γ

)2 . (3.4)

This means that depending on the detuning of the imaging light, different parts of the
atom cloud are imaged as can be seen in fig. 3.8: When the imaging light is resonant to
the transition frequency at the center position, i. e. the zero-field value, the central part
of the cloud is imaged properly while the atoms in the outer parts of the cloud absorb less
photons. Hence, the cloud appears smaller and neglecting the spatial dependence of the
detuning would underestimate the temperature of the atoms. When the imaging light is
blue-detuned with respect to the zero-field value, the resonance position moves away from
the center to the outer parts of the cloud. The center becomes more transparent and the
cloud appears to be ring shaped. When the imaging light is red-detuned with respect to
the zero-field value, then no part of the atom cloud is resonant. The detuning with respect
to the zero-field value is lowest at the center position, i. e. the scattering rate is highest
at the center position and decreases with increasing distance to the center. Accordingly,
the shape of the imaged density distribution is similar to the case where the imaging light
is resonant at the center position, but has a smaller amplitude. One could think that
it thus makes sense to rather use red-detuned than blue-detuned light, but that is not
necessarily true since we cannot consider the atom as a pure 2-level system. The level
spacing of the D2 manifold of K39 is very tight. When the imaging light is red-detuned
to the imaging transition |2S1/2, F = 2⟩ → |2P3/2, F = 3⟩, one also sees an effect of the
transition |2S1/2, F = 2⟩ → |2P3/2, F = 2⟩ to which the light is blue-detuned. Hence, a
ring-like shape also occurs in the case of red-detuned light as illustrated in fig. 3.8.

Another effect that needs to be considered is that we cannot image tomographically,
i. e. the 2D density distribution derived from the absorption images are not cross-sections
through the atom cloud, but the density integrated over the line of sight as plotted in
fig. 3.9. The integration broadens the distribution and flattens the center. Especially
higher detunings result in a nearly Gaussian shape. Higher temperatures increase the size
of the atom cloud and thus lead to a more pronounced detuning effect. Hence, even for a
slight detuning of 0.25Γ higher temperatures result in a nearly Gaussian-shaped imaged
density distribution. That also means that the shape of the density distribution is a
convenient indicator: only for low temperatures the imaged density distribution displays
not a Gaussian shape but the expected exponentially decaying wings.

With the true density distribution derived from the Maxwell-Boltzmann distribution
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Figure 3.9: Cross-section at x = 0 through the calculated imaged density distribution of the atom
cloud in the magnetic trap including the effect of the spatially dependent imaging detuning and
including the line-of-sight integration along y. The calculation assumes a nominal imaging detuning
of ∆ = 0.25Γ and is performed for different temperatures T . To emphasize the effect of the line-
of-sight integration a direct comparison between a cross-section at x = y = 0 (black, dashed) and a
cross-section at x = 0 including the line-of-sight integration along y (black, solid) is depicted in the
inset. Both cross-sections include the effect of the spatially dependent imaging detuning.

and taking into account the detuning effect and the line of sight integration the observed
density distribution derived from absorption imaging can be explained and the temper-
ature can be extracted by fitting to the measured density distribution as illustrated in
fig. 3.10. It stands out that a fit to the two-dimensional data has to compromise be-
tween the vertical and the radial axis. This indicates that the atom cloud is not fully
thermalised even after the magnetic transport. Hence, it makes sense to extract the tem-
peratures separately for the vertical and the radial axis by integrating over the respective
other axis and performing separate fits to the respective one-dimensional data. While
the 2D fit yields a temperature of 91 µK, the 1D fits yield temperatures of Tvert = 89 µK
and Trad = 77 µK revealing that the temperature assigned to the vertical axis is higher
than the temperature assigned to the radial axis. This is consistent with the fact that
the sloshing movement explained above is more pronounced along the vertical axis than
along the horizontal axis as was shown in fig. 3.6, and also with the fact that the sloshing
movement caused by the decaying eddy currents is a limiting factor for the temperature
of the atoms in the magnetic trap.
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Figure 3.10: Density distribution of the atoms in the magnetic trap derived via absorption imaging
after the transport to the science position and without sloshing compensation. Also shown are the
linesums of the density distribution (black). The temperature is extracted by fitting to the data
according to eq. 3.4 including the line-of-sight integration along y. For comparison two different fits
are plotted: the linesums of a two-dimensional fit (red, solid) yielding a total temperature and two
separate one-dimensional fits to the respective linesums (red, dashed) yielding different temperatures
for the vertical and the radial axis. Details are given in the main text.

3.6 Collisional loading of the optical dipole trap

After the atoms are transported to the science position they are transferred from the
magnetic trap to an optical dipole trap. In the following we will discuss the dynamics
of our loading scheme and experimentally characterise the loading behaviour. Then,
we will describe this behaviour with a simple model to understand the effect of the trap
parameters. This allows us to infer the limitations of our current setup as well as potential
improvements. A brief summary of the results can be found at the end of this section.

3.6.1 Motivation and concept

Transferring the atoms from the magnetic trap into an optical dipole trap decouples the
atom position from the magnetic zero and thus allows to use the magnetic field as a free
parameter. This is crucial to enable the use of Feshbach resonances in order to tune the
interaction strength which is a key feature of our experiment.

While in principle it is possible to perform evaporation in the magnetic trap, e. g. RF
evaporation, this scheme is inefficient for K39 due to a low background scattering length
resulting in a low scattering rate in the magnetic trap. Therefore, we first transfer the
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atoms from the magnetic trap into an optical trap and then perform the evaporation.
Hence, the loading process aims to achieve good initial conditions for the subsequent
evaporation (see sec. 3.7.3), i. e. low temperatures and in particular high atom numbers.

x

V x

V

Figure 3.11: Combined magnetic
and optical potential. Both po-
tential depths and lengths are
roughly to scale.

The loading scheme we apply is collisional loading: An
optical ’dimple’, i. e. an optical dipole trap much smaller
than the reservoir, here given by the atom cloud in the
magnetic trap, and with a depth much larger than the
reservoir’s temperature, is applied simultaneously to the
magnetic trap as sketched in fig. 3.11. The atoms undergo
elastic collisions where one of the two involved atoms has
a chance to scatter into the dimple. That way, the optical
trap is loaded non-adiabatically.21

Since this scheme relies on elastic collisions, its effi-
ciency depends on the collision rate. This has two main
implications: First, a high density in the magnetic trap is
required. To achieve this, it was crucial to introduce the
hybrid MOT (see sec. 3.3), to reduce the time scale of the
eddy currents (see sec. 3.4) and to reduce the temperature
in the magnetic trap by reducing an observed sloshing movement (see sec. 3.5).

Second, it sets an essential requirement for the optical trap depth connected to the
Ramsauer-Townsend effect [84]: Species with a small negative background scattering
length, such as K39, feature the so-called Ramsauer minimum where the elastic cross-
section in dependence of the collision energy drops by several orders of magnitude. For K39
the Ramsauer minimum is located at ∼ 400 µK and has a full width of ∼ 700 µK:22 Roughly
in between 200 µK and 900 µK the cross-section is more than one order of magnitude lower

21One might wonder whether the D1 assisted loading scheme mentioned in sec. 2.2 is a reasonable
alternative, but that is not the case. Compared to the collisional loading scheme it results in a lower
temperature, but more importantly also in a much lower atom number. This is due to applying the
near-resonant D1 light which introduces light-assisted collisions limiting the density. While the lower
temperature achieved with the D1 assisted loading is more favorable when preparing small systems where
the atom number is less relevant, the higher atom number achieved with the collisional loading scheme
is favorable when striving for larger system sizes.

22Note that the position of the Ramsauer minimum depends on the scattering length [85]. The stated
position assumes the background scattering length, i. e. B = 0. One might wonder whether the magnetic
gradient of the trap introduces a shift of the Ramsauer minimum. However, the magnetic field in the
relevant region is small due to the small size of the atomic cloud, and the |2, 2⟩ state used here does not
feature a Feshbach resonance that could introduce a significant scaling of the scattering length with the
magnetic field in the relevant regime. Therefore, the position of the Ramsauer minimum is not shifted
and nearly constant over the extent of the atomic cloud.
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than the cross-section that corresponds to the background scattering length abg ≈ −33 a0

[86]. [87, 88] The temperature in the magnetic trap is ∼ 100 µK, i. e. below this regime,
but the energy from the optical potential the atoms gain at the location of the optical
trap adds to the collision energy. That means the trap depth needs to be at least ∼ 1mK
in order to get past the Ramsauer minimum.

The pre-existing 850 nm crossed dipole trap that is later on in the sequence utilised for
the evaporation has a trap depth one order of magnitude below this limit. Hence, another
optical trap was set up in the course of this work: a tightly focussed 1064 nm single-beam
optical dipole trap (1064 nm ODT) with waists of 14.5µm× 17.0 µm and a corresponding
Rayleigh range of 620µm. With a maximum power23 of 17W a trap depth of ∼ 6mK is
achieved, the corresponding measured radial trapping frequencies are 25 kHz and 19 kHz,
the corresponding axial trapping frequency is 350Hz. A discussion of the trap parameters
can be found in sec. 3.6.3.

3.6.2 Loading dynamics

The dynamics of the collisional loading scheme are described in detail in [89] and can
be briefly summarised as follows: the atoms in the magnetic trap follow periodic trajec-
tories. Which trajectories are populated depends on the temperature in the magnetic
trap. When the optical trap is non-adiabatically switched on it cuts out a certain region
in the phase-space. Since the optical trap is much smaller than the magnetic trap this
initially loaded atom number in the optical trap is small. With elapsing loading time
atoms with a trajectory through the optical trap can scatter into the trap. The high trap-
ping frequencies of the ODT lead to an increased density at the position of the optical
trap enhancing the local scattering rate and thus the loading rate. This process can be
sustained by re-thermalisation of the atoms in the magnetic trap due to scattering events
which re-populate the trajectories through the ODT.

During this loading process losses can occur, mainly due to inelastic scattering events
and Majorana spin-flip transitions [90] to magnetically anti-trapped spin states. One
might think that the latter is irrelevant due to the optical confinement, but in fact it
introduces an evaporation process due to the finite trapping potential for anti-trapped spin
states. This can be easily avoided by introducing a spatial offset between the magnetic
trap center and the ODT trap center as sketched in fig. 3.11 since Majorana transitions
only occur close to the magnetic zero. The offset should be small, though, since the
density in the magnetic trap and hence the loading rate increases towards the trap center.

23The maximal achievable power is slightly higher, allowing to use up to 19.4 W for short measurements.
The stated maximum power of 17 W refers to the maximum long-term stable power setting.
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However, our system differs from the description above in two main aspects: First,
due to the low background scattering length of K39 the scattering rate in the magnetic
trap is much lower leading to a thermalisation time in the order of a few seconds which
is much longer than the time scales given by the loading and loss rates. Therefore, the
re-population of the trajectories through the ODT is suppressed on the time scale relevant
for the loading process, similar to [91]. Second, we do not switch on the ODT suddenly,
but linearly ramp to the final depth within 100 ms.24 For these reasons, the loading
behaviour is altered compared to the description in [89].

In the following we will explore this behaviour in more detail. The experimentally
loaded atom number N in dependence of the loading time t and for different trap pa-
rameters is shown in fig. 3.12. The observed behaviour of these loading curves can be
explained by the three main effects that are relevant in our system: The first effect is the
scattering from the magnetic trap into the ODT described by a loading rate Γ(t). The
second effect is the depletion of the trajectories that pass the ODT as explained above
which leads to a decrease of the loading rate over time, Γ̇(t) < 0, and the third effect are
density dependent losses. While the depletion of the trajectories already causes a satu-
ration of the loading curve, the competition with the losses yields an actual peak feature
resulting in a maximum atom number Nmax loaded after the respective optimal loading
time tmax. The data shown in fig. 3.12 already illustrates that these quantities depend on
the trap parameters.

To discuss this more quantitatively we describe the loading process with the following
simple model: At t = 0 the ODT is switched on and cuts out part of the phase-space
resulting in an initial atom number N0.25 For the subsequent dynamics we then assume
an exponentially decreasing loading rate Γ(t), and two-body losses with a rate Γloss:

Ṅ(t) = Γ(t) + Γloss = Γ0 exp(−t/τ)−KN2 with N(t = 0) = N0 (3.5)

Fitting our measured data to this model shows good agreement26 as can be seen in
fig. 3.12 (a) and allows to extract Γ0, Nmax and tmax plotted in fig. 3.12 (b), (c).27

24The ramp time is mainly determined by the simultaneous ramp of the magnetic gradient from the
value set by the magnetic transport to the value desired for the loading process.

25Since we perform an adiabatic ramp, short compared to the loading time, instead of a sudden switch
on N0 is higher than one would expect from a cut-out in the phase-space, but the qualitative behaviour
is basically the same.

26Assuming a linearly decreasing loading rate or three-body losses yields similar results indicating that
our model is not sensitive to the exact shape of the loading or the loss rate.

27Note that Γ0 is directly obtained from the fit since it is one of the free parameters, next to N0, τ and
K, while Nmax and tmax are the peak values of the fitted curves, i. e. derived from the fitted curve.
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Figure 3.12: Performance of the collisional loading scheme for different settings. (a) Loaded atom
number N (dots) in dependence of the loading time t for different ODT powers P . For each loading
curve a fit (solid lines) with a model described by the differential equation Ṅ(t) = Γ0 exp(−t/τ) −
KN2 and the initial condition N(t = 0) = N0 is performed. (b) Maximum loaded atom number
Nmax (black triangles) and the corresponding loading time tmax (green squares) in dependence of
the ODT power P extracted from the fitted curves in (a). (c) The initial loading rate Γ0 as derived
by fitting to the loading curves as shown in (a) (black triangles) in dependence of the ODT power
P . Also plotted is the initial loading rate rescaled to P = 17W (green squares) assuming the scaling
Γ0 ∝ P 3/2 derived in eq. 3.7 and including the power dependence of the elastic cross-section. The
latter is only relevant for the first data point, though. The rescaled initial loading rate is roughly
constant supporting the validity of the derived power scaling. (d) Fitted initial loading rate Γ0 for
different magnetic gradients B′ (black triangles). Also shown is a quadratic fit (green, solid) with
one free parameter Γ0 = c ·B′2.

For further analysis, especially regarding the effect of the trap parameters, it is useful to
consider also a theoretical estimate for the initial loading rate which is given by the initial
atom number Nb in the magnetic trap, modified by a spatial factor Vr and a temporal
factor tr, and by the scattering rate Γsc at the ODT position as will be explained in the
following [91]:

Γ0 ≃ Nb · Vr · tr · Γsc ≃ Nb ·
w

lb
· tODT

tb
· nbσv̄ (3.6)
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The spatial factor accounts for the fact that only a fraction of the atoms in the magnetic
trap has a trajectory through the ODT and can be estimated by the ratio of the trap’s
length scales Vr ≃ w/lb. The length scale of the ODT can be estimated by its waist
w, while the length scale of the magnetic trap can be estimated by the 1/e2-length of
the density distribution lb ≃ 2kBT/(µBB

′) determined by the temperature T and the
magnetic gradient B′.

The temporal factor refers to the atom fraction that is at a generic time in the dipole
trap28 and can be estimated by the fraction of time an atom spends in the ODT. Therefore,
the transit time tODT through the ODT is compared to the ’oscillatory’ time tb in the
magnetic trap tr ≃ tODT/tb. tODT ≃ 1/ω̄ can be estimated by the inverse of the mean
trapping frequency ω̄, while tb ≃ lb/v̄b can be estimated via the mean velocity v̄b =√

8kBT/πm in the magnetic trap.
The scattering rate at the ODT position is given by Γsc = nbσ̄v where nb is the density

in the magnetic trap, σ the elastic cross-section and v the relative velocity of the scattering
atom pairs. σ and v are both determined by the collision energy E in the center-of-mass
frame which can be estimated by the ODT depth U0. For high trap depths as used for
the collisional loading scheme, σ becomes nearly constant and the scattering rate can be
estimated by Γsc ≃ nbσv̄.

Eq. 3.6 is just an estimate, e. g. not taking into account the fraction of the scattering
events where no atom is scattered into the ODT and accordingly, the loading rate is
overestimated. However, it still gives a reasonable estimate; with the ODT parameters
stated above, Nb ≈ 3.8 · 108, lb ≈ 360µm, T ≈ 120µK in the magnetic trap, nb ≈
2.4 · 1010 cm−3, σ ≈ 8π(33a0)

2 and v̄ ≈ 1.8m/s a loading rate of ∼ 7MHz is estimated for
the full ODT power of 17 W compared to a fitted loading rate of ∼ 2.5MHz.

3.6.3 ODT parameters

In the following, we will qualitatively investigate the effect of the relevant ODT parame-
ters, namely the laser power P and the waist29 w, on the loading performance. Therefore,
we again employ our model Ṅ(t) = Γ0 exp(−t/τ) − Γloss with Γloss = KN(t)2 and the
initial condition N(t = 0) = N0 and derive how the loading and the loss term scale with
the ODT parameters:

P and w affect the trap depth U0 ∝ Pw−2 and both trapping frequencies ωrad ∝
P 1/2w−2 and ωax ∝ P 1/2w−3 as can be easily derived from the Gaussian beam profile.30

28in the dipole trap, but not trapped
29For simplicity we assume equal radial waists for the scaling analysis.
30The different waist scalings for the radial and the axial trapping frequency stem from the fact that
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Figure 3.13: Simulated performance of the collisional loading scheme in dependence of power P
and waist w of the optical trap. The maximal loaded atom number Nmax and the corresponding
loading time tmax were derived by modelling the loading behaviour with the differential equation
Ṅ(t) = Γ0 exp(−t/τ)− Γloss with Γloss = KN2 and the initial condition N(t = 0) = N0, with Γ0, τ ,
K and N0 given by the fits shown in fig. 3.12, but rescaled according to eq. 3.7 and 3.8. Our settings,
P = 17W and w̄ = 15.7 µm, are marked (black, dotted) in the 2D plot on the left. Cross-sections
through the 2D plot along these lines are provided on the right where both the maximal loaded
atom number Nmax (black) as well as the corresponding loading time tmax (green) are shown. For
comparison the measurement data presented in fig. 3.12 (b) is also included. The results of this
simulation are discussed in the main text.

These parameters again affect the spatial factor Vr ∝ w and the temporal factor tr ∝ ω̄−1

with ω̄ = (ω2
radωax)

1/3, as well as the mean relative velocity v̄ ∝ U
1/2
0 . Although nb only

depends on the magnetic trap, we do introduce a scaling n ∝ ω̄3 to account for the density
enhancement caused by the ODT. Hence, the loading rate scales with

Γ0 ∝ P 3/2w−14/3 (3.7)

This power scaling is in excellent agreement with our measurement data as can be seen
in fig. 3.12 (c). The rescaled loading rate shown there does include the changing elastic
cross-section. This mainly affects the first data point, though, validating the assumed
constant cross-section in eq. 3.7.

The loss rate on the other hand scales with Γloss ∝ n2 ∝ ω̄6 yielding

Γloss ∝ P 3w−14 (3.8)

the radial confinement is determined directly by the waist while the axial confinement is determined by
the Rayleigh range zr ∝ w2.
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Chapter 3. Realising a K39 BEC

The loss rate scales much stronger with power and waist than the initial loading rate,
indicating that low powers and high waists are favorable. However, this does not take into
consideration the different time dependencies: The loading rate decreases with elapsing
time while the loss rate increases due to the increasing density, resulting in a parameter-
dependent optimal loading time tmax. Furthermore, the loss term depends on the atom
number, Γloss ∝ N(t)2, i. e. on the solution of the differential equation, while the loading
term is independent of N(t). Hence, a simple comparison of the scalings derived in
eq. 3.7 and 3.8 is not sufficient to deduce a reasonable parameter regime. Instead we
use our model (eq. 3.5) with the fit values from the measured loading curve at 17 W in
fig. 3.12 as a reference31 and rescale the parameters Γ0 and K according to eq. 3.7 and 3.8.
Numerically integrating the differential equation then allows to extract Nmax for variable
parameters P and w.

The results of this simulation are shown in fig. 3.13. Comparing these results to our
measurement data in fig. 3.12 (b) reveals quantitative differences, mainly a saturation
already at lower powers. This is to be expected, though, since the simulation is based
on a simplified model with an estimated loading rate. However, the simulation and
measurement results are in qualitative agreement, suggesting that the simulation is a
valid basis to find suitable ODT parameters:

While there is an optimal waist for a chosen power and vice versa, in general higher
waists and higher powers are advantageous. Hence, we use the maximal available power
of 17W. The simulation indicates that our waists of 14.5 µm and 17µm are close to the
optimum for that power. Although we did not systematically study the effect of the waist,
that is in agreement with measurements we performed.

3.6.4 Magnetic trap parameters

Next, we will analyse how the loading performance is affected by the quadrupole trap
which is characterised by the magnetic gradient B′. Since the gradient is adiabatically
changed between the final value of the magnetic transport to B′ for the collisional loading,
B′ affects both the length scale lb ∝ T/B′ as well as the temperature T .

Due to the adiabaticity the phase-space density ρ ∝ nbT
−3/2 is constant where nb ∝

l−3
b ∝ (B′/T )3 which yields T ∝ B′2/3. Accordingly, Vr ∝ l−1

b ∝ B1/3 is affected as well as
tb ≈ lb/v̄ ∝ lb/T

1/2 ∝ B′−2/3 and Γsc ∝ nb ∝ B′. Hence, the loading rate scales with

Γ0 ∝ B′2 (3.9)

31The results are similar when using a different measured loading curve as reference.
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Figure 3.14: Simulated performance of the collisional loading scheme in dependence of the magnetic
gradient B′ and the ODT waist w. The maximal loaded atom number Nmax and the corresponding
loading time tmax were derived by modelling the loading behaviour with the differential equation
Ṅ(t) = Γ0 exp(−t/τ)− Γloss with Γloss = KN2 and the initial condition N(t = 0) = N0, with Γ0, τ ,
K and N0 given by the fits shown in fig. 3.12, but rescaled according to eq. 3.7 and 3.8, 3.9 and 3.10.
Our settings, B′ = 99G/cm and w̄ = 15.7 µm, are marked (black, dotted) in the 2D plot on the left.
A cross-sections through the 2D plot along at w = 15.7 µm is provided on the right where both the
maximal loaded atom number Nmax (black) as well as the corresponding loading time tmax (green)
is shown. The results of this simulation are discussed in the main text.

This scaling is in agreement with our measurements as can be seen in fig. 3.12 (d).

The loss rate Γloss is proportional to n2 and thus also scales quadratically with the
magnetic gradient:

Γloss ∝ B′2 (3.10)

We perform a simulation analogous to the previous section where the effects of the ODT
parameters were discussed and employ our model with according to eq. 3.9 and 3.10
rescaled parameters Γ0 and K.

The results are shown in fig. 3.14. In contrast to the ODT parameters each featuring
a finite optimum when the respective other parameters are fixed, Nmax starts to saturate
with increasing gradient. This can be explained by the depletion of the trajectories
through the ODT. Accordingly, the saturation threshold can be increased by increasing
the ODT waist and thus the number of trajectories through the ODT. In any case it is
favorable to use the maximum viable gradient. In our setup this gradient is limited to
∼ 100G/cm mainly due to the large vacuum chamber setting a rather high lower limit for
the distance of the quadrupole coils to the atom position.
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3.6.5 Summary

With the described collisional loading scheme we load up to ∼ 2.2 · 106 atoms within ∼ 2 s
from the magnetic trap with a gradient of ∼ 100G/cm into a single-beam 1064 nm optical
dipole trap with waists of 14.5 µm × 17 um and a laser power of 17W. The achieved
temperature in the ODT is ∼ 500 µK and depends on the optical trap depth. The
experimentally observed loading behaviour can be well described with a simple model
Ṅ(t) = Γ0 exp(−t/τ)−KN(t)2 with the initial condition N(t = 0) = N0 which assumes
an exponentially decreasing loading rate and two-body losses. Simulations based on that
model indicate that our loaded atom number is limited by the laser power, when the ODT
waist is accordingly adapted, and especially by the magnetic gradient. Measurements from
before and after reducing the temperature in the magnetic trap (see sec. 3.5) also indicate
that the loaded atom number can be improved by further reducing the temperature and
thus increasing the density in the magnetic trap. Note that for other atomic species re-
thermalisation in the magnetic trap might become relevant provided that the background
scattering length is high enough. In that case, the trajectory depletion becomes negligible
and the loading behaviour is significantly altered, leading to higher atom numbers.

3.7 Evaporation

So far only optical cooling techniques were discussed. Optical techniques suffer from a
density limitation, though: At high densities, as achieved after loading into the 1064 nm
ODT, the atom cloud gets optically dense which prevents to properly optically address
the atomic sample. Hence, to reach degeneracy we employ evaporative cooling which is
a non-optical cooling technique: The mean energy is reduced by non-optically removing
hot particles from the trap. The high scattering rate required for a sufficiently fast re-
thermalisation is ensured by exploiting Feshbach resonances. In the following we will
discuss which Feshbach resonances are suitable for evaporation, describe how the spin
states exhibiting the respective Feshbach resonance are prepared and elaborate on the
experimental evaporation procedure.

3.7.1 Selecting a Feshbach resonance

Feshbach resonances are an important tool in the field of ultracold quantum gases as they
allow to tune the scattering length and thus the interaction strength. A more detailed
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3.7. Evaporation

discussion of the theoretical background, applications, and related experiments can be
found in the highly recommendable review by Chin et al. [11]. Here we only give a brief
overview:

A Feshbach resonance occurs when two molecular potentials, one of them representing
an open, the other a closed channel, have a relative energy such that a bound state of
the closed channel is energetically close to the threshold of the open, so-called entrance
channel. In that case two colliding atoms with a small energy in the entrance channel
couple to the molecular bound state which leads in the resonance case to a divergence
of the scattering length a. Hence, the scattering length can be controlled by tuning the
energy difference of entrance and closed channel. When the magnetic moments of the two
channels are different, this can be done via a magnetic field B.

The scattering length associated to a magnetically tunable Feshbach resonance can be
locally described by a(B) = abg (1−∆/(B −B0)) and hence are characterised by three
parameters: The center position B0 is the magnetic field at which the scattering length
diverges and where the sign of the scattering length flips. That means one side of the res-
onance features a positive scattering length, corresponding to repulsive interaction, while
the other side features a negative scattering length, corresponding to attractive interac-
tion. Further away from the center position, the absolute value of the scattering length
gets smaller and eventually approaches the background scattering length abg. The width
∆ corresponds to the magnetic field difference between B0 and the zero crossing of the
scattering length. Only one side of a Feshbach resonance features such a zero crossing;
which side depends on the sign of abg. Note that abg weakly depends on B and can there-
fore only locally be assumed to be constant.

Overview of K39 Feshbach resonances and selection criteria

For K39 all spin combinations of the F = 1 hyperfine manifold exhibit Feshbach reso-
nances at experimentally accessible magnetic field strength as can be seen in fig. 3.15. In
principle the evaporation scheme only requires repulsive interactions, i. e. a positive scat-
tering length, in order to be in a stable regime32Therefore, to first order any intrastate
Feshbach resonance could be used for evaporation.

However, in order to choose a suitable resonance there are further aspects to consider:

32For attractive interactions the atom cloud gets unstable in the sense that the density increases with
time resulting in severe two- and three-body losses. Note, though, that this is a simplification. Due to
delocalisation, i. e. a kinetic energy term counteracting the attractive interaction term, there is also a
stable regime for attractive interactions. However, this regime lies within the weakly interacting regime
and is hence irrelevant for the evaporation where high scattering lengths are required.
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Figure 3.15: Scattering length a in dependence of the magnetic field B for all spin combinations
of the F = 1 manifold of K39. The data for the Feshbach resonances is taken from [92]. The
effective scattering length when considering multiple resonances, especially when close to each other,
is calculated according to [93], but with abg = abg(B). However, abg(B) is approximated to be
stepwise linear between the resonances.

First of all, the width of the resonances is of great importance. There are two types of
Feshbach resonances: closed channel dominated resonances with a width typically be-
low 1G, hence also called narrow resonances, and entrance channel dominated resonances
with a width typically much larger than 1G, also called broad resonances.33 [11] When
utilising Feshbach resonances for tuning the scattering length as in our case, broad res-
onances are much more suitable since narrow resonances suffer from a higher loss rate
compared to broad resonances [94]. Furthermore, for broad resonances the scattering
length scales more weakly with the magnetic field which reduces the effect of magnetic
field fluctuations.

Second, independent of the properties of the Feshbach resonances, one also needs to
take the spin preparation into account. Usually, edge states are favorable since they are
typically easier to prepare, e. g. via Landau-Zener sweeps.

Third, one also needs to consider how to proceed after the evaporation. When tuning
the magnetic field for subsequent experiments and for imaging the sample, it is favorable
to stay in a stable regime and to avoid crossing the resonance positions where the scat-

33Note that the classification does not rely on the width ∆, but can be expressed by a dimensionless
resonance strength parameter sres being much larger or smaller than 1, which depends on ∆, but also on
further parameters such as the background scattering length or the difference of the magnetic moments
of closed and entrance channel. Hence, although rarely, there are resonances with a width much larger
than 1 G that are nevertheless more closed channel dominated.
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tering length diverges. Accordingly, it makes sense to choose a Feshbach resonance in a
magnetic field regime that is appropriate for imaging. Furthermore, many experiments
make use of a second spin state. Thus, it is advantageous to use an intrastate Feshbach
resonance for evaporation that is close to an interstate Feshbach resonance for subsequent
measurements such that the interstate resonance is within the repulsive and hence stable
regime of the intrastate resonance. Analogous, one also needs to consider the positions of
the intrastate resonances of the second spin state.

Feshbach resonances suitable for evaporation

Considering the criteria above we found the most convenient Feshbach resonances for
the evaporation to be the |1,+1⟩+ |1,+1⟩ resonance at ∼ 400G and the |1, -1⟩+ |1, -1⟩
resonance at ∼ 560G:
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Figure 3.16: Scattering length a in dependence of the magnetic field B for selected spin combinations.
The data is the same as in fig. 3.15. Top: Relevant Feshbach resonances when evaporating in the
|1, +1⟩ state. Bottom: Relevant Feshbach resonances when evaporating in the |1, -1⟩ state. The
regimes where the respective intrastate scattering length is positive as required for evaporation are
shaded in green. The respective regime of the |1, +1⟩ state (top) around 25 G has a width of only
∼ 0.5G and is hence barely visible.

The |1,+1⟩ state is in our case the easiest to prepare: After the magnetic transport
the atoms are in the |2,+2⟩ state and the atoms can thus be transferred to the |1,+1⟩

61



Chapter 3. Realising a K39 BEC

state with a single RF π-pulse. Up to 600 G the |1,+1⟩ state features two intrastate
Feshbach resonances, at ∼ 26G and at ∼ 400G as shown in fig. 3.16 (top). The first one
is a narrow Feshbach resonance and thus inconvenient, the latter on the other hand is a
broad resonance and thus suitable. In the regime with positive scattering length there
is no interstate Feshbach resonance, though. Hence, the |1,+1⟩+ |1,+1⟩ resonance at
∼ 400G is the most convenient choice in the case that no second spin state is required.

If subsequent experiments on the other hand do require a second spin state, then the
|1, -1⟩+ |1, -1⟩ resonance at ∼ 560G is the most convenient Feshbach resonance for evap-
oration. Up to 600G the |1, -1⟩ state features three intrastate resonances: at ∼ 34G, at
∼ 160G and at ∼ 560G. All of these are broad resonances and the corresponding regimes
with positive scattering length are marked in fig. 3.16 (bottom). As a second spin state
only the |1, 0⟩ state is suitable since |1, -1⟩+ |1,+1⟩ can scatter into |1, 0⟩+ |1, 0⟩ which
acts as a severe loss channel. Up to 600G there are two |1, -1⟩+ |1, 0⟩ resonances, at
∼ 115G and at ∼ 525G, both in the regime with repulsive |1, -1⟩+ |1, -1⟩ interaction.
Hence, all three intrastate resonances have a suitable interstate resonance on their respec-
tive repulsive side. One could think that the lower field resonances are more convenient
since the intra- and interstate resonances are further apart yielding a weaker tuning of
the intrastate scattering length in the region of the interstate resonance. But that does
not take into account the imaging: It is much more favorable to image the atomic sample
at high magnetic fields, i. e. deeper in the Paschen-Back regime to achieve more closed
imaging transitions [76]. When using the lower field resonances one would need to cross
the resonance positions with diverging scattering length to reach a reasonable imaging
field and the necessity to ramp the field by a few 100G would introduce a rather high
lower limit for the time in between the actual experiment and imaging. Hence, it is favor-
able to use the resonance at ∼ 560G for evaporation. Note, though, that the |1, 0⟩+ |1, 0⟩
interaction is attractive in the region of the interstate resonance. Accordingly, it is not
recommendable to use high densities of atoms in the |1, 0⟩ state.34

34It would be also possible to work with the |1, 0⟩ state and the |1, +1⟩ as a second spin state using
the |1, 0⟩+ |1, 0⟩ resonance at ∼ 470 G for evaporation and the |1, 0⟩+ |1, +1⟩ resonance at ∼ 445 G for
tuning the interstate scattering length. This is less favorable, though, due to the smaller distance of both
intrastate resonances to the interstate resonance.
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3.7.2 Spin preparation

After loading the 1064 nm ODT the atoms are in the |2, 2⟩ state35 while the state favorable
for evaporation and subsequent experiments is |1,+1⟩ or |1,−1⟩ as discussed in sec. 3.7.1.
While the experimental sequence for K40 allowed to prepare the desired spin states by
optical pumping (see sec. 2.2), this is not an option for the K39 sequence. The high density
and hence also high optical density in the 1064 nm ODT prevents efficient optical pumping.
Instead we employ RF π-pulses via the single-loop in-vacuo antenna (see sec. 2.1.1) for
the spin preparation.

The preparation of the |1, + 1⟩ state simply requires a single π-pulse for the transfer
|2, 2⟩ → |1,+1⟩ (see fig. 3.17 (a)). The transfer is performed at a few Gauss to provide
a quantisation axis. The Rabi rate of the transfer is 2π · 5.3 kHz. Since the atoms can
undergo hyperfine changing collisions in the F = 2 manifold, which is especially relevant
in the 1064 nm ODT due to the high density, it is advantageous to perform the spin
transfer as soon as possible after the collisional loading scheme.

Preparing the |1, − 1⟩ state requires additional RF transfers. We start out with the
transfer |2, 2⟩ → |1,+1⟩ just as for preparing the |1, + 1⟩ state and then proceed with
two further π-pulses for the transfer |1,+1⟩ → |2, 0⟩ → |1,−1⟩ (see fig. 3.17 (b)). A more
conventional Landau-Zener scheme |1,+1⟩ → |1, 0⟩ → |1,−1⟩ showed poor performance
which we attribute to fast decoherence due to |1,+ 1⟩+|1,− 1⟩ ↔ |1,0⟩+|1,0⟩ scattering.
This hypothesis is supported by the fact that we found a reasonable performance of the
|1,+1⟩ → |1, 0⟩ transfer, but still poor performance for the |1, 0⟩ → |1,−1⟩ transfer at
fields of ∼ 200G where |1,0⟩+|1,0⟩ → |1,+1⟩+|1,−1⟩ scattering is energetically forbidden
while |1,+ 1⟩+|1,− 1⟩ → |1,0⟩+|1,0⟩ scattering is still allowed.

Since it is technically more convenient, we use the same RF transfer frequency for
the first transfer |2, 2⟩ → |1,+1⟩ and the second transfer |1,+1⟩ → |1, 0⟩ and instead
tune the magnetic field to achieve resonance. Since the |1,+1⟩ state is spin-protected the
additional time for the magnetic ramp does not introduce significant losses. In the |2, 0⟩
state on the other hand the atoms can undergo hyperfine changing collisions. Hence it is
advantageous to minimise the time the atoms spend in that state. Accordingly, we use
the same magnetic field for second and third transfer, use a second RF transfer frequency
instead and perform the third transfer right after the second transfer. The Rabi rate for
both, second and third transfer is 2π · 2.2 kHz.

35The atoms were transferred to the |2, 2⟩ state for the magnetic transport since this is the ground state
in which the atoms have the highest magnetic moment and thus experience the strongest confinement in
the magnetic trap. The collisional loading scheme used to then load the atoms from the magnetic trap
into the 1064 nm ODT does not affect the state.
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Figure 3.17: Spin preparation scheme. (a) Preparing the |1,+ 1⟩ state is achieved with a single RF
π-pulse with frequency f1 driving the transition |2,2⟩ → |1,+1⟩. The inset shows the Rabi oscillation
of this transfer, where the y-axis corresponds to the |2,2⟩ population. (b) For preparing the |1,− 1⟩
state two additional RF π-pulses are applied. The transfer |1, + 1⟩ → |2,0⟩ utilises the same RF
transition frequency f1 as the previous transfer shown in (a). Instead of tuning the frequency, the
transfer current I, i. e. the magnetic field B is adapted. The third transfer |2,0⟩ → |1, − 1⟩ then
utilises the same transfer current as the second one and instead of tuning the current, a second
RF transition frequency f2 is employed in order to minimise the time in between second and third
transfer. The inset shows the Rabi oscillation exemplarily of the third transfer |2,0⟩ → |1,− 1⟩. The
y-axis corresponds to the |2,0⟩ population. (c),(d) Typical transfer spectra of the third transfer
|2,0⟩ → |1,− 1⟩ in dependence of the time. The range of the x-axis corresponds to several hours, the
range of the y-axis corresponds to ∼ 8 mG. The inset shows a single transfer spectrum corresponding
to a vertical cut through the 2D plot. The data was taken before (c) and after (d) improving the coil
current resolution. Before, the quantised coil current steps are clearly visible. Adapted from [76].
More details are given in the main text.

The RF transitions are quite narrow and thus sensitive to the magnetic field stability.
To achieve sufficient short-term stability a synchronisation of the experimental cycle with
the electricity grid is necessary as well as a coil current stability of ∼ 10−4 A which requires
choosing a suitable current power supply. Furthermore, we had to reduce the quantisation
steps of the 16-bit analog channel used to control the coil current.36 (see fig. 3.17 (c)-(d))
Long-term stability is ensured with an automated procedure taking brief transfer spectra
every few hours, extracting the center current of the respective transfer and adapting the
transfer currents accordingly for the subsequent experimental runs.

36The analog channel has an output range of 10 V while the coil current supply’s input range is only
5V. By adding a voltage divider we were able to improve the current resolution by a factor of 2.
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3.7. Evaporation

3.7.3 Evaporation

Evaporation is a widely used cooling technique allowing to achieve Bose-Einstein con-
densation. In the following we will give an overview on this technique, focussing on the
aspects relevant for this thesis. A more detailed discussion is given in [95]. We will then
describe our evaporation procedure, briefly show how evaporation can be utilised for the
atom number calibration and finally, present the observed performance.
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Figure 3.18: Energy distribution f(E) of a thermal cloud. The position of the vertical dashed line
corresponds to the cut-off by the trap depth and is determined by the parameter α. Atoms with a
higher energy, i. e. in the grey shaded tail of the Maxwell-Boltzmann distribution, escape the trap
and thus lower the mean energy of the remaining atoms. Elastic scattering events restore the thermal
distribution, i. e. re-populate the tail of the Maxwell-Boltzmann distribution, while shifting the peak
of the distribution to lower values corresponding to a lower temperature. Continuously lowering
the trap depth then leads to a continuously decreasing temperature, resulting in an increasing phase
space density. Inset: The theoretically expected efficiency ηth (black) as well as the estimated initial
evaporation loss rate Γloss (green) in dependence of the parameter α = U/kBT . While high values
of α increase the efficiency ηth, i. e. the gain in phase space density for a given atom number loss,
the evaporation loss rate Γloss decreases, i. e. the evaporation slows down, making it more difficult
to compete against heating processes and inelastic losses.

The idea of the evaporation technique is to reduce the mean temperature of the atomic
sample by removing those atoms with high energy. For a thermal cloud that means
the tail of the Maxwell-Boltzmann distribution is cut off, as sketched in fig. 3.18, and
the sample re-thermalises through elastic scattering which re-populates the tail of the
Maxwell-Boltzmann distribution such that the thermal distribution is restored, but with
a lower mean temperature. Thereby, continuously cutting off the tail and re-thermalising
the sample reduces the temperature at the cost of an atom number loss. Given that the
scattering rate is high enough to ensure a re-thermalisation faster than the evaporation
rate, the final temperature is only limited by the initial atom number and losses due to
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inelastic collisions, as the temperature can be lowered further and further by removing
more atoms.

For optical traps evaporation occurs naturally due to the finite trap depth U : Indi-
vidual atoms can gain enough energy via elastic collisions to escape the trap. For low
temperatures the evaporation rate scales with exp(−α) = exp(−U/kBT ), which means
the evaporation rate decreases with decreasing temperature T and freezes out for α ≈ 10

[96]. Therefore, the trap depth needs to be lowered to maintain the evaporation process
which is called forced evaporative cooling. For large α and when the trap depth is reduced
such that α stays constant37 the achieved phase space density ρ can be expressed as:

ρ = ρi ·
(
Ni

N

)η

(3.11)

where N is the atom number, the index i denotes the initial conditions, and the exponent
η characterises the efficiency of the evaporation process. For a fixed gain in phase space
density a higher η corresponds to a lower atom number loss. For harmonic traps and
large α the theoretical efficiency is ηth = α + (α − 5)/(α − 4) − 4 [96] and is shown in
fig. 3.18 (inset). Theoretically, the efficiency can therefore be increased by increasing α,
which in turn is determined by the rate with which U is lowered. However, this does
not take into account other loss channels. A high α means to cut a smaller part of the
Boltzmann tail before re-thermalisation, hence the higher theoretical efficiency, but this
also reduces the evaporation rate and hence slows down the process which is disadvanta-
geous when considering a counteracting heating rate and inelastic losses. Consequently,
the optimal α needs to be determined experimentally.

α also affects how the scattering rate changes over the course of the evaporation. There
are two counteracting effects: lowering the trap depths reduces the trapping frequency
which lowers the scattering rate via the density. On the other hand the temperature
decreases with the ongoing evaporation which again increases the density and thus the
scattering rate.38 Assuming an energy-independent scattering cross-section, the first effect
dominates for reasonably large α and the scattering rate decreases with decreasing U

meaning that no runaway evaporation is achieved [96]. However, the scattering rate can
be easily kept high enough, i. e. reasonably higher than the evaporation rate, by adjusting

37For an exponential lowering of the trap depth U , α is approximately constant. We found that the
performance of an exponential ramp is similar compared to the analytically found ramp shape keeping α
constant [96].

38The temperature also affects the mean velocity counteracting the effect on the density. However, the
density scales much stronger with the temperature than the mean velocity does, hence the increasing
density is the dominant effect of the decreasing temperature.
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the scattering length via a suitable Feshbach resonance.
The final phase space density also depends on the initial conditions. For fixed trap

parameters, the initial phase space density scales with ρi ∝ NiT
−3
i . Hence, the final phase

space density scales with ρ ∝ T−3
i Nη+1

i . For a typical efficiency η ≃ 3, the phase space
density scales stronger with the initial atom number than with the initial temperature.
Accordingly, the optical trap loading (see sec. 3.6) was optimised for low temperatures
and especially for high atom numbers.

Experimental evaporation procedure

After the atoms are transported to the science position, they are transferred from the
magnetic trap into a 1064 nm high-power, single-beam optical dipole trap (see sec. 3.6).
While this trap is adapted for the applied collisional loading scheme, it is not well suited
for the evaporation. Since the Rayleigh range, determining the on-axis confinement, is
much larger than the beam waists, determining the radial confinement, the 1064 nm ODT
exhibits a weak axis with a ∼ 60 times lower trapping frequency compared to the other
axes. Therefore, the thermalisation time is axially much longer than radially. While low
scattering rates due to low trapping frequencies can be easily compensated by adapting
the scattering length via Feshbach resonances, this is not favorable for vastly different
trapping frequencies. When increasing the scattering length to achieve a reasonable axial
thermalisation time, the much higher radial trapping frequencies will enhance inelastic
losses and hence reduce the efficiency. Hence, we instead employ the pre-existing 850 nm
crossed dipole trap (CDT) for evaporation. Since the two beams are crossed under 2 · 45◦

the trapping frequencies differ only by a factor of
√
2.39

Experimentally, when evaporating in the |1,+1⟩ state we found best results when
loading the atoms from the 1064 nm ODT into the full depth 850 nm CDT with an
evaporation-like scheme and then evaporating in the 850 nm CDT to achieve degeneracy.
The scheme is depicted in fig. 3.19 (top). When preparing the |1,−1⟩ state we introduce
an intermediate step and lower the 1064 nm ODT depth to ∼ 30% before performing the
spin transfer |1,+1⟩ → |2, 0⟩ → |1,−1⟩ as we found best performance of the spin transfer
in the reduced depth 1064 nm ODT compared to the full depth 1064 nm ODT as well
as compared to the 850 nm CDT. After the spin transfer the procedure is the same as
for the |1,+1⟩ state: the atoms are loaded from the reduced depth 1064 nm ODT trap
into the full depth 850 nm CDT and subsequently evaporated to degeneracy as shown

39In principle the 1064 nm single-beam ODT can be upgraded to a crossed dipole trap. Due to technical
reasons the crossing angle is limited to 2 · 5◦, though, still resulting in one comparatively weak axis.
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Figure 3.19: Experimentally optimised evaporation scheme for the |1,+1⟩ (top) and the |1,−1⟩
(bottom) state. Depicted are the relative trap depth Urel of the 1064 nm ODT (red, solid) where
full depth Urel = 1 corresponds to ∼ 6 mK, and of the 850 nm CDT (orange, solid) where full depth
corresponds to ∼ 100 µK, as well as the intrastate scattering length a of the |1,+1⟩ state (black,
dashed) and of the |1,−1⟩ state (purple, dashed) in dependence of the time t. t = 0 corresponds to
the end of the collisional loading scheme, i. e. the end of the rampdown of the magnetic trap. The
vertical dashed lines correspond to the times of the RF transfers. Top: After a short waiting time for
the magnetic field to settle, the atoms are transferred from the |2,+2⟩ state into the |1,+1⟩ state. The
magnetic field and thus the scattering length is fixed by the transfer. Afterwards, the 850 nm crossed
dipole trap is ramped up and the scattering length is increased for the subsequent evaporation-like
loading from the 1064 nm ODT into the 850 nm CDT. The ramp shape for lowering the 1064 nm ODT
to zero is chosen such that α = U/kBT = const. [96]. During the loading the scattering length is
further increased. Subsequently, the atom are evaporated in the 850 nm CDT: The scattering length
is slowly increased and the trap depth is lowered exponentially until Bose-Einstein-condensation
is achieved. Bottom: After a short waiting time for the magnetic field to settle, the atoms are
transferred from the |2,+2⟩ into the |1,+1⟩ state. Afterwards, the 1064 nm ODT trap depth is
lowered to ∼ 30% for the subsequent second and third RF transfer |1,+1⟩ → |2, 0⟩ → |1,−1⟩. The
magnetic field and thus the scattering length is fixed by the respective transfer. After the transfers
the atoms are loaded from the 1064 nm ODT into the 850 nm CDT: The 850 nm CDT is ramped
up, the scattering length is tuned to positive, but rather low values as discussed in the main text,
and the 1064 nm ODT is ramped down with a ramp shape keeping α = U/kBT constant. For the
actual evaporation step the scattering length is then increased and the 850 nm CDT is exponentially
ramped down until Bose-Einstein-condensation is achieved.
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in fig. 3.19 (bottom). The experimentally optimised scattering length employed for the
|1,−1⟩ state when loading the atoms from the 1064 nm ODT into the 850 nm CDT is
with ∼ 10 a0 rather low. We suspect that this is connected to the closeby |1,−1⟩ + |1, 0⟩
Feshbach resonance. Remaining atoms in the |1,+1⟩ state scatter quickly with atoms
in the |1,−1⟩ state into the |1, 0⟩ state. These atoms can participate in the evaporation
process from the 1064 nm ODT into the 850 nm CDT. While the |1,−1⟩ + |1,−1⟩ scat-
tering length is very low, the |1,−1⟩ + |1, 0⟩ scattering length is with ∼ 180 a0 rather
high, supporting the hypothesis that the evaporation is mainly driven by atoms in the
|1, 0⟩ state. Scattering events involving atoms in the minority |1, 0⟩ state are much more
likely, resulting in a higher relative evaporation loss rate of these atoms compared to
atoms in the |1,−1⟩ state. Thus, when evaporating with enhanced interstate scattering
length between the desired spin state and the remaining minority fraction instead of an
enhanced intrastate scattering length, the spin polarisation is improved over the course
of the evaporation.

While loading the 850 nm CDT and during the evaporation we additionally apply a
magnetic gradient. This reduces the effective trap depth without lowering the trapping
frequency. Hence, a higher density is maintained, especially at the end of the evaporation
where the effect of the gradient is largest due to the low trap depth.40 This is particularly
advantageous when evaporating in a single-beam trap to support the weak axis. Although
we found slightly better results when applying a gradient of ∼ 25G/cm, the performance
is not sensitive to the exact value of the gradient.

Atom number calibration

By imaging the atom cloud via absorption imaging we can derive the atom number N from
the optical density, the temperature T from time-of-flight measurements and the conden-
sate fraction N0/N from fitting a bimodal distribution to the imaged density distribution
for different times of the evaporation. The phase space density ρ is given by

ρ = n · λ3th (3.12)

where n is the density and λth = (2πℏ2/mkBT )1/2 the thermal de Broglie wavelength with
the atomic mass m and the Boltzmann constant kB. The density can be estimated by the
peak density n0 in a 3D harmonic trap potential V (r) from the normalisation condition

40Note that the magnetic gradient results in a spatially dependent scattering length. However, due to
the small size of the atomic cloud, the variation in the relevant region is typically less than 0.1%.
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of the Boltzmann distribution N = n0

∫
exp(−V (r)/kBT )dr yielding

n0 = Nω̄3

(
m

2πkBT

)3/2

(3.13)

where ω̄ is the mean trapping frequency.41 Note that his expression does not take into ac-
count the effect of interactions, which is a valid approximation as the imaging is performed
at low scattering length of ∼ 20 a0. For known trap parameters, the central phase space
density can therefore be estimated from the measured atom number and temperature.

10 2 10 1

N0/N

0.5

1.0

calibrated
uncalibrated

Figure 3.20: Phase space density ρ cal-
culated according to eq. 3.12 with un-
calibrated (black) and calibrated (green)
atom number in dependence of the con-
densate fraction N0/N .

However, the measured atom number is only an
approximation. Since the imaging is performed at
high magnetic fields, the imaging transition is not
closed, meaning that the measured atom number
needs to be calibrated by introducing a correction
factor. A suitable method for the calibration is to
compare the phase space density calculated accord-
ing to eq. 3.12 with the measured condensate frac-
tion as shown in fig. 3.20. For a 3D harmonic oscil-
lator the critical temperature TC at which conden-
sation occurs is

kBTC =
ℏω̄N1/3

[ζ(3)]1/3
≈ 0.94ℏω̄N1/3 (3.14)

where ζ(s) denotes the Riemann zeta function [97].
Hence, for a 3D harmonic oscillator the critical
phase space density characterising the condensation
threshold is ρC = ζ(3) ≈ 1.2. By matching this critical phase space density to a conden-
sate fraction of N0/N ≃ 10−2 an atom number calibration is obtained.42 Note that this
is just an estimate, though. For an accurate calibration finite size effects and interaction
shifts have to be included [98].

41This only holds true for a thermal cloud, though. Above the condensation threshold the density is
increasingly underestimated by this approximation.

42This is the threshold at which we can observe a condensate fraction. Note that the error of the
measured condensate fraction is on the same order of magnitude.
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Performance

With the calibrated atom number the performance of the evaporation can be estimated.
The mean efficiency estimated from initial atom number and phase space density in the
1064 nm ODT directly before evaporating into the 850 nm CDT and from the atom number
in the 850 nm CDT at ρ = 1 is ∼ 4.1 (∼ 2.2) for the for the |1,−1⟩ (|1,+1⟩) state.
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Figure 3.21: Condensate fraction N0/N (top) and phase space density ρ (bottom) versus atom
number N during the last stages of the evaporation in the 850 nm CDT for the |1,+1⟩ (black) and
the |1,−1⟩ (green) state. Direction of time is from right to left. N0/N is extracted from the bimodal
distribution of the imaged density, ρ is calculated according to eq. 3.12, N is corrected according to
the calibration method shown in fig. 3.20 for each spin state independently. The data for the two
spin states was taken six months apart. Also shown is a fit (red) to extract the slope corresponding
to the efficiency. Both spin state exhibit a similar initial performance with a fitted efficiency of ∼ 3.3
with a subsequent flattening to a fitted value of ∼ 0.9 (∼ 0.7) for the |1,+1⟩ (|1,−1⟩) state. The
efficiency for significant condensate fractions is underestimated, though, as the optical density of the
BEC results in an underestimated atom number.

The condensate fraction and the phase space density during the final phase of the
evaporation in the 850 nm CDT is shown in fig. 3.21. As can be seen the efficiency in the
final phase is with ∼ 3.3 similar for both spin states. With a rising condensate fraction
the efficiency drops to ∼ 0.9 (∼ 0.7) for the |1,+1⟩ (|1,−1⟩) state: In this regime, the
cloud can no longer be described by a Boltzmann distribution such that the scalings
derived above are no longer valid. More importantly, the BEC is optically dense such
that the measured and calibrated atom number and therefore also the calculated phase
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time

Figure 3.22: Measured density profile of the atom cloud at different times of the evaporation in the
850 nm CDT. Also depicted is a cross-section through the respective density profile. The condensation
threshold is reached in between the first and second image from the right. It is clearly visible how
the shape of the density distribution changes from Gaussian above the condensation threshold to
a bimodal distribution below the condensation threshold. With ongoing evaporation the thermal
fraction decreases until it vanishes as can be seen in the leftmost image. In the degenerate regime,
the atom cloud can be approximated with a Thomas-Fermi density distribution.

space density is underestimated for a significant condensate fraction. We conservatively
estimate an atom number of ∼ 5 · 103 in the condensate.
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Chapter 4

From 3D to 2D

In the previous chapter we described how we adapted and extended the experimental
setup and re-designed the experimental sequence to achieve a three-dimensional K39
Bose-Einstein condensate. In this chapter we will address the transformation from a
three-dimensional to a two-dimensional system. Therefore, we will first motivate the sig-
nificance of the dimensionality and present the fundamental theoretical aspects of a 2D
Bose gas. We will then introduce the conditions under which a 3D atomic cloud exhibits
thermodynamically 2D behaviour, which is called the quasi-2D regime. We will then
briefly discuss different experimental setups to realise such a quasi-2D system and explain
why we chose the concept of a vertical lattice loaded from a light-sheet-like trap. After
describing the design and realisation of this setup we will finally provide an overview of
the degenerate 2D Bose system that can be created by utilising this setup.

4.1 Fundamentals of 2D Bose gases

In this section we provide a brief theoretical overview of some key aspects of 2D Bose
gases. In particular, we will discuss the significance of dimensionality for the occurrence
and nature of phase transitions from the normal to the superfluid state, as 2D systems
exhibit the celebrated BKT transition whose discovery lead to the Nobel Prize in Physics
being awarded to Kosterlitz and Thouless in 2016. We will then introduce the concept
of a quasi-2D system, i. e. the conditions to experimentally realise a thermodynamically
two-dimensional system, and discuss how the behaviour of such a system can be described
in the low temperature regime.
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Effects of the dimensionality

The dimensionality is a fundamental property of a system which has a significant impact
on the system’s behaviour. Arguably, the most fundamental difference when going to
lower dimensions is the enhanced role of fluctuations which can be intuitively understood
by the reduced number of nearest neighbours. While thermal and quantum fluctuations
are more costly and hence stronger suppressed in 3D, they are less costly in lower dimen-
sions which has an important consequence: In 2D, and also in 1D, fluctuations are strong
enough to destroy true long-range order at any non-zero temperature T . More formally,
the Mermin-Wagner theorem [99–102] states that for a dimension d ≤ 2 true long-range
order is impossible for a system with continuous Hamiltonian symmetry and short-ranged
interactions that is in the thermodynamic limit and at T ̸= 0. Accordingly, there are
no phase transitions with spontaneously broken continuous symmetry. This especially
includes the well-known Bose-Einstein condensation (BEC) where the spontaneously bro-
ken continuous symmetry is given by the arbitrarily chosen phase of the macroscopic wave
function which emerges at the transition.

The absence of BEC in 2D uniform systems can be easily seen when considering the
effect of the dimensionality on the density of states g(E) which scales with energy E as
g(E) ∝ E(d/2−1) [97]. Here, the 2D case immediately stands out as it is the only case
where the dependence on E drops out and the density of states becomes constant. With
the density of states we can express the average total atom number N in the system as
[97]

N = N0 +

∫ ∞

0

dE g(E)f 0(E) (4.1)

where f 0(E) is the well-known Bose distribution function. N0 is the number of atoms in
the ground state, while the integral corresponds to the number of atoms in excited states.
In 3D the integral is finite for any given temperature T . That means the number of
excited states saturates and an atom number exceeding the maximum number of excited
states leads to a macroscopic population of the ground state corresponding to BEC. For
d ≤ 2, on the other hand, the integral in eq. 4.1 diverges due to the different scaling of
the density of states, i. e. the number of available excited states does not saturate. Thus,
in an infinite uniform 2D or 1D system Bose-Einstein condensation can only occur at zero
temperature.
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Berezinskii-Kosterlitz-Thouless transition

In contrast to the 1D case, an infinite uniform 2D system can still exhibit a superfluid
state which is not connected to BEC, but to the so-called BKT transition [103, 104]. At
low temperatures the interaction energy becomes dominant and the interactions result in
a suppression of density fluctuations1 which manifest in the second-order correlation func-
tion. Low-energy long-wavelength excitations are thus mainly given by phase fluctuations.
These phase fluctuations, i. e. phonons, destroy true long-range order which manifests in
a vanishing first-order correlation function g1(r) for r → ∞. However, a unique feature of
2D systems is that, below a critical temperature, they can still exhibit a quasi-long-range
order which allows for the emergence of a superfluid state. This quasi-long-range order
corresponds to a slow algebraic decay of g1(r) for long distances2 r in the superfluid state,
i. e. below the BKT critical temperatures TBKT, as opposed to an approximately exponen-
tial decay in the normal state, i. e. above TBKT, and as opposed to a Gaussian shape at
high temperatures in the non-degenerate regime [105]. This results in the formation of a
quasi-condensate which can be understood as ’local’ Bose-Einstein condensates without
global phase correlations, i. e. as a condensate with fluctuating phase. [106]

Recalling the Mermin-Wagner theorem this BKT transition cannot be connected to a
spontaneously broken continuous symmetry, but instead belongs to the class of topological
phase transitions. While there are no discontinuities in thermodynamic quantities besides
the remarkable universal jump of the superfluid density (see e. g. [105]) which classifies the
transition as of ’infinite order’, the BKT transition is connected to a change of the system’s
topology. This cannot be explained by the long-wavelength phononic excitations, but
with a different kind of phase fluctuations, namely vortices. These are topological defects
around which the phase field smoothly changes by n2π where the integer n is called the
charge or vorticity. At the vortex center the superfluid density vanishes as the velocity field
cannot be well defined at this point due to the phase winding. Hence vortices correspond
not only to phase fluctuations, but also to density fluctuations. These are just small scale
fluctuations, though, since the size of the vortices is given by the healing length. Density
fluctuations on larger scales are still suppressed by interactions and the BKT transition
is determined by the effect of the vortices on the phase field: Below TBKT the free energy
associated with a free vortex is positive. Consequently, free vortices are suppressed and
vortices occur as bound pairs with opposite charge, i. e. opposite sense of rotation. Thus,
the phase winding around the bound pair is zero, the resulting phase fluctuations are

1More precisely, density fluctuations at lengthscales larger than the healing length are suppressed.
2Here, ’long distances’ refers to distances that are large compared to the healing length and compared

to the thermal wavelength.
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limited to small scales and the phase field is only locally affected. That means although
true long-range order is destroyed by phonons, neither phonons nor vortices cause sufficient
phase fluctuations to destroy the quasi-long-range order and the system’s topology is
equivalent to the topology of a BEC with true long-range order. Above TBKT, on the
other hand, the free energy associated to free vortices becomes negative and free vortices
become energetically favorable. The vortex pairs break up and free vortices emerge.
Hence, the effect of the vortices on the phase field can no longer be considered as local,
the phase ordering is destroyed and the topology of the system is altered, corresponding
to a normal state.

Although the BKT transition is driven by vortices and their effect on the phase field,
the suppression of density fluctuations is a crucial requirement for the emergence of the
superfluid BKT state. Thus, in contrast to BEC, the BKT transition can only occur in
interacting systems.

BEC in 2D systems

The statement that Bose-Einstein condensation (BEC) at non-zero temperature does
not occur in 2D is not universally valid. While it is true for infinite uniform system,
the situation is different for an harmonically trapped gas. The harmonic trap breaks
the continuous Hamiltonian symmetry which is one of the conditions of the previously
stated Mermin-Wagner theorem and alters the density of state which in the harmonically
trapped case scales as g(E) ∝ E(d−1) [106]. In this case g(E) is no longer constant for a
two-dimensional system and the integral in eq. 4.1 becomes finite, the number of excited
states saturates and BEC at non-zero temperature is restored. This only holds true in an
ideal, i. e. non-interacting gas, though, as BEC in 2D is extremely sensitive to interactions
[105, 107].

However, BEC at non-zero temperature can still occur in interacting 2D systems due
to finite size effects. Decaying phase correlations can effectively not be distinguished from
true long-range order when the phase coherence length is much larger than the system
size, resulting in the emergence of a true condensate.3 The slow algebraic decay of the
first-order correlation function associated with the BKT state results in such large phase
coherence lengths. Hence, while a BKT state in an infinite system is associated with a
quasi-condensate, a system with realistic parameters in a BKT state typically also exhibits
a finite true condensate fraction.

The difference between condensate and quasi-condensate is subtle. Local correlations

3Here, we presume that the system is in a degenerate regime where density fluctuations are suppressed
by interactions.
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as well as the Thomas-Fermi density profile are the same for quasi-condensate and con-
densate, the difference lies in the phase coherence properties [106]. Whether the character
of a system is more that of a quasi-condensate or more that of a condensate is often differ-
entiated by how the phase coherence length compares to the system size or equivalently
on the phase fluctuations on the length scale given by the Thomas-Fermi radius. For our
parameters we expect to be more on the condensate side.

uniform gas harmonic confinement
infinite system finite system infinite system finite system

ideal
no BKT
no BEC

no BKT
BEC

no BKT
BEC

no BKT
BEC

interacting
BKT

no BEC
BKT
BEC

BKT
no BEC

BKT
BEC

Table 4.1: Basic overview of which 2D systems support BEC and BKT states based on the con-
siderations in [105]. We emphasize that these considerations do not reflect the full picture. A
comprehensive analysis is beyond the scope of this thesis and the presented table is only intended
to provide an orientation. Note that a confinement always introduces a finite system size. The data
for an infinite, harmonically trapped gas is derived by considering an appropriately defined thermo-
dynamic limit.

Quasi-2D Bose gases

Since we are living in a three-dimensional world we cannot create truly two-dimensional
systems. However, we can create atomic gases that are kinematically 2D by tightly
confining the motion of the atoms in one spatial direction, here chosen to be y [108].
This can be achieved by suppressing excitations along y, i. e. by a macroscopic population
of the ground state in that axis. This limits the atomic motion to zero-point oscillations
and enables the decomposition of the 3D wave function

ψ3D(x,y,z) = ψ2D(x,z) · ϕ0(y) (4.2)

into a 2D wave function ψ2D(x,z) that contains the main dynamics and the ground state
wave function4 ϕ0(y) along y which is not affected by the in-plane dynamics. To realise
this, a strong confinement along y is needed as it introduces an energy gap between the
ground state and the first excited state. In order to suppress excitations this energy gap
needs to be large compared to all relevant energy scales of the system. For ultracold
gases the confinement is typically harmonic and accordingly the energy gap is given by

4For an harmonic confinement the ground state wave function corresponds to a Gaussian.
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the trapping frequency ωy. The relevant energy scales for bosonic systems are given by
the temperature T and by the chemical potential µ. This yields

ℏωy ≫ kBT, µ. (4.3)

A system fulfilling this condition is considered to be quasi-2D.5 Although kinematically
2D, quasi-2D systems are typically collisionally 3D since the harmonic oscillator length
aho,y =

√
ℏ/(mωy) with the atomic mass m is usually much larger than the 3D scattering

length a3D.

As the chemical potential corresponds to the interaction energy µ = gn for uniform
systems in the low temperature regime with coupling constant g and density n, the con-
dition ℏωy ≫ µ can also be expressed in terms of the corresponding characteristic length
scales ξ ≫ aho,y where ξ = ℏ/√mgn is the healing length. This expression is quite intu-
itive: aho,y corresponds to the system size along y while ξ is the minimal length scale over
which the wave function spatially changes. Hence, it is apparent that the y-component of
the wave function cannot be changed by the dynamics and can thus be separated out for
ξ ≫ aho.6

Scattering in 2D and quasi-2D

The dimensionality is also of importance for the scattering properties of a system. In
the following we will therefore briefly revisit the 3D case, before turning to the true 2D
case. Finally, we will consider the quasi-2D regime where we will see that it is in principle
equivalent to the true 2D case, but in practice typically exhibits a more 3D scattering
character. A thorough description of the 3D scattering problem can be found e. g. in [97,
110]. A more detailed discussion of scattering in true 2D can be found in [111, 112], the
quasi-2D case is presented in [106, 108]. Here, we only give a brief overview which mainly
follows [106, 112].

Scattering in 3D In the following we consider elastic collisions of two atoms that are
interacting via a short-range potential U(r). The scattering problem is then described by

5Especially in early research ’quasi-2D’ is also used for system with ℏωy ≲ kBT . Due to the phe-
nomenon of transverse condensation these systems already start showing a macroscopic ground state
population [109].

6In this picture it can also be intuitively understood that binary spin mixtures allow to create 3D
systems with 2D spin dynamics as the intra- and interstate coupling constants gii and gij correspond to
separate density and spin healing lengths ξ and ξs.
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the Schrödinger equation [
− ℏ2

2m∗∇
2 + U(r)

]
ψ(r) = Eψ(r) (4.4)

where E = ℏ2k2/(2m∗) is the scattering energy with relative momentum k, m∗ is the
reduced mass and r = r1 − r2 corresponds to the relative coordinate of the two atoms.
For r → ∞ the wave function is composed of an incident plane wave and a scattered
spherical wave which in the three-dimensional case reads

ψ3D(r) ≈ eikr + f(k,θ,φ)
eikr

r
. (4.5)

f(k,θ,φ) is the so-called scattering amplitude and is of central importance. It can be
derived by solving the (3D) Schrödinger eq. 4.4 and determines the differential cross-
section dσ/dΩ = |f(k,θ,φ)|2. In the low-temperature regime we can assume that only the
spherically symmetric s-wave scattering occurs as scattering through higher partial waves
(angular momentum quantum number l > 0) is energetically suppressed. Accordingly, in
this regime the scattering amplitude f(k) is independent of θ and φ. In the low energy
limit the scattering amplitude takes a finite value f(k)k→0 = −a3D, where a3D is called
the s-wave scattering length, and the total cross-section takes the form σ = 4πa23D or in
the case of identical bosons σ = 8πa23D.

Furthermore, in the ultracold limit the scattering amplitude is directly related to the
coupling constant g used to express the interaction energy since the mean-field interaction
energy is given by the sum of all pair interactions in the weakly interacting regime. In
the three-dimensional case this yields g3D = (4πℏ2/m)a3D.

Scattering in true 2D In true 2D the wave function describing the relative motion is
different to the 3D case stated in eq. 4.5. The general structure, i. e. the composition of
incident plane wave and scattered circular wave, stays the same, but due to the different
geometry the 2D case reads

ψ2D(r) ≈ eikr − f(k,φ)

√
i

8πkr
eikr. (4.6)

Again, assuming only s-wave scattering as justified for low temperatures one can derive
the scattering amplitude by solving the (2D) Schrödinger eq. 4.4 which yields

f(k) =
2π

ln(1/ka2D) + iπ/2
. (4.7)
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where a2D > 0 is the 2D scattering length. Note that unlike the 3D case the 2D scattering
amplitude does not take a finite value in the low energy limit k → 0. For ka2D ≪ 1 the
logarithmic term in the denominator is dominating and the scattering amplitude becomes
real. The corresponding coupling constant is then given by g = 2πℏ2/(m ln(1/kca2D))

where kc is the characteristic momentum, e. g. the thermal momentum in the case of a
thermal gas or the inverse healing length in the case of a (quasi-)condensate. Thus, the
logarithmic dependency yields a remarkable result: For sufficiently low temperature and
density kca2D ≪ 1 the interaction in true 2D is always repulsive since g > 0.7

Scattering in quasi-2D In contrast to true 2D systems, collisions in quasi-2D systems
typically exhibit a 3D character since typically a3D ≪ aho,y, where aho,y is the harmonic
oscillator length along the tightly confined axis y. Nevertheless, quasi-2D scattering can be
mapped to true 2D scattering as the scattered wave is constrained by the tight harmonic
potential Vcon(y) providing the quasi-2D confinement. As previously shown (see eq. 4.2)
the 3D wave function can be decomposed into a 2D component and into the ground state
wave function ϕ0(y) along y which remains unaffected by the interactions. Accordingly,
for r → ∞ the wave function of two interacting atoms is similar to eq. 4.6 and can be
written as

ψ(r) ≈ ϕ0(y)

(
eikr − f(k,φ)

√
i

8πkr
eikr

)
. (4.8)

The quasi-2D confinement also affects the Schrödinger equation which gets modified to[
− ℏ2

2m∗∇
2 + U(r) + Vcon(y)−

ℏωy

2

]
ψ(r) = Eψ(r). (4.9)

Once more, we assume that only s-wave scattering occurs and find the scattering amplitude
by solving the modified Schrödinger equation which yields

f(k) =
4π√

2πaho,y/a3D + ln(B/(πa2ho,yk
2)) + iπ

(4.10)

where B ≈ 0.915 is a numerical factor. One clearly sees that the quasi-2D scattering
amplitude has the same structure as the true 2D scattering amplitude shown in eq. 4.7.
By comparing both equations one can express a2D =

√
π/B aho,y exp(−

√
π/2 aho,y/a3D)

7Unless a2D → ∞ as is the case in the presence of a bound state with binding energy E0 → 0.
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in terms of a3D and aho,y. The corresponding coupling constant then reads

g =
4πℏ2

m

1√
2π aho,y/a3D + ln(B/(πa2ho,yk

2))
. (4.11)

For a3D ≪ aho,y the first term in the denominator dominates over the logarithmic term
and the expression for the coupling constant simplifies to

g =
ℏ2

m
g̃ =

ℏ2

m

√
8π

a3D

aho,y
(4.12)

where we defined the dimensionless coupling constant g̃. We emphasize that eq. 4.12 only
holds true in the weakly-interacting regime. Close to Feshbach resonances the assumption
a3D ≪ aho,y is not valid and the coupling constant is described by eq. 4.11. Note that due
to the additional logarithmic term in the denominator the transition between repulsive
and attractive interaction, i. e. g > 0 and g < 0, is not located at the position of the
Feshbach resonance as is the case for g3D, but is slightly shifted. For typical parameters
that means that there is a regime with repulsive interactions, g > 0, although a3D < 0.

Furthermore, we point out that the equivalence of the true 2D and quasi-2D scattering
problem as implied by the same structure of the scattering amplitudes also implies that
the quasi-2D scattering exhibits the same peculiar feature as the previously discussed
true 2D case: Due to the logarithmic term one can always find a sufficiently low, finite
k, which is determined by temperature in the thermal case and by the density in the
(quasi-)condensed case, below which the interaction is repulsive, g > 0, regardless of the
value and especially the sign of a3D. That means in principle one could switch from
attractive to repulsive interactions by lowering the temperature. However, for realistic
parameters the temperature required to switch the sign of g is unrealistically low and
hence, in practice, the logarithmic term is negligible in the weakly-interacting regime.
The coupling constant is then well approximated by eq. 4.12 corresponding to a more 3D
scattering character.

Low-temperature description

In this section we will briefly discuss the mean-field description of a weakly-interacting 2D
Bose gas in the low-temperature regime. Following [97] we will first derive the well-known
Gross-Pitaevskii equation (GPE) which is one of the main tools to theoretically study
such a system and will then utilise the GPE to infer some basic properties of the system,
i. e. the density distribution and the nature of the elementary excitations.
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Gross-Pitaevskii equation We consider a system ofN bosons of massm in an external
confinement V (r) and with pairwise interaction described by the interaction potential
U(r− r′). In second quantisation the corresponding Hamiltonian reads

Ĥ =

∫
dr

[
Ψ̂†(r,t)

(
− ℏ2

2m
∇2 + V (r)

)
Ψ̂(r,t) +

1

2

∫
dr′Ψ̂†(r,t)Ψ̂†(r′,t)U(r− r′)Ψ̂(r′,t)Ψ̂(r,t)

]
(4.13)

where Ψ̂†(r,t) and Ψ̂(r,t) represent the creation and annihilation field operators. Assuming
contact interactions the interaction term can be expressed in terms of the previously
introduced coupling constant g which resolves the double integral:

Ĥ =

∫
dr Ψ̂†(r,t)

(
− ℏ2

2m
∇2 + V (r) +

g

2
Ψ̂†(r,t)Ψ̂(r,t)

)
Ψ̂(r,t) (4.14)

The time evolution of the field operators can be derived by the Heisenberg equation
of motion [106]

iℏ
∂Ψ̂

∂t
=
[
Ψ̂,Ĥ

]
. (4.15)

Assuming the low temperature regime, where the atomic sample as previously discussed
forms a (quasi-)condensate, and using the Bogoliubov approximation [113] we can write
the field operator as

Ψ̂(r,t) = ψ0(r,t) + δψ̂′(r,t) (4.16)

where ψ0 corresponds to the (quasi-)condensate wave function and δψ̂′ to the remaining
non-condensed fraction. At T = 0 we can neglect δψ̂′ and combining eq. 4.14, 4.15
and 4.16 yields the well-established time-dependent Gross-Pitaevskii equation [110]

iℏ
∂ψ0(r,t)

∂t
=

(
− ℏ2

2m
∇2 + V (r) + g|ψ0(r,t)|2

)
ψ0(r,t) (4.17)

with the normalisation condition
∫
dr|ψ0(r,t)|2 = N implying that |ψ0(r,t)|2 corresponds

to the density n(r,t) of the system. In the equilibrium case the time dependence of the
wave function can be simply expressed as ψ0(r,t) = ϕ0(r) exp(−iµt/ℏ) where µ is the
chemical potential. By inserting this into eq. 4.17 one obtains the famous stationary GPE
[114, 115]:

µϕ0(r) =

(
− ℏ2

2m
∇2 + V (r) + g|ϕ0(r)|2

)
ϕ0(r) (4.18)

The GPE is a well-established tool for the description of a (quasi-)condensate and is useful
to derive fundamental properties of a system e. g. by employing a variational ansatz as
we will do in sec. 5.4. It is also referred to as the non-linear Schrödinger equation as its
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form is comparable to the Schrödinger equation with an additional non-linear mean-field
term accounting for interactions.

Note that the derivation of the GPE sketched above does not assume a specific di-
mension. Nevertheless, the dimension is of great importance. Calculating the energy
functional associated to eq. 4.18 reveals a unique feature of quasi-2D systems: In contrast
to the 3D case both the kinetic energy as well as the interaction energy exhibit the same
scaling with the system size, i. e. the behaviour of the system is independent of its size.
This is referred to as scale invariance.8

Thomas-Fermi approximation An interesting quantity that can be obtained from the
Gross-Pitaevskii equation (GPE) is the density distribution of the (quasi-)condensate. In
the limit of large atom numbers N the kinetic energy term of the GPE (eq. 4.18) becomes
small compared to the interaction energy term and can be neglected. This is known as
the Thomas-Fermi approximation [97] and yields

µϕ0(r) =
(
V (r) + g|ϕ0(r)|2

)
ϕ0(r). (4.19)

As this transforms the differential eq. 4.18 into a mere algebraic equation this can be
easily solved for the density n(r) = |ϕ0(r)|2 and one obtains

n(r) = (µ− V (r)) /g (4.20)

for µ > V (r) and g > 0.9 For µ < V (r) the solution for eq. 4.19 is given by ϕ0(r) = 0.
Accordingly, the so-called Thomas-Fermi density distribution is determined by the shape
of the potential, i. e. a parabola in the case of the typical harmonic confinement, and the
extent of the cloud is given by the condition V (r) = µ which for harmonic potentials
yields the so-called Thomas-Fermi radius

rTF,i =

√
2µ

mω2
i

(4.21)

with i = x,y,z and where ωi is the trapping frequency along i. Calculating rTF for
a specific trap requires to determine the chemical potential µ which can be obtained
from the normalisation condition N =

∫
n(r)dr with the parabolic Thomas-Fermi density

8Note that the scale invariance only holds true as long as the interaction coupling parameter g is
independent of the density, i. e. in the weakly-interacting regime. The scale invariance is a unique feature
of the quasi-2D regime and does not occur in the true 2D regime.

9For attractive interactions, g < 0, the system is not in a stable regime and the cloud collapses (see
sec. 5.2).
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distribution n(r) = n0(1 − r2/r2TF) for 0 < r < rTF and n(r) = 0 for r > rTF. By using
eq. 4.21 and expressing the peak density as n0 = µ/g one derives for the three-dimensional
case [97]

µ3D =
ℏω̄
2

(
15Na3D

āho

)2/5

(4.22)

where ω̄ = (ωxωyωz)
1/3 is the mean trapping frequency, a3D the 3D scattering length and

āho the mean harmonic oscillator length.

In the quasi-2D case the density distribution along the tightly confined axis is not
determined by the Thomas-Fermi distribution, but instead by the ground state wave
function of the 2D confinement. For an harmonic 2D confinement this yields a Gaussian
density distribution where the length scale is given by the harmonic oscillator length.
The radial density distribution on the other hand is again given by the Thomas-Fermi
distribution. Analogous to the 3D case the 2D chemical potential can be derived by
integrating over the 2D parabolic density distribution which yields

µ2D = ℏω̄
√
Ng̃

π
(4.23)

where ω̄ =
√
ωxωz is the mean of the radial trapping frequencies and g̃ the 2D dimension-

less coupling constant (see eq. 4.12).

Elementary excitations Another fundamental property that can be derived from the
Gross-Pitaevskii equation (GPE) are the elementary excitations of the system which are
included by allowing a small perturbation of the wave function ψ(r,t) = ψ0(r,t)+ δψ(r,t).
Using this, the excitation modes can be found by linearising the corresponding time-
dependent GPE (eq. 4.17) and searching for periodic solutions. Hence, we make the
ansatz δψ(r,t) = exp(−iµt/ℏ)[u(r) exp(−iωt) − v∗(r) exp(iωt)] and insert this into the
equations obtained from linearising the GPE which yields the Bogoliubov equations. [97]
For a uniform Bose gas u(r) and v(r) can be expressed as plane waves with coefficient
uk and vk, respectively. With this ansatz we can solve the Bogoliubov equations which
allows to derive the energy of the excitations [97]

ϵk =
ℏ2

2m

√
k2(k2 + 4g̃n) (4.24)

where k is the wavevector of the excitation and g̃ = gm/ℏ2 the previously introduced
dimensionless coupling constant. The result is the same as obtained from the Bogoliubov
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approach10 and is thus referred to as the Bogoliubov excitation spectrum.

For small k the term k2 is negligible compared to the term 4g̃n yielding a linear
dispersion relation ωk = ϵk/ℏ =

√
gn/mk. That means low-energy excitations correspond

to phonons that propagate at the Bogoliubov speed of sound

c0 =
√
gn/m (4.25)

which in the weakly interacting regime is equal to the Landau critical velocity. For high k
the excitation spectrum approaches a quadratic behaviour corresponding to free particles.
The characteristic momentum separating the phonon and particle regimes is given by the
inverse of the healing length.

4.2 Experimental realisation of a quasi-2D system

As previously explained a system is considered as quasi-2D if the condition ℏωy ≫ kBT, µ

(see eq. 4.3) is fulfilled which requires a tight confinement along y. To realise such quasi-
2D systems with ultracold gases different setups can be employed. In the following we will
present common methods and discuss which one is the most suitable for our experiment.

Light sheet The first method used to create a two-dimensional atomic sample in 2001
in the group of Ketterle is a so-called light sheet [116], which is a red-detuned highly
anisotropic optical dipole trap created by using cylindrical lenses. The small beam axis
leads to a tight confinement ensuring the desired high trapping frequency ωy while still
keeping the chemical potential µ low by means of the low trapping frequencies along the
other axes given by the large beam diameter in one and the Rayleigh range of the tight
focus in the other direction. The advantage of such a light sheet is the conceptually
rather simple experimental setup. On the other hand, the trapping frequency of the tight
confinement is typically in the order of ∼1 kHz, i. e. rather limited. This sets a tight upper

10While the approach sketched above is a classical field approach, the Bogoliubov approach takes the
quantum nature of the excitations into account. A full description of the Bogoliubov approach can be
found e. g. in [97]. A brief sketch: Starting from the Hamiltonian in eq. 4.14 we can use the ansatz
in 4.16 and express δΨ̂ in terms of the single-particle state annihilation and creation operators âk, â†k
characterised by the momentum ℏk. Using the Bogoliubov approximation and assuming that δΨ̂ is small
we replace â0, â

†
0 by

√
N0, where N0 corresponds to the atom number in the condensed state, and neglect

all terms that are more than quadratic in âk and â†k for k ̸= 0. Applying the Bogoliubov transformation
and diagonalising the Hamiltonian then yields the Bogoliubov excitation spectrum.

85



Chapter 4. From 3D to 2D

bound to the temperature one needs to achieve and also limits the chemical potential and
thus the atom number and especially the scattering length that can be used.

TEM01-like mode Another approach is the use of a blue-detuned Hermite-Gaussian
TEM01-like mode [117, 118]. This can be created by imprinting a phase shift of π be-
tween the upper and lower half of a Gaussian beam by passing it through a phase-plate.
Focussing such a beam leads to an intensity pattern close to a TEM01 mode at the focus
position. The atoms are trapped in the nodal plane and experience a trapping frequency
not given directly by the overall beam waist, but by the smaller length scale given by the
distance of the two intensity maxima. Hence, higher trapping frequencies can be achieved.

A drawback of this method is that the shape of the intensity pattern and hence the
trapping frequency is sensitive to production-related imperfections as well as to the align-
ment of the phase-plate. Another downside is the low loading efficiency. Since the blue-
detuned light is anti-trapping, there is no density enhancement in the nodal plane when
loading the atoms from the crossed dipole trap into the 2D confinement, i. e. the TEM01-
like mode cuts out a part of the atom cloud. Since the atom cloud is typically much larger
than the distance between the intensity maxima, a large part of the atoms are lost.11

Optical lattice The method we chose for our experiment is - as nowadays widely used
- to create the strong confinement by an optical lattice [119–122], which from now on we
will refer to as the vertical lattice12. High trapping frequencies can be achieved since the
smallest length scale is set by the lattice spacing d = λ/(2 sin(α)) where α is half the
crossing angle between the two interfering beams. Since the lattice does not require a
phase plate its intensity pattern is more robust than the TEM01-like mode. What needs
to be considered, though, is that in contrast to the TEM01-like mode the optical lattice
consists of several layers, in which the atoms can be trapped. When loading a typical
spherical atom cloud into the lattice, several layers would be occupied which would result
in a blurring of the signal as the lattice spacing is on the order of the depth of view.13 To
prevent this we decided to introduce an intermediate step. Instead of loading the atoms
directly into the vertical lattice, they are first loaded into a light sheet-like trap, which in

11The loading efficiency can be increased by employing an accordion scheme which refers to the dynamic
adjustment of the distance between the intensity maxima which can be realised via a digital mirror
device (DMD)[118]. Thus, the trap can be loaded with a large spacing in order to increase the loading
efficiency. Then the trap can be compressed in order to enter the 2D regime. However, this comes at the
cost of a rather low power efficiency, since the DMD basically acts as a diffraction grating.

12The vertical orientation is chosen to counteract gravity.
13Even with a larger depth of view the signal would get blurred since the layers behave slightly different

in terms of vertical trapping frequency and in-plane potential (see sec. 4.6.4).
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the following will be referred to as the squeeze trap. The squeeze trap is not supposed to
provide enough vertical confinement to enter the quasi-2D regime, as opposed to the light
sheet trap mentioned above - hence the different name - but the vertical confinement is
supposed to be tight enough to pre-shape the atom cloud into a pancake-like shape. The
reduced vertical cloud size allows to then load the atoms from the squeeze trap into a
single layer of the vertical lattice.14

There are two variations of an optical lattice: using red-detuned light where the atoms
are trapped at the antinodes of the interference pattern or using blue-detuned light where
the atoms are trapped at the nodes. With red-detuned light already the individual lattice
beams can be used to trap atoms which is advantageous in terms of alignment. On
the other hand the intensity profile introduces a significant confinement in the xz-plane
while blue-detuned light introduces a (much lower) anti-trapping confinement in the xz-
plane.15 This means a red-detuned lattice yields an upper limit for the aspect ratio of
vertical and radial trapping frequency which ultimately limits the scattering length that
can be used to remain in the quasi-2D regime. A blue-detuned lattice on the other hand
does require an additional radial confinement, but allows to decouple vertical and radial
confinement enabling very low radial trapping frequencies or even flat potentials, i. e. box
traps [126–128].16 We therefore decided for a blue-detuned vertical lattice and use the
pre-existing 850 nm crossed dipole trap (CDT) at low depth as an additional confinement
in the xz-plane.

Although in principle the additional radial confinement is only required for the verti-
cal lattice, the 850 nm CDT is also used to support the squeeze trap. The experimental
sequence is roughly as follows: After a BEC is created in the CDT as described in chap-
ter 3, the atoms are loaded into the squeeze trap while ramping down the 850 nm CDT to
a lower value. The strong anisotropy of the squeeze trap results in a pancake-like shape
of the atomic sample, which is then loaded into one layer of the vertical lattice while
still keeping the 850 nm CDT as radial confinement. A more detailed description of the

14Instead of using a fixed vertical lattice one could also use an accordion lattice [123–125], i. e. a lattice
with adjustable lattice spacing. By being able to load the lattice using a larger lattice spacing the relative
alignment of squeeze trap and vertical lattice needs to be less precise and the requirements for the squeeze
trap to be able to load into a single layer of the vertical lattice are less strict which is especially interesting
for Fermi gases. However, compared to the fixed lattice this requires a more complex experimental setup,
since one needs to introduce a method to dynamically adjust the distance between and, depending on
the setup, angle and focus position of the two lattice beams.

15Even though the atoms are trapped in the nodes of a blue-detuned optical lattice, they still have a
ground state energy which depends on the lattice trapping frequency and thus on the lattice intensity,
which radially decreases due to the Gaussian beam shape. For more details see sec. 4.6.4.

16One might wonder whether the heating rate due to spontaneous emission is lower for blue-detuned
lattices as the atoms are trapped in the dark regions, but it turns out that the heating rate is the same
for blue- and red-detuned lattices [129].
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Figure 4.1: Sketch of the beam arrangement. (a) Side view on upper and lower vertical lattice beam
(green) providing the 2D confinement and squeeze trap beam (dark red) enabling single layer loading.
(b) Top view on vertical lattice beams (green), squeeze trap beam (dark red) and the 850 nm crossed
dipole trap beams (red) that are providing the radial confinement. In the following the x axis will
also be referred to as horizontal axis, y as vertical and z as longitudinal.

procedure will be given in sec. 4.6.

The advantage of applying the low depth 850 nm CDT in addition to the squeeze trap
is support against gravity as well as reduced heating during the transfers from the 850 nm
CDT into the squeeze trap and from the squeeze trap into the vertical lattice: The
radial trapping frequency of the 850 nm CDT is much higher than the radial trapping
frequency of squeeze trap and vertical lattice. That means for all three stages, 3D BEC
in the 850 nm CDT, pancake-like atom cloud in the squeeze trap as well as quasi-2D
gas in the vertical lattice, the radial position is determined by the 850 nm CDT and thus
nearly independent of the exact radial alignment of squeeze trap and vertical lattice which
prevents the excitation of sloshing modes during the transfers. One might wonder whether
supporting the squeeze trap with the 850 nm CDT is unfavorable in view of the increased
vertical Thomas-Fermi radius due to the higher radial trapping frequency; a larger vertical
extent of the atom cloud would make it more difficult to load into a single lattice layer.
However, for radial trapping frequencies below 2π×330Hz, as is the case for the low depth
850 nm CDT, the vertical cloud size is not determined by the Thomas-Fermi radius, but
by the vertical harmonic oscillator length which is not affected by the radial confinement.

4.3 Design considerations

In the previous section we explained the concept of our 2D setup: a blue-detuned opti-
cal lattice with fixed lattice spacing (’vertical lattice’), loaded from a red-detuned highly
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anisotropic dipole trap (’squeeze trap’), while the radial confinement is provided by a pre-
existing 850 nm crossed dipole trap (CDT). The laser light for the 2D setup is provided
by an ALS 1064/532 dual output fiber laser from Azurlight Systems. The 532 nm output
is used for the vertical lattice, the 1064 nm output for the squeeze trap. Further consider-
ations and requirements for developing a design for the vertical lattice and squeeze trap
will be discussed in the following.

4.3.1 Vertical lattice

2D criterion The purpose of the vertical lattice is to provide the 2D confinement, so
first and foremost, the 2D condition ℏωy > kBT, µ (see eq. 4.3) needs to be fulfilled. As
the temperature T is usually smaller than µ for BECs with typical interaction strengths,
the lower bound for the lattice trapping frequency ωy is given by the chemical potential
µ which can be calculated according to eq. 4.23 and depends on the radial trapping
frequencies ωx and ωz, the atom number N and the 3D scattering length a. Using that
ωx and ωz are given by the pre-existing 850nm CDT and are in the order of 150Hz, we
can calculate the minimum vertical trapping frequency for variable N and a as plotted in
fig. 4.2. Considering that the atom number of our BEC is typically in the order of ∼ 104
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Figure 4.2: The minimum trapping frequency νy,min = ωy,min/2π of the vertical lattice that fulfills
the 2D criterion ℏωy > µ2D for various atom numbers N and 3D scattering lengths a assuming
radial trapping frequencies of 150Hz. Note that in order to achieve a quasi-2D system the criterion
ℏωy > kBT also needs to be satisfied. However, for BECs with typical interaction strengths the
temperature T is usually smaller than µ.
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and in order to be able to use a wide range of scattering lengths we set a lower limit for
the trapping frequency of ωy,min = 2π × 5 kHz.

Trap depth Second, the radial and vertical trap depths need to be reasonably larger
than the temperature T and the chemical potential µ in order for the atoms to be trapped.
As usually T < µ for BECs with typical interaction strengths and since µ is in the order of
∼ 100 nK, we set a minimum trap depth of 1µK. While this will be easily exceeded for the
vertical lattice when achieving the required high vertical trapping frequency, this criterion
is quite relevant for the radial confinement. Since the geometry of the 850 nm CDT is
already set, the radial trapping frequencies solely depend on the trap depth. Hence, while
the 2D condition demands the radial trapping frequencies to be as low as possible, the
minimum trap depth sets a lower limit of ∼ 2π · 150Hz.

Homogeneity Third, as discussed in sec. 4.2 using an optical lattice for the 2D con-
finement yields flexibility in terms of the radial confinement. To fully exploit this, i.e.
allowing to freely adapt the radial confinement, especially including the possible future
implementation of a flat potential, we require the radial potential given by the vertical
lattice to be nearly homogeneous. Due to the Gaussian beam profile, i. e. the radially
decreasing intensity I of the lattice beams, this requires the radial extent of the vertical
lattice to be reasonably larger than the cloud size. Any inhomogeneity of the intensity
results in a spatially dependent chemical potential µ since the chemical potential is af-
fected by the coupling constant g̃ which in turn is affected by the harmonic oscillator
length which again depends on the intensity via the vertical trapping frequency ωy. The
dependence is quite weak, though: µ2D ∝ I1/8. Within our parameter range the cloud
size, estimated by the 2D Thomas-Fermi radius given by eq. 4.21, is in the order of 10 µm.
Accordingly, we set a minimum radial trap size of 100µm. With this lower bound, the
extent of the atom cloud is smaller than 0.1waists of the Gaussian beam profile and hence
the intensity decreases by less than 2% over the cloud size yielding a variation of less than
0.3% of the 2D chemical potential.

Radial symmetry Last, to obtain a radially roughly symmetric system, we demand
equal radial trapping frequencies of the vertical lattice. Since in the xz-plane the trap
can be basically considered as a crossed dipole trap formed by the equal lattice beams,
this is equivalent to the diameters of the two in-plane trap axes having the same size.
One of these diameters is given by half the length of the intersection region which can be
geometrically determined to be rintersection = wver/ sinα with the vertical waist wver and
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half the crossing angle α of the lattice beams. The other diameter is simply given by the
horizontal waist whor of the lattice beams. Accordingly, the ratio of the beam waists is
supposed to be wver/whor = sinα. Thus, this criterion sets the ellipticity of the lattice
beams.

Technical considerations In addition to the requirements set above there are also
some technical considerations: In order to get a small lattice spacing and thus a tight
vertical confinement, a large crossing angle 2α of the lattice beams is advantageous. The
optical access sets an upper limit of 5◦ for α, though.

Additionally, in order to increase the intensity and thus the vertical trapping frequency,
a small vertical waist is desirable. A lower limit is obviously set by aberrations, but also
by the size of the vacuum chamber which gives a rather high lower limit for the focal
length and diameter of the focussing lens that can be used.

Finally, also the achievable laser power is naturally limited by the availability of high-
power lasers, but also of suitable high-power fibers.

Taking into account the above criteria we decided for the vertical lattice parameters
stated in tab. 4.2.

wavelength λ 532 nm
half the crossing angle α 5◦

vertical beam waist wver 25 µm
horizontal beam waist whor 290 µm
laser power P 400mW
lattice spacing d 3.05 µm
trap depth U0 8.4 µK
trapping frequency ωy 2π× 9.7 kHz
anti-trapping ωat -2π× 5.4Hz
chemical potential µ2D 89 nK
Thomas-Fermi radius rTF,2D 6.5 µm

Table 4.2: Design values for the vertical lattice. Chemical potential and Thomas Fermi radius are
calculated for 104 atoms, a scattering length of 30a0 and radial trapping frequencies of 150 Hz.

4.3.2 Squeeze trap

Vertical cloud size The purpose of the squeeze trap is to decrease the vertical size
of the atom cloud sufficiently to enable loading into a single layer of the vertical lattice.
Hence, the main requirement is that the vertical cloud size is smaller than the lattice
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spacing d. The cloud size can be estimated via the 3D Thomas-Fermi radius by combining
eq. 4.21 and eq. 4.22. Accordingly, in order to achieve a small cloud size a high ratio of
vertical to radial trapping frequencies is favorable. Increasing this ratio one approaches
the quasi-2D regime, though, where this estimate is no longer valid. Close to the quasi-2D
regime the vertical cloud size can instead be estimated by the harmonic oscillator length
aho,y of the tightly confined axis which is the length at which the density drops to 1/e.
Hence, we demand max [2rTF,3D, 4aho,y] < d = 3.05 µm.

Trap depth Second, in order for the atoms to be trapped the trap depth needs to be
larger than the temperature and the chemical potential. Accordingly, just as with the
vertical lattice we set a lower limit for the trap depth of 1µK.

Radial symmetry Third, we also prefer the squeeze trap to be radially symmetric in
the xz-plane which is equivalent to equal radial trapping frequencies. To estimate these
trapping frequencies we consider a highly elliptical beam with waists wy ≪ wx propagating
along z. The intensity profile is then given by

I(x, y, z) = I0 exp

(
− 2x2

w2
x,0

− 2y2

w2
y,0

)
wx,0

wx(z)

wy,0

wy(z)
(4.26)

with waist wi(z) = wi,0(1+(z/zR,i)
2)1/2 where zR is the Rayleigh range. Since zR,x ≫ zR,y

due to the ellipticity the term (z/zR,x)
2 can be neglected:
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Taylor expanding this to second order and using that the optical potential is proportional
to the intensity yields:

U ≃ −U0

[
1− 2
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2
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]
(4.28)

This yields the trapping frequencies

ωx ≃
√

4U0

mw2
x,0

, ωz ≃
√

U0

mz2R,y

(4.29)

where wx,0 corresponds to the horizontal beam waist whor of the squeeze trap and zR,y

to the Rayleigh range zR,ver of the vertical waist of the squeeze trap. Thus, in order to
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get equal radial trapping frequencies the condition whor = 2zR,ver = 2πw2
ver/λ needs to be

fulfilled.
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Figure 4.3: The vertical cloud size dcloud,ver in and trap depth U of the squeeze trap for various laser
powers P and vertical waists wver of the squeeze trap. dcloud,ver is estimated by max [2rTF,3D, 4aho,y]
where rTF,3D is the 3D Thomas-Fermi radius and aho,y the vertical harmonic oscillator length. For
the calculations the horizontal squeeze trap waist is adapted such that the radial trapping frequencies
of the squeeze trap are equal. Only the regimes fulfilling the requirements are plotted.

The parameter regimes fulfilling the requirements above are plotted in fig. 4.3. As can
be seen low vertical waists and high laser powers are favorable. However, from a technical
point of view the achievable laser power is limited and also the vertical waist underlies
technical limitations. A lower bound is set by the occurrence of severe aberrations. Also,
the size of the vacuum chamber sets a lower limit for the focal length of the focussing
lens. Hence, a small focal waist requires a large beam waist on the focussing lens whose
size is limited by the need for optical access e. g. for the beam paths of the vertical lattice.
These considerations lead to the design parameters for the squeeze trap stated in tab. 4.3.

wavelength λ 1064 nm
vertical beam waist wver 10.6 µm
horizontal beam waist whor 660 µm
laser power P 500mW
trap depth U 6.2 µK
vertical trapping frequency ωy 2π × 1.1 kHz
radial trapping frequency ωr 2π × 17Hz
harmonic oscillator length aho,y 0.5 µm
Thomas-Fermi radius rTF,3D 0.3 µm

Table 4.3: Design values for the squeeze trap. The Thomas Fermi radius is calculated for 104 atoms
and a 3D scattering length of 30a0.
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4.4 Generating the squeeze trap and the vertical lattice

In this section we discuss the technical implementation of the vertical lattice and the
squeeze trap. We will focus on two aspects: the employed beam shaping scheme and
the setup designed to split the vertical lattice beam into an upper and a lower beam
that interfere at the atom position to create the lattice. We will present experimentally
achieved beam and trap parameters and compare them with the design values derived in
the previous section.

Preliminary considerations The first question for the technical implementation of the
vertical lattice is whether to split the lattice beam into two before or behind a common
focussing lens. When splitting the beam into two parallel beams before the focussing lens
the intersection automatically lies within the focal plane, which is convenient in terms of
alignment. On the other hand, the beams have to pass the lens quite off-center to achieve
a reasonable crossing angle, which would introduce additional aberrations. Furthermore,
the longer the focal length, the larger the required lens diameter to maintain the same
crossing angle. This setup is thus only suitable for rather short focal lengths which is not
compatible with the lower bound set by the size of our vacuum chamber. Hence, in our
setup the lattice beam first passes the focussing lens and is then split into an upper and
lower lattice beam interfering at the intersection to form the vertical lattice.

4.4.1 Beam shaping

Considerations and concept As stated in sec. 4.3, we have to use rather long focal
lengths for the focussing lenses, i. e. f = 400mm for the squeeze trap due to the size of
the vacuum chamber and f = 750mm for the vertical lattice due to the additional space
required in between focussing lens and vacuum chamber for the setup that splits the lattice
beams (see sec. 4.4.2). That means in order to achieve the desired small vertical focal
waists, the beam waists and thus the optics before the focussing lenses have to be rather
large. Hence, we have to compromise between preserving optical access for other optical
setups17 and truncating the beams as little as possible as a truncated beam increases the
focal waist. Furthermore, it is favorable to use as few optical elements as possible in
order to increase the stability and to preserve space, while the necessity to create highly
elliptical beams requires additional optics.

17The squeeze trap, the vertical lattice and the 1064 nm ODT for the collisional loading (see sec. 3.6)
enter the vacuum chamber through the same viewport, but under different angles and hence cannot be
superimposed.
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Figure 4.4: Beam shaping of the vertical lattice beam to achieve the desired elliptical beam at the
atom position z = 0. The general concept is explained in the main text. Depicted is the beam size
w in dependence of the position z along the beam axis with respect to the atom position both in
the vertical (dark green) as well as in the horizontal (light green) plane. The leftmost point refers to
the position of the fiber tip which delivers the lattice beam. The first lens is an f = 8 mm achromat
which focusses the beam down to a waist of 16.8 µm corresponding to a divergence of 10.1 mrad. The
second lens is an f = 22.19 mm cylindrical lens reducing the divergence in the horizontal beam axis
while the vertical axis is not affected. The third lens is an f = 500 mm achromat which collimates the
beam in the vertical axis. The fourth lens is an f = 750mm achromat that focusses the vertical beam
axis down to a waist of 25.2 µm at the atom position. The horizontal waist at the atom position is
291.9 µm and can be adjusted by adjusting the position of the cylindrical lens.

The conceptually most simple beam shaping would employ two telescopes: a first
telescope affecting both beam axes specified to adjust e. g. the vertical axis and a second
telescope with cylindrical lenses to adjust the respective other axis in order to achieve the
desired elliptical beam. Together with the lens to collimate the beam behind the fiber
and the focussing lens this would require a total of six lenses, two of them cylindrical.

To reduce the number of lenses and the overall size of the setup we instead use the
beam shaping design depicted in fig. 4.4 and fig. 4.5. The key idea is to abandon the
constraint that the beam has to be focussed in both axes at the atom position: While
it has to be focussed in the tight, i. e. the vertical axis, the horizontal axis can exhibit a
slight con- or divergence without detrimental consequences as elaborated below. In that
case a total of four lenses, one of them cylindrical, is sufficient to achieve the desired
elliptical beam at the atom position.

Details on the beam shaping design The beam shaping designs for vertical lattice
and squeeze trap are shown in fig. 4.4 and fig. 4.5. While the values for positions and focal
lengths of the lenses differ, the general setup is the same for vertical lattice and squeeze
trap. It consists of four lenses where the second one is cylindrical and oriented such that
it only affects the horizontal axis.
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Figure 4.5: Beam shaping of the squeeze trap to achieve the desired elliptical beam at the atom
position z = 0. The general concept is explained in the main text. Depicted is the beam size w
in dependence of the position z along the beam axis with respect to the atom position both in the
vertical (dark red) as well as in the horizontal (light red) plane. The leftmost point refers to the
position of the fiber tip which delivers the squeeze trap beam. The first lens is an f = 6.24 mm asphere
which focusses the beam down to a waist of 18.9 µm corresponding to a divergence of 18.0 mrad. The
second lens is an f= 40 mm cylindrical lens reducing this divergence in the horizontal beam axis while
the vertical axis is not affected. The third lens is an f= 750 mm achromat which nearly collimates the
beam in the vertical axis. The fourth lens is an f = 400mm achromat that focusses the vertical beam
axis down to a waist of 10.6 µm at the atom position. The horizontal waist at the atom position is
604.3 µm and can be adjusted by adjusting the position of the cylindrical lens.

The design of the vertical axis is rather conventional: The small vertical waist is
achieved with a large, nearly collimated beam on the focussing lens, i. e. the fourth lens.
Typically, this large collimated beam would be achieved by collimating the beam emitted
by the fiber and magnifying it with a telescope. To save space and to reduce the number of
lenses we instead place the first lens behind the fiber not at the focal distance, but further
away from the fiber. That way an intermediate focal spot with a reduced divergence
compared to the fiber output is created already after the first lens. Although reduced,
the divergence is still large enough to result in a large beam waist on the third lens which
then nearly collimates the beam.

The lowering of the divergence is important in order to reduce aberrations caused by
the subsequent lenses18 which sets a lower limit for the waist of the intermediate focal
spot.19 The distance between first lens and fiber is obviously also limited by the occur-
rence of aberrations especially when using aspheric lenses.

In order to achieve an elliptical beam the beam shaping in the horizontal axis is
altered with respect to the vertical axis via the cylindrical second lens: it further reduces

18The diameter of high-quality aspheric lenses is production-related rather small. Therefore, only the
first lens in our setup is an aspheric lens. For the subsequent lenses the larger beam waist prevents to use
aspheric lenses. Accordingly, these lenses are more prone to introduce spherical aberrations, especially in
the case of high numerical apertures.

19This lower limit depends on which lens is used after the intermediate focal spot.
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the divergence to achieve a smaller beam waist on the third and fourth lens compared to
the vertical axis, and thus a larger beam waist at the atom position. This also shifts the
focus position causing the beam to be horizontally con- or divergent at the atom position.
Allowing a small con-/divergence, which is negligible in terms of potential gradient and
inhomogeneity (see discussion below), enables to adjust the horizontal beam waist by
adjusting the position of the cylindrical lens.

Note that it is possible to place the cylindrical lens such that the astigmatism vanishes.
According to ray optics this should not be the case since the vertical and horizontal inter-
mediate foci are at different positions due to the cylindrical lens. However, the Rayleigh
range of the desired horizontal waists are in the order of the focal length of the respective
focussing lens. Hence, ray optics is no longer valid and Gaussian beam optics has to be
considered instead which explains why the horizontal and vertical focal spots can be both
located at the atom position. This is not favorable, though, as this would fix the position
of the cylindrical lens, forfeiting this degree of freedom and thus the flexibility to adjust
the horizontal waist at the atom position.20

Discussion The beam shaping design described above allows to keep the beam path
in general and especially the parts with large beam waists short. Also, it uses only four
lenses and especially minimises the number of cylindrical lenses which typically cannot be
manufactured with as good quality as spherical lenses, and are not commonly available
as doublets and hence are more likely to cause aberrations.

On the downside, one might think that the horizontal con- or divergence at the atom
position is disadvantageous in terms of confinement along the beam axis and inhomogene-
ity, but these are minor effects:

The radial confinement for the vertical lattice is given by the 850 nm crossed dipole
trap and is thus not affected.21 For the squeeze trap the confinement along the beam
axis is dominated by the Rayleigh range of the much tighter vertical focal waist. The
calculated shift of the potential minimum caused by the astigmatism is ∼ 0.6 µm which is
well below the cloud size.

The con- or divergence causes inhomogeneity, though, in the sense that the trapping
frequencies change along the beam axis as the horizontal waist and thus, the intensity

20Also, the horizontal waist is then set by the focal length of the cylindrical lens since the other lenses
are fixed by the vertical axis. That means in order to achieve the desired horizontal waist one would need
a customised cylindrical lens.

21In case of the future implementation of a flat in-plane potential via a DMD, the small potential
gradient introduced by the divergence can be compensated by the DMD.
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changes. As stated in sec. 4.3.1 for the vertical lattice this mainly affects the 2D chem-
ical potential which depends only weakly on the intensity of the lattice beams. For the
designed beam shaping shown in fig. 4.4 the horizontal waist changes by ∼0.1% over the
trap size causing the 2D chemical potential to change by ∼0.01%, which is an order of
magnitude lower than the effect of the Gaussian beam profile. For the squeeze trap the
trapping frequency is mainly relevant for the vertical cloud size which is given by the har-
monic oscillator length aho,y ∝ w

1/4
hor . For the designed beam shaping presented in fig. 4.5

the horizontal waist whor changes by ∼0.15% over the size of the vertical lattice causing
the harmonic oscillator length to change by ∼0.04%. Hence, the vertical size of the atom
cloud is well below the lattice spacing as required.

4.4.2 Splitting the lattice beams

So far we only considered a single 532 nm beam, while two interfering beams are required
to create the optical lattice. To achieve this we built a separate setup whose purpose
is to split the incoming single 532 nm beam into two lattice beams, the so-called upper
and lower beam, that interfere at the atom position. In order to increase the stability
of the vertical lattice it is favorable to minimise the number of non-common components
of upper and lower beam. Hence, the setup to split the lattice beam is placed behind
the last lens of the beam shaping discussed above, i. e. behind the focussing lens of the
vertical lattice.

A picture of the setup is shown in fig. 4.6. Its central component is a one inch polarising
beamsplitter cube that splits the beam entering the setup from the right into the two
lattice beams. The other components are mainly mirrors needed to achieve the vertical
distance of the two lattice beams that is required for the lattice beams to intersect at
the desired angle of 2 x 5◦ at the position of the atoms. The lower lattice beam path
additionally includes a wave plate to align the polarisation of the two lattice beams.
Otherwise, the two lattice beams would have orthogonal polarisations due to the polarising
cube and would therefore not interfere.

The surface of the cube with the actual beamsplitter coating acts as a symmetry
plane. Hence, every fluctuation of beam position or angle caused by common optical
elements, i. e. before the cube, translates into a symmetric fluctuation of the two lattice
beams while the symmetry plane stays the same. That means fluctuations of common
optical elements translate into a fluctuation of the lattice spacing, but not to an actual
displacement of the lattice.22 For that reason the setup is designed to minimise the

22This holds true for the central layer. Due to the changing lattice spacing any other layer will move in
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Figure 4.6: Setup for splitting the lattice beams: The beam enters from the right and is reflected
by two mirrors onto a polarising beamsplitter cube which performs the actual splitting. Each of the
two lattice beams is then again reflected by two mirrors and exits the box on the left side of the
picture. The mirrors are oriented such that the beams intersect ∼ 400 mm behind the box under the
desired crossing angle of 2 x 5◦. Since the cube is polarising the lower beam path includes a wave
plate attached to the output port of the box to align the polarisation of the two lattice beams and
to thus achieve full interference.

number of optical elements behind the cube. Although one could further reduce this
number by utilising a non-polarising beamsplitter (NPB) instead of the polarising cube
and thus making the wave plate unnecessary, the polarising beamsplitter cube is more
favorable: It allows to balance the power of the two lattice beams by adding another wave
plate before the splitting setup. To further increase the stability three of the walls of the
casing including the two that have the optics attached to them are machined from one
piece. Also, solid, one-piece, non-adjustable mounts are employed where possible. Only
the last mirror of each lattice beam is adjustable to provide enough degrees of freedom
to adjust position and angle of the two lattice beams. Furthermore, these mirrors are
mounted specifically to three-knob adjusters, so that the path lengths can be adjusted
as well. While this gives the necessary degree of freedom to ensure that both focal
spots are at the intersection, this is not precise enough to equalise the path lengths

space. The displacement will be much smaller, though, than the displacement of the lattice beams with
respect to the symmetry plane.
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Figure 4.7: The relative focal waist,
i. e. the focal waist wt of a truncated
Gaussian beam normalised to the fo-
cal waist w0 in case of no truncation
in dependence of the inverse trunca-
tion 1/T = Dt/Db where Dt is the
limiting aperture diameter and Db

is the Gaussian beam diameter mea-
sured at the 1/e2 intensity point of
the unfocussed beam.

on the order of the wavelength. That means although in
principle an intensity node would be in the center of the
lattice due to the phase jump in one of the beams due
to being reflected by the cube, in reality there will be an
additional random phase shift due to the path lengths
difference of the two lattice beams such that the ’central’
layer will not be at the center.23

The setup is designed to be compact in order to pre-
serve optical access while still limiting the truncation to
keep the small focal waist. The relation between trunca-
tion and increase of the focal waist is shown in fig. 4.7.
The largest truncation occurs at the mirror right after
the cube where, according to the designed beam shap-
ing, the beam is truncated after 1.88 waists. Considering
90% of the surface of the optics as clear aperture to ac-
count for non-perfect alignment the beam is truncated
after 1.69waists corresponding to an increase of the focal
waist by ∼ 3%.

4.4.3 Final setup

A picture of the final 2D setup is shown in fig. 4.8. The squeeze trap and vertical lattice
enter the vacuum chamber along the transport axis (see fig. 2.4) from the same direction.
In principle that is not a necessity, but in our case it is convenient in order to allow for
maximum optical access and hence resolution of the imaging along that axis which is set
up on the other side of the chamber. Although the squeeze beam and the vertical lattice
beams are not superimposed vertically, they are horizontally aligned. This is achieved
with a carefully sized mirror which reflects the squeeze beam into the chamber while the
lattice beams pass above and below the mirror.

Besides the lenses for the beam shaping and the box for splitting the lattice beams
discussed above the setup includes polarising beamsplitters to purify the polarisation as
well as photodiodes as part of the power stabilisation. In addition, the squeeze trap path
includes a dichroic mirror to superimpose the squeeze trap light with D2 imaging light.

23Vertical shifts of the lattice on the order of the lattice spacing can be enabled by a simple upgrade
of the setup: adding rotatable glass plates or translatable wedged glass plates in the paths of the lattice
beams would allow to tune the relative phase of the lattice beams and thus to vertically shift the layers.
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4.4. Generating the squeeze trap and the vertical lattice

Figure 4.8: Picture of the final 2D setup as implemented in the experiment. The light for the squeeze
trap and the vertical lattice are delivered via the fibers on the right side of the picture and passes the
optics explained in the main text before entering the vacuum chamber through the same viewport.

To minimize the effect of this dichrioc mirror on the beam profile and waist of the squeeze
trap the setup is chosen such that the squeeze trap is transmitted through the mirror
while the imaging light is reflected. Furthermore, to ensure that the focus position of
squeeze trap and vertical lattice can be reasonably well adjusted each focussing lens is
mounted on a translation stage. Finally, to reliably adjust the relative position of the
squeeze trap and vertical lattice with the sub-micron precision required to vertically align
the squeeze trap with one of the lattice layers, the squeeze trap path features a motorised
mirror mount with a step size of 0.7µrad corresponding to a shift of 130 nm per step at
the atom position.

4.4.4 Performance

Vertical lattice

The parameters that were actually achieved for the vertical lattice beams with the setup
described in the previous section are stated in tab. 4.4.
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upper beam, vertical waist wver 21.0 µm
upper beam, horizontal beam waist whor 268 µm
lower beam, vertical waist wver 21.5 µm
lower beam, horizontal beam waist whor 267 µm
laser power per beam P 290mW
vertical trapping frequency ωz 2π × 6.5 kHz

Table 4.4: Measured values for the vertical lattice. The beam waists were obtained by fitting a
2D Gaussian function to the beam profile at the focus position in a test focus outside the vacuum
chamber. The trapping frequency was obtained via a parametric heating measurement. Details on
the measurements are given in the main text.

Beam waists To acquire the beam waists of the lattice beams the beam profile at the
focus position was measured with a camera and fitted with a 2D Gaussian. An exemplary
image of the beam profile can be seen in fig. 4.9. The measured beam waists are with
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Figure 4.9: Beam profile of the lower lattice beam at the focus position measured with a camera.
The beam profile of the upper lattice beam looks similar. The beam waists of 21.0 µm x 268 µm for
the upper and 21.5 µm x 267 µm for the lower beam are obtained by fitting a 2D Gauss function to
the measured intensity distribution. For a better comparison the vertical and horizontal linesums of
measured (black dots) and fitted (red line) data are presented as well.

21.0 µm x 268 µm and 21.5µm x 267 µm for upper and lower beam smaller than the design
values of 25 µm x 290 µm which is favorable as it increases the vertical trapping frequency.
The deviation is probably due to a slightly different position of the asphere, i. e. the first
lens of the beam shaping, since the size of the vertical focal waist is quite sensitive to this
parameter. The vertical waists of the upper and lower lattice beam are slightly different
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4.4. Generating the squeeze trap and the vertical lattice

which mainly affects the radial anti-trapping. This effect depends on the lattice layer and
is on the order of only a few percent. Thus, the anti-trapping is still much lower than
the radial confinement provided by the 850 nm crossed dipole trap, hence this effect is
negligible (for details see sec. 4.6.4). The lattice depths one would expect for the measured
beam waists is 7.8µK, the expected vertical trapping frequency is 2π × 9.3 kHz which is
fairly close to the design values.

Vertical trapping frequency To measure the trapping frequency we modulate the
intensity of the vertical lattice with variable modulation frequency while observing the
temperature of the trapped atomic gas [130]. This amplitude modulation causes paramet-
ric heating, i. e. an increase of the temperature that can be determined from time-of-flight
absorption images. Varying the frequency of the sinusoidal modulation with a modula-
tion amplitude of 20% and a modulation time of 180ms we obtain the spectrum shown
in fig. 4.10. When the modulation frequency is twice the trapping frequency the atoms
are parametrically excited [131] resulting in a temperature peak at, in our case, a mod-
ulation frequency of 13 kHz, indicating a trapping frequency of 2π × 6.5 kHz. This is
lower than expected for the measured beam waists indicating a longitudinal and horizon-
tal misalignment in the order of 110 µm of the vertical lattice with respect to the 850 nm
crossed dipole trap (see sec. 4.5.2), but within the requirement of exceeding a lower limit
of 2π × 5 kHz.
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Figure 4.10: The approximate temperature T deduced from the cloud size after a time-of-flight
absorption measurement in dependence of the intensity modulation frequency fmod of the vertical
lattice for a laser power of 290mW per lattice beam and a modulation amplitude of 20 %. Due to
parametric heating the temperature peaks at twice the trapping frequency, indicating a trapping
frequency of 2π × 6.5 kHz.
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Squeeze trap

The parameters that were achieved for the squeeze trap beam are stated in tab. 4.5.

vertical waist wver 11.8 µm
horizontal beam waist whor 372 µm
laser power P 480mW
vertical trapping frequency ωz 2π × 1.04 kHz

Table 4.5: Measured values for the squeeze trap. The horizontal waist was adapted according to the
measured vertical waist to achieve an in-plane aspect ratio of the atom cloud of roughly 1:2. The
horizontal beam waist was derived from the beam profile at the focus position, the vertical beam
waist from the beam caustic. The trapping frequency was extracted by measuring the sloshing mode.
Details on the measurements are given in the main text.

Beam waist The horizontal beam waist of the squeeze trap beam was obtained by
imaging the beam profile at the focus position, shown in fig. 4.11, and fitting a 2D Gaussian
to the measured intensity profile. To derive the vertical waist, however, this procedure
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Figure 4.11: Beam profile of the squeeze trap beam at the focus position. The horizontal beam waist
of 372µm is obtained by fitting a 2D Gauss function to the intensity distribution. Also shown are
the linesums of measured (black dots) and fitted (red line) data, confirming the Gaussian profile at
the focus position. Since the small beam waist is on the order of 2-3 px the vertical focal waist of
11.8 µm was not extracted directly from the beam profile at the focus position, but by fitting to the
beam caustic.

was used to obtain the beam waist for several positions along the beam axis to acquire
the beam caustic. The vertical beam waist of 11.8 µm was then extracted from a fit to
the measured beam caustic, the fit suggests an M2 factor of 1.18. Note that the fit only
includes data for distances of up to 200 µm to the focus position. Further away the squeeze
trap beam exhibits significant aberrations as can be seen in fig. 4.12. This is compatible
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Figure 4.12: Beam profile of the squeeze trap beam at different distances to the focus position. For
distances ≳ 250 µm the beam exhibits significant aberrations. However, within distances of 200µm,
which is well above the size of the atom cloud, the beam profile is well described by a Gaussian.

with the vertical focal waist being slightly higher than the design value. However, the
observed aberrations are not relevant for our system since the squeeze trap only acts as
an intermediate step and since the aberrations occur at distances larger than the size of
the vertical lattice. Over the size of the vertical lattice, which is much larger then the size
of the atom cloud estimated by the Thomas-Fermi radius, the squeeze trap beam profile
is well approximated by a Gaussian.

The slightly higher vertical focal waist would require a quite large horizontal waist
of 820 µm when demanding a radial symmetric trap. This would reduce the trapping
frequency by ∼ 25% compared to the design value. As a compromise between ellipticity
and, via intensity, the trapping frequency the horizontal beam waist was instead adapted
to 372µm yielding an aspect ratio of 1:2.2. The expected trap depths for these parameters
is 9.5 µK, the expected trapping frequency is 2π × 1.2 kHz.

Vertical trapping frequency To measure the trapping frequency of the squeeze trap
we excite a monopole mode (’breathing’ mode) [132] with the following procedure: a BEC
is loaded into the squeeze trap at ∼ 30% of its full depth, supported by the 850 nm crossed
dipole trap. Afterwards, the 850 nm CDT is adiabatically turned off and the squeeze trap
depth is suddenly increased. After a subsequent variable evolution time the atoms are
released from the squeeze trap and imaged along the squeeze beam axis via absorption
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imaging after 4ms time-of-flight, from which the cloud size and position, especially in the
tightly confined direction that we are interested in, can be extracted.
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Figure 4.13: Oscillation of the cloud size dcloud,ver corresponding to the monopole or ’breathing’ mode
(top) and oscillation of the center-of-mass position yCoM corresponding to the dipole or ’sloshing’
mode (bottom) in the tightly confined (vertical) axis of the squeeze trap after quenching the squeeze
trap to 50 % (black), 75 % (green) or 100 % (blue) of the maximum trap depth. The respective
trapping frequency is extracted by fitting with a damped sine (solid lines). The trapping frequencies
ν extracted from the sloshing mode in dependence of the relative trap depth Urel (inset, errorbars
are smaller than the marker size) follow the expected square root behaviour (solid line). Details are
given in the main text.

The quenching of the squeeze trap excites a breathing mode, i. e. a collective excitation
of the atoms in the squeeze trap, that can be observed as an oscillation of the size of the
atom cloud as shown in fig. 4.13 (top). To get an intuition one can consider the classical
picture: due to the non-adiabatic quench the atoms gain energy and start oscillating in
the trap. At the time of the quench there is a certain spatial distribution and a narrow
momentum distribution. After T/4 the spatial distribution is mapped onto the momentum
distribution and vice versa and thus after T/4 the spatial distribution, i. e. the cloud size,
is narrow. After T/2 the system has undergone another Fourier transformation and the
spatial distribution is mapped back to the initial distribution. Accordingly, we would
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4.4. Generating the squeeze trap and the vertical lattice

expect the cloud size to oscillate with twice the trapping frequency. This naive picture
does not take interactions into account, though. While the factor of 2 is hence altered
by the interactions in the 3D case, where the oscillation frequency strongly depends on
the interaction strength, in the 2D case there is a ’hidden’, so-called Pitaevskii-Rosch
symmetry [133] that to first order leads to a pre-factor of 2 also for an interacting gas.
However, taking the theoretical treatment one step further and considering the quantum
anomaly [134, 135] reveals a weak dependence on the interaction strength resulting in a
deviation from the classical value of twice the trapping frequency [136–139]. However,
this deviation is low, below 10%, and hence half the frequency of the breathing mode can
be used as a good estimate for the trapping frequency.

A more precise method is to measure the frequency of the dipole oscillations (’sloshing’
mode), i. e. the center-of-mass oscillations as shown in fig. 4.13 (bottom). The sloshing
mode is excited by the same procedure as the breathing mode and since both cloud
size and position can be extracted from the absorption images, monopole and dipole
oscillations can be acquired simultaneously. Note, that the signal of the sloshing mode
can be weak, especially if the position of the atom cloud is very well aligned to the trap
center. However, if a suitable signal-to-noise ratio is achieved, it is favorable to extract the
trapping frequency from the sloshing mode since its frequency, which equals the trapping
frequency after the quench, does not depend on the interaction strength [136].

The breathing and the sloshing mode in the squeeze trap in the tightly confined di-
rection are presented in fig. 4.13. The oscillations were measured for three different trap
depth, corresponding to a laser power of 240mW (black), 360mW (green) and 480mW
(blue) where the latter is considered the maximum trap depth. To extract the trapping
frequency the data was fitted with a damped sine with a frequency equal to twice (once)
the trapping frequency for the breathing (sloshing) mode. The fit function for the breath-
ing mode additionally includes a linearly decreasing offset to account for a decreasing
atom number. Although the sloshing measurement is more reliable than the breathing
measurement as discussed above, the fitted trapping frequencies from both modes are in
agreement, the deviation is less than 3%. Furthermore, the fitted trapping frequency in
dependence of the trap depths is well described by the expected square root behaviour as
can be seen in fig. 4.13 (inset).

The extracted trapping frequency ωy in the tightly confined axis of the squeeze trap
at full depth is 2π × 1.04 kHz which is slightly lower than the design value and than
expected for the measured beam waists. However, the corresponding harmonic oscillator
length - which is the relevant parameter for the vertical cloud size since our squeeze trap
already approaches the quasi-2D regime - is 0.5 µm which is well within the requirements.
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4.5 Alignment

In this section, we explain the alignment procedure for the squeeze trap and the vertical
lattice. We will start with the alignment of the squeeze trap and the vertical lattice
with respect to the atom position determined by the 850 nm crossed dipole trap. We will
estimate the required accuracy for the alignment of the different axes and discuss the
respective alignment steps. We will then proceed to the subsequent relative alignment of
squeeze trap and vertical lattice. This step is of particular importance as it determines
the ’singlicity’, i. e. how well loading into the vertical lattice is limited to a single layer.
We will explain how the singlicity can be measured and present data on the achieved
stability.

4.5.1 Squeeze trap

Required alignment precision

Before elaborating on the alignment procedure, we first discuss the alignment precision
we need to achieve. While the required vertical precision of a few µm is determined by the
adiabaticity of the transfer from the 850 nm crossed dipole trap (CDT) into the squeeze
trap, the required horizontal (longitudinal) precision of 200 µm (500µm) is given by the
achieved vertical trapping frequency.

Vertical alignment precision The squeeze trap is loaded from the 850 nm CDT by
adiabatically ramping up the squeeze trap while simultaneously ramping down the 850 nm
CDT to ∼ 1% of its maximum depth. The reduced depth 850 nm CDT is then kept to
support the squeeze trap against gravity. If the center of the squeeze trap is not aligned
with the center of the 850 nm CDT the total potential gets deformed and the center of
the combined trap and accordingly also the atoms shift during the transfer. Thus, a limit
for the acceptable squeeze trap displacement is given by the deformation of the combined
trap: If the trap centers are too far apart, a double-well like feature will appear, but if
the displacement is on the order of the beam waist or smaller, both trap potentials can be
considered parabolic and the total potential can therefore also be considered parabolic.
In this case the atoms will still move between the center positions of the traps during the
transfer, but for a sufficiently slow timescale the transfer will be adiabatic.

To further limit the tolerable displacement one can estimate and limit this timescale.
For a rough estimate we demand that the velocity of the center-of-mass motion during the
transfer due to the displacement is much smaller than the velocity given by the relevant
length and time scales, namely the Thomas-Fermi radius and the trapping frequency, and

108



4.5. Alignment

limit the transfer time to ∼100ms. For the vertical axis this yields a required alignment
precision of a few µm.

Radial alignment precision For the radial, i. e. horizontal and longitudinal, alignment
the situation is different: The radial atom position is determined by the 850 nm CDT,
the trap center of the combined squeeze trap and 850 nm CDT barely depends on the
displacement. Here, the limiting factor is given by the vertical cloud size. A radial
displacement of the squeeze trap leads to a lower intensity of the squeeze trap beam at
the atom position, which reduces the effective vertical trapping frequency and therefore
increases the vertical cloud size. If the center positions of squeeze trap and 850 nm CDT
are too far apart, the cloud size exceeds the lattice spacing and it is no longer possible
to load the atom cloud into a single lattice layer. The dependence of the vertical cloud
size on the radial displacement is shown in fig. 4.14. From this data we derive a required
alignment precision of 200µm in the horizontal and 500 µm in the longitudinal axis.
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Figure 4.14: The vertical cloud size dcloud,ver in the squeeze trap supported by the 850 nm crossed
dipole trap in dependence of the longitudinal and horizontal displacements ∆z and ∆x of the squeeze
trap. Only the regime where the vertical cloud size is smaller than the lattice spacing of the vertical
lattice is plotted giving an impression of the required alignment precision. In this regime the relevant
length scale is the harmonic oscillator length, not the Thomas-Fermi radius. Hence, the required
alignment precision for the squeeze trap without support of the 850 nm crossed dipole trap is the
same.

Adjustment screws To align the vertical and horizontal position of the squeeze beam
the squeeze beam path includes a motorised mirror mount with a step size of 0.7 µrad
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which translates to ∼ 130 nm/stp at the atom position.24 To allow for a longitudinal
alignment, i. e. along the squeeze beam axis, the focussing lens of the squeeze beam is
mounted on a manual translation stage enabling to shift the focal plane with a resolution
of ∼ 10 µm.

Coarse alignment

For the first coarse alignment we make use of an already implemented D2 absorption
imaging along the squeeze beam axis. We superimpose the squeeze beam with the D2
imaging beam such that the squeeze beam passes the imaging path and can be seen on the
camera. Then we use the BEC in the 850 nm CDT as a position reference for the focus
of the squeeze beam25 by superimposing the imaged squeeze beam focus with the imaged
atom cloud on the camera (see fig. 4.15) in all three axis. The imaging lens introduces a

x

z

atom cloud

squeeze beam focus

image of
atom cloud

image of
squeeze beam focus

chromatic shift

Figure 4.15: Imaging path of atom cloud and squeeze trap beam. A pre-existing absorption imaging
along the squeeze beam axis is used to image the squeeze beam as well. This allows for a coarse
alignment of the squeeze trap using the atom cloud in the 850 nm crossed dipole trap as reference by
superimposing the image of the squeeze beam focus with the image of the atom cloud. The imaging
lens introduces a chromatic shift that has to be accounted for.

chromatic shift, though, as squeeze beam and imaging beam have different wavelengths.
In our case the chromatic shift causes a shift of the image position on the order of 2.5mm
and can be compensated by shifting the camera, which is mounted on a translation stage.

The longitudinal precision of this procedure is given by the Rayleigh range of the
squeeze beam, the depth of focus of the imaging and by the uncertainty of the chromatic

24For technical reasons this mirror mount is located before the focussing lens with quite some distance
in between. That means adjusting the vertical and horizontal position with that mirror mount causes
the squeeze beam to go off-center through the focussing lens. For very small angles, i. e. for the fine
alignment, this is negligible. For the rough alignment another mirror mount is used that is much closer to
the focussing lens. That mirror mount has resolution of 0.08mrad/tick which translates to ca. 12 µm/tick
at the atom position.

25This refers to the position of the vertical focus since this determines the center of the squeeze trap.
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shift. In our case the latter is dominant, yielding an estimated longitudinal precision of
1.5mm, i. e. ∼ 3.5 zR,squeeze. The lateral, i. e. vertical and horizontal, precision is deter-
mined by the longitudinal precision and the angle between imaging and squeeze beam,
yielding a lateral precision in the order of 10 - 100µm. That means the horizontal dis-
placement is below half a waist and already within the required precision. Therefore, the
next alignment step concentrates on the vertical and longitudinal axes.

Fine alignment: longitudinal axis

The second alignment step utilises the acceleration force exerted by the squeeze trap
potential and allows to achieve the required longitudinal alignment precision while also
improving the vertical alignment.
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Figure 4.16: For the second alignment step the atom cloud is released from the 850 nm crossed
dipole trap and imaged after a subsequent time-of-flight during which the squeeze trap is present.
When the atom cloud (partially) passes the squeeze trap during the time-of-flight it experiences an
additional acceleration and its trajectory is altered. The main plot shows the calculated position
yTOF of the atom cloud after 4.5 ms time-of-flight in dependence of the vertical displacement ∆y of
the squeeze trap. The different curves correspond to different longitudinal displacements ∆z of the
squeeze trap. Positive (negative) values of ∆y correspond to the squeeze trap being below (above)
the 850 nm CDT. yTOF = 0 corresponds to the atom position in the 850 nm CDT which acts as a
reference, yTOF without the squeeze trap present is -99 µm. The bend around ∆y ≈ 100 µm marks
the displacement at which the atom cloud just reaches the squeeze trap potential within the time-
of-flight. The cut-off around ∆y = 0 corresponds to the atoms being trapped in the squeeze trap.
Left inset: sum of gravitational and squeeze trap potential V in dependence of the vertical position
y. For large ∆z the potential minimum vanishes and the atoms cannot be trapped. Right inset:
Images of the atom cloud after a negligible time-of-flight as reference for the atom position in the
850 nm CDT as well as after 4.5 ms time-of-flight with and without squeeze trap present. The data
was taken after the second alignment step.
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We prepare a BEC in the 850 nm CDT and observe the vertical position yTOF of the
atom cloud after a fixed time-of-flight during which the squeeze trap is present. As soon
as the squeeze trap potential lies within the distance the atoms cover during the time-of-
flight, they experience an additional acceleration and the covered distance changes. The
dependence on the vertical displacement ∆y for different longitudinal displacements ∆z

is plotted in fig. 4.16. When the squeeze trap is below the 850 nm CDT, |yTOF| increases.
For the full squeeze trap depth and a vertical displacement of 100 µm this effect is in the
order of 10µm, i. e. clearly detectable. With decreasing ∆y the effect gets larger until the
squeeze trap is close enough to trap the atoms.

To gain information about the longitudinal axis the squeeze trap depth is reduced
until the atoms can no longer be trapped due to the vanishing potential minimum when
the trap is shallow compared to the gravitational potential gradient (see fig. 4.16 left
inset). Although the atoms are not trapped, they are slowed down by the squeeze trap
potential. Hence, the vertical squeeze trap position can be adjusted such that |yTOF| is
minimised. By adjusting the longitudinal squeeze trap position the effective trap depth
(waist) is increased (decreased), such that ∆z can be optimised by further minimising
|yTOF| until the atoms get trapped again. For each iteration step of longitudinal and
vertical alignment the squeeze trap depth is reduced until the effective trap depth is in
the order of the temperature, i. e. the atoms cannot be properly trapped anymore.

The lower trap depth limit given by the temperature limits the precision of this align-
ment procedure in our case to ∼ 300 µm longitudinally and ∼ 5 µm vertically. On top of
this uncertainty there is a systematic error to the vertical position in the order of 5µm
due to the gravitational shift of the potential minimum. After this alignment step the
horizontal and longitudinal position is within the required precision and the atoms can be
trapped in the squeeze trap. To achieve the desired alignment precision along the vertical
axis, a third alignment step is required.

Fine alignment: vertical axis

Being able to trap the atoms in the squeeze trap gives rise to new, more precise alignment
methods. While we decided for a straightforward approach we also briefly discuss further
alignment methods.

For the final alignment step we directly image the atoms in the squeeze trap with ab-
sorption imaging where we use the atom position in the 850 nm CDT as reference which
allows to align the vertical as well as the horizontal position. Since the imaging is the
same for both traps the precision of this method solely depends on the imaging resolution.

112



4.5. Alignment

An estimate for the achieved accuracy is given by the effective pixel size of the respective
imaging. For our setup the effective pixel size is 4.2µm which is within the required preci-
sion. Note, though, that the effective pixel size is a conservative estimate. By increasing
the temperature of the sample the vertical cloud size can be increased to several pixels
which allows for a sub-pixel fit.

An alternative alignment method is to minimise the amplitude of the sloshing mode,
i. e. the center-of-mass motion after transferring the BEC from the 850 nm CDT to the
squeeze trap. The displacement is directly connected to the amplitude of the sloshing
mode and by using the full squeeze trap depth the gravitational shift of the potential
minimum becomes negligible. The precision is mainly given by the imaging resolution
which makes this method more favorable for larger waists, i. e. in our case for the hor-
izontal and longitudinal axes which are already aligned. A further disadvantage is that
this method is rather time-consuming since it is necessary to measure a full oscillation of
the sloshing mode for every vertical position setting.
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Figure 4.17: The vertical position yTOF after 3 ms time-of-flight in dependence of the vertical dis-
placement ∆y of the squeeze trap after an evolution time of T/4 in the squeeze trap with full depth
of 9.5 uK for different longitudinal displacements ∆z. Positive (negative) vertical displacements cor-
respond to the squeeze trap being below (above) the 850 nm crossed dipole trap. yTOF without
squeeze trap is -51.5 µm.

To avoid these disadvantages this method can be altered to enhance the signal: Instead
of observing the sloshing mode in situ, the amplitude can be extracted by transforming the
displacement into momentum via a T/4 evolution in the squeeze trap and then effectively
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performing another Fourier transformation via a time-of-flight measurement. In the limit
of short evolution times, this method basically probes the local curvature of the potential.
In view of this, it is intuitive that the signal is roughly shaped like the derivative of a
Gaussian as can be seen in fig. 4.17.

However, that means that the optimum position ∆y = 0 does not yield a peak, but
a strong slope in the signal. Therefore, while the signal amplitude is enhanced which
increases the precision and while this alignment procedure is less time-consuming since
only one data point per vertical displacement is required, this method is more difficult in
the sense that a precise reference is required.

4.5.2 Vertical lattice

In this section, we focus on the alignment of the vertical lattice with respect to the atom
position determined by the 850 nm crossed dipole trap. The relative vertical position
of vertical lattice and squeeze trap will be aligned separately (see sec. 4.5.3). Before
discussing the alignment procedure, we will first estimate the required accuracy of the
alignment of the vertical lattice.

Required alignment precision

Radial alignment precision The most important concern is to fulfill the requirement
set for the vertical trapping frequency νy. Since the intensity and hence the trapping
frequency decreases with larger distance to the center of the lattice, this sets an upper
limit for the horizontal and longitudinal displacement ∆x and ∆z of the atom position
determined by the 850 nm CDT with respect to the center of the vertical lattice given
by the intersection.26 Simply demanding that νy(∆x,∆z) ≥ 5 kHz yields a maximum
displacement ∆x and ∆z of ∼ 140 µm as illustrated in fig. 4.18. Assuming a maximum
misalignment of the focus position with respect to the center of the lattice of half the
Rayleigh range, i. e. 1.3mm as well as demanding that central, first and second layer
achieve the required trapping frequency slightly tightens this limit to 130 µm.

Vertical alignment precision One the one hand, a requirement for the alignment
accuracy for the vertical axis is determined by the required longitudinal precision as the
longitudinal position of the intersection solely depends on the vertical position of the

26We emphasize that the longitudinal displacement ∆z refers to the intersection of the lattice beams,
not to the focus position.
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Figure 4.18: Vertical trapping frequency νz of the vertical lattice in the central layer in dependence
of the longitudinal and horizontal distance ∆z and ∆x between the atom position determined by
the 850 nm CDT and the center of the vertical lattice. Only the regime where the vertical trapping
frequency is above the desired minimum value of 5 kHz is plotted giving an impression of the required
radial alignment precision.

single lattice beams. Considering half the crossing angle of the lattice beams of 5 ◦ and
demanding a longitudinal precision of 130 µm one geometrically derives a required vertical
precision of 10 µm. On the other hand, a limit is also given by the required precision of
the squeeze trap since it is the squeeze trap that will be moved in a separate subsequent
alignment step for the relative vertical alignment of vertical lattice and squeeze trap. This
tightens the limit to ∼ 5 µm.

Adjustment screws To adjust the horizontal and vertical position of the single lattice
beams the beam paths include adjustable mirror mounts. In order to ensure reproducible
shifts of the lattice beams, the beams are imaged on a camera after passing the vacuum
chamber.27 This allows for a resolution of ∼ 3 µm. The focal position can be adjusted
by the position of the common focussing lens that is mounted on a manual translation
stage with a resolution of ∼ 10 µm. Additionally, the focal position of the single lattice
beams can be adjusted individually as the adjustable mirror mounts mentioned before are
three-knob adjusters.

27The lattice beams are imaged individually. Due to the high NA of the lattice and due the size of the
vacuum chamber it is not possible to image the lattice behind the chamber.
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Coarse alignment

Since we cannot image the lattice directly we align both lattice beams individually. For
the first coarse alignment we set up a temporary imaging roughly along the lattice beam
axes and image the atoms in the 850 nm CDT to obtain a reference position. It is crucial
to minimise aberrations due to low quality imaging lenses, due to a tilt of the imaging
lens with respect to imaging and lattice beams and due to being off-center on the imaging
lens.28 After setting up the temporary imaging the coarse alignment is basically the same
as for the squeeze trap: The imaged focus position of the lattice beams is superimposed
with the imaged atom position in the 850 nm CDT corrected for the chromatic shift.

The precision of this alignment step is mostly determined by the uncertainty of the
chromatic shift, the imaging depth and the angle between imaging and lattice beam and
is for our setup ∼ 150µm horizontally and vertically, and ∼ 1mm for the focus position.

Fine alignment

In contrast to the squeeze trap beam, the lattice beams are blue-detuned and hence anti-
trapping which makes the alignment more difficult. We can not use the fine alignment
methods described in sec. 4.5.1 as they are based on trapping the atoms. Instead, we
observe the effect of the lattice beams on the atoms trapped in the 850 nm CDT: We load
atoms into the 850 nm CDT at a shallow depth of ∼ 3 µK while a single full depth lattice
beam is present and scan the vertical position of the lattice beam until the atom number
is affected.29 The shape of the measured signal is shown in fig. 4.19. When the lattice
beam is ∼ 20 - 30 µm below the atom position it counteracts gravity, which leads to an
increase of the atom number. When the lattice beam gets closer and is centered on the
atom position it effectively decreases the trap depth and hence pushes the atoms out of
the trap, causing a decrease of the atom number. The horizontal alignment only changes
the effective height of the lattice beam potential. The lattice beam is then aligned by
iteratively optimising vertical and horizontal position to be centered on the loss feature,
where the power of the lattice beam is reduced after every iteration in order to reduce the
width of the loss feature. This also reduces the signal amplitude, though, giving a lower
limit for the lattice beam power. For our setup this limit was given by half the lattice
power corresponding to ∼ 1 µK potential height.

28Since imaging and lattice beam axes are similar, but not the same, spherical aberrations due to being
off-center on the imaging lens cannot be avoided. Nonetheless, it is highly recommended to minimise
these aberrations.

29For this measurement we rely on the fact that horizontally the lattice beam is already within a waist
distance of the atom position due to the coarse alignment.
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Figure 4.19: The atom number N in the shallow 850 nm crossed dipole trap when a single lattice
beams is present with the vertical displacement ∆y with respect to the center of the 850 nm CDT.
Lower values of ∆y correspond to a lower lattice beam position. The lattice beam is anti-trapping
and has a similar waist as the 850 nm CDT beams. Hence, in effect it reduces the potential depth
resulting in a loss of atoms when properly aligned. The atom number peak next to the loss feature
occurs when the lattice beam is slightly below the 850 nm CDT. In that case it stabilises it against
gravity resulting in an increased atom number.

However, a lower limit for the lattice beam power is also useful in the sense that it
limits the vertical displacement: The gravitational shift of the potential minimum of the
shallow 850 nm CDT introduces a systematic error that increases with lower lattice beam
power due to the asymmetry of the signal. For half the lattice beam power this systematic
error is ∼ 3 µm.30 Note that this error occurs for both lattice beams in the same direction
and hence does not translate to a longitudinal displacement of the lattice center. The
precision of this alignment method is determined by the width of the loss feature and is
in the order of ∼ 5 µm vertically and ∼ 100µm horizontally which is within the desired
accuracy. Using this alignment procedure for both lattice beams individually ensures that
the intersection is at the atom position. We then use the intersection as a reference to
align the focus position where we conservatively estimate an achieved accuracy of half the
Rayleigh range.

30Since it is known that the error is roughly one lattice spacing and since also the direction is known
this can be compensated for when performing the relative alignment of squeeze trap and vertical lattice.
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4.5.3 Relative alignment of squeeze trap and vertical lattice

y

V

y

Figure 4.20: Sketch of the potential V of squeeze trap (red, dashed) and vertical lattice (green, solid)
along the vertical axis y. Left: When both traps are vertically aligned with respect to each other,
the atom cloud is loaded into a single layer. Right: When the traps are vertically misaligned with
respect to each other, two layers are occupied.

Required alignment precision We previously described how squeeze trap and vertical
lattice were each aligned onto the atom position given by the 850 nm crossed dipole trap.
Both traps are therefore also aligned relative to each other within the precision given by
the discussed alignment methods. While this suffices for the horizontal and longitudinal
axes, the vertical axis requires a much more accurate alignment since this is the lattice
axis. The vertical relative alignment of squeeze trap and vertical lattice defines into which
layer the atoms are loaded and, even more importantly, whether just one or more layers are
occupied (see fig. 4.20). Accordingly, the vertical relative alignment needs to be accurate
to a length scale well below the lattice spacing.

The relative position is adjusted by vertically shifting the squeeze trap via a motorised
mirror mount. As stated in sec. 4.5.1 the effective step size is ∼ 130 nm, which provides
a sufficient resolution. To ensure that the squeeze trap is well aligned with one of the
lattice layers we measure how many layers are occupied with a technique that we will in
the following refer to as a singlicity measurement [140].

Singlicity measurement Measuring the occupation of the individual layers is non-
trivial since we cannot resolve two occupied layers in-situ. Hence, the main idea of the
singlicity measurement is to increase the spatial separation by performing two Fourier
transformations in the (y, py) phase space. The first one transforms the two spatially
distinct layers into two distinct momentum classes via time evolution in a harmonic trap.
The second one transforms the momentum classes back to spatially separated atom clouds
with a resolvable distance via a time-of-flight. This technique therefore allows to measure
the relative occupation of multiple layers with a single absorption image.
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Figure 4.21: Sequence of the singlicity measurement in phase space representation in the case of two
occupied lattice layers. (a) The measurement starts at t=0 with atoms trapped in the vertical lattice.
Two layers are occupied corresponding to two atom clouds with a spatial distance given by the lattice
spacing dlatt which can not be resolved with our imaging. (b) The lattice is switched off and the atom
clouds are allowed to expand for a short time t1 in order to decrease the density. (c) The squeeze
trap is flashed on for the time t2 to provide a harmonic potential, causing a rotation in phase space.
t2 is chosen such that the original spatial distribution is translated to a momentum distribution.
Thus, the originally spatially distinct layers were transformed to two distinct momentum classes.
(d) The squeeze trap is switched off and a time-of-flight is performed to spatially separate the two
momentum classes. Inset: Typical image as derived by the described singlicity measurement for a
misaligned squeeze trap. Figure adapted from [140]

The sequence is as follows: The atoms are prepared in the vertical lattice. When
the squeeze trap is misaligned with respect to the vertical lattice, then two adjacent
lattice layers are occupied, i. e. there are two atom clouds spatially separated by the
lattice spacing dlatt = 3µm (see fig. 4.21 (a)). The vertical lattice is switched off which
leads to a rapid expansion of the atom clouds (see fig. 4.21 (b)) and since the lattice is
tightly confining along y, the expansion is mainly along y. Due to the expansion the
density decreases such that interactions become negligible, which happens rather fast.
Accordingly, the expansion time t1 is short enough that the center-of-mass motion due
to gravity is negligible. Suitable values for t1 depend on the scattering length and in
agreement with our rather low scattering lengths we experimentally found best results for
a rather short time t1 = 50µs.

In the next step the squeeze trap is flashed on for a short time t2. Due to the harmonic
potential, the force acting on the atoms is spatially dependent and the atoms undergo a
rotation in phase space where the angular velocity is given by the trapping frequency of
the squeeze trap (see fig. 4.21 (c)). t2 is chosen such that the spatial layers are transformed
to separable momentum classes, meaning t1 = 0 would yield t2 = T/4 and the longer t1,
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the shorter t2. We found best results for t2 = 220 µs which is close to T/4 = 240 µs in
agreement with our rather low value for t1.

The last step is a time-of-flight, i. e. the squeeze trap is switched off again and the dif-
ferent layers spatially separate due to the different mean momenta (see fig. 4.21 (d)). The
atom clouds also expand, but much less than during t1 due to the momentum distribution
now being much more narrow. After t3 = 3ms the atoms are imaged via absorption
imaging. Here, t3 is chosen such that the atom clouds corresponding to different lattice
layers are clearly distinguishable (see fig. 4.21 (d) inset).

Fitting a double or triple Gaussian (depending on the number of expected occupied
layers) to the density distribution obtained from the absorption imaging allows to extract
the relative occupation of the layers.31 The relative occupation can then be used as a
figure-of-merit for the relative alignment of squeeze trap and vertical lattice.

Alignment stability Since the occupation of a second lattice layer depends on the
relative vertical displacement ∆y between squeeze trap and vertical lattice, the singlicity
measurement can also be used to assess the stability of the relative vertical alignment.
In this case, the squeeze trap is aligned such that two layers are equally occupied which
increases the sensitivity of the measurement. The relative occupation of the layers is then
measured every 5.5 s over 30 h via the singlicity measurement described above. To relate
the relative occupation of the two layers with the relative vertical alignment the data is
compared with a simple simulation assuming that the atom cloud in the squeeze trap is
of Gaussian shape in the vertical axis32 and assuming that the occupation of each lattice
layer is determined by the integral of the density distribution in the squeeze trap over
the spatial extent of the respective layer. This allows to translate the measured relative
occupation into the vertical displacement ∆y between squeeze trap and vertical lattice.

The time series of ∆y is presented in fig. 4.22. Here, ∆y = 0 corresponds to the squeeze
trap being centered on an intensity maximum of the vertical lattice corresponding to two
equally occupied layers. Note that ∆y is given in units of the lattice spacing such that the
∆y axis covers the extent of one lattice layer. The data shows that the vertical alignment
is quite stable. On the long term squeeze trap and vertical lattice barely move with respect
to each other. The moving mean over 9 min (red solid line) changes by less than 0.05 dlatt.
However, the fluctuations are dominated by short-term fluctuations. Exemplarily, a time

31This is not only useful to adjust the relative vertical alignment of squeeze trap and vertical lattice,
but can also be used to optimize cooling parameters since a higher temperature will increase the cloud
size and hence the occupation of lattice layers adjacent to the targeted layer.

32This is a reasonable assumption since the Thomas-Fermi radius is smaller than the harmonic oscillator
length.
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Figure 4.22: Stability measurement of the relative vertical alignment of squeeze trap and vertical
lattice. Each data point (black) corresponds to a single singlicity measurement. The moving mean
over 9 min (red solid line) and the corresponding standard deviation (red dashed lines) are plotted
as well. The inset is a magnification of the data within the black rectangle. Details are given in the
main text.

frame of ∼ 30minutes at around t = 24h is shown magnified in the inset of fig. 4.22. The
standard deviation over this time frame is 0.02 dlatt = 60nm. The maximum deviation
from the mean value is 0.09 dlatt = 270nm. Using the same simulation explained above,
but with the squeeze trap being centered on a lattice layer, this deviation corresponds
to 99.3% of the atoms being loaded into the targeted lattice layer. Hence, the relative
vertical alignment is stable at least over a few days, most likely even longer since there is
no onset of a long-term drift. In case the necessity arises, the singlicity measurement can
be used to implement a feedback loop as it provides a fast and simple method to verify
the relative vertical alignment.

Distinguishing between lattice layers While the singlicity measurement allows to
center the squeeze trap on a lattice layer, it does not give any information about which
layer is loaded. Practically, we know from the precision of the vertical alignment that the
atoms are loaded into the central or one of the first two layers and, as will be explained
in sec. 4.6.4, any of these layers is suitable. In principle one could measure the trapping
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frequency in different layers, but for central and first two layers the trapping frequency
barely differs. Hence, this is not a suitable method to distinguish between these layers.
Another way in which the layers differ is the in-plane potential (see sec. 4.6.4). However,
when using an additional harmonic potential as radial confinement, as we do, the in-plane
potential becomes essentially negligible and the layers in question essentially behave the
same. On the one hand this means that we cannot distinguish between central, first and
second layer, but on the other hand this also means, that any of these layers is a suitable
choice. In a contrary case of a box potential as radial confinement the in-plane potential
becomes relevant and it becomes favorable to load into the central layer. In that case the
layers can be identified by the density distribution in the box potential.

4.6 Final system

4.6.1 Preparing a 2D BKT cloud

In chapter 3 it was explained how we prepare a three-dimensional BEC of ∼ 5 · 103 K39
atoms, where the last step was evaporation in the 850 nm CDT. Proceeding from there
we utilise the 2D setup discussed throughout this chapter to create a 2D BKT cloud via
the following procedure:

Subsequent to the evaporation where the 850 nm CDT was ramped down to 4.5% of
its full depth of ∼ 100µK, the magnetic gradient applied for the evaporation is ramped
down and the magnetic field is adapted such that the scattering length nearly vanishes.
The atomic cloud is then transferred into the squeeze trap by ramping down the 850 nm
CDT to 1% relative depth within 100ms while simultaneously ramping up the squeeze
trap to full depth. Due to the strong anisotropy of the combined squeeze trap and reduced
850 nm CDT the atomic cloud takes a pancake-like shape, but is not yet in the quasi-
2D regime. The sample is then loaded from the squeeze trap into the vertical lattice by
simultaneously ramping down the squeeze trap and ramping up the vertical lattice, again
within 100ms. The pancake-like shape in the squeeze trap ensures that just one layer of
the vertical lattice is occupied in this step. The scattering length is then slightly increased
and a waiting time of 100ms is introduced to allow for thermalisation which also results
in some final evaporation.

With this procedure we achieve a spin-polarised 2D BKT cloud of ∼ 3 · 103 atoms in
the |1,−1⟩ state with a temperature of ∼ 50 nK corresponding to ∼ 0.2TBKT where TBKT

is the BKT critical temperature in our harmonic radial confinement calculated according
to [105] for a scattering length of 20 a0.
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It is also possible to prepare a 2D BKT cloud in the |1,+1⟩ state by evaporating in
that state (see sec. 3.7.3) and then following the procedure described above. This is favor-
able when aiming for studying spin-polarised system e. g. to measure Tan’s contact [141].
Tunable interactions are in that case enabled via the |1,+1⟩+ |1,+1⟩ Feshbach resonance
at ∼ 400G.

However, we are more interested in the physics of spin mixtures (see sec. 5.2). As
discussed in sec. 3.7.1 it is favorable to prepare the 2D BKT cloud in the |1,−1⟩ state in
that case. The spin mixture is then prepared by applying an RF pulse that transfers atoms
from the |1,−1⟩ state into the |1, 0⟩ state. For the RF pulse we employ the same in-vacuo
single-loop antenna that is also utilised to prepare the spin state for the evaporation step
(see sec. 3.7.2), but with a different matching circuit. By varying the length of the RF
pulse the ratio of the two spin components can be adapted.33

4.6.2 Spin mixtures: viable regimes for K39

For K39 two different suitable regimes for spin mixtures exist: To exploit tunable in-
terstate interactions it is favorable to utilise the |1,−1⟩ + |1, 0⟩ Feshbach resonance at
∼ 525G. However, while the intrastate scattering length of the |1,−1⟩ is positive in the
respective magnetic field regime corresponding to repulsive interactions, the intrastate
scattering length of the |1, 0⟩ state is negative corresponding to attractive interactions,
which means that the |1, 0⟩ component is not stable. Hence, this regime is only suitable
for strongly imbalanced spin mixtures where the |1, 0⟩ state acts as the minority compo-
nent with accordingly low density as is the case for the polaron measurements performed
by [76] summarised in sec. 5.3.34

When striving for balanced spin mixtures one has to go to lower magnetic fields around
∼ 55G. Within a range of ∼ 10G both intrastate interactions are repulsive as required for
the single components to be stable.35 However, this regime is far away from the interstate
Feshbach resonances, i. e. the interstate scattering length is nearly constant. Thus, while

33Note that at magnetic fields corresponding to a high scattering length the Rabi oscillation is strongly
damped which limits the achievable ratio. Hence, balanced spin mixtures can only be prepared in a
regime with low scattering lengths.

34Note that no binary spin mixture consisting of any combination of |1,−1⟩, |1, 0⟩ or |1,+1⟩ yields a
regime where both intrastate as well as the interstate interactions are repulsive.

35Note that according to the theoretical data on Feshbach resonances from [92] a |1,+1⟩, |1, 0⟩ spin
mixture also exhibits a regime where both intrastate interactions are repulsive. This regime is around
∼ 380 G with a total width ∼ 40 G. However, the intrastate scattering length of the |1, 0⟩ state is par-
ticularly low in that range, < 15 a0. Moreover, the data from [92] does partially not agree with the
theoretical data from [8].
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the intrastate scattering lengths can be tuned, the interstate interaction is fixed to weakly
attractive. Nonetheless, this regime is particularly interesting as it covers the transition
from a mean-field stable, where the intrastate repulsion exceeds the interstate attraction,
to a mean-field instable spin mixture, where the interstate attraction exceeds the intrastate
repulsion. Hence, this regime allows to study the mean-field collapse of 2D binary spin
mixtures as well as beyond mean-field effects as proposed in sec. 5.4.

4.6.3 Imaging

To probe the 2D setup we use the high-resolution imaging along the vertical axis through
the microscope objective with an NA of 0.75 corresponding to a diffraction-limited reso-
lution of ∼ 0.62 µm for the imaging wavelength of ∼ 767 nm. Due to the high density of
the atom cloud we cannot employ fluorescence imaging as photoassociation would lead
to severe losses. Instead we use absorption imaging since this technique allows to apply
much shorter imaging times.

Imaging can be performed at both low and high magnetic fields (∼ 500G). Currently,
we typically prepare strongly imbalanced spin mixtures for which we utilise the interstate
Feshbach resonance at ∼ 525G. Hence, we typically use the high-field imaging, which is
described in [76], in order to avoid time delays before the imaging due to magnetic field
ramps. Note that the imaging is spin-dependent. Hence, when preparing a spin mixture
the two spin states can be imaged separately.

The main observable of the experiment is the density distribution n(x,z) which is
derived via absorption imaging along the vertical axis where the atoms are illuminated on
a cycling transition on the D2 line. By taking two consecutive images with and without
atoms the final If (x,z) and initial intensity Ii(x,z) of the imaging beam, i. e. after and
before passing the atomic sample, can be obtained. Since according to the Beer-Lambert
law n(x,z) ∝ − ln[If (x,z)/Ii(x,z)] this allows to derive the density distribution.

The density distribution can be derived for both in-situ and time-of-flight images. Per-
forming a 2D TOF imaging, where the atom cloud is released from the radial confinement
while the vertical lattice providing the 2D confinement is still present, allows for a longer
time-of-flight since the atoms are levitated against gravity and are thus kept within the
imaging plane of the microscope objective. Performing 3D TOF measurements on the
other hand, where the atoms are also released from the 2D confinement, limits the usable
time-of-flight, but has the advantage that interactions are almost immediately switched
off. This is caused by the rapid expansion along the vertical axis due to the previous tight
confinement which significantly reduces the 3D density on a time scale much faster than
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the radial expansion of the cloud. Hence, we typically perform 3D TOF measurements.
A more detailed discussion of 2D and 3D TOF measurements can be found in [105].

Integrating over the measured density distribution allows to derive the atom number
N . The imaging needs to be calibrated, though, which was done by observing the 3D
condensation threshold as described in sec. 3.7.3 which employed the same imaging. Fur-
thermore, the temperature T can be estimated via 3D TOF measurements. Due to the
harmonic radial confinement the density at the edges of the cloud are low and the cloud
exhibits a thermal component. This allows to obtain an estimate for the temperature via
the well-established method of a Gaussian fit to the thermal wings after a time-of-flight
[142].

4.6.4 Radial potential created by the vertical lattice

The lattice potential is created by two interfering laser beams crossing under an angle of
2 x 5◦ with beam waists and power as stated in tab. 4.4. Assuming equal lattice beams
a vertical lattice as shown in fig. 4.23 is formed where each intensity node is a lattice
layer into which the atoms can be loaded. This section is intended to provide a better
understanding on how the in-plane lattice potential is shaped, how the lattice layers differ
from each other and which layers are suitable to provide the 2D confinement. A brief
conclusion is provided at the end of the section.

Vertical trapping frequency The most obvious difference between the lattice layers
is the vertical trapping frequency ωy. Due to the Gaussian beam shape the intensity I

reduces away from the center position. Accordingly, the vertical trapping frequency as
well as the effective trap depth decrease towards higher layers and hence it is favorable to
load the atoms into the central layer (0th layer) as it provides the strongest confinement.
However, due to ωy ∝

√
I and due to the Gaussian intensity distribution, the decrease

of ωy is small for the first layers. The trapping frequency of the first layer is only 2%
and the trap depth only 4% lower than for the central layer. The second layer is also
reasonably close to the central layer, the trapping frequency is 8%, the trap depth 12%
lower compared to the central layer. Hence, in respect of the vertical trapping frequency,
central, first and second layer are similarly well-suited. Note that although ωy notably
decreases towards higher layers, the requirements set in sec. 4.3.1 are fulfilled even for
third and fourth layer.

Longitudinal trapping potential for layers ≥ 1 In first approximation, the in-plane
potentials can be considered to be flat as the lattice layers are located at the intensity
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Figure 4.23: Potential U created by the lattice beams in dependence of the vertical position y.
The potential is calculated for the longitudinal and horizontal center position. Furthermore, the
calculation assumes equal waists and power of the lattice beams as well as the same path length, i. e.
a phase shift of π due to the cube that is splitting the lattice beam. Vertical trapping frequency ν
and effective trap depth decrease for higher layers due to the Gaussian beam shape.

nodes of the vertical lattice. However, assuming equal intensities of the lattice beams
total destructive interference only occurs in the central layer as it acts as a symmetry
plane. For higher layers, on the other hand, total destructive interference only appears
at the center of the longitudinal axis z = 0. For any position in layers ≥ 1 where z ̸= 0

the lattice beams do not have the same intensity and can therefore only partially interfere
destructively as can be seen in fig. 4.24. The remaining intensity creates a potential
which is maximal at the center positions of the individual lattice beams, resulting in a
confining potential along z. This effect gets stronger with higher layers as the beam center
positions are farther apart the higher the layer which again leads to a higher ratio of the
beam intensities at the beam center positions. We emphasize that this effect only occurs
along z, not along the horizontal axis x.

The potential along z for different layers is illustrated in fig. 4.25 (a). The plot also
includes the ground state potential explained below. The potential is trapping for layers
≥ 1, the corresponding physical trapping frequencies ν are in the order of up to a few 10Hz.
This is considerably lower than the trapping frequency of the 850 nm CDT. Due to the
quadratic summation the increase of the longitudinal trapping frequency for layers ≤ 4 is
below 2.5%. Hence, this effect is negligible in our setup. However, it will become relevant
in sec. 5.4 where the possibility to study 2D quantum droplets with our experimental
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Figure 4.24: Potential U created by the lattice beams in dependence of vertical and longitudinal
position y and z. The calculation assumes x = 0 as well as equal waists and power of the lattice
beams. Total interference only appears at the symmetry planes defined by y = 0 and by z = 0.
At any other position the lattice beams do not have the same intensity and can thus only partially
interfere destructively. The remaining intensity creates an potential in any layer except the central
layer. The potential is maximal at the center position of each lattice beam, not at z = 0, causing a
confining potential along the longitudinal axis.

setup is discussed.

Anti-trapping ground state potential Although the light intensity is zero in the
central plane, the in-plane potential of the central layer is not flat since another effect
comes into play. Just as the intensity and thus the trapping frequency decreases vertically
it also decreases radially, i. e. horizontally and longitudinally. This affects the ground state
energy ℏωy/2 which hence also decreases radially, resulting in an effective anti-trapping
potential, in the following referred to as the ground state potential. A comparison between
the in-plane potential of central, first and second layer with and without including the
ground state potential is shown in fig. 4.26. As can be seen the longitudinal trapping
potential for layers ≥ 1 explained above is still dominating. Hence, layers ≥ 1 feature an
in-plane potential which is trapping along z while being anti-trapping along x. The central
layer, in contrast, exhibits a radially nearly symmetric anti-trapping in-plane potential.

The potential along x at z = 0, which is given by the ground state potential, is
illustrated in fig. 4.25 (b). The corresponding trapping frequency ν slightly decreases
with higher layers due to the decreasing intensity. ν is in the order of ∼−5Hz which is
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Figure 4.25: Potential U created by the lattice beams depending on the longitudinal (a) and hori-
zontal (b) position z and x for different lattice layers. The calculation is performed for equal lattice
beam waists (solid lines) as well as for slightly different lattice beam waists (dotted lines) as stated
in tab. 4.4. The corresponding trapping frequencies ν for equal waists are stated in the legend. The
trapping frequencies for slightly different waists differ by less than 2%. Horizontally the potential is
anti-trapping with lower trapping frequency for higher layers. Longitudinally, only the central layer
is anti-trapping while every other layer is trapping with higher trapping frequencies for higher layers.

much smaller than the radial trapping frequency of the 850 nm CDT. Accordingly, for our
setup the ground state potential is negligible.

Imperfections So far we only considered equal lattice beams. In reality the beam
waists are slightly different as stated in tab. 4.4 and there will be imperfections in power
balancing and polarisation. All of these effects result in remaining intensity and thus have
an effect on the in-plane potential.

Remaining intensity caused by imperfect polarisation is symmetric and will lead to an
additional anti-trapping potential with the same shape and similar order of magnitude
as the anti-trapping ground state potential. Accordingly, it mainly affects the central
layer and first layer, as their respective trapping frequencies are in the same order of
magnitude, as well as the horizontal axis of the other layers since their longitudinal axis is
dominated by the confining potential as discussed above. Assuming 5% wrong polarisation
the trapping frequencies corresponding to the anti-trapping ground state potential would
increase by ∼ 35%. That means the order of magnitude does not change and the anti-
trapping would be negligible compared to the radial confinement provided by the 850 nm
CDT.

Unequal beam waists and a power imbalance have basically the same effect. The re-
maining intensity is asymmetric in the longitudinal axis, though, as illustrated in fig. 4.25.
However, while the asymmetry results in a slight deformation of the in-plane potential,
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Figure 4.26: The in-plane potential U for different lattice layers with (right column) and without
(left column) including the ground state potential. The lattice beams propagate from left to right.
For the calculation equal waists and power of the lattice beams are assumed. The first row shows
the central layer (0th layer), second row shows the first layer, third row the second layer. Cross-
sections through these 2D potentials at x = 0 and z = 0 are provided in fig. 4.25. When purely
considering the potential proportional to the light intensity, the central layer exhibits a flat potential
while any other layer features a confining potential along the longitudinal axis. Including the ground
state potential adds an anti-trapping potential resulting in a saddle potential at the atom position
for layers other than the central layer. However, the corresponding trapping frequencies are much
smaller then the trapping frequency of the radial confinement provided by the 850 nm CDT which
is not included in the plots. Hence, the in-plane potential is only relevant in free space or when
desiring a flat potential.
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the center of the trap where the atoms are located barely changes. For the beam waists
as stated in tab. 4.25 and assuming a power imbalance of 5% the trapping frequencies of
the in-plane potential caused by the lattice beams decrease by less than 5%. Hence, the
effect of the observed unequal beam waists as well as the effect of a small power imbalance
is negligible.

Conclusion The different effects discussed above result in an anti-trapping in-plane
potential in the central layer, while layers ≥ 1 are trapping along z and anti-trapping
along x. However, in our setup the radial potential is strongly dominated by the harmonic
confinement provided by the 850 nm CDT. Although the vertical trapping frequency ωy

decreases with higher layers, the difference is below 10% for layers ≤ 2. Hence, these
layers are nearly equally suitable.

However, in case of a possible future implementation of a 2D box potential, e. g. via
a DMD, the situation is different. In an otherwise flat potential, the in-plane potential
created by the lattice beams becomes relevant as it perturbs the homogeneity of the box
potential. This is particularly relevant for degenerate bosonic systems as their charac-
teristic energy scale, given by the chemical potential, is much lower than compared to
degenerate fermionic systems, where the characteristic energy scale is given by the Fermi
energy. Therefore, it is strongly recommended to load the atoms into the central layer
where the in-plane trapping frequencies are lowest. Furthermore, in contrast to higher
layers, the in-plane potential in the central layer is radially nearly symmetric and purely
anti-trapping which allows to compensate the potential by an additional magnetic con-
finement. The magnetic confinement that can be provided with our coil setup is slightly
lower than the anti-trapping of the ground state potential, though. Thus, the remaining
anti-trapping would need to be compensated by the DMD.36

36In principle the DMD could be used to compensate any in-plane potential of any layer. The drawback
is that this compensating potential is an optical potential. Therefore, it increases the intensity at the
atom position which gives rise to off-resonant scattering.
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Chapter 5

Perspectives on studying 2D bosonic
bulk systems

In the previous chapters we discussed how our experimental setup was re-designed and
re-built to create two-dimensional Bose gases. The key features are the ability to prepare,
image and to drive transitions between multiple spin states and hence to create spin
mixtures, furthermore tunable interactions provided by a variety of suitable intra- as well
as interstate Feshbach resonances and the high-resolution imaging enabled by the in-vacuo
microscope objectives with an NA of 0.75 corresponding to a diffraction-limited resolution
of ∼ 0.62 µm at the imaging wavelength of ∼ 767 nm.

In this chapter we will discuss how these features can be utilised to study degener-
ate 2D Bose gases. Therefore, we will first give a short overview of previous work on
2D bosonic bulk systems with atomic BECs, followed by a brief presentation of the rich
physics of binary spin mixtures. Then, we will discuss two phenomena in more detail.
First, we will summarise measurements on 2D Bose polarons that were performed by [76]
with the experimental setup described in this thesis. Then we will discuss how 2D droplets
could be realised with our experimental setup.

5.1 Previous work
Since the first realisation of a BEC confined to two dimensions in 2001 [116] the field
has greatly expanded. Several experiments were built to create and study quasi-2D Bose
gases employing various atomic species, schemes to achieve the 2D confinement and in-
plane potentials, thus allowing to focus on different aspects and hence to cover a variety of
physical phenomena. Before we present the scientific research conducted in the field of 2D
bosonic bulk systems with atomic BECs, we will give a brief overview of the experiments
that are arguably most relevant in this context:
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• the rubidium experiment in the group of J. Dalibard in Paris where the BKT tran-
sition in cold atoms was observed for the first time [23]. It is the first experi-
ment where an accordion lattice providing the 2D confinement was employed for
achieving tunable interactions [143]. This mechanism limits the coupling strength
to 0.08 < g̃ < 0.26 but can be a useful tool for atomic species such as rubidium that
lack suitable Feshbach resonances.
Further noteworthy scientific contributions include e. g. the observation of superflu-
idity [144] and of transverse condensation [109] in a quasi-2D Bose gas.

• the 2D potassium experiment in the group of Z. Hadzibabic where the 2D confine-
ment is realised via a combination of DMD and phase plate that creates a TEM01-like
mode which also allows to employ accordion schemes [145]. Particularly noteworthy
are the observation of a smooth connection between the interaction-driven BKT and
BEC phase transitions in a trapped 2D Bose gas [146] as well as the first observation
of second sound in a 2D Bose fluid [118] that were achieved at this experiment.

• the caesium experiment in the group of C. Chin in Chicago where the availability of
suitable Feshbach resonances is exploited to study e. g. the equation of state [147],
the dynamics of driven systems via modulated interactions, especially including so-
called Bose fireworks [148, 149], or the transition from an atomic to a molecular
BEC [150], which is the bosonic analog to the BEC-BCS crossover in a Fermi gas.

• the caesium experiment in the group of C. Hung at the Purdue University in Indiana
with a considerably high imaging resolution enabled by their objective with an NA
of 0.6. Noteworthy techniques employed at this experiment include quenches, in
particular interaction quenches from repulsive to attractive to induce a modulational
instability leading to the formation of Townes solitons [151], and box quenches
leading to the formation of ring dark solitons [152].

• the rubidium experiment in the group of C. J. Foot in Oxford which was the first one
to implement a multiple-radiofrequency-dressed adiabatic potential. This potential
not only provides the 2D confinement, but also allows to transform it from a single-
well into a state-selective double-well potential and thus to coherently split the
sample into two atom clouds [153–155]. This enables e. g. to measure the first-
order correlation function and vortex density via spatially resolved matter-wave
interferometry and allowed to observe the universal scaling of the algebraic exponent
and vortex density [156].
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• the sodium experiment in the group of Y. Shin in Seoul which mainly functions as
a spin-1 spinor BEC. It focusses on two-dimensional spin dynamics while the con-
densate is usually thermodynamically 3D and is used to study e. g. spin turbulence
[157, 158].

• the rubidium experiment also in the group of Y. Shin in Seoul employing a 3D
BEC which is highly oblate such that the vortex dynamics are 2D. Notably, the
optical dipole trap providing the tight vertical confinement is formed by a truncated
Gaussian beam allowing to create a large-area BEC [159].

• the 2D lithium experiment in the group of J. Choi at the Korean Advanced Institute
of Science and Technology with 2D spin dynamics. Due to their relatively low
vertical trapping frequency ωz their sample does not fulfil kBT < ℏωz, though.
They mainly study a spin-1 spinor BEC which in contrast to rubidium or sodium
spinor BECs has strong spin-dependent interactions due the properties of lithium
[160]. Recent studies include the first classification of universal coarsening dynamics
in a quenched 2D ferro-magnetic spinor Bose gas [161].

• the potassium experiment in the group of M. K. Oberthaler in Heidelberg which is
the first one to use a 2D Bose gas as a quantum simulator for a relativistic scalar
quantum field in curved space-time [162].

Further groups with 2D setups with ultracold Bose gases include the group of T. W.
Neely and the group of K. Helmerson in Australia, the group of M. D. Hoogerland in New
Zealand and the groups of T. Bourdel and H. Perrin in Paris.1

Especially early research focussed on the fundamental properties of 2D Bose gases
such as the BKT crossover [23, 163, 164], the critical point [165], the equation of state
[147, 166–168], and signatures of superfluidity [144, 169]; and also recent studies address
e. g. the dynamics of the BKT transition [156, 170, 171], first and second sound [118, 172]
as well as the formation and dynamics of vortex clusters [173, 174]. Furthermore, 2D BKT
clouds have been very successfully used as an experimental platform to investigate, e. g.
the Kibble-Zurek mechanism [109, 175–178], vortex shedding [179, 180], vortex turbulence
[181–183] and very recently also wave turbulence [184, 185]. Various other research topics
include dark solitons [152], Tan’s contact [141], Anderson localisation [186], and light
diffusion [187, 188].

1Of course there are also numerous groups working with 2D bosonic lattice systems which are not
discussed here.
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Experiments with suitable Feshbach resonances, as available for caesium, lithium and
especially potassium, possess an additional degree of freedom since Feshbach resonances
allow for tunable interactions. This also gives access to driven systems, where phenomena
such as pattern formation [189], the spontaneous emergence of a square lattice state
[190] and matter-wave jets, so-called Bose fireworks [148, 149], were observed. Tunable
interactions also give rise to the possibility to perform interaction quenches. Townes
solitons, for example, were observed as a result of a modulational instability induced by
quenching the interaction from repulsive to attractive [151, 191, 192]. Further phenomena
that were studied by employing tunable interactions are the universality of the 2D Bose
gas [147], the interaction-driven BKT transition [146], self-oscillating supersonic flow [193],
universal coarsening [194] and so-called breathers [195].

Taking one step further and going from single-component to multi-component 2D Bose
gases by preparing spin mixtures led to a variety of new phenomena and also enabled new
approaches to known phenomena. Spinor gases [196], i. e. degenerate Bose gases whose
spin composition can vary and hence feature a spin degree of freedom, with 2D spin dy-
namics were used to observe skyrmions [197–199], spin turbulence [157, 158], matter-wave
jets, that are not created by driven interactions, but by an unstable spin mixture result-
ing in a strong spin-momentum correlation [200], and very recently universal coarsening
dynamics [161]. Further studies include wall-vortex composite defects [201] and critical
spin superflow dynamics that lead to the generation of dark-bright solitons and transverse
magnon excitations [202]. Another direction arising from the availability of multiple spin
states are binary Bose mixtures2. While spinor gases focus on having the spin as a degree
of freedom which requires low magnetic fields and hence prevents to make use of Feshbach
resonances, binary spin mixtures are two-component gases that maintain their respective
spin state and whose key characteristics are the varying intra- and especially interstate
interactions. 2D binary Bose mixtures have been used to study Townes solitons [203] -
in contrast to the generation via interaction quenches, the generation via binary mixture
allows for a deterministic preparation - and also sound modes3 of mixtures have been
observed [204]. Otherwise very few of their rich physics has yet been explored since many
experiments lack the possibility to tune the interstate interaction, especially relative to
the intrastate interaction. In contrast to K39, neither Rb87 nor Na23 feature suitable
interstate Feshbach resonances which makes the combination of tunable interactions and
the ability to prepare bosonic spin mixtures very rare.

2Note that binary Bose mixtures can also be realised with two different atomic species which is
especially in the 2D case experimentally more challenging and introduces a significant mass ratio.

3Note that while the observed spin mode was in the 2D regime, the observed density mode was more
in the 3D regime.
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5.2 Overview on the physics of binary spin mixtures

Weakly interacting Bose gases are typically well-described by the mean-field approxi-
mation. For contact interactions the mean-field energy per particle E/N of a uniform
degenerate Bose gas with atom number N and density n can be approximated by [110]

E

N
=

1

2
gn. (5.1)

Consequently, the behaviour is determined by the coupling constant g yielding two regimes:
For repulsive interactions, g > 0, the energy is minimised by minimising the density. The
atomic cloud expands, corresponding to a gaseous phase. For attractive interactions,
g < 0, the energy is minimised by maximising the density. The atomic cloud contracts
and collapses when exceeding a critical atom number [205–207].4

However, binary spin mixtures consist of not one, but two components and hence
are not only characterised by the intrastate coupling constants g11, g22, but also by an
interstate coupling constant g12. This additional degree of freedom results in a richer
phase diagram compared to the single-component case as can be seen in fig. 5.1.

In binary spin mixtures, attractive intrastate interaction still results in a collapse of the
respective component, but a collapse can also occur for repulsive intrastate interaction,
namely when it is exceeded by attractive interstate interaction, g12 < −√

g11g22 with
g12 < 0 and g11, g22 > 0 [97]. Furthermore, the regime with repulsive intrastate interaction
features two stable ground states: a miscible phase in which the two components form
a uniform mixture, and an immiscible phase in which the two components separate.
The demixing point dividing these two phases can be easily derived. Following [110] we
consider a homogeneous gas confined to the volume V . The energy in the miscible case
is then given by

Emisc =
g11
2

N2
1

V
+
g22
2

N2
2

V
+ g12

N1N2

V
(5.2)

while the energy in the immiscible case takes the form

Eimm =
g11
2

N2
1

V1
+
g22
2

N2
2

V2
(5.3)

where V1,V2 are the volumes occupied by the two components with V1+V2 = V . In order
to be in mechanical equilibrium the pressure exerted by both components in the immiscible
phase has to be equal: ∂Eimm/∂V1 = ∂Eimm/∂V2 which yields g11(N1/V1)

2 = g22(N2/V2)
2.

4Below the critical atom number the atomic cloud can be stabilised by the kinetic energy.
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Figure 5.1: Ground state mean-field phase diagram of a binary Bose spin mixture in dependence of
the interstate interaction g12 and the mean intrastate interaction √

g11g22 assuming that g11 and g22
have the same sign. From a mean-field perspective there are three regimes. For attractive intrastate
interaction g11, g22 < 0 as well as for the case of attractive interstate interaction which exceeds
repulsive intrastate interaction g12 < −√

g11g22 with g11, g22 > 0 the system collapses (grey shaded
area): the system minimises its energy by maximising the density until the high density leads to
severe three-body losses. For the case of repulsive interstate interaction which exceeds repulsive
intrastate interaction g12 >

√
g11g22 with g11, g22 > 0 the system is in the immiscible regime (dark

green area): the system minimises its energy by spatially separating the two spin components. In
contrast, for −√

g11g22 < g12 <
√
g11g22 the system is in the miscible regime (light green area):

the system minimises its energy by minimising the density. The two spin components are in a
gaseous state and maximise their spatial overlap. Insets: Measured density distribution in different
regimes 0.05 ms and 2.3 ms after creating an imbalanced spin mixture by applying an RF pulse to
a beforehand spin-polarised 2D BKT cloud in a harmonic confinement. Shown are averaged images
where the majority component |1,−1⟩ (blue) and the minority component |1,0⟩ (red) were imaged
in individual measurements, but with the same settings. Spatial overlap of the two components is
marked white. The left images were taken in the collapse regime. After 0.05 ms, shortly after the RF
pulse, the system barely had time to adapt and both components spatially overlap. With ongoing
time the density increases and severe three-body losses occur. After 2.3 ms most of the minority
atoms are lost and mainly majority atoms remain due to the initial imbalance. The right images
were taken in the immiscible regime. While there is still significant spatial overlap 0.05 ms, i. e.
shortly after the RF pulse, with ongoing time the minority component is pushed away from the trap
center by the majority component and after 2.3 ms one can clearly see the phase separation. Insets
are adapted from [76].
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Using this, eq. 5.3 can be expressed as

Eimm =
g11
2

N2
1

V
+
g22
2

N2
2

V
+
√
g11g22

N1N2

V
. (5.4)

Using eq. 5.2 and 5.4 one can easily see that the demixing point, where Emisc = Eimm, is
given by

g12 =
√
g11g22. (5.5)

The immiscible phase can also be interpreted as an instability of the spin mixture.
Accordingly, collapse threshold and demixing point can also be derived by the require-
ment that the free energy density of the (miscible) spin mixture has to have a minimum.
This yields the mean-field stability criteria g11, g22 > 0 and g212 < g11g22, retrieving the
instability points g12 = −√

g11g22 against collapse and g12 = +
√
g11g22 against spatial

phase separation [208].

Naturally, the vicinity of these thresholds is of particular interest, especially since
intra- and interstate interaction nearly balance each other in that regime. Accordingly,
the mean-field term is weakened and quantum fluctuations become relevant which gives
rise to beyond mean-field phases such as liquid-like droplets [7, 209] close to the collapse
threshold and the formation of mixed bubbles near the demixing point predicted for
g11 ̸= g22 [210].5 But also the mean-field description features further regimes, e. g. when
exploiting the degree of freedom given by the ratio of the two components. In highly
imbalanced spin mixtures, for example, objects like Bose polarons [76] and Townes solitons
[211] can be observed.

From this wealth of phenomena that can be studied with binary spin mixtures with
tunable interactions we will discuss two in more detail. In sec. 5.3 we will summarise
measurements of 2D Bose polarons that were performed by [76] on the very experimental
setup described in this thesis. In sec. 5.4 we will then turn to a very different regime and
discuss the realisability of 2D droplets in our experimental setup.

5.3 2D Bose polarons

The extreme case of a highly imbalanced spin mixture, an impurity in an otherwise spin-
polarised bath, is a fundamental, yet non-trivial many-body problem. Due to

5Both regimes, droplets as well as mixed bubbles are not only predicted for the 2D case, but also for
the 3D case. While 3D droplets have been observed in [8], 2D droplets and mixed bubbles have not yet
been experimentally realised.
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repulsive interactions attractive interactions

Figure 5.2: Polaron sketch. Due to impurity-bath
interactions the impurity (black) locally modifies the
density of the bath (white) which in turn modifies
the motion of the impurity. The dressed impurity
(blue/green) can be described as a quasi-particle, a
so-called polaron. Adapted from [76].

impurity-bath interactions the bath den-
sity is modified by the impurity which in
turn retro-acts on the impurity as sketched
in fig. 5.2. The impurity gets dressed by
the bath and the dressed impurity can be
described as a quasi-particle known as po-
laron. The polaron concept was pioneered
by Landau and Pekar [212–214] in the con-
text of solid state physics where an elec-
tron moving through an ionic crystal gets
dressed by phonons that are excited by the
deformation of the crystal caused by the
electron. It is relevant for a wide range of systems such as, most prominent, semiconduc-
tors [215] and high temperature superconductors [216], but also beyond condensed matter
physics e. g. for the Higgs-mechanism [217]. The concept has been extended from Bose
polarons, i. e. impurities in a bosonic bath as is the case for electrons in a phonon bath,
to Fermi polarons, i. e. impurities in a fermionic bath as relevant e. g. for the Kondo effect
[218]. Furthermore, different dimensions have been considered as the behaviour is also in-
fluenced by the dimensionality. Motivated by two-dimensional materials such as graphene
and layered materials such as cuprate superconductors we studied 2D Bose polarons with
the experimental setup described in this thesis. The measurements were performed and
analysed by M. Schlederer and were the first realisation of 2D Bose polarons in a cold
atoms environment. A detailed description and explanation is given in his thesis [76].
Here, we just give a brief partial summary.

The experiment starts with a spin-polarised 2D BKT cloud of 3·103 atoms in the |1,−1⟩
state which acts as the bath state. The |1,0⟩ state will be used as the impurity state.
The interaction strength can be adjusted via the magnetic field by exploiting a Feshbach
resonance. While the bath-bath interaction is weakly repulsive in the regime we are inter-
ested in, the impurity-bath interaction can be tuned from repulsive to attractive. After
setting the magnetic field to a suitable value an RF pulse with detuning δ is applied where
δ = 0 corresponds to the resonance frequency of the |1,− 1⟩ → |1,0⟩ transfer in the non-
interacting case. Accordingly, when δ matches the interaction shift gBIn, with impurity-
bath coupling constant gBI and bath density n, a small part of the atoms are transferred
from the bath state into the impurity state and polarons are formed.6 Both the impurity

6Due to interactions the Rabi oscillation driven by the RF transfer quickly decoheres and at most

138



5.3. 2D Bose polarons

Figure 5.3: A polaron is created by transferring
an atom from the bath state into the impurity
state via an RF pulse. Due to impurity-bath
interactions, the bath (grey) causes a spatially
dependent interaction shift gBIn(r) (black ar-
row) of the resonance frequency for the transfer.
Consequently, for different RF pulse detunings
δ the polaron is created at different distances r
from the trap center. For the illustrated repul-
sive case a lower δ matches the interaction shift
for lower densities, i. e. further away from the
trap center. This results in differently shaped
density distributions of the impurity state as
depicted in the insets. Furthermore, due to the
interaction energy, the bath creates an effective
potential (blue, dashed) for the impurity which
for gBI > 0 accelerates the impurity away from
the trap center. Taken from [76].

state as well as the bath state can then be im-
aged in individual measurements via absorption
imaging either in-situ or after time-of-flight al-
lowing to extract the density distribution as
well as the remaining condensate fraction and
the remaining condensate atom number.

Due to the radially symmetric harmonic
confinement the density n = n(r) is spatially
dependent where r is the radial coordinate.
Consequently, the interaction-shifted resonance
frequency is also spatially dependent as indi-
cated in fig. 5.3 and thus, with different detun-
ings δ polarons are created at different positions
r. With repulsive interactions, for example, a
higher detuning δ1 transfers atoms at higher
densities, i. e. near the trap center, while a lower
detuning δ2 creates polarons at lower densities
further away from the trap center resulting in a
ring-shaped structure. These shapes can be re-
solved with our high-resolution imaging as can
be seen in fig. 5.3 (insets). Furthermore, the
high resolution also allows to track the dynam-
ics. When an atom is transferred into the impu-
rity state the effective potential resulting from
the interaction with the bath suddenly changes.
For example repulsive impurity-bath interactions correspond to an effective repulsive po-
tential as sketched in fig. 5.3 (blue, dashed) and this effective potential accelerates the
impurity away from the trap center. This is similar to the phase separation that occurs
in the immiscible regime as described in the previous section where one could see how the
impurities moved away from the majority component in the trap center with ongoing time
(see fig 5.1). Here, we can use the impurity as a probe for the bath since the acceleration
of the impurity depends on the local slope of the effective potential given by the bath as
well as on the local speed of sound above which the motion of the impurity gets damped
due to friction. The resulting dynamics also reveal the 2D character of the bath which
obeys the 2D rather than the 3D friction force.

∼ 10% of the atoms are transferred into the impurity state.
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Figure 5.4: 2D Bose polaron spectra. Shown is the condensate atom number loss of the bath state
in dependence of the energy corresponding to the RF pulse detuning δ for a wide range of the
interaction parameter ln(1/kna) where kn =

√
4πn is the characteristic momentum corresponding

to the peak density n. hδ is normalised to the natural energy scale En = ℏ2k2n/(2m) and δ = 0
corresponds to the resonance frequency for no interactions. The vertical dashed line indicates the
center position of the Feshbach resonance. A negative (positive) interaction parameter corresponds
to repulsive (attractive) interactions. Inset: Vertical cut through the main plot, exemplarily at
ln(1/kna) = −10.3 as indicated by the vertical dotted line. Illustrated are the measured data (blue
dots) as well as two models. One model (grey, solid) only includes the broadening of the RF frequency
and the volume factor of the density addressed by the RF frequency. The other model (red, dashed)
additionally includes contributions from excited states. The agreement with the measured data
indicates that these excited states are highly relevant. Adapted from [76].

The high tunability of the interactions furthermore allows to perform spectroscopic
measurements from weakly to strongly interacting polarons both for repulsive as well as
attractive interactions. The thereby extracted 2D polaron spectra are shown in fig. 5.4
where the condensate atom number loss of the bath state is plotted in dependence of the
normalised applied RF pulse detuning δ and in dependence of the interaction parameter
ln(1/kna) with kn =

√
4πn where n refers to the peak density. A single spectrum for a fixed

interaction parameter is shown in the inset. From these spectra the polaron energy can be
extracted which is especially interesting in the strongly interacting case where the mean-
field description breaks down. Furthermore, the line shapes of the spectra are of particular
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Figure 5.5: 2D and 3D friction
force Ffric in dependence of the ve-
locity v of the impurity in units of
the speed of sound c. Calculated
according to [76].

interest. Assuming that the energy required to create a
polaron is proportional to the local density ℏδres ∝ n(r)

and including the volume factor of the addressed density
as well as a frequency broadening due to the finite RF
pulse width one would expect a line shape as illustrated
in fig. 5.4 (inset) (grey, solid). This expectation does not
match the observation, though. Instead the line shapes
are well described by an alternative model, also illustrated
in fig. 5.4 (inset) (red, dashed), introduced by [76] which
takes significant contributions from excited polaron states
into account. While these measurements, including the
first published polaron spectrum in a degenerate 2D Bose
gas, allowed to gain more insights on the creation and be-
haviour of 2D Bose polarons, there still remain open ques-
tions such as the nature and role of the indicated excited
states which deserves further investigation.

5.4 2D droplets

In the previous section we considered a highly imbalanced spin mixture where one of the
spin states acts as an impurity. This impurity gets dressed by the atomic bath given by
the majority spin component leading to the formation of a polaron, which is purely a
mean-field effect. Turning to balanced spin mixtures on the other hand opens up new
possibilities and gives access to beyond mean-field effects resulting in a new, liquid-like
state of matter, the so-called quantum droplet. A more detailed discussion, especially
including dipolar quantum droplets, can be found in the review by Böttcher et al. [219].
Here we will give a brief introduction focussing on quantum droplets in Bose-Bose mixtures
and will then discuss the experimental realisability in our setup. We will derive the ground
state phase diagram for different radial confinements of the quasi-2D system and highlight
suitable parameter regimes for creating 2D droplets.

5.4.1 Quantum droplets in Bose-Bose mixtures

Typically, quantum fluctuations are negligible in weakly-interacting quantum gases, but
using roughly balanced spin mixtures we can tune the interactions such that the intra-
and interstate interaction contributions to the mean-field energy have opposite signs and
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nearly cancel each other. In this regime, where δg = g12 +
√
g11g22 ≪ g11, g22 with

intrastate coupling constants g11, g22 > 0 and interstate coupling constant g12 < 0, the
mean-field approximation breaks down: the mean-field term nearly vanishes and beyond
mean-field corrections become relevant. The leading-order correction due to quantum
fluctuations is the so-called LHY correction term [220] which is basically the zero-point
energy corresponding to the Bogoliubov excitations. Due to its different scaling with the
density, the LHY term can balance the remaining mean-field term: At an equilibrium
density the ground state energy features a minimum. So instead of collapsing for δg < 0

as expected in the mean-field approximation as explained in section 5.2, the atomic cloud
is stabilised by quantum fluctuations and forms a stable state: a quantum droplet.

Quantum droplets in Bose-Bose mixtures were predicted by Petrov in 2015 [7] and
experimentally realised in 2018 [8, 221].7 Unlike typical quantum gases that are well-
described by the mean-field approximation and which hence either collapse or are in a
gaseous phase, quantum droplets correspond to a liquid-like state: they exhibit incom-
pressibility above a critical peak density, i. e. a flat-top density profile8 and, arguably
most characteristic, a self-bound nature just like a classical water droplet with no need
for an external confinement. Furthermore, quantum droplets in Bose-Bose mixtures fea-
ture a unique property: they can self-evaporate. Petrov showed that there is a regime
where there are no excitation modes below the particle emission threshold, i. e. where it
is energetically more favorable to spill particles than to populate any excited mode [7].
However, the self-bound nature of the droplets prevents usual temperature probes such
as time-of-flight measurements, which is why this self-evaporating effect still remains to
be observed. Overall, further measurements of quantum droplets in Bose-Bose mixtures
prove difficult since they suffer from a rather limited lifetime. Although several orders
of magnitude more dilute than classical liquids, they are dense compared to BECs. The
density differs by more than one order of magnitude resulting in severe three-body losses.
With decreasing atom number the kinetic energy, corresponding to a repulsive force, be-
comes more dominant and drives a liquid-to-gas transition when reaching a critical atom
number: the droplet dissociates [8].9 Despite these experimental challenges, quantum

7Spin mixtures are not the only platform used to create quantum droplets. Besides hetero-nuclear
mixtures that also rely on competing intra- and interstate contact interaction, quantum droplets are also
studied using one-component quantum gases that feature significant dipole-dipole interaction. In that
case there is no interstate interaction; instead the intrastate contact interaction is counter-acted by the
dipole-dipole interaction. These so-called dipolar quantum droplets were first observed in 2016 [222, 223].

8This has been observed in dipolar quantum droplets [224]. Quantum droplets in Bose-Bose mixtures
are typically below this critical peak density, i. e. their density profile is dominated by surface effects.

9This dissociation is strictly different from the self-evaporation mentioned above. Although a droplet
can self-evaporate to its ground state as opposed to e. g. exhibiting excited surface modes, this ground
state still corresponds to a droplet phase which is self-bound. The dissociation on the other hand corre-
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droplets are of great interest as they provide insight on beyond mean-field physics and
are subject to active research [225–231].

In lower dimensions the role of quantum fluctuations that stabilise the droplet against
the mean-field collapse is enhanced. For that reason two-dimensional quantum droplets
are of particular interest. In 2016 it was shown theoretically that quantum droplets in
Bose-Bose mixtures also exist in two dimensions [209], but so far they were not observed
experimentally. And indeed, 2D droplets are expected to behave significantly different
from 3D droplets: Due to the peculiar scaling of the 2D LHY correction term there is in
principle no critical atom number below which the droplet dissociates. A droplet solution
exists as long as the intrastate interaction is weakly repulsive and the interstate interac-
tion weakly attractive, i. e. for every atom number and also for δg > 0.

In the following we will discuss the experimental realisability of 2D droplets. As stated
above droplets typically suffer from rather limited lifetimes as their density is usually
sufficiently high to get significant three-body losses. Thus, after selecting a suitable spin
combination, we will identify regimes with a suitable density. In order to do so we will
estimate the equilibrium density and derive the ground state phase diagram by using a
variational calculation technique (see e.g. [97]). This will also provide us with a better
understanding of why the 2D droplet regime is less restrained than the 3D droplet regime.
Furthermore, we will see that this only holds true in a flat potential. The presence of
a weak anti-confinement as created by the vertical lattice providing the 2D confinement
(see section 4.6.4) restores the existence of a critical atom number Nc below which the
droplet dissociates. We will also discuss how the lower density limit corresponding to this
critical atom number can be improved. A brief summary of the results can be found at
the end of this section.

5.4.2 Selecting suitable spin states

As stated above the formation of 2D droplets requires repulsive intrastate and attractive
interstate interaction, i. e. positive intrastate and negative interstate scattering lengths.10

As can be seen in fig. 5.6 K39 features two regimes where this condition is fulfilled:
preparing a spin mixture |1, -1⟩, |1, 0⟩ and using magnetic fields around B ≈ 55G or
preparing a spin mixture |1,+1⟩, |1, 0⟩ and using magnetic fields around B ≈ 380G.

sponds to a liquid-to-gas transition where the self-bound property is lost.
10Note that we refer to the 3D scattering lengths here. From the collisional perspective the system is

basically 3D, since the scattering lengths are much smaller than the harmonic oscillator length aho,z of
the tightly confined axis. Accordingly, the 2D coupling constant gij ∝ aij/aho,z is mainly determined by
the 3D scattering length aij .
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Figure 5.6: 3D s-wave scattering length a in dependence of the magnetic field B for a spin mixture
of |1, -1⟩, |1, 0⟩ (top) as well as |1, +1⟩, |1, 0⟩ (bottom). The data is the same as in fig. 3.15. The
regimes where the respective intrastate scattering lengths are positive while the respective interstate
scattering length is negative as required for the formation of 2D droplets are shaded in green. Both
spin mixtures feature a regime where this condition is fulfilled. However, for the mixture of |1, +1⟩,
|1, 0⟩, the |1, 0⟩+ |1, 0⟩ scattering length is particularly low which makes the first spin combination
|1, -1⟩, |1, 0⟩ a more favorable choice.

As described in section 3.7.3 both spin states, |1, -1⟩ as well as |1,+1⟩ can be prepared
and cooled to degeneracy and hence are experimentally accessible. However, the droplet
formation also requires a nearly vanishing mean-field interaction energy, i. e. the system
has to be close to the collapse threshold where δg ≪ g11, g22 [232]. Since the |1, 0⟩+ |1, 0⟩
scattering length around B ≈ 380G is very small, this drastically limits the suitable
regime when using a |1,+1⟩, |1, 0⟩ spin mixture. Hence, it is more favorable to prepare
the quasi-2D system in the |1, -1⟩ state and to then create a |1, -1⟩, |1, 0⟩ spin mixture by
applying an RF π/2-pulse.11 Subsequently, the magnetic field can be ramped to small δg
and the radial confinement given by the 850 nm crossed dipole trap can be switched off.
The thereby created 2D quantum droplet can then be observed by measuring the density
distribution via absorption imaging, especially allowing to infer the size of the atomic
sample, in dependence of the time.

11In the following parameters corresponding to the |1, -1⟩ state or the |1, 0⟩ state will be denoted by
the index ’1’ or ’2’, respectively.
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5.4.3 Estimating the droplet density

To estimate the equilibrium peak density of the 2D quantum droplet we employ a varia-
tional calculation technique (see e. g. [75, 97]). The idea is to determine the energy of the
system E(ϕ) =

∫
ϵ dr, where ϵ is the energy density functional, by making a variational

ansatz for the spatial wave function ϕ(r). Using a parameter corresponding to the size of
the atom cloud as a variational parameter and minimising the energy with respect to this
parameter yields the ground state and allows to extract the corresponding density which
is the equilibrium density.

The first step is to choose a suitable trial wave function. In the droplet regime, i. e.
δg = g12 +

√
g11g22 ≪ g11, g22 with g11, g22 > 0 and g12 < 0, the spin mode is suppressed

which allows us to describe both spin modes with a common wave function as we will se
in the following: Diagonalising the mean-field energy density yields

ϵMF =
1

2

∑
i,j=1,2

gijninj = λ−n
2
− + λ+n

2
+ (5.6)

with coefficients λ+ ≃ (g11 + g22)/2 and λ− ≃ δg
√
g11g22/(g11 + g22) [7, 232]. The density

n+ = (n1
√
g11 − n2

√
g22)/(

√
g11 + g22) corresponds to a spin mode which is sensitive to

the difference between the single component densities n1 and n2 while n− = (n1
√
g22 +

n2
√
g11)/(

√
g11 + g22) corresponds to a density mode which is sensitive to the sum of

the single component densities. δg ≪ g11, g22 yields |λ−| ≪ |λ+| which means n−, and
hence the density mode, corresponds to a soft mode while n+, and hence the spin mode,
corresponds to a hard mode, i. e. the latter is energetically more costly. Accordingly, we
can assume that n+ = 0 in the ground state. Therefore, close to the ground state the
ratio of the single components densities is fixed to

n2

n1

=

√
g11
g22

, (5.7)

relative density fluctuations are suppressed and both single component densities are pro-
portional to the soft mode density [232]

n− = n1

√
g11 + g22
g22

= n2

√
g11 + g22
g11

. (5.8)

The suppression of the spin mode can also be intuitively understood: Due to the attractive
interstate interaction with |g12| ≈ √

g11g22 maximising the spatial overlap of the two
spin components is energetically favorable. Consequently, we assume that both spin
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Figure 5.7: The system’s total ground state energy Etot as well as the individual energy contributions
in dependence of the size σ of the atom cloud as derived by making a Gaussian ansatz for the spatial
wave function (eq. 5.9) and integrating over the energy density (eq. 5.10) as explained in the main
text. Exemplarily, the data for δa = −4.3 a0 and for the potential given by the central layer of
the vertical lattice is shown for two different atom numbers. While the mean-field energy EMF is
purely attractive and the kinetic energy Ekin and the potential energy Epot are purely repulsive,
the structure of the LHY energy ELHY is more complex featuring a minimum by itself. (a) For
N = 3 · 103 the attractive and repulsive forces balance each other at a finite value of σ. Hence,
the total energy features a local minimum marked by the dashed vertical line. This stable state
corresponds to a quantum droplet. (b) For N = 2 · 103 the attractive and repulsive forces cannot
compensate each other. The total energy is repulsive, i. e. the energy is minimised for σ → ∞. The
atom cloud cannot form a self-bound state, but continuously expands which corresponds to a gaseous
state.

components occupy the same spatial mode, i. e. that we can describe them with a common
spatial wave function for which we make a Gaussian ansatz

ϕ(x,y) =
√
n0 exp

(
− x2

2σ2
x

− y2

2σ2
y

)
(5.9)

with n0 = n1 + n2. Proper normalisation yields n0 = N/(πσxσy). σx,σy correspond to
the size of the atom cloud and will be used as variational parameters.

After choosing this trial wave function we proceed to the energy density functional,
for which we consider four relevant contributions: the mean-field term ϵMF derived from
equation 5.6 with n+ = 0 and using equation 5.7 and 5.8, the LHY correction term ϵLHY

[233], the kinetic term ϵkin which is determined by the curvature of the wave function
and a potential term ϵpot describing the anti-trapping harmonic potential caused by the
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vertical lattice:

ϵ = ϵLHY + ϵMF + ϵkin + ϵpot

=
1

8π

(
g11 +

√
g11g22

1 +
√
g11/g22

)2

|ϕ|4 ln

(
√
e a2ho,z

g11 +
√
g11g22

1 +
√
g11/g22

|ϕ|2
)

+ δg

√
g22/g11(

1 +
√
g22/g11

)2 |ϕ|4 + ℏ2

2m
|∇ϕ|2 − 1

2
m
(
ω2
xx

2 + ω2
yy

2
)
|ϕ|2

(5.10)

While the in-plane potential in the central layer is approximately radially symmetric, it
becomes asymmetric in higher layers as it becomes confining along one of the axis (see
sec. 4.6.4). The respective sign in the potential term is adapted according to the respective
layer.
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Figure 5.8: The scattering lengths a for the rel-
evant spin combinations as well as δa = a12 +√
a11a22 in dependence of the magnetic field B.

The vertical dashed line denotes δa = 0. The
data is taken from [8].

Combining equation 5.10 and 5.9 we can calcu-
late the total energy of the 2D system Etot =∫
ϵ dr in dependence of the atom number N

and the magnetic field B for variable size σx,σy
of the atom cloud, where the magnetic field
determines the 3D scattering lengths ai,j (see
fig. 5.8) and thus the 2D coupling strengths
gi,j = ℏ2/m

√
8πai,j/aho,z [105]. By numerically

minimising the energy with respect to σx,σy the
ground state can be inferred: when there is a
finite equilibrium density neq at which the at-
tractive and repulsive forces corresponding to
the energy terms balance each other, then Etot

features a minimum at a finite size σeq as shown
in fig. 5.7 (a): The atom cloud is self-bound
and this stable state corresponds to a quantum
droplet. σeq can be extracted numerically and the equilibrium density can be determined
from the normalisation condition of the wave function

neq =
N

πσeq,xσeq,y
. (5.11)

When on the other hand the repulsive terms outweigh the attractive ones, then the energy
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is minimised for σ → ∞ as shown in fig. 5.7 (b): The atom cloud is in a gaseous state
and continuously expands. This analysis allows to derive the ground state phase diagram
discussed in the following.

5.4.4 Droplets in free space

Let us first consider the free space case, i. e. neglecting the potential term.12 The corre-
sponding phase diagram, still assuming a 2D geometry, is shown in fig. 5.9. Remarkably, it
exhibits only one phase. In the regime discussed here, i. e. δg ≪ g11, g22 with g11, g22 > 0

and g12 < 0, there is a droplet solution for every value of N and B, especially also for low
atom numbers and for δg > 0 which contrasts the 3D case.

This can be understood when taking a closer look at the scalings of the individual
energy terms for which we assume the symmetric case σ = σx = σy. In the 3D case the
mean-field, LHY and kinetic energy all scale differently: EMF,3D ∝ N2σ−3, ELHY,3D ∝
N5/2σ−9/2 and Ekin,3D ∝ Nσ−2. For δg < 0 and low atom numbers the repulsive kinetic
term becomes more relevant and together with the repulsive LHY term outweighs the
attractive mean-field term resulting in a liquid-to-gas transition with decreasing atom
number when reaching a critical atom number. For δg > 0 the mean-field term becomes
repulsive and thus cannot balance the LHY and kinetic terms since they are repulsive as
well. Consequently, there is no droplet solution for δg > 0.

In the 2D case on the other hand the situation is different. The 2D LHY correction
term has the peculiar structure ELHY ∝ σ−2 ln (c · σ−2) where c > 0 is constant for fixed
N and B,13 and the mean-field term EMF as well as the kinetic term Ekin both scale with
σ−2.14 Hence, the total energy exhibits the same structure as the LHY term, regardless
of the sign of EMF. Due to this structure the LHY term and thus also the total energy
Etot is not per se repulsive or attractive, but always features a local minimum at finite σ.15

This unique behaviour leads to a wide range of available equilibrium densities in the 2D
case. The experimentally accessible densities, however, are subject to some limitations:

The main upper limit is given by three-body losses. For high densities scattering
events involving three atoms cannot be neglected and losses occur due to three-body
recombination processes which limits the lifetime of the atomic sample. The three-body

12Considering a box potential yields the same results as long as the box size is larger than σeq since a
flat potential only results in a constant energy offset and hence features the same ground state.

13c > 0 as long as g11, g22 > 0
14This corresponds to the scale invariance already mentioned in section 4.1.
15This can be easily seen from the derivative taking the form ∂σELHY ∝ −σ−3 ln

(
c2σ

−2
)

where c2 > 0
is constant for fixed N and B and from ∂2

σELHY |σ=σeq > 0.
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Figure 5.9: 2D ground state phase diagram for the free space case near the collapse threshold δa = 0.
It exhibits only one phase since a droplet solution can be found for every parameter in the relevant
regime δa ≪ a11, a22. The logarithmic color scale illustrates the equilibrium density neq of the
droplet in dependence of the magnetic field B and atom number N . Although a wide range of
densities is covered, only a part of this range is experimentally accessible. The lower limit is given
by the detection threshold (blue, dashed), upper limits are given by the validity of the 2D treatment
(red, dotted) and by lifetime limitations due to three-body losses (red, dashed). Accordingly, the
experimentally accessible regime is in between the dashed red and blue lines. Both upper limits have
a weak dependency on B; the upper limits denoted in the color bar are averaged values. More details
are given in the main text.

recombination rate K3 has been measured in [75] for different spin compositions of K39
where it was found that K3 for scattering events with three atoms in the |1,0⟩ state is
roughly two orders of magnitude higher than for any other spin combination of the states
|1,0⟩ and |1, − 1⟩. Thus, for estimating an upper density limit we neglect three-body
recombination processes involving atoms in the |1, − 1⟩ state. With this approximation
and assuming a constant volume16 the three-body losses obey the differential equation
ṅ2,3D = K3n

3
2,3D and hence, the 3D density n2,3D(t) of atoms in the |1,0⟩ state follows

a power law. We then obtain an upper bound for the 3D density by demanding that

16Actually, with decreasing atom number the equilibrium size σeq of the droplet increases. Therefore, we
underestimate the slope of the decreasing density by assuming a constant volume. Hence, we overestimate
the three-body losses and therefore underestimate the lifetime.
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n2,3D(t = 10ms) ≥ 0.5 · n2,3D(t = 0) and convert the 3D density to a 2D density via the
harmonic oscillator length of the tightly confined axis n2 = n2,3Daho,z.17 Finally, by using
equation 5.7 we derive an upper limit for the total 2D density.

An upper density limit is also given by the validity of the 2D treatment. To justify
treating the droplet as two-dimensional and using the 2D LHY correction term the 2D
confinement aho,z needs to be smaller than the healing lengths ξ [234]. Since ξi = 1/

√
g̃iini

[105] depends on the coupling strength the corresponding density limit depends on B.
However, in the relevant regime the upper density limit determined by the healing length
is less strict than the upper density limit given by the three-body losses as can be seen in
fig. 5.9.

A lower density limit is given by the signal-to-noise ratio. The lower the density, the
lower the signal until it cannot be distinguished from noise. From this detection threshold
we estimate a lower density limit of 0.5 µm−2.

With these limits the parameter regime suitable for studying 2D droplets can be
determined, the regime is illustrated in fig. 5.9. Note that this is an estimate which is
based on static considerations. Further analysis including the dynamics by solving the
extended Gross-Pitaevskii equation is beyond the scope of this thesis. Remarkably, the
equilibrium density within the suitable regime covers more than two orders of magnitude,
especially also very low densities in the order of a few atoms/µm2 which would allow for
much longer lifetimes than observed with 3D droplets.

Such low droplet densities can only be achieved in free space or flat potentials, though.
The surface tension scales with n3/2

eq [209] and thus, becomes extremely low in these very
dilute regimes. Hence, already a small anti-confinement as created by the vertical lattice
providing the 2D confinement exerts a force that greatly exceeds the surface tension and
can drive a liquid-to-gas transition.

5.4.5 Droplets in the central lattice layer

As discussed in section 4.6.4 the vertical lattice introduces an in-plane harmonic potential.
In the central layer this potential is approximately radially symmetric and anti-confining
with a trapping frequency of ωanti ≈ 2π · 6Hz. The presence of this anti-confinement
significantly alters the phase diagram which now exhibits two phases as can be seen in
fig. 5.10 (a). In contrast to the mean-field energy EMF and the kinetic energy Ekin, both
scaling with σ−2, the potential energy scales with Epot ∝ σ2. Consequently, the total

17In a truly two-dimensional system three-body losses are reduced due to the system’s geometry. How-
ever, in our setup the scattering lengths a are small compared to the 2D confinement, a ≪ aho,z, justifying
the 3D treatment of the scattering processes.
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Figure 5.10: (a) 2D ground state phase diagram of an atomic sample prepared in the central layer of
the vertical lattice which creates an approximately radially symmetric anti-confining potential with
ω ≈ 2π · 6Hz. The logarithmic color scale illustrates the equilibrium density neq of the droplet in
dependence of the magnetic field B and atom number N . White corresponds to a gaseous phase
which does not support self-bound states. The critical atom number separating droplet and gaseous
states is indicated by the black line. Also shown are upper density limits given by the validity of
the 2D treatment (red, dotted) and by three-body losses (red, dashed). The upper limits exhibit a
weak dependence on B, the values denoted in the color bar are the mean values. The experimentally
accessible regime, in between the dashed red and the solid black line, is rather small. (b) Vertical
cuts through (a). The respective critical atom number is denoted (vertical dashed lines) as well as
the mean upper density limits given by validity of the 2D treatment (red, dotted) and by three-body
losses (red, dashed). (c) The equilibrium size σeq of the droplet in dependence of atom number N
for selected values of δa. Close to the respective critical atom number (vertical dashed lines), at
which the liquid-to-gas transition takes place, the droplet size increases resulting in the decreasing
density shown in (b).

energy Etot no longer has the same structure as ELHY and a gaseous phase can occur
as was shown in fig. 5.7 (b). Due to Epot ∝ σ2, while the other energy contributions
decrease with increasing σ, the potential has little effect on small droplets, but a huge
effect on large droplets. Since σeq increases with decreasing N as well as with decreasing
δa (corresponding to increasing B) as can be seen in fig. 5.10 (c), the phase diagram for
high values of N and δa is basically the same as in the free space case, while for decreasing
N and δa the equilibrium density becomes smaller and smaller compared to the free space
case until a critical value is reached, at which the droplet dissociates. This resembles the
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3D case which also features a critical atom number Nc, below which there is no droplet
solution.

The previously discussed upper density limits given by three-body losses and the
healing length are not affected by the potential and due to the small trapping frequency
these upper bounds follow nearly the same path in the parameter space as in the free
space case. The lower limit on the other hand is now given by the critical atom number
which is much stricter than the lower limit determined by the signal-to-noise ratio. Thus,
the parameter regime and the density regime suitable for studying 2D droplets are rather
small as illustrated in fig. 5.10 (a).

The achievable density and hence the lifetime is in the same order as observed for
3D droplets. To further prolong the lifetime it is favorable to use lower values of δa,
i. e. a higher magnetic field. Due to the three-body losses the atom number axis also
corresponds to a time axis18 and as can be seen in fig. 5.10 (b) the slope of neq(N) is less
steep for decreasing δa, i. e. for the same initial density a higher atom number range is
covered before the critical atom number is reached. Consequently, for the same initial
density the lifetime is higher for lower values of δa. This regime is also favorable in terms
of the droplet size. As can be seen in fig. 5.10 (c) σ increases with decreasing δa yielding
a higher imaging resolution of the droplet.

Furthermore, the lifetime could be improved by reducing the critical atom number:
Although the phase diagrams of 2D droplets in an anti-confining potential resembles the
3D case, the mechanism introducing the critical atom number is very different. While
in the 3D case the liquid-to-gas transition is driven by the enhanced role of the kinetic
energy for low atom numbers, in the 2D case the phase transition is driven by the anti-
confinement which becomes more relevant for increasing σeq. The significant difference
is that the kinetic energy depends, apart from N and σ, only on the atomic mass. The
potential energy on the other hand also depends on the trapping frequency ωanti, i. e. an
external parameter which provides us with a handle on the critical atom number and
hence on the corresponding lower density limit. As illustrated in fig. 5.11 reducing the
anti-confinement allows access to lower droplet densities and thus to longer lifetimes.

However, reducing the anti-confinement would require a lower lattice power, which
would loosen the 2D confinement, or an additional confining potential that is fine-tuned
to compensate the anti-confinement. Another, much simpler method to reduce the lower
density limit is to prepare the system in a non-central layer.

18Since the atom number decreases over time, the atom number axis corresponds to an inverse time
axis. Also, the relation is non-linear.
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Figure 5.11: Critical atom number Nc (a) and the corresponding equilibrium density neq(Nc) acting
as a lower density limit (b) in dependence of the physical trapping frequency νanti corresponding to a
radially symmetric harmonic anti-confinement for selected values of δa. For flat potentials νanti → 0
the critical atom number vanishes Nc → 0 and the corresponding density continuously goes to zero
neq(Nc) → 0. Hence, the achievable lifetime can be increased by reducing the anti-confinement.

5.4.6 Droplets in non-central lattice layers

In contrast to the central layer, whose in-plane potential is approximately radially symmet-
ric, the in-plane potential of non-central layers, e. g. the first layer, is not only asymmetric,
but anti-confining along one axis and confining along the other axis (see section 4.6.4).

Due to Epot ∝ (ω2
yσ

2
y − ω2

xσ
2
x) this mainly affects the part of the phase diagram with

larger droplet sizes, i. e. lower densities, as can be seen in fig. 5.12,(a), which is exactly the
regime we are interested in. Compared to the central layer, the critical atom number is
shifted to lower values, increasing the suitable parameter regime and decreasing the lower
limit for achievable droplet densities. Both the increased atom number range covered
within the suitable regime as well as the lower density improve the lifetime of the droplet
compared to the central layer.

Furthermore, the asymmetry of the potential results in asymmetric, or more precisely
elliptical, droplets. Since the potential becomes more relevant with increasing σ and
hence decreasing N , the asymmetry becomes more pronounced towards the critical atom
number. So as shown in fig. 5.12 (c) over time and hence with decreasing atom number,
the droplet becomes more and more elongated until the critical atom number is reached
and the droplet dissociates.

While the lower density limit decreases from central to first layer, it barely changes
when going from first to second or even higher layers. The critical atom number on the
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Figure 5.12: (a) 2D ground state phase diagram of an atomic sample prepared in the first layer of the
vertical lattice. The corresponding in-plane potential is asymmetric as it is anti-confining along one
axis with ωx ≈ 2π · 5.8Hz and confining along the other axis with ωy ≈ 2π · 8.6Hz. The logarithmic
color scale illustrates the equilibrium density neq of the droplet in dependence of the magnetic field
B and atom number N . White corresponds to a gaseous phase which does not support self-bound
states. The critical atom number separating droplet and gaseous states is indicated by the black
line. Also shown are upper density limits given by the validity of the 2D treatment (red, dotted) and
by three-body losses (red, dashed). The upper limits exhibit a weak dependence on B; the values
denoted in the color bar are the mean values. The experimentally suitable parameter regime, in
between the dashed red and black solid lines, is substantially larger than for the central layer. For
comparison the suitable parameter regime for the central layer is denoted in fainter colors as well.
(b) Vertical cuts through the phase diagram for central, first and second layer at δa = −4.3 a0.
Denoted is the respective critical atom number (vertical dashed lines) as well as the mean upper
density limit given by three-body losses (red dashed). With non-central layers lower densities and
hence longer lifetimes can be achieved compared to the central layer. Additionally, the critical atom
number decreases with higher layers which increases the accessible atom number range and hence
further improves the lifetime. While the lower density effect saturates already after the first layer, the
lifetime still improves with higher layers due to the atom number range effect. (c) The aspect ratio
σy/σx of the droplet in dependence of atom number N for different lattice layers at δa = −4.3 a0.
For non-central layers the droplet becomes more and more elliptical close to the critical atom number
(vertical dashed lines) due to the asymmetry of the potential.

other hand further decreases. While this suggests that using outer layers is advantageous,
this is not necessarily the case. The higher the layer, the lower the vertical trapping
frequency determining the 2D confinement. That means the choice of the layer is a trade-
off between droplet lifetime and tightness of the 2D confinement. The highest gain is
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achieved when switching from central to first layer since in that case the vertical trapping
frequency barely changes while the lifetime is improved by both, a lower critical atom
number as well as by a reduced lower density limit.

5.4.7 Summary

In a regime with nearly vanishing mean-field energy, quantum fluctuations become rele-
vant and can balance the mean-field term leading to the formation of self-bound objects.
These so-called quantum droplets are a direct result of beyond mean-field effects and
hence enable us to improve our understanding of beyond mean-field physics.

In comparison to the 3D case, the 2D droplet regime is less restrained due to the
peculiar structure of the two-dimensional LHY correction term describing the quantum
fluctuations: A droplet solution exists as long as the intrastate interaction is weakly
repulsive and the interstate interaction weakly attractive. This holds true in free space
and flat potentials, while the presence on an anti-confinement introduces a critical atom
number below which a gaseous phase occurs which gives a lower bound for the achievable
density.

One of the main experimental challenges is the droplet lifetime which is limited by
three-body losses due to the rather high density compared to typical quantum gases. In
our experimental setup we expect densities in the order of ∼ 100 µm−2 when preparing
the sample in the central layer of the vertical lattice which is comparable to the densities
observed for 3D droplets. This could be further improved by instead preparing the sample
in the first layer of the vertical lattice which is expected to reduce the density by a factor
of ∼ 2.

155



Chapter 6

Conclusion and outlook

In this thesis, the experimental realisation of a degenerate two-dimensional Bose gas using
K39 was presented which exhibits the rare combination of three key features:

• the ability to prepare different spin states and especially to create spin mixtures.
To study binary spin mixtures we typically prepare the sample in the |2S1/2, F =

1,mF = −1⟩ state and then drive an RF transition to transfer a part of the atoms
into the |2S1/2, F = 1,mF = 0⟩ state. Both spin states can be imaged individually.

• highly tunable interaction strength. K39 exhibits several intra- as well as interstate
Feshbach resonances within the |2S1/2, F = 1⟩ manifold that allow to tune the
interaction strength from weakly to strongly interacting as well as from attractive
to repulsive.

• high resolution imaging. The experimental apparatus features two in-vacuo mi-
croscope objectives with a high numerical aperture of 0.75 corresponding to a
diffraction-limited resolution of ∼ 0.62 µm at the imaging wavelength of ∼ 767 nm.

In the beginning of this work, we employed fermionic potassium, K40, and used an all-
optical cooling scheme to prepare small Fermi-Hubbard systems created by a 2x2 tweezer
array. We were following a bottom-up approach by starting with this fundamental building
block that was meant to be gradually extended in order to observe the emergence of many-
body effects. In the course of this thesis, we implemented the reliable detection of single
atoms trapped within the optical tweezers. Furthermore, to ensure a rapid repetition rate
of the experiment, we employed Raman sideband cooling as a final cooling step to reach
degeneracy. However, despite thorough optimisation and investigation of potential issues,
we were not able to exceed a 3D ground state fraction of ∼ 40%.
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Throughout this thesis, it is then discussed how the experimental setup was re-designed
and re-built to create two-dimensional bosonic bulk systems using bosonic potassium K39.
This mainly involves the experimental realisation of a K39 BEC via evaporation, including
an accordingly modified experimental sequence and newly implemented dipole traps, as
well as the subsequent transfer from the three-dimensional into the quasi-two-dimensional
regime which is realised via a tight vertical confinement provided by a blue-detuned one-
dimensional optical lattice. The experimental work furthermore covers modifications of
the laser system in order to cool K39 rather than K40 and general improvements, such
as reducing the decay time of induced eddy currents, implementing a modulation transfer
spectroscopy for the D1 locking scheme and improving the stability of the air conditioning,
not all of them discussed in this thesis. As a result the experimental setup allows to create
a degenerate two-dimensional Bose gas of ∼ 3 · 103 atoms at a temperature of ∼ 50 nK
corresponding to ∼ 0.2TBKT. The two-dimensional system is harmonically confined and
for our parameters, especially for the low temperature, we expect its character to be more
that of a condensate rather than that of a quasi-condensate due to the system’s finite size.

Measurements on 2D polarons performed by M. Schlederer [76] with this experimental
setup are briefly presented, highlighting how the key features of the setup were utilised.
Finally, a particularly interesting regime near the collapse threshold of a spin mixture
is discussed that would allow for the formation of two-dimensional quantum droplets
as a direct beyond mean-field effect. The peculiar shape of the two-dimensional LHY
correction term, which stabilises the droplet against collapse, results in a much broader
droplet regime in two dimensions compared to the three-dimensional case and suitable
parameter regimes for studying two-dimensional droplets in our experimental setup were
found.

A possible next step is to follow this promising research direction, starting with the
creation of two-dimensional droplets which can be observed by their self-bound nature. It
would then be interesting to map out the phase diagram and to compare it to the three-
dimensional case. Further studies could focus on the excitation modes which are difficult
to observe in three-dimensional droplets due to short lifetimes, while two-dimensional
droplets are expected to exhibit longer lifetimes due to lower achievable densities. Further-
more, when implementing flexible in-plane potentials, e. g. via a DMD, one could realise
a flat potential and observe dimensionality-driven gas-to-liquid transitions by preparing
a vertically confined, but three-dimensional atom cloud in the mean-field stable regime,
δa > 0, and then increasing the vertical confinement to enter the quasi-two-dimensional
regime where, in contrast to the three-dimensional case, a droplet solution exists. A
flexible in-plane potential is also expected to enable the realisation of potential-driven
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gas-to-liquid transitions. Exploiting the high numerical aperture of our microscope objec-
tives not only for high-resolution imaging, but also for high-resolution potential shaping
would allow us to create a weak harmonic anti-confinement on the length scale of the two-
dimensional droplets surrounded by an otherwise flat potential. In a suitable parameter
regime, the two-dimensional atomic sample should be in a gaseous phase in the region of
the anti-confinement and hence expand, but is expected to liquify as soon as it reaches
the flat potential.

In addition, our experimental setup allows to study a variety of alternative research
topics. An exciting possibility is to build on the previously discussed polaron measure-
ments. The high numerical aperture of our microscope objectives enables the creation of
small tweezers that provide localised light shifts for the transfer into the impurity state.
This would enable a flexible spatial selection for the polaron formation which could be
utilised e. g. for studying polaron-polaron interaction.

Another fascinating research direction is to study collapse dynamics. In contrast to the
weak collapse observed in three-dimensions [207], a two-dimensional system is expected
to undergo a strong collapse [235, 236]. Exploiting the capabilities of our experimental
setup one could furthermore investigate how the collapse dynamics are affected by the
presence of a second spin state with variable interstate interactions.

To give a final example, one could also pursue the study of turbulence which is an
ongoing research topic. Only recently, Karailiev et al. [185] demonstrated an inverse
turbulent-wave cascade in a spin-polarised two-dimensional Bose gas. Studying turbulence
with spin mixtures gives rise to a variety of phenomena enabled by the interface between
the two fluids [237] such as the Kelvin-Helmholtz instability [238, 239], the Rayleigh-
Taylor instability [240, 241] and the Richtmyer-Meshkov instability [242].

In summary, the ability to study degenerate two-dimensional bosonic bulk systems
with tunable interactions and with the possibilty to employ spin mixtures should bring a
large range of fascinating quantum many-body phenomena into reach.
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Publications

The following research article has been published in the course of this thesis:

• Single-Atom Counting in a Two-Color Magneto-Optical Trap
M. Schlederer, A. Mozdzen, T. Lompe, and H. Moritz,
Physical Review A, 103(3), (2021).
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