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ABSTRACT

Marine ecosystems fulfil functions that are vital for the global climate and human life, including
the long-term storage of atmospheric carbon and food production. Despite their small size, phy-
toplankton are key players in marine ecosystem functioning. Phytoplankton are not only oxygen
producers and the first link in the marine food chain, but also a crucial component of biogeo-
chemical cycles and climate-relevant feedback loops. Global warming, however, leads to a rapid
reorganization of phytoplankton communities, with severe consequences for ecosystem functioning.
To reliably assess future changes in ecosystem functioning, we need robust approaches.

While sedimentary records and marine monitoring data provide information on the past to
present state of an ecosystem, albeit on different temporal scales, laboratory and mesocosm exper-
iments allow to study marine organisms and communities under future levels of warming. Still,
experiments can neither replicate the complexity of real ecosystems nor provide realistic rates of
environmental change. Ecosystem models can fill this gap and are therefore a very well-suited
tool for estimating future species- to ecosystem-level changes. However, current model projections
are inconsistent, which implies that the models are still neglecting crucial processes. Since model
projections represent a valuable resource for political decision-making, improving their informative
value is crucial. To improve model projections of future ecosystem changes, we first need to iden-
tify and implement all relevant processes, and test the models against long-term validation data
afterwards. In this thesis, I evaluate the effect of a hitherto largely ignored process — phytoplank-
ton adaptation — on simulated ecosystem dynamics and present a framework for long-term model
validation.

Phytoplankton possess a high adaptive potential that can affect ecosystem responses to en-
vironmental changes on perennial time scales. To study how phytoplankton adaptation affects
simulated ecosystem dynamics, I developed an innovative ecosystem model that combines compe-
tition between multiple phytoplankton functional groups and adaptation to global warming for the
first time. I apply the model to the Baltic Sea, a temperate to subarctic coastal ecosystem that
is impacted by above-average levels of warming. The simulations reveal that the effect of phyto-
plankton adaptation on the simulated ecosystem dynamics depends on environmental conditions.
Under steady present-day conditions, adaptation allows for a more efficient use of resources through
niche separation, which enhances primary production and associated ecosystem functions such as
secondary production and carbon export. In a warming environment, on the contrary, adaptation
increases the competitivity of inferior competitors, which can hence mitigate the dominance of
preadapted superior competitors. Weaker dominance changes among functionally different taxa,
in turn, mitigate changes in ecosystem functioning. Thus, until now, current ecosystem models
may have systematically underestimated the resilience of marine communities against environmen-
tal changes, resulting in a systematic overestimation of phytoplankton and ecosystem responses to
global warming.
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Including evolutionary processes into ecosystem models is only the first step towards more
reliable predictions of future ecosystem changes. Current predictive ecosystem models are usually
developed for contemporary ecosystems and may no longer be applicable when ecosystem structure
has changed in the future. Instead of being tailored to a specific ecosystem, models may represent
fundamental processes so that they are equally applicable to past, present, and (by implication)
future scenarios. To achieve this, we suggest testing models against major ecosystem changes in
the past, which can be reconstructed from sedimentary records. Only when the same model can
reproduce the current state of an ecosystem and its major changes in the past, we may have some
confidence in the model’s predictions of the future. Most likely, several iterations will be required
to revise the model structure until the same model can reproduce both contemporary observations
and validation data from the past. This process may uncover other relevant processes that have
been ignored in ecosystem models so far.

This thesis demonstrates that while ecosystem models are a promising tool for assessing future
ecosystem changes, there is still much room for improvement. First, I show that phytoplankton
adaptation can significantly change simulated ecosystem dynamics. Second, I present a framework
for the long-term validation of evolutionary ecosystem models to increase their general applicability
and hence the informative value of their predictions. My work not only emphasizes the need to
revise current ecosystem models, especially those relevant for political decisions, but also provides
approaches for solutions.
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ZUSAMMENFASSUNG

Marine Ökosysteme erfüllen Funktionen, die für das globale Klima und uns Menschen essenziell
sind, zum Beispiel die Langzeitspeicherung von atmosphärischem Kohlenstoff und die Produktion
von Nahrungsmitteln. Trotz ihrer geringen Größe spielen Phytoplanktonorganismen eine Schlüs-
selrolle für die Funktionen mariner Ökosysteme. Phytoplanktonorganismen produzieren nicht nur
Sauerstoff und stellen das erste Glied der marinen Nahrungskette dar, sondern sind auch für biogeo-
chemische Kreisläufe und klimarelevante Rückkopplungsschleifen von wesentlicher Bedeutung. Die
globale Erwärmung führt allerdings zu einer raschen Umstrukturierung von Phytoplanktongemein-
schaften, mit schwerwiegenden Konsequenzen für marine Ökosystemfunktionen. Es werden robuste
Ansätze benötigt, um künftige Veränderungen von Ökosystemfunktionen zuverlässig abzuschätzen.

Während Sedimentkerne und Beobachtungen Informationen über den vergangenen bis gegen-
wärtigen Zustand eines Ökosystems liefern, wenn auch auf unterschiedlichen Zeitskalen, erlauben
Labor- und Mesokosmosexperimente die Untersuchung von Meeresorganismen und -gemeinschaften
unter zukünftigen Klimabedingungen. Dennoch können Experimente weder die Komplexität realer
Ökosysteme noch realistische Erwärmungsraten widerspiegeln. Ökosystemmodelle können diese
Wissenslücke schließen und sind daher sehr gut geeignet, um künftige Veränderungen von Spezies
und Ökosystemen abzuschätzen. Die bisherigen Modellvorhersagen sind jedoch widersprüchlich,
was darauf hindeutet, dass aktuelle Modelle immer noch entscheidende Prozesse vernachlässigen.
Da Modellprojektionen eine wertvolle Ressource für die politische Entscheidungsfindung darstellen,
ist es essenziell, ihre Aussagekraft zu verbessern. Um die Aussagekraft von Modellprojektionen zu
erhöhen, müssen zunächst alle relevanten Prozesse identifiziert und implementiert werden, und an-
schließend müssen die Modelle mit Langzeitdaten validiert werden. In dieser Dissertation bewerte
ich die Auswirkungen eines bisher größtenteils vernachlässigten Prozesses — der evolutionären An-
passung von Phytoplankton — auf simulierte Ökosystemprozesse und stelle ein Konzept für die
Langzeitvalidierung von Ökosystemmodellen vor.

Phytoplanktonpopulationen besitzen ein großes Anpassungspotential, welches klimabedingte
Ökosystemveränderungen auf mehrjährigen Zeitskalen beeinflussen kann. Um zu untersuchen,
wie sich die Anpassung von Phytoplankton auf simulierte Ökosystemprozesse auswirkt, habe
ich ein innovatives Ökosystemmodell entwickelt, das zum ersten Mal den Wettbewerb zwischen
mehreren funktionellen Phytoplanktongruppen und deren Anpassung an die globale Erwärmung
kombiniert. Ich wende das Modell auf die Ostsee an, ein gemäßigt bis subarktisches Küstenökosys-
tem, welches von einer überdurchschnittlichen Erwärmung betroffen ist. Die Simulationen zeigen,
dass sich die Anpassung je nach Umweltbedingungen unterschiedlich auf die simulierten Ökosys-
temprozesse auswirkt. Unter stabilen heutigen Bedingungen erlaubt die Anpassung eine effizien-
tere Nutzung von Ressourcen durch Nischentrennung, was die Primärproduktion und die damit
verbundenen Ökosystemfunktionen, beispielsweise die Sekundärproduktion und den Kohlenstoff-
export, erhöht. Unter sich erwärmenden Bedingungen erhöht die Anpassung dagegen die Wettbe-
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werbsfähigkeit von unterlegenen Konkurrenten, welche folglich die Dominanz von vorangepassten
überlegenen Konkurrenten abschwächen können. Geringere Dominanzverschiebungen zwischen
funktionell unterschiedlichen Taxa reduzieren wiederum Veränderungen der Ökosystemfunktio-
nen. Folglich könnten bisherige Ökosystemmodelle die Widerstandsfähigkeit von marinen Gemein-
schaften gegenüber Umweltveränderungen systematisch unterschätzt haben, was in einer syste-
matischen Überschätzung der klimabedingten Phytoplankton- und Ökosystemveränderungen re-
sultieren würde.

Die Einbeziehung von evolutionären Prozessen in Ökosystemmodelle ist allerdings nur der er-
ste Schritt, um die Vorhersagen von künftigen Ökosystemveränderungen zuverlässiger zu machen.
Aktuelle Vorhersagemodelle werden meist für heutige Ökosysteme entwickelt und sind möglicher-
weise nicht mehr anwendbar, wenn sich die Struktur des Ökosystems in der Zukunft verändert
hat. Anstatt auf ein spezifisches Ökosystem zugeschnitten zu sein, könnten Modelle grundle-
gende Prozesse repräsentieren, damit sie gleichermaßen auf vergangene, gegenwärtige und (im
Umkehrschluss) zukünftige Szenarien anwendbar sind. Um dies zu erreichen, empfehlen wir, Mo-
delle anhand vergangener Ökosystemveränderungen zu testen, welche aus Sedimentkernen rekon-
struiert werden können. Nur wenn dasselbe Modell sowohl den heutigen Zustand eines Ökosystems
als auch seine wesentlichen Veränderungen in der Vergangenheit reproduzieren kann, können wir
den Vorhersagen des Modells für die Zukunft ein gewisses Vertrauen entgegenbringen. Es wird
wahrscheinlich einige Iterationen erfordern, die Modellstruktur so zu überarbeiten, dass das Mo-
dell sowohl die heutigen Beobachtungen als auch die Validierungsdaten aus der Vergangenheit re-
produzieren kann. Durch diesen Prozess könnten möglicherweise auch weitere essenzielle Prozesse
identifiziert werden, die bisher in Ökosystemmodellen vernachlässigt wurden.

Diese Dissertation demonstriert, dass Ökosystemmodelle zwar ein vielversprechendes Werkzeug
zur Abschätzung künftiger Ökosystemveränderungen darstellen, aber noch viel Raum für Verbesse-
rungen besteht. Erstens zeige ich, dass sich die Anpassung von Phytoplankton erheblich auf die
simulierten Ökosystemprozesse auswirken kann. Zweitens stelle ich ein Konzept zur Langzeitva-
lidierung von evolutionären Ökosystemmodellen vor, welches ihre allgemeine Anwendbarkeit und
damit auch die Aussagekraft ihrer Vorhersagen erhöhen kann. Meine Arbeit macht nicht nur deut-
lich, dass derzeitige Ökosystemmodelle überarbeitet werden müssen, insbesondere diejenigen, die
für die Politikgestaltung relevant sind, sondern liefert auch Lösungsansätze.
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Chapter 1

INTRODUCTION

Marine ecosystems and their functioning have a direct impact on the global climate and on us
humans (Weatherdon et al., 2016; Hain et al., 2014). However, global warming leads to a rapid
reorganization of marine communities (Pecl et al., 2017), meaning that future changes in ecosystem
functioning are inevitable (Hoegh-Guldberg and Bruno, 2010). Ecosystem models are increasingly
used to assess future changes in ecosystem functions like net primary production and carbon export,
but their projections differ not only in magnitude but also in the direction of change (Laufkötter
et al., 2015, 2016). Since model projections are a valuable resource for political decision-making
(Intergovernmental Panel on Climate Change (IPCC), 2022; Meier et al., 2014), improving their
informative value is vital.

In this thesis, I contribute to the improvement of model projections of future ecosystem changes
by addressing two major uncertainties in current ecosystem models. First, most ecosystem models
ignore the high evolutionary potential of phytoplankton, which are key players in marine ecosys-
tems. To fill this gap, I have developed an innovative evolutionary ecosystem model that I apply
to the Baltic Sea — a temperate to subarctic, semi-enclosed brackish ecosystem affected by above-
average levels of multiple stressors (Reusch et al., 2018). Second, most ecosystem models are
developed for ecosystems in their current state, so that they may no longer be applicable when
ecosystem structure has changed in the future. I present a conceptual framework that makes use of
data from sediment archives to develop evolutionary ecosystem models that are equally applicable
to the past, the present, and, by implication, the future.

In the following, I explain the role of phytoplankton in marine ecosystems, how phytoplankton
are responding to global warming, and what these responses may imply for ecosystem functioning.
I continue by describing the importance of ecosystem models for assessing future changes in marine
ecosystems, and point out remaining limitations in their predictive ability. Finally, I identify two
major uncertainties in current ecosystem models that may explain the aforementioned limitations
and briefly explain how I address these uncertainties in this thesis.
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CHAPTER 1. INTRODUCTION

The crucial role of phytoplankton in marine ecosystems — an

uncertain future

Numerous economic sectors directly depend on healthy marine environments, including recreation,
tourism, and fisheries (Weatherdon et al., 2016). Fisheries, in turn, add substantially to food secu-
rity (Weatherdon et al., 2016). In addition, marine ecosystems contribute to the long-term storage
of atmospheric CO2 through the biological carbon pump (Hain et al., 2014). The biological car-
bon pump is responsible for 60 – 70 % of the oceanic surface-to-depth carbon gradient (Toggweiler
et al., 2003), and has sequestered about 20% of the anthropogenic CO2 emissions released since
1750 (Khatiwala et al., 2013). Marine organisms are also involved in other climate-relevant feed-
back mechanisms, for example, by promoting cloud formation through the production of dimethyl
sulfide (DMS) (Simó, 2001; Wingenter et al., 2007; Clarke et al., 1998) and by influencing the
physical properties of the ocean, such as viscosity (Hutchinson and Webster, 1994) and water
temperature (Sathyendranath et al., 1991; Hense, 2007).

Despite being small in size, phytoplankton play key roles in the functioning of marine ecosys-
tems (Fig. 1.1). Phytoplankton contribute about half of the world’s photosynthesis (Field et al.,
1998), form the basis of the marine food web (Fenchel, 1988), and are a essential component of
biogeochemical cycles (Hutchins and Fu, 2017). Considering the carbon cycle, for example, phy-
toplankton drive the biological carbon pump by fixing CO2 using solar energy (Basu and Mackey,
2018). Phytoplankton can further affect the climate by producing dimethylsulfoniopropionate
(DMSP), which is converted into dimethyl sulfide (DMS) by marine ecosystem processes and re-
leased into the atmosphere where it seeds cloud formation (Simó, 2001; Clarke et al., 1998). In
addition, phytoplankton blooms can increase the temperature of the sea surface through light ab-
sorption and cool the water masses below through shading (Sathyendranath et al., 1991; Hense,
2007). Buoyant phytoplankton taxa floating on the surface can furthermore change the viscosity of
the water and inhibit wind-driven surface mixing (Hutchinson and Webster, 1994), which enhances
the effects of light absorption and shading (Sonntag and Hense, 2011) and can even affect large-scale
ocean circulation (Jung and Moon, 2019). The contribution to ecosystem functioning varies among
phytoplankton functional groups, which may differ in their quality as food/susceptibility to pre-
dation, their sinking speed, their production of DMSP, and their buoyancy (Litchman et al., 2015;
Keller et al., 1989; Moreno-Ostos et al., 2009). As a consequence of global warming, phytoplankton
communities are changing, and so are the ecosystem functions associated with them.

Phytoplankton respond to global warming by changing their phenology. On global average, the
phytoplankton spring bloom advances at a rate of 6 d per decade (Poloczanska et al., 2013), while
regional rates may be notably higher. In the Baltic Sea, for example, the spring bloom advances
more than twice as fast (14 d per decade), and the autumn bloom is delayed even faster (31 d
per decade, Wasmund et al., 2019). These exceptional phenological changes can be attributed to
exceptional warming (Reusch et al., 2018), with the Baltic Sea warming about 3 times faster than
the global average (Rutgersson et al., 2014). This exceptional warming is also the reason why
the Baltic Sea is the focus of this thesis. Overall, phenological changes in phytoplankton lead to
temporal mismatches with the growth of higher trophic levels like zooplankton and fish (Asch et al.,
2019; Edwards and Richardson, 2004; Winder and Schindler, 2004a), which affects the energy flow
to top predators (Frederiksen et al., 2011).
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Figure 1.1: A schematic showing the role of phytoplankton in marine ecosystems. Phytoplankton grow close to
the water surface, producing biomass and O2 via photosynthesis under the consumption of CO2 and nutrients.
In addition, many phytoplankton taxa synthesize dimethylsulfoniopropionate (DMSP), which is transformed into
dimethyl sulfide (DMS) by ecosystem processes and released into the atmosphere where it seeds cloud formation
(Simó, 2001; Clarke et al., 1998). Due to light absorption, the phytoplankton bloom warms the water surface
and simultaneously cools the water masses below the bloom through shading (Sathyendranath et al., 1991;
Hense, 2007). Phytoplankton biomass is consumed by higher trophic levels, for example, zooplankton and fish,
or released into the water column as dissolved or particulate organic matter (DOM and POM, respectively).
DOM and POM are decomposed by bacteria and archaea under the consumption of oxygen and the release of
CO2, while bacteria and archaea are consumed by zooplankton (microbial loop, violet arrow). A fraction of
the organic matter aggregates and sinks into deeper water layers, where it is stored for centuries to millennia
(DeVries et al., 2012). Modified from Worden et al. (2015) and Azam and Malfatti (2007); use permitted by
AAAS and Springer Nature.

In addition to phenological changes, global warming causes changes in species distribution.
Marine organisms move poleward at a rate of 72 km per decade, with the fastest leading-edge ex-
pansion for phytoplankton (∼ 470 km per decade, Poloczanska et al., 2013). The resulting changes
in phytoplankton species composition and abundance may lead to strong regional changes in the
DMS flux to the atmosphere, which may have significant impacts on regional temperature and
precipitation patterns (Bopp et al., 2003). In addition, the altered prey availability may further
impact zooplankton and fish stocks (Heneghan et al., 2023). For example, a decline in Antarctic
sea ice and sea ice algae has led to a decrease in the density of Antarctic krill (Atkinson et al.,
2004), which supports commercial fisheries (Everson, 2000). The decrease in krill density, in turn,
has caused a decline in the population sizes of top predators, including penguins, seals, and alba-
trosses (Reid and Croxall, 2001). All in all, altered food web structures resulting from changes in
phytoplankton phenology, species composition, and abundance eventually lead to climate-relevant
ecosystem changes, e.g., by changing the amount of atmospheric carbon that is exported to deeper
water layers.
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CHAPTER 1. INTRODUCTION

Changes in carbon export, however, may also be directly caused by dominance shifts among
functionally different phytoplankton taxa. For example, a decrease in diatom biomass and a
simultaneous increase in dinoflagellate biomass were observed in the North Atlantic, the North
Sea, and the Baltic Sea (Leterme et al., 2005; Klais et al., 2011). Diatoms are characterized
by higher sinking rates than dinoflagellates (Heiskanen, 1998), meaning that a shift from diatom
to dinoflagellate dominance could decrease the downward transport of organic matter. Some of
the dominant dinoflagellate species in the Baltic Sea, however, produce large numbers of resting
stages that sink to the sea floor and have a low germination success in the next season (Spilling
et al., 2018). Consequently, a shift from diatom to dinoflagellate dominance could also enhance
the long-term burial of organic matter, including carbon and especially nutrients, which are more
concentrated in dinoflagellate than diatom sinking material (Spilling et al., 2014, 2018). The long-
term burial of nutrients could contribute to diminishing the advanced eutrophication of the Baltic
Sea (Spilling et al., 2018), which has turned the Baltic Sea into one of the most hypoxic ocean
areas in the world (Breitburg et al., 2018).

As global warming progresses, nutrient loading is becoming increasingly problematic since the
combination of warming and nutrient loading promotes harmful algal blooms (Paerl and Paul, 2012;
Glibert et al., 2014; Gobler et al., 2017). Harmful algal blooms, which can be formed by poisonous
diatoms, dinoflagellates, and cyanobacteria, can disrupt food webs, affect fisheries, and pose a risk
to wildlife and human health (Heil et al., 2005; Backer and McGillicuddy, 2006; Brand et al., 2012;
Glibert et al., 2012). Cyanobacteria, however, are not only problematic due to their toxicity but
also due to their ability to fix atmospheric nitrogen. Cyanobacterial nitrogen fixation contributes
to eutrophication and therefore promotes ocean deoxygenation (Long et al., 2021; Vahtera et al.,
2007). In the highly eutrophic and hypoxic Baltic Sea, an increase in nitrogen-fixing cyanobacteria
over the past decades has mitigated the success of nitrogen-related nutrient management by ∼ 66 %
(Gustafsson et al., 2017). The role of nitrogen fixation for nutrient management in the Baltic Sea
is expected to increase even further in the future (Hense et al., 2013). In addition to nitrogen
fixation, cyanobacteria are characterized by their buoyancy (Walsby et al., 1995). An increase
in cyanobacteria could therefore increase the importance of biogeophysical feedbacks such as light
absorption, increased surface albedo (shading), and reduced wind stress (Sonntag and Hense, 2011).

In conclusion, the multitude of phytoplankton responses to global warming is already affecting
marine ecosystems and their functioning. The phytoplankton and ecosystem responses we observe
today are underlain by an increase in global surface temperature of ∼ 1.25 ◦C since the period
1850 – 1900, and an additional increase of up to ∼ 3.5 ◦C is expected by the end of the century
under the most extreme emission scenario (IPCC scenario SSP5-8.5, Allan et al., 2021). Future
consequences for marine ecosystems are largely unknown, and there is a potential for synergisms
and antagonisms among stressors, as well as a growing risk of exceeding irreversible tipping points,
which may trigger amplifying feedback loops and domino effects (Rockström et al., 2009; Hoegh-
Guldberg and Bruno, 2010). Predicting future ecosystem changes is of great importance, but
remains a major challenge.
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Ecosystem modeling — a tool for assessing future ecosystem

changes

Marine monitoring data and sedimentary records can provide trends for future ecosystem changes
based on the past (Suikkanen et al., 2007; Poutanen and Nikkilä, 2001). In addition, “futuristic
ecosystems” like the Baltic Sea that are impacted by above-average levels of anthropogenic stres-
sors can serve as a “time machine” for other ecosystems and provide direct insights into possible
future changes (Reusch et al., 2018). The problem with monitoring data and sedimentary records,
however, is that they are temporarily and spatially limited in their coverage and/or resolution (van
Beusekom et al., 2009; Hjerne et al., 2019; Abrantes et al., 2005; Maslin et al., 2005). Laboratory
and mesocosm experiments, on the contrary, allow us to study how marine organisms and commu-
nities respond to future levels of warming on a daily basis (Sommer et al., 2015; Yvon-Durocher
et al., 2015; Jin and Agustí, 2018). So far, however, no long-term experiments exist that simulate
species or community responses to realistic rates of environmental change. Furthermore, experi-
ments cannot account for complex feedbacks between organisms and their environment. Ecosystem
models (Box 1.1) can fill the aforementioned knowledge gaps and therefore currently represent the
best tool for estimating future species- to ecosystem-level changes.

Box 1.1: Ecosystem models — an overview
Ecosystem models make use of mathematical formulations to describe interactions between
different components of the ecosystem, including organic matter (living organisms, detritus),
as well as chemical substances (nutrients, toxins, carbon, oxygen, etc.). Each component of the
model ecosystem, such as nutrients, phytoplankton, zooplankton, and detritus, is represented
by a model state variable. Model state variables are linked by source and sink processes
such as nutrient uptake, grazing, mortality, and remineralization. Source and sink processes
are described with differential equations and may depend on environmental conditions, for
example, salinity, temperature, and light. Ecosystem models can be applied as 0-dimensional
box models or coupled to a 1D or 3D physical environment.

Figure 1.2: Example for a simple 0-dimensional box model that simulates the dynamics between a nutrient
N , a phytoplankton population P , a zooplankton population Z, and detritus D. Both phytoplankton
growth and zooplankton grazing are assumed to depend on temperature T , irradiance I, salinity S, and
nutrient availability N/phytoplankton concentration P . Mortality and remineralization are implemented
temperature-dependent. The figure was created with BioRender.com.

5



CHAPTER 1. INTRODUCTION

Ecosystem models provide a wide range of applicability. For example, ecosystem models can
be used to study the temporal and spatial patterns of phytoplankton community composition
(Bruggeman and Kooijman, 2007; Follows et al., 2007; Ward et al., 2012; Dutkiewicz et al., 2020).
In addition, ecosystem models allow to identify potential trade-offs, for example between phyto-
plankton diversity and different ecosystem functions such as primary production and export pro-
duction (Smith et al., 2016; Acevedo-Trejos et al., 2018). Furthermore, potential feedback loops
can be identified and studied, e.g., between phytoplankton and water temperature (phytoplankton
light absorption) (Manizza et al., 2005, 2008; Park et al., 2015), phytoplankton and cloud forma-
tion (planktonic DMSP/DMS production) (Cropp et al., 2007), or cyanobacteria and their biotic
and abiotic environment (Hense, 2007). Finally, ecosystem models can simulate the responses of
phytoplankton (or higher trophic levels) to biotic and abiotic factors, including viruses (Weitz
et al., 2015; Krishna et al., 2024), eutrophication (Gustafsson et al., 2012), ocean acidification
(Dutkiewicz et al., 2015), and temperature changes (Elliott et al., 2005; Lee et al., 2018). Embed-
ded into regional or global coupled Earth system models, ecosystem models are increasingly used
to assess future ecosystem changes on regional to global scale, including oxygen conditions, net
primary production, and carbon export (Meier et al., 2011, 2012b; Séférian et al., 2014; Laufkötter
et al., 2015, 2016).

Future projections of marine biogeochemistry, however, are inconsistent across models. For
example, global models project small to moderate decreases in carbon export that differ by up to
an order of magnitude, and for net primary production, the models even disagree on the direction
of change (Laufkötter et al., 2015, 2016). Therefore, it is not surprising that the latest generation
of CMIP models (Coupled Model Intercomparison Project Phase 6, Eyring et al., 2016) cannot
reproduce observations of open ocean surface chlorophyll (see Fig. 1.3 and Séférian et al., 2020).
As shown in Fig. 1.3, current CMIP models both underestimate (blue) and overestimate (red)
chlorophyll in the open ocean depending on the geographic location, with the patterns of mismatch
being largely inconsistent across models. This demonstrates that these global Earth system models,
and especially their ecosystem components, do not include or resolve fundamental biogeochemical
processes, which adds to the uncertainty of their simulations. Since CMIP model projections,
among others, form the base of political decision-making (Intergovernmental Panel on Climate
Change (IPCC), 2022; Meier et al., 2014), improving their informative value is vital.
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Figure 1.3: Compari-
son between data and
CMIP6 models. The
top panel shows satellite
data on surface chloro-
phyll in the open ocean(
Chl,

[
mgChlm−3

] )
(Valente et al., 2016)
averaged over the pe-
riod 1998 – 2014. The
other panels show the
difference between the
data and simulations by
ocean biogeochemical
models embedded within
CMIP6 Earth system
models for the same
period. The red color
indicates that the models
overestimate open ocean
surface chlorophyll, while
the blue color indicates
an underestimation.
Modified from Séférian
et al. (2020); the ma-
terial is available under
a Creative Commons
Attribution 4.0 Interna-
tional License (https:
//creativecommons.org/
licenses/by/4.0/).
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CHAPTER 1. INTRODUCTION

Aim and outline of this thesis

In in this thesis, I identify and address two major uncertainties in current ecosystem models. First,
current ecosystem models largely ignore a fundamental process, namely the high evolutionary
potential of phytoplankton, which results from their large population sizes and short generation
times. Laboratory experiments showed that phytoplankton can adapt to environmental changes
within 200 – 600 generations (Schaum and Collins, 2014; Jin and Agustí, 2018; O’Donnell et al.,
2018). In nature, phytoplankton adaptation can be relevant on perennial time scales and thus,
adaptive responses to global warming have already occurred (Irwin et al., 2015; Hinners et al.,
2017; Hattich et al., 2024). Adaptation is therefore important for phytoplankton responses and
ultimately ecosystem responses to global warming, and may alter model projections of the former
notably (Ward et al., 2019). Some ecosystem models already account for the high adaptive potential
of phytoplankton (Clark et al., 2013; Sauterey et al., 2017; Beckmann et al., 2019; Le Gland et al.,
2021), but so far, no evolutionary ecosystem model has considered phytoplankton adaptation to
global warming and competition between multiple functional groups simultaneously. Since different
phytoplankton functional groups fulfil different functions in the ecosystem, for example, through
nitrogen fixation and/or toxicity, their individual responses to global warming will affect ecosystem
functioning and need to be considered when assessing future ecosystem changes.

Here, I present results from an innovative ecosystem model that combines the competition be-
tween multiple phytoplankton functional groups and their adaptation to global warming for the
first time. In Study I, me and my co-author apply the model to the Baltic Sea, which is affected
by above-average levels of warming, nutrient load, and deoxygenation (Reusch et al., 2018), and
perform simulations for present-day and future climate scenarios. For each climate scenario, we
run (a) simulations without phytoplankton adaptation and (b) simulations with mutations in the
optimum temperature for growth. With these simulations, we aim to study the interplay between
phytoplankton competition and adaptation and disentangle their separate effects on simulated
phytoplankton dynamics under contemporary and future climates. Specifically, we want to answer
the following research question:

How does the interplay between competition and adaptation affect simulated phyto-
plankton responses to global warming?

Although adaptation can be affected by the resuspension of resting cells that were buried in the
sediment (Rengefors et al., 2017), this process is largely ignored in evolutionary ecosystem models.
In addition, there is no consensus about the effect of resuspension on adaptation since both a slow-
down and an enhancement were suggested (Ribeiro et al., 2013; Kremp et al., 2016; Hairston Jr and
De Stasio Jr, 1988). To fill these knowledge gaps, we perform additional simulations for present-
day and future climate scenarios, which consider both adaptation and resuspension. We aim to
further understand:

How does resting cell resuspension affect adaptation to global warming?

In Study II, we build on Study I and use an extended version of the model that allows for
the calculation of different ecosystem functions, including nitrogen fixation and carbon export. A
few evolutionary ecosystem models have already addressed questions related to ecosystem func-
tioning, including the effect of phytoplankton size diversity on productivity (Smith et al., 2016),
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drivers on phytoplankton C:N stoichiometry, which can affect the biological carbon pump (Sauterey
and Ward, 2022), and the impact of bacterial adaptation to global warming on the microbial loop
and primary production (Cherabier and Ferrière, 2022). So far, however, no model has explicitly
asked the question of how phytoplankton adaptation to global warming could affect ecosystem
functioning. Thus, we use our extended model to investigate:

How does phytoplankton adaptation affect simulated ecosystem dynamics and future
changes in ecosystem functioning?

Apart from the lack of adaptation, another major uncertainty in current ecosystem models is
that they are usually developed for the contemporary state of an ecosystem. Thus, models may be
no longer applicable when ecosystem structure has changed in the future. To study future ecosys-
tem and climate changes, models should consider general mechanisms instead of being tailored to
the ecosystem of interest at a specific time.

In Study III, my co-authors and I design a conceptual framework for developing evolutionary
ecosystem models that are equally applicable to past, present, and (by implication) future sce-
narios. In our framework, we suggest calibrating ecosystem models to reproduce contemporary
observations and then testing them against long-term validation data from the past. Only if a
model can reproduce both calibration and validation data, which may require several iterations to
adjust the model structure, it should be used predictively.

We present sediment archives as valuable source of long-term validation data. Natural sediments
archive past ecosystem changes, including information on environmental conditions (Hillaire-Marcel
and De Vernal, 2007), biodiversity and relative taxa abundances (Alsos et al., 2022; Monchamp
et al., 2016; Zimmermann et al., 2023), as well as trait adaptation (Bennington et al., 1991; Hin-
ners et al., 2017; Isanta-Navarro et al., 2021). In the manuscript for Study III, we discuss the
advantages of using data from sediment archives for validation instead of data from monitoring or
experiments, and answer the following research question:

How can data from sediment archives improve evolutionary ecosystem models and
their projections of future ecosystem changes?

Since we are presenting a novel approach that has not yet been implemented in practice, we
also discuss:

What are the remaining challenges and what is the potential of our approach?
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Hochfeld, I. and Hinners, J. (2024): Phytoplankton adaptation to steady or changing environ-
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in writing the manuscript.
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2.1. STUDY I: THE INTERPLAY BETWEEN COMPETITION & ADAPTATION

2.1 Study I: The interplay between competition & adaptation

Evolutionary adaptation to steady or changing environments

affects competitive outcomes in marine phytoplankton

Isabell Hochfeld & Jana Hinners

The interplay of phytoplankton competition and adaptation affects how phy-
toplankton, and ultimately marine ecosystems, respond to global warming.
However, current ecosystem models that are run under global warming scenar-
ios do not include both processes simultaneously. To fill this gap, we developed
an innovative ecosystem model for the Baltic Sea that simulates competition
between three phytoplankton functional groups and allows for adaptation to
changing temperatures. As adaptation can be affected by the resuspension
of dormant resting cells from the sediment, we explicitly implemented this
mechanism. We found that resuspension tends to slow down adaptation, and
that competition and adaptation influence each other. The outcome of the
competition-adaptation interplay depends on environmental conditions. In a
steady environment, competition drives adaptation to individual temperature
niches to reduce competition pressure. In a changing environment, adaptation
allows inferior competitors to mitigate the dominance of preadapted superior
competitors. Our results demonstrate that by neglecting adaptation, models
can systematically overestimate warming-related changes in taxa dominance.
Ecosystem models should include both competition and adaptation to accu-
rately simulate phytoplankton responses to global warming. Our model is ide-
ally suited to integrate emerging evolutionary data based on long-term data
series (e.g., from sediment archives) to further improve projections of future
ecosystem change.

Published in Limnology and Oceanography
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Introduction

The functioning of marine ecosystems is affected by the dominant phytoplankton taxa and the
functional traits that these taxa express (Litchman et al., 2015). Due to global warming, both
taxa dominances and functional traits are changing (Klais et al., 2011; Irwin et al., 2015). Even
though competition between phytoplankton taxa and adaptive trait changes affect phytoplankton
responses, and ultimately ecosystem responses to global warming (Litchman et al., 2015), current
ecosystem models do not consider both processes simultaneously (Laufkötter et al., 2015; Munkes
et al., 2021). To study how the interplay of competition and adaptation influences community,
population, and trait changes of phytoplankton in response to global warming, we developed an
ecosystem model for the Baltic Sea that includes three competing phytoplankton functional groups
and allows for adaptation to changing temperatures.

Global warming has already caused ecological responses of phytoplankton, which include shifts
in bloom timing and changes in species dominance (Winder and Sommer, 2012). As phytoplankton
form the base of the marine food web (Fenchel, 1988), these responses can alter food web structures
and eventually lead to ecosystem-level changes (Edwards and Richardson, 2004). In the Baltic Sea,
an extension of the phytoplankton growing season (Wasmund et al., 2019), a shift from diatom
to dinoflagellate dominance during spring bloom (Klais et al., 2011), as well as an increase in
cyanobacterial summer biomass (Suikkanen et al., 2007) have been observed over the past 50 yr.
Especially the increasing cyanobacteria represent a threat for the Baltic Sea ecosystem due to
their toxicity for higher trophic levels (Chorus and Welker, 2021) and their contribution to ocean
deoxygenation (Long et al., 2021; Munkes et al., 2021). Cyanobacteria enhance primary production
through nitrogen fixation (Hense, 2007) and hence promote hypoxia by increasing the microbial
oxygen demand in bottom waters as dead biomass is decomposed. In turn, spreading hypoxia
enhances the release of iron-bound phosphate from sediments (Conley et al., 2002), promoting
cyanobacterial summer blooms and creating a positive feedback mechanism that maintains hypoxia
(Vahtera et al., 2007).

Changes in phytoplankton phenology and species dominance do not necessarily result from
ecological processes alone but can also be affected by evolutionary adaptation. Owing to their
large population sizes and short generation times, phytoplankton possess a high potential to adapt
to new environments through mutation and selection. Laboratory experiments demonstrated that
phytoplankton can adapt to environmental changes within 200 – 600 generations, corresponding to
a few years in nature (Jin and Agustí, 2018). Consequently, phytoplankton already show adaptive
changes in temperature-dependent functional traits in response to global warming (Irwin et al.,
2015; Hinners et al., 2017).

Both competition and adaptation shape phytoplankton community composition and influence
each other. Experiments with bacteria (Lawrence et al., 2012) and phytoplankton (Collins, 2011)
demonstrated that interspecific competition has a major impact on adaptation to a novel environ-
ment. Likewise, a competition-evolution experiment with coccolithophores and diatoms revealed
that strong selection pressures affect competitivity and species dominance (Listmann et al., 2020).
Thus, to realistically estimate phytoplankton responses to global warming, we need to understand
how competition and adaptation influence each other in different environments.

So far, no long-term experiments exist that allow us to study the interplay between phyto-
plankton competition and adaptation under global warming on realistic time scales. Numerical
models can bridge this knowledge gap by simulating species- and ecosystem-level responses to
global warming at realistic rates of environmental change.
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In the Baltic Sea, ecosystem models are used to perform both hindcasts and future climate
projections. Prominent examples include ERGOM (Neumann et al., 2002), SCOBI (Eilola et al.,
2009), BALTSEM (Savchuk, 2002), BFM (Fransner et al., 2018), and ERSEM (Vichi et al., 2004).
While all these biogeochemical models consider physical processes, only ERGOM, SCOBI, and
BFM are coupled to full ocean circulation models. The Baltic Sea ecosystem is represented by
three to four phytoplankton functional groups, which compete for three to four different nutrients,
and are grazed by one to four zooplankton groups. While hindcasts were performed with all models
presented here, a multimodel ensemble of ERGOM, SCOBI, and BALTSEM was used for climate
projections (Meier et al., 2014). Even if the results of climate projections are relevant for stake-
holders, neither the models presented here nor similar models like CEMBS (Dzierzbicka-Głowacka
et al., 2013) or ECOSMO (Daewel and Schrum, 2013) consider evolutionary adaptation of phy-
toplankton. Instead of adaptation, however, BFM, ERSEM, and an updated version of ERGOM
(Neumann et al., 2022) allow for variable nutrient stoichiometry. Whether variable stoichiometry
or the interplay of competition and adaptation is more important for realistic climate projections
is beyond the scope of this article. Nonetheless, the absence of adaptation in the above models
remains a major uncertainty factor that calls into question the validity of their climate projections.

Contrary to the models presented above, there are ecosystem models that consider adaptation.
Phytoplankton cell size is frequently used as adaptive master trait, including size-related physiolog-
ical cell properties and trade-offs (Daines et al., 2014; Sauterey and Ward, 2022). Other ecosystem
models simulate adaptive changes in the optimum growth temperature (Beckmann et al., 2019),
the encystment rate (Hinners et al., 2019), two different functional traits (Le Gland et al., 2021),
or overall fitness (Walworth et al., 2020). However, none of the previously mentioned ecosystem
models considers competition between different functional groups and adaptation to global warm-
ing simultaneously. Current eco-evolutionary models that do so, in turn, lack ecosystem dynamics
(De Mazancourt et al., 2008; Northfield and Ives, 2013; Barabás and D’Andrea, 2016).

Although adaptation can be affected by the resuspension of dormant resting cells from the
sediment (Rengefors et al., 2017), current ecosystem models largely ignore this process. So far,
resuspension has either been represented in a simplified manner, e.g., by disabling the background
mortality of resting cells (Daines et al., 2014), or in a completely conceptual framework (Sundqvist
et al., 2018).

Here, we present for the first time an ecosystem model that simultaneously considers compe-
tition and adaptation of three major phytoplankton functional groups (dinoflagellates, diatoms,
and diazotrophic cyanobacteria) in a global warming scenario, including an explicit representa-
tion of resuspension. We apply our model to the Baltic Sea, an ecosystem that is heavily influ-
enced by anthropogenic activities, including above-average levels of warming (Reusch et al., 2018).
For each phytoplankton functional group, we simulate the life cycle of one representative species
or of a complex that contains multiple species. In addition, our model allows for two flexible
temperature-dependent traits: cell size, which responds plastically to changing temperatures, and
optimum growth temperature, which can adapt through mutation and selection. We assess future
climate-driven community, population, and trait changes, and disentangle to which degree these
changes result from competition or adaptation. Taking advantage of our detailed representation
of phytoplankton life cycles, we explicitly simulate the resuspension of dormant resting cells from
the sediment and study potential effects of resuspension on adaptive changes in the optimum
temperature.
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Materials and methods

Model concept

Our model uses a 0-dimensional agent-based approach (Appendix A.1) to simulate the life cycles of
three major phytoplankton functional groups (dinoflagellates, diatoms, and diazotrophic cyanobac-
teria). Compartments for bulk zooplankton, nutrients, and detritus complete the ecosystem (Fig.
2.1.1). We simulate only one nutrient, nitrogen, which represents the most limiting nutrient in
coastal ecosystems (Howarth and Marino, 2006). Being the first to disentangle the separate effects
of competition and adaptation on warming-related phytoplankton responses, we decided to restrict
competition to a single nutrient, which produces clear results that are straightforward to interpret.
Including more nutrients (e.g., phosphorus and silica) would unnecessarily increase the complexity
of our model without helping us to answer our research question.

Figure 2.1.1: Ecosystem components of our model including compartments for nitrogen (N), detritus (D), and
zooplankton (Z), as well as agent-based life cycles of dinoflagellates (din), diatoms (dia), and cyanobacteria
(cya). Each life cycle comprises a resting (RES) and a growing stage (VEG cells). For cyanobacteria, we
consider a second, nitrogen-fixing growing stage (VEG cells with heterocysts, HET). Also shown are the nitrogen
fluxes between the different ecosystem components, and the sources and sinks of nitrogen (cyanobacterial
nitrogen fixation, resuspension and burial of resting cells, and sinking of detritus). The figure was created with
BioRender.com.

In addition to nitrogen, phytoplankton growth depends on photosynthetically available radi-
ation and temperature. Dissolved inorganic nitrogen is taken up by all actively growing phyto-
plankton cells except for vegetative cyanobacteria cells that grow in filaments with nitrogen-fixing
heterocysts. The nitrogen content of all dead phytoplankton and zooplankton cells is added to the
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detritus pool, which is remineralized back into bioavailable nitrogen at a constant rate. Due to
constant sinking of detritus and stochastic burial of phytoplankton resting cells, nitrogen is lost
from the system. Nitrogen loss is counteracted by the resuspension of previously buried resting
cells and cyanobacterial nitrogen fixation. The probability of buried resting cells to be resuspended
from the sediment decreases exponentially with time and is only possible between September and
April due to vertical mixing. Thus, the nitrogen cycle in our model system is open, meaning that
the amount of nitrogen in the system can change over time. All sources and sinks of nitrogen, as
well as the nitrogen fluxes between the different ecosystem components, are shown in Fig. 2.1.1.
A detailed model description is available in Appendix A.2.

Our model simulates the dynamics of three important phytoplankton functional groups in the
Baltic Sea, each represented by one common taxon or by a complex of common taxa. Following
Hinners et al. (2019), we model the life cycle of a cold-water dinoflagellate species of the genus
Apocalathium. We distinguish between two different life cycle stages, actively growing vegetative
(VEG) cells and resting cysts. Resting cysts germinate after a dormancy period of several months
(Kremp, 2000); we simplify this process by prescribing germination to a certain period in early
spring (between day 44 and day 60). The transfer from VEG cells back to cysts depends on
temperature, with the encystment rate increasing strongly around a temperature threshold of
6 ◦C. For diatoms, we chose a cold-water species of the genus Thalassiosira. Again, we distinguish
between a resting stage (RES; spores) and a growing stage (VEG cells). Like Warns (2013),
we assume that the transfer between stages depends on the actual growth conditions, i.e., the
realized growth rate. For cyanobacteria, we consider a complex that represents the dominant
nitrogen-fixing genera in the Baltic Sea, Nodularia, Aphanizomenon, and Anabaena (Karlsson
et al., 2005). The cyanobacteria life cycle comprises three different stages given by VEG cells
without heterocysts (nitrogen-limited), VEG cells with heterocysts (not nitrogen-limited), and
resting cells (akinetes). We parameterize the transfer between the cyanobacteria life cycle stages
by combining two modeling approaches (Hense and Beckmann, 2006, 2010): Similar to diatoms,
the transfer between stages depends on the actual growth conditions, which are either measured
by the realized growth rate or by the severity of different growth-limiting factors. For VEG
cells, we separate growth conditions into nitrogen limitation and limitation by temperature and
light. While nitrogen limitation leads to heterocyst formation, unfavorable temperature and light
conditions initiate the transfer from VEG cells to resting cells. Following other models (Hense
and Beckmann, 2006; Lee et al., 2018), we assume that cyanobacteria are non-grazeable due to
toxicity, while dinoflagellates and diatoms are equally grazed by zooplankton. Further details on
the simulated taxa and their life cycles can be found in Appendix A.2.

In addition to phytoplankton life cycle dynamics, we consider two flexible temperature-depen-
dent phytoplankton traits. The first flexible trait is the optimum temperature, which determines
temperature limitation of growth. The optimum temperature is subject to random mutations,
which we implement using an agent-based modeling approach (Appendix A.1). In our model, each
agent represents the same amount of biomass. As the three functional groups differ in their cell
sizes (Table A1 in Appendix A.3), the number of cells per agent, i.e., resolution, differs among
groups. Based on Beckmann et al. (2019), we assume that resolution affects the probability that
a mutation occurs when an agent divides. We calculate the mutation probability for one agent by
multiplying the number of cells within the agent by the mutation probability for one cell, for which
we use an experimentally derived value of 2.5×10−3 (Lenski and Travisano, 1994). As our agents
combine more than 2.5×103 cells, mutations occur at every division, with the number of mutations
being proportional to the number of cells within the agent. Thus, an agent combining more cells
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experiences more mutations per division. However, due to the larger number of cells within the
agent, these mutations require the same time to be fixed as in smaller agents with less cells and
less mutations. For this reason, we use the same mutational standard deviation (or mutational
step size) for all agents independent of their resolution (0.1 ◦C, Beckmann et al., 2019). These
assumptions are similar to a modeling study by Merico et al. (2014), which uses a fixed mutational
step size independent of population size, with larger populations having more mutations in total.

The second flexible trait, the cell size, responds plastically to temperature. The relation between
cell size and temperature is inversely proportional, meaning that a temperature increase of 1 ◦C
causes a cell size decrease of ∼ 2.5 % (Atkinson et al., 2003). In our model, plastic responses occur
during cell division and affect the newly produced daughter cell. Following Beckmann et al. (2019),
we assume that a cell divides after having grown to a critical size. As Beckmann et al. (2019) do
not consider cell size plasticity, they use the same critical size of 2b0 for all cells, with b0 being
the initial cell size right after division. To account for cell size plasticity, we calculate the critical
size of the newly produced daughter cell depending on environmental temperature. We assume
that the daughter cell divides after having grown to 2b0,T, with b0,T being the initial size that the
daughter cell would have if cell size responded instantaneously to temperature. We calculate b0,T
for the temperature during daughter cell production after Atkinson et al. (2003). In this way, an
increase in temperature leads to a decrease in the daughter’s critical size, reducing the initial size
of the following generation. In addition, we consider that changes in cell size affect metabolic cell
properties including maximum nitrogen uptake rate (Ward et al., 2017), half saturation constant for
nitrogen (Litchman et al., 2007), basal cellular nitrogen requirement (Ward et al., 2017), maximum
nitrogen storage capacity (Marañón et al., 2013), and theoretical maximum metabolic rate (Ward
et al., 2017). In our model, cell size thus determines the nitrogen-limited growth rate, which we
calculate from internal nitrogen quotas using a variable-internal-stores model by Grover (1991)
(Appendix A.2.2).

Model setup and environmental forcing

For our simulations, we use a 0-dimensional model setup, which corresponds to a well-mixed tank.
We assume that the sides of the tank are closed, while both top and bottom are open. This means
that we neglect immigration and emigration of phytoplankton and zooplankton but still allow for
changes in total mass due to interactions with the atmosphere (nitrogen fixation) and the benthic
zone (sinking of detritus, burial of resting cells, and resuspension of resting cells).

At the beginning of a simulation, we initialize each phytoplankton functional group with the
same biomass and overlapping generations. To create overlapping generations, we sample the
biomass of each cell randomly from a uniform distribution between minimum cell biomass right
after division (b0,T, Table A1 in Appendix A.3) and maximum cell biomass right before division
(2b0,T). In contrast to cell biomass, optimum temperature is initially the same for all individuals
of a functional group. In this way, we ensure that the observed adaptation results from mutations
alone and not from initial intraspecific diversity.

Following other models (Hense and Beckmann, 2006; Hinners et al., 2019), we simulate 12 equal
months for each year (30 d per month) with a time step of 1 h. For a steady seasonal forcing, the
model requires a spin-up period of ∼ 65 yr until phenology, taxa abundance, and mean traits have
largely stabilized (Figs. A1 and A2 in Appendix A.4). The steady seasonal forcing used for spin-up
represents present-day conditions in the Gulf of Finland. For the seasonal variation of irradiance,
we use the same function as Hinners et al. (2019), which was originally adapted from Stramska
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and Zuzewicz (2013). The function provides higher irradiance levels during summer and lower
irradiance levels during winter. For the seasonal temperature forcing, we use a sinusoidal fit to
sea surface temperature data from the Gulf of Finland. Prior to fitting, we averaged the data over
the whole gulf area and over the last 10 yr (2011 – 2021) to compensate for regional differences and
special temperature events such as heat waves. Sea surface temperature data were downloaded
from the Copernicus database (https://resources.marine.copernicus.eu/products). The seasonal
temperature and irradiance forcings are visualized in Fig. A3a in Appendix A.4; the corresponding
equations are available in Appendix A.2.4.

Model scenarios

To disentangle the separate effects of competition and adaptation on climate-driven phytoplankton
responses, we simulate six different model scenarios (Table 2.1.1).

Table 2.1.1: Overview of the six model scenarios that we analyze in this study. We perform seven different
simulations for each scenario, with each simulation being run over 100 yr. “Control” corresponds to a present-day
seasonal temperature forcing for the Gulf of Finland, to which “warming” adds a steady temperature increase
of 0.3 ◦C per decade (IPCC scenario SSP3-7.0, Allan et al., 2021).

No adaptation Adaptation Adaptation and resuspension

Control C CA CAR
Warming W WA WAR

The first two model scenarios represent control scenarios (C: control; CA: control and adap-
tation), which we force with the present-day seasonal forcing for the Gulf of Finland over 100 yr.
Both C and CA serve as spin-up for two global warming scenarios W (warming) and WA (warming
and adaptation). To simulate global warming, we add a continuous temperature increase of 0.3 ◦C
per decade to the seasonal temperature forcing, which corresponds to the IPCC scenario SSP3-7.0
(Allan et al., 2021). This configuration is run for further 100 yr to simulate global warming during
the next century (see Fig. A3b in Appendix A.4). While adaptation in the optimum temperature
is disabled in C and W, it is enabled in CA and WA. This means that in C and W, we simulate
ecological phytoplankton responses only, with competition (i.e., selection) as the single controlling
factor. In CA and WA, on the contrary, phytoplankton responses to global warming are controlled
by the combined effects of competition and adaptation (i.e., mutation and selection), meaning that
they are eco-evolutionary.

To add further complexity to the representation of evolutionary processes in our model, we
consider another essential mechanism that can both enhance and slow down adaptation (Renge-
fors et al., 2017): the resuspension of resting cells from previous blooms that were buried in the
sediment. To study potential effects of resuspension on our model phytoplankton community, we
simulate two additional scenarios termed CAR (control and adaptation and resuspension) and
WAR (warming and adaptation and resuspension), where both adaptation and resuspension are
enabled. For each of the six model scenarios (Table 2.1.1), we perform seven different simulations
and average the output to ensure robust results.
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Results

Model validation for present-day conditions

To validate our model for present-day conditions, we use the two control scenarios C and CA; CAR
is evaluated in a separate section (“Effects of RES resuspension”). Both C and CA produce the
same seasonal succession of functional groups (Fig. 2.1.2): The blooming season starts with the
spring bloom of dinoflagellates and diatoms, which reach maximum abundances in March and May,
respectively. The spring bloom is followed by a summer bloom of cyanobacteria, which are most
abundant in July. In autumn, diatoms form a second but weaker bloom with maximum abundances
at the beginning of November. Our simulated seasonal succession of functional groups results from
their individual responses to environmental growth conditions, including nitrogen concentration,
temperature, and irradiance (Appendix A.2.2 and Figs. A4, A5, and A6 in Appendix A.4).

Figure 2.1.2: Biomass of phytoplankton growing stages during the last simulation year for all six model sce-
narios (C: control; W: warming; CA: control and adaptation; WA: warming and adaptation; CAR: control and
adaptation and resuspension; WAR: warming and adaptation and resuspension). For each model scenario, seven
different simulations were averaged. The dashed lines in each warming scenario indicate the timing of the bloom
peaks in the corresponding control scenario. Please note that the biomass of both cyanobacteria growing stages
(VEG cells without heterocysts and VEG cells with heterocysts) is summarized.

However, even if C and CA produce the same seasonal succession of functional groups, the
timing of the individual blooms may differ by several days. Bloom timing, in this context, refers
to the time when the bloom reaches its peak. In C, the spring bloom occurs later than in CA, with
dinoflagellates and diatoms peaking ∼ 11 d and ∼ 6 d later, respectively (Table 2.1.2). The diatom
autumn bloom, on the contrary, occurs ∼ 4 d earlier in C than in CA. In addition, C shows lower
bloom amplitudes, especially for cyanobacteria, which produce a ∼ 42 % weaker summer bloom.
According to a t-test, the mentioned differences between C and CA are statistically significant (we
use a significance level of 0.05 for t-tests, Table A2 in Appendix A.3). Despite these differences,
the two control scenarios C and CA agree reasonably well with recent monitoring data from the
Baltic Sea (Hjerne et al., 2019), except for slight deviations in spring bloom timing (see section
“Deviations in spring bloom timing”).
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Table 2.1.2: Average bloom timing, peak abundance, and optimum temperature (Topt) of all taxa for the three
control scenarios C (control), CA (control and adaptation), and CAR (control and adaptation and resuspension),
including standard deviations. For each scenario, averages were calculated from the last simulation year of seven
different simulations.

C CA CAR

Timing [d ] Dinoflagellates 89.93± 0.78 78.71± 0.73 77.90± 0.79
Diatoms spring 139.96± 0.45 133.60± 0.79 133.77± 0.88
Diatoms autumn 303.13± 0.83 307.25± 0.67 305.57± 0.84
Cyanobacteria 198.29± 0.00 198.29± 0.00 198.29± 0.00

Abundance
[
mmolNm−3

]
Dinoflagellates 0.76± 0.01 0.87± 0.03 0.88± 0.02
Diatoms spring 0.37± 0.00 0.42± 0.01 0.43± 0.01
Diatoms autumn 0.25± 0.01 0.33± 0.02 0.32± 0.02
Cyanobacteria 0.50± 0.02 0.86± 0.09 0.85± 0.08

Topt [
◦C] Dinoflagellates 10.80± 0.00 5.03± 0.29 5.22± 0.19

Diatoms 12.00± 0.00 11.25± 0.18 11.39± 0.14
Cyanobacteria 28.50± 0.00 27.83± 0.32 28.22± 0.15

Moreover, we find that in CA, the optimum temperatures of both dinoflagellates and diatoms
track seasonal changes in environmental temperature following an initial acclimation period after
germination (Fig. A7 in Appendix A.4). Dinoflagellates show the highest adaptation rate with a
change in mean optimum temperature of ∼ 0.18 ◦C within 1 month. This simulated adaptation rate
agrees well with observed adaptation rates for Chaetoceros tenuissimus (Jin and Agustí, 2018).

Ecological phytoplankton responses to global warming

In the two warming scenarios W and WA, our phytoplankton community shows different ecological
responses to global warming, including shifts in bloom timing and changes in bloom amplitude
(Fig. 2.1.2). Shifts in bloom timing are only notable for dinoflagellates and diatoms but not for
cyanobacteria. For dinoflagellates and diatoms, blooms are shifted towards the winter period, with
the shift being stronger in W than in WA. Dinoflagellates bloom ∼ 8 d earlier in W compared with
C, while the shift between WA and CA only amounts to ∼ 3 d (Table 2.1.3). Diatoms show an even
stronger shift in bloom timing than dinoflagellates: while the spring bloom is shifted by ∼ 25 d and
∼ 17 d, the autumn bloom is shifted by ∼ 17 d and ∼ 8 d in W and WA, respectively.

Apart from shifts in bloom timing, W and WA produce increasing bloom amplitudes for all
functional groups, except for dinoflagellates. Again, the observed changes are stronger in W than
in WA. Cyanobacteria show the strongest amplitude increase with ∼ 223 % in W and ∼ 57 % in
WA, followed by diatoms. For diatoms, the autumn bloom increases more than the spring bloom.
Dinoflagellates, however, increase only slightly in W, while they decrease in WA; this is in line
with the overall stronger amplitude increase in W.

According to a t-test, bloom timing and bloom amplitudes differ significantly between W and
WA for all functional groups; the only exception is the timing of the cyanobacterial summer bloom
(Table A3 in Appendix A.3).
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Table 2.1.3: Average warming-related changes in bloom timing, peak abundance, and optimum temperature
(Topt) for all taxa and model scenarios, including propagated errors. Scenario abbreviations: C = control;
W= warming; CA = control and adaptation; WA = warming and adaptation; CAR =control and adaptation and
resuspension; WAR=warming and adaptation and resuspension. Negative changes in bloom timing indicate a
shift towards earlier in the year. Please note that changes in taxa abundance are not given as absolute values
like in Table 2.1.2 but as relative changes. According to a t-test, all changes are statistically significant at the
0.05 level. For details, see Table A4 in Appendix A.3.

W vs. C WA vs. CA WAR vs. CAR

Timing [d ] Dinoflagellates −8.45± 1.05 −2.97± 1.06 −2.77± 0.96
Diatoms spring −25.13± 0.53 −17.08± 1.05 −18.53± 1.08
Diatoms autumn +16.92± 0.94 +7.83± 1.20 +9.78± 1.53
Cyanobacteria −1.25± 0.00 −1.25± 0.00 −1.25± 0.00

Abundance [%] Dinoflagellates +2.63± 1.29 −4.33± 4.00 −5.37± 3.01
Diatoms spring +21.40± 1.59 +10.47± 3.12 +13.07± 2.09
Diatoms autumn +118.81± 3.92 +41.52± 5.39 +52.64± 6.89
Cyanobacteria +222.68± 4.37 +56.69± 11.17 +87.38± 10.66

Topt [
◦C] Dinoflagellates 0.00± 0.00 +1.41± 0.41 +0.89± 0.24

Diatoms 0.00± 0.00 +1.49± 0.21 +1.30± 0.20
Cyanobacteria 0.00± 0.00 +1.23± 0.52 +0.69± 0.21

Adaptive phytoplankton responses to global warming

Already in the control scenario CA, we observe notable adaptation of all functional groups. Di-
noflagellates adapt to notably lower temperatures in CA (Fig. 2.1.3), with most of the adaptation
occurring within the first ∼ 60 yr of the simulation period (Fig. A2 in Appendix A.4). Throughout
the entire CA simulation period of 100 yr, dinoflagellates decrease their mean optimum tempera-
ture (Topt) by 5.8 ◦C, from an initial Topt of 10.8 ◦C (Hinners et al., 2017) to a new Topt of 5.0 ◦C
(Table 2.1.2). Diatoms and cyanobacteria also show a tendency towards lower temperatures; this
tendency is considerably weaker than for dinoflagellates, though. Both diatoms and cyanobacte-
ria reduce their initial optimum temperatures of 12 ◦C (Spilling, 2011) and 28.5 ◦C (Collins and
Boylen, 1982; Lehtimäki et al., 1997) by 0.7 ◦C throughout CA. At the end of CA, diatoms and
cyanobacteria thus grow at new optimum temperatures of 11.3 ◦C and 27.8 ◦C, respectively. While
most of the adaptation of diatoms occurs during the first ∼ 65 yr of the simulation period, which is
similar to dinoflagellates, cyanobacteria show steady adaptation over the 100 yr of simulation (Fig.
A2 in Appendix A.4). Overall, adaptive trait changes in CA correlate temporally with ecological
changes in bloom timing and taxa abundance (Figs. A1 and A2 in Appendix A.4).

In the warming scenario WA, we observe notable adaptation of all functional groups to the
increasing temperatures. Dinoflagellates increase their mean Topt by 1.4 ◦C throughout WA (Table
2.1.3). The resulting Topt of 6.4 ◦C is still notably lower than the initial Topt of dinoflagellates at the
beginning of CA (10.8 ◦C, Table 2.1.2). Diatoms and cyanobacteria, on the contrary, increase their
mean Topt above their initial optimum temperatures. Throughout WA, the mean Topt of diatoms
and cyanobacteria increases by 1.5 ◦C and 1.2 ◦C, respectively, giving final optimum temperatures
of 12.7 ◦C and 29.1 ◦C. Thus, the final optimum temperatures of diatoms and cyanobacteria at the
end of WA are by ∼ 0.7 ◦C and ∼ 0.6 ◦C higher than their initial optimum temperatures at the
beginning of CA, respectively.
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Figure 2.1.3: Evolution of the optimum temperature through mutation and selection. Shown are the initial
value, the preliminary trait distribution after 100 yr of present-day seasonal forcing, and the final trait distribution
after 100 yr of warming. Upper panels: adaptation only, i.e., CA (control and adaptation) and WA (warming and
adaptation); lower panels: adaptation plus resuspension, i.e., CAR (control and adaptation and resuspension)
and WAR (warming and adaptation and resuspension). For each model scenario, trait distributions were merged
from monthly histograms of the last simulation year of seven different simulations. Please note that the
temperature range on the x-axis differs between functional groups.

Effects of RES resuspension

When we enable the resuspension of resting cells from the sediment, we observe only slight pheno-
logical changes in the control scenario CAR compared with CA (Fig. 2.1.2 and Table 2.1.2). While
taxa abundances are comparable, autumn diatoms bloom ∼ 2 d earlier in CAR; this shift in bloom
timing is statistically significant according to a t-test (Table A2 in Appendix A.3). Similarly, we
found autumn diatoms to bloom ∼ 4 d earlier in the control scenario without adaptation C when
compared with CA (see section “Model validation for present-day conditions”).

The slight phenological changes in CAR are accompanied by reduced thermal adaptation. While
in both CA and CAR, optimum temperatures evolve towards lower values, the final optimum
temperatures at the end of CAR are between 0.14 ◦C and 0.39 ◦C higher than at the end of CA
(Table 2.1.2). Changes in adaptation are, however, only statistically significant for cyanobacteria,
for which adaptation is reduced the most (Table A2 in Appendix A.3).

Under warming conditions, we observe stronger phenological effects of resuspension as part of
a general weakening of adaptation-related effects. The results of the WAR scenario resemble more
closely the results of the W than the WA scenario (Fig. 2.1.2). While the two diatom blooms
tend to be shifted ∼ 1 – 2 d more towards the winter period, the cyanobacterial summer bloom is
by ∼ 18 % stronger in WAR than in WA. The difference in cyanobacteria biomass is statistically
significant (Table A3 in Appendix A.3).

The stronger effects of resuspension under warming conditions are accompanied by a greater
slowdown of adaptation (Fig. 2.1.3 and Table 2.1.3). In WAR, the three functional groups increase
their mean optimum temperatures between 0.20 ◦C and 0.54 ◦C less than in WA. The resulting
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differences in optimum temperature are, however, only statistically significant for dinoflagellates
(Table A3 in Appendix A.3). In addition, we observe a slight narrowing of the Topt trait distribution
in WAR for both dinoflagellates and cyanobacteria, for which adaptation is slowed more than for
diatoms.

Discussion

In this study, we investigated the interplay between phytoplankton competition and adaptation
under global warming using an eco-evolutionary ecosystem model. We found that adaptation
reduces warming-related ecological phytoplankton responses in terms of changes in bloom timing
and amplitude. Resuspension of resting cells can slow down adaptation and hence enhance changes
in bloom timing and amplitude. To the best of our knowledge, this is the first ecosystem model that
simulates competition and adaptation of multiple phytoplankton functional groups under global
warming, allowing us to disentangle how the interplay of both processes affects warming-related
phytoplankton responses on realistic time scales. Due to the simplicity of the model design, we
will not discuss exact magnitudes in detail but focus on qualitative differences.

Deviations in spring bloom timing

Contrary to recent monitoring data from the Baltic Sea (Hjerne et al., 2019), dinoflagellates bloom
earlier in spring than diatoms in our simulations. One possible explanation for this could be that our
model does not consider re-stratification during spring, which plays an important role during spring
bloom formation in the Baltic Sea (Klais et al., 2011). While motile dinoflagellates require stratified
conditions to form a bloom (Margalef et al., 1979), nonmotile diatoms are favored under turbulent
mixing (María Trigueros and Orive, 2001). In addition, the monitoring data do not distinguish
between species but only functional groups, while we simulate a single species from each functional
group (except for cyanobacteria). The traits of our chosen species do not necessarily coincide with
the bulk traits of the functional group that the species belongs to. Consequently, the species we
chose may not bloom at the same time as the bulk of species in the corresponding functional group.
Indeed, lower optimum temperatures were measured for the cold-water dinoflagellate Apocalathium
malmogiense than for the cold-water diatom Thalassiosira baltica (Spilling, 2011; Hinners et al.,
2017). As we simulate a dinoflagellate species of the genus Apocalathium and a diatom species of the
genus Thalassiosira, we use these optimum temperatures to initialize our model. The earlier bloom
of dinoflagellates in our simulations is hence a result of the physiological properties of Apocalathium,
including the initial optimum temperature and in particular the strong increase in encystment at
low temperatures (∼ 6 ◦C). Thus, we can conclude that for our chosen phytoplankton species, our
model produces a realistic seasonal cycle.

Eco-evolutionary dynamics in a steady environment

The results of control scenario C differ notably from the two control scenarios CA and CAR, which
themselves are comparable. Contrary to C, both CA and CAR include adaptation, meaning that
the observed differences must result from adaptation-related effects. In comparison to C, CA and
CAR show slightly shifted blooms of higher amplitude. Adaptation in CA and CAR allows each
functional group to improve its growth conditions by utilizing its niche more efficiently.

Dinoflagellates improve their growth conditions by adapting to lower temperatures. Additional
CA simulations using only dinoflagellates reveal that this adaptation pattern is not driven by
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interspecific competition with diatoms but by intraspecific competition for nitrogen, which selects
for early bloomers (Fig. A8 in Appendix A.4). Even in the absence of interspecific competition,
dinoflagellates do not extend their niche towards higher temperatures due to restrictions in their life
cycle. Resurrection experiments demonstrated that the temperature threshold for encystment of
A. malmogiense remained constant at around 6 ◦C over the last century of global warming (Hinners
et al., 2017), prohibiting a shift towards later blooming. As our simulations cover a similar time
span, we implemented the encystment threshold as a fixed trait.

Contrary to dinoflagellates, adaptation of diatoms is controlled by interspecific competition
with cyanobacteria. As inferior competitors under warm, nitrogen-limited conditions, diatoms
lower their optimum temperature to avoid competition for nitrogen. This hypothesis is confirmed
by additional CA simulations using only diatoms. These simulations show that without interspe-
cific competition, diatoms adapt to higher temperatures in a steady environment to merge their
spring and autumn blooms (Fig. A9 in Appendix A.4). Thus, we can conclude that interspecific
competition between diatoms and cyanobacteria drives niche separation. This finding goes in line
with a modeling study by Barabás and D’Andrea (2016), who found that competing species place
themselves more evenly across the trait axis if they can adapt.

Contrary to dinoflagellates and diatoms, adaptation of cyanobacteria is neither driven by intra-
nor by interspecific competition for nitrogen, which is not surprising given their ability to fix atmo-
spheric nitrogen. Instead, the difference between environmental and optimum temperature is the
driving factor, with the initial Topt of cyanobacteria being almost 9 ◦C higher than maximum envi-
ronmental temperature in summer. Despite the large temperature difference, cyanobacteria reduce
their mean optimum temperature by only 0.7 ◦C throughout CA. This is most likely caused by the
wide, plateau-shaped thermal reaction norm of cyanobacteria (Fig. A4 in Appendix A.4), which
does not lead to a strong selection pressure on the optimum temperature even if environmental
temperature differs notably from the optimum. Indeed, the growth rate of initial genotypes is only
17 % lower than the growth rate of genotypes that are adapted optimally to environmental temper-
ature. Our hypothesis is further supported by the Topt trait distribution of cyanobacteria, which is
the broadest among the functional groups in our model (Fig. A10 in Appendix A.4). Simulations
by Beckmann et al. (2019) showed that trait diversity is reduced under strong selection pressure.
Thus, in our simulations, selection pressure indeed seems to be weaker for cyanobacteria than for
dinoflagellates and diatoms. The weak selection pressure on cyanobacteria prevents them from
completing adaptation to control conditions within the 100 yr of simulation, meaning that we still
observe transient trait dynamics at the end of CA. Dinoflagellates and diatoms, on the contrary,
complete adaptation in CA within less than 100 yr. As neither dinoflagellates nor diatoms are
implemented with larger mutation rates or larger mutational step sizes than cyanobacteria, their
faster adaptation must result from the stronger selection pressure they experience. We propose that
the stronger selection pressure on dinoflagellates and diatoms results from their narrower thermal
reaction norms (Fig. A4 in Appendix A.4). For comparison, cyanobacteria can reach 90 % of their
maximum growth rate over a temperature range of 9.4 ◦C. For dinoflagellates and diatoms, this
range is considerably narrower with 4.7 ◦C and 4.2 ◦C, respectively. To conclude, selection pressure
and adaptation speed are not only affected by the difference between optimum and environmental
temperature but also by the width and shape of the thermal reaction norm.

From the above discussion, we can conclude that adaptation allows all functional groups to
improve their individual growth conditions to a certain degree, with the drivers of adaptation
differing among groups. However, adaptation of one group may also affect the other groups through
changes in competition. For example, diatom adaptation reduces competition with cyanobacteria,
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which is beneficial for both sides. Reduced competition with diatoms leaves more nitrogen for the
nitrogen-limited vegetative cyanobacteria life cycle stage, which can hence initiate a larger summer
bloom. Indeed, additional CA simulations without cyanobacterial adaptation reveal that reduced
competition with diatoms causes 71 % of the amplitude increase in CA compared with C, while only
the remaining 29 % result from adaptation of cyanobacteria to colder temperatures. As a result,
reduced competition with diatoms indirectly enhances the bloom of vegetative cyanobacteria with
heterocysts and thus increases the amount of fixed atmospheric nitrogen. The higher nitrogen input
into the system in summer allows for stronger blooms of dinoflagellates and especially diatoms,
which can directly take up the newly available nitrogen in autumn. In conclusion, adaptation
in a steady environment induces positive feedback in our simulations: While diatoms actively
improve their growth conditions through niche separation, cyanobacteria benefit passively from
reduced competition with diatoms. The higher nitrogen availability due to enhanced cyanobacterial
nitrogen fixation feeds back positively on both diatoms and dinoflagellates.

Eco-evolutionary dynamics in a changing environment

The two warming scenarios with and without adaptation WA and W produce ecological phyto-
plankton responses of notably different intensity, which nevertheless follow the same trends. Both
scenarios show a shift of dinoflagellates and diatoms towards the winter period, as well as a notable
increase in cyanobacteria biomass in summer. As these findings are consistent with trends observed
over the past 50 yr of global warming in the Baltic Sea (Suikkanen et al., 2007; Wasmund et al.,
2019), we believe them to be realistic.

By comparing the relative magnitude of warming-related changes between W and WA, we can
disentangle the effects of competition and adaptation in a warming environment. In a steady envi-
ronment, we found adaptation to enhance bloom amplitudes; in a warming environment, however,
adaptation has the opposite effect. For increasing temperatures, amplitudes are lower in WA,
where adaptation is enabled, especially for cyanobacteria. To understand if the weaker cyanobac-
teria bloom in WA is mainly caused by cyanobacterial thermal adaptation or adaptation-related
differences in competition, we performed additional simulations in which we disabled the thermal
adaptation of cyanobacteria. The simulations reveal that cyanobacterial thermal adaptation leads
to an increase in bloom amplitude of 2 % and hence only has a minor effect. Thus, the observed
differences in cyanobacterial bloom amplitude must result from adaptation-related differences in
competition with diatoms. Due to lacking adaptation in W, diatoms (and dinoflagellates) can
only compensate the increase in temperature by shifting their blooms towards the winter period,
when temperatures are closer to their fixed optimum temperature. Thus, diatoms are less abun-
dant and less competitive in late spring and leave more nitrogen for the nitrogen-limited vegetative
cyanobacteria, which can initiate a larger summer bloom. In WA, on the contrary, diatoms increase
their optimum temperature above their fixed Topt in W. However, this shift is lower than the shift
in environmental temperature. In the absence of interspecific competition, diatoms track changes
in environmental temperature more closely as confirmed by additional WA simulations using only
diatoms (Fig. A9 in Appendix A.4). This suggests that cyanobacteria restrict diatom adaptation
to increasing temperatures, which matches findings from a modeling study by De Mazancourt
et al. (2008). De Mazancourt et al. (2008) showed that the presence of preadapted species (in our
case cyanobacteria) restricts adaptation of other species. Even if cyanobacteria restrict diatom
adaptation in WA, diatoms manage to increase their optimum temperature above their fixed Topt
in W, which reduces the shift in bloom timing, and increases the abundance and competitivity of
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diatoms in late spring. The enhanced competition with diatoms reduces nitrogen availability for
nitrogen-limited vegetative cyanobacteria and leads to a weaker cyanobacterial summer bloom.

In conclusion, our warming simulations reveal that adaptation reduces ecological phytoplankton
responses to global warming in terms of changes in bloom timing and amplitude. This finding
matches findings from previous theoretical modeling studies. For example, Barabás and D’Andrea
(2016) found that communities that can evolve are much more robust against environmental change.
Similarly, Northfield and Ives (2013) found that if global warming leads to conflicting interests
between species (i.e., stronger competition), coevolution reduces warming-related effects and hence
changes in species abundance.

Effects of RES resuspension

In our simulations, the resuspension of resting cells (or propagules) tends to slow down adaptation
to global warming, which is expressed by slightly stronger shifts in bloom timing and a stronger
cyanobacterial summer bloom. We can explain the observed slowing effect of resuspension by the
re-introduction of past-adapted resting cells to the actively growing population. A similar slowing
effect was observed for lake copepods (Hairston Jr and De Stasio Jr, 1988). However, some studies
suggest that propagule banks can aid phytoplankton to cope with environmental change as they
contain a high diversity of genotypes (Ribeiro et al., 2013; Kremp et al., 2016). The effect of
resuspension on adaptation seems to depend on whether the resuspended genotypes are a random
or nonrandom sample of the total gene pool (Hairston Jr and De Stasio Jr, 1988; Rengefors et al.,
2017). For layered sediments, this suggests that the resuspended sample of the total gene pool,
and hence the effect of resuspension on adaptation, are affected by the adaptation history of the
population.

In our study, propagule banks are formed in an initially steady environment that transforms into
a steadily warming environment. Under steady conditions, all taxa adapt to lower temperatures,
with adaptation being weakened by resuspension. Thus, when temperatures begin to increase,
initial optimum temperatures are higher in the warming scenario with resuspension WAR than in
the warming scenario without resuspension WA. Due to the previous adaptation to colder temper-
atures, the sediment additionally contains genotypes that are adapted to even higher temperatures
than the actively growing population at the beginning of WAR. This raises the question of why
resuspension slows down adaptation to higher temperatures instead of enhancing it. During the
100 yr of steady environmental conditions in CAR, most adaptation to colder temperatures occurs
during the first ∼ 70 yr (Fig. A11 in Appendix A.4), meaning that warm-adapted genotypes are
buried deep in the sediment. As resuspension probability decreases exponentially with time in
our model, the number of resuspended warm-adapted genotypes is negligible compared with the
number of cold-adapted genotypes that are resuspended. Thus, the slowing effect of resuspension
dominates in our warming simulations. Indeed, the higher optimum temperatures in the begin-
ning of WAR are outpaced after ∼ 60 – 80 yr by the faster adaptation in WA, leading to the lag
in adaptation that we observe after 100 yr of warming (Fig. A11 in Appendix A.4). The lag in
adaptation in WAR leads to a stronger shift of the two diatom blooms towards winter, which
reduces the competition between spring diatoms and cyanobacteria and hence allows for a stronger
cyanobacterial summer bloom.

In addition, resuspension narrows the Topt trait distributions of both dinoflagellates and cyano-
bacteria, which are much more affected by slowed adaptation than diatoms. We suggest that
the lesser effect of resuspension on diatoms results from the two diatom blooms per year, which
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may allow for faster adaptation. Indeed, a comparison of the additional CA simulations using only
dinoflagellates with those using only diatoms reveals that diatoms have the potential to adapt much
faster than dinoflagellates when not restricted by interspecific competition (Fig. A12 in Appendix
A.4). During the first 4 yr of simulation, when the diatom spring and autumn blooms have not
merged yet, diatoms adapt more than 2 times faster than dinoflagellates.

To conclude, our results show that resuspension of resting cells tends to slow down adaptation.
Our results, however, strongly depend on adaptation history. We suggest for future work to further
investigate the effect of adaptation history on resuspension.

Model biases and suggestions for future work

Below, we describe the major assumptions and simplifications that we made in our model and
discuss which model biases they may imply. In addition, we give suggestions for future work.

It is a major challenge to parameterize the transfer between different life cycle stages, for
which we need information on triggers and rates of transition. As both parameters are poorly
constrained, we must estimate them though model calibration. However, the parameters estimated
for present-day conditions may not be applicable to a global warming scenario. As revealed by
resurrection experiments, the cold-water dinoflagellate A. malmogiense showed a decrease in the
encystment rate over the past century of global warming, while the temperature threshold for
encystment remained unchanged (Hinners et al., 2017). Consequently, different life cycle traits
seem to respond differently to environmental change, meaning that further experimental research
is needed to improve the model parameterization of phytoplankton life cycles.

Another potential model bias affects our mutational algorithm. We simulate trait changes due
to random mutations (and sexual recombination) by randomly sampling the modified trait value
from a Gaussian distribution centered at the original trait value. The width of this distribution, i.e.,
the standard deviation of mutations, cannot be measured directly in the laboratory and must hence
be estimated through model calibration. For our simulations, we used the same value as (Beckmann
et al., 2019) (see section “Model concept”). In our warming scenario WA, dinoflagellates, diatoms,
and cyanobacteria show an average increase in Topt of ∼ 0.14 ◦C per decade for a steady temperature
increase of 0.3 ◦C per decade. As evolution experiments can neither replicate the complexity of
marine ecosystems nor the time scales of global warming, we compare our simulated adaptation
rates to observations. Evaluating 15 yr of observational data for 67 species, Irwin et al. (2015)
found a mean increase in the realized niche of 0.45 ◦C for a mean temperature increase of 0.73 ◦C,
giving an average adaptation rate of 0.3 ◦C per decade. Thus, our simulations show adaptation
rates of the same order of magnitude. The slightly slower adaptation in our simulations may result
from the slower temperature increase (0.3 ◦C per decade vs. 0.45 ◦C per decade), leading to a lower
selection pressure. For higher selection pressures, e.g., over the course of the seasonal cycle, we
observe higher adaptation rates in the range of ∼ 0.18 ◦C within 1month for dinoflagellates (Fig.
A7 in Appendix A.4), which suggests that our chosen mutational standard deviations are not
artificially limiting adaptation to temperature changes.

Being the focus of our study, phytoplankton adaptation is simulated with a high degree of com-
plexity, while adaptation of zooplankton is not taken into account. As we consider zooplankton
merely for the sake of grazing mortality, we use a simplistic representation, where we ignore po-
tential zooplankton adaptation, life cycle dynamics, and effects of irradiance and temperature on
grazing. Thus, the zooplankton in our model is entirely controlled by phytoplankton, which leads
to comparable responses to global warming in terms of increasing abundances and shifts in bloom
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timing. Observations showed that the abundance of herbivorous zooplankton is strongly controlled
by their phytoplankton prey (Richardson and Schoeman, 2004), while phenological shifts synchro-
nized with phytoplankton are mainly associated with fast-growing zooplankton (Adrian et al.,
2006; Dam, 2013). This suggests that our representation of zooplankton may be reasonable for
fast-growing taxa like Daphnia, while our model is inappropriate to represent slow-growing taxa
with more complex life cycles like copepods (Adrian et al., 2006). We expect that an explicit
simulation of the adaptation of fast-growing zooplankton would not change our results notably.
Adaptation of slow-growing zooplankton, however, may have a larger effect, but we still do not
expect qualitative changes. Future work can expand on our model and include a more complex
representation of zooplankton, including light- and temperature-dependent grazing, life cycle dy-
namics, and adaptation.

Another bias is that our model cannot capture the functional diversity of the real-world Baltic
Sea phytoplankton community. Our model community consists of three major functional groups
(dinoflagellates, diatoms, and cyanobacteria), each represented by one taxon or by an averaged
complex. Thus, we do not account for other important groups such as ciliates or other flagellates
(Thamm et al., 2004) and for the functional diversity within each group. Most likely, across-species
functional diversity within a functional group greatly enhances the group’s potential to adapt to
environmental changes (Litchman et al., 2015). With that in mind, we might be missing other key
competitors like summer-blooming dinoflagellate or diatom species. Based on our own findings,
the absence of these competitors most likely influences both phenology and adaptation of our focal
phytoplankton taxa. For the above reasons, we do not interpret our results quantitatively but focus
on analyzing qualitative differences between scenarios and identifying general eco-evolutionary
mechanisms. We suggest that future work builds on our findings and investigates which role
diversity within functional groups plays in the Baltic Sea phytoplankton community regarding
both competition and adaptive potential.

Finally, as mentioned in section “Deviations in spring bloom timing”, our model is currently
not coupled to a physical ocean model. Thus, we ignore physical processes like vertical mixing
and stratification, which may, e.g., affect our simulated species succession during phytoplankton
spring bloom. In addition, our 0-dimensional model setup leads to an unrealistic adaptation pat-
tern of cyanobacteria. Under warming conditions, preadapted cyanobacteria adapt to even higher
temperatures and hence evolve away from environmental temperature. We can explain this ap-
parent maladaptation by our 0-dimensional representation of competition. Nitrogen concentration
is low at the end of the diatom spring bloom when vegetative cyanobacteria start to grow. As
warm conditions are favorable for cyanobacteria, they grow faster and become nitrogen-limited
more quickly than under control conditions. With nitrogen recovering over time due to nitrogen
fixation and remineralization, the environment selects for later-blooming vegetative cyanobacteria
with higher optimum temperatures. We expect that by resolving the spatial distribution of nitro-
gen in a 1D or 3D physical environment, our model would simulate a more realistic adaptation
pattern of cyanobacteria. Previous 1D models showed that diatoms may shift their spring bloom
to deeper water layers when nitrogen gets depleted at the surface (Warns, 2013; Lee et al., 2018).
As cyanobacteria can grow more efficiently than diatoms on low nitrogen due to their smaller size
(Litchman et al., 2007), they could take over growth at the surface on the remaining nitrogen
without competing directly with diatoms. As a result, cyanobacteria would no longer experience
an unrealistic selection pressure towards higher temperatures. Still, we think that the coupling to
a physical model would not change our main results and conclusions.

Based on the above discussion, we can conclude that a physical environment would make our
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model more realistic. In turn, however, our model would also be a valuable addition to existing
coupled biological-physical models. Existing models for the Baltic Sea project a notable increase
in cyanobacteria biomass in the future if nutrient loads are not reduced (Meier et al., 2012a;
Hense et al., 2013). As these models ignore phytoplankton adaptation, they may systematically
overestimate warming-related changes in cyanobacteria biomass. Integrating our model into a
coupled biological-physical model could hence notably improve climate projections. As long-term
evolutionary data (e.g., from sediment archives) become available, these will moreover represent
a valuable source for model calibration. As improving climate projections is relevant for political
decision-making, we suggest for future work to test our or a similar approach in a coupled biological-
physical environment.

Conclusions

Our modeling study demonstrates that the combined effects of phytoplankton competition and
adaptation may differ from their separate effects. Both processes influence each other and shape
phytoplankton communities through their interplay. The outcome of this interplay depends on
environmental conditions.

In a steady environment, each functional group occupies a fixed niche in which it can improve
its growth conditions through adaptation. The main driver of adaptation is given by the most
limiting factor for growth. For nitrogen fixers, temperature appears to be the main driver, while
it is nitrogen for nitrogen-limited groups. Nitrogen-limited groups maximize their growth rate
by adapting to the temperature that coincides with the highest nitrogen concentration within
their niche. If groups are inferior competitors, they adapt to avoid interspecific competition for
nitrogen. If groups are superior competitors or if no competitor is present, adaptation is driven by
intraspecific competition for nitrogen. In a changing environment, however, niches are no longer
fixed and thus, groups can no longer avoid competition. Adaptation allows inferior competitors to
increase their competitivity and hence to mitigate the dominance of superior competitors.

In conclusion, the role of adaptation cannot be neglected in changing environments, otherwise
warming-related changes in taxa dominance (and bloom timing) can be systematically overesti-
mated. To realistically simulate phytoplankton responses to environmental changes, future ecosys-
tem models must consider both competition and adaptation. Moreover, our results demonstrate
that adaptation can be affected by dormant resting cells that are resuspended from the sediment.
Our study highlights that eco-evolutionary ecosystem models represent a powerful tool to estimate
phytoplankton responses and even ecosystem responses to global warming. Future work can build
on our model and expand on our representation of competition, e.g., by including multiple limit-
ing nutrients and/or a physical environment. In addition, future models can integrate emerging
evolutionary data based on long-term data series (e.g., from sediment archives). The integration
of such data will allow us to further improve projections of future ecosystem changes in response
to anthropogenic environmental change.
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2.2 Study II: The effect of adaptation on ecosystem function-

ing

Phytoplankton adaptation to steady or changing environments

affects marine ecosystem functioning

Isabell Hochfeld & Jana Hinners

Global warming poses a major threat to marine ecosystems, which fulfill im-
portant functions for humans and the climate. Ecosystem models are therefore
increasingly used to estimate future changes in the functioning of marine ecosys-
tems. However, projections differ notably between models. We propose that a
major uncertainty factor in current models is that they ignore the high adap-
tive potential of phytoplankton, key players in marine ecosystems. Here, we
use a 0-dimensional evolutionary ecosystem model to study how phytoplank-
ton adaptation can affect estimations of future ecosystem-level changes. We
found that phytoplankton adaptation can notably change simulated ecosystem
dynamics, with the effect depending on environmental conditions. In a steady
environment, adaptation allows for a more efficient use of resources, which
enhances primary production and related ecosystem functions. In a warming
environment, on the contrary, adaptation mitigates dominance changes among
functionally different taxa and consequently leads to weaker changes in related
ecosystem functions. Our results demonstrate that by neglecting phytoplank-
ton adaptation, models may systematically overestimate future changes in the
functioning of marine ecosystems. Future work can build on our results and
include evolutionary processes into more complex model environments.
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Introduction

Global warming leads to a rapid reorganization of marine ecosystems, which poses a major threat
to their functioning (Pecl et al., 2017). Since changes in the functioning of marine ecosystems
directly impact humans and even feed back on the climate, understanding them is crucial (Pecl
et al., 2017; Prentice et al., 2015). Ecosystem models have proven a valuable tool in this regard,
but projections differ notably between models (Laufkötter et al., 2015, 2016). Current models
largely ignore the high adaptive potential of phytoplankton (Laufkötter et al., 2015, 2016; Munkes
et al., 2021), which are key players in marine ecosystems (Litchman et al., 2015). Here, we fill this
gap by using an evolutionary ecosystem model to study the effect of phytoplankton adaptation to
global warming on projected changes in ecosystem functioning. We apply the model to the Baltic
Sea, which is impacted by above-average levels of multiple stressors (Reusch et al., 2018).

Phytoplankton contribute about half of global photosynthesis (Field et al., 1998), are the foun-
dation of the marine food web (Fenchel, 1988), drive biogeochemical cycles (Hutchins and Fu,
2017), and even feed back on the physical properties of the ocean (Hense, 2007; Sathyendranath
et al., 1991). Furthermore, phytoplankton-related ecosystem functioning feeds back on the climate,
e.g., through changes in the export of atmospheric carbon into deeper water layers (biological car-
bon pump) (Basu and Mackey, 2018) or the planktonic production of dimethyl sulfide, which seeds
cloud formation (Wingenter et al., 2007). However, due to global warming, the role of phytoplank-
ton in marine ecosystems is changing.

Phytoplankton respond to global warming through changes in phenology, which are expressed,
for example, in an earlier and prolonged blooming season in the Baltic Sea (Wasmund et al.,
2019). The resulting mismatches with higher trophic levels like zooplankton and fish alter food
web structures and may eventually lead to ecosystem-level changes (Asch et al., 2019; Edwards
and Richardson, 2004; Winder and Schindler, 2004a). In addition, the poleward migration of
phytoplankton causes changes in species composition and abundance (Poloczanska et al., 2013),
which may additionally affect zooplankton and fish stocks (Fossheim et al., 2015). Indeed, fisheries
are already impacted by warming-related changes (Peterson et al., 2017). Finally, warming and
eutrophication promote harmful algal blooms, which pose a threat to animal and human health
(Gobler et al., 2017; Paerl et al., 2015; Glibert et al., 2014). To conclude, ongoing global warming
will lead to changes in phytoplankton and consequently, to changes in the functioning of marine
ecosystems. Since these changes are expected to have a direct impact on human well-being and
the climate (Pecl et al., 2017; Prentice et al., 2015), predicting them is of great importance.

Ecosystem models offer the possibility to assess future changes in ecosystem functioning. For
example, ecosystem models can be integrated into global ocean circulation models to simulate
future changes in net primary production on global scale, but models do not even agree on the
direction of change (Laufkötter et al., 2015). Similarly, regional models for the Baltic Sea cannot
agree on the future development of cyanobacteria blooms regarding timing, concentrations, and
nitrogen fixation (Hense et al., 2013; Meier et al., 2011; Neumann, 2010). These uncertainties can
notably affect estimations of future ocean deoxygenation (Long et al., 2021), nutrient load (Reusch
et al., 2018; Wasmund et al., 2001), and harmful algal bloom dynamics (Hallegraeff, 2010; Paerl
et al., 2015). To conclude, the validity of current model projections remains questionable. Since
model projections form the base of political decision-making (Intergovernmental Panel on Climate
Change (IPCC), 2022; Meier et al., 2014), there is an urgent need to improve their informative
value. A first step could be to identify the key processes that affect ecosystem functioning. One
key process that is lacking in all models above and similar models (Daewel and Schrum, 2013;
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Dzierzbicka-Głowacka et al., 2013; Savchuk, 2002) is the evolutionary adaptation of phytoplankton.
Their large population sizes and short generation times allow phytoplankton to adapt quickly to

environmental changes. Evolution experiments, observations, and resurrection experiments showed
that phytoplankton adaptation can be relevant on perennial or even shorter time scales (Jin and
Agustí, 2018; Irwin et al., 2015; Hattich et al., 2024). Due to the crucial role of phytoplankton in
marine ecosystems, considering phytoplankton adaptation in models may notably change projected
changes in ecosystem functioning (Ward et al., 2019).

Some ecosystem models already consider the evolutionary adaptation of phytoplankton. So far,
evolutionary ecosystem models have generally been used to study the spatial distribution and/or
temporal evolution of different functional traits (Le Gland et al., 2021; Beckmann et al., 2019;
Sauterey et al., 2017). Only a few evolutionary ecosystem models have already addressed questions
related to ecosystem functioning. For example, Smith et al. (2016) identified a trade-off between
phytoplankton size diversity and productivity depending on the frequency of environmental distur-
bance. Sauterey and Ward (2022) investigated drivers of phytoplankton C:N stoichiometry, which
affects the efficiency of the biological carbon pump. Finally, Cherabier and Ferrière (2022) studied
the effect of bacterial adaptation to global warming on the microbial loop and the resulting impact
on primary production.

So far, however, no model has explicitly addressed the question of how phytoplankton adap-
tation to global warming could affect the functioning of a marine ecosystem. A first step might
be to estimate the effect of adaptation on warming-related changes in phytoplankton community
composition. Different phytoplankton functional groups fulfill different functions in the ecosystem,
for example, by contributing differently to the biological carbon pump (sinking speed), the nitrogen
cycle (nitrogen fixation), and the energy transfer to higher trophic levels (food quality, susceptibil-
ity to predation) (Litchman et al., 2015). To our knowledge, there is only one model to date that
considers competition between multiple phytoplankton functional groups and their adaptation to
global warming simultaneously (Hochfeld and Hinners, 2024). Using this model, Hochfeld and
Hinners (2024) demonstrated that adaptation can significantly reduce simulated phytoplankton
responses to global warming in terms of changes in bloom timing and relative taxa abundance.
However, it has not been studied yet how adaptation-related changes in phytoplankton responses
may affect ecosystem functioning.

Here, we use a slightly modified version of the Hochfeld and Hinners (2024) model to estimate
for the first time how phytoplankton adaptation may affect warming-related changes in different
ecosystem functions, including primary production, secondary production, carbon export, nitrogen
fixation, and resource use efficiency (RUE). We apply the model to the Baltic Sea, which is already
impacted by above-average levels of warming, nutrient load, and deoxygenation (Reusch et al.,
2018). Due to the 0-dimensional setup of the model, we do not evaluate absolute changes in
ecosystem functions. Instead, we focus on how phytoplankton adaptation may change the future
contribution of primary production to these ecosystem functions. Our study is a first step to
improve model projections of future ecosystem-level changes that future work can build upon.

Materials and Methods

Model description

To study how phytoplankton adaptation to global warming may affect simulated future changes in
ecosystem functioning, we slightly extended the model from Hochfeld and Hinners (2024). A more
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detailed description of the model is available in Hochfeld and Hinners (2024) and the associated
supplementary material. The model simulates the dynamics of phytoplankton, zooplankton, dis-
solved inorganic nitrogen, and dead organic matter (detritus) in a 0-dimensional framework (Fig.
2.2.1). Since we focus on phytoplankton and their functions in the marine ecosystem, we resolve
three different phytoplankton functional groups. Like Hochfeld and Hinners (2024), we chose three
of the most common functional groups in the Baltic Sea, dinoflagellates, diatoms, and diazotrophic
cyanobacteria, and represent each group by a common taxon or by a complex of common taxa. For
dinoflagellates and diatoms, we simulate two cold-water species of the genera Apocalathium and
Thalassiosira, respectively. For cyanobacteria, we simulate a complex that includes the most abun-
dant nitrogen-fixing genera in the Baltic Sea, Nodularia, Aphanizomenon, and Anabaena (Karlsson
et al., 2005; Stal et al., 2003). Since we assume that the cyanobacteria complex produces toxins,
the cyanobacteria in our model are not grazed by zooplankton, which is consistent with other mod-
eling studies (Hense and Beckmann, 2006; Hinners et al., 2015; Lee et al., 2018). Dinoflagellates
and diatoms, on the contrary, are grazed equally by zooplankton.

Figure 2.2.1: Components of the ecosystem model including compartments for dissolved inorganic nitrogen
(N), detritus (D), and zooplankton (Z), along with agent-based life cycles of dinoflagellates (din), diatoms
(dia), and cyanobacteria (cya). Each life cycle is represented by a resting stage (RES) and a vegetative growing
stage (vegetative cells, VEG). For cyanobacteria, the model simulates a second, nitrogen-fixing growing stage
(vegetative cells with heterocysts, HET). The figure additionally shows the nitrogen fluxes between the different
ecosystem components, and the sinks and sources of nitrogen (sinking of detritus, burial of phytoplankton
resting cells and resuspension of phytoplankton resting cells, cyanobacterial nitrogen fixation). The figure was
adapted from Hochfeld and Hinners (2024) and created with BioRender.com.

To ensure an accurate representation of phytoplankton phenology under warming conditions,
the model explicitly resolves phytoplankton life cycle dynamics. For all functional groups, the
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model differentiates between a resting stage and a vegetative growing stage, with growth being
limited by light, temperature, and dissolved inorganic nitrogen. The cyanobacteria life cycle ad-
ditionally includes a diazotrophic growing stage, which can fix atmospheric nitrogen (N2) and is
therefore not limited by dissolved inorganic nitrogen. The diazotrophic growing stage of cyanobac-
teria is hence the only phytoplankton growing stage in the model that does not take up dissolved
inorganic nitrogen. The nitrogen content of the dead phytoplankton and zooplankton biomass
fills the detritus pool, which is constantly remineralized back into bioavailable nitrogen. Nitrogen
is lost from the system through sinking of detritus and stochastic burial of phytoplankton rest-
ing cells, and can be replenished through the resuspension of previously buried resting cells and
cyanobacterial nitrogen fixation.

The model does not only consider competition for nitrogen between different phytoplankton
taxa, but also changes in two temperature-dependent functional traits. The first flexible trait,
the optimum temperature for growth, adapts through random mutations. Cell size, on the con-
trary, responds plastically to temperature, with the cell size decreasing linearly with increasing
temperature (Atkinson et al., 2003). For further details on the implementation of mutations and
plasticity, see Hochfeld and Hinners (2024). The model also takes into account that changes in
cell size influence metabolic cell properties (Litchman et al., 2007; Marañón et al., 2013; Ward
et al., 2017), which in turn determine the nitrogen-limited growth rate (Grover, 1991). Since trait
changes such as those described above affect individual cells, the model uses an agent-based ap-
proach after Beckmann et al. (2019) to simulate the dynamics of agents (super-individuals) with
their individual phenotypic trait values. Zooplankton, dissolved inorganic nitrogen, and detritus,
on the contrary, are represented by compartments, i.e., collections of cells or molecules described
by their averaged properties and their concentration.

Ecosystem functions

Our extended version of the Hochfeld and Hinners (2024) model allows us to analyze different
ecosystem functions, including carbon export, cyanobacterial nitrogen fixation, and resource use
efficiency (RUE).

We calculate carbon export from the carbon content of buried phytoplankton resting cells and
the carbon that is exported through sinking of detritus. Detritus contains the dead phytoplankton
and zooplankton cells, as well as the remains from unassimilated feeding. Following Ward et al.
(2012), we divide detritus into dissolved inorganic matter (DOM) and particulate organic matter
(POM), of which only POM is exported into deeper water layers. For the taxonomic groups in
our model, we divide detritus 50:50 between POM and DOM (Ward et al., 2012). Since the model
calculates in nitrogen units, we use the Redfield ratio to convert nitrogen into carbon (Redfield,
1934).

To determine the amount of fixed atmospheric nitrogen, we assume that all the fixed nitrogen
is converted into biomass. Thus, we define nitrogen fixation as the biomass built up by the
diazotrophic cyanobacteria life cycle stage during each time step.

Following Ptacnik et al. (2008), we calculate resource use efficiency (RUE) as the ratio of
phytoplankton biomass and dissolved inorganic nitrogen. Since the cyanobacteria in our model
can fix atmospheric nitrogen, we use simulations without cyanobacteria to derive RUE. Hence, we
only consider the RUE of dinoflagellates and diatoms. Both dinoflagellates and diatoms are grazed
by zooplankton; to avoid grazing-related biases in RUE, we additionally exclude zooplankton from
RUE simulations.
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Model scenarios

To understand how the adaptation of phytoplankton to different environments affects model es-
timations of related ecosystem functions, we implement four different model scenarios based on
Hochfeld and Hinners (2024) (Table 2.2.1). We perform seven simulations for each scenario and
average the output to ensure robust results. Each simulation is run over 100 yr.

Table 2.2.1: Overview of the four model scenarios that we evaluate in this article. For each scenario, we run
seven different simulations over 100 yr and average the output. “Control” represents a present-day seasonal
temperature forcing for the Gulf of Finland. “Warming” adds a constant temperature increase of 0.3 ◦C per
decade to the control forcing (IPCC scenario SSP3-7.0, Allan et al., 2021).

No adaptation Adaptation

Control C CA
Warming W WA

The first two model scenarios, C (control) and CA (control and adaptation), are control sce-
narios that use a steady seasonal temperature and irradiance forcing for present-day conditions in
the Gulf of Finland. The forcing is the same as in Hochfeld and Hinners (2024). The two control
scenarios C and CA serve as spin up for two global warming scenarios W (warming) and WA
(warming and adaptation). We simulate global warming by adding a steady temperature increase
of 0.3 ◦C per decade to the seasonal temperature forcing, which is equivalent to the IPCC scenario
SSP3-7.0 (Allan et al., 2021). Adaptation in the optimum temperature is disabled for C and W
but enabled for CA and WA. In this way, we can study how the (in)ability of phytoplankton to
adapt to their environment may affect ecosystem functioning.

In the four model scenarios presented above, the resuspension of phytoplankton resting cells
from the sediment is disabled. Hochfeld and Hinners (2024) found that resuspension tends to
slow down adaptation to global warming and can hence weaken adaptation-related effects. For
completeness, we performed additional control and warming simulations in which we enabled re-
suspension (CAR: control and adaptation and resuspension; WAR: warming and adaptation and
resuspension) and observed a similar effect. Thus, we do not explicitly analyze and discuss these
simulations here; an example is shown in Fig. B1 in Appendix B.2.

Results

Seasonal phytoplankton dynamics

The seasonal phytoplankton dynamics and the reasons for differences between scenarios are de-
scribed in detail in Hochfeld and Hinners (2024). In summary, the two control scenarios C and CA
produce a realistic seasonal cycle for the focal phytoplankton taxa, including a spring bloom of
dinoflagellates and diatoms, a summer bloom of cyanobacteria, and a second but weaker bloom of
diatoms in autumn (Fig. 2.2.2). In CA, where phytoplankton can adapt, competition for nitrogen
drives adaptation to individual temperature niches, which reduces competition pressure. Due to
reduced competition with diatoms, cyanobacteria can initiate a stronger summer bloom, which in-
creases the amount of nitrogen in the system through nitrogen fixation. The higher concentration
of nitrogen, in turn, allows for stronger blooms of dinoflagellates and diatoms.
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Figure 2.2.2: Accumulated phytoplankton biomass during the last simulation year of the four different model
scenarios (C: control; CA: control and adaptation; W: warming; WA: warming and adaptation). For each
scenario, the output of seven different simulations was averaged. The colors indicate the share of dinoflagellates,
diatoms, and cyanobacteria in the total phytoplankton biomass.

The two warming scenarios W and WA were found to reproduce trends that have been ob-
served in the Baltic Sea over the past decades (Hochfeld and Hinners, 2024), including an earlier
and prolonged phytoplankton blooming season (Wasmund et al., 2019) as well as an increase in
cyanobacteria biomass in summer (Suikkanen et al., 2007). The warming-related changes in bloom
timing and cyanobacteria biomass were shown to be weaker in the presence of adaptation by up to
∼ 9 d and 56 %, respectively (Hochfeld and Hinners, 2024). Adaptation to the increasing temper-
atures in WA enhances the competitivity of non-preadapted taxa. Thus, non-preadapted diatoms
can compete more strongly with preadapted cyanobacteria, which leads to a weaker cyanobacterial
summer bloom (Hochfeld and Hinners, 2024).

Seasonal zooplankton dynamics

For all model scenarios, zooplankton biomass peaks during phytoplankton spring bloom following
the peak in phytoplankton biomass; remember that we simulate cyanobacteria as single summer-
blooming phytoplankton taxon, which we assume to be non-grazeable due to toxicity. Despite
these simplifications in the model, the simulated seasonal pattern is indeed reasonable for some of
the common zooplankton taxa in the Baltic Sea (Feike et al., 2007; Dutz et al., 2010). Although
all four model scenarios agree on a general seasonal pattern, both bloom timing and amplitude
differ notably between them (Fig. 2.2.3 and Table 2.2.2), with the differences being statistically
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significant according to a t-test (Table B1 in Appendix B.1).

Figure 2.2.3: Zooplankton biomass during the last simulation year of the four different model scenarios (C:
control; CA: control and adaptation; W: warming; WA: warming and adaptation). For each scenario, we
averaged the output of seven different simulations.

Table 2.2.2: Average zooplankton timing, peak abundance, and time lag to the phytoplankton peak in spring
for the two control scenarios C (control) and CA (control and adaptation), along with the associated standard
deviations. Also shown are the corresponding average warming-related changes in W (warming) and WA
(warming and adaptation), including propagated errors. For each scenario, we calculated average values from
the last simulation year of seven different simulations. Please note that warming-related changes in zooplankton
peak abundance are not presented as absolute values but as relative changes. A series of t-tests revealed that
the differences between all four scenarios are statistically significant at the 0.05 level; see Table B1 in Appendix
B.1 for details.

C CA W WA

Timing [d ] 102.4± 2.0 86.5± 2.4 −16.9± 2.3 −5.5± 2.6

Abundance
[
µmolNm−3

]
244.8± 17.2 373.0± 46.0 +92.4%± 7.4% +21.2%± 13.0%

Time lag [d ] 12.9± 2.4 8.0± 2.5 −8.7± 2.8 −3.5± 2.8

In the control scenario with phytoplankton adaptation, CA, we observe an earlier and stronger
zooplankton bloom than in the control scenario without phytoplankton adaptation, C (Fig. 2.2.3).
In CA, zooplankton peak ∼ 16 d earlier than in C with a ∼ 52 % higher peak amplitude (Table
2.2.2). These findings resemble the dynamics of phytoplankton under control conditions, which
develop an earlier and stronger spring bloom if they can adapt (Fig. 2.2.2).

Likewise, zooplankton show similar responses as phytoplankton to global warming, including a
shift in bloom timing towards winter and an increase in peak amplitude, with the responses being
weaker when phytoplankton adaptation is enabled (Fig. 2.2.3). While the zooplankton spring
bloom peaks ∼ 17 d and ∼ 5 d earlier in W and WA, bloom amplitude increases by ∼ 92 % and
∼ 21 %, respectively (Table 2.2.2). In conclusion, zooplankton strongly resemble the dynamics of
phytoplankton in all four model scenarios.

Irrespective of these similarities between phytoplankton and zooplankton, however, the time
lag between their bloom peaks differs notably between the four model scenarios. Under control
conditions, we observe a time lag of ∼ 13 d and ∼ 8 d in C and CA, respectively (Table 2.2.2).
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The two warming scenarios W and WA, on the contrary, produce a comparable and notably
shorter time lag of only ∼ 4 d. Thus, in our simulations, warming seems to reduce the time lag
between phytoplankton and zooplankton blooms. In addition, we find that the time lag correlates
negatively with the peak amplitudes of both phytoplankton and zooplankton, meaning that the
higher the amplitude, the shorter the time lag (Fig. B2 in Appendix B.2). While both correlations
are significant, the time lag correlates notably stronger with zooplankton peak amplitude than
with phytoplankton peak amplitude (r (26) = −0.99, p = 2.05 × 10−21 for zooplankton and
r (26) = −0.81, p = 2.41× 10−7 for phytoplankton).

Annual balances

The annual balances of different ecosystem functions are shown in Fig. 2.2.4 for the last simulation
year of all model scenarios. Figure 2.2.4 reveals that phytoplankton produce ∼ 10 times more
biomass than zooplankton per year and hence dominate biomass production in our simulations.
Primary production, in turn, is dominated by cyanobacteria, while dinoflagellates account for the
smallest amount of primary production per year.

Figure 2.2.4: Annual balances of different ecosystem functions for the last simulation year of the four model
scenarios (C: control; CA: control and adaptation; W: warming; WA: warming and adaptation). For each
scenario, annual balances were averaged from seven different simulations.

For cyanobacteria, annual biomass increases under global warming, with the increase being
by ∼ 56 % weaker if thermal adaptation is enabled (Table 2.2.3). Under control conditions, on
the contrary, cyanobacteria biomass is by ∼ 52 % higher with thermal adaptation. While diatoms
follow a similar trend, however with smaller differences between the scenarios, dinoflagellates show
a contrasting development. Dinoflagellate annual biomass decreases slightly under global warming
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and is comparable between C and CA as well as W and WA, respectively. Thus, thermal adaptation
does not seem to have a notable effect on the biomass production of dinoflagellates. Despite the
contrasting development of dinoflagellates, total phytoplankton biomass follows the same trend as
cyanobacteria and diatoms. This finding is underlined by strong positive correlations between total
phytoplankton biomass, cyanobacteria, and diatoms, while dinoflagellates correlate negatively with
all three (Fig. 2.2.5). In all four model scenarios, total phytoplankton biomass correlates strongest
with cyanobacteria (0.98 ≤ r ≤ 1) and weakest with dinoflagellates (−0.73 ≤ r ≤ −0.07).

Table 2.2.3: Average annual balances for the two control scenarios C (control) and CA (control and adaptation),
along with the associated standard deviations. Additionally shown are the corresponding average warming-related
changes in W (warming) and WA (warming and adaptation), including propagated errors. For each scenario,
we calculated average values from the last simulation year of seven different simulations. Please note that the
warming-related changes in W and WA are not presented as absolute values but as relative changes. A series
of t-tests demonstrated that the differences between all four model scenarios are statistically significant at the
0.05 level with only one exception (dinoflagellates in W and WA). See Table B2 in Appendix B.1 for details.

C CA W [%] WA [%]

Dinoflagellates
[
mmolNm−3

]
732.7± 9.2 718.1± 15.1 −8.6± 2.4 −8.8± 3.0

Diatoms
[
mmolNm−3

]
1327.6± 44.0 1591.8± 78.5 +46.3± 3.4 +20.2± 5.1

Cyanobacteria
[
mmolNm−3

]
2140.8± 80.9 3367.2± 524.8 +173.3± 3.9 +48.2± 15.9

Phytoplankton
[
mmolNm−3

]
4201.1± 121.9 5677.0± 597.2 +101.4± 3.0 +33.2± 10.8

Zooplankton
[
mmolNm−3

]
366.9± 19.7 556.7± 51.0 +92.9± 5.5 +16.8± 9.6

N2 fixation
[
µmolN2 m

−3
]

755.6± 40.3 1303.3± 246.3 +218.1± 5.4 +53.8± 19.4

Carbon export
[
µmolCm−3

]
7194.9± 356.3 11429.0± 1868.9 +184.1± 5.0 +52.3± 16.7

RUE
[
103
]

120.6± 3.7 192.3± 5.9 −57.6± 4.1 −57.2± 4.7

Zooplankton annual biomass also correlates positively with the annual biomasses of diatoms,
cyanobacteria, and total phytoplankton. Under control conditions, correlation is strongest with
diatoms (r ≥ 0.81), while under global warming, zooplankton biomass correlates strongest with
total phytoplankton biomass (r ≥ 0.60). In addition, zooplankton biomass production is notably
affected by phytoplankton adaptation, which is consistent with our findings from the previous
section. Under control conditions, zooplankton produce by ∼ 52 % more biomass if phytoplankton
can adapt. Under global warming, zooplankton biomass increases, with the increase being by
∼ 73 % weaker when phytoplankton adaptation is enabled.

The annual amount of fixed atmospheric nitrogen mirrors the annual biomass of cyanobacteria,
which is confirmed by a strong positive correlation in all four model scenarios with r ≥ 0.99.
Under control conditions, cyanobacteria fix ∼ 72 % more nitrogen when adaptation is enabled.
Global warming leads to an increase in nitrogen fixation, and hence the nitrogen input into the
system, by ∼ 218 % in W and ∼ 54 % in WA, respectively.

Carbon export correlates positively with both phytoplankton and zooplankton biomass, with
the correlation being stronger with phytoplankton, which dominate biomass production (r ≥ 0.90

vs. r ≥ 0.69). Among phytoplankton, carbon export correlates strongest with cyanobacteria,
which dominate primary production (r ≥ 0.85). In addition, carbon export is notably affected by
phytoplankton adaptation. Under present-day conditions, carbon export is by ∼ 59 % higher in
CA than in C. Global warming leads to an increase in carbon export by ∼ 184 % in W and ∼ 52 %
in WA, respectively.
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Figure 2.2.5: Correlation matrices showing the correlation coefficients between different ecosystem functions
for the four different model scenarios (C: control; CA: control and adaptation; W: warming; WA: warming and
adaptation). For C and CA, we calculated correlation coefficients using the annual balances from the last 95 yr
of seven different simulations. For W and WA, however, we only used the last 40 yr to capture warming-related
changes. All correlations shown here, except for those with dinoflagellates, are significant at the 0.05 level
according to a t-test (see Fig. B3 in Appendix B.2). Please note that resource use efficiency (RUE) is not
included since we derived RUE from simulations without cyanobacteria and zooplankton.

Finally, resource use efficiency (RUE) decreases under global warming in our simulations, with
the decrease being similar with and without phytoplankton adaptation (∼ 57 % and ∼ 58 %, respec-
tively). Independent of the climate scenario, RUE is always higher if phytoplankton can adapt.
Phytoplankton adaptation leads to an increase in RUE by ∼ 59 % and ∼ 61 % under control and
warming conditions, respectively.
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In conclusion, all ecosystem functions that we investigate in this study, except for dinoflagellates,
show similar developments in the four model scenarios. This is underlined by strong positive
correlations, which are significant at the 0.05 level (Fig. B3 in Appendix B.2). Dinoflagellates, on
the contrary, correlate (mostly) negatively with all other ecosystem functions; correlations with
dinoflagellates are only partly significant, though. Independent of their direction, all correlations
notably change their strength between the four model scenarios. Under control conditions, all
correlations are stronger if phytoplankton adaptation is enabled. This pattern reverses under global
warming, where correlations are weaker with adaptation. This weakening is particularly strong for
zooplankton, for which the negative correlation with dinoflagellates turns slightly positive in WA.

Discussion

In this study, we used an evolutionary ecosystem model to investigate how ecosystem functioning
may change in response to global warming, and how these changes may be affected by phyto-
plankton adaptation. We found that phytoplankton and zooplankton respond similarly to global
warming, with the responses being weaker in the presence of phytoplankton adaptation. Like-
wise, warming-induced changes in associated ecosystem functions are generally less pronounced if
phytoplankton adaptation is enabled in our simulations.

Phytoplankton

The model projects an increase in total phytoplankton biomass in response to global warming. This
increase is predominantly driven by cyanobacteria, which are preadapted to high temperatures
(Collins and Boylen, 1982; Lehtimäki et al., 1997; Nalewajko and Murphy, 2001). This finding
agrees with observations, which have revealed a strong increase in cyanobacterial summer biomass
in the Baltic Sea over the past decades (Suikkanen et al., 2007). A further increase in cyanobacteria
in the future can have severe consequences for the ecosystem, for example, due to their toxicity
for higher trophic levels (Repavich et al., 1990; Quesada et al., 2006; Chorus and Welker, 2021)
and their ability to fix atmospheric nitrogen. We discuss potential impacts of increasing nitrogen
fixation in section “Nitrogen fixation”. Future work can build on our results by including an explicit
representation of cyanotoxin production and its effects on higher trophic levels.

While diatoms also increase under global warming, dinoflagellates show a slight warming-related
decrease in annual biomass. This finding disagrees with observations reporting a shift from diatom
to dinoflagellate dominance during spring bloom over the past decades in several areas of the Baltic
Sea (Klais et al., 2011). These observations, however, are on functional group level, while we simu-
late one focal species per group. Resurrection experiments with our focal cold-water dinoflagellate
of the genus Apocalathium revealed that encystment strongly depends on temperature, and that the
temperature threshold for encystment remained constant over the past century of global warming
at around 6 ◦C (Hinners et al., 2017). However, experiments by Kremp et al. (2009) showed that
encystment strategies vary among Baltic cold-water dinoflagellates, with temperature not always
being the main trigger mechanism. Thus, our model may not be appropriate for estimating future
changes in overall spring bloom dynamics but only changes in our focal species.

Considering the dinoflagellate Apocalathium specifically, warming leads to an earlier onset of
encystment and hence an earlier termination of the spring bloom. As a result, less cysts are
produced and the inoculum decreases, weakening the spring bloom of Apocalathium over the years
as global warming progresses. Consequently, our simulations suggest that warming induces negative
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feedback in the life cycle of Apocalathium. However, Hinners et al. (2017) found that Apocalathium
has decreased its encystment rate over the past century of global warming, which prevents an
abrupt bloom termination at temperatures around 6 ◦C. To test if a decrease in the encystment
rate could weaken the negative feedback in our simulations, we performed additional simulations
in which we artificially decreased Apocalathium’s encystment rate at the rate measured by Hinners
et al. (2017). The simulations reveal that a corresponding decrease in the encystment rate leads
to an even stronger decrease in the biomass of Apocalathium under global warming (Fig. B4 in
Appendix B.2). This suggests that the encystment rate of Apocalathium may respond differently
to future global warming than to past global warming, or that we are missing another crucial
factor. Further research is needed, for example in the form of evolution experiments. In addition,
future work can build on our model and include an explicit representation of adaptation in the
encystment rate of Apocalathium.

On the contrary to Apocalathium, our focal cold-water diatom of the genus Thalassiosira ben-
efits indirectly from warming due to the increase in cyanobacterial nitrogen fixation. The more
nitrogen is fixed in summer, the stronger is the bloom of Thalassiosira in autumn. A stronger
autumn bloom adds more spores to the inoculum, and a larger inoculum allows for a stronger
bloom of Thalassiosira in spring, which is further promoted by the weaker bloom of Apocalathium.
The stronger spring bloom of Thalassiosira further increases the inoculum pool, which, in turn,
further enhances the autumn bloom. Thus, on the contrary to Apocalathium, warming indirectly
induces positive feedback in the life cycle of Thalassiosira, which is mainly driven by the response
of cyanobacteria and, to a lesser extent, by that of Apocalathium.

To conclude, our results demonstrate that the responses of different phytoplankton taxa affect
each other due to differences in their physiology and function. Thus, when simulating ecosystem-
level responses to changing environments, it is crucial for models to include functionally different
taxa with their individual physiologies (e.g., life cycle dynamics) to account for feedback and
competition. As already demonstrated by Hochfeld and Hinners (2024), an adequate representation
of competition also requires an explicit simulation of evolutionary adaptation.

Zooplankton

Our simulated zooplankton responses to global warming qualitatively agree with our simulated
responses of phytoplankton; in both cases, responses are weaker if phytoplankton adaptation is
enabled. In our warming scenarios, both phytoplankton and zooplankton increase in abundance.
A study by Richardson and Schoeman (2004) demonstrated that the abundance of herbivorous
zooplankton significantly depends on their phytoplankton prey (bottom-up control), meaning that
a warming-related increase in phytoplankton will most likely lead to an increase in zooplankton
abundance.

In addition, our simulations show a warming-related shift in bloom timing towards winter
for both phytoplankton and zooplankton, with the shift being stronger for zooplankton. Hence,
our model does not produce a warming-related increase in the time lag between phytoplankton
and zooplankton blooms as suggested by several studies (Edwards and Richardson, 2004; Winder
and Schindler, 2004a,b; Adrian et al., 2006). Instead, the time lag between phytoplankton and
zooplankton tends to decrease in our warming scenarios compared to the corresponding control
scenarios. This decrease in the time lag is strongly connected to zooplankton peak amplitude, with
higher peak amplitudes coinciding with shorter time lags. Higher zooplankton peak amplitudes
indicate stronger grazing on phytoplankton, and hence stronger top-down control. This means that
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the time lag between phytoplankton and zooplankton seems to decrease when top-down control
increases.

The decreasing time lag in our simulations may result from our simplistic representation of
zooplankton. We assume that zooplankton grazing depends exclusively on phytoplankton biomass
and do not consider potential effects of irradiance and temperature. Moreover, we neglect both
zooplankton life cycle dynamics and adaptation. However, observations show that several zoo-
plankton taxa peak earlier in the season in response to global warming (Richardson, 2008). Dam
(2013) interprets the observed phenological shifts in zooplankton as a combination of ecological
and evolutionary responses. For example, Dam (2013) argues that zooplankton do not only re-
spond to changes in temperature itself but also to phenological changes in prey, which select for
fast-growing zooplankton. Indeed, some phytoplankton and zooplankton taxa show synchronous
shifts in bloom timing, for example diatoms and Daphnia (Adrian et al., 2006). Some studies
even suggest a warming-related decrease in the time lag between phytoplankton and zooplankton
(Aberle et al., 2012; Almén and Tamelander, 2020). Consequently, the reduced time lag produced
by our model indeed seems realistic for fast-growing zooplankton taxa like Daphnia, which are “se-
lected” in our global warming simulations by the earlier and stronger phytoplankton spring bloom.
However, our model is not suitable for simulating slow-growing zooplankton with longer and more
complex life cycles such as copepods or larvae of the mussel Dreissena polymorpha (Adrian et al.,
2006).

In conclusion, our results suggest that warming-related responses of fast-growing zooplankton
may be closely related to responses of their phytoplankton prey. Thus, phytoplankton adaptation
may indeed reduce zooplankton responses to global warming, and the effects of phytoplankton
adaptation may even propagate further up the food chain. Future work can build on our model and
study how a more complex representation of zooplankton, including both fast- and slow-growing
taxa, and higher trophic levels may be affected by phytoplankton adaptation.

Carbon export

Our simulations project a warming-related increase in carbon export in the future, which is more
than halved if phytoplankton adaptation is enabled. The projected changes in carbon export
correlate significantly with projected changes in biomass production, which are dominated by a
strong increase in cyanobacterial summer biomass. In the Baltic Sea, cyanobacteria blooms have
intensified over the last century of global warming (Finni et al., 2001), especially during the last
decades (Suikkanen et al., 2007). This development is reflected by sediment records, which show
a simultaneous increase in cyanobacteria pigments and carbon content during the same period
(Poutanen and Nikkilä, 2001). In the future, warming is expected to further increase summer
primary production with a positive feedback on carbon export in several areas of the Baltic Sea
(Tamelander et al., 2017).

Even if our model results are consistent with these findings, we need to keep in mind that we
use a 0-dimensional model setup, which cannot represent certain mechanisms that are crucial for
carbon export. For example, we cannot explicitly simulate physical processes in the ocean like
vertical mixing, including seasonal changes in stratification and mixed layer depth. In addition,
crucial processes like gravitational particle sinking and fragmentation are only included implicitly
in our model, while we neglect vertical migration of zooplankton and nekton (Henson et al., 2022).
Finally, in semi-enclosed ecosystems like the Baltic Sea, carbon export is not predominantly fueled
by phytoplankton primary production but also by benthic primary production and riverine and
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terrestrial inputs (Goñi et al., 2000; Renaud et al., 2015; Tallberg and Heiskanen, 1998). Since
these key processes (and maybe others) are lacking in our model, we cannot interpret our results
as projections of future carbon export. Instead, we interpret them as projections of the future
contribution of primary production to carbon export. Our results reveal that the contribution
of primary production to carbon export may increase in the Baltic Sea in the future and that
phytoplankton adaptation may notably weaken this increase.

Nitrogen fixation

Our model results suggest a strong warming-related increase in nitrogen fixation in the future,
which is a direct result of the projected increase in cyanobacterial summer biomass. Today, the
Baltic Sea is already impacted by above-average levels of nutrient load (Reusch et al., 2018).
For example, nitrogen-driven eutrophication turned the Baltic Sea into one of the most hypoxic
ocean areas worldwide, with severe consequences for productivity, biodiversity, and biogeochemical
cycling (Breitburg et al., 2018). In the future, global warming is expected to further increase the
vulnerability of coastal systems to nutrient loading as harmful algal bloom events become more
likely and pose an increasing threat to animal and human health (Gobler et al., 2017; Paerl et al.,
2015; Glibert et al., 2014).

Since the 1970s, nutrient management strategies have been applied to the Baltic Sea catchment
area, resulting in a reduction of anthropogenic nitrogen load by ∼ 25 % (Reusch et al., 2018). At
the same time, however, nitrogen load by fixation increased notably (Gustafsson et al., 2017).
Model simulations demonstrated that the contribution of nitrogen fixation to the total nitrogen
load to the Baltic Sea increased from almost 20% in the 1980s to almost 35% in the 2000s, so
that the total nitrogen load decreased by only ∼ 9 % (Gustafsson et al., 2017). For the future, our
results suggest that the importance of cyanobacterial nitrogen fixation for the nitrogen budget of
the Baltic Sea will most likely continue to increase and further mitigate the success of nutrient
management strategies. Therefore, nutrient management strategies urgently need to account for
nitrogen load by fixation to be successful in the future. Since our projected increase in nitrogen
fixation is more than halved if we consider phytoplankton adaptation, we strongly recommend
that models used for assessment consider phytoplankton adaptation to realistically estimate future
nitrogen load by fixation.

Resource use efficiency (RUE)

Since we had to exclude nitrogen-fixing cyanobacteria from RUE simulations, our assessed poten-
tial effects of warming and adaptation on RUE are only valid for a two-species ecosystem including
a cold-water dinoflagellate of the genus Apocalathium and a cold-water diatom of the genus Tha-
lassiosira. For this species configuration, we found that adaptation increases resource use efficiency
under both control and warming conditions. In both climate scenarios, adaptation is driven by
competition for nitrogen, allowing Apocalathium and Thalassiosira to use the available nitrogen
optimally within their means.

Apocalathium can only grow within a specific temperature niche, with the freezing point of sea
water at the lower end and the fixed temperature threshold of encystment (6 ◦C) at the upper
end (see Hinners et al., 2019, and section “Phytoplankton”). Within this fixed niche, Apocalathium
adapts to lower temperatures under control conditions due to intraspecific competition for nitrogen.
Since nitrogen concentration is highest during the initial phase of the bloom (Fig. B5 in Appendix
B.2), the environment selects for early bloomers with comparatively low optimum temperatures,
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which grow first and leave less nitrogen for individuals with higher optimum temperatures. Se-
lection for early bloomers advances the bloom peak by more than 1 week compared to the control
scenario without adaptation, which extends the bloom duration by a few days. Bloom duration,
in this context, refers to the time during which growing stages reach a minimum concentration of
0.05 mmolN m−3.

On the contrary to Apocalathium, Thalassiosira is not restricted by its life cycle and can
therefore occupy its optimal niche more flexibly. Under control conditions, Thalassiosira adapts
to higher temperatures to (I) delay its bloom by ∼ 18 d to reduce competition with Apocalathium,
and (II) merge its spring and autumn blooms into a single bloom, which persists from June until
December (Fig. B5 in Appendix B.2). In this way, Thalassiosira can continuously take up nitrogen
for 5 months in a row until light becomes limiting in winter.

When temperatures increase under global warming, RUE decreases but remains at a higher level
when adaptation is enabled. Without adaptation, the spring bloom of Apocalathium is shifted by
∼ 7 d towards winter, with the peak amplitude decreasing by ∼ 18 % (Fig. B5 in Appendix B.2).
These warming-related changes lead to a decrease in bloom duration of more than 2 weeks. The
spring and autumn blooms of Thalassiosira are shifted towards winter as well, and even more than
the spring bloom of Apocalathium (∼ 26 d and ∼ 24 d, respectively). However, both Thalassiosira
blooms only show minor changes in peak amplitude and duration.

With adaptation, Thalassiosira does not show notable warming-related changes in bloom tim-
ing, duration, or amplitude. The spring bloom of Apocalathium, on the contrary, is again by
more than 2 weeks shorter, meaning that the shortening is not caused by lacking adaptation but
by the fixed temperature threshold of encystment. Still, with adaptation, we observe a slightly
smaller shift in bloom timing of Apocalathium with ∼ 5 d instead of ∼ 7 d, and a ∼ 16 % higher
peak amplitude.

To conclude, our simulations show that adaptation generally allows for a more efficient use of
resources and thus higher RUE. Models that ignore adaptation may hence systematically underesti-
mate RUE under both present-day and future conditions. However, our projected warming-related
decrease in RUE only applies to the species configuration in our model. We cannot make state-
ments about future changes in RUE in other ecosystems with a different set of species. Future work
can build on our results and investigate RUE in more complex ecosystems to make more general
statements about future warming-related changes. Our results demonstrate that future models
should consider not only adaptation, but also possible species-specific constraints on adaptation,
such as life cycle dynamics.

Control factors and feedbacks in our model ecosystem

We found that all ecosystem functions are positively correlated in our simulations, with dinoflagel-
late annual biomass being the only exception. Under control conditions, all correlations (regardless
of their direction) are stronger with phytoplankton adaptation, when niche separation allows for
a stronger cyanobacterial summer bloom (see section “Seasonal phytoplankton dynamics”). Due
to the stronger cyanobacterial summer bloom, more atmospheric nitrogen is fixed. The increase
in nitrogen fixation is beneficial especially for diatoms, which can immediately take up the newly
available nitrogen in autumn. Dinoflagellates, however, do not benefit from increased nitrogen fix-
ation. During spring bloom, dinoflagellates reach a higher maximum concentration than diatoms.
Since we assume that zooplankton grazing depends on phytoplankton biomass only (see section
“Zooplankton”), grazing is stronger on dinoflagellates than on diatoms. Indeed, zooplankton peak
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during dinoflagellate spring bloom, meaning that dinoflagellates constitute the main food source
for zooplankton. Hence, the stronger dinoflagellates grow due to increased nitrogen fixation, the
more they are grazed by zooplankton, and increased nitrogen fixation has no positive impact on
dinoflagellate biomass. Zooplankton, on the contrary, benefit indirectly from increased nitrogen
fixation. To conclude, adaptation induces positive feedback in our control simulations: Dinoflagel-
lates and diatoms adapt to individual temperature niches to reduce competition for nitrogen, with
the reduced competition between diatoms and cyanobacteria allowing for a stronger cyanobacterial
summer bloom. While the increased cyanobacterial nitrogen fixation has a direct positive effect
on diatoms, zooplankton benefit indirectly through stronger grazing on dinoflagellates. The result
is an overall increase in biomass production, which, in turn, increases carbon export.

Under global warming, we observe a similar positive feedback mechanism for W, where phy-
toplankton adaptation is disabled. For WA, on the contrary, we find an overall weakening of
correlations, even if cyanobacteria are stronger in WA than in CA. Correlations in WA are weaker
especially for dinoflagellates and zooplankton, with the negative correlation between them turning
slightly positive. Correlations for diatoms are weakened as well but to a lesser extent. Due to the
stronger cyanobacterial summer bloom, nitrogen fixation increases in WA compared to CA, which
is again beneficial for diatoms. As a result, grazing pressure on diatoms increases and weakens the
positive correlation between diatoms and zooplankton. In addition to the enhanced grazing pres-
sure, there is another factor that reduces the benefit of the increasing cyanobacteria for diatoms.
As demonstrated by Hochfeld and Hinners (2024), cyanobacteria restrict diatom adaptation to the
increasing temperatures in WA due to their presence in summer, leading to a stronger shift of
the two diatom blooms towards winter. While this is not necessarily problematic for the diatom
autumn bloom if sufficient light is available, it is for the spring bloom since dinoflagellates are
present at lower temperatures. Thus, we observe a weaker positive correlation between diatoms
and cyanobacteria in WA than in CA. Due to the stronger grazing on diatoms, zooplankton are also
less positively impacted by cyanobacteria. The weaker positive effect of cyanobacteria on diatoms
and zooplankton is reflected in a slight weakening of the remaining positive correlations, and a
notable weakening of the negative correlations with dinoflagellates. Furthermore, the reduced rela-
tive grazing pressure on dinoflagellates reverses the negative correlation with zooplankton, meaning
that an increase in zooplankton biomass no longer implies a decrease in dinoflagellate biomass.

To conclude, cyanobacteria are the most important control factor in our model ecosystem,
which is also confirmed by a principal component analysis (Fig. B6 in Appendix B.2). First,
cyanobacteria produce the highest amount of biomass per year. Second, due to their ability to fix
atmospheric nitrogen, they directly control the biomass production of dinoflagellates and diatoms,
and indirectly of zooplankton. Cyanobacteria are therefore the main factor for carbon export
in our simulations, which also agrees with observations as discussed above (see section “Carbon
export”). However, the interdependencies between cyanobacteria and the other taxa may change
depending on the climate scenario and the presence or absence of phytoplankton adaptation. Under
control conditions and in W, there are clear losers and winners of increased nitrogen fixation among
the phytoplankton, with dinoflagellates being the losers and diatoms being the winners. In WA,
these dynamics begin to reverse slightly since cyanobacteria restrict diatoms in their adaptation to
higher temperatures. These results demonstrate that by neglecting adaptation, we may be missing
adaptation-related changes in taxa interactions, especially in changing environments, which can
affect the entire ecosystem and hence its functioning.
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Conclusions

Our study demonstrates that phytoplankton adaptation does not only affect simulated phytoplank-
ton dynamics themselves but also simulated ecosystem functions through bottom-up control. The
effect of phytoplankton adaptation on simulated ecosystem functions depends on environmental
conditions.

In a steady environment, phytoplankton adaptation allows for a more efficient use of resources
through niche separation, which, in turn, increases primary production. An increase in primary
production may enhance secondary production, nitrogen fixation, and carbon export, and maybe
even other ecosystem functions not included in this study. Thus, by neglecting adaptation, mod-
els can systematically underestimate resource use efficiency in a steady environment and hence
ecosystem functions that are directly related to primary production. In a warming environment,
however, adaptation has the opposite effect. With the ability to adapt to the increasing tem-
peratures, non-preadapted taxa can mitigate the dominance of superior preadapted taxa. Since
different taxa fulfill different functions in the ecosystem, weaker changes in their abundance lead to
weaker changes in related ecosystem functions. By neglecting phytoplankton adaptation, models
may therefore systematically overestimate warming-related changes in ecosystem functioning. To
realistically simulate ecosystem functioning in both steady and changing environments, future mod-
els should not only consider multiple phytoplankton functional groups due to their different roles
in the ecosystem but also their potential to adapt to their environment. Our study furthermore
suggests that models without adaptation may miss adaptation-related interdependencies between
taxa that may play out differently in steady and changing environments and can hence lead to
changes in ecosystem dynamics and functioning. In addition, our study highlights the importance
of life cycle dynamics for phytoplankton responses to global warming due to potential feedback
mechanisms and/or adaptation constraints.

Our study is a first step to improve model projections of future ecosystem-level changes. Future
work can build on our results, for example by expanding our model ecosystem to include multiple
nutrients, a higher diversity of phytoplankton functional groups, a more complex representation
of zooplankton, and higher trophic levels. Another next step would be to couple our or a similar
evolutionary ecosystem model to a 1D or 3D physical environment to allow for a more realistic
representation of physically driven processes, e.g., biogeochemical cycling. The performance of such
an evolutionary biogeochemical-physical model could then be tested against long-term evolutionary
data (e.g., from sediment archives). Using such a validated model for climate projections could
notably improve estimations of future ecosystem-level changes.
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2.3 Study III: From past ecosystem changes to future pro-

jections

How sediment archives can improve model projections of

future marine ecosystem changes

Isabell Hochfeld, Helge Arz, Miklós Bálint, Lutz Becks, Sarah Bolius, Laura
S. Epp, Jérôme Kaiser, Christopher Klausmeier, Anke Kremp, Elena Litchman,
Markus Pfenninger, Juliane Romahn, Alexandra Schmidt, Ben A. Ward, and Jana
Hinners

Global warming is a major threat to marine biodiversity and ecosystem func-
tioning, with consequences that are yet largely unknown. To frame these con-
sequences, we need to understand how marine ecosystems respond to warming
and related environmental changes. Ecosystem models have proven a valuable
tool in this regard, but their projections differ notably. A major limitation in
current models may be that they largely ignore evolutionary dynamics, which
nonetheless can be relevant on the simulated time scales. In addition, models
are usually fit to contemporary data and used predictively afterwards, without
further validation that they are equally applicable to past (and by inference,
future) scenarios. A promising approach to validate ecosystem models are
biological archives such as natural sediments, which “collect” and archive long-
term ecosystem changes. Sediment archives provide a variety of information on
past ecosystem status, including environmental conditions, biodiversity, rela-
tive abundances of taxa, and (functional) traits of living and extinct organisms
and communities. We present a framework to make use of such information
to validate evolutionary ecosystem models and improve model predictions of
future ecosystem changes. Using the example of phytoplankton, key players
in marine systems, we review existing literature and discuss (I) which data
can be derived from ancient sedimentary archives, (II) how we can integrate
these data into evolutionary ecosystem models to improve model projections
of climate-driven ecosystem changes, and (III) future perspectives and aspects
that remain challenging.
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Introduction

Driven by the reality of global warming as a major threat to marine biodiversity and ecosystem
functioning, ecosystem models are increasingly used to estimate future changes in marine ecosys-
tems. However, projected changes differ notably between models (Laufkötter et al., 2015, 2016).
Moreover, models largely ignore evolutionary processes (Laufkötter et al., 2015, 2016; Munkes
et al., 2021) that can be highly relevant on the simulated time scales (Jin and Agustí, 2018; Irwin
et al., 2015). The reliability of current model projections therefore remains questionable. Here,
we propose to use data from sediment archives to validate ecosystem models before using them
predictively, and discuss how this approach can improve model projections.

Compared to the period 1850 – 1900, global mean surface temperature has already increased
by ∼ 1.25 ◦C and is expected to increase by up to a further ∼ 3.5 ◦C until the end of the century
under the most extreme emission scenario (IPCC scenario SSP5-8.5, Allan et al., 2021). Marine
organisms are responding to global warming, for example, through changes in phenology and
seasonal migration (Peer and Miller, 2014; Wasmund et al., 2019), populations moving poleward
(Fossheim et al., 2015; Poloczanska et al., 2013), and increased harmful algal blooms (Anderson
et al., 2012; Hallegraeff, 2010). Marine communities perform ecosystem functions that are vital to
human societies, including food production (Hollowed et al., 2013) and carbon sequestration (Hain
et al., 2014). The response of these ecosystem services under ongoing global warming remains
subject to great uncertainty, and there is a real but unknown risk of positive feedbacks, irreversible
tipping points, and ecosystem collapse (Lenton et al., 2008). Predicting future changes in marine
ecosystem functioning is hence of great importance but remains a major challenge.

Dynamic ecosystem models currently represent the best tool to understand complex feedbacks
between evolving ecosystems and their environment, but it is a considerable challenge to develop
models that would apply equally well to past, present, and future scenarios. Despite their great
potential, current models predict diverging changes in ecosystem functions like carbon cycling and
net primary production (Laufkötter et al., 2015, 2016). Since models hardly agree on the direction
of change, the validity of current model projections remains questionable.

To improve model projections, we need (I) to verify that all relevant processes are considered
and (II) to validate projections with long-term data. In terms of (I), current ecosystem models
largely ignore a crucial process that can influence ecosystem responses to environmental changes
on perennial time scales — evolutionary adaptation (Irwin et al., 2015; O’Donnell et al., 2018;
Hattich et al., 2024). Some models already consider adaptation (Beckmann et al., 2019; Sauterey
et al., 2017; Le Gland et al., 2021), but only a small number have been compared to empirical data,
both from experiments (Denman, 2017) and from sediment archives (Gibbs et al., 2020; Hinners
et al., 2019). So far, however, testing against data has not been used as a tool to improve model
projections. With respect to (II), both experiments and marine monitoring studies cannot account
for long-term environmental changes, while experiments hardly capture the complexity of real
ecosystems. Natural archives such as sediments, however, allow reconstructing long-term ecosystem
responses to past environmental changes (Capo et al., 2021; Ellegaard et al., 2020). Sediments
preserve environmental proxies (Hillaire-Marcel and De Vernal, 2007), organismal remains such as
DNA (Alsos et al., 2022; Monchamp et al., 2016; Zimmermann et al., 2023), and dormant resting
cells and seeds that can be resurrected and used for experiments (Bennington et al., 1991; Hinners
et al., 2017; Isanta-Navarro et al., 2021). Since sediments can be dated, we can use the preserved
information to derive long-term time series on past environmental conditions, biodiversity, relative
taxa abundance, and adaptive changes in (functional) traits.
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Here, we discuss how we can use data from sediment archives to improve marine ecosystem
models and their projections of future ecosystem-level changes. Our approach focuses on phyto-
plankton, key players in marine ecosystems and respective models. Phytoplankton account for
about half of global photosynthesis (Field et al., 1998), are the basis of the marine food web
(Fenchel, 1988), represent an important component of biogeochemical cycles (Hutchins and Fu,
2017), and can even influence ocean physics (Hense, 2007; Sathyendranath et al., 1991). In addi-
tion, the large population sizes and short generation times of phytoplankton allow them to adapt
quickly to changing environmental conditions (Aranguren-Gassis et al., 2019; Irwin et al., 2015;
O’Donnell et al., 2018; Hattich et al., 2024). All these factors, together with their long-lived dor-
mant resting stages (Delebecq et al., 2020; Sanyal et al., 2022), make phytoplankton ideal model
organisms for the approach that we present here. Based on existing literature, we discuss which
data we can obtain from sediment archives, how we can use these data to improve ecosystem
models and their projections, and remaining challenges and future perspectives.

Sediment archives — understanding phytoplankton responses

to environmental change

Sediment archives provide information on past ecosystem status, including environmental con-
ditions, biodiversity, relative abundances of taxa, and (functional) traits of living and extinct
organisms and communities (Fig. 2.3.1). Such data can be used to constrain ecosystem models.

Dating sediment archives

Before working with sediment archives, the sediments must be dated accurately to obtain a well-
constrained relationship between age and sediment depth, a so-called age model. Common sediment
dating methods include radiocarbon dating, lead isotope dating, and event stratigraphy. Radiocar-
bon (14C) dating is based on 14C half-life. Determining the amount of radioactive 14C relative to
the 12C stable isotope allows estimating age ca. 50,000 yr back in time (Hajdas et al., 2021). After
1950, radiocarbon dating is not applicable anymore due to the radiocarbon added artificially to
the atmosphere by atmospheric nuclear bomb tests. Therefore, sediments deposited after 1950 are
dated using different methods such as lead isotope (210Pb) dating and event stratigraphy. While
the 210Pb dating approach is based on the half-life of atmospheric 210Pb (Appleby, 2001), event
stratigraphy is based on the detection of particular events registered in, e.g., chemical parameters
of the sediments. A classic example is the detection of the appearance and maximum content of
137Cs, 241Am, or 239+240Pu artificial radionuclides corresponding to the beginning of the global
atmospheric nuclear bomb tests in 1953 and their maximum in 1963 (Appleby, 2001; Hancock
et al., 2011). Another example is the identification of volcanic ash layers in the sediment cores,
which originate from well-dated volcanic eruptions (Lowe and Alloway, 2015). By combining all
the dating methods mentioned above, it is possible to obtain robust age models of sediment cores
over the last ca. 50,000 yr, knowing that dating uncertainties increase with age. Other stratigraphic
methods such as oxygen isotope stratigraphy, biostratigraphy, or paleomagnetic stratigraphy are
applied to date older sediments (Bradley, 2015).
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Figure 2.3.1: Overview of different types of data (environmental and biological) that can be obtained from
sediment archives. Left: Schematic showing the deposition of organismal remains in the sediment. Green dots
represent active plankton cells, while black dots indicate planktonic resting stages. The red arrows show resting
stage production and deposition in the sediment, as well as germination and hatching of planktonic resting
stages from the sediment. The black arrow represents sinking of dead organic matter (detritus) to the seafloor.
Preserved organismal remains are shown in the sediment. Right: Zoom into the sediment core showing different
types of data that can be obtained. The figure was created with BioRender.com.
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Environmental data

Abiotic and biotic proxies, or indicators, preserved in sediment archives allow reconstructing physic-
ochemical characteristics of past marine and limnic environments. For example, surface salinity
can be estimated using lipids (alkenones) produced by micro-phytoplankton species of the order
Isochrysidales (Medlin et al., 2008; Rosell-Melé, 1998; Kaiser et al., 2017). Trace metals and their
isotopes such as Mo, U, or W represent indicators for past suboxic to euxinic conditions in the
water column and/or the sediments (Brumsack, 2006; Dellwig et al., 2019). Relative assemblages
of microfossils (e.g., resting stages of dinoflagellates, silica frustules of diatoms, calcareous shells
of foraminifera) preserved in sediments provide important information not only on salinity, but
also on pH, trophic state, and temperature, and are therefore powerful proxies (Hillaire-Marcel
and De Vernal, 2007). In terms of water temperature proxies, the Mg/Ca and Sr/Ca ratios of
foraminifera reflect temperature changes at different depths of the water column, depending on the
thriving depth of foraminiferal species (Lear et al., 2002; Cléroux et al., 2008). Indexes based on
alkenones (UK

37, Prahl et al., 1988) as well as other membrane lipids derived from archaea (TEX86,
Schouten et al., 2013) can be used to reconstruct surface and subsurface temperature. These,
and many other physical methods, biological proxies, and geochemical tracers find their diverse
application in paleoceanography (Hillaire-Marcel and De Vernal, 2007).

Proxy-based reconstructions have to be considered carefully as they may be biased due to
preservation/degradation and influenced by local-to-regional environments. Using a multiproxy
approach and calibration depending on the environment are important for reliable reconstructions.
Reconstructed environmental conditions of the past can then be used as environmental forcing for
ecosystem models.

Biological data

Apart from information on environmental conditions, sediment archives provide a wide variety of
biological information, such as biodiversity, relative taxa abundance, and trait adaptation.

Microfossils

Traditionally, the focus of research on sediment archives has been on fossilized plankton remains.
Fossil phytoplankton communities only represent species that consist of stable mineral structures
(e.g., of silica), or contain specific fossilizable molecules such as sporopollenin. Among dinoflagel-
lates, only a fraction of the community produces resting cysts (Limoges et al., 2020; Van Nieuwen-
hove et al., 2020), which are preserved over time and can be used for quantitative paleoecological
reconstructions and biostratigraphy. Diatoms, on the other hand, are well-represented in the fossil
record due to their resistant silica frustules with their diverse species-specific structures (Weck-
ström, 2006). Also some filamentous cyanobacteria produce resistant resting stages, akinetes,
constituting long-term records in brackish-marine and lake sediments (Wood et al., 2021). In
lakes, chrysophyte cysts can build up long-term records providing information on group-specific
phytoplankton dynamics over long time scales (Korkonen et al., 2017). Typically, the generated
microfossil data are quantitative; analyses provide data on relative abundances of taxa through
“time”. Such data will, to some extent, allow estimating relative biomasses of the represented taxa
and larger taxonomic groups, e.g., cyanobacteria, diatoms, and dinoflagellates. While microfossils
provide continuous (semi-)quantitative long-term records of fossilizable phytoplankton taxa over
geological time scales, their biodiversity information is limited. Only a fraction of taxa within the
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phytoplankton community is usually represented in the fossil record, and therefore, respective data
are likely biased (Bálint et al., 2018). Nevertheless, for those taxa that are suitable and sufficiently
represented, highly informative demographic data can be generated from microfossil and resting
stage records (Cermeño et al., 2012; Matul et al., 2018; Kremp et al., 2018). Furthermore, data on
the temporal distribution of larger taxonomic groups as obtained from microfossil records can pro-
vide general information on trait composition and function of phytoplankton communities (Blank
and Sánchez-Baracalco, 2010). Such data can serve as validation for ecosystem modeling studies.

Sedimentary ancient DNA

To capture biodiversity dynamics of phytoplankton through time, recent advances in ancient DNA
approaches can increase taxonomic coverage and resolution. DNA can be preserved for thousands
of years in natural biological archives, such as freshwater sediments (Clarke et al., 2019; Capo
et al., 2021), marine sediments (Coolen et al., 2009, 2013; Armbrecht et al., 2022), and permafrost
(Willerslev et al., 2003; Kjær et al., 2022). Compared to microfossils, a distinctive characteristic of
ancient DNA data lies in their capability for broad taxonomic coverage. Because every organism
contains DNA and the differences between species are defined by their DNA, in theory, DNA
could be used to identify any organism that has been left in sediment deposits (Bálint et al.,
2018). Establishing relative abundances of organisms from their DNA record is challenging though.
While fossilized remains of certain phytoplankton taxa can inform us about cell counts, DNA
records can be informative about copy numbers of particular genes (Mejbel et al., 2021). Since
gene copy numbers can vary by orders of magnitude among species, inferences about abundance
can be challenging with methods that target many taxa at once (Vasselon et al., 2018). If the
focus is on a narrow set of taxa, gene copy number information provided by quantitative analyses
(qPCR or ddPCR) might be more readily translated into abundance information, especially if
the range of gene copy numbers per cell can be estimated for the focal species (Godhe et al.,
2008). This approach potentially allows to obtain demographic information on a targeted taxon in
specific sediment horizons. The recovered genetic diversity can furthermore inform on the effective
population size of a population, which influences the population’s evolvability (Charlesworth, 2009).
Thus, changes in the effective population size can be qualitatively compared to changes in the
number of different agents in agent-based ecosystem models. In addition, under stable, non-
selective environmental conditions, effective population size should be positively correlated with a
population’s trait variance.

Resurrection experiments

Living sediment archives are represented by temporal deposits of living dormant resting stages,
which can be obtained from organisms that produce long-lived dormant resting cells/seeds such
as specific plants (McGraw et al., 1991; Sallon et al., 2008), zooplankton (Kerfoot and Weider,
2004; Pauwels et al., 2010), and phytoplankton (Härnström et al., 2011; Hinners et al., 2017).
Laminated sediments, which form under anoxic conditions due to the absence of mixing by benthic
fauna, therefore contain distinct age cohorts of dormant or quiescent phytoplankton (Ellegaard
et al., 2017). Such resting stages can germinate when exposed to oxygen, and cells start growing
when suitable temperature, light, and nutrient conditions are provided. A number of studies have
demonstrated the “resurrection” potential of different phytoplankton taxa after extended periods
of resting, ranging from decades to millennia (Härnström et al., 2011; Kremp et al., 2018; Sanyal
et al., 2022).
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Phytoplankton strains that have been re-established from germinated resting stages of differ-
ent temporal sediment layers can be characterized pheno- and genotypically (Hinners et al., 2017;
Härnström et al., 2011). Comparison of trait values among temporal cohorts will provide infor-
mation on trait changes, their rates of change, and the mechanisms behind (Hattich et al., 2024).
Different traits, e.g., temperature-dependent growth and nutrient uptake (Hattich et al., 2024),
photosynthesis-related traits (Medwed et al., unpublished), resting stage formation (Hinners et al.,
2017), and toxicity (Wood et al., 2021) have been measured in laboratory experiments on resur-
rected strains and resulting data have been used in ecosystem models (Hinners et al., 2019). Traits
that are of particular interest for ecosystem modeling include growth characteristics depending on
environmental conditions (reaction norms), cell size, mortality rates, grazing rates (of zooplank-
ton), toxicity, as well as triggers and rates of transition between life cycle stages. While trait data
of revived cultures from uppermost contemporary sediment layers can be used for the calibration
of ecosystem models, trait time-series of deeper, older sediment layers provide data for ecosystem
model validation, as described in more detail in the following section “Implementing data from
sediment archives into (evolutionary) ecosystem models”. Emerging high-throughput phenotyping
methods allow for extensive trait measurements even for large sets of cultures (Argyle et al., 2021).

Phenotypic trait data from resurrected cultures can be linked to their genetic traits. A common
method for this is represented by Genome-Wide Association Studies (GWAS) (Visscher et al.,
2017; Uffelmann et al., 2021; Hirschhorn and Daly, 2005). GWAS connect variations in the DNA
sequence, known as Single Nucleotide Polymorphisms (SNPs), to a specific trait. This is done by
using statistical methods to find a correlation between each SNP and the trait. The strength of
this correlation is represented by a p-value. GWAS approaches can help to determine if certain
functional groups of genes (e.g., those involved in oxidation or CO2 fixation) were selected for or
lost over time. In addition, GWAS approaches can help to determine whether the traits of interest
are polygenic and can thus be adequately modeled as continuous quantitative traits. The success
of this method depends on several factors, including the quality of the phenotypic data and the
accuracy of the genetic data.

Implementing data from sediment archives into (evolutionary)

ecosystem models

Ecosystem models provide a powerful tool to study the functioning of ecosystems and their re-
sponses to environmental changes. For example, marine ecosystem models can be used to under-
stand global patterns of phytoplankton diversity (Dutkiewicz et al., 2020; Ward et al., 2012). In
addition, they can help to identify potential feedback loops (e.g., between cyanobacteria and their
environment, Hense, 2007) and trade-offs (e.g., between phytoplankton diversity and productivity,
Smith et al., 2016). Finally, marine ecosystem models can simulate how phytoplankton (and zoo-
plankton) respond to different biotic and abiotic factors, including viruses (Krishna et al., 2024;
Weitz et al., 2015), eutrophication (Gustafsson et al., 2012), ocean acidification (Dutkiewicz et al.,
2015), and temperature changes (Lee et al., 2018; Elliott et al., 2005).
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The neglected role of evolutionary adaptation in ecosystem models

Over the past few years, ecosystem models have been increasingly used to estimate the impact of
global warming on marine ecosystems and their functioning. Although the results of climate pro-
jection studies are relevant for stakeholders (Intergovernmental Panel on Climate Change (IPCC),
2022), current models differ notably in their formulations and predictions, with some models even
disagreeing on the direction of change (Laufkötter et al., 2015, 2016). We argue that a major
source of uncertainty in current models is that they do not account for the high adaptive potential
of phytoplankton.

Experiments and observations demonstrated that phytoplankton adaptation can be impor-
tant on perennial time scales (Hattich et al., 2024; Irwin et al., 2015; O’Donnell et al., 2018;
Aranguren-Gassis et al., 2019) and may hence alter predicted ecosystem changes notably (Ward
et al., 2019). Indeed, a recent modeling study revealed that adaptation can significantly reduce sim-
ulated warming-related changes in phytoplankton phenology and relative taxa abundance (Hochfeld
and Hinners, 2024). Changes in phenology and relative taxa abundance, in turn, may have a di-
rect impact on ecosystem functioning (Litchman et al., 2015; Edwards and Richardson, 2004). To
conclude, it is becoming increasingly clear that evolutionary adaptation cannot be neglected in
climate projection studies, putting current models and their ability to predict future ecosystem
changes into question.

Evolutionary adaptation can be integrated into ecosystem models by allowing for one or more
phytoplankton traits to change on intergenerational time scales. In case of changing temperature,
for example, phytoplankton thermal adaptation can be represented with an evolvable optimum tem-
perature for growth (Kremer and Klausmeier, 2017; Beckmann et al., 2019). Different approaches
exist to integrate adaptation into ecosystem models, with the most suitable approach depending
on the research question. Overviews can be found in Beckmann et al. (2019) and Klausmeier et al.
(2020a). However, integrating adaptation into ecosystem models brings new challenges, such as
identifying the relevant traits and the associated limits and trade-offs (O’Donnell et al., 2018; Ward
et al., 2019). One approach to obtain the necessary evolutionary information is represented by evo-
lution experiments (Ward et al., 2019; Hinners et al., 2024). Since such experiments can neither
replicate the complexity of real ecosystems nor long-term environmental changes, we argue that
sediment archives as “natural evolution experiments” represent a valuable complementary source
of information, which we explain further below.

Building an (evolutionary) ecosystem model including data from sedi-
ment archives

It is a considerable challenge to develop ecosystem models that can be applied equally well to past,
present, and future scenarios. Most state-of-the-art models are developed in a two-step process
that comprises the definition of prior estimates of parameter values (initialization) and the iterative
fit to contemporary observations through parameter adjustment (calibration). We argue that this
approach relies too heavily on how an ecosystem is structured in the present, so that models may no
longer be applicable when ecosystem structure has changed in the future. To avoid these problems,
models should represent fundamental processes that apply more generally instead of being tailored
to a specific ecosystem. The general applicability of a model can be tested with an additional step
during model development, validation, which makes use of data from sediment archives. A recent
study presented such an approach for non-evolutionary terrestrial models, which is mainly based on
plant remains (Alsos et al., 2024). Our approach focuses on phytoplankton, key players in marine
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ecosystems and respective models. Due to the high evolutionary potential of phytoplankton, we
additionally consider evolutionary processes.

The model development approach that we propose here comprises three different steps: initial-
ization, calibration, and validation (Fig. 2.3.2). Both initialization and calibration are performed
using contemporary data, while validation requires data from sediment archives. Only when all
three steps of model development have been completed should a model be used to simulate future
ecosystem changes.

Figure 2.3.2: Conceptual framework for the development of an (evolutionary) ecosystem model that can be
applied equally well to past, present, and future scenarios. Shown are the three different steps of model
development (initialization, calibration, validation), the following application of the model (simulation), and the
data required for each step.

Initialization requires prior estimates of parameter values that need to be valid regardless of
the simulated environmental scenario. Such parameters include constraints on adaptation, such
as maximum evolutionary trait change rates, which are, however, difficult to assess. For example,
evolutionary trait change rates can be assessed by comparing ancestral trait values to those from
populations evolved in a new environment for a specific time after accounting for plastic responses
(Collins and Bell, 2004; Hutchins et al., 2015; Listmann et al., 2016). In addition, it is possible to
measure changes in fitness proxies, most commonly population growth rate or lineage competitive
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ability (Elena and Lenski, 2003). However, interpretation is not straightforward since the rela-
tionship between fitness and proxy may change over time (Collins et al., 2020). Finally, genetic
mutation rates can be estimated via genome sequencing (e.g., Krasovec et al., 2019), but genetic
mutation does not necessarily translate into trait changes. While functional traits may depend
on multiple genes (epistasis), one gene may affect multiple traits (pleiotropy) (Lässig et al., 2017;
Østman et al., 2012; Tyler et al., 2009). To conclude, evolutionary trait change rates can only be
assessed roughly and need to be further adjusted in the next steps of model development.

The goal of model calibration is to fine tune the model parameters and the model structure
until the model reproduces contemporary observations. To do so, initial values for mean traits and
trait variance are required (Fig. 2.3.2). These parameters can be measured in the laboratory for
recently sampled organisms (Lehtimäki et al., 1997; Vincent and Silvester, 1979). The model is
then forced with a baseline environmental forcing, usually a steady seasonal forcing that represents
present-day conditions. Using this forcing, the model is run until it reaches a steady state, where
phenology and relative taxa abundances repeat each season. Simulated phenology and relative taxa
abundances are then compared to contemporary observations from seagoing research and remote
sensing. If the model does not reproduce the observations, model parameters and structure are
adjusted iteratively until model output and observations match.

As the final step, model validation aims to test if the model is equally applicable to past,
present, and (by implication) future scenarios by comparing the model output to independent val-
idation data. We argue that data from sediment archives are ideally suited for validation, with
a contemporarily calibrated model being successfully validated if it can represent major shifts in
community structure and/or function that are present in the sedimentary record. As a first step,
validation needs initial values for the mean and variance of the relevant traits. These parameters
can be measured in the laboratory for resurrected organisms sampled from the sediment layer
that corresponds to the beginning of the validation period. In addition, environmental conditions
during the validation period must be reconstructed to create a forcing for the model. The simu-
lated biodiversity and relative taxa abundances can then be compared to organismal remains from
different sediment layers throughout the validation period. Similarly, simulated trait changes can
be compared to results from resurrection experiments, which are performed with organisms from
different sediment layers of the validation period. If the contemporarily calibrated model cannot
reproduce major events in the sediment record, this implies that the model’s structure and param-
eterization are not general to both contemporary and past systems and should therefore not be
used to make predictions.

For example, Gibbs et al. (2020) used an evolutionary ecosystem model that was parameterized
in accordance with contemporary laboratory measurements to reproduce an observed shift in the
trophic status of coccolithophores after the end-Cretaceous mass extinction. However, while the
model produced an evolutionary response that was qualitatively consistent with the sedimentary
record, the simulated evolutionary response progressed at a rate that was orders of magnitude
too fast. This indicates that the model structure would require further adjustments until both
contemporary and sedimentary data are reproduced before the model could be used predictively.

While such a model could be recalibrated to fit the past data, we do not recommend this
approach, because the ad hoc adjustment of the model parameters does not fix the underlying
problem. In addition, calibration is not possible when making predictions. Therefore, instead of
recalibrating the model to past data, we advocate refining the model structure to better represent
processes that do apply generally, across past, present, and future systems. After recalibration
to contemporary data, the refined model could be tested again against past data. Repeating this
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process iteratively until both contemporary and past data can be reproduced with the same model
assures that the model can produce meaningful statements about an ecosystem’s possible response
to future climate changes.

Challenges and potential of using data from sediment archives

for ecosystem modeling

Our approach has the potential to increase the informative value of model projections of future
changes in marine ecosystems. However, there are still some challenges associated with it.

One major challenge comprises the low temporal resolution of sedimentary records, which can
range from multi-centennial to annual depending on the sedimentation rate (Abrantes et al., 2005;
Maslin et al., 2005). Thus, phenological information is missing even in high-resolution records,
meaning that simulated phenology cannot be validated using data from sediment archives. Instead,
simulated phenology can be validated using monitoring data, which may go back several decades
(Catlett et al., 2021; Edwards et al., 2010; Hjerne et al., 2019; Wasmund et al., 2019). Simulated
longer-term ecosystem changes on perennial time scales, however, can still be validated using
sediment archives. In addition, preservation issues can lead to sediment horizons being lost for
analysis due to low concentrations of total organic carbon. Biotic proxies for the reconstruction
of environmental conditions and DNA also suffer from preservation/degradation biases and are
therefore not independent from each other (Wakeham and Canuel, 2006; Zonneveld et al., 2010;
Dommain et al., 2020; Mitchell et al., 2005). Preservation/degradation biases in biological data may
lead to incomplete information on mean traits and trait variance. Resting stages that have been
preserved in the sedimentary record and could be revived for experiments may not be representative
of the entire population at the time of deposition, and therefore may not be representative of its
traits. However, assuming that the fittest individuals of a population were most abundant in the
past and hence are most abundant in the sediment, we should be able to measure representative
mean trait values for the population. To obtain reliable estimates of trait variance, experimental
studies on phytoplankton traits should aim to characterize as many strains as possible, e.g., using
high-throughput methods (Argyle et al., 2021).

Evolutionary models require knowledge of how rapidly and how far the aforementioned traits
can change from generation to generation, as well as of the trade-offs between traits (Levins,
1962; Litchman et al., 2007) and ultimate constraints on adaptation (Klausmeier et al., 2020b).
Such information is available from evolutionary experiments, but it is still unclear how applicable
such information will be when moving from a highly simplified evolutionary experiment to a more
complex community context. A major challenge in this regard is to link trait changes to changes
in fitness. While the relationship between a fitness proxy and actual fitness may change over
time (Collins et al., 2020), fitness is largely determined by species interactions (Schabhüttl et al.,
2013). Based on the assumption that the most competitive phytoplankton taxa are also the most
abundant in the sediment, sediment archives make it possible to estimate the relative fitness of
different taxa.

Despite limitations and knowledge gaps, sediment archives represent a valuable source of infor-
mation that has the potential to advance ecosystem model development and hence model predic-
tions of future ecosystem-level changes. As pointed out above, a crucial step in ecosystem model
development is to make sure that models are equally applicable to past, present, and future scena-
rios before using them predictively. This requires validation data that must be independent from
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the data used for calibration. Moreover, validation data need to cover the complexity of marine
ecosystems and long-term environmental changes over hundreds to thousands of years. While data
from laboratory, mesocosm, or marine monitoring studies only partly fulfill these criteria, sediment
archives fulfill all of them. Furthermore, the approach presented here is not limited to phytoplank-
ton, but can be applied to other organisms that are well-represented in the sediment record, such
as zooplankton (Isanta-Navarro et al., 2021; Wersebe and Weider, 2023), viruses (Coolen, 2011),
and terrestrial plants (Alsos et al., 2024).

Conclusions

Marine communities perform ecosystem functions that are essential for the environment and for
humans. However, it is largely unknown how these ecosystem functions will change under global
warming, and the possibility of positive feedbacks, irreversible tipping points, and ecosystem col-
lapse must be considered. It is therefore crucial to develop tools that provide reliable estimates of
future changes in marine ecosystems.

Ecosystem models represent a promising tool in this regard, but they largely disagree on fu-
ture ecosystem changes. Here, we present an auspicious approach that can improve future model
predictions. We argue that ecosystem models must account for evolutionary processes, which are
largely ignored by current models but can be highly relevant on perennial time scales. In addition,
models must represent fundamental processes instead of being tailored to a specific ecosystem.
To achieve this, it must be validated that ecosystem models are equally applicable to past and
present scenarios before they can be used predictively. However, independent validation is largely
missing from current ecosystem modeling studies. We suggest calibrating ecosystem models using
contemporary observations, and validating the calibrated models against major ecosystem changes
that are present in sedimentary records. Compared to data from conventional experiments and
marine monitoring, sediment archives make it possible to map the complexity of real ecosystems
and long-term environmental changes. Only if a contemporarily calibrated ecosystem model can
reproduce observations from sedimentary records, we can have some confidence in its predictions
of future ecosystem changes.

Some challenges remain, especially regarding the low temporal resolution of sediment archives
and their partly biased information. Nevertheless, data from sediment archives provide a unique
opportunity to learn from the past and hence have the potential to take ecosystem models and
their predictions of future ecosystem changes a crucial step forward. The approach that we present
here is not restricted to phytoplankton but can be applied to other organisms and ecosystems as
well.
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Chapter 3

SUMMARY & CONCLUSIONS

This PhD thesis contributes to improving predictions of future changes in marine ecosystems by
addressing two major uncertainties in current marine ecosystem models, namely the neglect of
phytoplankton adaptation and the predictive use of models tailored to contemporary ecosystems.

Study I: The interplay between competition & adaptation

Until now, no ecosystem modeling study has investigated how the simulated response of a phyto-
plankton community with multiple competing functional groups to global warming changes when
evolutionary adaptation is considered. Likewise, other important processes that can influence
adaptation, such as resting cell resuspension, have been largely ignored in ecosystem models. In
the first study of this thesis, my co-author and I filled these gaps by developing an innovative
ecosystem model that for the first time combines the competition between multiple phytoplankton
functional groups, their adaptation to global warming, and resting cell resuspension. We applied
the model to the Baltic Sea, which is impacted by above-average levels of warming, and performed
simulations for present-day and future climate scenarios. For each climate scenario, we ran three
different types of simulations: (a) simulations without phytoplankton adaptation, (b) simulations
with mutations in the optimum temperature for growth, and (c) simulations with mutations and
resting cell resuspension from the sediment. With these simulations, we can now answer our initial
research questions:

How does the interplay between competition and adaptation affect simulated phyto-
plankton responses to global warming?

How does resting cell resuspension affect adaptation to global warming?

We found that simulations that consider both competition and adaptation produce different results
than simulations in which only one of the two processes is included. Both processes influence each
other, with the outcome of their interplay depending on environmental conditions. In a steady en-
vironment, competition for resources leads to adaptation to individual temperature niches (niche
separation). In a warming environment, adaptation allows inferior competitors to increase their
competitivity, which in turn allows them to mitigate the dominance of preadapted superior com-
petitors. Thus, by neglecting adaptation, models may systematically overestimate phytoplankton
responses to global warming in terms of changes in relative taxa abundances and bloom timing.
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In our simulations, resting cell resuspension tends to slow down adaptation to global warming
since past-adapted resting cells are re-introduced to the actively growing population.

To conclude, Study I demonstrates that adaptation increases the resilience of marine commu-
nities to environmental change and reduces dominance changes among taxa, which is in agreement
with previous theoretical models (Barabás and D’Andrea, 2016; Northfield and Ives, 2013). Our
study extends the previous findings by showing that they do not only apply in a theoretical frame-
work but also in an ecosystem context. Thus, future ecosystem models should no longer ignore
evolutionary processes, especially those used for climate projections. Instead, future ecosystem
models should consider both competition and adaptation simultaneously to realistically simulate
phytoplankton responses to global warming.

Study II: The effect of adaptation on ecosystem functioning

So far, no modeling study has investigated how phytoplankton adaptation to global warming could
affect the functioning of a marine ecosystem. In Study II, we filled this gap by extending the
model developed in Study I to explicitly calculate different ecosystem functions, including nitro-
gen fixation and carbon export. Using the extended version of the model, we again performed
simulations for present-day and future climate conditions, in each case with and without phyto-
plankton adaptation in the optimum temperature. These simulations now allow us to answer our
initial research question:

How does phytoplankton adaptation affect simulated ecosystem dynamics and future
changes in ecosystem functioning?

The simulations show that phytoplankton adaptation affects not only the simulated phytoplank-
ton dynamics themselves, but also the simulated ecosystem dynamics, as phytoplankton are key
players in marine ecosystems. Similar to Study I, the effect of phytoplankton adaptation on the
simulated ecosystem dynamics depends on environmental conditions. In a steady environment,
adaptations allows for a more efficient usage of the limiting resources through niche separation.
Enhanced resource use efficiency, in turn, increases primary production and associated ecosystem
functions such as secondary production and carbon export. In a warming environment, adapta-
tion reduces dominance changes among functionally different taxa and hence mitigates changes in
ecosystem functioning. Thus, by neglecting phytoplankton adaptation, models may systematically
underestimate resource use efficiency and associated ecosystem functions in a steady environment,
and systematically overestimate their changes in a warming environment.

In agreement with models and observations, Study II predicts an increase in nitrogen fixation
and cyanobacteria-related carbon export in the Baltic Sea over the next century of global warming
(Hense et al., 2013; Poutanen and Nikkilä, 2001; Tamelander et al., 2017). However, the simulated
increase is more than halved if phytoplankton adaptation is considered. These results demonstrate
that phytoplankton adaptation is not only relevant to accurately simulate phytoplankton responses
to global warming, but in a much broader context. With phytoplankton as key players in marine
ecosystems, the accurate simulation of their responses to global warming is a prerequisite for re-
alistic estimates of future changes in ecosystem functioning. Thus, ecosystem models to date may
have substantially overestimated future changes in marine ecosystems. To avoid these uncertain-
ties in the future, evolutionary processes need to become a common feature in predictive marine
ecosystem models.

64



Study III: From past ecosystem changes to future projections

In the third study of this thesis, we addressed the second major uncertainty in current marine
ecosystem models, namely that predictive models are tailored to the current state of an ecosystem
and may therefore not be applicable to the future. We argue that models should only be used pre-
dictively if they represent fundamental processes that apply equally to the past, present, and future
state of an ecosystem. Based on the idea that we can learn about these fundamental processes from
past ecosystem changes present in sedimentary records, we designed a conceptual framework for
developing evolutionary ecosystem models that are equally applicable to past, present, and future
scenarios. Using this framework, we can now answer our initial research questions:

How can data from sediment archives improve evolutionary ecosystem models and
their projections of future ecosystem changes?

What are the remaining challenges and what is the potential of our approach?

Our framework suggests calibrating evolutionary ecosystem models using contemporary observa-
tions, e.g., from seagoing research and/or satellite data, and testing the calibrated models against
major ecosystem changes that are present in sedimentary records (validation). Abiotic and biotic
proxies archived in sedimentary records provide information about past environmental conditions,
including salinity, oxygen conditions, pH, trophic state, and temperature, which can be used as
forcing for models. The model output can then be compared to biological information on biodiver-
sity, relative taxa abundances, and trait adaptation derived from microfossils, sedimentary ancient
DNA, and resurrectable resting stages present in the sediment. Only when the same model can
reproduce both contemporary observations and major events in the sedimentary record, which may
require several iterations to refine the model structure, should the model be used predictively.

Despite its great potential, there are still some challenges associated with our approach. These
include the low temporal resolution of sedimentary records without seasonality information and
degradation/preservation biases in both environmental and biological data. In addition, evolu-
tionary ecosystem models require information on maximum adaption rates, limits and ultimate
constraints on adaptation, as well as trade-offs between traits, which cannot be obtained from
sediment archives but from evolution experiments. It is unknown, however, how applicable such
information will be when moving from an idealized experiment to a complex ecosystem.

Even if some challenges remain, data from sediment archives allow for long-term validation
over millennia, are independent from the calibration data, and capture the complexity of real
ecosystems. These crucial requirements for validation data are only partly fulfilled by laboratory
experiments, mesocosm experiments, or marine monitoring studies. In addition, our approach is
not limited to phytoplankton but can be applied to other organisms that are well-represented in
the sedimentary record, for example, zooplankton and terrestrial plants.

While the validation of predictive models is already common for atmosphere and ocean cir-
culation models (Tonani et al., 2015; Hollingsworth, 1994), this procedure is largely ignored by
the ecosystem modeling community. Although some ecosystem models have already been used for
both hindcast simulations and future projections, the hindcasts were only used to estimate model
biases (Meier et al., 2014; Eilola et al., 2011; Meier et al., 2011). As previously shown for ocean
circulation models, validation can significantly improve model performance, with the improvement
depending on the quality of the validation data (Oke et al., 2015a,b). With our validation concept
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for ecosystem models specifically, it may be possible to improve their performance not only by
refining the representation of existing processes, but also by identifying other relevant processes
that have been ignored so far. Since our approach is based on sedimentary records, which provide
higher quality validation data than both observations and experiments, it has the potential to take
the development of predictive ecosystem models a crucial step forward and should be adopted by
the ecosystem modeling community.

However, our approach may not only be valuable for modeling studies but also for experimental
research. In nature, multiple environmental factors change simultaneously (Allan et al., 2021).
Identifying the main driver(s) responsible for the ecosystem changes present in sedimentary records
can therefore be challenging. Iteratively refining the structure of an ecosystem model until the
model can reproduce both contemporary and sedimentary data can help to understand the observed
ecosystem changes and their drivers.

General conclusions and perspectives for future research

Providing reliable estimates of future changes in marine ecosystems is crucial. Marine commu-
nities fulfil vital functions for the global climate and us humans (Hain et al., 2014; Weatherdon
et al., 2016), which are threatened by ongoing global warming (Pecl et al., 2017; Hoegh-Guldberg
and Bruno, 2010). Ecosystem models currently represent the best tool for assessing future ecosys-
tem changes and are therefore a valuable resource for political decision-making (Intergovernmental
Panel on Climate Change (IPCC), 2022; Meier et al., 2014). However, existing models predict di-
verging changes in ecosystem functions like net primary production and carbon export (Laufkötter
et al., 2015, 2016), which implies that they are still neglecting fundamental processes. This PhD
thesis demonstrates that phytoplankton adaptation, a fundamental process that is largely ignored
in existing ecosystem models, can significantly change simulated phytoplankton and ecosystem
dynamics under both present-day and future climate conditions. My results show that adaptation
increases the resilience of marine communities to environmental change and thus reduces changes in
phytoplankton taxa abundances and ecosystem functions like nitrogen fixation and carbon export
by a multitude. Therefore, it seems highly questionable to implement phytoplankton with fixed
traits, which is common in existing ecosystem models. Until now, ecosystem models may have sys-
tematically underestimated the resilience of marine communities to environmental change, which
may have led to a systematic overestimation of phytoplankton and ecosystem responses to global
warming. Adaptation should become a common feature in future ecosystem models, especially
those used for climate projections.

Incorporating evolutionary processes into marine ecosystem models is only a first step towards
more reliable predictions of future ecosystem changes, and much potential remains for future
research efforts. Considering this work specifically, the next logical step would be to test my
model against data from sediment archives and revise the model structure until both contemporary
observations and sediment data are reproduced. Afterwards, the model could be used for climate
projections again, and the results could be compared to the unvalidated climate projections from
Study I and Study II. The comparison of climate projections before and after validation would
allow to investigate how validation affects model projections of future ecosystem changes and
provide further insight into the true potential of this approach.
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Even if validated, the model presented in this thesis will not be suitable to provide quantitative
estimates of future changes in marine ecosystems due to its simplistic design. Thus, model com-
plexity will need to be increased, or evolutionary processes will need to be integrated into existing,
more complex ecosystem models. Considering the model presented here specifically, the potentially
most important addition would be the coupling to a 1D or 3D physical environment due to the
importance of physical processes for biogeochemical cycling. Integrating evolutionary processes
into existing global coupled Earth system models, such as the CMIP models, could potentially
reduce their disagreement about future changes in ecosystem functioning.

In conclusion, evolutionary processes should no longer be neglected by the marine ecosystem
modeling community. Instead, they should be integrated into policy-relevant Earth system models,
e.g., the CMIP models, using computationally efficient evolutionary algorithms such as continuous
trait diffusion (Le Gland et al., 2021; Chen and Smith, 2018). If validated against data from
sediment archives, such models could eventually provide reliable estimates of future ecosystem
changes, maybe even quantitatively. While a lot of work remains to be done to achieve this goal,
my work is a first crucial step. By addressing two major uncertainties in current ecosystem models,
I was able not only to emphasize the need to revise these models, especially when used for climate
projections, but also to provide approaches to solutions. Future work can build on my results and
bring the modeling community closer to reliable estimates of future ecosystem changes.
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Appendix A

APPENDICES FOR STUDY I

A.1 Evolution in ecosystem models

Ecosystem models use mathematical formulations to conceptualize the dynamics of living and non-
living organic matter (organisms, e.g., phytoplankton, and detritus), as well as other ecosystem
components (nutrients, chemicals, toxins). All ecosystem components are represented by model
state variables, which are linked by sink and source processes like nutrient uptake, growth, mor-
tality, and remineralization. Processes are formulated as differential equations and may depend
on environmental conditions such as temperature, salinity, and light. For example, phytoplankton
growth may depend on environmental temperature, which can be parameterized with a thermal
limitation function.

To simulate phytoplankton adaptation to changing temperatures, the thermal limitation func-
tion can be implemented with evolvable parameters (e.g., optimum temperature). The most suit-
able strategy to integrate evolutionary processes into ecosystem models depends on the complexity
of the ecosystem model itself. Global circulation models, for instance, require a computation-
ally efficient and thus simplified implementation of evolutionary processes. Zero-dimensional box
models, on the contrary, allow for a computationally more demanding and hence more complex
representation of evolution.

Individual-based models (IBMs), which simulate individual phytoplankton cells with their indi-
vidual phenotypic trait values, provide the most realistic and thus most complex representation of
evolutionary processes. One prominent approach that simulates trait value changes in response to
environmental changes was developed by Beckmann et al. (2019). In their model, Beckmann et al.
(2019) assume that cells take up nutrients, grow, divide, and die. However, cells are also affected
by stochastic processes, e.g., during mortality or due to random mutations. A random mutation
in a daughter cell’s trait occurs every several hundred cell divisions (Lenski and Travisano, 1994).
The daughter cell’s trait is sampled randomly from a Gaussian distribution centered at the parent’s
trait value with a prescribed standard deviation. In this way, small step mutations are much more
likely than large step mutations, while it is equally likely that mutations decrease or increase the
daughter’s competitivity. Over time, natural selection acts and the most competitive cells that
need the lowest time to divide again become dominant. Maladapted cells, on the contrary, become
extinct if their doubling rate is lower than stochastic loss processes like mortality and grazing. In
this manner, the entire population adapts progressively.
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Since simulating the evolution of natural populations with millions of individuals would take
a lot of computational time, identical individuals are often grouped into one model variable, a
so-called agent. Due to the larger number of cells within one agent, mutations are expected to
occur more frequently but with a smaller standard deviation. Here, we use such an agent-based
approach to simulate the interplay of competition and adaptation in Baltic Sea phytoplankton in
response to warming.
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A.2 Towards an agent-based adaptive phytoplankton com-

munity model with life cycle dynamics
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A.2.1 Model concept

Basic compartment-based NPZD-type model

Our 0-dimensional agent-based adaptive phytoplankton community model with life cycle dynamics
is based upon a simple compartment-based NPZD-type model that simulates a closed element cycle
with four state variables: a nutrient N , a phytoplankton population P , a zooplankton population
Z, and detritusD. The four state variables are represented by their concentration. Since nitrogen is
the most limiting nutrient in marine ecosystems, the concentration is usually given in mmol nitrogen
per m3 (Table A.2.1). Source and sink processes, like growth and mortality, lead to changes in
concentration over time. These concentration changes can be calculated with the following system
of equations:

dP

dt
= µP︸︷︷︸

P growth

− γP︸︷︷︸
P mortality

− g(P )Z︸ ︷︷ ︸
Z grazing

(A.1)

dZ

dt
= β g(P )Z︸ ︷︷ ︸

Z grazing

− ϵZ︸︷︷︸
Z excretion

− ψZ2︸︷︷︸
Z mortality

(A.2)

dN

dt
= ϵZ︸︷︷︸

Z excretion

+ rD︸︷︷︸
remin.

− µP︸︷︷︸
P growth

(A.3)

dD

dt
= γP︸︷︷︸

P mortality

+ ψZ2︸︷︷︸
Z mortality

+ (1− β) g(P )Z︸ ︷︷ ︸
Z unassimilated prey

− rD︸︷︷︸
remin.

(A.4)

Compartment-based NPPPZD-type life cycle model

The above Equations (A.1)-(A.4) describe an ecosystem with only one phytoplankton population
and ignore phytoplankton life cycle processes. Since our model considers three different phyto-
plankton functional groups including their life cycles, we need more than one phytoplankton state
variable to describe the dynamics of our ecosystem. In particular, we need one state variable for
each life cycle stage of each functional group, i. e., three state variables for cyanobacteria, as well as
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Symbol Description Unit

P Phytoplankton concentration mmol Nm−3

Z Zooplankton concentration mmol N m−3

N Concentration of dissolved inorganic nitrogen mmolN m−3

D Concentration of detritus mmol Nm−3

µ Growth rate of phytoplankton d−1

γ Mortality rate of phytoplankton d−1

g Grazing rate of zooplankton d−1

β Assimilation efficiency of zooplankton −
ϵ Excretion rate of zooplankton d−1

ψ Mortality rate of zooplankton d−1

r Remineralization rate of detritus d−1

Table A.2.1: Descrip-
tion of the different
variables used in the ba-
sic compartment-based
NPZD-type ecosys-
tem model (Equations
(A.1)-(A.4)).

two state variables for dinoflagellates and diatoms, respectively. Because one of the three simulated
cyanobacterial life cycle stages is able to fix atmospheric nitrogen (N2), our model comprises an
open element cycle. Moreover, our model includes a sinking term for the detritus compartment,
as well as terms for burial and resuspension of phytoplankton resting cells. The following Equa-
tions (A.5)-(A.11) describe the resulting concentration changes of our seven phytoplankton state
variables; the corresponding parameters are given in Table A.2.2.

Dinoflagellates

We simulate the life cycle of a cold-water dinoflagellate species of the genus Apocalathium. We use
the parameterization from Hinners et al. (2019), with the exception that we neglect the gametes,
which we assume to play a minor role in the life cycle of our chosen Apocalathium species. Thus,
we consider two life cycle stages in total, a growing stage (vegetative cells P 1

1 , Equation (A.5)) and
a resting stage (cysts P 1

2 , Equation (A.6)). We assume that growth of vegetative cells depends on
nitrogen concentration N , environmental temperature T , and irradiance I:

dP 1
1

dt
= µ1(N,T, I)P

1
1︸ ︷︷ ︸

growth

+ τP 1
2 P

1
1
P 1
2︸ ︷︷ ︸

transfer from P 1
2

− γ11P
1
1︸ ︷︷ ︸

mortality

− g(P 1
1 )Z︸ ︷︷ ︸

grazing

− τP 1
1 P

1
2
P 1
1︸ ︷︷ ︸

transfer to P 1
2

(A.5)

dP 1
2

dt
= η1P

1
2,b︸ ︷︷ ︸

resuspension

+ τP 1
1 P

1
2
P 1
1︸ ︷︷ ︸

transfer from P 1
1

− δ1P
1
2︸ ︷︷ ︸

burial

− γ12P
1
2︸ ︷︷ ︸

mortality

− g(P 1
2 )Z︸ ︷︷ ︸

grazing

− τP 1
2 P

1
1
P 1
2︸ ︷︷ ︸

transfer to P 1
1

(A.6)

The transition rates τ are explained in section “Life cycle transitions” for all phytoplankton func-
tional groups and life cycle stages. The index “b” in the resuspension term denotes cells that are
buried in the sediment.

Diatoms

For diatoms, we simulate the life cycle of a cold-water species of the genus Thalassiosira following
Warns (2013). Like for dinoflagellates, we consider a growing stage (vegetative cells P 2

1 , Equa-
tion (A.7)) and a resting stage (spores P 2

2 , Equation (A.8)); both diatom life cycle stages are
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parameterized similarly to the two dinoflagellate life cycle stages (see Equations (A.5) and (A.6)):

dP 2
1

dt
= µ2(N,T, I)P

2
1︸ ︷︷ ︸

growth

+ τP 2
2 P

2
1
P 2
2︸ ︷︷ ︸

transfer from P 2
2

− γ21P
2
1︸ ︷︷ ︸

mortality

− g(P 2
1 )Z︸ ︷︷ ︸

grazing

− τP 2
1 P

2
2
P 2
1︸ ︷︷ ︸

transfer to P 2
2

(A.7)

dP 2
2

dt
= η2P

2
2,b︸ ︷︷ ︸

resuspension

+ τP 2
1 P

2
2
P 2
1︸ ︷︷ ︸

transfer from P 2
1

− δ2P
2
2︸ ︷︷ ︸

burial

− γ22P
2
2︸ ︷︷ ︸

mortality

− g(P 2
2 )Z︸ ︷︷ ︸

grazing

− τP 2
2 P

2
1
P 2
2︸ ︷︷ ︸

transfer to P 2
1

(A.8)

Cyanobacteria

The most complex life cycle in our model is the life cycle of N2-fixing cyanobacteria of the order
Nostocales. Instead of a single species, we consider a cyanobacteria complex that represents the
dominant N2-fixing genera in the Baltic Sea, Nodularia, Aphanizomenon, and Anabaena (Stal et al.,
2003; Karlsson et al., 2005). By combining two modeling approaches (Hense and Beckmann, 2006,
2010), we simulate three life cycle stages in total, two growing stages and one resting stage.

The first growing stage represents vegetative cells (P 3
1 ), which occur in chain-like colonies,

so-called filaments. Similar to vegetative dinoflagellates and diatoms, the growth of vegetative
cyanobacteria depends on temperature, light, and dissolved inorganic nitrogen (Equation (A.9)).
Nitrogen depletion leads to differentiation of some vegetative cells into so-called heterocysts, which
fix N2 for the entire filament. However, we do not simulate heterocysts explicitly but only their
effect on vegetative growth. Consequently, the second growing stage represents filaments of vege-
tative cells where heterocysts are present (P 3

2 ). Contrary to vegetative cells without heterocysts,
the growth of vegetative cells with heterocysts is not limited by dissolved inorganic nitrogen but by
temperature, light, and an internal energy quota E (Equation (A.10)). Nitrogen fixation requires
far more energy than nitrogen uptake, leading to significantly reduced growth rates (Stephens et al.,
2003). Therefore, we follow Hense and Beckmann (2010) and assume that growth of vegetative
cells with heterocysts is limited by the internally stored energy E and ceases when E is exhausted.
While E is consumed by nitrogen fixation and growth, it can be refilled by light capture (see
Equation (A.15) in the next section). We only calculate changes in E during the N2-fixing stage
and assume that the two other stages are not limited by energy. Thus, we initialize the N2-fixing
stage with a full energy quota. The cyanobacterial resting stage P 3

3 is parameterized similarly to
the resting stages of dinoflagellates and diatoms (Equation (A.11)).

Apart from N2 fixation, cyanobacteria are the only algae in our model that are able to produce
toxins. Consequently, we follow other models (Hense and Beckmann, 2006; Lee et al., 2018; Hinners
et al., 2015) and assume that cyanobacteria are not grazed by zooplankton; the following equations
do hence not contain any grazing terms:

dP 3
1

dt
= µ31(N,T, I)P

3
1︸ ︷︷ ︸

growth

+ τP 3
3 P

3
1
P 3
3︸ ︷︷ ︸

transfer from P 3
3

− γ31P
3
1︸ ︷︷ ︸

mortality

− τP 3
1 P

3
2
P 3
1︸ ︷︷ ︸

transfer to P 3
2

− τP 3
1 P

3
3
P 3
1︸ ︷︷ ︸

transfer to P 3
3

(A.9)

dP 3
2

dt
= µ32(T, I, E)P 3

2︸ ︷︷ ︸
growth

+ τP 3
1 P

3
2
P 3
1︸ ︷︷ ︸

transfer from P 3
1

− γ32P
3
2︸ ︷︷ ︸

mortality

− τP 3
2 P

3
3
P 3
2︸ ︷︷ ︸

transfer to P 3
3

(A.10)

dP 3
3

dt
= η3P

3
3,b︸ ︷︷ ︸

resuspension

+ τP 3
1 P

3
3
P 3
1︸ ︷︷ ︸

transfer from P 3
1

+ τP 3
2 P

3
3
P 3
2︸ ︷︷ ︸

transfer from P 3
2

− δ3P
3
3︸ ︷︷ ︸

burial

− γ33P
3
3︸ ︷︷ ︸

mortality

− τP 3
3 P

3
1
P 3
1︸ ︷︷ ︸

transfer to P 3
1

(A.11)
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Agent-based adaptive phytoplankton community model with life cycle dynamics

The seven phytoplankton equations presented above (Equations (A.5)-(A.11)) describe each life
cycle stage as a so-called compartment, i. e., a collection of cells. Each compartment is defined by
a single parameter set that represents the averaged properties of all cells within the compartment.
However, we aim to simulate both ecological and evolutionary phytoplankton responses to global
warming. Since mutations occur on the level of the individual, it is more natural to treat a
phytoplankton population as a collective of individual cells. Simulating the evolution of natural
populations with millions of individuals would need a lot of computational time, though. To reduce
computational time, identical individuals can be grouped into one model variable, a so-called agent.
Due to the larger number of cells within one agent, smaller mutations are assumed to occur more
frequently.

Due to the reasons stated above, we replace all phytoplankton compartments of the NPPPZD-
type life cycle model by a collective of agents. Prior to each simulation, each agent is initialized
with a specific parameter set that consists of fixed and flexible traits. Fixed traits are passed
unalteredly to the offspring and may differ between functional groups and life cycle stages. Flexible
traits, on the contrary, can change due to phenotypic plasticity (maximum cell size) or mutation
(optimum temperature); see “Model concept” in Study I (section 2.1). Both fixed and flexible
traits determine the individual growth rate µi of the ith cell, with µi changing the cell’s biomass
bi according to Equation (A.12):

dbi
dt

= µi (A.12)

As stated in the previous section, we assume that vegetative growth is limited by dissolved inor-
ganic nitrogen, temperature, and light. We calculate the nitrogen-limited growth rate µlimN

from
cell biomass bi, the internal nitrogen quota Qi, and nitrogen concentration N (see section “Nitrogen
limitation”). By multiplying the nitrogen-limited growth rate with limitation functions for tem-
perature and light, we obtain the individual growth rate µveg

i of the ith vegetative cell (Equation
(A.13)). For each functional group, we use a different temperature limitation function limT , with
the function’s value depending on environmental temperature T , group-specific traits, and the
cell-specific optimum temperature T opt

i (see section “Temperature limitation”). Light limitation
limL is determined by irradiance I, group-specific traits, and cell-specific metabolic rates φi (see
section “Light limitation”).

µveg
i = b0,Ti × µlimN

(bi, Qi, N)× limT (T, T
opt
i )× limL(I, φi) (A.13)

with the cell-specific theoretical minimum cell biomass b0,Ti , which we derive from environmental
temperature T during cell production (see “Model concept” in Study I (section 2.1)).

To calculate the growth rate of the ith vegetative cell within a N2-fixing filament µhet
i (Equation

(A.14)), we replace the nitrogen-limited growth rate µlimN
in Equation (A.13) by the saturated

growth rate µsat, which assumes that the cell-internal nitrogen storage is completely filled. In
addition, we replace light limitation limL by energy limitation limE after Hense and Beckmann
(2006):

µhet
i = b0,Ti × ζ × µsat(bi)× limT (T, T

opt
i )× limE(Ei), with limE = 1−

(
Ei

Emax
− 1

)n

(A.14)
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As explained for the “compartment-based life cycle model”, vegetative cells with heterocysts show
lower growth rates than vegetative cells without heterocysts. Following Hense and Beckmann
(2006), we assume that growth rates of vegetative cells with heterocysts are reduced by a factor of
4. Therefore, we scale the saturated growth rate in Equation (A.14) with a factor of ζ = 0.25.

Following Hense and Beckmann (2006), we choose n to be large and even and Emax = 1,
meaning that we assume the internal energy storage to be as large as the energy stored in the
organic material. The form of limE furthermore assumes that growth does not slow down before
the energy quota Ei is almost exhausted.

To calculate temporal changes of Ei, we modify Equation (1) in Hense and Beckmann (2006)
to Equation (A.15):

dEi

dt
= b0,Ti × limL(I, φi)×

(
1−

(
Ei

Emax

)n)
× (ωlc0 + Eperc × (ωlc − ωlc0))︸ ︷︷ ︸

light capture

−m× µhet
i︸ ︷︷ ︸

N2 fixation

− µhet
i︸︷︷︸

growth

(A.15)

As shown in Equation (A.15), we assume that Ei is refilled by light capture and consumed by
nitrogen fixation and growth. The amount of energy that is refilled depends on a constant light
capture rate ωlc0 (Table A.2.2) and a growth rate-dependent light capture rate ωlc (see Table A.2.5
in section “Light limitation”). We express the scale of growth rate-dependence of light capture by
a factor Eperc (Table A.2.2). Similar to Hense and Beckmann (2006), we account for the higher
energy consumption of nitrogen fixation compared to growth by multiplying the fixation term with
a factor m = 3.

Following Beckmann et al. (2019), we assume that the ith cell divides when bi ≥ 2b0,Ti , increasing
the number of live cells by one. To conserve total living biomass, we assign half of the parental
biomass to each daughter cell. We then calculate the phytoplankton concentration diagnostically
from Equation (A.16):

P =
1

V

M∑
i=1

bi (A.16)

with the volume of the considered domain V and the number of live cells M .
An agent-based model treats life cycle transitions, mortality, burial, resuspension, and zooplank-

ton grazing as stochastic processes; we describe them mathematically by Equations (A.17)-(A.20).
In our model, a cell transfers to another life cycle stage if

X(0,1) < τcrit (A.17)

where X(0,1) is a random number between 0 and 1. To calculate the non-dimensional transition
threshold τcrit, we combine the time step ∆t with the transition rate τ :

τcrit = ∆t τ, with the requirement that τ ≤ ∆t−1 (A.18)

For instance, we use a germination rate of τ = 0.1 d−1 = 1.1574 × 10−6s−1 to simulate the
transfer from dinoflagellate cysts to vegetative dinoflagellates (see Table A.2.6 in section “Life
cycle transitions”). By combining the germination rate τ with the time step ∆t = 3600 s according
to Equation (A.18), we obtain a transition threshold of τcrit = 0.0042. Following Equation (A.17),
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a dinoflagellate cyst then transfers to the vegetative stage if

X(0,1) < τcrit = 3600 s× 1.1574× 10−6 s−1 = 0.0042

Mortality and burial are simulated similarly. The corresponding rates are given in Table A.2.2.
Resuspension, however, requires a more complex representation. The probability for a cell to be
resuspended from the sediment decreases exponentially with the time since burial ϑi, which is
cell-specific. A cell is resuspended from the sediment if Equation (A.19) is fulfilled:

X(0,1) < ηcrit, with ηcrit = ∆t η e−ϑi/τC (A.19)

with the non-dimensional resuspension threshold ηcrit, the basic resuspension rate η, and the
characteristic time τC = 10 yr. Due to the exponentially decreasing resuspension probability, we
do not explicitly consider additional loss processes like mortality and grazing for dormant resting
cells in the sediment.

Zooplankton grazing is a stochastic process as well, a phytoplankton cell is grazed if

X(0,1) < gcrit, with gcrit = ∆t gpref Z gH (A.20)

The non-dimensional grazing threshold gcrit is the product of the time step ∆t, the grazing prefer-
ence gpref , zooplankton concentration Z, and a Holling-type grazing function gH evaluated at the
current time step. The grazing preference is a group-specific number between 0 and 1. Since we
assume that dinoflagellates and diatoms are equally grazed by zooplankton, we set gpref = 1 for
both of them. The grazing function gH is the same for all functional groups. The model allows
to choose between Holling-type functions I to IV; we use type III in our simulations (Equation
(A.21)). The parameters for Holling-type III are given in Table A.2.2.

gH = gmax
P v

P v + kvP
(A.21)

We represent zooplankton, dissolved inorganic nitrogen, and detritus by compartments; the cou-
pling between compartments and agents is described by Equations (A.22)-(A.24). For the coupling
to the detritus compartment (Equation (A.4) with sinking of detritus sD as additional sink), we
have to collect the biomass of all phytoplankton cells that died during the current time step:

γP =
1

V∆t

M∑
i=1

{
bi, X(0,1) < γcrit

0, X(0,1) ≥ γcrit
(A.22)

Similarly, for the coupling to the zooplankton compartment (Equation (A.2)), we have to collect
the biomass of all phytoplankton cells that were grazed during the current time step:

gZ =
1

V∆t

M∑
i=1

{
bi, X(0,1) < gcrit

0, X(0,1) ≥ gcrit
(A.23)
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The coupling to the nitrogen compartment is more complicated since we calculate uptake depending
on internal nitrogen quotas (see section “Nitrogen limitation”). Thus, uptake is not directly coupled
to growth and we cannot simply sum up all growth terms of the current time step as suggested by
Equation (A.3). Instead, we have to sum up all uptake terms ρi of the current time step, meaning
that we replace µP in Equation (A.3) by ρP . The calculation of nitrogen uptake ρ is explained in
the next section.

ρP =
1

V

M∑
i=1

ρi (A.24)

Table A.2.2: Parameters for our agent-based adaptive phytoplankton community model with life cycle dynamics.
Parameter values were extracted from the following references: Dinoflagellates: Hinners et al. (2019); diatoms:
Warns (2013); cyanobacteria: Hense and Beckmann (2006, 2010); zooplankton: Schartau and Oschlies (2003),
except for gmax (Merico et al., 2009) and kP (Fasham et al., 1990); detritus: Hinners et al. (2019). Adjusted
and newly defined parameters are indicated by ∗. Please note that the mortality rates of resting stages were
adjusted to our burial rate so that loss is equal to the corresponding reference.

Symbol Parameter Value Unit

Dinoflagellates γ11 Mortality rate P 1
1 0.005 d−1

γ12 Mortality rate P 1
2 0.0091∗ d−1

δ1 Burial rate P 1
2 0.2∗ yr−1

η1 Resuspension rate P 1
2 0.06∗ yr−1

Diatoms γ21 Mortality rate P 2
1 0.02 d−1

γ22 Mortality rate P 2
2 0.0195∗ d−1

δ2 Burial rate P 2
2 0.2∗ yr−1

η2 Resuspension rate P 2
2 0.06∗ yr−1

Cyanobacteria γ31 Mortality rate P 3
1 0.013 d−1

γ32 Mortality rate P 3
2 0.013 d−1

γ33 Mortality rate P 3
3 0.0136∗ d−1

δ3 Burial rate P 3
3 0.2∗ yr−1

η3 Resuspension rate P 3
3 0.06∗ yr−1

ζ Growth rate factor P 3
2 vs. P 3

1 0.25 −
ωlc0 Constant light capture rate P 3

2 0.537∗ d−1

n Exponent in Equation (A.14) 100∗ −
Emax Maximum energy quota 1 −
Eperc Factor growth rate dependence 1.1574×10−7∗ −
m Factor N2 fixation 3 −

Zooplankton gmax Maximum grazing rate 2.25 d−1

γZ Mortality rate 0.2 d−1 (mmol Nm−3)−1

ϵ Excretion rate 0.009 d−1

β Assimilation efficiency 0.75 −
kP Half saturation constant 1.0 mmol N m−3

v Exponent in Holling type III 3 −
Detritus rD Remineralization rate 0.1 d−1

sD Sinking rate 0.097∗ d−1

Resuspension τC Characteristic time 10∗ yr
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A.2.2 Limitation of growth

Nitrogen limitation

We calculate the nitrogen-limited growth rate based on internal nitrogen quotas, which in turn
depend on cell size. A laboratory study by Marañón et al. (2013) revealed that the relationship
between cell size and maximum growth rate (i. e., saturated growth rate) is taxon-independent
and unimodal, with a peak at intermediate cell sizes (∼ 100µm3). Ward et al. (2017) explain this
finding as a trade-off between nutrient uptake and the potential rate of internal metabolism. While
the ability of cells to replenish their internal quota increases with size, their ability to synthesize
new biomass decreases with size. Here, we consider this trade-off by combining a variable-internal-
stores (VIS) model (Grover, 1991) with experimentally-derived allometric relations between cell
volume and metabolic cell properties (Litchman et al., 2007; Marañón et al., 2013; Ward et al.,
2017, see Table A.2.3). The reference cell volumes for each functional group, which we allow to
change due to temperature-dependent plasticity, are given in Table A1 in Appendix A.3. The
general nitrogen affinity of the different functional groups, i.e., nitrogen limitation after Monod
(1949), is visualized in the top panel of Fig. A5 in Appendix A.4 for cell volumes at 15 ◦C.

The VIS model that we use for our calculations (Grover, 1991) follows Droop (1973) by assuming
that the nutrient-limited growth rate µlimN

is a hyperbolic function of the cell quota Q. Growth
is only possible if the cell quota Q exceeds the basal nutrient requirement Qmin. Growth increases
with increasing Q towards a theoretical maximum growth rate µ∞, which assumes an infinite and
thus unobtainable cell quota:

µlimN
=


µ∞

(
1− Qmin

Q

)
, Q > Qmin

0, Q ≤ Qmin

(A.25)

The allometric relations for µ∞ and Qmin for nitrogen-limited phytoplankton are given in Table
A.2.3. The cell quota Q decreases due to growth until growth ceases at Qmin; when a cell divides, Q
is partitioned between the two daughter cells. Q is refilled by nutrient uptake ρ until the maximum
nutrient storage capacity Qmax is reached (Droop, 1973):

dQ

dt
= ρ− µQ, Qmin ≤ Q ≤ Qmax (A.26)

Following Morel (1987), Grover (1991) assumes that nutrient uptake is a Michaelis-Menten function
of external nutrient concentration N and scales with the maximum nutrient uptake rate ρmax:

ρ =


ρmax

N

kN +N
, Q < Qmax

0, Q = Qmax

(A.27)

Similar to µ∞ and Qmin, we calculate ρmax and the half saturation constant kN from cell volume
using allometric relations for nitrogen-limited phytoplankton (Table A.2.3). Based on experimental
studies (Gotham and Rhee, 1981), Grover (1991) assumes that ρmax is not constant but decreases
linearly with increasing Q. Thus, ρmax is highest under the most extreme nutrient limitation,
which is expressed by Equation (A.28):

ρmax = ρhimax − (ρhimax − ρlomax)
Q−Qmin

Qmax −Qmin
(A.28)
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with ρlomax and ρhimax being the lower and upper bounds on ρmax, respectively. We assume that
the allometric relation that we use for ρmax (Ward et al., 2017) gives values close to ρhimax. Ward
et al. (2017) used experimental data from Marañón et al. (2013), who ensured nitrogen limitation
during their measurements of ρmax. During nitrogen-limited conditions, ρmax should approach
ρhimax (Gotham and Rhee, 1981).

To calculate ρlomax, we use Equation (A.26) with Equations (A.25) and (A.27):

dQ

dt
= ρmax

N

kN +N
− µ∞(Q−Qmin) (A.29)

When Q ≈ Qmax, then ρmax ≈ ρlomax and dQ/dt ≈ 0. With these assumptions, Equation (A.29)
becomes Equation (A.30):

ρlomax ≈ µ∞(Qmax −Qmin) (A.30)

Symbol Unit Relation Reference

µ∞ d−1 4.7× V −0.26 Ward et al. (2017)
Qmin pg N cell−1 0.032× V 0.76 Ward et al. (2017)
ρhimax pg N cell−1 d−1 0.024× V 1.10 Ward et al. (2017)
kN µmol N l−1 0.17× V 0.27 Litchman et al. (2007)
Qmax pg N cell−1 0.055× V 0.93 Marañón et al. (2013)

Table A.2.3: Allometric
relations between cell vol-
ume V and nitrogen-related
metabolic cell properties used
in this study.

Temperature limitation

Thermal reaction norms of individual phytoplankton populations are typically left-skewed (Eppley,
1972; Moisan et al., 2002), meaning that the decrease is steeper for higher than for lower tempera-
ture values with distance from the optimum temperature T opt. In our model, we use three different
left-skewed temperature limitation functions, one for each functional group. All temperature lim-
itation functions that we use have already been successfully applied in models. The parameters
for each temperature limitation function are given in Table A.2.4 at the end of this section. A
visualization is available in Fig. A4 in Appendix A.4.

For dinoflagellates, we apply the same temperature limitation function as Hinners et al. (2019)
in their 0-dimensional life cycle model for Apocalathium malmogiense (Equation (A.31)). The
function is based on temperature-dependence experiments (Hinners et al., 2017), which revealed
an optimum temperature T opt1 close to 11 ◦C.

limT1 = exp

(
− (T − T opt1)2

(Tl1 − Tl2 sign(T − T opt1))2

)
(A.31)
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Temperature limitation of diatoms is adopted from the diatom SRRC model (size reduction-
restitution cycle) by Hense and Beckmann (2015) (Equation (A.32)). Based on observations of
Thalassiosira baltica (Spilling, 2011), we use an initial optimum temperature of T opt2 = 12 ◦C.

limT2 =


exp

(
−
(
|T − T opt2|

θ1

)2
)
, T ≤ T opt2

exp

(
−
(
|T − T opt2|

θ2

)3
)
, T > T opt2

(A.32)

For cyanobacteria, we apply a similar temperature dependence as Hense and Beckmann (2006) in
their cyanobacteria life cycle model (CLC) (Equation (A.33)). Since the optimum temperatures of
Nodularia, Aphanizomenon, and Anabaena vary between 22 and 35 ◦C (Uehlinger, 1981; Lehtimäki
et al., 1997; Pandey, 1989; Vincent and Silvester, 1979; Seki et al., 1981; Collins and Boylen, 1982;
Nalewajko and Murphy, 2001), we use the mean value of 28.5 ◦C as initial value for T opt3.

limT3 = 0.022 +
1

0.25 + exp(3/(T − T3)− 0.5) + exp(−(500/(T − T3)− 25))
(A.33)

with T3 = T opt3 − 16.43 ◦C.

Table A.2.4: Parameters for the three temperature limitation functions used in this study.

Functional group Symbol Parameter Value [◦C]

Dinoflagellates T opt1 Initial optimum temperature 10.8
Tl1 Width parameter of thermal reaction norm 7.22
Tl2 Width parameter of thermal reaction norm 6.03

Diatoms T opt2 Initial optimum temperature 12
θ1 Temperature scale below optimum 7
θ2 Temperature scale above optimum 4

Cyanobacteria T opt3 Initial optimum temperature 28.5

Light limitation

Similar to temperature limitation, we use established light limitation functions that have already
been applied in models. The functions are visualized in the bottom panel of Fig. A5 in Appendix
A.4 for the parameters given in Table A.2.5. We assume light to be limiting during winter, while
light saturation occurs during the rest of the year.

Light limitation of dinoflagellates (Equation (A.34)) is adopted from Hinners et al. (2019), who
implemented a formulation from Webb et al. (1974) into their model. Since dinoflagellates bloom
early in the year, their light limitation function has an additional condition: When temperature
falls below the freezing point in the Gulf of Finland (Tf = −0.33 ◦C), sea ice absorbs and reflects
light, thus preventing growth (limL1=0).

limL1 =


0, T < Tf

1− exp

(
−α1 × I

µsat

)
, T ≥ Tf

(A.34)
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For diatoms, we follow Warns (2013) and use the same formulation as for dinoflagellates but with
parameters for T. baltica (Equation (A.35)). However, the condition that growth ceases below the
freezing point is not included since for our parameterization, diatoms bloom later in the year than
dinoflagellates (see “Deviations in spring bloom timing” in Study I (section 2.1)).

limL2 = 1− exp

(
−α2 × I

µsat

)
(A.35)

We calculate light limitation of cyanobacteria (Equation (A.36)) similar to Beckmann and Hense
(2004).

limL3 =
α3 × I√

ω2
lc + α2

3 × I2
(A.36)

Table A.2.5: Parameters for the three light limitation functions used in this study.

Functional group Symbol Parameter Value Unit

Dinoflagellates α1 Initial slope of limL1 0.0085 m2 W−1 d−1

Tf Freezing point Gulf of Finland -0.33 ◦C
Diatoms α2 Initial slope of limL2 0.015 m2 W−1 d−1

Cyanobacteria α3 Initial slope of limL3 0.0151 m2 W−1 d−1

ωlc Maximum light capture rate 5 µsat limT3 d−1

A.2.3 Life cycle transitions

Dinoflagellates

To simulate the transfer between vegetative cells and resting cysts of our Apocalathium species, we
follow Hinners et al. (2019). Resting cysts germinate after a dormancy period of several months
(Kremp, 2000; Kremp and Anderson, 2000; Kremp and Parrow, 2006). As shown in Equation
(A.37), we simplify this process by fixing germination of vegetative cells from cysts to the period
between day 44 and day 60 of each year with a constant germination rate σCV (for all transition-
related parameters, see Table A.2.6):

τP 1
2 P

1
1
=

{
σCV , 44 d < t < 60 d

0, else
(A.37)

Cyst formation is implemented temperature-dependent with a strong gradient TV C2, which is
centered around a temperature of TV C1 = 6 ◦C. Resurrection experiments with A. malmogiense
revealed that the encystment rate of recent strains (2013 ± 0.2 yr) is 4.6 times lower than that of
historic strains (1910 ± 8 yr) (Hinners et al., 2017). Therefore, Hinners et al. (2019) included an
encystment factor XC into their model, with XC = 1.0 for recent strains and XC = 4.6 for historic
strains. Since our model is calibrated for present-day conditions, we use the encystment factor
for recent strains. Based on these assumptions, vegetative cells transform into cysts according to
Equation (A.38):

τP 1
1 P

1
2
= σV C ×XC × 0.5

(
1 + tanh

[
T − TV C1

TV C2

])
(A.38)
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with the basic encystment rate σV C .

Diatoms

For our diatom species of the genus Thalassiosira, we simulate the transfer between vegetative cells
and resting spores by using the approach from Warns (2013). Resting spores form when conditions
are unfavorable for growth (Drebes, 1966; Durbin, 1978; McQupoid and Hobson, 1996). Thus, we
assume that growth conditions of vegetative cells determine the transfer from vegetative cells to
spores and vice versa. To prevent ongoing switches between both stages, we use the average growth
rate over 5 d. If the average growth rate µ increases above the critical growth rate µcrit2, spores
transform into vegetative cells; if the average growth rate sinks below the critical growth rate,
vegetative cells transform into spores. We define the rates for a transfer from spores to vegetative
cells τP 2

2 P
2
1

(Equation (A.39)) and for a transfer from vegetative cells to spores τP 2
1 P

2
2

(Equation
(A.40)) as

τP 2
2 P

2
1
= σ2 (−0.5 (1− tanh (c (µ− µcrit2)) + 1) (A.39)

τP 2
1 P

2
2
= σ2 × 0.5 (1− tanh (c (µ− µcrit2)) (A.40)

with the maximum transition rate σ2 and the constant c.

Cyanobacteria

We assume that the transfer from the resting stage to the vegetative stage is initiated when two
conditions are met: First, resting cells need to restore their internal nitrogen and energy quotas
before they can resume vegetative growth. Since we do not explicitly compute energy quotas
outside the N2-fixing stage, we parameterize energy recharge with a maturation phase that ends at
a specific day each year. Thus, we follow Hinners et al. (2019) and define an annual time window
during which the transfer to the vegetative stage is possible. However, the transfer is only initiated
if the second condition is fulfilled as well. Similar to diatoms, the second condition assumes that
growth conditions need to be favorable for vegetative cells, meaning that the vegetative growth
rate must exceed a critical value. Following Hense and Beckmann (2010), we average the vegetative
growth rate over a time period of 12 h to ensure a stable transfer. If the averaged growth rate µ
increases above the critical growth rate µcrit33, resting cells transform into vegetative cells according
to Equation (A.41):

τP 3
3 P

3
1
=

{
σ33, 149d < t < 180 d & µ ≥ µcrit33

0, else
(A.41)

with the transition rate σ33.
When nitrogen becomes limiting, vegetative cells transform into the N2-fixing life cycle stage,

i. e., vegetative cells with heterocysts. The corresponding transfer rate in Equation (A.42) scales
with the strength of nitrogen limitation limN :

τP 3
1 P

3
2
= σ31 × 0.5 (1− tanh (2π limN − π))), with limN =

N

kN +N
(A.42)

with limN after Monod (1949). We average nitrogen limitation over all vegetative cells to represent
the general status of nitrogen availability and not the status of individual cells.
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The transfer from vegetative cells to resting cells does not depend on nitrogen but on tempera-
ture and light, starting when temperature and light conditions become unfavorable for growth. We
assume that vegetative cells transform into resting cells when two conditions are fulfilled (Equa-
tion (A.43)): First, the product of temperature and irradiance Θ must decrease over time, i. e.,
dΘ/dt < 0. Second, the average (12 h) saturated growth rate µsat31 must sink below a critical
value of µcrit31 = 1.95× µcrit33. We use a larger value for µcrit31 than for µcrit33 since we consider
the saturated growth rate instead of the actual growth rate. We calculate the saturated growth
rate for Q = Qmax.

τP 3
1 P

3
3
=


22.7273× σ31 × 0.5

(
1− tanh

[
2π

(
µsat31

µcrit31

)
− π)

])
,
dΘ

dt
< 0 & µsat31 < µcrit31

0, else

(A.43)

We apply the same assumptions as above to parameterize the transfer from vegetative cells with
heterocysts to resting cells. Since vegetative cells with heterocysts are not limited by dissolved
inorganic nitrogen, their transfer to the resting stage depends on the average saturated growth
rate. To account for the reduced growth rates of vegetative cells with heterocysts compared to
vegetative cells without heterocysts, we use a transition threshold of µcrit32 = ζ × µcrit31 with
ζ = 0.25. We then calculate the transition rate according to Equation (A.44):

τP 3
2 P

3
3
=

σ32,
dΘ

dt
< 0 & µsat32 < µcrit32

0, else

(A.44)

Table A.2.6: Life cycle parameterization for the three different phytoplankton functional groups. Visually
adjusted parameters are indicated by ∗, all other parameters were adopted from the references stated in the
text.

Functional group Symbol Parameter Value Unit

Dinoflagellates σCV Germination rate 0.1 d−1

σV C Basic encystment rate 0.02 d−1

XC Encystment factor 1.0 −
TV C1 Temp. threshold for encystment 6.0 ◦C
TV C2 Temp. slope for encystment 1.6 ◦C

Diatoms σ2 Maximum transition rate 0.2 d−1

µcrit2 Transition threshold 0.135∗ d−1

c Constant in Equations (A.39) and (A.40) 1∗ d
Cyanobacteria σ33 Basic transition rate RES 0.1447∗ d−1

σ31 Basic transition rate VEG 0.0713∗ d−1

σ32 Basic transition rate HET 0.1447∗ d−1

µcrit33 Critical growth rate RES 0.35∗ d−1

µcrit31 Critical growth rate VEG 0.6825∗ d−1

µcrit32 Critical growth rate HET 0.1706∗ d−1
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A.2.4 Environmental forcing

During control simulations, we force our model with annual irradiance and temperature curves,
which represent present-day conditions in the Gulf of Finland (see Fig. A3a in Appendix A.4).
We created the annual temperature curve from 10 yr (2011 – 2020) of sea surface temperature
data, which we downloaded from the Copernicus database (https://resources.marine.copernicus.
eu/products). To relativize spatial differences and special temperature events such as heat waves,
we averaged the data over time and the entire gulf area. Since the resulting annual temperature
curve has different start and end temperatures, we cannot use it to force the model over several
years. Instead, we use a sinusoidal fit to the data, which has the following form:

T = a1 sin

(
2πt

a2
+

2π

a3

)
+ a4 (A.45)

The fitting parameters a1 to a4 are given in Table A.2.7. To create the temperature forcing for our
warming simulations, we add a continuous increase of 0.3 ◦C per decade to the temperature curve
in Equation (A.45), which corresponds to the IPCC scenario SSP3-7.0 (Allan et al., 2021, see Fig.
A3b in Appendix A.4).

Contrary to the temperature curve, the irradiance curve (Equation (A.46)) is the same for
control and warming simulations. We use the same function as Hinners et al. (2019), which was
originally adapted from Stramska and Zuzewicz (2013). The function provides lower irradiance
levels during winter and higher irradiance levels during summer:

I = i1 + i2 cos

(
2π(t− 180× 24)

360× 24

)
(A.46)

Table A.2.7: Parameters for the annual temperature and irradiance curves.

Forcing Symbol Parameter Value Unit

Temperature a1 Amplitude 10.0754 ◦C
a2 Period 8640 h
a3 Phase shift -0.9138π h
a4 Mean temperature 9.76275 ◦C

Irradiance i1 Mean light intensity 142 W m−2

i2 Range of light intensity 130 W m−2
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A.3 Supporting tables

Table A1: Minimum/reference cell volumes at 15 ◦C and agent resolution for the three phytoplankton functional
groups in our model. Note that resolution is lower for smaller cells. In comparison, Beckmann et al. (2019)
used a resolution of 104 cells per agent for cells with a reference volume of ∼ 3000µm3.
∗ Apocalathium malmogiense (Hinners et al., 2017)
† Thalassiosira weissflogii (Atkinson et al., 2003); cell volume of T. weissflogii is within the lower range of

T. baltica (Olenina et al., 2006), for which we defined temperature and light limitation
‡ Aphanizomenon flos-aquae (Foy, 1980)

Functional group Cell volume
[
µm3

]
Resolution [ cells/agent ]

Dinoflagellates 3424∗ 6.5546× 103

Diatoms 1533† 1.3950× 104

Cyanobacteria 88‡ 2.0568× 105
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Table A2: Results for a two-sample t-test that compares the control scenarios C (control), CA (control and
adaptation), and CAR (control and adaptation and resuspension) regarding bloom timing, taxa abundance, and
optimum temperature Topt. Shown are the value of the test statistic (t), the degrees of freedom (df), and the
p-value (p).

Variable Functional group t df p

C
A

vs
.C

Timing Dinoflagellates 27.8575 12 2.8312× 10−12

Diatoms (spring) 18.5617 12 3.3275× 10−10

Diatoms (autumn) −10.1827 12 2.9439× 10−7

Cyanobacteria NaN 12 NaN
Abundance Dinoflagellates −8.8898 12 1.2573× 10−6

Diatoms (spring) −11.4046 12 8.5076× 10−8

Diatoms (autumn) −11.2969 12 9.4484× 10−8

Cyanobacteria −9.8830 12 4.0665× 10−7

C
A

vs
. C

A
R

Timing Dinoflagellates 1.9853 12 0.0704
Diatoms (spring) −0.3868 12 0.7056
Diatoms (autumn) 4.1449 12 0.0014
Cyanobacteria NaN 12 NaN

Abundance Dinoflagellates −0.5094 12 0.6197
Diatoms (spring) −0.2146 12 0.8337
Diatoms (autumn) 1.0628 12 0.3088
Cyanobacteria 0.1835 12 0.8574

Topt Dinoflagellates −1.4280 12 0.1788
Diatoms −1.5746 12 0.1413
Cyanobacteria −2.9410 12 0.0123
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Table A3: Results for a two-sample t-test that compares the warming scenarios W (warming), WA (warming and
adaptation), and WAR (warming and adaptation and resuspension) regarding bloom timing, taxa abundance,
and optimum temperature Topt. Shown are the value of the test statistic (t), the degrees of freedom (df), and
the p-value (p).

Variable Functional group t df p

W
A

vs
.W

Timing Dinoflagellates 14.4770 12 5.8277× 10−9

Diatoms (spring) −5.9551 12 6.6606× 10−5

Diatoms (autumn) 12.0413 12 4.6542× 10−8

Cyanobacteria NaN 12 NaN
Abundance Dinoflagellates −19.0053 12 2.5282× 10−10

Diatoms (spring) −4.7051 12 5.0979× 10−4

Diatoms (autumn) 15.2059 12 3.3250× 10−9

Cyanobacteria 19.6682 12 1.6955× 10−10

W
A

vs
.W

A
R

Timing Dinoflagellates 1.7160 12 0.1118
Diatoms (spring) 3.6154 12 0.0035
Diatoms (autumn) −0.4275 12 0.6766
Cyanobacteria NaN 12 NaN

Abundance Dinoflagellates 0.2738 12 0.7889
Diatoms (spring) −3.6167 12 0.0035
Diatoms (autumn) −2.6150 12 0.0226
Cyanobacteria −9.3889 12 7.0477× 10−7

Topt Dinoflagellates 2.7320 12 0.0182
Diatoms 0.9058 12 0.3829
Cyanobacteria 0.9146 12 0.3784
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Table A4: Results for a paired-sample t-test that compares the control scenarios C (control), CA (control and
adaptation), and CAR (control and adaptation and resuspension) to the corresponding warming scenarios W
(warming), WA (warming and adaptation), and WAR (warming and adaptation and resuspension) regarding
bloom timing, taxa abundance, and optimum temperature Topt. Shown are the value of the test statistic (t),
the degrees of freedom (df), and the p-value (p). In this case, a paired-sample t-test was chosen since all control
and warming simulations were performed pairwise.

Variable Functional group t df p

C
vs

.W

Timing Dinoflagellates 25.4575 6 2.4205× 10−7

Diatoms (spring) 171.6014 6 2.6421× 10−12

Diatoms (autumn) −36.0199 6 3.0534× 10−8

Cyanobacteria Inf 6 0
Abundance Dinoflagellates −5.6633 6 0.0013

Diatoms (spring) −54.6486 6 2.5208× 10−9

Diatoms (autumn) −43.1157 6 1.0419× 10−8

Cyanobacteria −103.6771 6 5.4271× 10−11

C
A

vs
. W

A

Timing Dinoflagellates 5.4501 6 0.0016
Diatoms (spring) 38.2397 6 2.1357× 10−8

Diatoms (autumn) −16.8894 6 2.7535× 10−6

Cyanobacteria Inf 6 0
Abundance Dinoflagellates 2.9454 6 0.0258

Diatoms (spring) −11.4712 6 2.6351× 10−5

Diatoms (autumn) −18.9149 6 1.4110× 10−6

Cyanobacteria −11.4535 6 2.6586× 10−5

Topt Dinoflagellates −8.3318 6 1.6229× 10−4

Diatoms −15.5590 6 4.4616× 10−6

Cyanobacteria 7.5639 6 2.7733× 10−4

C
A

R
vs

.W
A

R

Timing Dinoflagellates 8.3445 6 1.6091× 10−4

Diatoms (spring) 78.9854 6 2.7729× 10−10

Diatoms (autumn) −25.1179 6 2.6219× 10−7

Cyanobacteria Inf 6 0
Abundance Dinoflagellates 3.7696 6 0.0093

Diatoms (spring) −13.7065 6 9.3734× 10−6

Diatoms (autumn) −39.6585 6 1.7177× 10−8

Cyanobacteria −42.6023 6 1.1193× 10−8

Topt Dinoflagellates −10.8952 6 3.5453× 10−5

Diatoms −34.0430 6 4.2781× 10−8

Cyanobacteria −8.4589 6 1.4912× 10−4
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A.4 Supporting figures

Figure A1: Temporal development of annual mean biomass and bloom timing averaged over seven different
CA simulations (control and adaptation) for dinoflagellates, diatoms, and cyanobacteria. Negative changes in
bloom timing indicate that the bloom occurs earlier, while positive changes mean that the bloom is shifted
towards later in the year. Please note that the x-axis starts at 1 yr since annual values are shown.
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Figure A2: Temporal evolution of the mean optimum temperature (Topt) for dinoflagellates, diatoms, and
cyanobacteria, including Topt distributions for selected years. Temporal changes in Topt were averaged over seven
different CA simulations (control and adaptation); Topt distributions were merged from monthly histograms of
the corresponding year from all seven CA simulations.
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Figure A3: Environmental temperature and irradiance forcing; the corresponding equations are available in Ap-
pendix A.2.4. (a) Seasonal cycle of temperature and irradiance as derived from the Copernicus database (https:
//resources.marine.copernicus.eu/products) and from Stramska and Zuzewicz (2013); Hinners et al. (2019),
respectively. (b) Global warming temperature forcing with a steady temperature increase of 0.3 ◦C per decade
(IPCC scenario SSP3-7.0; Allan et al., 2021).
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Figure A4: Temperature limitation functions for dinoflagellates (Hinners et al., 2019), diatoms (Warns, 2013),
and cyanobacteria (Hense and Beckmann, 2006). Temperature limitation is shown for the initial optimum
temperature, as well as for the mean optimum temperatures from the CA (control and adaptation), CAR
(control and adaptation and resuspension), WA (warming and adaptation), and WAR (warming and adaptation
and resuspension) scenarios. The corresponding equations are available in Appendix A.2.2. Please note that
the x-axis covers a different temperature range for each functional group.
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Figure A5: Nitrogen and light limitation functions for all three phytoplankton functional groups in our model.
Top: Nitrogen limitation after Monod (1949); half saturation constants were calculated from cell volume at
15 ◦C following Litchman et al. (2007) (see Table A.2.3 in Appendix A.2.2). Bottom: Light limitation for
dinoflagellates (Hinners et al., 2019), diatoms (Warns, 2013), and cyanobacteria (Hense and Beckmann, 2006)
for cell volumes at 15 ◦C and Q = Qmax. The corresponding equations can be found in Appendix A.2.2.
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Figure A6: Growth limitation throughout the seasonal cycle calculated from the product of nitrogen limitation
limN , temperature limitation limT , and light limitation limL (i.e., limN × limT × limL). To calculate limT , we
used the mean optimum temperatures from the CA scenario (control and adaptation).
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Figure A7: Seasonal changes in the mean optimum temperature (Topt) for dinoflagellates, diatoms, and
cyanobacteria. The displayed Topt variations were averaged over the last 25 simulation years of seven dif-
ferent CA simulations (control and adaptation). Please note that the y-axis differs between functional groups.
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Figure A8: Results for a CA scenario (control and adaptation) and a follow-up WA scenario (warming and
adaptation) with only dinoflagellates. Mass was conserved during simulations. Left panels: Biomass of vegeta-
tive dinoflagellate cells and nitrogen concentration during the last simulation year averaged over seven different
simulations. Right panel: Evolutionary adaptation of the optimum temperature through mutation and selection.
Shown are the initial value, the preliminary trait distribution after 100 yr of present-day seasonal forcing, and
the final trait distribution after 100 yr of warming. Trait distributions were merged from monthly histograms
of the corresponding year from seven different simulations. The results reveal that dinoflagellate adaptation
does not change in the absence of interspecific competition. The fixed temperature threshold of encystment
prohibits a shift towards later blooming. Within the remaining niche, dinoflagellate adaptation is controlled by
intraspecific competition for nitrogen. In both CA and WA, the environment selects for early bloomers with
comparatively low optimum temperatures, which grow first and leave less nitrogen for individuals with higher
optimum temperatures.
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Figure A9: Results for a CA scenario (control and adaptation) and a follow-up WA scenario (warming and
adaptation) with only diatoms. Mass was conserved during simulations. Left panels: Biomass of vegetative
diatom cells and nitrogen concentration during the last simulation year averaged over seven different simulations.
Right panel: Evolutionary adaptation of the optimum temperature through mutation and selection. Shown are
the initial value, the preliminary trait distribution after 100 yr of present-day seasonal forcing, and the final
trait distribution after 100 yr of warming. Trait distributions were merged from monthly histograms of the
corresponding year from seven different simulations. The results reveal that in the absence of interspecific
competition, diatoms merge their spring and autumn blooms into a single bloom between mid-May and mid-
December. A single bloom is beneficial since it allows nitrogen to recover completely until the next blooming
season. Similar to dinoflagellates, intraspecific competition selects for the first bloomers. In WA, diatoms are
able to track the increase in environmental temperature, which they are not in the presence of interspecific
competition. We can conclude that in our simulations, adaptation of diatoms is controlled by interspecific
competition with (warmer-adapted) cyanobacteria in both steady and changing environments.
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Figure A10: Temporal changes in the Topt trait distributions of dinoflagellates, diatoms, and cyanobacteria
throughout CA (control and adaptation) and WA (warming and adaptation). Shown are yearly trait distributions
merged from monthly histograms of seven different simulations. Please note that the x-axis starts at 1 yr since
annual values are shown.
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Figure A11: Temporal evolution of mean optimum temperatures with and without resuspension for dinoflagel-
lates, diatoms, and cyanobacteria. Mean optimum temperatures were calculated from the annual averages of
seven different simulations and filtered with a centered moving average using a window length of 10 yr. Please
note that the x-axis starts at 1 yr since annual values are shown.
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Figure A12: Temporal changes in the Topt trait distributions of dinoflagellates and diatoms throughout CA
(control and adaptation) and WA (warming and adaptation) in the absence of interspecific competition. Shown
are annual trait distributions merged from monthly histograms of seven different simulations. Please note that
the x-axis starts at 1 yr since annual values are shown. For diatoms, the spring and autumn blooms merge after
5 yr, which is also shown in the figure.
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APPENDICES FOR STUDY II

B.1 Supporting tables

Table B1: Results of a series of t-tests comparing all model scenarios (C: control; CA: control and adaptation; W:
warming; WA: warming and adaptation) with regard to zooplankton bloom timing, zooplankton peak abundance,
and the time lag between the peaks of phytoplankton and zooplankton. The table presents the value of the
test statistic (t), the degrees of freedom (df), and the p-value (p). Please note that we used a paired-sample
t-test when comparing control and warming simulations since these were performed pairwise, and a two-sample
t-test otherwise.

Variable t df p

CA vs. C Timing 13.2463 12 1.5965× 10−8

Abundance −6.9046 12 1.6404× 10−5

Time lag 6.0295 6 9.4005× 10−4

WA vs. W Timing 8.1747 12 3.0117× 10−6

Abundance 2.4289 12 0.0318
Time lag −3.4739 6 0.0132

W vs. C Timing 27.9240 6 1.3954× 10−7

Abundance −31.5978 6 6.6762× 10−8

Time lag 16.2498 6 3.4561× 10−6

WA vs. CA Timing 7.3860 6 3.1602× 10−4

Abundance −4.6286 6 0.0036
Time lag 3.9232 6 0.0078
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Table B2: Results of a series of t-tests comparing all model scenarios (C: control; CA: control and adaptation;
W: warming; WA: warming and adaptation) with regard to annual balances. The table presents the value of the
test statistic (t), the degrees of freedom (df), and the p-value (p). Please note that we used a paired-sample
t-test when comparing control and warming simulations since these were performed pairwise, and a two-sample
t-test otherwise.

Variable t df p

C
A

vs
.C

Dinoflagellates 2.1795 12 0.0499
Diatoms −7.7662 12 5.0873× 10−6

Cyanobacteria −6.1108 12 5.2491× 10−5

Phytoplankton −6.4065 12 3.3697× 10−5

Zooplankton −9.1802 12 8.9508× 10−7

N2 fixation −5.8068 12 8.3836× 10−5

Carbon export −5.8882 12 7.3861× 10−5

RUE −27.2736 12 3.6372× 10−12

W
A

vs
.W

Dinoflagellates −1.9463 12 0.0754
Diatoms −3.0493 12 0.0101
Cyanobacteria −13.7101 12 1.0818× 10−8

Phytoplankton −12.5522 12 2.9249× 10−8

Zooplankton −7.3374 12 9.0067× 10−6

N2 fixation −12.1507 12 4.2078× 10−8

Carbon export −12.8997 12 2.1524× 10−8

RUE 25.0575 12 9.8930× 10−12

W
vs

.C

Dinoflagellates 18.1062 6 1.8266× 10−6

Diatoms −31.8063 6 6.4192× 10−8

Cyanobacteria −99.4698 6 6.9577× 10−11

Phytoplankton −77.4443 6 3.1205× 10−10

Zooplankton −39.0206 6 1.8926× 10−8

N2 fixation −88.6053 6 1.3921× 10−10

Carbon export −77.9701 6 2.9965× 10−10

RUE 48.8723 6 4.9211× 10−9

C
A

vs
. W

A

Dinoflagellates 9.4959 6 7.7730× 10−5

Diatoms −12.3243 6 1.7400× 10−5

Cyanobacteria −8.9350 6 1.0966× 10−4

Phytoplankton −9.0959 6 9.9165× 10−5

Zooplankton −5.2772 6 0.0019
N2 fixation −8.2710 6 1.6905× 10−4

Carbon export −9.3836 6 8.3152× 10−5

RUE 62.3327 6 1.1462× 10−9
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B.2 Supporting figures

Figure B1: Annual balances for additional simulations with resuspension (C: control; CA: control and adaptation;
CAR: control and adaptation and resuspension; W: warming; WA: warming and adaptation; WAR: warming
and adaptation and resuspension). Carbon export is corrected for the carbon content of resuspended resting
cells. Please note that we excluded resource use efficiency (RUE) from the figure since RUE simulations with
resuspension are not comparable to those without.
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Figure B2: Time lag between phytoplankton and zooplankton blooms as a function of the peak amplitudes
of phytoplankton and zooplankton, respectively. Shown are the time lags for the last simulation year of seven
different simulations per model scenario, including linear regressions with both phytoplankton and zooplankton
peak amplitudes and the corresponding R2-values.
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Figure B3: Matrices showing the p-values for the correlations in Fig. 2.2.5, section “Annual balances” in
Study II (section 2.2). Model scenario abbreviations: C= control; CA = control and adaptation; W= warming;
WA = warming and adaptation. Black numbers indicate that the corresponding correlations are statistically
significant at the 0.05 level, while orange numbers indicate the opposite.
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Figure B4: Annual biomasses of the cold-water dinoflagellate Apocalathium and the cold-water diatom Thalas-
siosira for the four different model scenarios (C: control; CA: control and adaptation; W: warming; WA: warming
and adaptation). Left: Results for our standard simulations with a fixed encystemt rate of Apocalathium. Right:
Results for additional simulations, in which we artificially decreased the encystment rate of Apocalathium at
the rate found by Hinners et al. (2017).
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Figure B5: Resource use efficiency (RUE) of our focal dinoflagellate and diatom species of the genera Apoc-
alathium and Thalassiosira throughout the seasonal cycle for all model scenarios (C: control; CA: control and
adaptation; W: warming; WA: warming and adaptation). The figure shows results for the last simulation year,
which were averaged over seven different simulations per scenario. Also shown are the nitrogen concentration
(N), as well as the biomasses of Apocalathium (Din) and Thalassiosira (Dia).
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Figure B6: Results for a principal component analysis (PCA). The PCA shows that most variability in our
model ecosystem can be explained by the first principal component (PC 1), which is associated with all model
variables that are positively impacted by cyanobacteria. Zooplankton and especially dinoflagellates can be clearly
identified as outliers.
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