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Summary 

Climate change impact has been examined with regard to different aspects of forest ecosystems 

such as soil organic carbon (SOC), above-ground tree biomass (AGTB) and vegetation shift (broad-

leaved and coniferous forests). The SOC and AGTB were assessed in terms of their change in 

amount with future climate change whereas vegetation shift was assessed in terms of shifting 

altitudinal ranges, natural habitat area and species in future climate change. Nepal was selected as 

a test region to study the impact of climate change on these aspects due to the large differences in 

altitude and temperature in the country and also it is one of the most vulnerable countries to climate 

change.. The objectives of this study were, i.e. 1) Are climatic variables important for the estimation 

of SOC and AGTB? 2) Does future climate change contribute to an increase in SOC and AGTB 

stock in the forest ecosystem? 3) Does climate change affect the vegetation shift? Multiple linear 

regression, Random forest and Maximum Entropy (MaxEnt) models were applied to investigate 

the objectives. The availability of forest resource assessment (2010-2014) data of Nepal, 

accompanied by topographic and bioclimatic variables, provided the opportunity to study the 

impacts of climate change on forest ecosystems at a national scale 

Climatic variables (temperature and precipitation) show a strong relation with SOC and AGTB. 

The climatic variables do not only explain SOC and AGTB at present, but they can also predict 

SOC and AGTB under future climate change scenarios. This study found a higher amount of SOC 

existed at higher altitudes compared to lower altitudes and the rate of accumulation of SOC 

increasing at a higher rate with the increase in altitude. The lower latitude has a higher temperature 

and vice versa. In the projected climate change scenario, i.e. CMIP6, SSP2 4.5 for 2040-2060, the 

amount of SOC was found to decrease by 3.85% in general with the increasing temperature and 

precipitation against near current period (1970-2000). In Contrast, the study indicated a positive 

relation between climatic variables (temperature and precipitation) and AGTB that found the 

amount of AGTB to increase by 2.96% in general in the same projected climate change scenario 

against same near current period. Moreover, vegetation shifts from one forest to another are likely 

to occur over a longer period, influenced by climatic variables. This study found the vegetation 

shift in terms of areas, i.e. coniferous to broad-leaved forests (1579 km2) and its reverse (232 km2), 

in terms of altitudinal shift, i.e. 77m higher for broad-leaved forests and 54m lower for coniferous 
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forests, and in terms of species, i.e. broad-leaved forests to coniferous forests and its reverse in the 

future climate change scenario.  

The result confirms that a higher amount of SOC stock exists in the forests at a higher altitude 

compared to the forests at lower altitude. However, the amount of SOC is likely to decrease while 

the amount of AGTB is likely to increase in the future climate change scenarios. Moreover, the 

result shows that vegetation shift from coniferous to broad-leaved forest is more dominant than the 

broad-leaved to coniferous forests and the area of broad-leaved forest will likely to expand while 

the area of coniferous forest is likely to shrink in the future climate change scenario.  

Therefore, this study highlights the need to retain SOC amount thus reducing carbon emission from 

the soil. It also highlights the significance of, particularly, high altitude forest in sequestrating 

atmospheric carbon in the future climate change scenario. Moreover, the study highlights that the 

expansion of broad-leaved forests due to vegetation shift may benefit in terms of species diversity, 

SOC amount and forest resilience and also may affect coniferous forest- dependent people and 

enterprise due to lower supply of the forest products. Thus, the study suggests to adopt sustainable 

management of high altitude forests to increase mitigation potential of the forests (increase carbon 

sequestration and reduce carbon emission) and also suggests to assess adaptation measures for 

vulnerable communities due to climate change.  
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Zusammenfassung 
Die Auswirkungen des Klimawandels wurden im Hinblick auf verschiedene Aspekte von 

Waldökosystemen wie organischer Kohlenstoff im Boden (SOC), oberirdische Baumbiomasse 

(AGTB) und Vegetationsverschiebung (Laub- und Nadelwälder) untersucht. Der SOC und die 

AGTB wurden im Hinblick auf ihre Veränderung bei künftigen Klimaänderungen bewertet, 

während die Vegetationsverschiebung im Hinblick auf die Verschiebung der Höhenlagen, der 

natürlichen Lebensraumfläche und der Arten bei künftigen Klimaänderungen bewertet wurde. 

Nepal wurde als Testregion ausgewählt, um die Auswirkungen des Klimawandels auf diese 

Aspekte zu untersuchen, da das Land große Höhen- und Temperaturunterschiede aufweist und 

außerdem eines der am stärksten vom Klimawandel betroffenen Länder ist. Die Ziele dieser Studie 

waren: 1) Sind klimatische Variablen wichtig für die Schätzung von SOC und AGTB? 2) Trägt der 

zukünftige Klimawandel zu einem Anstieg des SOC- und AGTB-Bestandes im Waldökosystem 

bei? 3) Wirkt sich der Klimawandel auf die Vegetationsverschiebung aus? Zur Untersuchung der 

Ziele wurden multiple lineare Regression, Random Forest und MaxEnt-Modelle verwendet. Die 

Verfügbarkeit von Daten der nepalesischen Waldressourcenerhebung (2010-2014) in Verbindung 

mit topografischen und bioklimatischen Variablen bot die Möglichkeit, die Auswirkungen des 

Klimawandels auf Waldökosysteme auf nationaler Ebene zu untersuchen 

Klimavariablen (Temperatur und Niederschlag) zeigen eine starke Beziehung zu SOC und AGTB. 

Die Klimavariablen erklären nicht nur den derzeitigen SOC und AGTB, sondern sie können auch 

den SOC und AGTB unter zukünftigen Klimawandelszenarien vorhersagen. In dieser Studie wurde 

festgestellt, dass in höheren Lagen eine größere Menge an SOC vorhanden ist als in niedrigeren 

Lagen und dass die SOC-Akkumulationsrate mit zunehmender Höhe stärker ansteigt. Der 

niedrigere Breitengrad hat eine höhere Temperatur und umgekehrt. Im projizierten 

Klimawandelszenario, d.h. CMIP6, SSP2 4.5 für 2040-2060, wurde festgestellt, dass die Menge an 

SOC im Allgemeinen mit der steigenden Temperatur und dem zunehmenden Niederschlag im 

Vergleich zum nahen aktuellen Zeitraum (1970-2000) um 3,85 % abnimmt. Im Gegensatz dazu 

wies die Studie auf eine positive Beziehung zwischen den klimatischen Variablen (Temperatur und 

Niederschlag) und der AGTB hin, die ergab, dass die Menge der AGTB in demselben 

prognostizierten Klimawandelszenario im Vergleich zum nahen aktuellen Zeitraum im 
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Allgemeinen um 2,96 % zunimmt. Darüber hinaus ist es wahrscheinlich, dass 

Vegetationsverschiebungen von einem Wald in einen anderen über einen längeren Zeitraum 

stattfinden, der von klimatischen Variablen beeinflusst wird. In dieser Studie wurde die 

Vegetationsverschiebung in Bezug auf die Flächen, d. h. von Nadel- zu Laubwäldern (1579 km2) 

und umgekehrt (232 km2), in Bezug auf die Höhenverschiebung, d. h. 77 m höher für Laubwälder 

und 54 m niedriger für Nadelwälder, und in Bezug auf die Arten, d. h. von Laubwäldern zu 

Nadelwäldern und umgekehrt, im zukünftigen Klimawandelszenario festgestellt.  

Das Ergebnis bestätigt, dass in den Wäldern in höheren Lagen ein höherer SOC-Vorrat vorhanden 

ist als in den Wäldern in niedrigeren Lagen. Es ist jedoch wahrscheinlich, dass die Menge an SOC 

abnimmt, während die Menge an AGTB in den zukünftigen Klimawandelszenarien zunimmt. 

Darüber hinaus zeigt das Ergebnis, dass die Vegetationsverschiebung von Nadel- zu Laubwäldern 

dominanter ist als von Laub- zu Nadelwäldern, und die Fläche der Laubwälder wird sich 

wahrscheinlich ausdehnen, während die Fläche der Nadelwälder in den zukünftigen 

Klimawandelszenarien wahrscheinlich schrumpfen wird.  

Daher unterstreicht diese Studie die Notwendigkeit, die SOC-Menge zu erhalten und damit die 

Kohlenstoffemissionen aus dem Boden zu verringern. Sie unterstreicht auch die Bedeutung, die 

insbesondere Wälder in großen Höhen für die Bindung von atmosphärischem Kohlenstoff im 

Szenario des künftigen Klimawandels haben. Darüber hinaus unterstreicht die Studie, dass die 

Ausdehnung von Laubwäldern aufgrund von Vegetationsverschiebungen Vorteile für die 

Artenvielfalt, den SOC-Gehalt und die Widerstandsfähigkeit der Wälder mit sich bringen kann, 

aber auch Auswirkungen auf die von Nadelwäldern abhängigen Menschen und Unternehmen haben 

kann, da das Angebot an Waldprodukten geringer ist. Die Studie schlägt daher eine nachhaltige 

Bewirtschaftung von Hochwäldern vor, um das Klimaschutzpotenzial der Wälder zu erhöhen 

(Erhöhung der Kohlenstoffbindung und Verringerung der Kohlenstoffemissionen) und schlägt 

außerdem vor, Anpassungsmaßnahmen für gefährdete Gemeinschaften aufgrund des 

Klimawandels zu bewerten. 
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Part 1: Thematic context 
 

1. Introduction 

Nepal is known as one of the most vulnerable countries to climate change (GoN/MoFE, 2021). 

Impact of climate change has been seen in the forest ecosystem in terms of changes in species 

abundance, forest types, growth rate, structure of forests, tree mortality and tree vitality (Bhatta et 

al., 2021; Gebeyehu, 2019; Heidenreich & Seidel, 2022; Keane et al., 2020; Kelly & Goulden, 

2008; Taccoen et al., 2022; Thapa & St. George, 2019; Trisurat et al., 2009). Furthermore, climate 

change impacts on the amount of soil organic carbon (SOC) (Kirschbaum, 2000; Zhao et al., 2021), 

above-ground tree biomass (AGTB) (Larjavaara et al., 2021; Li et al., 2022) and altitudinal shift of 

the vegetation (Li et al., 2020b; Parmesan & Yohe, 2003). Nepal selected as a test region due to its 

great difference in altitudinal thus climatic variability, can be considered as a chronosequence to 

study climate change impacts. 

AGTB and SOC are important carbon pools in the terrestrial system (IPCC, 2006b). However, the 

amount of AGTB and SOC is influenced by topography (slope, aspect, altitude), climate 

(temperature and precipitation), species diversity and above-ground litter fall (Andivia et al., 2016; 

Gamfeldt et al., 2013; Rajput et al., 2017; Sun et al., 2019; Yan et al., 2015). Previous studies have 

shown that the future rising temperatures due to climate change most likely have an impact on 

AGTB and SOC (Azian et al., 2022; Larjavaara et al., 2021; Zhao et al., 2021). Increasing 

temperature contributes to a loss of soil organic carbon (Hartley et al., 2021) thus increase in soil 

carbon emission (Melillo et al., 2017) while contributing to an increase in the amount of AGTB 

(Day et al., 2008; Noguchi et al., 2022).  

Several studies have demonstrated that the changes in the amount of AGTB and SOC also depend 

on the forest types (Baral et al., 2009; Pradhan et al., 2012). SOC is higher in broad-leaved forests 

than in coniferous forests (Chiti et al., 2012; Lee et al., 2020; Shapkota & Kafle, 2021; Sheikh et 

al., 2009). Similarly, AGTB is higher in a broadleaved forests than in coniferous forests ( Ma et al., 

2017; Yu et al., 2019). Thus, understanding the change in the amount of AGTB and SOC in the 

context of changing climate variables is crucial from the climate change and forest management 

perspectives.  
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Vegetation shifts from one forest type to another takes place over time (Hanewinkel et al., 2013) 

which increase species diversity and optimizes community structure (Ming et al., 2020). The 

vegetation shifts from coniferous forests to broadleaved forests  shows various benefits in terms of 

conserving species diversity, and mitigating climate change impact by storing more soil organic 

carbon (Chiti et al., 2012; Lee et al., 2020; Shapkota & Kafle, 2021; Sheikh et al., 2009; C. Wu et 

al., 2017).  Multiple studies also reported the impact of climate change on species composition 

(Feeley et al., 2011), the upward shift of the tree species (Li et al., 2020b; Parmesan & Yohe, 2003), 

and increasing/decreasing species richness (Adhikari et al., 2018; Zhou et al., 2013). The studies 

revealed that the changes in climate status bring several impacts on the forest ecosystem and 

evidently highlighted the possible impact of climate change on the vegetation shifts. 

Moreover, changes in the climatic variables (temperature and precipitation) are reported to affect 

the shift in forest types (Chaitra et al., 2018; Sharma et al., 2017; Trindade et al., 2020). Coniferous 

forests are likely to occur in low rainfall areas while broadleaved forests are found in more humid 

locations (Bhatta et al., 2021). Therefore, the hypotheses can be made that increasing precipitation 

in the area of coniferous forests due to climate change may contribute to vegetation shift from 

coniferous to broad-leaved forests. 

The prediction of SOC, AGTB and vegetation shifts is crucial to better understand the change in 

forest ecosystem. Both design-based and model-based estimators have been used for AGTB and 

SOC estimation (DFRS/FRA, 2014; Li et al., 2019; Malla et al., 2022). This study used a random 

forest model (RFM) for the estimation of SOC and AGTB. Currently, the random forest model has 

been widely used for estimating forest biomass and soil carbon  (John et al., 2020; Lee et al., 2020; 

Li et al., 2020a; Nguyen & Kappas, 2020). Several studies found RFM superior to the regression 

model in terms of lowering mean squared error (Hounkpatin et al., 2018; Xie et al., 2021; Zhu et 

al., 2020), handling non-linear relations (Hengl et al., 2015; Pahlavan Rad et al., 2014), and 

indifference of assumptions of having probability distribution (normality) and no multicollinearity 

among independent variables (López-Serrano et al., 2016; Lu et al., 2016). For predicting the 

distribution of the species, the MaxEnt model has been widely used (Gajurel et al., 2014; Mahatara 

et al., 2021; Rai et al., 2022; Su et al., 2021). This study used the MaxEnt model to determine 

vegetation shifts of broad-leaved forests and coniferous forests. 
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Till now, several studies on SOC and AGTB have been carried out in the forest of Nepal. However, 

the studies on SOC, AGTB and species distribution have been done in small areas with shorter 

altitudinal gradients (Bajracharya et al., 2004; Baral et al., 2009; Gautam & Mandal, 2016; Ghimire 

et al., 2019; Pokhrel, 2018; Pradhan et al., 2012). These studies have been mostly confined to the 

estimation and potential current distribution of SOC and AGTB. Thus, studies on the change in the 

amount of SOC and AGTB at a larger scale due to future climate change scenarios are lacking. 

Similarly, studies on species distribution of flora and fauna have been confined to small areas in 

Nepal (Bista et al., 2018; Chhetri et al., 2018; Mahatara et al., 2021; Rai et al., 2022; Thapa et al., 

2018). Most of the studies have been confined to faunal species distribution and to limited tree 

species distribution. Thus, studies on vegetation shifts (broad-leaved and coniferous forests) at a 

larger scale due to climate change in the future are lacking. The prediction of SOC, AGTB and 

vegetation shift from the perspective of the climate change scenario is a crucial task to mitigate and 

adapt to climate change impacts. A model to predict SOC, AGTB and vegetation shifts at the 

national level scenario based on the climatic variables has not been in place so far. 

This thesis, therefore, focuses on understanding the predictor variables for soil organic carbon and 

above-ground tree biomass and assesses vegetation shifts in the future climate change scenarios. In 

particular, the thesis addresses the following research questions: 

1. Do climatic variables affect the amount of SOC and AGTB? 

2. Does future climate change contribute to an increase of SOC and AGTB stock in the 

forest ecosystem? 

Does the future climate change contribute to vegetation shifts, i.e. spatial shift (area and 

altitude) and change in species composition?  

To answer the above research questions, the most recent forest resource assessment (2010-2014) 

data from Nepal was used in this study. Moreover, climatic data (temperature and precipitation) 

from world climate data and topographical variables from FRA and from the United States 

Geological Survey (USGS) were used. Multiple regression, random forest model and MaxEnt 

model were applied to predict the target variables. The findings of this study provide plausible 

evidence and deeper insights into the forest dynamics for forest managers at all levels while 

formulating forestry sector plans and policies in the context of inevitable climate change in the 

future. 
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1.1 Soil organic carbon 

Storing carbon in the forest soil is a means to mitigate climate change. Soil organic carbon (SOC) 

plays an important role in recycling the world's carbon (Shi et al., 2012; Song et al., 2012). It is one 

of the major carbon pools in the forest ecosystem (Gaucher et al., 2015; Neupane et al., 2018, FAO, 

2020). The important source of organic carbon in the soil is dead organic matter that is incorporated 

into the soil by soil fauna through the organic matter transformation process (FAO, 2017). Soil 

organic carbon (SOC) stocks in the forest ecosystem are determined by several factors, such as 

climate, vegetation, topography (Yoo et al., 2006; Zhu et al., 2010), species diversity (Gamfeldt et 

al., 2013), litter fall (Andivia et al., 2016), and soil properties and soil moisture (Hounkpatin et al., 

2018).  

Previous studies have reported mixed results on the relationship between SOC and altitude. Several 

studies have shown a positive relationship between SOC and altitude (Badía et al., 2016; Dalmolin 

et al., 2006; Dieleman et al., 2013; Garten & Hanson, 2006; Sousa Neto et al., 2011; Zech et al., 

2014) however, few studies have reported the opposite (Bangroo et al., 2017; Sheikh et al., 2009). 

Lower temperatures at higher altitudes slow down the decomposition of soil organic matter, leading 

to less carbon loss and an increase in SOC stock (Garten & Division, 2004;  Liu & Nan, 2018). 

Estimation of SOC in the forest is a crucial task in monitoring the forest ecosystem. Global Forest 

Resource Assessment (GFRA), 2020 has estimated 73.8 t/ha of SOC (FAO, 2020) while Forest 

Resource Assessment Nepal (at the national level) has estimated 66.8 t/ha of SOC (DFRS, 2015). 

Methods used for the estimation of SOC are design-based, model-based and machine-learning 

algorithms. All these methods have pros and cons one over another. 

1.2 Above-ground tree biomass 

Above-ground tree biomass (AGTB) includes the sum of stem biomass, branch biomass and foliage 

biomass (DFRS/FRA, 2014). AGTB shares major portion (81%) in the total biomass (Ekoungoulou 

et al., 2015) and therefore is a major source of biomass accumulation in the forest ecosystem. The 

GFRA  has estimated 149.3 tons/ha of living biomass in the world (FAO, 2020). Similar to the 

SOC, the AGTB is also affected by multiple factors, for example,  stand characteristics (tree age, 

density), topography (slope, aspect, altitude), and climate (temperature and precipitation) (Powell 

et al., 2010; Rajput et al., 2017; Shen et al., 2018; Van der Laan et al., 2014; Yan et al., 2015; Zhang 

et al., 2016)   
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The AGTB is the major variable for evaluating carbon sequestration potential and determining the 

total carbon stock of the forest ecosystem. The living biomass (above and below ground) of the 

world's forests contains 44% of the total terrestrial carbon (FAO, 2020). The conversion factor of 

0.47, as recommended by the IPCC (IPCC, 2006a), was used to calculate above-ground carbon 

stock from AGTB which includes stem biomass, branch biomass and foliage biomass. A 

conventional design-based estimation (DFRS, 2015), model-based estimation (Li et al., 2019; 

Mohd Zaki et al., 2016; Pokhrel, 2018; Tian et al., 2014) and machine learning algorithm have been 

used to estimate the AGTB (Li et al., 2020a; López-Serrano et al., 2020; Nguyen & Kappas, 2020; 

Vorster et al., 2020) of the forests at local, national or global scale.  

1.3 Distribution of forests 

The forest cover of Nepal occupies 41.69% of the total area of the country. It has increased in the 

Terai, Siwalik, and Middle Mountain regions but decreased in the High Mountain and High Himal 

during the two decades from 2000 to 2019 (FRTC, 2022). The country is endowed with different 

forest types due to topographic and climatic variations. Forest types in Nepal have been classified 

by different people and organizations at different times.  Stainton (1972) classified the forests of 

Nepal into 35 major types, with two sub-types for each of the Sal (Shorea robusta) forests and 

Schima-Castonopsis forests (Stainton, 1972). Similarly, Dobremez (1976) classified 77 vegetation 

types (Dobremez, 1976). Later, Jackson (1994) classified 24 vegetation types based on Stainton 

and Dobremez classification (Jackson, 1994). Moreover, the Tree Improvement Silviculture 

Component (TISC) of the Natural Resource Management Sector Assistance Program (NARMSAP) 

classified 36 vegetation types based on six main life zones with sub-zones (TISC, 2002). Forest 

resource assessment of Nepal during 2010-2014 identified 15 forest types in Nepal (DFRS/FRA, 

2014; DFRS, 2015)as follows: 

1. Terai Mixed Hardwood Forest : A mixed forest in the Terai region that none of the 

species has over 60% basal area 

2. Upper Mixed Hardwood Forest: Mixed hardwood forest found >2000m 

3. Lower Mixed Hardwood Forest: Mixed hardwood forest found in between 1000-2000m  

4. Shorea robusta Forest: A forest which comprises Shorea robusta more than 60% basal 

area. 

5. Chir Pine (Pinus roxburghii) Forest 
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6. Quercus Species Forest 

7. Blue Pine (Pinus wallichiana) Forest 

8. Abies spectabilis and Abies pindrow Forest  

9. Acacia catechu-Dalbergia sissoo Forest 

10. Betula utilis Forest 

11. Cedrus deodara Forest  

12. Picea smithiana Forest  

13. Cupressus torulosa Forest  

14. Tsuga Dumosa Forest  

15. Juglans wallichiana Forest 

More forest types in the study area indicates larger variations. Thus, forest resource assessment 

used a large number of sample plots to represent all the forest types in the assessment for the 

better estimates of the targeted variables. 

1.4  Vegetation shifts 

Vegetation dynamics in relation to climate provide a comprehensive understanding of the forest 

ecosystem. Climate acts as an important driver of vegetation patterns affecting the growth, 

migration and existence of the tree species (IPCC, 1996). The upward shift of the vegetation has 

been observed by several studies due to climate change (Gaire et al., 2014; Li et al., 2020b; 

Parmesan & Yohe, 2003). Vegetation shift in relation to climate change has been mentioned in 

terms of forest type change (Chaitra et al., 2018), and the spatial distribution of the forests                       

(Hanawalt et al., 2018; Hufnagel & Garamvölgyi, 2014b). One forest type is replaced by another 

forest type after a long period of time due to natural processes or human disturbances. Similar 

vegetation shifts (i.e. forest type change and habitat expansion/shrinkage of the forests) are 

expected to occur in the future climate change scenarios.  

 

1.5 Climates and climate change impact 

The mean annual temperature of Nepal ranges from -120C to  260C while the mean annual 

precipitation ranges from 200 mm to 5000 mm (Karki et al., 2016). Warming in Nepal has been 

observed based on historical observational data. The mean annual temperature is expected to 

increase by 0.0020C/year at the minimum and by 0.0560C/year the maximum, with the highest rate 
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of increase in the higher altitudes., The amount of precipitation in the future is also likely to increase 

by 2%-6% between 2016-2045 period and by 8%-12% during 2036-2065 (GoN/MoFE, 2021). 

Similarly, Darjee et al., reported the rate of increase in temperature in Mountain, Middle hills and 

lowland regions by 0.06180, 0.06380, and 0.01780Cyr-1, respectively between 1988-2018 period 

(Darjee et al., 2022). 

Climate change impacts have been seen in many areas, including forests and biodiversity (ADB & 

WB, 2021). Climate change causes both positive and negative impacts on the forests. The positive 

impacts include an increase in species richness (Zhou et al., 2013), growth of conifer forests (Wu 

et al., 2019), and an increase in wood production and carbon stock (Eggers et al., 2008). While 

negative impacts include the depletion of the highland ecosystem (Manish et al., 2016), habitat 

shrinkage of medicinal and aromatic plants (MAPs) (Shrestha et al., 2022),  threatened conifers 

(Xie et al., 2022), and increased infestation of pest and invasive species (Gebeyehu, 2019). Thus, 

climate change is causing significant impacts on the forest ecosystem, and it plays a crucial role in 

shaping the dynamics of forest ecosystems. 

 

1.6  Structure of the comprehensive summary 

The first part of this comprehensive summary provides an overview of the thematic context, 

highlighting the introduction, research questions, conceptual framework, and methodological 

approach. It also provides information needed to understand climate change impact on soil organic 

carbon, above-ground tree biomass, and vegetation shift. The thesis presents the climatic variables 

as a determinant of the SOC, AGTB, and vegetation shift. Firstly, the study found that the climate 

influences the amount of SOC, as there is an inverse relationship between temperature and altitude. 

Secondly, the study found that the amount of AGTB increases with the increase in temperature as 

temperature helps the growth of the trees. Lastly, the study found that the changes in the amount 

of temperature and precipitation influence the distribution of the forest species. The changes in 

forest types was found to vary with the changes in altitude and climate.  

In the second part of this comprehensive summary, the published articles, as a part of this thesis, 

have been summarized and discussed. The articles are as follows: 

Malla, R., Neupane, P.R and Köhl, M. 2022. Modeling soil organic carbon as a function of 

topographic and stand variables. Forests, 13:1391 

https://doi.org/10.3390/ f13091391 
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Malla, R., Neupane, P.R and Köhl, M. 2023. Assessment of above ground biomass and soil 

organic carbon in the forests of Nepal under projected scenario. Frontiers in Forests and 

Global Change, Vol 6:1209232.  

https://doi.org/10.3389/ffgc.2023.1209232 

 

Malla, R., Neupane, P.R and Köhl, M. 2023. Climate change impacts:  vegetation shift of 

broad-leaved and coniferous forest.  

Trees, Forests and People, Vol 14:100457 

             https://doi.org/10.1016/j.tfp.2023.100457  

Finally, the thesis concludes the study based on three published papers under conclusions of the 

cumulative dissertation followed by an outlook for future considerations based on the findings of 

this study. 

2. A Conceptual Framework of climate change impact  

Greenhouse gas (GHG) emission leads to global warming resulting in climate change. Climate 

change is a change in the state of the climate identified by changes in the mean and/or the variability 

of its properties that persists for decades longer (IPCC, 2014). The global average temperature has 

increased by 1.10C from the period 1850-1900 to 2011-2020 (IPCC, 2023). An increase of global 

warming per decade in all the continents has been reported to rise by 0.130C during the past 50 

years from the period 1948-1998 (Pepin & Seidel, 2005). Further,  the rate is supposed to increase 

by 0.25–0.48 °C/decade until 2085 (Nogués-Bravo et al., 2007). Impacts of climate change have 

been observed in tree-line shift (Devi et al., 2020), tree species distribution (Thapa et al., 2013), 

forest biomass (Poudel et al., 2011), tree growth (Zhu, 2020), distribution of medicinal and 

aromatic plants (Rana et al., 2020), invasive alien plant species (Shrestha et al., 2018), and soil 

organic carbon (Zhao et al., 2021). Although the climate change impacts have been seen in several 

aspects of a forest ecosystem, this study confines the impacts of climate change on AGTB, SOC 

and vegetation shifts. 

AGTB and SOC are crucial components of the forests in the context of climate change. They are 

the functions of several variables, such as slope, aspect, altitude, vegetation, soil moisture, species 

diversity, temperature, and precipitation (Fissore et al., 2008; Larjavaara et al., 2021; Li et al., 2022; 

Yoo et al., 2006; Zhu et al., 2010). Changes in the SOC and AGTB are the results of changes in 

climatic variables (Hanawalt & Whittaker, 1976). Topographic variables (altitude, slope and 

aspects) do not directly affect AGTB and SOC. However, these variables (particularly altitude) can 

be used as proxy variables for the estimation of the SOC and AGTB.  

https://doi.org/10.3389/ffgc.2023.1209232
https://doi.org/10.1016/j.tfp.2023.100457
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The formation of SOC mainly depends on the rate of decomposition of organic matter that is 

influenced by temperature (Zinn et al., 2018). Besides temperature, the precipitation influences soil 

moisture and hydrological processes (Heisler & Weltzin, 2006) which matters in SOC cycling 

(Aanderud et al., 2010). Similarly, the formation of AGTB also depends on the warming 

temperatures that enhances tree growth (Way & Oren, 2010). Temperature and precipitation 

directly affect stand structure, resulting in a change in AGTB (Ma et al., 2023).   

Moreover, previous studies show the impact of climate change on the tree species 

composition/distribution (Chhetri et al., 2018; Trisurat et al., 2009; Wang et al., 2017). These 

studies support the potential impact of climate change on vegetation shift, for example, coniferous 

forest into broad-leaved forests or vice versa. Broad-leaved forests and coniferous forests are found 

in different climatic conditions in Nepal, mainly characterized by high rainfall area and low rainfall 

areas respectively (Bhatta et al., 2021). A change in existing climatic conditions in the future 

scenario is supposed to influence the distribution of broad-leaved and coniferous forests. Change 

in the variables, such as AGTB, SOC, and vegetation shift due to climate change, is thus likely to 

affect species composition, structure and growth of the forests.  
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The thesis uses a conceptual framework to show the connections between greenhouse gas 

emissions, global warming, climate change, forest variables, and potential impacts (Figure 1). 

Following the framework, this thesis particularly investigates the impact of climate change on SOC, 

AGTB, and vegetation shifts. 
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Figure 1: Conceptual framework of climate change impact on SOC, AGTB and 

vegetation shifts 
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Part II: Integration of the articles into the thematic context 
Part II briefly describes the core research papers followed by a detailed description of the individual 

papers in the context of this thesis. A detailed description of the methods and results is given in the 

respective papers. 

1. Malla et al., (2022): Modeling soil organic carbon as a function of topographic 

and stand variables  

The paper1 was written by Rajesh Malla, Prem Raj Neupane and Michael Köhl. It was published 

in the peer reviewed international journal ‘Forests’ in 2022. 

1.1 Summary of the paper (Malla et al., 2022) 

Soil organic carbon (SOC) is one of the major carbon pools in the terrestrial ecosystem that serves 

in global carbon cycling. The SOC is influenced by several factors, such as topography, forest type, 

and forest disturbance, along with changes in the climatic variables. Due to diverse climatic and 

altitudinal variations, Nepal was chosen as the study area. To investigate the potential predictor 

variables for the estimation of SOC, a multiple regression model was used with six different 

predictor variables (topographic variables i.e. altitude, slope, and aspect and forest variables i.e. 

basal area crown cover, and above-ground tree biomass) as recorded in the third national-level 

forest resource assessment (2010-2014) of Nepal. Altogether, data from 862 permanent sample 

plots were used for model development (80%) and model validation (20%). A significant 

correlation between the SOC stock and altitude (r = 0.76) followed by crown cover and slope was 

found in the study. Altitude alone explained 58% of the variability of the SOC stock and showed 

an increasing rate of change in SOC with the increase in altitude. Thus, altitude was identified as a 

suitable predictor of SOC stock for extensive areas with high altitudinal variation followed by 

crown cover and slope. A positive correlation between SOC stock and altitude showed the 

significance of high-altitude forests from the perspective of climate change mitigation. Altitude, a 

proxy of temperature, is likely to provide insights into the influence of changing temperature 

patterns on SOC due to future climate change. It is recommended to conduct further studies on 

                                                           
1 Authors Contribution: R.M. developed the study design, P.R.N. and M.K. commented on the draft 

design. R.M. was responsible for data acquisition, carried out the data analysis, and drafted the manuscript. 

P.R.N. and M.K. commented the draft and contributed on drafting to the final stage of the manuscripts. All 

authors have read and agreed to the published version of the manuscript. 
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different forest types and SOC along the altitudinal gradient in Nepal to deal with the climate 

change related problems. 

1.2 Discussion of the first paper in the thematic context 

This paper provides insights into the relation between SOC (as a response variable) and other 

variables (predictors). The paper shows a significant effect of the predictor variables on the 

response variable in the model developed. This study addresses the following research questions: 

1. Do topographic variables (slope, aspect, altitude) influence SOC significantly? 

2. Do forest variables (crown cover, basal area, AGTB) influence SOC significantly? 

3. Which predictor variable/s is/are appropriate to use in the estimation of SOC? 

The amount of SOC is influenced by various factors such as climatic, edaphic, and biotic factors 

(Schimel et al., 1994), and topographic factors (Patton et al., 2019;  Zhu et al., 2019). Particularly, 

topographical factors are the main factors contributing to spatial variability of SOC (Chen et al., 

2016; Lozano-García et al., 2016; Yimer et al., 2006), and induce heterogeneity in SOC  resulting 

in large uncertainties in SOC storage (Hancock et al., 2010; Zhu et al., 2017). Among the 

topographical variables, our study showed altitude as the strongest predictor of SOC followed by 

slope, while aspect was found to be statistically insignificant. Altitude was shown to have a strong 

positive relation with SOC. Findings of this study are supported by several other studies under 

various altitudinal ranges such as Meghalaya, India (150-1961m); Brazilian Atlantic Forest (100-

1000m); Mt. Kilimanjaro, Tanzania (750-4000m); Southern Appalachian, USA (235-1670m); 

Saruwaged Mountain, Papua New Guinea’s (100-3050m); Moncayo Massif, SW Europe (1000-

1600m); Mt Changbai, China (700-2000m); Tropical Montane Forest (1000-3600m); Bale 

Mountains, Ethiopia (2390- 3250m); Spain (607-1168m) and Ethiopia (2034m-2410m) (Badía et 

al., 2016; Chaturvedi & Sun, 2018; Dalmolin et al., 2006; Dieleman et al., 2013; Garten & Hanson, 

2006; Gebeyehu et al., 2019; Parras-Alcántara et al., 2015; Schindlbacher et al., 2010; Sousa Neto 

et al., 2011; Tashi et al., 2016; Zech et al., 2014). 

Altitude and temperature in Nepal are negatively correlated (Jha, 1992). Since altitude and SOC 

show strong positive correlation in this study, it implies a negative correlation of temperature with 

SOC. The concentration of SOC stock per hectare increases with an increase in altitude (lower 

region to high mountain region). This is due to a decrease in temperature at the higher altitude 

resulting lower rate of SOM decomposition by the microbes (Deng et al., 2014; Garten, 2006). 
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Consequently, lower temperature at a higher altitude is likely to control the retention of SOC 

(Zhang et al., 2021; Zinn et al., 2018) which shows that a decreasing trend of temperature from 

lower to higher regions is contributing to a higher rate of SOC accumulation. 

Furthermore, the extraction of forest products (litter, branches, timber) from the forest can also 

influence the accumulation of SOC due to the reduced availability of forest organic material that 

can be converted to soil organic matter (Baral & Katzensteiner, 2015). Forest product extraction 

depends on the accessibility of the forest. Only 51.5% of the forest is accessible (located at slope 

<450) in Nepal (DFRS, 1999). Accessing forests at higher altitudes is difficult due to the rugged 

terrain compared to lower regions. It is supported by the results that forest disturbances by humans 

(tree cutting, bush cutting, litter collection, lopping and cattle grazing) are lower at higher altitudes 

(DFRS, 2015). Therefore, it can be concluded that the distribution of SOC is likely to be 

concentrated more in the region with fewer anthropogenic disturbances compared to a region of 

higher disturbance (Wilcox, 2010). 

In Contrast, some studies have also shown decreasing stocks of SOC with increasing altitude 

(Bangroo et al., 2017; Sheikh et al., 2009) and no significant relation between SOC and altitude 

(Devi, 2021). These studies were conducted within shorter altitudinal ranges i.e. 500-1200m, 1600-

2200m, 1800-2200m, and 2200-2500m. Due to the underlying short ranges of altitudes, other 

variables may have more effect on SOC. A study on SOC in the Mawer Range in India for two 

attitudinal zones (1800 – 2200m and 2200 -2500 m) shows that mean values of SOC decreases with 

increasing altitude. However, the differences presented are not statistically significant at the 95% 

confidence intervals (Sheikh et al., 2009).  

Previous studies found that the forest soil organic carbon stocks increase with altitude due to slow 

soil organic matter decomposition at the colder higher elevation sites (Schindlbacher et al., 2010; 

Tashi et al., 2016). This finding corroborates with the result of our study. 

The model of the study which used altitude as the sole predictor of SOC produced two-thirds of the 

accuracy of the model which can be an option to assess SOC distribution at the national scale. In 

addition, the present model gives an avenue to use other predictor variables (along with altitude) 

such as bioclimatic variables and human disturbances to build more robust models for the 

estimation of SOC in the future. The phenomena of decreasing temperature with increasing altitude 

suggest that altitude may be considered as a proxy for temperatures in the studies examining the 
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influence of future climate change on SOC stock. Our study provides a basis for studying the effect 

of changing temperature patterns due to climate change on the SOC stock. 

Globally, soil alone contains more carbon than atmosphere and vegetation combined (Montanarella 

Luca et al., 2015). Thus even a small variation in SOC concentrations can significantly affect the 

global carbon cycle (Walter et al., 2016). Higher altitude forests have the highest biomass density 

and also store a large amount of SOC in Nepal (DFRS, 2015). According to our result, an increasing 

rate of change in the amount of SOC with an increase in altitude shows that higher altitude forests 

are of paramount importance from a climate change mitigation perspective. They have been 

contributing to climate change mitigation by acting as a carbon sink both in trees and forest soil.  

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

2. Malla et al., (2023): "Assessment of above ground biomass and soil organic 

carbon in the forests of Nepal under climate change scenario"  

The second paper has been prepared as a part of this thesis. The paper2 was written by Rajesh 

Malla, Prem Raj Neupane and Michael Köhl. It is published in a peer reviewed international 

journal ‘Frontiers in Forests and Global Change’ in 2023. 

2.1 Summary of the paper (Malla et al., 2023) 

Climate, topography, vegetation and forest management practices are the factors that influence the amount 

of soil organic carbon (SOC) and above-ground tree biomass (AGTB) of the forests.  This study focused 

on assessing the relationship between various predictor variables (topography, forest and 

bioclimatic variables) and response variables (SOC and AGTB) from the perspective of climate 

change scenarios. The study was conducted throughout Nepal using nationwide forest resource 

assessment data (2010–2014). In order to understand the relationship of the SOC and AGTB with 

the predictor variables, we used a Random Forest Model (RFM) under future climate change 

scenarios. Altogether 19 bioclimatic variables accompanied by other variables such as altitude, 

aspect, basal area, crown cover development status, distance to settlement forest types, number of 

trees, macro-topography, management regime, physiographic zones, slope, and soil depth were 

included in the study as predictor variables. The study used 737 (70%) samples as training data 

for model development and 312 (30%) samples were used as testing data for model validation. 

RMSE, RMSE% and adjusted R2 of the Random Forest Model for SOC estimation were found to 

be 9.53 ton/ha, 15% and 0.746 respectively while the same statistics for AGTB were found to be 

37.55 ton/ha, 21.74% and 0.743 respectively. Among the predictor variables, changes in 

temperature and precipitation showed stronger effect on the amount of SOC and AGTB in the 

projected scenario i.e. CMIP6, SSP2 4.5 for 2040-2060. We found that the amount of SOC 

decreased by 3.85%, while AGTB increased by 2.96% in the projected scenario. The proposed 

approach can be a better option for understanding the changes in the amount of SOC and AGTB 

in the future scenarios. 

                                                           
2 Authors Contributions: R.M. developed the study design, P.R.N. and M.K. commented on the draft 

design. R.M. was responsible for data acquisition, carried out the data analysis, and drafted the manuscript. 

P.R.N. and M.K. commented the draft and contributed on drafting to the final stage of the manuscripts. 

All authors have read and agreed to the published version of the manuscript. 
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2.2 Discussion of the second paper in the thematic context 

This paper focuses on assessing the impact of climate change on the amount of SOC and AGTB in 

the future scenario, 2040-2060. The findings show a positive impact of climate change on the 

amount of AGTB, and a negative impact on the amount of SOC. This study addressed the following 

research questions: 

1) Which variables (topographic, forest variables and climatic variables) are significant in 

influencing the amounts of AGTB and SOC? 

 2) Are these variables likely to contribute to the amount of AGTB and SOC under the future 

climate change scenario? 

According to previous studies, climate change i.e. rising temperatures in particular in the future 

likely has a negative effect on the amount of AGTB (Larjavaara et al., 2021;  Li et al., 2022) and 

SOC (Kirschbaum, 2000; Zhao et al., 2021). There are also studies showing a positive effect of 

rising temperature on the amount of AGTB and SOC under different climate change scenarios 

(Azian et al., 2022; Fu et al., 2017). But, this study predicted an upward trend in the amount of 

SOC, while a downward trend in the amount of AGTB in the future climate change scenario. The 

study showed a mean temperature of the wettest quarter (Bio8) as a major predictor variable to 

estimate the amount of SOC in particular. In general, climatic variables dominated other variables 

in predicting the amount of SOC. Similar to our study, previous studies have reported the effects 

of climate (temperature and precipitation) on SOC (Alani et al., 2017; Chen et al., 2015; Fang et 

al., 2022; Odebiri et al., 2020; Sun et al., 2019). However, other studies also found altitude as a 

major variable for SOC prediction (Dieleman et al., 2013; Odebiri et al., 2020). This is also true 

because altitude does not directly influence SOC but is an indicator of various climatic functions 

that govern different vegetation and soil formation processes (Hanawalt & Whittaker, 1976). Thus, 

altitude can be used as a proxy for climatic variables (Malla et al., 2022). Owing to global warming, 

surface temperature will continue to increase, at least, until 2050 under all emission scenarios 

(IPCC, 2021). The result shows an increase in temperature (in the future scenario) leads to a 

decrease in the amount of SOC, which is supported by other studies (Liu et al., 2021; Zhao et al., 

2021). Similarly, the negative association of precipitation (in the future scenario) with the amount 

of SOC in our result is similar to the result reported by (Alani et al., 2017).  
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On the other hand, our study reported the effect of climate attributes on AGTB, particularly of the 

maximum temperature of the warmest month (Bio5) and precipitation of the driest month (Bio14) 

which is supported by other studies (Bennett et al., 2020; Larjavaara et al., 2021; Wang et al., 2017). 

The RFM of this study shows an increase of AGTB under future climate change scenarios is 

consistent with the results reported by (Day et al., 2008; Saeed et al., 2019; Wang et al., 2019). An 

increase in precipitation in the driest months (Bio14) helps increase AGTB by lengthening the 

growing season that supports plant growth (Vaganov et al., 1999). The study results show a positive 

effect of Bio14 and warmer in the summer (similar to Bio5) with AGTB is consistent with the study 

conducted by (Devi et al., 2020; Lewis et al., 2013; Noguchi et al., 2022). Unlike the forests in 

Nepal, rising temperature is likely to decrease above-ground biomass in the old-growth tropical 

forests (Larjavaara et al., 2021) which could be due to slow growth at the old age.  

Thus, we conclude that the climatic variables (temperature and precipitation) influence the amount 

of SOC and AGTB in the future climate change scenario. However, the effect of climate on the 

SOC and AGTB is opposite (positive with AGTB while negative with SOC). Combining 

bioclimatic variables with other variables in the machine learning model, i.e. RFM for the 

prediction of SOC and AGTB can be a viable option to better understand the forest ecosystem from 

the perspective of climate change scenario.  
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3 Malla et al., (2023): "Climate change impacts: vegetation shift of broad-leaved 

and coniferous forests"  

The third paper was prepared as a part of this thesis. The paper3 was written by Rajesh Malla, Prem 

Raj Neupane and Michael Köhl. It is published in the peer reviewed international journal ‘Trees, 

Forests and People’ in 2023. 

3.1  Summary of the paper (Malla et al., 2023) 

The impact of climate change has been observed in several components of forest ecosystems, such 

as forest structure (e.g., species distribution, habitat composition), forest composition (e.g., species 

composition) and forest processes. In this study, we intended to answer how future climate change 

is likely to cause an impact on vegetation shift i.e. spatial shift (area and altitude) and species 

composition of broad-leaved and coniferous forest. The study was carried out throughout Nepal 

representing lower to higher altitudinal regions. Altogether 392 presence points (observations) for 

broad-leaved forests and 99 for coniferous forests were used in the study. These occurrence points, 

accompanied by bioclimatic variables (temperature and precipitations) and topographical variables 

(Elevation, Slope and Aspect), were used as input data in a Maximum Entropy (MaxEnt) model to 

predict the potential distribution of the coniferous forests and broad-leaved forests at present and 

their shift in terms of area, altitude and species composition in the future scenario.  

Our results showed that the potential areas of the near current (1970-2000) coniferous forests are 

likely to be shifted into broad-leaved forests under a climate change scenario (SSP2 4.5 for 2050) 

and vice versa. The total vegetation shift area of Nepal was found to be approximately 1800 km2 

(i.e. over 3% of the total forest area). Out of the total vegetation shift area, almost 90% percent of 

the coniferous forest was supposed to be replaced by the broad-leaved forests, while a small portion 

of the broad-leaved forest was replaced by the coniferous forest. The vegetation shift from the 

coniferous forests to the broad-leaved forest is more dominant than the reverse under the climate 

change scenario. Similarly,  the result shows that the distribution of coniferous forests was found 

                                                           

3 Authors Contributions: R.M. developed the study design, P.R.N. and M.K. commented on the draft 

design. R.M. was responsible for data acquisition, carried out the data analysis, and drafted the manuscript. 

P.R.N. and M.K. commented the draft and contributed on drafting to the final stage of the manuscripts. 

All authors have read and agreed to the published version of the manuscript. 

 



 

19 

 

54 m downward shift at higher altitudes (i.e. 4928m to 4874m) whereas 214m upward shift at lower 

altitudes (i.e. 796m to 1010m) in the future climate change scenario. In the case of the broad-leaved 

forest, the result shows that the distribution of broad-leaved forests was found to shift 77m upwards 

in higher altitudes (i.e. 3767m to 3844m altitude) while no downward shift at lower altitudes in the 

future climate change scenario. The altitudinal variation of the coniferous forest seems to be 

shrinking while it is expanding for broad-leaved forests in future climate change. 

3.2 Discussion of the third paper in the thematic context 

The third paper focuses on assessing the impacts of climate change on vegetation shifts. The 

overarching objective of this study was to explore how broad-leaved forests and coniferous forests 

will respond to climate change in future climate change scenarios. The broad-leaved forests and 

coniferous forests are different in terms of their impacts on social, ecological and economic aspects. 

The broad-leaved forests benefit more than the coniferous forest in providing forest ecosystem 

services such as species diversity, hot temperature mitigation, soil organic carbon and water yield 

(Chiti et al., 2012; Joshi et al., 2022; Komatsu et al., 2008; Lindbladh et al., 2022; Schwaab et al., 

2020). Nowadays, the demand for broad-leaved forests is increasing in the coniferous species-

dominated area, particularly in the middle hills of Nepal. It is believed that broad-leaved forest 

provides multiple benefits than coniferous forests. The paper shows that the vegetation shift from 

coniferous forests to broad-leaved forests in the future climate change scenario is more dominant 

compared to the broad-leaved forests to coniferous forests. Previous studies also reported the 

impact of climate change on species composition (Feeley et al., 2011) and increasing/decreasing 

species richness (Adhikari et al., 2018; Zhou et al., 2013). The findings of the study support the 

hypothesis of climate change impact on vegetation shifts, i.e. one tree species to another species. 

Moreover, the potential shrinkage of the habitat of the coniferous forests in the higher altitudes in 

our study is similar to the findings reported by (Fyllas et al., 2022). It reports that the tree species 

at higher elevation is experiencing more pronounced potential habitat shrinkage. 

Similarly, the findings of this paper show both upward and downward shifts for coniferous species 

while only upward shift for broad-leaved species. In the case of coniferous species, the upward 

shifts are likely to take place at the lower altitudinal regions while upward shifts are likely to occur 

at the higher altitudinal regions for the broad-leaved species. As a result, the altitudinal range of 

the coniferous forests is narrowing down and is expanding for broad-leaved forest. Climate change 
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impact of the upward shifts of tree species were reported by various studies (Li et al., 2020b; 

Parmesan & Yohe, 2003). 

The distribution of the broad-leaved forest and the coniferous forest is largely determined by annual 

precipitation (Bio12) and elevation. In the mountain areas of Nepal, coniferous forests are confined 

to the low precipitation area compared to broad-leaved forests (Bhatta et al., 2021) which shows 

that low precipitation favors coniferous forests compared to the broad-leaved forests. In the future 

climate change scenario (SSP2 4.5 scenario for 2050), the amount of precipitation increases which 

could lead to increased spatial distribution of the broad-leaved forest. However, elevation does not 

directly affect the distribution of the species, it is a proxy for climatic functions (Hanawalt & 

Whittaker, 1976) due to an inverse relationship between elevation and temperature in Nepal.  

Similarly, the temperature increase in future climate change is supposed to favour the expansion of 

broad-leaved forests. The lower regions of Nepal (Terai, Siwalik and Middle Mountain with higher 

temperatures) are covered mostly with broad-leaved forests. Particularly, the increase in 

temperature is more pronounced in higher altitudes of Nepal (GoN/MoFE, 2021) which supports 

our findings in the future scenarios, i.e. the upward shift of broad-leaved forests. The impact of 

climate change is not only limited to the area of forest change but is also seen in the altitudinal shift 

of the newly formed forests. As a result of forest change, it could affect the accumulation of soil 

organic carbon (SOC), species diversity, and climate resilient capacity of the forests in future 

climate change scenarios. These findings support studies indicating that the broad-leaved forests 

reveal an increase in the resilience capacity of the forest against climate change because of having 

higher species diversity (Joshi et al., 2022) and a higher amount of SOC stock (Elith et al., 2006; 

Grimmett et al., 2020). Increasing the area of broad-leaved forests in the future climate change 

scenarios will have positive effects on the forest ecosystem in terms of carbon sequestration, 

species diversity and resiliency of the forests. 

Moreover, human disturbance (i.e., tree harvest) also contributes to future species distribution along 

with climate change (Wang et al., 2019). Cutting pine trees in the pine- dominated areas in favor 

of obtaining broad-leaved trees has been practiced in Nepal to fulfill multiple demands of the 

people. Tree harvesting is conducted in Nepal according to the forest operational/management plan 

of the community forests (Baral & Vacik, 2018). Climate induced severe events such as forest fires 

(Hill & Field, 2021), forest pests/diseases (Boyd et al., 2013), invasive alien plant species (Bhatta 
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et al., 2020) cause impact on tree species diversity. These human intervention and climate-induced 

severe events coupled with climate change may pose a combined effect on the vegetation shifts. 

Further studies on vegetation shift need to include human disturbances and climate-induced severe 

events into the species distribution model for better prediction. 
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Part III: Conclusions of the cumulative dissertation 
This PhD study used a large area (national-level) dataset from the forest resource assessment of 

Nepal (2010-2014). This is the first assessment carried out in Nepal using robust forest inventory 

methodology and recorded soil samples to analyze soil organic carbon. Using a large area dataset 

for the study of climate change impact on the forest variables supports a better prediction of climate 

change in the future. The application of widely used models such as multiple regressions, random 

forest model and MaxEnt model to better estimate the target variables has enriched the results of 

the study. A chronosequence study to climate change impact carried out in a country like Nepal 

with large altitudinal thus climatic variations using national-level dataset helps to understand the 

interactions between climatic variables and forest variables more deeply. The findings of this study 

can be a basis for hypothesis/theory development in the future for similar other studies.   

1. Altitude as a proxy variable for the prediction of soil organic carbon 

Several variables (forest, topography, climate) are responsible to affect soil organic carbon at 

different extents. Among all, which variable affects more significantly to the soil organic carbon 

stock was an important research question in the study. The multiple regression model used in the 

study helped to determine significant predictor variables for the prediction of soil organic carbon. 

Altitude is considered the most significant predictor variable in the model to predict soil organic 

carbon. 

Several studies reported the relationship between temperature and soil organic carbon. The 

temperature of the soil is a determining factor for microbial activities which regulates soil organic 

carbon stock. Warmer temperature supports organic matter decomposition through microbial 

activities resulting in a lower amount of soil organic carbon (Garten & Division, 2004). Conversely, 

cooler temperature slows down microbial activities thus helping to retain soil organic carbon. The 

temperature decreases with the increase in the altitudinal gradient in Nepal (Jha, 1992). An increase 

in soil organic carbon stock is seen from the lower to the higher region. The altitude itself does not 

affect soil organic carbon but the altitudinal-induced variation in the climate is responsible.  

The higher rate of soil organic accumulation in the higher altitudinal regions compared to the lower 

altitudinal regions is an interesting result of this study. This result provides more insight into the 

dynamics of SOC. It clearly depicts that the higher altitudinal forest of Nepal contributes to a higher 
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amount of carbon sequestration in the form of soil organic carbon as compared to lower regions. 

This relation highlights the need for sustainable management of high-altitude forests to maximize 

the mitigation potential of the forest ecosystems protecting fragile landscapes in Nepal. The result 

of this study supports generalizing the positive relation between altitude and SOC. The future study 

on different forest types and SOC in Nepal on a larger scale could provide a better understanding 

of forests' contribution to climate change mitigation and possible solutions to deal with the climate 

change problem. 

2. Projected climate change impact on soil organic carbon and above-ground tree 

biomass  

Soil organic carbon and above-ground tree biomass play an important role in climate change 

mitigation by sequestering atmospheric carbon into forest ecosystems. Carbon emissions from 

different sources increase the rate of global warming. Thus, projected climate change shows an 

increase in temperature and precipitation. The study intended to provide evidence on how projected 

climate change impacts the soil organic carbon and abover-ground tree biomass. Applying the 

random forest model helped to analyze the impact of climate change in soil organic carbon and 

above-ground tree biomass 

The result of the study confirms the effect of climatic variables (temperature and precipitation) on 

the amount of soil organic carbon and above-ground tree biomass in the future climate change 

scenario. However, the effect of climate on the soil organic carbon and above-ground tree biomass 

is opposite (positive with above-ground tree biomass while negative with soil organic carbon). 

Increasing amounts of soil organic carbon and above-ground tree biomass are important indicators 

of atmospheric carbon sequestration for mitigating climate change impact.  

The increasing trend of above-ground tree biomass in the future climate change scenario shows its 

potential contribution to climate change mitigation. Moreover, an increase in forest biomass will 

increase the available amount of harvesting wood products (HWPs). The increase in the amount of 

HWPs could contribute to climate change mitigation efforts by replacing and therefore decreasing 

the demand for emission intensive products such as steel or cement. Conversely, the decreasing 

trend of soil organic carbon stock in the future climate change scenario can be a serious issue from 

different perspectives such as climate change mitigation, soil health, etc. Thus, maintaining soil 



 

24 

 

organic carbon under future climate change is a crucial task which should be addressed relatively 

soon. 

This study proposed an approach for estimating the soil organic carbon and above-ground tree 

biomass of Nepal using forest inventory data combined with bioclimatic variables can be a better 

option to predict the trend of soil organic carbon and above-ground tree biomass under projected 

climatic variables. Further studies on maintaining forest soil organic carbon under rising 

temperatures by management activities are needed. For example, maintenance of crown cover helps 

in lowering the soil temperature which might be a possible intervention to be considered to retain 

soil organic carbon in the future. 

3. Climate change impact on vegetation shifts (broad-leaved forest and coniferous 

forest) in terms of area, altitude and species change. 

Several studies have reported that climate change as a driver of the spatial distribution of tree 

species. The upward shift of Himalayan tree species has been observed in Nepal in correlation with 

increasing temperature (Gaire et al., 2014). Climate change impact is not limited to upward shift, 

rather change in species composition, habitat suitability, forest fire events and increasing 

pests/pathogens and invasive alien species have been observed as well. This study intended to 

assess how broad-leaved and coniferous forests would respond to future climate change scenarios. 

A very popular species distribution model (MaxEnt model) applied in the study assisted in 

assessing vegetation shift against projected climatic variables. 

The result of this study revealed the impact of climate change on the vegetation shifts of coniferous 

forests and broad-leaved forests. However, the impact of climate change has been seen in both 

forests, the vegetation shifts from coniferous to broad-leaved forest is more dominant than vice 

versa. The total area of broad-leaved forest is likely to expand in the future while coniferous forest 

is likely to lose its total area. The impact of climate change is not only limited to the area of forest 

change but is also seen in the altitudinal shift of the newly formed forests.  

Vegetation shifts to broad-leaved forests under climate change scenario could benefit in terms of 

increasing species diversity, amount of soil organic carbon stock and climate resilient capacity of 

the forest. However, this vegetation shift may negatively affect the coniferous forest-dependent 

local people and forest-based enterprises by losing the benefits from these forests in the future. 
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Adaptation measures for vulnerable communities need to be assessed to overcome climate change 

impacts in the future.   

Broad-leaved forests are generally seen to be more beneficial than coniferous forests due to their 

capacity to provide multiple benefits to the people. However, for the coniferous forest-dependent  

people and forest-based enterprise, an intervention is needed to maintain coniferous forests against 

climate change. Further studies on vulnerability of the coniferous forest-dependent people and 

forest-based enterprise and adaptation measures is seen as a potential area of research. 

 

4. Outlook 

Forests play is  a significant role in climate change mitigation through various ways i.e. by 

sequestering atmospheric carbon in the form of biomass and by availing harvested wood products 

(means of energy and material substitution). Climate-smart forestry has been a popular approach 

to increase climate benefits from the forests and forestry sector from the perspective of climate 

change impact. It focuses on reducing green house gas emission, making forest climate resilient 

and increasing forest based benefits through sustainable management of the forest.  

The impact of climate change has been seen in several areas, including forest ecosystems. The 

change in species composition, stand structure, biomass, soil carbon, soil moisture, and biodiversity 

have been reported by the studies as the result of climate change. Climate change mitigation and 

adaptation approaches need to be  adopted to deal with climate change impact. One way of 

mitigating climate change is by removing carbon from the atmosphere and storing it in the form of 

biomass and soil carbon. Thus, increasing the amount of biomass or soil carbon in the forests are 

viable option to mitigate climate change. 

Forests' response to climate change varies. It depends on the characteristics of the tree species and 

stand structure. Monoculture forests are more vulnerable to climate change compared to mixed 

forests because of less species diversity and similar stands. Therefore, broad-leaved forests are 

reported to be more climate resilient than the coniferous forests. 

The thesis has revealed the impact of climate change on soil organic carbon, above-ground tree 

biomass and vegetation shift. However, the impacts of climate change were shown to be positive 

with AGTB and vegetation shift (i.e. amount of AGTB increases and the area of broad-leaved 
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increases), while negative with SOC (i.e. amount of SOC decreases). On the one hand, it shows 

that the carbon sequestration capacity of the forests and carbon emissions from the soil is likely to 

increase along with climate change in the future. On the other hand, the existing forests are likely 

to become more climate resilient in the future. 

The conclusions of this thesis were made based on climatic variables. Other variables, such as 

human disturbance, natural disturbance, and extreme events also influence the amount of SOC and 

AGTB, and vegetation shifts. Therefore, future studies should include these variables to understand 

the future impact on SOC, AGTB and vegetation shift from the perspective of climate change. We 

also recommend future studies on total carbon emission from the soil and total carbon sequestration 

in the form of biomass under climate change scenarios to understand the total change in 

atmospheric carbon.  
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Abstract: Soil organic carbon (SOC) plays a crucial role in global carbon cycling. The amount of SOC
is influenced by many factors (climate, topography, forest type, forest disturbance, etc.). To investigate
this potential effect, we performed a multiple regression model using six different predictor variables
in the third national-level forest resource assessment data of Nepal. We found a significant correlation
between the SOC and altitude (r = 0.76) followed by crown cover and slope. The altitude alone
explains r2 = 58 percent of the variability of the SOC and shows an increasing rate of change of
SOC with the increase of altitude. Altitude was identified as a suitable predictor of SOC for large
areas with high altitudinal variation followed by crown cover and slope. Increasing amounts of SOC
with increasing altitude shows the significance of high-altitude forests in the perspective of climate
change mitigation. Altitude, a proxy of temperature, provides insights into the influence of changing
temperature patterns on SOC due to future climate change. Further study on forest types and SOC
along the altitudinal gradient in Nepal is recommended to deal with the climate change problem in
the future.

Keywords: altitude; slope; crown cover; soil organic carbon; model; accuracy

1. Introduction

The SOC is an important carbon pool among the five forest carbon pools [1,2] that plays
a crucial role in global carbon cycling [3,4]. It is a vital component of soil and contributes
effectively to the functioning of terrestrial ecosystems [5]. Particularly, forest soils comprise
about 73% of global soil carbon storage [6]. Therefore, a slight change in the amount of soil
carbon may have substantial effects on the atmospheric CO2 concentration [7].

Forest soils may serve as important carbon sinks for ameliorating excess atmospheric
carbon dioxide (CO2) [8]. SOC levels result from the interactions of major ecosystem
processes such as photosynthesis, respiration, and decomposition. Its input rates are
primarily determined by the root biomass of a plant including litter that is deposited
from plant shoots [9]. The carbon sequestration capacity of soils is affected by biophysical
processes such as rainfall infiltration, soil erosion, and soil temperature because of landscape
heterogeneity [5]. The soil landscape affects carbon input and carbon losses resulting in a
difference in SOC stocks along topographic gradients [8]. The soil carbon dynamics along
elevation gradients are usually the product of the long-term interactions between climate,
vegetation, and soil type [10].

The amount of SOC in the forests of the Himalayan region is characterized by cli-
mate, vegetation, and topography [11,12]. It is a function of several factors including
topography, i.e., altitude, slope and aspect [13–15]; above ground biomass [16]; basal
area [17]; canopy cover [18]; and climate [4,19]. However, several studies dealing with
SOC [13,15,20,21] cover small altitude ranges (150–1961 m, 1800–2500 m, 1060–1230 m,
and 1200–2200 m, respectively) and are small-scale studies [22–26]. The SOC distribution
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along the altitudinal gradient has not been presented consistently. Some studies show
a positive relationship of SOC with altitude [27–32] and some studies show a negative
relationship [15,33].

An increase in the SOC stock along the higher altitudes could partly be associated
with the decreasing temperature due to increasing altitude [34] and reduced soil carbon
losses through decomposition of organic matter [10].

Based on these studies, evidence on the dynamics of SOC for a large area with greater
altitudinal variability is difficult to obtain from these studies. Appropriate predictor
variables are needed to be assessed to predict the dynamics of SOC at the larger (e.g.,
national) with higher climatic and altitudinal variation. Therefore, Nepal was selected as it
is the country with the widest range of altitude in the world.

The unique variation of altitude in Nepal results in distinct physiographic zones
ranging from sub-tropics to the tree line, which allows studying the SOC response for a wide
range of topography and forest features. The diverse geography allows for investigation
along elevation gradients which is a useful approach in studying environmental change
and its effect on soil processes [10]. In the context of Nepal, altitude is considered a major
factor that has resulted in wide pronounced differences in climatic conditions [35]. The
average temperature decreases by 6 ◦C for every 1000 m gain in altitude [36]. The altitude
does not directly influence, but it is an indication of various climatic functions that govern
different vegetation and soil formation processes [37].

Therefore, this study intends to assess the relationships between the SOC and biophysi-
cal factors in the study area covering the pronounced altitudinal variation from sub-tropical
lowlands to the Himalayan foothills of Nepal. The study will answer the following research
questions. (1) Are topographic and stand variables correlated with the SOC distributed in a
large area with higher altitudinal and climatic variation? (2) Which predictor variables (to-
pography and forest stand) are significant to predict the amount of SOC that is distributed
in a large area with higher altitudinal and climatic variation? The availability of nationwide
SOC data further provides traction for an unprecedented opportunity for this study. The
findings, thus, can be inferred for a larger geographical area that is characterized by larger
biophysical and geographical variation.

2. Materials and Methods
2.1. Study Area

In Nepal, hills and high mountains cover about 86% of the total land area and the
remaining 14% is a lowland that is located at less than 300 m altitude. The altitude varies
from 60 m above sea level in the Terai, the lowland stretching from east to west, to Mount
Everest, with 8,848 m being the highest peak in the world. Wide altitudinal variations
and diverse climatic conditions have produced four main physiographic zones i.e., Terai
(lowlands), mid-hills, high mountains, and high Himal [38]. The altitudinal variation
results in a wide range of climatic conditions which influence the composition of flora
and fauna, [35]. Stainton [39] classified 35 forest types in Nepal which are further broadly
categorized into 10 major groups that are based on the altitudinal range [35]. Forests that
are found in varied altitudinal ranges have been reported to store soil organic carbon and
above ground tree biomass at different levels [40]. The study covered the forested area
of Nepal ranging from Terai (250 m) to the tree line area (3993 m). These altitudes were
selected based on the soil samples that were collected from the forest area in the third
national forest inventory. The details of the study area according to physiographic zones
are given in Table 1.
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Table 1. Study area descriptions in different physiographic zones in Nepal. Source: [38,40–44].

Descriptions
Physiographic Zones

Remarks
Terai Siwalik Middle Mountain High Mountain

and High Himal

Major forest types
Shorea robusta forest,

Terai mixed
hardwood

Shorea robusta, Terai
mixed hardwood

Lower mixed
hardwood, Pinus
roxburghii, Terai

mixed hardwood

Upper mixed
hardwood, Quercus,

Lower mixed
hardwood

Biomass (Mg ha−1) 190.02 172.21 143.26 271.46 Total above-ground
airdried biomass

Stem volume
(m3 ha−1) 161.66 147.49 124.26 225.24

Altitude (m) 63–330 93–1955 110–3300 543–8848 Forest cover lies
below 4000 m

Soil Alluvial deposit
Shallow droughty
with low surface

infiltration
Glacial deposits Stony and rocky

Temperature (◦C) 14 to 40 12 to 30 −3 to 40 −18 to 36 Jackson 1994

Annual rainfall (mm) 1138–2680 1138–2671 1091–1898 379–2185

2.2. Data Collection

The study used National level Forest Resource Assessment (FRA) data that were
collected from 2010 to 2014. The FRA adopted a two-phased stratified systematic cluster
sampling design that was composed of 450 clusters containing 1,553 Permanent Sample
Plots (PSPs) that were allocated systematically in the entire forest area [40]. The forest area
was grouped into 5 regions and the data were assessed from the Terai region (flat area) to
the high Himal region (high-altitude land). On the PSPs, tree (e.g., diameter at breast height,
total tree height, crown length, species diversity, quality class) and stand level data (e.g.,
crown cover, slope, aspect, location, altitude) were collected. In addition, four soil pits were
established in the cardinal direction (north, east, west, and south) of all the PSPs to collect
the soil samples. In each cardinal direction, appropriate size of soil pits within the area of
2 m × 2 m were dug at a 21 m distance from the PSP center (Figure 1). The soil samples
were collected from three different horizons (1–10 cm, 10–20 cm, and 20–30 cm) up to the
depth of 30 cm from each soil pit dug outside the peripheries of the PSPs [42]. The soil
layers up to 30 cm is recommended by IPCC under Tier 1 and Tier 2 for SOC estimation in
the soil and this layer stores half of the SOC of the top 100 cm [1].
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2.3. Above Ground Tree Biomass and Soil Organic Carbon Analysis

The former Department of Forest Research and Survey (now Forest Research and
Training Center) in Kathmandu, Nepal, analyzed the samples that were collected on the
FRA field plots. The above-ground tree biomass (AGTB) was calculated by summing up
the stem biomass and branch biomass (Equation (1))

AGTB = Stem biomass + Branch biomass (1)

Stem biomass was calculated as a product of the volume of the stem [45] and air-dried
wood density [46]. Similarly, the branch biomass was calculated using a branch-to-stem
ratio that was based on the species type and size of the stem at diameter at breast height [47].
The air-dried wood densities of the tree species ranges from 352 kg/m3 for Trewia nudiflora L.
to 960 kg/m3 for Acacia catechu (L.F.) wild. were used.

For SOC analysis, four soil samples of the same horizon of the particular subplots
were mixed together. Each subplot had 3 soil samples representing three different soil
horizons. The Black wet combustion method [48] was then applied in Department of Forest
Research and Survey (DFRS) soil laboratory, Nepal, to analyze soil organic carbon. On
the other hand, a dry combustion and LECO CHN Analyzer were used in the Metla Soil
Laboratory, Finland, to assure the quality of the laboratory test. Soil organic carbon that
was analyzed in the soil laboratory was later estimated on a per hectare basis.

2.4. Variable Selection

The source of SOC is the vegetative matter which is triggered by climatic conditions
to decompose it into carbon. Forest variables such as basal area (BA), above-ground tree
biomass (AGTB), and crown cover (CC) were utilized. These variables are important to
directly describe the vegetative biomass and ultimately help to predict SOC. Similarly,
topographical variables such as altitude, slope, and aspect were utilized which are impor-
tant to describe climatic conditions. Both forest and topographical variables were used as
predictor variables of the SOC. Further, multicollinearity among the predictor variables
was verified using the variance inflation factor (VIF) function in the “car” package of the R
program [49]. VIF > 5 shows the presence of multicollinearity among the variables [50]. We
retained all of the predictor variables in our model as they had VIF < 5.

2.5. Data Split

Data analysis was focused on assessing SOC based on topographic (altitude, slope,
and aspect) and forest variables (AGTB, basal area (BA), and crown cover). The whole data
were split into two sets, i.e., one set of data for developing a model and another set of data
for validating the model as an independent dataset. Before splitting the data, a boxplot
was used to check the presence of outliers in the data. The outliers were checked for
measurement, recording, or lab analysis errors. After error validation, 1032 sub plots from
362 clusters were used for the SOC analysis for ordinary data (non-transformed). For the
transformed data, however, 862 PSPs from 311 clusters were used. The transformed data
only included PSPs that were located above 250 m altitude as soil sample data below 250 m
created non-linearity and heteroscedasticity problems in the linear model. The number of
PSPs within clusters ranges from 1 to 6 in lowland and 1 to 4 in highland. The majority
of the PSPs representing the highland were spaced 300 m apart and we treated them as
independent sample plots for this study. The data were split into two sets i.e., data (80%) for
developing models and test data (20%) for data validation. The splitting was done by using
the createDataPartition function in the “caret” package [51], which splits data randomly
into two different sub-sets with different proportions. All data analyses were done in R
software [52].
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2.6. Modelling

Pearson’s correlation analysis was performed to determine the relationship of SOC
with six predictor variables (altitude, basal area, AGTB, slope, aspect, crown cover) using
the cor.test function from the “stat” package in R software [52]. Using the predictor variables,
six different models (TM1:TM6) were developed against SOC (transformed SOC data)
as a response variable. The predictor variables that were used in the models having
higher R2 values indicate better fits of the models. The presence of heteroscedasticity
and normality in the residuals of the models were tested using the bptest function (which
determines whether the residuals in the linear model are homogenously distributed or not)
and the shapiro.test function (which determines whether the residuals in the linear models
are normally distributed or not) under “lmtest” and “stat” packages, respectively, in R
software [53].

2.7. Data Transformation

The models were tested for the assumptions of simple linear regression, i.e., ho-
moscedasticity (p < 0.05) and normality (p > 0.05). To overcome the problem of rejecting
the null hypothesis of the homoscedasticity and normality assumption, the response vari-
able (i.e., SOC) was transformed using the BoxCoxTransformation function under “e1071”
package in R software [54] to normalize its distribution and six models were developed.
The transformation method is used on a non-normal dependent variable to make it into a
normal distribution in which statistical tests can be applied.

2.8. Model Validation

An accuracy assessment of the model was conducted to validate the model prediction
by using independent test data that had not been used for model development. The
predicted value of the response variable was transformed back and compared with the
real value that was obtained from the test data. The mean absolute percentage error
(MAPE) was used to determine the error percentage of the models to validate the model’s
accuracy. MAPE was calculated using the MAPE function from the “MLmetrics” package in
R software [51] (Equation (2)). Lower MAPE values indicate higher accuracy of the models.

MAPE =
1
n

n

∑
i=1

∣∣∣∣Oi − Fi
Oi

∣∣∣∣ (2)

where,

n = number of fitted points
Oi = Actual value of soil organic carbon
Fi = predicted value of soil organic carbon

The accuracy (A) of the model was calculated using Equation (3).

A = 1−MAPE (3)

where,

A = Accuracy of the model

3. Results
3.1. Distribution of Variables

Altitude, crown cover, slope, aspect, basal area, and above-ground tree biomass
(AGTB) were used as predictor variables to describe the SOC as a response variable. Basic
statistics of the variables that were used under study are shown (Table 2). More variability
in the variables were seen. This could be due to the sample plots that were recorded
throughout the country representing larger climatic, ecological, and altitudinal variations.



Forests 2022, 13, 1391 6 of 14

Table 2. Distribution of the predictor and response variables.

Variables Min. Mean Max.

SOC (Mg ha−1) * 6.54 62.79 231.72

Altitude (m) 88 1233 3993

Crown cover (%) 4 63.6 99

Slope (%) 0 48 100

Aspect (degree) 0 151 360

Basal area (m2/ha) 0.46 22.1 113.4

AGTB (Mg ha−1) ** 1.4 190.02 1306.49
* = oven dry, ** = dry biomass.

3.2. Correlation of Variables

In the correlations and scatterplots of the pairwise combinations of the variables, a strong
and linear relationship was found between SOC and altitude (r = 0.76, p < 2.2 × 10−16). The
correlation between crown cover and slope has also been found significant with SOC.
Similarly, a strong but non-linear relationship was found between basal area and AGTB
with SOC (Figure 2).
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Moreover, the results also shows that there was a significant correlation (r = 0.87,
p < 2.2 × 10−16) between basal area and AGTB which could cause a multi-collinearity
problem when both variables are used together in the model.

3.3. Effects of Topography and Stand Level Variables

As untransformed SOC data in the models did not satisfy the assumptions of linear
models, the response variable (SOC) was transformed using the Box–Cox transformation
method [54] to normalize the regression models. Box and Cox (1964) developed a family of
transformations that were designed to reduce the non-normality of the errors in a linear
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model [55]. In this model, the output of the model (transformed predicted value) needs to
be transformed back to get the normal predicted value (Equation (4)).

Normal Predicted value = exp(log(λ × transformed predicted value + 1)/λ) (4)

where,

Estimated λ = 0.2 (It is an “optimal value” that results in the best approximation of a
normal distribution).

Afterward, six different models were developed which fulfilled the assumption of
linear regression models (Table 3).

Table 3. Models after transforming the response variable using the Box–Cox transformation method.

Models Regression Equations

TM1 SOC = 3.88 *** − 0.0000027(AGTB) + 0.0045(BA) − 0.0006(asp) + 0.0059(slp) *** + 0.0063(cc) *** + 0.0011(alt) ***,
where, Adj. R2 = 0.602 and p < 2.2 × 10−16

TM2 SOC = 3.88 *** − 0.0045(BA) − 0.00063(asp) + 0.0059(slp) *** + 0.0063(cc) *** + 0.0014(alt)***,
where, Adj. R2 = 0.602 and p < 2.2 × 10−16

TM3 SOC = 3.87 *** − 0.00062(asp) + 0.0056(slp) *** + 0.0075(cc) *** + 0.0011(alt) ***,
where, Adj. R2 = 0.601 and p < 2.2 × 10−16

TM4 SOC = 3.77 *** + 0.0056(slp) *** +0.0073(cc) *** + 0.0011(alt) ***,
where Adj. R2 = 0.599 and p < 2.2 × 10−16

TM5 SOC = 4.03 *** + 0.0076(cc) *** + 0.0012(alt) ***,
where, Adj. R2 = 0.592 and p < 2.2 × 10−16

TM6 SOC = 4.53 *** + 0.0012 alt ***,
where, Adj. R2 = 0.582 and p < 2.2 × 10−16

Note: slp = slope, asp = aspect, BA = basal area, cc = crown cover, alt = altitude, Signif. codes: ‘***’ p < 0.001.

The residuals of the linear model TM6 show random distribution with mean zero
(Figure 3a), and normal distribution and homoscedasticity (Figure 3b).
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Figure 3. (a) Distribution of the residuals of the model TM6 showing homogeneity; (b) standardized
residuals in the model TM6 showing normality.

All the parameter estimates for each model were significant at the 0.05 level in the
transformed model. Among the six predictor variables in the model (TM1), altitude
(p < 2 × 10−16), crown cover (p < 0.0011), and slope (p < 0.00015) were significant while
aspect, AGTB, and basal area were not significant. Among three significant predictor
variables, altitude was found to be more significant. The altitude alone as a predictor in the
model (TM6) has a significant effect on the SOC (Table 2).
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During the transformation of a response variable, the predictor variable (altitude > 250 m)
was used by the hit and trial method. Sample plots that were located below 250 m altitude
did not show a significant correlation between altitude and SOC. The inclusion of these
samples in the models violated the assumption of the linear model (i.e., heteroscedasticity
and non-normality), thus they were excluded in the model development. Finally, for all
the transformed models (TM1:TM6), the assumption of linear models was accepted i.e.,
homoscedasticity (p > 0.05) and normality (p > 0.05). All the candidate models (TM1:TM6)
showed similar goodness of fit on the observed data. Better goodness of fit between the
observed value and the predicted value of SOC (Figure 4a) and the rate of SOC changes
increases with the increase in altitude can be seen (Figure 4b).
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The results show that at every increase of 500 m altitude, the SOC increased by
11.38 Mg ha−1 to 31.28 Mg ha−1. Thus, our study confirms that an increase in the SOC
amount increases with the increase in altitude (Figure 4b) i.e., the rate of increase of SOC is
higher at higher altitudes. Alternatively, the SOC does not increase uniformly with altitude.
Instead of proportionality, the change in SOC increases with increasing altitude.

3.4. Accuracy of the Model

Based on the number of predictor variables, TM6—the model with one predictor
variable—was found to be an appropriate model for predicting the SOC. Using altitude
alone (TM6) provided a similar level of accuracy compared to the other models that used,
in addition to altitude, additional predictor variables. In model TM6, the predictor variable
altitude was found significant to predict the SOC, producing an accuracy of 67.33% (Table 4).

Table 4. Accuracy of the models.

Models MAPE (%) Accuracy (%)

TM1 31.06 68.94

TM2 31.05 68.95

TM3 31.36 68.64

TM4 31.73 68.27

TM5 31.85 68.15

TM6 32.67 67.33

Other variables in the model seemed to be dispensable due to the small accuracy
gains. Comparing the results of all the models show that altitude alone (TM6) is the most
influential variable to predict SOC with simultaneously maintaining sufficient accuracy
with respect to the inclusion of other predictor variables (in TM1:TM5).
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4. Discussion
4.1. Distribution of SOC

The storage of SOC is influenced by various factors such as climatic, edaphic and biotic
factors [56], and topographic factors [57,58]. In this study, the distribution of SOC concen-
trates more from the lower elevation region towards the higher elevation region (lower
region to high mountain region). This is due to higher altitude-induced low-temperature
resulting in lower activities of microbes that are involved in SOM decomposition [59,60]. In
Nepal, the average temperature decreases by 6 ◦C for every 1000 m increase in altitude [36].
A lower temperature is likely to control the retention of SOC [20,61] which shows that the
decreasing trend of temperature from lower to higher regions is contributing to higher SOC
accumulation. Furthermore, the extraction of forest products (litter, branches, timber) from
the forest can also influence the accumulation of SOC due to the reduced availability of
forest organic material that can be converted to soil organic matter [62]. Forest product
extraction depends on the accessibility of the forest. Accessibility to forests at higher al-
titudes is difficult due to the rugged terrain compared to lower regions. It is supported
by the results that forest disturbances by humans (tree cutting, bush cutting, litter collec-
tion, lopping, and cattle grazing) are lower at higher altitudes [40]. Therefore, it can be
concluded that the distribution of SOC is likely to be concentrated more on the region with
less anthropogenic disturbances compared to a region of higher disturbance [63].

4.2. Effect of Topographic and Stand Variables on SOC

The higher variation in SOC in different sites is due to the variation in topographic,
climatic factors, and anthropogenic disturbances. Topographical factors are the main factors
contributing to the spatial variability of the SOC [64–66] and induce heterogeneity in SOC
which is likely to produce large uncertainties in SOC storage [67,68]. Our study shows
altitude as a major significant variable to predict the SOC followed by slope while aspect
is insignificant. Aspect has an influence on the local temperature, therefore, microbial
activities could be less important. The positive correlation of SOC with altitude implies
a negative correlation of SOC with temperature; as altitude increases, the temperature
decreases. The formation of SOC mainly depends on the rate of decomposition that
is influenced by the temperature; the lower the temperature, the lesser the control on
SOC accumulation [20]. A similar trend that was in line with our finding (i.e., positive
correlation of SOC and altitude) has been reported in several studies in different regions.
e.g., Meghalaya, India (150–1961 m); Brazilian Atlantic Forest (100–1000 m); Mt. Kilimanjaro,
Tanzania (750–4000 m); Southern Appalachian, USA (235–1670 m); Saruwaged Mountain,
Papua New Guinea’s (100–3050 m); Moncayo Massif, SW Europe (1000–1600 m); Mt
Changbai, China (700–2000 m); Tropical Montane Forest (1000–3600 m); Bale Mountains,
Ethiopia (2390–3250 m); Spain (607–1168 m); and Ethiopia (2034–2410 m) [13,27–32,69–72].

Contrastingly, there are also studies showing decreasing stocks of SOC with increasing
altitude [15,33] and no significant relationship between SOC and altitude [73]. These studies
were conducted within shorter altitudinal ranges (500–1200 m, 1600–2200 m, 1800–2200 m,
2200–2500 m). Due to the underlying short ranges of altitudes, other variables may have
more effect on the SOC. [17] studies SOC in the Mawer Range in India for two attitudinal
zones (1800–2200 m and 2200–2500 m) and presents that the mean values of SOC are
decreasing with increasing altitude. However, when considering the 95% confidence inter-
vals that were presented by [17], the dissimilarity that was presented was not significant.
Altitude does not directly affect the ecosystem but is an indicator of climatic functions [37].
The SOC distribution depends on the altitude-induced variation in climatic variables (tem-
perature, precipitation). The forest soil organic carbon stocks increase with altitude due to
slow soil organic matter decomposition at the colder higher elevation sites [70,71].

Our study shows a positive relationship of SOC with slope. The maximum slope that
was used in the study was 45◦ (100%). The increasing slope indicates a higher retention
of SOC. Similar findings were reported for slope by [69,74,75] and slope aspect [76]. Land
surface temperature decreases with the increase of slope by influencing incidence angle
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and reflectivity of solar radiation [77], hence a lower rate of decomposition contributing to
more SOC retention [20]. Contrary to our findings, [78] found an inverse relationship of
SOC with the slope which might be due to the study being confined to a steep and narrow
catchment, thereby emphasizing erosive down-hill transport of leaf litter and soil debris.

Moreover, unlike our study, [13] presents a significant effect of aspect on SOC. The
study was confined to small areas, so the micro-climatic (local effect) might have an effect
on the SOC. Similarly, [68] reports that slope and aspect are major variables that affect
the distribution of SOC. The study was conducted within a shorter interval of altitudinal
range (i.e., 2400–4000 m), thus slope and aspect could have a strong effect on the SOC.
Our study shows that aspect does not hold a strong relationship with SOC in the larger
altitudinal variations. The weak relationship between aspect and SOC in the forest area
with large altitudinal ranges may be due to the large-scale effect that might filter out the
effect of micro-climate.

Similarly, our study gives an indication of the effect of different stand variables
(above-ground tree biomass, basal area, and crown cover) on the SOC. Crown cover affects
SOC more than above-ground tree biomass and basal area. Crown cover has significant
positive correlation with SOC. A similar finding has also been reported by [69]. In fact, tree
crown cover helps to reduce soil temperature [79,80]. High crown cover lowers the rate of
decomposition of organic matter leading to more SOC retention [20] while an increase in
the mean annual temperature decreases the amount of SOC [81]. Relationships between the
crown cover and temperature, and between temperature and SOC suggest that maintaining
continuous crown cover in the forest contributes to higher SOC accumulation.

Our results did not find a correlation between the above-ground tree biomass and
basal area with SOC. On the contrary, a negative correlation between tree biomass (above-
and below-ground biomass) and SOC was reported in a case study of community forests in
Nepal [82]. Similarly, a negative correlation between the basal area and SOC was reported
in the tropical forests of Bangladesh [74]. Contrasting results depict that tree biomass and
SOC do not follow the same trend, although the above-ground biomasses are the source
of SOC. Tree biomass (tree carbon) is mainly affected by human disturbance and stand
structure while SOC is primarily affected by local climate [74]. The disproportionate level
of anthropogenic disturbance (tree cutting, forest fire, lopping) along the physiographic
regions of Nepal [40] might be a reason for AGTB as a weak predictor for SOC. This
was similar the basal area and SOC as basal area and the AGTB were strongly correlated
(r = 0.86).

4.3. Altitudinal Effect on SOC and Its Implication

Most of the studies show positive relationship between altitude and the SOC [64,71,83].
Our study also confirms the same relationship by analyzing nationwide data representing
a wider variation of altitudinal range from 250 to 3993 m. The results hold good only for
the altitudinal ranges that were covered with forests as at some point forest productivity
declines and affects SOC accumulation due to climate limitations. In addition, our results
show a change in the amount of SOC increases with the increase of altitude. A decrease
in the temperature with an increase in the altitude [36] that is accompanied by less an-
thropogenic disturbance to the forest at higher altitudes [40] could be the reason for SOC
accumulation at higher rates at higher altitudes.

The developed model using altitude solely as a predictor of SOC produces two thirds
of the accuracy of the model. As such, this can be an option to assess the SOC distribution
at the national scale. In addition, the present model gives an avenue to use other predictor
variables (along with altitude) including other variables to build more robust models for the
estimation of SOC in the future. The phenomena of decreasing temperature with increasing
altitude suggests that altitude may be taken as a proxy for increasing temperatures in
studies examining the influence of future climate change on SOC. Our study provides a
basis for studying the effect of changing temperature patterns due to climate change on
soil organic carbon.
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Globally, soil alone contains more carbon than the atmosphere and vegetation com-
bined [84]. Thus, a small variation in SOC concentrations can significantly affect the global
carbon cycle [85]. Higher altitude forests have the highest biomass density and also store a
large amount of SOC in Nepal [40]. According to our results, an increasing rate of change
in the amount of SOC with an increase in altitude shows that higher altitude forests are
more important from a climate change mitigation perspective. They have been contributing
to climate change mitigation by acting as a carbon sink, both with trees and forest soil.

The study covers large areas with a higher altitudinal variation. Such a large-scale
study has cancelled out the micro-climatic effect which is very important for small areas
for the estimation of SOC. Furthermore, human disturbance of the forest has also a rela-
tionship with altitude in a country such as Nepal. The disturbance is directly related to the
accessibility (road networks) of the forest; when more the forest is accessible, more is likely
to be disturbed. Therefore, altitude can be considered as a proxy of temperature along with
human disturbance which shows a confounding effect on SOC stock.

5. Conclusions

The study assessing SOC on the basis of crown cover, slope, and altitude has con-
tributed to a better understanding of biophysical factors that potentially affect SOC, in par-
ticular altitude. Our study confirms the positive relationship between SOC and altitude.
Particularly, the finding of the study suggests that the rate of SOC accumulation increases
with the increase in altitude. However, according to the Third National Communication
Report of Nepal to UNFCCC, an increase in temperature is at a higher rate at higher
altitude [86] which shows a potential increase in carbon emissions from the forest soil
at higher altitudes. With these findings, our study highlights the need for sustainable
management of high-altitude forests to maximize the mitigation potential of the forest
ecosystems protecting fragile landscapes in Nepal.

Moreover, altitude as a single predictor for large and higher altitudinal variation area,
predicted with two thirds of the accuracy for SOC estimation and so could be useful in the
future estimation of SOC during national level carbon inventory. Similarly, altitude is an
index of climatic functions [37], thus it can be used as a proxy of climatic variables (i.e.,
temperature). Altitude has possible insights into the influence of changing temperature
patterns on SOC due to future climate change. Using the relationship between altitude
and SOC, future studies focusing on the SOC distribution under different forest types will
provide a better understanding of the contribution of the forest types in climate change
mitigation through SOC accumulation.
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Introduction: Many factors, such as climate, topography, forest management, or

tree/forest attributes, influence soil organic carbon (SOC) and above-ground tree

biomass (AGTB). This study focuses on assessing relationship between various

predictor variables and response variables (SOC and AGTB) in the perspective of

climate change scenario. The study was conducted throughout in Nepal using

forest resource assessment data (2010–2014).

Methods: Our study applied a random forest model to assess the status of SOC

and AGTB under future climate change scenarios using 19 bioclimatic variables

accompanied by other variables such as altitude, aspect, basal area, crown cover

development status, distance to settlement forest types, number of trees, macro-

topography, management regime, physiographic zones, slope, and soil depth.

The study used 737 (70%) samples as a training data for model development while

312 (30%) samples as a testing data for model validation.

Results and discussion: The respective RMSE, RMSE% and adjusted R2 of the

Random Forest Model for SOC estimation were found to be 9.53 ton/ha, 15% and

0.746 while same for the AGTB were 37.55 ton/ha, 21.74% and 0.743. Particularly,

changes in temperature and precipitation showed an effect on the amount of

SOC and AGTB in the projected scenario i.e., CMIP6, SSP2 4.5 for 2040–2060.

The study found the amount of SOC decreased by 3.85%, while AGTB increased

by 2.96% in the projected scenario. The proposed approach which incorporates

the effect of bioclimatic variables can be a better option for understanding the

dynamics of SOC and AGTB in the future using climatic variables.

KEYWORDS

biomass, carbon, climate change, random forest model, Nepal, precipitation,
temperature

1. Introduction

Forest ecosystems are the largest carbon reservoirs storing ∼2 billion tons of CO2 per
year (UNDESA and UNFFS, 2021). The 2006 Intergovernmental Panel on Climate Change
(IPCC) guidelines for the national greenhouse gas inventories indicate three major carbon
pools (biomass, dead organic matter, and soil) in the forest ecosystem (Eggleston et al.,
2006; IPCC, 2006). Most of the forest carbon is found in soil organic matter (45%) followed
by living biomass (44%) i.e., above-ground tree biomass (AGTB) and root biomass and
remaining in dead organic matter, i.e., in dead wood and litter (FAO, 2020).
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Several climatic and edaphic factors influence forest carbon
storage (Hofhansl et al., 2020). AGTB is influenced by altitude
(Powell et al., 2010; Van der Laan et al., 2014; Rajput et al., 2017),
temperature and precipitation (Yan et al., 2015), water availability,
soil nitrogen content, and tree cover (Requena Suarez et al., 2021).
Similarly, soil organic carbon (SOC) is affected by the amount of
above-ground litter fall and root turnover (Andivia et al., 2016),
temperature and precipitation (Sun et al., 2019), soil conditions and
vegetation (Reyna-Bowen et al., 2019), species diversity (Gamfeldt
et al., 2013), soil properties and moisture (Hounkpatin et al.,
2018), altitude (Zinn et al., 2018), slope aspect, and soil depths
(Zhu et al., 2017).

Climate change is contributing to global warming due to
the steady increase in temperature since the 1960s (NOAA,
2023). It is projected to increase the severity of impacts in
both the natural and human systems (IPCC, 2023). Climate
change, rising temperature particularly, in the future has shown
to have a negative effect on AGTB (Larjavaara et al., 2021;
Li Y. et al., 2022) and SOC (Kirschbaum, 2000; Zhao et al.,
2021) while a positive effect of the rising temperature on AGTB
and SOC has also been studied under different climate change
scenarios (Fu et al., 2017; Azian et al., 2022). The carbon sink
of the forest is sensitive to CO2 emission change resulting from
increasing temperature, hydrological changes, and forest dynamics
(Hubau et al., 2020).

Efficient estimation of above ground biomass and soil organic
carbon is crucial for the study of carbon dynamics in forest
ecosystems. Different assessment methods for the estimation of
AGTB and SOC have been carried out. The 2006 IPCC guidelines
have provisioned simple to robust method for the estimation
of above and below carbon in Tier 1, Tier 2 and Tier 3
categories (IPCC, 2006). Design-based estimation (using ground-
based sample plots) is one of the most used approaches for
estimating AGTB and SOC (DFRS, 2014, 2015a,b; DFRS/FRA,
2014). Though it provides the precise evaluation of changes (stand
structure, tree attributes) due to small standard error (Schadauer
and Gabler, 2007), it is time-consuming, less cost- effective and
difficult to implement in poorly accessible forest areas (Köhl et al.,
2011; Kandel, 2013). Alternatively, a regression model (model-
based estimation) has been used for the estimation of AGTB and
SOC (Tian et al., 2014; Mohd Zaki et al., 2016; Pokhre, 2018;
Li et al., 2019; Malla et al., 2022) that allows more flexibility to
provide estimates outside the sample plots (Ståhl et al., 2016).
Thus, model based estimation (regression model) is cost-effective
and also able to estimate target variables of poorly accessible
areas.

Recently, several studies have used a machine learning method
such as random forest model (RFM) and gradient boosting (GB)
for the prediction of AGTB and SOC (Powell et al., 2010; John
et al., 2020; Lee et al., 2020; Li et al., 2020; López-Serrano
et al., 2020; Nguyen and Kappas, 2020; Vorster et al., 2020). The
RFM model uses machine learning algorithms for classification
and regression based on decision trees (Jin et al., 2020). It is
appropriate for large datasets with large numbers of variables, non-
linear responses, both continuous and categorical variables and
is less affected by the multicollinearity problem (Lu et al., 2016).
Several studies found RFM superior to the regression model in
terms of lowering mean squared error (Hounkpatin et al., 2018;
Zhu et al., 2020; Xie et al., 2021), handling non-linear relations

(Pahlavan Rad et al., 2014; Hengl et al., 2015), and indifference
of assumptions of having probability distribution (normality) and
no multicollinearity among independent variables (Lu et al., 2016;
López-Serrano et al., 2016). Moreover, RFM does not require
several numbers of sample plots, as in the case of design-based
estimation, thus it is cost-effective. It can also estimate the target
variable of the poorly accessible area in the presence of readily
available independent variables (i.e., temperature, precipitation,
slope, altitude, etc.).

Previous studies have used spectral values of satellite images
as an independent variable to predict a response variable such
as AGTB and SOC in the past period (Powell et al., 2010;
Vicharnakorn et al., 2014; Angelopoulou et al., 2019; López-Serrano
et al., 2020; Zhu et al., 2020; Kumar et al., 2022). However, the
response of AGTB and SOC against change in climatic variables
(temperature and precipitation) in the future has been lacking in
the national scenario in Nepal. The influence of temperature and
precipitation on the quantity of AGTB and SOC (Mehta et al.,
2014; Bennett et al., 2020; Saimun et al., 2021) helps estimate these
target variables in future climate change scenarios. Therefore, this
study aims to answer the questions (1) Which are the variables
(topographic, forest variables and climatic) significant to influence
AGTB and SOC? (2) Are these variables likely to contribute to the
amount of AGTB and SOC under the climate change scenario? The
study covered all the forest covers of Nepal using forest resource
assessment data. A RFM was used to better examine the influence of
climatic, topographic and forest variables on the amount of AGTB
and SOC. The research will improve our understanding of how
climate change affects AGTB and SOC in the forests.

2. Materials and methods

2.1. Study area

For this study, we selected Nepal (Map 1) as a study site
due to its varied site conditions. In Nepal, hilly region occupies
a higher chunk of the land (∼86% of the total land area) while
lowland (less than 300 m altitude) occupies only 14%. Wide
altitudinal variations (<300–8,848 m), resulting in diverse climatic
conditions, have produced different physiographic zones, i.e., Terai
and Siwalik (lowlands), Mid-hills, High mountains and High Himal
(LRMP, 1986), which influence the composition of flora and fauna
(HMGN/MFSC, 2002). Stainton (1972) classified 35 forest types in
Nepal that were further broadly categorized into 10 major groups
based on the altitudinal range (HMGN/MFSC, 2002).

The climate of Nepal varies seasonally. For the last 30 years
(1991–2020), the average monthly temperature ranges from ∼
5◦C in January to ∼18◦C in July, whereas average rainfall ranges
from ∼20 mm in November to ∼340 mm in July (ADB and
WB, 2021). Nepal is likely to experience a higher rate of warming
in two future periods (2016–2045 and 2036–2065) compared to
the reference period, i.e., 1981 to 2010 (GoN/MoFE, 2021) and
spatiotemporal changes in precipitation over the period from 1981
to 2010 (Karki et al., 2017). Diverse current and future climatic
conditions within comparatively small areas (Dawadi, 2017) make
Nepal an ideal place to study the effects of climate change on
forests.
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MAP 1

Study area map with permanent sample plots within the forest area.

2.2. Data collection

The primary data used in this study were obtained from the
third national forest inventory (NFI), which was carried out during
2010–2014. The NFI adopted a two-phase systematic sampling
design, composed of 450 clusters containing 1,553 Permanent
Sample Plots (PSPs)-after excluding inaccessible PSPs - in the real
ground (See Figure 1). Data were collected only from the accessible
PSPs (slope up to 100 % or 45◦). On the sample plots tree related
attributes such as diameter at breast height (DBH) and tree height
were recorded for the analysis of growing stock, above ground
tree biomass and carbon. The third NFI is the first assessment
in Nepal that collected soil samples to analyze the SOC of the
forests. Four soil pits were established in a cardinal direction in
each PSP to collect soil samples. At each cardinal direction, soil pits
of appropriate size were dug within the 2 m ∗ 2 m area size at a
21 m distance from the PSP center. In each soil pit, soil samples
were collected from three different horizons (1–10 cm, 10–20 cm,
and 20–30 cm) up to the depth of 30 cm and were mixed together
resulting in 3 soil samples representing three different soil horizons
in each PSP (DFRS/FRA, 2014).

Besides forest inventory data, the study used 19 bioclimatic
variables representing historic data (near current) representing
average figures for the years 1970–2000 at 30 arc sec (∼1 km2)
resolution (Fick and Hijmans, 2017). The study also used future
climate data from the WorldClim data set1 at 30 arc sec (∼1 km2)
resolution. representing Couple Modeled Inter-comparison Project

1 www.worldclim.org

Phase 6 (CMIP6) based on shared socio-economic pathways (SSP2
4.5) scenario from 2041 to 2060 (i.e., 2050 on average) with
resulting global warming of 1.6 –2.5◦C (IPCC, 2021). We used this
scenario in the study because it is an intermediate scenario among
five prescribed by Intergovernmental Panel on Climate Change
(IPCC) and is based on the current level of CO2 emission until the
middle of the century.

2.3. Soil organic carbon analysis

Altogether 1,049 PSPs out of 1,553 PSPs were used for SOC
analysis. Data from 504 PSPs were removed for one or more of
the factors: inappropriateness of the site condition e.g., presence
of rock or boulder instead of soil, and missing data for important
variables such as aspect, distance to settlement, etc. The Black wet
combustion method (Walkley and Black, 1934) was applied in the
Nepalese Department of Forest Research and Survey (DFRS) soil
laboratory to analyze the SOC content. In addition, dry combustion
and LECO CHN Analyzer were used in the Metla Soil Laboratory,
Finland, to assure the quality of the laboratory test.

2.4. Above ground tree biomass analysis

Above-ground tree biomass was also estimated from the same
PSPs used for SOC analysis. DBH of the tree greater than 5 cm was
recorded from the PSPs. The stem volume of the tree was calculated
using the equation given by Sharma and Pukkala (1990a).

ln (v) = a+ b ∗ ln
(
d
)
+ c ∗ ln

(
h
)

(1)
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FIGURE 1

Order of variables based on its importance in the models for the prediction of SOC (A) and AGTB (B).

where,
ln = Natural logarithm to the base 2.71828,
d = DBH in cm.
h = Total tree height in m.
a, b and c are parameters of the volume equation (Annex 1).
To get stem volume in a cubic meter, the model estimation must

be divided by 1,000. According to Sharma and Pukkala (1990b), the
air-dried wood densities of the tree species range from 352 kg/m3

for Trewia nudiflora L. to 960 kg/m3 for Acacia catechu (L.F.) wild.
In order to estimate AGTB, firstly stem biomass was calculated

using following equation.

Stem biomass = Volume ∗ Density (2)

where,
Volume = Stem volume (m3).
Density = Air-dried wood density (kg/m3).
Branch biomass and foliage biomass of the trees were calculated

using branch-to-stem and foliage-to-stem ratios, respectively based
on tree species and three classes of the size of the stem
(small = < 28 cm, medium = 28–53 cm and large = > 53 cm)
at diameter at breast height (Sharma and Pukkala, 1990a). Finally,
above ground tree biomass (AGTB) of each tree in the PSPs was
calculated by using an equation (3). The individual tree biomass
(Kg/m3) within PSP was calculated and it was further converted
into ton/ha using the plot expansion factor.

AGTB = Stem biomass+ Branch biomass+ Foliage biomass (3)

2.5. Partition of data set

In order to have independent data sets for model development
and model testing, the data were partitioned into two sets A total
of 737 (70%) samples were used as training data and 312 (30%)
were used as test data. The partitioning of the data was done
by using the createDataPartition function in the “caret” package

(Kuhn, 2008), which splits data randomly into two different sub-
sets with different proportions.

2.6. Variables selection

Altogether 36 variables were identified for modeling purposes
(Table 1). Out of these 36 variables, we conducted variable selection
based on the importance of the variables in the model. To select
the important variables, the function VSURF from the R package
“VSURF” (Genuer et al., 2010) was used. This package selects
important predictor variables for the model by step-wise analysis
i.e., threshold, interpretation and prediction. Finally, the selected
predictor variables were applied in the model development.

2.7. Estimation of SOC and AGTB using
random forest model

Estimation of the SOC and AGTB was conducted (including
all predictor variables and only important predictor variables)
using a random forest model (RFM) by a function randomForest
under the “randomForest” package in R software (version 4.2.1).
RFM is a machine learning tool using bootstrap aggregating
to develop models with an improved prediction (Jin et al.,
2020). It is based on two parameters i.e., Number of predictor
variables (Mtree) and the number of decision trees (Ntree).
The random selection of predictor variables and the records
in the data set to generate one decision tree helps to achieve
higher accuracy in subsequent iterations. In this way, the RFM
function generates many decision trees and averages to give
an estimation for the response variable. Averaging a large
number of decision trees helps to increase accuracy. Moreover,
RFM generates IncNodePurity which is a total decrease in
node impurities when splitting the predictor variables. An
increase in the IncNodePurity value of the predictor variables
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TABLE 1 Variables to be used for the modeling of SOC and AGTB under random forest model.

Variables Type Unit Source

Topographic
Variables

Altitude Numerical m FRA, 2010–2014

Slope Numerical degree

Aspect Numerical degree

Forest related
variables

Crown cover Numerical Percent

Basal area Numerical m2/ha

Number of trees Numerical No./ha

Above ground tree biomass Numerical Ton/ha

Development status (4 types) Categorical –

Distance to settlement Numerical m

Physiographic zone (5 types) Categorical –

Macro-topography (6 types) Categorical –

Forest type (16 types) Categorical –

Management regime (9 types) Categorical –

Soil depth (5 types) Categorical –

Origin (4 types) Categorical –

Organic layer (5 types) Categorical –

Soil organic carbon Numerical Ton/ha

Bioclimatic variables Bio1 = Annual Mean Temperature Numerical 0C World clim data
1970–2000

Bio2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) Numerical 0C

Bio3 = Isothermality (BIO2/BIO7) (× 100) Numerical 0C

Bio4 = Temperature Seasonality (standard deviation× 100) Numerical 0C

Bio5 = Max Temperature of Warmest Month Numerical 0C

Bio6 = Min Temperature of Coldest Month Numerical 0C

Bio7 = Temperature Annual Range (Bio5-Bio6) Numerical 0C

Bio8 = Mean Temperature of Wettest Quarter Numerical 0C

Bio9 = Mean Temperature of Driest Quarter Numerical 0C

Bio10 = Mean Temperature of Warmest Quarter Numerical 0C

Bio11 = Mean Temperature of Coldest Quarter Numerical 0C

Bio12 = Annual Precipitation Numerical mm

Bio13 = Precipitation of Wettest Month Numerical mm

Bio14 = Precipitation of Driest Month Numerical mm

Bio15 = Precipitation Seasonality (Coefficient of Variation) Numerical mm

Bio16 = Precipitation of Wettest Quarter Numerical mm

Bio17 = Precipitation of Driest Quarter Numerical mm

Bio18 = Precipitation of Warmest Quarter Numerical mm

Bio19 = Precipitation of Coldest Quarter Numerical mm

indicates the higher importance of the variables. Furthermore,
the partial dependence plot was plotted using the partialPlot
function under the “randomForest” package in the R program.

The plot shows the marginal effects of predictor variables on
the response variable in the model (Friedman, 2001). It is
generally used to evaluate whether the relationship between the
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predictor and response variable is linear, non-linear, or more
complex.

2.8. Model validation

Observed data (test data) was plotted against predicted data
(model output) to see their relationship for visual interpretation.
Moreover, RMSE, RMSE% and R2 value was calculated to
determine the efficiency of the model developed using the
rmse function (“ModelMetrics” package), rmse_per function
(“forestmangr” package) and summary function in the R program.
The RMSE and RMSE% were calculated as follows.

RMSE =
√∑n

i=1
(ŷi−yi)

2

n
(4)

RMSE% =
RMSE

yi
× 100 (5)

Where,
ŷi = the predicted SOC or AGTB on the ith plot,
yi = the observed SOC or AGTB on the ith plot,
ȳi = the average value of SOC or AGTB.
n = Number of samples.

3. Results

3.1. Variables used in the model

Altogether 35 independent variables were used for the
prediction of SOC or AGTB in the study. Of which, nine variables
were selected for the prediction of SOC (Bio1, Bio4, Bio7, Bio8,
Bio10, Bio12, Forest type, Distance to settlement and Crown cover)
and four variables for the prediction of AGTB (Basal area, Altitude,
Bio5 and Bio14).

3.2. Variables importance in the model

The selected 9 and 4 Predictor variables for estimating SOC
and AGTB, respectively showed different importance values in
the models. The predictor variable “Bio8” was found to be the
most important variable for the prediction of SOC followed
by Bio1, Bio10, Forest type, Bio7, Bio4, Distance to settlement,
Bio12 and Crown cover (Figure 1A) whereas Basal area showed
its importance highest for the prediction of AGTB followed by
Altitude, Bio5, and Bio14 (Figure 1B).

3.3. SOC and AGTB estimation

The random forest model was run in two ways. Firstly, all 35
predictor variables (RFM1 and RFM3) were used in the model
(RMF1 and RMF3) for the estimation of SOC and AGTB. Secondly,
only predictor variables with high-importance values were used in
the model (RFM2 and RFM4) for the same estimation (Table 2).
The root mean square error (RMSE), RMSE% and coefficient of

determination (R2) were found similar for using all 35 predictor
variables and using only 9 predictor variables for the estimation
of SOC. On the other hand, the performance of the model for
the estimation of AGTB was found slightly better while using 35
predictor variables compared to 4 predictor variables (Table 2).

3.4. Relation between number of
decision trees and error in the model

The number of decision trees (or “trees”) in the Random forest
model represents the number of sub-samples selected randomly
from the original data set. Increasing the number of decision trees
helps to reduce the error in the model. The error was sharply
reduced when the number of sub-samples selected from the sample
population increased from 1 to 100 and slowed down afterward in
both the SOC (Figure 2A) and AGTB (Figure 2B) models.

3.5. Accuracy assessment

Model performance varied in the estimation of SOC (RFM2)
and AGTB (RFM4) using test data. RMSE% was found lower in
the estimation of SOC as compared to the estimation of AGTB
(Table 3).

Moreover, the degree of fitness of the model calculated from
the predicted value against the observed value for the estimation of
SOC was found to be strong i.e., R2 = 0.759 and the relation was
found significant (p < 0.05) (Figure 3A). A similar degree of fitness
was also found in the case of AGTB estimation i.e., R2 = 0.762 and
(p < 0.05) (Figure 3B).

3.6. Partial dependence plots (Response
plots)

Partial dependence plots for each important predictor variable
were plotted for both SOC (RFM2) and AGTB (RFM4) models.
Our study found that the response variable SOC responded
positively with Crown cover, Distance to settlement and Bio12, and
responded negatively with Bio1, Bio7, Bio8 and Bio10, whereas it
responded both ways (non-linear relation) with Bio4.

An increase in distance to settlement from the forests up to
8,000 m contributed to the increase in SOC, while for longer
distances no effect on SOC was found. Similarly, an increase in
crown cover and Bio12 also contributed to the increase in SOC.
Furthermore, Bio1, Bio8 and Bio10 did not contribute to SOC up
to the temperature of 12, 17, and 19◦C, respectively. However, the
increase in temperature after those limits contributed to a decrease
in SOC. In contrast, Bio4 contributed to a decrease in SOC up
to 500 mm and afterward, it contributed to an increase in SOC.
Lastly, The comparison of forest types revealed that 1, 11, and 17
contributed more to SOC than the other forest types (Figure 4).

Above-ground tree biomass responded differently with the four
predicted variables (Basal area, Altitude, Bio5 and Bio14). Basal
area and Bio5 showed a positive relation with AGTB, while Bio14
and Altitude showed both positive and negative (Figure 5). Basal
area up to 80 m2/ha of the forests increased AGTB, and then the
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TABLE 2 Summary of the models for the estimation of SOC and AGTB.

Model Response
variable

No. of predictor
variable

Ntry Mtry RMSE RMSE% R2

RFM1 SOC 35 500 12 9.53 15.00 0.746

RFM2 SOC 9 500 3 10.66 16.77 0.742

RFM3 AGTB 35 500 12 37.55 18.51 0.779

RFM4 AGTB 4 500 2 44.10 21.74 0.743

In the Table, Ntry, number of trees to grow, Mtry, number of variables randomly sampled as candidates at each split, RMSE, root mean square error, R2 , coefficient of determination.

FIGURE 2

Reduction of error as the increase of number of decision trees (“trees”) in the RFM2 and RMF4 models for the estimation of SOC (A) and AGTB (B),
respectively. “Trees” is a number of sub samples selected randomly from the sample population.

amount of AGTB stayed more or less stable, while an increase
in Bio5 further increased AGTB. In contrast, altitude and Bio14
decreased AGTB up to 2,000 m and 7 mm, respectively, and after
those limits, these variables increased AGTB.

3.7. Amount of soil organic carbon (SOC)
and above ground tree biomass (AGTB)
using climate change scenario (CMIP6,
SSP2 4.5 for 2050)

The CMIP, SSP2 4.5 scenario showed an effect of climate change
on SOC and AGTB, assuming other predictors to be the same. An
average SOC stock of 63.6 tons/ha was found in the near current
period, while it would decrease to 61.15 tons/ha in the future
scenario. Unlikely, an average AGTB would increase to 210.57
tons/ha in the future scenario compared to the near current period
(204.51 ton/ha). Our result shows that the amount of SOC would
likely decrease by 3.85% while AGTB would likely increase by
2.96% in the future climate change scenario (Table 4).

The SOC and AGTB were plotted over the individual PSP.
The blue lines in both figures represent SOC/ATGB in the near
current period (1970–2000) whereas red lines represent them
in the future scenario (2040–2060). The blue line has exceeded
the red line indicating decreasing trend of SOC in the future
scenario (Figure 6A). But, for the amount of AGTB, a red line has

TABLE 3 Error assessment of the models (RFM2 and RFM4) developed to
predict soil organic carbon (SOC) and above ground tree biomass
(AGTB).

Errors SOC AGTB

RMSE 20.32 90.11

RMSE % 32.63 44.44

RMSE, root mean square error and RMSE%, root mean square error percentage.

exceeded the blue line indicating the trend of AGTB in the future
(Figure 6B).

4. Discussion

4.1. Performance of the random forest
models

A random forest model has been used in this study to estimate
SOC and AGTB in the current and future climate change scenario.
The RFM has been popular and considered to produce better
accuracy than the multiple linear regression (Powell et al., 2010;
Hounkpatin et al., 2018). The multiple linear regression approach is
though popular, it does not well capture the complex relationships
between the forest variables; and soil-landscape relationships
subject to non-linear dynamics (Grimm et al., 2008; Chen et al.,
2012). The coefficient of determination (R2 value) produced by
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FIGURE 3

Validation of the models for Soil organic carbon (SOC) prediction (A) and Above ground tree biomass (AGTB) prediction (B) using predicted data and
observed data with the help of independent data set.

FIGURE 4

Predictor variables responding to Soil organic carbon (SOC) in the partial dependence plot of the random forest model (RFM2) where forest type
represented by 1 = Abies spectabilis forest, 2 = Betula utilis forest, 3 = Cedrus deodara forest, 4 = Cupressus torulosa forest, 5 = Junifer wallichiana
forest, 7 = Acacia catechu/Dalbergia sisso forest, 8 = Lower mixed hardwood (LMH) forest, 9 = Pinus roxburghii forest, 10 = Pinus wallichiana forest,
11 = Quercus sps forest, 12 = Shorea robusta forest, 13 = Picea smithiana forest, 14 = Shorea robusta TMH forest, 15 = Tsuga dumusa
forest,16 = Terai mixed hardwood (TMH) forest, 17 = Upper mixed hardwood (UMH) forest.

our model for the estimation of AGTB is found strong, i.e., 0.74,
which is higher than or similar to the other previous studies that
used different predictor variables to predict AGTB using RFM
(Powell et al., 2010; López-Serrano et al., 2020; Nguyen and Kappas,
2020; Li Z. et al., 2022). Similarly, the RMSE percent of the AGTB

model in our study is slightly higher than the results reported by
Musthafa and Singh (2022), Wai et al. (2022) and slightly lower
than result of Zhu et al. (2020). These studies completely used other
predictors (Image pixel value, age, crown density etc.) compared to
our studies (especially temperature and precipitation). Moreover,
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FIGURE 5

Predictor variables responding to above ground tree biomass (AGTB) in the partial dependence plot of the random forest model (RFM4).

TABLE 4 Changes in the amount of soil organic carbon (SOC) and above ground tree biomass (AGTB) in the near current period (1970–2000) and
future scenario (2040–2060).

Response
variables

Near current period (1970–2000) Future scenario (2040–2060) Loss/Gain

Min Mean Max Min Mean Max

SOC (ton/ha) 12.54 63.6 194.97 18.22 61.15 172.4 −3.85%

AGTB (ton/ha) 5.56 204.51 1121.42 6.04 210.57 1100.14 +2.96%

FIGURE 6

Amount of Soil organic carbon (SOC) changes in the future against near current period i.e., 1970–2000 (A) and amount of Above ground tree
biomass (AGTB) changes in the future against near current scenario (B).
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R2 and RMSE% of the model for the estimation of SOC is smaller
and higher, respectively than other studies (Hounkpatin et al., 2018;
Lee et al., 2020). The possible reason could be the use of different
independent variables in those studies than our study.

If we compare the estimated quantity of SOC and AGTB of the
Random forest model with the forest resource assessment result
(DFRS, 2015c) based on design based estimation, the quantity is
found similar. The estimated average of SOC (63.6 ton/ha) in this
study is 4.9% lower than the forest resource assessment result (66.88
ton/ha) whereas the average of AGTB (204.51 ton/ha) is 5.14%
higher than the forest inventory result (i.e., 194.51 ton/ha). Though
number of samples used in the model is lower than the samples
used in design based approach, the Random forest model seems to
be capable to produce better accuracy.

4.2. Factors influencing above ground
tree biomass (AGTB)

Based on the previous studies, altitude, stand characteristics
(tree age, density), slope, aspect, temperature and precipitation
affect the AGTB (Powell et al., 2010; Van der Laan et al., 2014;
Yan et al., 2015; Zhang et al., 2016; Rajput et al., 2017; Shen et al.,
2018). Similar to the other studies (Wang et al., 2017; Bennett et al.,
2020; Larjavaara et al., 2021), our study reports the effect of climate
attributes on AGTB, particularly due to the maximum temperature
of the warmest month (Bio5) and precipitation of the driest month
(Bio14).

The RFM used in this study helps understand AGTB as
functions of predictors such as altitude and climatic variables.
Previous studies also used RFM to estimate AGTB, but were
confined to a few predictor variables such as image pixel value,
canopy height, topography, vegetation indices, and texture feature
(Li Z. et al., 2022; Musthafa and Singh, 2022; Wai et al., 2022).

Our model shows an increase of AGTB under future climate
change scenarios, a finding that is consistent with the results
reported by Day et al. (2008), Saeed et al. (2019), Wang et al.
(2019). Temperature is the most determining climatic factor that
helps in accumulation of tree biomass particularly in the growth
season (Devi et al., 2020). Similarly, an increase in precipitation
in the driest months (Bio14) helps increase AGTB by lengthening
the growing season that supports plant growth (Vaganov et al.,
1999). Our results show a positive effect of Bio14 and warmer in the
summer (similar to Bio5) with AGTB is consistent with the study
conducted by Lewis et al. (2013), Devi et al. (2020), Noguchi et al.
(2022). Unlike the forests in Nepal, rising temperature is likely to
decrease above-ground biomass in the old-growth tropical forests
(Larjavaara et al., 2021).

4.3. Factors influencing soil organic
carbon (SOC)

Nine predictor variables, including topographic variables,
climatic variables, forest types, distance to settlement and crown
cover, are important to influence SOC distribution. Previous studies
also report similar influencing variables for SOC, topography
(altitude, slope and aspect), above-ground biomass, basal area,

canopy cover, climate and forest types (Kara et al., 2008; Song et al.,
2012; Mohammad and Rasel, 2013; Liu et al., 2016; Bangroo et al.,
2017; Chaturvedi and Sun, 2018; Jakšić et al., 2021; Shapkota and
Kafle, 2021). Apart from other variables, distance to settlement has
also an effect on SOC. Our result shows that an increase in distance
to settlement- which is likely to reduce human disturbances- results
increase in SOC stock (Figure 4). SOC distribution is likely to be
more in the area with less human disturbance (Mehta et al., 2008;
Eshaghi Rad et al., 2018). Human disturbance such as logging and
tree harvest result in a decrease in soil carbon and organic matter
(Latty et al., 2004; Moreno et al., 2007).

Our study shows the mean temperature of the wettest quarter
(Bio8) as a major predictor variable to estimate SOC in particular.
In general, climatic variables are dominating other variables for
the prediction of SOC. Similar to our study, previous studies
have reported the effect of climate (temperature and precipitation)
on SOC (Chen et al., 2015; Alani et al., 2017; Sun et al., 2019;
Odebiri et al., 2020; Fang et al., 2022). But, other studies also
found altitude as a major variable for SOC prediction (Dieleman
et al., 2013; Odebiri et al., 2020). This is also true because altitude
though does not directly influence SOC but is an indicator of
various climatic functions that govern different vegetation and soil
formation processes (Hanawalt and Wittaker, 1976). Thus, altitude
can be used as a proxy of climatic variables (Malla et al., 2022).

Furthermore, our model shows a decrease in SOC amount in
the future climate change scenario which is similar to the finding
reported by Dimobe et al. (2018). Owing to global warming, surface
temperature will continue to increase, at least, until 2050 under all
emission scenarios (IPCC, 2021). The result shows an increase in
temperature (in the future scenario) leads to a decrease in SOC
amount, which is supported by other studies (Liu et al., 2021;
Zhao et al., 2021). The possible reason could be an increase of
soil microbial decomposition due to higher temperature resulting
less SOC amount (Dong et al., 2021; Song et al., 2021). Similarly,
the negative association of precipitation (in the future scenario)
with SOC in our result is similar to the result reported by Alani
et al. (2017). The higher amount of precipitation possibly causes
to leach dissolved organic carbon of the soil resulting less SOC
accumulation.

4.4. Implications of the study

4.4.1. Model implications
Our model shows the effect of climatic variables, topographic

variables, forest variables, and distance to settlements on the
amount of SOC and AGTB. Particularly, climatic variables
(temperature and precipitation) have a direct relation with the
formation process of SOC and AGTB. Mean annual precipitation
is a driver of the amount of SOC and AGTB (Mehta et al., 2014).
Precipitation influences soil moisture and hydrological processes
(Heisler and Weltzin, 2006) which is an important factor in
SOC cycling (Aanderud et al., 2010) and affects AGTB through
functional traits (Cheng et al., 2021). Similarly, temperature also
affects the amount of SOC (Zinn et al., 2018; Zhang et al.,
2021) and the amount of AGTB (Poudel et al., 2011; Larjavaara
et al., 2021). An increase in temperature helps soil microbial
decomposition resulting in higher carbon emission or lower SOC
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accumulation (Dong et al., 2021; Song et al., 2021) whereas
warming temperature enhances tree growth resulting in an increase
in AGTB (Way and Oren, 2010).

However, most of the previous studies were focused on forest
inventory data accompanied by satellite imageries to estimate
AGTB and SOC of the latest period (Angelopoulou et al., 2019;
López-Serrano et al., 2020). But for the future prediction of AGTB
and SOC under climate change scenario, projected bioclimatic
variables are necessary as input variables to produce a precise
result. These projected bioclimatic variables have been widely used
in species distribution modeling, and habitat suitability under
different climate change scenarios (Fyllas et al., 2022; Khan et al.,
2022; Shrestha et al., 2022) however, the use of these variables
have been very limited for SOC prediction (Liu et al., 2021;
Zhao et al., 2021).

Inclusion of Bio2 and Bio6 bioclimatic variables with inventory
data helps estimate AGTB and SOC, respectively in a better
way. Readily available bioclimatic variables not only improve
the performance of the model but also reduce the cost of the
model. Combining bioclimatic variables with other variables for the
prediction of SOC and AGTB can be a viable option to understand
the present scenario.

Moreover, using easily available projected bioclimatic variables
under different climate change scenarios see text footnote 1 has
benefited us in getting a better understanding the trend of SOC
and AGTB in the future. Thus, our model shows an advantage
over previous model to assess AGTB and SOC in the future climate
change scenario using freely available climatic data.

4.4.2. Implications to Nepal
The forest policy of Nepal emphasizes managing forest

resources largely through community participation. Almost half of
the total forests have been managed under the broad regime of
community-based forest management (Ghimire and Lamichhane,
2020). After the involvement of local people in forest resource
management, Nepal has received positive changes in the forest
condition. The forest cover of Nepal has been in an increasing
trend reported by different assessments, i.e., 29% (DFRS, 1999),
40.36% (DFRS, 2015c), 41.69% (FRTC, 2022). Despite these
facts, our model shows the amount of SOC is likely to be
decreased in the future, whereas there will be a slight gain
in the AGTB. In order to increase SOC in the future, the
result highlights the need of management intervention to reduce
forest degradation and deforestation through sustainable forest
management in all the forests of Nepal to deal with climate change
impact.

5. Conclusion

Climatic variables (temperature and precipitation) show an
effect on the amount of SOC and AGTB in the future climate
change scenario. However, the effect of climate on the SOC and
AGTB is opposite (positive with AGTB while negative with SOC).
Therefore, management intervention through sustainable forest
management is crucial in all forest types to maintain SOC level in
the future climate change scenario.

Our study proposed an approach for estimating the AGTB
and SOC of Nepal using forest inventory data combined with

world climate data (bioclimatic variables). Integrating readily
available bioclimatic variables along with other predictor variables
helps estimate SOC and AGTB in the near current and
future scenario, leading to a better understanding of AGTB
and SOC dynamics.
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ANNEX

ANNEX 1 Parameters a, b, and c of the volume equation i.e.,
ln(v) = a + b*ln(d) + c*ln(h).

Species a b c

Abies pindrow −2.4453 1.7220 1.0757

Acacia catechu −2.3256 1.6476 1.0552

Adina cordifolia −2.5626 1.8598 0.8783

Albizia spp. −2.4284 1.7609 0.9662

Alnus nepalensis −2.7761 1.9006 0.9428

Anogeissus latifolia −2.2720 1.7499 0.9174

Bombax malabaricum −2.3865 1.7414 1.0063

Cedrela toona −2.1832 1.8679 0.7569

Dalbergia sisso −2.1959 1.6567 0.9899

Eugenia jambolana −2.5693 1.8816 0.8498

Hymenodictyon excelsum −2.5850 1.9437 0.7902

Lagerstroemia parviflora −2.3411 1.7246 0.9702

Michelia champaca −2.0152 1.8555 0.7630

Pinus roxburghii −2.9770 1.9235 1.0019

Pinus wallichiana −2.8195 1.7250 1.1623

Quercus spp. −2.3600 1.9680 0.7469

Schima wallichii −2.7385 1.8155 1.0072

Shorea robusta −2.4554 1.9026 0.8352

Terminalia tomentosa −2.4616 1.8497 0.8800

Trewia nudiflora −2.4585 1.8043 0.9220

Tsuga spp. −2.5293 1.7815 1.0369

Miscellaneous in Terai −2.3993 1.7836 0.9546

Miscellaneous in Hills −2.3204 1.8507 0.8223
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A B S T R A C T   

Climate change is a variation in temperature and precipitation for longer periods due to global warming. It has an 
impact on tree species distribution, composition and diversity of the forests. Our study aims to answer how future 
climate change is likely to have an impact on the vegetation shift of broad-leaved and coniferous forests. The 
study used forest resource assessment data (2010–2014) of Nepal to assess vegetation shift from the perspective 
of climate change scenario. We collected altogether 392 presence points (observations) for broad-leaved forests 
and 99 for coniferous forests. These occurrence points accompanied by bioclimatic variables and topographical 
variables (Elevation, Slope and Aspect) were used as input data in a MaxEnt model to predict the distribution of 
the coniferous and broad-leaved forests. We found a potential area of the near current (1970–2000) coniferous 
forest replaced by a broad-leaved forest under a climate change scenario (SSP2 4.5 for 2041–2060) and vice 
versa. The total projected vegetation shift area of Nepal was found to be approximately 1800 km2 (i.e. over 3 % 
of the total forest area). Out of the total vegetation shift area, almost 90 % percent of the area was found to be 
replaced by broad-leaved forest while the remaining 10 % area was found to be replaced by a coniferous forest. 
The climate change impact has been noticed in the vegetation shift, particularly the presence of broad-leaved 
forest is more dominant. The study provides better insights into the impact of climate change on the existing 
vegetation under the future climate change scenario.   

1. Introduction 

Climate change, a variation in temperature and precipitation re
gimes, persists for a long period (IPCC, 2013). The global average 
temperature has increased by 1.1 ◦C from the period 1850–1900 to 
2011–2020(IPCC, 2023) whereas per decade increase of global warming 
in all the continents has been reported to raise by 0.13 ◦C during the past 
50 years from the period 1948–1998 (Pepin and Seidel, 2005) and the 
rate is supposed to increase by 0.25–0.48 ◦C/decade until 2085 
(Nogués-Bravo et al., 2007). At the country level, Nepal’s warming rate 
is 0.056 ◦C/year, with the highest rate of increase in higher altitudes 
(GoN/MoFE, 2021). The Himalayan region has been reported to have a 
warming rate approximately 3 times higher than the global average (Xu 
et al., 2009). 

Forest ecosystems are sensitive to climate change and experience 
changes such as changes in species abundance, forest types, growth rate, 
structure of forests, tree mortality and tree vitality (Bhatta et al., 2021; 

Gebeyehu, 2019; Heidenreich and Seidel, 2022; Keane et al., 2020; 
Kelly and Goulden, 2008b; Taccoen et al., 2022; Thapa and St. George, 
2019; Trisurat et al., 2009). Climate change has both positive and 
negative impacts on forests. Increase in the growth of conifer forests 
(Wu et al., 2019), an increase in wood production and carbon stock 
(EGGERS et al., 2008), and an increase in species richness (Zhou et al., 
2013) are examples of positive impacts while depletion of the highland 
ecosystem (Manish et al., 2016), habitat shrinkage of medicinal and 
aromatic plants (MAPs)(Shrestha et al., 2022) and threatened conifers 
(Xie et al., 2022), increasing infestation of pest and invasive species 
(Gebeyehu, 2019) are examples of negative impacts. Climate change 
studies in Nepal are focused on invasive alien species (Shrestha et al., 
2018; Shrestha and Shrestha, 2019; Siwakoti et al., 2016), biodiversity 
and ecosystem (Bhattacharjee et al., 2017; Paudel et al., 2021; Thapa 
et al., 2013), medicinal and aromatic plants (Rana et al., 2020; Shrestha 
et al., 2022), freshwater ecosystems (Lamsal et al., 2017; Singh et al., 
2022), human-wildlife- ecosystems interaction (Aryal et al., 2014), and 
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habitat distribution (Baral et al., 2023; Chhetri et al., 2018; Rai et al., 
2022) . 

Climate change is causing an expansion of broad-leaved deciduous 

tree distribution in the boreal forests (Thuiller et al., 2006) suggesting a 
vegetation shift from coniferous-dominated forests towards 
broad-leaved species (Hufnagel and Garamvölgyi, 2014; Lindner et al., 
2010; Xiao-Ying et al., 2013). In contrast, higher-elevation broad-leaved 
forest is invaded by lower-elevation coniferous forest in response to 
climate change (Bai et al., 2011). Both pieces of evidences show a 
vegetation shift due to climate change taking place in both directions (i. 
e. Broad-leaved to coniferous and its reverse). The causes of vegetation 
shift are due to change in the threshold range of the climatic variables, 
particularly, mean annual precipitation (Zhao et al., 2017), change in 
climatic variability, particularly drought accompanied by stand struc
ture and topography (Rigling et al., 2013) and increase in CO2 emission, 
temperature and precipitation (Hufnagel and Garamvölgyi, 2014). 

Climate is considered as a major determinant of forest distribution 
(Kelly and Goulden, 2008a; Lenoir et al., 2010).   In Nepal, the 
broad-leaved forests are more likely to occur in high -rainfall areas, 
whereas coniferous forests are confined to low rainfall areas (Bhatta 
et al., 2021). Presence of broad-leaved forest and coniferous forest under 
different site conditions, it is important to know the potential impact of 
future climate change on the adaptive capacity of natural tree vegetation 
(coniferous and broadleaved forest). Therefore, this study was con
ducted by combining observational data and model-based approach 
options to determine the current potential distribution of broad-leaved 
and coniferous forests and their vegetation shift under future climate 

Fig. 1. Map of Nepal showing the distribution of broad leaved and coniferous forests based on the permanent sample plots of forest resource assess
ment (2010–2014). 

Table 1 
Forest types information of Nepal.  

S. 
N 

Forest types Altitudinal 
range (m) 

Temperature ( ◦C) 
(1970–2000)a 

Precipitation (mm) 
(1970–2000) 

Main dominant tree species Remarks 

1 Coniferous 
forest 

869–3600 − 2.7 – 20.5 351 - 2273 Pinus roxburghii, Pinus wallichiana, Pinus 
patuala 

Conifers represent more than 60 % 
of the basal area (DFRS, 2015) 

2 Broad-leaved 
forest 

88–3587 2.9 – 24.7 388 - 3215 Shorea robusta, Castanopsis indica, Schima 
wallichi, Quercus sps, Rhododendron sps 

Broad-leaved species represent 
more than 60 % basal area  

a Mean annual temperature and Annual precipitation from the period of 1970–2000 accessed from www.worldclim.org on 10 June 2022. 

Table 2 
Environmental variables used in MaxEnt modeling.  

Source Category Variable description Unit 

United States 
Geological Survey 
(USGS) 

Topographic Elev - Elevation m 
Slp - Slope Degree 
Asp – Aspect Degree 

World climate Climatic 
variable 

BIO2 - Mean Diurnal Range 
(Mean of monthly (max temp - 
min temp)) 

◦C 

BIO3 - Isothermality (BIO2/ 
BIO7) (×100) 

◦C 

BIO9 - Mean Temperature of 
Driest Quarter 

◦C 

BIO12 - Annual Precipitation mm 
BIO14 - Precipitation of Driest 
Month 

mm 

BIO15 - Precipitation 
Seasonality (Coefficient of 
Variation) 

mm 

BIO19 - Precipitation of Coldest 
Quarter 

mm  
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change scenarios. The overarching objective of this study was to explore 
how broad-leaved and coniferous forests respond to climate change from 
the perspective of vegetation shift under future climate change sce
narios. The study covers all the forest areas of Nepal and intends to 
improve our understanding of climate change impact on vegetation 
shift. 

2. Methods 

2.1. Study area 

We conducted this study in Nepal - known as a Himalayan country 
(latitude 28.39490N & Longitude 84.12400 E) – that lies between India 
and China with diverse forest types due to its altitudinal and climatic 
variations. Stainton (1972) has identified 35 forest types and further 
grouped them into ten major types1 based on elevation and species. The 
distribution of broad-leaved forests occur from the lower region to high 
mountain region, whereas the coniferous forests are mostly confined to 
the middle mountain and high mountain regions (DFRS, 2015b, DFRS, 
2015a). With the increase in altitude, coniferous forests are replacing 
broad-leaved forests. The distribution of coniferous forest occurs only in 
the altitudinal range of 869 m to 3600 m, whereas broadleaved forest 
occurs throughout the range (Fig. 1). We grouped the forests found in 
this range into two categories, i.e. coniferous forest and broad-leaved 
forest (Table 1). The habitats and characteristics of the major forest 
types within these groups are briefly described below: 

2.2. Modeling and mapping 

We intended to assess spatial distribution and vegetation shift of 
coniferous and broad-leaved forest in the future climate change sce
nario. The potential distribution of the floral and faunal species has been 
done by using Maximum-entrophy (MaxEnt) model in Nepal (Gajurel 
et al., 2014; Mahatara et al., 2021; Rai et al., 2022; Su et al., 2021). The 

MaxEnt model, a machine learning algorithm, has been widely used to 
predict the potential distribution of species [70–72] and also considered 
a highly performant species distribution modeling algorithm (Elith 
et al., 2006; Fyllas et al., 2022; Grimmett et al., 2020). We used this 
model for assessing the potential distribution of the coniferous and 
broad-leaved forests under future climate change scenarios to better 
understand climate change impact on vegetation shift. 

As an input variable for the model, we used presence points (latitude 
and longitude) of the forests, topographic variables and climatic vari
ables (projected) which gives distribution map of the forest along with 
variable response curves in the future climate change scenario as an 
output. The model used known points and predictor variables to esti
mate the probability of presence points throughout the study area. We 
extracted 49 presence points (observations) for coniferous forests and 
392 for broad-leaved forests from the forest resource assessment 
(2010–2014) data of Nepal. In addition, 114 presence points for conif
erous forests were extracted from secondary sources (study reports, 
forest mapping work and visual interpretation) to increase sample points 
in the study. 

We applied a spatial filter of ~1 km x 1 km grid size to maintain at 
least 1 km distance among the presence points for reducing autocorre
lation (Fortin, 1999). Thus, 392 presence points for broad-leaved and 99 
presence points for coniferous points were used in this study. Similarly, 
we downloaded freely available topographical variables (altitude, slope 
and aspect) from United States Geological Survey (USGS)2 and 
pre-processed them in ArcGIS (ESRI, 2017) to prepare in the required 
format (ASCII), extent, and spatial resolution (30 m). 

Moreover, a relatively high resolution of climatic data is appropriate 
for the area with a diverse climate at a short distance. Therefore, 19 
bioclimatic variables (current and projected) were downloaded from 
world climate data3 at 30 ′ (~1 km2). A multicollinearity analysis was 
performed to remove highly correlated variables (r > 0.7) to improve 
the prediction of the model using vifstep function under "usdm" package 
in R program (Naimi et al., 2023) and remaining 7 bioclimatic variables 
(Bio2, Bio3, Bio9, Bio12, Bio14, Bio15 and Bio19) were used for the 
modeling (Table 2). The vifstep function calculates the variance inflation 
factor of a set of predictor variables and excludes highly correlated 
variables through a stepwise procedure. For the prediction of the 

Fig. 2. Flowchart of the methodology used in the MaxEnt modeling and mapping in Arc GIS.  

1 Tropical forest (<1000m), Subtropical broad-leaved forest (1000-2000m), 
Subtropical pine forest (1000-2200m), Lower temperate broad-leaved forest 
(1700-2700m), Lower temperate mixed broad-leaved forest (1700-2200m), 
Upper temperate broad-leaved forest (2200-3000m), Upper temperate mixed 
broad-leaved forest (2500-3500m), Temperate coniferous forest (2000-3500m), 
Sub-alpine forest (3000-4100m), Alpine scrub (>4100m) 

2 www.usgs.gov  
3 www.worldclim.org 
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potential distribution of the broad-leaved and coniferous forests, we 
used 7 projected bioclimatic variables from MIROC6/GCMs (Global 
climate models) model under Shared Socio–economic Pathways (SSP2 
4.5) scenario for the period of 2041 to 2060 (average 2050). 

To run the MaxEnt model in our study, the occurrence points of the 
forests were examined as a response variable while bioclimatic vari
ables, altitude, slope and aspect as the predictor variables. The model is 
also used for predicting the distribution of the species in Nepal (Gajurel 
et al., 2014; Mahatara et al., 2021; Rai et al., 2022; Su et al., 2021). We 
used 10 replicates (ran the model 10 times) and 1000 background points 
(points that represent environments or features of the study area) in the 
model for the prediction (Barbet-Massin et al., 2012) in our study. 

The distributions of coniferous and broad-leaved forests in the near 
current period (1970–2000) and future climate change scenarios 
(2041–2060) were identified by the MaxEnt software and for further 
analysis (change in area and spatial distribution) and mapping Arc GIS 
software was used. We followed steps of building model, its validation 
and finally preparing map as an output (Fig. 2). 

2.3. Accuracy assessment of the models 

Accuracy assessment is an important step in the process of devel
oping models that helps validate and evaluate the performance of the 
model. The 70 % of the occurrence points of broad-leaved and conif
erous forests were allocated for the training dataset to develop the 
models. The remaining 30 % occurrence points were allocated for 
validating the models. We used two methods to evaluate namely Area 
under the receiver-operator curve (AUC) which is threshold indepen
dent, and True Skill Statistics (TSS) which is threshold dependent. The 
AUC of models was obtained directly from the model (Phillips et al., 
2006; Wiley et al., 2003). Its value, i.e. <0.7, 0.7–0.9 and >0.9, denotes 
poor model performance, moderately useful model performance, and 
excellent model performance respectively (Pearce and Ferrier, 2000). 
Although AUC is a classical and widely used model evaluation param
eter, it is criticized by researchers (Lobo et al., 2008). Therefore, in 
addition, TSS was calculated for the model evaluation (Merow et al., 
2013). The value of TSS ranges from -1 to 1, where a value < 0 indicates 

Fig. 3. A Jackknife test of variable importance (regularized training gain) for modeling broad-leaved (a) and coniferous (b) forest distribution based on ten pre
dictor variables. 
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a performance no better than random and 1 indicates a perfect fit of the 
model (Allouche et al., 2006). TSS was calculated for all model outputs 
(10 replications), and the final TSS was the average of all 10 replications 
for coniferous and broad-leaved forests. 

3. Results 

3.1. Model performance and contribution of predictor variables in the 
model 

The MaxEnt model used in our study shows a better distribution of 
the coniferous forest at near current period (1970–2000) and in the 
future climate change scenario (2041–2060) than broad-leaved forests. 
The AUC and TSS of the model for coniferous forests was found to be 
0.840 and 0.551 respectively, while for the broad-leaved forests it was 
0.698 and 0.311 respectively. According to the relative percent contri
bution (gain in model when variable is added) of the ten predictor 
variables, annual precipitation (Bio12) and elevation were the most 
influential variables in the distribution of both broad-leaved and 
coniferous forests (Annex1). 

Similarly, Fig. 3 shows the variables contribution to the model based 
on the Jackknife test. The Jackknife test reveals the contribution of the 
predictor variables on shuffling randomly to observe the effect on the 

model accuracy (permutation-based importance). Elevation, Mean 
Temperature of Driest Quarter (Bio9) and Annual precipitation (Bio12) 
were predictor variables for the distribution of both coniferous and 
broad-leaved forests while Precipitation Seasonality (Bio15) for broad- 
leaved forest and Precipitation of Driest Month (Bio14) for coniferous 
forests. 

The result shows that all the predictor variables contributed to the 
gain of the model. The highest gain of the model by the predictor vari
able was the "elevation" in both the forests types. It means that when 
elevation is omitted, it decreases the gain most in the model (Fig. 3). 

3.2. Variables response curve 

The variable response curves of the ten influential variables for the 
distribution of broad-leaved and coniferous forests are shown in Figs. 4 
and 5, respectively. These curves depict how a specific variable responds 
in the occurrence of the species, while other variables remain un
changed. A response curve with one predictor variable shows the 
optimal environmental condition that represents the distribution of both 
forests. The optimal range for example of Annual precipitation (Bio12) i. 
e.1000–2000 mm, elevation i.e. <1000 m and 2000–3000 m, Mean 
Diurnal Range (Bio2) –i.e. 8–9 ◦C was found for the distribution of 
broad-leaved forests (Fig. 4) whereas the optimal range of Annual 

Fig. 4. Response curve of seven bioclimatic and three topographic predictor variables for the distribution of broad-leaved forests. X –axis represents predictor 
variables, Y- axis represents occurrence probability. Red line represents mean of occurrence probabilities of a predictor variable whereas blue color represents a range 
of occurrence probability of the predictor variable. 
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precipitation (Bio12) i.e.250–750 mm, Elevation i.e. 1000–2000 m and 
Mean Diurnal Range (Bio2) i.e. 12–14.5 ◦C was found for coniferous 
forests (Fig. 5) 

3.3. Distribution of broad-leaved and coniferous forests 

The current distribution of the broad-leaved forests and their future 
distribution under the climate change scenario (2041–2060) show that 
these forests are likely to occupy most of the area of Nepal (Fig. 6) in the 
upcoming decades. In the near current period, the potential distribution 
of the broad-leaved forests was found to be approximately 90,000 km2, 
while its distribution increased by 912 km2 in the future climate change 
scenario (Table 4). The result shows that the distribution of broad- 
leaved forests was found to shift 77 m upwards in higher altitudes (i.e. 
3767 m to 3844 m altitude) while no lower shift from the lowest altitude 
in the future climate change scenario (Table 5). 

The distribution of the coniferous forest under the future climate 
change scenario forests is likely to decrease (Fig. 7). In the near current 
period, total potential area of the coniferous forest was found to be 
43,075.3 km2 while the area is likely to decrease by 18,020.4 km2 in the 
future climate change scenario (Table 3). The result shows that the 

distribution of coniferous forests was found to shift 54 m lower at the 
higher altitude (i.e. 4928 m to 4874 m) whereas 214 m higher at lower 
altitude (i.e. 796 m to 1010 m) in the future climate change scenario 
(Table 4). Potential area of the coniferous forests distributed in the lower 
region is likely to decrease more than the higher region in the future 
climate change scenario (Fig. 7b). It shows that climate change in
fluences habitat shrinkage of coniferous forests occurring in the lower 
and higher elevation. 

3.4. Climate change impact on vegetation shift 

We found an area of coniferous forests near the current period would 
be shifted into a broad- leaved forest under the climate change scenario 
and vice versa. The total vegetation shift area was found to be 1810 km2 

which is more than 3 % of the total forest area of Nepal (Table 5). Out of 
the total vegetation shift area, almost 90 % percent of the shifted area 
would be occupied by broad-leaved forests replacing coniferous forests 
while the remaining 10 % of the area would be occupied by coniferous 
forests replacing broad-leaved forests (Fig. 8). The vegetation shift of 
coniferous forests into broad-leaved forests is more dominant than the 
broad-leaved into coniferous forests under future climate change 

Fig. 5. Response curve of seven bioclimatic and three topographic predictor variables for the distribution of coniferous forests. X –axis represents predictor variables, 
Y- axis represents occurrence probability. Red line represents mean of occurrence probabilities of a predictor variable whereas blue color represents a range of 
occurrence probability of the predictor variable. 
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scenarios. The result shows that climate change is likely to cause a 
vegetation shift in the future. 

4. Discussion 

The result shows that coniferous forests are more likely to shift into 
broad-leaved forest in the future (Fig. 8a), supporting the hypothesis of 
climate change impact on the vegetation shift, i.e. one vegetation into 
another In agreement with our study of coniferous forests, (Fyllas et al., 
2022) reports that climate change leads to potential habitat shrinkage of 
the species in the higher elevation. Previous studies also reported the 
impact of climate change on species composition (Feeley et al., 2011), 
the upward shift of species (Li et al., 2020; Parmesan and Yohe, 2003), 
and increasing/decreasing species richness (Adhikari et al., 2018; Zhou 
et al., 2013). Moreover, human disturbance (i.e., tree harvest) contrib
utes to future species distribution along with climate change (Wang 
et al., 2019). 

The distribution of the broad-leaved forest and the coniferous forest 
is largely determined by annual precipitation (Bio12) and elevation. 
Elevation and the annual mean temperature (Bio1) are highly correlated 
and thus elevation can be used as a proxy for climatic variables 
(Hanawalt and Wittaker, 1976; Malla et al., 2022). Climatic variability is 
considered a major driver of vegetation shift. The findings of vegetation 
shift (broad-leaved to coniferous or vice versa) due to climate change in 
our study are supported by other studies (Hiura et al., 2019; Rigling 
et al., 2013; Tian and Fu, 2020). Climatic variables (Temperature and 
precipitation) are important factors in tree and forest growth (Toledo 
et al., 2011) However, seasonal temperature and precipitation deter
mine the growth of a tree which is species-specific (Gauli et al., 2022) 
showing that different tree species respond differently with the changing 
climate. Forests are sensitive to climate change, thus the spatial distri
bution of broad-leaved forest and coniferous forest has increased over 
the past 3 decades but at a different rate (Tian and Fu, 2020) 

The spatial distribution of broad-leaved and coniferous forests is 

Fig. 6. Potential distribution of the broad-leaved forest at near current (a) and in the future (b).  
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different in Nepal. The broad-leaved forests occupy most of the area of 
the forests compared to coniferous forests. Further, the coniferous for
ests are confined to the low precipitation area while the broad-leaved 
forest receives high precipitation (Bhatta et al., 2021) which shows 
that low precipitation favors coniferous forests more than the 
broad-leaved forest. In the future climate change scenario (SSP2 4.5 
scenario for 2041–2060), the amount of precipitation increases (from 
1351.69 mm at the near current to 1418.88 mm in 2041–2060) which 

could lead to an increased spatial distribution of the broad-leaved forest. 
Particularly, human-induced global warming acts as a driving factor to 
increase the frequency, intensity and amount of precipitation (IPCC, 
2018) 

Fig. 7. Potential current (a) and future (b) distribution of coniferous forest.  

Table 3 
Change of forests area under climate change scenario (2041–2060).  

SN Forests Suitable areas (km2) Change (km2) 

Near current Future 

1 Broad-leaved 89,667.09 90,579.17 912.08 
2 Coniferous 43,075.3 25,054.9 -18,020.4  

Table 4 
Potential distribution of broad-leaved and coniferous forest at near current 
(1970–2000) and in the future climate change scenario (2041–2060) with 
varying altitudinal ranges.  

Forest Current elevation (m) Future elevation (m) 

Min Mean Max Min Mean Max 

Pine 796 2836.93 
(1056.58) 

4928 1010 2774.67 
(933.37) 

4874 

Broad- 
leaved 

117 1804.32 
(976.61) 

3767 117 1841.91 
(997.23) 

3844 

Note: Standard deviation shown in parenthesis. 
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Similarly, the temperature increase in future climate change sce
narios (from 14.05 ◦C at the near current to 15.47 ◦C in 2041–2060) is 
supposed to favor the expansion of broad-leaved forests. The emission of 
greenhouse gases due to anthropogenic activities such as burning fossil 
fuel and forest fires are the main reason to increase global temperature 
(IPCC, 2018). The lower regions of Nepal are covered mostly with 
broad-leaved forests (Fig. 6a). Particularly, the increase in temperature 
is more pronounced in higher altitudes of Nepal (GoN/MoFE, 2021) 

which supports our findings in the future scenarios, i.e. the upward shift 
of broad-leaved forests. The change in vegetation shift and geographical 
distribution may have several possible reasons, but more specifically, it 
is due to climate change (Parmesan and Yohe, 2003). 

The projected vegetation shift in the future climate change scenario 
will have implications on forest dynamics and the livelihoods of the 
coniferous forests dependent people. An increasing area of broad-leaved 
forest in the future climate change scenario leads to an increase in 
species diversity (Joshi et al., 2022) and an increase in soil organic 
carbon (Chiti et al., 2012; Joshi et al., 2022) which helps make these 
forests climate resilient. On the other hand, people dependent on the 
coniferous forests are likely to be more vulnerable. 

Moreover, the MaxEnt model predicts potential distribution of 
existing vegetation in the study area based on the input data. Potential 
area of a particular foret vegetation given by the MaxEnt model does not 
mean that the vegetation exists there but there might be other vegeta
tion or biomes at present. The existing and potential areas of the 

Table 5 
Vegetation shift (broad-leaved to coniferous forest and its reverse) in climate 
change scenario (SSP2 4.5 for 2041–2060.  

S.N Vegetation shift Area (km2) Percentage 

1 Coniferous forests into Broad-leaved forests 1578.82 87.19 
2 Broad-leaved forests into Coniferous forests 231.90 12.81  

Total 1810.72 100  

Fig. 8. Vegetation shift from coniferous into broad-leaved (a) and Vegetation shift from broad-leaved into coniferous (b) under climate change scenario.  
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particular vegetation under study share common environmental condi
tions which is a basis to predict species distribution. However, negative 
impact of climate change, such as increased number of fire incidences 
(Mishra et al., 2023), invasive alien plant species (Shrestha et al., 2018; 
Shrestha and Shrestha, 2019) and forest pests outbreaks (Pureswaran 
et al., 2018) accompanied by human disturbances may hinder the 
vegetation shift differently than the speculation of this study. This study 
does not provide information on how the transition of forests takes place 
during the entire process and how climate-induced severe events (forest 
fire, forest pests/disease, and invasive alien species) and human dis
turbances affect the vegetation shift process. Depending on the time 
course of climate change, vegetation shift can occur either abruptly 
through large-scale mortality events or gently through gradual changes 
in species abundance. The support of adaptation processes by human 
intervention must take into account site changes and corresponding 
changes in potential natural tree vegetation. Especially with the onset of 
reduced tree vitality and tree mortality, measures for the conservation of 
current trees or restoration of past species abundances should be criti
cally evaluated based on future potential natural tree species vegetation. 
Further study on vegetation shift requires climate-induced severe events 
and human disturbances along with climatic variables for a better un
derstanding the vegetation shift process under climate change scenarios. 

5. Conclusion 

Climate change in the future scenario shows its impact on the 
vegetation shift of broad-leaved forests to coniferous forests and vice- 
versa. However, the vegetation shift from coniferous forest to broad- 
leaved forest is seen as more dominant. The impact of climate change 
is not only limited to the area of forest change but is also seen in the 
altitudinal shift of the newly formed forests. As a result of vegetation 
shift, it may affect the accumulation of soil organic carbon (SOC), spe
cies diversity, and climate resilient capacity of the forest. Vegetation 
shift to broad-leaved forests under climate change scenario could benefit 
in terms of maintaining species diversity, and providing multiple-use 
products and eco-system services. Similarly, vegetation shift from 

coniferous to broad-leaved forest may negatively affect the coniferous 
forest dependent local people and forest based enterprises by losing the 
benefits from the forests in the future. 
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Annex1 

Relative percent contribution of the predictor variables in the MaxEnt model.   

S.N Variable Abbreviation Relative percent contribution 
Broad-leaved forest Coniferous forest 

1 Annual Precipitation Bio12 62.3 16.9 
2 Elevation Elev 26.5 55.1 
3 Precipitation Seasonality (Coefficient of Variation) Bio15 2.6 2.1 
4 Mean Diurnal Range (Mean of monthly (max temp - min temp)) Bio2 2.5 9.2 
5 Slope Slp 1.9 5.4 
6 Precipitation of Coldest Quarter Bio19 1.8 4.9 
7 Aspect Asp 1.2 2.8 
8 Isothermality (BIO2/BIO7) (× 100) Bio3 0.8 1 
9 Mean Temperature of Driest Quarter Bio9 0.3 1.9 
10 Precipitation of Driest Month Bio14 0.2 0.7  
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