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Abstract

AI-based models for medical image analysis show great potential to assist medical
practitioners in their clinical practice, improving diagnostic accuracy, efficiency, and
ultimately patient outcome. However, being applicable in a sensitive field such as
healthcare comes with several specific challenges and requirements that many exist-
ing AI-based models do not meet. These encompass, besides others, a performance
that matches those of the human practitioners, robustness to data variance and trust-
worthiness. Human-level performance builds the foundational incentive to employ
an AI-based system for clinical decision support. However, this performance needs
to be reliable when confronted with high data variance in clinical practice, caused by
factors such as different processing protocols or acquisition devices. Many current
models struggle to generalize to data outside of their known training distribution.
Finally, practitioners and patients need to be able to put trust into model predictions.
While a high predictive accuracy on a validation cohort provides statistical founda-
tion to the models aptitude, the black box character inherent to deep learning mod-
els makes interpretation and assessment of individual cases difficult. To this end,
this thesis proposes two deep learning models in the field of medical image process-
ing that aim to tackle the previously mentioned requirements of clinical applicability,
namely human-level performance, robustness and trustworthiness.

The first model, DeePSC, is a convolutional neural network-based ensemble classifier
that detects primary schlerosing cholangitis, an autoimmune liver disease, on mag-
netic resonance images. It is specifically designed to process MRI images taken from
seven angular views around the patient. By comparing against four experienced ra-
diologists, it is shown that DeePSC outperforms the average human rater on two
datasets acquired with different magnetic field strengths by 5.5 and 10.3 percentage
points in terms of accuracy. Robustness is assessed by showing high predictive accu-
racy of 92.4% on an external validation cohort acquired at a different scanner device.
To further mitigate the black box character of the network and build trust in its pre-
dictions, GradCAM activation mappings are employed, which reveal salient regions
in the input images in the biologically relevant areas of the biliary tree. Lastly, an ex-
tensive technical analysis on multiple aggregation strategies to combine information
of the seven angular images of the MRI data is conducted.

The second model, PCAI, is an end-to-end risk prediction network that quantifies
the aggressiveness of prostate cancer and the associated risk of patients based on
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histopathological microscopy images of prostate tissue. It is trained on one of the
largest and most heterogeneous histopathological prostate datasets collected to date,
encompassing six cohorts with over 25,591 patients, 83,864 images, and five years of
median follow-up from five different centers and three countries. This heterogene-
ity is utilized by training PCAI in a domain adversarial fashion on digitized tissue
microarray spots extracted after operative removal of the prostate. By including fur-
ther algorithmic extensions such as credibility estimation, color adaptation and can-
cer indication, PCAI outperforms a separately trained baseline model on eight highly
variant internal and external datasets, proving its robustness to distribution shifts en-
countered in clinical practice. PCAI further systematically outperforms ISUP anno-
tations of multiple highly skilled human experts, which represents the current gold-
standard for evaluating cancer aggressiveness, on an unseen spot dataset as well as
two pre-operative biopsy datasets by up to 22.3 percentage points in terms of concor-
dance index. Especially the high predictive accuracy on the latter is of great clinical
relevance. Finally, the model quantifies its confidence in a prediction by a separate
credibility score and highlights cancerous regions on the input images for potential
re-evaluation, aiming to build trust and interpetability.

By performing a thorough analysis and evaluation of both proposed models with
respect to the initially defined requirements and their aptitude as a clinical decision
support system, this thesis aims to contribute to the state of the art of deep learning-
based medical image analysis and provide a potential blueprint for decision support
systems in clinic practice.
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Zusammenfassung

KI-basierte Modelle für die medizinische Bildanalyse weisen ein beträchtliches Po-
tenzial auf, Ärzte in der klinischen Praxis zu unterstützen, die diagnostische Genau-
igkeit, die Effizienz und letztendlich den Therapieerfolg der Patienten zu verbessern.
Die Anwendbarkeit in einem sensiblen Bereich wie dem Gesundheitswesen ist je-
doch mit verschiedenen spezfifischen Herausforderungen und Anforderungen ver-
bunden, denen viele KI-basierte Modelle in der Literatur noch nicht gerecht werden.
Dazu gehören u. a. eine prädiktive Genaugigkeit, die der des menschlichen Arztes
entspricht, Robustheit gegenüber Varianz in den verarbeiteten Daten und Vertrauens-
würdigkeit. Die Leistung auf menschlichem Niveau stellt den grundlegenden Anreiz
für den Einsatz eines KI-basierten Systems zur klinischen Entscheidungsunterstüt-
zungs dar. Die Zuverlässigkeit der prädiktiven Genauigkeit muss jedoch gewährlei-
stet sein, wenn die KI mit Daten konfrontiert wird, welche die in der klinischen Praxis
auftretende Varianz widerspiegeln, die durch Faktoren wie unterschiedliche Verar-
beitungsprotokolle oder Aufnahmegeräte verursacht wird. Viele KI-basierte Modelle
in der Literatur haben Probleme mit der Generalisierbarkeit auf Daten außerhalb ih-
rer bekannten Trainingsverteilung. Darüber hinaus müssen Ärzte und Patienten in
der Lage sein, den Vorhersagen des Modells zu vertrauen. Eine hohe Vorhersagege-
nauigkeit in einer Validierungskohorte stellt zwar eine statistische Grundlage für die
prinzipielle Eignung des Modells dar, jedoch erschwert der Black-Box-Charakter von
Deep-Learning-Modellen deren Interpretation und Bewertung von Einzelfällen. Die
vorliegende Arbeit präsentiert zwei Deep-Learning-Modelle im Bereich der medizini-
schen Bildverarbeitung, welche die zuvor genannten Anforderungen an die klinische
Anwendbarkeit erfüllen sollen. Dazu zählen die prädiktive Genauigkeit auf mensch-
lichem Niveau, Robustheit und Vertrauenswürdigkeit.

Das erste Modell, DeePSC, ist ein Ensemble-Klassifikator auf der Basis eines Convo-
lutional Neural Networks, der primär sklerondierende Cholangitis, eine Autoimmu-
nerkrankung der Leber, auf Magnetresonanztomographiebildern erkennt und spezi-
ell für die Verarbeitung von MRT-Bildern aus sieben Winkelansichten um den Patien-
ten herum konzipiert ist. Ein Vergleich mit vier erfahrenen Radiologen zeigt, dass De-
ePSC bei zwei Datensätzen, die bei unterschiedlichen Magnetfeldstärken aufgenom-
men wurden, eine um 5.5 und 10.3 Prozentpunkte höhere Genauigkeit aufweist als
der durchschnittliche menschliche Experte. Die Robustheit wird durch eine hohe Vor-
hersagegenauigkeit auf einer externen Validierungskohorte bewiesen, die mit einem
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anderen Scannergerät erfasst wurde. Um den Black-Box-Charakter des Netzwerks
zu reduzieren und Vertrauen in die Vorhersagen zu schaffen, werden GradCAM-
Aktivierungsmappings verwendet, die auffällige Regionen in den Eingabebildern in
den biologisch relevanten Bereichen der Gallenwege aufzeigen. Schließlich wird eine
umfassende technische Analyse mehrerer Aggregationsstrategien zur Kombination
von Informationen aus den sieben Winkelbildern der MRT-Daten durchgeführt.

Das zweite Modell PCAI ist ein End-to-End-Risikovorhersagenetzwerk, welches die
Aggressivität von Prostatakrebs und das damit verbundene Risiko von Patienten auf
der Grundlage von mikroskopischen Bildern von Prostatagewebe quantifiziert. Es
wird auf einem der größten und heterogensten histopathologischen Prostatadaten-
sätze trainiert, die bis heute gesammelt wurden. Dieser umfasst sechs Kohorten mit
über 25.591 Patienten, 83.864 Bildern und einem durchschnittlichen Follow-up von
fünf Jahren aus fünf verschiedenen Zentren und drei Ländern. Die Heterogenität des
Datensatzes wird mithilfe eines Domain-Adversarial Trainingsregime von PCAI mit
digitalisierten Spots von Multigewebeblöcken genutzt, die nach der operativen Ent-
fernung der Prostata prozessiert wurden. Mithilfe weiterer algorithmischer Erwei-
terungen wie Credibility-Schätzung, Farbanpassung und Krebsindikation übertrifft
PCAI ein separat trainiertes Referenzmodell auf acht hochgradig variierenden inter-
nen und externen Datensätzen und demonstriert damit seine Robustheit gegenüber
Varianz in den verarbeiteten Daten, die in der klinischen Praxis auftritt. Darüber hin-
aus übertrifft PCAI die ISUP-Annotationen mehrerer hochqualifizierter menschlicher
Experten, welche den derzeitigen Goldstandard für die Bewertung der Krebsaggres-
sivität darstellen, sowohl auf einem ungesehenen Spot-Datensatz als auch auf zwei
präoperativen Biopsiedatensätzen um bis zu 22.3 Prozentpunkte in Bezug auf den
Concordance-Index. Insbesondere die hohe Vorhersagegenauigkeit bei letzterem ist
von großer klinischer Relevanz. Darüber quantifiziert das Modell seine Konfidenz
in eine Vorhersage durch einen separaten Credibility-Score und hebt karzinomatö-
se Regionen in den Eingabebildern für eine potenzielle Neubewertung hervor, um
Vertrauen und Interpretierbarkeit aufzubauen.

Die vorliegende Arbeit zielt darauf ab, durch eine detaillierte Analyse und Bewertung
der beiden entwickelten Modelle im Hinblick auf die eingangs definierten Anfor-
derungen sowie deren Eignung als klinisches Entscheidungsunterstützungssystem
einen Beitrag zum aktuellen Stand der Technik von Deep Learning basierten Syste-
men zur medizinischen Bildanalyse zu leisten. Zudem soll sie als Blaupause für künf-
tige Arbeiten dienen, die letztlich ihren Weg in die klinische Praxis finden.
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1 Introduction

1.1 Motivation

The application of artificial intelligence (AI) in numerous aspects of society gained ex-
ponential momentum in recent years, positively impacting overall productivity and
wellbeing [1, 2]. In the specific field of medical image analysis, AI tools have al-
ready proved successful in improving efficiency, diagnostic accuracy and ultimately
patient outcome when implemented as a so-called clinical decision support (CDS)
system [3, 4]. This is mainly made possible by mitigating the influence of various
shortcomings in human evaluation of medical images, such as a high subjectivity and
inter-rater variability, low reproducibility and increased demands on time and finan-
cial resources [5, 6]. Besides helping to overcome those shortcomings, AI-based CDS
systems also include the potential to pave the way towards personalized medicine,
provide more accurate treatment decisions to patients or even discover previously
unknown predictive features of disease progression [3, 7–9]. However, the momen-
tum of implementation of AI-based systems in the medical image processing field
lags behind that of AI applications in other sectors, such as finance, media or com-
munication [10, 11]. This is due to the increased requirements machine learning mod-
els have to fulfill to be properly applicable in a sensitive field such as healthcare and
medicine, where wrongful decisions could have potentially lethal or life changing
consequences.

These requirements encompass, besides others, human-level predictive performance,
robustness to bias in the data and trustworthiness [11–14]. Human-level performance
provides the foundation for a useful CDS – if it performs worse than the clinician,
this drastically mitigates its potential usefulness [15]. Current research reveals that
clinicians expect AI-based systems to even be superior to the average performing
specialist [16]. While many machine learning applications in the literature already
reach performance comparable to that of medical experts, their predictive accuracy
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1 Introduction

degrades significantly when confronted with unseen data expressing a covariate shift
that reflects the variance encountered in everyday clinical practice [12, 17]. Render-
ing AI models robust to this heterogeneity in the data is pivotal when going beyond
research and aiming for actual clinical application. Besides that, building trust in a
model’s prediction is of utmost importance, not only from the perspective of the clin-
ician, but also for the patients [14, 18–20]. Medical doctors can describe their thought
process that lead to the final conclusion. Machine learning models often resemble a
"black box", that only provides a single prediction value without further information
or legitimation [11, 21]. However, how certain can the reader be that this predicted
value is valid? One way to increase trustworthiness of those models is therefore to
equip them with the necessary means to quantify their confidence in a given predic-
tion, not unlike a human expert that is uncertain about the grading of a particular
sample and asks for a second opinion [21]. A model that assesses the confidence in
its predictions by identifying problematic input samples that it cannot provide a reli-
able prediction on can try to fix those samples or defer them for human re-evaluation
[18]. Closely related to building trust are the topics of interpretability and explain-
ability. If a model can transparently highlight to the human reader how it came to a
conclusion based on the input data, this increases overall trust and even provides the
potential of discovering previously unknown predictive features of disease progres-
sion, especially if the underlying model is more accurate than currently used clinical
protocols [14, 22]. A straightforward way to increase interpretability of those models
is by highlighting salient regions in the images that correlate with the final prediction,
for example by activation mapping or by highlighting diseased regions [23, 24].

Most research in the field of medical computer vision today still falls short of ful-
filling the necessary criteria described above [10, 12]. To this end, this thesis covers
two separate projects in the field of medical image processing that aim towards ap-
plication as a CDS system and are specifically design to tackle the previously men-
tioned challenges encountered in clinical practice, namely human-level performance,
robustness, and trustworthiness.

The first project presents a convolutional neural network-based ensemble classifier
for detection of primary sclerosing cholangitis, an autoimmune liver disease, on im-
ages acquired by magnetic resonance imaging (MRI). This model, named DeePSC,
is specifically designed to process MRI images taken from different angular views
around the patient. Predictive accuracy is compared against that of four experienced
radiologists.
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1.2 Research Questions

The second project presents an end-to-end risk prediction network for quantifica-
tion of the aggressiveness of prostate cancer and the associated risk of patients based
on histopathological microscopy images of prostate tissue. While being trained on
images acquired from tissue of surgically removed prostates, it allows for inference
on significantly larger images of clinically more relevant pre-operative biopsies. The
predictive value of the proposed risk score, called the Prostate Cancer Aggressiveness
Index (PCAI), is thoroughly evaluated against human assigned grading systems that
are currently in clinical use.

1.2 Research Questions

The main research questions addressed in both projects deal with the initially intro-
duced key requirements of clinical applicability. These are:

• RQ-1: Is a deep learning model trained on the respective included dataset(s)
able to provide a predictive accuracy in its respective task of disease detection
or aggressiveness quantification that matches that of human experts?

• RQ-2: How does data variance encountered in clinical practice affect such a
model and what are suitable algorithmic adaptations to improve generalization
capabilities on data outside its training distribution?

• RQ-3: What are suitable algorithmic adaptations to increase trustworthiness of
the proposed models, including the topics of explainability and interpretability?

Further, a model-specific research question is addressed in each project, namely:

• RQ-DeePSC: Does the available information of multiple views in the MRI in-
put data improve performance of the proposed model when assessed in parallel
beyond information of a single image? If so, what are suitable methods to ag-
gregate this information?

• RQ-PCAI: To what extent can a deep learning model trained on post-operative
tissue microarray spot images provide meaningful assessment of cancer aggres-
siveness on pre-operative biopsy images?
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1.3 Thesis Outline

This thesis covers two projects in the field of medical image processing with deep
learning, called DeePSC and PCAI, with a focus on clinical applicability, including
robustness, trustworthiness and benchmarking against human raters. Both projects
are described independently in separate parts of this thesis, which are structured as
follows:

First, an introduction into the respective motivation and project aim is given. Then,
the necessary medical and technical foundations are described. Next, the used datasets
are introduced in detail. The following section then dives deeper into data prepro-
cessing and the experimental setup. The subsequent methods section provides a
thorough description of the proposed network architecture, algorithmic extensions
as well as the evaluation metrics and procedure. Then, a systematic overview of all
conducted experiments with their respective results is given. In the following chap-
ter, the experimental results are thoroughly discussed, with a specific focus on the
initially defined requirements for clinical applicability. Lastly, a conclusion, which
also addresses the previously stated research questions, is drawn. DeePSC includes
an additional chapter describing a technical evaluation study for image aggregation
strategies prior to the project’s conclusion.

Finally, the overall conclusion summarizes both projects, puts them into context, crit-
ically discusses them with respect to the state of the art and their aptitude as a clinical
decision support system and provides recommendations for future work to build and
extend on the findings of this thesis.
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2.1 Introduction

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease character-
ized by progressive multifocal bile duct strictures due to biliary inflammation and
fibrosis [25]. This rare liver disorder is often associated with inflammatory bowel dis-
ease (IBD) and is considered a premalignant condition, since patients typically are at
high risk of developing colorectal and hepatobiliary malignancies [25, 26]. The only
curative therapy remains liver transplantation with a disease recurrence rate of up to
25 % [26, 27].

Magnetic resonance imaging (MRI) including cholangiopancreatography (MRCP) has
been established as the noninvasive imaging modality of choice for the detection of
PSC-compatible bile duct changes and disease related complications [28]. However,
reading MRCP scans is subjective, requires expertise and experience, and is often
time consuming when it comes to subtle findings. Furthermore, the interpretation of
MRCP varies even among PSC experts and experienced radiologists and often shows
only poor inter-reader agreement between serial follow-up examinations of patients
with PSC [5, 6]. This highlights the need and opportunity for clinical decision support
through automated evaluation of MRCP to improve diagnosis of the disease.

Deep learning approaches like convolutional neural networks (CNN) are currently
seeing huge advances in medical imaging [4, 29]. Traditionally, these models are
trained and validated on single images. Recent research, however, shows that the
predictive accuracy of classification tasks can be significantly improved by creating a
joint decision from multiple images of the same object of interest [30]. Since MRCP
scans usually include several images, each taken from different projections covering
the intra- and extrahepatic bile duct system, a multi-view classification network that
aggregates information of all views per patient appears to be promising for this task.

A common issue with many existing deep learning applications in the medical field,
especially in medical image processing, is the lack of generalizability, where the model
performs well on the single dataset it is trained on, but fails to reproduce this perfor-
mance on previously unseen data. To provide actual decision support in a clinical
setting beyond research, this generalizability is fundamental.

The main goal of this work is therefore to verify the aptitude of an AI-based clinical
decision support system for the automated classification of PSC-compatible cholan-
giographic findings on 2D-MRCP by developing a deep-learning model, measuring
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its performance across different datasets and putting the results into clinical context.
Since, to the best of my knowledge, this is the first study to apply deep-learning
methods to 2D-MRCP data, the question of whether a robust automated diagnosis
on this type of data is possible with high accuracy is of particular interest. If so,
there is opportunity for the model to pave the way to more accurate diagnoses, re-
ducing radiologists’ workload, and mitigating inter-reader variability. Specifically,
in the course of this work, an end-to-end deep multi-view convolutional neural net-
work ensemble model (DeePSC) is developed and evaluated on 2D-MRCP datasets
obtained at magnetic field strengths of 1.5 and 3 Tesla on different MRI scanners by
different manufacturers to ensure generalizability. Furthermore, the performance of
the classification network is compared to that of four radiologists with varying levels
of experience in reading MRCP. Lastly, explainability measures are applied to visual-
ize and verify the model’s predictions.
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2.2 Foundations

In this chapter, the medical foundations of primary sclerosing cholangitis (PSC) and
the corresponding imaging modality used for diagnosis of the disease, magnetic reso-
nance cholangiopancreatography (MRCP), are provided. Furthermore, convolutional
neural networks (CNN), the specific SqueezeNet CNN architecture used in this work,
as well as gradient-weighted class activation mappings (GradCAM) as a method to
increase interpretability of CNNs, are described.

2.2.1 Primary Sclerosing Cholangitis (PSC)

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease character-
ized by progressive multifocal bile duct strictures due to biliary inflammation and
fibrosis [25]. The bile duct scarring narrows the ducts of the biliary tree and impedes
the flow of bile to the intestines. Eventually, this leads to bile duct fibrosis, multifocal
strictures, cholestasis, and biliary cirrhosis and can result in cirrhosis of the liver and
liver failure [25]. This rare liver disorder is often associated with inflammatory bowel
disease (IBD) and is considered a premalignant condition, since patients typically are
at high risk of developing colorectal and hepatobiliary malignancies [25, 26]. The
disease is more prevalent in men (63%) and diagnosed on average at age 54, but can
also affect much younger patients [31]. The only curative therapy remains liver trans-
plantation with a disease recurrence rate of up to 25 % [26, 27]. The pathogenesis of
PSC is still not fully understood, but it is believed to be a complex interplay between
genetic and environmental factors [32]. The diagnosis of PSC is based on clinical,
biochemical, radiological, and histological findings, though the gold standard for di-
agnosis is magnetic resonance cholangiopancreatography (MRCP) [33]. However, the
diagnosis of PSC is often challenging due to the heterogeneity of the disease and the
lack of specific diagnostic criteria. The disease course is highly variable, ranging from
asymptomatic to rapidly progressive disease, with a median survival of 12 years af-
ter diagnosis [34]. The only approved medical therapy is ursodeoxycholic acid, which
has been shown to improve liver biochemistry, but not patient survival [35]. There-
fore, there is an urgent need for new therapeutic approaches.
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Figure 2.2.1: Beaded appearance of the bile ducts in a 62-year-old man with PSC.
Maximum intensity projection from coronal thin-section MRCP shows intra- and ex-
trahepatic bile duct beading (arrowheads). Note the abrupt cutoff (arrows) owing to
intrahepatic bile duct strictures. Reprinted with permission from Khoshpouri et al.
[36].

2.2.2 Magnetic Resonance Cholangiopancreatography (MRCP)

Magnetic Resonance Cholangiopancreatography (MRCP) is a non-invasive Magnetic
Resonance Imaging (MRI) sequence that is specialized at visualizing the biliary and
pancreatic ducts [37]. In contrast to other MRI sequences, it is able to generate de-
tailed images of the bile ducts without requiring contrast agents or invasive proce-
dures [37]. Due to its ability to accurately depict the characteristic biliary changes
such as multifocal strictures, dilatations, and beading occuring in patients with PSC,
it emerged as the non-invasive gold standard for diagnosis of the disease [36]. Figure
2.2.1 depicts an exemplary MRCP image in which the characteristic beaded appear-
ance of the bile ducts in a patient with PSC is visible and highlighted. MRCP can be
differentiated in the two main techniques 2D-MRCP and 3D-MRCP [38]. 2D-MRCP
acquires images in thin slices in a single plane. By adjusting the orientation of the
imaging plane, different aspects of the ductal anatomy can be visualized, resulting
in multiple images for a single examination. 3D-MRCP acquires volumetric datasets
covering the entire biliary and pancreatic system. It provides higher spatial resolu-
tion, but requires longer acquisition times, making it more vulnerable to motion arti-
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facts [39]. Besides those techniques, several imaging parameters, including magnetic
field strength (e.g., 1.5 Tesla or 3 Tesla), sequence types (e.g., single-shot fast spin-
echo, heavily T2-weighted sequences), and contrast enhancement techniques, can be
varied depending on the clinical indication and scanner capabilities. A higher mag-
netic field strength during acquisition is associated with improved signal-to-noise-
ratio, spatial resolution, and contrast, whereas the penetration depth in the examined
tissue is reduced [40].

2.2.3 Convolutional Neural Networks (CNNs)

A convolutional neural network (CNN) is a special type of neural network that is
mostly used for image processing [41]. In contrast to the fully connected layers of clas-
sical multi-layer perceptrons, CNNs utilize so called convolutional layers. The learn-
able weights in these layers are located in filters or kernels of variable size, which are
iteratively moved over the incoming image or multi-dimensional feature map to per-
form the convolution operation at every step. This results in an inherent equivariance
to translations in the input, since kernels apply their same weights at every location of
the input matrix [42]. The resulting output feature maps for every individual kernel
of a convolutional layer are concatenated in the channel dimension. Convolution op-
erations are applied simultaneously to all entries of the incoming channel dimension.
The edges of the incoming features maps can be padded to allow for equal number of
steps in subsequent layers. The stride parameter defines the step width of the kernel
in the spatial dimension. The output size Wout of each convolutional layer is derived
from the input size Win as

Wout =

(
Win −K + 2P

S

)
+ 1 (2.2.1)

where K is the kernel size, P the padding size and S the stride [43]. It is further com-
mon practice to apply pooling operations like mean or max pooling after a certain
number of convolutional layers in a CNN [41]. These are used for downsampling
of the incoming feature map, which increases the so called "field of view" of subse-
quent convolutional layers at a given kernel size, allowing for extraction of larger and
higher level features.
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2.2.4 SqueezeNet

SqueezeNet is a CNN architecture specifically aimed for high performance at a very
low number of trainable parameters [44]. This makes this architecture especially suit-
able for applications with limited number of computational power or memory, like
e.g. embedded deployment. Additionally, models with a lower number of trainable
parameters are better suited for training on datasets with a limited number of samples
or level of complexity. The SqueezeNet architecture achieved classification accuracy
on the ImageNet dataset similar to the at that time commonly used AlexNet archi-
tecture, even though it utilizes a 50-fold reduced number of trainable parameters [45,
46]. This is based on three main design strategies:

• Strategy 1: Replace 3x3 filters with 1x1 filters.

• Strategy 2: Decrease the number of input channels to 3x3 filters.

• Strategy 3: Downsample late in the network so that convolution layers have
large activation maps.

The authors proposed the Fire module as their main building block for SqueezeNet,
which allowed them to employ above mentioned design strategies. These consist of
a squeeze convolutional that consists only of 1x1 filters, which aims at reducing the
number of input channels to the subsequent expand layer (Strategy 2). This includes
a mix of 1x1 and 3x3 filters, where the liberal use of 1x1 filters is an application of
Strategy 1. The full SqueezeNet architecture includes a convolutional layer at the
input, 8 subsequent Fire modules and a final convolutional layer at the output. Max-
pooling with stride 2 is performed after the first convolutional layer, the forth and
eighth Fire module, as well as the final convolutional layer. The authors claim that
those relatively late placements of the pooling layers employ Strategy 3.

2.2.5 Gradient-weighted Class Activation Mapping (GradCAM)

Convolutional neural networks normally resemble a "black box", that only provides a
single predicted value without further information or legitimation on how the conclu-
sion was derived [47]. A commonly used approach in the literature to mitigate this
intransparency is to increase interpretability by applying Gradient-weighted Class
Activation Mapping (GradCAM) [48] to a trained convolutional deep learning model.
GradCAM is a method to visualize and localize class-discriminative regions of the in-
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put images, i.e. to highlight which regions of the input image contributed most to the
overall class prediction. It builds on the Class Activation Mapping (CAM) proposed
by Zhou et al. [49] by generalizing their method and making it applicable to a wider
range of CNN-based architectures. CAM specifically requires the underlying model
to feed global average pooled (GAP) convolutional feature maps directly into a soft-
max activation, which is not the case in the proposed deep learning models in this
work. GradCAM leverages two underlying concepts of deep CNNs. Firstly, deeper
representations in a CNN capture higher-level visual constructs, and secondly, con-
volutional layers retain spatial information which is lost in fully connected layers.
With this, the authors expected the last convolutional layers of a CNN to represent
the best compromise between high-level semantics and detailed spatial information
and the neurons/kernels of those layers to be strongly correlated with semantic class-
specific information. Their method then utilizes the gradient information in the final
convolutional layer to assign importance values to each neuron with respect to the
predicted output class [48]. In detail, to derive the class-discriminative localization
map Lc

Grad-CAM ∈ Ru×v of width u and height v for a given class c, the gradient ∂yc

∂Ak of
the score yc for that same class c with respect to the feature map activations Ak of all
K neurons of the last convolutional layer is computed. Then, global average pooling
is applied over the spatial dimensions to derive the neuron importance weights ack as

αc
k =

GAP︷ ︸︸ ︷
1

u · v
∑
i

∑
j

∂yc

∂Ak
ij

. (2.2.2)

Here, i and j are indices for the width and height dimension of the feature map Ak,
respectively, and k the index of the neuron in the layer. Since computation of the
gradient ∂yc

∂Ak requires backpropagation through all subsequent layers of the network,
the authors claimed that ack represents a partial linearization of the deep network
downstream from the last convolutional layer and therefore captures the ‘importance’
of the k − th neuron for a target class c. The class-discriminative localization map
Lc

Grad-CAM ∈ Ru×v is then derived as the weighted sum of feature map activations and
neuron importance weights as

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
. (2.2.3)
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Rectified Linear Unit (ReLU) activation is applied to only highlight features that have
a positive correlation with the class of interest. The resolution of Lc

Grad-CAM ∈ Ru×v

refers to that of the feature maps in the last convolutional layer. The localization map
is finally upscaled to the resolution of the input image and depicted as an overlay to
highlight salient regions.
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2.3 State of the Art

This chapter describes the current state-of-the-art of deep learning applications on
magnetic resonance imaging (MRI) and magnetic resonance cholangiopancreatogra-
phy (MRCP) data. Then, an overview of machine learning applications in the field
of primary sclerosing cholangitis (PSC) is provided. Finally, a review of the literature
on machine learning methods for "multi-view learning", referring to the processing
of combined information of images from different perspectives of the same object, is
delineated.

2.3.1 Deep Learning in Magnetic Resonance Imaging

Deep Learning in magnetic resonance imaging (MRI) is a very active field of research
with a broad variety of downstream tasks. One prominent application is the segmen-
tation of brain tumors [50]. Ranjbarzadeh et al. proposed a CNN network that utilizes
four combined MRI modalities to achieve state-of-the-art performance on the Brain
Tumor Segmentation Challenge 2018 (BraTS18) dataset [51, 52]. They introduced a
distance-wise attention mechanism to account for the expected spatial location of the
tumor in the brain. In the field of prostate cancer, Pellicer-Valero et al. combined
the tasks of detection, segmentation and grading in multiparametric MRI in a single
system [53]. They utilized an extended Retina U-Net with ResNet101 as backbone to
achieve competitive performance on all three tasks [54, 55]. However, they noted that
even though their model was trained on two different data sources, optimum thresh-
olds varied significantly between both domains, highlighting the robustness issue of
deep learning models. Another important use case of deep learning is motion ar-
tifact correction in MRI. Hossbach et al. proposed the Motion Parameter Estimating
Densenet (MoPED) that predicts the best parameters for a subsequent data-consistent
correction algorithm [56]. With this method, they avoid the risk of introducing hallu-
cinations, which is otherwise inherent to deep learning based image-to-image trans-
lation approaches.

On the specific modality of magnetic resonance cholangiopancreatography MRCP
images, research is less abundant. Luo et al. used submodels of YOLOv5 to au-
tomatically diagnose common bile duct stones in thick-slab MRCP images [57, 58].
Their method achieved an accuracy of 90.5% on the test data, whereas human raters
achieved an accuracy of 92.1%. Muneeswaran et al. proposed a neural network-based
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framework for automatic gallbladder segmentation on low contrast MRCP images
[59]. They compared to and improved over commonly used network architectures
like ResNet50, however, their methodology and results are intransparent. Najjar et
al. recently published a review study about AI integration in the clinical practice of
radiology [60] . They found that AI already plays a pivotal role, improving diagnos-
tic accuracy, workflow efficiency and personalised patient care. However, challenges
about data privacy, security and missing trust due to the ’black box’ nature of the
algorithms remain to be addressed.

2.3.2 Machine Learning in Primary Sclerosing Cholangitis

While machine learning applications for MRI data in general are a broad and active
field of research and ML-generated tools already outperformed conventional tools in
predicting patient outcome in other liver diseases [61, 62], very little research has been
conducted on ML applications in the specific area of PSC. Eaton et al. developed a
PSC Risk Estimate Tool (PREsTo) [63] to predict hepatic decompensation using a gra-
dient boosting model and medical tabular data. Andres et al. introduced a learning
algorithm PSSP [64] (patient-specific survival prediction system) to predict patient
survival after receiving a liver transplant based on multiple tabular parameters. Sim-
ilarly, Hu et al. claim to have developed the first AI-based predictive model that
performs significantly better than commonly used PSC risk scores [65]. They utilized
clinical parameters from a cohort of 1,459 PSC patients with up to 27 years of follow-
up. Singh et al. proposed an algebraic topology-based approach to extract vectorized
feature representations from MRI images. They trained a decision tree classifier on
those features to predict whether a patient will experience hepatic decompensation
within one year after image acquisition. Their model achieved an area under the re-
ceiver operating characteristic curve (AUROC) of 0.84 on an independent validation
cohort of 115 patients. Especially relevant is the work of Ringe et al. on fully auto-
mated detection of PSC-compatible bile duct changes in 3D-MRCP [66]. The authors
transformed three-dimensional MRCP data into 20 two-dimensional images per pa-
tient using maximum intensity projection. An ImageNet-pretrained Inception-Resnet
was trained on the single images [67]. Using majority voting over all 20 projections
per patient during inference resulted in a very high sensitivity of 95.0% and specificity
of 90.9%.
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2.3.3 Multi-View Learning

CNNs form the state-of-the-art architectures for computer vision in machine learn-
ing. Traditionally, these networks train and evaluate on individual images. While
this is successfully applied for various tasks, research shows that taking in and pro-
cessing the combined information of images from different perspectives of the same
object significantly improves predictive accuracy in object classification tasks [30].
The authors refer to this kind of task as "multi-view classification". Since the MRCP
data used in this thesis consists of multiple images acquired at different rotational
angles around the patient, combination of this multi-view information is expected to
benefit overall predictive performance. In the multi-view classification literature, the
applied method and position of merging information of multiple views, i.e. perform-
ing view-fusion, is a major topic of research. A pioneering work in this field is the
multi-view CNN (MVCNN) by Su et al., a CNN that individually processes every
view and combines the corresponding latent representations before the final classifi-
cation layer [68]. Using rendered views of the computer-aided design (CAD) model
dataset Modelnet and simple mean and max view pooling as their fusion method,
they achieved up to 7% improved accuracy compared to prediction on single views
only [69]. Inspired by the success the MVCNN, more sophisticated adaptions of the
model using recurrent layers [70], self-attention [71] or feed-forward-fusion methods
[72] were developed. Xu et al. [73] also introduced a multi-view-specific loss func-
tion. Application of multi-view networks in the field of medical imaging is rare. Here,
both Geras et al. and Kaiser et al. proposed similar network architectures for multi-
view processing of four mammographic images per patient [74, 75]. Geras et al. used
their model for cancer detection, while Kaiser et al. predicted the breast density. In
both networks, views are aggregated by concatenation of the latent feature vectors.
Finally, although Seeland and Mäder [30] compare and analyse different view-fusion
strategies on natural image datasets, to the best of my knowledge, there has been
no comparative study performed on medical images to date. To this end, various
view-fusion strategies for medical MRCP images will be explored and evaluated in
the course of this work.
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2.4 Data

This section introduces the patient cohort used in this work, together with the corre-
sponding magnetic resonance cholangiopancreatography (MRCP) data and the pro-
tocol used for image acquisition.

2.4.1 Study Design and Data Acquisition

Figure 2.4.1: MRCP data of a patient with PSC taken at three different rotational
angles at 3T. For better visibility, contrast-limited adaptive histogram equalization
(CLAHE) [76] is applied.

In this work, a total of 897 patients that underwent 2D-MRCP scans at the University
Medical Center Hamburg-Eppendorf (UKE) in the time between 2002 and 2022 are
retrospectively included. Of these, 596 have a confirmed diagnosis of PSC. The refer-
ence standard for diagnosis was established non-invasively according to the guide-
lines of the European Association for the Study of the Liver (EASL), which are defined
as follows: 1. elevated serum markers of cholestasis not otherwise explained, 2. char-
acteristic bile duct changes with multifocal strictures and segmental dilatations visu-
alized by MRCP and/or endoscopic retrograde cholangiopancreatography (ERCP),
and 3. exclusion of causes of secondary sclerosing cholangitis and other cholestatic
disorders [25]. The corresponding control group consists of 311 patients without any
history of immune mediated liver or bile duct disease and without any visible bile
duct alterations on MRCP. Table 2.4.1 depicts the indications of MRI for patients of
in control group (after filtering, as will be described in Section 2.5.1). Patients and
controls were identified via inhouse picture archiving and communication system
(PACS) query. Ethical approval was provided by the institutional review board (2021-
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100723-B0-ff). The requirement for written informed consent was waived due to the
retrospective nature of the study.

Table 2.4.1: Indications for MRI in the included patients of the control group after fil-
tering. NAFLD: Non-alcoholic fatty liver disease. IBD: Inflammatory bowel disease.
Reprinted with permission from Ragab and Westhaeusser et al. [77].

Indication n = 264
Cystic Pancreatic Lesion 62

Pancreatitis 42
Unclear Abdominal Discomfort 42

Hepatic Lesion 39
Cholelithiasis 16

Pancreatic Mass 15
NAFLD 10

Pancreas Divisum 6
Post Distal Pancreatectomy 5

IBD 4
Exogenous Pancreatic Insufficiency 3

Gallbladder Polyp 3
Post Cholecystectomy 2

Other 15

For the 897 patients, a total of 999 MRI examinations including 2D-MRCP scans were
collected. These were performed according to routine clinical protocol on different
MRI machines from two manufacturers (Philips or Siemens) at either 3 or 1.5 Tesla
magnetic field strength. Some patients underwent examination on more than one
machine. The distribution of patients to the different MRI machines was based on
availability only and has no relation to the medical history or diagnosis. Patients
were advised to fast for 4 hours prior to the study to reduce fluid secretion within
the gastrointestinal system. In patients without contraindication, 20 mg scopolamine
butylbromide (Buscopan, Sanofi-Aventis, Frankfurt, Germany) was additionally in-
travenously injected to minimize gastrointestinal motility and thus motion artifacts
while imaging. Each MRCP examination consists of seven to fourteen radial images
from different angular points of view. Figure 2.4.1 depicts exemplary 2D-MRCP im-
ages from three different acquisition angles for a sample of 3T scanner. Detailed MRI
protocol and imaging parameters are provided in A.1.1.
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Table 2.4.2: Metadata and demographic characteristics of the internal (3 & 1.5 Tesla)
and external vendor validation (3 Tesla Siemens) datasets used in DeePSC. Denoted
as Median (Min - Max).

3 Tesla 1.5 Tesla 3 Tesla Siemens
Patients & MRCPs 361 398 37

MRI Machines Philips Philips, Siemens Siemens
PSC/Non-PSC 189/172 283/115 20/17
Training/Test 322/39 359/39 -/37

PSC Control PSC Control PSC Control
Sex

[female/male] 74/115 70/102 117/166 58/57 9/11 7/10

Age [years] 47
(16-81)

50
(18-82)

44
(9-79)

53
(15-80)

30
(17-60)

39
(24-71)

Weight [kg] 79
(44-125)

80
(45-165)

76
(46-130)

76
(45-117)

68
(45-104)

79
(58-97)

Image Acqui-
sition Date

2019
(2009-2020)

2019
(2014-2021)

2018
(2002-2021)

2019
(2010-2020)

2021
(2021-2022)

2021
(2021-2022)

2.4.2 Dataset Definition

The total number of 897 patients and 999 MRCPs is separated into an internal dataset
of 860 patients and 952 MRCPs and an independent validation cohort, which is re-
ferred to in the following as the external vendor validation dataset consisting of 47
patients and MRCPs (see Figure 2.5.1). All MRCPs in the external vendor validation
set were collected at a Siemens MRI machine at 3T magnetic field strength, whereas in
the internal dataset, all 3T examinations stem from a Philips MRI machine. The 1.5T
examinations of the internal dataset were collected both at a Philips and Siemens MRI
machine.

Internal and external datasets are further filtered, separated based on magnetic field
strength used for image acquisition and split into training and test data according to
criteria explained in the subsequent Section 2.5. Baseline demographic characteristics
of the final included datasets are presented in Table 2.4.2. There are no significant
differences with respect to age or sex when comparing PSC patients and controls. A
more detailed visual breakdown of demographic and meta information of the internal
datasets can be found in supplemental Figure A.1.1.
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2.5 Preprocessing

In this section, the data preprocessing performed in this work, including dataset fil-
tering and curation, separation into training and validation datasets, image normal-
ization, as well as image classification by human experts, is described.

2.5.1 Filtering

Figure 2.5.1 depicts the dataflow from the initially collected cohorts to finally in-
cluded patients and image datasets. In the internal cohort, 566 patients have an estab-
lished diagnosis of PSC and 294 are controls without any history of immune mediated
liver or bile duct disease and without any visible bile duct alterations on 2D-MRCP.
Of these 566 PSC patients, 27 with a diagnosis of small duct PSC and 67 with indefin-
able PSC are excluded. 115 PSC patients and 2 controls are retrospectively excluded
due to incomplete or qualitatively insufficient clinical and MRI data. With this, 649
patients (357 PSC / 292 controls) are subsequently divided into MRI exams obtained
with a magnetic field strength of 3 Tesla and 1.5 Tesla. To reduce complexity, these
exams are further filtered to only include MRCP scans that follow the clinics standard
protocol of exactly seven MRI images taken from different rotational angles with an
original image size of 512x512 pixels. Finally, a total of 606 patients (342 PSC / 264
controls) are included in the internal database, resulting in 361 MRCPs taken at 3T
(189 PSC / 172 controls) and 398 MRCPs taken at 1.5T (283 PSC / 115 controls). The
observed overlap is due to the 113 patients that underwent exams at both magnetic
field strengths during clinical follow up. If a patient received multiple examinations
at the same magnetic field strength, only the most recent MRCP fulfilling the quality
criteria is included in the respective dataset, such that all MRCPs per dataset stem
from unique patients.

The 47 patients in the external vendor validation set fulfilled all of the inclusion crite-
ria described above. To strictly separate patients between internal and external data,
10 patients that received multiple MRI examinations and contributed an MRCP to
the internal dataset are removed from the external dataset, resulting in a total of 37
included patients and MRCPs (20 PSC / 17 controls).
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Figure 2.5.1: Overall data-flow. The initial database 897 unique patients is separated
into internal and external vendor data. Patients are separated into PSC and non-PSC
group. Some patients and their respective MRCP data are excluded due to the de-
noted reasons. MRCP data of both groups is separated into 3 Tesla and 1.5 Tesla
datasets, depending on the magnetic field strength used during acquisition, and fi-
nally partitioned into respective training- and test-datasets. Some patients underwent
exams at both 3 and 1.5 Tesla during clinical follow up and can therefore contribute
MRCPs to both datasets, hence the observed overlap. Reprinted with permission
from Ragab and Westhaeusser et al. [77].

2.5.2 Experimental Setup

From the total 361 and 398 samples of the internal 3T and 1.5T dataset, respectively,
39 samples are randomly assigned (with stratification by PSC vs. control, patient age
and gender) as test datasets. The remaining 322 and 359 samples of the 3T dataset
and 1.5T dataset, respectively, are assigned as training datasets for the deep learning
model. From the external vendor validation dataset, all 37 samples are assigned as
test data. Figure 2.5.1 and Table 2.4.2 depict the overall data split and distribution
into training and test datasets.
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2.5.3 Image Normalization

Maximum gray values per MRCP image vary heavily across all samples of all datasets,
with a lowest image-wise maximum value of 367 and a highest maximum value of
over 20,000 (see Figure A.1.1), but linear rescaling of the maximum and minimum
value per image on 1 and 0 respectively did not provide a biologically meaningful
homogenization, such that similar structures, e.g., bile ducts, share gray values of a
similar range after the preprocessing. One cause for this are artifacts, e.g., the very
bright leftover liquid in the stomach present in some MRCPs. To mitigate this issue,
after applying Contrast-Limited Adaptive Histogram Equalization (CLAHE) [76] to
each MRI image to locally enhance the contrast, the 95th percentile of each image’s
gray value histogram is mapped to 1 and the 5th percentile is mapped to 0 (see Figure
2.5.2). This smooths out the influence of outlier pixels and areas and provides a robust
preprocessing procedure across all used datasets, such that pixel values of the clini-
cally relevant structures in the images are more evenly distributed across individual
samples in the dataset.

2.5.4 Human Evaluation

Four radiologists with varying levels of experience in reading MRCP (2, 3, 4, and 9
years for R1, R2, R3 and R4, respectively) independently and blindly analyzed the
78 samples of both internal test datasets and classified the cases as either PSC or
non-PSC, according to previously published PSC-compatible findings based on the
2D-MRCP sequence only [28]. In terms of inter-reader reliability, the evaluations sub-
mitted by the pathologists express a Fleiss’ kappa of 0.384 [0.223, 0.548 CI] on the 3T
and 0.410 [0.254, 0.583 CI] on the 1.5T test-set.
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Figure 2.5.2: Original MRCP images of different patients and respective histograms
(left) and preprocessed images and histograms after applying contrast-limited his-
togram equalization (CLAHE) with a contrast-clip limit of 0.015 [76]. Notable are
the substantial different maximum gray values of the MRCPs. Before input to the
network, all images are normalized to 1 on the 95th percentile of their histogram
(dashed orange line) and to 0 on the 5th percentile (dashed blue line). This was found
to provide an appropriate dataset homogenization, where similar biological struc-
tures share similar gray values across patient samples. This is made visible on the
adapted images, where the bile ducts share pixel values > 1 (highlighted in orange)
and pixel values < 0 (highlighted in blue) belong to irrelevant structures of the back-
ground. Reprinted with permission from Ragab and Westhaeusser et al. [77].
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2.6 Methods

This section describes how the proposed deep learning architecture DeePSC in its
three levels of complexity, namely the single-view CNN (SVCNN), the multi-view
CNN (MVCNN) and the highest confidence ensemble (HCE), is derived. Further-
more, the metrics used for evaluation and the methodology for statistical analysis are
delineated.

2.6.1 Deep Learning Architecture (DeePSC)

The main goal of this work is to develop and verify the aptitude of an AI-based
clinical decision support system for the automated classification of PSC-compatible
cholangiographic findings on 2D-MRCP. To this end, DeePSC is proposed, an end-to-
end deep-learning ensemble model for binary classification of PSC 2D-MRCP data.
It is specialized in processing the multi-view format of the 2D-MRCP data to com-
bine information across images and improve over classic image-wise classification.
DeePSC builds on three increasing levels of complexity, as depicted in Figure 2.6.1:
First, a single-view CNN (SVCNN) is trained on all individual images (in the fol-
lowing refered to as MRCP "views") of all patients per dataset until convergence
on the task of binary classification of PSC vs. non-PSC. This approach of training
and predicting on individual images is the conventional method of AI-based im-
age processing and serves as the baseline. In the second level, the trained SVCNN
is extended to form the multi-view CNN (MVCNN) architecture [68]. For this, the
feature extraction backbone is duplicated to enable parallel input and processing of
all seven MRCP views per patient. An additional attention-based view-fusion layer
combines latent information of all images per MRCP into a single representation,
which is then used for classification. In the third level, an ensemble of 20 individual
instances of the MVCNN is trained on the same data with varying random seeds. To
increase predictive robustness of the full model, only the prediction of the MVCNN
instance that expresses the highest class probability (and therefore the highest con-
fidence) is considered for the final prediction of the ensemble model. This is fur-
ther denoted as “highest confidence ensemble” (HCE) and represents the final model
DeePSC. DeePSC is implemented using PyTorch in Python 3.6. Conceptual code can
be found at https://github.com/imsb-uke/DeePSC. In the following, the different
components and sub-models are explained in more detail.
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Figure 2.6.1: Overall structure of the DeePSC model. a) The baseline single-view CNN
(SVCNN) is trained with a sequential input of all MRCP-views of all patients until
convergence. The SVCNN is based on the Squeezenet architecture and consists of the
convolutional Feature Extractor (FE) and the fully-connected classification layer [44].
b) The trained SVCNN is extended to the multi-view CNN (MVCNN) by multiplying
the FE by the number of MRCP-views per patient and introducing the attention-based
view-fusion layer (AVF) between FE and classification layer. Here, all seven views of
a single patient are processed in parallel and aggregated in the AVF, while the classi-
fication layer derives a single prediction per patient. c) Twenty individually trained
MVCNNs are combined in the Highest Confidence Ensemble (HCE) to form the final
DeePSC model, where only the prediction with the highest class probability across all
twenty MVCNNs is forwarded as the final classification per patient. Reprinted with
permission from Ragab and Westhaeusser et al. [77].
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Single-view CNN (SVCNN)

In the lowest level of model complexity, all 2D-MRCP images across patients are
treated as individual samples and processed separately using the single-view CNN
(SVCNN). The SVCNN consists of a convolutional feature extractor (FE) and a subse-
quent fully connected classification head. All parameters of the SVCNN are trainable.

Feature Extractor (FE): A Squeezenet architecture (see 2.2) pretrained on the Ima-
geNet dataset serves as backbone architecture for the Feature Extractor (FE) [44]. For
usage in this work, the final convolutional layer of Squeezenet is replaced by a flatten
operation, resulting in a 1-dimensional feature vector of length L = 512 in the out-
put of the FE. The FE transforms an MRCP view V ∈ RH×W×C of height H = 227

and width W = 227 with three color channels C = 3 in the RGB format into a la-
tent feature representation hFE ∈ RL. Before input to the FE, the color channel of
the grayscale MRCP images is repeated three times to confer with the RGB input for-
mat. Furthermore, the images are downsampled to a resolution of 227x227 pixels
from their original resolution of 512x512 pixels, which refers to the expected input
shape of the Squeezenet backbone CNN. During the experiments and in contrast to
the findings of Geras et al. [74], this reduced resolution had no observable negative
impact on training results while greatly improving computational performance. For
every image V , the latent representation hFE after the feature extractor is then derived
as

hFE = fFE(V ) with fFE : RH×W×C −→ RL. (2.6.1)

Classification head: The subsequent classification head consists of a fully connected
layer with L input and 2 output nodes, followed by a softmax activation function. In
detail, the output logits z ∈ R2 of the classification head are derived from the latent
feature representations after the FE hFE as

z = WCHhFE + bCH. (2.6.2)

Here, WCH ∈ Rc×L and bCH ∈ Rc are trainable parameters of the network, where L

refers to the length of the input vector and c = 2 denotes the number of classes. The
probability ŷi of an image to belong to class i is then derived by the softmax function
as
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ŷi =
exp(zi)∑c−1
j=0 exp(zj)

. (2.6.3)

The predicted probabilities refer to the two classes "PSC" and "non-PSC" of the binary
classification task.

Multi-view CNN (MVCNN)

The multi-view CNN (MVCNN) is inspired by the work of Su et al. [68]. In con-
trast to the SVCNN, the MVCNN takes all seven 2D-MRCP images of a single patient
as simultaneous input. It extends the SVCNN by introducing the attention-based
view-fusion layer (AVF) between the FE and the classification head of the network.
The input order of the images per patient is constant and always refers to the order of
subsequent rotational acquisition, i.e. images per sample are not shuffled. The images
are processed in parallel in the FE. The weights of the FE in the MVCNN are ported
from the trained SVCNN and then frozen, such that the same parameters apply to
all images. The resulting individual latent representations of all seven views per pa-
tient are then merged into a single representation in the AVF. Based on the results of
[30], who found view-fusion in the early layers of the network to be significantly less
effective, the view-fusion layer is applied late in the network. Finally, the combined
latent representation per patient is forwarded to the classification head, which adapts
the weights from the trained SVCNN classification, with weights corresponding to
those in the trained SVCNN. During training of the MVCNN, only the parameters of
the AVF and the classification head are trainable, whereas those of the FE are static.

Attention-based view-fusion (AVF) The Attention-based view-fusion (AVF) layer
compresses the input of the seven latent view vectors per patient into a single rep-
resentation. This method was first introduced by Ilse et al. [78] in the context of
multiple instance learning (MIL) on histopathological images. It can be seen as a
learnable weighted average function of the input instances, where the respective at-
tention weights are determined inside the network for each sample. Given the set of
N = 7 latent representations HFE = {hFE

1 , ..., hFE
N } of shape hFE

n ∈ RLx1 per view, the
output hAVF ∈ RLx1 of the AVF layer is derived by

hAVF =
N∑

n=1

anh
FE
n , (2.6.4)
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where

an =
exp(WAVF2 tanh(WAVF1hFE

n + bAVF1) + bAVF2)∑N
m=1 exp(W

AVF2 tanh(WAVF1hFE
m + bAVF1) + bAVF2)

. (2.6.5)

Here, WAVF1 ∈ RD×L, bAVF1 ∈ RD, WAVF2 ∈ R1×D and bAVF2 ∈ R1 are trainable
parameters of the network, where L refers to the length of the input vector and D is a
hyperparameter. After optimization, D is set to 64 in this work. The hyperbolic tan-
gent non-linearity aims to prevent the exploding gradient issue, whereas the softmax
function ensures that all attention weights sum to 1 [78]. hAVF is then forwarded to
the classification head.

Highest Confidence Ensemble (HCE)

The Highest Confidence Ensemble (HCE) refers to an ensemble of 20 individual in-
stances of the MVCNN, trained on the same data and hyperparameters with varying
random seeds. This influences the weight initialization, random augmentations as
well as sample order during training, which can lead to convergence to a different lo-
cal minimum of the loss landscape and therefore different results. During inference,
all images per patient are processed in all 20 instances of the MVCNNs in the ensem-
ble. Then, only the prediction of the MVCNN instance that expresses the highest class
probability (and therefore the highest confidence) is considered as the final prediction
of the ensemble model. In detail, let ŷm represent the probabilities for classes "PSC"
and "non-PSC" predicted by the m − th instance of the Multi-view CNN (MVCNN)
within the ensemble of 20 individual instances. The output ŷHCE of the HCE ensemble
is then derived as

ŷHCE = max
i

(ŷm). (2.6.6)

The combination of SVCNNs, MVCNNs and HCE refers to the final proposed model
DeePSC.

2.6.2 Training and Hyperparameter-Tuning

Separate instances of DeePSC are trained on the 3T and 1.5T datasets. Training is per-
formed with a constant batch-size of 25 patients for a maximum of 500 epochs until
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convergence using the AdamW optimizer [79] and the crossentropy loss, defined as

L(y, ŷ) = −1

c

c−1∑
i=0

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (2.6.7)

using automatic mixed precision on a NVIDIA Tesla V100 SXM2 GPU with 16 GB
GPU memory. The SVCNNs are trained with a learning rate of 3e-6 and an early
stopping patience of 20 epochs on the training loss, while for the MVCNNs a learning
rate of 3e-7 and an early stopping patience of 10 epochs is applied. Hyperparameters
are tuned via grid searching a predefined parameter-space using stratified 5-fold-
cross-validation on the training set of the 3T data over 2 rounds (random seeds) to
avoid overfitting. The 3T and 1.5T datasets are always separated during training,
but the same hyperparameters are applied to both models. To enhance the model’s
performance on the minority class (control group) on the highly class imbalanced
1.5T dataset, the minority class in the training dataset is randomly oversampled to
achieve a balanced class distribution during training.

A strong emphasis is put on data augmentation. Augmentation methods include ran-
dom rotation, shifting, shearing and scaling, as well as a random overlay of gaussian
noise and random histogram shifts, implemented as per the MONAI python package
[80]. The latter is motivated by Billot et al., who found that random histogram shifts
in MRI data enables the network to generalize better by focusing more on shapes
rather than intensities [81].

2.6.3 Statistical Analysis

Statistical analysis of the demographic data is performed by using GraphPad Prism
for MacOS, Version 9.1.1 (2021, GraphPad Software, Inc., USA). Descriptive statistics
are used to outline the demographic and clinical characteristics in the PSC and the
control group. Continuous variables are compared between groups using unpaired
student’s t-tests or Mann-Whitney-U-test, respectively. For categorical data, the Chi-
square test or the Fisher’s exact test is used as appropriate. Statistical analysis of
the predictive performances of the deep learning models as well as the radiologists
is performed using Welch’s t-test as provided by the SciPy package for Python 3.10,
Version 1.9.2 (2022, The SciPy Community). Statistical significance is defined as p <
0.05.
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2.6.4 Metrics

Classification performance of the proposed algorithm as well as the human annota-
tors is evaluated by the following metrics:

• Accuracy, which measures the overall correctness of the classification process.
Calculated as accuracy = TP+TN

TP+TN+FP+FN
.

• Sensitivity, which measures the model’s ability to correctly identify positive
samples. Calculated as sensitivity = TP

TP+FN
.

• Specificity, which measures the model’s ability to correctly identify negative
samples. Calculated as specificity = TN

TN+FP
.

• F1-score, which combines precision = TP
TP+FP

and sensitivity in a harmonic
mean as F1 = 2×(precision×recall)

precision+recall
. This metric provides a more accurate measure

of correctness than accuracy on class-unbalanced datasets.

Here, TP denotes true positives, TN true negatives, FP false positives, and FN false
negatives.
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2.7 Experiments

In the following section, quantitative and qualitative results of all experiments con-
ducted with DeePSC and its submodels MVCNN and SVCNN, as well as the MRCP
classifications provided the radiologists, are described.

2.7.1 Evaluation on Internal Data

Firstly, DeePSC, its sub-variants MVCNN and SVCNN as well as the predictions of
the four radiologists are evaluated on the task of detecting PSC-compatible findings
on 2D-MRCP data on the unseen test-sets of the internal data. Table 2.7.1 depicts
the predictive accuracy of all raters in terms of accuracy, F1-score, sensitivity and
specificity. Results are derived from five instances of DeePSC per dataset (i.e. mag-
netic field strength), formed by a hundred instances of MVCNN and SVCNN trained
on different random seeds. Performance is reported as mean and standard deviation
across instances to enable statistical comparison with the human readers and increase
reliability.

The final DeePSC ensemble model achieves an accuracy of 80.51±1.25% on the inter-
nal 3T dataset and 82.57±2.99% on the internal 1.5T dataset, while the radiologists
achieve an average of 75.00±8.38% and 72.44 ± 8.58%, respectively. DeePSC outper-
forms the four radiologists on average by 5.51 (p = 0.338) percentage points and 10.13
(p = 0.131) percentage points, respectively, however, without reaching statistical sig-
nificance. In comparison to individual radiologists’ predictions, the DeePSC model
performs slightly better than the best human reader R1 on the 1.5T test-set and beats
3 out of 4 human readers in predictive accuracy on the 3T test-set. Notably, on both
datasets, DeePSC outperforms the most experienced radiologist R4 with nine years
of experience in reading MRCP. Predictive performance of the proposed algorithm
increases among all metrics on both datasets with the increasing level of model com-
plexity. Compared to processing individual MRCP images in the SVCNN, utilizing
the combined information of all views per patient in the MVCNN increases average
accuracy by 1.42 (p < 0.0001) and 3.51 (p < 0.0001) percentage points, on the 3T and
1.5T test-set, respectively. This is further enhanced by 2.15 (p < 0.05) and 2.39 (p =
0.189) percentage points by applying the HCE of the DeePSC model. Taking the in-
dividual sample predictions into account, inter-reader reliability among radiologists
is low, with a Fleiss’ kappa of 0.384 [0.223, 0.548 CI] on the 3T and 0.410 [0.254, 0.583
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Table 2.7.1: Predictive performance of the model and the radiologists on the unseen
test-set of the 3T and 1.5T datasets, respectively. The SVCNN & MVCNN are trained a
hundred times with varying random seeds, where every twenty runs form a DeePSC
ensemble (total of five). Underlined numbers highlight the best result in every re-
spective metric. ± refers to the standard deviation. * highlights that these results
differ statistically significantly (p < 0.05) from those of the row above, n.s indicates
that the difference is not statistically significant. * (p < 0.05), ** (p < 0.01), *** (p <
0.001), **** (p < 0.0001). Reprinted with permission from Ragab and Westhaeusser et
al. [77].

Accuracy F1 Sensitivity Specificity
Train: 3T Pred: 3T (21 PSC, 18 non PSC)

SVCNN Mean 76.94± 1.76 78.05± 1.45 76.11± 1.71 77.91± 3.80
MVCNN Mean 78.36± 2.95∗∗∗∗ 79.13± 2.94∗ 76.29± 4.15n.s 80.78± 4.87∗∗∗∗

DeePSC Mean 80.51± 1.25∗ 81.55± 1.18∗∗ 80.00± 1.90∗ 81.11± 2.72ns

Radio. Mean 75.00± 8.38n.s 77.39± 6.24n.s 77.38± 2.06n.s 72.22± 18.00ns

R1 87.18 86.49 76.19 100.00
R2 64.10 69.57 76.19 50.00
R3 71.79 74.42 76.19 66.67
R4 76.92 79.07 80.95 72.22

Train: 1.5T Pred: 1.5T (28 PSC, 11 non PSC)
SVCNN Mean 76.67± 2.73 82.63± 2.21 77.41± 3.29 74.80± 5.06
MVCNN Mean 80.18± 3.92∗∗∗∗ 85.40± 3.00∗∗∗∗ 80.89± 4.41∗∗∗∗ 78.37± 9.69∗∗

DeePSC Mean 82.57± 2.99n.s 87.33± 2.00n.s 83.57± 1.75∗ 80.00± 8.91n.s

Radio. Mean 72.44± 8.58ns 79.25± 6.30n.s 73.22± 5.92ns.s 70.46± 17.46n.s

R1 82.05 86.79 82.14 81.82
R2 61.54 71.70 67.86 45.45
R3 66.67 74.51 67.86 63.64
R4 79.49 84.00 75.00 90.91

CI] on the 1.5T test-set. This shows a strong disagreement among radiologists when
asked to base their classification of PSC solely on the MRCP image data. The five
DeePSC models trained on different random seeds achieve a fundamentally higher
consensus of 0.948 [0.867, 1 CI] and 0.868 [0.736, 0.969 CI], respectively. When com-
paring the final predictions of the best performing DeePSC model with those of the
best performing radiologist R1, a Cohen’s kappa of 0.584 [0.328, 0.840 CI] on the 3T
and 0.592 [0.304, 0.840 CI] on the 1.5T data is achieved.
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2.7.2 Evaluation on External Vendor Validation Data

To quantify the robustness of DeePSC and its potential aptitude in an actual clinical
environment, the 3T variant is evaluated on the external vendor validation set. This
dataset consists solely from MRCPs that were collected on an MRI machine of a man-
ufacturer that was not used for any sample of the training dataset. Furthermore, all
MRCPs stem from new patients unknown to the model, i.e., which are not previously
used in the training-set.

Table 2.7.2: Predictive performance of the model trained on the internal 3T training-
set and evaluated on the unseen 3T Siemens test-set. The SVCNN & MVCNN are
trained a hundred times with varying random seeds, where every twenty runs form
a DeePSC ensemble (total of five). ± refers to the standard deviation. * highlights that
these results differ statistically significantly (p < 0.05) from those of the row above,
n.s indicates that the difference is not statistically significant. * (p < 0.05), ** (p <
0.01), *** (p < 0.001), **** (p < 0.0001). Reprinted with permission from Ragab and
Westhaeusser et al. [77].

Accuracy F1 Sensitivity Specificity
Train: 3T Pred: Siemens 3T (20 PSC, 17 non PSC)

SVCNN Mean 79.62± 2.68 82.86± 1.85 90.94± 4.34 66.30± 8.62
MVCNN Mean 91.51± 3.06∗∗∗∗∗ 92.62± 2.52∗∗∗∗ 98.10± 2.98∗∗∗∗ 83.77± 6.23∗∗∗∗

DeePSC Mean 92.43± 1.08n.s 93.46± 0.89 n.s 100.00± 0.00∗∗∗∗ 83.53± 2.36 n.s

On the different vendor validation-set, the DeePSC ensemble model trained on the 3T
internal dataset achieves 92.43±1.08%, 93.46±0.89%, 100.00±0.00% and 83.53±2.36%
for accuracy, F1-score, sensitivity, and specificity, respectively (see Table 2.7.2). The
best performing model misclassifies only two of the 17 samples in the control group.
Especially noteworthy here is the substantial improvement in average accuracy by
11.89 (p < 0.0001) percentage points between SVCNN and MVCNN, proving the pos-
itive effect of the proposed attention-based view fusion method when classifying 2D-
MRCP, strongly suggesting that the multi-view architecture confers robustness to the
network. Applying the HCE of DeePSC leads to a insignificant decrease in speci-
ficity by 0.24 (p = 0.864) percentage points and a concomitant significant increase in
sensitivity by 1.90 (p > 0.0001) percentage points.
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2.7.3 Explainability

To understand which visual features underlie the decision-making process of DeePSC,
gradient-weighted class activation maps (GradCAM) are calculated on the last con-
volutional layer of the FE for the image receiving the highest attention score in the
AVF per MRCP [48].

Figure 2.7.1: Class-related activations in the last convolutional layer of the Feature
Extractor for six patients in the 3T dataset, calculated with GradCAM [48]. High ac-
tivation values, on the red end of the spectrum, indicate a high correlation of those
features with the model’s prediction. Cases a) and b) are correctly classified to the
PSC group, cases c) and d) correctly classified to the control group with high activa-
tion in the area of the biliary tree. Case e) is correctly classified as belonging to the
control group, but the class activation map shows that the model wrongly derives
its prediction from the areas of the gastric corpus and the gallbladder. In case f), the
model incorrectly classifies the MRCP to the PSC group based on irrelevant features
of the colon. Reprinted with permission from Ragab and Westhaeusser et al. [77].

The GradCAM activations are depicted as class-related heatmaps to provide a visual
cue of which areas in the image contribute most to the model’s class prediction. Fig-
ure 2.7.1 presents six exemplary heatmaps of the internal 3T test dataset. For this
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dataset, the heatmaps of the best performing DeePSC model reveal high activity val-
ues in the anatomic region of the biliary tree in 33 of 39 cases, strongly suggesting that
the model learned to base its classification upon biologically relevant features. While
in the remaining six cases high activity in the biliary tree can not be observed (see
Table 2.7.3), five out of the six cases are still classified correctly. Besides the inherent
model uncertainty, data uncertainty such as gastrointestinal fluid and image artifacts
can lead to distraction and thus misclassification of the network (see Figure 2.7.1 e) &
f)).

Table 2.7.3: Distribution of correct and incorrect classifications (PSC & non-PSC) of
DeePSC on the internal 3T testset with respect to the GradCAM activation heatmaps
of the last convolutional layer of the CNN feature extractor. Reprinted with permis-
sion from Ragab and Westhaeusser et al. [77].

3T GradCAM Correct Prediction Incorrect Prediction
High activation in biliary tree 27 6

No high activation in biliary tree 5 1

2.7.4 Ablation

To assess the influence of the proposed preprocessing in DeePSC, an ablation study
is performed on the test data of all three datasets, as shown in Figure 2.7.2. Results
stem from a single instance of DeePSC, trained on either the 1.5T or 3T data, and 20
underlying MVCNN instances. On the x-axis, the changes to the preprocessing are
depicted in an additive fashion. The leftmost setting of [1, 0] refers to input of the data
with greyvalue min/max-normalization on 0 and 1, no histogram equalization and
no random data augmentation during training. It is visible that for the model trained
on 3T data, all proposed additions of contrast-limited adaptive histogram equaliza-
tion (CLAHE) (see 2.5.3), quantile-based greyvalue normalization (see 2.5.3) and ran-
dom augmentations (see 2.6.2), consisting of affine transformations, gaussian noise
and histogram shifts, lead to a constant increase in classification accuracy on both the
internal testset and the different vendor validation set. For the model trained on the
1.5T data, a drop can be observed when applying the quantile-based greyvalue nor-
malization, however, this is mitigated by applying the proposed random data aug-
mentation. In summary, the combination of the proposed preprocessing steps leads to
a strongly increased performance on both 3T datasets, while maintaining the baseline
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performance on the 1.5T data, proving its beneficial influence to the overall method.

Figure 2.7.2: Ablation study of the individual parts of the proposed MRCP prepro-
cessing for model training, evaluated on the three test datasets. Accuracy of the HCE
refers to a single DeePSC entity, while for the MVCNN the mean values of twenty
models are depicted. From left to right on the x-axis: Min/Max-normalization on
0/1; Additional CLAHE before normalization; Normalization of the 5th and 95th
quantile of each image’s histogram on 0/1; Additional image augmentation during
training as described in Section 2.6. Even though on the 1.5T dataset accuracy is
not monotonously increasing in all steps, the proposed preprocessing procedure is
found to provide the best overall performance across all datasets (rightmost point).
Reprinted with permission from Ragab and Westhaeusser et al. [77].
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2.8 Discussion

In the present study, a multi-view deep convolutional neural network ensemble for
the automated classification of PSC-compatible bile duct alterations on 2D-MRCP
both taken at 1.5 and 3 Tesla is developed. To the best of my knowledge, this is
the first work to apply such a deep learning approach for the assessment of PSC on
radial 2D-MRCP datasets. Diagnostic performance of the DL model is compared to
that of four diagnostic radiologists at different levels of training and with varying
experience in reading MRCP, thus reflecting clinical practice.

2.8.1 Classification Task

The results show that the proposed model identifies patients with PSC based on 2D-
MRCP images both at 1.5T and 3T with high reliability. It achieves higher accuracy,
sensitivity, and specificity than the radiologists on average. Statistical significance
could hereby not be reached, though this is potentially linked to the small compared
sample sizes of 5 and 4. When comparing the radiologists’ classifications individ-
ually, the model performs slightly better than the best radiologist R1 in all metrics
except specificity on the 1.5T data and outperforms three out of four radiologists on
the 3T data. On the different vendor 3T test-set obtained on a Siemens MRI scan-
ner, the proposed ensemble models reach over 90% accuracy, only misclassifying be-
tween two and three out of 37 total samples. While speculative in nature, the high
performance on Siemens data may be caused by the higher image quality and homo-
geneity of the more recently collected MRCP scans. The results show that combining
the information of multiple MRCP views per patient with the attention-based view-
fusion layer in the MVCNN consistently improves classification performance among
all metrics and datasets compared to the classic baseline SVCNN, by up to 17.47 per-
centage points in specificity on the different vendor validation-set. Similarly, besides
a minor decrease in specificity on the different vendor validation-set, performance of
the MVCNN is further increased consistently by applying the highest confidence en-
semble method of DeePSC on twenty individually trained MVCNNs. Given the aim
of providing robust and reliable performance across different datasets, the mentioned
drop in specificity of 0.24 percentage points on a single dataset is negligible when tak-
ing the gain in other metrics and datasets into account. The predictions provided by
the four radiologists are in line with previously reported values. In a meta-analysis,
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Dave et al. reported a high diagnostic performance of MRCP for the diagnosis of PSC
in cholestatic patients with a sensitivity and specificity of 0.86 and 0.94, respectively
[82]. However, objective and reproducible image interpretation remains challeng-
ing, especially for less experienced radiologists and low-volume centers. Since PSC
is a rare disease with specific and sometimes subtle imaging features, high expertise
and thorough knowledge are essential to reliably interpret the characteristic findings.
The implementation of deep-learning algorithms is expected to add significant value
in the decision-making process, given the high and robust performance of the pro-
posed algorithm and the low inter-reader agreement of the radiologists observed in
this study. Of note, all four radiologists are from a large volume referral center where
PSC is often seen in the radiology department, underlining the potential unmet need
in less experienced services.

According to a recently published meta-analysis on the performance of deep-learning
algorithms in medical imaging, many studies on the subject suffer from substantial
methodological shortcomings, which limits their translation into real-life clinical set-
ting [83]. Many of the investigated studies, for instance, did not compare the perfor-
mance of their model with that of a human expert or assessed the performance of their
model on a different dataset than the one used for human performance assessment.
Also, very few studies included an independent validation-dataset. This might result
in incorrectly high values of accuracy due to overfitting and low generalizability of
the proposed model [83]. Both shortcomings are addressed in this work.

Foundational work for deep learning-based detection of PSC-compatible bile duct
alterations was provided by Ringe et al. [66]. They showed that automated clas-
sification of PSC was feasible using majority voting for maximum intensity projec-
tions (MIPs) of 3D-MRCP. This thesis represents a significant extension to their work,
as it provides realistic benchmarks on the used dataset by comparing the proposed
method to the predictions of four radiologists. Furthermore, generalizability of the
proposed model to data from a different manufacturer’s MRI machine is proven by
showing very high performance on an independent validation dataset. While Ringe
et al. also improved their performance by combining information of different MIPs
per patient by majority voting on the individual predictions of their network, the
trainable AVF layer of DeePSC allows for more flexible and sample-related view-
fusion and therefore better predictions. Finally, this work shows that by employing
an ensemble of multiple individually trained models, performance can be substan-
tially improved compared to a single model instance.
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2.8.2 Limitations and Outlook

To the best of my knowledge, this study contains the largest 2D-MRCP dataset of PSC
patients and controls published so far. Nevertheless, the patient numbers of this rare
disease are still limited to several hundred, which might give reason to believe that
network performance could be boosted by including more patient data. While the
GradCAM activation heatmaps emphasize that the model learned to correctly base its
classification upon biologically relevant features of the biliary tree, the model might
still be confused by samples that are outside its learned distribution and mistakenly
assess irrelevant feature structures as PSC-related (see Figure 2.7.1). This holds es-
pecially true for the differentiation of PSC from other forms of sclerosing cholangitis
or biliary malignancy, both not included in the control dataset used in this work. In-
cluding more patients and controls with other forms of liver and bile duct diseases
therefore is key to providing an even more robust clinical decision support system
in the future. Furthermore, this work does not quantify the potential influence of
decision support from DeePSC by analyzing diagnostic performance of human read-
ers paired with the proposed model in a clinical setting. However, this might be
subject of further studies to come. Lastly, the sample sizes used for comparing the
results of DeePSC and the radiologists (five and four respectively) are very small and
make valid claims about statistically significant differences ambiguous. Further stud-
ies should try to mitigate this issue by increasing the number of human evaluators.
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2.9 Excurse: Analysis of Multi-View-Aggregation

Strategies

The previous results show that the proposed model is able to robustly classify PSC-
compatible findings on multiple datasets and that the utilization of the combined
information of all seven MRCP images through the AVF in the MVCNN leads to
increased performance. However, the same attention-based view fusion method is
applied for all evaluations of DeePSC. The question arises, if and how the observed
improvement in predictive performance by utilizing the AVF can be further increased
by application of a different method. For this aim, an additional systematic explo-
ration of different view-fusion and view-correlation methods inside and outside of
the architecture, which are motivated by the literature, is conducted.

2.9.1 Aggregation Techniques

In the following, the various view-fusion and view-correlation methods analyzed and
compared in this study are described in detail.

Single-View CNN Metric Fusion

The multi-view format of the data can already be utilized with the SVCNN by aggre-
gating the individual predicted class probabilities for each separate view, outside the
actual DL network. This leaves the SVCNN’s architecture unchanged, but evaluates
the predictive performance on a per-patient basis instead of a per-image basis. The
following view-score fusion methods are analyzed in this work:

Full patient prediction refers to ...

Maximum - ...the maximum value of probabilities per class over all n views [84].

Additive - ...the sum of all probabilities per class over all n views [84].

Multiplicative - ...the product of all probabilities per class over all n views [84].

Majority Vote - ...the majority class when classifying each view separately [66].
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Multi-View CNN View Pooling

The View Pooling Layer compresses the input of multiple latent view vectors of shape
L×n into a single representation of shape L× 1 in the MVCNN. It is located between
the FE and the classification head. In this work, six pooling methods are examined:

Max Pooling - Basic view pooling method, directly adopted from [68]. Takes the
maximum across views of each element along L.

Mean Pooling - Basic view pooling method, directly adopted from [68]. Takes the
mean over views of each element along L.

Fully Connected Pooling - A trainable fully connected layer that takes the concate-
nated latent view vectors as an input size of n · L, with an output size of L. Adopted
from [74].

LSTM Pooling - An uni-directional long short-term memory (LSTM) layer with two
layers that takes the n latent views as sequential input and forwards only the last
hidden state [85]. Even though the incoming feature vectors of the different views do
not explicitly represent sequential data, the last hidden state combines information of
all input feature vectors in a single representation.

Attention Pooling (AVF) - The attention-based view fusion AVF layer as used in
DeePSC (see 2.6.1).

Element-wise Attention Pooling - This work further introduces the Element-wise
Attention Pooling, which learns as many attention weights as there are features in
the latent views. This extends the aforementioned Attention Pooling, where only a
single attention weight for each view is computed. In theory, this enables a more fine-
graded pooling and allows the network to individually weight and forward specific
regions inside each view. The attention-vector fan ∈ RL every view is computed as

fan =
exp(W EAP2 tanh(W EAP1hFE

n + bEAP1) + bEAP2)∑N
m=1 exp(W

EAP2 tanh(W EAP1hFE
m + bEAP1) + bEAP2)

. (2.9.1)

Here, W EAP1 ∈ RD×L, bEAP1 ∈ RD, W EAP2 ∈ RL×D and bEAP2 ∈ RL are trainable
parameters of the network, where L refers to the length of the input vector and D is a
hyperparameter. After optimization, D is set to 64 in this work. The hyperbolic tan-
gent non-linearity aims to prevent the exploding gradient issue, whereas the softmax
function ensures that all attention weights sum to 1.
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After multiplying each feature with its respective attention weight, i.e. the Hadamard-
product of the attention vector fan ∈ RL and the feature vector hn ∈ RL, the output
is summed along the views and pooled to a single representation hAVF, which is then
forwarded to the classification head. This is denoted as

hAVF =
N∑

n=1

fan ⊙ hFE
n . (2.9.2)

Multi-View CNN View Correlation

The view correlation layer is an optional layer in the MVCNN that aims to inject
inter-view related information about all views into each latent representations of the
extracted views without altering the shape of the tensor. It is located between the FE
and the view-fusion layer. Three methods for view-correlation were evaluated in the
course of this work:

None - Skip the View Correlation Layer.

LSTM Correlation - A bi-directional LSTM [85] that takes the n latent views as se-
quential input and forwards all n hidden states. Adopted from [70].

Self-Attention Correlation - For every latent view hn ∈ RLx1, N attention weights
anm are computed, resulting in the attention matrix ASA ∈ RN×N . ASA contains infor-
mation about the relevance of each view hn in relation to every other view hm and is
multiplied with the incoming feature vector after the FE. This creates context-aware
embeddings from every view. This layer is implemented as proposed by Rymarczyk
et al. [86]. The output hSA

n for a single latent view hFE
n is derived as

hSA
n = hFE

n +
N∑

m=1

anm(W
VhFE

m + bV), (2.9.3)

where

anm =
exp((WQhFE

n + bQ)T (WKhFE
m + bK))∑N

o=1 exp((W
QhFE

n + bQ)T (WKhFE
o + bK))

, (2.9.4)

resulting in the set of all latent view features SSA = {hSA
n ∈ RL} with n ∈ {1, 2, ..., N}

after the self-attention correlation layer. Here, WQ,WK ∈ RDSA×L, bQ, bK ∈ RDSA ,
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WV ∈ RL×L and bV ∈ RL are trainable parameters of the network, where L refers to
the length of the input vector and DSA is a hyperparameter set to 64 in this work. n,
m and o are indices of the N = 7 views per MRCP.

2.9.2 Evaluation

Table 2.9.1: Classification accuracy of the evaluated architectures on the testsets over
5 rounds. Testset size is 10% of the full data of the 3T and 1.5T datasets. ’gain’ refers
to the improvement of the fusion-methods (architectures & metrics) over the single-
view (SV) accuracy, where ∅ refers to the average improvement, ± refers to the stan-
dard deviations of improvements across methods,

xto the maximum improvement
and

yto the minimum improvement.

3T s-att lstm - SV metrics

max 82.4±3.2 82.4±2.0 82.4±3.2 SV 78.8±2.9
mean 81.0±4.4 82.9±1.7 82.0±3.3 maj 82.4±2.0

fc 79.0±4.4 82.0±2.8 82.4±3.2 add 81.5±3.7
lstm 80.5±3.0 82.0±1.3 83.4±3.2 mul 81.5±3.7
att 82.0±2.8 82.4±1.1 82.4±3.2 max 82.0±3.7

e-att 82.4±2.7 82.9±1.7 82.4±3.2

gain ∅3.31 ±0.90
x4.60

y0.21

1.5T s-att lstm - SV metrics

max 80.9±2.5 78.2±3.7 79.6±4.3 SV 78.9±1.9
mean 80.9±4.0 77.8±4.2 81.3±3.0 maj 81.8±3.7

fc 83.6±2.0 81.8±2.9 81.8±2.9 add 80.0±3.5
lstm 82.2±4.4 80.9±3.0 85.8±1.2 mul 80.0±3.5
att 80.9±3.4 76.4±3.4 80.4±4.0 max 79.6±5.3

e-att 79.6±2.9 79.1±4.6 81.3±3.4

gain ∅1.81 ±1.88
x6.86

y-2.48

For the view-aggregation exploration, training of SVCNN and MVCNN is performed
as described in 2.6.2. However, for every combination of view-fusion and view-
correlation layer, the hyperparameters are tuned independently using 5-fold cross
validation on the 3T data. The same hyperparameters are then applied to the 1.5T
model. Freezing the weights of the FE in MVCNN ensures that all evaluated aggre-
gation methods receive the same latent representations and that differences in per-
formance are solely based on the respective view-correlation and view-pooling layer.
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Table 2.9.2: Classification accuracy of the evaluated architectures using 5-fold cross-
validation on the full dataset over 5 rounds (random seeds) per split. ’gain’ refers
to the improvement of the fusion-methods (architectures & metrics) over the single-
view (SV) accuracy, where ∅ refers to the average improvement, ± refers to the stan-
dard deviations of improvements across methods,

xto the maximum improvement
and

yto the minimum improvement.

3T s-att lstm - SV metrics

max 84.7±2.6 84.6±2.8 84.3±2.5 SV 81.5±1.7
mean 85.3±3.1 85.1±2.9 85.2±2.9 maj 84.9±2.1

fc 82.7±2.5 85.1±3.1 84.9±2.5 add 85.6±2.7
lstm 83.2±2.1 84.8±2.6 84.4±2.9 mul 85.4±2.7
att 84.8±2.5 85.0±2.6 84.7±2.4 max 84.4±2.9

e-att 85.1±2.9 85.3±2.5 85.1±2.5

gain ∅3.19 ±0.60
x3.81

y1.24

1.5T s-att lstm - SV metrics

max 83.1±2.7 83.4±2.9 82.8±2.4 SV 81.0±3.0
mean 82.8±3.3 83.2±3.0 83.3±3.0 maj 83.2±3.6

fc 83.2±3.0 83.4±3.4 83.0±3.4 add 83.4±2.6
lstm 82.6±3.0 82.9±3.1 83.5±3.3 mul 83.3±2.4
att 83.1±2.7 82.7±3.5 82.7±3.0 max 82.5±2.6

e-att 83.0±2.8 83.0±3.3 83.5±2.6

gain ∅2.13 ±0.25
x2.59

y1.70

Every combination is trained and evaluated five times with varing random seeds.
Table 2.9.1 depicts the results of all aggregation methods. Training and test set corre-
spond to those used in DeePSC, though for this evaluation, samples with small-duct
PSC are still included, hence the observed shift in absolute performance. On the
3T dataset, applying view fusion methods increase the accuracy in all cases above
the SVCNN baseline, with an average improvement across methods of 3.31±0.90 per-
centage points. On the 1.5T dataset, an average improvement of 1.81±1.88 is achieved.
Maximum improvement is at 6.86 percentage points, however, in three out of the 22
methods, a decrease in accuracy can be observed. Since hyperparameters are only op-
timized on the 3T dataset and ported to the 1.5T data, the decrease might be caused by
suboptimal hyperparameter settings. On both datasets, the MVCNN without view-
correlation and LSTM-pooling yields the highest accuracy. When ranking the other
MV architectures, no common pattern can be observed.
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To verify if these findings hold true on a different sample distribution, the evaluation
is repeated using 5-fold cross-validation on the full datasets, resulting in five different
random splits of 80% training and 20% testset per dataset. Training and evaluation
is repeated over five random seeds per split. Table 2.9.2 shows the mean accuracy on
the testsets over all splits and rounds per architecture. Here, all fusion methods im-
prove accuracy compared to the SVCNN baseline on both datasets, with an average
improvement of 3.19±0.60 percentage points across methods on the 3T data and an
average of 2.13±0.25 percentage points on the 1.5T data.

2.9.3 Discussion

The results on the initial datasplit as well as from the cross-validation study indicate
that utilizing the combined information of a sample with any view-fusion method
improves classification accuracy over the single image baseline in the SVCNN. When
interpreting the results on a single dataset with a single datasplit, it might appear
that specific view-fusion methods outperform others (Table 2.9.1. While this pattern
already does not hold true when moving to another dataset, the differences in perfor-
mance of view-fusion methods nearly fully vanish when averaging over the results of
multiple splits of training- and testset of the same data, as shown in Table 2.9.2. This
is highlighted by the increased standard deviations of improvements across meth-
ods inside a static datasplit compared to those in the cross-validation case, which
indicates a high correlation of the optimum method to the actual sample distribu-
tion in training- and testset, rather than a universally best method. When putting the
results into relation to the respective model’s complexity, there is no visible perfor-
mance gain whatsoever from utilizing the view-correlation layer with self-attention
or a LSTM for more sophisticated architectures. Also the simple max and mean view-
pooling as well as the SV score fusion metrics are able to perform on par with the
more complex fusion methods, like the proposed highly parameterized element-wise
attention-pooling.

In conclusion, it can be stated that utilizing the combined information of multi-view
data with any form of view-fusion is able to improve performance compared to single-
view classification. With the MRCP data used in this work, the universal performance
of a specific view-fusion method appears unpredictable and highly correlated to the
underlying sample distribution into training- and testset. When averaging the results
per fusion-method over different data splits, the differences between them become

47



2 Detection of Primary Sclerosing Cholangitis with Deep Learning - DeePSC

negligible. With this, and according to the theorem of Occam’s razor, a recommenda-
tion for usage of the simpler methods and architectures, that require no to little effort
in finetuning of hyperparameters, can be made. Applying view-fusion metrics to the
SVCNN provides the best ratio of simplicity and performance, since this requires no
changes to the original SVCNN architecture. If applying a fusion metric is not an op-
tion, for example if the network is further extended after the view-fusion to perform
survival analysis or other tasks in an end-to-end fashion, MVCNN pooling methods
that do not rely on additional hyperparameters, like max or mean pooling, should be
preferred. An arguable benefit of the more complex attention pooling is the ability
to extract information about the impact and importance of every view for the models
prediction, by analysing the respective attention weights, thereby increasing model
interpretability. The additional view-correlation layer (i.e. bi-directional LSTM or
self-attention) should be omitted, since it introduces unnecessary complexity to the
model without improving its predictive performance. However, this might not be
true for models trained on significantly larger datasets, as has been shown in the
eCareNet proposed by Dietrich et al. [29].

At this point it is important to note an obvious limitation of this study, namely that
even though extensive hyperparameter tuning is performed, the search space is not
explored to its full extend for every dataset and -split. On the small and sample-
sensitive MRCP datasets used in this work, 5-fold cross-validation tuning results vary
heavily between splits and do not guarantee a matching test set performance. This is
making heavy hyperparameter tuning on such small datasets only useful to a limited
extend.

Given the high impact of MRI data preprocessing on overall performance, as depicted
in the ablation study in 2.7.4, future work on MRCP multi-view image data should
focus their attention more on dataset homogenisation and preprocessing rather than
the optimization of the view-fusion architecture. This is also emphasized beyond the
specific application of this work by other recent research, like the "data-centric AI
movement" [87].
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2.10 Conclusion

In conclusion, this work demonstrates that automated classification of PSC-compatible
findings based on 2D-MRCP using multi-view deep learning algorithms is achievable
with high accuracy for both 1.5T and 3T. The proposed DeePSC model scores higher
than the mean classification provided by four radiologists at different levels of train-
ing and with varying experience with respect to accuracy, F1-score, specificity and
sensitivity (RQ-1). It furthermore excels in the classification of previously unseen
data from a different manufacturer’s MRI machine. The ablation study on both inter-
nal datasets and the external vendor validation data reveales how this is enabled by
the proposed preprocessing pipeline, consisting of histogram equalization, quantile-
based intensity normalization and random data augmentation (RQ-2). Examination
of the GradCAM activation maps reveal high activation in the relevant region of the
biliary tree, positively contributing to the explainability and trustworthiness of the
model’s prediction (RQ-3). Evaluating the aggregation of multiple MRCP images in-
side and outside the proposed deep learning network leads to the conclusion that
utilizing the combined information of all views consistently improves performance
over predicting on individual images. However, the influence of exact choice of ag-
gregation method is negligible in comparison to the overall gain. Given the aim of
developing a transparent model and the inherent notion of importance per image in
the attention-based view fusion method, this choice is the most interpretable of the
evaluated options (RQ-DeePSC). After further training the network with the inclu-
sion of controls with other liver and bile duct diseases, DeePSC may in the future
provide valuable clinical decision support to radiologists, reduce inter-reader vari-
ability and therefore contribute to the early and precise diagnosis of PSC based on
2D-MRCP.
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3.1 Introduction

Prostate cancer (PCa) stands as a significant public health concern worldwide, rep-
resenting a challenge in both clinical management and public health care systems.
PCa ranks among the most prevalent cancers in men, with approximately 1.4 million
new cases worldwide each year with its incidence steadily increasing over the past
decades [88]. Due to the wide variety in growth rates of PCa, histopathology plays
a central role in the diagnosis and management of PCa. An essential part of PCa di-
agnosis is the manual inspection of its severity through biopsies and histopathology.
The current gold standard for PCa grading is the ISUP score that is determined by the
International Society of Urological Pathology [89] and based on Gleason grades [90]
derived from histological examination of prostate biopsies. Gleason grades range
from 1-5 with increasing cancer severity to predict disease aggressiveness. For a
biopsy, the most frequent and worst Gleason grades are combined to form a Glea-
son score (e.g. 3+4). ISUP then rearranges the Gleason scores into five ISUP grades,
assigning the groups 1 (3+3 and below), 2 (3+4), 3 (4+3), 4 (3+5, 4+4, 5+3) and 5 (4+5,
5+4, 5+5). These categories are used to guide the urologist in treatment decisions.
Unfortunately, even between expert pathologists the concordance in Gleason grad-
ing suffers from high inter-observer variability leading to possible over- or under-
treatment due to the subjective nature of manual assessment [91]. Recent advance-
ments in digital pathology, including the introduction of high throughput digital slide
scanners, hold the potential to improve histopathological evaluation of PCa samples.
The possibility to use deep learning (DL) based algorithms to automatically analyze
pathological samples is not only time and cost effective but offers the potential for a
standardized, objective, and accurate evaluation, providing crucial insights into tu-
mor characteristics, aiding in treatment decisions, and assessing disease progression.
This offers the opportunity to an efficient and reproducible histopathological assess-
ment, thereby optimizing diagnostic accuracy and streamlining workflows in PCa
diagnosis and care. Many automated DL based PCa grading approaches are based
on the traditional Gleason or ISUP score of slide biopsies. Several of these algorithms
have attained pathologist-level performance in these tasks [92–94]. Model training
on ISUP score, however, is limited in its usefulness, as it distinguishes only five sub-
groups, one of which is characterized by a very good (ISUP 1) and three of which are
characterized by a bad prognosis (ISUP 3-5). Moreover, models trained on human
ISUP annotations will replicate human error, which is why recent approaches have
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shifted towards the more interpretable prediction of objective endpoints, such as time
to relapse (e.g. biochemical recurrence or cancer-related death). Some of these studies
concentrate on modeling the probability of relapse-free survival over time [29], while
others predict the probabilities of relapse up to one or multiple fixed time points [95].
While many promising steps have been conducted in the automated assessment of
PCa histopathological data, four prominent challenges still require further attention:
Robustness, interpretability, trustworthiness, and above ISUP-level grading perfor-
mance [12]. The biggest hurdle for automated PCa grading, possibly, is the variation
of histopathological protocols, which can result in a lack of robustness of algorithms
[12, 17, 96, 97]. Processing tissue for digitization consists of several steps: tissue
formalin fixation, paraffin embedding, sectioning, staining and digitization with a
slide scanner. Each step involves numerous parameters that can vary between clin-
ics, research institutions and even within the same lab, leading to variations in the
appearance of the tissue in the images. Especially AI-based PCa grading seems to
be negatively affected by data variation [12], while PCa cancer detection seems to be
robust to data variation and is already in clinical use [98, 99]. Given the potential
data variation-induced degradation of the predictive performance of AI-based PCa,
concepts to improve model trustworthiness have been recently proposed [100]. A
trustworthy model that quantifies its confidence or credibility in a prediction allows
for the deferral of the PCa grading of problematic samples to a human expert. Of
note, a systematic investigation of the impact of data variation on automated PCa
grading, as for example conducted for breast cancer [17], is still missing.

This work presents the Prostate Cancer Aggressiveness Index (PCAI), a novel end-
to-end PCa risk assessment model that addresses four essential pillars of clinical ap-
plicability, robustness, interpretability, trustworthiness, and a PCa grading perfor-
mance that exceeds the human annotated ISUP score. PCAI utilizes patient relapse
information as an objective measure for cancer aggressiveness and is trained on one
of the largest and most diverse PCa histopathology datasets collected to date, con-
taining six cohorts with over 25,591 patients, 83,864 images, and 5 years of median
follow-up from 5 different centers and 3 countries. An important part of this data is
a unique high-variance cohort of 8,157 patients with 28,236 scanned tissue microar-
rays (TMAs) with variations in sample thickness, staining time, and scanner device.
Using this dataset, the robustness of AI-based PCa grading to data variation is sys-
tematically evaluated. To this end, first a baseline model BASE is derived, trained
on a single TMA data source. Severe performance degradation is observed in the
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BASE model on data deviating from its training distribution. PCAI then builds on
this BASE model by incorporating several algorithmic adaptations, namely joint do-
main adversarial training and color adaptation for robustness, credibility estimation
for trustworthiness, and cancer localization for interpretability, to exceed its perfor-
mance on all evaluated datasets. Finally, PCAI outperforms human annotated ISUP
grading in both the Concordance Index (C-Index) and area under the receiver oper-
ating characteristic curve (AUROC) on unseen and external TMA spot and biopsy
images.

PCAI was developed in collaboration with Patrick Fuhlert.
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3.2 Foundations

In this chapter, the medical foundations of prostate cancer, its diagnosis using histopatho-
logical analysis as well as the clinical workflow to derive at a treatment decision for
the patient, are described. Furthermore, the methodologies of survival analysis and
the corresponding quantification of cancer aggressiveness based on patient outcome
information are outlined. Finally, the Efficientnet CNN architecture as well as the
Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction
technique, which are used in the course of this work, are introduced.

3.2.1 Prostate Cancer

Prostate cancer (PCa) is the second most prevalent cancer in men, with over 1,414,000
new diagnoses worldwide in 2020 and a rising incidence with higher age [88]. The
prostate, which is located in the male pelvis below the urinary bladder and immedi-
ately anterior to the rectum, consists mainly of glandular tissue that contributes about
a third of the total seminal fluid and promotes a healthy alkaline state of the semen
[101]. The median age for initial diagnosis of PCa in the United States is 66, and
the overall risk to develop a clinically significant cancer over the course of ones life is
estimated at 11.6% [102]. PCa is a very slow growing type of cancer, with a 5-year sur-
vival rate of over 97% if the cancer did not spread to other parts of the body at time of
diagnosis [103]. However, if distant metastasis are present, 5-year survival rate drops
close to 30% [104]. Initial or early symptoms are very rare, though in later stages it
may cause fatigue due to anemia, bone pain, paralysis from spinal metastases, and
renal failure from bilateral ureteral obstruction [102]. To detect PCa in its early stages
before it can cause symptoms, most developed countries offer a PCa screening pro-
gramm. In Germany, these consist mostly of a digital rectal exam (DRE), while in the
United States, measuring the prostate-specific antigen (PSA) value is more common.
PSA is a protein produced in the prostate glands, that can be measured in the blood
and which expresses elevated levels in case of PCa. Healthy levels of PSA are consid-
ered around 4 ng/ml. However, PSA screening lacks specificity, since elevated levels
can also be caused by an enlarged prostate, which might lead to overdiagnosis. De-
spite this, it is still the most commonly used and recommended procedure for early
detection of PCa [105].

If a DRE or elevated PSA levels hint at the presence of PCa, the gold standard for con-
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firmative diagnosis is a a transrectal ultrasound-guided (TRUS) biopsy of the prostate
[106]. Newer diagnostic modalities include high precision MRI-guided fusion biop-
sies or non-invasive MRI-based Prostate Imaging Reporting and Data System (PI-
RADS) scoring. Up to 14 tissue cores are extracted during a single biopsy [107]. These
cores are then embedded and fixated with paraffin, cut into slices with thicknesses
between 1.0 - 10.0 µm and stained with hematoxilin and eosin (H&E) [108]. Hema-
toxilin binds to acidic components, like cell nuclei, and colors them purple, while
eosin binds to basic components and colors them pink. This allows for easier assess-
ment of the tissue through light microscopy by the pathologist. Based on the grade of
mutation visible in the cancerous tissue, the examiner assigns a Gleason grade, as ex-
plained in the following section. This histopathological grade is then, in combination
with other clinical factors, used to derive a treatment decision for the patient. Pos-
sible treatments include active surveillance, referring to no immediate action but a
close observation of cancer development, hormonal therapy, radiotherapy or radical
prostatectomy (RP) [109]. RP refers to the surgical removal of the full prostate. This
operation poses major risk of undesired side effects like impotence and incontinence,
highlighting the need for accurate patient risk assessment to avoid unnecessary op-
erations [110]. Even after removal of the full prostate, the cancer can spread again.
This manifests either in the development of metastases that are visible during ra-
diographic examination or by biochemical recurrence (BCR). The latter points to a
recurrence of the disease which, even though it remains radiographically invisible, is
indicated by a sudden rise in PSA levels during post-operative monitoring [102]. Af-
ter RP, histological re-assessment of the removed prostate tissue is performed, where
the pathologist analyzes the removed tissue under the microscope and assigns a Glea-
son grade. This allows for a more thorough assessment than initial needle biopsy and
forms the basis for potential additional (adjuvant) treatment decisions after the op-
eration. Besides the described re-assessment in the clinical workflow, the removed
prostate tissue can be used to derive tissue microarray (TMA) spots, mostly for teach-
ing and research purposes. To this end, the removed tissue undergoes similar histo-
logical processing as the needle biopsy. However, after embedding the full prostate
in paraffin, tissue cores are extracted with a hollow needle with a diameter of 0.6 to
2.0 mm [111]. Multiple such extracted cores (of multiple patients) are arranged in a
grid-like order in another paraffin block. After this, the blocks are cut into sections of
1.0 - 10.0 µm thickness and stained with H&E, analogue to the processing of the nee-
dle biopsy. Figure 3.2.1 depicts the typical workflow from a suspicious PCa screening
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over histopathological assessment to treatment decision.

Figure 3.2.1: Workflow from PCa screening to treatment decision. If the screening
results in a suspicion of prostate cancer, a biopsy of the prostate tissue is taken.
The extracted tissue is further embedded in paraffin, stained with hematoxilin &
eosin (H&E) and cut into slices. It is then either assessed directly by the pathologist
or digitized using a histopathological scanner for digital evaluation. The patholo-
gist assigns a Gleason grade, ranging from 1-5 based on the grade of visual muta-
tion of the tissue under the microscope. Depending on the Gleason score, as well
as other patient related factors, a treatment decision is derived. In case of a radi-
cal prostatectomy (RP, depicted in grey), the full prostate is removed. Afterwards,
the removed prostate tissue is processed similar to the biopsy tissue for further
histopathological analysis, though it is cut and arranged in the form of multiple
round spots in a tissue microarray (TMA). Gleason patterns are adapted from Law-
son et al. [112] under the Creative Commons Attribution 4.0 International License at
https://creativecommons.org/licenses/by/4.0/

Prostate Cancer Grading

The Gleason grading system was developed by Dr. Donald Gleason in the 1960’s
and remains the gold standard for histological PCa risk prediction to date [90, 113].
The Gleason grade is based on the amount of mutation visible by the architectural
arrangement or pattern of the glands of the sliced and stained tissue under the micro-
scope. Different grades are assigned by the pathologist to different areas of the tissue,
where Gleason grade 1 refers to an almost normal glandular appearance, whereas
in Gleason grade 5 no more glandular structure is visible, and only sheets of abnor-
mal cancer cells remain. In Figure 3.2.1, exemplary tissue patches for Gleason grade
3-5 are depicted. In order to derive a Gleason score for the patient based on their
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biopsy, the primary and secondary Gleason grade is combined, referring to the most
prevalent and the most severe pattern visible in the tissue. So if in a biopsy mostly
Gleason 3 patterns are visible, but there are small amounts of Gleason 5, the total
score would amount to 3+5. If only a single pattern is visible overall, e.g. only Glea-
son 4, the score would be written as 4+4. Notably, for prostate tissue analyzed after
radical prostatectomy, i.e. TMA spots, the definition for the secondary grade changes
from "most severe" to "second most prevalent". In both cases, the Gleason score can
also be reported as the sum of both patterns, e.g. Gleason score 3+5=8. However,
this summation leads to ambiguity, especially for Gleason score 7, where patients
with Gleason score 3+4 express significant differences in disease progression to Glea-
son score 4+3 [114]. To account for the lack of resolution, the updated ISUP scoring
system was proposed at the International Society of Urological Pathology consensus
conference in 2014 [89]. The ISUP score ranges between 1 and 5 and transforms all
combinations of Gleason grade 3 to 5, with emphasis on better distinguishability in
the Gleason grade 3 and 4 groups. Since Gleason grades 1 and 2 are considered be-
nign, these grades are neglected in the ISUP scoring system. Table 3.2.1 depicts the
relationship between the Gleason grades, Gleason sum and ISUP.

Table 3.2.1: Translation of Gleason grades to Gleason sum and ISUP score [89].

Risk group Low Intermediate High
Gleason grades 3 + 3 3 + 4 4 + 3 4 + 4 3 + 5 5 + 3 4 + 5 5 + 4 5 + 5
Gleason sum 6 7 8 9 10
ISUP score 1 2 3 4 5

Integrative Quantitative Gleason

Sauter et al. proposed a more fine-grained system, called the integrated quantitative
Gleason (GIQ), which integrates information about the quantities of the Gleason pat-
terns into account, instead of rating only their presence [115, 116]. In detail, the GIQ is
derived from the percentages of Gleason patterns 4 and 5 in the prostate tissue, with
additional emphasis on the Gleason 5 pattern. In detail, the GIQ is calculated as

GIQ = GG4% + GG5% + 10 · 1GG5%>0% + 7.5 · 1GG5%>20%. (3.2.1)

Here, GG4% and GG5% describe the ratio of Gleason pattern 4 and 5, respectively,
to the total cancerous tissue of a sample and 1X is the indicator function. This re-
sults in the overall GIQ score ranging from 0 (for 3+3) to 117.5 (for 5+5). The authors
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claim that by using this continuous scoring system, increased clinically relevant mor-
phologic information is captured over the standard Gleason grading, especially in
borderline cases [115]

Digital Pathology

While histopathological analysis of the formalin fixed, paraffin embedded, cut and
stained tissue samples is typically performed by the pathologists through examina-
tion under the microscope, in recent years digitalization has found its way into the
pathology department. With this, so called digital whole-slide images (WSI) of the
prepared biopsy or TMA slides can be created using specialized histopathological
scanners [117]. Those WSIs can span several gigapixels in resolution, depending on
the microscope objective used for scanning. A typical objective achieves a maximum
magnifciation of 40x, which results in a pixel length of roughly 0.25 um. Image files
are stored in a multilayered pyramidial format of multiple lower magnification lev-
els, to enable computationally efficient real-time viewing across different resolutions.
Notably, due to differences in acquisition hard- and software, different scanner de-
vices introduce intrinsic domain shifts to the images that might exceed apparent dif-
ferences such as color or resolution [118]. These domain shifts pose a major challenge
to deep learning applications in the field of digital pathology.

3.2.2 Survival Analysis

Survival analysis, or more generally, time-to-event-analysis, is a field of statistics that
deals with the estimation of the time until a specific event of interest (e.g. death)
occurs for an individual or a population. What differentiates survival analysis from
regression is the integration of censored data. Right-censored data consists of indi-
viduals that did not experience the event of interest by the end of the observation pe-
riod or that are lost to follow-up prior to the end of the observation period and from
there on in an ambiguous and uninformative state. Left-censored data consists of in-
dividuals where an event is observed, but the exact time of occurrence is unknown.
This work only considers right-censored data and refers to those as "censored" in the
following. In the context of prostate cancer disease progression, a patient that dies
5 years after initial diagnosis would be considered an un-censored patient with an
event after five years. A patient that survived for four years, but then dropped out
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of the study (lost follow-up), would be considered censored after 4 years. If a pa-
tient survived until the very end of the observation period, it would be considered
censored at that point. A classical, non-parametric approach to model the survival
characteristics of a population is the Kaplan-Meier survival curve analysis [119]. It
estimates the survival function S(t), i.e. the probability to survive at least until the
time t, as

Ŝ(t) =
∏
i:ti<t

(
1− di

ni

)
, (3.2.2)

where Ŝ(t) is the estimated survival probability at time t, di is the number of events
(deaths) at time ti, and ni is the number of individuals that survived (not yet censored
nor experienced an event) up to ti. The survival probability over time of the estimated
survival function Ŝ(t) can then be visualized as a survival curve. Confidence inter-
vals can further be calculated using the exponential Greenwood formula [120]. Since
the Kaplan-Meier method estimates a single survival function for the whole popula-
tion, it is mostly used for comparing the survival probabilities of different groups of
patients, e.g. for analysing the impact of a specific treatment on a group of patients
(Figure 3.2.2).

Figure 3.2.2: Kaplan-Meier curve with survival probability S(t) over time t for an
exemplary treatment and control cohort. If the treatment is effective, S(t) of that
cohort declines slower than for the control group.
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In contrast to this population-based survival analysis, individual survival analysis
deals with the estimation of survival probability for a single sample or patient based
on a set of given input features. This can either be done by directly predicting the
individual survival probability S(t) over time, or by prediction of a risk score R that
stratifies patients according to their observed follow-up information. In the scope of
this work, only risk score based individual survival analysis will be considered.

3.2.3 Quantification of Cancer Aggressiveness

The aim of this project is to build a model that predicts a score that correlates with
cancer aggressiveness. However, such a score or notion of aggressiveness is not di-
rectly available in patient follow-up data. To transform the clinical follow-up infor-
mation into a quantifiable measure correlating with cancer aggressiveness, the no-
tion of "relapse-free survival time" is utilized. For this, the indications of PCa-related
death, developing a metastasis, and, in the case of patients that underwent radical
prostatectomy, biochemical recurrence (BCR) are considered to indicate a worsening
of the disease and defined as a relapse. If a patient experienced a relapse shortly after
acquisition of the biopsy or radical prostatectomy, the tissue present in the acquired
samples is expected to correlate with a highly aggressive cancer, while longer relapse-
free survival times are expected to correlate with less aggressive forms of cancer. Fol-
lowing the notion of survival analysis introduced in the previous section, the relapse
can also be described as "event". If the patient does not experience an event over the
course of the follow-up, he is considered "censored" with a relapse-free survival time
until the time of the last known contact in the follow-up.

3.2.4 EfficientNet

Efficientnets are a family of deep learning architectures that are developed by Tan et
al. with the aim to achieve state-of-the-art performance while being computationally
efficient [121]. The authors claim that previous work mostly focused on scaling up a
single dimension of the underlying architecture to increase performance with increas-
ing computational budget, like the depth dimension when stacking more layers in the
ResNet family of architectures. They propose a novel principled compound scaling
method, that uniformly scales network width, depth and input resolution with a fixed
set of scaling coefficients with increasing computational resources. Furthermore, they
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develop a novel baseline CNN and use their compound scaling method to derive a
family of models at different scales, ranging from Efficientnet-b0 as the smallest in-
stance to Efficientnet-b7 as the largest. Efficientnet-b0 surpassed the widely used
ResNet-50 architecture by 1.1% in Top-1 Accuracy on ImageNet, while utilizing only
a fifth of the parameters. The main building block of Efficientnets is the mobile in-
verted bottleneck convolution (MBConv) proposed by Sandler et al., to which the
authors additionally add squeeze-and-excitation optimization proposed by Hu et al
[122, 123]. The authors claim that these blocks reduce parameters and computational
cost without sacrificing performance. In this work, the smallest instance of the Effi-
cientnet family, Efficientnet-b0, is utilized.

3.2.5 Uniform Manifold Approximation and Projection (UMAP)

UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduc-
tion technique designed to capture the underlying structure of high-dimensional data
by preserving both local and global relationships [124]. In simple terms, UMAP con-
structs a high dimensional graph representation of the data then optimizes a low-
dimensional graph for maximum structural similarity. Optimization is performed
by stochastic gradient descent. To this aim, UMAP assigns the likelihood of being
connected to data points in the high dimensional space, based on their actual multi-
dimensional distance in the data and a user-definable parameter of nearest neighbors
which defines the size of the local neighborhood to consider. This parameter controls
how UMAP balances the local versus global structure in the data. A higher setting
will push UMAP to capture more of the bigger picture, while smaller values aim
to capture more detailed relationships. UMAP then constructs the high dimensional
graph of the underlying data and assigns the likelihood of two points being connected
as their edge weights. The low-dimensional graph is then iteratively adapted to min-
imize its discrepancy to the high-dimensional representation. UMAP aims to pre-
serve local and global structure and provide a visually meaningful two-dimensional
representation even in complex datasets. This sets it apart from principle component
analysis, which works best only if the first two principle components account for the
most variability in the data.

In more detail, let X = [x1, . . . ,xn] ∈Rd×n denote a dataset where n is the sample size
and d is the dimensionality. UMAP then first constructs the high dimensional graph
in the input space using the k-Nearest Neighbors (kNN) algorithm, with the default
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value k = 15 [125]. The j-th neighbor of xi is denoted by xi,j and the set of neighbor
points Ni of point xi as Ni = {xi,1, . . . ,xi,k}. Then, the Radial Basis Function kernel
is used to measure the similarity of points in the high dimensional space. This results
in a probability pj|i for a point xi to have the point xj as its neighbor as

pj|i =

exp
(
−∥xi−xj∥2−ρi

σi

)
if xj ∈ Ni

0 otherwise
. (3.2.3)

Here, ∥.∥2 denotes the ℓ2 norm and ρi the distance from xi to its nearest neighbor as

ρi = min
{
∥xi − xi,j∥2 | 1 ≤ j ≤ k

}
. (3.2.4)

The scaling parameter σi is calculated such that the total similarity of point xi to its k
nearest neighbors is normalized to log2(k), i.e. that σi satisfies

k∑
j=1

exp

(
−
∥xi − xi,j∥2 − ρi

σi

)
= log2(k). (3.2.5)

Then, equation 3.2.3 is symmetrized to derive the final measure of similarity of points
xi and xj in the input space as

pij = pj|i + pi|j − pj|ipi|j. (3.2.6)

Let then the corresponding set of points in the low dimensional embedding space be
Y = [y1, . . . ,yn] ∈ Rp×n where p is the dimensionality of embedding space. Here, the
probability that a point yi has the point yj as its neighbor is given by their similarity
as

qij =
(
1 + a

∥∥yi − yj

∥∥2b
2

)−1

, (3.2.7)

where a > 0 and b > 0 are hyperparameters determined by the user with default
values of a ≈ 1.929 and b ≈ 0.7915 [125].

The graph in the low-dimensional embedding space is then iteratively adapted to
maximize similarity to to the graph in the input space by minimizing the cost function
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L(p, q) =
n∑

i=1

n∑
j=1,j ̸=i

(
pij ln

(
pij
qij

)
+ (1− pij) ln

(
1− pij
1− qij

))
. (3.2.8)

Throughout this work, UMAP representation with a local neighborhood of k = 15

samples will be utilized to provide visual representations of the underlying data.
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3.3 State of the Art

The following section describes the current state of the art of deep learning appli-
cations in the overall field of digital pathology and the characteristic challenges as-
sociated with the processing of histopathological whole slide images (WSIs). It then
further provides an overview of AI applications in the specific field of prostate cancer.
Finally, a systematic review of the literature focusing on building robustness and gen-
eralizability of deep learning models for histopathological image data is conducted.

3.3.1 Deep Learning in Digital Pathology

With digitalization finding its way into clinical pathology in recent years, AI-based
applications on histopathological images flourish accordingly, for many different tasks
and diseases. However, processing of histopathological images incorporates various
characteristics that set it apart from classical deep learning based image processing.
The arguably biggest challenge is the sheer size of the WSIs that can span multiple
gigapixels. A common method to deal with this in the literature is patch-based Multi-
ple Instance Learning (MIL). Here, the WSI is cut into multiple equally sized patches
with resolutions typically used in common encoder architectures like ResNet-50 and
processed as a bag of image patches. However, the ground truth, like a cancer sever-
ity or the death of a patient in the future, does not correspond with an individual
patch, but only with the full patch bag. Therefore, for training of the downstream
task, a DL model potentially needs to process all patches at once per iteration. Since
this is often not feasible due to computational constraints, different MIL approaches
are taken in the literature.

Foundational work of MIL in the field of digital pathology was provided by Cam-
panella et al. [93], who successfully trained a slide-level classifier for prostate, skin
and breast cancer detection. They developed a CNN that processes individual patches
and performs inference before every training step. Then, only the patches showing
the highest predicted class probability are selected and used for training, by assign-
ing the full image label to them. However, this requires a well initialized network
and limits the actually utilized information per WSI at every training step to a small
fraction of the patches, potentially neglecting valuable information. In contrast, in
the attention-based MIL approach proposed by Ilse et al. [78], all patches per bag are
processed in parallel in every training step. A learnable attention layer aggregates
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the latent patch representations inside the network by assigning an attention weight
to every instance and combining them by weighted averaging. The combined bag
representation is then processed by the classifier. While this requires training of more
parameters than in the method proposed by [93], it enables the network to dynami-
cally decide which and how much information it utilizes for every WSI. Similarly, Lu
et al. proposed CLAM, which incorporates multi-class attention-based patch aggre-
gation branches, which, as the authors claimed, improves performance on multi-class
classification tasks over the method proposed by Ilse et al. [126]. By visualizing the at-
tention weights per patch, this method also includes an inherent visual interpretabil-
ity. However, due to the computational demand, end-to-end training was infeasible
and the authors relied on latent patch representations from an ImageNet pre-trained
ResNet-50 [45, 55]. To improve the quality of patch embeddings, even though end-
to-end training with an encoder is not feasible, self-supervised approaches are often
utilized in the literature. Ciga et al. utilized the SimCLR method for patch-based con-
trastive pre-training of multiple ResNet-based encoder architectures on data from 57
unlabelled histopathological datasets [127, 128]. By training a linear classifier on the
extracted patch features, they validated their method on various downstream tasks
and found that contrastive pre-training on histopathological images significantly im-
proves downstream performance over pre-training on ImageNet. They furthermore
found that combining multiple multi-organ datasets with different types of staining
and resolution properties improves the quality of the learned features. Only recently,
Chen et al. proposed UMI as a general-purpose self-supervised model for computa-
tional pathology [129]. It consists of a ViT-Large vision transformer, pretrained under
the DINOv2 student-teacher knowledge distillation method using over 100 million
tissue patches from over 100,000 WSIs across 20 major tissue types [130, 131]. They
evaluated on 33 clinical downstream tasks, using the attention-based patch aggrega-
tion method proposed by Ilse et al. for slide level tasks. Alternatively, the same au-
thors proposed the Hierarchical Image Pyramid Transformer (HIPT), which utilizes
the inherent pyramidial structure of WSIs to process the full image at multiple magni-
fications in parallel to create a single slide-level representation [129]. They compared
their method to classical MIL aggregation methods and outperformed those among
multiple tasks and datasets.
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3.3.2 Deep Learning in Prostate Cancer

Risk Assessment without Images

Risk analysis in the field of prostate cancer ranges back to the late 1990s, where Kat-
tan et al. proposed a regression based nomogram to model the 7-year recurrence-free
survival probability for patients after radical prostatectomy based on various tabular
clinical parameters [132]. These include, beyond others, the PSA value, the patho-
logical Gleason score and information about leftover cancer at the surgical margins.
In 2005, Stephensen et al. updated the nomogram to be predictive up to 10 years
after radical prostatectomy [133]. In recent years, machine learning based methods
for survival analysis on electronic health records emerged [134]. Here, Wang et al.
published a meta-analysis of exisiting nomograms and newly developed machine
learning models for predicting the risk of lymph node metastasis [135]. They found
that predictive accuracy of the machine learning models is superior to existing clini-
cally recommended nomograms, with the former achieving a concordance index on
validation data of up to 0.862, while the latter achieve a maximum of 0.745.

Cancer and Gleason Prediction on Images

When utilizing histopathological images of PCa, most recent research in the field of
deep learning focused on predicting the subjective Gleason grading or detecting can-
cerous areas. Foundational work on this task has been provided by Campanella et
al. who trained a ResNet-34 model on over 8,000 prostate biopsy WSIs using their
proposed MIL approach described in the previous section for binary cancer detec-
tion [93]. On roughly 1,800 internal and 12,000 external test images, they achieved
an AUROC of 0.991 and 0.932, respectively. Bulten et al. trained an extended U-Net
for segmentation of benign tissue and Gleason growth patterns on indvidual patches
from 933 prostate biopsy WSIs [94]. By evaluating the normalised volume percent-
ages of each growth pattern, they achieved an AUROC of 0.990 in differentiating
benign from malignant biopsies, and an AUROC of 0.974 in differentiating Gleason
group 3 from less aggressive forms. Using their model for semi-automatic labelling
resulted in the PANDA dataset, which is used in this thesis and will be introduced in
later sections. On TMA-spot images, Arvaniti et al. developed a CNN-based patch-
wise Gleason classifier. Using a sliding-window approach, they derived pixel level
Gleason heatmaps for 245 test images and achieved a human level inter-annotator
agreement with two pathologists, measured by Cohen’s quadratic kappa, of 0.75 and
0.71 [136]. Pantanowitz et al. developed an algorithm for cancer detection and Glea-
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son classification on needle biopsy images [98]. For cancer detection, they achieved
an AUROC of 0.991 on external test data. Most importantly, they evaluated their algo-
rithm on 11,429 slides in routine practice, where it lead in 9% of cases to the ordering
of additional slides, of which two cases resulted in a third opinion request. In one
case, the algorithm detected a case of cancer that would otherwise have been missed
by the clinician.

Risk Assessment on Images

Research on objective PCa risk assessment without predicting a subjective intermedi-
ate score like Gleason on histopathological images is rare, potentially due to the lack
of sufficient patient follow-up information to derive an objective endpoint. To high-
light is here the eCareNet developed by Dietrich et al. which models patients risk of
relapse after RP by predicting individual 7-year survival curves per patient [29]. To
this end, the authors used the time from RP to BCR as objective ground truth and
trained their network on TMA-spot images from the same cohort used in the course
of this thesis, which will later be referred to as UKE.first. They used a modified Incep-
tionV3 encoder to extract patch features, a recurrent neural network to model the time
dependency and the attention-based MIL approach of Ilse et al. to aggregate latent
patch features [78, 137]. The predicted individual survival curves can also be trans-
formed into a single risk score. With this approach, they achieved an AUROC of 0.77
and a C-Index of 0.74 on the test data, lacking behind only 3 and 2 percentage points
to the risk stratification provided by ISUP scoring of the full prostate tissue. Closely
related, Walhagen et al. developed a similar patch-based risk assessment network on
the same cohort, however, by predicting the probability of experiencing a biochemical
recurrence, metastases, or death from prostate cancer in the first five years after RP in
a binary classification task [95]. Using the probability as a continuous risk score, they
achieved an AUROC of 0.79 on the test data, lacking 2 percentage points behind ISUP.
Both the works of Dietrich et al. and Walhagen et al. provided foundational research
to the PCAI model presented in this thesis. To the best of my knowledge, the only
other work to perform deep-learning-based risk assessment of PCa patients based on
histopathological images was presented by Pinckaers et al. [138]. They transformed
the years to biochemical recurrence, metastasis or PCa-related death into a multiclass
endpoint, with class 0 referring to relapse within the first year, and class 4 to a relapse
after the fourth year. Then, a ResNet50-D based classifier is trained on centered crop-
outs from the full TMA-spot images, neglecting the need for MIL patch aggregation.
Using a nested-case control study, they showed that predictions provided by their
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model provides strong correlation with relapse of PCa on test datasets provided by
the Johns Hopkins Hospital in Baltimore and the New York Langone Medical Centre.
Data from both test cohorts used by the authors will also be utilized in the course of
this thesis and referred to as JHU and NYU dataset, respectively.

3.3.3 Building Robustness in Digital Pathology

In addition to the computational difficulties that arise through the sheer size of the im-
ages, robustness and generalizability of deep learning models poses a major challenge
when utilizing histopathological image data. As Brehler et al. found, differences in
the data acquisition procedure, like longer or shorter staining times, varying tissue
thickness or different histopathological scanners are detrimental to the performance
of deep learning models when exposed to unseen data [12]. Wilm et al. highlighted
how especially scanner-induced domain shifts negatively impact model performance
on the downstream task of skin cancer segmentation. Their work builds on findings
from Stacke et al. who found that the sensitivity of a deep learning model to a covari-
ate shift in the data should be quantified by measuring the discrepancy of domains
in the model’s latent space [97]. Overcoming this sensitivity to covariate shifts in
histopathological image data is a major topic of research and is central to the yearly
MItosis DOmain Generalization Challenge (MIDOG) hosted by the Medical Image
Computing and Computer Assisted Intervention Society (MICCAI) [139].

Research on methods to increase robustness of deep learning models for histopatho-
logical image processing and to mitigate the influence of covariate or domain shifts
can roughly be divided into four categories:

Reduce Data Diversity During Inference

The most obvious method to overcome a covariate shift in the data is to directly adapt
the images to be more similar before forwarding them to a deep learning network.
Popular approaches are the H&E stain color separation and normalization proposed
by Macenko et al. and Vahadane et al. [140, 141]. This aims to reduce color varia-
tion across images specifically in the range of the purple and pink regions typical for
the hematoxilin and eosin staining. Dietrich et al. used the Macenko stain normaliza-
tion together with a histogram matching approach to successfully increase robustness
of eCareNet, as introduced earlier, on multiple datasets expressing a covariate shift
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to the training distribution [142]. Besides classic algorithms, Generative Adversarial
Networks (GANs) can be utilized to map unseen data from its source domain to the
target domain of the downstream model. Thebille et al. developed a CycleGAN to
transfer domain specific information of TMA spot data collected at two different hos-
pitals [143]. By adapting images from the unseen domain to the training domain, they
improved classification accuracy for the downstream task of Gleason score prediction
by 14%. However, adaptation of images, especially using generative deep learning
models, poses the risk of introducing undesirable artifacts, such that these methods
should be utilized with caution.

Increase Data Diversity During Training

Random data augmentations are a standard technique in the field of machine learn-
ing to improve robustness by increasing the variety of data seen by the model during
training. Khan et al. evaluated multiple color augmentation and stain normaliza-
tion strategies indivudally and in combination on the downstream task of classifying
benign vs. malignant breast cancer tissue [144]. They found that both stain normal-
ization and random color augmentations are able to improve performance on external
data individually and even more so when used in combination. In a larger study con-
ducted by Tellez et al., various combinations of random stain color augmentations
and stain color normalization techniques are evaluated on four downstream tasks on
histological data from nine different centers [145]. They found that augmenting the
color is fundamental for improved performance on images from unseen centers and
that stain normalization is neglectable when proper augmentations are in use.

Train Model to Become Domain-Agnostic

Besides the aforementioned data-centric approaches to robustness, model-centric ap-
proaches can be taken. One such method often utilized in the literature is domain ad-
versarial training. Here, a second task, like domain classification, is trained in parallel
to the main task. By inverting the gradient of the loss of the secondary task, it is aimed
to actively "un-learn" to extract discriminative domain-specific information required
for that task in the shared part of the model, i.e. make the model domain-agnostic.
This approach will be explained in more detail in later sections. Wilm et al. proposed
a domain-adversarial trained RetinaNet for mitotic figure detection on H&E stained
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breast cancer images as the reference approach to the 2021 MIDOG challenge [17,
146]. Using four different histological scanners as domain ground truth for adver-
sarial training together with applying strong data augmentation, they improved over
the baselines of applying only augmentations or no augmentations during training,
proving the positive influence of their scanner-adversarial training. Similar findings
are reported by Lafarge et al. who analyzed the effect of adversarial training with
acquisition center as domain ground truth for mitosis detection and tissue type as
domain ground truth for nuclei segmentation [147]. On both tasks, domain adversar-
ial training improved performance on unseen domains. Recently, a thorough analysis
of various stain normalization, color augmentation and adversarial training methods
has been conducted by Marini et al. [148]. To highlight is here that they addition-
ally analyzed H&E-adversarial training, where instead of discriminating pre-defined
domains in the data, regression on the H&E matrix per image, as derived by Ma-
cenko’s method, is performed. With this, they aimed to make the model agnostic to
differences in the staining color and significantly outperformed domain adversarial
training with the acquiring center as the domain ground truth.

Transfer Learning

Finally, transfer learning is a common approach when a big and more representative
dataset and a smaller target-domain dataset are available. Here, a model that was pre-
viously trained on the large representative dataset is fine-tuned on a smaller dataset
of the target domain. Aubreville et al. significantly improved mitotic figure detection
performance on the target domain when utilizing transfer learning [149]. However,
transfer learning is specific to a single domain and poses the risk of degrading model
performance on the initial source domain.

3.3.4 Summary

In summary, the state of the art highlights various challenges when utilizing deep
learning with histopathological images. To enable processing of the large and hetero-
geneously shaped WSIs, MIL methods are utilized in the literature. In the course of
this work, the attention-based MIL approach proposed by Ilse et al. will be used [78].
This has already proven successful by Dietrich et al. and Walhagen et al., who per-
formed similar experiments on the same cohort and serve as foundational research for
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this thesis [29, 95]. In terms of robustness, a multitude of approaches is taken in the
literature to overcome the detrimental effects of covariate shifts in the data caused
by differences in acquisition protocols, staining times or scanner devices. Most re-
search found that heavy data augmentation paired with domain adversarial training
provided the best generalization. Building on this, both approaches will be applied
in this work. Stain normalization mostly provided only insignificant or no improve-
ments when applied in combination with aforementioned methods and will be ne-
glected in this thesis. However, a test time image color adaptation procedure will be
utilized to further decrease variance before inference and therefore model robustness
and predictive accuracy.
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3.4 Data

This section introduces the different patient cohorts used in this work, together with
their corresponding tissue microarray (TMA) and biopsy data, as well as the respec-
tive protocols used for image acquisition. Furthermore, the patient demographics
and characteristics as well as image properties of all datasets are described.

3.4.1 Data Acquisition and Composition

The primary aim of this work is to build an algorithm that is robust, explainable, trust-
worthy and exceeds human PCa grading performance, which necessitates a large,
heterogeneous dataset with rich patient follow-up (FU) information of sufficient qual-
ity. Gold standard for clinical diagnosis is ISUP grading of preoperative biopsies, typ-
ically obtained through transrectal ultrasound-guided biopsy. Multiple tissue sam-
ples are collected from different areas of the prostate gland to improve cancer de-
tection rates. After biopsy, specimens are formalin-fixed and paraffin-embedded to
preserve structure and stained with Haematoxylin and Eosin (H&E) to enhance cel-
lular visibility for pathologist examination. All biopsies in this work contain ISUP
annotations by expert pathologists. In addition to biopsies, this work uses postoper-
ative tissue microarrays (TMAs) from radical prostatectomies (RPs). TMAs consist of
many small cylindrical representative samples, termed spots, that are extracted from
paraffin-embedded tissue and are widely used in biomarker discovery and valida-
tion studies. TMA spots of this work typically have edge lengths of 3,000 to 6,000
pixels with resulting images that contain in the order of 10 million pixels and thus are
much smaller than biopsies. Biopsies have long edge lengths in the order of 60,000
pixels with a total of up to 10 billion pixels per image and are therefore carefully
selected and preprocessed to represent a patient’s cancer status. All ISUP grade an-
notations for TMA spots were made by expert pathologists from multiple samples
of the resected whole prostate to derive a patient-level annotation. Therefore, TMA
spots might only partially capture a patient’s cancer status, with the notable exception
of the UKE.sealed dataset, which contains TMA spot-based ISUP annotations (see
UKE.sealed section). To the best of my knowledge, this work collected the biggest
and most heterogeneous histopathological PCa dataset to date, with a total of 81,572
TMA spot images and 3,388 biopsy images retrospectively collected from 25,591 pa-
tients of five different clinics with follow-up information of up to 23 years and a max-
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imum of 8 images for a single patient. This dataset is divided into several subsets
acquired with different parameters and used for training or testing the models on im-
ages with high variation, as depicted in Table 3.4.1 and Table 3.4.2. Datasets that are
used to build and assess robustness of the proposed models are highlighted as "RB"
in the tables. All image-level annotated, unseen datasets that are exclusively used
for evaluation and benchmarking against human raters are highlighted as "BM". De-
tailed information on demographics and metadata distributions can be found in Ta-
ble A.2.1. The largest subset is the UKE-high-variance cohort (UKEhv) provided by
the University Medical Center Hamburg Eppendorf which contains 17,700 patients
who underwent RP with a FU time up to 23 years. This unique dataset allows to
assess differences in acquisition protocol parameters and represents the foundation
for building a robust prediction model in this work. As described in Section 3.2.3,
a quantifiable measure correlating with cancer aggressiveness that does not rely on
subjective human annotations is derived from the patient follow-up information. For
this, the objective endpoints of biochemical recurrence (BCR), developing metastasis
(META), and PCa-related death (PCAD) are defined as events with corresponding
event time relative to the date of RP for TMA spots or to the date of the biopsy pro-
cedure for biopsies as time-to-event. If none of those exist, the follow-up time is used
as the censoring time. The same metadata and image quality-based filtering steps
are applied to all datasets. In brief, patient inclusion is limited to patients that either
experienced some kind of relapse or had at least 5 years of follow-up data available.
Additionally, images with insufficient quality (e.g. too blurry or no full TMA spot
visible on the image) are excluded from the analyses. Exact filtering and preprocess-
ing steps will be described in detail in the subsequent Section 3.5. All datasets used
in this study were collected in strict accordance with ethical guidelines and compli-
ance regulations. Data collection was approved by the relevant institutional review
boards or ethics committees. Informed consent was obtained from all participants in-
volved in data collection processes or the need for informed consent was waived by
the local ethics review board. Additionally, any identifiable information pertaining
to participants was anonymized or de-identified prior to analysis. In the following,
the datasets used in this study are explained in detail.
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Table 3.4.1: Patient metadata for all PCa survival datasets. Age and PSA-level denoted
as mean ± standard deviation. Survival and FU denoted as median. RB: Datasets used
to assess and build robustness of the proposed deep learning models. BM: Datasets
used to benchmark predictive performance of the proposed models against human
annotators.

Patients Age
[years]

PSA-level
[ng/µL]

Censoring
[%]

Survival
[months]

Follow-up
[months]

Tissue
Acquisition

R
B

UKE 8157 63.5 ± 6.1 10.6 ± 38.6 61.4 19.8 95.9 RP (TMA)
NYU 158 60.9 ± 7.0 7.8 ± 6.8 70.3 46.2 213.5 RP (TMA)
JHU 879 59.2 ± 6.3 11.8 ± 10.2 0.3 24.0 192.0 RP (TMA)

BM

UKE.sealed 826 unknown unknown unknown unknown unknown RP (TMA)
MMX 269 67.6 ± 8.8 19.8 ± 43.8 88.2 51.8 108.9 Biopsy
UPP 123 unknown 16.3 ± 13.5 83.7 25.1 83.7 Biopsy

Table 3.4.2: Overview of the image datasets. RB: Datasets used to assess and build
robustness of the proposed deep learning models. BM: Datasets used to benchmark
predictive performance of the proposed models against human annotators.

Images (Median
per Patient)

Magnification
(Resolution [µm/px])

Thickness
[µm]

Staining
Times [min]

Scanner
Types

R
B

UKE.first 8123 (1) 40x (0.25) 2.5 4:00H, 1:20E AP
UKE.second 7156 (1) 40x (0.25) 2.5 4:00H, 1:20E AP
UKE.scanner 8114 (1) 80x (0.125) 2.5 4:00H, 1:20E 3D

UKE.thin 1602 (1) 40x (0.25) 1.0 4:00H, 1:20E AP
UKE.thick 1574 (1) 40x (0.25) 10.0 4:00H, 1:20E AP
UKE.long 1667 (1) 40x (0.25) 2.5 40:00H, 10:00E AP

NYU 506 (3) 20x (0.5) 5.0 unknown AP
JHU 3575 (4) 40x (0.23) 4.0 unknown VE, HA

BM

UKE.sealed 4095 (6) 40x (0.25) 2.5 4:00H, 1:20E AP
MMX 578 (2) 40x (0.23) unknown unknown HA, VE
UPP 683 (5) 40x (0.25) unknown unknown HA

3.4.2 UKE-high-variance Dataset

The UKEhv cohort provided by the University Medical Center Hamburg Eppendorf
contains patients who underwent RP between 1992 and 2014 aged 63.8 ± 6.4 years at
the UKE with a FU time up to 23 years. The cohort’s observed median PSA level at
the point of RP is 6.9 ng/mL (interquartile range of 4.8 to 10.5 ng/mL). In total, 17,700
patients are collected in the dataset providing 69,251 images. Patients received an an-
nual follow-up [115]. PSA values were measured following surgery and biochemical
recurrence was defined as a postoperative PSA of 0.2 ng/mL and increasing at sub-
sequent measurements. The individual patient event label are extracted by combin-
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Figure 3.4.1: Kaplan-Meier curves for all patients as well as ISUP sub-cohorts of the
UKEhv dataset (left). Distribution of event (BCR, META, PCAD) and censoring (FU)
timepoints (middle). Exemplary image of the dataset (right).

ing biochemical recurrence (BCR), metastasis (META) or PCa-related death (PCAD)
as an event with a duration from the date of RP to the first of the previously men-
tioned events. Patients without any of these events are considered censored at the
last follow-up date. Further, this dataset includes some patients with healthy tissue
who therefore did not obtain an ISUP grading. Building upon this rich information
of 17,700 patients, a large variety of 69,251 high-quality images and spots were ob-
tained from different protocols, which represent the foundation for building a robust
prediction model in this work. ISUP grades were assigned by examining the whole
prostate after RP for every individual patient. After filtering according to the afore-
mentioned criteria (described in more detail in Section 3.5), 8,157 unique patients
and 28,236 TMA spot images are included in the analysis. Figure 3.4.1 depicts event
distribution and Kaplan-Meier curves for the finally included UKEhv patients. This
extracted dataset consists of images with varying attributes, like multiple spots for
the same patient, varying scanners, slice thicknesses and staining times and is, to my
knowledge, the largest and most variant collection of TMA spot image data paired
with rich follow-up data collected to date. The UKEhv data is divided into six sub-
datasets, UKE.first, UKE.second, UKE.scanner, UKE.thin, UKE.thick and UKE.long,
as depicted in Figure 3.4.2.

In the following, the inherent image characteristics of the UKEhv sub-datasets are
described in depth. Note that all sub-datasets stem from the same patient population
and a single patient can contribute images to multiple sub-datasets. Detailed patient-
level information for the UKEhv sub-datasets can be found in Table A.2.2.

UKE.first: This sub-dataset encompasses 8,123 tissue TMA spots, each selected to
represent the most characteristic spot for ISUP grading within each patient. ISUP
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Figure 3.4.2: Composition of the UKEhv dataset that incorporates images with vary-
ing acquisition attributes, differentiated into six sub-datasets UKE.first, UKE.second,
UKE.scanner, UKE.thin, UKE.thick and UKE.long.

scores were obtained as part of routine diagnostics. The protocol for digitization fol-
lowed the standard procedure of the University Medical Center Hamburg Eppendorf
(UKE), where tissue samples were sliced at a thickness of 2.5µm, stained with Hema-
toxylin and Eosin for 4 minutes and 1:20 minutes, respectively, and then digitized
using an Aperio scanner at a magnification of 40x (0.25µm per pixel). Patient event
labels are determined by combining biochemical recurrence (BCR), metastasis META,
or prostate cancer-related death PCAD, with patients without any of these events be-
ing censored at the last follow-up date.

UKE.scanner: In this sub-dataset TMA images underwent scanning using a 3DHis-
tech scanner. ISUP scores were determined during routine diagnostics. Following
the standard digitization protocol of the UKE, the sub-dataset contains 8,114 images
scanned at 80x magnification (0.125µm per pixel).

UKE.second: Each of the 7,156 images in the UKE.second sub-dataset represents a
secondary batch of TMA spots from the cancerous area of the prostate. These TMAs
were processed at a different time and underwent slight variations in the protocol.
The ISUP scores were part of routine diagnostics, and the digitization protocol fol-
lowed the standard procedure of the UKE.
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UKE.thin: The UKE.thin sub-dataset comprises 1,602 images, each representing a
different TMA spot from the cancerous area of the prostate for every patient. ISUP
scores were determined as part of routine diagnostics. Tissue samples were sliced at
1 µm thickness, following the standard digitization protocol of the UKE.

UKE.thick: The UKE.thick sub-dataset, comprising 1,574 images, includes images
representing different TMA spots from the cancerous area of the prostate for each
patient. ISUP scores were obtained during routine diagnostics, and tissue samples
were sliced at a thickness of 10 µm, in line with the standard digitization protocol of
the UKE.

UKE.long: In the UKE.long sub-dataset each image represents a different TMA spot
from the cancerous area of the prostate for every patient. ISUP scores were deter-
mined during routine diagnostics. Tissue samples were stained with Hematoxylin
and Eosin for an extended duration of 40 minutes and 10 minutes, respectively, nearly
ten times the regular staining time. This experimental sub-dataset contains 1,667 im-
ages.

3.4.3 Prostate Cancer Biorepository Network Datasets

Two additional TMA datasets from the Prostate Cancer Biorepository Network (PCBN)
in the USA, collected at the New York Langone Medical Centre (NYU) and the Johns
Hopkins Hospital in Baltimore (JHU), are included as depicted in Table 3.4.1 and
Table 3.4.2, and discussed in detail in the following [150]. Note that every patient
received RP treatment for both PCBN datasets, similar to the UKEhv TMA dataset.
As for the UKEhv TMA data, expert pathologists ISUP graded the whole prostate.

Figure 3.4.3: Kaplan-Meier curves for all patients as well as ISUP sub-cohorts of the
NYU dataset (left). Distribution of event (BCR, META, PCAD) and censoring (FU)
timepoints (middle). Exemplary image of the dataset (right).
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NYU: The TMA cohort from New York University (NYU) contains a total of 204
unique patients arranged in four TMA blocks. ISUP grading is assessed on a pa-
tient level and no additional grading details like the number of pathologists are pro-
vided. Patients who received any adjuvant therapy are excluded from this dataset.
Figure 3.4.3 depicts event distribution and Kaplan-Meier curves for the NYU patients.
This dataset includes four TMA blocks that were digitized using an Aperio scanner
with a magnification of 20x (0.5 µm per pixel). Notably, these spots were sliced at
5 µm in contrast to 2.5 µm in the internal UKEhv dataset (with the notable excep-
tion of UKE.thin and UKE.thick). The TMA blocks are cut into individual images of
size 1817x1817 pixels with 0.6mm TMA spots in diameter using QuPath [151]. Spots
showing non-neoplastic tissue are excluded. After preprocessing and filtering, this
work integrates 515 images of 161 patients with a median of three images per patient.

Figure 3.4.4: Kaplan-Meier curves for all patients as well as ISUP sub-cohorts of the
JHU dataset (left). Distribution of event (BCR, META, PCAD, TRT) and censoring
(FU) timepoints (middle). Exemplary image of the dataset (right).

JHU: The TMA samples from the Johns Hopkins University (JHU) are derived from
two datasets named “Case Natural History of Prostate Cancer” (6 TMA blocks) with
235 patients and “Case PSA Progression” (16 TMA blocks) with 726 patients. ISUP
scoring is assessed on a patient level and no additional grading details like the num-
ber of pathologists are provided. The individual spots were sliced with a thickness
of 4 µm and scanned with a Ventana DP2005 and a Hamamatsu NanoZoomer XP6
scanner. In contrast to the other TMA datasets, the endpoint definition of this dataset
in terms of event duration is only accessible in a granularity of years instead of days.
These two datasets also contain rich metadata information like age, body mass index,
race, local recurrence, etc. that are disregarded in this work’s analysis. Moreover, for
the JHU patients, the aforementioned event indications are extended by salvage (i.e.
unplanned) treatment, leading to a censoring rate for this dataset of under 1%. This
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means that this cohort can be considered to be biased towards unhealthy individuals,
which is further emphasized by the highest relapse rate of JHU patients among all
TMA spot datasets in the overall Kaplan-Meier curves depicted in Figure 3.4.4. For
integration, the 22 TMA blocks are cut into individual spot images of size 3200x3200
pixels at a magnification of 40x (0.25 µm per pixel) using Qupath [151]. After prepro-
cessing and excluding spots showing control tissue, this work integrates 3,575 TMA
spot images that show prostatic adenocarcinoma from 879 patients, with a median of
four images per patient.

3.4.4 UKE.sealed Dataset

The UKE.sealed TMA dataset contains 827 patients and 4,097 images with a maxi-
mum of 10 images per patient. This dataset is special, in that it contains spot-level
quantitative Gleason grading from GS, a renowned PCa pathologist, as opposed to
the prostate-level annotations for spots of all other TMA datasets in this study. The
information of quantitative Gleason grades was subsequently used to calculate the
spot-wise integrated quantitative Gleason (GIQ), the currently best-performing clin-
ical PCa grading system, aggregated as mean or maximum over all images of a sin-
gle patient [115]. UKE.sealed is therefore the only TMA dataset where an objective
comparison of the predictive performance of the proposed algorithm to a human an-
notator is possible, since both utilize the exact same amount of available images and
information. Furthermore, the name UKE.sealed stems from the fact that the access
to all patient, metadata, and outcome information was and is restricted exclusively
to the department of pathology of the UKE. Also the evaluation of TMA spot predic-
tions of both pathologists and the proposed deep learning models in this work were
conducted exclusively by the department of pathology of the UKE.

3.4.5 Malmö Dataset

The MMX biopsy dataset from Malmö, Sweden, contains 716 patients originally col-
lected by Saemundsson et al. [152]. The authors removed all patients with no or
less than 2 mm of total cancer in their biopsy, missing follow-up information, inade-
quate RNA quality, and those that had already developed metastases at the time of
diagnosis. Furthermore, for usage in this work, patients that are censored within the
first five years as well as images with insufficient quality are removed. In total, 269
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Figure 3.4.5: Kaplan-Meier curves for all patients as well as ISUP sub-cohorts of the
MMX dataset (left). Distribution of event (BCR, META, PCAD) and censoring (FU)
timepoints (middle). Exemplary image of the dataset (right).

patients with 578 images are included in this work, with up to eight images for a sin-
gle patient. Figure 3.4.5 depicts event distribution and Kaplan-Meier curves for the
MMX patients. The median survival and follow-up time for the remaining patients
is 38 and 106 months respectively. Notably, the patients’ mean age in this dataset is
4-8 years older than the other datasets. Also, those patients show the highest aver-
age PSA values as well as a high variance with 19.9+-44.5 ng/mL. The time-to-event
measurement begins with the biopsy date, leading to longer observed time spans in
comparison to the TMA datasets, where the reference point is the date of RP. The
images of this dataset were digitized using Hamamatsu and Ventana scanners at 40x
magnification resulting in individual slide images with a resolution of 0.23 µm per
pixel. Image widths and heights vary but consist of up to hundreds of thousands
of pixels for the long side of a biopsy. ISUP scores were obtained during routine
diagnostics. To further allow for an image-level comparison against the proposed
deep learning model PCAI, three individual pathologists annotated all slides inde-
pendently and blinded from any additional patient information. The ISUP provided
by the three pathologists of two centers (Aachen and Uppsala) shows an interrater
agreement Fleiss’ kappa of 0.199.

3.4.6 Uppsala Dataset

The UPP biopsy dataset from Uppsala, Sweden contains 2,611 unfiltered images of
440 patients from the SPROB20 image dataset that was enriched by patient endpoint
information [153]. ISUP scores were obtained from the pathology report of the fu-
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Figure 3.4.6: Kaplan-Meier curves for all patients as well as ISUP sub-cohorts of the
UPP dataset (left). Distribution of event (BCR, META, PCAD) and censoring (FU)
timepoints (middle). Exemplary image of the dataset (right).

sion biopsies during routine diagnostics. Since some patients in this dataset have had
multiple biopsies taken, this work only considers biopsy images from the latest pa-
tient visit and excludes all earlier biopsies. Additionally, slides without an assigned
ISUP, as well as patients with incomplete or conflicting treatment and follow-up in-
formation are excluded from this dataset. In total, 683 images of 123 patients of this
dataset are included in the evaluation of PCAI, with up to 10 images per patient at
point of biopsy. Figure 3.4.6 depicts event distribution and Kaplan-Meier curves for
the UPP patients. The UPP biopsy slides were obtained from a Hamamatsu scanner
on a magnification of 40x (0.25 µm per pixel). Since this cohort contains patients from
a pilot study for MRI-guided acquisition of prostate biopsies the number of missed
biopsies may be different, higher or lower, than it would have been if the conven-
tional procedure had been used.

3.4.7 Prostate Cancer Grade Assessment (PANDA) Dataset

The PANDA dataset contains biopsy slides and corresponding tissue and cancer an-
notations of expert pathologists. PANDA is one of the largest publicly available
whole slide image (WSI) datasets for PCa Gleason grading in the world with 10,616
provided biopsy slides from 2,113 patients. It was published in the Prostate cANcer
graDe Assessment challenge and a part of the International Conference on Medi-
cal Image Computing and Computer Assisted Intervention (MICCAI) in 2020 [154].
The training and validation data for this challenge is provided by two centers, the
Karolinska Institute in Stockholm, Sweden (5,456 WSIs) and the Radboud University
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Medical Center in Nijmengen, Netherlands (5,160 WSIs). This work uses WSIs with
corresponding expert annotations from the PANDA dataset to train the patch-based
Cancer Indicator (CI) model that will be described in more detail in Section 3.6.

3.4.8 Color Properties

To the human eye, the most obvious difference between histopathological tissue sam-
ples is color. This is caused by, among other things, variance in tissue thickness, H&E
staining protocols, or different scanner manufacturers. These differences are visible
in the randomly sampled tissue patches of size 256x256 pixels at 40x magnification of
five images per dataset in Figure 3.4.7A, as well as the aggregated histograms of the
hue, saturation and value channel of all relevant tissue pixels of all images per dataset
in Figure 3.4.7B. In the two-dimensional UMAP representation of the HSV histograms
of all relevant tissue pixels across datasets, the three larger subdomains of the internal
UKEhv data, UKE.first, UKE.second and UKE.scanner form clearly separable clus-
ters from each other, while two of the smaller sub-datasets UKE.thin and UKE.long
are intermixed with UKE.second. The third smaller sub-dataset, UKE.thick, forms a
separate cluster. UKE.sealed clusters close to UKE.first, though still separable. The
external datasets cluster individually. Notably, for the MMX data, which includes
images from two different scanners, as well as the JHU data, which includes im-
ages from two different scanners as well as two different batches, these differences
in acquisition parameters are represented by individual clusters inside the respective
datasets.
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Figure 3.4.7: Visualization of the image properties of all PCa risk datasets used in
this work. A: Exemplary patches of five different samples per dataset. B: Hue, Satu-
ration and Value distribution of all valid tissue pixels of all images per dataset. C:
UMAP representation of the HSV histograms of all valid tissue pixels per image
across datasets.
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3.5 Preprocessing

This section describes data preprocessing steps performed in this work. These in-
clude the definition of the binary relapse indicator as ground truth for model training,
dataset curation and filtering as well as the experimental design with separation into
training, validation and test datasets. Furthermore, the preparation of the histopatho-
logical images for usage in the deep learning models, with segmentation of relevant
tissue areas and division into equally sized patches, is depicted in detail.

3.5.1 Binary Risk Indicator

As described in Section 3.2.3 and Section 3.4, the follow-information per patient is
transformed into a quantifiable measure correlating with cancer aggressiveness by
defining the objective endpoints of biochemical recurrence (BCR), developing metas-
tasis (META), and PCa-related death (PCAD) as events with corresponding event
time relative to the date of RP for TMA spots or to the date of the biopsy procedure
for biopsies as time-to-event.

Figure 3.5.1: Definition of the binary cancer relapse indicator for training of the deep
learning model. If a patient experiences a relapse prior to five years, defined by de-
veloping metastasis, having a biochemical recurrence or dying of PCa, class 1 is as-
signed. If a patient experienced a relapse later than five years or is censored after that
time, class 0 is assigned. Patients that are censored prior to five years are excluded
from the study, since no unambiguous indicator can be derived.

To further utilize this information about relapse-free survival time in the proposed
deep learning models in this work, it is further transformed into a binary indicator
of experiencing a relapse or event in the first five years after sample acquisition. In
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detail, if a patient experiences a relapse prior to five years, class 1 is assigned. If a
patient experienced an event later than five years or is censored after that time, class
0 is assigned. In case of patients that are censored prior to five years, no unambigu-
ous information about relapse-free survival is available after the time of censoring.
Therefore, no binary indicator can be assigned to this subset of patients and they are
excluded from analysis in this work. Figure 3.5.1 depicts assignment of the classes
based on the patient follow-up information. The five-year relapse indicator can then
be utilized to train a binary classification model. In this work, it is assumed that a
high predicted probability for class 1 correlates with a low relapse-free survival time
and a highly aggressive cancer present at time of sample acquisition. In detail, the
binary relapse label yi is derived as

yi =


1 if Ti < 5 years and δi = 1

0 if Ti > 5 years

discard otherwise

. (3.5.1)

Here, Ti is the follow-up time of the i-th patient and δi is its censoring indicator, which
is 1 if i is uncensored and 0 if i is censored.

In summary, the task of cancer aggressiveness quantification is transformed into a
binary classification problem of predicting the probability or risk of experiencing a
relapse within the first five years of sample acquisition. The predicted probability
is then interpreted as a continuous risk score, where higher values are expected to
correlate with higher cancer aggressiveness.

3.5.2 Filtering

Various preprocessing and filtering steps are applied to the patient metadata and im-
ages of all datasets. Figure 3.5.2 depicts the overall workflow. Firstly, only those
patients with complete and unambiguous endpoint information are included in the
datasets. Ambiguous endpoint information refers to patients with an indicated event
without corresponding event time in the metadata, and to patients that are censored
within the first 6 months after sample acquisition. In the next step, all patients with-
out an assigned ISUP are removed, since those can’t be used for comparison against
the deep learning model. Additionally, all patients that received any adjuvant ther-
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Figure 3.5.2: Dataset curation for patient metadata and images. In total, 84,960 images
from 25,591 patients are collected. After applying the depicted filtering steps, 37,682
images from 10,412 patients are finally included in this study.

apy are removed, since this is expected to blur the correlation between cancer ag-
gressiveness at point of sample acquisition and observed event. Finally, endpoint
information is transformed into the binary risk indicator as described in Section 3.5.1
and all censored patients with less than 5 years of follow-up are removed, since no
clear binary indicator of 5-year relapse-free survival can be derived for those samples.

On the image-level, firstly all damaged files are removed from this study. Next, for
the TMA-spots, images that show no or only very little tissue are removed. For this,
the fraction of pixels with a lightness value below 235 (for a uint8 value range of 0-
255) in the HSL color space is calculated for every TMA-spot image. If less than 10%
of the total pixel values are below this threshold, the image is considered empty and
excluded from this study. For the biopsy images, where, in contrast to the TMA-spots,
image and visualized tissue sizes are very heterogeneous, this automated approach
was not applicable. Instead, images that did not contain a sufficient amount of tissue,
or only tissue that is to a large portion covered with pen marks, blood or other unde-
sired anomalies, are excluded manually. Additionally, biopsy images that are out of
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focus and fully or to a large portion blurred, are also removed manually.

Finally, after filtering metadata and images individually, only those patients with
valid data in both groups are included. In total, 15,179 of 25,91 patients and 47,278 of
84,960 images are excluded from analysis in this work, resulting in a final included
dataset size of 10,412 patients with 37,682 images.

3.5.3 Masking

Since histopathological images come in arbitrary shapes and sizes and can contain
a lot of redundant information, a masking procedure is used to define the relevant
tissue areas. For every image, a raw tissue mask, an anomaly mask, a filtered tissue
mask and a cancer heatmap is computed. Figure 3.5.3 shows these masks for a sam-
ple of a TMA-spot and and a biopsy dataset. In the following, the methodology of
deriving each mask is explained in detail.

Figure 3.5.3: Exemplary tissue, anomaly, filtered tissue and cancer masks of a sample
from the UKE.first TMA spot dataset (top) and the MMX biopsy dataset (bottom).
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Tissue Mask: The binary tissue mask is created by separating foreground and back-
ground pixels using Otsu’s dynamic thresholding on the downsampled histopatho-
logical image in the RGB space [155]. This method automatically determines the in-
tensity threshold that maximizes the inter-class variance between foreground and
background pixels, and equivalently minimizes the intra-class variance.

Anomaly Mask: Histopathological images can contain undesired artifacts like pen
marks, blood or hair. These are especially prevalent on the biopsy slides of the MMX
dataset. Since these unwanted artifacts mostly express pixels values that strongly
deviate from the background, Otsu’s methods assigns those to the foreground class
in the tissue mask, as visible in Figure 3.5.3. To detect those unwanted regions, a
binary anomaly mask is computed that highlights all foreground pixels with values
outside a predefined deviation of the median intensity of the tissue area in the HSV
color space. Algorithm 3.5.1 describes the overall procedure.

Filtered Tissue Mask: Artifacts on the images do not only extend the foreground
class of the initial tissue mask by undesired regions, it also shifts the optimum thresh-
old defined by Otsu’s method such that parts of the actual visible tissue fall into the
background class, as it can be observed in the MMX sample depicted in Figure 3.5.3.
To mitigate this issue, Otsu’s method is applied again on an adapted version of the
original image, where the median intensity value of the background class defined by
the initial tissue mask is assigned to the anomaly regions defined by the anomaly
mask. This results in a less biased threshold for separation of the foreground and
background class and a more realistic representation of the actual tissue region in
the filtered tissue mask, which could not be achieved by simple subtraction of initial
tissue and anomaly mask.

Cancer Heatmap: The cancer heatmap is created by inference of all risk datasets with
the separate cancer indicator (CI) model trained on the PANDA dataset, which will
be explained in more detail in 3.6.3. The CI predicts the probability of containing
cancerous prostate tissue for individual patches of size 256x256 pixels at 20x magnifi-
cation. This results in a resolution of a single value per patch for the cancer heatmap.
Additionally, the cancer heatmap contains values on a continuous scale, in contrast
to the binary values of the other masks.
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Input: Image img, Tissue Mask tissue_mask
Output: Anomaly Mask anom_mask
Function DetectAnomalies(hsv_dev_lower = (30, 30, 60),
hsv_dev_upper = (30, 70, 60), blur_ks = 3, morph_ks = 3, size_thresh = 40):

Convert img to HSV color space;
Reduce noise by blurring img with kernel size blur_ks;
Define foreground pixels pf of img based on tissue_mask;
Calculate HSV median mf of pf ;
Derive anomaly mask anom_mask from foreground pixels where
pf < mf - hsv_dev_lower or pf > mf + hsv_dev_upper;

Perform morphological closing and dilation on anom_mask with
kernel size morph_ks;

Remove small connected components on anom_mask with
size < size_thresh;

return anom_mask;

Algorithm 3.5.1: Pseudocode for computation of the anomaly mask anom_mask
based on the original histopathologcial image img and its corresponding tissue
mask tissue_mask.

3.5.4 Patching

For usage in the deep learning model, the images are finally cut into equally sized
patches based on the masks described in the previous section. For this, a grid with
patch size 128x128 pixels at 20x magnification is drawn over the masked images,
starting at the top left corner. If at least 10% of the pixels inside a single field of
the grid are assigned to the foreground class in the underlying mask, this patch is
selected as a valid foreground patch. Non-square patches at the right and bottom
edge are discarded by default. For the MMX dataset, the filtered tissue mask serves
as underlying mask for patch selection, while for all other datasets, the initial tissue
mask is used. Figure 3.5.4 depicts the patch selection procedure for a TMA-spot and
biopsy image.

The number of valid patches varies across samples of a single dataset, as well as
across datasets, though the biggest difference can be observed, as expected, between
TMA-spots and biopsy data. The number of valid foreground patches ranges be-
tween 12 and 140, with a median of 92.0, for the TMA-spot data, and between 305
and 7483, with a median of 2474.5, for the biopsy data. Figure 3.5.5 illustrates the
sample-wise distribution across datasets.
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Figure 3.5.4: Original image, tissue mask and finally selected patches (green) for an
exemplary sample from the UKE.first TMA spot dataset (top) and the MMX biopsy
dataset (bottom).

3.5.5 Experimental Setup

In the course of this work, two deep learning models for PCa risk assessment are
trained and evaluated, a baseline model BASE, trained on a single data domain, and
the robust model PCAI, trained on three data domains. To this end, the three larger
sub-datasets of the UKEhv data, UKE.first, UKE.second and UKE.scanner, are split
into 70% training, 15% validation and 15% test set, and the three smaller sub-dataset
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Figure 3.5.5: Number of valid tissue patches per image across datasets selected by the
proposed masking and patching procedure.

UKE.thin, UKE.thick and UKE.long are split into 50% validation and 50% test set. The
data is split stratified by the binary 5-year relapse indicator. Patients that contribute
images to multiple sub-datasets are strictly separated across data splits to avoid leak-
age. This means that TMAs of the same patient are present in either the training or
test data but never in both. Final numbers per split slightly deviate from the initial
percentages since some images are excluded retrospectively after assigning the split
due to the image filter criteria. The remaining datasets UKE.sealed, JHU, NYU, UPP
and MMX are exclusively assigned as test data. In total, 16378 images are included
in the training set, 5959 in the validation set and 15336 in the test set. Figure 3.5.6A
illustrates the distribution of images per dataset into training, validation and test set.

As illustrated in Figure 3.5.6B, the training set of the UKE.first data is used to train
the BASE model and the training sets of the UKE.first, UKE.second and UKE.scanner
data are used to train the PCAI model. For online validation and hyperparameter
optimization, the validation set of UKE.first is utilized for the BASE model. In case of
the PCAI model, the validation set of all six UKEhv sub-domains is used for online
validation and hyperparameter optimization. Here, the three smaller UKEhv sub-
domains are additionally included to the validation data to optimize for performance
on data domains not seen during training.

Finally, as described in Section 3.4, image-wise ISUP or GIQ annotations are only
available for the UKE.sealed, UPP and MMX dataset. Therefore, these three test
datasets are used to benchmark PCAI against the human assigned ground truth, since
only on these images an objective comparison is possible. The remaining test data
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Figure 3.5.6: Experimental design. A: Separation into training-, validation- and test-
set across all included datasets. In total, 16378 images are included in the training
set, 5959 in the validation set and 15336 in the test set. The UKEhv sub-datasets and
the JHU and NYU datasets are used to derive and assess robustness of the proposed
models. The UKE.sealed, MMX and UPP datasets are used to benchmark against
human assigned annotations. B: The BASE model is trained and validated only on
images from the UKE.first dataset. The PCAI model is trained on images from the
UKE.first, UKE.second and UKE.scanner datasets, and validated on all UKEhv sub-
domains.

from UKEhv, NYU and JHU, where no image-wise annotations are available, are
used to build and assess robustness of PCAI in comparison to the BASE model.
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3.6 Methods

This section presents the methodology and network architectures of proposed deep
learning models of this work, BASE and PCAI. For PCAI, the algorithmic adapta-
tions aiming for clinical applicability, namely domain adversarial training, credibility
estimation, color adaptation and cancer indication, are described in detail. Finally,
the metrics used for evaluation of the predictive performance of the deep learning
models and the cancer grading of the pathologists are introduced.

3.6.1 Prostate Cancer Aggressiveness Index

PCAI is an end-to-end risk assessment model for histopathological prostate cancer
data, aimed at actual implementation in a real-world environment (Figure 3.6.1).
PCAI is built upon four pillars of clinical applicability, which form the basis of all
design decisions. First, the model’s risk prediction performance should exceed that
of the current subjective scoring system. It is hypothesized that this is only possible
if the model learns how to predict objective patient outcomes over time instead of
replicating a subjective Gleason or ISUP grade. To this end, all datasets used in this
work contain at least 5 years of follow up information for all patients. PCAI then
grades the cancer by predicting a potential disease relapse in the future. A leading
cause for model prediction errors are variations in the processing of histopathological
samples. To render PCAI robust to these changes, it is further hypothesized that do-
main adversarial training on the large and heterogeneous UKEhv dataset will result
in stable predictions across unseen datasets and domains that reflect the variance en-
countered in everyday clinical practice. Even though PCAI is trained and optimized
for stable predictions across different sample processing protocols, it might still en-
counter histopathological slides of e.g. bad quality, for which it cannot provide a
reliable grading. A relevant feature for the proposed model is therefore the notion
of confidence or trustworthiness via credibility estimation, not unlike a human ex-
pert that is uncertain about the grading of a particular sample and asks for a second
opinion. With the aim to stabilize PCAI on images where it shows a low confidence,
a credibility-guided color adaptation procedure is further introduced that maps the
color scheme of low-credible samples to that of the model’s training distribution. Fi-
nally, a very relevant feature of PCAI is its interpretability, which lets human experts
understand and trust model predictions. PCAI achieves this via its cancer indicator
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(CI) module, which highlights and selects cancerous regions of the input images, as
well as distinct risk groups derived from the predicted score.

Figure 3.6.1: Overview of the proposed PCAI prostate cancer risk prediction model.
PCAI is built and designed on four pillars of clinical applicability, namely inter-
pretability, robustness, trustworthiness and human-level performance.

With these design features in mind, first a reference model BASE is derived, trained
only on the single internal data domain UKE.first, containing the most predictive
TMA spot per patient, according to the collecting pathologist. In the next step, the
aforementioned adaptations of domain adversarial (DA) training on the UKE.first,
UKE.second, and UKE.scanner datasets, credibility estimation (CE), color adaptation
(CA), and cancer indication (CI) are applied to the BASE model to derive the final
proposed risk prediction model PCAI. In the following, the BASE model and the
PCAI model with its individual algorithmic extensions are described in detail.

Further, the notions of "patient-level", "image-level" and "patch-level" are used to de-
scribe whether the mentioned context correlates to the full patient (e.g. relapse infor-
mation), a single WSI or a single patch of a WSI.
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Figure 3.6.2: Schematic of the proposed deep learning models in this work. A: The
BASE model, trained and validated on the single data domain UKE.first. Images are
fed as bag of patches through the CNN-based feature extractor (FE), cross-correlated
in the self-attention layer (SA) and aggregated in the patch aggregation layer (PA),
before the risk classification head (RC) assigns the final risk score. B: Extension for
domain adversarial (DA) training on the three data domains UKE.first, UKE.second
and UKE.scanner and validation on all UKEhv sub-datasets. The domain discrimina-
tor (DD) and the gradient reversal layer (GRL) are attached for dual task training. C:
Schematic of the full PCAI pipline, which combines the trained DA model with can-
cer indicator (CI) based patch selection, credibility estimation (CE) and credibility-
guided color adaptation (CA) during inference.

3.6.2 Baseline Model (BASE)

The baseline risk prediction network BASE is a binary classifier that assigns the prob-
ability of having a relapse in the first 5 years after examination to a histopathological
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WSI showing PCa. As described in Section 3.3, a key challenge in the field of dig-
ital pathology arises from the size and resolution of the WSIs, especially biopsies,
which makes processing of those images in their entirety practically infeasable due
to hardware limitations. As further explained, this is mostly approached by multiple
instance learning (MIL), where the input image is cut in equally sized patch images
and forwarded to the network as a bag of patches, where it is aggregated to derive a
single prediction. In this work, the patch-based attention MIL method proposed by
Ilse et al. is used in the BASE and PCAI risk prediction model presented in this thesis
[78]. Segmentation of the relevant regions in the images and subsequent patching
is performed as described in 3.5. The deep learning architecture of the BASE model
consists of a CNN-based feature extractor (FE) that transforms all patches per image
in parallel and independently into a latent representation. Next, a self-attention layer
(SA), as proposed in Rymarczyk et al., accounts for cross-dependencies between all
patches of a bag by creating context-aware embeddings from every patch [86]. This
bag of patch embeddings is further aggregated into a single latent representation in
the attention-based patch aggregation (PA), as proposed by Ilse et al. [78]. Finally, the
fully connected risk classification (RC) head predicts the probability for both classes
of the binary risk ground truth. The predicted probability for the class 1 (see 3.5.1),
corresponding to having a relapse prior to five years, represents the final risk score.
In the following, the components of the BASE model are described in more detail.

Feature Extractor

An Efficientnet-b0 architecture (see 3.2) pretrained on the ImageNet dataset serves
as backbone architecture for the feature extractor (FE) part of the risk prediction
model [121]. For usage in this work, the final fully connected classification layer
of the Efficientnet-b0 architecture is removed. The FE transforms bags of N patches
Pn ∈ RH×W×C of height H = 128 and width W = 128 with three color channels C = 3

in the RGB format into bags of N latent feature vectors hFE
n ∈ RL of length L = 1280.

Formally, let S img = {Pn ∈ RH×W×C} with n ∈ {1, 2, ..., N} denote the set of all N
patches per image. For every patch Pn, the latent representation hFE

n after the feature
extractor is derived as

hFE
n = fFE(Pn) with fFE : RH×W×C −→ RL, (3.6.1)

resulting in the set of all latent patch features SFE = {hFE
n ∈ RL} with n ∈ {1, 2, ..., N}.
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Self-Attention Layer

The self-attention (SA) layer aims to correlate patch-embeddings and inject inter-
patch related information to all embeddings without altering their shape. In detail,
for every patch embedding hFE

n in SFE = {hFE
n ∈ RL} in the output of the feature

extractor, N attention weights anm are computed, resulting in the attention matrix
ASA ∈ RN×N . ASA contains information about the relevance of each patch embedding
hFE
n in relation to every other patch embedding hFE

m and is multiplied with the incom-
ing feature vector after the encoder. This creates context-aware embeddings from
every patch. This layer is implemented as proposed by Rymarczyk et al. [86], though
in this work their proposed trainable γ that weights the influence of the self-attention
is set to a static 1. The output hSA

n for a single patch embedding hFE
n is derived as

hSA
n = hFE

n +
N∑

m=1

anm(W
VhFE

m + bV), (3.6.2)

where

anm =
exp((WQhFE

n + bQ)T (WKhFE
m + bK))∑N

o=1 exp((W
QhFE

n + bQ)T (WKhFE
o + bK))

, (3.6.3)

resulting in the set of all latent patch features SSA = {hSA
n ∈ RL} with n ∈ {1, 2, ..., N}

after the self-attention layer. Here, WQ,WK ∈ RDSA×L, bQ, bK ∈ RDSA , WV ∈ RL×L

and bV ∈ RL are trainable parameters of the network, where L refers to the length of
the input vector and DSA is a hyperparameter set to 160 in this work. n, m and o are
indices of the N patch embedding instances.

Patch Aggregation Layer

The attention-based patch aggregation (PA) layer compresses the input of N latent
patch embeddings of length L into a single representation of the same length. This
method was first introduced by Ilse et al. [78]. It can be seen as a learnable weighted
average function of the input instances, where the respective attention weights are
determined inside the network for each sample. Given the set of latent patch embed-
dings SSA = {hSA

n ∈ RL} after the SA layer, the output hPA ∈ RL of the PA layer is
derived by
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hPA =
N∑

n=1

anh
SA
n , (3.6.4)

where

an =
exp(W PA2 tanh(W PA1hSA

n + bPA1) + bPA2)∑N
m=1 exp(W

PA2 tanh(W PA1hSA
m + bPA1) + bPA2)

. (3.6.5)

Here, W PA1 ∈ RDPA×L, bPA1 ∈ RDPA , W PA2 ∈ R1×DPA and bPA2 ∈ R1 are trainable
parameters of the network, where L refers to the length of the input vector and D

is a hyperparameter. After optimization, DPA is set to 128 in this work. The hyper-
bolic tangent non-linearity aims to prevent the exploding gradient issue, whereas the
softmax function ensures that all attention weights sum to 1 [78].

Risk Prediction Head

Finally, the risk classification head (RC) predicts the probability for both binary risk
classes. It consists of a fully connected hidden layer with 100 neurons followed by
a ReLU activation function and a fully connected layer with 2 neurons followed by
a softmax activation function. In detail, the output logits zR ∈ R2 of the final fully
connected layer of the risk prediction head are derived from the aggregated latent
patch representation in the output of the PA layer hPA ∈ RL as

zR = W R2 · ReLU(W R1hPA + bR1) + bR2. (3.6.6)

Here, W R1 ∈ R100×L, bR1 ∈ R100, W R2 ∈ RcR×100 and bR2 ∈ RcR are trainable parameters
of the network, where L refers to the length of the input vector and cR = 2 denotes
the number of classes in the risk prediction head. The probability ŷR

i of an image to
belong to risk class i is then derived by the softmax function as

ŷR
i =

exp(zR
i )∑cR−1

j=0 exp(zR
j )

. (3.6.7)

The probability for class 1, which corresponds to having a relapse prior to five years,
represents the final predicted risk score RBASE of the baseline model, such that RBASE =

ŷR
1 .
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Risk Prediction Loss

For training the baseline network, cross-entropy of the predicted class probabilities
ŷR
i of the risk prediction head is used as the loss function LR, such that

LR(yR, ŷR) = − 1

nstrain

cR−1∑
i=0

nstrain

nsi

(
yR
i log(ŷ

R
i ) + (1− yR

i ) log(1− ŷR
i )
)
. (3.6.8)

Here, nsi ∈ N denotes the number of samples of the i− th class in the training data,
and nstrain ∈ N the total number of training samples.

Baseline Training Regime

The BASE model is derived exclusively from the UKE.first TMA-spot dataset. During
training, 100 valid tissue patches are randomly sampled from every image based on
the area defined by the tissue mask. If less than 100 valid tissue patches are avail-
able, patches are randomly oversampled. The static number of 100 patches allowed
for training with batch sizes > 1 and is chosen to be close to the median number of
valid tissue patches across samples in the dataset (see Figure 3.5.5). Patches are fur-
ther randomly transformed with AugMix augmentation before input to the network
[156]. Training is performed using Adam optimizer with a batch size of 16 and a
learning rate of 2.75e-06 for a maximum of 200 epochs, with early stopping on the
5-year relapse AUROC of the UKE.first validation split. Dropout probability is set to
0.34. During inference, all valid patches per image and no AugMix augmentations are
used. Hyperparameters are optimized for maximum 5-year AUROC on the UKE.first
validation data using a Bayesian search paradigm.

3.6.3 Building Clinical Applicability (PCAI)

In pursuit of building a model based on the four initially defined pillars of clinical ap-
plication of interpretability, robustness, trustworthiness and a predictive performance
that exceeds human annotated ISUP, the BASE model is extended by four algorith-
mic adaptations that aim to provide these features. Firstly, domain adversarial (DA)
training, which utilizes the remaining sub-datasets and the inherent heterogeniety of
the internal UKEhv data and aims to increase robustness as well as overall perfor-
mance. Secondly, credibility estimation (CE) aims to equip the model with the ability
to quantify uncertainty in its predictions and therefore increase trustworthiness and
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reliability. Thirdly, color adaptation (CA) of samples outside the training distribution
aims to further boost robustness and predictive accuracy. Lastly, cancer probability
heatmaps provided by the cancer indicator (CI) module are used to focus the risk
prediction model on relevant tissue regions, provide visual interpretability and fur-
ther boost robustness by reduction of noise and redundancy in the input data. The
combination of these techniques with the BASE model represents the advanced risk
prediction model PCAI. In the following, the individual algorithmic adaptations are
explained in more detail.

Domain Adversarial Training (DA)

The highly heterogeneous sub-datasets of the internal UKEhv data are utilized to ap-
ply a domain adversarial (DA) training regime to the risk prediction network. This
method was first introduced by Ganin et al. [157]. They key idea of domain adver-
sarial training is to apply a multi-task training regime, that aims at creating domain-
agnostic feature representations in the model that are still predictive for the main task.
For this, the initial BASE architecture is extended by an adversarial part, consisting of
a gradient reversal layer (GRL) and a subsequent domain discrimination (DD) head,
which aims to classify the images based on previously assigned domain labels. The
classifier of the main task and the adversarial part access the same feature space. The
part of the network between input layer and shared feature space of main task head
and adversarial head is referred to as the shared part of the network. Both main task
and domain discrimination task are trained in parallel to minimize the main task loss
and the domain classification loss. However, during backpropagation, the GRL in-
verts the sign of the gradient flowing from the domain discrimination (DD) head into
the shared part. This means that the weights of the DD are adapted to improve clas-
sification performance of separating domains in the training data, while the weights
of the shared part are adapted in the exact opposite direction, leading to a shared
feature space that is increasingly less predictive for the DD, i.e. contains less domain-
specific information. Through parallel training of both heads, weights of the shared
part are adapted to produce domain-agnostic features that are still predictive for the
main task. In the field if digital pathology, domain adversarial training was success-
fully applied for mitotic figure detection on histopathological images by Wilm et al.,
where the scanner used for image acquisition served as the domain ground truth [17].

For usage this work, the BASE architecture is extended by the adversarial part consist-
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ing of the gradient reversal layer (GRL) and the domain discriminator (DD) after the
PA layer, such that the adversarial part and the risk classifier access the same latent
space of aggregated patch-embeddings. Therefore, the shared part of the network
consists of the FE, the SA layer and the PA layer, the main task part of the risk classi-
fier (RC) and the adversarial part of the GRL and the DD. Let from here on θS denote
the parameters of the shared part, θR the parameters of the RC and θD the parameters
of the DD. Figure 3.6.2B depicts the updated architecture for the DA training. In the
following, the GRL and the DD are described in detail.

Domain Discrimination Head

The domain discrimination (DD) head predicts the probability of a sample belonging
to each of the predefined domain classes present the training data. Analogous to the
risk classification (RC) head, it consists of a fully connected hidden layer with 100
neurons followed by a ReLU activation function and a fully connected layer with 3
neurons followed by a softmax activation function. In detail, the output logits zD ∈ D3

of the final fully connected layer of the DD head are derived from the aggregated
latent patch representation in the output of the PA layer hPA ∈ RL as

zD = WD2 · ReLU(WD1hPA + bD1) + bD2. (3.6.9)

Here, WD1 ∈ R100×L, bD1 ∈ R100, WD2 ∈ RcD×100 and bD2 ∈ RcD are trainable parameters
of the network, where L refers to the length of the input vector and cD = 3 denotes
the number of classes in the DD head. The probability ŷD

k of an image to belong to
domain k is then derived by the softmax function as

ŷD
k =

exp(zD
k )∑cD−1

l=0 exp(zD
l )

. (3.6.10)

Gradient Reversal Layer

The Gradient Reversal Layer (GRL) is a non-parameterized layer that acts as an iden-
tity transformation in the forward pass, but inverts the sign of the gradient of the
subsequent layer during backpropagation before passing it to the preceding layer
[157]. The GRL is inserted between the shared part, ending with the PA layer, and the
DD, resulting in the architecture depicted in Figure 3.6.2B. When backpropagating the
domain classification loss LD, the partial derivatives of the loss that are downstream
the GRL w.r.t. the layer parameters θS of the shared part upstream the GRL get mul-
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tiplied by -1 , i.e., ∂LD

∂θS is effectively replaced with −∂LD

∂θS . Mathematically, the GRL can
be formulated as a "pseudo-function" FGRL(x) defined by the equation FGRL(x) = x,
describing its behaviour during the forward pass, and dFGRL

dx
= −I, describing its be-

haviour during backpropagation, where I is an identity matrix.

Domain Adversarial Loss

Cross-entropy of the domain class probabilities ŷD
k predicted by the DD head is used

as the loss function LD, weighted by inverse occurrence frequency of the domain
labels in the training data, such that

LD(yD, ŷD) = − 1

nstrain

cD−1∑
k=0

nstrain

nsk

(
yD
k log(ŷD

k ) + (1− yD
k ) log(1− ŷD

k )
)
. (3.6.11)

Here, nsk ∈ N denotes the number of samples of the k − th domain in the training
data, and nstrain ∈ N the total number of training samples.

During training of the domain adversarial model, both loss functions LR and LD of
the RC and the DD head are minimized in parallel, such that the total loss function
LPCAI amounts to

LPCAI = LR + λ · LD. (3.6.12)

Here, the additional hyperparameter λ ∈ R regularizes the influence of the domain
loss LD to the overall training. Unlike the original implementation by Ganin et al.,
who differentiated between source and target domains and only used the source do-
main to train the main task, in this work all training samples are used to train both
the risk classification and the domain discrimination task.

A total objective pseudo function Ẽ
(
θS, θR, θD

)
that is minimized during training can

then be defined as

Ẽ
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θS, θR, θD

)
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,

(3.6.13)

where GS, GR and GD describe the shared part, RC head and DD head, respectively.

103



3 Prostate Cancer Aggressiveness Index - PCAI

Domain Adversarial Training Regime

As described in the experimental design in Section 3.5.5, the training dataset of the
DA model is extended by the other two large UKEhv sub-domains, such that the total
training dataset consists of data from UKE.first, UKE.second and UKE.scanner. Data
from the UKE.first domain is fed twice per epoch to put a stronger emphasis on the
data containing the most representative spot per patient. The validation dataset is ex-
tended accordingly by data from UKE.first, UKE.second and UKE.scanner. Further-
more, to evaluate performance on domains not seen during training, the validation
splits of the three smaller UKEhv sub-datasets UKE.thin, UKE.thick and UKE.long
are also included in the overall validation data. The overall training procedure is
analogue to the BASE model, though here a learning rate of 9.87e-07, dropout rate
of 0.5 and stochastic depth of 0.5 is used. Early stopping as well as hyperparameter
optimization is performed on the combined 5-year AUROC of the validation splits of
all six UKEhv sub-domains.

Credibility Estimation (CE)

To be applicable in an actual clinical setting, the predicted risk score should be accom-
panied with some notion of trustworthiness that quantifies how certain the model is
when predicting on a given image. For this, a credibility estimation (CE) setup is
introduced, which computes a credibility score for every unseen sample based on
the distance to the learned distribution of the model. The underlying assumption is
that samples that differ strongly from the data seen during training should receive
a lower credibility score than those close to the learned distribution, independent of
the actual predicted risk score.

Distance Measure

The Mahalanobis distance dM in the space of latent representations in the output of
the PA layer is employed as distance measure. This is motivated by the work of Lee
et al., who successfully utilized the latent Mahalanobis distance for detection of out-
of-distribution data [158]. In detail, let hPA

u ∈ RL denote the aggregated latent patch
representation of an unseen sample u. The Mahalanobis distance dM of hPA

u to the
center of the training distribution H̄PA

train ∈ RL is then derived as

dM =

√(
hPA
u − H̄PA

train

)
V −1

train

(
hPA
u − H̄PA

train

)T
. (3.6.14)
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Figure 3.6.3: Example of the Mahalanobis distance dM in the two-dimensional space.
Point A expresses a higher Euclidian distance dE to center of the distribution (orange)
than Point B, though the Mahalanobis dM distance is smaller. Standard deviation σ of
the underlying distribution is depicted by the dotted line.

Here, V −1
train refers to the inverse of the covariance matrix of the aggregated patch

representations of all nstrain samples in the training set, while H̄PA
train refers to their

average in each of the L dimensions. Since the training set differs for the DA model
and the BASE model, V −1

train and H̄PA
train are derived from the UKE.first, UKE.second

and UKE.scanner domains for the former and from UKE.first only for the latter.

In contrast to the Euclidian distance dE, which is derived as

dE =

√(
hPA
u − H̄PA

train

) (
hPA
u − H̄PA

train

)T
, (3.6.15)

the Mahalanobis distance takes the covariance of the underlying distribution into ac-
count and is expected to provide a more meaningful representation of how strongly
an unseen sample deviates from the learned distribution of the model. Figure 3.6.3 il-
lustrates the difference between both distance measures for an examplary two-dimensional
distribution. The Mahalanobis distance refers to a multivariate generalization of the
square of the standard score z = (x− µ)/σ, measuring distances in multiples of stan-
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dard deviation σ from the mean µ of the underlying distribution.

To mitigate the influence of outliers, the fifth percentile of training samples express-
ing the highest Mahalanobis distance to the training center are removed. Then, the
training center is re-calculated on the remaining training samples for usage in the CE
setup.

Calculation of Credibility

To further transform the Mahalanobis distance to the training center into a normal-
ized representation of model uncertainty, ideas from the concept of Conformal Pre-
diction (CP) are employed [159]. CP is a post-hoc method to measure uncertainty in
pre-trained prediction models by providing sets of valid class predictions that exceed
a given significance level. Here, first a non-conformity measure with score α that as-
sesses the strangeness of an unseen sample is derived from the underlying model.
Next, a separate calibration set Scalib = {(x1, y1) , ..., (xm, ym)} with samples that stem
from the same distribution as the training data but are unseen to the model is de-
fined. The non-conformity score αj is computed for every sample in the calibration
set. To evaluate how different an unseen sample xu is from the training distribution,
its non-conformity score αu is then compared to the non-conformity scores αj of the
calibration set for every class label yc, such that

pc (αu) =
|{j = 1, . . . ,m : yj = yc and αj ≥ αu}|+ 1

|{j = 1, . . . ,m : yj = yc}|+ 1
, (3.6.16)

where pc (αu) refers to the p-value (distinct from the statistical p-value) for a given
class yc. High p-values indicate high conformity with the training distribution, since
most calibration examples expressed higher non-conformity scores than xu [160]. For
a given significance level ϵ, the conformal prediction set T ϵ then contains all classes
with pc (αu) > ϵ.

In the literature, CP mostly utilizes non-conformity scores α based on the softmaxed
class probabilites in the output of the model (e.g. α = 1− ŷc). However, any heuristic
notion of uncertainty in the underlying model is applicable to it [161]. For usage in
this work, the Mahalanobis distance dM to the center of the latent train distribution
in the output of the PA layer, as described above, is chosen as the non-conformity
score α. Since this measure does not directly correlate with the class prediction, the
prediction sets T ϵ are neglected in this work. Instead, the maximum p-value among
both 5-year relapse classes is defined as the credibility Credu of an unseen sample,
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such that

Credu = max
c

(pc (αu)) with αu = dM . (3.6.17)

This credibility score quantifies how close a given sample is to the model’s learned
distribution, based on the unseen calibration dataset, and is expected to correlate with
the validity of the final risk prediction.

The validation split of the UKEhv sub-datasets that are also present in the training
data of the respective model serves as the calibration data when applying the CE
setup to PCAI and the BASE model, such that it consists of data from the UKE.first,
UKE.second and UKE.scanner domains for the former and of data from the UKE.first
domain for the latter.

Color Adaptation (CA)

Figure 3.6.4: Visualization of the eight histogram clusters in the training data defined
by the color adaptation setup. A: Exemplary patches of five different samples per
cluster. B: Hue, Saturation and Value distribution of all valid tissue pixels of all im-
ages per cluster. C: UMAP representation of the HSV histograms of all valid tissue
pixels per image across clusters.
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As shown in Section 3.4.8, color information of the images, represented by their his-
tograms in the HSV space, is a strong separator of the individual datasets used in this
work and indicates the covariate shift between those. The proposed domain adver-
sarial training regime aims to mitigate the influence of this shift as a model-centric
approach, by making the encoder less sensitive to domain specific biases. To further
boost the robustness of the proposed model with an additional data-centric approach,
a color adaptation (CA) setup is used in this work.

More specifically, cluster-guided histogram matching of unseen images with the train-
ing distribution is performed. For this, 8 k-means cluster are derived from the his-
tograms of all valid tissue patches per image of the training data in the HSV space,
using the Wasserstein distance as the distance measure. The Wasserstein distance,
which is also referred to as the "earth movers distance", quantifies the cost of trans-
forming one distribution, e.g. a histogram, into another. For every cluster, histograms
of all training samples belonging to that cluster are aggregated into a single cluster
histogram. Figure 3.6.4 depicts exemplary patches from different samples per cluster,
the aggregated histograms of every cluster and a UMAP representation of HSV his-
tograms of the training images of PCAI. The number of 8 clusters is determined by
an elbow plot and is used for both PCAI and the BASE model, however, the samples
of the training set differ accordingly.

Histogram Matching

During inference of the model, the Wasserstein distance of the histogram of an un-
seen sample to all 8 training clusters is calculated. Then, the histogram of the input
image is matched with the aggregated histogram of the closest cluster. Matching his-
tograms with aggregated histograms of clusters has proven superior to matching on
random histograms of the training data in the literature [142]. This smooths the effect
of outliers while preserving inherent type differences inside the training dataset.

In detail, let Hu(k) denote the histogram of an unseen sample xu in the HSV space
and Hr(k) the aggregated histogram of the nearest histogram cluster in the training
dataset. Here, k represents the intensity level, ranging from 0 to 255 for the satura-
tion and value channel and from 0 to 179 for the hue channel. Next, the cumulative
distribution functions CDFu(k) and CDFr(k) are calculated for both histograms as

CDF (k) =
k∑

j=0

H(j)

N
, (3.6.18)

108



3.6 Methods

Figure 3.6.5: Schematic of the proposed color adaptation procedure for a sample of the
MMX dataset. The combined histogram of all patches is matched with the histogram
of the closest training set cluster. Adapted patches are then forwarded for inference
with the risk prediction model.

where N denotes the total number of pixels per histogram.

For each intensity level k in the unseen image, a corresponding intensity level g is
determined that minimizes the absolute difference between CDFu(k) and CDFr(k).
This dependency is captured by the transformation function G(k) and can be ex-
pressed as

G(k) = argmin
g

|CDFu(k)− CDFr(g)|. (3.6.19)

Finally, the transformation function G(k) is applied to every pixel of the input image
xu to map it to its corresponding transformed intensity level g. Figure 3.6.5 depicts
patches and histograms of a sample of the MMX dataset before and after CA.

Credibility-guided Histogram Matching (CE-CA)

Since histogram matching poses the potential risk of introducing unwanted artifacts
to the images, a selective approach is further proposed. Here, only those images
are adapted where the model constitutes the necessity, meaning it cannot provide a
reliable prediction on the unaltered sample. To quantify this necessity, the Credibil-
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Figure 3.6.6: Schematic of the proposed credibility-guided color adaptation workflow
with the human in the loop. After inference on the unaltered patches, the credibility
score is assessed. If sufficient credibility is reached, the corresponding risk score is
defined as the final prediction. Otherwise, the patches are adapted with the proposed
color adaptation setup. Then, inference and assessment of the credibility score of the
adapted image is performed again. If the score is still not sufficient, the sample is
regarded as ungradable and should be examined by the pathologist.

ity score Cred is utilized, such to only adapt images that deviate strongly from the
learned distribution. In detail, using the CE setup described above, a threshold on
the credibility scores is defined such that 75% of the calibration data of the underly-
ing model express higher credibility scores. This threshold on the credibility score
amounts to 0.279 for the PCAI model (and to 0.255 for the BASE model, however, the
color adaptation procedure is not applied to the BASE model).

During inference of the PCAI model, a feedback loop is applied. Images that express
a credibility score below the defined threshold during initial prediction are adapted
based on the CA procedure described above and fed through the network a second
time. The final risk score and credibility score then refer to the model’s output for the
adapted image.

In clinical practice, this aims to allow the model to identify problematic images and
then try to recover those for a credible prediction by adapting its color. If sufficient
credibility is not reached by then, the image should be deferred and evaluated by
a human rater. Figure 3.6.6 depicts the credibility-guided color adaptation CE-CA
procedure with the human in the loop.

110



3.6 Methods

Cancer Indication (CI)

A separate cancer indicator model is derived in the course of this work and combined
with the risk prediction model in the cancer indicator module (CI). The expected ben-
efit of applying the CI module to PCAI is two-fold: First, it is used to reduce noise and
redundancy in the data and to focus the risk prediction model on the most relevant re-
gions in the image. Second, it provides an additional means of visual interpretability
to the overall setup by highlighting cancerous regions on the images.

Figure 3.6.7: Components of the cancer indicator (CI) module. A: Ground truth an-
notation of the cancerous area on a sample of the PANDA dataset used to train the
cancer indicator model. B: Cancer probability heatmap on the same PANDA sample
predicted by the CI. C: Cancer probability heatmap on a sample of the MMX dataset
and resulting patch selection of the 100 most cancerous patches used for subsequent
inference in PCAI.

Cancer Indicator Model

The CI model is derived exclusively from images of the PANDA dataset (see 3.4).
First, images are cut into equally sized patches P ∈ RH×W×C of height H = 256

and width W = 256 with three color channels C = 3 at 40x magnification in the RGB
format. Then, the available pixel-wise segmentation masks of the PANDA dataset
are used to derive a binary cancer label yC ∈ {0, 1} as ground truth for every patch
P . In detail, a patch is assigned to class 1, i.e. cancerous, if more than 90% of its
pixels are labelled as cancerous in the corresponding segmentation mask. Analogue,
a patch is assigned to class 0, i.e. healthy (or benign), if none of its pixels are labelled
as cancerous and it contains less than 90% background pixels. Patches that do not
fall in either of the mentioned categories are discarded. Figure 3.6.7A depicts the
the ground truth annotation of the cancerous area on an exemplary slide from the
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PANDA dataset.

The network architecture of the CI model is a CNN-based binary classifier that takes
individual patches as input and assigns the probability of being cancerous to every
patch. It consists of a feature extractor with an EfficientNet-b0 backbone and a sub-
sequent fully connected layer with two output nodes and softmax activation. The
cancer indicator can be described by the function fCI(P ) and the cancer probability
ŷC per patch P is derived as

ŷC = fCI(P ) with fCI : RH×W×C −→ R. (3.6.20)

The CI model is trained on 3.94 million randomly sampled patches from 8492 images
on the task of patch-wise binary cancer detection. It achieved an AUROC of 0.938 and
an area under the precision-recall curve (AUPRC) of 0.890 on 0.51 million test patches
of 1062 unseen images. However, detailed examination of the cancer indicator model
is out of the scope of this work.

Cancer Heatmaps

Inference of the trained CI model is performed on patches from all remaining datasets
in this work. The predicted probabilities ŷC for every patch P are used to create a
cancer mask for every image, as shown in 3.5.3. By defining relevant regions based
on the tissue masks, cancer probability heatmaps can be visualized as an overlay
on the original slide image, as depicted in Figure 3.6.7B and C. Gaussian filtering is
applied on the probability maps to smooth the patch-based resolution. These cancer
heatmaps are expected to assist clinical practice by guiding the clinician to salient
regions in the image, e.g. if human re-evaluation of an image is necessary due to a
low credibility score provided by the risk prediction model.

Cancer-based Patch Selection

Besides providing visual support to clinical practice through cancer heatmaps, the CI
is further used in PCAI to reduce noise and redundancy in the input data. In detail,
when performing inference on the large biopsy images of the MMX and UPP dataset,
the cancer masks are used to select the 100 patches expressing the highest cancer
probability in the relevant tissue region (see Figure 3.6.7C). Only these patches are
then forwarded to the risk prediction network. Since cancerous tissue supposedly in-
corporates the most relevant information for risk prediction and biopsy images often
contain large amounts of non-cancerous tissue, this is expected to focus PCAI on the
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salient regions of the input image and improve overall predictive accuracy as well as
robustness. Assuming that the TMA spot datasets used in this work contain mostly
cancerous tissue, the CI-based patch selection is not applied to those datasets. Fur-
thermore, since patch selection and therefore risk prediction of biopsy images is based
on the CI, the heatmaps can also be regarded as a means of visual interpretability that
highlight salient regions in the overall PCAI model.

3.6.4 Aggregation of Multiple Images per Patient

If multiple images are available for a single patient, in both PCAI and the BASE
model, predictions are aggregated by taking only the highest risk score across im-
ages as the final patient score.

In detail, if N images are available for a patient, the final patient level risk score R is
then derived as

R = max
n

(Rn) . (3.6.21)

Accordingly, the final credibility score Cred refers to the credibility of the image ex-
pressing the highest risk, such that

Cred = Credn with n = argmax
n

(Rn) . (3.6.22)

3.6.5 Metrics

Two main metrics are used in the course of this work to evaluate the predictive per-
formance of the deep learning models as well as the ISUP rating assigned by the
pathologists.

Area under the Receiver-Operator Characteristic Curve (AUROC)

The area under the receiver operator characteristic curve (AUROC) is a metric that
is widely used in binary classification tasks. It summarizes the model’s discrimina-
tive capability across all possible classification thresholds in a single scalar. It is cal-
culated by integrating the receiver operator characteristic (ROC) curve, which plots
the true positive rate (TPR) against the false positive rate (FPR) at each classifica-
tion threshold setting of the predicted class probabilities. The AUROC is therefore a
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threshold-independent measure and robust against class imbalance in the data. It can
be calculated by using the trapezoidal rule as

AUROC =

Np−1∑
p=1

(FPRp+1 − FPRp)× (TPRp + TPRp+1)

2
. (3.6.23)

Here, FPRp is the False Positive Rate at threshold p, defined as the ratio of false
positives to the total number of actual negatives. TPRp is the True Positive Rate at
threshold p, also known as sensitivity, defined as the ratio of true positives to the
total number of actual positives. The sum is taken over all thresholds p from 1 to
Np − 1, where Np is the number of unique predicted probabilities. An AUROC of
1 corresponds to the best model prediction, and a value of 0.5 represents a random
prediction.

In the course of this work, positive instances are defined as patients who experienced
a relapse prior to five years, as described in 3.5.1, and negative instances as those who
did not. This is referred to as the 5-year AUROC throughout this thesis and the main
metric used for model training and optimization.

Concordance Index (C-Index)

Additionally, the concordance index (C-Index) is evaluated in this work, which is a
generalization of the AUROC that can take into account censored data [162]. The
C-Index measures the proportion of comparable pairs of individuals for which the
predicted risk scores are consistent with the observed outcomes over the total number
of comparable pairs. It is independent of the binary relapse label required for the
AUROC and can evaluate the full available test data. In detail, it can be calculated as

C-Index =

∑n
i,j 1Tj<Ti

· 1Rj>Ri
· δj∑

i,j 1Tj<Ti
· δj

, (3.6.24)

where

1Tj<Ti
=

1 if Tj < Ti

0 otherwise
and 1Rj>Ri

=

1 if Rj > Ri

0 otherwise
. (3.6.25)

Here, Ri and Rj are the predicted risk scores for the i-th and j-th instances, Ti and
Tj are their respective follow-up times and δj is the censoring indicator of the j-th
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instance, which is 1 if j is uncensored and 0 if j is censored. n depicts the total number
of samples. Similarly to the AUROC, a C-Index of 1 corresponds to the best model
prediction, and a value of 0.5 represents a random prediction.

Evaluation of Cancer Grading Provided by the Pathologists

For evaluation of the ISUP annotations of the pathologists, the ISUP scale ranging
from 1 to 5 is rescaled into a risk score between 0 and 1, where ISUP 1 corresponds to
a risk score of 0 and ISUP 5 correpsonds to a risk score of 1. AUROC and C-Index are
then calculated as described above.
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3.7 Experiments

This section describes all experiments conducted with the proposed deep learning
models BASE and PCAI, as well as the cancer grading provided the pathologists,
with their quantitative and qualitative results.

3.7.1 Building a Clinically Applicable Model

In the following, the proposed deep learning models BASE and PCAI are evaluated
with respect to the four initially defined pillars of clinical applicability, namely ro-
bustness, trustworthiness, human-level performance and interpretability.

Robustness

In the first experiment, the BASE model, trained on the single data domain UKE.first,
and the PCAI model, trained on the three data domains UKE.first, UKE.second and
UKE.scanner and including the algorithmic extensions of domain adversarial train-
ing (DA), credibility estimation (CE), credibility-guided color adaptation (CE-CA and
cancer indication (CI), are evaluated on the unseen test sets of all internal UKEhv sub-
datasets, as depicted in Table 3.7.1. It can be seen that PCAI scores higher than the
BASE model on every dataset in terms of concordance index and 5-year relapse AU-
ROC, even on the UKE.first domain, which was included in the training data of both
models, indicating a general stronger predictive capability of PCAI over BASE. No-
tably though, performance of both models is lowered on images from datasets other
than UKE.first, especially on the three experimental sub-datasts UKE.thin, UKE.thick
and UKE.long. This suggests how data variation can significantly reduce the perfor-
mance of AI-based decision systems.

Table 3.7.1: Discriminative performance of the PCAI and BASE model in terms of
concordance index (C-Ind.) and five year relapse AUROC (AUC) on the unseen TMA
spot test images of the internal UKEhv sub-datasets.

UKE.first UKE.second UKE.scanner UKE.thin UKE.thick UKE.long
C-Ind. AUC C-Ind. AUC C-Ind. AUC C-Ind. AUC C-Ind. AUC C-Ind. AUC

PCAI 0.695 0.723 0.661 0.698 0.674 0.702 0.617 0.630 0.609 0.619 0.634 0.654
BASE 0.685 0.719 0.602 0.623 0.637 0.663 0.564 0.581 0.573 0.584 0.586 0.601
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To systematically investigate this effect of data variation on AI-based PCa grading
performance, evaluation of the BASE and PCAI models is repeated on the subset of
1,537 patients that contribute an image to each of the six UKEhv sub-datasets. This
sub-cohort is referred to as UKEhv6 in the following and constitutes an ideal basis
for the evaluation of data variation on model performance. Assuming images that
are equally gradable and only differ by their domain specific bias, a perfectly ro-
bust model should predict similar score distribution for all sub-datasets and achieve
similar discriminative performance, since the same ground truth accounts to the im-
ages of every protocol variation. When evaluating the BASE model on the UKEhv6

patients of the UKE.first dataset, the same domain it was trained on, it achieves a
concordance-index of 0.645 and predicts a median risk score across samples of 0.46.
Figure 3.7.1 depicts the difference in concordance-index to that initial score when
evaluating the BASE and PCAI model on the same UKEhv6 patient cohort on all re-
maining UKEhv sub-datasets. Additionally, the distribution of predicted risk scores
is displayed. Notably, performance of the BASE model drops significantly on images
that are acquired with a different clinical protocol, by a minimum of 5 percentage
points on the UKE.scanner images to 8.6 percentage points the on UKE.thin. When
analyzing the distribution of predicted risk scores on the UKEhv6 patients of the re-
maining subdatasets, strong deviations from the reference distribution on UKE.first
are visible, with a median risk score of up to 0.77 on the UKE.thin dataset. This high-
lights the sensitivity to data variation in the BASE model and indicates that AI-based
models, even when trained on large datasets, have significant difficulties with data
variations they were not trained on. When evaluating the proposed PCAI model on
the same images, the drop in performance on data from different acquisition proto-
cols is reduced to a maximum of 3.7 percentage points on the UKE.thick data, while
it performs on par on the UKE.scanner data. On the main domain UKE.first, it per-
forms even 2.1 percentage points better than the BASE model. When analyzing the
distribution of risk scores, PCAI predicts a similar distribution and median of 0.46
on the UKE.first data. However, in comparison to the BASE model, this distribu-
tion only shifts marginally across the remaining sub-datasets, down to a minimum
median score of 0.40 on the UKE.long data. These results strongly suggest that the
algorithmic modifications for robustness and credibility in PCAI increase its gener-
alization capabilities over the BASE model and contribute to robustness to a broader
spectrum of data variations.

These findings on the internal UKEhv images further translate to the performance
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Figure 3.7.1: The effect of data variation on AI-based PCa grading performance: The
UKEhv dataset contains all protocol variations for a subset of the same 1,537 UKEhv6

patients, taken from the same RP sample. Assuming images that are equally grad-
able and only differ by their domain specific bias, a perfectly robust model should
predict similar score distribution for all sub-datasets and achieve similar discrimina-
tive performance. Difference in performance of the PCAI and BASE model on all six
protocol variants is depicted with respect to the concordance index of 0.645 that BASE
achieved on the UKE.first dataset (top). Distribution of the predicted risk scores of
PCAI and BASE across images for every protocol variation (bottom).

of BASE and PCAI on the TMA test datasets NYU and JHU, which are employed to
assess the generalizability of the proposed models on external data, as depicted in Ta-
ble 3.7.2. Here, PCAI outperformes BASE by 5.3 percentage points and 8.0 percentage
points on the NYU data in terms of concordance index and 5-year relapse AUROC,
respectively, and by 1.0 percentage points and 3.2 percentage points on the JHU data.

Table 3.7.2: Discriminative performance of the PCAI and BASE model in terms of
concordance index (C-Ind.) and five year relapse AUROC (AUC) on the unseen TMA
spot images of the external NYU and JHU datasets.

NYU JHU
C-Ind. AUC C-Ind. AUC

PCAI 0.694 0.744 0.587 0.638
BASE 0.641 0.664 0.577 0.606
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Trustworthiness

The risk stratification results on the TMA datasets show that PCAI is able to provide
stable predictions across on a broad spectrum of sample processing protocols. How-
ever, it might still encounter histopathological slides of e.g. bad quality, for which it
cannot provide a reliable grading. A relevant feature for PCAI is therefore the notion
of confidence or trustworthiness via credibility estimation (CE), not unlike a human
expert that is uncertain about the grading of a particular sample and asks for a sec-
ond opinion. To this end, PCAI assigns a credibility score to every image with the
aim to detect problematic samples. It then alters those images by matching its color
with the training distribution in the attempt to enable a credible prediction and im-
prove performance. To verify whether the proposed credibility-guided color adapta-
tion (CE-CA) setup enables PCAI to correctly detect and correct problematic samples,
the improvement in AUROC when applying credibility-guided color adaptation (CE-
CA) as well as color adaptation of all samples (all-CA) over unaltered predictions of
PCAI is depicted in Figure 3.7.2 for all datasets used to assess its robustness. Percent-
ages of adapted samples per dataset for CE-CA are noted on top of every bar. Here,
the proposed CE-CA improves overall performance across datasets by 7 percentage
points, while un-guided adaptation of all images (all-CA) improves in sum by only 2
percentage points. Notably, on the NYU data, CE-CA turns a decrease by 1.7 percent-
age points into an increase of 4.5 percentage points, highlighting how the credibility
score correctly guides PCAI towards problematic samples. While on the UKE.thin,
UKE.long and JHU data adaptation of all samples achieves a stronger improvement
than CE-CA, it leads to a decrease in performance in five out of eight datasets. Guid-
ing the color adaptation by the credibility score only leads to a neglectable decrease
by 0.3 percentage points on the UKE.thick data, while otherwise increasing perfor-
mance. On the UKE.thin dataset, half of the potential performance increase is ful-
filled by adapting only 15% of overall images based on the assigned credibility. In
summary, it can be observed that CE-CA improves over un-guided adaptation, in-
dicating that the proposed Mahalanobis-distance-based credibility score is beneficial
in identifying problematic samples. Furthermore, the proposed histogram-matching-
based color adaptation (CA) procedure enables PCAI to successfully alter images in
a way that allow for a increasingly correct risk assessment and more credible predic-
tions.

The CE setup is further applied to the BASE model to allow for a quantitative com-
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Figure 3.7.2: Difference in AUROC in PCAI when adapting the color of all samples
(all-CA) of every dataset by default (purple) or when using credibility-guided color
adaptation (CE-CA) (blue). Percentage of adapted samples for CE-CA per dataset is
depicted on top of each bar.

parison of credibility scores to the PCAI model. Figure 3.7.3 depicts the average cred-
ibility score across all test samples for the datasets used to assess the models robust-
ness. It can be seen that credibility in the BASE model drops drastically close to zero
when predicting on data outside its training domain UKE.first. In PCAI, credibility
scores are significantly higher across all domains and surpass the average credibility
of BASE on its training domain in five out of eight cases. Notably, the lowest cred-
ibility scores in PCAI were assigned to samples of the UKE.scanner domain, even
though images from this domain were used to train the domain adversarial network.
This highlights the significant domain shift that is introduced by different scanner
types into histopathological images.

Human-level Performance

After assessing the capability of PCAI over the BASE model to provide robust and
credible predictions across a wide variety of data, the litmus test for the proposed
deep learning system lies in whether it can provide a competitive stratification of
cancer aggressiveness to the currently used medical gold standards of Gleason, ISUP
and GIQ assigned by the pathologists. While the datasets used to build and assess ro-
bustness of the PCAI model include an ISUP score per patient, this score corresponds
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Figure 3.7.3: Average credibility scores of PCAI and BASE on the datasets used to
build and assess the model’s robustness.

to the full patient rather than an individual image and was derived from analyzing
significantly more tissue than the single TMA spot image available to PCAI. Compar-
ing predictions of PCAI on a single image to this patient-level ISUP would be disad-
vantageous to the deep learning model and result in an inconclusive evaluation. To
ensure a fair comparison under equal conditions, the three datasets with image-level
human annotations are utilized for benchmarking PCAI, namely UKE.sealed, UPP
and MMX.

PCAI Surpasses Expert Cancer Grading on TMAs

The UKE.sealed TMA spot dataset contains a spot-level ISUP grading from UKE
pathologists. In addition, the UKE.sealed TMA spots were graded using the Inte-
grated Quantative Gleason (GIQ) grading system by an internationally renowned
pathologist. The GIQ is currently one of the best performing grading systems for PCa
histopathology [116]. In this dataset, up to eight annotated images are available for
a single patient. To derive the final patient-level score, the maximum ISUP across
images is taken as the final prediction. For the GIQ as well as PCAI, both mean and
maximum aggregation strategies are evaluated. Table 3.7.3A depicts the risk stratifi-
cation performance of PCAI and human annotations in terms of concordance index
and AUROC. Comparing similar image-level prediction aggregation strategies, using
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maximum aggregation, PCAI outperforms ISUP annotations by 2.6 and 2.4 percent-
age points in terms of C-Index and AUROC, respectively, and the more advanced
GIQ score by 1.0 and 1.1 percentage points. Using mean aggregation, PCAI and GIQ
perform on par in terms of C-Index, while GIQ scores with 0.7 percentage points
slightly higher than PCAI. These results indicate that PCAI is able to keep up with
existing human-annotated scoring systems on TMA images, even in terms of the ad-
vanced GIQ score provided by an highly experienced pathologist. It even surpasses
the widely employed ISUP score by more than two percentage points in both metrics.

PCAI Surpasses Expert Cancer Grading on Biopsies

While the results on the UKE.sealed dataset indicate the capabilities of PCAI to ex-
tract highly predictive features from post-operative TMA spot images, a clinically
relevant application of PCAI would most likely involve pre-operative biopsies. It is
therefore of particular interest if the feature representations learned by training on
TMA spot data translate their predictive value when performing inference on biopsy
images. To verify this, PCAI is evaluated on the two biopsy datasets UPP and MMX.
On both datasets, image-wise ISUP annotations, obtained during routine diagnostics,
are available. Additionally, on the MMX dataset, three individual pathologists anno-
tated all slides independently and blinded from any additional patient information,
to obtain a notion of human inter-rater variability and assess significance when com-
paring to the proposed model. The ISUP provided by the three pathologists of two
centers (Aachen and Uppsala) show an interrater agreement Fleiss kappa of 0.199.
Maximum aggregation of scores in the case of multiple images for a single patients is
utilized both for PCAI and ISUP.

As shown in Table 3.7.3C, PCAI achieves a C-Index of 0.604, 0.7 percentage points
higher than ISUP, on the UPP dataset. In terms of AUROC, PCAI outperforms ISUP
by 1.3 percentage points.

Table 3.7.3B depicts performance of PCAI and the human annotators on the MMX
dataset. Here, PCAI achieves an C-Index of 0.864, 4.7 percentage points higher than
ISUP, and an AUROC of 0.868, 5.5 percentage points higher than ISUP. When com-
paring to the image-wise ISUP grading of three highly skilled pathologists from Ger-
many and Sweden (A1, A2, A3), PCAI significantly exceeds the performance of the
expert ISUP grading (A1: 0.838, A2: 0.834, A3: 0.641, mean: 0.771) by 9.3 (mean)
percentage points. This holds also true for in terms of AUROC, where PCAI (0.868)
significantly surpasses expert ISUP grading (A1: 0.827, A2: 0.827, A3: 0.657, mean:
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0.770) by 9.8 (mean) percentage points.

Taken together, these results on biopsy-derived whole slide images indicate not only
that feature representations learned by training PCAI on TMA-spot data remain pre-
dictive on biopsy images, they also enable PCAI to surpass predictive performance
of expert ISUP grading in all cases on both datasets.

Table 3.7.3: Discriminative performance of the PCAI model and image-wise ISUP and
GIQ annotations assigned by various pathologists in terms of concordance index (C-
Ind.) and five year relapse AUROC (AUC). A: Performance on the unseen UKE.sealed
TMA spot images. Aggregation of multiple images is performed by either taking
the maximum score (-max) or the average score (-mean) for both PCAI and GIQ. B:
Performance on the unseen MMX biopsy images. C: Performance on the unseen UPP
biopsy images.

UKE.sealed C-Ind. AUC

PCAI-max 0.739 0.781
PCAI-mean 0.744 0.780

GIQ-max 0.729 0.770
GIQ-mean 0.743 0.787

ISUP 0.713 0.757

(a) UKE.sealed

MMX C-Ind. AUC

PCAI 0.864 0.868
A1 0.838 0.827
A2 0.834 0.827
A3 0.641 0.657

ISUP 0.817 0.813

(b) MMX

UPP C-Ind. AUC

PCAI 0.604 0.672
ISUP 0.597 0.659

(c) UPP

Interpretability

The previous results show that PCAI is able to predict a robust and credible risk
score that surpasses human-annotated ISUP on TMA and biopsy datasets. However,
for actual clinical applicability it is pivotal that these predictions are accompanied
with notions of interpretability, which allows the expert to trust or ignore a model’s
prediction. PCAI approaches this two-fold: Firstly, by deriving distinct risk groups to
transform the continuous cancer grade score into clinically interpretable categories.
Secondly, by using the cancer indicator to provide visual cues on images as to the
location of cancerous areas.
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Risk Groups

On the output side, correlation of risk with therapeutic options might be challeng-
ing in a clinical setting using a continuous score. To enhance interpretability of the
predicted risk score, distinct risk groups can be derived by separating patients into
a "low" and "high" risk group based on the median predicted risk score per dataset.
Figure 3.7.4 depicts the Kaplan-Meier curves for the low and high risk patients on the
UKE.first as well as all external datasets. It can be seen that both risk groups sepa-
rate patients well over time, indicating their potential for correlation with respective
treatment options.

Figure 3.7.4: Kaplan-Meier curves of the low and high PCAI risk groups on UKE.first
as well as all external datasets. Risk groups are separated on the medium predicted
risk score per dataset.

However, it is to note that the predicted risk scores on the external datasets express
a distribution shift in comparison to the UKE.first dataset, as depicted in Table 3.7.4.
Here, PCAI predicts higher median risk scores on the JHU (0.654), UPP (0.875) and
MMX (0.714) dataset and a lower median risk score for the NYU (0.265) dataset. No-
tably, except for the JHU data, not the full available range of of risk scores between
0 and 1 is utilized. On both biopsy datasets, the minimum predicted risk score is
significantly higher than on the TMA spot data. Conversely, on the NYU dataset, the
maximum predicted risk score is 19.7 percentage points lower than on UKE.first.
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Table 3.7.4: Minimum, median and maximum predicted risk score of PCAI on all test
samples of the UKE.first, JHU and NYU TMA spot datasets and the UPP and MMX
biopsy datasets.

Min Median Max

UKE.first 0.020 0.454 1.000
JHU 0.093 0.654 0.997

NYU 0.056 0.265 0.803
UPP 0.272 0.875 0.997

MMX 0.193 0.714 0.999

Cancer Indication

To provide additional interpretability on the image level, the CI module is utilized to
create cancer probability heatmaps on all images. These aim to provide visual cues to
the human reader, especially in cases where a low credibility score in PCAI suggests
human re-evaluation of an image. Figure 3.7.5 depicts exemplary heatmaps for TMA
spot and biopsy data.

Figure 3.7.5: Cancer probability heatmaps provided by the CI module of PCAI on
exemplary TMA spot and biopsy images.

Since the CI module is also utilized to guide PCAI on highly cancerous regions for the
biopsy datasets, the influence of this CI-guided patch selection on predictive accuracy
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is depicted in Table 3.7.5. Here, concordance index, average credibility score and Ma-
halanobis distance dM on the UPP and MMX dataset are given for the default PCAI
model, where only the 100 most cancerous patches according to the CI are forwarded
during inference, and the PCAI model without CI sampling (PCAI \CI), where all
valid patches per biopsy image are forwarded. It can be seen that in terms of concor-
dance index, CI-based patch selection improves performance on both datasets, by 3.1
percentage points on the UPP data and 7.2 percentage points on the MMX data. How-
ever, CI-based patch selection significantly reduces average credibility scores on both
datasets. This is further emphasized by correlating increased Mahalanobis distances
dM to latent center of the training distribution.

Table 3.7.5: Concordance index as well as average credibility score and Mahalanobis
distance to the training center across samples of the UPP and MMX biopsy datasets
when forwarding the 100 most cancerous patches according to the CI module (PCAI)
and when forwarding all patches per image (PCAI \CI).

UPP MMX
C-Ind.

x Cred
x dM

y C-Ind.
x Cred

x dM
y

PCAI 0.604 0.084 66.96 0.864 0.178 57.55
PCAI \CI 0.573 0.393 37.74 0.792 0.669 28.84

3.7.2 Extended Analysis

While the previous experiments highlight the rationale behind building PCAI with
the aim for clinical applicability, the following evaluations aim to analyse the final
PCAI model and its individual components more in depth from a technical perspec-
tive.

Latent Space Analysis

Additional analysis of the algorithmic adaptations for robustness in PCAI is per-
formed in accordance with findings from Stacke et al. who claimed that the sensitivity
of a deep learning model to covariate shifts in the input data should be quantified by
measuring the discrepancy of domains in the model’s latent space [97]. Here, less
clustered and entangled latent space representations of individual data domains are
expected to generally indicate a less domain sensitive and more robust model. To this
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end, UMAP representations of the latent features after the patch aggregation layer of
all test images used in this work are derived for the incremental levels of complexity
from the BASE model to PCAI and depicited in Figure 3.7.6. Additionally, the sum of
Mahalanobis distances of the latent centers per dataset (corresponding to the mean
feature vector across samples per dataset) to the latent training center is shown for
every step.

Figure 3.7.6: UMAP representations of the image-wise latent features after the patch
aggregation layer for incremental increases in model complexity from BASE to PCAI.
SD: single domain, MD: multi domain, DA: domain adversarial, all-CA: color adap-
tation of all images, CE-CA: credibility-guided color adaptation, CI: cancer indicator
guided patch selection.

SD (BASE): For the single domain (SD) training of the BASE model, a strong clus-
tering of latent features based on the dataset of origin can be observed. Samples
from UKE.first and UKE.sealed seem to express high similarity, since they cluster to-
gether. Similarly, samples from UKE.second, UKE.thin and UKE.long form a single
cluster. The other datasets form separate clusters. Notably, those dataset which con-
tain images from multiple scanners, namely MMX and JHU, form multiple clusters,
highlighting the covariate shift caused by a different image acquisition device. The
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overall Mahalanobis distance of dataset centers to the training center in the SD case
is 62.1.

MD: The subsequent UMAP depicts the latent space that was trained jointly under
a multi domain (MD) training regime, with data from UKE.first, UKE.second and
UKE.scanner, but without utilizing the domain adversarial (DA) training method.
Qualitatively, no significant difference in clustering can be observed in comparison
to the SD case, indicating that the model still expresses high sensitivity to the input
domain. In contrast, the average dataset Mahalanobis distance to the training center
is drastically reduced to 38.8. However, this is mainly linked to the absolute shift in
position of the training center, since the training data now consists of three domains
instead of only one in the SD case.

DA: When applying the domain adversarial (DA) method to the multi domain train-
ing regime, qualitative analysis of the UMAP reveals a noticeable difference to the
MD case. While the UKE.scanner cluster, UKE.first & UKE.sealed cluster and the
UKE.second & UKE.thin & UKE.long cluster are still present, data from UPP, JHU,
NYU and UKE.thick moves significantly closer together and becomes less distin-
guishable. Only one of the two MMX clusters, representing one of the used scanners,
still separates clearly from the remaining external data. This indicates the beneficial
influence of the domain adversarial training method to the model to become less sen-
sitive to the origin of the input data. The reduced average Mahalanobis distance of
36.7 additionally quantitatively emphasizes this finding.

DA + all-CA: Applying color adaptation to all images (DA + all-CA) further reduces
the average Mahalanobis distance to 34.4. This highlights how matching the color of
samples with histograms of the training distribution moves them indeed closer to the
learned distribution. Notably, MMX forms no separate cluster in that case.

DA + CE-CA: When utilizing credibility-guided color adaptation (DA + CE-CA), the
average Mahalanobis distance increases again to 35.2. However, this is expected be-
haviour due to the reduced number of adapated samples compared with the all-CA
case. When qualitatively comparing the UMAP with the DA case without color adap-
tation, the CE-CA case appears more entangled, proving its robustness-conferring
influence.

DA + CE-CA + CI (PCAI): Finally, additionally utilizing the cancer indicator for patch
selection represents the overall proposed risk prediction model PCAI. Average Ma-
halanobis distance increased further to 36.6, which is in line with the findings in Table
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3.7.5. Qualitatively, samples from the MMX data are slightly more separable than in
the previous case.

In summary, it can be observed that applying the proposed algorithmic adaptations
in PCAI leads qualitatively to a more entangled latent space and quantitatively moves
latent representations closer together, when comparing with the SD or the MD model.
This highlights the decreased sensitivity of PCAI to the dataset origin of the input
images and corresponding covariate shifts caused by variations in clinical acquisition
protocols. It is however to note that the findings in Table 3.7.5 show that a higher Ma-
halanobis distance to the training center does not necessarily correlate with a lower
predictive accuracy, and can, in case of applying the CI for patch selection, actu-
ally improve risk stratification results. Finally, while the relative improvement be-
tween BASE and PCAI is clearly visible, especially the UKE.scanner and UKE.second
& UKE.thin & UKE.long data still forms highly distinguishable clusters, indicating
remaining domain sensitivity of the model even after applying the proposed adapta-
tions for robustness.

Color Dependency of the Risk Prediction

While the previous analysis of the latent space evaluated the sensitivity of the model
to inter-domain differences, building robustness also aims to decrease sensitivity to
intra-domain variation, since differences in staining, lighting or acquisition protocol
can also be present across images of a single dataset. It is hypothesized that these
differences mostly manifest in terms of a color shift of the images. To understand
whether the adaptations for robustness in PCAI led to a reduced sensitivity of its pre-
dictions to intra-domain-specific variations in color, the squared Pearson correlation
coefficient r2 between the predicted risk scores per image and the Wasserstein dis-
tance of their histogram to the center of the training distribution in the HSV color
space is calculated for BASE and PCAI. It is assumed that a high Wasserstein distance
of an image’s histogram to the average histogram of the training images indicates a
stronger color-based covariate shift. Figure 3.7.7 depicts the Pearson r2 of BASE and
PCAI for all datasets used in this work. While PCAI shows an increased sensitivity to
color on the UKE.thin and UKE.second images, on the UKE.scanner the Pearson r2 is
reduced almost 8-fold, from 0.151 to 0.019. Similarly, on the MMX data, the Pearson
r2 of PCAI is reduced to a fraction of the BASE model, from 0.144 to 0.002. The sensi-
tivity to color is also lower in PCAI for all remaining external datasets. These findings
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Figure 3.7.7: Color dependency of the risk score: Squared Pearson correlation coef-
ficient r2 between the predicted risk scores of PCAI and BASE per image and the
Wasserstein distance of the corresponding HSV color histogram to the center of the
training distribution.

indicate that the algorithmic adaptations in PCAI successfully decrease sensitivity to
intra-domain-specific variations in color in the data and analogously increase robust-
ness of the proposed model.

Discarding Images Based on Credibility

The proposed credibility score based on the latent Mahalanobis distance is inspired
mainly by the work of Dietrich [142], who utilized a similar method for detection of
in-distribution (ID) and out-of-distribution (OOD) samples. Their proposed eCareNet
survival prediction model is closely related to the BASE model of this thesis and
trained on the same patient cohort, though not completely identical. Furthermore
the authors combined the works of Lee et al. [158] and Sun et al. [163] to define OOD
samples based on the Mahalanobis distance to the nearest neighbor of the training
distribution, whereas in this thesis the Mahalanobis distance to the training center is
utilized. Dietrich et al. hypothesized that images with higher OOD scores are more
often incorrectly predicted than images with lower OOD scores. They found that re-
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Figure 3.7.8: Difference in concordance index when removing increasing percentiles
of images with lowest credibility scores from all datasets in BASE and PCAI. From
left to right, remove no images up to removing 95%. Evaluation is performed in
increments of 5 percentage points.

moving samples based on their OOD score slightly increased performance on some of
the evaluated datasets, however, with conflicting results on others. Analogue evalua-
tion of the credibility score as OOD measure on all datasets is performed for the BASE
and PCAI models developed in the course of this work. Figure 3.7.8 depicts the differ-
ence in C-Index when predicting on datasets where increasing percentiles of samples
expressing the lowest credibility scores are removed (see Figure A.2.1 for AUROC).
It can be seen that with decreasing dataset size, absolute difference in performance
increases for the BASE model. In line with the findings in the eCareNet, a positive
difference in performance is visible for some datasets and a negative difference for
others. For the PCAI model, removing samples based on their credibility score leads
to more consistently negative results across datasets over varying thresholds. A po-
tential explanation for this is that PCAI is specifically trained towards robustness and
a more entangled latent space, as shown in Section 3.7.2. This might lead to a state
where latent Mahalanobis distances are less predictive in terms of out-of-distribution
detection as compared to the highly clustered latent space of the BASE model. It is
however to note that C-Index and AUROC are discriminative metrics which compare
the ranking of patients and are thus strongly dependent on the underlying cohort.
Since dataset sizes change during the evaluation, comparing predictive performance
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in terms of absolute numbers on different cohort sizes might be misleading [142].
When adapting the color of samples expressing a low credibility score instead of dis-
carding them, as shown in Section 3.7.1, an overall increase is predictive accuracy is
visible, indicating that the credibility score detects samples far from the learned dis-
tribution. These results are more representative, since the discriminative evaluation
metrics were computed on the same underlying patient cohorts.

In summary, discarding samples based on the credibility score does not lead to a
consistent improvement in the BASE model, which is in line with the literature. In
the PCAI model, a decrease can be observed. However, previous evaluations in this
work showed that the credibility score is an appropriate measure to detect samples
that benefit from color adaptation. Future work should explore more suited meth-
ods to detect OOD samples, if an increase in performance is aspired. Different non-
conformity functions than the Mahalanobis latent distance used in this work can be
easily explored through the plug-and-play nature in proposed conformal prediction
(CP) based credibility estimation (CE) setup of PCAI.
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3.8 Discussion

In the present study, PCAI is proposed as a fully automated end-to-end PCa risk as-
sessment pipeline that aims at clinical applicability, defined by four key criteria of
robustness, trustworthiness, human-level performance and interpretability. It builds
on one of the largest and most heterogeneous PCa image datasets paired with patient
follow-up information collected to date, consisting of 83,864 images from 25,591 pa-
tients and five distinct centers. Several algorithm adaptations over the additionally
derived BASE model are applied in PCAI, which utilize the rich and diverse underly-
ing dataset collected in this work. This is made possible by the extensive mask-based
image preprocessing and metadata integration performed in the course of this work,
which allows to utilize image data from various centers and acquisition protocols, as
well as TMA spot images and up to two orders of magnitude larger biopsy images in
a single deep learning model. In the following, it will be discussed to which extend
the four initially defined key requirements of PCAI are achieved.

Robustness

The effect of data variance encountered in clinical practice on the predictive accuracy
of the DL models developed in this work is shown on the UKEhv6 subset, which
contains all six acquisition protocol variations for a subset of the same 1,537 patients,
taken from the same RP sample. Here, discriminative performance in terms of C-
Index of the BASE model is reduced on all datasets that lie outside its training dis-
tribution, up to 8.6 percentage points on UKE.thin. In PCAI, this decrease is signifi-
cantly reduced across datasets, to a maximum of 3.7 percentage points. This robust-
ness to variance in the input images further extends to the external JHU and NYU
TMA data, where PCAI outperforms the BASE model in both C-Index and AUROC.
Additionally, while the BASE model expresses noticeable distribution shifts in risk
score prediction when confronted with data acquired with a protocol variation, PCAI
predicts more homogeneous distributions across the UKEhv6 images, which is de-
sired behaviour for data of the same underlying patient population. These results
prove the robustness-conferring influence of the algorithmic adaptations in PCAI
over BASE. When moving further from evaluating absolute performance, evalua-
tion of the UMAPs and average dataset center Mahalanobis distances to the train-
ing center reveal a more dense and entangled latent space in PCAI, suggesting that
the encoder in PCAI extracts less domain-specific information from the images. Fur-
thermore, analysis of the histogram Wasserstein distances shows that sensitivity of
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the predicted risk score to shifts in the input color space is reduced. However, even
though PCAI scores high in discriminative performance on all datasets, it is to note
that on the external datasets a shift in the predicted ranges of the risk score is visible.
While some variation in distribution is expected due to differences in the underlying
cohorts, especially the high median risk scores on the two biopsy datasets UPP and
MMX indicate a remaining sensitivity to the input domain of the images in PCAI.
Future work might address this issue with a re-calibration when applying PCAI on a
novel patient cohort. In summary, the results and evaluations show that the goal of
robustness in PCAI is achieved.

Human-level Performance

The predicted risk score of PCAI is compared to image-wise ISUP and GIQ annota-
tions of multiple renowned pathologists on one unseen TMA-spot dataset and two
unseen biopsy datasets. On all three datasets, the risk score predicted by PCAI pro-
vides a more exact patient risk stratification than expert assigned ISUP grading. This
shows that the feature representations learned in PCAI by training on post-operative
TMA spot images remain predictive on pre-operative biopsy images with high accu-
racy. On the TMA-spot data of UKE.sealed, the PCAI risk score even surpasses PCa
aggressiveness grading of the GIQ score assigned by an internationally renowned
pathologist, when taking the maximum score across images per patient, and per-
formes on par when taking the mean of scores across images per patient. These re-
sults on three unseen datasets strongly suggest that the risk score predicted by PCAI
matches the performance of the currently most predictive PCa grading system GIQ,
and even surpasses the predictive capabilities of ISUP. It can therefore be stated that
the goal of human-level performance is achieved.

Trustworthiness

Building trust in a model’s prediction is of utmost importance in clinical practice and
a model should be equipped with the necessary means to quantify its confidence. In
PCAI, this is attempted by the conformal prediction (CP) inspired credibility estima-
tion (CE) setup, which computes a credibility score based on the latent Mahalanobis
distance of an image to the learned distribution. PCAI scores higher credibility scores
on all datasets than BASE, indicating that the algorithmic adaptations taken in PCAI
enable it to confidently predict on an increased range and variety of data. These al-
gorithmic adaptations include the feedback loop of color adaptation of low credible
images. Using this credibility-guided CA procedure leads to a higher improvement in
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AUROC across datasets than adapting all images by default, which concludes that the
proposed credibility score does in fact detect samples that fall far from PCAI’s learned
distribution and underpins its aptitude as a measure for the models confidence in its
prediction. If PCAI assigns a low credibility score to a potentially problematic image
even after trying to fix it by adapting its color, the proposed workflow (depicted in
Figure 3.6.6) suggests to defer the image to evaluation by a clinician. However, dis-
carding images that express low credibility scores does not lead to an improvement in
discriminative performance of PCAI on the remaining samples. Here it is to note that
discriminative performance on cohorts of different sizes is comparable to a limited
extend only [142]. In summary, PCAI is able to quantify its confidence in a prediction
and to self-sufficiently correct problematic images it encounters, increasing discrimi-
native performance and overall trust that can be placed in its predictions. However,
on the task of OOD detection to discard samples based on the credibility score, fur-
ther research should be conducted to find a more suited measure than the proposed
Mahalanobis distance to the training center. The goal of trustworthiness is therefore,
in my opinion, partly achieved.

Interpretability

Correlation of a continuous risk with therapeutic options might be challenging in a
clinical setting, even if that score is highly discriminative. In this work, distinct "low"
and "high" risk groups are derived based on the median predicted risk per dataset.
It can be seen that both risk groups separate patients well over time, indicating their
potential for correlation with respective treatment options. The exact number of risk
groups to derive from the score and the treatment options to correlate with each
group is subject of future work and requires further exchange with the clinical prac-
titioners. However, as already mentioned when discussing PCAI’s robustness, the
predicted risk score expresses a distribution shift on the external datasets, especially
on the biopsy data. Therefore, a definition of score boundaries for the risk group on
the training data might not translate well to external data. Here, re-calibration of the
risk scores on a new patient cohort can potentially address this issue. Finally, the can-
cer probability heatmaps provided by the cancer indicator provide visual cues and
guide the clinician to the relevant regions of the biopsy images. Since only the most
cancerous regions are forwarded to PCAI during inference, these heatmaps further
highlight which region of the images contributed to the overall prediction, provid-
ing a means of explainability to the network. Furthermore, the attention weights
assigned inside the PA layer of the model provide additional insights into the impor-
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tance of every patch, achieving an even more fine-graded transparency. The goal of
interpretability is therefore, in my opinion, partly achieved.

Limitations & Outlook

It is to note that this work encompasses some limitations. First and foremost, the
very long training of up to over a week for the domain adversarial regime make hy-
perparameter optimization challenging. While the results indicate a well optimized
model, a more extensive hyperparameter search in the future might potentially yield
further improvements in predictive accuracy and robustness. Moreover, only a single
instance with a single random seed of PCAI and BASE is evaluated. To get a better
estimation of variance in the found parameter setting, evaluation of multiple trained
instances with varying random seeds is desirable. Additionally, the literature showed
the highly beneficial influence of strong color augmentations to the robustness of
histopathological deep learning models [17]. While the AugMix augmentations used
in this work are specifically designed for robustness of deep learning models in nat-
ural image processing, it is to note that they do not adapt the hue of the images. It
is expected that additional augmentation of the image’s hue channel is an easy to
apply adaptation for increased robustness in future versions of PCAI. Moreover, the
domain adversarial training regime is performed using the dataset of origin as la-
bel for domain classification. While this leads to the desired robustness and utilizes
the inherent heterogeneity of the UKEhv sub-datasets, recent literature showed that
performing adversarial regression on the H&E-stain matrix computed by Macenko’s
method further improved generalization capabilities [164]. Future work should uti-
lize this over the adversarial domain classification, since this can be utilized to render
the model even more robust to intra-dataset specific variation. Furthermore, the pro-
posed credibility estimation setup is based on the concept on conformal prediction
[159, 165]. However, in contrast to the original method, this work does not utilize the
predicted class probabilities to derive the prediction sets of class point predictions.
This stems from the fact that the predicted probability for class 1 (i.e. experiencing a
relapse prior to five years) is interpreted as a continuous score and the class predic-
tion just serves as a proxy during training. Future work should explore how to utilize
the full potential of conformal prediction in PCAI, similar as has been shown by the
work of Olsson et al. [100]. Finally, while it is shown that PCAI is a highly robust and
accurate predictor that even outperforms ISUP as the current human assigned gold
standard for PCa grading, it is to note that not all algorithmic adaptations always
lead to a consistent increase in performance across datasets when applied individu-
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ally to the underlying model. Instead, they function in unison to mitigate potential
weaknesses and form a strong combined setup.

137



3 Prostate Cancer Aggressiveness Index - PCAI

3.9 Conclusion

This work presents PCAI, a comprehensive deep learning based pipeline for prostate
cancer risk assessment on histopathological images, designed specifically to meet the
initially defined criteria of clinical applicability. PCAI builds on one of the largest
histopathological prostate cancer dataset collected to date, encompassing 83,864 im-
ages from 25,591 patients and five different centers. With the goal of building a clini-
cally applicable model, design decisions are based on meeting four key requirements,
namely robustness, trustworthiness, interpretability and human-level performance.
To this aim, several algorithmic adaptations that specifically utilize the heterogene-
ity and quantity of the underlying dataset are included into PCAI. These adaptations
set it apart from a separately derived BASE model, which is trained on data from a
single source and emulates the shortcomings of commonly used approaches in the
literature. By applying the proposed adaptations of joint domain adversarial train-
ing, conformal prediction based credibility estimation, credibility guided color adap-
tation and cancer indication, PCAI improves over the BASE model for all defined
requirements (RQ-2). In detail, by utilizing data from the UKEhv6 subset of 1,537
patients, which includes TMA spot images of six different clinical protocol variations
taken from the same RP sample, it is shown that performance of the BASE model
degrades significantly on images acquired by a protocol outside its training domain,
by up to 8.6 percentage points. In PCAI, domain adversarial training and credibil-
ity guided color adaptation reduce this drop to a maximum of 3.7 percentage points.
Robustness further extends to two unseen external TMA spot datasets (RQ-2). Fur-
thermore, predictive capabilities of the PCAI, which is trained on TMA-spot images
from removed prostate specimen after RP, extends to biopsy images of two unseen
external datasets (RQ-PCAI). This is assessed by comparing the predictive accuracy
of the model’s risk score against image-wise ISUP annotations of multiple human ex-
perts. Here, the predicted PCAI risk score provides a better risk stratification than
ISUP in all cases, strongly suggesting its clinical value (RQ-1). This is further em-
phasized when comparing against the more sophisticated GIQ score on unseen TMA
spot images, where PCAI performes on par with annotations of one of the worlds
most renowned pathologists (RQ-1). Finally, with the added notion of trustworthi-
ness in the models predictions through the credibility score and the interpretability
for human re-evaluation provided by the cancer heatmaps (RQ-3), this work aims
to provide a potential blueprint and pave the way for future real-world implemen-
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tation of deep-learning based prostate cancer risk prediction models into the clinical
workflow.
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4 Overall Conclusion and Outlook

This thesis presents two projects in the field of medical image processing with deep
learning, DeePSC and PCAI, with a specific focus on clinical applicability. In both
projects, emphasis is put on fulfilling the initially defined key requirements of reach-
ing human-level predictive accuracy, robustness, and trustworthiness.

DeePSC is a convolutional neural network based ensemble classifier that detects PSC
on MRCP images and is specifically designed to process multiple images taken from
different angular views around the patient in parallel. PCAI is an end-to-end risk pre-
diction network that quantifies the cancer aggressiveness of prostate cancer patients
based on their microscopic TMA-spot and biopsy images.

Both models surpass predictive accuracy of various human experts in their specific
tasks of disease detection and patient risk stratification. Additionally, both models
generalize on unseen data acquired with clinical protocols differing from that of the
training distribution, thus reflecting robustness to data variance encountered in clin-
ical practice. For PCAI, re-calibration to a new cohort might be advisable to allow
for absolute interpretation of the predicted risk score. High predictive accuracy and
robustness are arguably the most relevant requirements for an AI-based CDS: Scheetz
et al. found in a survey that most clinicians had universally high expectations on the
model’s predictive accuracy, which forms the basis for acceptance of such a system in
clinical practice [16]. To this end, the robust, superhuman performance of both pro-
posed models in this thesis, DeePSC and PCAI, is assessed and proven on multiple
datasets.

Besides designing the models to be highly accurate, they are further build such that
their predictions are likely to be trusted in a clinical setting. Creating trust in the
models is a nonlinear problem and the literature often only vaguely describes what
clinicians actually expect from a ’trustworthy’ model [166].

One commonly mentioned approach to this is to build the model ’explainable’ or ’in-
terpretable’, e.g. to equip it with the necassary means to highlight how it arrived
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at a particular decision [24]. In the proposed deep learning models of this thesis,
this is attempted by providing visual cues of salient regions in the input images that
contribute to the model’s prediction. This is in line with the works of Evans et al.,
who found that pathologists preferred visual explanations in a CDS since those relate
to their own way of thinking [22]. In DeePSC, GradCAM class activation heatmaps
are derived on the last convolutional layer of the network. Here, high activation in
the regions of the biliary tree reveal a focus of the model on the biologically relevant
areas of the images. In PCAI, cancer probability heatmaps are derived on the full
biopsy images, which are further used for selecting the relevant regions for the sub-
sequent risk prediction. Besides revealing which areas contribute to the overall risk
score, these aim to guide and support the physician if re-evaluation of an image is
necessary. Additionally, in both projects, attention-based aggregation is utilized, for
combining the latent representations of the seven MRCP views per patient in DeePSC
and for combining the latent representations of patches per WSI in PCAI. Since the
attention aggregation amounts to a weighted average function, the attention weights
further allow for assessment of how much an individual MRCP view or image patch
contributed to the overall final score. However, it is to note that in the literature,
explainability as a means to build trustworthy models is also perceived critically:
Markus et al. found that the evidence of usefulness of transparent or explainable
models in terms of trustworthiness is still lacking, and it should rather be assessed by
performing extensive external validation, data quality control and regulation [167].
Similarly, Ghassemi et al. argued that local explanations (i.e., explanations for single
samples) are ambiguous and that proving robust model performance in a thorough
validation study is sufficient for clinical usage. [168]. Interestingly, too much trans-
parency might even lead to averse effects: Dietvorst et al. showed that people tend
to distrust an algorithm more quickly than a human forecaster after seeing them do
the same mistake [169]. It is to note that the proposed risk groups in PCAI are also
categorized as a means of interpretability. However, they aim at making the model’s
predicted continuous risk score more interpretable in a clinical setting, by allowing
for an easier correlation with treatment options, rather than making the deep learning
model itself interpretable or explainable.

Besides building trust in the models by making them explainable or interpretable,
quantifying the uncertainty of a model’s predictions is an additional approach sug-
gested by the literature [18, 21]. While transparency-boosting methods like Grad-
CAM saliency maps require the human reader to verify the legitimacy of a given
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output, confidence estimation aims to equip the model with the necassary means to
self-sufficiently quantify the validity of its predictions. To this end, the credibility
estimation setup is introduced into PCAI, which is inspired by the concept of confor-
mal prediction [159]. It is shown that the credibility score successfully guides PCAI
towards problematic samples that benefit from color adaptation. However, discard-
ing samples that PCAI assigned a low credibility score to does not improve overall
performance. It is to mention that certainty quantification and out-of-distribution de-
tection is a multi-layered and complex problem, and the proposed solution is just a
first attempt that aims to detect samples that deviate from the learned distribution
in the latent space [170]. Future work should extend on this and find a more suited
non-conformity metric than the proposed latent Mahalanobis distance, potentially by
also including predicted class probabilities as done by Olsson et al. [100]. Ideally,
future versions of DeePSC should also encompass a method to quantify its predictive
confidence.

Finally, the models need be transferred from research to actual practical application
and evaluated in a hands-on setting where the physician is paired with the AI to
see how the CDS affects decision making. As Meyer et al. found, this can reveal
surprising behaviour of clinicians and expectations towards model features that differ
from what was initially assessed by evaluating a questionnaire or when building on
beliefs from the literature [171].

For such an implementation study in clinical practice, the CDS might need to meet
further requirements not accounted for in this thesis, like software maturity, access-
ability in terms of human-computer interaction or getting official certification [172,
173]. Bozyel et al. emphasize in a recent study the importance of data quality, repre-
sentativeness and up-to-dateness of clinical CDS systems [174]. A potential way for
future work to incorporate this into a running CDS system based on models as pro-
posed in this thesis is by applying a continuous federated learning approach [175].
This aims to continuously keep the models knowledge up to date, while in parallel
boosting robustness by utilizing highly heterogeneous data from multiple medical
centers and protocols.

In summary, this thesis proposes two models for disease diagnosis and risk estima-
tion, that both robustly outperform multiple human experts in their respective tasks.
With the proposed adaptations to increase trustworthiness in the AI and given the
outlook on remaining challenges and next steps, it is hoped that this thesis provides
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a potential blueprint for future work that ultimately finds its way into clinical prac-
tice to aid clinicians as well as patients into more precise diagnosis, better treatment
decisions and improved overall outcomes.
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A Appendix

A.1 DeePSC

A.1.1 Image Acquisition Protocol

MRCP imaging was obtained in routine fashion with rapid acquisition with relax-
ation enhancement sequences (RARE) using 2D single-shot (SS) thick-slab and 2D
thin-slice (multi-slice) techniques. First, axial T1-weighted dual gradient-echo in-
phase and opposed-phase images and breath-hold T2-weighted sequences in axial
and coronal plane covering the liver were acquired. For thick-slab technique, a fat-
suppressed single-shot (SS) turbo spin echo (TSE) sequence was obtained in high slice
thickness (40-80 mm). Multi-slice MRCP was performed with an axial breath-hold T2-
weighted Half-Fourier acquisition single-shot turbo spin echo (HASTE) sequence and
postprocessed with isometric maximum intensity projections (MIP). Both sequences
were obtained in coronal planes and angulated along the hepatobiliary ducts to allow
for optimal visualization of all relevant anatomical structures. Finally, a total of 7-14
radial MRCP rotations from different angular points of view were reconstructed and
reviewed for each exam. Imaging parameter were TR 6000 - 8000 ms, TE 740 - 920 ms,
FA 90°, and FOV 300 x 300 mm for the internal dataset and TR 4000 ms, TE 696 ms, FA
178°, and FOV 300 x 300 mm for the different vendor validation dataset, respectively.
There were no fundamental technical differences between the internal and external
dataset beyond the known manufacturer specifications.

TR: Time of repetition, TE: time of echo, FA: flip angle, FOV: field of view.
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A.1.2 Demographic Characteristics and Metadata

Figure A.1.1: Histograms of demographic and meta-information in the internal 3T
(blue) and 1.5T (yellow) dataset. Reprinted with permission from Ragab and West-
haeusser et al. [77].
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A.1 DeePSC

A.1.3 Experiments

Figure A.1.2: Results of DeePSC (five ensemble models, orange) and the radiologists
(four readers, blue) on the internal 3T and 1.5T test-sets. Reprinted with permission
from Ragab and Westhaeusser et al. [77].
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A.1.4 Extended Analysis

Figure A.1.3: Results of five training/test splits per architecture on the 3T (top) and
1.5T (bottom) dataset. Same colors per dataset refer to the same datasplit. Boxes per
architecture include values of five training rounds with different random seeds. The
mean over splits per architecture is depicted above the respective boxes. Notably, the
main influence on performance is from the underlying datasplit, whereas choice of
architecture does not show a consistent pattern.
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A.2 PCAI

A.2 PCAI

A.2.1 Metadata

Table A.2.1: Patient metadata for all PCa survival datasets.
UKE NYU JHU UPP MMX

patients 8157 158 879 123 269
image type TMA TMA TMA Biopsy Biopsy

age [years], mean ± SD 63.5 ± 6.1 60.9 ± 7 59.2 ± 6.3 67.6 ± 8.9
censoring [%] 61.4 70.3 0.3 83.7 88.5

median survival [years] 1.6 3.9 2 2.1 4.3
median followup [years] 8 17.8 16 7 9.1

ISUP

0 410 (5.03%)
1 1806 (22.14%) 49 (31.01%) 133 (15.13%) 9 (7.32%) 15 (5.58%)
2 4016 (49.23%) 67 (42.41%) 337 (38.34%) 66 (53.66%) 82 (30.48%)
3 1367 (16.76%) 16 (10.13%) 184 (20.93%) 27 (21.95%) 80 (29.74%)
4 109 (1.34%) 11 (6.96%) 123 (13.99%) 12 (7.32%) 36 (13.38%)
5 449 (5.50%) 15 (9.49%) 102 (11.60%) 9 (7.89%) 56 (20.82%)

event type

BCR 3089 (37.87%) 43 (27.22%) 521 (59.27%) 18 (14.63%)
FU 5007 (61.38%) 111 (70.25%) 3 (0.34%) 103 (83.74%) 226 (84.01%)

META 61 (0.75%) 142 (16.15%) 2 (1.63%) 42 (15.61%)
PCAD 4 (2.53%) 1 (0.37%)

TRT 213 (24.23%)

T-stage

≤ T1 2 (0.02%) 97 (78.86%) 122 (45.35%)
T2 4966 (60.88%) 104 (65.82%) 134 (15.42%) 26 (21.14%) 90 (33.46%)
T3 3128 (38.35%) 52 (32.91%) 735 (84.58%) 54 (20.07%)
T4 61 (0.75%) 2 (1.27%) 3 (1.12%)

N-stage

N0 4306 (86.41%) 56 (35.44%) 700 (80.18%)
N1 677 (13.59%) 1 (0.63%) 163 (18.67%)
N2 2 (0.23%)
NX 101 (63.92%) 8 (0.92%)

M-stage
M0 6335 (78.47%) 509 (60.89%) 7 (5.69%) 79 (29.48%)
M1 1738 (21.53%) 327 (39.11%) 7 (5.69%)
MX 109 (88.62%) 189 (70.52%)
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Table A.2.2: Patient metadata for the UKEhv survival sub-datasets.
UKE.first UKE.second UKE.scanner UKE.thin UKE.thick UKE.long

patients (images) 8123 7156 8114 1602 1574 1667
age [years], mean ± SD 63.5 ± 6.1 63.6 ± 6.1 63.5 ± 6.1 63.2 ± 6 63.2 ± 5.9 63.2 ± 6

censoring [%] 61.3 60.9 61.3 67.4 67.6 67.4
median survival [years] 1.6 1.6 1.6 2.4 2.4 2.4

median followup [years] 8 8 8 7.2 7.2 7.7

ISUP

0 407 (5.01%) 370 (5.17%) 405 (4.99%) 98 (6.12%) 96 (6.10%) 103 (6.18%)
1 1792 (22.06%) 1557 (21.76%) 1789 (22.05%) 305 (19.04%) 304 (19.31%) 322 (19.32%)
2 4001 (49.26%) 3512 (49.08%) 3997 (49.26%) 879 (54.87%) 864 (54.89%) 911 (54.65%)
3 1366 (16.82%) 1223 (17.09%) 1366 (16.84%) 253 (15.79%) 243 (15.44%) 262 (15.72%)
4 109 (1.34%) 94 (1.31%) 109 (1.34%) 19 (1.19%) 19 (1.21%) 21 (1.26%)
5 448 (5.52%) 400 (5.59%) 448 (5.52%) 48 (3.00%) 48 (3.05%) 48 (2.88%)

event type
BCR 3084 (37.97%) 2745 (38.36%) 3081 (37.97%) 518 (32.33%) 506 (32.15%) 539 (32.33%)

FU 4978 (61.28%) 4355 (60.86%) 4972 (61.28%) 1080 (67.42%) 1064 (67.60%) 1123 (67.37%)
META 61 (0.75%) 56 (0.78%) 61 (0.75%) 4 (0.25%) 4 (0.25%) 5 (0.30%)

T-stage

≤ T1 2 (0.02%) 2 (0.03%) 2 (0.02%)
T2 4940 (60.81%) 4301 (60.10%) 4932 (60.78%) 976 (60.92%) 958 (60.86%) 1021 (61.25%)
T3 3120 (38.41%) 2796 (39.07%) 3119 (38.44%) 610 (38.08%) 601 (38.18%) 628 (37.67%)
T4 61 (0.75%) 57 (0.80%) 61 (0.75%) 16 (1.00%) 15 (0.95%) 18 (1.08%)

N-stage N0 4290 (86.39%) 3719 (85.61%) 4284 (86.37%) 923 (90.22%) 907 (90.25%) 971 (90.49%)
N1 676 (13.61%) 625 (14.39%) 676 (13.63%) 100 (9.78%) 98 (9.75%) 102 (9.51%)

M-stage M0 6306 (78.44%) 5499 (77.67%) 6298 (78.43%) 1260 (78.95%) 1237 (78.89%) 1313 (79.05%)
M1 1733 (21.56%) 1581 (22.33%) 1732 (21.57%) 336 (21.05%) 331 (21.11%) 348 (20.95%)
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A.2.2 Extended Analysis

Figure A.2.1: Difference in five year relapse AUROC when removing increasing per-
centiles of images with lowest credibility scores from all datasets in BASE and PCAI.
From left to right, remove no images up to removing 95%. Evaluation is performed
in increments of 5 percentage points.
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