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Abstract 
 

Reinforcement learning offers a formalized model of decision-making processes guided by the 

predicted values associated with available options. It is commonly assumed in these models that 

behavior is governed by two separate systems: a fast, reflexive system and a slower, more 

deliberate prospective system. These systems are thought to be dissociable not only on the 

behavioral, but also on the neural level. At the same time, dual-systems approaches have been 

criticized for their allegedly oversimplistic nature. It is argued that cognitive processes are better 

reflected on a continuum and that the brain uses more integrated, dynamic, and context-

dependent mechanisms than captured in dichotomized systems. To address these issues, we 

tested the notion of dual-systems approaches underlying RL, probing the presence of separate 

systems, their interplay, and modulating factors. Stress is known to be a powerful modulator of 

leaning and decision making that was shown to induce a shift from cognitively demanding to 

rather reflexive systems. We examined three different dual-systems frameworks in RL and tested 

the susceptibility of the systems and their components to stress and stress mediators. In Study 

1, we examined the extent to which adaptive behavior is driven by a purely reward-driven 

model-free reinforcement learning, versus a model-based strategy that incorporates a map of 

the environment to guide choices, while exposing participants to an acute stress manipulation. 

Although stress is assumed to impair prefrontal functions associated with model-based 

reinforcement learning, participants from the stress and control groups utilized both learning 

strategies in a stimulus-response association task with an overall bias towards model-free 

reinforcement learning. However, our results from functional magnetic resonance imaging 

showed a reduction of value computations underlying both model-free and model-based 

reinforcement learning in stressed participants. In Study 2, we aimed to shed light on the 

processing of specific choice components underlying the preference for exploiting known, but 

depleting resources versus exploring unknown options. Prior research has identified dopamine 

and noradrenaline as key drivers in this tradeoff. By pharmacologically blocking either of these 

two neurotransmitter systems, we found that neither of them drives exploration vs. exploitation 

per se. Rather, they both play functionally different roles: While dopamine signaled choice-

relevant features. noradrenaline exerted a disengagement from the current information path. In 

Study 3, we tested how the systems of working memory vs. reward learning contribute to the 

acquisition of stimulus-action pairs and whether these contributions are subject to stress effects. 

Our results show a cooperative interplay between working memory and reinforcement learning 

with reward learning guiding behavior when working memory limits are exceeded. Overall, our 

findings challenge the strict dichotomy traditionally posited in dual-systems theories, 

highlighting a more nuanced interplay of cognitive components in learning and decision-making. 
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Therefore, this work contributes to a deeper understanding of the adaptive nature of human 

cognition and offers implications for enhancing decision-making strategies in real-world 

scenarios. 
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1 Introduction 

Learning from reward is one of the key principles underlying decision-making and behavioral 

adaptation. It is based on the fundamental observation that actions that have been rewarded are 

more likely to be repeated than ones that have not been rewarded, or even punished. This led to 

the development of the reinforcement learning (RL) approach, in which learning and decision-

making behavior is guided by the reward history obtained for available options in the current 

decision space (Sutton & Barto, 1998). The objective is to learn a policy − a strategy for selecting 

actions − that maximizes cumulative rewards over time (Gershman & Uchida, 2019). The key 

feature of RL lies in its ability to translate observed behaviors into mathematical formulations, 

thereby offering a precise model for quantifying how an individual learns from interactions with 

the environment (Collins & Cockburn, 2020). Strikingly, these formulas can not only reflect 

behavior, but can also be applied to the underlying neural mechanisms. RL therefore provides a 

normative framework to explain how the brain processes information, adapts to changing 

circumstances, and optimizes behavior to achieve desired outcomes (Dayan & Balleine, 2002). 

 

The empirical study of learning and decision-making has raised a variety of seminal dichotomic 

approaches based on the idea that behavior is controlled by two dissociable systems (Sloman, 

1996; Stanovich & West, 2000; Tversky & Kahneman, 1974). Typically, these dual-systems 

frameworks contrast a fast, reflexive system that spares resources with one that incorporates 

more complex information but is slower and computationally heavy. Examples of such dual-

systems frameworks in RL include goal directed vs. habitual behavior (Balleine & O’Doherty, 

2010), model-free vs. model based RL (Gläscher et al., 2010), or the exploration-exploitation 

dilemma (Blanchard & Gershman, 2018). These approaches often differ in their specific 

emphasis on individual aspects but share core computational principles and overlap in the 

underlying neural mechanisms.  

 

In spite of the assumed dichotomization, the most prominent dual-systems frameworks in RL 

suggest that the respective systems overlap to some point as well on the behavioral as on the 

computational and neural levels. This indicates that behaviors are not solely the result of one of 

two systems but a combination of both (Drummond & Niv, 2020; Wilson et al., 2021). Moreover, 

the dimensionality of learning extends beyond a mere binary classification, hinting that such 

frameworks, while useful, may omit valuable insights by simplifying the complexity of learning 

processes into two categories (Collins & Cockburn, 2020). Therefore, dual-systems theories have 

been criticized for promoting approximative solutions to complex problems in cognitive science 

(Gigerenzer, 2010; Kruglanski & Gigerenzer, 2011). In a more global perspective, dual-systems 
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theories might be not suitable to provide an integrative view on cognitive processing, both on a 

behavioral and on a neural level. 

 

In this thesis, we highlight three dichotomization frameworks that are popular in the field of RL, 

namely model-free vs. model-based RL, exploration vs. exploitation, and working memory (WM) 

vs. reward learning. We propose a critical perspective on the dichotomization of RL processes by 

identifying the interplay of the proposed two systems within these domains. Further, we test 

whether modulating factors alter individual process components and how this modulation 

affects the interplay between systems. 

 

1.1 Reinforcement learning  

The finding that previously rewarded actions are more likely to be repeated than ones that have 

not been rewarded or even punished (Thorndike, 1927) was first manifested in the paradigms 

of Pavlovian and instrumental conditioning and has accumulated a broad range of evidence since 

(Balleine & Ostlund, 2007; Bouton et al., 2021). A striking observation was that it is not the 

reward per se that reinforces behavior, but the difference between a predicted value of future 

rewards and the actual outcome (Schultz et al., 1997). This concept goes back to the Rescorla-

Wagner model, a classic computational model originally formulated to explain associative 

learning in Pavlovian conditioning (Rescorla & Wagner, 1972). It proposed that the change in 

strength of a stimulus-outcome association is determined by the discrepancy between the 

expected and actual outcomes. Learning therefore occurs whenever there is an unpredicted 

event, and the amount of learning is proportional to the surprise associated with the outcome. 

These prediction errors (PEs) are assumed to be the central driver of incremental learning. The 

foundational theoretical basis was applied to RL, where learning was driven by the difference 

between the predicted reward for an option and the actual outcome, known as the reward 

prediction error (RPE; Schultz et al., 1997). Specifically, a trial-unique RPE 𝛿𝑡  updates the 

value 𝑉(𝑎)𝑡 that is associated with choosing a specific action a, based on the observed reward 

R(a): 

𝑉(𝑎)𝑡+1 = 𝑉(𝑎)𝑡 +  𝛼𝛿𝑡                                                                 (1)                                                                               

𝛿𝑡 =  𝑅(𝑎)𝑡 − 𝑉(𝑎)𝑡                                                                      (2) 

for trial t, where 𝛼 with 0 < 𝛼 < 1 indicates the learning rate. Hence, the RPE signals whether the 

outcome from choosing a specific action was better or worse than predicted, thereby 

determining the direction of the behavioral adaptation (Daw & Doya, 2006; Pessiglione et al., 

2006; Schönberg et al., 2007). The mismatch between the expected outcome and the actual 
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outcome is then used to improve the prediction, according to a learning rate 𝛼 which controls 

the degree to which extent the prediction error leads to an adjustment of action values. 

 

Taking this as a basis, RPEs further serve to iteratively refine policies towards an optimal value 

function. Temporal difference (TD) approaches offer a formal description of how RPEs enable 

learning incrementally about associative relationships between actions and outcomes (Sutton & 

Barto, 1998). The TD-RPE is calculated by first adding the immediate reward obtained in the 

current trial 𝑅(𝑠)𝑡 to the expected reward for this option 𝑉(𝑠)𝑡+1, which is an integration of all 

possible future values discounted by a factor 𝛾. From this sum, the previous, not yet updated 

reward estimate for the chosen option 𝑉(𝑠)𝑡 is subtracted to compute the TD-RPE: 

 

𝛿𝑡 = 𝑅(𝑠)𝑡 + 𝛾𝑉(𝑠)𝑡+1 −  𝑉(𝑠)𝑡                                                     (3) 

 

At the core of TD learning lies the idea that learning is about identifying a value function that 

guides behavior towards the most advantageous options to maximize rewards in the long run 

(Gershman & Uchida, 2019). This value function contains all information necessary to make a 

choice, such as an environment with a defined set of states S, a set of actions A available in these 

states, and rewards R associated with the actions. The agent finds itself in a state sS and it can 

change its current state by choosing an action aA, following the environment’s state transition 

structure P. Subsequent actions aA are probabilistically associated with rewards R. The reward 

and state transition probability distributions specify how state-action pairs lead to rewards and 

new states, respectively (Figure 1).  The agent’s goal is to find a policy that maximizes the value 

Q (Sutton & Barto, 1998).   

Figure 1. Basic conceptualization of reinforcement learning problems. In an environment with a defined set of 

states, the agent can choose between a defined set of actions that are probabilistically associated with rewards. A value 

Q is computed for each choice option as a function of state transition and reward probability. Q is updated after each 

encounter with the option, based on the RPE. Reprinted with permission from Yoo & Collins (2021). 
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Within this framework the learning process can be subdivided in three steps: (1) predicting the 

reward value of currently available actions, (2) selecting the action with the maximum reward 

value, and (3) updating the predictions based on experience (Daw & Doya, 2006).  

 

 

Importantly, RPEs are reflected in phasic firing of dopaminergic neurons in the ventral tegmental 

area (Bayer & Glimcher, 2005; Roesch et al., 2007; Schultz et al., 1997). Upon transmission to the 

striatum and cortex, the RPE signals are used to update stimulus-action values (Wickens et al., 

2007). Moreover, RPEs drive synaptic plasticity in the striatum and thereby translate learned 

associations into behavioral policies. Choices that led to positive RPEs are reinforced, and those 

that led to negative RPEs are weakened (Frank et al., 2004; Reynolds & Wickens, 2002; Shen et 

al., 2008). Specifically, the ventral striatum (comprising the ventral putamen and nucleus 

accumbens) is associated with dopamine learning of state values (Knutson & Cooper, 2005; 

Pagnoni et al., 2002; Pessiglione et al., 2006), while the dorsal striatum (comprising the nucleus 

caudatus and dorsal putamen) supports learning about action values (Daw et al., 2005a; 

O’Doherty et al., 2004). This dissociation of ventral vs. dorsal striatum is extended to cortical 

regions (Figure 2) with ventral cortical regions like the ventromedial prefrontal cortex (vmPFC) 

and the orbitofrontal cortex (OFC) being associated with processing stimulus-outcome 

associations (Camille et al., 2011; Ostlund & Balleine, 2007; Rudebeck et al., 2008; Rushworth et 

Figure 2. Schematic representation of reinforcement learning in the brain. Ventral and dorsal striatal dopamine 

support learning about state values and action policies, respectively. The ventral path (red lines) processes 

information from ventral prefrontal areas (vmPFC and OFC) to the ventral striatum, projecting to the ventral pallidum 

(yellow, bottom part). In the dorsal path (purple lines), the dorsal striatum receives input from the dlPFC with is 

projected to the dorsal pallidum (yellow, top part). Both ventral and dorsal pallidum send projections back to the 

medial-dorsal nucleus of the thalamus which then sends topographically organized return projections to the vmPFC 

and the dlPFC, closing the loop (Averbeck & O’Doherty, 2021). 
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al., 2012) and goal-related features (O’Doherty, 2011; Padoa-Schioppa & Assad, 2006) while 

dorsal cortical regions like the dorsolateral prefrontal cortex (dlPFC) were found to be involved 

in action-related processes (Platt & Glimcher, 1999; Quilodran et al., 2008; Sugrue et al., 2004). 

 

Essentially, RL occurs in interplay with various cognitive components of decision-making. For 

example, it interacts with working memory (Collins & Frank, 2012), which enables the retention 

of behaviorally relevant information, motivation (Dayan & Balleine, 2002), which influences 

decision-making priorities, and motor processing of chosen actions (Barto, 2003). Moreover, it 

incorporates episodic memory, allowing the system to draw from past experiences rich in 

perceptual details, which enables effective learning particularly in complex real-world-scenarios 

(Gershman & Daw, 2017).  

 

1.2 Dual-systems approaches 

Dual-systems approaches are attractive frameworks for narrowing down the space of 

computational solutions for decision-making problems to two alternative (and sometimes 

mutually exclusive) computational mechanisms. In RL in neuroscience and psychology, there 

have been a range of such dichotomies. The most prominent ones include model-based vs. 

model-free RL, exploration vs. exploitation strategies, and reward learning vs. cognitive 

processing, specifically WM. In the following, we will discuss both supporting evidence and 

criticisms of these dualistic conceptualizations. 

 

1.2.1 Model-based vs. model-free RL 

The model-based vs. model-free dichotomy is one of the most popular dual-systems distinctions 

in RL, originating the idea that it is guided by two different strategies that rely on dissociable 

neural mechanisms. Model-based RL relies on an explicit model of the environment that allows 

planning and simulating actions, while model-free RL learns from direct experience without 

building an internal model (Daw et al., 2011; Dolan & Dayan, 2013; Gläscher et al., 2010). Take 

as an example that you are on your way home from work. While sitting in the train, an 

announcement proclaims that the ride will be delayed for an unknown period of time. A model-

based strategy would make use of its cognitive map of the route network, coming to the 

conclusion that taking an alternative route will take nearly the same time as the usual route, 

despite changing trains at one point. The model-free agent on the other hand, acting based on 

experience, would prefer alternatives routes that were successful in the past. 
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Behavioral Systems 

Both strategies use prediction errors to learn the most advantageous option, but they vary in the 

strategy or “policy” underlying action selection. The model-free strategy acts retrospectively − it 

learns values by trial and error and stores them as a set of value estimates, each representing the 

integrated reward history for options chosen in the past, as described in 1.1. A model-based 

agent on the other hand forms a cognitive map of environmental contingencies to evaluate future 

possibilities in a prospective manner. It considers not only the outcome of an action, but also 

state-transition and reward functions, that is, representations of all state-action sets and the 

probabilistic dependencies between their elements (Daw et al., 2005b, 2011; Gläscher et al., 

2010).  

 

To dissociate the two learning strategies in an experimental setting, a sequential Markov 

decision task, also known as a two-step task, was developed (Daw et al., 2011; Gläscher et al., 

2010). The task consists of two successive stages, followed by an outcome (Figure 3A, B). In the 

first stage (state 1) the agent can choose between two options (see Figure 3A, yellow state). Each 

option is predominantly connected to one out of two second stage states − state 2 (blue) or state 

3 (red).  From there, agents again have the choice between two options, each probabilistically 

associated with a reward. The goal is to find a policy that maps each state to the action with 

maximum expected reward. Model-based and model-free RL strategies predict different first 

stage choice patterns as a function of previous-trial reward. In model-free learning, choices are 

driven solely by the reward history without taking the transition paths into account. The model-

based learner, on the other hand, would build a model of the task’s state transition structure and 

choose according to the highest joint probability of receiving a reward (Figure 3C). Model-based 

learning therefore comprises two processes: learning the task structure within states and the 

transitions between states (state learning), followed by the learning of the value of the second 

stage states (state value learning; Doody et al., 2022). This is also reflected in a different 

formalization of the learning signal guiding behavioral adaptation. While model-free RL is solely 

driven by the reward and therefore learns through RPEs, model-based learning links reward 

information to estimates of the transition probabilities. The system uses a state prediction error 

(SPE) to update the cognitive map – in particular, to acquire state-action-state-transition 

probabilities (Gläscher et al., 2010). Empirical data shows that humans’ choice behavior in the 

two-step task is best captured by a mixture of model-based and model-free learning strategies, 

rather than pure model-free or pure model-based learning (Figure 3C; e.g., Daw et al., 2011; 

Deserno et al., 2015; Doll et al., 2016; Doody et al., 2022; Gläscher et al., 2010; Otto et al., 2013; 

Smittenaar et al., 2013; Wunderlich et al., 2012).  
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Computational Systems 

The assumptions of the model-based and model-free learning systems were formalized in a 

computational model (Figure 4, middle, Daw et al., 2011; Gläscher et al., 2010), where choices 

derive from a weighted combination of both model-free and model-based value computations. 

At the core of this model is the concept of a value function associated with each stimulus-action 

pair across the two stages of the task. For model-free learning, the model updates the value of 

state-action pairs retroactively based on whether those actions were rewarded in preceding 

trials, employing the RPE as fundamental mechanism. For model-based learning, the value 

function is first updated based on the SPE mirroring the discrepancy between expected and 

actual transitions for the first stage state-action pairs and then combined with the second stage’s 

reward predictions, i.e. the RPE. A critical feature of the model is the weighting parameter 𝑤, 

which quantifies the relative influence of model-based and model-free value computations on 

behavior. Learning rates 𝛼1 and 𝛼2, estimated for both stages, control the degree of how new 

information updates the value of actions for both model-based and model-free strategies. 

Additionally, inverse temperature parameters 𝛽1 and 𝛽2, ranging from 0 to ∞, reflect the extent 

Figure 3. Two step task to dissociate model-based ad model-free reinforcement learning. A) State transition 

structure. Each first stage (yellow) action is predominantly associated with one of two second stage states (blue or 

red). The choices in the second stage probabilistically lead to a reward. B) Example trial sequence. The agent chooses 

the left stimulus that commonly leads to the blue state. At the second stage, the stimulus with the highest reward 

probability is chosen, followed by a reward. C) Factorial analysis of choice behavior. A model-free strategy predicts 

choosing an option that was previously rewarded, regardless of whether that reward occurred after a common or rare 

transition. Choices made by a model-based learner result from an interaction of reward and transition probability. 

Adapted with permission from Cremer et al. (2021). 
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to which decisions are influenced by learned values in both stages, with lower values indicating 

rather random of choices and higher values reflecting rather deterministic decisions. 

 

Neural Systems 

The dual-systems identified in the two-step task and the hybrid learning model were further 

shown to map on separate neural systems. In line with the previously described dopaminergic 

RPE firing (see 1.1) the key region associated with model-free RL is the ventral striatum 

(Gläscher et al., 2010; Glimcher, 2011; Pagnoni et al., 2002). Further, correlates of reward 

prediction were repeatedly found in the vmPFC (Averbeck & O’Doherty, 2022; Jocham et al., 

2011; O’Doherty, 2011), pointing towards an interaction of dopaminergic RPE signaling in the 

ventral striatum and the vmPFC using these signals to anticipate upcoming rewards in model-

free RL. The dopamine system is also involved in model-based RL (Daw et al., 2011; Deserno et 

al., 2015; Sadacca et al., 2016; Sharp et al., 2016; Wunderlich et al., 2012). Evidence from a genetic 

study suggests that the striatal dopamine system is closely linked to model-free RL, while 

prefrontal dopamine was associated with model-based RL (Doll et al., 2016). Moreover, model-

based SPEs were further found in the intraparietal sulcus (IPS) and the dlPFC (Daw et al., 2011; 

Gläscher et al., 2010; Lee et al., 2014; Möhring & Gläscher, 2023). Subsequent studies highlighted 

the role of the hippocampus as a predictive map mirroring goals and relations between states 

(Garvert et al., 2017; Miller et al., 2017; Pfeiffer & Foster, 2013; Stachenfeld et al., 2018). Further, 

the inferolateral prefrontal cortex (ilPFC) has been associated with the role of an arbitrator, 

signaling whether behavioral control should be controlled by the model-based or the model-free 

RL system (Lee et al., 2014). In summary, model-free RL is primarily driven by a ventral pathway 

with the key regions vmPFC and ventral striatum (Figure 4, right), while key regions implicated 

in model-based RL are the dlPFC, the dorsal striatum, and the IPS (Figure 4, right). 

 

Conclusion 

Together, a large body of work suggest that model-based and model-free learning strategies rely 

on neurally and cognitively dissociable systems. Yet, these systems are likely to interact and 

share common mechanisms. For example, just as in model-free RL, model-based RL incorporates 

representations of stimulus-action-reward associations. The degree to which the two systems 

differ, or the extent to which they arise from the same processes, is largely unclear. In particular, 

a separation of the systems at the neural level does not seem as sharp as the concept of dual 

mechanisms suggests. 
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Figure 4. Summary of the model-based vs. model-free dichotomy. Left: Model-based and model-free RL predict 

different patterns of choice behavior in the two-step task (top). Model-free RL predicts that a previously rewarded 

action is more likely to be repeated on the subsequent trial, independent of the transition. Model-based behavior 

considers both rewards and transitions: a reward obtained via a rare transition predicts a switch to the other first 

stage option (bottom). Middle: Computational modelling offers a formal approach, assuming that decisions are driven 

by value functions that are differentially computed by both systems. Model-based learning uses a combination of the 

SPE and the RPE to update value functions, while model-free learning performs value updates based on the RPE 

(reprinted from Möhring & Gläscher, 2023 with permission). Right: Key regions associated with model-free RL were 

the ventral striatum and the vmPFC (top), while signature regions of model-based RL were the dlPFC, IPS, and 

hippocampus. Like model-free RL, model-based RL also uses striatal RPEs to guide behavior (bottom). 

 

1.2.2 Exploration vs. exploitation 

 

Another decision-making problem that occurs within the RL framework is the question of when 

to abandon a known option in favor of a potentially better, but unknown alternative. In classic 

RL models, a “fully greedy” agent chooses according to a regularly updated record of expected 

values for each option (Sutton & Barto, 1998), thus exploiting known, reliable options to 

maximize short-term rewards. In real-world situations, this approach raises two problems. First, 

it is not possible to know the values of all available options without exploring them at some point. 

To collect this information, the agent has to occasionally explore new options at the expense of 

temporarily choosing less rewarding alternatives (Schulz & Gershman, 2019).  Second, values 

are not necessarily stable over time – for example, a job could have been perfect five years ago, 

but with increasing experience there might be a better fit. The exploration system is associated 

with seeking novel options and gathering information in order to maximize long-term rewards. 

But how does the brain know when to explore? Living in a complex and dynamic world, flexibly 

adapting to new circumstances requires a careful balance between the exploitation of known 

resources for reward, and the exploration of new opportunities for information (Zajkowski et al., 
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2017). Extensive exploitation fosters inflexibility, while over-exploration may lead to inefficient 

and inconsistent behavior, thereby reducing long-term payoffs (Cohen et al., 2007; Gershman, 

2018; Mehlhorn et al., 2015). How humans resolve this dilemma is largely unknown, despite its 

relevance for everyday life and in the context of mental health. An extreme avoidance of 

uncertainty for example is one of the main characteristics of obsessive-compulsive disorders 

(Marzuki et al., 2021), whereas impulsive and unstable behavior is associated with attention-

deficit/hyperactivity disorder (Hauser et al., 2014). Therefore, a better understanding of the 

exploration-exploitation-tradeoff is of past and ongoing interest.  

 

 

Behavioral systems 

Exploitation refers to the repeated choice of the option with the highest subjective value, while 

exploration is defined as disengaging from the choice pattern that currently seems optimal, to 

search for alternative behaviors and acquire new information about the environment (Mehlhorn 

et al., 2015; Sutton & Barto, 1998). More explorative behavior might be optimal when nothing is 

known about the environment, whereas exploitation is more optimal when learning has 

converged to the solution offering maximum reward. Exploration can then again become 

relevant when a) circumstances change and the option is no longer optimal, or b) potentially 

better options emerge that were not known before (Figure 5). Research on exploration has 

suggested that uncertainty plays an important role driving explorative behavior in order to 

promote the acquisition of new information, possibly through an “information“ or “novelty” 

bonus that is added to unknown options (directed exploration; Kakade & Dayan, 2002; Schulz & 

Gershman, 2019; Wittmann et al., 2008). Another proposed mechanism is  “random exploration”, 

produced by inducing stochasticity into choices (Daw et al., 2006). 

Figure 5. Behavioral signatures of exploration and exploitation. Top: Switching to new options vs. staying at one 

option are the behavioral patterns reflecting exploration vs. exploitation. Middle: Value changes, stability of the 

environment, and uncertainty are the most important factors driving explorative vs. exploitative decisions. Bottom: 

Explorative choices lead to new information, with exploitative choices are associated with immediate rewards. 

Adapted with permission from Mehlhorn et al., 2015. 
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The exploration-exploitation tradeoff is often assessed in foraging tasks (Averbeck, 2015; 

Constantino & Daw, 2015; Mobbs et al., 2018). The setting typically consists of a search for 

resources in a patchy and changing environment. Participants are tasked to obtain a maximum 

number of rewards, for example harvesting apples in a virtual orchard (Constantino & Daw, 

2015; Lenow et al., 2017). At each trial, they choose between harvesting the current tree or 

switching to a new tree. At each subsequent harvest, the richness of the tree decreases by a 

depletion rate. Switching to a new tree on the other hand comes with a travel time during which 

it is not possible to obtain further rewards (Figure 6). To assess the degree to which participants 

consider the cost of a travel time in their choices, this time can either be short or long (6 vs. 12 

seconds in this example). The task consists of 4 blocks, reflecting different environments, in 

which the travel times are either short or long, respectively. Exploiting the current resource 

reduces opportunity costs and uncertainty associated with switching to a new patch but leads to 

a decreasing value of the resource. Over time, the potential value in exploring a new resource 

increases, leading to an exploration-exploitation tradeoff. The exit threshold, defined as the 

average number of apples harvested in the last two trials before leaving to the next tree, 

therefore indicates whether choices are rather explorative or exploitative. High thresholds (high 

number of apples left, i.e., early switching) point towards exploration, while low thresholds (late 

switching) are associated with exploitative behavior. 

 

 

 

 

 

 

 

 

 

 

Computational Systems  

The marginal value theorem (MVT; Charnov, 1976), originally stated in animal literature, 

addresses how individuals make decisions where they must choose between continuing to 

exploit a current, depleting resource or moving on to search for a new one (Figure 7, middle). 

Figure 6. Foraging task. In each trial, participants choose whether to harvest the current tree or to switch to a new 

tree. The number of apples declines with each subsequent harvest according to a depletion rate. Switching leads to a 

new, unharvested tree, but comes with the cost of a travel time. Exploration is indicated by fast switching to new 

options, while exploitation is reflected in staying at one tree, although the reward decreases with every subsequent 

harvest. Reprinted with permission from Cremer et al. (2023). 
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This model is grounded in the principle that the optimal decision involves comparing the 

immediate return from exploiting the current resource to the opportunity cost of time, 

represented by the environment's long-run average reward rate. The optimal policy would be to 

leave a resource when the expected reward from one more intake falls below the opportunity 

cost of the time that would be spent acquiring it. Applied to foraging tasks as displayed in Figure 

6, the optimal time to switch to a new tree is when the expected number of apples at the next 

harvest falls below the long-run average reward rate in the current environment (Constantino & 

Daw, 2015). The expected reward is computed by the reward in the current trial, discounted by 

the depletion rate. The average reward rate is defined as the average reward rate in the current 

environment times the time it takes to harvest. By modeling the task structure and entering all 

possible leaving thresholds, the probabilistically expected rewards over time can be simulated 

per threshold, ultimately returning the optimal leaving threshold. Individuals staying at the 

current tree further beyond this threshold, show a bias towards exploitation, while those 

switching to a new tree way earlier tend to explorative choice behavior. In the MVT learning 

model (Constantino & Daw, 2015), the average reward rate in the current environment is 

updated trial-by-trial based on the difference between the actual and the expected reward, 

namely, the RPE. A learning rate controls the degree to which the RPE leads to an adjustment of 

action values, and an inverse temperature parameter encodes the extent to which these action 

values are used to guide decisions. Lastly, an intercept indicates whether behavior reflects a 

constant choice bias with higher values pointing towards a bias to staying (exploitation) and 

lower values representing a bias towards switching (exploration). 

 

Neural systems 

Substantial experimental evidence suggests that exploitative decisions arise from a 

corticostriatal network, with the pivotal regions being the vmPFC and the OFC (Figure 7, right). 

The vmPFC is well known for reward-driven choices (Blanchard & Gershman, 2018; Chakroun 

et al., 2020; Summerfield & Koechlin, 2008). In line with this, the vmPFC encodes reward 

anticipation (Kim et al., 2011; Lorenz et al., 2014) and tracks the value of choice options (De 

Martino et al., 2013; Kolling et al., 2012). The OFC is involved in the subjective valuation of choice 

alternatives, encoding a map of available options in the current environment (Groman et al., 

2019; Stalnaker et al., 2014; Wikenheiser & Schoenbaum, 2016). Exploration on the other side is 

associated with the frontoparietal control network (Figure 7, right) with the core regions 

frontopolar cortex (Badre et al., 2012; Beharelle et al., 2015; Boorman et al., 2009; Zajkowski et 

al., 2017), middle frontal gyrus (Chakroun et al., 2020; Hogeveen et al., 2022), dorsal anterior 

cingulate cortex (dACC, Blanchard & Gershman, 2018; Kolling et al., 2012) and IPS (Daw et al., 

2006; Laureiro‐Martínez et al., 2015).  
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Importantly, there is growing evidence that exploration and exploitation not only rely on distinct 

neural circuits, but that these processes also involve dopamine and noradrenaline as key 

neurotransmitters. As described before, choosing options with the highest expected reward is 

tightly linked to striatal dopamine (see 1.1; Glimcher, 2011; Schultz et al., 1997). Consequently, 

it stands to reason that exploitation is associated with striatal dopamine transmission (Figure 7, 

right). This is supported by a finding that genes linked to striatal dopamine signaling are also 

associated with increased exploitation behavior (Frank et al., 2009). At the same time, dopamine 

has been linked with exploratory behavior, particularly those genes modulating prefrontal 

dopamine function (Figure 7, right). Individuals carrying a variant of the catechol-O-

methyltransferase (COMT) gene, associated with elevated tonic dopamine levels, tended to make 

exploratory decisions in response to uncertainty about whether alternative choices might yield 

better outcomes than the current situation (Frank et al., 2009). One potential mechanism driving 

this 'directed' exploration is a novelty bonus, which is applied to unknown alternatives when 

uncertainty is high to facilitate the acquisition of new information (Zajkowski et al., 2017).  

 

Noradrenaline has also been associated with exploration, but the underlying mechanism differs. 

Instead of a targeted switch to unknown options, noradrenaline-driven exploration is induced 

by adding a stochasticity to the decision-making process (‘random exploration’, Dubois et al., 

2021). High uncertainty therefore may trigger noradrenaline release, signaling the interruption 

of ongoing information processing. Often referred to as a ‘reset button’, noradrenaline initiates 

exploring new options by resetting cached value representations (Dayan & Yu, 2006). In the 

same vein, rodents with elevated noradrenaline levels showed an increase of value-free-random-

like behavior (Tervo et al., 2014), while monkeys showed increased choice consistency after the 

pharmacological blockade of noradrenaline (Jahn et al., 2018). Another line of research found 

noradrenaline to be involved in both exploitation and exploration, differentiating phasic and 

tonic levels. Phasic noradrenaline activity was associated with exploitation, while tonic signaling 

may facilitate explorative behavior (Aston-Jones & Cohen, 2005; Kane et al., 2017).  

 

Conclusion 

The exploration-exploitation framework allows a precise quantification of when to disengage 

from the current option in favor of a potentially better, but unknown alternative. However, 

exploration and exploitation are not static, mutually exclusive choices but are dynamically 

adjusted based on feedback and changing environments. Individuals often engage in a 

combination of both strategies, adapting their behavior to optimize outcomes. Moreover, they 

basically share the same mechanisms, as formalized in the MVT learning model. Whether 
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exploration and exploitation arise from two different systems or rather represent two poles of a 

continuum cannot be fully determined from the current state of literature. 

 

 

Figure 7. Summary of the exploration-exploitation dichotomy. Left: Explorative vs. exploitative choice behavior 

is typically assessed in foraging tasks where participants choose between exploiting the current resource with 

decreased returns at each subsequent harvest or switching to a new resource with the cost of a travel time (top). 

Staying longer at the current option than the optimal leaving threshold indicated a bias towards exploitation, while 

earlier exits reflect a bias towards exploration (bottom). Reprinted with permission from Cremer et al., 2023. Middle: 

The MVT states that the optimal time to switch to a new tree is when the expected number of apples at the next harvest 

falls below the long-run average reward rate in the current environment. Adapted from Halsey & Butler, 2006. Right: 

Key regions associated with exploitation are the vmPFC, and the OFC. Striatal dopamine transmission (blue arrows) 

is linked to exploitative choices (top). Exploration is associated with the frontoparietal network, including the 

frontopolar cortex, the dACC, and the IPS. Prefrontal dopamine (blue arrows) is implicated in explorative decisions 

(bottom). Noradrenaline (red arrows) was associated with both exploitation and exploration. 

 

1.2.3 Reward learning vs. working memory 

 

As described before, typical RL approaches focus on the process of associating state-action pairs 

with future outcomes to find policies that maximize rewards. However, this learning process 

critically depends on cognitive resources that allow an agent to store transient value 

information. Specifically, RL requires the active maintenance of a set of stimulus-action-outcome 

associations that are constantly updated during learning. WM is a memory system well-suited to 

these requirements (Baddeley, 1992). Both RL and WM are central domains of human cognition 

but are mostly considered distinct processes – both at the behavioral and the neural level (Yoo 

& Collins, 2022). However, they may be less dissociable than often assumed. Collins and Frank 

(2012) proposed an interplay between reward learning and a capacity-limited, decay-sensitive 

WM process that co-determines learning, but can be disentangled. In the context of RL, WM’s 
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primary role is to hold representations of behaviorally relevant stimulus-action-associations in 

an accessible state,  serving as basis for immediate decisions (Baddeley, 1992; Durstewitz et al., 

2000; Miller et al., 2018). A classic example is remembering a shopping list and recalling the 

items as walking through the store. Two properties of this task can be changed to make it more 

taxing on WM. First, the sequence length: The longer the list, the more difficult it is to remember 

all entries. Second, the retention interval: The more time elapses between creating the list and 

applying it in the store, the more challenging it is recalling the full list. These limitations have 

been widely confirmed in WM literature (Durstewitz et al., 2000; Miller et al., 2018). 

Experimental tasks typically involve holding a set of representations in mind over a delay and 

then being tested on the recall accuracy. Thereby, the length of the delay and the number of 

memoranda are being manipulated. With either an increasing number of representations or 

longer retention intervals, the recall accuracy decreases (Cowan, 2001, 2008; Oberauer et al., 

2016).  

 

Behavioral systems 

WM is essential in any choice situation, as it makes the options available by maintaining them in 

a temporal space. Therefore, the question is not whether RL and WM are interacting, but rather 

how. This question has been directly addressed in a stimulus-association task developed by 

Collins & Frank (2012). In a stimulus-response association task, participants learned the correct 

action for a varying number of stimuli within one set. Correct answers were always rewarded 

with one point but could probabilistically lead to an increased reward of 2 points. RL demands 

were varied through the probability of receiving an extra reward. Accumulated rewards 

reflected the Q-value for each stimulus. To address capacity- and time-sensitive contributions of 

WM, the number of stimuli within one set (load) and the number of trials between stimulus 

repetitions (delay) were manipulated systematically (Figure 8A, learning phase). Results showed 

that both RL and WM determined learning: The number of previous correct decisions, reflecting 

RL-related cumulative value, increased the probability to choose the correct action in 

subsequent trials. At the same time, performance decreased with increasing delay and set size, 

reflecting the influence of WM limiting task performance. In surprise test phases, the 

contributions of WM and RL were further disentangled.  

 

In a first test phase, participants were presented with two stimuli from the learning phase and 

had to indicate for which stimulus they had obtained more rewards in the learning phase. Stimuli 

were mixed across blocks, addressing the cumulated Q-value computed by the RL-system for 

each stimulus (Figure 8B; Collins, Albrecht, et al., 2017). Interestingly, participants were more 

sensitive towards value differences between the two stimuli when the stimuli came from blocks 
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with higher set sizes, indicating that Q-value representations were more robust when learning 

was predominantly driven by RL (Collins, Albrecht, et al., 2017).  

 

In a second test phase, the retention of the stimulus-response associations was probed (Figure 

8C; Collins, 2018). Randomly intermixed stimuli from the learning phase were presented and 

participants should indicate the correct action associated with the stimuli without receiving 

feedback. This phase took place at least 10 minutes after the last block of the learning phase 

when WM representations should no longer be accessible. Associations learned under low load 

were retained worse than those learned under high load, supporting previous findings that fast 

WM learning comes with the cost of higher decay, while slow and effortful RL is more robust over 

time (Collins, 2018).  

 

 

Figure 8. A stimulus association task to separate RL and WM contributions to learning. (A) Learning phase. In 

each trial, participants were presented with a stimulus and had to choose one out of three actions, deterministically 

associated with a reward. RL components were addressed by a varying amount of reward associated with a stimulus: 

Correct answers could lead to an increased reward of 2 points with a fixed probability of 0.2, 0.5, or 0.8. WM 

contributions to learning were determined by the number of stimuli within a block (set size) for which the associated 

action had to be learned and by the delay between the last correct response to a stimulus and its subsequent 

presentation. (B) Reward retention test. In a surprise test phase addressing the cumulative reward representation, 

participants were asked to indicate for which out of two stimuli from the learning phase they obtained more rewards. 

No feedback was given. (C) Stimulus-response-retention test. In a second surprise test phase, participants were 

presented with stimuli from the learning phase and had to choose the action that was associated with a reward 

without getting feedback. Reprinted with permission from Rac-Lubashevsky et al. (2023). 
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Computational Systems 

The disentanglement of WM and reward learning processes was further supported by a 

computational model that combined a model-free RL process and a time-sensitive, capacity-

limited WM process (Collins, 2018; Collins, Albrecht, et al., 2017; Collins, Ciullo, et al., 2017; 

Collins et al., 2014; Collins & Frank, 2012, 2018; McDougle & Collins, 2021). In this reinforcement 

learning working memory (RLWM) model, the classic RL module learns incrementally from 

RPEs, adjusted by a learning rate α that controls the extent to which the value of an option is 

updated by the RPE. As described before, it further contains an inverse temperature parameter 

β determining the degree to which differences in Q values lead to the adaption of choices. The 

WM component can learn immediately but is capacity-limited and decaying over time. A decay 

parameter accounts for potential forgetting by pulling Q value estimations towards their initial 

value, and a capacity parameter limits the probability of WM usage in higher set sizes. Which 

system guides choices is determined by the weighted average of the policies of the two modules. 

In turn, this weighted average depends on the probability that a stimulus was stored in WM, as 

a function of the set size. Support for this RLWM model came from the observation that it 

provided a better fit to the data than the separate modules alone. 

 

Neural systems 

WM is supported by a network of neural mechanisms involving various brain regions and 

processes. Early findings characterized persistent firing in the dlPFC, specifically in the medial 

frontal gyrus (MFG) and in the superior frontal gyrus (SFG), as the core neural substrate of WM 

(Cohen et al., 1997; Funahashi et al., 1989; Fuster, 1973; Goldman-Rakic, 1995). Since then, it has 

been shown that the WM processes in the prefrontal cortex (PFC) might also represent the 

maintenance of higher order information, such as rules, goals, or abstract representations of 

categories relevant to behavior (Lee & D’Esposito, 2012; Riggall & Postle, 2012; Sreenivasan et 

al., 2014). According to this rules or goals, top-down signals from the PFC bias the salience of 

mnemonic representations, which influence the entry of information into WM storage within the 

PPC (Berryhill et al., 2011; Murray et al., 2017). More specifically, dopaminergic interactions 

between the PFC and the basal ganglia (1) determine which stimuli pass the gate to WM, (2) 

prevent maintained representations from distracting information, (3) allow relevant 

representations to update and (4) select which information from WM is relevant for behavior 

(Chatham et al., 2014; Cools & D’Esposito, 2011; D’Esposito & Postle, 2015; Gruber et al., 2006; 

Hazy et al., 2006; Ott & Nieder, 2019; Rac-Lubashevsky & Frank, 2021). In summary, WM 

functioning emerges from a complex interplay between PFC, PPC, and striatal circuits (Figure 9, 

right). As described before, these regions are also involved in both the model-based vs. model-

free (Figure 4, right) and in the exploration-exploitation framework (Figure 7, right), which 
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highlights the need for a deeper understanding of WM and RL contributions to learning. 

Neuroimaging studies aiming to disentangle WM an RL confirmed set size effects in the SFG and 

RPE activity in nucleus caudatus and thalamus (Collins, Ciullo, et al., 2017; Collins & Frank, 2018). 

Interestingly, the neural signature of RPEs was modulated by set size: RPE signals were weaker 

in lower set sizes in which subjects’ learning was closest to optimal, and thus likely to be driven 

by WM. At the same time, RPE signals were stronger under high load, accompanied by enhanced 

value learning, indicating that the interplay between WM and RL is not modular, but rather 

interactive (Collins, Ciullo, et al., 2017; Collins & Frank, 2018).  

 

 
 

Figure 9. Summary of the WM-RL dichotomy. Left: Disentangling of WM and RL behavioral signatures in a stimulus 

response task. RL components are addressed by varying amounts of rewards associated with stimulus-action pairs, 

while WM processes are determined by the number of stimuli within one set and the number of trials since the current 

stimulus was last responded to (top). WM enables fast learning for smaller sizes, while a slower, but broader RL 

process takes over for larger sizes (bottom, left). Performance decreases with increasing delay between stimuli, 

especially in higher set sizes (bottom, right). Middle: The RLWM model uses RPEs to update value estimates (Q) of 

state-action pairs actions to guide future decisions. Both systems give input to Q: When the number of stimuli is within 

WM capacity, Q-value estimates are informed by WM, leading to fast learning and reduced RPEs (top). In trials with 

higher load, WM capacity is exceeded, resulting in slower learning and higher RPEs (bottom). Reprinted with 

permission from Rac-Lubashevsky et al., 2023. Right: RL and WM rely on overlapping brain networks, both modulated 

by dopamine. RPE computations are tightly liked to dopaminergic firing in the ventral striatum (top inset). Key regions 

associated with WM are the dlPFC (including MFG and SFG) and the PPC. Prefrontal dopaminergic firing signals 

maintaining information in WM in a delay-period (bottom inset). Adapted with permission from Yoo & Collins (2022). 

 

Conclusion 

While the dual process model of WM and RL provides a sophisticated framework for 

understanding the interaction between these two core cognitive processes, some critical points 

and challenges are worth considering. The dual-systems model simplifies the neural bases of WM 

and RL, often highlighting distinct regions such as the prefrontal cortex for WM and the basal 
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ganglia for RL. However, neural mechanisms are highly interconnected, with significant overlap 

and shared pathways that the model may not fully account for. This complexity suggests that WM 

and RL may not be as separable in their neural substrates as the model implies. Although the 

approach proclaims an integrative perspective, it also involves the detached consideration of two 

processes. The isolated focuses on WM and RL does not incorporate the roles of other cognitive 

processes such as attention, executive function, and long-term memory. These processes 

undoubtedly influence and are influenced by WM and RL, suggesting that an even more 

integrative model might be necessary. 

 

1.3  Modulation by stress and stress mediators 

 

Stress is a powerful modulator of learning and decision-making (Luksys & Sandi, 2011; Porcelli 

& Delgado, 2017). The effect of stress on learning and decision-making processes is an integral 

part of the adaptive fight-or-flight response, helping to effectively cope with the stressor 

(McEwen, 1998; Ulrich-Lai & Herman, 2009). In the response to acute stress, a well-coordinated 

cascade of different physiological and endocrine changes is initiated, which is essentially 

determined by two pathways (McEwen, 1998; McEwen, 2007). When exposed to stress, the 

autonomic nervous system is immediately activated, followed by the slower reaction of the 

hypothalamic-pituitary-adrenal axis (Joëls & Baram, 2009). Seconds after stressor onset, the 

autonomic nervous system triggers the release of catecholamines such as adrenaline, 

noradrenaline, and dopamine to create alertness and provide energy to prepare the organism 

for action (De Kloet et al., 2005; Joëls & Baram, 2009). The second pathway, the hypothalamic-

pituitary-adrenal axis, is activated somewhat more slowly than the autonomic nervous system 

triggering the synthesis and release of corticosteroids (mainly cortisol in humans) into the 

bloodstream (De Kloet et al., 2005; Joëls & Baram, 2009). Cortisol levels peak around 20-30 

minutes after stressor onset and bind to receptors that are widely expressed in regions 

implicated in RL and decision-making, such as the PFC, the amygdala and the hippocampus 

(Hermans et al., 2014; Joëls & Baram, 2009).  

 

Following acute stress, cortisol binds to glucocorticoid receptors in the PFC, disrupting synaptic 

plasticity and dendritic remodeling, which are critical for RL (Holmes & Wellman, 2009). Further, 

elevated levels of catecholamines, especially noradrenaline, lead to the activation of α1-

adrenergic receptors and the inhibition of α2-adrenergic receptors in the PFC. This shifts the PFC 

from a state of executive control to a more reactive and less organized state, impairing its 

function (Arnsten, 2009). Another immediate effect of elevated glucocorticoid levels is the 
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suppression of long-term potentiation in the hippocampus, resulting in reduced synaptic 

plasticity, thereby impairing the hippocampus' ability to encode and consolidate new memories 

(Kim & Diamond, 2002).  

 

Within the context of dual-systems approaches, stress was found to induce a shift from 

computationally demanding systems to rather rigid, reactive behavioral strategies (Schwabe & 

Wolf, 2011; Wirz et al., 2018). Higher cortisol levels were found to selectively reduce model-

based contributions to behavior while model-free learning processes stayed intact (Otto et al., 

2013). At the same time, stress was associated with an increase in striatal, not prefrontal, 

dopamine (Anstrom & Woodward, 2005), contributing to the enhanced reliance on model-free 

learning (Park et al., 2017). Further, the stress-induced noradrenaline release in the PFC was 

found to induce a shift from phasic to tonic mode of noradrenaline firing that led to less focused 

attention to specific stimuli, replaced by a “scanning-mode” of the environment, thus promoting 

explorative behavior (Aston-Jones & Cohen, 2005; Hermans et al., 2014; Rajkowski et al., 1997). 

Conversely, other studies suggest a behavioral shift in the direction of exploitation, showing that 

stressed participants were more likely to rely on familiar strategies and known rewards rather 

than exploring new options. (Lenow et al., 2017; Luksys & Sandi, 2011). Finally, the detrimental 

stress effects on PFC functioning also impact WM. Both the immediately elevated noradrenaline 

levels and the subsequent release of cortisol were associated with a decrease in prefrontal delay 

cell activity, leading to an impaired WM functioning (Birnbaum et al., 2004; Ramos et al., 2005). 

 

1.4 Research goals  

 

Dual-systems approaches have a long tradition in psychology and neuroscience and are often the 

source of groundbreaking theories (Evans & Stanovich, 2013). At the same time, they have been 

criticized for being oversimplistic, arguing that a binary classification is not suitable to capture 

the complex mechanisms underlying learning and decision-making (Gigerenzer, 2010; 

Kruglanski & Gigerenzer, 2011). In the field of RL, two-systems approaches are applied in various 

contexts such as model-based vs. model-free RL, exploration vs. exploitation, and WM vs. reward 

learning. While these frameworks have been studied extensively detached from another, an 

integrative perspective is lacking. Considering the abundant overlaps in computational 

components and neural regions involved, the integration of findings across frameworks can add 

significant value in understanding the mechanisms underlying value-based decision-making. 

While some parts of the RL process are beyond doubt, such as the dopaminergic signaling of RPEs 
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in the striatum (Bayer & Glimcher, 2005; Schultz et al., 1997), the exact identification of the 

systems’ pathways and their interplay are widely unknown. 

 

We set out to investigate the existence of dissociable systems and their susceptibility to a 

modulation by stress and stress mediators. Through a combination of behavioral and neural 

data, the aim was to explore the extent to which dual processes are distinguishable, and to which 

extent the use of one vs. the other strategy can be modulated experimentally. We tested these 

questions in the context of decision-making tasks, where different patterns of choice behavior 

correspond to distinct cognitive strategies.  

 

In Study 1, we focused on comparing model-based and model-free learning in a two-step task, 

specifically under stress. We modulated the two-step task by introducing reversals of reward 

contingencies to promote the use of model-based learning. The main hypothesis proposed that 

inducing stress should lead to a shift towards a more model-free learning strategy. This shift 

should be reflected in strategy-specific neural activation patterns across different regions, which 

we assessed using functional magnetic resonance imaging (fMRI). Finally, hypotheses were 

formalized through computational modeling. Overall, Study 1 aimed to uncover the impact of 

stress on the interplay between model-based and model-free learning strategies, and to provide 

insights into associated neural mechanisms.  

 

Study 2 aimed to test the putative dichotomy of exploration vs. exploitation strategies in a 

foraging task. It sought to determine whether these strategies indeed represent distinct systems 

by selectively blocking neurotransmitters associated with each, namely dopamine and 

noradrenaline. Moreover, we used computational modeling to measure the impact of this 

pharmacological manipulation on the preferred use of exploration- vs. exploitation-based 

policies. This study aimed to find neurochemical evidence for distinguishable RL systems guiding 

decision-making in foraging tasks.  

 

Study 3 assessed to which extent WM and RL are alternative systems, with a specific focus on the 

impact of stress. We expected that stress would predominantly influence prefrontal executive 

functions. Assuming a strict dichotomy between WM and RL, stress should selectively disturb 

WM-depended learning, while leaving RL-depended learning largely unaffected. The study 

aimed to identify WM and RL signatures on the behavioral, computational, and neural level. We 

employed electroencephalography (EEG) to explore neural correlates of WM and reward 

learning, and tested whether they were affected by the stress manipulation. In summary, Study 
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3 employed a stress manipulation to uncover possible behavioral, computational and EEG 

signatures that are unique indicators of WM- vs. RL-based learning. 

 

Together, these studies investigated whether dichotomized systems in RL, as proposed in the 

literature, can be experimentally tracked, and differentiated. We further tested whether the 

systems, their interplay, or specific components were subject to the effects of stress and stress 

mediators. Computational modeling was used to track such behavioral changes in fitted 

parameters of mathematical learning models. Finally, EEG and fMRI recordings allowed us to 

assess whether these systems are reflected in separable patterns of neural activity. 
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2 Experimental Studies 

2.1 Study 1: Does stress induce a shift from model-based to model-free RL 

contributions to choice behavior?  

 

Cremer, A., Kalbe, F., Gläscher, J., & Schwabe, L. (2021). Stress reduces both model-based 

and model-free neural computations during flexible learning. NeuroImage, 229, 117747. 

https://doi.org/10.1016/j.neuroimage.2021.117747 − (Appendix A) 

 

2.1.1 Background 

Stress is a powerful modulator of learning and decision-making (Luksys & Sandi, 2011; Porcelli 

& Delgado, 2017; Schwabe et al., 2011; Schwabe & Wolf, 2009; Shafiei et al., 2012). The stress-

induced release of monoamines and glucocorticoids, in particular, impairs prefrontal function 

(Arnsten, 2009; Cerqueira et al., 2007; Ossewaarde et al., 2011; Vogel et al., 2016). This suggests 

that stress might primarily affect model-based learning, rather than model-free learning. 

Therefore, we tested the presence of these separate systems underlying RL and how their 

interplay was modulated by stress. Preliminary studies indicate that acute stress induces a shift 

from model-based to model-free behavior (Otto et al., 2013; Park et al., 2017; Raio et al., 2017), 

but the underlying mechanisms are widely unknown. To address this issue, we tested behavioral 

and neural signatures of model-based and model-free learning systems during choice behavior, 

and how these were affected by stress. Specifically, we quantified (i) the relative contribution of 

model-based and model-free learning to decision-making, (ii) whether the strategies were 

associated with separable neural systems, and (iii) whether stress induced a shift from the 

model-based to the model-free system. 

 

2.1.2 Methods 

Fifty-eight healthy volunteers underwent either the Trier social stress test (Kirschbaum et al., 

1993) or a control manipulation, before performing a modified version of a two-step task in an 

MRI scanner in which reward contingencies in the second stage were reversed at several random 

time points throughout the task. We hypothesized that  this manipulation should promote 

model-based RL, since the internal task model that defines model-based RL should facilitate the 

adjustment to changing reward probabilities (Akam et al., 2015). This would enable us to 

pinpoint the hypothesized stress-related shift from model-based to model-free learning. 

 

https://doi.org/10.1016/j.neuroimage.2021.117747
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2.1.3 Results 

 Our behavioral results indicate that subjects used mainly model-free learning, as they repeated 

rewarded actions regardless of the transition type. At the same time, the contribution of model-

based RL, as indicated by a reward × transition interaction, was also reflected in our data (Figure 

10). However, computational modeling results show an overall bias towards model-free RL 

(weighting parameter w < 0.5 for both stress and control groups, where w = 1 reflects pure 

model-based RL, while w = 0 stands for pure model-free RL). Interestingly, the temperature 

parameter 𝛽 for the first stage choice tended to be lower in the stress group compared to the 

control group, pointing towards a more random first stage choice behavior in stressed 

participants.  

 

 

On the neural level, stress reduced contributions of both model-based and model-free 

computations. Model-free PEs in the stress group were paralleled by a decrease of ilPFC activity 

in comparison to the control group (Figure 11A).  Model-based PEs were also associated with a 

stress-induced activity reduction, located in the posterior hippocampus and in the putamen. At 

the same time, the stress group showed increased activity in the ilPFC during model-based PE 

computation, compared to the control group (Figure 11B). 

Figure 10. Factorial analysis of choice behavior. Left: Pure model-free reinforcement learning predicts that a 

previously rewarded action is more likely to be repeated on the subsequent trial, regardless of whether the transition 

was common or rare. Pure model-based behavior considers the task structure: a reward obtained after a rare 

transition should promote a switch to the other option. Right: Actual Data. Participants show both model-based and 

model-free learning with an overall bias toward model-free learning. There were no significant group differences. 

Adapted with permission from Cremer et al. (2021). 
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Figure 11. Stress effects on the neural mechanisms underlying model-based and model-free RL. Stress did not 

specifically hamper model-based RL, but reduced error computations in both model-based and model-free RL. Activity 

in the ilPFC was higher during model-based prediction errors in the stress group, compared to the control group. 

Reprinted with permission from Cremer et al. (2021).  

 

2.1.4 Conclusions 

Our behavioral results show that participants used a mixture of model-based and model-free RL. 

Although our task modification of frequently reversing reward contingencies should favor a 

model-based strategy, participants in both groups showed an overall bias towards model-free 

RL. At the same time, we hypothesized that stress would hamper processing in the PFC, 

accompanied by a reduced use of a model-based learning strategy. We identified group 

differences in neural activity in the ilPFC both during model-based and model-free prediction 

error computation. Differential activation in the experimental groups were further present in the 

posterior hippocampus, a) at reward signaling and b) during model-based prediction errors. In 

summary, our behavioral, computational, and neuroimaging results do not support a clear 

separation of model-based and model-free RL systems. 
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2.2 Study 2: How do dopamine and noradrenaline influence the 

exploration-exploitation tradeoff? 

 

Cremer, A., Kalbe, F., Müller, J. C., Wiedemann, K., & Schwabe, L. (2023). Disentangling the 

roles of dopamine and noradrenaline in the exploration-exploitation tradeoff during human 

decision-making. Neuropsychopharmacology, 48(7), 1078-1086. https://doi.org/10.1038/ 

s41386-022-01517-9 − (Appendix B) 

 

2.2.1 Background 

Knowing when to leave an option for a potentially better, but unknown alternative is at the heart 

of the exploration-exploitation-dilemma. Both dopamine and noradrenaline have been 

suggested to play a role in balancing exploration and exploitation (Chakroun et al., 2020; Cohen 

et al., 2007; Mehlhorn et al., 2015). Paradoxically, both noradrenergic and dopaminergic firing 

have been linked to exploration (Dubois et al., 2021; Frank et al., 2009; Gershman & Tzovaras, 

2018), while other studies suggest a role of noradrenaline in exploitation (Aston-Jones & Cohen, 

2005). These seemingly conflicting findings indicate that neither transmitter can be linked to 

explorative vs. exploitative behavior per se, but that they may signal specific choice aspects. We 

identified the initial value of an option, the decline of this value over time, and the opportunity 

cost associated with the switch to another option as key variables in deciding whether to stick 

with the current option or to explore something new. In this study, we aimed to disentangle the 

dopaminergic and noradrenergic contributions in processing specific choice aspects underlying 

the exploration/exploitation tradeoff.  

 

2.2.2 Methods 

Sixty-nine volunteers received 400mg of the dopamine D2/D3 receptor antagonist amisulpride, 

40mg of the β-adrenoceptor antagonist propranolol, or a placebo, before they performed four 

blocks of a patch-foraging task. Participants had to harvest virtual apple trees, aiming to yield as 

many apples as possible within 7 minutes per block. In each trial, they had to decide whether to 

harvest the current tree, or to switch to a new one. At each subsequent harvest of a tree the 

reward decreased by a depletion rate, which was fixed per tree. Consequently, at a certain point 

it was advantageous to leave the current tree. Switching, however, came with the cost of a travel 

time that could either be short (6 seconds) or long (12 seconds). We assessed how (i) the 

different choice components influenced whether to stay at the current tree or to switch to the 

next option and (ii) how these effects were modulated by the pharmacological manipulation in a 
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mixed-effects logistic regression. Specifically, we were interested in the differential processing 

of the reward value, the reward decline, and the switching costs. 

 

2.2.3 Results 

Participants in the amisulpride group showed greater sensitivity to all three choice features, 

compared to the placebo group. Specifically, they switched more when either the travel time was 

short, when the depletion rate was high, or when the number of previous rewards was low 

(Figure 12). This points towards an increased susceptibility to choice-relevant information after 

amisulpride intake. Interestingly, participants in the propranolol group tended to show a 

reduced use of value information, as indicated by the tendency to switch more after high 

rewards, compared to the placebo group (Figure 12A).  

 

2.2.4 Conclusions 

Our results revealed functionally dissociable roles of dopamine and noradrenaline in the 

processes underlying explorative and exploitative choice strategies. Specifically, our data 

support the assumption that dopamine is involved in signaling choice-relevant information, 

while noradrenaline could not be directly linked to the processing of specific choice features. 

Taken together, the results indicate a role of dopamine in the processing of behaviorally relevant 

information, while noradrenaline may exert higher order control signals akin to a reset button. 

The results highlight the importance of considering the specific mechanisms through which 

Figure 12. Effects of amisulpride and propranolol on the impact choice features on switch decisions. (A) 

Participants switched less after high rewards in the amisulpride group, while participants in the propranolol group 

tended to switch more when the previous reward was high (both compared to placebo). (B) Participants in the 

amisulpride group switched more when the travel time was short, compared to placebo, while the propranolol group 

did not differ from placebo. (C) Amisulpride intake was linked to more switching at high depletion rates, while there 

was no difference between participants in the propranolol and placebo groups. Reprinted with permission from 

Cremer et al. (2022). 

 

Figure 13. Proportion of correct answers for each set size as a function of stimulus iterations and delay. Left: 

Correct answers were learned faster for low set sizes, the correct stimulus-action pairs were learned gradually slower 

with increasing set sizes. Right: the proportion of correct answers decreased with increasing delays in larger set 

sizes.Figure 14. Effects of amisulpride and propranolol on the impact choice features on switch decisions. (A) 

Participants switched less after high rewards in the amisulpride group, while participants in the propranolol group 

tended to switch more when the previous reward was high (both compared to placebo). (B) Participants in the 

amisulpride group switched more when the travel time was short, compared to placebo, while the propranolol group 

did not differ from placebo. (C) Amisulpride intake was linked to more switching at high depletion rates, while there 

was no difference between participants in the propranolol and placebo groups. Reprinted with permission from 

Cremer et al. (2022). 
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these neurotransmitters exert their effects, suggesting that exploration and exploitation 

decisions are influenced by a range of neurobiological processes. Thus, a critical view might 

question whether a dichotomous framework can adequately account for the subtleties and 

variations in how these decisions are made and modulated. 

 

2.3 Study 3: Which neural mechanisms orchestrate the interplay 

between working memory and reinforcement learning? 
 

Rac-Lubashevsky, R., Cremer, A., Collins, A. G., Frank, M. J., & Schwabe, L. (2023). Neural 

Index of Reinforcement Learning Predicts Improved Stimulus–Response Retention under High 

Working Memory Load. Journal of Neuroscience, 43(17), 3131-3143. https://doi.org/10.1523/ 

JNEUROSCI.1274-22.2023. − (Appendix C) 

 

2.3.1 Background 

The successful learning of stimulus-action-outcome associations builds on joint contributions of 

at least two systems, namely WM and RL. While WM enables fast learning and maintaining of 

behaviorally relevant stimulus-action-associations, RL provides a slower, but broader learning 

process that is less restricted by memory capacity and time (e.g., Collins, Albrecht, et al., 2017; 

Collins & Frank, 2012, 2018). Learning was found to dynamically shift from capacity-sensitive 

WM to RL when the stimulus load is high (e.g., Collins & Frank, 2018), and (ii) to shift from delay-

sensitive WM to RL over the course of learning (e.g., Collins, Albrecht, et al., 2017). Associations 

learned under high WM load were acquired more slowly but the retention was more robust and 

reflected in larger neural indices of RL (Collins, Ciullo, et al., 2017; Collins & Frank, 2018). In this 

study, we tested the contributions of both systems to successful learning by parametrically 

manipulating WM load and delay in a learning task designed to disentangle WM and RL. As in 

Study 1, we used acute stress as modulating factor to further differentiate the systems. With the 

stress-induced impairment in the PFC (Arnsten, 2009; Cerqueira et al., 2007; Ossewaarde et al., 

2011; Vogel et al., 2016), we hypothesized that stress would specifically reduce WM-guided 

learning by weakening the relative contribution of WM in the learning phase. We performed two 

surprise memory tests to further track indicators of WM- vs. RL-based learning strategies. 

Finally, we tested whether high WM load was associated with increased RPEs and whether this 

was predictive of retention performance using single-trial decoding of EEG-signatures. 
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2.3.2 Methods 

 Eighty-six healthy volunteers  underwent either the socially evaluated cold pressure test 

(SECPT, Schwabe & Schächinger, 2018) or a control manipulation before they performed a 

stimulus-response association learning task while being recorded by EEG. The task consisted of 

a learning phase and two surprise test phases. We tested the contributions of both systems to 

successful learning by parametrically manipulating WM load and delay. In each trial, participants 

were presented with a stimulus and had to select one out of three actions, deterministically 

associated with a reward. RL components were manipulated by introducing an additional 

probabilistic bonus reward for correct responses. Importantly, the probabilities for this bonus 

reward were stimulus-linked with values of 0.2, 0.5, or 0.8. WM contributions to learning were 

manipulated by the number of stimuli within a block (set size) for which the associated action 

had to be learned and by the delay between the last correct response to a stimulus and the 

subsequent display. In a reward retention test (test phase 1), participants were presented with 

two stimuli from the learning phase, randomly paired across blocks, and had to choose the 

stimulus they had collected more rewards for. In the stimulus-response retention test (test phase 

2), participants were again presented with stimuli from the learning phase and asked to indicate 

which action was associated with this stimulus. No feedback was given at either phase. 

 

2.3.3 Results 

Participants showed both WM and RL contributions in the learning phase, indicated by 

behavioral, computational, and EEG results. RL was reflected in an increasing proportion of 

correct answers over the course of a block, as expected for incremental value learning. WM-

Figure 15. Proportion of correct answers for each set size as a function of stimulus iterations and delay. Left: 

Correct answers were learned faster for low set sizes, the correct stimulus-action pairs were learned gradually 

slower with increasing set sizes. Right: the proportion of correct answers decreased with increasing delays in larger 

set sizes. Reprinted with permission from Rac-Lubashevsky et al. (2023). 
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guided learning was less gradual, therefore faster and with higher proportions of correct 

answers in lower set sizes and a lower proportion of correct answers with increasing delays in 

larger set sizes (Figure 13). The stress group showed a more pronounced performance drop in 

blocks with high set sizes compared to the control group, but did not attenuate WM per se. In the 

reward retention test, participants were more likely to select the item that was more rewarded, 

especially when the reward values were learned in higher set sizes. Additionally, the stimulus-

response retention was parametrically better for associations learned in higher set sizes. 

Strikingly, during learning, performance was parametrically worse for associations learned in 

higher set sizes.  

 

EEG analyses confirmed that RPE signals increased faster in trials with high set sizes than in 

trials with low set sizes, although behavioral learning was slower in these conditions (Figure 14). 

Most importantly, these neural signatures predicted better retention of learned associations 

Figure 17. EEG decoding of WM and RL contributions in the learning phase. Corrected event-related potentials 

(ERPs) confirmed significant effects for both WM and RL contributions. The WM-related predictors set size (top row) 

and delay (middle row) were associated with significant activity in frontal and parietal regions (electrodes FCz, CPz, 

and Poz). Frontal and parietal delay effects were initiated 300ms after stimulus onset, reaching a second peak 

~540ms, when also the parietal set size effect peaked. RL-driven Q-values (bottom-row) exhibited significant activity 

for the electrodes FCz, CPz, and C3, starting with an early frontal activity (~300 ms after stimulus onset) and a second 

temporal activity peak (~600ms after stimulus onset). Reprinted with permission from Rac-Lubashevsky et al.  

(2023). 
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over time: neural indices of RL during acquisition were predictive of the retention of stimulus-

response associations, but not predictive of the stimulus-reward value retention. Our results 

further indicated that although stressed participants showed a greater performance drop in 

higher set sizes during leaning, stress did not lead to a decrease of WM performance per se.  

 

2.3.4 Conclusions 

Our results confirm a cooperative interplay between WM and RL with the advantages of fast 

learning via WM at low load, and a robust retention for stimuli learned by the RL module at high 

load. The results from the learning task demonstrate that associations in blocks with high load 

were learned slower but showed higher retention accuracy in the end, supported by EEG signals 

of RL components that increased more rapidly across trials under high than low load, even 

though behavioral learning was slower in these conditions. Importantly, neural indices of RL 

during acquisition were predictive of retention of S-R association but not predictive of reward 

value retention. Our results support the key model prediction that RL processes play a major role 

in enhancing policy retention when WM resources are depleted.  
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3 General Discussion 

 

In cognitive science, learning and decision-making behavior has been dichotomized across 

various dimensions. The theoretical formalization is usually based on the assumption of one 

system that acts fast, reactively, implicitly and retrospectively, while the opposite system acts 

slowly, deliberatively, explicitly and prospectively (Collins & Cockburn, 2020). We investigated 

the extent to which the dichotomies suggested by theoretical RL frameworks can be confirmed 

in the experimental context. Specifically, we aimed to test the notion that two systems, 

dissociable in behavioral, computational, and neural mechanisms, drive learning and decision-

making in three different contexts. We addressed the dissociation of model-free and model-

based RL (Study 1), exploration and exploitation (Study 2), as well as the interplay between WM 

and reward learning (Study 3). Our objective was to investigate the distinguishability of each of 

these dual-systems frameworks and to examine the degree to which stress or stress mediators 

can influence the preference for one strategy over the other.  

 

3.1 Stress-induced reduction of both model-based and model-free signatures 

in the brain 
 

The dissociation of model-based and model-free behavior is one of the most influential dual-

systems framework in the field of RL. Our data show that participants used both model-based 

and model-free learning strategies in the modified two-step task with an overall bias towards 

model-free learning both in the stress group and in the control group. A possible explanation is 

that the modification of adding reversals of reward contingencies at random points throughout 

the task increased task difficulty and made it challenging to build an internal model of the task 

structure, therefore biasing participants towards a model-free choice behavior. This was further 

supported by computational modeling results, which failed to provide evidence that acute stress 

specifically hampered the model-based learning signatures commonly  proposed in the literature 

(Park et al., 2017). Despite the absence of a stress effect specific to model-based learning, our 

computational modeling results still showed behavioral differences between the stress group 

and the control group. Our results revealed that the inverse temperature parameter β for choices 

in the first stage tended to be lower in the stress group, compared to the control group. The 

inverse temperature parameter indicates the degree to which value estimates influence choice 

with lower values reflecting less use of value computations, leading to more random choices. 

Consequently, stress might have led to a behavior in which the decisions in the first stage were 

not used as a strategic decision to follow the path with the highest reward probability. Stressed 
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participants rather decided randomly in the first stage to then proceed to the reward-guided 

choice in the second stage. One possible mechanism is the stress-induced release of 

noradrenaline promoting explorative behavior by stopping the use of previously collected 

information in favor of exploring new options (Dayan & Yu, 2006; Dubois et al., 2021). This is 

further supported by the behavioral results indicating that stressed participants did not show a 

worse learning performance than the control group per se, neither in the first, nor in the second 

stage. At the same time, the groups did not differ in their learning rate α in either stage. Another 

possible mechanism is that participants in the stress group were not able to maintain the 

relevant information to guide their choices as a consequence of detrimental stress effects on WM. 

Recent evidence suggests a bimodal distribution of negative stress effects on WM with early 

effects following elevated noradrenaline levels, and later effects being mediated by non-genomic 

cortisol effects (Geißler et al., 2023). In line with this finding, our data show particularly random 

first-stage choice behavior after acute stress in participants with low WM capacity, compared to 

both stressed participants with high WM capacity and to participants with low and high WM 

capacity in the control group. 

 

On the neural level, stress reduced signatures of both model-based and model-free prediction 

errors. With regards to model-based prediction errors, the stress group showed reduced activity 

in the posterior hippocampus and in the putamen, compared to the control group. The 

hippocampus is associated with encoding cognitive maps by holding representations between 

cues, actions, outcomes as well as further characteristics of the environment (Schuck & Niv, 

2019; Wikenheiser & Schoenbaum, 2016). Model-free prediction errors on the other hand, were 

associated with reduced activation in the ilPFC in the stress group in comparison to the control 

group. Interestingly, for model-based prediction errors, ilPFC activity was increased in the stress 

group. The ilPFC has been associated with the role of an arbitrator, signaling whether behavioral 

control should be controlled by the model-based or the model-free RL system (Lee et al., 2014). 

This mechanism might work by suppressing the model-free system when the reliability of 

model-based information is assumed to be higher. Together, this might explain the stress-

induced increase of ilPFC activity during model-based value computations. 

 

However, it should be noted that both our behavioral and neural results do not show a clear 

dissociation of a model-based vs. model-free system underlying learning and decision-making in 

the two-step task. Recent studies cast doubt on the idea of distinct systems contributing 

differentially to decision-making, arguing that mode-free and model-based algorithms consist of 

numerous independent computation subcomponents which can be recombined in ways that blur 

the boundaries between model-based and model-free RL (Collins & Cockburn, 2020). For 



34 
 

example, the overall assumption is that the transition function is learned through explicit 

reasoning, reflected in the process of forming a cognitive map of the task space, the core indicator 

of model-based behavior. Alternatively, the transition function could also be learned by model-

free learning processes which account for discrepancies between expected and observed state 

transitions (Kurdi et al., 2019). Further, both systems are partially drawing on a common set of 

computational principles, such as the valuation of action-outcome associations via RPEs that are 

shared across both model-based and model-free learning systems (Daw et al., 2011; Gläscher et 

al., 2010). Accordingly, an alternative view could be that model-based learning is an extension of 

model-free RL rather than being distinct systems. This view is further supported by the lack of a 

clear dissociation on the neural level. Previous research has identified neural substrates that are 

activated during both model-based and model-free decision-making processes such as the 

vmPFC and the striatum (Deserno et al., 2015; Jocham et al., 2011), suggesting that these brain 

regions support a mix of computational processes associated with both model-based and model-

free learning. Additionally, RL algorithms typically assume predefined state and action spaces, 

but humans and animals often must discover these task spaces (Collins & Cockburn, 2020). 

Identifying the state space of the current environment likely involves separate networks in the 

brain, such as the prefrontal cortex and hippocampus. Together, the notion that distinct neural 

circuits support exclusively model-based or model-free learning should be challenged by a more 

nuanced view that considers the interaction and overlap of these systems to accurately reflect 

the complexity of cognitive processes.  

 

3.2 Functionally different roles of dopamine and noradrenaline in exploration 

and exploitation 
 

The exploration-exploitation tradeoff is a fundamental part of learning and decision-making. It 

is assumed to arise from dissociable systems on behavioral, computational, and neural levels. 

While the literature identified dopamine and noradrenaline as key players in signaling choice-

relevant aspects when deciding whether to repeat known actions or to explore new options, the 

exact mechanisms are widely unknown. We sought out to shed light on the specific roles of 

dopamine and noradrenaline by pharmacologically blocking either system before performing a 

patch-leaving foraging task. We particularly manipulated the rewards associated with choice 

options, the degree to which rewards decreased over time, and the opportunity costs it took to 

switch to a new option to gain insights about the functional roles associated with one or the other 

system. We hypothesized higher levels of striatal dopamine to induce a focus on reward 

representations (Pagnoni et al., 2002; Schultz et al., 1997), therefore favoring this aspect to guide 
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choices, resulting in rather exploitative behavior. Prefrontal dopamine on the other hand should 

be involved in the search for alternative options to gain information, therefore promoting 

explorative behavior. 

 

Participants in the amisulpride group switched less, especially when (i) the previous reward was 

high, (ii) the travel time was long, and (iii) the depletion rate was low. Thus, our results provide 

support for an increased sensitivity towards these choice aspects in the amisulpride group. Given 

the blocking effects of amisulpride on dopamine, this seems surprising at first glance. However, 

our results align with a dual-state model of prefrontal dopamine (Seamans et al., 2001). This 

model proposes that when prefrontal D1 receptors dominate activation, GABAergic inhibition is 

increased, acting as a gate where only strong inputs can pass to prefrontal circuits. When D2 

receptors are primarily active, GABAergic inhibition is decreased, leading to also weak inputs 

passing to prefrontal circuits (Seamans et al., 2001). Blocking prefrontal D2 receptors may 

induce a shift towards D1 activation, therefore promoting the processing of strong inputs 

(Seamans & Yang, 2004). Amisulpride was shown to preferentially block D2/D3 receptors in the 

PFC, while dopamine levels in the striatum were even elevated after low doses (Bressan et al., 

2003; Scatton et al., 1997; Viviani et al., 2013). Thus, our results may reflect a shift towards 

prefrontal D1 receptor activation within the prefrontal cortex. Combined with an intact striatal 

dopamine function, this might have promoted the development of robust representations of 

decision-relevant stimuli and ultimately heightened sensitivity to specific aspects of choice to 

guide choices. 

 

In contrast to the amisulpride group, the propranolol group showed no significant effects of 

choice aspects on behavior. Intriguingly, they tended to switch even more after higher rewards, 

compared to placebo. This indicates that participants in the propranolol group were less 

sensitive to the decision-relevant information they encountered, consistent with findings 

proposing a role of noradrenaline in random, but not directed exploration (Dubois et al., 2021; 

Jahn et al., 2018; Tervo et al., 2014; Warren et al., 2017). However, there are mixed findings 

regarding the direction of noradrenaline influencing choice randomness. Increased 

noradrenergic activity was associated with less random exploration (Warren et al., 2017), while 

other studies linked increased decision noise to higher levels of noradrenaline (Fan et al., 2023; 

Jepma & Nieuwenhuis, 2011). These heterogenous findings might be attributed to the different 

activity modes of noradrenaline. Tonic noradrenergic firing was linked to explorative behavior, 

whereas phasic noradrenaline is believed to promote exploitation (Aston-Jones & Cohen, 2005). 

Since propranolol is suggested to affect both tonic and phasic signaling of noradrenaline (Lawson 

et al., 2021), distinguishing between these modes based on our data is not feasible. One potential 
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explanation for the increased stochasticity we found after blocking noradrenaline could be an 

inhibitory mechanism involving β-adrenergic receptors. Specifically, research indicated that β-

adrenergic receptors in rats boosted inhibitory synaptic mechanisms through a noradrenaline-

mediated enhancement of GABA efficacy (Waterhouse et al., 1982). By blocking these receptors, 

we may have disrupted a noradrenaline-related suppression of noise, leading to an increase of 

decision noise and therefore an increase of random behavior. 

 

Our results imply that it is not one or the other transmitter system that supports exploration or 

exploitation per se, but that dopamine and noradrenaline each signal specific components of the 

decision-making process. It can therefore be concluded that dopamine is responsible for 

processing the decision-relevant information that is used in both exploratory and exploitative 

behavior, while noradrenaline transmits in particular the continuation or abandonment of the 

current strategy. In the context of the proposed dual-systems approach of exploration and 

exploitation, our results indicate that the assumption of two separate systems is questionable. It 

becomes apparent already in the formalization that exploration and exploitation are essentially 

based on the same mechanism, that is the accumulation of information in interaction with the 

environment to assess the quality of the current option to guide future decisions. Behaviorally, 

exploration and exploitation are indicated by an overall tendency towards switching or staying, 

respectively and computationally the intercept parameter was introduced to capture constant 

choice biases. Consequently, it is not assumed that exploration and exploitation arise from 

fundamentally different processes, but that they are rather two poles on a continuum that are 

the result of computations of multiple choice-relevant components.  

 

3.3 Cooperative interplay between RL and WM  
 

In the lens of dual-systems accounts the idea to disentangle WM and RL contributions to learning 

and decision-making is a seminal breakthrough. Given the basic assumption that the RL-

immanent learning of value functions requires an active maintenance of stimulus-action-

outcome associations, the involvement of WM processes is obvious. We sought out to test the 

extent to which WM and RL are alternative systems by (i) experimentally manipulating RL and 

WM demands, (ii) disentangling the signatures indicative of each process in a computational 

model and (iii), providing insights into the underlying neural systems by decoding EEG signals. 

Our behavioral results corroborate previous findings identifying separable contributions of RL 

and WM to successful learning (Collins, 2018; Collins, Albrecht, et al., 2017; Collins & Frank, 

2012). Specifically, we showed that successful learning consisted of an RL process that 
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incrementally accumulated value information and a WM process specifically present in blocks 

with low set sizes and prone to delay effects. We further showed that representations learned 

under high load, therefore processed via RL, are more robust than those learned under low load 

when WM guided learning, as indicated by an improved recall performance for associations 

learned under higher set sizes in the stimulus-response retention test (test phase 2). This is in 

line with previous evidence for this test phase (Collins, 2018). In the same vein, participants were 

more likely to select stimuli associated with higher rewards during learning in the reward 

retention test (test phase 1), confirming RL contributions in the learning phase. This value 

discrimination effect was also enhanced under higher WM loads (replicating Collins, Albrecht, et 

al., 2017). Importantly, our test phase design enables a measurement of pure RL signatures, as 

the first test phase specifically tests the incremental accumulation of reward values, and the 

second test phase takes place ~15 min after the learning phase offset when WM representations 

are no longer accessible. Taken together, our results support the notion that a higher WM load 

benefits retention accuracy, aligning with the hypothesis that RL processes, when under the 

pressure of high WM load, play a pivotal role in ensuring robust retention of learned associations.  

 

This is further confirmed by our model-based EEG-results. Trial-by-trial recordings showed 

early frontal activity associated with the RL system followed by later parietal signals linked to 

set size. As demonstrated earlier (Collins & Frank, 2018), these dynamics indicate an early 

activation of the RL system, followed by the cognitively effortful WM system. Importantly, the 

neural signature of RL increased with increasing reward history. This effect was even higher with 

increasing set size, in line with earlier observations of RL overtaking learning when WM 

contributions decrease (Collins, Albrecht, et al., 2017; Collins & Frank, 2018). Strikingly, our 

results provide evidence indicating that RL indices during the acquisition phase are predictive 

of retention performance, highlighting the significance of RL in learning and memory beyond the 

immediate contributions of WM. 

 

Although stress is known to influence a broad range of cognitive domains (Arnsten, 2009; Luksys 

& Sandi, 2011; Schwabe et al., 2012), stress had a limited effect on the RL and WM trade-off in 

our study. In previous studies, stress was found to impair WM performance (Geißler et al., 2023; 

Qin et al., 2009; Woodcock et al., 2019), while even increasing striatal dopamine activity 

(Vaessen et al., 2015). We therefore reasoned that stress would lead to a shift from WM-guided 

processes to RL-drivel learning. In fact, our data only partly support this hypothesis. Acute stress 

slightly modulated the interaction between RL and WM in the learning phase with a greater 

performance drop in blocks with high set sizes, compared to the control group. However, stress 

did not have an impact on the WM indices alone. Moreover, we found a hint for a stress  recall 
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accuracy  set size effect in the stimulus-response retention test, suggesting acute stress might 

impact the retention of learned stimulus-response associations differently based on the WM load 

during learning. However, follow-up analyses could not confirm a robust stress effect in the 

second test phase. We further did not find significant stress effects on the performance in the 

reward retention test, but as WM is not the primary component in this phase, this test phase was 

not the center of our hypothesis. The lack of stress effects cannot be attributed to our 

manipulation per se, as subjective mood ratings, as well as blood pressure and cortisol measures 

clearly indicated a stress reaction after being exposed to the stress manipulation. An attenuation 

of stress effects on task performance might be explained by the timeline of our experiment. The 

learning phase began 25min after stressor onset. In this time interval, prefrontal noradrenaline 

levels are expected to have returned to baseline (peaking around 10 min after stressor offset; 

Geißler et al., 2023), while central cortisol levels peak at 25-30min after stressor onset (Schwabe 

& Schächinger, 2018). It is suggested that both noradrenaline and cortisol levels need to be 

increased to find detrimental stress effects on  performance (Barsegyan et al., 2010; Elzinga & 

Roelofs, 2005; Roozendaal et al., 2006). Another possibility is that individual WM capacity 

influenced how stress affected task performance, as a high WM capacity prevented detrimental 

stress effects in earlier studies (Quaedflieg et al., 2019). 

 

Together, we found that a higher WM load led to a shift towards RL-guided learning that was less 

time-sensitive and therefore more robust. This was further backed by our neural results 

indicating that RL indices during the acquisition phase were predictive of retention performance, 

highlighting the cooperative interplay between WM and RL when guiding decision-making. The 

integration of WM into models of RL is an important step towards the consideration of 

fundamental cognitive processes in studying learning and decision-making. However, it is 

questionable whether a dichotomization approach is the optimal solution, which again neglects 

important processes such as attention or motor learning. 

 

3.4 Re-evaluating the notion of dual-systems approaches in RL 
 

Taken together, our studies jointly shed light on the nuanced interplay within RL processes, each 

emphasizing key aspects underlying RL contributions to decision-making. In the study of model-

based versus model-free learning, we found that individuals utilize both strategies, with a 

tendency towards model-free learning. Stress, rather than specifically impairing model-based 

learning, reduced signatures of both model-based and model-free RL, paralleled by an overall 

tendency towards increased choice randomness. In Study 2, we showed that dopamine and 
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noradrenaline play functionally distinct roles in the exploration-exploitation tradeoff. Dopamine 

was shown to be crucial for processing information relevant to choices, while noradrenaline 

appeared to affect decision-making more generally by regulating when to disengage from the 

current information paths to randomly explore new options. Finally, we examined the interplay 

between WM and RL, uncovering a synergistic interaction where high WM demands enhanced 

the retention accuracy of learned associations. This suggests that WM and RL processes, rather 

than acting as alternative systems, collaboratively contribute to learning efficiency and decision-

making robustness.  

 

Although the approaches examined here are each represented in their own niches of the 

literature, they exhibit considerable overlaps in their behavioral, computational, and neural 

mechanisms (Figures 4, 7, and 9). Notably, all tasks share the same core of learning stimulus-

action pairs associated with rewards to guide choice behavior. Therefore, they are all grounded 

in the same computational framework wherein the basic RL module defines learning as 

capturing a value function for available stimulus-action-associations (Gershman & Uchida, 

2019). RPEs enable value updates while interacting with the environment, adjusted by learning 

rates that determine the extent to which new information is used to update the value 

representations (Sutton & Barto, 1998). Additionally, inverse temperature parameters play a 

pivotal role, indicating the extent to which the acquired knowledge guides decision-making 

processes. At the same time, all three approaches propose similar neural processes and brain 

regions guiding learning and decision making (Figures 4, 7, and 9) with the involvement of 

dopaminergic RPE computations in the striatum, ventral/dorsal prefrontal activity, and parietal 

regions. In conclusion, all three approaches explored in this thesis, while initially situated within 

distinct areas of research, reveal significant overlaps in their behavioral, computational, and 

neural underpinnings. 

 

Importantly, the integration of the results from the three studies provides insights beyond the 

isolated view within the respective approaches. Both Study 1 and Study 2 revealed a behavioral 

signature where participants disengaged the path of accumulating information to guide 

behavior, but instead performed value-independent, random choices. In the first study, this 

behavior was particularly present in the stress group, in the second study participants in the 

propranolol group showed an increase of randomness. In light of the well-established  release of 

noradrenaline as part of the acute stress response (Joëls & Baram, 2009), it is tempting to 

speculate that noradrenaline mirrored a reset signal leading to the disengagement from 

previously learned information in both studies. We further showed that random choice behavior 

in Study 1 was specifically pronounced in stressed participants with a low WM capacity, 
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suggesting that the underlying mechanism was not reflected in a reset-signal, but rather a 

consequence of detrimental stress effects on WM, therefore explained by an inability of 

maintaining choice-relevant information. Taking into account that the key characteristic of 

model-based RL is the creation and application of an environmental model, the importance of 

WM contributions seems specifically apparent for model-based RL. However, as we found a 

general bias towards model-free processes in our study, we cannot make this differentiation. 

Previous studies have already shown this relationship (Otto et al., 2013; Sharp et al., 2016), so 

that a further investigation of WM involvement in model-based versus model-free learning 

processes might be particularly interesting. Together, we show the importance of noradrenaline 

in signaling a disengagement from the current strategy, we highlight the role of dopamine in 

processing choice-relevant aspects, and we present striking evidence for a cooperative interplay 

between WM and RL. 

 

However, although we were able to confirm the signatures of the assumed systems in each of our 

studies, the substantial parallels between the frameworks also raise doubts about their general 

validity. This is particularly evident in the concepts of model-based vs. model-free RL and 

exploration vs. exploitation. Although both approaches are based on different tasks and models, 

they significantly overlap. For example, when creating an environmental model which is the core 

process of model-based RL, it is essential to obtain information by trying out unknown paths, a 

process commonly referred to as directed exploration (Gershman & Tzovaras, 2018; Wiehler et 

al., 2021). At the same time, model-free RL parallels an exploitative strategy, where agents rely 

on learned values or policies derived directly from the outcomes of their actions. This mirrors 

exploitation behavior, where actions are chosen that are associated with the maximum known 

reward. Despite the obvious parallels, the literature currently mostly does not integrate these 

approaches. The dedicated assessment of WM processes is a step in the direction of a more 

integrative perspective, but nevertheless this is also an isolated view on a priori defined 

processes. While such simplifications might be appropriate in fundamental research, with the 

increasing complexity of a task, it will in turn be subject to the criticism that important influences 

of other systems are being ignored, such as attention, episodic memory, or motor learning. 

 

Finally, the results presented in this work also give rise on critical aspects associated with dual-

systems approaches in RL. First, the theoretical foundation of model-based vs. model-free RL as 

well as the exploration-exploitation formalization does not clearly map onto separable systems, 

but rather draws on (partly) shared mechanisms. Consequently, it would be more accurate to 

speak of model-based RL as an extension of model-free RL, and of two poles on a continuum in 

the case of exploration and exploitation. Second, this argument is supported by empirical results 
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including the ones presented here that show that the respective systems do not occur in their 

pure form, neither at the behavioral nor at the neural level. Thirdly, the models can only depict 

the space limited by their own formalization, which represents an under-complex approximation 

to high dimensional decision problems. 

 

3.5 Conclusion and future directions 
 

Together, our studies challenge the traditional dichotomy of learning systems proposed in 

earlier RL theories. Instead, they highlight a more integrated and dynamic interplay of cognitive 

processes, suggesting that learning and decision-making behaviors emerge from the complex 

interactions between multiple systems rather than being driven by an isolated selection of 

dichotomized systems. At the same time, we show considerable overlaps in the behavioral, 

computational, and neural mechanisms between the approaches, although the individual 

frameworks are mainly considered independent from each other in the literature. Recent 

advances criticize that predefined computational models can only reflect the process that is 

based on the underlying theory (Eckstein et al., 2021), therefore nurturing the existence of 

separate niches for similar objectives. Moreover, it is proposed that such “handcrafted” models 

come with the risk of an incorrect specification of the model, meaning for example that 

mechanisms critical for the actual data generation process can easily be overlooked (Nassar & 

Frank, 2016). An alternative framework is offered by deep learning approaches where models 

are defined by raw data input, therefore allowing the agent to adapt and optimize choice 

strategies in complex and dynamic environments (Cross et al., 2021). Although dichotomized 

systems have a long tradition in cognitive science and have provided groundbreaking insights, 

future studies should take a more integrative view on the complex interplay of multiple systems 

underlying learning and decision-making. 
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Stressful events are thought to impair the flexible adaptation to changing environments, yet the underlying mech- 
anisms are largely unknown. Here, we combined computational modeling and functional magnetic resonance 
imaging (fMRI) to elucidate the neurocomputational mechanisms underlying stress-induced deficits in flexible 
learning. Healthy participants underwent a stress or control manipulation before they completed, in the MRI scan- 
ner, a Markov decision task, frequently used to dissociate model-based and model-free contributions to choice, 
with repeated reversals of reward contingencies. Our results showed that stress attenuated the behavioral sen- 
sitivity to reversals in reward contingencies. Computational modeling further indicated that stress specifically 
affected the use of value computations for subsequent action selection. This reduced application of learned in- 
formation on subsequent behavior was paralleled by a stress-induced reduction in inferolateral prefrontal cortex 
activity during model-free computations. For model-based learning, stress decreased specifically posterior, but 
not anterior, hippocampal activity, pointing to a functional segregation of model-based processing and its modu- 
lation by stress along the hippocampal longitudinal axis. Our findings shed light on the mechanisms underlying 
deficits in flexible learning under stress and indicate that, in highly dynamic environments, stress may hamper 
both model-based and model-free contributions to adaptive behavior. 
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(

Stressful events are a powerful modulator of learning and memory
 Diamond et al., 2007 ; Luksys and Sandi, 2011 ; Lupien et al., 2009 ;
oozendaal et al., 2009 ; Schwabe et al., 2012 ). In particular, stress is

hought to render learning and memory rather rigid, thus impairing
he flexible adaptation to changing environments ( Raio et al., 2017 ;
chwabe and Wolf, 2013 ; Wirz et al., 2018 ; Schwabe et al., 2013 ). Al-
hough such deficits in flexible learning under stress have far-reaching
mplications, not only for educational and clinical contexts ( de Quervain
t al., 2017 ; Goldfarb and Sinha, 2018 ; Goodman et al., 2012 ; Vogel and
chwabe, 2016 ), the exact mechanisms underlying the stress-induced
mpairments in flexible learning are still largely unclear. 

Successful adaptation to dynamic environments depends on the
omplex interplay of at least two systems: (i) a reflective or goal-
irected system that involves the consideration of prospective future
ourses of action and their consequences and (ii) a reflexive or ha-
itual system that is guided by the retrospective experience of good
nd bad outcomes ( Balleine and O’doherty, 2010 ; Sloman, 1996 ). Ac-
umulating evidence from human and rodent studies shows that stress
nd stress hormones may bias the balance of these systems and fa-
or habitual over goal-directed behavior ( Braun and Hauber, 2013 ;
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ourley et al., 2012 ; Schwabe et al., 2012 ; Schwabe and Wolf, 2009 ,
011 ; Schwabe et al., 2012b ). Computationally, goal-directed and ha-
itual forms of behavioral control are assumed to overlap to some de-
ree with model-based and model-free reinforcement learning systems
 Dolan and Dayan, 2013 ). Within this framework, learning can be de-
ned as the identification of a value function that selects the most re-
arding options in the current environment. Therefore, the value func-

ion links the previous value of the options available with rewards that
an be expected in the future. This results in a policy that maps differ-
nt environments to action probabilities and therefore determines which
ctions are selected in each state ( Gershman and Uchida, 2019 ). Specif-
cally, a central aspect in both model-based and model-free learning is
he computation of prediction error signals to update the value function.
herefore, previous experiences are used to form predictions, which are
hen updated by comparing the predicted outcome of an option to the
ctual outcome. 

While a model-based policy acquires a cognitive map of the task
tructure (i.e., how different environments are linked to each other) and
ses this to predict the most advantageous course of action, the model-
ree system encodes values by trial and error and uses the reward history
o guide behavior ( Daw et al., 2005 , 2011 ; Gläscher et al., 2010 ). 
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On the neural level, model-based processing is thought to rely
n posterior inferior parietal as well as lateral prefrontal regions
 Gläscher et al., 2010 ) and, as shown more recently, on hippocam-
al areas ( Pfeiffer and Foster 2013 ; Garvert et al., 2017 ; Miller et al.,
017 ; Stachenfeld et al., 2017 ). Model-free learning, in turn, is as-
umed to be driven by prediction error signals of midbrain dopamine
eurons mapping the difference between the actual and expected re-
ard at a particular state and depends mainly on the ventral striatum
 Bayer and Glimcher, 2005 ; Haruno and Kawato, 2006 ; McClure et al.,
003 ; O’Doherty et al., 2003 ). In terms of the flexible adaption to
hanges in the environment, we identified the medial prefrontal cor-
ex (mPFC) as a potential key player, since it is linked to essential fea-
ures of flexible learning ( Nee et al., 2011 ). In particular, the mPFC
s thought to be implicated in the anticipation of values of currently
vailable actions ( Aarts et al., 2008 ), the representation of possible out-
omes ( Brown, 2009 ), the association between actions and outcomes
 Oliveira et al., 2007 ), error detection processes during contingency
hanges ( Zarr and Brown, 2016 ), and the computation of likely action
utcomes ( Alexander and Brown, 2011 ; Croxson et al., 2009 ). 

The computational conceptualization of reflexive and reflective sys-
ems of behavioral control in terms of model-based and model-free
rocessing provided valuable insights into the mechanisms underlying
ach of these systems as well as their interplay. First behavioral stud-
es suggested that acute stress may affect behavioral flexibility in gen-
ral ( Plessow et al., 2011 ; Schwabe and Wolf, 2011 ) and the contri-
utions of model-based and model-free processes to aversive learning
r learning from negative outcomes in particular ( Park et al., 2017;
aio et al., 2017 ). However, how stress changes the contributions of
odel-based and model-free systems to flexible learning in a highly

olatile environment and, in particular, the neural mechanisms underly-
ng stress-induced alterations in model-based and model-free processing
re largely unknown. 

In the present experiment, we combined computational modeling
nd functional magnetic resonance imaging (fMRI) to elucidate the neu-
ocomputational mechanisms underlying stress-induced deficits in flex-
ble learning. Therefore, healthy participants first underwent a stan-
ardized stress or control procedure before they completed a two-step
arkov decision task in the MRI scanner. This task allows a dissociation

f model-based and model-free contributions to behavior ( Daw et al.,
011 ) and requires two subsequent decisions which can ultimately lead
o a reward. To explicitly probe the flexibility of learning, we used a
odified version of this task that included repeated reversals of reward

ontingencies. Here, flexible learning was expressed as the ability to de-
ect a reversal and adapt the choice behavior accordingly. We assumed
hat task performance would rely on both model-based and model-free
omputations and that stress would reduce their recruitment during
earning. Because previous findings suggested that individuals with low
orking memory capacity were more susceptible to detrimental stress

ffects on model-based learning strategies than participants with high
orking memory capacity ( Otto et al., 2013 ), we further included an n-
ack test to probe participants’ baseline working memory performance.

. Materials and methods 

.1. Participants and experimental design 

Sixty-eight healthy volunteers participated in this experiment. Based
n previous studies from our lab that reported effect sizes of Co-
en’s d from 0.66 to 0.98 for similar research questions ( Schwabe and
olf, 2009 , 2012 ), we expected a medium to large effect of stress on

exible learning of Cohen’s d = 0.7. A power analysis using G 

∗ power
 Faul et al., 2007 ) indicated that using a two-tailed independent t -test
ith alpha = 0.05, a sample of 68 participants is required to detect such
 medium-sized effect with a power of 0.80. All participants were right-
anded, had normal or corrected-to-normal vision and were screened for
ossible MRI contraindications. Individuals with a current medical con-
2 
ition, current medication intake or lifetime history of any neurological
r psychiatric disorders were excluded from participation. Moreover, we
xcluded smokers and women taking hormonal contraceptives as both
an affect the stress response ( Kirschbaum et al., 1999 ; Rohleder and
irschbaum, 2006 ). Participants were asked not to drink coffee or other
affeinated beverages and not to do any exercise on the day of the exper-
ment. In addition, they should not eat or drink anything except water
 h before the appointment. All participants provided written informed
onsent before the beginning of testing and received a moderate mone-
ary compensation. The study protocol was approved by the local ethics
ommittee. Ten participants had to be excluded from the analysis be-
ause of excessive head movement (mean displacement > 5 mm) in the
RI ( n = 4), because they missed more than 30% of the trials ( n = 3)

r because they chose the same action in more than 95% of the trials
 n = 3), thus leaving a final sample of 58 participants (17 men and 12
omen in each of the two groups, age 18–34, mean = 24.6, SD = 3.5,
o age difference between groups, t(57) = 0.73, p = 0.47). Participants
ere pseudorandomly assigned to the stress and control groups, in order

o achieve an identical number of men and women per group. 

.2. Stress induction 

In order to control for the diurnal rhythm of the stress hormone
ortisol, all testing took place in the afternoon and early evening,
ith the time of testing being counterbalanced across groups. Partici-
ants of the stress group underwent the Trier Social Stress Test (TSST;
irschbaum et al., 1993 ), a standardized paradigm in experimental
tress research that is known to activate both the autonomic nervous
ystem and the hypothalamus-pituitary-adrenal axis. In brief, the TSST
imulates a 15-min job interview, including a public speech about the
articipant’s eligibility for a job tailored to his/her interests and a men-
al arithmetic task. During both tasks, participants were videotaped and
valuated by two rather cold, non-reinforcing committee members (1
an, 1 woman), dressed in white lab coats. In the control condition,
articipants spoke about a topic of their choice followed by a simple
rithmetic task (counting forwards in steps of 15), without committee
r video recordings. 

To evaluate the successful stress induction through the TSST,
ubjective and physiological measurements were taken at several
ime points across the experiment (see Fig. 1 ). Baseline was as-
essed 10 min after the start of the appointment, so that the sub-
ects were able to acclimatize to the situation. Directly after the
SST/control manipulation, participants rated the difficulty, stressful-
ess, and unpleasantness of the experimental treatment on a scale
rom 0 ( ”not at all difficult/stressful/unpleasant ”) to 100 ( ”very diffi-
ult/stressful/unpleasant ”). Blood pressure and pulse were measured at
aseline, during the TSST, directly after the TSST and after the fMRI
canning session using a digital blood pressure device (OMRON model
500 (HEM-7321-D); Healthcare Europe BV, Hoofddorp, The Nether-

ands) with a cuff applied around the right upper arm, when subjects
ere standing. Finally, we collected saliva samples using Salivette R ○ col-

ection devices (Sarstedt) at baseline, 18 min after stressor onset (shortly
efore the learning task started), and after each block of the Markov de-
ision task (i.e., 40, 60 and 90 min after the treatment, Fig. 1 ). Saliva
amples were stored at − 18 °C until the end of data collection, when we
nalyzed saliva cortisol concentrations using a luminescence assay (IBL,
ermany). 

.3. Markov decision task 

Twenty minutes after the beginning of the stress/control manipula-
ion, when stress-induced cortisol concentrations were expected to peak,
articipants performed a modified version of a two-step Markov deci-
ion task in the MRI scanner. This task was designed to dissociate be-
ween model-based and model-free learning mechanisms ( Daw et al.,
011 ). Each trial consisted of two successive stages, in each of which
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Fig. 1. Experimental procedure. Stress was induced by the Trier Social Stress Test (TSST). Before the stress/control treatment, participants completed several 
questionnaires and performed an n-back task. After the stress/control procedure, participants completed three blocks of a modified Markov decision task (MDT) in 
the MRI scanner. Stress reactivity was assessed by subjective and physiological measures (salivary cortisol, blood pressure, pulse), which were taken at several time 
points across the experiment. 

Fig. 2. Experimental task. Left: State transition structure. Each first stage (state 1) action is predominantly associated with one or the other second stage states (state 
2 and state 3), and leads there in 70% of the time. The different states were marked by differently colored boxes. Reward probabilities in the second stage undergo 
frequent reversals. Middle: Reversal patterns. Reward probabilities of 0.4 and 0.9, and 0.1 and 0.6 stay together in one state. Out of these possible combinations, 
six patterns (two per block) occurred over the course of the experiment per participant. Right: Timeline of events per trial. A first stage choice between two options 
leads to a second stage choice which is probabilistically reinforced with monetary rewards. 
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he participant had to choose between two options ( “left ” or right ”),
epresented by fractal images ( Fig. 2 ). The first stage decision (state 1)
ed to one of two possible states in the second stage (state 2 and state
), requiring another choice between two fractals, which were associ-
ted with different probabilities of receiving a monetary reward. Each
rst stage option was predominantly (70%) associated with one or the
ther second stage state. The choice options in the second stage led to
 monetary reward with a probability of 0.9, 0.6, 0.4 and 0.1, with the
robabilities of 0.9 and 0.4 being paired in one state ( “good state ”), and
.6 and 0.1 in the other ( “bad state ”). A win was depicted by a 10 cents
oin, otherwise “no reward ” appeared on the screen. Upon each state,
articipants had 2 s to submit their choice on an MRI compatible button
ox. If they failed to enter a choice within this time window, the trial
as aborted and the next trial started. Trials were separated by an inter

rial interval of randomized length, between 6 and 10 s ( Fig. 2 , right). 
Whether the transition structure is included in the decision or not

rovides insights into the engaged learning strategy. While the model-
ree learner evaluates actions retrospectively by repeating previously
ewarded choices, the model-based learner also takes the task structure
nto account. Consider a first stage choice that led to a second state
ia a rare transition, followed by a second state choice that led to a
eward. A purely model-free agent would repeat the action because it
as rewarded. A purely model-based learner, however, would switch to

he other first stage option because it takes into account that the pre-
ious first stage action only leads to the rewarded second stage state
ia a rare transition. Thus, first stage decisions provide the opportunity
o determine the extent to which model-based vs. model-free computa-
ions contribute to decisions. In order to explicitly test the flexibility of
earning, we modified the original task by introducing repeated rever-
als of reward contingencies ( Fig. 2 ), requiring the flexible adaptation
f behavior. 
3 
Participants performed 202 trials, distributed over three blocks (70 /
6 / 66 trials) and separated by breaks. In order to explicitly test the flex-
bility of learning, defined as adaptation to a changing environment, we
odified the original task by introducing repeated reversals of reward

ontingencies. Specifically, the reward probabilities associated with sec-
nd stage actions were reversed twice per block, fixed at trial numbers
7, 49, 93, 115, 159 and 181. To ensure that reversals are detectable
espite the probabilistic reward structure, the reversals only take place
ithin one of the two second stage states. Fig. 2 (middle) shows all
ossible reversal combinations. Note that the three blocks were sepa-
ated by a short break in which the subjects were briefly moved out
f the scanner to collect saliva samples. The experimenter then placed
he Salivette in the participant’s mouth using sterile plastic tweezers,
aralleled by the instruction to move as little as possible. We applied
he same criteria for the movement parameters between the blocks as
uring the task, i.e. excluding participants with a mean displacement >
 mm. To make sure that participants did not continue to apply their
reviously learned contingencies, each block began with a new stimu-
us allocation. That is, the same six fractals were randomly assigned to
he three states. Likewise, the background colors of the states were reas-
igned. The second stage reward probabilities were randomly attached
o the new second stage stimuli. The assignment of colors and stimuli to
he states was counterbalanced across participants. The stimulus pairs
ithin the states stayed the same within one block, and so did the back-
round colors of the states and the transitions between first and second
tage. The location of the two options in one state was randomized from
rial to trial to ensure that the participants learned stimulus – state and
timulus – reward contingencies rather than the stimulus position. 

Participants were instructed that they had to make two decisions
n a row in each trial, with the second decision possibly leading to a
eward and that the aim of the task was to gain as many rewards as
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ossible. They were told that the first decision was not directly asso-
iated with the reward, but that it leads to one of two possible states,
n which they again have the choice between two pictures. They were
lso instructed that each first stage option was primarily associated with
ne or the other state in the second stage, but not with which one. Fur-
her, the instructions stated that within the two second stage states, each
icture leads with a certain probability to a reward and in both states
here is a slightly better and a slightly less favorable option and that
hey should find the best option. Most importantly, participants were
nformed that this option would change several times throughout the
xperiment and that they should detect the changes and adapt their be-
avior accordingly. Lastly, they learned that none of the images would
ead to a reward in all trials, so that it is possible that they do not get a
eward for an answer that has been correct many times before - but that
his does not necessarily mean that a reversal took place. The exact task
nstructions that participants received are provided in the supplemental
aterial. 

Before the TSST or control manipulation, participants performed a
rief training session for the learning task (out of the MRI scanner). The
raining consisted of three parts with 10 trials each, introducing the task
teratively. In each phase, the trial structure was the same as in the ex-
erimental task. In the first part, the participants should find out which
mage would lead to a reward with one of the four images being re-
arded while the other three were not. The second part was identical,

xcept that the rewarded picture changed at some point. The partici-
ants were informed about the reversal and were instructed to adapt
heir behavior. The third phase was identical to the experimental task.

e used the same stimuli and transition structure as in the experiment,
he image position and colors of the states were randomized. All three
hases had a fixed number of trials, no learning criterion was applied. 

.4. Working memory assessment 

Because previous research suggested that the influence of stress on
he control of learning may be moderated by the individual working
emory capacity ( Otto et al., 2013 ), we measured working memory us-

ng an n-back task ( Kirchner, 1958 ) before participants underwent the
tress or control manipulation. Participants were presented a random se-
uence of one-digit numbers from ‘‘0’’ to ‘‘9’’ and asked to indicate via
utton press (‘‘yes’’ or ‘‘no’’) whether the currently presented number
as the same as the one presented n-trials before. Participants received
0 stimulus blocks in total (2 practice blocks with feedback and 8 ex-
erimental blocks without feedback), in which working memory load
aried by alternately using a 2-back and a 3-back condition. Each block
onsisted of 24 stimulus trials. Stimuli were displayed for 500 ms and
esponses were recorded within 1500 ms, followed by 2000 ms fixation
ross. 

.5. Behavioral data analyses 

To test whether the TSST successfully induced stress, data on sub-
ective ratings, vital signs, and salivary cortisol were analyzed using
ixed-design ANOVAs with the between-subjects factor treatment and

he within-subjects factor time after stress/control manipulation onset.
-tests were used to investigate post-hoc group differences in these mea-
ures. Learning performance was quantified by the proportion of first
tage choices for the option that led predominantly, with a probability
f 0.7, to the second stage state with the overall higher probability to
btain a reward. Likewise, the proportion of choices for the option with
he higher reward probability (either 0.9 or 0.6) in the second stage re-
ected successful learning. We further computed the sensitivity to detect
hanging contingencies as a difference index between the mean number
f advantageous choices in the four trials before a reversal relative to
he four trials after a reversal. We chose this number of trial before
nd after a reversal to ensure that the participants had enough trials to
earn the contingencies and to specifically capture the reversal related
4 
ehavior. The results remained the same if we used, for instance, 5 trials
efore/after a reversal instead. In order to identify the model-based and
odel-free contributions to behavior and whether these contributions
iffered between the stress and control groups, we used a mixed design
NOVA with the between-subjects factor treatment (stress vs. control
anipulation) and the within-subject factors reward (rewarded vs. not

ewarded) and transition (common vs. rare). Further, we performed a
ixed-effects logistic regression to explain the first stage choice on each

rial. First stage choice was coded as stay vs. switch and was explained
s a function of previous trial’s outcome (rewarded or not rewarded) and
revious trial’s transition type (common or rare). Within-subject factors
the intercept, main effects of reward and transition, and their interac-
ion) were taken as random effects across subjects, and estimates and
tatistics reported at the population level. The experimental treatment
stress vs. control) was taken as a fixed effect. 

We also performed exploratory analyses to test whether anxiety,
epression, chronic stress or working memory capacity influence the
usceptibility to stress effects on flexible learning. We tested whether
hese measures correlated with the sensitivity index or the model pa-
ameters. Additionally, we subdivided the stress group and the con-
rol group based on a median split on these measures, and analyzed
hether individuals with particular high or low scores differed in their
ehavior around the reversals by using a mixed design ANOVA with the
etween-subjects factors treatment (stress vs. control manipulation) and
evel (high vs. low) and the within-subject factor time (pre reversal vs.
ost reversal). All analyses were performed in R ( R Core Team, 2019 ).
reenhouse-Geisser correction was applied when sphericity was vio-

ated. Logistic regressions were conducted as mixed-effects models and
ere performed using the lme4 package ( Pinheiro and Bates, 2000 ). 

.6. Computational modeling 

We used reinforcement learning models to dissociate model-free
nd model-based contributions to subject’s trial by trial choices. We fit
hoice behavior to a dual-system reinforcement learning model which
ncludes both model-free and model based learning strategies, assum-
ng that choices derive from a weighted combination of both model-free
nd model-based value computations ( Daw et al., 2011 ; Gläscher et al.,
010 ). Therefore, the algorithms learn a value function 𝑄 ( s,a ) for each
f the stimulus-action pairs in the two stages (three states, first stage:
 A , second stage: s B and s C ; each with two actions). On trial t , the first
tage state (always s A ) is followed by the first stage action which leads
o the second stage state ( s B or s C ). The second stage action 𝑎 2 is proba-
ilistically connected to a reward r 2,t . At each stage i of each trial t , the
alue for the visited state-action pair 𝑄 ( s,a ) was updated according to
oth a model-free and a model-based algorithm. 

Model-free values were computed with a SARSA ( 𝜆) temporal dif-
erence algorithm. As stated before, model-free choices derive from re-
eating previously rewarded actions. In the first trial, each state-action
air ( s, a ) at stage i and trial t has a 𝑄 -value of zero. In each following
rial 𝑡 + 1 the value for the visited state-action pair 𝑄 𝑀𝐹 ( 𝑠 𝑖, 𝑡 +1 , 𝑎 𝑖, 𝑡 +1 )
s updated based on whether the particular pairing was rewarded in the
revious trial t . Therefore, the general form of the model-free value up-
ate for chosen stimulus-action pair is: 

 𝑀𝐹 

(
𝑠 𝑖, 𝑡 +1 , 𝑎 𝑖, 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 𝑖, 𝑡 , 𝑎 𝑖, 𝑡 

)
+ 𝛼𝑖 𝛿𝑖, 𝑡 (1)

here 

𝑖, 𝑡 = 𝑟 𝑖, 𝑡 + 𝑄 𝑀𝐹 

(
𝑠 𝑖 +1 , 𝑡 , 𝑎 𝑖 +1 , 𝑡 

)
− 𝑄 𝑀𝐹 

(
𝑠 𝑖, 𝑡 , 𝑎 𝑖, 𝑡 

)
(2)

𝛿 refers to the reward prediction error and 𝛼 indicates the learning
ates. However, this general form of value update and prediction error
s narrowed down in the different stages of the task, which is explained
ext. 

The prediction error is different for the two stages of the task. Since
 1 ,𝑡 is always zero, the prediction error at the first stage is driven by the
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c

𝑅𝑃 𝐸 𝑠 , 𝑎 = 𝑟 − 𝑄 𝑠 , 𝑎 (16) 
alue of the selected second stage action: 

1 , 𝑡 = 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
− 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
(3)

This prediction error 𝛿1 , 𝑡 is used to update
 𝑀𝐹 ( 𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 ) immediately after the first choice has been made:

 𝑀𝐹 

(
𝑠 1 , 𝑡 +1 , 𝑎 1 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
+ 𝛼1 𝛿1 , 𝑡 (4)

Since there is no third stage, the second stage prediction error is
riven by the reward 𝑟 2 ,𝑡 : 

2 , 𝑡 = 𝑟 2 ,𝑡 − 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
(5)

This prediction error 𝛿2 , 𝑡 at the second stage is used to update the
rst and second stage model-free values, once the reward information
f the outcome has become available. 

 𝑀𝐹 

(
𝑠 2 , 𝑡 +1 , 𝑎 2 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
+ 𝛼2 𝛿2 , 𝑡 (6)

 𝑀𝐹 

(
𝑠 1 , 𝑡 +1 , 𝑎 1 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
+ 𝛼1 𝜆𝛿2 , 𝑡 (7)

Note that this update uses the already updated 𝑄 𝑀𝐹 ( 𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 ) from
bove, thus constituting a second update of first stage values. 

The learning rates 𝑎 1 and 𝑎 2 , estimated for both stages, control how
uch the 𝑄 -value is updated by the prediction error and therefore indi-

ate to what extent newly acquired information overwrites old informa-
ion. The learning rates are constrained between 0 and 1 with an 𝛼 pa-
ameter = 0 indicating no learning and 𝛼 = 1 indicating the agent consid-
rs only the most recent information. Further, at the end of each trial the
ligibility parameter 𝜆 (range 0 to 1) modulates 𝑎 1 in the second update
n light of the reward information that has become available at the end
f the trial . Higher values of lambda indicate more reliance to further
ack states and actions. In other words, 𝜆 performs a down-weighting
f the first stage action based on the temporal distance from the current
rial. Both the first- and second stage 𝑄 𝑀𝐹 values are updated at the
econd stage, with the first stage values receiving the prediction error
alues that were decayed by 𝜆 (see supplement in Daw et al. (2011) for
etails). 

The model-based agent learns cumulative state-action values with
 FORWARD algorithm. As described before, the model-based learner’s
ecisions are not only determined by the reward, but also include the
ath that lead to the second stage’s state, i.e. whether the transition was
ommon or rare. Specifically, the algorithm computes a transition func-
ion for the first stage state-action pairs and then combines it with the
econd stage’s reward predictions. Referring to our experimental task,
his means that a model-based learner would first consider which first
tage action leads to which second stage state, and then learn the reward
alues for the second stage actions. At the first stage, the transition func-
ion T contains the information of which first stage action maps to which
econd stage state. Note that in our model, the transition structure with
ommon and rare transitions leading to 70 and 30 percent in one of the
wo states in the second stage was predetermined and not learned by
he model (see below for a test of this supposition). At the second stage,
 𝑀𝐵 values are calculated similar to the 𝑄 𝑀𝐹 values: comparing the ac-

ual outcome of the visited state with the predicted outcome, weighted
y the learning rate 𝛼 (to which extent will the old information be over-
ritten by the new information) and the eligibility parameter 𝜆 (how far

s the distance from the current trial). Model-based value expectation de-
ends on the specification of first stage 𝑄 -values in terms of Bellman’s
quation ( Sutton and Barto, 1998 ) using the transition structure P : 

 𝑀𝐵 

(
s 𝐴,𝑡 +1 , 𝑎 1 ,𝑡 +1 

)
= P( 𝑠 𝐵 |s 𝐴, 𝑡 ) 𝑚𝑎𝑥 𝑄 𝑀𝐹 

(
𝑠 𝐵,𝑡 , 𝑎 2 ,𝑡 

)

+ 𝑃 
(
𝑠 𝐶 s 𝐴 , 𝑎 1 ,𝑡 

)
𝑚𝑎𝑥 𝑄 𝑀𝐹 

(
𝑠 𝐶,𝑡 , 𝑎 2 ,𝑡 

)
(8) 

nd is recomputed at each trial, based on the current estimates of the
ransition probabilities and second stage reward values. Because model-
ased and model-free algorithms coincide at the second stage, we set
 = 𝑄 at this level. 
𝑀𝐵 𝑀𝐹 

5 
Finally, we assume that behavior derives from a weighted combi-
ation of both model-based and model-free value computations. There-
ore, we define net action values at the first stage as the weighted sum
f model-based and model-free values 

 𝑛𝑒𝑡 

(
s 𝐴,𝑡 +1 , 𝑎 1 ,𝑡 +1 

)
= 𝑤 𝑄 𝑀𝐵 

(
s 𝐴,𝑡 , 𝑎 1 ,𝑡 

)
+ ( 1 − 𝑤 ) 𝑄 𝑀𝐹 

(
s 𝐴,𝑡 , 𝑎 1 ,𝑡 

)
, (9)

here 𝑤 is a weighting parameter. This parameter is assumed to be
onstant across trials, with 𝑤 = 0 reflecting purely model-free value
omputing and 𝑤 = 1 purely model-based reinforcement learning. The
robability of a choice is composed by a softmax for 𝑄 𝑛𝑒𝑡 at the first
tage: 

( 𝑎 1 , 𝑡 = 𝑎 |s 𝐴, 𝑡 ) = 

exp 
(
𝛽1 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 1 , 𝑡 , 𝑎 

)
+ 𝑝 ∗ 𝑟𝑒𝑝 ( 𝑎 ) 

])
∑

𝑎 ′ exp 
(
𝛽1 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 1 , 𝑡 , 𝑎 

′
)
+ 𝑝 ∗ 𝑟𝑒𝑝 ( 𝑎 ′) 

]) (10)

here the inverse temperature parameters 𝛽1 and 𝛽2 indicate the ran-
omness of the choice by specifying the extent to which the values are
pdated based on the learned information. Temperature parameters are
et from 0 to ∞ with lower values indicating more randomness in choice
ehavior. The stay parameter 𝑝 , ranging from 0 to 1, captures first-order
erseveration in the first stage, together with the indicator function rep
hat is 1 when the current first stage action is the same as in the previous
rial. The stay parameter was omitted at the second stage and hence the
oftmax is defined as: 

( 𝑎 2 , 𝑡 = 𝑎 |s 2 , 𝑡 ) = 

exp 
(
𝛽2 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 2 , 𝑡 , 𝑎 

)])
∑

𝑎 ′ exp 
(
𝛽2 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 2 , 𝑡 , 𝑎 

′
)]) (11)

In total, the algorithm contains 7 free parameters ( 𝑎 1 , 𝑎 2 , 𝛽1 , 𝛽2 , 𝜆,
 , w) which were fit separately for each participant using the prob-
bilistic programming language Stan through its MATLAB interface
 Carpenter et al., 2017 ). 

With the help of the model-parameters determined for each subject
e were able to draw conclusions about the learning strategies used.
e conducted group comparisons for each parameter to identify general

ifferences in behavioral tendencies between the stress group and the
ontrol group. 

To determine different learning strategies in the neuroimaging data
e calculated three different prediction errors. Therefore, we extracted

ach participant’s best fitting parameters and reran the task, resulting
n model predictions on a trial basis. In addition to the actual predic-
ion with the individual 𝑤 -parameter, we also created model-based or
odel-free predictions by again inserting the parameters in the task,

ut this time not the fitted 𝑤 -parameter, but with 𝑤 = 0 and 𝑤 = 1, re-
ecting pure model-free and pure model-based behavior, respectively.
hus, we obtain three predicted datasets for each subject. This allows
s to distinguish between model-based and model-free prediction errors
or the value update at stage 1. 

For 𝑄 𝑀𝐵 , we set 𝑤 = 1: 

 𝑀𝐵 

(
s 𝑖,𝑡 +1 , 𝑎 𝑖,𝑡 +1 

)
= 1 ∗ 𝑄 𝑀𝐵 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
+ ( 1 − 1 ) 𝑄 𝑀𝐹 

(
s 𝑖, 𝑡 , 𝑎 𝑖,𝑡 

)
(12)

Likewise, for 𝑄 𝑀𝐹 , we determine 𝑤 = 0: 

 𝑀𝐹 

(
s 𝑖,𝑡 +1 , 𝑎 𝑖,𝑡 +1 

)
= 0 ∗ 𝑄 𝑀𝐵 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
+ ( 1 − 0 ) 𝑄 𝑀𝐹 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
(13)

These predicted 𝑄 -values are used to derive prediction errors (see
q. (3) ): 

 𝐸 𝑀𝐵 

(
𝑠 1 ,𝑡 , 𝑎 1 , 𝑡 

)
= 𝑄 𝑀𝐵 

(
s 2 ,𝑡 , 𝑎 2 ,𝑡 

)
− 𝑄 𝑀𝐵 

(
s 1 ,𝑡 , 𝑎 1 ,𝑡 

)
(14)

 𝐸 𝑀𝐹 

(
𝑠 1 ,𝑡 , 𝑎 1 , 𝑡 

)
= 𝑄 𝑀𝐹 

(
s 2 ,𝑡 , 𝑎 2 ,𝑡 

)
− 𝑄 𝑀𝐹 

(
s 1 ,𝑡 , 𝑎 1 ,𝑡 

)
(15)

Finally, we identify the reward prediction error 𝑅𝑃 𝐸 which is cal-
ulated when the outcome is presented: 

( ) ( )

2 , 𝑡 2 , 𝑡 2 ,𝑡 𝑛𝑒𝑡 2 , 𝑡 2 , 𝑡 
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Table 1 

Model Comparison using WAIC. 

Model Name 𝛼 𝛽 𝑝 𝑤 𝜆 𝜀 nParams Control Stress 

Full 2 2 1 1 1 0 7 11,191.15 12,056.88 

full + state space 2 2 1 1 1 1 8 11,202.57 12,062.26 

no p 2 2 0 1 1 0 6 11,436.80 12,359.40 

one 𝛼 1 2 1 1 1 0 6 11,214.76 12,072.60 

one 𝛽 2 1 1 1 1 0 6 11,218.68 12,077.35 

no p_one 𝛼 1 2 0 1 1 0 5 11,495.35 12,450.99 

no p_one 𝛽 2 1 0 1 1 0 5 11,542.43 12,433.98 

one 𝛼_one 𝛽 1 1 1 1 1 0 5 11,541.47 12,436.59 

no p_one 𝛼_one 𝛽 1 1 0 1 1 0 4 11,628.99 12,509.57 
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.7. Model validation 

To validate the model fit, we compared our fully parameterized hy-
rid model ( Daw et al., 2011 ; Gläscher et al., 2010 ) to various reduced
ested versions. The model should be as complex as necessary to ade-
uately represent behavior, but only as complex as justified by the data.
e compared our model to several other models that are simplified by

emoving different parameters, e.g. a version without the stay bias ( 𝑝 ), a
ersion with only one learning rate ( 𝛼), a version with only one temper-
ture parameter ( 𝛽), and combinations of these reductions ( Table 1 ). We
lso explicitly tested whether state space learning played a significant
ole in task performance because the participants did not know the tran-
ition probabilities for common and rare transitions at the beginning of
he experiment. We therefore included a mechanism by which a partici-
ant can learn the transition probabilities during task execution, which
e have used in a prior publication ( Gläscher et al., 2010 ). Transition
robabilities are stored in a transition matrix T , which can be learned
sing a state prediction error (see Gläscher et al., 2010 ). Specifically,
ach element of T specifies the probability of the reached second stage
tate 𝑠 2 from the first stage state 𝑠 1 via an action 𝑎 1 ( 𝑇 ( 𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 ) . In
he state space learning model, all transition probabilities are initially
et to 0.5 reflecting no prior knowledge about the transitions by the par-
icipants. Upon every trial all possible transitions following action 𝑎 1 ,𝑡 
re updated according to the following learning rules: 

 

(
𝑠 1 ,𝑡 +1 , 𝑎 1 ,𝑡 +1 , 𝑠 2 ,𝑡 +1 

)
= 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 

)
+ 𝜀 (1 − 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 

)
(17)

 

(
𝑠 1 ,𝑡 +1 , 𝑎 1 ,𝑡 +1 , ¬𝑠 2 ,𝑡 +1 

)
= 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , ¬𝑠 2 ,𝑡 

)
− 𝜀 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , ¬𝑠 2 ,𝑡 

)
(18)

here 𝑇 ( 𝑠 1 ,𝑡 , 𝑎 1 , 𝑠 2 ,𝑡 ) is the probability of transitions from the first stage
tate 𝑠 1 ,𝑡 to the second stage state 𝑠 2 ,𝑡 using action 𝑎 1 ,𝑡 on trial t ,
 ( 𝑠 1 ,𝑡 , 𝑎 1 , ¬𝑠 2 ,𝑡 ) is the unrealized transition to the other possible second
tage state, and 𝜀 is the learning rate for state space learning, modeled
ith an initial uniform Beta(1,1) prior. We think that updating both the

ealized and the unrealized state transition following the same action
 1 ,𝑡 is a reasonable approach given that participants are probably aware
at least in the latter parts of the experiment) that action 𝑎 1 ,𝑡 could have
lso resulted in a different transition. All other components of the state
pace learning model are identical to the full learning model, includ-
ng the linear weighting of model-free and model-based learning (see
quations above). Model comparisons were performed by calculating
he widely applicable information criterion (WAIC; Watanabe, 2010 )
hich indicates prediction performance and assesses the quality of a
odel, relative to the quality of other candidate models by estimating

he posterior likelihood, followed by a correction for the effective num-
er of parameters to adjust for overfitting. This approach is often used
or comparing models estimated using Markov Chain Monte Carlo sam-
ling as in our case and confirmed that the full model outperformed all
ompeting versions ( Table 1 ). 

A fully parameterized hybrid model without a state space learning
omponent fitted subjects’ choices best in a model comparison that con-
iders differences in model complexity. Model performance is indicated
y the widely applicable information criterion (WAIC), presented sepa-
ately for the stress group and the control group. Lower values represent
6 
 better fit. The full model contains two learning rates ( 𝛼), two temper-
ture parameters ( 𝛽), the stay bias ( 𝑝 ), the weighting parameter ( 𝑤 ) and
he eligibility parameter ( 𝜆) and was compared to several other models
hat are simplified by removing different parameters, respectively, or
ncluded the state space learning rate 𝜀 . 

.8. MRI data acquisition and analysis 

Functional imaging was conducted using a 3 T Siemens (Erlan-
en, Germany) MAGNETOM Prisma scanner, equipped with a 64-
hannel head coil, to acquire gradient echo T2 ∗ -weighted echo-planar-
mages (EPI) with BOLD contrast. For each of the three functional
uns, we collected about 600 vol with the following parameters: 60
lices, slice thickness = 2 mm, flip angle 60%, FOV 224 × 224, repe-
ition time (TR) = 2000 ms, echo time (TE) = 30 ms, voxel size 2.0 mm
sotropic. Slice orientation was tilted − 30° from the line connecting
he anterior and posterior commissure to alleviate signal drop out
n the orbitofrontal cortex ( Deichmann et al., 2003 ). We additionally
cquired a high-resolution T1-weighted anatomical image (TR = 2.5 s,
E = 2.12 ms, 256 slices, voxel size = 0.8 × 0.8 × 0.9 mm). Prepro-
essing of functional images was performed with MATLAB and SPM12
 http://www.fil.ion.ucl.ac.uk/spm/ ). The first five functional images
ere discarded from the analysis to allow for T1 saturation effects. The

emaining functional images were first spatially realigned, then coreg-
stered to the structural image, followed by a normalization to the MNI
pace. The images were additionally spatially smoothed using a 4 mm
ull-width half-maximum Gaussian kernel. 

Subject-specific design matrices were defined using general linear
odeling (GLM) as implemented in SPM12. We entered three regres-

ors coding the average BOLD response at each of the three states (two
hoice states, one outcome state). The model-derived prediction error
ignals (model-free prediction error 𝑃 𝐸 𝑀𝐹 and model-based prediction
rror 𝑃 𝐸 𝑀𝐵 ) were entered as parametric modulators, modeled at the
nset of the second stage. We chose this time point because we as-
ume that the relevant learning computations are integrated to a value
pdate when the second decision is required. A parametric regressor
oding the received outcomes (reward = + 1, no reward = 0) was mod-
led at the time of the outcome. Model-derived reward prediction errors
RPE) were modeled as parametric modulators on the outcome onsets,
ecause here we are specifically interested in the process of reward-
elated value updating. Moreover, we subdivided behavioral data into
advantageous-choice-trials ” and “disadvantageous-choice-trials ”, sep-
rately for the first and the second stage and entered their onsets into
ur GLM. For the second-level models, the contrasts of interest “model-
ased prediction error ”, “model-free prediction error ”, “reward predic-
ion error ”, “reward ”, “advantageous choice stage 1 ” and “advantageous
hoice stage 2 ” were defined. These difference contrasts were taken to
 second-level group two-sample t -test, allowing a direct comparison
etween the stress and control group. 

Based on our a-priori hypotheses, analyses were restricted to brain
reas that have previously been implicated in model-based and model-
ree reinforcement learning ( Daw et al., 2011 ; Gläscher et al., 2010 ;
ee et al., 2014 ). We used the following anatomical masks from the
arvard-Oxford atlas: putamen, caudate, and hippocampus. In order

http://www.fil.ion.ucl.ac.uk/spm/
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o test for potential differential involvement of anterior and posterior
egions of the hippocampus in model-based and model-free learning
nder stress, we divided a hippocampal mask along the y-axis into
hree parts with approximately equal lengths, using the WFU pick-atlas
 Lancaster et al., 2000 ; Maldjian et al., 2003 ): posterior hippocampus
rom Y = − 40 to − 30, medial hippocampus from Y = − 29 to − 19, and
nterior hippocampus from Y = − 18 to − 4. For a more detailed descrip-
ion see Collin et al. (2015) and Dandolo and Schwabe (2018) . More-
ver, we used anatomical masks for lateral orbitofrontal cortex from the
ontreal atlas and combined the AAL atlas-masks for frontal superior
edial, frontal middle and frontal superior to a medial prefrontal cortex
ask, as implemented in the WFU PickAtlas Tool ( Maldjian et al., 2003 ).
0 mm spheres centered on the peak voxel of bilateral ventral striatum
left peak: − 9 2 8, right peak: 9 5 − 8), bilateral insulae (left peak: − 30
0 − 2, right peak: 33 29 7) and ilPFC (left peak: − 54 38 3, right peak:
8 35 − 2) were created, because they were previously associated with
odel-free and model-based learning strategies ( Lee et al., 2014 ). We

pplied a small volume correction (svc) for the areas of interest with an
nitial uncorrected threshold of 0.05 on whole-brain-level. The svc was
pplied on voxel level. Voxels were regarded as significant, when falling
elow a corrected voxel threshold of 0.05 (family wise error (FWE) cor-
ected) adjusted for the small volume. 

. Control variables 

To control for personality traits and behavioral tendencies that may
ffect flexible learning and decision-making in general, participants
lled out several questionnaires at the beginning of the experiment. In
articular, participants completed German versions of the State-Trait
nxiety Inventory (STAI; Spielberger et al. 1970 ), the Trier Inventory of
hronic Stress (TICS; Schulz & Schlotz 1999 ) and the Beck Depression

nventory (BDI; Beck et al. 1961 ). 

. Results 

.1. Successful stress induction 

Participants first underwent the TSST, a standardized stress proto-
ol consisting of a mock job interview, or a non-stressful control pro-
edure. Subjective and physiological measurements confirmed the suc-
essful stress induction through the TSST ( Fig. 3 A-E). The TSST was
xperienced as significantly more difficult (t(56) = 5.73, p = 4.12e − 07 ,
 = 1.51), unpleasant (t(56) = 6.70, p = 1.09 e − 08 , d = 1.76), and stress-
ul (t(56) = 5.55, p = 8.14e − 07 , d = 1.46) than the control manipulation.
oreover, the TSST, but not the control procedure, led to increased sys-

olic blood pressure (treatment × time: F(3168) = 16.67, p = 1.59e − 09 ;
2 

ges = 0.059), diastolic blood pressure (F(2.64, 148.01) = 15.67,
 = 3.29e − 08 (Greenhouse-Geisser corrected), 𝜂2 

ges = 0.080), and pulse
F(2.41, 134.77) = 14.39, p = 3.83e − 07 (Greenhouse-Geisser corrected),
2 

ges = 0.048), indicating significant autonomic activation in response
o the TSST. Finally, the TSST, but not the control manipulation, in-
uced a pronounced increase in salivary cortisol (treatment × time:
(2.43, 136.31) = 10.70, p = 3.83e − 07 (Greenhouse-Geisser corrected),
2 

ges = 0.0475). While groups did not differ in cortisol concentrations
efore the TSST (t(56) = − 0.35, p = 0.73, d = − 0.09), cortisol concen-
rations were significantly higher in the stress group than in the con-
rol group at all time points of measurement after the manipulation
all p ≤ 0.05). Peak cortisol levels were reached ~18 min after stres-
or onset, shortly before the Markov decision task in the MRI began,
nd cortisol levels remained significantly elevated throughout the task.

.2. Stress reduces the behavioral sensitivity to reversals of reward 

ontingencies 

In order to examine how stress changes the flexibility of learning,
articipants completed a modified Markov decision task in the MRI scan-
7 
er about 20 min after the onset of the stress or control manipulation.
his task was designed to dissociate model-free and model-based learn-

ng ( Daw et al., 2011 ; Gläscher et al., 2010 ) and involved two subse-
uent choices, each between two fractal stimuli ( Fig. 2 ). The first stage
ecision led to a second stage, requiring another choice between two
ptions which were associated with different probabilities of monetary
eward. Each of the first stage options was predominantly associated
ith one or the other state in the second stage. Whether or not the tran-

ition between the first and the second stage is considered in the decision
llows conclusions to be drawn about the underlying learning strategy.
hile a purely model-free learning strategy only accounts for whether

he previous action led to a reward in the second stage, a model-based
earner would also include the path that led to the result in the subse-
uent decision. Learning performance was quantified by the proportion
f first stage choices for the stimulus that led predominantly to the sec-
nd stage state with the overall higher probability to obtain a reward
0.9 | 0.4 vs. 0.6 | 0.1). Likewise, successful learning in the second stage
as associated with the proportion of choices for the option with the
igher reward probability (either 0.9 or 0.6). 

The stress and control groups did not differ in the overall propor-
ion of advantageous choices, neither in the first stage (t(56) = 1.123,
 = 0.266, d = 0.295), nor in the second stage (t(56) = − 0.239, p = 0.81,
 = − 0.062). This pattern of results is generally in line with previous
ndings suggesting that the stress-induced alteration in the nature of

earning becomes apparent only when the environment changes and
he flexibility of behavior is probed ( Kim et al., 2001 ; Schwabe and

olf, 2009 ; Schwabe et al., 2010 ). The proportion of advantageous
rst stage choices did not differ between blocks (main effect block: F(1,
6) = 0.04), p = 0.84, 𝜂2 

ges = 0.0003; treatment × block: F(1, 56) = 0.03,
 = 0.87, 𝜂2 

ges = 0.0002), neither did the proportion of advantageous
econd stage choices (main effect block: F(1, 56) = 1.72), p = 0.20,
2 

ges = 0.10; treatment × block: F(1, 56) = 1.23, p = 0.27, 𝜂2 
ges = 0.007).

In a next step, we analyzed participants’ behavioral response to the
eversal by comparing the proportion of advantageous choices in the
our trials before a reversal relative to the four trials after a rever-
al between the stress and control groups ( Fig. 4 ). For the first stage
hoices, the proportion of advantageous choices was – as expected –
verall significantly lower after a reversal than before (main effect of
ime; F(3168) = 25.018, p = 5.95e − 06 , 𝜂2 

ges = 0.23), post-hoc t -test pre
s. post: t(57) = 4.87, p = 9.21 e − 06 , d = 0.64). Interestingly, the
hange in first stage choices from pre- to post-reversal differed signifi-
antly between groups (treatment × time: F(1, 56) = 4.104, p = 0.048,
2 

ges = 0.047). Post-hoc t-tests revealed that the proportion of advan-
ageous choices in the pre-reversal trials was significantly lower in
he stress group than in the control group (t(56) = − 2.25, p = 0.03,
 = − 0.59), while groups did not significantly differ in the proportion of
dvantageous choices after a reversal (t(56) = 1.19, p = 0.24, d = 0.31).
o verify that the predictions of our model matched the actual data
round the reversals, we performed posterior predictive checks. There-
ore, we generated 50 simulations for each participant, in which we en-
ered each individual set of optimized parameters into our version of the
arkov decision task. Averaging over these simulations we obtained the

osterior predictive peri ‑reversal time course of advantageous choices.
his showed a pattern very similar to the actual data ( Fig. 4 , right panel).

To test whether the differential influence of reversals on choice be-
avior in the stress group relative to the control group cannot be ex-
lained by a general learning impairment in the stress group, we tested
hether the proportion of advantageous choice in the stress group dif-

ered from chance level. The proportion of advantageous choices in
he first stage was significantly different from chance (i.e. 50 percent;
(28) = 3.03, p = 0.005), indicating that the stress group had learned the
ontingencies before a reversal took place. Moreover, the proportion of
dvantageous choices in the stress group differed in the four trials be-
ore a reversal versus four trials after a reversal (t(28) = 2.14, p = 0.04,
 = 0.40), indicating that the reversal did affect the behavior of stressed
articipants, but to a lesser extent than in controls. 
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Fig. 3. Successful stress induction. (A) Participants in the stress condition rated the treatment as significantly more difficult, unpleasant, and stressful than participants 
in the control condition. The exposure to the stressor led further to significant increases in (B) salivary cortisol levels, (C) systolic blood pressure, and (D) diastolic 
blood pressure. (E) Heart rate measures were significantly lower in the stress group than in the control group at baseline (t(56) = − 2.28, p = 0.03). Measures increased 
significantly after stress, relative to baseline (t(28) = 3.34, p = 0.002), but decreased at control treatment (t(28) = − 4.37, p = 0.0002); error bars represent standard 
errors of the mean, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001 for the comparison between the stress group and the control group. 
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The observed group differences in the first stage are particularly in-
riguing as the first stage choice indicates the integration of the task
tructure into the decision. A large proportion of decisions that lead
o the better second state suggest an understanding of the state space
nd the associated transitions (model-based learning) - regardless of the
eward obtained in the end. We further tested whether participants’ be-
avior around the reversal, expressed as mean number of advantageous
rst stage choices in the four trials before a reversal minus the four tri-
ls after a reversal, differed between blocks. This analysis showed that
either the stress group (F(1, 28) = 0.04, p = 0.84, 𝜂2 

ges = 0.002), nor
he control group (F(1, 28) = 1.89, p = 0.18, 𝜂2 

ges = 0.06) changed in
heir sensitivity to reversals across the three blocks of the experiment. 

The proportion of choices for the option with the higher reward prob-
bility in the second stage was also significantly lower after a reversal
han before (main effect of time; F(1, 56) = 89.948, p = 3.007e − 13 ,
2 

ges = 0.424), but did not differ between groups (treatment × time:
(1, 56) = 0.099, p = 0.755, 𝜂2 

ges = 0.0008). Accordingly, the change
n the proportion of advantageous second stage choices from before to
fter the reversal did not differ between the stress and control groups
t(56) = − 0.289, p = 0.773, d = − 0.076; Fig. 4 B). 

.3. Model-based and model-free contributions to behavior 

In order to capture model-free and model-based contributions to
hoice behavior, we conducted a logistic regression analysis. The pre-
ious trial’s transition type and outcome were used to explain whether
articipants chose the same action again or whether they switched to
he other option. This analysis allows a dissociation of model-free and
odel-based contributions because both learning strategies make qual-

tatively distinct predictions about how the previous trial’s character-
stics influence the first stage choice in the following trial. Fig. 5 (left)
hows the theory-based choice behavior of purely model-free and model-
8 
ased learners. A pure model-free strategy predicts that a rewarded ac-
ion will be repeated, regardless of the transition type (main effect of
eward). A model-based agent, on the other hand, uses its knowledge
f the task structure and therefore predicts an interaction between tran-
ition and reward. The data predicted by our model suggest a mixture
f model-free and model-based learning strategies, without differences
etween the stress group and the control group ( Fig. 5 , middle). 

The logistic regression analysis confirmed the basic signature of
odel-free reinforcement learning to behavior, indicated by an in-

reased probability to stay when the previous trial was rewarded
 z = 5.715, p = 1.10e − 08, 𝛽 = 1.295), as well as the contribution of
odel-based strategies as indicated by a reward × transition interaction
ith an additional increase in stay probabilities when a reward was ob-

ained after a common transition ( z = 2.586, p = 0.0097, 𝛽 = 0.380).
hus, participants demonstrated both model-based and model-free el-
ments of learning. However, as shown in Fig. 5 (right), the balance
f model-based and model-free contributions appeared to be overall bi-
sed towards more model-free learning, without significant differences
etween groups (stress × reward, z = − 1.048, p = 0.295, 𝛽 = − 0.330;
tress × reward × transition, z = − 1.181, p = 0.238, 𝛽 = − 0.235). 

.4. Stress effects on model-based and model-free parameters 

In a next step, we used reinforcement learning models to dissoci-
te model-free and model-based contributions to participants’ trial-by-
rial choices. We fitted choice behavior to a dual-system reinforcement
earning model which includes both model-free and model based learn-
ng strategies ( Daw et al., 2011 ; Gläscher et al., 2010 ). The algorithm
ontained 7 parameters, fitted individually for each participant. 

We assumed that choices were driven by the weighted average
f these two computations. The weighting parameter w shows a pre-
ominance of model-free proportions in choice behavior (mean control
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Fig. 4. Stress reduces the behavioral sensitivity to reversals in the first stage. The proportion of advantageous first stage choices is higher in the four trials before 
a reversal than in the four trials after a reversal, indicating that the reversals have an effect on behavior (A, B). The sensitivity index, computed as the mean of 
advantageous choices before vs. after a reversal, is significantly higher in the control group than in the stress group in the first stage (A), while the sensitivity index 
for the second choice does not differ between the stress group and the control group (B). Right panels: Model simulations with best fitting parameters for the trials 
around the reversals show a pattern similar to the actual behavioral data. 

Fig. 5. Factorial analysis of choice behavior. Left: Pure model-free reinforcement learning predicts that a previously rewarded action is more likely to be repeated 
on the subsequent trial, regardless of whether that reward occurred after a common or a rare transition. Pure model-based behavior comprises a knowledge of the 
task structure: a reward obtained via a rare transition predicts a switch to the other option. Middle: Data obtained from a posterior predictive check using the set of 
model parameters estimated for each participant suggests a mixture of both model-free and model-based learning strategies. Right: Actual Data. Participants show 

both model-based and model-free learning with an overall bias toward model-free learning, independent of group assignment. 

9 
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Fig. 6. Stress effects on the model parameters. Best-fitting parameter estimates, 
shown across subjects. The stress group tended to show a reduced temperature in 
the first stage, compared to the control group (t(56) = 1.96, p = 0.056, d = 0.51), 
indicating more random or exploring choice behavior; no group differences in 
the eligibility parameter 𝜆, the two learning rates 𝛼1 and 𝛼2 , the stay bias 𝑝 , or 
the weighting parameter 𝑤 ; error bars represent standard errors of the mean, # 

p < 0.06 for the comparison between the stress group and the control group. 
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roup: 0.38, mean stress group: 0.37, test against 0.50: both p < 0.001),
hich was comparable in the stress and control groups (t(56) = 0.10,
 = 0.918, d = 0.03), indicating that acute stress did not alter the weight
f model-free and model-based contributions to learning per se ( Fig. 6 ).
owever, the temperature parameter for the first stage choice tended to
e lower in the stress group (t(56) = 1.96, p = 0.056, d = 0.51; all other
arameters remained unaffected by stress, all p > 0.20, Fig. 6 ). This tem-
erature parameter was significantly positively associated with both the
roportion of advantageous first stage choices (r(56) = 0.45, p = 0.0004)
nd the sensitivity index (r(56) = 0.44, p = 0.0006). In the second stage,
he corresponding temperature parameter was also positively correlated
ith the proportion of advantageous choices (r(56) = 0.48, p = 0.0002),
s well as the sensitivity index ( r = 0.48, p = 0.0002). Furthermore, the
nverse temperature parameter reflects the extent to which the under-
ying value computations are used to guide choices, in the sense of an
xploration – exploitation trade off or a measure of choice stochastic-
ty. Our results thus point to a rather explorative choice behavior in the
tress group, or more random first stage decisions, suggesting that the
tressed participants did not use the first decision as a planning step
or the second stage, but may have randomly made the first decision in
rder to proceed to the reward-guided second choice. In other words,
tress appeared to affect the utilization of value computations for the
rst stage choice. 

These results are in line with our findings that stress reduced the
ensitivity to reversals in the first stage. In addition, we tested whether
he sensitivity index correlates with the weighing parameter 𝑤 . Our re-
ults showed no such correlation ( r = − 0.17, p = 0.19). The absence of
 correlation between the weighing parameter and participants’ sensi-
ivity to a reversal was not surprising given that we assume that both
odel-based and model-free processes may contribute to flexible learn-

ng and the sensitivity to changes in the environment. Further modeling
arameters did not correlate with the sensitivity index (all r ⟨ |0.22|, all
 ⟩ 0.1). 

.5. Stress affects the neural underpinnings of both model-based and 

odel-free learning 

Our behavioral results suggested that the stress group tended to
how more explorative or random choice behavior at the first stage
10 
han the control group. Directly building on this pattern of results, we
ompared the brain activity at advantageous first stage choices with
isadvantageous at that time point between the stress and the control
roup. This analysis showed that stressed participants had significantly
educed activity in the medial prefrontal cortex (mPFC; peak − 16 10
2, p svc = 0.03, FWE, Fig. 7 B), compared to the control group. Com-
aring advantageous choices to disadvantageous choices in the second
tage, the control group tended to show a higher activity in the ventral
triatum (peak 2 10 − 8, p svc = 0.07, FWE). 

Next, we regressed the model-derived prediction errors against the
MRI data collected during the Markov task. Corroborating earlier re-
orts ( Daw et al., 2011 ; Gläscher et al., 2010 ; Lee et al., 2014 ), our
ata pooled over both groups showed that reward prediction-errors were
omputed in the lateral OFC, ilPFC, mPFC, ventral striatum, putamen,
nsula and in the hippocampus (all p svc < 0.016, FWE). Reward onsets
ere associated with activity in the ilPFC, mPFC and insula (all p svc <

.03, FWE). Interestingly, reward onsets were associated with increased
ctivity in the posterior hippocampus (peak − 22 − 34 − 2, p svc = 0.018,
WE, Fig. 7 C) in the stress group. The computation of model-free pre-
iction errors was associated with the lateral OFC, the ventral striatum
nd the anterior hippocampus (all p svc < 0.017, FWE) and model-based
rediction errors with activity in the hippocampus, lateral OFC, mPFC
nd putamen (all p svc < 0.009, FWE). 

The table shows MNI (Montreal Neurological Institute) coordinates
or local maxima in mm. All areas with k > 5 significant voxels are
eported. For our regions of interest (ROIs), we implemented small vol-
me correction (SVC) using an initial threshold of p < 0.05, uncorrected.
he significance threshold was set to p < 0.05, family wise error (FWE)
orrected. 

Most interestingly, these neural underpinnings of both model-free
nd model-based learning were affected by stress ( Table 2 ). Compared
o controls, stressed participants showed reduced correlations between
OLD activity and model-free prediction errors in the right ilPFC (peak
8 32 − 8, p svc = 0.005, FWE; Fig. 7 A) and a tendency to reduced ac-
ivation in the left amygdala (peak − 24 − 8 − 18, p svc = 0.059, FWE).
or model-based prediction errors, stressed participants showed, rela-
ive to controls, reduced activity in the right putamen (peak 30 − 10 12,
 svc = 0.032, FWE, Fig. 7 D) and a higher activation in the right ilPFC
peak 48 32 − 8, p svc = 0.005, FWE, Fig. 7 D). At trend level, stress in-
reased activity in the right insula (peak 32 30 − 2, p svc = 0.059, FWE)
nd led to a decrease in the activity of the right amygdala (peak 30 − 4
 20, p svc = 0.054, FWE). Moreover, stress tended to reduce activity in

he hippocampus (peak − 24 − 34 − 4, p svc = 0.078, FWE), a region only
ather recently implicated in model-based behavior ( Vikbladh et al.,
019 ). Because it is assumed that there is a functional separation along
he hippocampal anterior-posterior axis ( Fanselow and Dong, 2010 ;
oppenk et al., 2013 ; Strange et al., 2014 ), we further subdivided the
ippocampus into anterior and posterior parts, in accordance with pre-
ious studies ( Collins et al., 2015 ; Dandolo and Schwabe, 2018 ), and
ested whether the obtained stress effect was specific to the anterior or
osterior hippocampus. This analysis revealed that stress affected in-
eed solely the posterior hippocampal contribution to model-based be-
avior (peak − 24 − 34 − 2, p svc = 0.019, FWE), while there was no stress
ffect on the anterior hippocampus (left: p svc = 0.78, right: p svc = 0.17,
WE). 

.6. Exploratory analysis of control variables and working memory 

nfluences 

To control for personality traits and behavioral tendencies that may
ffect flexible learning or modulate stress effects on flexible learning, we
easured state anxiety, trait anxiety, depressive symptoms and chronic

tress via the STAI-S, STAI-T, BDI and TICS, respectively. Because one
ubject code was mistakenly assigned twice, we could not use the ques-
ionnaire data of two participants, resulting in n = 56 for the follow-
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Fig. 7. Stress reduces posterior hippocampal activity during model-based learning and inferiorlateral prefrontal activity during model-free learning. (A) The stress 
group showed reduced activity during model-free error computation contrary to the control group in the right ilPFC. (B) The stress group showed reduced activity in 
the mPFC during advantageous choices in the first stage. (C) The stress group showed a higher activity in the posterior hippocampus during reward computations, 
compared to the control group. (D) Model-based prediction errors were associated with a stress-induced reduction of the posterior hippocampus and the putamen, 
while the stress group showed an increased activity in the ilPFC, compared to the control group. Data are thresholded at p < 0.05, uncorrected, for display purposes 
only. Parameter estimates were extracted for the peak voxel; error bars represent standard errors of the mean, ∗ ∗ ∗ p < 0.001 for the comparison between the stress 
group and the control group. 

Table 2 

Stress effects on neural representations of learning computations. 

contrast name ROI name Cluster P FWE t max MNI coordinates 

X Y Z 

Model-based prediction errors 

control > stress 

control > stress 

posterior hippocampus (L) 

putamen (R) 

64 

74 

0.019 

0.032 

3.98 

4.02 

− 22 

30 

− 34 

− 10 

− 2 
12 

stress > control ilPFC (R) 72 0.047 3.61 48 32 − 8 
Model-free prediction errors 

control > stress ilPFC (R) 128 0.005 4.58 48 32 − 8 
Rewards 

stress > control posterior hippocampus (L) 35 0.018 4.00 − 22 − 34 − 2 
Optimal first stage choices 

control > stress mPFC (L) 26 0.035 4.88 − 16 10 62 
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ng analyses. Importantly, stress and control groups did not differ in
epressive symptoms (t(54) = 1.62, p = 0.11, d = 0.43), state anxi-
ty (t(54) = 0.33, p = 0.74, d = 0.089), trait anxiety (t(54) = 1.16,
 = 0.25, d = 0.31), or subjective chronic stress (t(54) = 0.89, p = 0.38,
 = 0.24, Table 1 ). Furthermore, in light of previous evidence suggesting
hat anxiety, depressive symptoms or chronic stress may be associated
ith the vulnerability to stress and changes in model-based behavior
 Nasca et al., 2015 ; Radenbach et al., 2015 ; Weger and Sandi, 2018 ),
e further tested whether the questionnaire data correlated with the

ensitivity index or model-derived parameters. These analyses yielded
o significant correlations between the sensitivity index and state / trait
nxiety, chronic stress, or depressive symptoms (stress: all |r| < 0.16,
ll p > 0.4, control: all |r| ⟨ 0.37, all p ⟩ 0.06, all participants: all |r| ⟨
.25, all p ⟩ 0.06), except for a significant negative correlation between
TAI-S scores and the sensitivity index in the control group ( r = − 0.418,
 = 0.03), which would however not survive a correction for multiple
omparisons. When we subdivided participants into subgroups based
n a median-split on the respective questionnaire score, we obtained
vidence suggesting that acute stress might influence participants’ be-
11 
avioral response to the reversal in particular in individuals with high
rait or state anxiety. Further, stress and control groups appeared to dif-
er in particular when participants reported low chronic stress and low
evels of depressive mood (see supplemental Figure S1 and supplemen-
al Table S2). These analyses, however, were exploratory and need to
e interpreted with great caution. 

Because there is evidence that high baseline working memory might
rotect model-based learning from deleterious stress effects ( Otto et al.,
013 ), participants completed an n-back test, as common measure of
orking memory ( Owen et al., 2005 ), before they underwent the stress
r control manipulation. The working memory data of four participants
re missing due to technical failure. Importantly, groups did not dif-
er in baseline working memory performance (t(52) = − 1.38, p = 0.17,
 = − 0.38). When we analyzed correlations between baseline working
emory performance on the one hand and the task performance (i.e. the

ensitivity index) on the other hand, we obtained no significant correla-
ions, neither within the stress or control groups (stress: r(23) = 0.293,
 = 0.155; control: r(27) = − 0.004, p = 0.984), nor across all partici-
ants ( r = 0.178, p = 0.197). These correlational data suggest that base-
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Fig. 8. Stress effects, separately for high and low baseline working memory capacity, as measured with an n-back task. (A) Our data suggest that subjects with 
low working memory are particularly susceptible to stress effects on flexible learning, yet the interaction between stress and working memory is not statistically 
significant. (B) The sensitivity index, computed by the mean of advantageous choices before vs. after a reversal, is significantly higher in the control group (high and 
low working memory) than in the low working memory stress group (t(39) = 2.88, p = 0.006. d = 0.99). (C) Posterior predictive behavior in the trials around the 
reversal, separately for individuals with high and low working memory capacity in the stress group and in the control group, confirms that the model predictions 
match the actual behavior, except for a deviation in the stress/low working memory group; ∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01 and ∗ p < 0.05 for the comparison between the 
groups; error bars represent standard errors of the mean. 
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ine working memory does not modulate the impact of stress on learn-
ng performance. However, it may also be assumed that a differential
usceptibility to stress effects is less modulated by gradual differences
n the working memory, but is rather apparent at particularly high or
articularly low scores of working memory. Therefore, we tested in a
ext step whether stress affected the proportion of advantageous first
tage choices 4 trials before vs. 4 trials after a reversal differently in
igh vs. low working memory groups, respectively. High and low work-
ng memory groups were defined based on a median split on the n-back
erformance. The performance of the high- and low working memory
articipants in the stress and control groups is shown in Fig. 8 A. Al-
hough Figs. 8 A and B suggest that the sensitivity for the change in
eward contingencies was particularly affected in stressed participants
ith low baseline working memory capacity (t(39) = 2.88, p = 0.0065),
hile the high-working memory stress group and the control group
id not differ (t(40) = 1.09, p = 0.282), the respective working mem-
ry × stress interaction was not statistically significant (F(52) = 0.89,
 = 0.35, 𝜂2 

ges = 0.01). 
Again, we tested whether our model’s predictions matched the pat-

ern found in the behavioral data around the reversals and therefore
enerated 50 simulations for each participant’s individual set of param-
ters. These simulations showed a pattern that strongly resembled the
ctual data, except for the stress/low working memory group ( Fig. 8 C).
or this group, the correspondence between the simulated and the ac-
ual data was lower. In the actual data, the behavior is hardly influenced
y the contingency changes, while the simulations show a decrease of
he advantageous decisions after a reversal. However, the order of the
our groups in the posterior predictive behavior is broadly consistent
ith the measured data, i.e. also in the simulated data the stress/low
orking memory group shows the smallest difference from pre- to post-

eversal. However, the difference between pre- and post-reversal can
till be clearly seen in the simulations, which is not reflected in the ac-
ual data. This can be explained by the much smaller sub-sample size in
he measured data (data n = {10,12,13,19} vs. 50 in the simulations).
n the other hand, this indicates that there are other sources of noise

n the measured data that cannot be mapped with the learning model of
he Markov decision task. 

After analyzing the influence of working memory capacity on the
erformance in the Markov decision task, we investigated whether
orking memory was associated with the model parameters. Scores in
 m  

12 
he n-back task were overall positively correlated with the temperature
arameter in stage 1 ( r = 0.3, p = 0.03) and tended to be associated with
 higher temperature parameter in the second stage ( r = 0.26, p = 0.06).
iven that the temperature parameter determines to which extent the

earned information is used to guide subsequent choices, the observed
ink to working memory processes is not surprising and might also point
o general cognitive capacities that contribute to both flexible learning
nd working memory. Moreover, high n- back scores tended to be associ-
ted with a lower learning rate in the second stage ( r = − 0.26, p = 0.06,
upplemental table S3). However, there were no significant correlations
etween working memory and model parameters in the stress and con-
rol groups (all p > 0.177) and there were no significant main or interac-
ion effects including the factor stress in our working memory × group
NOVA (all F(50) ⟨ 1.78, all p ⟩ 0.19). 

. Discussion 

Successful adaptation to dynamic environments is crucial for sur-
ival, particularly under highly stressful or threatening conditions.
tress, however, is assumed to impede behavioral flexibility ( Otto et al.,
013 ; Plessow et al., 2011 ; Raio et al., 2017 ; Schwabe and Wolf, 2011 ;
ogel et al., 2016 ). Here, we sought to shed light on the neurocom-
utational mechanisms involved in the stress-induced deficit in flexible
earning. Our behavioral data show that stress indeed reduced partici-
ants’ sensitivity to changes in outcome contingencies. In line with these
ata, our model-based analyses suggest that stress tended to favor rather
xplorative behavior, as reflected in the tendency of a reduced softmax
emperature for the first stage decision. We assume that this is mod-
rated by a reduced utilization of value signals negotiated by model-
ased and model-free processes. Most importantly, our model-based
MRI analyses revealed that stress reduced the contributions of struc-
ures implicated in model-based control and those involved in model-
ree control of learning. 

To tackle specifically the flexibility of learning, we modified the orig-
nal Markov decision task ( Daw et al., 2011 ) by including several re-
ersals in reward contingencies. This modification increased the task
ifficulty and made it more demanding to establish a valid model of
he task structure, thus favoring, irrespective of stress, model-free over
odel-based learning. Indeed, although we obtained clear evidence for
odel-based contributions, model-free elements prevailed during learn-
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ng. This overall bias towards more model-free learning, reflected in par-
icipants’ stay probabilities and the weighing parameter w , corroborates
ecent research suggesting that task complexity facilitates an increased
eliance on model-free learning ( Kim et al., 2018 ). The task-related bias
owards more model-free learning may explain why we did not observe
 further stress-induced shift towards model-free learning that has been
uggested before ( Park et al., 2017 ). Accordingly, the proposed bias
owards model-free learning associated with the modified task might
e considered a limitation, although it is to be noted that participants’
hoice behavior and the computational modeling parameters provided
vidence for both model-based and model-free learning mechanisms.
ur behavioral data point to an impairment of flexible learning that

s not owing to an altered balance of model-based and model-free pro-
esses but rather to a reduced contribution of both model-based and
odel-free processes to behavior, in contrast to earlier findings suggest-

ng mainly a stress-induced impairment of model-based learning ( Otto
t al., 2013 ). The observed impairment seemed to be most pronounced
n individuals with low working memory capacity. Although the respec-
ive interaction effect did not reach statistical significance, this pattern
s generally in line with evidence suggesting that a high working mem-
ry capacity may prevent stress effects on model-based learning ( Otto
t al., 2013 ). 

Although our behavioral data may be interpreted as an indication
f impaired flexible learning after stress due to reduced sensitivity for
eversals, an alternative view would be that stress encourages more ex-
lorative choices at the first stage. More specifically, stressed partici-
ants may have learned the stimulus-action-reward-associations in the
ame way as controls but nevertheless tend not to use this information
o guide their behavior. This is indicated by the trend towards a stress-
nduced reduction of the first stage temperature parameter and further
upported by the positive correlation between the first stage sensitivity
ndex and both stage’s temperature parameters. At first glance, these
ndings might seem to be in conflict with previous findings suggesting
hat stress leads to rather exploitative decisions ( Lenow et al., 2017 ;
uksys and Sandi, 2011 ). However, these previous studies used classical
oraging tasks and such tasks require a different type of decision-making
n which the overall environment is used as a proxy for the value of
uture unknown options, compared to current prospects. Thereby, the
ocus is on reward calculations which usually determine the switch to
 new option below a certain threshold, while the focus in the present
ask is to maintain probabilistic rules to guide actions. Therefore, an-
ther possible explanation is that working memory mediates the explo-
ative choice behavior in the first stage, given that exploration could
lso be due to an inability to maintain the relevant information to guide
pcoming decisions. In line with this idea, performance appeared to
e particularly explorative after stress in participants with low working
emory performance. Increased explorative behavior in this task can be

oth advantageous and disadvantageous: it prevents the reliable repeti-
ion (exploitation) of a learned contingency but protects against a per-
ormance drop when contingencies change. This could explain why the
roportion of advantageous decisions did not differ between the groups
verall, while there were group differences in the trials around the re-
ersals. 

Our data provided initial evidence that stressed participants use
alue information less for their decision in the first, but not the sec-
nd stage, as indicated by the softmax temperature parameter and the
ensitivity index. This view is further supported by a significantly re-
uced sensitivity index in the stressed participants with low working
emory capacity, given the fact that working memory holds behav-

orally relevant information to guide action. The stress-related impair-
ent in first stage choices was accompanied by reduced activity in the

lPFC in the stress group during first stage onset compared to the control
roup. Thus, the reduced behavioral sensitivity to reversals may be ow-
ng to detrimental stress effects on the ilPFC, which has previously been
inked to the arbitration between model-based and model-free learning
 Lee et al., 2014 ). 
13 
In support of the view that stress interfered with both model-based
nd model-free control, our imaging findings showed that stress af-
ected the neural underpinnings of both model-free and model-based
earning. More specifically, stress reduced the activity associated with
odel-free prediction errors in the ilPFC. At the same time, the stress

roup showed an increase in ilPFC activity during model-based learn-
ng. The ilPFC has been associated with an arbitrator signal that deter-
ines whether behavior is guided by model-based or model-free learn-

ng systems ( Lee et al., 2014 ). It is assumed that this arbitrator reduces
ctivity in brain areas implicated in model-free learning when the arbi-
rator deems that behavior should be guided by the model-based system
 Lee et al., 2014 ). Accordingly, a stress-induced increase in ilPFC ac-
ivity related to model-based learning processes may be paralleled by
 decrease or suppression of the model-free system, as observed here.
t the same time, stress decreased activity during model-based predic-

ion error computations in the putamen and posterior hippocampus. In
articular the hippocampus has very recently been implicated in model-
ased planning ( Schuck and Niv, 2019 ; Vikbladh et al., 2019 ). In fact,
he idea of a cognitive map stored in the hippocampus has been pro-
osed already several decades ago ( O’Kneefe and Nadel, 1978 ). For long,
owever, this idea was limited to spatial references. A recent integra-
ive approach suggests that the hippocampus may also encode cognitive
aps that capture complex relationships between cues, actions, results

nd other characteristics of the environment, enabling flexible, goal-
irected decision making ( Wikenheiser and Schoenbaum, 2016 ). Im-
ortantly, however, the hippocampus may not as whole be involved in
odel-based learning. Accumulating evidence from human neuroimag-

ng and rodent lesion studies suggests a functional dissociation within
he hippocampus along its anterior (ventral) – posterior (dorsal) axis
 Poppenk et al., 2013 ; Zeidman and Maguire, 2016 ). In a recent ro-
ent study, specifically the dorsal (posterior) hippocampus was linked to
odel-based planning behavior ( Miller et al., 2017 ). This finding dove-

ails with the present data showing that stress reduced specifically the
osterior hippocampal activity associated with model-based prediction
rrors. 

These neural changes are most-likely driven by the many hormones
nd neurotransmitters that are released in response to stressful encoun-
ers. Receptors for these stress mediators are abundantly expressed in
hose regions involved in model-based and model-free learning, in par-
icular, in prefrontal and limbic areas ( Herman et al., 2003 ). Accord-
ngly, it has been shown across tasks and species that these stress me-
iators, including catecholamines and glucocorticoids, may affect pre-
rontal and limbic activity and function ( Arnsten, 2009 ; J. J. Kim and
iamond, 2002 ). Most interestingly with respect to the present findings,

t has been shown that glucocorticoids may reduce specifically posterior
edial temporal activity during a declarative memory task ( de Quer-

ain et al., 2003 ), exactly that region that was reduced by stress during
odel-based processing. 

Finally, one might argue that the modification of the original Markov
ecision task impacts the assessment of model-based and model-free
rocesses in our task. While the present task modification, which was
equired to probe flexible learning in a highly volatile environment,
ight complicate the direct comparison to studies using the classical
arkov decision task to some extent, we assume that also the modified

ask version allows the assessment of model-based and model-free pro-
esses. First, participants’ choice behavior and our modeling parameters
rovided evidence for the involvement of model-based and model-free
earning mechanisms. Furthermore, our neuroimaging data revealed
eural activity patterns that are well in line with the previously reported
eural signatures of model-based and model-free learning, respectively
 Daw et al., 2011 ; Gläscher et al., 2010 ; Vikbladh et al., 2019 ). More-
ver, the contingency reversals required participants to learn the new
ransitions, whereas these transitions were assumed to be known by our
odel. To test whether this affected the performance of our model, we

mplemented an enhanced model that included state space learning as
sed in Gläscher et al. (2010) (see Methods for details). Model simula-
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ions showed only slightly worse model performance that this enhanced
odel and our winning model were very similar in their capacity to
t the experimental data. Further analyses also revealed that the tran-
ition probabilities in the Markov decision task are learned within the
rst 10 trials. This supports our original model choice, in which state
pace learning was omitted. 

Together, our data show that stress reduces both model-free and
odel-based computations during learning in a highly volatile envi-

onment. These findings provide novel insights into the neurocom-
utational mechanisms through which stress hampers the cognitive
daptation to highly volatile environments. A better understanding of
hese mechanisms may aid the development of new approaches to pre-
ent such stress-induced deficits, with considerable implications, for in-
tance, for educational settings ( Vogel and Schwabe, 2016 ) and stress-
elated psychopathologies characterized by a deficit in the flexible adap-
ation to dynamic environments ( Koob and Kreek 2007 ; LaGarde et al.,
010 ; de Quervain et al. 2017 ). 
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S1. Task instructions. 1 

Hello! Thank you very much for participating in our experiment. In the following task, you will have 2 
the option to decide between two pictures, twice in a row. The second decision can lead to a reward. 3 
Your task is to find out which picture leads to the reward. Press space to see an example. 4 

In the first step, you can decide between two pictures. The chosen picture leads to one of two possible 5 
environments (blue or yellow). 6 

 7 

 8 

 9 

 10 

 11 

Now it’s time for you second decision. Again, you have to choose between two pictures. Every picture 12 
within this second decision leads to a reward, with a certain probability. Both in the blue and in the 13 
yellow environment you will find a rather advantageous and a rather disadvantageous option.  14 

If your decision lead to the reward, a coin appears on the screen. If you did not win, the phrase “no 15 
reward” appears. The goal of this task is to find out which picture leads to the reward with the highest 16 
probability. 17 

However, the correct answer will change several times during the experiment. As soon as you notice 18 
such a change, you should adapt your answer accordingly to continue earning rewards.  19 

One important information is that there is no answer that always leads to a reward. This means that 20 
you can also chose the same answer that lead to a reward before without getting a reward this time. 21 
This still does not necessarily mean that a reversal took place. One picture will be rewarded almost 22 
every time, one leads to a reward often, one is sometimes rewarded and one rarely.  23 

Do you have any questions? 24 

Press space as soon as you are ready to start. 25 

In order to introduce you to the task, you will now start with three phases of training. In the first phase, 26 
you will learn to react to the pictures and to find out which picture leads to the reward. Are you ready? 27 
Press the space bar to start. 28 

[10 trials in which one option deterministically leads to a reward while the other three second stage 29 
options do not] 30 

In this second phase you will learn to react to a reversal of the correct answer. At first, you should find 31 
out which answer leads to the reward, just as in phase 1. After some time, the correct answer will 32 
change. Please adapt your answer according to this change. 33 

[10 trials in which one option deterministically leads to a reward while the other three second stage 34 
options do not. This option is being reversed] 35 

The following phase is equivalent to the procedure of the actual experiment. As before, the first step is 36 
to find which picture leads to the reward. As you know, there is one more difficulty: pictures lead to a 37 
reward eventually, but they differ in the probability to actually be rewarded. 38 

There is no picture which always results in a reward. Therefore, it is also possible, that a picture that 39 
has been successful so far, does not lead to a reward, which still does not mean that a reversal took 40 



place. Nevertheless, in this phase there will still be a reversal at some point. Try to detect the change 41 
as fast as possible and continue earning rewards! 42 

[10 trials with the actual reward probabilities and a reversal] 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 
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 66 
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 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 



 76 

Figure S1. Effect of stress on reversal sensitivity, shown separately for high vs. low levels of 77 

anxiety, chronic stress and depressive symptoms, respectively. Acute stress appeared to influence 78 

participants’ behavioral response to the reversal in particular in individuals with high trait or state 79 

anxiety. Moreover, stress and control groups appeared to differ in particular, when participants 80 
reported low chronic stress and low levels of depressive mood. Error bars represent standard errors of 81 

the mean, **p < 0.01 and *p < 0.05. 82 

 83 
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 99 



Table S1. Personality traits, behavioral tendencies and working memory capacity   100 

Table S1. Control variables. Questionnaire and n-back data are mean ± standard deviation. BDI, Beck 101 

depression Inventory; STAI, State Trait Anxiety Inventory; TICS, Trier Inventory of Chronic Stress. The n-back 102 
task assessed participants’ working memory capacity. The ANOVA represents the proportion of advantageous 103 
choices as a function of treatment (stress vs. control), characteristic (high value vs. low value group) and time 104 
(pre vs. post reversal).  105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 

stress group 
control 
group 

difference between stress and 
control groups  

DV = Mean advantageous choices  
treatment × characteristic × time 

t p d F p η2
ges 

BDI 5.79 ± 5.16 3.86 ± 3.63 1.62 0.11 0.43 0.18 0.67 0.002 

STAI-S 36.10 ± 7.13 35.52 ± 5.96 0.33 0.74 0.089 0.24 0.63 0.003 

STAI-T 36.79 ± 8.78 34.30 ± 7.14 1.16 0.25 0.31 0.17 0.68 0.002 

TICS 13.69 ± 9.30 11.67 ± 7.45 0.89 0.38 0.24 3.33 0.07 0.04 

n-back 0.69 ± 0.17 0.76 ± 0.18 -1.38 0.17 -0.38 0.89 0.35 0.01 



Table S2. Correlation between control variables and model parameters. 120 

 121 

Table S2. Correlation between control variables and model parameters. Data represent correlation between 122 
the questionnaire and working memory scores and the fitted model-parameters, expressed by the correlation 123 
coefficient r in the upper row and the significance level p below. BDI, Beck depression Inventory; STAI, State 124 
Trait Anxiety Inventory; TICS, Trier Inventory of Chronic Stress. The n-back task assessed the working memory 125 
capacity, * p < 0.05.  126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 correlation with parameter 

 α1 α2 β1 β2  p w 

BDI 
-0.20 
0.14 

-0.20 
0.14 

0.04 
0.77 

0.08 
0.56 

-0.22 
0.10 

-0.04 
0.79 

-0.20 
0.89 

STAI-S 

-0.005 

0.97 

0.07 

0.59 

-0.11 

0.40 

0.004 

0.98 

-0.02 

0.89 

-0.08 

0.56 

-0.29 

0.83 

STAI-T 
-0.14 
0.29 

-0.16 
0.24 

-0.01 
0.92 

0.002 
0.99 

-0.11 
0.42 

-0.15 
0.26 

-0.18 
0.19 

TICS 
0.11 
0.41 

-0.01 
0.92 

-0.17 
0.20 

-0.18 
0.18 

0.02 
0.90 

-0.12 
0.39 

-0.009 
0.94 

n-back 

-0.17 

0.23 

-0.26 

0.06 

0.30 

0.03*  

0.26 

0.06 

-0.03 

0.82 

-0.10 

0.49 

-0.08 

0.56 
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Disentangling the roles of dopamine and noradrenaline
in the exploration-exploitation tradeoff during human
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Balancing the exploration of new options and the exploitation of known options is a fundamental challenge in decision-making, yet
the mechanisms involved in this balance are not fully understood. Here, we aimed to elucidate the distinct roles of dopamine and
noradrenaline in the exploration-exploitation tradeoff during human choice. To this end, we used a double-blind, placebo-
controlled design in which participants received either a placebo, 400 mg of the D2/D3 receptor antagonist amisulpride, or 40mg
of the β-adrenergic receptor antagonist propranolol before they completed a virtual patch-foraging task probing exploration and
exploitation. We systematically varied the rewards associated with choice options, the rate by which rewards decreased over time,
and the opportunity costs it took to switch to the next option to disentangle the contributions of dopamine and noradrenaline to
specific choice aspects. Our data show that amisulpride increased the sensitivity to all of these three critical choice features,
whereas propranolol was associated with a reduced tendency to use value information. Our findings provide novel insights into the
specific roles of dopamine and noradrenaline in the regulation of human choice behavior, suggesting a critical involvement of
dopamine in directed exploration and a role of noradrenaline in more random exploration.

Neuropsychopharmacology (2023) 48:1078–1086; https://doi.org/10.1038/s41386-022-01517-9

INTRODUCTION
During choice, we often face the difficult decision of when to leave a
known option in favor of a potentially better, but unknown
alternative. While the exploitation of a known option comes with a
predictable immediate reward, exploring new options is associated
with a potentially higher payoff but also the risk of a low(er) reward.
At the same time, exploration provides information for improving
future decisions [1–3]. Extensive exploitative behavior is further
linked to inflexibility and may impede gathering new information
about the environment, while an extensive exploration may lead to
inefficient and inconsistent decision-making, thus reducing long-
term payoffs [4, 5]. Consequently, a successful adaption to complex
and volatile environments requires an intricate balance of explora-
tion and exploitation. Biases in the exploration-exploitation tradeoff
have been associated with psychiatric disorders, such as addiction
[6], gambling disorder [7], or anxiety disorder [8]. Given the
fundamental relevance of the exploration-exploitation trade-off for
adaptive behavior, understanding the mechanisms through which
humans and other animals balance exploration and exploitation
during decision-making is crucial.
Neural data suggest that exploration and exploitation rely on

distinct brain systems, with exploitation being associated with a
mechanism in the ventromedial prefrontal cortex (vmPFC) [9, 10]
while exploration is linked to a track from the frontopolar cortex to
the lateral PFC [2, 11, 12]. Importantly, there is accumulating
evidence that exploration and exploitation not only rely on distinct

neural circuits but that these processes might also be characterized
by a differential involvement of major neurotransmitters, namely
dopamine and noradrenaline. Striatal dopamine is commonly
associated with signaling reward values and predicting future
rewards [13–15]. In line with these findings, genes involved in
striatal dopamine signaling were linked to exploitation [16].
However, there is also evidence suggesting a key role of dopamine
in explorative behavior, associated with genes implicated in
prefrontal dopamine function. Participants with a variation of the
cathecol-O-methyltransferase (COMT) gene – associated with
higher tonic levels of dopamine – made exploratory decisions in
proportion to the uncertainty about whether alternative options
might lead to better outcomes than the status quo [16]. One
potential mechanism that may underlie this so-called ‘directed’
exploration is a novelty bonus that is added to unknown
alternatives and may promote the acquisition of new information
[17]. In line with the idea that dopamine plays a role in directed
exploration, novel stimuli excite dopaminergic neurons and activate
brain regions receiving dopaminergic input [18, 19].
Noradrenaline has also been repeatedly associated with

exploratory behavior. For instance, high levels of noradrenaline
have been shown to increase the probability of strategy shifts,
whereas low levels of noradrenaline facilitate perseverative
behavior [20]. In sharp contrast to dopamine, however, noradrena-
line appears not to induce a bias towards information seeking
when facing uncertainty (i.e., directed exploration), but rather to
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promote so-called ‘random exploration’ in which the induction of
stochasticity leads to a value-independent exploration. Specifi-
cally, rodent studies showed that boosting noradrenaline leads to
more value-free-random-like random behavior [21], whereas a
pharmacological blockade of noradrenaline in monkeys resulted
in increased choice consistency [22]. Noradrenaline might exert
these effects by acting as a ‘reset button’ that interrupts ongoing
information processing [20], thereby inhibiting the use of
previously accumulated knowledge in favor of exploring new
options [23].
Understanding the exact roles of dopamine and noradrenaline in

the exploration-exploitation tradeoff may aid the development of
new tools enabling the modulation of this tradeoff. However,
to date, the distinct roles of dopamine and noradrenaline in the
exploration-exploitation balance are not fully understood. Thus, the
present experiment aimed to elucidate the specific roles of
dopamine and noradrenaline in the exploration-exploitation trade-
off in human choice. We disentangled the involvement of
dopamine and noradrenaline in specific sub processes underlying
exploration and exploitation in a virtual patch-foraging task, which
has been used before to dissociate exploration, operationalized as
patch switching, and exploitation processes [24, 25]. Specifically, we
systematically manipulated the rewards associated with the choice
options, the degree to which the reward decreased, and the time it
took to get to the next option. The degree to which these variables
affect participants’ choice behavior may indicate to which extent
explorative behavior is directed or more random.

MATERIALS AND METHODS
Participants and experimental design
Sixty-nine healthy volunteers (33 women, 36 men) between 18 and 35
years of age (mean= 24.98, sd= 3.67) were pseudorandomly assigned to
one of three groups, controlling for a comparable gender allocation across
groups: placebo (n= 22, 10 women), amisulpride (n= 23, 11 women) or
propranolol (n= 24, 12 women). This sample size was based on a previous
study examining the effect of amisulpride and propranolol on cognitive
processing [26]. A-priori power analysis using G*Power [27] indicated that a
sample of 63 participants is required in order to detect an effect a medium
to large effect – as reported in [26]– with a power of 0.95. Because we
expected a drop-out rate of up to 10 percent, we aimed at a sample size of
69 participants. Individuals with a current medical condition, current
medication intake, lifetime history of any neurological or psychiatric
disorder, drug or tobacco use, or intake of hormonal contraceptives in
women (in order to avoid interactions with the administered drugs) were
excluded from participation. Participants were further asked to refrain from
caffeinated beverages and not to do any exercise on the day of the
experiment. In addition, they should not eat or drink anything except
water 2 h before the appointment. All testing took place in the afternoon
and early evening, with the time of testing being counterbalanced across
groups. All participants provided written informed consent before the
beginning of the appointment and received a moderate monetary
compensation. The study protocol was approved by the ethics committee
of the Medical Chamber of Hamburg (PV7044).

Pharmacological treatment
To determine the role of noradrenaline and dopamine in the exploration-
exploitation tradeoff during human choice, we used a placebo-controlled,
double-blind, between-subject design in which participants received orally
either a placebo, 40 mg of the β-adrenoceptor antagonist propranolol, or
400mg of the dopaminergic D2/D3 receptor antagonist amisulpride. The
dosages of the drugs were based on previous studies on the role of
noradrenaline and dopamine, respectively, in cognitive processes [28–31].
Because of the distinct pharmacokinetics of propranolol and amisulpride,
and in line with previous studies [23, 26, 32], we administered these drugs
at two separate time points. Amisulpride was administered 120min, and
propranolol 90 min before task onset. All participants received a pill at both
time points, with the amisulpride group obtaining amisulpride at the first
time point, followed by a placebo at the second time point and the
propranolol group receiving first a placebo and subsequently propranolol.
The placebo group received a placebo at both time points. Pills were

indistinguishable both for the participants and the experimenter (double-
blind). Participants’ intake of the pills was monitored by an experimenter.
To verify the action of the drugs, we measured blood pressure and heart

rate at several time points before and after drug administration (at baseline
and 90, 120, 150 and 180min after intake of the first pill, see Fig. 2) using a
digital device (OMRON model M500 (HEM-7321-D); Healthcare Europe BV,
Hoofddorp, The Netherlands) with a cuff applied around the right upper
arm, when participants were sitting. We took two measures (~45 s), with a
30 s interval in between. We took the raw data provided by the device and
used the mean of the two measurements per time point for the
manipulation check. Moreover, we measured pupil diameter and blink
rate using a RED-m eyetracker (SensoMotoric Instruments GmbH) at
baseline (T1) and 90min after the first pill was administered (T2). At both
time points, participants were asked to fixate a black cross, presented
centrally on a gray background, for 60 s. At the beginning of the
measurements, each participant’s point-of-gaze was calibrated using a
5-point calibration sequence provided by the SMI software. The software
automatically returned the number of blinks counted within the 60 s and
the mean pupil diameter (in mm) within this period. We did not further
process the data. Changes in blink rate were quantified by the number of
blinks during fixation time at T2 minus T1, and changes in pupil size were
assessed by the pupil diameter at T2 minus T1.

Foraging task
Participants performed a sequential patch-foraging task that had been
used previously to dissociate explorative and exploitative behavior [24, 25].
Participants visited virtual orchards where they had to harvest apple trees
with the goal to collect as many apples as possible within a limited amount
of time. On each trial, they had to decide whether to stay at the current
tree and harvest, or to move to the next tree (see Fig. 1). Patch switching
was taken as an indicator of exploration. Each subsequent harvest of the
same tree resulted in a slightly decreased return, so that at some point it
was advantageous to move to the next tree. In addition to the expected
reward, we manipulated the time required to reach the next tree (travel
time) which was assumed to play a key role in the decision whether to
continue harvesting the current tree or moving to the next tree. Travel
time could be either 6 s (short) or 12 s (long) and was stable within an
orchard. Participants performed four blocks, each for a fixed time of 7min,
resulting in a total task duration of 28min. Blocks with short and long
travel time orchards were alternating. Whether participants started with
the short or the long travel time orchard was counterbalanced across
participants and groups. The difference in travel time was used as a
switching cost with switching being less advantageous in long travel times,
because no apples could be collected during this time.
On each trial, participants submitted their choice via button press, using

the down arrow for harvesting the currently displayed tree and the right
arrow for moving on to the next tree. A white dot appeared under the tree
indicating that a decision should be placed. If the participant decided to
harvest the tree, the number of harvested apples was displayed after a

travel time

…

 decision

decision

decision

decision

decision

……

…

…

harvest

switch

depletion rate

Fig. 1 Experimental task. On each trial, participants choose
whether to stay at the current tree and harvest or to switch to the
next tree. Each subsequent harvest of the same tree resulted in a
slightly decreased outcome and switching comes with the cost of
travel time. Initial richness of trees and depletion rate differed
between trees, but were equally distributed in environments with
long and short travel times, respectively.
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harvest time of three seconds, followed by the white dot asking for the
next decision. If the participant chose to switch to the next tree, the dot
turned black and the way to the next tree was displayed, either for 6 s or
for 12 s, depending on the environment.
Decisions had to be placed within 1 s, otherwise a warning appeared,

followed by a short timeout before the next decision could be submitted.
With each repeated harvest of the same tree, the yield of the tree
decreased by a depletion rate. Each tree’s richness, i.e., the number of
apples obtained from the first harvest, was randomly drawn from a
Gaussian distribution with a mean of 10 and SD of 1. The depletion rate for
each successive harvest of a tree was randomly drawn from a Beta
distribution with parameters 14.9 and 2.0. Participants were informed that
trees would vary in terms of their richness and depletion rate (i.e., some
trees would be richer or poorer than others and some trees would deplete
slower or faster than others), but that the trees varied in the same way
across all orchards. Participants were instructed that the only factor that
might change across orchards would be the time it took to travel between
trees. After each block, participants could take a short break, and
determine the start of the next block themselves by button press. The
different blocks were distinguished by different background colors which
were counterbalanced across blocks and environment types. The total
number of apples harvested throughout the task was turned into payment
at the end of the experiment.

Statistical analyses
To test whether the drug manipulation was successful, blood pressure and
heart rate measurements as well as eye-tracking data were analyzed using
mixed-effect ANOVAs with the between-subjects factor group and the
within-subject factor time. Post-hoc t-tests were used to follow-up on
group differences in these measures. A mixed-effects logistic regression
analysis was used to explain choice behavior. Choice was coded as stay vs.
switch, indicated by 0 and 1, respectively. It was explained as a function of
previous return (number of apples obtained from the previous harvest),
travel time (short= 0 vs. long= 1), depletion rate, number of previous
stays at current tree, and group (placebo vs. amisulpride vs. propranolol)
with the placebo group as reference. We used the Akaike Information
Criterion (AIC) [33] for model selection, and likelihood-ratio tests to
compare our full model to gradually reduced versions. We started with a
model that solely included the factor previous return and then
incrementally added the factors travel time, depletion rate, number of
previous stays, and group. The final model contained these five predictors,
and their interaction with the experimental group (except for the factor
group itself). All models consisted of the factor(s) as fixed effect(s), the
overall intercept, and a random intercept per subject.
In a next step, we tested whether the factors’ estimates changed over

time and whether this was different in the experimental groups. Therefore,
we fitted our model separately for the first half of the task (blocks 1 and 2)
and the second half (blocks 3 and 4). Note that a blockwise comparison
cannot be applied here, since the blocks had either an environment with
short or long travel time and these blocks were alternating. Whether the
first block contained a short or long travel time orchard was counter-
balanced so that an analysis based on continuous blocks would compare
choices at short travel times to behavior at long travel times.
To further quantify task performance, we tested whether the total sum

of rewards obtained throughout the task and the proportion of switch
choices differed between the experimental groups in ANOVAs with the
between factor group. In a next step, we tested whether the task
performance measures differed in environments with short versus long
travel times in mixed-effect ANOVAs with the between-subjects factor
group and the within-subject factor travel time. All analyses were
performed in R [34]. Greenhouse-Geisser correction was applied when
sphericity was violated. Logistic regressions were conducted as mixed-
effects models and were performed using the lme4 package [35].

Marginal value theorem
In an exploratory analysis, we applied the marginal value theorem (MVT)
which describes the optimal behavior in patch-foraging decisions.
Although the purpose of our study was not to assess whether
participants used an optimal strategy, but to examine group differences
in the use of information given by the task, the MVT may provide
additional insights into participants behavior. Originally stated in animal
literature, it assumes that an individual should leave the current option
when the return falls below the average return in the environment [36].
Therefore, the optimal strategy is to switch when the expected number

of apples to be obtained at the next harvest falls below the average
return in the current environment:

E riþ1½ �< ρh (1)

The immediate expected reward E r½ � in the upcoming trial i+ 1 results
from reward in the current trial r, discounted by the depletion rate κ. The
average return in the environment is reflected by the overall richness of
the environment per timestep, i.e., the average reward in the current
environment ρ multiplied by the harvest time h. Consequently, the MVT
states that the maximum reward is yielded when participants switch at:

κr < ρh (2)

Therefore, ρh is the threshold at which the participant should leave the
current tree in favor for a new option. We simulated the optimal theshold
for our task by modeling the task structure and entering all possible
leaving thresholds, then probabilistically returning the expected reward
over time for each threshold. We used the optimize function from the stats
package in R [34] to find the exit threshold that leads to the maximum
number of rewards, separately for environments with short and long travel
times. For the short travel time environment this threshold is 6.7, for the
long travel time environment it is 5.67. We then determined each
participant’s individual leaving threshold by averaging the number of
apples harvested in the last two trials before leaving to the next tree. We
excluded cases in which a tree was only harvested once [25]. We used
t-tests to check whether the exit thresholds in the experimental groups
significantly deviated from the optimal thresholds. Further, we tested
whether the exit thresholds for each environment differed between groups
in an ANOVA with the between factor group.

Computational modeling
We fitted an MVT model to our data using an error driven learning algorithm
for the difference κr–ρh [24]. The model contains a learning rate α, an inverse
temperature parameter β, and an intercept c. The average reward rate in the
current environment ρ was updated trial-by-trial according to the difference
between the actual and the expected reward δ, and weighted by a learning
rate α. Note that the prediction error δ refers to the reward per timestep,
therefore includes the time τ passing in the corresponding trial (harvest time
h for stay choices, travel time d for switch choices):

δ ¼ ri
τi
� ρi (3)

ρ is updated by:

ρiþ1 ¼ ρi þ ½1� 1� αð Þτi � � δi (4)

resulting in:

ρi ¼ 1� αð Þτi ri
τi
þ ½1� 1� αð Þτi �ρi�1 (5)

The probability P for the action ai was derived by the choice rule:

Pðai ¼ harvestÞ ¼ 1=f1þ exp �c � β κkri � ρihð Þ½ �g (6)

The learning rate α indicates the degree to which a prediction error
leads to an adjustment of action values. It is constrained from 0 to 1 with
higher values indicating a higher influence of δ. The inverse temperature
parameter β, ranging from 0 to∞ , reflects the extent to which the action
values influence choice. Higher β values stand for more value dependent
choice behavior, i.e., participants choose the option with the highest
expected value, while low β parameters indicate value indepentent
choices, i.e., random behavior. The intercept c can reach values from 0 to
∞ and captures any constant choice biases with higher values indicating a
bias towards staying and lower values representing a bias towards
switching. Please see [24] for model proof and further details. Each
participant’s best fitting parameters were estimated by maximum
likelihood estimation using the optim function in the stats package [34].

RESULTS
Manipulation check
To confirm the action of the drugs, we assessed changes in blood
pressure, heart rate, blink rate and pupil diameter. Heart rate
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decreased in all participants across the experiment, however,
significantly more pronounced in the propranolol group than in the
other two groups (treatment×time: F(5.05, 164.09)= 3.12, p= 0.010
(Greenhouse-Geisser corrected), η2ges= 0.01, Fig. 2A). Shortly
before the foraging task, heart rate tended to be lower in the
propranolol group, compared to both the placebo group
(t(43)=−1.68, p= 0.099, d=−0.50) and the amisulpride group
(t(44)−1.86, p= 0.069, d=−0.55). Immediately after the task, heart
rate was significantly lower in the propranolol group than in the
placebo (t(43)=−2.70, p= 0.010, d=−0.50) and amisulpride
groups (t(44)=−2.70, p= 0.010, d=−0.55).
Similarly, systolic blood pressure decreased significantly more

strongly in the propranolol group than in the placebo and
amisulpride groups (time×group: F(6.43, 208.89)= 2.91, p= 0.008
(Greenhouse-Geisser corrected), η2ges= 0.1; diastolic blood pres-
sure: time×group: F(7.04, 228.76)= 1.21, p= 0.30 (Greenhouse-
Geisser corrected), η2ges= 0.008). Systolic blood pressure was
significantly lower in the propranolol group than in the amisulpride
group immediately before and after the foraging task (120min
after baseline: t(44)=−2.78, p= 0.008, d=−0.82; 150min after
baseline: t(44)=−2.44, p= 0.019, d=−0.72, and 180min after
baseline: t(44)=−2.53, p= 0.015, d=−0.75; Fig. 2B). Compared to
the placebo group, systolic blood pressure was also lower in the
propranolol group, this difference, however, was significant only
180min after pill intake (t(43)=−2.64, p= 0.011, d=−0.79).
Blink rate differed between groups (F(2, 56)= 4.73, p= 0.013,

η2ges= 0.14) with a significant decrease from baseline to pre-task
in the propranolol group, compared to placebo (t(39=−2.29,
p= 0.027, d=−0.72) and amisulpride (t(37)=−2.89, p= 0.006,

d=−0.93; Fig. 2). Likewise, the pupil dilation differed between
groups, but in contrast to the cardiovascular measures and the
blink rate, it changed particularly after amisulpride intake (F(2,
56)= 3.64, p= 0.033, η2ges= 0.12). As shown in Fig. 2D, pupil
dilation showed a significantly stronger decrease in response to
amisulpride intake, compared to placebo (t(36)=−3.20, p= 0.003,
d=−1.04), and a tendency to a more pronounced decline in
contrast to the propranolol group (t(37)=−1.89, p= 0.067,
d=−0.61), in line with previous evidence showing an impact of
amisulpride, but not propranolol [37], on pupil dilation [38]. To test
whether the peripheral drug effects confounded our results, we
tested whether changes in blood pressure and eye-tracking data
correlated with the modeling parameters. Changes were assessed
as maximum of blood pressure (systolic/diastolic) and pulse minus
baseline, respectively. Changes in blink rate and pupil diameter
were quantified by measures at time point 2 minus values at time
point 1. None of the tests indicated an association between drug-
induced changes in physiological parameters and the proportion
of switch choices (all r < |0.13|, all p > 0.30), indicating that
peripheral changes alone were not significantly associated with
participant’s choice behavior.

Distinct roles of dopamine and noradrenaline in human
exploration-exploitation
In order to analyze the individual tendency to explore or exploit, we
performed a mixed-effects logistic regression. This allowed us to (i)
identify factors that influence choice behavior and (ii) examine
whether these influences differ between groups. Choice was
explained as a function of previous return, traveltime, depletion
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rate, number of previous stays, group, and the interaction of the
four main factors with group. We selected this model by
incrementally adding a factor and tested whether it improved the
model fit, compared to the reduced version.
Separate model comparisons using likelihood ratio tests con-

firmed that the full model including all four main factors and their
interaction with the experimental group was most appropriate. This
was further reflected by the lowest (i.e., best) AIC value (Table 1).
The mixed-effect logistic regression indicated that previous

reward and travel time had significant effects on choice behavior.
Participants in all three groups switched less when previous
returns were high (main effect of previous reward, β=−0.749,
z=−21.259, p= <0.001). Importantly, however, this effect was
differently pronounced in the groups. Compared to placebo, the
amisulpride group switched significantly less often when previous
rewards were high (previous return×amisulpride: β=−0.192,
z=−3.625, p < 0.001). In sharp contrast to the amisulpride group,
the propranolol group switched more often after high rewards,
compared to placebo (previous return×propranolol: β= 0.092,
z= 1.956, p= 0.050, Fig. 3A).
Furthermore, as expected, a long travel time was associated

with less switching (main effect of travel time, β=−0.691,
z=−8.214, p= <0.001). This effect, however, was more pro-
nounced in the amisulpride group, compared to placebo (travel
time×amisulpride: β=−0.623, z=−4.948, p < 0.001), indicating
that the amisulpride group was particularly reluctant to switching
in the face of a long travel time. The propranolol group, in turn,
did not differ from the placebo group (β=−0.076, z=−0.644,
p= 0.520). The depletion rate alone did not have an impact on
choices, neither in the placebo group (main effect of depletion
rate: β=−0.287, z=−0.376, p= 0.701), nor in the propranolol
group (depletion rate×propranolol: β=−0.574, z=−0.531,
p= 0.595). Interestingly, in interaction with amisulpride a higher
depletion rate was associated with a higher probability to switch
(depletion rate×amisulpride: β= 2.685, z= 2.298, p= 0.022,
Fig. 3C).
We further tested whether the choice behavior developed

throughout the task by fitting the model separately for the first
half of the task (blocks 1 and 2) and for the second half (blocks 3
and 4). In general, both the results of the first and second half are
in line with the overall analysis. Participants switched less when
the previous return was high (first half: β=−0.80, z=−15.49,
p < 0.001; second half: β=−0.87, z=−15.81, p < 0.001), and
when the travel time was long (first half: β=−0.56, z=−4.69,
p < 0.001; second half: β=−0.91, z=−7.24, p < 0.001). The
influence of the depletion rate, however, emerged throughout
the task – in the first half it did not influence choice behavior
(β= 0.31, z= 0.29, p= 0.77), while in the second half participants
switched even more when the depletion rate was low (β=−3.16,
z=−2.68, p= 0.007). Interestingly, this analysis points towards
overall behavioral biases both in the amisulpride and in the
propranolol group. In the first half, the amisulpride group showed

a significantly enhanced switching behavior, compared to the
placebo group (β= 2.36, z= 2.58, p= 0.010), while the proprano-
lol group did not differ from placebo (β=−0.32, z=−0.38,
p= 0.70). In the second half, however, the propranolol group
switched less than the placebo group (β=−1.6, z=−1.88,
p= 0.061), while the amisulpride group did not differ from
placebo (β= 0.97, z= 1.06, p= 0.29). Other than that, the results
confirm the findings from the overall analysis: the amisulpride
group switched less, when the previous return was high (first half:
β=−.0.28, z=−3.50, p= 0.0005; second half: β=−0.22,
z=−2.67, p= 0.008) and when the travel time was long (first
half: β=−1.17, z=−6.29, p < 0.0001; second half: β=−0.34,
z=−1.85, p= 0.06). Likewise, participants in the amisulpride
group switched more when the depletion rate was high (first half:
β= 3.25, z= 1.93, p= 0.05; second half: β= 3.64, z= 2.06,
p= 0.04, Supplementary Fig. S2 in the Supplementary Material).
Again, neither of the choice factors significantly influenced
decision making in the propranolol group.

Task performance
Groups did not differ in the number of total rewards obtained
throughout the task (F(2,66)= 1.68, p= 0.19, η2ges= 0.048).
However, participants in the amisulpride group tended to collect
more rewards, compared to placebo (t(43)= 1.92, p= 0.061,
d= 0.57) and propranolol (t(45)= 1.65, p= 0.11, d= 0.48). The
number of rewards differed between environments with short and
long travel time (main effect of travel time: F(1, 66)= 229.85,
p < 0.0001, η2ges= 0.36, Fig. 3), but there was no significant
interaction between environment and experimental group
(F(2,66)= 1.176, p= 0.31, η2ges= 0.006). In environments with
short travel times, the amisulpride group tended to yield higher
rewards, compared to the propranolol group (t(45)= 1.80,
p= 0.078, d= 0.53). In long travel time environments participants
tended to earn more rewards after amisulpride intake than after
placebo (t(43)= 1.97, p= 0.055, d= 0.59; all other p > 0.15,
Fig. 3D). Overall, the groups did not differ in the percentage
of switch decisions (F(2,66)= 0.48, p= 0.62, η2ges= 0.14). The
percentage differed between environments with short and long
travel times (main effect of travel time: F(1, 66)= 36.89, p < 0.0001,
η2ges= 0.056), but this was not differentially pronounced in the
experimental groups (group×travel time: F(2, 66)= 1.03, p= 0.36,
η2ges= 0.003; all post hoc t-tests p > 0.16).

Marginal Value theorem
Exit thresholds differed between environments (main effect of
travel time: F(1,66)= 47.70, p < 0.0001, η2ges= 0.072) but did not
differ between groups (F(2, 66)= 0.37, p= 0.69, η2ges= 0.01).
There was no group×travel time interaction (F(2,66)= 1.27,
p= 0.29, η2ges= 0.004). Neither group differed from the optimal
exit threshold, as supposed by the MVT (6.7 for short travel times
environments, all p > 0.76; 5.67 for long travel time environments,
all p > 0.85, Fig. 3E).

Table 1. Model comparison by the Akaike Information Criterion (AIC).

Model Model description N params AIC χ2 df p

Model 1 Previous return 3 15550

Model 2 Model 1+ travel time 4 15413 139.49 1 <0.001

Model 3 Model 2+ depletion rate 5 15360 55.273 1 <0.001

Model 4 Model 3+ number of previous stays 6 14928 433.96 1 <0.001

Model 5 Model 4+ group 8 14930 2.026 2 0.544

Model 6 Model 5+ interactions 16 14859 86.743 8 <0.001

The full model fitted participants’ choices best in a model comparison that considers differences in model complexity. Model performance is indicated by the
Akaike Information Criterion (AIC). Lower values represent a better fit. The full model contains the factors previous return, travel time, depletion rate, number
of previous stay decisions for the current tree, group, and the interaction of the first four factors with the experimental group.
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Computational modeling
We fitted a computational model according to the MVT to
estimate each participant’s learning rate α, temperature parameter
β, and choice bias c. Regarding the learning rate, we identified
three participants as outlier, as they differed more than 3 standard
deviations from the group’s mean (one participant from each
experimental group). Interestingly, participants in the amisulpride
group had a significantly lower learning rate than participants in
the propranolol group (t(43)=−2.16, p= 0.036, d=−0.65,
Fig. 4A), and tended to have a lower α compared to the placebo
group (t(41)=−1.99, p= 0.054, d=−0.61, Fig. 4). The learning
rates did not differ between the placebo and propranolol groups
(t(42)= 0.28, p= 0.78, d= 0.083).
The temperature parameter β did not differ between groups

(F(2,66)= 1.53, p= 0.22, η2ges= 0.044, Fig. 4B). Neither the amisul-
pride nor the propranolol group differed significantly from the
placebo group (amisulpide vs. placebo: t(43)= 1.6, p= 0.12, d= 0.48;
propranolol vs. placebo: t(44)= 0.028, p= 0.98, d= 0.008; amisul-
pride vs. propranolol group: t(45)= 1.51, p= 0.14, d= 0.44). Like-
wise, the choice bias c did not differ between groups (F(2,66)= 0.51,
p= 0.6, η2ges= 0.020, Fig. 4C). Neither the amisulpride group, nor the

propranolol group differed from placebo (amisulpride vs. placebo:
t(43)= 0.97, p= 0.34, d= 0.29; propranolol vs. placebo: t(44)= 0.34,
p= 0.73, d= 0.10; amisulpride vs. propranolol: (t(45)= 0.67, p= 0.51,
d= 0.19).

DISCUSSION
Adaptive decision-making requires an optimal balance between
choosing known options and trying new paths when the
environment changes or new information is required. Given the
ubiquity of exploration-exploitation tradeoffs in everyday life and
their potential relevance for psychopathology, understanding the
mechanisms involved in this tradeoff is important. Here we
investigated the specific roles of dopamine and noradrenaline in
the exploration-exploitation tradeoff by pharmacological blockade
of either system using propranolol and amisulpride and system-
atically examining the effects of reward values, depleting returns,
and opportunity costs on choice behavior. The action of the
administered drugs was confirmed by specific changes in blood
pressure, heart rate, pupil dilation, and blink rate. As expected,
(systolic) blood pressure and heart rate decreasedmost prominently
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in the propranolol group, consistent with its action as a hypotensive
agent [38], related to the blockade of β1- and β2-adrenergic
receptors that represent the predominant form of adrenergic
receptors expressed in the heart [39]. Propranolol was further linked
to a reduced blink rate, which may be due to dryer eyes after β-
adrenergic blockade [39]. Pupil diameters, in turn, known to be
mediated, at least partly, by dopaminergic neurons in the ventral
tegmental area (VTA; [40]) were particularly reduced in the
amisulpride group, most like due to the blockade of D2/D3
receptors in the VTA [37, 41]. Most importantly, our behavioral
results revealed functionally dissociable roles of dopamine and
noradrenaline in the exploration-exploitation trade off, with
dopamine governing the sensitivity to decision-relevant informa-
tion and noradrenaline being involved in value-independent choice
processes.
Previous studies suggested a role of dopamine in exploration

[4, 17, 19, 42]. Our data, however, do not point towards a decrease
of exploratory behavior in participants that received the D2/D3
receptor antagonist amisulpride. Instead, participants in the
amisulpride group switched less, specifically when (i) the previous
reward was high, (ii) the travel time was long, and (iii) the depletion
rate was low. This pattern suggests an increased sensitivity to the
specific choice aspects, i.e., that these had a stronger impact on
choice. These results corroborate previous findings showing that
D2-receptor blockade by amisulpride sharpened content-specific
representations in the PFC that are used to guide reinforcement-
based decisions [29, 32]. Interestingly, in the first half of the task, the
amisulpride group showed significantly enhanced switching
behavior, compared to the placebo group, indicating an increase
in explorative choices. Taken together, these results point towards a
directed exploration in the beginning of the task, which may then
inform subsequent choice behavior. This is further supported by our
computational modeling results. Participants in the amisulpride
group had a lower learning rate compared to the other groups.
Given the strong local autocorrelation of prediction errors in the
present foraging task, a low learning rate may be beneficial to
integrate across a longer time span. In line with our data, recent
findings suggested that cabergoline, a D2 receptor agonist, reduced
the sensitivity towards the difference between rich and poor
environments [43]. Assuming that a D2 receptor blockade should
impair dopamine-associated processes, these findings might be
puzzling at first glance. However, the potential discrepancy
between these findings and common beliefs about the role of
dopamine in choice could be explained by a dual state model of
prefrontal dopamine. This model proposes that the activation of
prefrontal D1 and D2 receptors has opposing effects on GABAergic
activity, resulting in bidirectional effects on the accuracy of
prefrontal representations [44]. In recordings of prefrontal pyrami-
dal neurons, a predominant D1 receptor activation (D1-dominated
state) was associated with increased GABAergic inhibition, resulting

in a selective access to prefrontal circuits with only very strong
inputs passing through and therefore forming strong representa-
tions. A primary D2 receptor activation (D2-dominated state), on the
other hand was linked to a decreased GABAergic inhibition so that
multiple inputs were processed at the same time, leading to
weak representations in the prefrontal cortex [44]. It is assumed
that blocking prefrontal D2 receptors increases the likelihood of
D1-dominated states, i.e., the processing of strong input while
suppressing noise [45]. Further, amisulpride is suggested to
preferably block D2/D3 receptors in the PFC, while dopamine levels
in the striatum were even increased after low doses [41, 46, 47]. Our
findings may thus be explained by a shift towards prefrontal D1
receptor activation in the prefrontal cortex, which may, together
with an intact striatal dopamine functioning, lead to the formation
of strong representations of decision-relevant stimuli and ultimately
increased sensitivity for specific choice aspects to guide behavior.
In sharp contrast to the amisulpride group, none of these

choice aspects had a significant effect on choice behavior in the
propranolol group. Interestingly, participants in the propranolol
group tended to switch even more after higher rewards,
compared to the placebo group. Specifically, they still switched
less after higher than lower rewards, but this was less pronounced
than in the placebo group, while this effect was significantly more
pronounced in the amisulpride group than in the placebo group.
This pattern points to a reduced usage of decision-relevant
information for choice behavior, in line with evidence suggesting
a role of noradrenaline in random, but not directed exploration
[21–23, 48]. However, the data on the direction of noradrenergic
effects on random exploration is heterogenous. A recent study
directly compared how amisulpride and propranolol affect
different exploration strategies and reported that propranolol,
but not amisulpride attenuated random exploration [23]. This is in
line with previous findings showing that noradrenaline levels
predicted increased noise in choice behavior [49]. Our data
suggest an opposite effect of noradrenaline on decision noise with
rather increased noise after blocking noradrenaline. The present
findings dovetail with a study that reported decreased random
exploration after pharmacologically elevated noradrenergic activ-
ity [48]. In the same vein, it was hypothesized that noradrenaline
might work as an urgency signal that promotes commitment to an
early decision. Noradrenergic blockade via propranolol was
assumed to insert this signal and hence stop further information
gathering [50]. This is further supported by our finding that, in the
second half of the task, participants in the propranolol group
showed an overall reduction of switch choices, pointing again
towards a reduced use of information, but in the direction of
exploitative decision-making. These heterogeneous results with
respect to the direction of the influence of noradrenaline on
exploration and exploitation might be related to distinct activity
modes of noradrenaline. While tonic noradrenergic activity was
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associated with exploration, phasic noradrenaline has been
thought to facilitate exploitative behavior [51]. Because there is
evidence that propranolol is likely to influence both tonic and
phasic signaling of noradrenaline [52], such differentiation cannot
be derived from our data.
In addition to differences between tonic and phasic noradre-

nergic activity, a possible inhibitory mechanism of β-adrenergic
receptors may explain why we found a tendency towards an
increase of stochasticity. Specifically, β-adrenergic receptors
enhanced inhibitory synaptic mechanisms in rats by a
noradrenaline-mediated enhancement of GABA efficacy [53]. By
blocking β-adrenergic receptors, we might have blocked a
noradrenaline-related inhibition of noise, resulting in an increase
of noisy, i.e., random behavior. This was not captured by a
decreased temperature parameter in the propranolol group.
However, the general range of the temperature parameter derived
by the modeling approach was rather low, which can be explained
by the low range in the value estimation. The temperature
parameter specifies the degree to which value estimates influence
behavior. Since the initial rewards were drawn from a Gaussian
distribution with a mean of 10 and SD of 1, depleting by a Beta
distribution with parameters 14.9 and 2.0, the estimated values
came in a low range per se. Consequently, the degree to which
this estimation influenced decision-making may not be suitable to
interpret group differences in this case.
Overall, however, the influence of propranolol on the

exploration-exploitation tradeoff was less pronounced than for
amisulpride. A potential explanation for this could be that
noradrenaline does not drive specific components of decision-
making, but rather exerts higher-order control signals, such as an
urgency signal that stops ongoing information gathering,
presumably by inducing decision noise.
At this point, it should be noted that other factors such as

tiredness or boredom might have affected switching behavior.
Although these factors may also contribute to more random
exploration and we do not think that these could explain the
influence of the drugs on the dependency of switch behavior on
relevant decision parameters, future studies should measure these
additional variables to explicitly control for their influence.
Moreover, future studies should consider including baseline
measures of task performance to rule out performance differences
between groups before drug administration or use a within-
subject design instead of a between-subjects design.
Taken together, our findings suggest functionally dissociable

roles of dopamine and noradrenaline in the exploration-
exploitation tradeoff during human decision-making. Compared
to placebo, participants in the amisulpride group switched less
when the prospects in the current environment were still
advantageous (i.e., high rewards and low depletion rates) and
the costs associated with exploration were high (i.e., long travel
time). After propranolol intake, participants tended to switch even
more, compared to the placebo group, when the rewards in the
current environment were still high. Thus, these data show that
dopamine modulates the sensitivity to choice relevant aspects,
while noradrenaline regulates when to disengage from the current
information paths to randomly explore new options. Our results
are thus generally in line with previously hypothesized roles of
dopamine and noradrenaline in directed and random exploration,
respectively. The present findings enhance our understanding of
the differential roles of dopamine and noradrenaline in decision-
making and might have relevant implications for mental disorders
characterized by biases in the exploration-exploitation tradeoff.
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Neural Index of Reinforcement Learning Predicts Improved
Stimulus–Response Retention under High Working Memory
Load
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Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the
contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An
interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces
larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this
account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants
and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to
determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for
associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was
mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future be-
havioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift
between the two systems strategically to maximize immediate learning versus retention of information and found that
induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative
interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during
learning but impairs retention.

Key words: EEG; reinforcement learning; retention; stress; working memory

Significance Statement

Successful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL
model was productive in improving our understanding of the interplay between the two systems during learning, demonstrat-
ing that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of
learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learn-
ing, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result
supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention.
Notably, we show that this cooperative interplay remains largely unaffected by acute stress.

Introduction
Everyday behavior, like selecting what to wear and what to eat,
involves reinforcement learning (RL). Canonical RL models
incrementally accumulate expected values of stimulus–action
pairings over the course of multiple experiences. Although this
RL system learns rather slowly and incrementally, it can be aug-
mented by the joint support of working memory (WM), espe-
cially when learning new arbitrary contingencies (Yoo and
Collins, 2021). WM enables fast learning by robustly maintain-
ing, in an accessible form, the representations of relevant stimu-
lus–action associations to support ongoing processing such as
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value-based learning and decision-making. However, when WM
capacity is exceeded, it suffers from interference, causing relevant
representations to be lost or corrupted (Oberauer et al., 2016).
Indeed, although the WM system is beneficial for supporting
early learning, its contribution to successful learning is con-
strained by limited capacity (Collins and Frank, 2012). On the
other hand, the incremental RL system has a much broader
capacity and is more robust as long as the reward contingencies
remain stable. Previous studies have thus shown a transition
from capacity- and delay-sensitive WM to RL over the course of
learning (Collins and Frank, 2012, 2018).

Moreover, previous studies examining the joint contributions
of WM and RL to learning have suggested that these systems are
not modular but rather interactive (Collins et al., 2017a,b;
Collins, 2018; Collins and Frank, 2018). fMRI and EEG studies
provided support for a cooperative interaction; when stimulus–
reward information is stored in WM, neural indices of reward pre-
diction errors (RPEs) are reduced (Collins et al., 2017a; Collins and
Frank, 2018). Conversely, RPEs were larger under high load, leading
to accelerated neural learning curves putatively indicative of more
robust RL (despite slowed behavioral learning because of degraded
WM). This dissociation suggested that although a high WM load
slows learning, it might also improve retention because of accumu-
lative RPEs that reinforce the RL system. Supporting this prediction,
in the surprise test phase, participants showed better retention per-
formance for stimulus–response contingencies and their reward val-
ues when they had been learned under higher compared with lower
WM demands (Collins et al., 2017b; Collins, 2018; Wimmer and
Poldrack, 2022). However, two major limitations remained from
this prior work.

First, the previous study showing enhanced retention of stim-
ulus–response associations had only tested low and high WM
conditions (Collins, 2018), with only subtle albeit significant dif-
ferences in performance (;5% difference between set size 3 vs
6). We thus parametrically manipulated WM demands (Collins
et al., 2017b) to test the prediction that retention performance
of stimulus–response associations would scale monotonically as
a function of increased WM demand, despite monotonically
slowed learning in these conditions. Second, although the neu-
ral and behavioral findings have been documented on their
own, it has not yet been established whether cooperative neural
interactions within WM/RL systems during learning are predic-
tive of future retention. Moreover, it is unclear whether neural
RL learning curves reflect reward expectations or whether they
reflect learned policies (as predicted by Q learning vs actor-
critic algorithms; Li and Daw, 2011; Jaskir and Frank, 2023).
We thus sought to test these relationships directly by recording
EEG during learning and then administering two retention
tests. The EEG measures of RL were used to assess whether
the neural RL measure is predictive of participants’ ability to
retrieve learned reward expectations and/or the retention of
stimulus–response contingencies.

As a secondary aim, we also examined the impacts of acute
stress on RL andWM processes. There is accumulating evidence,
across various domains of learning, that acute stress reduces
goal-directed decision-making and alters prefrontal cortex func-
tioning (for review, see Arnsten, 2009), thereby promoting a shift
from cognitively demanding but flexible systems toward simpler
but more rigid systems (Kim et al., 2001; Schwabe and Wolf,
2009; Vogel et al., 2016; Wirz et al., 2018; Meier et al., 2022). We
thus tested whether stress could reduce the ability of WM to
effectively guide learning and instead enhance the relative contri-
bution of RL processing.

Materials and Methods
Participants
Eighty-six healthy volunteers (43 women, age 18–34; mean = 24.56,
SD = 3.84) participated in this experiment. All participants were right-
handed, had normal or corrected-to-normal vision, and were screened
for possible EEG contraindications. Individuals with a current medical
condition, medication intake, or lifetime history of any neurologic or
psychiatric disorders were excluded from participation. All participants
provided written informed consent before the beginning of testing and
received moderate monetary compensation. The study protocol was
approved by the ethics committee of the Faculty of Psychology and
Human Movement Sciences at the University of Hamburg.

Experimental procedure
Learning task. Interactions of RL and WM were tested using the

RLWM task (Collins and Frank, 2012, 2018; Collins, 2018), programmed
in MATLAB using the Psychophysics Toolbox. In this task (Fig. 1A),
each trial started with a presentation of a stimulus in the center of the
screen on a black background, and participants had to learn which of the
three actions (key presses A1, A2, A3) to select based on trial-by-trial
reward feedback. Stimulus presentation and response time were limited
to 1.4 s. Incorrect choices led to feedback 0, whereas correct choices led
to reward, (reward was 1 or 2 points fixed with the probability of 0.2, 0.5,
or 0.8). Stimulus probability assignment was counterbalanced within
participants to ensure equal overall value of different set sizes (see below)
and motor actions. The key press was followed by audiovisual feedback
(the word Win! with an ascending tone or the word Loss! with a de-
scending tone). If participants did not respond within 1.4 s, the message
Too slow! appeared. Feedback was presented for 0.4–0.8 s and was fol-
lowed by a fixation cross for 0.4–0.8 before the next trial started.

To manipulate WM demands, the number of stimulus–action con-
tingencies to be learned varied by block between one and five, denoted
as not significant (ns), with a new stimuli set presented at each new block
(e.g., colors, fruits, or animals). There were four blocks in which set size =
2, two blocks in which set size = 4, and three block in which set size = 1, 3,
5 for a total of 15 blocks and 645 trials. Within a block, each stimulus was
presented 15 times; 108 stimuli were pseudorandomized, and 43 stimuli
were presented for each participant. Stimulus category assignment to
block set size was counterbalanced across subjects. Block order was also
counterbalanced with the exception of set size = 1, which served as control
(block numbers 8 and 14 were saved for set size = 1).

The following instructions were given to participants: In this experi-
ment, you will see an image on the screen. You need to respond to each
image by pressing one of the three buttons on the Gamepad: 1, 2, or
three with your right hand. Your goal is to figure out which button
makes you win for each image. You will have a few seconds to respond.
Please respond to every image as quickly and accurately as possible. If
you do not respond, the trial will be counted as a loss. If you select the
correct button, you will gain points. You can gain either 1 or 2 points
designated as “$” or “$$”. Some images will give you more points for
correct answers on average than other images. You can only gain points
when you select the correct button for each image. At the beginning of
each block, you will be shown the set of images for that block. Take
some time to identify them correctly. Note the following important rules:
There is ONLY ONE correct response for each image. One response but-
ton MAY be correct for multiple images, or not be correct for any image.
Within each block, the correct response for each image will not change.

Test phase
After the learning phase, participants completed two surprise test phases
(Fig. 1 B,C). The first was a reward retention test that has been used in
earlier studies (Collins et al., 2017b). The reward retention test was
designed to test whether expected values are learned by default as several
previous studies showed that participants can select actions based on
their relative expected values at the transfer phase even when they only
had to learn which item was best (Frank et al., 2007; Palminteri et al.,
2015). In this phase, on each trial participants were requested to select
the more rewarding stimulus from a pair of stimuli that had each been
encountered during the learning phase. All stimuli that were used in the
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learning phase were presented in the test phase at least once. The two
stimuli were pseudorandomly selected to sample across all possible com-
binations of set sizes, blocks, and probabilities. To ensure no new learn-
ing at this phase, participants did not receive any feedback on their
responses. Note that in this test, participants could not leverage informa-
tion they had learned about which response to select (the policy);
instead, they had to use novel response mappings to simply indicate
which stimulus had been more rewarded. Participants’ ability to select
the more rewarding stimulus therefore required successful integration of
the probabilistic reward magnitude history over learning for each
stimulus.

The second test was the stimulus–response retention test, which
assesses whether participants remember the correct response for each
stimulus they had encountered previously during learning. Each of the
stimuli used in the learning phase (except stimuli from block 1 and block

15 to limit primacy and recency effects) was presented four times
individually, and participants were requested to press the key that
was associated with the respective stimulus. Stimulus order was pseu-
dorandomized to make sure that each stimulus was presented in each
quarter of the test phase. No feedback was presented to rule out new
learning during this test phase. Note that because this phase was pre-
ceded by the reward test phase, and because it followed many serial
blocks of learning, it is not plausible that participants could hold infor-
mation for previously encountered stimuli in WM, and thus retention
depends on the memory for stimulus–action associations (the policy)
as formalized by the RL system (Collins, 2018; Jaskir and Frank, 2023).

Behavioral data analysis
Statistical analyses were performed using R software (https://www.r-
project.org/) and the lme4 package (version 1.1–26; Bates et al., 2015).

Figure 1. Experimental protocol of the learning task and the two test phases. A, In the learning phase, in each block participants use deterministic reward feedback to learn which of three
actions to select for each stimulus image. The set size (or the number of stimuli; ns) varies from one to five across blocks. After each response, feedback was presented audiovisually (see text
for more details). B, The surprise reward retention test protocol. In this task, participants are asked to recall the reward value of stimuli learned during the learning phase by choosing the stim-
ulus they perceive to have been more rewarded within a pair of stimuli presented on every trial. C, The surprise stimulus–response retention test protocol is a test of the learned stimulus–
response policy. Here, participants are asked to recall the correct action for the probed stimulus. No feedback was given at either test phase.
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Data were fitted using generalized mixed-effect models (glmer) with the
binomial family function. To avoid the Type I error rate without sacrific-
ing statistical power, we followed the parsimonious mixed-model
approach (Matuschek et al., 2017). We selected the random-effects struc-
ture that contained only variance components that were supported by
the data by running singular value decomposition (Bates et al., 2015;
Matuschek et al., 2017).

Behavioral analysis of learning task
To quantify the effect of RL versus WM, we analyzed learning perform-
ance (the proportion of correct responses) with general mixed-effect
regression on trial-by-trial data from 86 participants as a function of
both WM and RL variables and their interactions. The WM variables
include the number of stimulus–response associations to be learned
(denoted as setSize) and the number of intervening trials since the last
time the stimulus was presented and a correct response was made
(denoted as delay) reflecting WM interference or maintenance time in
WM. The RL variable is the total number of previous correct (Pcor)
responses for a stimulus. Participants and all the predictors were selected
as random variables.

Behavioral analysis of the reward retention test
To quantify the possible effect of expected value learning under different
WM loads, we analyzed test performance (the proportion of selecting
the right vs left stimulus) with general mixed-effect regression on trial-
by-trial data from 86 participants as a function of six variables, value dif-
ference (denoted as delta_Q, positive when the right stimulus had higher
value and negative when the left stimulus had higher value); mean Q
value of the stimulus pair [denoted as mean value (Q)]; mean set size of
the stimulus pair (denoted as mean_setSize); the difference in set size
(denoted as delta_ setSize, positive when the right stimulus was learned
in higher set size); block (the block number in which they were learned,
indicating how recently it was learned); and perseveration (binary coding
of repetitions in response, repeat/switch). Participants, the effect of value
difference (delta_Q), and the effect of set size difference (delta_setSize)
were entered as random variables.

Behavioral analysis of the reward retention test together with EEG RL
index
We ran a new regression model on the reward retention test data
(including only the 77 participants that had EEG data), adding the differ-
ence in the EEG RL index between the pair of stimuli at choice. Because
the neural RL index (see a detailed description of this measure below)
could have both positive and negative values, all the predictors that were
calculated as difference scores were taken as absolute scores and the
model predicted performance accuracy (proportion of choosing the
higher value stimulus). Test performance accuracy was analyzed as a func-
tion of the absolute model estimated value difference between the right
and left stimulus (abs_delta_Q), the absolute difference in the EEG RL
index between the right and left stimulus (abs_delta_EEG_RL), the mean
value (estimated from the model) of the stimulus pair (mean Q value), the
mean set size of the stimulus pair (mean set size), the absolute difference
in the block number where the right and left stimulus were learned (abs_
delta_block), and response bias toward the previously selected response
(perseveration; binary coding of repetitions in response). Participants, the
effect of value difference (abs_delta_Q), and the effect of EEG RL index
difference (abs_delta_EEG_RL) were entered as random variables.

Behavioral analysis of the stimulus–response retention test
In a general mixed-effect regression analysis, we tested accuracy for cor-
rectly recalling the response associated with a presented stimulus learned
during the training phase as a function of set size (the set size block in
which they were learned), block (the block number in which they were
learned, indicating how recently it was learned), and model Q (the
model estimated Q value of each stimulus calculated as the average Q
value of the final six iterations during learning) and perseveration (the
tendency to repeat the response selected in the previous trial at test
coded as 1 for repeat and 0 for switch). The interactions between set size
and model Q value, set size and block, and between set size and

perseveration were also added as predictors. Participants and the interac-
tion between model Q and set size were entered as random variables.

Behavioral analysis of the stimulus–response retention test together with
EEG RL index
We ran the same regression model on the stimulus–response reten-
tion test data as before (including only the 77 participants that had
EEG data), adding two new predictors, the average EEG RL index
for each stimulus–response association (see a detailed description of
this measure below) and the interaction between EEG RL index and
set size. Participants, the interaction between model Q and set size,
and the interaction between EEG RL index and set size were entered
as random variables.

EEG recording and processing
During the learning task, participants were seated ;80 cm from the
monitor in an electrically shielded and sound-attenuated cabin. EEG was
recorded using a 64-channel BioSemi ActiveTwo system with sintered
Ag/AgCl electrodes organized according to the 10–20 system. The sam-
pling rate was 2048Hz. The signal was digitized using a 24-bit A/D con-
verter. Additional electrodes were placed at the left and right mastoids,
;1 cm above and below the orbital ridge of each eye and at the outer
canthi of the eyes for measurement of eye movements. The EEG data
were rereferenced off-line to a common average. Electrode impedances
were kept below 30 kV. EEGs and EOGs were amplified with a low cut-
off frequency of 0.53Hz (= 0.3 s time constant).

The EEG data were processed using EEGLAB (Delorme and Makeig,
2004) and ERPLAB (Lopez-Calderon and Luck, 2014) toolboxes. The
continuous EEG was bandpass filtered off-line between 0.5 and 20Hz
and downsampled to 125Hz, then it was segmented into epochs ranging
from 500ms prestimulus up to 3000ms poststimulus. The epoched data
were visually inspected, and those containing large artifacts because of
facial electromyographic activity or other artifacts, except for eyeblinks,
were manually removed (e.g., large fluctuations in voltage across several
electrodes that were in an order magnitude above neighboring activity).
Independent components analysis was next conducted only on the 64
scalp electrodes using the EEGLAB runica algorithm. Components con-
taining blink or oculomotor artifacts were subtracted from the data,
resulting in an average of 1.6 components removed per participant
(ranging between zero and three components). Finally, the epoched data
were subjected to an automatic bad electrodes and artifact-detection
algorithm (100mV voltage threshold with a moving window width of
200ms and a 100ms window step), which was followed by manual veri-
fication. Bed electrodes were interpolated, and trials containing large
artifacts were removed. Nine participants were removed from all the
reported EEG analyses because of a high EEG artifact rate (.40% in one
or more of the conditions) resulting in 77 participants who were used in
the EEG analysis.

Data processing for behavior and EEG regression analysis
Omission trials, trials with very fast reaction times (RTs; ,200 ms), and
trials before the first correct response was made were excluded from all
analyses. Setting the delay and Pcor variables to have one as their lowest
level was done to ensure an interpretable analysis of these variables
(Collins and Frank, 2012). The delay predictor (the number of trials
since the stimulus was presented and a correct response was made) used
in the regression analyses was inverse transformed (�1/delay) to avoid
the disproportion effect of very large but rare delays (when a correct
response was given early in the block but was then followed by several
error responses for that stimulus).

Modeling
RL and WM contributions to participants’ choices were estimated with
the previously developed RLWM computational model (the model
described below is identical to that used in Collins and Frank, 2018,
where more details are provided). The RLWM is a mixture of a standard
RL module with a delta rule and a WMmodule that has perfect memory
for information that is within its limited capacity and is sensitive to delay
(reflecting memory decay and interference from other intervening stim-
uli). For each stimulus–action association, the RL module estimates the
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expected value (Q) and updates those values incrementally on every trial
as a function of the reinforcement history. This computation is comple-
mented by the WM module, where information in the capacity-limited
WM feeds into RL expectations, thereby affecting RL prediction errors
and learning (Fig. 2).

Basic RL module. To maintain consistency with prior studies with
this task and model, and to keep the model as simple as possible, we use
Q learning for the model-free algorithm, but an actor-critic algorithm
could also have been used (there are multiple options to capture incre-
mental model-free RL, including methods that learn expected values for
each choice and select on that basis; a canonical instance is Q learning
and is often used in human studies) as well as methods that learn to
directly optimize the policy (a canonical variant is an actor-critic
model). Both classes of models similarly predict behavioral adjust-
ment in RL tasks, and specific designs are needed to distinguish
between them (Gold et al., 2012; Geana et al., 2022). The main goal
here is to simply summarize the incremental RL process as distinct
from the WM process.

Reward values were coded as zero or one for correct or incorrect
(model fits are not improved if using one vs two points in the Q learning
system, and behavioral learning curves are similar for stimuli that yield
higher or lower probability of two points; Collins et al., 2017b). For each
stimulus s and action a association, the RL module estimates the
expected reward value Q and updates those values incrementally on ev-
ery trial as follows:

Qt11 s; að Þ ¼ Qt s; að Þ1a� d t:

The Q value was updated as a function of the learning rate a (reflect-
ing how fast reward expectations are updated) and the reward prediction
error delta (d ), calculated as the difference between the observed reward
Rt and the expected reward Qt at each trial as follows: d t= Rt –Qt .

Choices were probabilistically determined using a softmax choice
policy as follows:

p ajsð Þ ¼ exp bQ s; að Þ� �
=
X

exp bQ s; aið Þ� �� �
:

Here, b is the inverse temperature determining the degree to which
differences in Q values are translated into more deterministic choices,
and the sum is over the three possible actions. Q values were initialized
to 1/nA, where nA = 3 is the number of actions (i.e., the prior that any
action is correct is one-third).

WMmodule. This module updates stimulus–action–outcome associ-
ations in a single trial. It assumes that stimulus–action–outcome infor-
mation, when encoded and maintained in WM, could serve to update
reward expectation rapidly and accurately (i.e., perfect retention of infor-
mation from the previous trial). When not limited by capacity and decay
(see below), the WM module is therefore represented by a Q learning
system with a learning rate of 1 (a = 1).

Decay. To account for potential forgetting on each trial because of delay
orWM interference, we included a decay parameter f (0, f , 1), which
pulls the estimates of Q values toward their initial value [Q0 = 1/nA, number
of actions nA = 3] as follows:

Q Q1 f ðQ0 � QÞ:

Only the WM module was subject to forgetting (decay parameter
wWM) to capture the well-documented short-term stability of WM in
contrast to the robustness of RL.

WM contributes to choice. Because WM is capacity limited, only K
stimulus and action associations can be remembered. A constraint factor
reflects the a priori probability that the item was stored in WM as fol-
lows: wWMð0Þ ¼ P0 ðWMÞ ¼ K=ns (i.e., the set size in the current block
relative to capacity K) and implies that the maximal use of WM policy
relative to RL policy depends on the probability that an item is stored in
WM. This probability is then scaled by r (0 , r , 1), the participant’s
overall reliance of WM versus RL (where higher values reflect greater
confidence in WM), in the following:

wWMð0Þ ¼ r �minð1;K=nsÞ:

Cooperative model. Although the original model (Collins and Frank,
2012) assumed independent RL andWMmodules that compete to guide
behavior, our more recent work suggests that WM expectations influ-
ence RL updating (Collins and Frank, 2018). Thus, WM contributes part
of the reward expectation for the RL model, according to the following
equation: d t ¼ Rt� ½wWM � QWMþ ð1� wWMÞ � QRL�; where wWM is
the weighting parameter (the degree to which WM is weighted relative
to RL, which is stronger in low set sizes), and QWM is the expected
reward from the WMmodule. This RPE is then used to update the RL Q
value as follows: Qtþ1 ¼ Qt 1a� d t:

This interactive computation of RL forms the basis of the simulated
predictions shown in Figure 2. Nevertheless, as explained in Collins and
Frank (2018), we test these predictions by fitting models in which RL
and WM modules are independent. (Independence is assumed in the
original models, which still provide good fits to the data because when
information is within WM, WM dominates updating and contributes to
rapid learning curves, and hence the smaller RPEs and RL Q values of
the interactive models for small set sizes are not influential on behavioral
accuracy during learning; however, this model makes differential predic-
tions for neural learning curves and future retention.) We then assess
systematic deviations from independence informed by these simulations
(e.g., neural Q learning curves should grow more rapidly in high than in
low set sizes; Fig. 2).

Data processing for univariate EEG analysis
To extract the neural correlates in the EEG signal of conditions of inter-
est, we used a mass univariate approach (Collins and Frank, 2018). A

Figure 2. Cooperative interaction between the RL and WM systems (adapted from Collins and Frank, 2018). A, Both WM and RL inform expected Q values and thus inform RPEs. When the
number of stimuli to learn, set size (ssz) is within WM capacity (e.g., left, ssz = 2) the expected Q value of each contingency can be held in WM, thereby reducing RPEs during early learning
compared with those that would occur from RL alone. When set size exceeds WM capacity (e.g., right, ssz = 5), degraded WM results in larger RPEs. B, Computational model simulations (re-
created from Collins and Frank, 2018) capture the RL and WM interaction, showing that larger RPEs persist for longer when WM load is taxed (high ssz), thereby accumulating expected Q val-
ues in the RL system. C, Note that Q learning curves in B evolve more rapidly in high ssz, despite the opposite pattern in simulated behavioral learning curves (whereby WM contributes to
rapid learning in low ssz).
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multiple regression analysis was conducted for each participant in which
the EEG amplitude at each electrode site and time point was predicted
by the conditions of interest, the set-size (number of stimulus–response–
outcome associations given in a block), model-derived RL expected value
(denoted as Q), delay (number of trials since this stimulus was presented
and a correct response was given), and the interaction of these three
regressors while controlling for other factors like reaction time (log
transformed) and trial number within block. Furthermore, the EEG sig-
nal was reduced to a selected window of �100 to1700ms around stim-
ulus onset and was baseline corrected from –100 to 0ms before the
onset of the stimulus. To account for remaining noise in the EEG data,
the EEG signal (at each time point and electrode) was z-scored across all
trials and so were all the predictors before they were entered to the ro-
bust multilinear regression analysis (Collins and Frank, 2018).

Corrected ERPs
To plot corrected ERPs, we computed the predicted voltage using the
multiple regression model described above while setting a single regres-
sor to zero (set size, delay, expected Q value, or reaction time); we sub-
tracted this predicted voltage from the true voltage (for every electrode
and time point within each trial), leaving only the fixed effect, the var-
iance explained by that regressor, and the residual noise of the regression
model. ERPs were computed as the average corrected voltage from all
trials that belong to the same level of condition. Note that the array of
expected Q values was divided to four quartiles, and trials within each
quartile were averaged for plotting ERPs.

Trial-by-trial similarity index of WM and RL
As explained above, a multiple regression analysis was conducted for
each participant in which the EEG amplitude at each electrode site and
time point was predicted by the conditions of interest (set size, delay, RL
expected value, and their interactions). We used the previously identified

analysis method (Collins and Frank, 2018; Rac-Lubashevsky and Frank,
2021) to identify spatiotemporal clusters (masks) of the three main pre-
dictors in the GLM (set-size, delay, and model-derived RL expected
value). Specifically, we tested the significance of each time point at each
electrode across participants against zero using only trials with correct
responses.

We then used cluster-mass correction by permutation testing with
custom-written MATLAB scripts. Cluster-based test statistics were cal-
culated by taking the sum of the t values within a spatiotemporal cluster
of points that exceeded the p = 0.001 threshold for a t test significance
level. This was repeated 1000 times, generating a distribution of maxi-
mum cluster-mass statistics under the null hypothesis. Only clusters
with a greater t value sum than the maximum cluster mass obtained
with 95% chance permutations were considered significant. We then
assessed the neural similarity of each trial to the spatiotemporal mask by
computing the dot product between the activity in the individual trial
(voltage maps of electrode � time) and the identified masks (t value
maps of electrode� time). This computation produced a trial-level simi-
larity measure intended to assess the trial-wise experienced WM load
and delay effects, as well as trial-wise RL contributions.

The EEG RL index predictor used in the general mixed-effect regres-
sion analyses of both test phases was calculated by averaging the EEG RL
index in the final six iterations of each stimulus. This was done for each
stimulus–response association within each participant.

Stress manipulation
All testing took place in the morning between 8:00 A.M. and noon. On
their arrival in the lab, participants’ baseline measures of blood pres-
sure and salivary cortisol were taken. Afterward, participants were pre-
pared for the EEG and completed the Multidimensional Mood State
Questionnaire (Steyer et al., 1994) that measures subjective mood on
the scales, negative versus elevated mood, calmness versus restlessness,

Figure 3. Behavioral results from the learning phase. A–B, Performance learning curves and RTs for each set size as a function of the number of iterations of a stimulus (stim). C,
Performance as a function of WM load, the detrimental effect of delay is greater in high set sizes. D–E, Reduced effects of both delay and set size as learning progresses from early (up to 2 pre-
vious correct choices) to late (the last 2 trials of each stimulus) trials in a block, suggestive of a transition from WM to RL.
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and wakefulness versus tiredness, before and after the treatment as well
as after the learning task. Forty-two participants underwent the
Socially Evaluated Cold Pressor Test (SECPT; Schwabe et al., 2008),
and 44 participants were assigned the warm water control condition.
The SECPT is a standardized stress protocol in experimental stress
research that combines physiological and psychosocial stress elements
and has been shown to result in robust stress responses (Schwabe and
Schächinger, 2018). During the SECPT, participants in the stress group
immersed their right hand for 3 min in ice water (0–2°C) while being
videotaped and evaluated by a nonreinforcing, cold experimenter. In
the control condition, participants immersed their hands in warm
water (35–37°C), without being videotaped or evaluated by an experi-
menter. About 25min after the treatment, participants received the
learning task instructions and completed a brief training session, after
which they completed the learning task and test phases 1 and 2. In
total, the experiment lasted;130min.

Results
In line with previous findings in this task (Collins et al., 2017b),
our data demonstrated separable contributions of RL and WM
systems to performance. The contribution of incremental RL
was observed as the proportion of correct responses increased
with the progress in the block (Fig. 3A) and with the increase in
reward history [Pcor, b = 0.67, SE = 0.05, z(46926) = 13.17, p
, 0.001]. WM contributions were observed as learning was
strongly affected by set size with a greater proportion of correct
responses in low set sizes than in high set sizes [set size, b =
�0.28, SE = 0.05, z(46926) = �5.39, p , 0.001]. Learning
curves were more gradual in higher set sizes than in low set
sizes (Fig. 3A; and slower, Fig. 3B). Moreover, performance

decreased with increasing delay in larger set sizes [delay �
ns, b = �0.09, SE = 0.05, z(46926) = �2.59, p = 0.009; Fig.
3C]. These relative contributions of WM decreased with
learning as the detrimental effect of delay attenuated with the
increase of accumulated rewards [ns � Pcor, b = 0.13, SE =
0.04, z(46926) = 3.35, p , 0.001; delay � Pcor, b = 0.34, SE =
0.04, z(46926) = 9.17, p , 0.001; ns � delay � Pcor, b = 0.20,
SE = 0.03, z(46 926) = 6.37, p , 0.001; Fig. 3D,E], reflecting a
transition from WM to RL. Together these results confirm the
cooperative interaction of early WM contributions that dimin-
ish as RL becomes more dominant.

Behavioral performance: reward retention test
Results replicated previous findings in this phase (Collins et al.,
2017b). Participants were more likely to select the stimulus for
which they had been rewarded more often during learning as a
function of the difference between the number of rewards experi-
enced for these stimuli [delta_Q, b = 0.41, SE = 0.04, z(19796) =
9.76, p , 0.001]. Moreover, also replicating previous findings,
this value discrimination effect was enhanced when stimulus val-
ues were learned under higher set sizes rather than under lower
set sizes [mean_setSize� delta_Q, b = 0.11, SE = 0.02, z(19796) =
6.04, p , 0.001]. For display purposes, the median split in the
absolute delta_Q score is shown as high- and low-value differences
(Fig. 4A). Furthermore, participants were generally less likely to
select the stimulus learned under a higher set size than under
a low set size [delta_setSize, b = �0.69, SE = 0.09, z(19796) =
�7.61, p , 0.001], an effect previously attributed to participants
learning a cost of mental effort in a high set size (Collins et al.,

Figure 4. Behavior performance at the test phase. A, Effect of value difference and set size on the reward retention test performance. The proportion of correct selection of the more reward-
ing stimulus from a pair of the probed stimuli increases as a function of differences in the number of experienced rewards (Q value diff) and the set size in which they were learned. diff,
Difference. The median split of absolute value differences is shown (red, high-Q value difference trials; blue, low-Q value difference trials). B–C, Effect of set size on the stimulus–response
retention test performance. The proportion of correct recall in the test phase increases as a function of the estimated Q values of the probed association and as a function of the set size in
which it was learned. The median split of the estimated stimulus–response Q values is shown (red, high Q value associations; blue, low Q value associations). D, Effect of EEG RL index on the
reward retention test performance. The proportion of correct selection of the more rewarding stimulus from a pair of the probed stimuli increases as a function of the set size in which they
were learned but was not further modulated by the magnitude of the EEG RL index of the stimuli. The median split of absolute differences in EEG RL indices is shown (red, high-EEG RL index
difference; blue, low-EEG RL index difference). E, Effect of the neural RL index on recall accuracy in the stimulus–response retention test. The neural RL index is shown as the median split across
all the RL indices. Stimuli with high RL index are depicted in red and stimuli with low RL index are depicted in blue. F, The EEG RL index increases parametrically with the increase in accumu-
lated rewards. These neural learning curves parametrically increase with set size. Error bars indicate SE.
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2017b). There was no effect for the difference in the block in
which the item values were learned, nor was the set size effect
modulated by block number (p. 0.82). We also controlled for
response perseveration; no significant tendency was observed for
repeating the same response used in the previous trial (p. 0.69).

Behavioral performance: stimulus–response retention test
Supporting the key model prediction that retention of stimu-
lus–response associations should improve as load increases, we
observed better recall performance for associations learned
under high rather than low set sizes [set size, b = 0.84, SE =
0.05, z(11894) = 15.83, p , 0.001]. And, indeed, this effect was
parametric, with substantially better performance as set size
increased (Fig. 4B,C). This effect is particularly striking given
that performance is parametrically worse for the higher set size
items during learning (compare Fig. 3A, Fig. 4C). Not surpris-
ingly, recall accuracy in the test phase was positively predicted
by the estimated Q value of the probed stimulus–response
association [model Q, b = 0.27, SE = 0.04, z(11 894) = 6.97,
p , 0.001]; that is, associations that were learned better
were also better remembered. Importantly, this effect grew
when the set size was high [model Q � set size, b = 0.15, SE =
0.04, z(11 894) = 3.64, p , 0.001; Fig. 4B]. Recall accuracy was
also subject to the influence of recency as associations learned

during more recent than early blocks were also recalled more
accurately [block, b = 0.22, SE = 0.03, z(11894) = 8.61, p ,
0.001]. This recency effect increased for associations learned
under higher set sizes [set size � block, b = 0.09, SE = 0.02, z
(11894) = 4.13, p , 0.001]. No effect of perseveration in
responses was observed (p. 0.11).

EEG correlates of WM and RL during learning
The model-based EEG analysis indicated significant effects for
all three variables of interest—set size, delay, and RL. Consistent
with previous EEG results in this task (Collins and Frank, 2018)
and with the prediction that separable systems contribute to
learning, the neural signals of RL exhibited an early frontal activ-
ity (;300ms poststimulus onset; Fig. 5) that preceded the parietal
neural signal of set size (peaked at ;540ms; Fig. 5), supporting
the engagement of the RL system early in the trial followed
by the cognitively effortful WM process. The neural signals of RL
exhibited an additional late temporal activity (;600ms poststi-
mulus onset) that overlapped in time with the set size effect.
Finally, a significant frontal and parietal effect of delay was also
observed to initiate early at 300ms.

To quantify how the neural measure of RL is modulated by
WM and RL processes, we analyzed the trial-by-trial level EEG
RL index (reflecting how strong the RL computation is at a given

Figure 5. EEG decoding of RL and WM effects during choice. Corrected ERPs exhibiting the effect of three main predictors (top to bottom rows; green, set size; blue, delay; red, RL value
quartiles) on the voltage of significant electrodes (FCz, CPz, and Poz for set size and delay, and FCz, CPz, and C3 for RL). The black line reflects the significant time points after permutation cor-
rection. Right, The effect of each predictor in the row is exhibited with a scalp map topography at early (300ms) and late (540ms) time points. The color in the scalp map represents significant
thresholded t values.
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trial) with linear effects regression from 77 participants, as a
function of set size (setSize = 1, 2, 3, 4, 5), the number of previous
correct (Pcor = 1:15), and the interactions between them (see
above, Materials and Methods). As expected because of incre-
mental learning, neural indices of RL increased parametrically as
a function of reward history (Pcor, b = 0.17, t(38,377) = 34.77, p,
0.001). Importantly, confirming model predictions, neural RL
signals increased to a larger extent as the set size grew (Pcor �
setSize, b = 0.04, t(38,377) = 7.53, p, 0.001; Fig. 4F). This finding
corroborates previous reports that RL computations are larger in
high set sizes because of diminishing WM contributions and
thus increasing the accumulation of reward prediction errors
(Collins et al., 2017b; Collins and Frank, 2018).

We next assessed the core prediction that the neural RL index
is related to future retention, and more specifically the coopera-
tive model prediction that the speeded neural RL curves in high
set sizes are related to better retention of learned contingencies.
Notably, although this prediction did not hold for the reward
retention phase (abs_delta_EEG_RL, p = 0.65; mean_setSize �
abs_delta_EEG_RL, p = 0.61; Fig. 4D), it was clearly borne out
for the stimulus–response retention phase [EEG RL, b = 0.23, z
(10613) = 4.51, p, 0.001; Fig. 4E]. Stimuli that had been associ-
ated with a larger EEG RL index during learning were associated
with better recall of the associated response at test; this effect held
even when controlling for the non-neural predictors (which repli-
cated the prior analysis). Figure 4E shows that a high EEG RL
index (by median split) was predictive of better retention perform-
ance at test. The finding that the neural index of RL is related to
policy retention but not reward retention is relevant for models
that dissociate whether model-free RL in the brain encodes
expected values or policies (see above, Materials and Methods,
model method; see below, Discussion). Note that a slightly differ-
ent regression model was used for testing the neural RL index
effect on the reward retention test performance from the behavior
model used previously (see above, Materials and Methods).
Nevertheless, the key behavior results were replicated in this analy-
sis as performance increased with the increase in the absolute
value differences [abs_delta_Q, b = 0.31, SE = 0.03, z(17743) =
8.82, p , 0.001], and although this effect was not further modu-
lated by set size (mean_setSize � abs_delta_Q, p = 0.63), perform-
ance accuracy did improve with set size [mean_setSize, b = 0.07,
SE = 0.02, z(17743) = 3.23, p = 0.001; Fig. 4D].

Acute stress modulation of RL andWM interaction
Manipulation check
Subjective, autonomic, and endocrine data indicated that the
stress induction by the SECPT was successful. The SECPT was
rated as significantly more unpleasant, stressful, and painful than
the warm water control procedure (more difficult, t(84) = 9.941,
p , 0.001, d = 2.14; more unpleasant, t(84) = 9.088, p , 0.001,
d = 1.96; more stressful, t(84) = 7.72, p , 0.001, d = 1.66; and
more painful t(84) = 11.42, p , 0.001, d = 2.46; Table 1 and
Table 2). Furthermore, we observed significant Treatment-by-
Time interactions for subjective stress ratings (negative mood,
F(2,164) = 10.53, p , 0.001, h g

2 = 0.02; restlessness, F(2,164) = 9.47,
p , 0.001, h g

2 = 0.02) and autonomic arousal measures (systolic
blood pressure, F(4,336) = 26.22, p , 0.001, h g

2 = 0.06; diastolic
blood pressure, F(4,336) = 26.99, p , 0.001, h g

2 = 0.09; and heart
rate, F(3,252) = 10.70, p , 0.001, h g

2 = 0.02). As expected, these au-
tonomic responses returned relatively quickly to baseline after the
treatment (Fig. 6). The stress and no-stress control groups did not
differ in any of the autonomic arousal measures pretreatment (all
p values. 0.07).

Salivary cortisol (sCORT) responses were assessed by running
ANOVA with Time (T1, T2, T3, T4) as the within-subject factor
and Treatment (SECPT vs warm water control group) as the
between-subject factor. We observed a significant effect for Time
(F(3,234) = 28.53, p , 0.001, hp

2 = 0.27) but not for Treatment
(F(1,78) = 3.03, p = 0.08, hp

2 = 0.04). An expected Treatment �
Time interaction was observed (F(3,234) = 6.97, p , 0.001, hp

2 =
0.08), with the stress group displaying greater sCORT levels im-
mediately before the learning task (23min posttreatment; t(78) =
2.80, p = 0.006, d = 0.63), but only marginal difference was
observed at half time during learning task (50min post-treat-
ment; t(78) = 1.90, p = 0.06, d = 0.43). No difference in sCORT
levels was observed at baseline (t(78) = 0.61, p = 0.54), nor at the
end of the learning task (80min posttreatment; t(78) = 0.11, p =
0.91), suggesting that stress-induced cortisol elevations gradually
decreased during the learning task (Fig. 6). Note that six partici-
pants were excluded from the cortisol analysis because they did
not provide sufficient saliva for analysis.

Learning phase performance by stress group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby weakening the relative
contribution of WM in the training phase in the stress group
compared with the control group, we ran the same general
mixed-effect regression model on trial-by-trial training data
from 86 participants but added stress group as a factor (42 partic-
ipants in the stress group and 44 participants in the control
group). This analysis revealed that learning by set size interaction
was modulated by stress [Pcor � set size � stress_group, b =
�0.20, SE = 0.08, z(46926) = �2.60, p = 0.009] and so was the
learning by delay interaction [Pcor � delay � stress_group, b =
0.22, SE = 0.07, z(46 926) = 3.04, p = 0.002]. To understand the
nature of these interactions, we ran two follow-up analyses using

Table 1. The mean and SD (in parentheses) of the ratings before and after the
procedures are reported for the control group

Control group

Procedure ratings Before After End of testing day

Subjective mood
Depressed mood vs elevated mood 33.69 (4.99) 34.26 (4.72) 33.86 (4.66)
Restlessness vs calmness 32.476 (6.08) 33.83 (5.14) 33.24 (4.61)
Sleepiness vs wakefulness 28.571 (6.48) 28.31 (6.88) 26.64 (6.78)

Rating of control procedure
Difficult — 4.09 (13.21) —
Unpleasant — 9.52 (21.88) —
Stressful — 4.20 (15.23) —
Painful — 3.79 (14.62) —

Table 2. The mean and SD (in parentheses) of the ratings before and after the
procedures are reported for the stress group

Stress group

Procedure ratings Before After End of testing day

Subjective mood
Depressed mood vs elevated mood 33.76 (3.51) 31.57 (5.32) 33.43 (3.99)
Restlessness vs calmness 32.99 (4.24) 30.45 (6.14) 32.43 (4.72)
Sleepiness vs wakefulness 28.98 (5.71) 29.86 (6.16) 26.45 (6.12)

Rating of stressor
Difficult — 50.69 (28.01) —
Unpleasant — 58.73 (28.09) —
Stressful — 40.17 (26.70) —
Painful — 55.40 (25.97) —
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the same general mixed-effect regression model on trial-by-trial
training data, separately in the control (N = 44) and the stress
group (N = 42). These analyses showed that learning curves were
additive to the set size effect in the stress group (Pcor � set size,
p = 0.74) but not in the control group [Pcor � set size, b = 0.22,
SE = 0.05, z(24 031) = 4.30, p , 0.001], which showed a greater
drop in performance during high set sizes (Fig. 7A,B). The atte-
nuated delay effect with learning was significant for both the
stress group [Pcor � delay, b = 0.47, SE = 0.05, z(22895) = 8.41,
p , 0.001] and the control group [Pcor � delay, b = 0.23, SE =
0.05, z(24031) = 4.74, p, 0.001; Fig. 7C,D].

Reward retention test performance by stress group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby strengthening RL con-
urbations during the training phase and leading to better reten-
tion of learned information in the stress group compared with
the control group, we ran the same general mixed-effect regres-
sion model on trial-by-trial reward retention test data from 86
participants but added stress group as a factor (42 participants in
the stress group and 44 participants in the control group) and
analyzed test performance (the proportion of selecting the right
vs left stimulus). This analysis replicated the results of the behav-
ior analysis without the group factor. No effect of stress was
observed (p. 0.15; Fig. 7E).

Stimulus–response retention test performance by stress
group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby strengthening RL con-
urbations during the training phase and leading to better

retention of learned information in the stress group compared
with the control group, we ran the same general mixed-effect
regression model on trial-by-trial stimulus–response retention
test data from 86 participants but added stress group as a factor
(42 participants in the stress group and 44 participants in the
control group) and analyzed test performance. This analysis
revealed that the effect of set size on recall accuracy of stimulus–
response associations interacted with stress [set size � stress_
group, b = 0.22, SE = 0.10, z(11894) = 2.30, p = 0.02; Fig. 7F],
but follow-up analysis on each group separately showed signifi-
cant effect of set size on recall accuracy in both the control group
[b = 0.72, SE = 0.07, z(6129)=10.72, p , 0.001] and the stress
group [b = 0.95, SE = 0.08, z(5765) = 11.76, p, 0.001].

Discussion
Together, our findings provide insight into the intricate interplay
between WM and RL during learning, and its opposing influen-
ces on acquisition versus retention of stimulus–response associa-
tions. A previous study proposed a cooperative WMRL model,
whereby RPEs in the RL system are not only computed relative
to RL expected values but are also modulated by expectations
held in WM (Collins and Frank, 2018). This model accounted
for fMRI and EEG findings in which neural RPEs were dimin-
ished for smaller WM loads (Collins et al., 2017a; Collins and
Frank, 2018). Moreover, this model accounted for findings that
on a given trial, larger neural indices of WM expectations were
predictive of subsequent RPEs during the outcome, even within
a given set size (Collins and Frank, 2018). This model led to a
key prediction that enhanced RL processes under high WM load
would support more robust retention of learned association, de-
spite the substantially slower acquisition. Preliminary behavioral

Figure 6. Successful stress induction. A–D, The exposure to the stressor led to significant increases in systolic blood pressure (A), diastolic blood pressure (B), heart rate (C), and salivary cor-
tisol levels (D). Error bars indicate SEs. The control group is depicted in dark blue and the stress group in red; ppp, 0.01, pppp, 0.001 for the comparison between the stress group and
the control group.
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evidence for such a behavioral prediction had been reported by
Collins (2018), who showed enhanced retention of items learned
in set size 6 compared with set size 3. However, that study did
not employ neural recordings and thus did not test whether the
neural WMRL interaction was the underlying mechanism for
these effects. Here, we provide several lines of evidence in sup-
port of this claim.

First, our behavioral and EEG results replicated key findings
in the RLWM task and in the subsequent memory tests. In the
learning task, we observed worse acquisition with increasing set
size and with delays between successive stimulus presentations,
but as learning progressed (with the increase in reward history)
the negative effect of delay in high set sizes diminished consider-
ably. This observation further supports the model prediction that
RL dominates over WM with the accumulation of rewards
over time. Second, at the neural level, we also replicated find-
ings in which neural RL indices preceded the cognitively
costly WM process during stimulus processing (Collins and

Frank, 2018). Moreover, we found robust evidence that EEG
signals of RL increased more rapidly across trials under high
than low load (Fig. 4F), a key prediction of the cooperative
model (Fig. 2), although behavioral learning was slower in
these conditions.

Importantly, we observed that associations learned under
higher WM load had increasingly higher recall accuracy in the
stimulus–response retention test (Fig. 4C). This result extends
the previously reported retention benefit of associations learned
under high compared with low set sizes (Collins, 2018). We
showed that this effect is parametric across five levels of WM
load, and moreover that the greatest retention deficits occurred
for the very lowest set sizes in which participants could easily
learn the task purely via WM. Furthermore, we replicated previ-
ous results in the reward retention test (Collins et al., 2017b) and
demonstrated that participants have differential sensitivity to the
proportion of trials in which they were rewarded for either of the
stimuli and this effect grew with set size.

Figure 7. Stress effects during the learning and test phases. A, B, Learning curves across iterations as a function of set size in the control group (A) and stress group (B). C, D, Learning
curves across the number of previous correct as a function of delay (1–5 where 5 reflects delay of 5 and above) in the control group (C) and stress group (D). E, Effect of stress on the reward
retention test performance. The proportion of correct selection of the more rewarding stimulus from a pair of the probed stimuli increases as a function of the set size in both the control group
(black) and in the stress group (red). F, Effect of stress on recall accuracy in the stimulus–response retention test. The proportion of correct recall in the stimulus–response test increases as a
function of the set size in both the control group (black) and the stress group (red). Error bars indicate SEs.
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Finally, to gain a better understanding of the mechanism re-
sponsible for the benefits in both retention tests, we leveraged a
within-trial neural indexing approach of EEG dynamics. We
showed that neural indices of RL during acquisition were predic-
tive of subsequent retention in the stimulus–response retention,
even after controlling for set size. This result supports the key
model prediction that RL processes during learning, which are
stronger under highWM load, are responsible for increasing pol-
icy retention whenWM is no longer available. In contrast, neural
indices of RL were not predictive of performance in the reward
retention test.

This result supports theoretical and empirical studies suggest-
ing that model-free learning in the brain (especially the cortico-
striatal system) directly learns a stimulus–response policy using
prediction errors from another system (actor-critic; Collins and
Frank, 2014; Klein et al., 2017; Jaskir and Frank, 2023). By this
account, the actor selecting policies would have no direct access
to experienced reward values but only the propensity for a spe-
cific response for each of them. Participants could plausibly
access their critic values for each stimulus and compare them in
the reward retention phase, but they would not have had to do
so during learning. Indeed, participants show above chance per-
formance in such discriminations but only subtly (accuracy rises
up to 60% at best); in contrast, accuracy in the stimulus–response
retention test, which directly assesses what the actor would have
learned, is far superior (;80% for the higher set sizes), despite
being tested with further delays since learning.

For most simple RL tasks, these two classes of model-free RL
algorithms (those that focus on learning expected values and the
actor-critic), are largely indistinguishable as they both predict
that an agent progressively chooses those actions that maximize
reward. However, several theoretical and empirical studies sug-
gest that the basic RL system in humans satisfies predictions of
an actor-critic in behavior, imaging, and in theoretical models of
corticostriatal contributions to RL (Li and Daw, 2011; Gold et al.,
2012; Collins and Frank, 2014; Klein et al., 2017; Geana et al.,
2022; Jaskir and Frank, 2023). Moreover, the model fits here did
not improve if we allowed the Q learning agent to learn the
difference between two versus one point and instead suggested
that participants learned to simply maximize task perform-
ance, which effectively makes Q learning equivalent to an
actor-critic at the level of task performance. Nevertheless, Q
learners would, at minimum, learn the reward value of a stim-
ulus in terms of the percentage of times they were correct (i.e.,
whether they got one or two points versus zero). Yet, the EEG
marker of RL is still not related to performance in the reward
retention test even when a correct performance there would
be counted as simply choosing the stimulus that had yielded
higher proportion of correct responses. Although our neural
RL index cannot distinguish between an EEG metric of Q val-
ues or actor weights, the findings that it only predicts perform-
ance in the stimulus–response test provides initial evidence
supporting the actor interpretation where the neural RL index
reflects the policy rather than its reward value.

Although we focused mainly on how the RLWM mecha-
nism informs retention, we also tested whether the interaction
between RL and WM can be modulated by acute stress. Stress
is known to have a major impact on learning and decision-
making processes (Starcke and Brand, 2012; Raio et al., 2017;
Cremer et al., 2021). Previous work had shown that acute
stress alters prefrontal cortex functioning, thus impairing execu-
tive control over cognition (cognitive inhibition, task switching,
working memory maintenance; Schwabe et al., 2011; Schwabe

and Wolf, 2011; Plessow et al., 2012; Hamilton and Brigman,
2015; Bogdanov and Schwabe, 2016; Vogel et al., 2016; Goldfarb
et al., 2017; Brown et al., 2020). On the other hand, acute stress
was also shown to increase striatal dopamine activity (Vaessen et
al., 2015) leading to better working-memory updating (Goldfarb
et al., 2017) and improving executive control over motor actions
(i.e., response inhibition; Schwabe and Wolf, 2012; Leong and
Packard, 2014). We, therefore, predicted that stress would affect
the WM versus RL trade-off such that it will impede the contri-
bution of WM to learning and will instead enhance the relative
contribution of RL computations. Current results did not con-
firm this hypothesis as only subtle differences were observed
between the stress and control groups during the learning task
and at the tests.

It is possible that the 25 min delay between the stressor and
the beginning of the learning task hindered the stress response
on behavior as it was previously suggested that both noradrena-
line and cortisol levels need to be elevated in order for stress to
affect WM performance (Elzinga and Roelofs, 2005; Roozendaal,
et al., 2006; Barsegyan et al., 2010). Another intriguing possibility
is that individuals with higher WM capacity were more resilient
against cognitive impairments induced by stress and were also
less biased toward habitual decision-making (Otto et al., 2013;
Quaedflieg et al., 2019; Cremer et al., 2021). Future work should
test directly the specific effect of stress on WM and RL interac-
tions while taking into account participants’ WM capacity as a
factor.

To conclude, our results contribute to a better understanding
of the coupled mechanism of WM and RL that can dynamically
shift between relying more on the effortful, but fast and reliable
WM system or the slow, more error-prone RL system that has
retention benefits. We reported trial-by-trial evidence in the neu-
ral signal for this trade-off during learning and showed that
greater reliance on the RL system when WM is degraded (i.e.,
when WM load is high) predicted better memory retention of
learned stimulus–response associations. An intriguing possibility
that remains to be tested is that the shift between the two systems
is strategic and can be modulated by one’s preference or ability
to maximize immediate learning versus retention. However, it
remains to be seen whether clinical populations with impair-
ments in one or both systems of WM and RL might alter the
flexible shifting between the two systems, possibly biasing the
use of one system more than the other even when it is less
advantageous.
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