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Summary

Terahertz (THz) spintronics is an emerging field of research that combines ultrafast
optics with spintronics, the manipulation of the spin degree of freedom of electrons. The
field of spintronics has led to many advances in the development of electronic devices in
recent decades. By integrating it with ultrafastmagnetism, it becomes possible to leverage
the femtosecond speed of lasers to stimulate the launch of spin currents. The use of THz
radiation presents an energy-efficient alternative to optical pulses as it directly targets
the excitation of magnons. Conversely, magnetic processes on a picosecond timescale
result in the emission of THz radiation.
This work explores both aspects of the topic of THz spintronics. First, we develop a

high-energy THz source based on optical rectification in LiNbO3, with the goal of reso-
nantly exciting the spin dynamics of antiferromagnets. We observe the ferromagnetic and
antiferromagnetic uniform magnon modes in the model canted antiferromagnet FeBO3.
In a second part, we explore spintronic THz emitter designs to find novel approaches
for manipulating spin currents. These devices, which consist of pairs of ferromagnetic
and non-magnetic layers, convert the picosecond dynamics of spin currents into tran-
sient charge currents, resulting in the emission of THz pulses. They enable the probing
of the dynamics of the ultrafast demagnetization ferromagnets, while also offering an
efficient and practical tool for THz generation. Using spin valve-like samples, this work
demonstrates their ability to dynamically enhance or suppress the THz emission with the
application of a magnetic field, as well as switch the orientation of the THz polarization.
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Zusammenfassung

Die Terahertz-Spintronik ist ein aufstrebendes Forschungsgebiet, das die ultraschnelle
Optik mit der Spintronik, der Manipulation des Spin-Freiheitsgrads von Elektronen,
verbindet. Das Gebiet der Spintronik hat in den letzten Jahrzehnten zu zahlreichen Fort-
schritten bei der Entwicklung elektronischer Geräte geführt. Durch die Integration von
Spintronik und ultraschnellem Magnetismus wird es möglich, die Femtosekundenge-
schwindigkeit von Lasern zu nutzen, um den Start von Spinströmen zu stimulieren. Die
Verwendung von THz-Strahlung stellt eine energieeffiziente Alternative zu optischen
Pulsen dar, da sie direkt auf die Anregung vonMagnonen abzielt. Umgekehrt führenma-
gnetische Prozesse auf einer Pikosekunden-Zeitskala zur Emission von THz-Strahlung.
Diese Arbeit erforscht beide Aspekte des Themas THz-Spintronik. Zuest Mal ent-

wickeln wir eine hochenergetische THz-Quelle, die auf optischer Gleichrichtung in
LiNbO3 basiert, mit dem Ziel, die Spindynamik von Antiferromagneten resonant anzure-
gen. Wir beobachten die ferromagnetischen und antiferromagnetischen gleichförmigen
Magnonenmoden in dem verkanteten Modell-Antiferromagneten FeBO3. In einem
zweiten Teil untersuchen wir spintronische THz-Emitterdesigns, um neue Ansätze zur
Manipulation von Spinströmen zu finden. Diese Bauelemente, die aus Paaren von ferro-
magnetischen und nichtmagnetischen Schichten bestehen, wandeln die Pikosekunden-
Dynamik von Spinströmen in transiente Ladungsströme um und emittieren THz-Pulse.
Sie ermöglichen die Untersuchung der ultraschnellen Entmagnetisierungsdynamik von
Ferromagneten und bieten gleichzeitig eine effiziente und praktische Methode zur Er-
zeugung von Terahertzimpulsen. Mit Hilfe von Spin-Ventil-ähnlichen Proben wird in
dieser Dissertation die Fähigkeit demonstriert, die THz-Emission durch Anlegen eines
Magnetfeldes dynamisch zu verstärken oder zu unterdrücken sowie die Orientierung
der THz-Polarisation zu verändern.
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Résumé

La spintronique térahertz (THz) est un champ de recherche émergent qui combine la
photonique ultrarapide et la spintronique, c’est-à-dire lamanipulation du degré de liberté
du spin. L’étude de la spintronique a permis de nombreuses avancées dans le dévelop-
pement de dispositifs électroniques au cours des dernières décennies. En combinant ce
domaine avec celui du magnétisme ultrarapide, il devient possible d’exploiter la rapidité
des lasers femtosecondes pour émettre des courants de spin. L’utilisation de rayonne-
ment dans la bande de fréquence THz est une alternative énergétiquement efficace aux
impulsions optiques, car elle permet d’influencer directement l’émission de magnons.
De même, certains phénomènes magnétiques à l’échelle de la picoseconde entraînent
l’émission de rayonnement THz.
Ce travail explore ces deux aspects du thème de la spintronique THz. Tout d’abord,

une source THz à haute énergie basée sur le principe de rectification optique dans un
cristal de LiNbO3 est présentée, qui a été développée dans le but d’exciter de manière
résonnante la dynamique de spin de matériaux antiferromagnétiques. Nous observons
les deux modes de précession uniforme dans le matériau FeBO3, qui est ordonné antifer-
romagnétiquement avec une faible composante ferromagnétique. Dans une deuxième
partie, nous explorons différentes structures d’émetteurs THz spintroniques afin de
trouver de nouvelles approches pour manipuler les courants de spin. Ces émetteurs, qui
consistent en un ensemble de couches minces comportant une ou plusieurs paires de
métaux ferromagnétiques et non magnétiques, transforment la dynamique des spins en
un courant de charge transitoire, ce qui entraîne l’émission d’une impulsion THz. Ils per-
mettent de suivre la réduction ultrarapide de l’aimantation dans les métaux de transition
ferromagnétiques, mais offrent également une source d’émission THz efficace et flexible.
En utilisant des émetteurs imitant la structure des valves de spin, ce travail démontre
leur potentiel pour accroître ou supprimer dynamiquement l’émission de rayonnement
THz par l’application d’un champ magnétique, ainsi que de changer l’orientation de la
polarisation du champ THz.
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1
Introduction

1.1 Spintronics

From the firstmagnetic recorders of the late 19th century to current hard drives, magnetic
storage has played a crucial role in the development of information technology. The
advent of quantumphysics and the discovery of the intrinsicmagneticmoment carried by
electrons, their spin, unlocked a new understanding of the origin of magnetism. During
most of the 20th century, charge and spin have however been treated as conceptually
separate systems.
This changed with the discovery of the tunneling magnetoresistance [1] and giant

magnetoresistance [2, 3], which prompted interest in the spin-dependent transport
of electrons in magnetic materials. A few years later, the discovery of the ultrafast
demagnetization of nickel when the electrons are heated by a femtosecond laser [4]
asserted the link between the dynamics of electrons and spins.
These experiments initiated two related fields: spintronics, or spin-based electronics,

concerns the transport of spin currents, while ultrafast magnetism involves the manip-
ulation of the magnetic order on sub-picosecond timescales using laser ultrafast pulses.
The development of spintronic devices has led to faster, more efficient andmore compact
electronic devices, and today spintronic components such as spin valves, magnetic tun-
nel junctions, and spin transistors are used in the reading head of hard drives, magnetic
sensors and magnetic random-access memory.
As our understanding of the spin interactions in the solid state progresses, so do the

opportunities for technological applications. Developing the next generation of memory
storage requires faster, more energy-efficient methods of switching the magnetization
of memory cells, increasing their density and stability. The sensitivity of spintronic
sensors must grow accordingly, in order to accommodate denser storage. The current
directions of research encompass a large variety of phenomena related to the generation,
detection and manipulation of the electron spin, in order to increase the efficiency
and controllability of the transfer of angular momentum [5, 6]. Many approaches are
studied to find efficient ways of injecting a spin current into different materials. This
involves optimizing both the generation of an electrical current, using electric fields,
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electromagnetic waves or thermal gradients, and the spin polarization of this current,
exploiting among others the spin-dependence of the conductivity, interface transmission,
and mean free path of electrons. Multilayer stacks of magnetic and non-magnetic
materials are investigated for their potential to sustain a spin current for long distances
and efficiently transmit the current through interfaces. At the same time, new materials
that combine the properties of semiconductors used in electronics with the spintronic
properties of ferromagnets are explored, in order to bring the spin manipulation closer
to the electronic devices.
Such studies require measurement techniques that can resolve the fast dynamics of

the spin system, which occur in the gigahertz to terahertz range. This connects the
spintronics research with the field of ultrafast magnetism, in which femtosecond lasers
are used to manipulate the magnetization and monitor its evolution. Recently, the
reproducible all-optical switching of the magnetization without the use of a magnetic
field was shown possible [7]. Fundamental questions relevant to both fields have been
highly discussed in the last years, such as the nature of the channels allowing the
dissipation of angular momentum during the ultrafast demagnetization of ferromagnetic
films [8, 9], and the role played in it by spin transport [10, 11].
Spintronics and ultrafast magnetism have spawned several subfields, due to the variety

of materials and phenomena they encompass. The emergent field of magnon spintronics
has become of interest for its capacity to transport information at long distances, using
spin waves instead of itinerant electrons as the carrier of a spin current [12]. As they
involve localized spins, spin waves propagate in insulators and suffer fewer losses than
conventional conductors, and find applications for example as computing elements [13].
At the same time, the field of spin-orbitronics develops the electrical writing and reading
of antiferromagnetic memory elements. Antiferromagnetic materials, which have
several sublattices whose magnetization cancel, have the benefits of not emitting a stray
field, while also having faster dynamics than ferromagnets [14, 15]. Terahertz (THz)
spintronics is the use of electromagnetic pulses in the THz range rather than optical. It
overlaps with the frequency range of spin waves, allowing their resonant and thus more
efficient excitation. Indeed, THz pulses have been shown to coherently turn on and off
spin waves in antiferromagnets [16].
Not all mechanisms of magnetization switching, ultrafast demagnetization and spin

transport are well-understood even today. Deciphering the out-of-equilibrium processes
and complex interactions in solids is still challenging, and the difficulty increases with
the large variety of complexmaterials and structures used in spintronic applications [17].

1.2 THz generation

The link between THz radiation and magnetism goes both ways, as spintronic devices
have advanced the technology of THz generation. This frequency band between mi-
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crowaves and infrared hosts many low-energy excitation in matter, such as spin waves,
lattice and molecular vibrations. It is of interest for spectroscopy, medical imaging and
wireless communication.
There is a large variety of mechanisms that generate THz radiation. Finding the right

source depends on the balance between the peak electric field, bandwidth and degree
of coherence required from the THz pulses, as well as the emission efficiency, damage
threshold, size and required infrastructure of the emitting device. Classical tabletop
sources comprise photoconductive antennas, optical rectification, optical parametric
oscillation and plasma-based sources, all but the first exploiting the nonlinear response
of optically pumped materials. Quantum cascade lasers can emit THz radiation directly
but typically need to be operated at cryogenic temperatures, while sources based on
particle acceleration such as synchrotrons, klystrons or free-electron lasers [18] can
reach high output power, but do not have the accessibility of tabletop sources.
While the emission of THz radiation following the dissipation of a spin current in a

non-magnetic layer was first seen as a useful probe of the magnetization dynamics [19,
20], spintronic THz emitters are now an established source in their own right. Their
main advantages are their ease of operation and their large bandwidth, reaching up
to 30 THz [21]. They can be upscaled to emit electric fields up to 300 kV cm−1 [22],
comparable to the highest-intensity photoconductive antennas [23] and the typical
emission by optical rectification in LiNbO3. The latter has been shown to emit up to
1.2MVcm−1 [24], and remain one of the preferred methods for generating high-energy
single-cycle pulses.

1.3 This thesis

This thesis explores both sides of the topic of THz spintronics. The first goal of this project
was the development of a high-energy THz source to resonantly trigger spin dynamics
in antiferromagnets. The second was the exploration of spintronic THz emitters designs
and new ways to manipulate the spin current.
Chapter 2 – THz generation by optical rectification concerns the development of a

single-cycle THz source using the pulse front tilt technique in LiNbO3. It starts by laying
some theoretical background about nonlinear optics, then expands on the experimental
techniques to implement a pulse front tilt scheme. It continues with a description of the
THz sources that were build for this project, as well as a THz horn designed to enhance
their peak electric field. Finally, it describes the use of the THz radiation to trigger the
two spin precession modes in the model antiferromagnet FeBO3.
Chapter 3 – Theory of magnetism is mainly aimed at an audience unfamiliar with

magnetism. It provides an overview of the origin of themagnetic phenomenamentioned
in this thesis and the theoretical foundations necessary to understand the challenges of
spintronics. Starting with the basic quantum properties of electrons, it paints a broad
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picture of the emergence of magnetic properties as the system increases in complexity.
It concludes by bringing these concepts together into a model of spin precession as used
for FeBO3, and paves the way for a description of spin currents in conductors.
Chapter 4 – Spintronic THz emitters concerns the design and measurement of spin-

tronic THz emitters. After an overview of the spintronic phenomena on which such
emitters rely, it describes our concept for samples that can operate without the need for
an external magnetic field to stabilize the magnetization. It follows with the measure-
ment of the THz emission by different classes of samples, with varying number of layers
and magnetic configurations. The accompanying simulations of the spin current and
THz emission are used to analyze the behavior of the different samples and further our
understanding of the spin current.
Finally, the appendices offer additional details. AppendixA–Material characterization

lists the optical properties in the THz range of the materials used throughout this work.
Appendix B – Electro-optic sampling and Appendix C – Spintronic THz emitters sources
describe the numerical model used to recover the spectrum of emitted THz radiation,
notably inside the spintronic THz emitters.
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2
THz generation by optical rectification

In this first chapter, our objective is the generation of high-energy THz pulses to excite the
magnetization dynamics of antiferromagnets. Such materials have magnon frequencies
typically in the few hundreds of GHz, whose resonant excitation enables the coherent
control and the switching of the magnetization [25]. While THz radiation is able to
efficiently target the high magnon frequencies of antiferromagnets, achieving a high-
energy pulse would open the way to the study of the nonlinear regime [26–28]. To test
the capabilities of the setup, we measure FeBO3, a well-studied canted antiferromagnet
known for its large Faraday rotation and transparency in the visible range [29].

Radiation in the 0.1 THz to 10 THz range is typically generated through the down-
conversion of optical or infrared (IR) lasers, resulting in relatively weak pulses due to the
lower photon energy. Record energy conversions efficiencies for the generation of single-
cycle pulses range from 2.36% [30] to 3.7% [31]. Pulse front tilting in cryogenically cooled
LiNbO3 is a prominent technique to achieve such pulses, as it allows the constructive
buildup of the THz radiation by matching its phase velocity to the group velocity of the
pump, therefore permitting the repeated down-conversion of the pump photons.

Section 2.1 introduces the fundamentals of nonlinear optics enabling the IR-to-THz
conversion, as well as the functioning and optimization principles of tilted pulse front
(TPF) setups. Our setups are then described in Section 2.2. Finally, Section 2.3 will
demonstrate the application of the THz radiation to the excitation of the uniformmagnon
modes of FeBO3.

2.1 Optical rectification

2.1.1 Theory

We begin this chapter with an overview of the mathematical formalism surrounding
THz generation via optical rectification (OR), in order to understand the reason behind
the use of TPF schemes.
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2 THz generation by optical rectification

2.1.1.1 Nonlinear optics principles

Electrons are polarized by the presence of electric fields. In a medium, they generally do
not respond instantaneously, so that the polarization of the material with the response
function 𝑹(τ) when an electric field is applied is #»𝑷 (𝑡) = ϵ0 ∫

0
−∞𝑹(τ) #»𝑬 (𝑡 − τ)dτ. In the

frequency domain, the polarization is described by the electronic susceptibility tensor 𝛘 :
#»𝑷 (ω) = ϵ0𝛘

#»𝑬 (ω). (2.1)

From the Taylor expansion of the position of an electron in an anharmonic potential, the
susceptibility can be expanded as the power series 𝛘 = 𝛘(1)+𝛘(2) ⋅ #»𝑬 +(𝛘(3) ⋅ #»𝑬 )⋅ #»𝑬 +(… ).
Each component 𝛘(𝑛) of the susceptibility is a tensor of rank 𝑛 + 1, whose coefficients
are frequency-dependent. Using the multiple dots operator to represent the successive
inner products, the first three orders are written:

#»𝑷 = ϵ0 (𝛘(1) ⋅
#»𝑬 + 𝛘(2) .. #»𝑬 2 + 𝛘(3) ...

#»𝑬 3) , (2.2)

where #»𝑬 2 is a shortcut for the outer product #»𝑬 ⊗ #»𝑬 . This can equivalently be written,
with implicit summation on repeated indices:

𝑃𝑖 = ϵ0 (χ
(1)
𝑖𝑗 𝐸𝑗 + χ(2)𝑖𝑗𝑘𝐸𝑗𝐸𝑘 + χ(3)𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙) . (2.3)

In the low field regime, the higher-order perturbations are small and only the first order
is not negligible. In this case, the dielectric constant is expressed as 𝛜𝒓 = 𝒏𝟐 = 1 + 𝛘(1) ,
and the electric displacement #»𝑫 = ϵ0

#»𝑬 + #»𝑷 = ϵ0 (1 + 𝛘(1)) #»𝑬 is linear with the applied
electric field.
The first experimental demonstration of the existence of the nonlinear regime was the

observation that a strong direct current (DC) electric field can induce birefringence in
solids, and was named the DC Kerr effect [32]. It is a third-order nonlinear effect of the
form #»𝑷 = ϵ0 (𝛘(1) + 𝛘(3) .. #»𝑬 2

DC) ⋅
#»𝑬 .

The properties of the susceptibility tensor are determined by those of the material.
In a lossless and dispersionless medium, all coefficients of 𝛘 are real and frequency-
independent, in which case Eq. (2.1) is also valid in the time domain [33, chapter 1].
In media with inversion symmetry, all even components of 𝛘 vanish. Indeed, when
a material is transformed using a transformation matrix 𝑨 , the coefficients of a given
component of the susceptibility tensor are transformed according to the model [34,
chapter 3]:

𝛘′(𝑛)𝑖𝑗𝑘… = 𝐴𝑖α𝐴𝑗β𝐴𝑘γ…𝛘(𝑛)αβγ… . (2.4)

In the case of inversion symmetry, the transformation matrix is:

𝑨 =

⎡
⎢
⎢
⎢
⎢
⎣

−1 0 0

0 −1 0

0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

. (2.5)
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2.1 Optical rectification

Because all other components vanish, 𝛘′(𝑛)𝑖𝑗𝑘… = 𝐴𝑖𝑖𝐴𝑗𝑗𝐴𝑘𝑘…𝛘(𝑛)𝑖𝑗𝑘… = (−1)𝑛𝛘(𝑛)𝑖𝑗𝑘…. Since
the physical properties of a material must have the same symmetries as the material
itself (Neumann’s principle), 𝛘′(𝑛)𝑖𝑗𝑘… = 𝛘(𝑛)𝑖𝑗𝑘… . Consequently, if 𝑛 is pair, all coefficients of
𝛘(𝑛) must be zero.
In lossy or dispersive media, the nonlinear susceptibility is a complex quantity relating

the complex amplitudes of the electric field and the polarization. We use the complex
electric field #»𝓔 (𝑡) defined as:

#»𝓔 ( #»𝒓 , 𝑡) = #»𝓔 ( #»𝒓 )𝑒𝑖ω𝑡 =
#»̂𝑬 𝑒𝑖(ω𝑡−

#»𝒌 ⋅ #»𝒓 )

#»𝑬 ( #»𝒓 , 𝑡) = 1
2 (

#»𝓔 ( #»𝒓 , 𝑡) + #»𝓔∗( #»𝒓 , 𝑡))
(2.6)

where #»𝓔 ( #»𝒓 ) is the complex field amplitude and
#»̂𝑬 the spatially slowly varying amplitude.

A field composed of several monochromatic components is thus:

#»𝑬 (𝑡) = ∑
ω>0

#»𝑬𝛚(𝑡) =
1
2 ∑ω

#»𝓔ω𝑒𝑖(ω𝑡). (2.7)

Because of the factor 1 / 2, the real Fourier component 𝐸(ω) (in Vm−1Hz−1) should not
be confused with the complex field amplitude ℰω (in Vm−1).
Using Eq. (2.7), we can expand the second-order sum of two fields at the frequencies

ω1 and ω2 to find the different components generated by their interaction. The corre-
sponding effects are second harmonic generation (SHG) with a susceptibility of the form
𝛘(2)(2ω; ω, ω), sum frequency generation (SFG) with 𝛘(2)(ω1 + ω2; ω1, ω2), difference fre-
quency generation (DFG) with 𝛘(2)(ω1 − ω2; ω1, ω2), and OR with 𝛘(2)(0; ω1, ω2). If one
of the two fields is a DC field, we find the Pockels effect, with 𝛘(2)(ω; ω, 0).

𝐸2 = (𝐸1 + 𝐸2)
2 = (ℰ1 𝑒𝑖ω1𝑡 + ℰ2 𝑒𝑖ω2𝑡 + c.c.)2

= ℰ21 𝑒𝑖2ω1𝑡 + ℰ22 𝑒𝑖2ω2𝑡 + c.c. (SHG)

+ 2ℰ1ℰ2 𝑒𝑖(ω1+ω2)𝑡 + c.c. (SFG)

+ 2ℰ1ℰ∗2 𝑒𝑖(ω1−ω2)𝑡 + c.c. (DFG)

+ 2ℰ1ℰ∗1 + 2ℰ2ℰ∗2 . (OR)

(2.8)

In practical cases, one is usually only interested in the component of the polarization at
a specific frequency. For example, the amplitude along the direction 𝑖 of the second-order
polarization at the frequency ω3 = ω1 + ω2 created by SFG from two fields of amplitude
#»𝓔 (ω1) and

#»𝓔 (ω2) can be explicitly written as:

𝒫SFG
𝑖 (ω3) = 2 𝑃SFG𝑖 (ω3) = 2ϵ0∑

𝑝
∑
𝑗𝑘
χ(2)𝑖𝑗𝑘(ω3; ω1, ω2)

1
2 ℰ𝑗(ω1)

1
2 ℰ𝑘(ω2), (2.9)

where the indices 𝑖, 𝑗, 𝑘 independently take the value of each spatial direction, and the
summation over 𝑝 indicates the possible permutations of the frequencies ω1 and ω2.
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Spelling out the latter gives [35]:

𝒫SFG
𝑖 (ω3) =

ϵ0
2 ∑

𝑗𝑘
χ(2)𝑖𝑗𝑘(ω3; ω1, ω2) ℰ𝑗(ω1) ℰ𝑘(ω2) +

ϵ0
2 ∑

𝑗𝑘
χ(2)𝑖𝑗𝑘(ω3; ω2, ω1) ℰ𝑗(ω2) ℰ𝑘(ω1)

=
ϵ0
2 ∑

𝑗𝑘
(χ(2)𝑖𝑗𝑘(ω3; ω1, ω2) + χ(2)𝑖𝑘𝑗(ω3; ω2, ω1)) ℰ𝑗(ω1) ℰ𝑘(ω2). (2.10)

Using the intrinsic permutation symmetry convention that the indices corresponding to
the input pulses can be freely permuted, χ(2)𝑖𝑗𝑘 = χ(2)𝑖𝑘𝑗 and we obtain:

𝒫SFG
𝑖 (ω3) = ϵ0∑

𝑗𝑘
χ(2)𝑖𝑗𝑘(ω3; ω1, ω2) ℰ𝑗(ω1) ℰ𝑘(ω2). (2.11)

The general expression of the polarization amplitude for a process of any order is [36,
chapter 2]:

𝒫(𝑛)
𝑖 (ω) = 𝑝𝑛 2𝑙+𝑚−𝑛 ϵ0 ∑

𝑗𝑘…𝑧
χ(𝑛)𝑖𝑗𝑘…𝑧(ω; ω1, ω2,… , ω𝑛) ℰ𝑗(ω1) ℰ𝑘(ω2)…ℰ𝑧,𝑛, (2.12)

where 𝑝𝑛 is the number of distinct permutations of the input frequencies, 𝑙 = 0 if ω = 0
or 1 if ω ≠ 0,𝑚 is the number of zero frequencies to the right of the semicolon, and 𝑛 is
the order of the process.

2.1.1.2 Phase matching in the case of optical rectification

THz generation by optical rectification occurs when two frequencies inside the pump
spectrum, which are separated by the THz frequency, interact. Although it is strictly
speaking a case of DFG, the THz field is almost constant from the point of view of a
femtosecond pump, hence its description as optical rectification. For both cases, the
nonlinear polarization amplitude is respectively:

#»

𝓟OR(0) =
1
2ϵ0 𝛘

(2)(0; ω, −ω) .. #»𝓔 (ω) ⊗ #»𝓔 (ω); (2.13)

#»

𝓟DFG(Ω) = ϵ0 𝛘(2)(Ω; ω1, ω2) ..
#»𝓔 (ω1) ⊗

#»𝓔 (ω2). (2.14)

Using the DFG notation, we define the coordinate system so that the pump beam is
propagating along 𝑧 and linearly polarized along 𝑥. From the #»𝓔 (ω1)⊗

#»𝓔 (ω2) tensor, only
one element does not cancel, and the polarization vector at the THz frequency simplifies
to:

#»

𝓟(Ω) =

⎡
⎢
⎢
⎢
⎢
⎣

𝒫𝑥

𝒫𝑦

𝒫𝑧

⎤
⎥
⎥
⎥
⎥
⎦

= ϵ0

⎡
⎢
⎢
⎢
⎢
⎣

χ(2)𝑥𝑥𝑥

χ(2)𝑦𝑥𝑥

χ(2)𝑧𝑥𝑥

⎤
⎥
⎥
⎥
⎥
⎦

ℰ𝑥(ω1) ℰ∗𝑥(ω2)

= ϵ0

⎡
⎢
⎢
⎢
⎢
⎣

χ(2)𝑥𝑥𝑥

χ(2)𝑦𝑥𝑥

χ(2)𝑧𝑥𝑥

⎤
⎥
⎥
⎥
⎥
⎦

̂𝐸𝑥(ω1) ̂𝐸∗𝑥(ω2) 𝑒−𝑖(𝓀𝑧(ω1)−𝓀𝑧(ω2))𝑧.

(2.15)
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2.1 Optical rectification

The pump thus generates a polarization of the material at the THz frequency propa-
gating with a complex wavevector

#»

𝓴(ω1)−
#»

𝓴(ω2) of magnitude (𝓃(ω1) ω1 − 𝓃(ω2) ω2)/𝑐.
However, the freely propagating THz field generated by the polarization has a wavevector
#»

𝓴(Ω) of magnitude 𝓃(Ω)Ω / 𝑐. This defines the phase mismatch parameter Δ𝑘 between
the already existing and the newly generated THz field:

Δ
#»

𝓴 = (
#»

𝓴(ω1) −
#»

𝓴(ω2)) −
#»

𝓴(Ω). (2.16)

In the undepleted pump approximation, the amplitude of the THz field evolves in
space as ̂𝐸THz ∝ 𝑧 sinc (Δ𝓀𝑧 / 2) [35, chapter 2]. If Δ𝓀 = 0, the THz field can consistently
build up and its amplitude increases linearly. Otherwise, the THz amplitude oscillates
with a spatial period of 2𝐿coh, where the coherence length 𝐿coh = π / |Δ𝓀| is the distance
after which the phase of the newly emitted THz field has fully reversed. As the refractive
index of the material varies with the frequency, Δ𝓀 ≈ 0 for a limited range thereof.
Although all nonlinear effects of a certain order occur if the laser intensity is sufficient
and the symmetries of the medium do not suppress them, this fact allows the targeting
of a specific effect by controlling the phase matching.
Intra-pulse DFG can generate any frequency up to the bandwidth of the pulse. For

example, the spectrum of a transform-limited 35 fs Gaussian pulse is 12.5 THz wide,
which gives the condition 0 < Ω < 12.5THz. Which frequency is generated depends then
on which one, if any, can be phase-matched. In addition, the pump spectrum contains
many pairs of frequencies (ω1, ω2) separated by a given Ω. Which pump frequencies are
used can be seen experimentally in the pump depletion.
Expressing the phase mismatch as a function the two pump frequencies, Δ𝑘(ω1, ω2) =

𝑘(ω1 − ω2)+𝑘(ω2)−𝑘(ω1), we can fixω2 and do aTaylor expansion of the phasemismatch
around ω1:

Δ𝑘(ω, ω2) = Δ𝑘(ω1, ω2) + (ω − ω1)
𝜕 Δ𝑘(ω, ω2)

𝜕ω
|||ω1

= Δ𝑘(ω1, ω2) + (ω − ω1) (
𝜕 𝑘(ω − ω2)

𝜕ω
|||ω1

− 𝜕𝑘(ω)
𝜕ω

|||ω1

)

= Δ𝑘(ω1, ω2) + (ω − ω1) (
1

𝑣𝑔(ω1 − ω2)
− 1
𝑣𝑔(ω1)

) .

(2.17)

Assuming that the pump frequencies are chosen so that they are phase-matched and
Δ𝑘(ω1, ω2) = 0, the frequencies ω = ω1 ± δω are partially phase-matched as well and
generate THz radiation with a frequencyΩ±δω. In the first order, what limits the phase-
match bandwidth is the difference between the group velocity of the pump 𝑣𝑔(ω1) and
the one of the THz field 𝑣𝑔(ω1 − ω2). This causes a narrowing of the generated spectrum
in addition to a spatial walk-off. Thus to optimize the efficiency and generate shorter
THz pulses, one has to match the group velocities in addition to the wavevectors.
As derived by Vallejo and Hayden [37], we can simplify the phase-matching condition

as a function of the central frequency of the pump pulse by setting ω1 = ω0 + Ω / 2 and

9



2 THz generation by optical rectification

ω2 = ω0 −Ω / 2. The phase mismatch is then:

Δ𝑘 = 𝑘(Ω) + 𝑘(ω0 −
Ω
2 ) − 𝑘(ω0 +

Ω
2 ) (2.18)

𝑐Δ𝑘 = 𝑛(Ω)Ω + 𝑛(ω0 −
Ω
2 ) (ω0 −

Ω
2 ) − 𝑛(ω0 +

Ω
2 ) (ω0 +

Ω
2 ) . (2.19)

Performing a first-order Taylor expansion of 𝑛(ω0 ±Ω / 2) around Ω, the expression
simplifies to:

𝑐Δ𝑘 = (𝑛(Ω) − 𝑛(ω0) − ω0
d𝑛
dω

|||ω0

)Ω

= (𝑛(Ω) − 𝑛𝑔(ω0))Ω.

(2.20)

The phase-matching condition is then equivalent to 𝑛(Ω) = 𝑛𝑔(ω0). This means that to
avoid interfering destructively, the generated THz field needs to be in phase across the
whole crystal, as the group velocity of the pump needs to match the phase velocity of the
THz field.
Phase matching in general can be accomplished if the two beams propagate colinearly

with compatible refractive indices. For example, one can exploit the birefringence
of a positive uniaxial crystal by propagating the beam of highest angular frequency
ω0 as an ordinary wave, minimizing its refractive index to 𝑛𝑜(ω0), and the beam of
lowest angular frequency Ω as an extraordinary wave, maximizing its refractive index to
𝑛𝑜(Ω) ≤ 𝑛(Ω) ≤ 𝑛𝑒(Ω). Then, under the condition that 𝑛𝑜(Ω) ≤ 𝑛𝑜(ω0) ≤ 𝑛𝑒(Ω), there
is an angle between the propagation axis and the optical axis of the crystal for which
both beams propagate at the same velocity. Another possibility to obtain colinear phase
matching is to choose the frequencies so that they make use of the anomalous dispersion
of the refractive index near an absorption feature. Due to the frequent presence of
phonons in the THz range, the THz bandwidth that can be phase-matched to the pump
in this way is limited.
Another method, proposed by Hebling et al. [38], is the TPF scheme, which works

by tilting the intensity front of the pump pulse with respect to its phase front by an
angle γ. While the pump propagates perpendicularly to its phase front, the generated
THz field propagates perpendicularly to the pulse front according to Huygens’ principle:
∠ (

#»

𝓴(ω0),
#»

𝓴(Ω)) = γ. As we will see in the following section, γ is connected to the
angular dispersion of the pump. In this noncolinear geometry, Eq. (2.20) is modified
as [39]:

𝑐Δ𝑘 = (𝑛(Ω) −
𝑛𝑔(ω0)
cos γ )Ω. (2.21)

The phase-matching condition is then:

cos γ =
𝑛𝑔(ω0)
𝑛(Ω)

. (2.22)

This method has the advantage that it allows phase matching even in materials whose
optical andTHz refractive indices differ toomuch for the colinear geometry to be possible.

10



2.1 Optical rectification

𝜃1

𝜃2 𝛾

𝐴

𝐵
𝑧 1(

𝐵)

𝑧2(𝐴
)

𝑛1, 𝑛𝑔1 𝑛2, 𝑛𝑔2a)

𝛼 𝛽
𝛾

𝐴

𝐵

b)

𝑧𝐴 𝑧𝐵

Figure 2.1: Tilted pulse front caused by a) refraction and b) diffraction. The dashed lines
represent the phase front, while the red lines are the pulse front, tilted by an
angle γ.

2.1.1.3 Pulse front tilt formation

Before going into details, it is necessary to clarify the difference between the phase front
and the pulse front. The phase front is the surface of constant phase of each frequency
component, which is by definition normal to the direction of its propagation. The pulse
front is the surface where the intensity of the pulse is at its peak, or in other words where
all frequency components are in phase [40]. A pulse front tilt is thus a transverse group
dispersion across the beam.
This group dispersion can be caused by refraction, as illustrated by Fig. 2.1a. When a

beam travels through a series of media with refractive index 𝑛𝑖 and group index 𝑛𝑔𝑖, the
phase delay between two phase fronts is identical for all rays in the beam. The group
delay however depends on the path of each ray.
Let us consider a beam of diameter 𝑑1 crossing an interface with an angle θ1 with

respect to the normal to the surface. It is refracted with an angle θ2 following Snell’s law,
𝑛1 sin θ1 = 𝑛2 sin θ2. Let us assume that the pulse front and the phase front are initially
parallel. When the first edge of the pulse (ray 𝐴) crosses the interface, the other edge
(ray 𝐵) still has a distance 𝑧1(𝐵) = 𝑑1 tan θ1 to travel until the interface, which it reaches
at the time 𝑡𝑔(𝐵) = 𝑛𝑔1𝑧1 / 𝑐. When ray 𝐵 crosses the interface, the phase front of ray 𝐴
has advanced a distance 𝑧2(𝐴) = 𝑑2 tan θ2, which satisfies 𝑐𝑡ϕ = 𝑛1 𝑧1(𝐵) = 𝑛2 𝑧2(𝐴). The
pulse front on ray 𝐴 covers the same distance in 𝑡𝑔(𝐴) = 𝑛𝑔2𝑧2 / 𝑐. This delay of one edge
of the pulse compared to the other creates a pulse front tilt:

tan γ = Δ𝑧
𝑑2

=
𝑐 (𝑡𝑔(𝐴) − 𝑡𝑔(𝐵))

𝑛𝑔2𝑑2
= (1 −

𝑛2𝑛𝑔1
𝑛1𝑛𝑔2

) tan θ2. (2.23)

If the beam goes through the interface at normal incidence or if both media are non-
dispersive, then γ = 0. Similarly, in the case of a beam going through a prism with rays
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2 THz generation by optical rectification

𝐴 and 𝐵 respectively propagating a distance 𝑧𝐴 and 𝑧𝐵 inside the prism, the edge of the
pulse along ray 𝐴 is retarded by:

Δ𝑧 = (𝑛𝑔 − 𝑛) (𝑧𝐴 − 𝑧𝐵) = − (𝑧𝐴 − 𝑧𝐵) λ
d𝑛
dλ , (2.24)

where we see the link between the dispersion of the material and the pulse front tilt. It
can thus be expressed in term of the angular dispersion [41]:

tan γ = −λ dϵdλ, (2.25)

where ϵ is the angle of the output ray with respect to the input beam.
Although not by the same physical mechanism, gratings create the same effect, as

illustrated by Fig. 2.1b. Because the beam is diffracted, the phase delay 𝑡ϕ between an
incident phase front and a diffracted phase front is not identical for all rays, except for
the order 𝑚 = 0. With θ𝑖 > 0 and θ𝑑 < 0 the incident and diffracted angle respectively,
the path difference between rays on adjacent grooves separated by 𝑑 is:

Δ𝑧 = 𝑧𝐴 − 𝑧𝐵 = −𝑑 (sin θ𝑖 + sin θ𝑑) = −𝑚λ, (2.26)

according to the grating equation. As the group velocity is constant, this creates again a
transverse group delay. The angular dispersion of the grating is [42]:

dϵ
dλ =

𝑚
𝑑 cos θ𝑑

. (2.27)

The pulse front tilt is thus again tan γ = Δ𝑧 / 𝑑2 = −λdϵ/dλ.
More generally, inside a mediumwith refractive index 𝑛 and group velocity 𝑛𝑔, a beam

with an angular dispersion dϵ/dλ has a pulse front tilt [40]:

tan γ = −λ0
𝑛
𝑛𝑔

dϵ
dλ, (2.28)

where λ0 is the central wavelength in vacuum. Given the value of γ required for phase-
matching the pump beam and the generated THz radiation in Eq. (2.22), Eq. (2.28)
expresses the necessary angular dispersion to apply to the pump beam.

2.1.2 Optimization of TPF setups

Having discussed the mathematical formalism that describes phase matching and the
pulse front tilt, we now consider the practical requirements in order to implement an
efficient THz generation setup based on the TPF scheme.

2.1.2.1 Choice of the nonlinear material

Following Eq. (2.1), the amplitude of the generated radiation scales with the nonlinear
polarization. A good material to perform DFG thus necessitates a large χ(2) coefficient.
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2.1 Optical rectification

This is the case of dielectric materials with a large bandgap. Using a simple nearly free
electron model, the optical susceptibility is expressed as [43]:

χ ≈ (
ℏω𝑝
𝐸𝑔

)
2

, (2.29)

whereω𝑝 is the plasma frequency and𝐸𝑝 the effective bandgap energy, which is a function
of the bonds between adjacent atoms. In crystals with several types of bonds, the bulk
susceptibility can be obtained from the superposition of the susceptibilities of individual
bonds, whose anharmonic motions are the source of nonlinear susceptibility. LiNbO3 at
room temperature is a ferroelectric material with a large nonlinear susceptibility coming
from its different Ni-O bonds. It is heavily used in optical communication systems for its
strong Pockels effect [44]. It is birefringent, with a constant ordinary and extraordinary
refractive index in the 0.25 THz to 1.4 THz range of 5.5 and 7.3 respectively [45]. At
800 nm, they are respectively of 2.18 and 2.25 [46]. Because of this mismatch, it is
impossible to use LiNbO3with a colinear geometry and we use instead the TPF geometry.
LiNbO3 has the advantage that large crystals are available, which allows to scale the

THz generation by increasing the pump energy while keeping its fluence under the
damage threshold. The critical fluence is 0.3 J cm−2 for a 30 fs pulses with a repetition
rate of 1 kHz [47, 48].
Another important characteristic in the choice of a material is the transparency

at the pump and THz frequencies. LiNbO3 has a wide transparency window with a
low absorption under 3.25 eV (above 380 nm), which corresponds to its band gap [49].
The far IR frequencies are however home to optical phonons, the most prominent at low
frequencies being centered at 7.6 THz [50–52]. In addition to limiting the THz bandwidth
by preventing phase matching, this phonon causes a high absorption coefficient with
an order of magnitude of 10 cm−1 at 1 THz, which means that 95% of the THz radiation
is absorbed after only 3mm of propagation. The transparency can be improved by
cooling down the material, which decreases the ordinary and extraordinary absorption
coefficients by approximately a factor 2 when cooling down to 80K [51, 53], and little
additional improvement at lower temperatures [52]. This increases the THz output by a
factor 3 [54]. As cooling also changes the refractive index [55], it has an influence on the
optimal phase-matching angle.

2.1.2.2 Alignment of the crystal

As mentioned in Section 2.1.1.2, the TPF method requires an angle γ between the direc-
tion of propagation of the IR pump and the THz radiation. To optimize the transmission
of both beams through the interfaces, the crystal is cut so that the IR and THz beams have
a normal incidence on the input and output surface, respectively. We use a prism-shaped
crystal with the angle of the apex matching the optimal value of γ given by Eq. (2.22),
tailored to the pump frequency and the temperature of the crystal.
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2 THz generation by optical rectification

To further reduce the high Fresnel losses of the THz beam, we coat the output surface
of the prism with Kapton polyimide tape, which is an anti-reflection coating suitable
for frequencies under 4 THz [56] and adapted to use in vacuum at cryogenic tempera-
tures [57]. While uncoated LiNbO3 has an interface transmittance at 1 THz of at best
52% (for the ordinary index 𝑛 = 5.5), it increases up to 93% using a Kapton coating with
silicon adhesive amounting to a total thickness of 𝑑 = 125 µm [58]:

𝑇 = 1
𝑛
|||

4𝑛𝑛𝑐 exp (−𝑖Ω𝑛𝑐𝑑 / 𝑐)
(𝑛𝑐 + 1)(𝑛 + 𝑛𝑐) + (𝑛𝑐 − 1)(𝑛 − 𝑛𝑐) exp (−2𝑖Ω𝑛𝑐𝑑 / 𝑐)

|||

2
, (2.30)

where 𝑛𝑐 ≈ 1.8 for both the silicon adhesive [59] and the Kapton tape. Our measurement
of the refractive index of Kapton can be found in Fig. A.5.
With the TPF scheme, the optimal propagation length of the pump in LiNbO3 is limited

by cascading rather than by the phase mismatch [60]. In the absence of cascading, each
pump photon can be converted into one THz photon and one idler photon at frequency
ω − Ω. The efficiency of the energy conversion is thus limited by the Manley-Rowe
quantum efficiency limit: η ≤ ℏΩ / ℏω. If the idler photon also satisfies the phase-
matching conditions, the conversion can cascade: it is converted into a second THz
photon and another idler photon at frequency ω − 2Ω, and so on [61].
The direction of the successive conversions is governed by the Manley-Rowe relations:

in a nonlinear system containing the frequencies ω𝑚𝑛 = 𝑚ω1 + 𝑛ω0, where𝑚 and 𝑛 are
integers, the conservation of energy requires that∑𝑚𝑛𝑊𝑚𝑛 = 0, where𝑊𝑚𝑛 is the loss
at the frequency ω𝑚𝑛. The Manley-Rowe relations thus state that [62, 63]:

∑
𝑚𝑛

𝑚
𝑊𝑚𝑛
ω𝑚𝑛

= 0 and ∑
𝑚𝑛

𝑛
𝑊𝑚𝑛
ω𝑚𝑛

= 0. (2.31)

The DFG process is initially favored over the back-conversion from THz photons into
pulse photons via SFG because of the higher number of pump photons. The energy flow
however changes sign when the pump is depleted, or earlier if Δ𝑘 ≠ 0 [64].
Although cascading improves the intrinsic efficiency of the THz emission, the creation

of the idler photons also shifts and broadens the pump spectrum, which increases the
phase-mismatch and causes a spatio-temporal breakup of the pulse. For a TPF scheme
in LiNbO3, the useful propagation length of the pump is limited to a few millimeters,
after which the THz radiation is only absorbed [60]. For this reason, we align the pump
close to the apex of the prism. The crystal is mounted on a stage that can be laterally
translated to find the optimal position, which depends on the diameter and energy of the
pump beam [65].

2.1.2.3 Optimization of the imaging

When it comes to the alignment of the pump beam, three conditions must be met to
optimize the THz generation: obtaining the correct pulse front tilt γ inside the crys-
tal, keeping the pulse front flat, and minimizing the pump duration across the pulse
front [39].
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𝑓1 𝑓2

THz

IR

𝑧1 = 𝑓1 𝑓1 + 𝑓2 𝑧2 𝑧crys
𝛾

𝜃𝑖
𝜃𝑑 𝜃′𝑑

Figure 2.2: TPF scheme with a 4𝑓 imaging configuration. Represented are three wave-
lengths within the beam, with slighlty differing pulse fronts (white lines). θ𝑖
and𝑀 are chosen to satisfy θ′𝑑 = −γ for the central wavelength.

The divergence of the pulse front is mitigated by imaging the grating that introduced
the angular dispersion inside the crystal. To minimize the pulse duration across the
pulse front, we overlap the image with the pulse front. The diffracted beam has an angle
θ𝑑 with respect to the normal to the grating. Due to the demagnification of the beam
and the refractive index of the crystal, the image has a different angle θ′𝑑 with respect to
the propagation direction (see Fig. 2.2). The imaging is typically done either by a single
lens of focal length 𝑓 at a distance 𝑧1 of the grating, or by a two-lens telescope in a 4𝑓
configuration with 𝑧1 = 𝑓1. The latter has the advantage that the pump can be collimated
on the grating and in the crystal, ensuring a flat pulse front. The angle of the image is
then [39, 66]:

tan θ′𝑑 = −
𝑛𝑓

𝑧1 − 𝑓 tan θ𝑑 (single lens)

= −
𝑛𝑓2
𝑓1

tan θ𝑑. (4𝑓 telescope)
(2.32)

At the same time, the demagnification and the entry into the crystal affect the pulse front
tilt. The initial angular dispersion of the grating is given by Eq. (2.27). It is modified as:

dϵ
dλ = −

𝑧1 − 𝑓
𝑛𝑓

dϵgr
dλ (single lens)

= −
𝑓1
𝑛𝑓2

dϵgr
dλ . (4𝑓 telescope)

(2.33)

According to Eq. (2.28), the pulse front tilt inside the crystal is thus:

tan γ =
𝑓1
𝑛𝑔𝑓2

𝑚λ
𝑑 cos θ𝑑

. (2.34)

The value of γ is fixed by Eq. (2.22) to ensure the phase-matching condition. Tominimize
the pump duration, we set θ′𝑑 = −γ. The optimal incidence angle is then [39, 66]:

sin θ𝑖 =
𝑚λ
𝑑 (1 − 𝑀2

𝑛𝑛𝑔
) , (2.35)
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where the magnification𝑀 is:

𝑀2 =
𝑛2𝑛𝑔𝑑
2𝑚λ √

λ2𝑚2

𝑛2𝑔𝑑2 tan4 γ
+ 4
𝑛2 −

𝑛2

2 tan2 γ
; (2.36)

𝑀 =
𝑧1 − 𝑓
𝑓 (single lens), or 𝑀 =

𝑓1
𝑓2

(4𝑓 telescope). (2.37)

The distance between the grating and the first or single lens is respectively 𝑧1 = 𝑓1 or
𝑓 (𝑀 + 1). With 𝑧2 the distance between the second or single lens and the input face of
the crystal, the image of the grating is at a depth 𝑧crys = 𝑛 (𝑧1 / 𝑀 − 𝑧2) [39, 66]. We thus
mount the crystal on a stage that can be translated longitudinally to find the optimal
value of 𝑧2 for a given imaging system.
The last free parameters are the groove spacing 𝑑 and the diffraction order 𝑚 of the

grating. We use a blazed grating, whose diffraction efficiency is maximal when the
diffraction angle matches the reflection angle on the grooves. This is typically achieved
for a specific wavelength in the first-order Littrow configuration, with θ𝑑 = θ𝑖 and𝑚 = 1.
According to the grating equation:

sin θLittrow =
𝑚λ
2𝑑 . (2.38)

Combining Eqs. (2.35), (2.36) and (2.38), we get the optimal groove spacing of the grating
if θ𝑖 = θLittrow [66]:

𝑑 = λ
2√

1 + 2𝑛
𝑛𝑔 tan2 γ

(2.39)

𝑀2 =
𝑛𝑛𝑔
2 . (2.40)

In practice however, we need to separate the incident and diffracted beams, which offsets
the optimal value of 𝑑 [39].
An additional concern in the setup design is the control of the pump fluence on the

LiNbO3 crystal. On one hand, increasing the fluence improves the conversion efficiency
and the THz energy output. On the other hand, it can reduce the spatial quality of
the THz beam [65] and must be kept under the damage fluence of LiNbO3. In the 4𝑓
configuration, the pump beam is collimated on the crystal. This allows easily controlling
its fluence by scaling the beam with an additional telescope before the grating. In
addition, to obtain a round THz beam, the pump needs to have a round projection on the
output surface of the prism. Since it is parallel to the image of the grating, this means
that the projection of the pump beam on the grating should itself be round. We can
thus use a cylindrical telescope with a magnification of cos θ𝑖 to reduce the horizontal
diameter of the incident beam while keeping the vertical diameter unchanged.
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2.2 Experimental setups

We now describe two cryogenic TPF setups that are based on these principles, each
adapted to a different laser pump. The first setup was designed and built for a 1030 nm
Yb:YAG laser driver. The second was rebuilt and experimentally optimized from a 150 fs,
7.5mJ 800 nm Ti:sapphire driver, to a 35 fs, 4.9mJ one.

2.2.1 The 1030nm setup

The 1030 nm driver for THz generation is a complex laser system based on successive
chirped pulse amplification stages. One of its long-term goals is to provide a 200mJ pump
to generate a 1mJ single-cycle THz pulse for electron acceleration [67]. Ultimately, it
aims to provide up to 1 J pulses in order to simultaneously drive several such accelerators.
The laser system is seeded by an Yb:KYW oscillator delivering 4 pJ, 210 fs pulses

centered at 1029.5 nm with a repetition rate of 42.5MHz. The oscillator is followed by
a commercial amplifier module composed of several Yb-doped fiber amplifiers. After
the first amplifier, a 60 pJ beam is split up and sent to a stretcher module, which is
composed of four chirped fiber Bragg gratings with a 6 nm bandwidth, interspaced with
two fiber amplifiers to compensate the losses. The stretcher is designed to introduce a
stretching ratio of 0.8 ns nm−1, in order to maintain the pulse intensity in the following
amplification stages under the thresholds for damage andnonlinear behavior. It increases
the pulse duration from 750 fs to 2.35 ns. Within the stretcher module, two additional
fiber amplifiers increase the energy of the stretched pulses to 1 nJ. This beam is then used
to seed an Yb:KYW regenerative amplifier, which delivers 6.5mJ pulses at 1 kHz. A part
of the output is used for further amplification. Several booster stages were developed:
a cryogenically cooled thin-disk Yb:YAG amplifier, a cryogenically cooled Yb:YAG rod
amplifier [68] and a room-temperature Yb:YAG rod amplifier [69]. Another part of the
output of the regenerative amplifier is immediately recompressed with double-pass
Treacy compressor using two dielectric gratings, compressing the 2.35 ns pulses down to
615 fs.

2.2.1.1 Choice of parameters

Our THz setup is build and optimized using the compressed beam from the regenerative
amplifier, with the future possibility of upgrading to the 10Hz, 50mJ room-temperature
Yb:YAG amplifier. The available LiNbO3 crystals are congruent Z-cut MgO:LiNbO3

prisms with an apex of 56.2° and two angles of 61.9°, which is close to the optimal
value of γ for a 1030 nm pump as well as a 800 nm pump, both at room and cryogenic
temperature. We expect to phase-match slightly different THz frequencies in different
conditions.
For our calculations, we use the values 𝑛 = 2.3019 and 𝑛𝑔 = 2.2343 at 1030 nm, and

𝑛THz = 4.8890 [53]. According to Eq. (2.39), the most efficient grating for γ = 62° would
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Figure 2.3: Scheme of the 1030 nm TPF THz setup. C: cylindrical telescope; D: demagne-
tizing telescope; LN: LiNbO3.

have 1543.53 grooves/mm. We use a 1500 grooves/mm blazed grating optimized for first-
order refraction, which has a Littrow angle of 50.58°. From Eqs. (2.35) and (2.36), the
superposition of the grating image onto the pulse front is then optimized for 𝑀 = 1.63
and θ𝑖 = 48.16°. We can obtain a close magnification using lenses of 400mm and
250mm focal lengths, giving 𝑀 = 1.6. The optimal angle of the grating to obtain the
correct pulse-front tilt is then given by Eq. (2.34): θ𝑖 = 47.42°.

We implemented the telescope with cylindrical lenses (C1 and C2 in Fig. 2.3). This
has the advantage that only one axis of the beam is focused inside the telescope, which
prevents the intensity at the waist from reaching the threshold for nonlinear behavior.
While the vertical diameter 𝑑𝑦 of the IR beam is unchanged, the horizontal diameter 𝑑𝑥
is affected by the grating and the telescope. At the output of the prism, the projection of
the pump has an ellipticity 𝑑𝑥 / 𝑑𝑦 = cos θ𝑑 / (𝑀 cos θ𝑖 cos γ) = 1.16 if we use the grating
at the optimal angle. This is close enough to a round beam that, for the simplicity of the
setup, we do not implement another cylindrical telescope to adjust 𝑑𝑦.

To stay under the damage threshold of LiNbO3 (about 100mJ cm−2), we aim at a
fluence on the crystal of 55mJ cm−2, with an available energy of 2.5mJ. This is obtained
for an input diameter 𝑑𝑦 = 4.62mm. We measured the beam from the compressor to
have a diameter of 15mm. To reduce it, we implemented at the input of the setup a
demagnetizing telescope using lenses with 150mm and −50mm focal lengths (D1 and
D2 in Fig. 2.3), which gives 𝑑𝑦 = 5mm.
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Figure 2.4: Camera capture of the imaged slits from three adjacent targets with different
spatial frequencies. The lines visible in the beam are due to the data being
extracted from a screenshot.

2.2.1.2 Optimization

Fig. 2.3 shows the scheme of the setup. To facilitate its optimization, we placed the
grating on a breadboard with a translation stage, and the cylindrical telescope on a
second translatable breadboard on top. This allows us to tweak the distance between the
grating or the crystal and the telescope, without changing the alignment of the latter.
Instead of moving the crystal, which would influence the THz collection, moving the
large breadboard only involves realigning the input beam onto the grating. We however
placed the crystal on short longitudinal (𝑧) and a lateral (𝑥) translation stages, to optimize
the position of the crystal around the image of the grating.
At the time we built this setup, the work of Tokodi, Hebling, and Pálfalvi [66], which

clarifies the difference between the optimization of 4𝑓 and single-lens TPF configura-
tions, was not yet published. For this reason, we optimized the magnification of the
cylindrical telescope and the imaging of the grating, without addressing the influence
of the distance between the grating and the first lens on the pulse front tilt. We also ac-
cepted that the focus of the cylindrical telescope was placed a few centimeters before the
optimized crystal, as this had been measured to improve the THz generation efficiency
by other group members having experience with single-lens TPF setups.
We first aligned the cylindrical telescope using a shear plate interferometer to ensure

the collimation of the beam at the input and output of the telescope. The spectral
bandwidth of the KYW regenerative amplifier was too large to produce visible fringes on
the shear plate, so we used instead a 1030 nm alignment laser. To verify its magnification,
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Figure 2.5: Gaussian beam parameters extracted from twice-daily measurements with a
beam propagation analyzer, before (left column) and after the demagnifying
telescope (right column): a–b) calculated waist diameter, c–d) full divergence
angle, e–f) astigmatism and ellipticity. The astigmatism is calculated as
2 |𝑍𝑥0 − 𝑍𝑦0 | / (𝑍𝑥𝑅 + 𝑍𝑦𝑅), where 𝑍0 is the waist distance and 𝑍𝑅 the Rayleigh
length.

we replaced the grating by a mirror and inserted a resolution target in the input beam.
The resolution target was a thin opaque plate with several groups of slits with a known
spatial frequency. With a camera at the position where the image of the slits is sharp,
measuring their spatial frequency gives the magnification of the telescope. As shown
in Fig. 2.4, we measured a magnification of 0.65, 0.61 and 0.63 for three groups of slits,
close to the nominal magnification of 0.6.

We then replaced the alignment laser by the compressed beam from the KYW system.
With the demagnetizing telescope to increase the fluence on the crystal, the amplified
astigmatism of the input beam creates a horizontal focus close to the crystal. As shown
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Figure 2.6: a) Horizontal and b) vertical beam profile after the cylindrical telescope,
at varying distances from the LiNbO3 crystal. The cylindrical lens C2 is
approximately at the position −300mm.

by Fig. 2.5, the ellipticity and astigmatism of the compressed beam change over time,
in spite of the laser system having a pointing stabilizer, which prevents us from durably
keeping the input beam collimated. We compensate for it by realigning the input beam
daily and reoptimizing the position of the crystal to make up for the moving focus.
Fig. 2.6 shows the pump profile at different distances from the input face of the crystal.

While the IR beam is as planned vertically collimated with a 1/𝑒2 diameter of 4.2mm), it
shows a horizontal focus. Its waist is 0.9mm 1/𝑒2, and the diameter stays under 1.2mm
between −15mm and +35mm. Before the focus, vertical diffraction lines are visible in
the beam profile, whose origin we have not identified. Fig. 2.7a shows the full beam at
the position of the crystal.
We calculated the fluence of the pump incident on the LiNbO3 crystal using the

measured beam profile at the same distance from the cylindrical telescope as the crystal.
Due to other experiments running in parallel, we typically have 1.22mJ available at the
input of the setup. The proportion of energy diffracted by the grating instead of being
reflected in the 0th order is controlled by the polarization of the beam. Maximizing
the first order gives an energy incident on the crystal of 1.16mJ. This corresponds to a
fluence in the focus of 8𝐸 / (π𝑑𝑥𝑑𝑦) = 78mJ cm−2, which is slightly higher than our aim.
During the work described in this chapter, we use several different pyroelectric THz

detectors, depending on their availability. Their response is frequency-dependent and
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generally uncalibrated. As they are also sensitive to IR radiation, they are shielded
with a layer of silicon or polyethylene, which also influence their sensitivity to THz
radiation. We conducted most measurements with a Gentec SDX-1152 detector. From
cross-calibration against other calibrated detectors, we estimate its sensitivity at 0.4 THz
to be 94 ± 10mVµJ−1.
Fig. 2.8 shows the influence of the crystal position on the THz energy measured at

the output face of the crystal. Minimizing the distance to the detector is necessary
to capture the full THz beam despite its divergence, which we expect to change with
the position of the crystal with respect to the IR focus. Fig. 2.8a shows the full 12mm
extent of the longitudinal translation stage. We took this measurement with a different
cylindrical telescope, with lenses of 300mm and 200mm focal length. The pump caustic
near the focus is thus not directly comparable to Fig. 2.6. We can however expect that the
beam profile does not significantly change within 12mm of the focus, thus we mainly
attribute the variation of the THz generation to the phase matching. Fig. 2.8b shows
that the highest output was obtained with the IR beam as close to the edge of the crystal
as possible without losing energy by clipping. This is expected with an uncollimated
pump, as the pulse front tilt depends on its diameter and thus varies in space. The phase-
matched volume is reduced and it is most advantageous to shorten the THz absorption.
Once the optimal crystal positionwas determined, we added a pair of gold-coatedOAPs

to collect and refocus the THz radiation. We aligned them on a separate breadboard using
a helium-neon alignment laser, propagating horizontally and along a well-defined axis.
To simulate the divergent THz beam, we created a spherical wave with a pinhole in the
focal plane of a short lens. We placed the first OAP so that the pinhole lies in its focal
point and the beam is reflected at 90° from its original propagation axis. We used a shear
plate interferometer to ensure the collimation of the alignment beam along both axes, as
tilted fringes indicate an error in the position and curved fringes indicate that the OAP
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Figure 2.7: Beam profiles of a) the IR pump at the position of the crystal and b) the THz
collected by the off-axis parabolas (OAPs).
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Figure 2.8: Optimization of the position of the LiNbO3 crystal, using a) the 𝑧 and b) the 𝑥
translation stage indicated in Fig. 2.3. The THz detector was placed directly at
the output face of the crystal. The C2 lens has here a focal length of 200mm.

is tilted or decentered. We then placed the second OAP, adjusting its angle so that the
beam is reflected parallel to its original direction, and the distance between the OAPs so
that the pinhole is imaged in the focal plane of the second OAP.
Although the goal is to refocus the THz beam as tightly as possible, we are limited

by the available OAPs, which need a large diameter to collect the highly diverging THz
radiation. In addition, the second OAP needs a suitable hole to superpose an IR probe
to the THz beam, in preparation of electro-optic sampling (EOS). The best combination
is a pair with reflected focal lengths of 6" and 4" and diameters of 3" and 2", respectively.
With a 0.9mm × 4.2mm pump incident on the crystal, thus 1.9mm × 4.2mm projected
on the output surface, we assume a 1.34mm × 2.97mm waist in the input focal plane
of the first OAP. According to a reZonator simulation, we can thus expect to obtain a
0.90mm × 1.98mm focus after the second OAP, with a collimated beam of 0.85" × 0.4"
diameter between the OAPs. In addition to measuring the energy of the THz pulse, we
use EOS to probe its waveform. The principles of EOS measurements are detailed in
Appendix B.
In practice, although the THz beam seemed indeed collimated, it was clipping on the

2" second OAP. In addition, the THz detector measured in the focus only 40% of the
energy at the output of the crystal. As the reflectivity of gold-coated OAPs is close to
1 [70], this points to a poor THz beam quality. Fig. 2.7b shows an measurement of the
beam profile in the OAP focus, with a 1/𝑒2 diameter of 1.4mm × 1.9mm. The fact that
the 𝑦 axis behaves as expected hints that the problem is due to the uncorrected divergence
on 𝑥 of the pump beam.
After aligning the OAPs, we installed the cryogenic chamber. It has an anti-reflection-

coated fused silica input window, and a 5mm-thick TPX output window, with an 88%
THz transmissivity. A second window allows for the output of the pump and its green
second harmonic, which experience near-total internal reflection on the THz output face.
The crystal was fixed between layers of indium foil, to ensure the thermal contact with
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Figure 2.9: Influence of the TPF grating on the THz emission. a) Emitted THz energy at
the output of the chamber, while scanning the pump energy and the diffracted
angle θ𝑑. b) Average normalized influence of the fluence on the THz energy,
with linear fit (dashed line). THz c) energy and d) mean frequency, while
scanning the diffracted angle at constant energy. e) EOS traces and f) their
Fourier spectra at two angles giving themaximum andminimumTHz energy,
respectively.

the liquid nitrogen-cooled internal chamber. We first attempted to optimize the chamber
at room temperature, in which case the phase-matching conditions do not change. And
indeed, we observed that the physical angle of the grating maximizing the THz energy is
the same with and without the chamber.
Fig. 2.9 shows the outcomes of rotating the grating. The measurements were taken

with the chamber at room temperature, and the THz detector positioned at the output
window. The grating was mounted on a graduated rotating stage, centered on the axis
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of the cylindrical telescope so that its rotation does not influence its imaging. Since
it is required to maintain the alignment of the diffracted beam through the telescope,
we moved the incident beam each time we incremented the angle ψ characterizing the
orientation of the grating. The diffracted angle θ𝑑 was thus linearly following the rotation
of the grating:

θ′𝑑 = θ𝑑 + Δψ;

sin θ′𝑖 =
𝑚λ
𝑑 sin (θ𝑑 + Δψ) .

(2.41)

To calibrate the correspondence between the angle of the rotation stage and the incident
and diffracted angles, we used our knowledge of the Littrow angle (see Eq. (2.38)).
Keeping the incident beam aligned, we rotated the grating until the diffracted beam was
superposed to it, at the angle ψLit. In this case, the value of the incident angle follows the
rotation of the grating:

θ𝑖 = θLit + ψ − ψLit;

sin θ𝑑 =
𝑚λ
𝑑 sin (θLit + ψ − ψLit) .

(2.42)

With a perfect alignment, calculating θ𝑑 from either Eq. (2.41) or Eq. (2.42) should give
the same values. However, we found that in average, for a rotation Δψ, the value of θ𝑑
calculated from themeasurement of the Littrow angle was only changing by aboutΔψ/2.
Due to the bandwidth of the pump, the diffracted beam spans an angle of 0.5° to 0.6° at
the relevant incident angles. On one hand, since Eq. (2.42) is unchanged in the case of
optical misalignments and only depends on superposing the diffracted beam on top of
the incident beam, this is the upper limit of the error on ψLit, which leads to a maximum
error on θ𝑑 of ±0.25°. One the other hand, Eq. (2.41) assumes that the diffracted beam
does not move, which is difficult to ensure in practice. We used as reference two irises
placed before the telescope, with a limited distance between them to avoid clipping the
incident beam. In addition to the same error due to the bandwidth, we can estimate,
for two irises separated by 150mm and an alignment precision within 1mm on each of
them, a maximum error of ±0.76° on θ𝑑. We estimated the value in Fig. 2.9 using the
weighted mean of both methods.
In Figs. 2.9a and 2.9b, we scanned the pump energy from 0.3mJ to 1mJ for each

alignment of the grating. We did not measure the beam profile, hence the fluence is
given as 𝐹 ∝ 𝐸 cos θ𝑖 / θ𝑑. Its average influence on the THz energy is shown in Fig. 2.9b.
As a second-order nonlinear process, the THz output energy depends on the square of
the pump fluence, as is shown by Fig. 2.10, in which we measured the THz output for
fluences up to 130mJ cm−2. However, we attribute this to the response of the detector,
which is not guaranteed to be linear, rather than to the THz generation. Assuming a
calibration of 94mVµJ−1, we reached a THz emission of 19 µJ for a 21.7mJ pump, or
conversion efficiency of 8.8 × 10−4.
The measurement in Figs. 2.9a and 2.9b was made using the 2" LiNbO3 crystal orig-

inally in the chamber. The other subplots are extracted from a different measurement
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Figure 2.10: THz output measured for different pump energies, with the usual beam of
the regenerative amplifier (data from Fig. 2.9a, for θ𝑑 = 44°), and with the
beam of the Yb:YAG amplifier, compressed as well. The diameter of the
latter wasmeasured to 5.6mm × 7.4mm, and the diameter of the beam from
the regenerative amplifier is estimated to 1.9mm × 7.3mm.

made using the same LiNbO3 crystal we previously used without the chamber, during
which we took for every angle of the grating an EOS measurement of the THz beam in
the OAP focus. Fig. 2.9c shows the evolution of the THz energy with θ𝑑, with a Gaussian
fit linearly biased by the variable fluence. The optimal angle is 44.7°, with the small
difference compared to Fig. 2.9a likely coming from a change in the divergence of the
pump beam between the two measurements.
With a bandwidth of 4.5 nm, the pump could generate THz radiation with a frequency

up to 2.5 THz. The measured central frequency is controlled by the phase matching:
from Eq. (2.22), 𝑛(Ω) = 𝑛𝑔(ω0) / cos γ. As we rotate the grating, the pulse front tilt of
each frequency component in the IR pump beam ismonotonously increasingwith θ𝑑 (see
Eq. (2.34)), within the range of themeasurement. Assuming that we always phase-match
the central wavelength and that 𝑛(Ω) is monotonously increasing withΩ, the increased γ
would lead to a higher THz frequencyΩ. Reciprocally, the value of γ that maximizes the
out-coupling of the THz beam is fixed, notably by the cut of the crystal and the position
of the output window of the chamber. As the same pulse front tilt is achieved by lower
wavelengths, which have a larger group index, preserving γ while increasing θ𝑑 would
also lead to a monotonously increasing THz frequency.
However, Fig. 2.9d shows thatwe observe instead aGaussian behavior, with the highest

central frequency found at the same angle as the highest THz output. This unexpected
coupling implies that the loss of THz energy is associated with the narrowing of the
useful pump bandwidth. Since the optimal grating angle is a balance between the pulse-
front tilt and the imaging of the grating, and the pump is angularly dispersed, we can
assume that the reduction of the THz frequency is due to the rotation of the grating

26



2.2 Experimental setups

image, which overlaps the pulse-front tilt for fewer frequencies at the same time. The
central frequency of 0.30 THz to 0.35 THz indicate that only a 1.1 nm to 1.3 nm-wide
bandwidth of the pump is used. This might be caused by the divergence of the pump, as
the pulse front and the image have different curvatures if the pump is not collimated on
the grating. It also explains the large variance of the measured central frequency, as the
position of the grating image depends on the precise alignment of the incident beam on
the grating.
Lastly, we study the influence of the compression of the pump on the THz emission.

We scanned the distance 𝐿 between the two gratings of the Treacy compressor, which
linearly changes group delay dispersion (GDD) of the pump beam:

d2ϕ
dω2 = GVD × 𝐿 = −𝑁𝑚

2λ3𝐿
2π𝑐2𝑑2 (1 − (−𝑚λ𝑑 − sin θ𝑖)

2
)
− 3
2
, (2.43)

with 𝑁 = 2 the number of passes,𝑚 the diffraction order and 𝑑 and grating period. The
pulse duration then evolves as:

τ = τ0
√√

√
1+ (

2 (ϕ″0 + ϕ″)
τ20

)
2
, (2.44)

where 2τ0 is the 1/𝑒 duration of the compressed pulse, and ϕ″0 is the preexisting GDD
introduced by the stretcher. Fig. 2.11a shows the pulse duration measured by autocor-
relator at the output of the compressor, from which we calculate the total GDD ϕ″0 + ϕ″

using Eqs. (2.43) and (2.44). We measured the THz output while changing the GDD
before and after the installation of the THz chamber. As mentioned in Section 2.1.2.3,
one of the conditions to optimize the setup is to minimize the pulse duration across
the pulse front. Without chamber, there is a clear influence of the compression of the
pump on the THz emission. It peaks for a slight negative GDD of −2.9 × 10−3 ps2, which
precompensates some of the dispersion that the pumps undergoes in the THz setup.
With the chamber, the THz energy is lower, due to the additional losses at the windows.
The output peaks for a larger negative GDD of −2.6 × 10−2 ps2, which cannot be caused
only by dispersion of the input window, as its GDD is 9.5 × 10−5 ps2.
With the LiNbO3 crystal in the chamber, we also recorded the position of the translation

stages holding the latter at which the THz output is maximized. The lateral position (𝑥
on Fig. 2.3), which controls the distance of the pump to the edge of the crystal, is stable.
The longitudinal position (𝑧) by constant increases linearly with the GDD. As we saw
in Fig. 2.8a, an 8mm displacement is enough to move the crystal out of the focus of the
beam, which would be visible in the THz energy. It is here more likely that the focus
itself moves as we misalign the compressor.
Fig. 2.11d shows the central frequency of the THz, extracted from EOS traces such as

in Figs. 2.11e and 2.11f. Its shift is significant and it reaches its maximum when the THz
output is the largest. Contrarily to the dependence of the THz frequency on the grating,
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Figure 2.11: Influence of the compressor misalignment on the THz setup. a) Pulse
duration of the IR beam at the output of the compressor, measured by
autocorrelation and fitted by Eq. (2.44). b) THz energy measured at the
output of the crystal or THz chamber (after optimization of its position),
with a Gaussian fit. c) Position of the THz chamber optimized for THz
energy (𝑥 and 𝑧 as indicated in Fig. 2.3), with a linear fit. d) Mean THz
frequency extracted from EOS traces, with a Gaussian fit. e–f) EOS traces
taken in the OAP focus and their spectra. Plots c–f) correspond to the
measurement with the LiNbO3 crystal in the THz chamber.
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here the drop in central frequency is directly linked to the dispersion of the pump, as it
limits its instantaneous bandwidth.

2.2.2 The 800nm setup

This concludes our description of the first TPFTHz setup, designed for an 1030 nmpump.
We switched to a different laser system when the Yb:KYW driver became unavailable
for the foreseeable future, and took over a preexisting setup, adapted to a 180 fs, 7.5mJ
Ti:sapphire driver [68, 71]. We rebuilt and adapted it for a different Ti:sapphire laser
system, providing 35 fs, 3 kHz, 4.9mJ pulses.

2.2.2.1 Initial setup parameters

Contrarily to the 1030 nm setup that was designed in the frame of this work, this new
setup had to be adjusted with minimal changes to the existing optics. Its LiNbO3 prism
is doped with 5% MgO and has a 13mm × 0.5" input face, as before with two angles
of 61.9° and an apex of 56.2°. Its output face is covered with a 125 µm-thick layer of
Kapton polyimide tape, increasing the THz transmission by 40% as given by Eq. (2.30).
It is mounted in a cryogenic chamber and cooled down to 88K. The chamber has two
windows: a 2"-diameter anti-reflection-coated fused silica input window, and a 5mm-
thick TPX window with 88% transmissivity to couple out the THz beam.
The grating is a gold-coated blazed grating with 2000 grooves/mm and 85% diffraction

efficiency in the 𝑚 = 1 order. The initial incident and diffracted angles are respectively
61° and 46.5°. A single spherical lens with a focal length of 𝑓 = 150mm images the
grating into the crystal, with an demagnification of 𝑓 / (𝑧1 − 𝑓) = 0.5. The pump beam
is collimated before the grating to a diameter of 13mm, reaching on the crystal a fluence
of 31.84mJ cm−2.
The THz beam is collected by a pair of OAPs with parent focal lengths of 2" and 1".

With the original 7.5mJ pump, the measured THz energy in the focus is 2.2 V, or ∼23 µJ.

2.2.2.2 Rebuilding the setup

While rebuilding the setup, several repairs to the laser system lead to a lower pulse energy
than initially planned. The system is composed of a regenerative amplifier followed by a
two-crystals booster and a compressor. Pumped at maximum intensity, the regenerative
amplifier produces chirped pulses of 1.35mJ. After the two-crystal booster stage, the
pulses reach 5.1mJ. The compressor then has a transmission of 83%, after which the
beam is separated with a waveplate and thin film polarizer (TFP) into two arms with an
adjustable energy ratio. One is dedicated to the currently discussed TPF THz setup, and
can at most reach a pump energy of 3.9mJ at the entrance of the setup. The other arm of
the laser is used for the spintronic THz emitters setup that will be the topic of Chapter 4.
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Figure 2.12: Scheme of the rebuild 800 nm TPF THz setup. D: demagnetizing telescope;
L: 150mm lens; WP: λ / 2 waveplate; BP: band-pass filter; LN: LiNbO3.

The rebuilt setup is constrained to a 60 cm × 60 cm breadboard to allow its transport,
as the whole laser system is scheduled to be moved in the near future. We plan to use
the generated THz beam in a custom experimental chamber, which will contains the
collecting OAP. The THz chamber must thus be on the edge of the breadboard. The THz
beam must also exit the LiNbO3 crystal by the right face, which constrains the direction
of its pulse front tilt and thus of the grating.
To match the height of the beam in the experimental chamber, two periscopes bring

the beam up from the level of the laser output. The bottommirror of the first periscope is
a 45° TFP, which is used to separate the beam into the reflected pump and the transmitted
probe for the EOS. The ratio is controlled by a half waveplate. We align the periscope
so that the energy in the probe beam can be fully extinguished. After the grating, the
polarization of the pump beam is rotated again from horizontal to vertical to match the
optical axis of the LiNbO3 crystal.
The beam size at the output of the laser system is 11mm × 13mm. Planning for 4.9mJ,

the ideal diameter to maintain the same fluence is 8.5mm, assuming no changes in the
rest of the setup. We thus started with a telescope with lenses of +150mm and −100mm
(D1 and D2 in Fig. 2.12). However, with the decreases in laser energy and the differences
in alignment, we tried different telescopes, with a magnification spanning 0.67 to 0.17.
This 35 fs Ti:Sapphire system has a larger bandwidth than the original 180 fs system,

as shown in Fig. 2.13. This triples the spread of the diffracted pump beam from 3.0°
to 9.3°, which impedes the reproducibility of the alignment onto the crystal. For this
reason, we use a band-pass filter (BP in Fig. 2.12) while aligning the setup. The filter
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Figure 2.13: Spectrum of the IR pump with and without band-pass filter, as well as the
spectrum of the previous laser system (data fromWu et al. [72]).

has a bandwidth of 3 nm and is nominally centered at 808 nm, the wavelength shifting
when it is used at non-normal angles of incidence. Tilting the filter, we optimize the
setup for the central wavelength of 800 nm. The distances between the grating and the
lens, and the lens and the crystal, for which the grating is imaged onto the crystal, are
respectively 450mm and 225mm. The diameter of the lens (L in Fig. 2.12) is increased
to 3" to collect the full spectrum. The bandwidth of the pump on the crystal is however
ultimately limited by the aperture of the window of the chamber. With the pump beam
collimated on the grating, we observe the vertical focus in the focal plane of the lens,
but the horizontal focus is pushed back to 210mm after the lens due to the additional
divergence, 15mm before the crystal.
In addition to the THz radiation, parts of the reflected pump and its blue second

harmonic also exit the chamber through the THz window, as they have no dedicated
output window. The pump and its initially co-propagating second harmonic are refracted
with different angles as they leave the crystal, such that both beams are separated when
they exit the chamber. During the alignment of the chamber, care is taken to protect
the THz sensor from the reflected IR beam, which may overlap with the THz beam
and damage the silicon piece protecting the sensor, reducing its transmissivity. We
first realigned the setup at room temperature. To find the optimal angle of the grating,
we conducted similar scans than presented in Section 2.2.1. With the band-pass filter
narrowing the diffracted beam so it can be realigned identically for each iteration, we
rotated the grating and used the mirrors preceding it to move the incident beam. We
then adjusted the translation stages holding the lens and the crystal to optimize the THz
output. Finally, we rotated the grating until the angle of the incident beam corresponds
to the Littrow angle.
Figs. 2.14a and 2.14b shows the results without the THz chamber. For each angle

of the grating, we also rotated the waveplate that controls the total energy available to
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Figure 2.14: Influence of the TPF grating on the THz emission, at a–b) room and c–d)
cryogenic temperature. a, c) Position of the lens and crystal (𝑧 longitudinal, 𝑥
lateral) maximizing the THz emission, compared to their nominal positions.
Lens and longitudinal crystal positions: a higher value means a larger
distance from the grating. Lateral crystal position: a larger value means a
longer propagation in the crystal. Emitted THz energy at the output of the
chamber, while scanning the diffracted angle θ𝑑 and b) the pump energy or
d) the compressor alignment.

the setup, changing the energy on the crystal from 0.5mJ to 2.2mJ. We estimated the
corresponding fluence using the angle of the grating and the measured position of the
lens and the crystal stages, assuming an initial diameter of 6.5mm incident on the grating
and that the maximum THz output was obtained when the lens and crystal were at their
nominally optimal positions (0mm on the plot).
The optimal distance between the grating and the lens increases by 9mm as θ𝑑 in-

creases, while the optimal distance between the lens and the crystal decreases by 3mm,
with the movements of the lens taken into account. This matches the displacement of
the grating image as the lens is moved. As the lens is shifted forward, the horizontal
focus of the pump beammoves closer to the image of the grating, increasing the fluence.
We found the optimal diffraction angle to be 44.2°, which is as expected a bit off from

the nominal value at cryogenic temperatures of 46.5°. Cooling down the LiNbO3 crystal
from 234K to 89K, the THz output drops by 66% as the phase matching is impaired by
the change of refractive index. We thus need to adjust the pulse front tilt. In Figs. 2.14c
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and 2.14d, the optimal angle is 43.3°, which is also slightly off from the nominal value.

Weperformed this scan at cryogenic temperatureswhile scanning the distance between
the two gratings of the compressor. Its stage has no reference, thus we extracted the GDD
of the laser output by fitting the results of FROGmeasurements performed on the probe
beam of the parallel experiment (see Section 4.2.2.3). This arm of the laser is reflected on
all TFPs to minimize its dispersion, and thus shows a probe duration similar to the one
at the output of the compressor. The THz signal is maximized for a negative GDD, which
precompensates the dispersion of the pump of the optics on the TPF setup. We scan the
compressor length by 4mm, which corresponds to a pulse duration of 1.5 ps to 2.7 ps at
the output of the compressor. Compared to the measurement in Fig. 2.11, a smaller GDD
lead to a larger pulse duration because of the large bandwidth of the laser.

To collect the THz radiation, we use a pair of OAPs with focal lengths of 4" and 3".
Fig. 2.15a shows the caustic of the THz beam, measured with a THz camera. Before
the focus, only the vertical diameter can be measured 10mm due to lack to space. The
size of the waist is 0.8mm × 0.9mm, which corresponds to the wavelength of the central
frequency. We fitted the diameter near the waist as 𝑑2(𝑧) = 𝑑20 + 𝑀2𝑧2 (λ / π𝑑0)

2 [73],
with gives𝑀2 ≈ 1, but finds a frequency of 0.6 THz and 1THz, which indicates that the
camera likely only captured the central part of the beam.

As can be seen from the inserts, the beam is strongly elliptical. Its polarization is
plotted in Fig. 2.15d, which we measured by inserting a wire-grid polarizer before the
THz detector. At the output of the chamber, the polarization is tilted 1.6° off from the
vertical, which might be due to a misalignment of the vacuum chamber. After the OAPs,
the polarization is tilted by 10.2°. In both cases, the measurement can be fitted by a
linearly polarized beam. We expect mainly the second OAP to be responsible for the
ellipticity and the polarization rotation, as its holder is not fully adjustable.

Finally, Figs. 2.15b and 2.15c show the waveform and spectrum of the THz beam in
the focus. We took the current measurement with a 500 µm-thick ZnTe crystal, while
the EOS measurement on the original laser system was taken with a 200 µm-thick ZnTe
crystal and an additional plastic piece to filter the EOS. To compare both traces, we
deconvoluted the measurements by their transfer functions. This process is detailed
in Appendix B. The additional bandwidth of the pump with the current laser does not
translate into a broader THz bandwidth.

After optimization, we reached a maximum THz output of 188mV measured in the
focus, which we estimate to correspond to 2.6 µJ, or 11% of the estimated 23 µJ obtained
on the initial laser. The corresponding IR-to-THz conversion efficiencies are respectively
1.2 × 10−3 and 3.2 × 10−3. While the reduced pump energy is responsible for part of the
drop in THz output, we only reached 36% of the efficiency of the setup on its original
laser system. This is mainly due to the four times larger 1/𝑒2 bandwidth of the pump,
which is accompanied by a four times larger change in group index in LiNbO3 and thus
an increased phase-mismatch with the THz radiation.
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Figure 2.15: Characterization of the THz radiation. a) Horizontal and vertical D4σ
diameter, calculated from camera images (in inserts) taken around the
focus. b) EOS trace and c) its spectrum, compared to before moving the
setup. d) Transmission of the rotating polarizer, with fits (full lines) of the
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2.3 Applications of the THz radiation

Wehave described the TPF setups built with the aim of excitingmagnetization dynamics.
Before addressing this subject in the following section, we first introduce a additional
element of the THz toolkit that was designed to enhance the maximum magnetic field
strength.

34



2.3 Applications of the THz radiation

THz

𝐿

𝐴 × 𝐵

𝑎 × 𝑏

𝜃

Figure 2.16: Scheme of a focusing THz horn.

2.3.1 THz horn

One of the applications of THz radiation is the resonant excitation of magnons, whichwe
will demonstrate in Section 2.3.2 usingmeasurements obtainedwith 23 µJ of THz energy.
However, we have seen that after being rebuilt with for different pump, the TPF setup
presented in Section 2.2.2 generates only 2.6 µJ, due to a lower conversion efficiency and
a lower pump energy. To continue the experiments in similar conditions, we are looking
for a way to increase the THz energy by a factor 9, and thus the electric and magnetic
fields by a factor 3.

2.3.1.1 Design

To obtain a higher THz field when the generation efficiency is limited, one solution is to
focus the field tighter. In the case of the central 0.4 THz component shown in Fig. 2.15c,
focused by a 𝐷 = 3" OAP with a 𝑓 = 3" reflected focal length, the diffraction-limited
waist diameter is 𝑑0 = 4𝑓λ/π𝐷 = 0.95mm. The 0.9mm diameter measured in Fig. 2.15a
is thus already tightly focused and highly nonparaxial, as 𝑑0 ≈ λ. To enhance the electric
field by a factor 3 would require a similarly large optic with a 1" focal length, which is
not possible with an OAP.
It is however possible to focus the beamunder its diffraction limit over a short distance.

This can be accomplished for example with a focusing horn, which is a linearly tapered
rectangular waveguide. The already-focused field is guided through the horn and an
evanescent high-intensity field forms at the small aperture. This is illustrated by Fig. 2.16.
Let us consider that the horn is aligned on the 𝑧 axis and its small and large openings

have the area 𝑎 × 𝑏 and 𝐴 × 𝐵, respectively. The boundary conditions inside an empty
rectangular waveguide with perfectly conducting walls impose that the tangential
component of the electric field and the normal component of the magnetic field vanish
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at the walls, allowing the electromagnetic field to propagate only in discrete TE and TM
modes. The wavenumber has the transverse components 𝑘𝑥 = 𝑚π / 𝑎 and 𝑘𝑦 = 𝑛π / 𝑏. If

the frequency-dependent longitudinal component 𝑘𝑧 = √(ω / 𝑐)2 − 𝑘2𝑥 − 𝑘2𝑦 is real, the
mode can propagate through the waveguide; otherwise it is evanescent. The transition
occurs for 𝑘𝑧 = 0. The lowest propagating frequency for the TE𝑚𝑛 mode is thus:

𝑓𝑐 =
𝑐
2√(𝑚𝑎 )

2
+ (𝑛𝑏)

2
. (2.45)

The dominant mode, whose cutoff frequency is the smallest, is the TE10mode, for which
the cutoff depends only on the length of the longest side: 𝑓𝑐 = 𝑐 / 2𝑎. The value of 𝑎
should be chosen long enough to transmit the lowest frequencies of the THz spectrum
through the small end of the horn. The dimensions of the input are fixed by the criterion
that the horn must keep the same proportions over its length: 𝑎 / 𝐴 = 𝑏 / 𝐵, with the
smallest side 𝑏 ≥ 0.5mm due tomanufacturing limitations. In addition, the beam should
be focused a few millimeters inside the horn to maximize its coupling, so both opening
dimensions must be bigger than the focus diameter : 𝐴 > 𝑑0 and 𝐵 > 𝑑0. Finally, to
minimize the internal reflections and maximize the coupling efficiency, the tapering
angle of the horn must match the divergence angle θ of the incoming THz beam, which
determines its length 𝐿.
The lowest frequency in the THz spectrum according to Fig. 2.15 is 0.1 THz . With our

OAPs, its diffraction-limited waist has a diameter of 3.8mm. The beam is horizontally
elongated before the focus, which is helpful to make use of the full rectangular aperture.
We choose 𝐵 = 4mm, which is sufficient to contain most of the energy of the low
frequencies, and 𝑏 = 0.5mm. To discourage theTE01mode and keep a clean polarization,
the ratio 𝑎 / 𝑏 should be as large as possible. However, 𝑎 should be sufficiency small to
also focus the beam in the horizontal direction. We choose 𝑎 = 2mm, which leads to
𝐴 = 16mm. Assuming that the beam fills a 4mm × 4mm surface at the input and the
whole output, its cross-section is reduced by a factor 16, increasing the intensity at the
output plane by the same factor, and thus enhancing the field by a factor 4.
The divergence of the beam is difficult to reliably estimate from the beam profiles

captured with the THz camera. As the beam is mainly diverging horizontally before
the focus and only 𝐸𝑥 varies in the TE10 mode, we use the value of the horizontal
divergence, which is 8.6°. We thus choose θ = 10.5° for the horn, which gives a length of
𝐿 = 𝐵 / tan(θ) = 21.59mm.
We can analytically calculate some properties of the resulting horn. The phase and

group velocities are frequency-dependent:

𝑣ϕ =
ω
𝑘𝑧
; 𝑣𝑔 =

𝑘𝑧𝑐2

ω (2.46)

This makes the horn dispersive, with a spatially dependent group velocity dispersion
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(GVD) for the TE10 mode of:

𝐺𝑉𝐷(𝑧) =
d2𝑘𝑧
dω2 = − π2 𝑎(𝑧) 𝑐

(𝑎2(𝑧) ω2 − π2𝑐2)3/2
(2.47)

with 𝑎(𝑧) = 𝐴 + (𝑎 − 𝐴) 𝑧 / 𝐿. Integrated over 𝐿 = 21.59mm, the GDD introduced by
the horn is −0.128 ps2. Assuming a Fourier-limited Gaussian THz pulse, it would be
stretched from 0.49 ps to 0.72 ps duration.
Unfortunately, the large bandwidth of the THz beam means that many modes have

the possibility to propagate. The 2mm × 0.5mm output aperture supports modes with
𝑚 ≤ 13 and 𝑛 ≤ 3, until TE13,0 and TE53 whose cutoff are both at 974GHz. Themain part
of the spectrum, under 600GHz, can supports modes with𝑚 ≤ 7 and 𝑛 ≤ 1. The cutoff
of the TE10 mode at this aperture is 75GHz. It is reduced to 9GHz at the 16mm × 4mm
input aperture, which means that we can expect some of the evanescent low frequencies
to still reach the output of the horn.
We choose copper as material, as it has a high DC conductivity σ0 = 5.98 × 107 Sm−1.

In the THz range, the Drude model gives its frequency-dependent conductivity: σ(ω) =
σ0 / (1 + 𝑖ωτ), with the damping frequency 1 / τ = 6.71THz [74]. The field penetrates
in the walls over the skin depth δ = √2 / (μ0σω) = 0.11 µm at 0.4 THz, generating a
longitudinal current within the walls and thus losses as the pulse propagates. The
absorption coefficient for the TE10 mode is [75, chapter 8]:

α(ω, 𝑧) =
2 (π

𝑎
)
2
(𝑏 + 𝑎

2
(ω𝑎
π𝑐
)
2
)

ωμ0𝑎𝑏𝑘𝑧σδ
. (2.48)

At the output aperture, where it is the largest, it has a minimum α(𝐿) = 6.78 × 10−1m−1

at 160GHz, then increases with the frequency until 1.00m−1 at 1 THz. Near the cutoff
frequency, it diverges to infinity as the wave becomes evanescent. Integrating the losses
over the length of the horn, only 0.52% of the 0.4 THz component is absorbed.
However, the approximation of perfectly conducting walls breaks down in the THz

range. The longitudinal field component 𝐸𝑧 created by the wall current can no longer
be neglected, and the modes are hybrid between TE and TM, which prevents there from
being an analytical expression of 𝑘𝑥 and 𝑘𝑦. In this situation, the above losses are un-
derestimated. Extrapolation from the calculations of Ho et al. [76] for a 13mm × 6.4mm
copper rectangular waveguide, we can expect α for the TE10mode to be respectively 4.5%
and 21% higher at 0.4 THz and 1THz, which is ins this case negligible.
The tapering of the horn brings additional losses that we have so far neglected, as

parts of the THz beam are reflected on the wall. Using the equations of Waldron [77], we
estimate a reflection coefficient of 𝑅 = 1.1 × 10−2, excluding the losses when coupling
the THz beam into the horn.
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Figure 2.17: Simulation of 𝐸𝑦(ω) on the 𝑥𝑧 (upper row) and 𝑦𝑧 (lower row) planes.
Inserts: zoom on the 3mm after the horn output. The phase is 90°. Each
frequency has an initial amplitude 𝐸𝑦(𝑧 = 0) = 1Vm−1.

2.3.1.2 Simulations

We simulated the propagation of the THz through the horn in CST Studio [78]. The horn
is a linearly tapered rectangular tube. We used 1mm-thick copper walls, defined as a
lossy metal with permeability μ = 1, impedance 𝑍 = 0.16𝛺 at 0.4 THz, and conductivity
σ0 = 5.96 × 107 Sm−1.
The input field is a Gaussian pulse with a spectrum covering 50GHz to 1 THz (λmin =

300 µm and λmax = 6 × 103 µm). It is focused inside the horn at 𝑧 = 3mm, with a waist
of 7.6mm for λmax. It is propagating along the 𝑧 axis and linearly polarized along the
𝑦 axis. At 𝑡 = 0 and 𝑥 = 𝑦 = 𝑧 = 0, it has an amplitude of | #»𝑬 | = 𝐸𝑦 = 1Vm−1 and
| #»𝑯| = 𝐻𝑥 = 2.6mAm−1. The source region is cropped to a height of 𝐵, so that it exactly
covers the input aperture. Along the 𝑥 axis, its width cannot be changed.
We use the time-domain solver to calculate the propagation of the field. To ensure the

accuracy of the field at the output of the horn, we set up the bounding box to end with
at a distance of λmax / 2 from the horn. We use a hexahedral mesh with five cells per
λmin near the horn, which is sufficient to sample all frequencies. Along the 𝑧 axis, the
resolution is uniform with 60 µm-long cells. The bounding box has non-reflective open-
space boundaries. To minimize the calculation domain, we set up symmetry planes: 𝑥𝑧
as an electrical boundary (𝐸𝑥 = 𝐸𝑧 = 0), and 𝑦𝑧 as a magnetic boundary (𝐻𝑦 = 𝐻𝑧 = 0).
Fig. 2.17 shows the amplitude of the 𝐸𝑦 field for individual frequency components.

The 50GHz component is under the 75GHz cutoff of the output aperture, and thus
starts decaying as it reaches the end of the horn. Its amplitude is however still superior
to 1Vm−1 up to 460 µm after the output. The 0.4 THz and 1THz components show
interference patterns due to the superposition of several modes. The 1 THz component
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and 36 ps, respectively.

forms a destructive interference pattern and vanishes within 1mm after the output. The
0.4 THz component can reach at most the TE31 mode at the horn output, and therefore
has fewer interference. It reaches an maximum amplitude of 5.51Vm−1 in the side lobes
90 µm after the output. On the 𝑧 axis, its maximum is 2.99Vm−1, 785 µm after the output.
It vanishes slowly, which gives us a chance to place a sample close enough to the horn to
use most of the energy of the pulse.

Fig. 2.18 shows the effect of the horn on the THz pulse. The input field at 𝑧 = 0 is
a single-cycle pulse. Immediately after, some ripples are visible and originate from the
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reflected radiation that failed to couple in the horn. After 16 ps, a second pulse crosses
the 𝑧 = 0 plane. Its timing indicates that it was reflected at the beginning of the THz
waist, when the divergence of the beam becomes mismatched with the tapering angle of
the horn. Halfway inside the horn, the main pulse has doubled its amplitude and shows
negative GDD, with a stronger broadening than we calculated for the TE10 mode. As
this is after the waist, a large part of the beam has started reflecting on the walls, and
the amplitude of the reflections approaches that of the main pulse. At the output of the
horn, there is no more visible difference between the main pulse and the reflections.
The waveform is dominated by the high-frequency components. As the pulse propagates
further on the 𝑧 axis, they destructively interfere as shown in Figs. 2.17e and 2.17f, leaving
a narrower spectrum. The peak magnetic field amplitude is enhanced by a factor 7.3 at
the output, and a factor 4 within the first millimeter of propagation. This corresponds to
our expectations, and would be sufficient to reach the desired field.
As we calculated in the previous section, the losses in the horn are low: the losses in

the walls are of 5.8 × 10−10W at 0.4 THz and increase up to 5.4 × 10−9W at 1 THz. The
energy inside the bounding box reaches its maximum at 𝑡 = 14.8 ps, when the source has
finished emitting the pulse. It decreases slowly with a few inflection point, as parts of
the beam are reflected backwards after some propagation inside the horn. At 𝑡 = 87.5 ps,
the bounding box still contains 93.9% of the maximum energy. It then drops sharply as
the main pulse exits the system at 𝑧 = 𝐿 + 3mm. By 𝑡 = 115 ps, the main part of the
pulse is out of the bounding box, carrying 50.8% of the initial energy. Another sharp
decrease takes place at 𝑡 = 180 ps, when radiation that reflected on the output aperture
of the horn exits the bounding box by the input side.

2.3.1.3 Measurements

The horn wasmanufactured by the DESYworkshop and installed in the focus of the THz
beam. We optimize its alignment by fixing the THz detector at its output andmaximizing
the transmitted THz energy, blocking the remaining surface of the detector. We obtained
up to 47% of the signal measured in the focus without the horn, which is the order of
magnitude that we expected the pulse to carry according to the simulation. Because of
the distance between the entrance of the THz detector and the surface of the sensor, the
diverging beam is only partially collected and the value is approximate.
Fig. 2.19 shows EOS traces of the THz pulse with and without the horn. The ZnTe

crystal is placed in the THz focus or as close as possible to the horn output, respectively.
We usually use EOS in transmission, with the THz and probe beams coming from the
same side of the crystal. A perfect superposition requires the first OAP to be adjusted
so that the THz beam is centered on the hole by which the probe is inserted, and so
that they both travel colinearly. As the propagation of the THz beam is sensitive to the
alignment on the pump beam and thus varies slightly every day, the superposition is not
sufficient for the probe to travel through the horn without hitting its walls. This degrades
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Figure 2.19: EOS traces of the THz beam a) focused in free space and b) after the horn.
Insert: horn next to the ZnTe crystal.

the probe quality and makes its alignment difficult. For this reason, we also try EOS in
reflection, in which the probe beam is incident on the face of the crystal opposite to the
horn. The refractive index of the THz beam in ZnTe is almost identical to the group index
of the probe, and it takes both of them 5.4 ps to traverse the 500 µm-thick crystal. The
counter-propagating probe thus travels across the entire THz pulse and its polarization
is in average not rotating. Its internal reflection is however phase-matched with the THz
pulse. We thus expect the measured waveform to not be significantly distorted compared
to EOS in transmission, but noisier, as most of the probe energy is transmitted instead of
reflected.
We see in Fig. 2.19a the THz pulse measured without horn. The spectrum is narrower

than the one in Fig. 2.15c, as repairs to the laser system have changed the characteristics
of the pump, and is centered at 250GHz. Several reflections of the THz pulse are visible.
Their relative amplitude does not decrease linearly, indicating that they likely had a
spatial offset and the probe was better superposed to the second reflection.
Fig. 2.19c shows the waveform of the THz beam after the horn. The signal-to-noise

ratio is better in reflection, as the probe looses less energy traveling through the crystal
than through the horn. We install the EOS crystal as close as possible to the horn without
risking contact, at a distance which we estimate to be 1mm to 2mm. From Fig. 2.17,
we can thus expect the absence of high-frequency components, whose different modes
interfere destructively. We indeed observe no signal above 0.6 THz, and a spectrum
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Figure 2.20: Spatial dependency of the EOS amplitude, a–c) focused in free space and d–
f) after the horn. The positions are measured in arbitrary steps whose scale
is not comparable between subplots. The horizontal errorbar are estimations
of the likelihood that the order of the points is incorrect, taking into account
the hysteresis of the mirror screws. Only c): 𝑧 scale in mm. A lower number
corresponds to the crystal moving towards the OAPs.

centered lower around 0.15 THz. The waveform shows many interferences, as the beam
can be reflected not only in the crystal, but also on surface of the horn. We can however
still recognize the expected chirp in the pulse.
To find the optimal position for a sample and compare the peak magnetic field of

the THz with and without the horn, we attempted a three-dimensional EOS scan of the
beam. The 𝑧 axis corresponds to the distance between the ZnTe crystal and the horn,
and the 𝑥𝑦 plane corresponds to the position of the probe beam on the crystal, which
we are able to control when using the reflection scheme. We send the reflected probe
with a combination of flip mirrors either to the EOS setup, to a camera after 199mm of
propagation, or to the same camera after 388mmof propagation. By tracking the location
of the beam on the camera at both distances, weminimize the uncertainty on the relative
movements of the beam in the 𝑥𝑦 plane due to the hysteresis of the alignment mirror.
Fig. 2.20 shows the EOS amplitude that we measured while scanning the uncalibrated

position of the probe, optimizing one axis at a time. The focus in free space fills a large
part of the 5mm-wide crystal, while the THz beam is significantly smaller at the output
of the horn. We scanned the 𝑥 and 𝑦 axes twice, for different positions of the crystal
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along 𝑧. The discontinuities in the 𝑥 profile with the horn expected from Fig. 2.17 are
not visible. The 𝑧 axis has a large influence in the absence of the horn, and the optimal
position is restricted to a 200 µm-wide range. With the horn, a quantitative measure of
the distance within which the THz is detectable was not possible.
We performed the optimization of the position of the probe with and without horn

back-to-back, with the same energy in the probe beam. We can thus compare the
amplitudes of the EOS traces. At its maximum, we found a peak-to-peak amplitude
of 2.1 in the free-space focus, after optimizing the crystal along the 𝑧 axis. Further
movement of the probe along the 𝑥 and 𝑦 axes only lowered the signal. Using the horn,
the last scan on the 𝑦 axis gave a maximum peak-to-peak amplitude of 18, or 8.6 times
more. The single-peak amplitude has a less coherent behavior and varies too much
shot-to-shot to be able to compare the two beams. It seems however likely that the horn
is producing at least the field enhancement that we designed it for.

2.3.2 Measurement of a prototypical canted antiferromagnet

The intended application for the THz radiation generated in this chapter is the excitation
of magnons, or spin waves, in antiferromagnetic (AFM) materials. The origin of the
magnetic phenomena will be treated in details in Chapter 3; we focus here on the point
of view of the magneto-optic (MO) measurements.
The sample is inserted in the focus of the THz beam, which excites spin waves upon

incidence. They perturb the optical properties of the material, inducing a nonlinear sus-
ceptibility depending on the magnetization of the medium. Due to this induced change
in refractive index, the polarization of the probe beam is rotated by the birefringence of
the sample as it travels through it. The spin waves can thus be measured by the same
detection setup as for EOS, only replacing the EOS crystal by the AFM sample.

2.3.2.1 Uniformmagnetization precession in FeBO3

As a proof of concept, we performed the experiment on the iron borate FeBO3, using
the original 800 nm setup. This material was predicted and first synthesized by Bernal,
Struck, and White [79], and extensively studied in the following decades for its un-
common properties: spontaneous magnetization at room temperature coexisting with
transparency to visible light, which made this material advantageous for applications
such as optical modulators, isolators, or electronically tunable cavities [29].
It has a rhombohedral lattice structure of space group R3c, with a three-fold symmetry

around the [0 0 1] or 𝑐 axis, represented in Fig. 2.21. It is classified as an AFM mate-
rial, which means that it has two sublattices with equal but opposite magnetizations
# »𝑴1 and

# »𝑴2 of the same magnitude 𝑀𝑖. However, due to a break in the symmetry of
the covalent bounds of the Fe ions with oxygen, the magnetizations are both tilted by
1.6 × 10−2 rad [80] with respect to the AFM alignment and do not perfectly cancel each
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Figure 2.21: a) Structure of FeBO3. Full lines: rhombohedral unit cell. Dotted lines:
hexagonal unit cell. Thick line: hard 𝑐 axis. Blue (red) spheres: Fe atoms
with magnetization # »𝑴1 (

# »𝑴2). Blue (red) hexagons: antiferromagnetic
sublatices in the basal plane. The canting is exaggerated for readability.
The net magnetization # »𝑴 = # »𝑴1 +

# »𝑴2 is aligned on the external field
#»𝑯DC. b) Geometry of the measurement: the magnetization precession is
induced by a THz pulse and probed by an IR pulse. The indicated precession
corresponds to the qFMR mode (see Eq. (2.49a)).

other, resulting in a small net magnetization # »𝑴 = # »𝑴1 +
# »𝑴2 . The mechanism causing

this canting is explored in Section 3.2.4.6 [81]. FeBO3 has an easy-plane type of magne-
tocrystalline anisotropy, which means that the sublattice magnetization and thus # »𝑴 is
preferably aligned in the basal plane. An external magnetic field of 2mT [82] is sufficient
to remove the magnetic domain structure of the crystal, so that the magnetization can
be considered homogeneous.
As detailed in Section 3.3.3.3, a short varyingmagnetic field perturbs themagnetization

of the material. Both sublattice magnetizations starts precessing right-handedly around
their equilibrium position following the Landau-Lifshitz equation of motion 𝜕 # »𝑴𝑖/𝜕𝑡 =
−γμ0

# »𝑴𝑖 ∧
#»𝑯𝑖. If the magnetization precesses uniformly throughout the sample, this is

an acoustic spin wave with wavevector 𝑘 = 0. The motion eventually decays and the
magnetization returns to its equilibrium position along the effective field #»𝑯𝑖 .
The behavior of the two-sublattice system can be equivalently described by the ferro-

magnetic (FM) vector # »𝑴 and the AFM vector #»𝑳 = # »𝑴1 −
# »𝑴2 , each precessing around

the external magnetic field #»𝑯DC. We define the coordinate system so that 𝑧 ∥ 𝑐 is the
out-of-plane axis, # »𝑴 ∥ #»𝑯DC ∥ 𝑦 and

#»𝑳 ∥ 𝑥 at equilibrium (see Fig. 2.21b).
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Since FeBO3 has two sublattices, the system has two degrees of freedom and there
exist two modes of uniform precession, distinguished by the relative phase between
the precession of # »𝑴1 and

# »𝑴2. In the quasi-ferromagnetic resonance (qFMR) mode, the
sublattices precess in phase, so that the magnetization displacements are related by
δ𝑀𝑥1 = δ𝑀𝑥2, δ𝑀𝑦1 = −δ𝑀𝑦2 and δ𝑀𝑧1 = δ𝑀𝑧2. This results in the precession of the net
FM moment # »𝑴 in the 𝑥𝑧 plane, giving its name to the mode, and the oscillation of 𝐿𝑦.
Due to the strong anisotropy, the precession is elliptical and mostly confined in the basal
plane: δ𝐿𝑦 / δ𝑀𝑧 ≈ 103 [83]. In the quasi-antiferromagnetic resonance (qAFMR) mode,
the sublattices precess with opposite phase, so that δ𝑀𝑥1 = −δ𝑀𝑥2, δ𝑀𝑦1 = δ𝑀𝑦2 and
δ𝑀𝑧1 = −δ𝑀𝑧2. This results in the precession of

#»𝑳 in the 𝑥𝑧 plane and the oscillation of
𝑀𝑦. In this mode, the canting angle between the two sublattices is perturbed. Since the
force responsible for the canting in FeBO3 is stronger than the anisotropy of the sample,
the precession is here mainly out-of-plane: δ𝐿𝑧 / δ𝑀𝑦 ≈ 300. In purely AFM materials,
only this mode is measurable, as it leads to the appearance of a non-zero magnetization.
The precession frequencies are sample-, temperature- and geometry-dependent. For

FeBO3, they are modeled as [83]:

(
ωqFMR
μ0γ

)
2
= 𝐻DC (𝐻DC + 𝐻𝐷) + 2𝐻𝐸𝐻′

𝐴 (2.49a)

(
ωqAFMR
μ0γ

)
2
= 𝐻𝐷 (𝐻DC + 𝐻𝐷) + 2𝐻𝐸𝐻𝐴, (2.49b)

where 𝐻𝐷, 𝐻𝐸, 𝐻𝐴 and 𝐻′
𝐴 are effective magnetic fields corresponding to internal forces

affecting the orientation of the sublattice magnetizations, whose values are given in
Table 3.2. The origin of these forces and the calculation of the precession frequencies
are discussed in Section 3.3.3.3. For 𝐻DC = 100mT, we predict ωqFMR = 22GHz and
ωqAFMR = 315GHz.
The frequency of the qAFMR mode coincides with the central frequency of the THz

pulses, whose spectrum is shown in Fig. 2.15c. A resonant magnetic dipole excita-
tion of this mode using the THz magnetic field is thus possible. The field exerts a
polarization-dependent torque # »𝑴𝑖 ∧

#»𝑯THz = (±𝐿𝑥𝐻𝑦 / 2 − 𝑀𝑦𝐻𝑥 / 2) #»𝒛 on the sublattice
magnetizations. The 𝐻𝑦 component thus results in δ𝑀𝑧1 = −δ𝑀𝑧2, which corresponds
to the qAFMR mode. Fig. 2.15d shows that the polarization of the THz pulses of the
original 800 nm setup is near 45°, that is to say 𝐻𝑦 ≈ 𝐻𝑥. We thus expect to be able to
pump the qAFMR mode.
It has recently been shown that the excitation of the qFMR mode in FeBO3 by THz

pulses is caused by a different mechanism than the qAFMR mode [84, 85]. The pulse
is short compared to the qFMR precession, so that the direction of the torque reverses
before the magnetization has significantly moved. It is thus modeled, as in the case of
excitation using IR pulses, by inverse Brillouin scattering or equivalently by inverse MO
effects [86, 87].
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2.3.2.2 Magneto-optic measurements

The interaction of the probe beam with a material depends on the polarizability of
its ions, which is influenced by their spin. Although FeBO3 is a magnetic material,
we describe the propagation of light assuming a relative permeability μ𝑟 = 1 without
loss of generality, by including the magnetic susceptibility into an effective electronic
susceptibility χeff = χ𝑒 + χ𝑚 (1 + χ𝑒) [88]. Similarly to the expression of the nonlinear
polarization (see Eq. (2.2)), the electronic susceptibility can be expanded into powers of
the magnetization. Thus the effective relative permittivity is:

𝛜eff = 1 + 𝛘(0) + 𝛘(1) ⋅ # »𝑴 + 𝛘(2) .. # »𝑴2

= ϵ(0)eff + ϵ(1)eff + ϵ(2)eff .
(2.50)

𝛜eff can be separated into a symmetric part, depending on even powers of the magne-
tization, and an antisymmetric part, depending on odd powers of the magnetization.
Expressed as a function of the FM and AFM vectors up to the second order, we obtain
the dielectric tensors [89]:

ϵ𝑎𝑖𝑗 = α𝑖𝑗𝑘𝑀𝑘 + β𝑖𝑗𝑘𝐿𝑘

ϵ𝑠𝑖𝑗 = ϵ(0)𝑖𝑗 + 𝑎𝑖𝑗𝑘𝑙𝑀𝑘𝑀𝑙 + 𝑏𝑖𝑗𝑘𝑙𝐿𝑘𝐿𝑙 + 𝑐𝑖𝑗𝑘𝑙𝑀𝑘𝐿𝑙.
(2.51)

In the absence of absorption, ϵ𝑎𝑖𝑗 is purely imaginary and ϵ
𝑠
𝑖𝑗 purely real, both resulting in

a phase difference between the two eigenmodes of the polarization. They are respectively
associated to magnetic circular birefringence (MCB) and magnetic linear birefringence
(MLB). In the presence of absorption, the real part of ϵ𝑎𝑖𝑗 and the imaginary part of
ϵ𝑠𝑖𝑗 lead to magnetic circular dichroism (MCD) and magnetic linear dichroism (MLD),
respectively. The first-order effects are in general visible only when light travels along the
direction of the magnetization, as the left- and right-handed circular polarizations are
aligned or opposed to the angular momentum of the material, while the second-order
effects are visible when the magnetization is transverse.
To the first order in the displacements δ𝑀 and δ𝐿, the permittivity tensor of FeBO3 has

the form [86]:

𝛜eff =

⎡
⎢
⎢
⎢
⎢
⎣

ϵ⟂ 0 0

0 ϵ⟂ 0

0 0 ϵ∥

⎤
⎥
⎥
⎥
⎥
⎦

(no magnetism)

+

⎡
⎢
⎢
⎢
⎢
⎣

ϵS𝑠𝑥𝑥 0 0

0 ϵS𝑠𝑦𝑦 ϵS𝑠𝑦𝑧

0 ϵS𝑠𝑦𝑧 ϵS𝑠𝑧𝑧

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 𝑖ϵS𝑎𝑦𝑧

0 −𝑖ϵS𝑎𝑦𝑧 0

⎤
⎥
⎥
⎥
⎥
⎦

(static magnetization)
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+

⎡
⎢
⎢
⎢
⎢
⎣

0 ϵF𝑠𝑥𝑦 ϵF𝑠𝑥𝑧

ϵF𝑠𝑥𝑦 0 0

ϵF𝑠𝑥𝑧 0 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 𝑖ϵF𝑎𝑥𝑦 𝑖ϵF𝑎𝑥𝑧

−𝑖ϵF𝑎𝑥𝑦 0 0

−𝑖ϵF𝑎𝑥𝑧 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(qFMR mode) (2.52)

+

⎡
⎢
⎢
⎢
⎢
⎣

ϵA𝑠𝑥𝑥 0 0

0 ϵA𝑠𝑦𝑦 ϵA𝑠𝑦𝑧

0 ϵA𝑠𝑦𝑧 ϵA𝑠𝑧𝑧

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 𝑖ϵA𝑎𝑦𝑧

0 −𝑖ϵA𝑎𝑦𝑧 0

⎤
⎥
⎥
⎥
⎥
⎦

, (qAFMR mode)

where the superscripts 𝑠 and 𝑎 refer to the symmetric and antisymmetric parts of
the tensor, and the capital superscripts S, F and A to the static, qFMR and qAFMR
components of the magnetization, respectively. As FeBO3 is transparent at 800 nm, the
symmetric and antisymmetric parts are purely real and imaginary, respectively. It is here
assumed that the probe propagates along the 𝑧 axis and the external magnetic field is
aligned along the 𝑦 axis.
In the case of a static magnetization, the elements of the permittivity tensor given

above [86] are the same than those given by Akhmadullin et al. [90] for α FeO3, whose
crystallographic and magnetic structure is similar to FeBO3. The authors show that since
ϵ𝑥𝑦 = 0, a linearly polarized probe pulse is rotated by an angle ϕ, defined by:

tan(2θp − 2ϕ) = cos(2η) tan(2θp) (2.53)

2η ≈ (𝐺1𝐿2𝑥 + 𝐺2𝑀𝑦𝐿𝑥) π𝑧 / λ√ϵ⟂ (2.54)

where θp is the angle between the polarization of the incident probe and
#»𝑯DC , and 2η is

the phase difference between the two eigenmodes of the polarization. The quadratic MO
constants 𝐺1 = 𝑏𝑥𝑥𝑥𝑥 − 𝑏𝑦𝑦𝑥𝑥 and 𝐺2 = 𝑐𝑥𝑥𝑦𝑥 + 𝑐𝑦𝑦𝑦𝑥 are defined according to Eq. (2.51).
The resulting static rotation can be experimentally compensated by the balance of the
EOS setup in order to measure only the dynamic part of the permittivity.
A similar result is obtained for the polarization rotation induced by the qAFMR

mode, as its contribution to the permittivity has the same diagonal form as the static
magnetization. Assuming that the static rotation is removed, the phase difference
becomes:

2η = (𝐺1𝐿𝑥δ𝐿𝑦 + 𝐺3𝐿𝑥δ𝐿𝑧 + 𝐺4𝑀𝑦δ𝐿𝑧) π𝑧 / λ√ϵ⟂, (2.55)

where 𝐺3 = 2𝑏𝑥𝑥𝑥𝑧 and 𝐺4 = 2𝑐𝑥𝑥𝑦𝑧. According to Eq. (2.53), the probe is the most
sensitive to the induced phase difference 2η for θp near but different from ±45°.
The tensor elements corresponding to the qFMR mode are [86]:

ϵF𝑠𝑥𝑦 ≈ 𝐺1𝐿𝑥δ𝐿𝑦, ϵF𝑎𝑥𝑦 = 𝐾1δ𝑀𝑧,

ϵF𝑠𝑥𝑧 ≈ 𝐺5𝐿𝑥δ𝐿𝑦, ϵF𝑎𝑥𝑧 ≈ 𝐾2δ𝐿𝑦,
(2.56)
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where the 𝐾 and 𝐺 are linear and quadratic MO constants, respectively, and 𝐺5 = 2𝑏𝑦𝑧𝑦𝑥,
𝐾1 = α𝑦𝑥𝑧, 𝐾2 = β𝑦𝑧𝑦. As the probe propagates along the 𝑧 axis, only ϵ𝑥𝑦 contributes.
The effective dielectric tensor:

𝛜Feff =

⎡
⎢
⎢
⎢
⎢
⎣

ϵ⟂ ϵF𝑠𝑥𝑦 + 𝑖ϵF𝑎𝑥𝑦 0

ϵF𝑠𝑥𝑦 − 𝑖ϵF𝑎𝑥𝑦 ϵ⟂ 0

0 0 ϵ∥

⎤
⎥
⎥
⎥
⎥
⎦

(2.57)

has for eigenvalues 𝑛2 = ϵ⟂ ±√(ϵF𝑠𝑥𝑦)
2 + (ϵF𝑎𝑥𝑦)

2 and eigenvectors:

#»𝑬1 =

⎡
⎢
⎢
⎢
⎢
⎣

+α

1

0

⎤
⎥
⎥
⎥
⎥
⎦

; #»𝑬2 =

⎡
⎢
⎢
⎢
⎢
⎣

−α

1

0

⎤
⎥
⎥
⎥
⎥
⎦

, (2.58)

where:

α =
𝑖√(ϵ𝐹𝑎𝑥𝑦 )

2 + (ϵ𝐹𝑠𝑥𝑦)
2

ϵ𝐹𝑎𝑥𝑦 + 𝑖ϵ𝐹𝑠𝑥𝑦
= exp (π2 − tan−1 (

𝐺1𝐿𝑥δ𝐿𝑦
𝐾1δ𝑀𝑧

)) . (2.59)

The normal modes of the electric field in the crystal thus correspond to a left- and a
right-handed elliptical polarization. For the probe orientation θp = 90°, the rotation of
the polarization is now [89, 90]:

tanϕ = −
2α (α2 + 1) sin 2η

4α2 cos 2η + (α2 − 1)2
. (2.60)

FeBO3 is known for high large Faraday rotation in the visible range [91]. At 800 nm,
the MO coefficients 𝐾 and 𝐺 have similar values [86]. However, the ellipticity of the
qFMR mode (δ𝐿𝑦 ≫ δ𝑀𝑧) ensures that Eq. (2.59) is dominated by the quadratic MO
effects. We thus measure mainly the rotation of the probe due to MLB, called the Voigt
or Cotton-Mouton effect.

2.3.2.3 Results in FeBO3

The spin waves in FeBO3 have been measured using the initial 800 nm THz setup dis-
cussed in Section 2.2.2. As shown in Fig. 2.15, its spectrum is centered around 400GHz
and its polarization is rotated by 40° from the vertical in the focus. The probe is hori-
zontally polarized. The FeBO3 sample is glued at the center of a rotating mount. Two
permanent magnets whose distance can be adjusted provide the DC magnetic field on
the sample and are fixed to the same rotating mount. We measured the corresponding
magnetic field using a Hall sensor at the position of the crystal. For the initial orientation
of the mount, #»𝑯DC ∥ 𝑦, θp = 90° and θTHz = 40°.
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Figure 2.22: a) Measured MO signal and b) its spectrum for different strengths of #»𝑯DC ,
measured immediately following the THz pulse (left) and long-term (right).
Dashed black lines: Lorentzian fit of the qFMR peak. c) Measured qFMR
frequency from two sets of experiments, with fit according to Eq. (2.49a).
d) Amplitude of qFMR peak while varying the pump energy.

We varied the distance of the magnets, the angle of the mount and the IR energy
incident on the THz setup. In each configuration, we took two measurements: one with
low resolution to measure the nanosecond-scale behavior of the magnetization preces-
sion, and one with higher resolution recording the first picoseconds after excitation. All
measurements shown were taken with a monocrystalline FeBO3 sample (label A), except
for Figs. 2.22c and 2.22d (label B) which were taken using a polycrystalline sample.
Figs. 2.22a and 2.22b shows the measured MO signal with the magnets horizontally

aligned with the sample ( #»𝑯DC ∥ 𝑥). At the incidence of the THz pulse, the magnetization
oscillates at the frequency of the THz field for two to three cycles, following its magnetic
field. After 10 ps to 30 ps, the signal settles into oscillations corresponding to the free
precession of the magnetization. As shown by Fig. 2.22c (label A), the frequency of the
oscillationsmatches the frequency predicted by Eq. (2.49a) if #»𝑯DC is scaled by a factor 1.2,
which can be caused by an imprecision in our calibration of the field. Their amplitude
is expected to be linearly proportional to the THz energy [84], which agrees with our
measurements except in the case of the lowest incident IR energy (Fig. 2.22d).
The precession oscillations are well-fitted by a Lorentz peak at the qFMR frequency.

As reported by Kalashnikova et al. [92], their initial phase is independent of #»𝑯DC. They
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Figure 2.23: a) MeasuredMO signal and b) its spectrum for different angles of the sample
and magnets mount. Dashed black lines: Lorentzian fit of the qFMR and
qAFMR peaks. c) Measured qAFMR frequency and its theoretical value
according to Eq. (2.49b). d) Variation of the qFMR amplitude with the
rotation of the sample and 𝐻DC, and fit of the average amplitude.

decay within 400 ps to 1400 ps, in some cases with a slow modulation of the envelope,
showing amplitude minima after 390 ps and 780 ps. These modulation corresponds
to additional peaks widening the qFMR spectrum and could be caused by additional
non-uniform magnon modes [93, 94].
Figs. 2.23a and 2.23b shows the influence of the rotation of the sample mount on the

initial oscillations after excitation, with 90° corresponding to the measurements A of
Fig. 2.22. While the initial oscillations are independent of 𝐻DC in shape and amplitude,
they vary with the angle of the mount, which involves the rotation of the sample and of
themagnets. We expect that these oscillations are driven by the internal reflections of the
THz pulse inside the FeBO3 sample and vary due to the inhomogeneity of its thickness.
Depending on the angles of the mount, up to two clear peaks are visible in the spec-

trum. One is centered at 46GHz and corresponds to the qFMR mode. The other is
centered at 300GHz and is corresponds to the qAFMR mode. Both frequencies are in-
fluenced by 𝐻DC, indicating a magnetic origin. As shown by Fig. 2.23c, there is an offset
between the observed frequency and the theoretical qAFMR frequency according to
Eq. (2.49b), which cannot be explained by an error in the calibration of 𝐻DC and necessi-
tate to reduce either 𝐻𝐷 by 20%, which also decreases the qFMR frequency, or 𝐻𝐸 or 𝐻𝐴
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by 15%.
The rotation of the magnets determines both angles θp and θTHz, corresponding

respectively to the orientation of the probe and THz polarizations with respect to 𝐻DC.
Both angles then influence the amplitude of the measured signal. For a given precession
amplitude, the MO signal is a nonlinear function of α, η and θp [90], and the change
in measured amplitude when rotating the magnets cannot be analytically calculated.
The qFMR and qAFMR modes are expected to have a precession amplitude varying as
sin 2θTHz and − sin θTHz respectively [84, 85], where due to the tilted THz polarization,
θTHz = 90° for a mount angle of 50°. As shown in Fig. 2.23d, the measured qFMR
amplitude exhibits a compatible tendency. The qAFMR precession amplitude varying
with half the frequency, we observe a single well-defined peak for a mount angle of 90°,
while the qFMR amplitude at 0° and 90° is approximately the same.
We have thus observed the THz excitation of the qFMR mode in FeBO3, and found

that its behavior agrees with what has been reported in the literature. A second mode,
which we expect to be the qAFMR mode, can be seen in some measurements but does
not match the theory as well as our observations of the qFMR mode. To understand
the discrepancy, we had planned to repeat and continue the measurements after the
reconstruction of the THz setup.

2.4 Conclusion

In this chapter, we have focused on nonlinear optics and in particular optical rectification,
which is the phenomenon we exploit for THz generation in tilted pulse front setups. We
have detailed the experimental parameters that can be chosen to optimize the THz output
by improving the phase-matching between the pump pulse and the THz radiation: the
density and angle of the grating creating the pulse front tilt, the material and cut of the
nonlinear crystal, as well as the telescope imaging the pulse into the crystal. Then, we
have presented the two setups built in order to provide a THz pump for the rest of the
experiments. To the best of our estimations, the 1030 nm setup, which we designed for a
high-energy pump, has delivered 2.3 ps pulses with an energy up to 19 µJ from a 21.7mJ
pump. This corresponds to an energy conversion efficiency of 8.8 × 10−4, and a quantum
efficiency of 0.85. The 800 nm setup, which we rebuilt, has delivered 1.6 ps pulses of up
to 2.6 µJ with a 2.2mJ pump, or a energy conversion efficiency of 1.2 × 10−3 and quantum
efficiency of 1.46. To increase the THz electric field, we have designed, simulated and
tested a focusing horn that increased the maximum field amplitude by a factor of 8.6, at
the price of dispersing the pulse in time. We then examined a magneto-optic application
of the THz radiation, in which a THz pulse triggers both modes of uniform resonance of
the magnetization of the canted antiferromagnet FeBO3.
In the following chapters, we will continue on the subject of magnetism. First,

Chapter 3 will introduce the fundamentals of the theory of magnetism, allowing us to
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understand the origin of the magnetization precession we have observed in FeBO3. Then
Chapter 4 will come back to the subject of THz generation, this time exploiting ultrafast
spin dynamics instead of optical rectification.
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3
Theory of magnetism

We have with the measurements of FeBO3 been introduced to magnetic materials, and
the concepts of magnetization precession and spin waves. To calculate the allowed
precession modes and their frequencies, we used effective magnetic fields representing
material-specific internal forces that we did not define.
To understand the nature of these forces and pave the way to spintronic THz emitters,

this chapter provides an overview of the theoretical concepts of magnetism. We will first
consider classical magnetic fields, then look at the origin of magnetism inmatter. Finally,
we will discuss how the orientation of the magnetization can be manipulated, first with
the static hysteresis curve and then the dynamic precession of the magnetization.

3.1 Magnetostatic fields

3.1.1 Magnetic fields in vacuum

The Maxwell equations define two fields of interest in magnetism: the magnetic field
#»𝑯 and the magnetic induction #»𝑩 . Depending on the author, the latter is also called the
magnetic field ormagnetic flux density, while #»𝑯 is also called themagnetic field strength,
magnetizing force, or auxiliary field. In this manuscript, we chose the nomenclature that
emphasizes the parallel with the electric field.
The magnetic induction is the quantity that exerts a force on a moving particle of

charge 𝑞 and velocity #»𝒗 according to Lorentz’s law:

#»𝑭 = 𝑞 ( #»𝑬 + #»𝒗 ∧ #»𝑩 ) , (3.1)

and induces a torque #»𝛕 on a magnetic dipole with moment #»𝛍 :

#»𝛕 = #»𝛍 ∧ #»𝑩 . (3.2)

In vacuum, the magnetic induction is related to the magnetic field by the vacuum
permeability:

#»𝑩 = μ0
#»𝑯. (3.3)
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3 Theory of magnetism

Table 3.1: Equivalent formulas between the electric and magnetic fields. Respectively, #»𝑬
and #»𝑯 are the fields, #»𝑫 and #»𝑩 the inductions, #»𝑷 and #»𝑱 the polarizations, 𝛘𝒆
and 𝛘𝒎 the susceptibility tensors, and 𝛜 and 𝛍 the permittivity and permeability
tensors.

Electricity Magnetism

#»𝑫 = ϵ0
#»𝑬 + #»𝑷 #»𝑩 = μ0

#»𝑯 + #»𝑱
#»𝑷 = ϵ0𝛘𝒆 ⋅

#»𝑬 #»𝑱 = μ0𝛘𝒎 ⋅ #»𝑯

𝛜 = ϵ0 (1 + 𝛘𝒆) 𝛍 = μ0 (1 + 𝛘𝒎)

The value of μ0 was redefined in 2019 from exactly μ0 = 4π × 10−7Hm−1 to depend
on the fine structure constant α, which is the fundamental constant quantifying the
electromagnetic interaction: at present μ0 = 2ℏα / 𝑐𝑒2 ≈ (4+8.4−10) π×10−7Hm−1 [95],
where ℏ is the reduced Planck constant, 𝑐 the velocity of light in vacuum and 𝑒 the
elementary charge.

3.1.2 The magnetization of matter

Similarly to how matter is polarized by an electric field, it can be magnetized by a
magnetic field. This is described macroscopically by the magnetization # »𝑴 as the average
density of magnetic moments #»𝛍 in a body of volume 𝑉:

# »𝑴 = 1
𝑉 ∑

𝑖

#»𝛍 𝑖 . (3.4)

Magnetic moments are the source of the magnetic induction field in matter, repre-
sented in Fig. 3.1a. The three magnetic vectors fields are related by:

#»𝑩 = μ0(
#»𝑯 + # »𝑴), (3.5)

with #»𝑩 in T and #»𝑯 and # »𝑴 in Am−1. The magnetization can also be expressed as the
magnetic polarization (also called the intrinsic induction) #»𝑱 = μ0

# »𝑴 , which highlights
the parallel with the electric field vectors, as shown in Table 3.1.
Magnetic moments can be equivalently represented by twomodels: either as magnetic

dipoles, which we can picture as microscopic pairs of positive and negative monopoles
of strength ±𝑝 separated by a length 𝑙, or by microscopic current loops of surface 𝐴 and
current 𝐼. Both models produce the same magnetic field lines and moment at the limit
𝑙 → 0 and 𝐴 → 0: | #»𝛍 | = 𝑝𝑙 = 𝐼𝐴.
If a body is uniformly magnetized, it can be seen as a single macroscopic moment.

Neighboring dipoles or current loops cancel each other inside its volume. On the surface,
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Figure 3.1: Models of a magnetic moment: a) lines of force of the #»𝑩 field created by a
magnetic dipole moment and b) macroscopic magnetization represented by
surface poles and a surface current.

the breaking of symmetry leads to the accumulation of magnetic poles with opposite
strength on opposing surfaces, or equivalently to a net surface current. The whole body
is then equivalent to a dipole or to a current loop with the moment #»𝛍macro = 𝑉 # »𝑴 , as
schematized in Fig. 3.1b.

3.1.3 The dipolar field

Since magnetic dipoles generate a magnetic field, we could expect that two bodies
equivalent to the same macroscopic dipole #»𝛍macro generate the same

#»𝑩 field. Let us
consider the case of two cylinders with the same uniform magnetization normal to their
base and the same volume, but different aspect ratios (see Fig. 3.2).
According to the current loop model, both cylinders are equivalent to non-magnetized

#»𝝁macro

#»𝝁macro

#»𝑩1

#»𝑩2

𝐼1 𝐼2

𝑟1

𝑟2

Figure 3.2: Uniformly magnetized cylinders with the same volume and magnetization.
They are equivalent to the same macroscopic magnetic moment #»𝛍macro but
generate a different #»𝑩 field (arrow length proportional to the field at the
center of the cylinders).
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Figure 3.3: Dipolar field lines inside and outside a magnetized material.

bodies with a current loop around their curved surface, whose intensity is inversely
proportional to the area of their base:

μmacro = 𝐼1π𝑟21 = 𝐼2π𝑟22 , (3.6)

so that 𝐼1 / 𝐼2 = (𝑟2 / 𝑟1)
2. However, the magnetic induction at the center of a current loop

is:
𝐵 =

μ0𝐼
2𝑟 . (3.7)

Combining Eq. (3.6) and Eq. (3.7), we can see that:

𝐵1
𝐵2

= 𝐼1𝑟2
𝐼2𝑟1

= (
𝑟2
𝑟1
)
3
. (3.8)

In other words, the #»𝑩 field created by a magnetized body depends on its shape. We
introduce the dipolar field #»𝑯 = #»𝑩 / μ0 −

# »𝑴 to account for the difference.
The lines of force of #»𝑩 , as expressed by the Maxwell-Gauss equation #»𝛁 ⋅ #»𝑩 = 0, are

closed loops curling around the surface currents (see Fig. 3.1a). The dipolar field instead
has the same sources and sinks as the magnetization [96]:

#»𝛁 ⋅ #»𝑯 = − #»𝛁 ⋅ # »𝑴. (3.9)

In analogy to the electric charges, we represent in the dipole model #»𝑯 as arising from
the positive poles and sinking in negative poles, as schematized in Fig. 3.3. Outside the
material, the dipolar field is called the stray field #»𝑯𝒔. In the absence of additional fields,
its lines of force coincide with those of #»𝑩 . Inside, it is called the demagnetizing field
#»𝑯𝒅 , according to Eq. (3.9) it is opposed to the direction of the magnetization. Eq. (3.5)
becomes:

#»𝑩 ( #»𝒓 ) = μ0 (
#»𝑯𝒅(

#»𝒓 ) + # »𝑴) for #»𝒓 ∈ 𝑉, (3.10a)
#»𝑩 ( #»𝒓 ) = μ0

#»𝑯𝒔(
#»𝒓 ) for #»𝒓 ∉ 𝑉. (3.10b)
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The dipolar fields #»𝑯𝒔 and
#»𝑯𝒅 depend on the magnetization and the shape of the

material, and are expressed as a function of a depolarization tensor 𝑵 :

#»𝑯𝒅(
#»𝒓 ) = −𝑵𝒅(

#»𝒓 ) ⋅ # »𝑴 for #»𝒓 ∈ 𝑉, (3.11a)
#»𝑯𝒔(

#»𝒓 ) = 𝑵𝒔(
#»𝒓 ) ⋅ # »𝑴 for #»𝒓 ∉ 𝑉. (3.11b)

𝑵𝒔 is always position-dependent, as outside the material the field strength falls with
the distance, while 𝑵𝒅 is constant in the case of uniformly magnetized ellipsoids. Both
tensors can only be exactly calculated for a few geometries. In the case of a sphere of
radius 𝑅 [97]:

𝑵𝒅 =

⎡
⎢
⎢
⎢
⎢
⎣

1
3

0 0

0 1
3

0

0 0 1
3

⎤
⎥
⎥
⎥
⎥
⎦

, (3.12a)

𝑵𝒔(
#»𝒓 ) = 𝑅3

3| #»𝒓 |5

⎡
⎢
⎢
⎢
⎢
⎣

3𝑟2𝑥 − | #»𝒓 |2 3𝑟𝑥𝑟𝑦 3𝑟𝑥𝑟𝑧

3𝑟𝑦𝑟𝑥 3𝑟2𝑦 − | #»𝒓 |2 3𝑟𝑦𝑟𝑧

3𝑟𝑧𝑟𝑥 3𝑟𝑧𝑟𝑦 3𝑟2𝑧 − | #»𝒓 |2

⎤
⎥
⎥
⎥
⎥
⎦

. (3.12b)

Replaced in Eq. (3.10), this set of demagnetization tensors satisfies the continuous
boundary condition for the normal component of #»𝑩 : 𝐵⟂(𝑅) = 2μ0|

# »𝑴| / 3. For a cuboid
with sides of length 𝑎, 𝑏 and 𝑐 uniformly magnetized along 𝑐, the diagonal components
of 𝑵𝒅 are approximately −4𝑎𝑏 / (4𝑎𝑏 + 3𝑐 (𝑎 + 𝑏)) [98]. In the case of a thin sample such
as FeBO3 in Section 2.3.2, we approximate the material as an infinite plane normal to the
𝑧 axis, that is to say a flattened ellipsoid, for which we use:

𝑵𝒅 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

. (3.13)

In this case, there is no demagnetization for the in-planemagnetization components, and
inside the sample 𝐵𝑥 = μ0𝑀𝑥, 𝐵𝑦 = μ0𝑀𝑦. The out-of-plane magnetization component
is however completely canceled: 𝐵𝑧 = 0.

3.1.4 Susceptibility and classification of materials

Materials are classified according to their response to magnetic fields. Paramagnetic and
diamagnetic materials have no intrinsic magnetization and are magnetized by an applied
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field. The induced magnetization is characterized by the magnetic susceptibility tensor
𝛘𝒎 with:

# »𝑴 = 𝛘𝒎 ⋅ #»𝑯in , (3.14)

where #»𝑯in =
#»𝑯app +

#»𝑯𝒅 is the total magnetic field inside the material. Similarly to the
definition of the relative permeability, we define the relative permeability as 𝛍𝒓 = 1+𝛘𝒎.
Replacing Eq. (3.11a) in Eq. (3.14), we obtain:

# »𝑴 = (𝟏 + 𝛘𝒎 ⋅ 𝑵𝒅)
−1
⋅ 𝛘𝒎⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝛘eff

⋅ #»𝑯app , (3.15)

which defines the effective susceptibility tensor of the magnet 𝛘eff , taking into account
both the material through 𝛘𝒎 and the specific shape of the body through 𝑵𝒅. As in
the general case 𝑵𝒅 is unknown, it is the effective susceptibility which is measured in
practice as a function of the applied field.
The total induction field inside the material is then:

#»𝑩 = μ0 (
#»𝑯app + (𝟏 − 𝑵𝒅) ⋅

# »𝑴)

= μ0 (𝟏 + (𝟏 − 𝑵𝒅) ⋅ 𝛘eff) ⋅
#»𝑯app

= μ0 (𝟏 + 𝛘−1𝒎 ) ⋅ (𝟏 + 𝛘𝒎 ⋅ 𝑵𝒅) ⋅ 𝛘𝒎 ⋅ #»𝑯app ,

(3.16)

and the measured relative permeability of the magnet is:

μeff = 𝟏 + (𝟏 − 𝑵𝒅) ⋅ 𝛘eff . (3.17)

Diamagnetism

When bound electrons are subject to a magnetic field, the latter exerts a torque on their
orbital angular momentum, making their orbits precess around #»𝑩 . This precession pro-
duces a magnetic moment in the opposite direction. All materials have this diamagnetic
response to an applied field, but the weakness of this effect makes it apparent only in
materials whose atoms have otherwise no magnetic moments, where it induces a small
magnetization opposed to the applied field. These materials are called diamagnetic and
are characterized by a small negative susceptibility, typically |χ𝑚| < 10−5.
An example is water, with χ𝑚 = −9.04 × 10−6 at 20 °C [99, chapter 1]. A perfect

diamagnet would have χ𝑚 = −1, from which follows that 𝐵 = 0 inside the material
regardless of the applied field. The permeability μ is then zero, which highlights that the
material is impermeable to any magnetic field.

Paramagnetism

Materials whose atoms have a small magnetic moment but no spontaneous ordering are
called paramagnetic. Without an applied field, the individual atomic moments can point
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Figure 3.4: Hysteresis curves of the magnetization𝑀 or induction 𝐵 for different types of
magnetic materials, with respect to the applied field (full lines) and the total
internal field (dashed lines). For visibility, χ𝑚 is chosen closer to 1 than in
typical materials,𝑀𝑠 = 15 a.u., and 𝑁𝑑 = 1 / 3.

in any direction and result in no netmagnetization. When a field is applied, themoments
progressively align on it, resulting in a small positive susceptibility, typically in the range
of 10−5 to 10−3. An example is O2 with χ𝑚 = 1.94 × 10−6 at 20 °C [99, chapter 1].
As the thermal agitation reduces the ability of the moments to align on an applied

field, the susceptibility of the material obeys the classical Curie law χ𝑚 = 𝐶 /𝑇, described
in Section 3.2.4.3.

Ferromagnetism

Other materials have a strong interaction between neighboring atoms, leading to the
spontaneous alignment of their magnetic moments and the formation of regions of
uniform magnetization called domains. The formation of domains helps to minimize
the energy of the dipolar field by reducing the net magnetization of the sample, but their
number is limited by the additional energy associated with domains boundaries.
A material whose atomic moments have a spontaneous parallel alignment is called

ferromagnetic (FM). Because of the domains, the response of suchmaterial to an applied
field is nonlinear and often irreversible. The domain boundaries move and their magne-
tization align on the field until the sample is uniformly magnetized. If the applied field
is then reduced, the interaction between neighboring moments keep the material from
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immediately breaking off into domains again. This is the source of the characteristic
hysteresis of magnetic materials.
Due to their nonlinear behavior, ferromagnetic materials do not have an fixed suscep-

tibility and Eq. (3.14) is not valid. Instead, their hysteresis curve can be locally described
by the differential susceptibilities 𝛘𝒎 = d # »𝑴/d #»𝑯in and 𝛘eff = d # »𝑴/d #»𝑯app . The suscepti-
bility drops to zero once the magnetization reaches its saturation value | # »𝑴| = 𝑀𝑠. As
shown on Fig. 3.4, specific values characterize the behavior of a ferromagnet. When
the applied field is removed after the magnetization has been saturated, the remaining
magnetization is called the remanence # »𝑴𝒓 =

# »𝑴( #»𝑯app = 0). The remanent induction
#»𝑩𝒓 = (𝟏 − 𝑵𝒅) ⋅

# »𝑴𝒓 determines the magnetic field generated by permanent magnets.
The necessary applied field to finally reverse the direction of the magnetization is called
the intrinsic coercivity #»𝑯𝒄 =

#»𝑯app(
# »𝑴 = 0). The reversal of the magnetic field emitted

by the material occurs for a different value of the applied field called coercivity as well,
#»𝑯B
𝒄 =

#»𝑯app(
#»𝑩 = 0). For all ferromagnetic materials, #»𝑯𝒄 ≥

#»𝑯B
𝒄 .

For the same reason than the paramagnetic susceptibility decreases with increasing
temperature, the value of the saturation magnetization 𝑀𝑠 is lowered. Ferromagnetic
materials have a critical temperature known as the Curie temperature 𝑇C, at which the
thermal energy is stronger than the exchange energy that aligns of the moments. Above
this temperature, the materials become paramagnetic and follow the Curie-Weiss law
χ𝑚 = 𝐶 / (𝑇 − 𝑇C). The material with the highest Curie temperature is cobalt with
𝑇C = 1388K.
Ferromagnetic materials exist on a spectrum from soft to hard, depending on their

intrinsic coercivity. A material with 𝐻𝑐 < 1 kAm−1 is referred to as soft, and a material
with 𝐻𝑐 > 100 kAm−1 as hard [99, chapter 1]. On one hand, an ideal soft ferromagnet
as shown in Fig. 3.4 has an intrinsic coercivity of zero. For | # »𝑴| ≤ 𝑀𝑠, its susceptibility
tends towards at the limit χ𝑚 = +∞, from which follows that 𝛘eff = 1 / 𝑵𝒅 [96].
The magnetization saturates easily at a small field #»𝑯app = 𝑵𝒅 ⋅

# »𝑴𝒔. Above that, the
magnetization cannot increase and the susceptibilities are both zero. Similarly to
paramagneticmaterials, soft ferromagnets have nohysteresis. On the other hand, an ideal
hard ferromagnet behaves like a single magnetic moment and its magnetization is always
saturated. χeff = χ𝑚 = 0 everywhere except for a discontinuity at #»𝑯app = ± #»𝑯𝒄 , where
the magnetization inverts its sign. Real ferromagnetic materials have an intermediate
behavior, with hysteresis and a smoother switching of the magnetization.

Antiferromagnetism and ferrimagnetism

Finally, the interaction between neighboring atoms does not always lead to the atoms
having the same magnetic moment. In antiferromagnetic (AFM) materials, it leads to an
antiparallel alignment instead of a parallel one. Within each domain, these materials are
said to possess two sublattices with equal but opposite magnetization, # »𝑴𝐴 = − # »𝑴𝐵. The
net magnetization of the material is then zero. The antiferromagnetic equivalent of the
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Curie temperature is the Néel temperature 𝑇N, above which the spontaneous alignment
vanishes. In ferrimagnetic materials, the alignment of neighboring moments is parallel
but their value is different: # »𝑴𝐴 < # »𝑴𝐵 . There is thus a net magnetization.
The hysteresis curves of Fig. 3.4 do not apply to such materials. Instead, the equi-

librium alignment of the sublattice magnetizations depend on the relative strength of
the force exerted by the external field, compared to the force of the exchange interac-
tion between the different sublattices. An example of calculation of the equilibrium
magnetization for the antiferromagnet FeBO3 is given in Section 3.3.3.2.

Considering the macroscopic properties of magnetic materials, we have introduced
the notion of magnetic moments and the coupling between them, without explaining
their nature. We will now take a step back to discuss their origin in the spin of electrons,
and show how the different properties of magnetic materials arise.

3.2 The quantum origin of magnetism

In this section, we will look at the emergence of the magnetic properties from quantum
physics. We fill first calculate the magnetic moment of a single electron, then of an atom.
Afterwards, we will consider the susceptibility of materials. Finally, we will look into the
exchange forces at the origin of the ferromagnetic and antiferromagnetic order.

3.2.1 Magnetic moment of a bound electron

Magnetism in solids has its origin in the quantum properties of electrons. In a first time,
we consider a single electron orbiting a nucleus. Its Hamiltonian is composed of its
kinetic energy and the electrostatic potential of the nucleus:

�̂� =
�̂�2

𝑚𝑒
− 𝑍𝑒2

4πϵ0|
#»𝒓 |
, (3.18)

where the operator �̂� = −𝑖ℏ�̂� describes the canonical momentum of the electron and �̂�
is its position with respect to the nucleus. We are interested in stationary states, which
satisfy the time-independent Schrödinger equation:

�̂� |ψ𝑖⟩ = 𝐸𝑖|ψ𝑖⟩, (3.19)

and are thus characterized by their well-defined energy. Because of the spherical
symmetry of the potential, we can separate the radial and angular dependencies of the
Hamiltonian. Its eigenfunctions are the orbitals φ(𝑟, θ, ϕ) = 𝑅𝑛,𝑙(𝑟) 𝑌

𝑚𝑙
𝑙 (𝑟, θ, ϕ), where

𝑌𝑚𝑙
𝑙 is a complex spherical harmonic that describes the angular momentum of the
electron, and 𝑅𝑛,𝑙 is a radial function that describes the energy of the electron in the
potential modified by the centrifugal force.
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3 Theory of magnetism

3.2.1.1 Description of the quantum states

Each electron on an atom is uniquely characterized by a set of quantum numbers:

• The principal quantum number 𝑛 ≥ 1 is an integer that defines the shell on which
the electron orbitates. It determines the radius of the orbital and thus is the largest
contributor to the energy of the electron. Shells are labeled in spectroscopic notation
by K, L, M, etc.

• The azimuthal quantum number 0 ≤ 𝑙 < 𝑛 defines the orbital angular momentum of
the electron and thus the shape of the orbital, with 𝑙 = 0 being the closest to a classical
circular orbit. States with the same 𝑛 and 𝑙 form the subshell 𝑛𝑙, where the integer 𝑙 is
replaced by the label s, p, d, f, etc.

• The orbital magnetic quantum number 𝑚𝑙 quantifies the projection of the orbital
angular momentum along an arbitrary quantization axis, describing the orientation of
the spherical harmonic. It can take 2𝑙 + 1 discrete values with |𝑚𝑙| ≤ 𝑙. The quanti-
zation axis, usually 𝑧, defines the spatial coordinates system chosen to decompose the
wavefunction. Together, 𝑛, 𝑙 and𝑚𝑙 define a specific orbital.

• Besides their orbital motion, electrons also have an intrinsic spin angular momentum,
defined by the quantum number 𝑠 = 1 / 2. The corresponding spin magnetic quantum
number𝑚𝑠 quantifies its projection along the quantization axis. Similarly to𝑚𝑙, it has
2𝑠 + 1 = 2 allowed values satisfying |𝑚𝑠| ≤ 𝑠, that is to say𝑚𝑠 = ±1 / 2.

• Although the quantum numbers above are sufficient to uniquely characterize each
base eigenstate, we also introduce the quantum number 𝑗 to describe the total angular
momentum, with |𝑙 − 𝑠| ≤ 𝑗 ≤ 𝑙 + 𝑠. States with the same 𝑗 within a subshell form a
multiplet and are labeled 𝑛2𝑠+1𝑙𝑗. Each multiplet allows 2𝑗 + 1 different values of the
projection quantum number |𝑚𝑗| ≤ 𝑗. For a single electron, we have𝑚𝑗 = 𝑚𝑙 +𝑚𝑠.

Fig. 3.5 shows the first ten energy eigenstates of our hydrogen-like atom, that form
the basis on which we decompose the wavefunction of an electron: |ψ⟩ = ∑𝑖 𝑐𝑖|φ𝑖⟩. The
eigenstates of Eq. (3.18) are the energies 𝐸𝑛 ∝ −1 / 𝑛2, forming the gross structure of the
spectroscopy lines in hydrogen. The value of 𝑙 is taken into account through relativistic
corrections to the kinetic energy, in the order of 10−5. Together with 𝑗, which will enter
the Hamiltonian in Section 3.2.2.3, it creates the fine structure of the spectroscopy lines.
The spatial orientation of the angular momenta only influences the energy when the
spherical symmetry of the potential is broken, for example in the presence of magnetic
fields. For the electron to be in a stationary state, its wavefunction must be an eigenstate
of the Hamiltonian and can thus only be formed by a superposition of degenerate
eigenstates.
The operators for the orbit, spin and total angular momentum are �̂� , �̂� and �̂� , re-

spectively. Because their individual components do not commute, we do not use these
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Figure 3.5: Lowest energy eigenstates of an hydrogen-like atom, with their labels and the
corresponding quantum numbers. The levels are not ordered by energy.

operators directly, but rather their squared magnitude and a single of their components.
Except for 𝑛, each of the quantum numbers we introduced is the eigenvalue of one of the
derived operators:

�̂�𝟐|𝑙⟩ = 𝑙 (𝑙 + 1) ℏ2|𝑙⟩, �̂�𝒛|𝑚𝑙⟩ = 𝑚𝑙ℏ|𝑚𝑙⟩, (3.20a)

�̂�𝟐|𝑠⟩ = 𝑠 (𝑠 + 1) ℏ2|𝑠⟩, �̂�𝒛|𝑚𝑠⟩ = 𝑚𝑠ℏ|𝑚𝑠⟩, (3.20b)

�̂�𝟐|𝑗⟩ = 𝑗 (𝑗 + 1) ℏ2|𝑗⟩, �̂�𝒛|𝑚𝑗⟩ = 𝑚𝑗ℏ|𝑚𝑗⟩. (3.20c)

Let us start with the orbital angular momentum, �̂� = �̂� ∧ �̂� . The two observables �̂�𝟐

and �̂�𝒛 have for eigenfunctions the complex spherical harmonics. All possible orbital
angular momenta can be decomposed in the basis of the vectors {|𝑙, 𝑚𝑙⟩}. Since �̂�𝟐 , �̂�𝒛
and the Hamiltonian �̂� commute in a spherical potential, we can form a common basis
{|𝑛, 𝑙, 𝑚𝑙⟩} of simultaneous eigenvectors of all three operators, that each identifies an
orbital. Their space representation is given by φ( #»𝒓 ) = 𝑅𝑛,𝑙(

#»𝒓 ) 𝑌𝑚𝑙
𝑙 ( #»𝒓 ) = ⟨ #»𝒓 |𝑛, 𝑙,𝑚𝑙⟩.

However, they are not eigenvectors of the operators �̂�𝒙 or �̂�𝒚 : the 𝑥 and 𝑦 components of
the orbital angular momentum do not have well-defined values in this basis.
To understand this uncertainty, we can use the vector model, shown in Fig. 3.6. The

angular momentum of a given orbital is represented by the classical vector
#»

𝒍 , whose
magnitude is √𝑙 (𝑙 + 1) ℏ and 𝑧 component 𝑚𝑙ℏ. The uncertainty on the transverse
components can be classically described by picturing that

#»

𝒍 precesses around the
quantization axis. This does not however correspond to a physical precession of the
angular momentum, as |𝑛, 𝑙, 𝑚𝑙⟩ is an eigenstate of the Hamiltonian and the electron
does not evolve in time.

63



3 Theory of magnetism
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Figure 3.6: Vector model of the angular momentum: spin #»𝒔 , orbital
#»

𝒍 and total
#»

𝒋
angularmomentumvectors, for 𝑙 = 2 and 𝑗 = 𝑙−𝑠 = 3/2. The undefined value
of the 𝑥 and 𝑦 components of the momenta is represented as the precession
of the vectors at fixed latitudes𝑚𝑠ℏ,𝑚𝑙ℏ and𝑚𝑗ℏ.

The spin constitutes an independent degree of freedom, that we describe in the
basis {|𝑠,𝑚𝑠⟩}. Since they act on a different vector space, the spin operators �̂�𝟐 and �̂�𝒛
commute with �̂�𝟐 , �̂�𝒛 and �̂� . We can then form a new set of basis states spanning
both real space and spin space, called spinorbitals: {|𝑛, 𝑙, 𝑠,𝑚𝑙, 𝑚𝑠⟩} = {|𝑛, 𝑙,𝑚𝑙⟩ ⊗
|𝑠,𝑚𝑠⟩}. The explicit form of a specific spinorbital |ψ⟩ is ψ( #»𝒓 ,𝑚𝑠) = φ( #»𝒓 ) ζ(𝑚𝑠) =
(⟨ #»𝒓 | ⊗ ⟨𝑚𝑠|) (|𝑛, 𝑙, 𝑚𝑙⟩ ⊗ |𝑠,𝑚𝑠⟩), with φ and ζ describing respectively the orbital and
spin parts of a wavefunction.
Finally, the total angular momentum operator is �̂� = �̂� ⊗ �̂�𝑠 + �̂�𝑙 ⊗ �̂� , where �̂� is the

identity operator. Since it is implicitly understood that each operator acts on its own
space, we will from now on omit the tensor product and simply write �̂� = �̂� + �̂� . The
component �̂�𝒛 commutes with �̂�𝒛 and �̂�𝒛 , leading to:

�̂�𝒛|ψ⟩ = �̂�𝒛|φ⟩ + �̂�𝒛|ζ⟩

= (𝑚𝑙 +𝑚𝑠) (|φ⟩ ⊗ |ζ⟩) = 𝑚𝑗|ψ⟩.
(3.21)

The three magnitudes �̂�𝟐 , �̂�𝟐 and �̂�𝟐 commute as well. However, �̂�𝟐 does not commute
with �̂�𝒛 and �̂�𝒛 , so that we cannot construct a basis in which the electron has well-defined
values of 𝑗,𝑚𝑙 and𝑚𝑠 simultaneously. For example, an electron in the 3d subshell (𝑛 = 3,
𝑙 = 2) with the quantum numbers𝑚𝑙 = −1 and𝑚𝑠 = 1/2 has a total angular momentum
of 𝑚𝑗 = −1 / 2, but 𝑗 could be either 𝑙 + 𝑠 = 5 / 2 or 𝑙 − 𝑠 = 3 / 2. Reciprocally, Fig. 3.6
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shows that when the magnitude of the three momenta is fixed, the projections of
#»

𝒍
and #»𝒔 along the 𝑧 axis are undefined. This is pictured in the vector model as

#»

𝒍 and #»𝒔
precessing around

#»

𝒋 =
#»

𝒍 + #»𝒔 .
Instead of describing electronic wavefunctions in the basis {|𝑛, 𝑙, 𝑠,𝑚𝑙, 𝑚𝑠⟩}, we can use

the coupled basis {|𝑛, 𝑙, 𝑠, 𝑗,𝑚𝑗⟩}. The eigenvectors of each basis are linear combinations
of eigenvectors in the other basis, related by the Clebsch–Gordan coefficients. In our
example, the wavefunction of the 3d electron is:

|ψ⟩ =
⎧⎪
⎨⎪
⎩

|||3, 2,
1
2 , −1,

1
2⟩, (uncoupled basis)

√
2
5
|||3, 2, −1,

5
2 , −

1
2⟩ −√

3
5
|||3, 2, −1,

3
2 , −

1
2⟩. (coupled basis)

(3.22)

All operators so far commute with the Hamiltonian in Eq. (3.18), so that the two repre-
sentations are equivalent. When we later include the spin-orbit coupling contribution to
the Hamiltonian (see Section 3.2.2.3), the uncoupled basis will not anymore represent
eigenstates of �̂� , that is to say will not represent steady states of the electron, and we will
prefer characterizing the system by its total angular momentum.

3.2.1.2 Understanding spatial quantization

There are only a limited number of values that 𝑚𝑙 and 𝑚𝑠 or 𝑚𝑗 can take, but we know
that the magnetization of a material can take an arbitrary direction in space. Due the
simplicity of its matrix representation, we consider the transition between the quantum
and classical angular momentum for the case of the spin.
In the {|𝑚𝑠⟩} basis, the operators for each component of the spin angular momentum

are expressed by the Pauli spin matrices:

�̂�𝒙 =
ℏ
2
⎡
⎢
⎢
⎣

0 1

1 0

⎤
⎥
⎥
⎦

, �̂�𝒚 =
ℏ
2
⎡
⎢
⎢
⎣

0 −𝑖

𝑖 0

⎤
⎥
⎥
⎦

, �̂�𝒛 =
ℏ
2
⎡
⎢
⎢
⎣

1 0

0 −1

⎤
⎥
⎥
⎦

. (3.23)

The quantization axis being 𝑧, only �̂�𝒛 is diagonal. For reasons that will become apparent
in the next sections, we define its eigenvectors |𝑚𝑠⟩ as “spin down” and “spin up”:

|||+
1
2⟩ = |↓⟩ =

⎡
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎦

, |||−
1
2⟩ = |↑⟩ =

⎡
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎦

. (3.24)

In this basis, the respective eigenvectors of the three operators have the same vector rep-
resentation as the polarization states of light: the eigenvectors of �̂�𝒛 are the Jones vectors
for linear horizontal and vertical polarization, those of �̂�𝒙 linear diagonal polarization,
and �̂�𝒛 circular polarization. We thus know that, like any polarization state, any spin
state of the electron can be expressed by a superposition of the up and down states:

|ζ⟩ = 𝑎|↑⟩ + 𝑏|↓⟩, (3.25)
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where 𝑎 and 𝑏 are complex coefficients. Finally, we define the observable spin angular
momentum vector as:

#»𝑺 = [⟨�̂�𝒙⟩, ⟨�̂�𝒚⟩, ⟨�̂�𝒛⟩] , (3.26)

using the expectation values ⟨�̂�𝒊⟩ = ⟨ζ|�̂�𝒊|ζ⟩. If wemeasure an ensemble of electrons in the
same state, for example |ζ⟩ = 1/√2|↑⟩+1/√2|↓⟩, their observable angular momentum is
#»𝑺 = ℏ/2[1, 0, 0] and in the absence of orbital contribution, the magnetization is aligned
with the 𝑥 axis. For individual electrons, a measurement along the 𝑥 axis always returns
𝑚𝑠 = +1/2, while a measurement along the 𝑦 or 𝑧 axis has a probability of 50% to return
each value. In the vector model, #»𝑺 can be seen as a time average of the precessing vector
#»𝒔 , with a reduced magnitude of ℏ / 2 instead of √3 / 4ℏ.

3.2.1.3 Magnetic moments

Finally, we arrive at the subject of magnetic properties. Since the electron is a charged
particle that, in a classical picture, orbits the nucleus and spins around its own axis,
it forms current loops that produce magnetic moments as described in Section 3.1.2.
The magnetic moment of a particle of charge 𝑞 and mass 𝑚 is related to its angular
momentumby the gyromagnetic ratio γ = 𝑞𝑔/(2𝑚), where the 𝑔-factor is a dimensionless
proportionality constant. The magnetic moment operators have the same properties as
the angular momentum operators: only their 𝑧 component is determined, and the
observable vector is #»𝛍 = [⟨�̂�𝒙⟩, ⟨�̂�𝒚⟩, ⟨�̂�𝒛⟩]. Due to the sign of its charge 𝑞 = −𝑒, the
magnetic moment of an electron is opposed to its orbital momentum. Its smallest unit is
the Bohr magneton μB = 𝑒ℏ / 2𝑚𝑒 = 9.274 × 10−24Am2.
For orbital motion, we always have 𝑔 = 𝑔𝑙 = 1. The orbital magnetic moment operator

is thus:

�̂�𝒍 = γ�̂� = −
μB
ℏ �̂�, (3.27)

with magnitude √𝑙 (𝑙 + 1)μB and 𝑧 component −μB𝑚𝑙. Similarly, the spin magnetic
moment operator is �̂�𝒔 = γ�̂� . The 𝑔-factor for spin is 𝑔𝑠 = 2 + α / π ≈ 2, where α is the
fine-structure constant. Thus �̂�𝒔𝑧 has the eigenvalues −μB𝑔𝑠𝑚𝑠 ≈ ∓μB. Because of this
sign reversal, our definition of “spin up” corresponds to a moment +μB.
Since the spin contributes twice as much to the magnetic moment as the orbital

angular momentum, the operator for the total moment is:

�̂�𝒋 = �̂�𝒍 + �̂�𝒔 = −
μB
ℏ (�̂� + 𝑔𝑠�̂� ) ≈ −

μB
ℏ (�̂� + 2�̂�) . (3.28)

The total magnetic moment is not parallel to the total angular momentum. In the vector
model, #»𝛍 𝒋 ∝

#»

𝒍 + 2 #»𝒔 =
#»

𝒋 + #»𝒔 and thus it also precesses around
#»

𝒋 . If we are working

in the coupled basis where
#»

𝒍 and #»𝒔 are not known, their effective contribution thus
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depends on their average projection on
#»

𝒋 , given by the Landé 𝑔-factor [100]:

𝑔𝑗 = 𝑔𝑙
𝑗 (𝑗 + 1) − 𝑠 (𝑠 + 1) + 𝑙 (𝑙 + 1)

2𝑗 (𝑗 + 1)
+ 𝑔𝑠

𝑗 (𝑗 + 1) + 𝑠 (𝑠 + 1) − 𝑙 (𝑙 + 1)
2𝑗 (𝑗 + 1)

≈ 1 +
𝑗 (𝑗 + 1) + 𝑠 (𝑠 + 1) − 𝑙 (𝑙 + 1)

2𝑗 (𝑗 + 1)
,

(3.29)

which allows us to define the total magnetic moment operator as:

�̂�𝒋 = γ�̂� = −
μB𝑔𝑗
ℏ �̂� . (3.30)

Depending on whether the coupled or uncoupled basis is the best representation of the
wavefunction, we can thus calculate the moment with Eq. (3.28) or Eq. (3.30).

3.2.1.4 The Zeeman effect

Until now, the choice of the 𝑧 axis was arbitrary and the atom effectively isotropic; since
states in the same subshell with different values of 𝑚𝑙 and𝑚𝑠 are degenerate in field-free
space, the electron can be found in any combination of those states. The application of
a magnetic field breaks the full rotational symmetry of the Hamiltonian and lifts this
degeneracy. As written in Eq. (3.2), the magnetic field exerts a torque on each magnetic
moment. We must add a new term to the Hamiltonian:

�̂�Z = −�̂�𝒍 ⋅
#»𝑩 − �̂�𝒔 ⋅

#»𝑩 = −�̂�𝒋 ⋅
#»𝑩 . (3.31)

To simplify the expression of the magnetic moment, we choose the quantization axis 𝑧
to be along the direction of #»𝑩 , in which case �̂�Z = −𝐵𝑧�̂�𝒋𝑧. While the field is small, �̂�Z

is treated as a small perturbation of the energy of well-defined orbitals. The energy shift
for an electron in the state |ψ⟩ = |𝑛, 𝑙, 𝑠, 𝑗,𝑚𝑗⟩ is given by the expectation value of the
Hamiltonian [101]:

𝐸Z = ⟨ψ|�̂�Z|ψ⟩ = −𝐵𝑧 ⟨�̂�𝒋𝑧⟩ =
μB𝑔𝑗
ℏ 𝐵𝑧 ⟨̂𝑱𝒛⟩ = μB𝑔𝑗𝑚𝑗𝐵𝑧. (3.32)

Themagnetic field splits the fine-structure spectroscopy lines of hydrogen into 2𝑗+1 lines
with the energy difference μB𝑔𝑗𝐵𝑧 [101], which is called the Zeeman effect. The splitting
in the case of 𝑠 ≠ 0 was historically called the anomalous Zeeman effect, because of the
unexpected factor 𝑔𝑠 ≈ 2. The ground state has 𝑚𝑗 = −𝑗, so that the total momentum
becomes aligned along the magnetic field. This corresponds necessarily to 𝑚𝑙 = −𝑙 and
𝑚𝑠 = −1 / 2, which we have called the spin up direction.
As we did for FeBO3 in Section 2.3.2, it is often possible to express the internal forces

influencing the magnetization of a material as effective magnetic fields, with the caveat
that some only act on the spin component. A Zeeman-like Hamiltonian −�̂�𝒋 ⋅

#»𝑩eff or

−�̂�𝒔 ⋅
#»𝑩eff can then used to represent all of them.
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3.2.2 Magnetic moment of an isolated atom

Now that we have seen the mechanics leading to the formation of the magnetic moment
of an hydrogen-like atom, we can generalize the same principles to atoms containing
multiple electrons. We will first introduce the atomic quantum numbers, then explain
what leads to the formation of these states.

3.2.2.1 Multi-electron quantum numbers

We start again with a multi-electron Hamiltonian composed of the kinetic and potential
energy of each electron:

�̂� =
𝑁
∑
𝑖
(
�̂�2𝑖
𝑚𝑒

− 𝑍𝑒2

4πϵ0|
#»𝒓𝑖 |

+∑
𝑗>𝑖

𝑒2

4πϵ0|
#»𝒓𝑖 −

#»𝒓𝑗 |
) . (3.33)

Compared to Eq. (3.18), we have added the electrostatic repulsion between the elec-
trons. Because of this term, the Schrödinger equation has no exact solution describing
simultaneously all the electrons. To get around this problem, we approximate it by an
average spherical potential 𝑉 and assume in a first time that the electrons are otherwise
independent from each other. In this central field approximation, the Hamiltonian
becomes:

�̂�cf =
𝑁
∑
𝑖
(
�̂�2𝑖
𝑚𝑒

− 𝑍𝑒2

4πϵ0|
#»𝒓𝑖 |

− 𝑒 𝑉( #»𝒓𝑖 )) , (3.34)

and the atomic wavefunction is decomposed into the product of independent electronic
wavefunctions: |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗⋯⊗ |ψ𝑁⟩, which are each described in terms of the
spinorbitals defined in the previous section.
As we have seen, a subshell contains 2(2𝑙 + 1) different spinorbitals, and can thus

contain at most as many electrons. The number of electrons 𝑁 in each subshell, indi-
cated as 𝑛𝑙𝑁, forms the configuration of the atom. For example, the ground state of a
neutral carbon atom corresponds to the electronic configuration 1s22s22p2. For a given
configuration, there are∏𝑖 (4𝑙𝑖 + 2)! / (𝑁𝑖! (4𝑙𝑖 + 2 − 𝑁𝑖)!) possible arrangement of the
electrons in the available spinorbitals, with the index 𝑖 referring to each subshell. For
carbon, we get 1 × 1 × 15 possibilities. Electrons being indistinguishable, filled subshells
do not contribute to the product. In addition, they have an equal amount of electrons
with opposite values of 𝑚𝑙 and𝑚𝑠 and have thus no net angular momentum from either
orbit nor spin. For this reason, magnetic properties only arise from partially filled sub-
shells, and we usually do not need to consider the rest of the electrons outside of their
contribution to the mean Coulomb potential.
The angular momentum of an ensemble of electrons is quantified by the quantum

numbers 𝐿, 𝑆, 𝐽, 𝑀𝐿, 𝑀𝑆 and 𝑀𝐽, which have the same meaning as their lowercase
counterparts. This applies both to individual subshells and the whole atom. We will
generally assume that there is a single partially filled subshell, to simplify the calculation
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3.2 The quantum origin of magnetism

of the magnetic moment of an atom. The arithmetic of angular momentum operators
is the same as in the previous section. The operators for the net orbital, spin and total
angular momentum for an ensemble of 𝑁 electrons are simply:

�̂� =
𝑁
∑
𝑖
�̂�𝑖 , �̂� =

𝑁
∑
𝑖
�̂�𝑖 , �̂� =

𝑁
∑
𝑖
�̂�𝑖 , (3.35)

where it is implicit that each operator only acts on the vector space of the corresponding
electron. Again, we do not use these operators directly, but instead their squares and
𝑧 components. Similarly to Eq. (3.21), we have for a two-electron configuration where
|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩:

�̂�𝒛|Ψ⟩ = �̂�𝒛1|ψ1⟩ + �̂�𝒛2|ψ2⟩

= (𝑚𝑠1 +𝑚𝑠2) (|ψ1⟩ ⊗ |ψ2⟩) = 𝑀𝑆|Ψ⟩.
(3.36)

The quantum numbers describing the projections on the 𝑧 axis are thus given by𝑀𝐿 =
∑𝑖𝑚𝑙𝑖,𝑀𝑆 = ∑𝑖𝑚𝑠𝑖 and𝑀𝐽 = ∑𝑖𝑚𝑗𝑖

. This is not the case for 𝐿, 𝑆 and 𝐽, as similarly to
what we saw for when adding the angular momenta of one electron, the squared atomic
operators �̂�𝟐 , �̂�𝟐 and �̂�𝟐 do not commute with the electronic �̂�𝒛𝑖, �̂�𝒛𝑖 and �̂�𝒛𝑖, respectively.
In general, many arrangements of the electrons result in the same 𝑀𝐿 and 𝑀𝑆, and
each projection quantum number can be associated with several magnitudes of the
corresponding angular momentum. Describing the spin of the atom in the coupled basis
{|𝑆,𝑀𝑆⟩} thus involves the loss of information regarding the spin of individual electrons,
and likewise for the bases {|𝐿,𝑀𝐿⟩} and {|𝐽,𝑀𝐽⟩}. In the vector model, this is represented
by the vectors

#»

𝒍𝑖 and
#»𝒔 𝑖 precessing around their resultants

#»𝑳 = ∑𝑖
#»

𝒍𝑖 and
#»𝑺 = ∑𝑖

#»𝒔 𝑖 ,
respectively.
Since −𝑆 ≥ 𝑀𝑆 ≥ 𝑆, the largest 𝑆 achievable for a given electronic configuration is

obtained by maximizing the number of electrons with 𝑚𝑠 = +1 / 2. Assuming a single
partially filled subshell, this means:

0 ≤ 𝑆 ≤ {
𝑁 / 2, (𝑁 ≤ 2𝑙 + 1)

2𝑙 + 1 − 𝑁 / 2. (𝑁 > 2𝑙 + 1)
(3.37)

Similarly, the largest 𝐿 is obtained by maximizing𝑚𝑙 when filling the orbitals. This leads
to:

0 ≤ 𝐿 ≤ 𝑁 (𝑙 + 1 / 2) − 𝑁2 / 4 − {
0, (𝑁 even)

1 / 4. (𝑁 odd)
(3.38)

The two filling strategies are incompatible, so that 𝐿 and 𝑆 are not independent from
each other. The allowed pairs are called terms and written 2𝑆+1𝐿, where 𝐿 is represented
by the letters S, P, D, F, etc., and 2𝑆 + 1 indicate their multiplicity. Continuing with
our example of a carbon atom with a 2p2 configuration, the 15 possible arrangements
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3 Theory of magnetism

of electrons give rise to a 1S term (𝑀𝑆 = 0 and 𝑀𝐿 = 0), a 3P term (𝑀𝑆 = −1 to 1
and 𝑀𝐿 = −1 to 1) and a 1D term (𝑀𝑆 = 0 and 𝑀𝐿 = −2 to 2). Although electrons
arrangements contribute to several terms, we still have a basis {|𝐿, 𝑆,𝑀𝐿,𝑀𝑆⟩} containing
15 orthogonal states. Finding all existing terms and their decomposition into electronic
orbitals is computationally heavy, but we will see in Section 3.2.2.4 that finding the
ground term is trivial using Hund’s rules.

3.2.2.2 Intra-atomic exchange coupling

Two-electron exchange

We now examine the full electrostatic interactions between the electrons. For simplicity,
let us consider an atom with only two electrons. Its Hamiltonian is:

�̂� =
�̂�21
𝑚𝑒

+
�̂�22
𝑚𝑒

− 𝑍𝑒2

4πϵ0|
#»𝒓1 |

− 𝑍𝑒2

4πϵ0|
#»𝒓2 |

+ 𝑒2

4πϵ0|
#»𝒓1 −

#»𝒓2 |

= �̂�𝟎1 + �̂�𝟎2 + �̂�C ,

(3.39)

where �̂�𝟎 is the one-electron Hamiltonian and �̂�C is the Coulomb repulsion. The latter
cannot in general be simply expressed in terms of one-electron spinorbitals, but its
expectation value can be approximated as a perturbation of them.
Let us consider first the wavefunction of the unperturbed atom |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩,

describing independent electrons on separate spinorbitals. Explicitly, its wavefunction
is:

Ψ = ψ1(
#»𝒓1 , 𝑚𝑠1) ψ2(

#»𝒓2 , 𝑚𝑠2) = φ𝑎(
#»𝒓1 ) ζ(𝑚𝑠1) φ𝑏(

#»𝒓2 ) ζ(𝑚𝑠2), (3.40)

where φ𝑎 and φ𝑏 are the initial orbitals of each electron, #»𝒓𝑖 the space coordinates
associated to each electron, and ζ the spin function. The expectation value ⟨�̂�C⟩ is called
the Coulomb integral:

𝒞𝑎𝑏 = ⟨Ψ|�̂�C|Ψ⟩ = ⟨φ𝑎φ𝑏|�̂�C|φ𝑎φ𝑏⟩

= ∫φ∗𝑎(
#»𝒓1 ) φ∗𝑏(

#»𝒓2 )
𝑒2

4πϵ0|
#»𝒓1 −

#»𝒓2 |
φ𝑎(

#»𝒓1 ) φ𝑏(
#»𝒓2 ) d

#»𝒓1d
#»𝒓2 .

(3.41)

It represents the Coulomb repulsion between the unperturbed electronic density distri-
butions of the electrons. The spin does not enter the Hamiltonian, but it influences the
allowed atomic states. The Pauli exclusion principle requires a many-electrons wave-
function to be antisymmetric under exchange, that is to say to change its sign when the
space and spin coordinates of any two electrons are exchanged. For this, either the spatial
part of Ψ can be antisymmetric and the spin part symmetric, or the other way around. In
terms of the permutation operator �̂� , both must be eigenvectors with the eigenvalues±1:

�̂� |Ψ⟩ = −|Ψ⟩ = {
−|φa⟩ ⊗ + |ζs⟩
+|φs⟩ ⊗ − |ζa⟩,

(3.42)
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where the subscript denotes a symmetric or antisymmetric function of both electrons.
Let us consider first the spin. The state of the atom, characterized by the quantum

numbers 𝑆 and𝑀𝑆, must be a linear combination of the four possible two-spin states:

|𝑆,𝑀𝑆⟩ = ∑
𝑚𝑠1,𝑚𝑠2

𝑐12 |𝑚𝑠1⟩ ⊗ |𝑚𝑠2⟩

= 𝑐1 |↑↑⟩ + 𝑐2 |↑↓⟩ + 𝑐3 |↓↑⟩ + 𝑐4 |↓↓⟩.
(3.43)

If the electrons have the same spin, it is easy to see that �̂� |↑↑⟩ = |↑↑⟩ and the two
parallel spin states are symmetric. The antiparallel spin states are neither symmetric
not antisymmetric, as we can see from calculating the 2 × 2 matrix representation of
|𝑚𝑠1⟩⊗|𝑚𝑠2⟩ using Eq. (3.24): we obtain �̂� |↑↓⟩ = |↑↓⟩⊤ ≠ ±|↑↓⟩. The simplest symmetric
state we can build is their equal superposition, since �̂� (|↑↓⟩ + |↓↑⟩) = |↓↑⟩ + |↑↓⟩. The
general symmetric spin wavefunction is thus composed of three possible states, which
form the 𝑆 = 1 triplet:

|ζs⟩ = 𝑐1 |↑↑⟩ + 𝑐2 |↓↓⟩ +
𝑐3
√2

(|↑↓⟩ + |↓↑⟩)

= 𝑐1 |1, +1⟩ + 𝑐2 |1, −1⟩ + 𝑐3 |1, 0⟩,
(3.44)

and is degenerate in the absence of magnetic field. The component |1, 0⟩ corresponds to
the spins being parallel in the 𝑥𝑦 plane. The corresponding antisymmetric wavefunction
is the 𝑆 = 0 singlet:

|ζa⟩ = |0, 0⟩ = 1
√2

(|↑↓⟩ − |↓↑⟩) . (3.45)

Similarly, we build the symmetric and antisymmetric spatial wavefunctions:

|φs⟩ =
|φ𝑎φ𝑏⟩ + |φ𝑏φ𝑎⟩

√2
, (3.46a)

|φa⟩ =
|φ𝑎φ𝑏⟩ − |φ𝑏φ𝑎⟩

√2
. (3.46b)

Let us now examine the consequences. If the atom is in the ground state (1s2 config-
uration), the electrons are filling the lowest orbital, with 𝑛 = 1, 𝑙 = 0 and 𝑚𝑙 = 0. The
spatial part of the wavefunction φ100(

#»𝒓1 ) φ100(
#»𝒓2 ) is symmetric, so the spin wavefunction

must be antisymmetric and the electrons have as expected the opposite spin. In this case,
there is no change and we can use Eq. (3.41) to calculate the Coulomb repulsion.
If the atom is in an excited state, or if we are considering two electrons in a higher shell

that may occupy different orbitals, the uncoupled state φ𝑎(
#»𝒓1 ) φ𝑏(

#»𝒓2 ) is not allowed, as
it is not an eigenvector of �̂� . For any φ𝑏 ≠ φ𝑎, the atom can take two distinct orbital
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configurations:

ΨS = φsζa = 1
√2

(φ𝑎(
#»𝒓1 ) φ𝑏(

#»𝒓2 ) + φ𝑎(
#»𝒓2 ) φ𝑏(

#»𝒓1 )) ζa, (3.47a)

ΨT = φaζs = 1
√2

(φ𝑎(
#»𝒓1 ) φ𝑏(

#»𝒓2 ) − φ𝑎(
#»𝒓2 ) φ𝑏(

#»𝒓1 )) ζs. (3.47b)

These two states are respectively called the singlet ΨS and triplet ΨT states, according to
their spin degeneracy. Because the orbit of the electrons is modified, so is the expectation
value of the Coulomb repulsion:

⟨Ψ|�̂�C|Ψ⟩ = ∫ 1
2 (φ

∗
𝑎(

#»𝒓1 ) φ∗𝑏(
#»𝒓2 ) ± φ∗𝑎(

#»𝒓2 ) φ∗𝑏(
#»𝒓1 ))

𝑒2

4πϵ0|
#»𝒓1 −

#»𝒓2 |

× (φ𝑎(
#»𝒓1 ) φ𝑏(

#»𝒓2 ) ± φ𝑎(
#»𝒓2 ) φ𝑏(

#»𝒓1 )) d
#»𝒓1d

#»𝒓2

= 𝒞𝑎𝑏 ± 𝒥𝑎𝑏,

(3.48)

where 𝒞𝑎𝑏 is the Coulomb integral given by Eq. (3.41), and 𝒥𝑎𝑏 = ⟨φ𝑎φ𝑏|�̂�C|φ𝑏φ𝑎⟩ > 0
is called the exchange integral. There are three possible energies for two electrons:
𝐸(ΨT) = 2𝐸0+𝒞𝑎𝑏−𝒥𝑎𝑏 when the electrons have the same spin, 𝐸(ΨS) = 2𝐸0+𝒞𝑎𝑏+𝒥𝑎𝑏
when they have the opposite spin and occupy different orbitals, and 𝐸(ΨS) = 2𝐸0 + 𝒞𝑎𝑎
when they occupy the same orbital. While 𝒞𝑎𝑏 and 𝒥𝑎𝑏 vary depending on the orbitals
involved, the intra-orbital Coulomb integral 𝒞𝑎𝑎 = 𝒞 is identical for all orbitals in the
same subshell. The Pauli exclusion principle, by preventing electrons with parallel spin
to occupy the same space, lowers their Coulomb repulsion, thereby making triplet states
more favorable.
We can rewrite the Hamiltonian as an explicit function of the spin, using the fact that

�̂�𝟐 = �̂�𝟐1 + �̂�𝟐2 +2�̂�1 ⋅ �̂�2 . The expectation values of the operators are ⟨�̂�𝟐1⟩ = ⟨�̂�𝟐2⟩ = 3ℏ2 / 4,
and ⟨�̂�𝟐⟩ = 𝑆 (𝑆 + 1) ℏ2 = 0 in the singlet and 2ℏ2 in the triplet state. Thus:

⟨2�̂�1 ⋅ �̂�2⟩ = {
− 3ℏ2 / 2, (singlet)

+ ℏ2 / 2, (triplet)
(3.49)

and we can redefine �̂�C = 𝒞12 − 𝒥12 / 2 − 2𝒥12 / ℏ2 × �̂�1 ⋅ �̂�2 , so that its expectation value
is preserved. We are assuming that the spin alignment can change, that is to say the
electrons are in different orbitals. The spin part of the interaction is represented by the
Heisenberg exchange Hamiltonian:

�̂�ex = −2𝒥12ℏ2 �̂�1 ⋅ �̂�2 , (3.50)

where 𝒥12 > 0, which is always the case for exchange integrals, favors the parallel
alignment of the spins. The same expression will also be used to represent the exchange
interaction between the spins of two atoms, or the macroscopic spins representing
the two sublattices of an antiferromagnetic material, in which case 𝒥12 < 0 favors the
antiparallel alignment.
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Many-electron exchange

For more than two electrons, it is not possible to antisymmetrize the spin part of the
wavefunction with respect to all possible permutations. Unless all electrons have the
same spin, we have to antisymmetrize the orbital and spin degrees of freedom jointly. The
antisymmetric wavefunction corresponding to a specific combination of 𝑁 spinorbitals
is given by the Slater determinant:

Ψ(ψζ𝑎𝑎 , ψ
ζ𝑏
𝑏 ,… , ψζ𝑥𝑥 ) =

1
√𝑁!

|
|
|
|
|
|
|
|
|
|

ψζ𝑎𝑎 (1) ψζ𝑏𝑏 (1) … ψζ𝑥𝑥 (1)

ψζ𝑎𝑎 (2) ψζ𝑏𝑏 (2) … ψζ𝑥𝑥 (2)

⋮ ⋮ ⋱ ⋮

ψζ𝑎𝑎 (𝑁) ψζ𝑏𝑏 (𝑁) … ψζ𝑥𝑥 (𝑁)

|
|
|
|
|
|
|
|
|
|

, (3.51)

where ψζ𝑛𝑛 (𝑖) = φ𝑛(
#»𝒓𝑖 ) ζ𝑛(𝑚𝑠𝑖) is the original spinorbital of electron 𝑖. The initial unper-

turbed state as a product of the wavefunctions of independent electrons is given by the
diagonal of the matrix. Each Slater determinant describes an antisymmetric wavefunc-
tion in the decoupled basis, where all electrons have well-defined quantum numbers.
The atomic states in the {|𝐿, 𝑆,𝑀𝐿,𝑀𝑆⟩} basis are then obtained by the linear superposi-
tion of several Slater determinants, similarly to Eq. (3.22). For our previous case of two
electrons, the determinants Ψ(ψ↑𝑎, ψ↑𝑏) and Ψ(ψ

↓
𝑎, ψ↓𝑏) are the wavefunctions of the two

states with𝑀𝑆 = ±1, and we find the remaining two wavefunctions for𝑀𝑆 = ±0 using
Ψ(ψ↑𝑎, ψ↓𝑏) ± Ψ(ψ↓𝑎, ψ↑𝑏).
The interactions between many electrons can be reduced to the sum of their pairwise

interactions. Computing them implies that the state of the electrons is known. We can
thus calculate the energy of an atomic state |𝐿, 𝑆,𝑀𝐿,𝑀𝑆⟩ when it consists of a single
Slater determinant. In this case, each pair of electrons with parallel spins contributes an
energy 𝒞𝑖𝑗 − 𝒥𝑖𝑗, and each pair of electrons with antiparallel spins contributes 𝒞𝑖𝑗. The
energy of the determinantal wavefunction Ψ is thus:

⟨Ψ|�̂� |Ψ⟩ =
𝑁
∑
𝑖=1

(𝐸0𝑖 +
𝑁
∑
𝑗>𝑖

𝒞𝑖𝑗 − δ(𝑚𝑠𝑖, 𝑚𝑠𝑗) 𝒥𝑖𝑗) . (3.52)

With this, we can obtain the term energies of an atom. For a p3 configuration for example,
the possible terms are 4S, 2P and 2D. For simplicity, let us assume that all inter-orbital
integrals are identical. The determinant Ψ(ψ↑−1, ψ

↑
0, ψ

↑
+1) gives 𝑀𝑆 = 3 / 2 and thus

contributes only to the 4S term. In the absence of magnetic field, the energy of all states
in the term is thus 𝐸(4S) = 3𝒞𝑖𝑗 − 3𝒥𝑖𝑗. Similarly, the determinant Ψ(ψ

↑
0, ψ

↑
+1, ψ

↓
+1) with

𝑀𝐿 = 2 contributes only to the 2D term, which has then the energy 𝐸(2D) = 2𝒞𝑖𝑗+𝒞−𝒥𝑖𝑗.
There is no determinant contributing only to the 2P term. We find its energy by observing
that the three determinants Ψ(ψ↓−1, ψ

↑
0, ψ

↑
+1), Ψ(ψ

↑
−1, ψ

↓
0, ψ

↑
+1) and Ψ(ψ

↑
−1, ψ

↑
0, ψ

↓
+1) give

|𝑀𝐿,𝑀𝑆⟩ = |0, 1 / 2⟩, which appears once in each of the three terms. The sum of their
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energies being conserved, we have 𝐸(4S) + 𝐸(2D) + 𝐸(2P) = 9𝒞𝑖𝑗 −3𝒥𝑖𝑗, and thus 𝐸(2P) =
4𝒞𝑖𝑗 − 𝒞 + 𝒥𝑖𝑗. Fitting these formula to the term energies of a nitrogen atom, where
𝐸(2D) − 𝐸(4S) = 2.38 eV and 𝐸(2P) − 𝐸(4S) = 3.57 eV [102], we obtain 𝒥𝑖𝑗 = 0.66 eV,
and 𝒞 = 𝒞𝑖𝑗 + 2𝒥𝑖𝑗 / 5. The Coulomb repulsion and the exchange interactions lift the
degeneracy of the terms, encouraging the parallel alignment of the spins in different
orbitals and thus the maximization of 𝐿 and 𝑆.

3.2.2.3 Spin-orbit coupling

We now add a contribution that we neglected so far: the spin-orbit coupling. It can
be interpreted as the effect of the movement of the nucleus in the rest frame of each
electron. In the classical current loop model, the current creating the orbital moment of
the electron is given by Eq. (3.6): 𝐼𝑒 = �̂�𝒍 / 2π𝑟2. The current loop created by the orbiting
nucleus in the rest frame of the electron is 𝐼𝑛 = −𝑍𝐼𝑒. According to Eq. (3.7), it generates
on the electron the magnetic field:

#»𝑩𝑛 =
μ0𝑍𝑒
4π𝑚𝑒𝑟3

�̂�𝒛 . (3.53)

A rigorous derivation using the Dirac equation results in an additional factor 1/2. It is
commonly explained by the relativistic rotation of the rest frame of the electron, called
the Thomas precession [103], producing an opposing magnetic field. Including this
factor, the net magnetic field experienced by the electron is #»𝑩 = − #»𝒗 ∧ #»𝑬 / 2𝑐2, where
𝐸 = − #»𝛁 𝑉(𝑟). With the potential of the nucleus 𝑉(𝑟) = 𝑍𝑒 / 4πϵ0𝑟, we find

#»𝑩 = #»𝑩𝑛 / 2. A
more recent semi-classical model explains the spin-orbit coupling in the rest frame of the
nucleus as the force exerted by the electric field of the latter onto the relativistic electric
dipole moment created by the spin of the moving electron. The factor 1/2 arises from a
change in kinetic energy of the electron when its spin is flipped, which compensates half
of the change in electrostatic energy [104]. Staying with the first theory, the spin-orbit
coupling Hamiltonian represents the energy of the electron, which in its own frame has
only a spin moment, in the magnetic field of the nucleus:

�̂�so = −�̂�𝒔 ⋅
#»𝑩 = −

𝑔𝑠𝑒
2𝑚2

𝑒𝑐2𝑟
d𝑉
d𝑟 �̂� ⋅ �̂� =

𝑔𝑠μ0𝑒2

8π𝑚2
𝑒𝑟3

�̂� ⋅ �̂�. (3.54)

Since the expectation value ⟨1/𝑟3⟩ only depends on the radial part 𝑅𝑛,𝑙 of the wavefunc-
tion, we can simplify the Hamiltonian as [105, chapter 4]:

�̂�so ≈
μ0𝑒2

4π𝑚2
𝑒
⟨ 1𝑟3 ⟩ �̂� ⋅ �̂�

=
𝑍4𝑚𝑒𝑐2α4

ℏ2𝑛3𝑙 (𝑙 + 1 / 2) (𝑙 + 1)
�̂� ⋅ �̂� = λ𝑛,𝑙 �̂� ⋅ �̂�,

(3.55)

where α is the fine-structure constant. The spin-orbit constant λ𝑛,𝑙 > 0 is the same for
all electrons in the same subshell, and the coupling between the spin of one electron and
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3.2 The quantum origin of magnetism

the orbit of another is negligible. This allows us to define the multi-electron spin-orbit
coupling Hamiltonian as:

�̂�so = λ�̂� ⋅ �̂� , (3.56)

where λ = ±λ𝑛,𝑙 / 2𝑆, with a negative sign when the subshell is more than half-filled. We
will see the reason for this change of sign in Section 3.2.2.4. Because of the dependency
of the spin-orbit constant on the nuclear potential, this coupling is stronger for heavy
elements: λ𝑛,𝑙ℏ2 = 53meV for Fe (𝑍 = 26) but 556meV for Pt (𝑍 = 78) [105, chapter 4].
The Hamiltonian of a multi-electron atom becomes:

�̂� = �̂�cf + �̂�ex + �̂�so . (3.57)

The spherical central fieldHamiltonian is responsible for creatingwell-defined electronic
orbitals in the form of spherical harmonics characterized by 𝑛 and 𝑙, and is always the
largest term. The exchange Hamiltonian couples the angular momenta of the electrons,
forming �̂� = ∑𝑖 �̂�𝑖 and �̂� = ∑𝑖 �̂�𝑖 , while the spin-orbit Hamiltonian couples the two
types of angular momenta to form �̂� = �̂� + �̂� . Whether the latter should be modeled as a
perturbation of the atomic state or the electronic states depends on which of �̂�ex or �̂�so

is expected to dominate. We thus have two possible approximations to model the total
angular momentum of an atom, called the 𝐿–𝑆 and 𝑗–𝑗 coupling schemes:

�̂� =
⎧⎪
⎨⎪
⎩

�̂� + �̂� = ∑
𝑖
�̂�𝑖 +∑

𝑖
�̂�𝑖 (𝐿–𝑆 coupling)

∑
𝑖
�̂�𝑖 = ∑

𝑖
(�̂�𝑖 + �̂�𝑖) (𝑗–𝑗 coupling)

(3.58)

j–j coupling

If �̂�so > �̂�ex , the spin-orbit coupling of each electron needs to be considered before
the exchange interaction. This is the case in heavy atoms, typically with 𝑍 > 75. As
we discussed in Section 3.2.1.1, the state of each electron is described in the basis
{|𝑛, 𝑙, 𝑠, 𝑗,𝑚𝑗⟩}. In the vector model,

#»

𝒍 𝑖 and
#»𝒔 𝑖 are represented as precessing around

#»

𝒋 𝑖 =
#»

𝒍 𝑖 +
#»𝒔 𝑖 .

The electron–electron exchange interactions are then treated as a perturbation on the
orientation of the

#»

𝒋 𝑖 , which now precess around the total angular momentum of the
atom #»𝑱 = ∑𝑖

#»

𝒋 𝑖. The state of the subshell is described by |𝐿, 𝑆, 𝐽,𝑀𝐽⟩. This coupling is
thus called the 𝑗–𝑗 coupling (Fig. 3.7a).

L–S coupling

For lighter elements, �̂�ex > �̂�so and the atom is best describedwith theRussell–Saunders
or 𝐿–𝑆 coupling. This is for example the case for Fe2+, whose energy levels are plotted in
Fig. 3.8.
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Figure 3.7: Vector model for the a) 𝑗–𝑗 and b) 𝐿–𝑆 coupling schemes, describing the
coupling of two electronswith 𝑙 = 2,𝑚𝑠 = +1/2,𝑚𝑙 = 0 and 2. #»𝑱 is quantized
with respect to 𝑧 around which it precesses with the fixed component 𝑀𝐽ℏ.
The coupled vectors conserve their magnitude (dotted circles) but not their
orientation. They precess together around their resultant (black ellipse
around #»𝑱 ) and thus have no defined projection along 𝑧 anymore.

The exchange interaction couples the orbital angular momenta of individual electrons
into #»𝑳 and their spin angular momenta into #»𝑺 , around which the original angular
momenta are represented as precessing (Fig. 3.7b). The spin-orbit interaction is then
added as a perturbation. It causes the Hamiltonian to stop commuting with �̂�𝒛 and �̂�𝒛 ,
making 𝑀𝐿 and 𝑀𝑆 bad quantum numbers. In the same way as for electrons, the new
quantum numbers follow:

|𝐿 − 𝑆| ≤ 𝐽 ≤ 𝐿 + 𝑆 (3.59a)

−𝐽 ≤ 𝑀𝐽 ≤ 𝐽. (3.59b)

For a given atomic term, 𝐽 defines the level ormultiplet written 2𝑆+1𝐿𝐽, and𝑀𝐽 the unique
atomic state. With this coupling as well, states are described in the basis {|𝐿, 𝑆, 𝐽,𝑀𝐽⟩}.
The spin-orbit coupling causes, with other relativistic effects such as the Zitterbewegung
and corrections to the kinetic energy, the fine structure splitting of the hydrogen energy
levels, removing the degeneracy of the multiplets. In most cases, the energy difference
between adjacent multiplets is 𝐸𝐽 − 𝐸𝐽−1 = λ𝐽.
When several subshells are incomplete, they couple in a single atomic state. For

example, Pt has the electronic configuration [Xe]4f145d96s1. The latter two subshells,
each missing one electron, couple to form the ground multiplet 3D3, in which 𝑆 =
𝑆𝑑 + 𝑆𝑠 = 1 / 2 + 1 / 2 = 1, 𝐿 = 𝐿𝑑 + 𝐿𝑠 = 2, and 𝐽 = 𝐿 + 𝑆. As we will now see, this can
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Figure 3.8: Lowest energy levels of an isolated Fe2+ ion in the electronic configuration
[Ar]3d6, following the 𝐿–𝑆 coupling model. The labels under each column in-
dicate their characteristic quantum numbers and the mechanism responsible
for their splitting. Only the incomplete 3d6 subshell can organize into several
different terms. The ground multiplet is 5D4. The energies of the terms and
their splitting are taken from Kramida and Ralchenko [102], while the shells
and subshells (left of the dashed line) are only schematized. The gap between
multiplets is small compared to the gaps between terms, indicating that the
𝐿–𝑆 coupling is a good model.

be determined using Hund’s rules, avoiding the need to calculate the expectation value
of the Hamiltonian.

3.2.2.4 Finding the ground state: Hund’s rules

We have seen the contributions to the energy of an isolated atom: Coulomb repulsion,
exchange interaction and spin-orbit coupling. Instead of calculating the expectation
value of the Hamiltonian to find the lowest-energy level, Hund’s rules offer a simple way
to deduct it from the electronic configuration of atoms satisfying the 𝐿–𝑆 coupling, given
the set of existing terms. The rules only strictly apply to finding the ground multiplet of
an atom or ion with a unique incomplete subshell. While generalizations to atoms with
several incomplete subshells are generally successful, as we have seen for Pt, those to
atoms in excited states fail in many cases [106, 107]. In addition, they apply to isolated
atoms: we will see in Section 3.2.3 that the presence of a crystal field may prevent their
application.
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• The first rule, named the rule of maximum multiplicity, states that the spin quantum
number 𝑆 is maximized. The ground term then contains the electron configuration
leading to the highest possible value of |𝑀𝑆|, when the subshell is filled with as many
electrons with parallel spin as possible. This rule allows the minimization of �̂�ex .

• The second rule states that if several of the allowed terms satisfy the first rule, then the
orbital quantum number 𝐿 is maximized. The ground term then contains the highest
possible value of |𝑀𝐿|, which allows the minimization of �̂�so.

• The third rule states that the lowest-lying multiplet within the ground termminimizes
the total quantum number 𝐽 if the subshell is less than half-filled, and maximizes 𝐽 if
it is more than half-filled. This rule is linked to the change of sign of the spin-orbit
constant λ: since λ𝑛,𝑙 > 0, the spin-orbit coupling encourages 𝑚𝑙 and 𝑚𝑠 for each
electron to have opposite signs. If the subshell is less than half full and the spins align
to maximize 𝑀𝑆 according to the first rule, then 𝑀𝐿 and 𝑀𝑆 will have the opposite
sign as well, which decreases 𝐽 and leads to the minimization of �̂�so for λ > 0. If the
subshell is more than half full, the majority spin electrons have no net contribution to
𝑀𝐿 but determine the sign of𝑀𝑆, so𝑀𝐿 and𝑀𝑆 have the same sign and 𝐽 is maximized.

For the 2p2 configuration with the three allowed terms 1S, 3P and 1D that we found
in Section 3.2.2.1, the first rule is enough to determine that the lowest-energy term is
3P. Hund’s rules give no information to order the energy of the other allowed terms,
and a quantitative ordering can only be obtained by calculating the wavefunction of
each term. The 3P term corresponds to 𝐿 = 𝑆 = 1 and contains thus three multiplets
with 𝐽 = 0, 1 and 2 according to Eq. (3.59). Since the subshell contains two out of the
possible six electrons, the ground multiplet is 3P0. In this case, there is only one possible
orientation of the angular momentum in a magnetic field: 𝑀𝐽 = 0, and this atom is
non-magnetic. The Fe2+ ion in Fig. 3.8 exhibits the opposite behavior: it has six of the
possible ten electrons in the 3d subshell, so its ground multiplet is 5D4. This fairly large
value of 𝐽 gives rise to the large magnetic moment of Fe2+ ions.
Once the ground termof an atom is determined, we can calculate itsmagneticmoment.

The formulas in Section 3.2.1.3 for single electrons can be generalized without any
change:

�̂�𝑱 = γ�̂� = −
μB𝑔𝑗
ℏ �̂� . (3.60)

The magnetization of a material is a macroscopic average of the magnetic moment per
unit volume:

# »𝑴 = 1
𝑉 ∑

𝑖
⟨�̂�𝑱⟩𝑖. (3.61)

It is thus maximized if all atoms in the sample have𝑀𝐽 = −𝐽.

We are now in the capacity to calculate the magnetic moment of an atom and under-
stand why a certain element has magnetic properties. However, the magnetic moment
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3.2 The quantum origin of magnetism

of a single atom does not tell us whether a material is, for example, paramagnetic or
ferromagnetic. Theses properties, encoded in the susceptibility of the material, come
from the collective behavior of all atoms.

3.2.3 Influence of the crystal field

As isolated atoms, the majority of elements have 𝐽 ≤ 0 and carry a magnetic moment in
their ground state. The only exceptions are elements with only full subshells, elements
with a p2 configuration whose ground multiplet we calculated above, as well as tungsten
and samarium whose ground multiplets are 5D0 and 7F0, respectively. In the solid state
however, most pure elements are paramagnetic or diamagnetic. Only the 3d transition
metals Fe, Co and Ni and the 4f rare earth elements Gd, Tb, and Dy can be ferromagnetic,
under some conditions of temperature, pressure, and other parameters; a few others
are ferrimagnetic or antiferromagnetic. Most elements loose their magnetic moment as
soon as they belong to a polyatomic substance. In materials consisting of several types
of atoms, it is hard to predict whether the magnetic moment will be conserved and what
the magnetic behavior will be. We will concentrate in this section on the influence of
neighboring atoms on the magnetic properties of 3d and 4f elements in particular.

3.2.3.1 Orbital localization

As we have seen, the solutions to the Schrödinger equation for the single-electron
Hamiltonian in Eq. (3.18) are the orbitals φ(𝑟, θ, ϕ) = 𝑅𝑛,𝑙(𝑟) 𝑌

𝑚𝑙
𝑙 (𝑟, θ, ϕ). The radial part

depends on the quantum numbers 𝑛 and 𝑙: 𝑛 describes the energy of an electron in the
potential of the nucleus, and 𝑙 describes the centrifugal part of its kinetic energy. These
two radial contributions can be considered as an effective potential energy:

𝐸eff(𝑟) =
𝑍∗𝑒2
4πϵ0𝑟

+ 𝑙 (𝑙 + 1) ℏ2

2𝑚𝑒𝑟2
, (3.62)

where 𝑍∗ is the atomic number reduced by a screening parameter, to account for the
average Coulomb repulsion between electrons in the central field approximation (see
Section 3.2.2.1). The kinetic contribution creates a potential barrier at a finite distance to
the nucleus, of height increasing with 𝑙. For 𝑍∗ = 1, this terms dominates and creates a
repulsive potential for all except s subshells. As 𝑍∗ increases, the Coulombic contribution
creates a potential well which becomes deeper, narrower and shifts towards the nucleus.
However, the reduced atomic number is not constant for a given element, but depends
on 𝑟: 𝑍∗ is maximal near the nucleus, while outside the outer shells 𝑍∗ ≈ 1. For heavy
enough atoms, this creates two distinct potential wells, separated by the remaining
hydrogen-like centrifugal barrier. At 𝑍 = 21, the charge density of the 3d orbitals moves
from the hydrogen-like outer well to the inner well, which leads to the beginning of the
3d transition metal series (see Fig. 3.9). Similarly, at 𝑍 = 57 the 4f charge density moves
into the inner well, which corresponds to the beginning of the 4f rare earth series.
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Figure 3.9: Qualitative representation of the effective potential for the outer orbitals
of 3d transition metals. The centrifugal barrier near 0.5Å is caused by the
decrease of 𝑍∗, and creates distinct inner and outer potential wells.

For both types of elements, the electrons responsible for their magnetic properties
are thus localized in deep inner wells, and shielded from external influences by the
largely delocalized 4s or 6s electrons. This allows 3d and 4f elements to retain in the
solid state many of the properties of their isolated atoms. However, the height of
the centrifugal barrier causes a critical difference in behavior. The barrier is very
pronounced for the 4f subshell, strongly localizing the wavefunctions orbitals inside
the atom. As a consequence, 4f elements can be modeled as isolated atoms subject to
a small perturbation. The barrier is almost absent for the 3d subshell, allowing the
orbitals to extend and overlap with neighboring atoms. The 3d elements have thus a
hybrid behavior, and whether isolated atoms or fully delocalized electrons are the best
approximation depends on the situation. As metals, Fe, Co and Ni achieve a balance
which allows them to conserve most of their magnetic moment, while also participating
in the collective behaviors that give rise to ferromagnetism (see Section 3.2.4).

3.2.3.2 Crystal field levels

The Hamiltonian of an isolated atom is given by Eq. (3.57), with �̂�cf ≫ �̂�ex ≫ �̂�so for
both 3d and 4f elements. When the orbitals carrying a magnetic moment are localized
and do not interact directly with surrounding atoms, it is possible to model the influence
of the latter by a static electric field: the crystal field. With this approximation, we neglect
the effects of covalent bounding, charge overlap, and conduction electrons. It however
explains the origin of several phenomenon relevant notably to magnetic insulators such
as FeBO3.
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3.2 The quantum origin of magnetism

Weak crystal field: the Stark effect

The crystal field surrounding an atommodifies the electrostatic potential of the electrons,
breaking its spherical symmetry. However, in the weak field limit �̂�ex ≫ �̂�so ≫ �̂�cry ,

where �̂�cry = −𝑒∑𝑁
𝑖 𝑉cry(

#»𝒓𝑖 ), it can be treated as a perturbation of the state of an isolated
atom. This is most appropriate for 4f rare earth compounds, as the 4f subshell is shielded
by the more delocalized outer electrons. In this limit, we only need to consider the
splitting of the ground multiplet. The unperturbed atom is characterized by |𝐿, 𝑆, 𝐽⟩, and
the𝑀𝐽 are degenerate in the absence of magnetic field.
The potential of the crystal field has the same point symmetry as the atom. It can be

expanded in terms of spherical harmonics:

− 𝑒𝑉cry(𝑟, θ, ϕ) = ∑
𝑛

+𝑛
∑
𝑚𝑛=−𝑛
𝑟𝑛𝐴𝑚𝑛

𝑛 𝑌𝑚𝑛
𝑛 (θ, ϕ), (3.63)

where the 𝐴𝑚𝑛
𝑛 are crystal field parameters, whose sign indicates the sign of the charges

of the surrounding atoms. The relevant non-zero values of 𝑛 and 𝑚𝑛 depend on the
symmetry. Because the product of two electronic wavefunctions is spatially symmetric
and can be expanded into spherical harmonics with 𝑛 ≤ 2𝑙, only terms with 𝑛 even
and 𝑛 ≤ 6 for 4f atoms will remain when evaluating the perturbation energy 𝐸cry =
⟨Ψ|�̂�cry|Ψ⟩. The 𝑛 = 0 term corresponds to a constant energy offset and is neglected.
We are particularly interested in the octahedral symmetry, where the atom is at the
center of the coordinate system and negative charges are placed on the Cartesian axes
at positions (±𝑎, 0, 0), (0, ±𝑎, 0) and (0, 0, ±𝑎). The only remaining terms are 𝑛 = 4 and
𝑚𝑛 = 0 and ± 4.
Since both orbitals and the crystal field are expanded as spherical harmonics, evaluat-

ing 𝐸cry is straightforward if |Ψ⟩ is decomposed into combinations of electronic orbitals.
However, this is often unpractical: the electrons of an atom such as Tb with the configu-
ration 4f9 can form 2002 different Slater determinants, only 76 of which are not entering
into the ground multiplet 6H[15 / 2] because they have |𝑀𝐿| > 5. Instead, the new eigen-
states of the Hamiltonian and their degeneracy are calculated using group theory [108].
Wavefunctions with a given angular momentum quantum number, whether 𝐽, 𝐿, 𝑆 or
their electronic counterparts, always decompose in the same irreducible representations
in a given point symmetry group. Where a set of wavefunctions is formed by the tensor
product of several vector spaces, for example when combining several electrons, the cor-
responding irreducible representations are given by the direct product of the irreducible
representations of the electrons.
To allow the evaluation of the perturbation energy in the basis {|𝐽,𝑀𝐽⟩}, we trans-

form the crystal field Hamiltonian using the Stevens operator equivalents, which are
dimensionless combinations of �̂� operators [109]. In the case of 𝑛 = 2 and 𝑚𝑛 = 0 for
example, the term 𝑟2𝐴02𝑌0

2 becomes α2⟨𝑟2⟩𝐴02�̂�𝟎
𝟐 , where the dimensionless constant α𝑛

and the mean radial distribution ⟨𝑟𝑛⟩ depend on the atom, and the Stevens operator is
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�̂�𝟎
𝟐 = 3�̂�2𝒛 − �̂�𝟐 . The crystal field energy is then simply α2⟨𝑟2⟩𝐴02 (3𝑀2

𝐽 − 𝐽 (𝐽 + 1)) and the
degeneracy of the angular momentum projection𝑀𝐽 is partially lifted.
Since the wavefunction of the resulting energy levels may be a complicated combina-

tion of angular momentum eigenstates, the states and their degeneracy are calculated
using group theory [108]. The crystal field levels are labeled as |Γ⟩, where Γ is the ir-
reducible representation of �̂� in the given point symmetry group. Eigenstates with the
same angular momentum quantum number, whether 𝐽, 𝐿, 𝑆 or their electronic counter-
parts, decompose in the same irreducible representations. Where a set of wavefunctions
is formed by the tensor product of several vector spaces, for example when combining
several electrons, the corresponding irreducible representations are given by the direct
product of the irreducible representations of the electrons. Each time the symmetry of
the Hamiltonian is reduced, some irreducible representations become reducible, and the
corresponding energy levels are split.
This splitting of the energy levels according to their electric dipole moment under

the effect of an electric field is called the Stark effect. It is the electric equivalent to the
Zeeman effect. Contrarily to �̂�Z however, �̂�cry preserves the time-reversal symmetry
of the Hamiltonian, which means that every energy eigenstate |Ψ⟩ is degenerate with
�̂� |Ψ⟩. The time-reversal operator reverses magnetic dipole moments, so that �̂� |𝑀𝐽⟩ =
𝑖2𝑀𝐽|−𝑀𝐽⟩. Because of this, singlet states under the crystal field must be |0⟩ or a mixed
state of the form |+𝑀𝐽⟩ ± |−𝑀𝐽⟩. As the symmetry of the crystal potential lowers, more
degeneracies are lifted, and thus more levels have no magnetic moment.

Medium crystal field

When the strength of the crystal field increases so that �̂�ex ≫ �̂�cry ≫ �̂�so , 𝐽 is no longer
a good quantum number, while to the first order 𝐿 and 𝑆 still are. The same procedure
can be applied to calculate the splitting of the ground term, by expressing the Stevens
operator equivalents as functions of �̂� operators [110].
For FeBO3, where the oxygen ions form an an octahedral environment around each

Fe3+ ion:
−𝑒𝑉cry = 𝑟4𝐴04𝑌0

4 + 𝑟4𝐴44𝑌4
4 + 𝑟4𝐴−44 𝑌−4

4

= 𝑟4𝐴04 (𝑌0
4 +√5 / 14 (𝑌4

4 + 𝑌−4
4 )) .

(3.64)

After replacing the spherical harmonics by the Stevens operator equivalents, we can
express the octahedral crystal field Hamiltonian in the basis {|𝑀𝐿⟩}, here for 𝐿 = 2 [111]:

�̂�cry = 𝐷𝑞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.65)
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with 𝐷𝑞 = α4⟨𝑟4⟩𝐴04 / 21. The states |0⟩ and |±1⟩ are eigenvectors of the Hamiltonian
with eigenvalues 6𝐷𝑞 and −4𝐷𝑞, respectively. The states |±2⟩ are coupled by the crystal
field due to the non-diagonal matrix elements. New eigenstates are given by their linear
combinations |+2⟩ ± |−2⟩, with eigenvalues 6𝐷𝑞 and −4𝐷𝑞, respectively, as well. From
a group theory perspective, the 𝐿 = 2 term is split in octahedral symmetry into two
irreducible representations, labeled using Mulliken symbols as the triplet T2g, which
contains the states of energy −4𝐷𝑞, and the doublet Eg of energy 6𝐷𝑞.
Using the same procedure, we find the crystal field splitting of Fe3+ ions with config-

uration 3d5. The ground term is 6S. Since it has no orbital angular momentum, it does
not split and results in a single representation 6A1g, where the superscript indicates the
unchanged spin multiplicity. The first excited term is 4G, with 𝐿 = 4 and thus an orbital
multiplicity of 9. It is split, in order of increasing energy, in the triplets 4T1g and 4T2g, and
the degenerate singlet 4A1g and doublet 4Eg [112].

Strong crystal field: low spin state

As the crystal field increases in strength and �̂�ex ≳ �̂�cry , the perturbation of the potential
becomes too large for 𝐿 to stay a good quantum number and we consider the splitting of
the orbitals directly. The same mathematical formalism applies to the orbitals as to the
atomic terms. Since 𝑙 = 2, the d orbitals are split into three t2g and two eg orbitals, whose
energy is again given by Eq. (3.65). The strength of the crystal field is measured by their
splitting Δ𝑜 = 10𝐷𝑞, which is 1.57 eV in FeBO3 [113].
Rather than spherical harmonics, it is more appropriate to use an alternative basis in

which the orbitals are time-reversal symmetric and can thus exist as singlet states. We
transform the complex spherical harmonics, which have spherical symmetry and are
characterized by their angular momentum, into the real cubic harmonics, which have a
fixed direction in space and no net angular momentum [114]:

𝑍0𝑙 = 𝑌0
𝑙 (3.66a)

𝑍𝑚𝑙+
𝑙 = 1

√2
(𝑌−𝑚𝑙

𝑙 + (−1)𝑚𝑙𝑌+𝑚𝑙
𝑙 ) (3.66b)

𝑍𝑚𝑙−
𝑙 = 𝑖

√2
(𝑌−𝑚𝑙

𝑙 − (−1)𝑚𝑙𝑌+𝑚𝑙
𝑙 ) . (3.66c)

For d electrons, this corresponds to the standard set d𝑧2 = 𝑍02 , d𝑥2−𝑦2 = 𝑍2+2 , d𝑥𝑦 = 𝑍2−2 ,
d𝑥𝑧 = 𝑍1+2 and d𝑦𝑧 = 𝑍1−2 . The electronic density of the first two is concentrated along
the axes of the Cartesian coordinate system (eg symmetry), and the last three in between
the axes (t2g symmetry). This alternative basis allows to easily see that negative charges
on the axes raise the energy of the eg orbitals.
Neglecting spin-orbit coupling, we can use Eqs. (3.52) and (3.65) to estimate the energy

of knownarrangements of the electrons for FeBO3. The ground level 6S corresponds to the
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unique configuration t 32g↑e 2g↑. The lower and upper crystal field levels of the first excited
term, 4T1g and 4A1g, have the configurations t 32g↑ t 12g↓ e 1g↑ and t 32g↑ e 1g↑ e 1g↓, respectively. Of
interest is also the 2T2g level of the 2I term, with the configuration t 32g↑ t 22g↓. Their energies
are given by:

𝐸(6A1g) = 5𝐸0 + 10𝒞 − 10𝒥, (3.67a)

𝐸(4T1g) = 5𝐸0 + 10𝒞 − 6𝒥 − Δ𝑜, (3.67b)

𝐸(4A1g) = 5𝐸0 + 10𝒞 − 6𝒥, (3.67c)

𝐸(2T2g) = 5𝐸0 + 10𝒞 − 4𝒥 − 2Δ𝑜, (3.67d)

where 𝐸0 is the energy of a 3d electron in the central potential approximation, and 𝒞
and 𝒥 are the Coulomb and exchange integrals given by Eq. (3.41), approximated as
identical for all orbitals. The ground level 6A1g and the upper level 4A1g, which differ by
the spin-flip of an eg electron, have an energy difference of 4𝒥, since the spin-flip involves
four electron pairs. With 𝒞 = 1.15 eV and 𝒥 = 0.7 eV [113], the unperturbed 4G and
2I terms lie respectively 2.8 eV and 4.2 eV above the ground state.
As Δ𝑜 increases, the energy levels reorder. The 2T2g level is the only one whose energy

evolves as −2Δ𝑜, and drops thus the fastest. In an FeBO3 crystal, it is approximately
degenerate with 4T1g. If Δ𝑜 increases further until �̂�cry > �̂�ex , above ∼2.6 eV, 2T2g
drops below 6A1g and becomes the ground level. This is called the low-spin state, as
Hund’s first rule is broken and it becomes more advantageous to fill the t2g orbitals with
antiparallel spins. When �̂�cry ≫ �̂�ex and the energy is dominated by Δ𝑜, the energy
levels merge according to their electron configuration: 𝐸(t 52ge 0g ) ≈ −2Δ𝑜, 𝐸(t 42ge 1g ) ≈ Δ𝑜
and 𝐸(t 32ge 2g ) ≈ 0.

3.2.3.3 Quenching and one-ion magnetic moment

One of the consequences of the crystal field is the quenching of the orbital angular
momentum. On one hand, the lifting of the orbital degeneracy caused by the crystal
field coupled with time-reversal symmetry favors the formation of atomic eigenstates
with an expectation value ⟨�̂�𝒛⟩ = 0. On the other hand, the spin-orbit coupling favors
the formation of states with a large spin and orbital angular momentum. The exact
wavefunction of an atom will have an hybrid quality. In 4f elements, we have seen that
�̂�so ≫ �̂�cry and the orbital angularmomentum is essentially unchanged. In 3d elements
however, �̂�cry ≫ �̂�so and the orbital angular momentum is significantly reduced.
In the case of FeBO3, although the unperturbed ground term of Fe3+ ions has 𝐿 = 0,

the covalent Fe–O bonds lead in practice to the presence of an additional electron, so that
the configuration is close to 3d6 and we expect from Hund’s rules 𝐿 = 2 and 𝑆 = 2. The
measured spin angular momentum, as defined by Eq. (3.26), is indeed | #»𝑺 | = 2ℏ, but the
measured orbital-to-spin ratio is | #»𝑳 | / | #»𝑺 | = 0.03 [115]: the orbital angular momentum
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is almost completely quenched. The same is true for bulk iron metal, which consists of
Fe2+ ions as well and exhibits | #»𝑳 | / | #»𝑺 | ≈ 0.04 [116].
When the ground state is an orbital singlet, ⟨�̂�𝒛⟩ = 0 and to the first order, the orbital

angular momentum is fully quenched. We expect to find a total angular momentum
�̂� ≈ �̂� .
When the orbital degeneracy is not fully lifted, we expect a reduced but finite orbital

angular momentum and further splitting of the state. Let us consider as example the
2I term of Fe3+ ions. We have seen that its lowest level is the 2T2g triplet, which becomes
the ground state of the ion in an strong octahedral crystal field. Since 𝑆 = 1 / 2, the
irreducible representation of the spin angular momentum is E′. The spin-orbit coupling
will generate the direct product 2T2g ⊗ E′ = E″ ⊕ U′ [117, appendix C]. The basis
functions of such so-called double groups are tabulated, and we find that E″ is a doublet
with 𝐽 = 1 / 2, while U′ is a quadruplet with 𝐽 = 3 / 2.
The value of 𝐽 in this case qualifies the transformation properties of the angular

momentum, but does not represent its measurable magnitude. It corresponds to a
fictitious angular momentum [118]. Predicting the magnetic moment of the atom
necessitates to evaluate the Hamiltonian and find the full wavefunctions. Different
models are used for 4f rare earth elements, 3d transition insulators [119] and itinerant
transition metals [116, 120, 121]. Since the orbital angular momentum is significantly
quenched in 3d transition materials, and since as we will see in Section 3.2.4.6 the
magnetic ordering of a material depends on its spin, we assume that only the spin
is present and include the orbital influence in an effective g-factor. The spin-orbit
coupling, Zeeman, and potentially further Hamiltonians are treated by non-degenerate
perturbation theory and transformed into an effective operator that only depend on
the spin, and is thus called spin Hamiltonian [118, 122]. The Zeeman energy shift in
a magnetic field of an atom in the ground state |Γ, 𝑆⟩ with unperturbed energy 𝐸(0)Γ
becomes:

𝐸Z = 𝐸(1)Z + 𝐸(2)Z

= ⟨Γ, 𝑆|
μB
ℏ 𝑔𝑠�̂�𝒛𝐵𝑧|Γ, 𝑆⟩ + ⟨𝑆|(

μB
ℏ )

2
#»𝑩 ⋅ 𝚲 ⋅ #»𝑩 + 2λ

μB
ℏ

#»𝑩 ⋅ 𝚲 ⋅ �̂� |𝑆⟩,
(3.68)

where the spatial dependency of the orbit appears in the tensor:

𝚲 = − ∑
Γ′≠Γ

⟨Γ|�̂�|Γ′⟩⟨Γ′|�̂�|Γ⟩

𝐸(0)Γ′ − 𝐸(0)Γ

. (3.69)

Neglecting the spin-independent second-order term in Eq. (3.68) which will be discussed
in Section 3.2.4.3, the effective spin Zeeman Hamiltonian is:

�̂�so =
μB
ℏ

#»𝑩 ⋅ 𝒈 ⋅ �̂� , (3.70)

where the tensor g-factor is 𝒈 = 𝑔𝑠𝟏 + 2λ𝚲 , with λ the spin-orbit coupling constant.
Because 𝚲 is negative, the g-factor is reduced and is less than 𝑔𝑠 ≈ 2. The effective
magnetic moment is thus μ = −μB𝒈 ⋅ �̂� / ℏ.
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3.2.3.4 Magnetocrystalline anisotropy

A second consequence of the spin-orbit coupling is the magnetocrystalline anisotropy,
that is to say the difference in free energy energy of a material as a function of the
direction of its magnetization. The collective behaviors of magnetic atoms that lead to
the spontaneous magnetization of a material will be discussed in Section 3.2.4.6. We
typically assume that the magnetization acts as a single macroscopic magnetic moment
with a constant magnitude, which rotates when a magnetic field is applied on the
material. For rare earth atoms, whose magnetic moment is perturbed by a small crystal
field, the anisotropy energy is given by the crystal field energy; for 3d transitionmaterials,
it is given by the spin-orbit coupling.
Up to the second order of perturbation, the energy shift of a given state is:

𝐸so = 𝐸(1)so + 𝐸(2)so = λ⟨Γ, 𝑆|�̂� ⋅ �̂� |Γ, 𝑆⟩ + λ2 ∑
Ψ′≠Ψ

|⟨Ψ|�̂� ⋅ �̂� |Ψ′⟩|2

𝐸Ψ − 𝐸Ψ′
. (3.71)

Its first-order energy vanishes, as the perturbation theory assumes a non-degenerate
orbital ground state so that ⟨�̂�⟩ = 0. We define an arbitrary spin quantization direction 𝑠,
in which the spin-up state is |↑𝑠⟩ = 𝑒𝑖ϕ/2 cos θ|↑𝑧⟩ / 2 + 𝑒−𝑖ϕ/2 sin θ|↓𝑧⟩ / 2. The spin-orbit
couplingmatrix then represent the energy shift of a given orbital state as a function of the
orientation of the spin quantization axis. The direction of magnetization corresponds to
the spin quantization direction:

# »𝑴 =
⟨�̂�𝑺⟩
𝑉 = 𝑀𝑠 (sin θ cosϕ

#»𝒙 + sin θ sinϕ #»𝒚 + cosϕ #»𝒛 ) , (3.72)

where 𝑧 is the orbital quantification axis and the main anisotropy axis.
The second-order spin-orbit coupling perturbation leads to a uniaxial anisotropy.

Higher orders are added as necessary to describe the symmetry of the material, using the
anisotropy constants:

𝐾𝑛 ∝
1
𝑉

λ2𝑛

Δ𝐸2𝑛−1
. (3.73)

The uniaxial anisotropy has an energy density of the form:

𝑈mca = 𝐾1 sin2 θ + 𝐾2 sin4 θ. (3.74)

If the second and fourth-order anisotropy constants 𝐾1 and 𝐾2 are positive, 𝑈mca is
minimized for θ = 0 and 𝑧 is an easy axis, which means that the magnetization will tend
to spontaneously align parallel to this axis. If both constants are negative, 𝑧 is a hard axis
and 𝑥𝑦 an easy plane. A large magnetic field would typically be needed in order to align
the magnetization along 𝑧. A secondary anisotropy axis in the 𝑥𝑦 plane is added with
𝐾′
1 sin

2 θ cos 2ϕ.
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In cubic lattices such as bulk ferromagnetic iron, the lowest contributions are of the
fourth and sixth order:

𝑈mca = 𝐾𝑐
1 sin

2 θ (sin2 θ cos2 ϕ sin2 ϕ + cos2 θ)

+ 𝐾𝑐
2 sin

4 θ cos2 θ sin2 ϕ cos2 ϕ.

(3.75)

Iron has three easy axes along the directions [1 0 0], [0 1 0] and [0 0 1], with 𝐾𝑐
1 = 4.8 ×

104 Jm−3 and 𝐾𝑐
2 = −1.5 × 104 Jm−3 at room temperature, and hard axes along the

directions of type ⟨1 1 1⟩.
The magnetocrystalline anisotropy in FeBO3 has the rhombohedral form [105, chap-

ter 3]:
𝑈mca = 𝐾1 sin2 θ + 𝐾2 sin4 θ + 𝐾′

2 sin
3 θ cos θ cos 3ϕ

+ 𝐾3 sin6 ϕ + 𝐾′
3 sin

6 θ cos(6ϕ) + 𝐾″
3 sin

3 θ cos3 θ cos 3ϕ,

(3.76)

where θ is the polar angle of the sublattice magnetization with respect to the 𝑐 axis,
which is a hard axis, and ϕ is the azimuthal angle with respect to one of the three axes of
symmetry in the basal plane, which are easy axes.
In magnetic problems such as finding the direction of the magnetization in Sec-

tion 2.3.2, we are often only interested in a small region of the sphere, in which the
angle between the magnetization and an anisotropy axis is small. To the first order, the
magnetocrystalline anisotropy can then be approximated as uniaxial: 𝑈mca ≈ 𝐾1 sin2 θ
or, equivalently, 𝑈mca ≈ −𝐾1 cos2 θ = −𝐾1𝑀2

𝑧 / 𝑀2
𝑠 .

3.2.4 Collective behaviors of magnetic atoms

For a long time, two competing families of models tried to describe the origin of ferro-
magnetism in 3d transition metals. On one end of the spectrum, there is the model of
localized ions carrying a magnetic moment, that we have used so far. On the other end,
there is the band model of nearly free conduction electrons whose behavior emerges
from Fermi-Dirac statistics. As described in Section 3.2.3.1, the 3d electrons of Fe, Co
and Ni are at the threshold between both behaviors. To this day, the interplay of the
different mechanisms in iron raises questions [123, 124].
This section introduces the band description of solids, which will enable us to use

both types of models to describe the collective behaviors emerging from the interactions
between atoms or free electrons. We will see the origins of the response of materials to a
magnetic field, giving rise to their classification as described in Section 3.1.4, as well as
the formation of a spontaneous ordering.

3.2.4.1 From orbitals to the band structure

We have seen how the crystal field potential distorts orbitals. When two atoms are
sufficiently close to each other, the potential energy due to both nuclei has the same
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order of magnitude and the orbitals become shared. Orbitals that spatially extend over
an entiremolecule are calledmolecular orbitals. Let us consider again the single-electron
Hamiltonian of Eq. (3.18), but adding a second nucleus at short distance:

�̂� =
�̂�2

𝑚𝑒
− 𝑍𝑒2

4πϵ0|
#»𝒓 − #»𝑹𝐴|

− 𝑍𝑒2

4πϵ0|
#»𝒓 − #»𝑹𝐵|

. (3.77)

As we did when perturbing the orbitals with the crystal field, we can find approximate
eigenstates of the Hamiltonian as linear combinations of atomic orbitals. If φ𝐴 and φ𝐵
are the 1s orbital from the atom 𝐴 and 𝐵 respectively, the molecular orbitals are:

|ψ𝑏⟩ =
|φ𝐴⟩ + |φ𝐵⟩
√2 (1 + 𝒪𝐴𝐵)

; |ψ𝑎⟩ =
|φ𝐴⟩ − |φ𝐵⟩
√2 (1 − 𝒪𝐴𝐵)

, (3.78)

where we defined the overlap integral 𝒪𝐴𝐵 = ⟨φ𝐴|φ𝐵⟩ = ∫φ∗𝐴(
#»𝒓 ) φ𝐵(

#»𝒓 ) d #»𝒓 to renor-
malize the wavefunctions. The bounding orbital |ψ𝑏⟩ is the overlap of two wavefunctions
with the same sign, and shows an increased charge density where they overlap. The
antibounding orbital |ψ𝑎⟩ is composed of two wavefunctions with a different sign, which
interfere destructively and form a so-called node between the atoms where the charge
density vanishes.
The atomic orbitals |φ𝐴⟩ and |φ𝐵⟩ are eigenstates of their respective one-nucleus

Hamiltonian, with the same eigenvalue 𝐸1s = 𝐸𝑝 − 𝑒𝑉0. The energy of the molecular
orbitals is given by the expectation value:

𝐸 = ⟨ψ|�̂� |ψ⟩ =
⟨φ𝐴|�̂� |φ𝐴⟩ ± ⟨φ𝐴|�̂� |φ𝐵⟩

1 ± 𝒪𝐴𝐵
= 𝐸1s +

𝒞𝐴 ± 𝑡𝐴𝐵
1 ± 𝒪𝐴𝐵

. (3.79)

Because φ𝐴 is not an eigenstate of the potential energy of atom 𝐵 and reciprocally, some
terms remain unevaluated. The integral 𝒞𝐴 = ⟨φ𝐴|−𝑒𝑉𝐵|φ𝐴⟩ < 0 represents the potential
energy of the orbital |φ𝐴⟩ in field of the atom 𝐵. It is generally small compared to the
other terms and thus neglected. The hopping integral 𝑡𝐴𝐵 = ⟨φ𝐴|−𝑒𝑉𝐴|φ𝐵⟩ couples the
two atomic orbitals in the potential of the atom 𝐴. Its sign depends on the relative sign
of the orbitals in their overlapping region. In this case, 𝑡𝐴𝐵 < 0 and it represents an
additional attraction due to the increased charge density where the orbitals overlap,
which reduces the energy of |ψ𝑏⟩.
Let us add a third proton to our hypothetical linear molecule. We combine again three

1s atomic orbitals into three molecular orbitals. Neglecting the overlap renormalization:

|ψ𝑏⟩ = (|φ𝐴⟩ + √2|φ𝐵⟩ + |φ𝐶⟩) / 2,

|ψ𝑛⟩ = (|φ𝐴⟩ − |φ𝐶⟩) / √2,

|ψ𝑎⟩ = (−|φ𝐴⟩ + √2|φ𝐵⟩ + −|φ𝐶⟩) / 2.

(3.80)

The |ψ𝑏⟩ and |ψ𝑎⟩ orbitals are fully bounding and antibounding, respectively, and have
by the same arguments as above the lowest and the highest energies. The charge density
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of |ψ𝑏⟩ extends uninterrupted over the three atoms, while |ψ𝑎⟩ exhibits two nodes. The
orbital |ψ𝑛⟩ is non-bounding, as it has no charge density on the middle atom. Since all
integrals are zero, its energy is the same as that from an atomic orbital.
We can generalize this process to form a basis of 𝑁 + 1 molecular orbitals extending

along a 1D chain of 𝑁 + 1 identical atoms. Their energy increases with the number
𝑛 of nodes they form along the axis of the molecule, ranging from 𝑛 = 0 to 𝑁. As
previously, the fully bounding and antibounding orbitals are |ψ𝑏⟩ = ∑𝑗|φ𝑗⟩ and |ψ

𝑎⟩ =
∑𝑗 cos 𝑗π|φ𝑗⟩, respectively. A reasonable choice to construct the rest of the basis is to
distribute the nodes of each molecular orbital evenly along the chain. We thus define
|ψ𝑛⟩ = ∑𝑗 cos(𝑗π𝑛 / 𝑁)|φ𝑗⟩, in which the coefficient changes sign every 𝑁 / 𝑛 atoms. If
the distance between adjacent atoms is the constant 𝑎, we can express the coefficient
as a function of the atomic position 𝑧 = 𝑎𝑗, and the spacing of the nodes becomes
characterized by a wavevector 𝑘 = π𝑛 / 𝑁𝑎. The molecular orbitals have become Bloch
wavefunctions: the product of a plane wave with a periodic function.
As the number of atoms in the chain increases, so does the number of molecular

orbitals. In an infinite lattice, 𝑘 becomes a continuous function and the molecular
orbitals form a band. In three dimensions, 𝑘 can also take an arbitrary direction. The
Bloch wavefunctions found by this tight-binding approach are defined as:

ψ𝑚, #»𝒌 (
#»𝒓 ) = 1

√2
∑
#»𝑹
𝑒𝑖

#»𝒌 ⋅ #»𝑹 φ𝑚(
#»𝒓 − #»𝑹 ), (3.81)

where the lattice vector #»𝑹 is the position of the nuclei and𝑚 indexes the atomic orbitals.
Neglecting the overlap and the Coulomb integral, the energy is:

𝐸𝑚(
#»

𝒌 ) = 𝐸𝑚 +∑
#»𝑹
∑
𝑛
𝑒𝑖

#»𝒌 ⋅ #»𝑹 𝑡𝑚𝑛(
#»𝑹 ) (3.82a)

≈ 𝐸𝑚 + 2𝑒𝑖𝑘𝑎 𝑡( #»𝑹 ), (3.82b)

where in the second line we considered only first neighbor in the relevant direction
(𝑅 = ±𝑎) and a single type of orbitals (𝑚 = 𝑛). The first term is the atomic energy of φ𝑚.
The second is the sum of the hopping integrals between the𝑚 orbital of an atom and any
orbital 𝑛 on another atom, which generally vanishes after the first few neighbors. The
value 𝑘 = π / 2𝑎 marks the limit between bounding and antibounding orbitals, where
the band energy is equal to the atomic energy. Bounding orbitals are thus energetically
favored, which is referred to as the kinetic energy gain.
So far, we have only considered spherically symmetrical s orbitals. With different types,

we have to take into account that the sign of the wavefunction depends on the direction.
For example, 𝑚 = p𝑧 orbitals have a positive and a negative lobe. At 𝑘 = 0, the positive
lobe of one orbital overlaps with the negative lobe of its immediate neighbor along the 𝑧
axis, but with the positive love of its neighbors along the 𝑥 and 𝑦 axes. The charge density
of the |ψp𝑧,0⟩ orbital is thus distributed into sheets of approximately constant charge,
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separated by nodal planes. The sign of the hopping integral and thus the dispersion curve
of the p𝑧 band depends on the direction. For

#»

𝒌 = π / 2 #»𝒛 , the orbitals are bounding with
all neighbors. The energy is thus at its lowest point. For

#»

𝒌 = π/2 #»𝒙 +π/2 #»𝒚 , the orbitals
are anti-bounding in all directions, and the energy of the band reaches its maximum.

3.2.4.2 Electron conduction

We have seen the formation of the band structure as one orbital becomes delocalized
throughout the material. Whether that process happens for a particular orbital depends
on its overlap with the neighboring atoms. The lower shells are filled and shielded by
the outer electrons, and thus form a non-interacting core of localized orbitals. The outer
shells then delocalize. If all atoms in the lattice are the same, there will be the same
amount of electrons per atom as previously. However, where the subshells had before
well-separated energies, the bands now generally overlap. Electrons will occupy the
orbitals with the lowest energy, which as we have seen might have a large 𝑘. The Fermi
level, or chemical potential μ, marks the limit between occupied and empty states. To a
first approximation, a material is conductive if the Fermi level falls within a band, as it
allows a small electric field to polarize the movement of the electrons.
The Blochwaves |ψ𝑚, #»𝒌 ⟩ are not eigenstates of themomentumoperator and the relation

#»𝒑 = ℏ
#»

𝒌 for free electrons is not valid. Instead, electrons in a lattice must be treated as
waves, with a group velocity #»𝒗𝑚(

#»

𝒌 ) = 𝜕𝐸𝑚(
#»

𝒌 )/𝜕
#»

𝒌 . It is proportional to the hopping
integral, which explains its name. In the absence of electric field, the electrons near the
Fermi levelmove at a Fermi velocity of ∼106ms−1 in randomdirections, by hopping from
atom to atom, and there is no net current. As they scatter elastically on quasi-particles
or impurities after a mean free path in the order of a few tens of nanometers, they move
to a free orbital of similar energy with a different wavevector. The application of an
electric field #»𝑬 = − #»𝛁𝑉 changes the chemical potential by −𝑒𝑉. This spatial dependency
skews slightly the energy of the bands, so that scattering electrons relax preferentially
into states with

#»

𝒌 ∥ − #»𝑬 . The net velocity of the charge distribution #»𝒗𝒅 is then only in
the order of micrometers per second. It is related to the conductivity of the medium by
σ = 𝑒 #»𝒗𝒅 /

#»𝑬 𝑉, giving a current density
#»

𝒋 = σ #»𝑬 = −𝑒 #»𝒗𝒅 / 𝑉.
The current density can also be expressed as a function of the gradient of the chemical

potential:
#»

𝒋 = σ #»𝛁μ / 𝑒. In addition to electric fields, which change the energy of
the bands, a chemical potential gradient can be caused by a change in the distribution
of electrons, such as induced by a temperature gradient [125] or a localized excess of
electrons.
In Chapter 4, we will be interested in the transport of spin by the conduction elec-

trons. This occurs when the Fermi velocity or mean free path of the electrons are
spin-dependent, so that there is a net angular momentum carried by the current.
Band usually have a parabolic shape near the 𝑘 = 0 point or other high-symmetry

points of the Brillouin zone, which is reminiscent of the dispersion of free electrons and
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allows conduction electrons to be approximated as such with a reduced effective mass.
They carry their spin through the material, until they undergo spin-flip scattering. Their
behavior is thus best described by statistical methods. In the absence of spontaneous
organization of the magnetic moments, their paramagnetic and diamagnetic properties
dominate the response of metallic materials to a magnetic field.

3.2.4.3 Susceptibility of materials

We start our exploration of the collective behavior of magnetic moments with the
origins of the magnetic susceptibility. Paramagnetism and diamagnetism describe the
appearance of a net magnetization in a material subject to a magnetic field, respectively
due to a small positive or negative susceptibility. The material may be initially non-
magnetic due either to the absence of magnetic moments or to their random orientation.
We will first consider the effect of a magnetic field on conducting materials, modeled

as consisting of free, non-interacting electrons. Then we will see the analogous effects on
ions, leading to the appearance of the Curie law, which will be used in the next section
to model the appearance of ferromagnetism.

Pauli paramagnetism

The Hamiltonian of a free electron in a magnetic field is:

�̂� =
(�̂� + 𝑒�̂�)

2

2𝑚𝑒
− �̂�𝒔 ⋅ �̂� , (3.83)

where �̂� = −𝑖ℏ�̂� is themomentumoperator and �̂� is the vector potential of themagnetic
field �̂� = �̂� ∧ �̂� . Since free electrons have no fixed orbit, only their spin contributes
to their magnetic moment. In addition to 𝑚𝑠, they are otherwise characterized only by
their momentum ℏ

#»

𝒌 , which in this case is the eigenvalue of �̂� .
In momentum space, electrons with the same kinetic energy 𝐸 = ℏ2|

#»

𝒌 |2 / (2𝑚𝑒) are
distributed on a sphere of radius |

#»

𝒌 |. The density of states (DOS) 𝑔(𝐸) = d𝑛(𝐸)/d𝐸, with
𝑛(𝐸) the volumic density of electrons, characterizes the amount of states of this sphere.
While, as we saw in Section 3.2.4.1, the amount of allowed values of

#»

𝒌 increases with the
volume of the material, its density is a constant of the latter. As illustrated in Fig. 3.10,
𝑔(𝐸) grows with the circumference of the sphere, so that 𝑔(𝐸) ∝ √𝐸.
At zero temperature, the Fermi energy 𝐸Fmarks the sharp limit between occupied and

empty states. At finite temperatures, the limit is characterized by the chemical potential
μ. The probability for a state of energy 𝐸 to be occupied is given by Fermi-Dirac statistics:

𝑓(𝐸) = 1

1 + exp (𝐸−μ
𝑘B𝑇

)
, (3.84)

where by definition 𝑓(μ) = 1 / 2. The ratio μ / 𝑘B𝑇 ≈ 𝐸F / 𝑘B𝑇 determines how much the
distribution deviates from its zero-temperature value. As the Fermi temperature 𝐸F / 𝑘B

91



3 Theory of magnetism

𝐸

𝑔(𝐸, ↓) 𝑔(𝐸, ↑)

𝑔(𝐸) ∝ √𝐸

spin flip

𝐸F

+𝜇B𝐵

−𝜇B𝐵

↑↓
𝑇 > 0K

𝑇 = 0K

Figure 3.10: Parabolic density of states of free electrons in a magnetic field, shifted by
the Zeeman effect. The colored surfaces represent the occupied states. The
electrons occupy all states of energy 𝐸 < 𝐸F at 𝑇 = 0K (dashed line), while
some states with higher energy are occupied at 𝑇 > 0K (full line).

is in the order of tens of thousands of Kelvin, we can generally neglect the effects of the
temperature on the DOS. The use of a Fermi-Dirac distribution, rather than a classical
Boltzmann distribution, thus leads to temperature independence.
When a magnetic field with induction �̂� is applied, the energy levels of the electrons

are shifted by±μB𝐵𝑧 due to the Zeeman effect. The DOS becomes asymmetric in spin [99,
chapter 5]:

𝑔(𝐸, ↑↓) = 1
2 𝑔(𝐸 ± μB𝐵) ≈

1
2 (𝑔(𝐸) ± μB𝐵𝑧

d 𝑔(𝐸)
d𝐸 ) . (3.85)

The spin up electrons, which have𝑚𝑠 = −1 / 2 and thus their magnetic moment aligned
along the field, have a lower energy than the spin down electrons of the samemomentum.
When themagnetic field turns on, some spin down electrons see their energy raised above
the Fermi level, while unoccupied spin up states are lowered under it. To reach thermal
equilibrium again, the spin down electrons flip their spin, creating a net positive moment
in the material.
Each flipped electron adds μB to the net moment. The induced magnetization is thus

given by the difference in electronic density between both directions of spin:

𝑀 = μB ∫
𝐸F

0
(𝑔(𝐸, ↑) − 𝑔(𝐸, ↓)) d𝐸

= μ2B𝐵𝑧 𝑔(𝐸F).

(3.86)
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Remembering that𝑀 = χ𝐻, we obtain the Pauli susceptibility of free electrons:

χP = μ0μ2B 𝑔(𝐸F) = μ0μ2B
3𝑛
2𝐸F

. (3.87)

This expression can be adapted for real materials by correcting the DOS. Since only
the electrons near the Fermi level participate, χP is typically small – for most metals, in
the order of 10−5. It is the strongest for localized bands with little dispersion, as their
occupation is the most sensitive to a shift in the band energy.

Landau diamagnetism

In addition to Pauli paramagnetism, spinless free electrons also exhibit a small diamag-
netic response [126]. Classically, a magnetic field curves the trajectory of an electron
according to the Lorentz equation, Eq. (3.1). This results in the formation of a small
orbital magnetic moment.
We concentrate on the first term of the Hamiltonian in Eq. (3.83). The vector potential

�̂� does not have a unique description; we can choose �̂� = �̂� ∧ �̂� / 2, which for #»𝑩 along 𝑧
is �̂� = 𝐵 / 2[−�̂�, �̂� , 0]. The Hamiltonian becomes:

�̂� = 1
2𝑚𝑒

((�̂�𝑥 −
𝑒𝐵
2 �̂�)

2
+ (�̂�𝑦 −

𝑒𝐵
2 �̂�)

2
+ �̂�2𝑧)

=
𝑚𝑒ω𝑐
4 ((�̂�𝟎 − �̂�)

2
+ (�̂�𝟎 − �̂�)

2
) + 1

2𝑚𝑒
�̂�2𝑧 ,

(3.88)

where we defined the operators �̂�𝟎 = 2�̂�𝑦 / (𝑒𝐵), �̂�𝟎 = 2�̂�𝑥 / (𝑒𝐵), and the cyclotron
frequency:

ω𝑐 =
𝑒𝐵
𝑚𝑒

. (3.89)

This Hamiltonian describes an unmodified momentum along 𝑧 and two harmonic
oscillators along 𝑥 and 𝑦, which oscillate at the cyclotron frequency, and whose potential
minima are given by �̂�𝟎 and �̂�𝟎 (which do not commute). The presence of the magnetic
field confines the trajectory of the electron in the 𝑥𝑦 plane into cyclotron orbits.
The harmonic oscillator part of the Hamiltonian has the eigenvalues 𝐸𝑙 = ℏω𝑐(𝑙+1/2):

the electron orbits with a discrete number of allowed energy levels called Landau levels,
characterized by the quantum number 𝑙 ≥ 0. As the angular frequency is constant, 𝑙
corresponds to an increase in the radius of the orbit. The free electron thus gains an
orbital angular momentum ℏ𝑙. In momentum space, the allowed states lie on concentric
cylinders centered on the 𝑘𝑧 axis, inside the Fermi sphere (see Fig. 3.11a). Instead of a
purely parabolic DOS, it forms an energy comb with peaks at 𝐸𝑙 and a decreasing tail
above them due to the remaining momentum. The Fermi level shifts to accommodate
the same number of electrons.
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𝐸
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Figure 3.11: a) Landau levels inmomentumspace formed by electronswith amomentum
quantized in the 𝑥𝑦 plane. b) Modified DOS (represented only for electrons
with spin up).

Following the approach of Blundell [127, chapter 7.6], we then calculate the magneti-
zation resulting from the orbital moment of the electrons:

𝑀 = −(
dϕ
d𝐵)𝑇

, (3.90)

where ϕ = 𝑈 − 𝑇𝑆 − 𝐵𝑀 is the Gibbs free energy density of the system. We assume that
𝑇 = 0K and the internal energy 𝑈 = 0 as the electrons are non-interacting [128], so that
ϕ = −𝐵𝑀 is the energy added to the system by the magnetic field [127]:

ϕ = ∫
𝐸𝐹

0
𝑔(𝐸) 𝐸 d𝐸 − ∫

𝐸𝐹0

0
𝑔0(𝐸) 𝐸 d𝐸 = 𝑘F𝑒2𝐵2

24π2𝑚𝑒
. (3.91)

We then obtain the susceptibility:

χLd = μ0
d2ϕ
d𝐵2 = −13μ0 (

𝑒ℏ
2𝑚𝑒

)
2
(
𝑚𝑒𝑘F
π2ℏ2 )

= −13 χP.

(3.92)

For a free electrons gas, the contribution of the Landau diamagnetism is exactly a
third of the one of Pauli paramagnetism. The resulting total susceptibility of the gas is
2χP / 3. Because of this, metals, except those dominated by exchange interactions, are
paramagnetic. In other solids however, the contribution of the Landau diamagnetism
may dominate when the effective mass 𝑚∗ of the free electrons is small, as the Landau
susceptibility becomes:

χLd = −13 (
𝑚𝑒
𝑚∗ )

2
χP. (3.93)
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This is for example the case for graphite, in which 𝑚∗ ≈ 0.01𝑚𝑒 for electrons moving
perpendicularly to the basal plane, resulting in a large diamagnetic susceptibility of
χ = −6 × 10−4 at room temperature [129].

Langevin diamagnetism

The same phenomena of paramagnetism and diamagnetism also occur in bound elec-
trons. The semi-classical Langevin theories were their first successful descriptions [130].
All bound electrons exhibit a diamagnetic behavior, but its contribution is small and only
relevant for closed shells that have no net magnetic moment.
Similarly to the Landau diamagnetism, the Langevin diamagnetism is caused by the

(𝑒�̂�)
2
/ 2𝑚𝑒 component of the Hamiltonian, shown in Eq. (3.83). The electrons being

bound, they do not describe cyclotron orbits; the field results in a small perturbation of
their atomic orbitals. We express the vector potential as an additional angularmomentum
�̂�𝒑 = �̂� ∧ 𝑒�̂� = �̂� ∧ �̂� ∧ �̂�𝑒 / 2, whose 𝑧 component is �̂�𝒑𝑧 = (�̂�2 + �̂�2) 𝑒𝐵 / 2.
In a classical description, the Langevin diamagnetism is caused by the Larmor preces-

sion of the orbital angular momentum of individual electrons. We have seen an example
of Larmor precession in Section 2.3.2, as the precession of the magnetization of FeBO3.
When the magnetic moment of an electron is subjected to the field #»𝑩 , it experiences a
torque given by Eq. (3.2):

#»𝛕 =
d #»𝑳
d𝑡 = γ #»𝑳 ∧ #»𝑩 , (3.94)

where #»𝑳 = [⟨�̂�𝒙⟩, ⟨�̂�𝒚⟩, ⟨�̂�𝒛⟩] is the classical angular momentum. The solution of
Eq. (3.94) is a precession around the magnetic field: #»𝑳 = [𝑅 cos(ωL𝑡), 𝑅 sin(ωL𝑡), ⟨�̂�𝒛⟩],
where ωL = −γ𝑙𝐵 = ω𝑐 / 2 is the Larmor frequency and 𝑅 = 𝑥+𝑦 is the distance between

Electron

#»𝝁 𝒍

#»𝑳

𝑟

𝑅
Nucleus

#»𝑳𝒑

#»𝝁𝒑
#»𝑩

Figure 3.12: Larmor precession of the orbital angular momentum of an electron in a
magnetic field, creating an additional magnetic moment #»𝛍𝒑.
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the electron and the nucleus projected in the plane normal to the field. As shown in
Fig. 3.12, the in-plane components of the additional angular momentum average to zero,
and we obtain #»𝑳𝒑 = 𝑒 #»𝑩 ⟨𝑅2⟩ / 2 = 𝑚𝑒ωL⟨𝑅2⟩ #»𝒛 . The resulting magnetic moment is thus
opposed to the field:

#»𝛍𝒑 = γ #»𝑳𝒑 = −𝑒
2⟨𝑅2⟩
4𝑚𝑒

#»𝑩 . (3.95)

Assuming the orbits of all 𝑍 electrons in an atom to be spherically symmetric so that
⟨𝑅2⟩ = 2⟨𝑟2⟩ / 3, where 𝑟 is the radius of the orbit, the total additional magnetic moment
of the atom is:

#»𝛍𝑷 =
𝑍
∑
𝑖=1

#»𝛍𝒑𝑖
= −𝑒

2𝑍⟨𝑟2⟩
6𝑚𝑒

#»𝑩 . (3.96)

Multiplied by the atomic density 𝑛, this gives the magnetization of the material. The
diamagnetic susceptibility is thus [99, chapter 3]:

χLg = −𝑒
2𝑍𝑛⟨𝑟2⟩
6𝑚𝑒

. (3.97)

This contribution exists in all materials but is very small: for example, χLg = −9 × 10−6

for water and −2 × 10−10 for H2.

Langevin or Brillouin paramagnetism

The Langevin model of paramagnetism was among the earliest successes of statistical
mechanics. The Brillouin model is the quantum formulation of the same phenomenon,
which we will use here. It is the temperature-dependent paramagnetic susceptibil-
ity at the origin of Curie’s law (introduced in Section 3.1.4). Contrarily to Langevin
diamagnetism, this component applies only to atoms that exhibit a magnetic moment.
As shown in Section 3.2.1.4, the Zeeman energy of the atom subjected to a magnetic

field is �̂�Z = −�̂�𝑱 ⋅ �̂� = μB𝑔𝑗𝑀𝐽𝐵𝑧. At 𝑇 = 0K, the atom adopts the state with the lowest
energy. But at finite temperature, the thermal energy partially counters this alignment.
Contrarily to electrons, the ions follow Boltzmann statistics. The expectation value of
the moment is found using the thermodynamic average over all states [96, chapter 4]:

⟨�̂�𝒛⟩ =
∑𝑖 �̂�𝒛𝑖 exp (−

𝑯Z𝑖
𝑘B𝑇

)

∑𝑖 exp (−
𝑯Z𝑖
𝑘B𝑇

)
= μB𝑔𝑗𝐽ℬ𝐽(𝑟), (3.98)

where:
ℬ𝐽(𝑟) =

2𝐽 + 1
2𝐽 coth (𝑟2𝐽 + 1

2𝐽 ) − 1
2𝐽 coth (𝑟

1
2𝐽) (3.99)

is the Brillouin function and 𝑟 = μB𝑔𝑗𝐽𝐵𝑧 / (𝑘B𝑇) is the ratio of the magnetic and thermal
energy. The Brillouin function represents the average alignment of the magnetic mo-
ments on the field: 𝐽ℬ𝐽(𝑟) = ⟨𝑀𝐽⟩. If the field is small, 𝑟 ≪ 1 and ℬ𝐽(𝑟) ≈ 𝑟 (𝐽 + 1) / 3𝐽.
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The thermal average of the atomic magnetic moment is thus:

⟨ #»𝛍𝑧⟩ ≈
μ2B𝑔2𝑗 𝐵𝑧𝐽 (𝐽 + 1)

3𝑘B𝑇
. (3.100)

Consequently, the susceptibility of the material with atomic density 𝑛 is:

χB =
μ0μ2B𝑔2𝑗 𝑛𝐽 (𝐽 + 1)

3𝑘B𝑇
= 𝐶
𝑇 , (3.101)

where 𝐶 is the Curie constant. Curie’s law was first observed in oxygen, for which he
measured 𝐶 = 118K and χB = 4 × 10−7 [131].

Van Vleck paramagnetism

Since the energy of the diamagnetic moment in the field �̂�𝒑
#»𝑩 is of the second order in

#»𝑩 , the paramagnetic moment should also be considered up to the same order. We thus
finally examine the second-order Zeeman perturbation that we neglected in Eq. (3.68).
The mixing of the ground term Γ and excited terms Γ′ induced by the magnetic field
leads to an energy correction [96, chapter 4]:

𝐸(2)Z = ∑
Γ′≠Γ

|⟨Γ|�̂�𝒋 ⋅
#»𝑩 |Γ′⟩|2

𝐸(0)Γ′ − 𝐸(0)Γ

. (3.102)

The resulting susceptibility is:

χV =
2𝑛μ0𝐸

(2)
Z

𝐵2 = 2𝑛μ0γ2𝑗 ∑
Γ′≠Γ

|⟨Γ|�̂�𝒋𝑧|Γ
′⟩|2

𝐸(0)Γ′ − 𝐸(0)Γ

, (3.103)

and has the same order of magnitude as the diamagnetic component. When the crystal
field splitting is small (|𝐸(0)Γ′ − 𝐸(0)Γ | = Δ𝐸 ≪ 𝑘B𝑇), the second-order contribution is
negligible and the susceptibility follow Curie’s law. This is the case for paramagnetic
gases such as O2 and NO2, and rare earth elements. When the separation between
all levels is large, the material can only magnetize via this mixing process and the
susceptibility is fully temperature-independent [132].

We have now reviewed the different phenomena that contribute to produce a net
magnetic moment in paramagnetic or diamagnetic materials subject to a magnetic field.
One effect remains unexplained: the existence of a spontaneous magnetization in some
materials.

3.2.4.4 The molecular field model of ferromagnetism

So far, we have assumed that the orientation of the magnetic moments of atoms are
independent from each other and randomly aligned in the absence of a magnetic field.
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This is however not always the case, as shown by the existence of a spontaneousmagnetic
order in some materials: ferromagnetic, antiferromagnetic or ferrimagnetic.
This spontaneous magnetization was first explained by postulating the existence of

an internal magnetic field proportional to the magnetization: the Weiss molecular field
#»𝑯W = 𝑛W

# »𝑴 . Contrarily to the actual dipolar field described in Section 3.1.3 that opposes
the magnetization, this hypothetical field ensures that the parallel alignment of the
magnetic moments is energetically favorable. To result in a spontaneous magnetization
of the wholematerial, theWeiss coefficient 𝑛W needs to be as large as∼100. Although the
molecular field does not exist, such a mean-field theory remains a useful approximation
of the many-body problem of interacting magnetic moments, allowing to extend the
Brillouin model of paramagnetism to magnetically ordered materials.
In the absence of external magnetic field, the material is subject to the molecular field

#»𝑩 = μ0𝑛W
# »𝑴 . According to Eq. (3.98), the resulting magnetization is 𝑀 = 𝑀0ℬ𝐽(𝑟),

where𝑀0 = μB𝑔𝑗𝑛𝐽 is the maximum magnetization, corresponding to all magnetic mo-
ments being fully aligned on the field (𝑀𝐽 = −𝐽). At finite temperature, the spontaneous
magnetization is thus given by:

𝑀
𝑀0

= ℬ𝐽(𝑟), (3.104)

where as before 𝑟 = μB𝑔𝑗𝐽𝑛W𝑀 / (𝑘B𝑇). Since ℬ𝐽(𝑟) ∝ 𝑟, we also have:

𝑀
𝑀0

=
ℬ𝐽(𝑟)
ℬ𝐽(𝑟0)

= 𝑟
𝑟0
= 𝑟𝑇 (𝐽 + 1)

3𝐶𝐽𝑛W
, (3.105)

where we inserted the Curie constant defined in Eq. (3.101). Given that the molecular
field needs to be larger than the thermal fluctuations in order to magnetize the material,
the approximation 𝑟 ≪ 1 is not valid and ℬ𝐽(𝑟) is given by Eq. (3.99). Under a critical
temperature𝑇C = 𝑛W𝐶, there exists a value of 𝑟 that satisfies bothEqs. (3.104) and (3.105),
from which we obtain the spontaneous magnetization as shown on Fig. 3.13. 𝑇C is the
Curie temperaturementioned in Section 3.1.4, which is the highest temperature at which
a material is ferromagnetic. It is for example 1043K for iron, associated with a molecular
field of μ0𝐻W = 1553T [133, chapter 11]. For 0 < 𝑇 < 𝑇C, the net magnetization in the
material is lowered by thermal fluctuations, which slightly deviate each atomic spin from
its equilibrium position, creating a random background of thermal spin waves. Above
𝑇C, the thermal energy randomizes the spins and the material becomes paramagnetic.
Its susceptibility then follows the Curie–Weiss law:

χCW = 𝐶
(𝑇 − 𝑇C)

. (3.106)

One of the challenges of models attempting to explain the origin of ferromagnetism,
notably in 3d transition metals, is to reproduce their measured Curie temperature.
The Heisenberg model of interacting localized ions, which we will introduce in Sec-
tion 3.2.4.6, is successful on this point. However, it fails to reproduce the non-integer
magnetic moment of those materials. This in turn is well-reproduced by the Stoner
model of nearly free electrons.
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Figure 3.13: Spontaneous magnetization created by the molecular field for 𝐽 = 1, 𝑔𝑗 = 2
and 𝑛W = 100 in the absence of external magnetic field. The magnetization
is defined by the crossing of the two curves.

3.2.4.5 The Stoner model of ferromagnetism

To describe the ferromagnetism of conduction electrons, the same self-consistent ap-
proach as above is applied using the Pauli paramagnetism model. The bands are split
as shown in Fig. 3.10 by the molecular field 𝑛W𝑀. The Weiss coefficient is given by [96,
chapter 5]:

𝑛W = 𝐼𝐷(𝐸F, ↑↓)
χP

= 𝐼
2𝑛μ0μ2B

, (3.107)

where 𝐷(𝐸F, ↑↓) = 𝑔(𝐸F) / 2𝑛 is the DOS per atom and per spin at the Fermi energy.
In the Stoner model, the origin of the band splitting is the Coulomb repulsion between

electrons of the opposite spin, of energy 𝐼 ≈ 1 eV. The DOS of the free electrons is
assumed to be sufficiently low for the repulsion between electrons of the same spin to be
comparatively negligible, due to the Pauli exclusion principle. The Coulomb interaction
increases the energy of each band according to the number 𝑁 of electrons having the
opposite spin: 𝐸𝑚(𝑘, ↑) = 𝐸(0)𝑚 (𝑘) + 𝐼𝑁↓. The corresponding potential energy of the
material is 𝐼𝑁↑𝑁↓.
With the magnetization given by𝑀 = μB (𝑛↑ − 𝑛↓), a splitting of the bands by:

δ𝐸 = 2μ0μB𝑛W𝑀 = 𝐼
(𝑛↑ − 𝑛↓)

𝑛 (3.108)

causes the flip of δ𝑁 = 𝐷(𝐸F, ↑↓)δ𝐸 electrons, lowering the potential energy by 𝐼 (δ𝑁)
2.

At the same time, the flipped electrons have moved into states with a higher band energy
𝐸(0)𝑚 (𝑘), which for bands with free electron-like dispersion corresponds to states with a
larger 𝑘. The corresponding kinetic energy increase of the material is δ𝑁δ𝐸. The total
energy change is thus:

Δ𝐸 = δ𝑁δ𝐸 − 𝐼 (δ𝑁)2

= 𝐷(𝐸F, ↑↓) (δ𝐸)
2 (1 − 𝐼𝐷(𝐸F, ↑↓)) .

(3.109)
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We need Δ𝐸 < 0 for the splitting of the bands to be favorable. This leads to Stoner’s
criterion for the existence of ferromagnetism in a material:

𝐼 𝐷(𝐸F, ↑↓) > 1. (3.110)

Materials with a large DOS, that is to say narrow flat bands in which electrons have a
small velocity, thus favor ferromagnetism. Among the 3d transition elements, only Fe, Co
and Ni satisfy this criterion. Their spontaneous magnetic moments at room temperature
are respectively 2.216μB, 1.715μB and 0.616μB per atom.
We saw that in thesematerials, the orbital angularmomentum is nearly fully quenched.

The contribution of each electron to themagnetic moment of the atom is thus±μB due to
its spin alone. In localizedmodels, the number of electrons in the incomplete subshells of
each atom is well defined, so that their magnetic moment and thus the saturatedmoment
of a material is expected to be an integer multiple of the Bohr magneton. This is however
far from the case. In a band model, the 3d, 4s and 4p bands generally overlap, so that
their average occupation per atom is not integral. Ferrimagnetic iron has for example 7.4
electrons per atom in the 3d bands, leading to its non-integer magnetic moment.
On one hand, an itinerant model of ferromagnetism is then necessary to predict the

magnetic moment of transition metals. On the other hand, the Stoner model is unable to
reproduce the Curie–Weiss law describing their temperature dependence. Its predicted
susceptibility is χ = χP/(1 − 𝐼𝐷(𝐸F, ↑↓)), and is increased by the presence of the Coulomb
repulsion 𝐼 compared to a purely paramagnetic metal. The Curie temperature is defined
as the temperature at which 𝐼 𝐷(𝐸F, ↑↓) = 1 and the susceptibility diverges. The DOS and
the Fermi level being only weakly temperature-dependent, the Stoner model predicts
Curie temperatures almost an order of magnitude too large: for example, depending
on the model used to calculate the band structure, 5300K [134] or 2560K [135] for Fe,
whose experimental Curie temperature is 1034K.
An accurate description of those materials needs elements from both theories. The

reason for this is the energy-dependency of the localization of 3d electrons. We have
shown in Section 3.2.3.1 the localized nature of the charge density of atomic 3d orbitals,
and the presence of a small centrifugal barrier. Because of the latter, the radial part
of the wavefunction for 𝑙 = 3 is very sensitive to the energy of the electrons. When
considering wavefunctions that are Bloch-like between atoms but strongly influenced
by the nucleus at short distances, this sensitivity is carried over to the metallic state.
Low-energy electrons are able to spread out and delocalize, while the wavefunction of
high-energy electrons at the top of the 3d band is slightly more localized than the one of a
free atom [136]. This results in the large difference in the structure of eg and t2g bands in
iron, the former being narrow andweakly dispersive and the latter broad and delocalized.
Because of this, different types of exchange interactions and correlations effects, such as
the spatial separation of electrons of the same spin due to the Pauli exclusion principle,
or the Coulomb repulsion between opposite spins characterized by the Stoner constant
𝐼, are at the origin of the magnetic order.
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3.2.4.6 Exchange interactions

The real phenomena modeled by the molecular field are ultimately Coulomb repulsion
and the Pauli principle. The ordering of the magnetic moments in ferromagnetic ma-
terials stems from the exchange interactions between atoms or electrons, whose spins
appear to interact with each other. In Section 3.2.2.2, we have derived the intra-atomic
Heisenberg exchange Hamiltonian, from which Hund’s first rule originates. Although
the Heisenberg model originally describes only direct inter-atomic exchange between
atoms with overlapping orbitals, it can be used to model other isotropic exchange inter-
actions. It can also represent the coupling between themagnetization vectors of different
domains or AFM sublattices, which we will use in Section 3.3.3 to model the dynamics
of FeBO3.

Direct exchange

Let us consider two electrons in a H2 molecule, sharing the bounding orbital |ψ𝑏⟩ =
|φ𝐴⟩ + |φ𝐵⟩ constructed from the 1s subshells. Neglecting any interaction between them,
the naive wavefunction of the molecule is:

|Ψ⟩ = |ψ𝑏⟩|ψ𝑏⟩ = |φ𝐴⟩|φ𝐴⟩ + |φ𝐴⟩|φ𝐵⟩ + |φ𝐵⟩|φ𝐴⟩ + |φ𝐵⟩|φ𝐵⟩. (3.111)

As before, the Coulomb potential part of the Hamiltonian contains the interactions of
each electron with the nucleus 𝐴, 𝐵, and each other. In order to express the energy as a
function of the hopping integral 𝑡 = ⟨φ𝐴|�̂�𝑨|φ𝐵⟩ = ⟨φ𝐵|�̂�𝑩|φ𝐴⟩, it is helpful to separate
the operators that act separately on each electron:

�̂� = (�̂�𝑨 + �̂�𝑩) ⊗ �̂� + �̂� ⊗ (�̂�𝑨 + �̂�𝑩) + �̂�C . (3.112)

We can thus evaluate ⟨Ψ|�̂� |Ψ⟩:

⟨φ𝐴φ𝐴|�̂� |φ𝐴φ𝐴⟩ =

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

⟨φ𝐴|�̂�𝑨|φ𝐴⟩ ⊗ ⟨φ𝐴|φ𝐴⟩

+ ⟨φ𝐴|�̂�𝑩|φ𝐴⟩ ⊗ ⟨φ𝐴|φ𝐴⟩

+ ⟨φ𝐴|φ𝐴⟩ ⊗ ⟨φ𝐴|�̂�𝑨|φ𝐴⟩

+ ⟨φ𝐴|φ𝐴⟩ ⊗ ⟨φ𝐴|�̂�𝑩|φ𝐴⟩

+ ⟨φ𝐴φ𝐴|�̂�C|φ𝐴φ𝐴⟩

=

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝐸1s
+ 𝒞CF
+ 𝐸1s
+ 𝒞CF
+𝒰

(3.113a)

⟨φ𝐴φ𝐵|�̂� |φ𝐵φ𝐵⟩ =

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

⟨φ𝐴|�̂�𝑨|φ𝐵⟩ ⊗ ⟨φ𝐵|φ𝐵⟩

+ ⟨φ𝐴|�̂�𝑩|φ𝐵⟩ ⊗ ⟨φ𝐵|φ𝐵⟩

+ ⟨φ𝐴|φ𝐵⟩ ⊗ ⟨φ𝐵|�̂�𝑨|φ𝐵⟩

+ ⟨φ𝐴|φ𝐵⟩ ⊗ ⟨φ𝐵|�̂�𝑩|φ𝐵⟩

+ ⟨φ𝐴φ𝐵|�̂�C|φ𝐵φ𝐵⟩

=

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝑡0
+ 0

+ 0

+ 0

+ 𝒞𝑡

(3.113b)
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where𝒰 is the on-site Coulomb repulsion, 𝒞CF is analogous to the crystal field potential,
and 𝒞𝑡 couples the electrons during a hop. We also define the exchange integral 𝒥𝑑 =
⟨φ𝐴φ𝐵|�̂�C|φ𝐵φ𝐴⟩ = ⟨φ𝐴φ𝐴|�̂�C|φ𝐵φ𝐵⟩ and the net hopping energy 𝑡 = 𝑡0 + 𝒞𝑡. By this
process, we find the matrix of the interaction Hamiltonian [96, chapter 5]:

�̂� = 𝐸1s + 𝒞CF⏟⎵⎵⏟⎵⎵⏟
𝐸0

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒰 𝑡 𝑡 𝒥𝑑

𝑡 0 𝒥𝑑 𝑡

𝑡 𝒥𝑑 0 𝑡

𝒥𝑑 𝑡 𝑡 𝑈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐴𝐴

𝐴𝐵

𝐵𝐴

𝐵𝐵

(3.114)

Neglecting the normalization factors, its eigenstates are:

|Ψcov⟩ = |φ𝐴⟩|φ𝐵⟩ − |φ𝐵⟩|φ𝐴⟩; 𝐸cov = 𝐸0 − 𝒥𝑑,

|Ψion⟩ = |φ𝐴⟩|φ𝐴⟩ − |φ𝐵⟩|φ𝐵⟩; 𝐸ion = 𝐸0 +𝒰 − 𝒥𝑑,

|Ψ±⟩ = |φ𝐴⟩|φ𝐴⟩ + |φ𝐵⟩|φ𝐵⟩ +
𝐸0∓
2𝑡 (|φ𝐴⟩|φ𝐵⟩ + |φ𝐵⟩|φ𝐴⟩)

𝐸± = 𝐸0 + 𝒥𝑑 + 𝐸0± = 𝐸0 + 𝒥𝑑 +
𝒰
2 ±

√𝒰2 + 16𝑡2
2 .

(3.115)

The states |Ψcov⟩ and |Ψion⟩ have antisymmetric spatial wavefunctions, and thus corre-
spond to a FM alignment. The former is as usual a spin triplet, but the ionic configuration
can only have the spin state |↑↓, 0⟩ + |0, ↓↑⟩. The mixed states |Ψ±⟩ are the superposition
of two Slater determinants, both spatially symmetric, and are thus both singlets with
antiparallel spins.
In order to use the Heisenberg Hamiltonian from Eq. (3.50), we define an effective

exchange constant 𝒥 = 𝒥D + 𝒰 / 4 − √𝑡2 +𝒰2 / 16 to describe the energy difference
between the lowest two states, |Ψcov⟩ and |Ψ−⟩. Although 𝒥𝑑 > 0, it is now possible to
find 𝒥 < 0 due to the kinetic contribution, which favors an antiparallel alignment of
individual spins and thus no net magnetic moment.

Stoner limit:
In the itinerant limit 𝑡 ≫ 𝒰 ≫ 𝒥𝑑, the exchange constant becomes 𝒥 = 𝒥𝑑+𝒰/4−|𝑡|. This
corresponds to the independent-electron Stoner model, whose constant is 𝐼 = 𝒥𝑑 +𝒰 / 4.
For 𝒰 = 0, the mixed orbitals become |Ψ+⟩ = |ψ𝑎⟩|ψ𝑎⟩ and |Ψ−⟩ = |ψ𝑏⟩|ψ𝑏⟩, of

energy 𝒥𝑑 ± 2|𝑡|. Since the hopping integral is the one-electron level splitting between
the bounding, non-bounding and antibounding orbitals as shown in Eq. (3.82), it is
proportional to the width 𝑊 = 2𝑍𝑡 of the resulting band, where 𝑍 is the number of
nearest neighbors. It is thus inversely proportional to the DOS 𝐷(𝐸F, ↑↓) and opposes
the fulfillment of the Stoner criterion. A large mobility of the electrons prevents the
formation of a magnetic moment by direct exchange.
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Heisenberg limit:
In the strongly correlated limit 𝒰 ≫ 𝑡, the exchange constant becomes 𝒥 = 𝒥𝑑 − 2𝑡2 / 𝒰.
For 𝑡 = 0, we find that |Ψ+⟩ is a purely ionic state of energy 𝐸0+𝒰+𝒥𝑑, and |Ψ−⟩ a purely
covalent state of energy 𝐸0 + 𝒥𝑑. The covalent and ionic groups of states form the lower
and upper Hubbard sub-band, respectively. Within each sub-band, we recover the same
picture as in Section 3.2.2.2, with two energy levels separated by 2𝒥𝑑.
When the energy cost of adding an electron on an atom becomes larger than the

bandwidth, that is to say 𝒰 > 𝑊 = 2𝑍𝑡, a band gap forms between the Hubbard sub-
bands. The correlation of the electrons prevents the formation of ionic states, and the
material becomes a Mott insulator with each electron localized on a different atom.
Transition metal oxides are often Mott insulators, due to the decreased overlap of the
orbitals of the metallic ions which results in a smaller bandwidth compared to the pure
element. This is the case in FeBO3, where the Fe3+ ions are surrounded by O2– ions,
resulting in small values of 𝑡 ≈ 0.05 eV and𝑊 ≈ 0.4 eV, while 𝒰 ≈ 3 eV [113].
The Heisenberg model is suited to represent localized spins on a lattice. The Hamilto-

nian of the system is:

�̂�ex = −2∑
𝑖>𝑗

𝒥𝑖𝑗
ℏ2 �̂�𝑖 ⋅ �̂�𝑗 , (3.116)

where 𝒥𝑖𝑗 is the exchange constant per atom. If it is positive and homogeneous, the
material has a fully ferromagnetic ground state. The exchange constant is then related to
the Weiss constant of the molecular field theory by 𝑛W = 2𝑍𝒥 / μ0𝑛𝑔2μ2B.
If some 𝒥𝑖𝑗 are negative, the different couplings compete. The simplest configuration

producing an AFM material is that of a bipartite lattice, where 𝒥𝑖𝑗 > 0 between atoms
belonging to the same sublattice and 𝒥𝑖𝑗 < 0 between the sublattices. This is the case for
FeBO3, whose atoms are distributed into two sublattices of antiparallel magnetizations.
Since themagnetization originates entirely from the spin, we can express themacroscopic
exchange energy density between magnetization sublattices as:

𝑈ex = 𝑛 �̂�ex = − 2𝑍𝒥
𝑛𝑔2μ2B

# »𝑴1 ⋅
# »𝑴2 , (3.117)

where # »𝑴𝑖 = 𝑛⟨�̂�𝑺⟩. For FeBO3, 𝑍 = 6 and the inter-sublattices exchange constant is
𝒥 = −7.5meV [137].

Other exchange couplings

Neither in Fe nor FeBO3 is the direct exchange responsible for the formation of the
magnetic order. We will here summarize the main effects contributing to the sign of 𝒥 in
these two materials.

Superexchange:
The superexchange interaction is the interaction of two localized spins mediated by a
non-magnetic ion, and is at the origin of the AFM order of the sublattices of FeBO3.
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As illustrated in Fig. 2.21, the Fe3+ ions are found in layers parallel to the basal plane,
interspersed with layers of O2– and B3+. There is a small FM direct exchange between
Fe3+ ions in the same plane. Along the 𝑐 axis of the crystal, there is no direct overlap
between the orbitals of adjacent Fe3+ ions. The Fe3+ 3d orbitals however overlap with
the 2p orbitals of O2–, which donates its electrons to form covalent bonds. If a Fe–O–Fe
group of atoms is aligned along the 𝑧 axis, the 3d orbitals of both cations overlap with
the same 2p𝑧 orbital of the central oxygen, each bounding with a different electron.
When the 3d subshell is half-full, the Pauli exclusion principle ensures that the direct
exchange occurring at the bonds is antiferromagnetic, and thus the superexchange is
antiferromagnetic as well. Depending on the bound angle, there is either a strong AFM
exchange or a weak FM exchange.
In FeBO3, the nearest-neighbor exchange with 120° bonds, which couples ions in ad-

jacent planes, is AFM. The two sublattices thus correspond to the alternating Fe3+ layers.
The inter-sublattices next nearest-neighbor exchange with 180° bonds and the intra-
sublattice nearest-neighbor exchange are AFM as well, but are an order of magnitude
weaker [138].

Double exchange:
The double exchange interaction is another exchange between localized spins, that occurs
in conductors between magnetic ions having a different ionization state. The hopping of
an electron to the ion carrying the hole is only possible if it satisfies Hund’s rules. The
resulting exchange is FM, with an amplitude dependent on the relative direction of the
spin quantization axes of the ions.
In ferromagnetic iron, the eg electrons are localized and interact by a combination of

double exchange and superexchange. The resulting exchange constant is ferromagnetic,
with 𝒥egeg = 8meV. They interact with the t2g electrons aswell, with 𝒥egt2g = 19meV [124].

RKKY interaction:
Since conduction electrons have a maximal wavevector determined by the Fermi surface
of the material, they are not able to respond to point-like disturbances. This includes the
atomic magnetic moments. The truncated magnetization response of a free electrons
gas in momentum spaces creates diffraction-like oscillations of the magnetization in real
space, which is known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. The
exchange is ferromagnetic at the center, and its sign oscillates with the distance with a
period of π / 𝑘F.
In Fe, such a phenomenon couples the delocalized t2g electrons. This leads to a long-

range exchange, which is AFM between nearest neighbors with 𝒥t2g−t2g = −14meV. It
opposes the ferromagnetic exchange of the eg electrons, resulting in a total exchange
constant of 13meV [124], which makes iron a ferromagnet.
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Dzyaloshinski–Moriya interaction:
Finally, the Dzyaloshinskii−Moriya (DM) interaction is an anisotropic component of
the superexchange interaction, that arises when taking into account the spin-orbit
coupling [139]. It is relevant in FeBO3. We discussed a similar anisotropy of the Zeeman
Hamiltonian in Section 3.2.3.3. The Heisenberg Hamiltonian is generalized by replacing
the scalar exchange constant between atoms 𝑖 and 𝑗 by a tensor:

�̂�ex = − 2
ℏ2 ∑𝑖>𝑗

�̂�𝑖 ⋅ 𝓙𝑖𝑗 ⋅ �̂�𝑗 . (3.118)

It can be decomposed into a symmetric component 𝓕𝑖𝑗 , from which we extract the
isotropic part, and an antisymmetric component𝓓𝑖𝑗 :

𝒥𝑖𝑗 +𝓕𝑖𝑗 = (𝓙𝑖𝑗 + 𝓙⊤𝑖𝑗) / 2

𝓓𝑖𝑗 = (𝓙𝑖𝑗 − 𝓙⊤𝑖𝑗) / 2.
(3.119)

The latter represents the DM interaction. Its Hamiltonian is usually expressed in the
form:

�̂�DM = − 2
ℏ2 ∑𝑖>𝑗

(�̂�𝑖 ⋅ 𝓓𝑖𝑗 ⋅ �̂�𝑗) = − 2
ℏ2 ∑𝑖>𝑗

#»

𝓓 ⋅ (�̂�𝑖 ∧ �̂�𝑗) , (3.120)

where the components of the DM vector
#»

𝓓 are defined by:

𝓓𝑖𝑗 =
1
2

⎡
⎢
⎢
⎢
⎢
⎣

0 𝒥𝑥𝑦 − 𝒥𝑦𝑥 𝒥𝑥𝑧 − 𝒥𝑧𝑥

𝒥𝑦𝑥 − 𝒥𝑥𝑦 0 𝒥𝑦𝑧 − 𝒥𝑧𝑦

𝒥𝑧𝑥 − 𝒥𝑥𝑧 𝒥𝑧𝑦 − 𝒥𝑦𝑧 0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0 𝒟𝑧 −𝒟𝑦

−𝒟𝑧 0 𝒟𝑥

𝒟𝑦 −𝒟𝑥 0

⎤
⎥
⎥
⎥
⎥
⎦

. (3.121)

In FeBO3,
#»

𝓓 is normal to the basal plane, along the [0 0 1] axis, and𝒟 = 0.24meV [137].
The DM interaction is responsible for the canting of the sublattice magnetizations away
from the pure antiferromagnetic alignment. This creates the weak net ferromagnetic
moment that we studied in Section 2.3.2.

We have now finished our review of the quantum origins of the macroscopic phe-
nomena that we discussed in Section 3.1: from the magnetic moment of an electron,
to the collective behavior of atoms. We have seen some of the effects contributing to
the susceptibility of paramagnetic and diamagnetic materials, and some of the forms of
exchange interactions creating the ferromagnetic and antiferromagnetic order of spon-
taneously magnetized materials. To complete this chapter, we will now look into the
manipulation of the magnetization, and use the models of the different phenomena that
we have discussed in order to predict the equilibrium position and precession frequency
of the magnetization in FeBO3.
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3.3 Manipulation of the magnetization

In a ferromagnetic material, or a canted antiferromagnet with a net magnetic moment
such as FeBO3, the direction of magnetization is determined by the interplay between
the anisotropy and the applied magnetic fields. We will first look are the main sources
of anisotropy, and how they influence the hysteresis curve of a sample. Finally, we
will discuss the time evolution of the magnetization, and derive the equations for its
precession in FeBO3 that we used in Section 2.3.2.1.

3.3.1 Shape anisotropy

The anisotropy of a material refers to the strength of the magnetic field necessary in
order to magnetize it is a given direction. We have discussed in Section 3.2.3.4 the
intrinsic magnetocrystalline anisotropy, which depends on the crystalline structure of
the material. The shape anisotropy is the other main contribution, and depends on
the shape of a specific sample. While at atomic scales the orientation of the magnetic
moments is dominated by the exchange interactions, at large distances themagnetostatic
interactions take over. This results in the formation of domains, which have a local
magnetic order but result in no net magnetization at the macroscopic scale.
As introduced in Section 3.1.3, a uniformly magnetized body generates a demagnetiz-

ing field #»𝑯𝒅 = −𝑵𝒅 ⋅
# »𝑴 . Its magnetostatic self-energy is [96, chapter 3]:

𝑈ms = −
μ0
2

# »𝑴 ⋅ #»𝑯𝒅 . (3.122)

If the sample is an ellipsoid with axial symmetry along 𝑧, 𝑵𝒅 is zero except for the com-
ponents 𝑁𝑥𝑥 = 𝑁𝑦𝑦 = 𝑁⟂ and 𝑁𝑧𝑧 = 𝑁∥, where 𝑁𝑥𝑥 + 𝑁𝑦𝑦 + 𝑁𝑧𝑧 = 1. The magnetostatic
energy simplifies to:

𝑈ms =
μ0𝑀2

2 (𝑁∥ + (𝑁⟂ − 𝑁∥) sin2 θ) , (3.123)

which corresponds to a uniaxial anisotropy, as defined in Section 3.2.3.4. The anisotropy
constant𝐾sa is given by the energy difference between the hard and easy directions, θ = 0
and π / 2. We obtain:

𝐾sa = 𝑈ms(π / 2) − 𝑈ms(0) =
μ0𝑀2

2 (1 − 3𝑁∥) . (3.124)

If 𝑁∥ < 1 / 3, which is the case when the longest axis of the ellipsoid is along 𝑧, 𝐾sa is
positive and 𝑧 is the easy direction.
The behavior of thin films is of particular interest, as it describes the FeBO3 samples

and the spintronic THz emitters of Chapter 4. For an ideal thin film in the 𝑥𝑦 plane,
approximated as an infinite flattened ellipsoid, 𝑁⟂ = 0 and 𝑁∥ = 1, giving 𝐾sa =
−μ0𝑀2 / 2 < 0. The same anisotropy tends to align the magnetization in the plane of
the sample. However, it competes with the other sources of anisotropy. The effective
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anisotropy constant can be separated into a surface and a volume contribution [140]:

𝐾eff = 𝐾𝑣 +
2𝐾𝑠
𝑑 , (3.125)

where 𝑑 is the thickness of the sample. The volume anisotropy 𝐾𝑣 include the magne-
tocrystalline and shape anisotropies, as well as the magneto-elastic anisotropy caused by
the strain due to lattice mismatch when the film is deposited on a substrate. We assume
that the magnetocrystalline anisotropy axis is normal to the film. The surface anisotropy
𝐾𝑠 includes Néel’s interface anisotropy, which results from the symmetry breaking at the
interfaces, as well as surface strain. Under the critical thickness 𝑑⟂ = −2𝐾𝑠 / 𝐾𝑣, the
surface anisotropy dominates and it is possible to find𝐾eff > 0, leading to the equilibrium
magnetization being tilted out of the plane of very thin samples.
The saturation magnetization for polycrystalline Fe is μ0𝑀𝑠 = 2.14T. We then find

𝐾sa = −1.86×106 Jm−3 [140], two orders of magnitude larger than itsmagnetocrystalline
anisotropy constant𝐾1 given in Section 3.2.3.4. The volume anisotropy is thus dominated
by the shape anisotropy. The order of magnitude of the Néel contribution to the surface
anisotropy is 𝐾𝑠 = 10−3 Jm−3 [141], which gives a typical critical thickness for iron
of 𝑑⟂ = 1.5nm. The exact value of 𝐾𝑠 depends on the materials on each side of the
interface and their orientation. For Fe|W and Fe|Pt interfaces such as the ones found in
the samples that will be discussed in Chapter 4, 𝐾𝑠 < 0 [140, table 3] and the surface
anisotropy contributes to confining the magnetization in the plane. To model these
samples and the 35 µm-thick FeBO3 sample, we thus use 𝐾eff ≈ 𝐾1 + 𝐾sa.

3.3.2 Stoner-Wohlfarth model of the hysteresis

The anisotropy energy of a sample is used to calculate its hysteresis curve. We assume
that the sample is formed of a single ferromagnetic domain, so that its magnetization
is always saturated. When an external magnetic field is applied on the sample, the
additional Zeeman energy density is:

𝑈Z = − # »𝑴 ⋅ #»𝑩app = −μ0𝑀𝑠𝐻app cos(θ𝐻 − θ), (3.126)

where θ and θ𝐻 are the polar angles of the magnetization and the external field respec-
tively, and we assume that both # »𝑴 and #»𝑯app are contained in the 𝑥𝑧 plane. The total
energy density includes the anisotropy and Zeeman contributions:

𝑈 = 𝑈𝑎 + 𝑈Z = 𝐾eff sin2 θ − μ0𝑀𝑠𝐻app cos(θ𝐻 − θ). (3.127)

The hysteresis curve of the material can be calculated using Eq. (3.127), by finding the
orientation of the magnetization minimizing the energy. This behavior originates in
its tendency to stay trapped in local energy minima until the external field reaches a
threshold amplitude.
Fig. 3.14a shows the dependence of the energy on the direction of magnetization, for

several orientations and magnitudes of the external field. The easy axis is defined so that
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Figure 3.14: a) Energy density of a single-domain ferromagnet with positive uniaxial
anisotropy, for different amplitudes and orientations of the external field
#»𝑯app : along the easy axis (θ𝐻 = 0°, red lines) and within the hard plane
(θ𝐻 = 90°, blue lines). Markers indicate the local energyminimumwhen the
field is increased, with θ = 180° initially. We use μ0𝑀𝑠 = 2.14T and 𝐾eff =
4.8 × 104 Jm−3. b) Corresponding hysteresis curves, with the magnetization
projected along the direction of #»𝑯app .

in the absence of external field, the energy is minimized when θ = 0° or 180°. Let us
assume that the initial orientation of the magnetization is 180°. When an external field
is applied with θ𝐻 = 0°, the energy of the θ = 180° magnetization increases. However,
the magnetization is trapped in a local energy minimum until 𝐻app becomes larger than
the anisotropy field:

𝐻𝑎 =
2𝐾eff
μ0𝑀𝑠

. (3.128)

When it reaches this value, the Zeeman effect overcomes the anisotropy and the orienta-
tion of the magnetization switches suddenly. When instead the external field is applied
along the hard direction θ𝐻 = 90°, the location of the energy minimum shifts smoothly.
The magnetization rotates progressively until 𝐻app > 𝐻𝑎, at which points the energy is
minimum for θ = θ𝐻.
We can recognize in Fig. 3.14b the hysteresis curves for ferromagnetic materials that

we saw in Section 3.1.4. The hard or soft nature of a ferromagnet, and thus the value
of their intrinsic coercivity 𝐻𝑐, depends on whether the field is applied along an easy or
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hard axis, respectively. The coercivity is the field necessary to reverses the direction of
the magnetization. It decreases nonlinearly from 𝐻𝑐 = 𝐻𝑎 at θ𝐻 = 0° to 𝐻𝑐 = 0 at 90°,
with 𝐻𝑐 = 𝐻𝑎 / 2 at 45°.

3.3.3 Dynamics of the magnetization

Our last subject is the dynamics of the magnetization subjected to a magnetic field.
We have assumed in the previous section that the magnetization switches direction
by instantaneously realigning on the applied field, staying saturated at all times. In
real samples, the material is usually divided into domains, that each have a direction
of magnetization minimizing the local energy. When the applied field is small, it is
able to move the domain walls, progressively increasing the size of the domains whose
magnetization has the correct alignment. In strong fields, the Zeeman effect dominates
over the anisotropy and the magnetization of the domains rotates. This last effect is the
one resulting in the precession we measured in FeBO3.

3.3.3.1 Landau-Lifshitz-Gilbert equation

The equation of motion of the magnetization vector is described by the Landau-Lifshitz-
Gilbert (LLG) equation:

d # »𝑴
d𝑡 = −μ0|γ|

# »𝑴 ∧ #»𝑯eff +
α
| # »𝑴|

( # »𝑴 ∧
d # »𝑴
d𝑡 ) , (3.129)

where γ is the gyromagnetic ratio of the material and α the Gilbert damping parameter.
The latter being a constant implies that the magnetization amplitude is constant. The
effective magnetic field #»𝑯eff is introduced to include the effect of anisotropy, exchange,
etc., on the orientation of the magnetization.
At equilibrium, # »𝑴 ∧ #»𝑯eff = 0 and the magnetization is parallel to the effective field.

When the field changes, for example by the application of an external field, the first term
of Eq. (3.129) describes the right-handed precession of # »𝑴 around the new orientation of
#»𝑯eff. The second term expresses the progressive dissipation of the excitation, until the
magnetization reaches the equilibrium again.
When amaterial is composed of several sublattices, the magnetization of each of them

follows Eq. (3.129). Since they are linked by the exchange interaction, their precessions
can only take a limited number of relative phase, shape, orientation, etc. FeBO3 has two
such modes, whose frequencies we will calculate in Section 3.3.3.3.
The same exchange phenomenon is also responsible for the propagation of spin waves.

Neglecting the damping part, Eq. (3.129) is linear and thus applies to the magnetization
as well as to the underlying magnetic moments. When a localized excitation triggers the
precession of a magnetic moment, the exchange interaction spreads the precession to its
neighbors. Thus a spin wave travels with its wavelength corresponding to the distance
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between twomoments with the same phase of precession, and its amplitude to the radius
of the cone traced by # »𝑴 .

3.3.3.2 Steady state of FeBO3

FeBO3 has two sublattices, with the magnetizations
# »𝑴1 and

# »𝑴2 of equal magnitude𝑀0,
neglecting the effect of temperature. As a canted antiferromagnet, its magnetic state
is characterized by the ferromagnetic vector # »𝑴 = # »𝑴1 +

# »𝑴2 and the antiferromagnetic
vector #»𝑳 = # »𝑴1 −

# »𝑴2. Since an applied field of 𝐻app > 1.59 kAm−1 (2mT) is sufficient to
remove the magnetic domain structure of the crystal [82], we assume that the crystal is
homogeneously magnetized and the magnitude of the net magnetization vector # »𝑴 is the
saturation magnetization𝑀𝑠. We define the coordinate system so that the out-of-plane
axis 𝑐 is along 𝑧 and one of the easy axes in the basal plane is along 𝑥. The external
magnetic field is applied in-plane along the 𝑦 axis. The energy density is:

𝑈 = 𝑈ex + 𝑈DM + 𝑈mca + 𝑈sa + 𝑈Z, (3.130)

where the isotropic exchange energy𝑈ex is given by Eq. (3.117), the anisotropic exchange
𝑈DM by Eq. (3.120), the magnetocrystalline anisotropy 𝑈mca by Eq. (3.76), the shape
anisotropy 𝑈sa by Eq. (3.124), and the Zeeman energy 𝑈Z by Eq. (3.126). Each of these
effects can be expressed as an effective magnetic field by taking its gradient with respect
to each magnetization: #»𝑯eff𝑖 = − #»𝛁 #»𝑴𝒊

𝑈 / μ0. After this, the energy acting on the mag-

netization of each sublattice can be represented by the single Zeeman-like component
𝑈𝑖 = −μ0

# »𝑴𝑖 ⋅
#»𝑯eff𝑖.

The isotropic exchange and the DM interaction energies are:

𝑈ex + 𝑈DM = − 2𝑍
μ2B𝑔2𝑗 𝑛

(𝒥 # »𝑴1 ⋅
# »𝑴2 +

#»

𝓓 ⋅ ( # »𝑴1 ∧
# »𝑴2)) , (3.131)

from which we get the effective magnetic fields on the magnetization # »𝑴𝑖 :

#»𝑯ex𝑖 = 𝐻ex

# »𝑴𝑗

𝑀0
with 𝐻ex =

2𝑍𝒥𝑀0
μ0μ2B𝑔2𝑗 𝑛

(3.132)

#»𝑯DM𝑖 = ±𝐻DM

# »𝑴𝑗

𝑀0
∧ #»𝒆 𝑧 𝐻DM =

2𝑍𝒟𝑧𝑀0
μ0μ2B𝑔2𝑗 𝑛

. (3.133)

Using these, we can express the energy as:

𝑈ex + 𝑈DM = −μ0
# »𝑴1 ⋅ (

#»𝑯ex1 +
#»𝑯DM1) = −μ0

# »𝑴2 ⋅ (
#»𝑯ex2 −

#»𝑯DM2)

= −μ0𝐻ex𝑀0 (sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2)

+ μ0𝐻DM𝑀0 sin θ1 sin θ2 sin(ϕ1 − ϕ2),

(3.134)
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Figure 3.15: Normalized exchange (𝑈ex), Dzyaloshinskii−Moriya (𝑈DM), in-plane
anisotropy (𝑈𝑎′) and Zeeman𝑈Z energy densities in FeBO3 depending on the
azimuthal angle of the sublatticemagnetizations. The easy axis is𝑥 (ϕ𝑖 = 0 or
180°) and the external magnetic field is applied along the 𝑦 axis (ϕ𝐻 = 90°).

where θ𝑖 and ϕ𝑖 are respectively the polar and azimuthal angles of
# »𝑴𝑖. The DM vector

#»

𝓓 is directed along the 𝑐 axis [137]. Since # »𝑴1 ∧
# »𝑴2 = − # »𝑴2 ∧

# »𝑴1 , the sign of
#»

𝓓 defines
the relative orientation of the two sublattices. With𝒟𝑧 < 0 [142] and thus 𝐻DM < 0, the
energy 𝑈DM is minimized for 0 < ϕ1 − ϕ2 < π. As shown in Fig. 3.15, 𝑈ex and 𝑈DM are
respectively minimized when ϕ1 − ϕ2 = ±180° and +90°, irrespective of the absolute
orientation of the magnetizations in the basal plane.

Then, we separate the magnetocrystalline and shape anisotropy into the large out-of-
plane component and a smaller in-plane component. We further approximate the latter,
which is normally six-fold and proportional to cos2 3ϕ𝑖 [143], as a two-fold component in
cos2 ϕ𝑖. For this reason, we chose the coordinate system so that ϕ𝑖 ≈ 0 or 180°. We thus
obtain:

𝑈mca,𝑖 + 𝑈sa,𝑖 = − (𝐾1 + 𝐾sa)
𝑀2

𝑖𝑧
𝑀2

0
− 𝐾∥

𝑀2
𝑖𝑥

𝑀2
0

= − (𝐾1 + 𝐾sa) cos2 θ𝑖 − 𝐾∥ sin2 θ𝑖 cos2 ϕ𝑖,

(3.135)

with 𝐾1 < 0, 𝐾sa < 0 and 𝐾∥ > 0. The amplitude of the in-plane #»𝑯𝒂 and out-of-plane
#»𝑯𝒂′
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Table 3.2: Effective magnetic fields characterizing FeBO3 at room temperature. Values
taken from Schober [83], Kurtzig et al. [91], and Tarakanov et al. [93].

kAm−1 mT

𝐻ex −206.9 × 103 −260 × 103

𝐻DM −4.9 × 103 −6.16 × 103

𝐻𝑎 −135 −170

𝐻𝑎′ 21 × 10−3 26.4 × 10−3

𝐻me 55 × 10−3 70.0 × 10−3

𝑀0 303 381

𝑀𝑠 9.15 11.5

effective fields on the magnetization # »𝑴𝑖 are the same as in Eq. (3.128):

#»𝑯𝒂𝑖 = 𝐻𝑎
𝑀𝑖𝑧
𝑀0

#»𝒆 𝑧 with 𝐻𝑎 =
2 (𝐾1 + 𝐾sa)

μ0𝑀0
(3.136)

#»𝑯𝒂′𝑖 = 𝐻𝑎′,𝑖
𝑀𝑖𝑥
𝑀0

#»𝒆 𝑥 𝐻𝑎′,𝑖 =
2𝐾∥
μ0𝑀0

. (3.137)

As shown in Fig. 3.15, the energy density 𝑈𝑎′ for the in-plane anisotropy is minimized
when ϕ1 and ϕ2 are multiples of π, which means that both magnetizations are aligned
along the 𝑥 axis.
Finally, including the Zeeman term due to the external field, the total magnetic energy

of the FeBO3 sample is [83]:

𝑈 = −μ0 (
𝐻ex
𝑀0

( # »𝑴1 ⋅
# »𝑴2) +

𝐻DM
𝑀0

#»𝒆 𝑧 ⋅ (
# »𝑴1 ∧

# »𝑴2)

+
𝐻𝑎
2𝑀0

(𝑀2
1𝑧 +𝑀2

2𝑧) +
𝐻𝑎′

2𝑀0
(𝑀2

1𝑥 +𝑀2
2𝑥)

+ ( # »𝑴1 +
# »𝑴2) ⋅

#»𝑯app) .

(3.138)

The amplitudes of the effective fields are given by Table 3.2. To preserve the generality
of Eq. (3.138) independently of the sign of the exchange and anisotropy constants, we
allow the amplitudes to take a negative sign.
The effective field #»𝑯eff𝑖 =

#»𝑯app +
#»𝑯ex𝑖 +

#»𝑯DM𝑖 +
#»𝑯𝒂𝑖 +

#»𝑯𝒂′𝑖 acts on each sublattice
via Eq. (3.129). To obtain the equilibrium angle of the magnetization vectors, we can
solve the LLG equation, assuming that the magnetization is at rest: # »𝑴𝑖 ∧

#»𝑯eff𝑖 = 0.
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Alternatively, we can solve d𝑈/dϕ𝑖 = 0. Both equations simplify to the same expression,
which is easy to solve analytically when the external field is applied along the 𝑥 or 𝑦 axis,
as this preserves the symmetry of the magnetization vectors with respect to the easy axis
(see Hagedorn and Gyorgy [144] for a treatment with an arbitrary field direction).
For this reason, we assume that the external field is applied along the 𝑦 axis. If

its amplitude is small enough to preserve the quasi-AFM configuration of the two
sublattices, this allows their magnetization vectors to remain near the easy axis, while
the net magnetization # »𝑴 aligns on #»𝑯app. We set ϕ1 = π − α and ϕ2 = α, where α is the
canting angle. Because of the large value of 𝐻𝑎 and because we apply the external field in
the plane, we also assume that the magnetization is confined in the plane of the sample,
leading to θ1 = θ2 = θ𝐻 = π / 2. We thus have:

d𝑈
dϕ𝑖

= ±𝑀0μ0 ((
𝐻𝑎′

2 − 𝐻ex) sin 2α + 𝐻DM cos 2α − 𝐻app cosα)

≈ ±𝑀0μ0 ((𝐻𝑎′ − 2𝐻ex) α + 𝐻DM − 𝐻app) = 0,
(3.139)

where we assume that the canting angle is small and the magnetic order stays close to
antiferromagnetic. Solving the equation gives:

α =
𝐻app − 𝐻DM

𝐻𝑎′ − 2𝐻ex
. (3.140)

Inserting this result into Eq. (3.138), we find that d2𝑈/d(ϕ𝑖)
2 > 0 for both sublattices,

and this corresponds indeed to an energy minimum.
In the absence of external field, α = 0.68°. With 𝐻app up to 400mT as we used in

Section 2.3.2, the canting increases to 0.72°. We can estimate that the net magnetization
𝑀𝑠 ≈ 2𝑀0 sinα should be found in the range of 7.2 kAm−1 to 7.6 kAm−1, which is
comparable to the experimental value presented in Table 3.2.
In our experiments, we do not know the angle of the easy axis of the FeBO3 crystals.

However, 𝐻𝑎′ is very small compared to 𝐻app and can be neglected. Then, we find the
same expression for α as given by Schober [83] andGurevich andMelkov [145, chapter 3].

3.3.3.3 Ferromagnetic resonance

Finally, we derive the equations for the frequency of the uniform magnetization preces-
sion modes in FeBO3, which are the spin wave modes with a wavevector 𝑘 = 0. Since
the spin is a quantized quantity, so are spin waves. The associated quasi-particles are
magnons, that correspond to the delocalized flip of the spin of a single electron. They
thus carry an angularmomentum±ℏ and an energy ℏω, whereω is the angular frequency
of the precession of the magnetic moments. Their energy, and thus their frequency, can
be separated into several contributions [94, 138]:

ω2 = ω2𝐻 + ω2𝑘 + ω2Δ. (3.141)
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The angular frequency ω𝐻 comes from the energy due to the presence of an external
magnetic field, while ω𝑘 comes from the exchange energy between neighboring atoms
during the propagation of the spin wave and is thus proportional to the wavevector 𝑘.
Since we only consider the uniform precession modes, this contribution disappears.
Finally, ωΔ is the gap energy that provides a finite magnon energy at𝐻app = 0 and 𝑘 = 0,
and can originate from in-plane anisotropy, magneto-elastic coupling, or the hyperfine
interaction with the spin of the nuclei [94].
As before, we assume that the FeBO3 sample is a thin planar crystal with the hard axis

out of plane and parallel to the 𝑧 axis, and that the externalmagnetic field is applied along
the 𝑦 axis. In this geometry, the equations for the frequency of the quasi-ferromagnetic
resonance (qFMR) and quasi-antiferromagnetic resonance (qAFMR) modes that we
found in the literature are:

(
ωqFMR
μ0|γ|

)
2
≈

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝐻app (𝐻app + 𝐻DM) = 22.2GHz [145, 146]

𝐻app (𝐻app + 𝐻DM) + 2𝐻ex𝐻𝑎′ = 22.4GHz [83, 86]

𝐻app (𝐻app + 𝐻DM) + 2𝐻ex𝐻me = 22.8GHz [93]

𝐻app (𝐻app + 𝐻DM) + 𝐻2
Δ1 [94, 147]

𝐻app (𝐻app +𝑀𝑆 + 𝐻𝑎) = 3.0GHz [29]

(𝐻app + 𝐻𝑎′) (𝐻app + 𝐻𝑎′ +𝑀𝑆 + 𝐻𝑎) = 4.7GHz, [148]

(3.142a)

(3.142b)

(3.142c)

(3.142d)

(3.142e)

(3.142f)

(
ωqAFMR
μ0|γ|

)
2
≈

⎧
⎪

⎨
⎪
⎩

𝐻DM (𝐻app + 𝐻DM) + 2𝐻ex𝐻𝑎 = 316GHz [83, 86]

𝐻DM (𝐻app + 𝐻DM) + 2𝐻ex𝐻𝑎 + 𝐻2
Δ2 [147]

𝐻app𝐻DM + 2𝐻ex𝐻𝑎 = 264GHz, [146]

(3.143a)

(3.143b)

(3.143c)

where the numerical values are calculated using Table 3.2 and assuming μ0𝐻app =

100mT. Most sources agree that ω𝐻 = μ0|γ|√𝐻app (𝐻app + 𝐻DM) = 22.2GHz for the
qFMR frequency. Schober [83] names 𝐻2

Δ1 = 2𝐻ex𝐻𝑎′ as the isotropic energy gap, while
Jantz and Wettling [94] and Velikov et al. [147] attribute the gap to magneto-elastic
coupling. The measured value of ωΔ1 = 3GHz [94, 138] agrees better with Eq. (3.142b),
where ωΔ1 = 3.3GHz, than with Eq. (3.142c), where ωΔ1 = 5.3GHz. The impact on the
qFMR frequency is however minimal. Expressions of the qAFMR frequency are rarer
and do not converge to the same numerical value.
Eq. (3.142f) and presumably Eq. (3.142e) model FeBO3 as a ferromagnet. Although

the LLG equation applies to the net magnetic moment as well as the two sublattice
magnetizations, so that all three vectors precess at the same frequency, the removal
of 𝐻ex and 𝐻DM has a major influence on the energy of the material and thus on the
precession frequency. To understand the difference between the different models, and
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which order of magnitude we should expect for the qAFMR frequency, we now calculate
the precession frequencies.

As we have seen in Section 3.3.3.2, both magnetization vectors at equilibrium are in
the 𝑥𝑦 plane and canted away from the 𝑥 axis by an angle α given by Eq. (3.140). We
follow the method of Herrmann [149] to find their precession frequency. We will solve
the LLG equation for each sublattice, neglecting the damping:

d # »𝑴𝑖

d𝑡 = −μ0|γ|
# »𝑴𝑖 ∧

#»𝑯eff𝑖. (3.144)

To simplify the computation, we express the equation in the coordinate system attached
to each magnetization at rest. We obtain each transformed vector # »𝑴′

𝑖 by rotating
# »𝑴𝑖 by

an angle of −ϕ𝑖, so that at equilibrium:

⎡
⎢
⎢
⎢
⎢
⎣

𝑀′
𝑖𝑥

𝑀′
𝑖𝑦

𝑀′
𝑖𝑧

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

cosϕ𝑖 sinϕ𝑖 0

− sinϕ𝑖 cosϕ𝑖 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑀𝑖𝑥

𝑀𝑖𝑦

𝑀𝑖𝑧

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑀0

0

0

⎤
⎥
⎥
⎥
⎥
⎦

. (3.145)

We also express the effective fields #»𝑯′
eff𝑖 in the coordinate system of the corresponding

magnetization. For example, #»𝑯ex1, which is given by Eq. (3.132), becomes #»𝑯′
ex1 =

𝐻ex[− cos 2α, − sin 2α, 0].

In addition to the DC external field, we use a short THz pulse to perturb the magne-
tization and trigger spin oscillations. This can be modeled by separating the fields and
magnetizations into a steady-state and a small dynamic component:

#»𝑯app(𝑡) =
#»𝑯DC +

#»

𝒉THz(𝑡)

#»𝑯eff𝑖(𝑡) =
#»𝑯0
eff𝑖 +

#»

𝒉eff𝑖(𝑡)
# »𝑴𝑖(𝑡) =

# »𝑴0
𝑖 +

#»𝒎𝑖(𝑡).

(3.146)

Since the amplitude of the precession is small, we assume that the 𝑥′ component of each
magnetization is constant, so that:

# »𝑴′
𝑖 (𝑡) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑀0

0

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0

𝑚′
𝑖𝑦

𝑚′
𝑖𝑧

⎤
⎥
⎥
⎥
⎥
⎦

, (3.147)
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and assuming that the THz excitation has passed (
#»

𝒉THz = 0):

#»𝑯′
eff𝑖(𝑡) =

⎡
⎢
⎢
⎢
⎢
⎣

𝐻𝑎′ − 𝐻ex + α (𝐻DC − 2𝐻DM)

∓𝐻DC ± 𝐻DM ± α (𝐻𝑎′ − 2𝐻ex)

0

⎤
⎥
⎥
⎥
⎥
⎦

+ 1
𝑀0

⎡
⎢
⎢
⎢
⎢
⎣

∓𝐻DM𝑚′
𝑗𝑦 ± α (𝐻𝑎′𝑚′

𝑖𝑦 + 2𝐻ex𝑚′
𝑗𝑦)

−2α𝐻DM𝑚′
𝑗𝑦 − 𝐻ex𝑚′

𝑗𝑦

𝐻𝑎𝑚′
𝑖𝑧 + 𝐻ex𝑚′

𝑗𝑧

⎤
⎥
⎥
⎥
⎥
⎦

.

(3.148)

Eq. (3.144) becomes:

d # »𝑴0
𝑖

d𝑡 +
d #»𝒎𝑖

d𝑡 = −μ0|γ| (
# »𝑴0

𝑖 ∧
#»𝑯0
eff𝑖 +

#»𝒎𝑖 ∧
#  »𝑯0eff𝑖 +

# »𝑴0
𝑖 ∧

#»

𝒉eff𝑖 +
#»𝒎𝑖 ∧

#»

𝒉eff𝑖) . (3.149)

The first right-hand term disappears by definition, andwe neglect the last term since both
#»𝒎𝑖 and

#»

𝒉eff𝑖 are small. Without loss of generality, we replace the dynamic components
by their complex amplitudes #»𝓶𝑖 and

#»

𝓱eff𝑖, which are defined by:

#»

𝒉eff(𝑡) =
1
2 (

#»

𝓱eff 𝑒𝑖ω𝑡 +
#»

𝓱∗
eff 𝑒−𝑖ω𝑡)

#»𝒎(𝑡) = 1
2 (

#»𝓶 𝑒𝑖ω𝑡 + #»𝓶∗𝑒−𝑖ω𝑡) .
(3.150)

This leaves us with an equation linear in #»𝓶𝑖 :

d #»𝓶𝑖 𝑒𝑖ω𝑡

d𝑡 = −μ0|γ| (
#»𝓶𝑖 𝑒𝑖ω𝑡 ∧

#»𝑯0
eff𝑖 +

# »𝑴0
𝑖 ∧

#»

𝓱eff𝑖 𝑒
𝑖ω𝑡)

𝑖ω #»𝓶𝑖 = −μ0|γ| (
#»𝓶𝑖 ∧

#»𝑯0
eff𝑖 +

# »𝑴0
𝑖 ∧

#»

𝓱eff𝑖) .
(3.151)

Since we neglect the 𝑥′ components, we arrive at two systems of two coupled equations:

𝑖ω𝓂′
1𝑦

μ0|γ|
= 𝐻𝑎𝓂′

1𝑧 + 𝐻ex𝓂′
2𝑧 −𝓂′

1𝑧 (𝐻𝑎′ + 𝐻appα − 2𝐻DMα − 𝐻ex) (3.152a)

𝑖ω𝓂′
2𝑦

μ0|γ|
= 𝐻𝑎𝓂′

2𝑧 + 𝐻ex𝓂′
1𝑧 −𝓂′

2𝑧 (𝐻𝑎′ + 𝐻appα − 2𝐻DMα − 𝐻ex) (3.152b)

𝑖ω𝓂′
1𝑧

μ0|γ|
= 2𝐻DMα𝓂′

2𝑦 + 𝐻ex𝓂′
2𝑦 +𝓂′

1𝑦 (𝐻𝑎′ + 𝐻appα − 2𝐻DMα − 𝐻ex) (3.152c)

𝑖ω𝓂′
2𝑧

μ0|γ|
= 2𝐻DMα𝓂′

1𝑦 + 𝐻ex𝓂′
1𝑦 +𝓂′

2𝑦 (𝐻𝑎′ + 𝐻appα − 2𝐻DMα − 𝐻ex) (3.152d)
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We transform the system into a matrix equation of the form:

𝑖ω
μ0|γ|

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝓂′
1𝑦

𝓂′
2𝑦

𝓂′
1𝑧

𝓂′
2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 𝑎 𝑏

0 0 𝑏 𝑎

𝑐 𝑑 0 0

𝑑 𝑐 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝓂′
1𝑦

𝓂′
2𝑦

𝓂′
1𝑧

𝓂′
2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.153)

The possible values of the precession frequency ω are given by the four eigenvalues of
the matrix, two of which will be positive:

𝑖ω
μ0|γ|

= {
± √(𝑎 + 𝑏) (𝑐 + 𝑑)

± √(𝑎 − 𝑏) (𝑐 − 𝑑),
(3.154)

where:
𝑎 − 𝑏 = 𝐻𝑎 − 𝐻𝑎′ −

(𝐻DC − 2𝐻DM) (𝐻DC − 𝐻DM)
𝐻𝑎′ − 2𝐻ex

,

𝑎 + 𝑏 = 𝐻𝑎 − 𝐻𝑎′ + 2𝐻ex −
(𝐻DC − 2𝐻DM) (𝐻DC − 𝐻DM)

𝐻𝑎′ − 2𝐻ex
,

𝑐 − 𝑑 = 𝐻𝑎′ − 2𝐻ex +
−𝐻DC𝐻DM + (𝐻DC − 2𝐻DM)

2

𝐻𝑎′ − 2𝐻ex
,

𝑐 + 𝑑 =
𝐻2
𝑎′ − 2𝐻𝑎′𝐻ex + 𝐻2

DC − 𝐻DC𝐻DM

𝐻𝑎′ − 2𝐻ex
.

(3.155)

After numerical evaluation, we obtain the frequency of the two precession modes of
FeBO3. For 𝐻DC = 100mT:

ωqFMR = −𝑖μ0|γ|√(𝑎 + 𝑏) (𝑐 + 𝑑) = 22.4GHz

ωqAFMR = −𝑖μ0|γ|√(𝑎 − 𝑏) (𝑐 − 𝑑) = 362GHz.
(3.156)

As shown in Fig. 3.16, our equation exactly matches the approximation of Schober
[83] in Eq. (3.142b) for the qFMR frequency, with however a 46GHz difference for the
qAFMR frequency in Eq. (3.143a).
The eigenvector of Eq. (3.153) associated with each frequency gives us the relative

amplitude of the components of #»𝓶′
1 and

#»𝓶′
2 , which are plotted in Figs. 3.16c and 3.16d.

In the qFMR mode, the sublattice magnetizations precess in phase while preserving
the angle between them. The precession is mainly in the plane of the sample, with an
ellipticity ratio |𝓂′

𝑦 / 𝓂′
𝑧| = 650 at 𝐻DC = 100mT.

Setting𝐻DM = 0, so that thematerial becomes a pure antiferromagnet (α ≈ 0°) and the
two magnetization vectors precess as one, significantly reduces the energy as it removes
the conflict between the isotropic and anisotropic exchange. When this is the case, the
frequency converges towards the result of Eq. (3.142e), where only the precession of
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Figure 3.16: Comparison of the a) qFMR and b) qAFMR frequencies obtained with
Eq. (3.156) and with the different models found in the literature. The legend
refers to the formulas in a) Eq. (3.142) and b) Eq. (3.143). c) qFMR and d)
qAFMR oscillations of the magnetization components, assuming 𝐻DC =
100mT. The 𝓂′

𝑖𝑧 in c) and 𝓂′
𝑖𝑦 in d) are scaled up by a factor 50 and 5,

respectively.

the net magnetic moment was modeled. As expected from Eq. (3.142b), setting 𝐻𝑎′ = 0
leads to the disappearance of the gap at 𝐻DC = 0, with as predicted a gap frequency
ωΔ1 = 3.3GHz, and our equation then follows the gapless Eq. (3.142a). The offset
caused by the gap becomes negligible above ∼20mT. Because of the large ellipticity of
the precession, removing the out-of-plane anisotropy 𝐻𝑎 has no visible effect. Finally,
changing the sign of 𝐻ex to simulate a ferromagnet is not possible without modifying
Eq. (3.139), as it would violate our assumptions about the canting angle α: that the
equilibrium position of the magnetization vectors is symmetrical around the 𝑦 axis, and
that the small angle approximations are valid.

In the qAFMR mode, the sublattice magnetizations precess in the opposite direction
compared to the qFMR mode around their equilibrium position, and with the opposite
phase to each other. The net magnetization oscillates along the 𝑦 axis and the canting
angle oscillates around its equilibrium value. This mode of precession frustrates the
isotropic exchange, which is the largest contributor to the magnetic energy. This leads
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to a high precession frequency with a small dependency on𝐻DC. The exchange energy is
minimized by precessing mainly out of plane, where the configuration becomes purely
antiferromagnetic. The ellipticity ratio is |𝓂′

𝑧 / 𝓂′
𝑦| = 40.4 at 𝐻DC = 100mT. This

is smaller than in the qFMR mode, because both 𝐻𝐴∗ and 𝐻𝑑𝑚∗ favor the in-plane
component of the precession.
Setting𝐻DM = 0 reduces the precession frequency by a third, and has for consequence

to increase the ellipticity by a similar proportion. The frequency then matches the result
of Eq. (3.143c) for low applied fields, although the model of Borovik-Romanov and
Kreines [146] includes the DM interaction. Setting𝐻𝑎 = 0 has a similar effect. Only with
𝐻𝑎 = 𝐻DC = 0 is the precession almost completely out-of-plane. The frequency then
drops to 3.3GHz at 𝐻DC = 0, the same gap frequency as the qFMR mode. Because of
small in-plane component of the precession, removing the in-plane anisotropy 𝐻𝑎′ has
no visible effect.

3.4 Conclusion

With this overview of the theory of magnetism, we have seen from the ground up the
origins of the phenomena discussed in this manuscript in the context of our measure-
ments of FeBO3. Starting from the spin of electrons, we have discussed how the presence
of a magnetic moment in an atom depends of its electronic configuration, and how the
presence of a spontaneous magnetization in a material depends on the exchange interac-
tions between neighboring atoms. We have seen how the anisotropy of a ferromagnetic
sample determines the direction and magnitude of its magnetization, and calculated
its hysteresis curve. Finally, using the particular case of FeBO3, we have calculated the
dependency of the energy of a material on its magnetization, and derived its equilib-
rium configuration as well as its precession modes when the magnetization has been
disturbed.
In the next chapter, we will use our knowledge of magnetism to look deeper into the

dynamics of the spin. Instead of considering a single classic magnetization vector, we
will look at the magnetic moment carried by electrons as they travel through different
materials, and we will attempt to experimentally control this spin current to form
spintronic THz emitters.

119





4
Spintronic THz emitters

After using THz radiation to excite spin waves in Section 2.3.2, we now look into the com-
plementary process of using spintronic processes to generate THz radiation. Spintronic
emitters are an efficient and straightforward THz source consisting of a stack of alter-
nating magnetic and nonmagnetic materials, which emit a transient THz pulse when
they absorb an ultrafast laser pulse. Their bandwidth can reach up to 30 THz [21], which
would allows to excite magnons in different materials. We decided to use a deposition
technique that produces a large shape anisotropy on the magnetic layers, which confines
the magnetization along a chosen axis and allows us to experiment with the geometry
of the layers. In addition to exploring the parameters leading to a better THz output, we
aimed to contribute to a deeper understanding of the physics of the spintronic emitters.
Section 4.1 explains the current understanding of the physical processes behind the

THz emission and how we modeled the output of the samples. Section 4.2 details the
design of our emitters and the experimental setup. Sections 4.3.1 to 4.3.3 shows the
effect of the deposition of simple samples, while Sections 4.3.4 and 4.3.5 shows different
geometries with which we experimented.

4.1 Theory and model

The mechanisms of ultrafast demagnetization and the associated THz emission are still
a subject of discussion. The emission of THz radiation in the context of the ultrafast
demagnetization [4] of ferromagnetic thin films induced by femtosecond lasers was first
reported in 2004 [150, 151]. The first discovered mechanism to explain this emission
was the radiation by a time-dependent magnetic dipole in the ferromagnetic layer,
following 𝐸 ∝ d𝑀/d𝑡. This direct link between the magnetization dynamics and the
THz field sparked interest in THz emitters as probes to study the out-of-equilibrium
magnetization.
A particular area of focus was the question of angular momentum conservation

during the ultrafast demagnetization [152]. In multilayer structures, it was found that
a factor contributing to the demagnetization is the transfer of angular momentum out
of the ferromagnetic layer by a spin current [153]. This current takes the form of a
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superdiffusive transport of the spin-majority electrons [11, 154], which are able to leave
the ferromagnetic layer due to their increased mobility compared to the spin-minority
electrons. In 2013, a THz emission one order of magnitude stronger than the magnetic
dipole radiation was discovered [155], which is the electric dipole radiation of these
electrons when they are injected in a non-magnetic layer.
To increase our understanding of the experimental results of this chapter (Section 4.3),

we implemented a numerical model of spintronic THz emitters, which we will detail
step by step in the following sections.

4.1.1 Spin current

Thematerial that we use as source of the spin current is a ferromagnetic film of pure iron
with a typical thickness of 3.5 nm. As we have seen in the previous chapter, the valence
bands of iron contain seven electrons per atom, among which in average 3.9 and 2.32
are found in the t2g and eg bands respectively [156]. An average of 0.91 spin-minority
(down) electron is found in the former, leading to a net magnetic moment of 2.2μB at
room temperature.
Thermodynamical models are used to simplify the description of the dynamics of

ultrafast demagnetization and the generation of a spin current. The three-temperature
model describes the heat distribution between three coupled reservoirs: the lattice with
temperature 𝑇l, the net charge of 3d and 4sp electrons with temperature 𝑇e, and their
net spin with temperature 𝑇s [4, 152]. The coupling values used in this work are given
in Table 4.1. The diffusion of the hot electrons is modeled phenomenologically by a
gradient of chemical potential. The spin voltage 𝑉𝑠 = (μ↑ − μ↓)/𝑒, which is the difference
between the chemical potential of both spins, quantifies the local spin polarization.
When a laser pulse is absorbed by the ferromagnetic (FM) layer, it leads to its de-

magnetization within ∼100 fs. The photoexcitation of electrons near the Fermi level
by 1.55 eV photons creates an out-of-equilibrium electronic distribution. Although the
temperature of the excited electrons reaches well above the Curie energy, the average
thermal energy is an order of magnitude lower than the exchange splitting and does
not destroy the short-range magnetic order of Fe [157]. While spin-majority electrons
decay without change of spin, spin-flip scattering accompanied by magnon emission
dominate the decay of the spin-minority electrons [158], which is the main channel of
ultrafast demagnetization in iron. Since spin waves are carried by the localized electrons,
they in turn cause an increase of the orbital angular momentum via the spin-orbit cou-
pling, which is quenched by the crystal field and leads to the further transfer of angular
momentum to the lattice [159, 160].
At the same time, the excited electrons propagate at the Fermi velocity in a superdif-

fusive motion [11, 154], undergoing regular elastic scatterings that randomize their
momentum. Through the inelastic scattering events mentioned above, they decay to less
mobile bands and eventually stop contributing to the transport. Above the Fermi level,
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the spin-majority bands have a free electron-like dispersion, while most of the spin-
minority bands are narrow. Consequently, the group velocity of spin-majority electrons
is significantly higher [161]. They reach an homogeneous density within ∼100 fs [162],
which ends the demagnetization. The slow transport of the spin-minority electrons per-
sists for ∼500 fs until they thermalize [11]. If the demagnetizing FM layer is in contact
with a non-magnetic (NM) metallic layer, electrons can travel from one material to the
other. The diffusing wavefront of fast spin-majority electrons leads to a sharp peak of net
spin-polarized current into the NM layer. It is followed by a longer, weaker current of
the opposite spin polarization, as the spin-majority electrons back-flow towards the FM
layers [155] and finally the slow spin-minority electrons take over.
The extent of the angular momentum transport depends on the relative quantity

and velocity of the spin-majority and minority electrons. The spin polarization of the
ensemble of conduction electrons is σ = (𝑛↑ − 𝑛↓) / (𝑛↑ + 𝑛↓), where 𝑛 is the density of
electrons of the given spin. The charge and spin currents are respectively defined as:

#»

𝒋 𝒄 =
#»

𝒋 ↑ +
#»

𝒋 ↓ , (4.1)

#»

𝒋 𝒔 =
#»

𝒋 ↑ −
#»

𝒋 ↓ , (4.2)

where
#»

𝒋 = σ0
#»𝑬 − 𝑒𝐷∇𝑛 = 𝐷∇μ is the current density of electrons of one spin, 𝐷 their

diffusion coefficient and μ their chemical potential. The initial population difference
of the electrons near the Fermi level, coupled with the higher diffusion velocity of
spin-majority electrons, make iron efficient for generating spin currents.
To simulate spintronic THz emitters, we calculated the amplitude of the spin current

following the model of Rouzegar et al. [163]:

𝑗𝑠(𝑡) ∝ Φ(𝑡) (𝐴es exp(−Γes𝑡) − 𝐴el exp(−Γel𝑡)) ⊗ 𝑃(𝑡), (4.3)

with:

𝐴es = (Γes − 𝑅Γel) / (Γes − Γel) , (4.4a)

𝐴el = (Γel − 𝑅Γel) / (Γes − Γel) , (4.4b)

Γel = (𝐺𝐹
el + 𝐺𝑁

el ) / (𝐶𝐹
𝑒 + 𝐶𝑁

𝑒 ) , (4.4c)

𝑅 =
𝐶𝐹
𝑒 + 𝐶𝑁

𝑒

𝐶𝐹
𝑒 + 𝐶𝑁

𝑒 + 𝐶𝐹
𝑙 + 𝐶𝑁

𝑙
. (4.4d)

Φ(𝑡) is the Heaviside step function representing the instantaneous illumination by the
infrared (IR) pump at 𝑡 = 0; the convolution by the pump profile 𝑃(𝑡) produces the actual
distribution of the pumping in time. The decay of the spin current is controlled by the
electron-spin (τes) and electron-lattice (τel) relaxation times, with Γ = 1/τ. The relaxation
constant Γes was fitted to match the peak frequency of an experimental THz spectrum,
while Γel is calculated in Eq. (4.4c) from the electron and lattice heat capacities and
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Table 4.1: Input parameters for Eq. (4.3). The values of 𝐶𝑒, and 𝐺el are taken at 𝑇𝑒 =
5000K for Fe, 4000K for Pt and 7000K for W.

Unit Fe Pt W

𝐶𝑒 106 Jm−3K−1 2.25 [167] 3 [168] 0.7388 [169]

𝐶𝑙 106 Jm−3K−1 2.2 [165] 2.85 [168] 2.4554 [169]

𝐺el 1017Wm−3K−1 38 [170] 1.3 [170] 1.3 [170]

λ 10−9m - 1.2 [19] 1.4 [19]

ϑH 1 - 0.051 [171] −0.33 [172]

their couplings, using the values given in Table 4.1. Those values are heavily dependent
on the actual electronic temperature, which we previously calculated using the three-
temperature model, following a system of equations adapted from Kirilyuk, Kimel, and
Rasing [164] and Chimata et al. [165]:

d𝑇e/d𝑡 =
1
𝐶e

(−𝐺el (𝑇e − 𝑇l) − 𝐺es (𝑇e − 𝑇s) + 𝑃(𝑡)) ,

d𝑇s/d𝑡 =
1
𝐶s

(−𝐺es (𝑇s − 𝑇e) − 𝐺sl (𝑇s − 𝑇l)) ,

d𝑇l/d𝑡 =
1
𝐶l
(−𝐺el (𝑇l − 𝑇e) − 𝐺sl (𝑇l − 𝑇s) − ℎπ𝑤2

0 (𝑇l − 𝑇BG)) ,

(4.5)

where ℎ represents the losses to the environment, 𝑃(𝑡) the instantaneous laser power, 𝑤0
the beam radius and 𝑇BG the environment temperature, considered equal to the steady-
state temperature of the samples. We published the values we used in this model in
Ref. [166].

4.1.2 Inverse spin Hall effect and THz emission

In the bulk of the NM material, the spin current is converted into a transverse charge
current by the inverse spin Hall effect (ISHE) [173–175]. In materials with strong spin-
orbit coupling, electrons scatter preferentially in one direction or the other depending
on their spin. While the spin Hall effect transforms a spin-neutral charge current into
a spin current by deviating electrons of both spins in opposite directions, the inverse
effect transforms the spin-polarized current coming from the FM layer into a net charge
current in the plane of the NM layer (see Fig. 4.1)
The spin Hall angle ϑH quantifies the efficiency of the conversion between the two

currents according to:
#»

𝒋 𝒄 = ϑH
#»

𝒋 𝒔 ∧ #»𝛔 (4.6)
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Figure 4.1: Spin Hall effect (left) and inverse spin Hall effect (right).

where #»𝛔 = # »𝑴 / 𝑀𝑠 is the spin polarization vector of the spin current. The best THz
emission is thus obtained when the spin current is fully polarized (σ = 1) and for NM
materials with a high ϑH.
While the FM layer also has a non-zero spin Hall angle [176], the effect is negligible

due to the quenching of its angular momentum: ϑFe ≈ −1.36 × 10−3 [155] and ϑPy ≈
3.4 × 10−4 [177], while, taking the average of the values compiled for room temperature
in Refs. [178, table 1, 179, table 14.1], ϑW ≈ −33% and ϑPt ≈ 4.2 ± 2.9%. Hence we only
consider the spin-to-charge current conversion in the bulk of the NM layer.
However, the FM|NM interface is not transparent and the transmission of the spin

current into the NM layer is highly dependent on the materials and on the preparation of
the sample [180]. The breaking of the lattice symmetry at the interface causes scattering,
creating an interfacial spin-mixing resistance that reduces the spin polarization of the
transmitted spin current by a significant fraction, for example by 60% for Co|Pt [181,
182]. In addition, structural imperfections at the interface influence the local spin-orbit
coupling, possibly inverting the sign of the interfacial spin-to-charge conversion [183].
To take these different effects into account, we assume that as our spintronic THz
emitters are manufactured identically (with the exception of the deposition incidence,
see Section 4.2.1.1), the interfacial transmission only depends on the materials.
To model the THz emission, we thus replace Eq. (4.6) by:

𝑗𝑐 = 𝑡Fe|xϑH𝑗𝑠 (4.7)

where 𝑡Fe|x contains the interfacial emission and current transmission from the Fe layer
to the NM layer 𝑥. We extract the relative values of 𝑡Fe|W and 𝑡Fe|Pt in Section 4.3.3.
The transient current in the NM layer emits THz radiation, which can be calculated

using the inhomogeneous 1D Helmholtz equation:
#»𝛁 ∧ ( #»𝛁 ∧ #»𝑬 (ω)) + 𝑘2(ω) #»𝑬 (ω) = −

𝑍0ω
𝑖𝑐 𝑗𝑐(𝑧, ω)

( 𝜕
2

𝜕𝑧2 + 𝑘2) 𝐸𝑦(ω) + 𝑘2(ω) 𝐸𝑦(ω) = −
𝑍0ω
𝑖𝑐 𝑗𝑐(𝑧, ω) = −δ(𝑧) 𝑞(ω)

(4.8)

where δ(𝑧) is the Dirac delta function and 𝑞(ω) is the spectrum of the point source at
𝑧 = 0. The solution for the electric field emitted by the point source is its convolution
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Figure 4.2: Schematic representation of the field addition: the THz field emitted by
each current

#»

𝒋 𝒄 is propagated from the interface where it is generated until
outside the sample. Then all fields are superposed, with a sign matching the
orientation of the current.

with the Green function 𝐺(𝑧):

𝐸(𝑧, ω) = 𝐺(𝑧) ⊗ δ(𝑧) 𝑞(ω) =
𝑖 exp(−𝑖𝑘|𝑧|)

2𝑘
ω

𝑖ϵ0𝑐2
𝑗𝑐(𝑧 = 0, ω), (4.9)

or at the location of the point source:

𝐸(ω) = 𝑗𝑐(ω) / (2𝑛𝑐ϵ0) . (4.10)

To take into account the spacial dependency of the emission, we consider that the
inverse spin Hall effect (ISHE) depletes the spin current following an exponential decay
law, using as constant the electron mean free path λ [184]: 𝑗𝑐(𝑧, ω) = 𝑗𝑐(𝑧0, ω)𝑒−(𝑧−𝑧0)/λ

where 𝑧0 is the location of the interface. The integrated emission in the NM layer of
thickness 𝐿 is then:

𝐸(ω) = ∫
𝑧0+𝐿

𝑧0

𝑗𝑐(𝑧0, ω)
2𝑛𝑐ϵ0

𝑒−(𝑧−𝑧0)/λ d𝑧 =
𝑗𝑐(𝑧0, ω)
2𝑛𝑐ϵ0

λ (1 − λ𝑒−𝐿/λ)

=
𝑡Fe|xϑH
2𝑛𝑐ϵ0

𝑗𝑠(ω)λ (1 − λ𝑒−𝐿/λ) .

(4.11)

4.1.3 THz propagation and EOS

After calculating the emitted THz field in the previous section, we now address its
propagation through the sample. To take into account the many reflections of the field
on the multiple layers, we use a transfer-matrix method, adapted to the transmission of
a field which is not incident on the sample but has its source inside. The modifications
of the standard transfer-matrix model are detailed in Appendix C. After propagating the
field from each individual THz sources to outside the sample, the total field is added up,
taking into account the relative direction of the charge currents (see Fig. 4.2).
To allow the use of the transfer-matrix method, in which the electric field is only

known at the interfaces, we consider that the full THz emission given by Eq. (4.11) is
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Figure 4.3: a) Comparison between the THz waveforms of the sample Fe*|Pt at the emis-
sion point (calculated) and outside the sample (measured). b) Transfer
functions of the propagation in the sample 𝑇SE and of the EOS crystal used
in the measurement 𝑇EOS (both simulated), as well as the experimental total
transfer function of the setup 𝑇prop𝑇EOS. The fringes in the transfer functions
come from the internal reflections in the materials.

located at the FM|NM interface. We verified that this approximation does not influence
the calculated field by approximating the exponentially distributed emission using
fictitious NM|NM interfaces within the NM layer. Due to the transparency of the layers
for THz radiation, the difference was negligible.
The propagation of the emitted THz field through the setup is then calculated following

the transfer functions given by Faure et al. [185], taking into account the transmission
through the IR filter, the frequency-dependence of the collection and refocusing, as
well as the electro-optic sampling (EOS) setup, which is detailed in Section 4.2.2.4. The
refractive indices of the relevant materials are listed in Appendix A.
Fig. 4.3 shows the effect of different transfer functions distorting the initial THz

field. The lower end of the spectrum is better transmitted by the sample. Most of the
propagation through the setup has a low impact, until the THz pulse reaches the EOS
crystal, where it is sampled by the probe. While the spectrum of the simulated THz
field reaches 10 THz, the 5.3 THz phonon of ZnTe is responsible for a smaller measured
bandwidth of 3 THz.
The total equation describing the THz emission is thus:

𝑆(ω) = 𝐸(ω) 𝑇SE(ω) 𝑇prop(ω) 𝑇EOS(ω) (4.12)

with 𝐸(ω) given by Eqs. (4.3), (4.7) and (4.11), and where 𝑇SE(ω) is the transfer function
of the propagation out of the sample; 𝑇prop(ω) the propagation of the THz radiation from
the position of the sample to the one of the EOS crystal, and 𝑇EOS(ω) the measurement
by electro-optic sampling.
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To ensure the best comparison between the measurements and the simulations of
different samples, we measured experimentally the value of 𝑇prop(ω) 𝑇EOS(ω) as the ratio
of an experimental signal 𝑆(ω) by the corresponding simulated 𝐸(ω) 𝑇SE(ω). As the
distortion of the THz waveform during EOS is sensitive on the exact mounting of the
crystal, this ensures that simulated waveforms look similar to the measured waveforms
if the modeling of the sample is correct.

4.2 Experimental setup

One of the aspirations of this project was to experiment with emitters containing several
FM layers and control their relative magnetization, with the objectives of increasing the
efficiency of the THz generation and observing the consequences on the spin current.
This experimental uncoupling of the FM layers was achieved by changing the conditions
during their fabrication. We now describe the design and fabrication method of the
spintronic THz emitters, then the measurement setup.

4.2.1 Sample design and fabrication

Several approaches exist to control the relative magnetization of two FM layers: using
the Ruderman-Kittel-Kasuya-Yosida interaction where the sign of the exchange constant
depends on the distance between them [186], using exchange-coupled layers [187], or
pinning the magnetization of a single layer by contact with an antiferromagnet [188].
These three approaches limit the flexibility of designing the emitters as they place
constrains on the width or material of the NM layers.
As an alternative, it has long been known that the deposition of FM materials such

as iron [189] and Permalloy [190] at a non-normal angle of incidence induces uniaxial
anisotropy in the film plane. In 2016, Schlage et al. [191] introduced a new method to
control the magnetization of a FM layer based on oblique incidence deposition (OID).
By depositing these layers at oblique incidence, they can be given a tunable anisotropy
independently of the other layers, allowing to control the magnetization of each FM
layer individually without restricting the design of the sample.

4.2.1.1 Magnetron sputtering deposition

All spintronic THz emitters we prepared by magnetron sputtering deposition, on
25mm × 25mm, 635 µm-thick (0001)-plane double-polished Al2O3 wafer substrates.
A strong voltage is applied on the sputtering gas, typically argon, until it ionizes into a
plasma. Above the breakdown voltage, it generates a self-sustaining current as plasma
ions free new electrons, which in turn ionize new atoms of the gas. The sputtering
target is placed in front of the cathode, from which accelerated ions knock out atoms.
In magnetron sputtering, alternating magnet poles behind the target create a magnetic
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𝜃𝛽deposition

Figure 4.4: Self-shadowing creating peaks and valleys during the sputtering at oblique
incidence. The angle θ represents the deposition angle and β the growth
angle.

field which traps the plasma above it, while the neutral atoms flying out from the tar-
get are unaffected. The atomic vapor then condensates on the substrate, where it is
adsorbed [192, chapter 1]. The substrate is usually parallel to the target to equalize the
distribution on the surface (normal incidence).

The adsorbed atoms are named ad-atoms and arrive on the surface at random po-
sitions. Depending on their interactions with other atoms and the surface, they will
tend to either cluster into 3D islands or grow into 2D layers. Their mobility depends
on the sputtering conditions, particularly the deposition rate and the substrate tem-
perature. A typical deposition rate for magnetron sputtering is 107m−2 s−1, equivalent
to 10−2monolayer/s [192, chapter 8]. As iron is deposited under its melting point at
room temperature and the deposition rate is relatively high, ad-atoms have a low mo-
bility, which prevents them from diffusing towards sites with low energy and forming a
monocrystalline film. In this island regime, nucleation starts instead at many points on
the film, leading to a polycrystalline structure. They grow and coalesce laterally, forming
a porous network on the surface, as illustrated in Fig. 4.4. Above a thickness of 10 nm
to 20 nm, vertical growth takes over and the islands start forming fibrous columns, each
with a random crystallographic texture.

If the deposition is made at oblique incidence, the ad-atoms tend to be intercepted by
the highest structures, which shadow lower structures behind them, leading to a self-
perpetuating order. As theymostly attach to the front of the structures, the columns grow
tilted towards the deposition direction [193, 194]. Under θ = 60° of incidence [195], the
growth angle β of the columnsmostly follows the empirical relation 2 tan β = tan θ [196].
Above 60°, no accurate universal empirical rule exists [197].

Except when otherwise indicated, the polar angle of deposition is ϕ = 0°, defined with
respect to an edge of the square substrate. The sample is then rotated in-plane by 180°
halfway through the deposition of each FM layer to prevent the formation of a thickness
gradient.
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4.2.1.2 Formation of the magnetic anisotropy

Low pressure reduces the scattering rate of the sputtered atoms, increasing the direction-
ality of OID. Our samples are depositedwith a base pressure under 7 × 10−7mbar. Details
about the deposition chamber can be found in [198, section 4.1]. For most samples, the
FM layers consist of a 3.5 nm-thick layer of iron. At this thickness, the columns are not
yet formed. Instead, one can observe grains that stretch in the direction transverse to
the incident plane, as they are free to grow laterally but are affected by self-shadowing in
the deposition direction [199, 200]. The iron is in a polycrystalline α-Fe phase, although
lattice defects are expected due to the low thickness.

As shown in Fig. 4.5, this surface roughness causes the apparition of a stray and
demagnetizing field (see Section 3.1.3) when the magnetization is in the incidence
plane. This additional magnetostatic energy adds an in-plane component to the initial
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Figure 4.5: Simulated [201] dipolar field (right column) in the deposition plane for a
given uniform magnetization (left column), calculated at the center of a
200 nm × 200 nm magnetic layer. The thickness of the layer varies between
1.5 nm to 2.5 nm in a pattern of waves parallel to the 𝑦 axis on the upper
surface. The arrows and colors represent respectively the direction and
magnitude of the fields. The situation where # »𝑴 is perpendicular to the
deposition plane (e) produces no stray field (| #»𝑯| < 3 × 10−4) compared to
when𝑀 ∥ 𝑧 (a) and𝑀 ∥ 𝑥 (c), and is thus privileged: 𝑦 is the easy axis.
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additional shape anisotropy. Similarly to Eq. (3.124), the in-plane uniaxial anisotropy
constant is 𝐾 = μ0𝑀2 (𝑁𝑥𝑥 − 𝑁𝑦𝑦) / 2, where the demagnetization tensor components
are a function of the average correlation length of the surface thickness [199]. As the
grains elongate laterally, 𝑁𝑦𝑦 decreases, while the self-shadowing increases 𝑁𝑥𝑥. The
anisotropy is weak for low incidence angles, then increases continuously in the range
of 45° to 85° [191]. To be able to switch the relative magnetization of two ferromagnetic
layers in the same sample, we thus typically deposited the first one at 60° and the second
at 80°.

4.2.1.3 Sample design

To increase the THz output, most samples have more layers than the minimal structure
of substrate|FM|NM. Seifert et al. [21] showed that the performance of the emitter is
increased when a second NM layer is added to make use of the spin current flowing
through both interfaces. In this situation,

#»

𝒋 𝒔 ∧ #»𝛔 in Eq. (4.6) has the opposite sign. To
avoid that

#»

𝒋 𝒄 also reverses its sign and the THz emission from both interfaces superpose
destructively, we need to choose two NM layer with opposite spin Hall angles ϑ, as shown
in Fig. 4.6a.
We make use of this principle to design samples with a second FM layer, with a

substrate|NM|FM|NM|FM|NM structure. We alternate the NM materials as described
before, which ensures the coherent emission within each NM|FM|NM substructure.
However, within the central FM|NM|FM substructure, spin currents with opposite signs
enter the same NM layer. Here, to compensate the change of sign of

#»

𝒋 𝒔 , the only free
parameter is #»𝛔 . In other words, for the two FM layers to emit THz radiation coherently,
they must be magnetized in opposite directions, as shown by Fig. 4.6b. This is achieved
by imparting them different surface anisotropies, so that their magnetizations switch
under the application of different magnetic fields and there is a range in which they have
an antiferromagnetic (AFM) alignment.
The ISHE does not occur in MgO, which is an insulator. In some samples, we inserted

a MgO layer between FM and NM layers to prevent the transmission of the spin current,

#»𝒋 𝒔
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Figure 4.6: Scheme of a) a trilayer sample and b) a five-layer sample. The adjacent NM
layers have opposite spin Hall angles ϑ to ensure a coherent THz emission.
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Figure 4.7: Schematized setup for the measurement of the spintronics emitters. The
pump arm is chopped from 3kHz to 1.5 kHz and generates THz radiation in
the sample before being separated by the germanium filter (Ge). The probe
arm is reduced to a smaller beam diameter in a double telescope (tel.) and
compressed in several steps by cascaded stages of SPM in a fused silica (FS)
window and recompression by dichroic mirrors (DCMs). The THz is filtered
from its horizontal polarization and is focused by a pair of off-axis parabolas
(OAP) into the electro-optics sampling crystal (EOS). The probe is there
superposed to the THz and its polarization rotation is measured by a balanced
detector.

but kept the NM layer in order to maintain a similar heat profile in the sample. We
additionally used MgO layers to match the thickness of samples whose output we
wanted to compare, so the propagation length of the IR and THz beams would be similar
from sample to sample. The structure of all samples used in this chapter is detailed in
Table 4.2. The names used to refer to the samples indicate the materials of their metallic
layers, excluding the substrate and other insulating layers. In the case of the five-layer
samples, for which the structure is symmetrical, we indicate the lower half. Layers
deposited at oblique incidence are identified with an asterisk.

4.2.2 Laser setup

The spintronic emitters setup uses the 800 nm, 35 fs, 3 kHzTi:sapphire laser system as the
tilted pulse front THz setup described in Chapter 2. A combination of a half waveplate
and a thin film polarizer (TFP) is used to split the beam into a pump and a probe beams,
such that 200 µJ are always available for the probe arm. The setup is schematized in
Fig. 4.7.
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Table 4.2: Structure of the spintronic THz emitters fabricated for this work. The substrate of all samples is 365 µm Al2O3. The numbers in
brackets indicate the incidence angle θ of deposition of the FM layers. The polar deposition angle is always φ = 0, except in the
case of [Fe90°|W]2 (φ = 45° and − 45°).

Sample Material [θ(°)], thickness (nm) Figs.

W|Py|Pt W 2.2 Py[0] 2.4 Pt 2.1 4.12

W|Py*|Pt W 2.0 Py[60] 1.8 Pt 2.1 4.12

Fe*|Pt MgO 2.0 Fe[60] 3.5 Pt 2.0 4.12, 4.18

Fe*|W MgO 2.0 Fe[60] 3.5 W 2.0 4.12, 4.14, 4.17–4.19

Fe|W MgO 2.0 Fe[0] 3.5 W 2.0 4.14

[Pt|Fe*]2 Pt 2.0 Fe[60] 3.5 MgO 4.0 Fe[80] 3.5 Pt 2.0 4.12, 4.16, 4.17, 4.19

[Pt|Fe*|W]2 Pt 2.0 Fe[60] 3.5 W 4.0 Fe[80] 3.5 Pt 2.0 4.16, 4.17, 4.19

[W|Fe*|Pt]2 W 2.0 Fe[30] 3.5 Pt 5.0 Fe[80] 3.5 W 2.0 4.16

MgO|Fe*|MgO MgO 2.0 Fe[60] 3.5 MgO 2.0 4.17

[Fe*|W]2 MgO 2.0 Fe[60] 3.5 W 4.0 Fe[80] 3.5 MgO 2.0 4.17

[Pt|MgO|Fe*|W]2 Pt 2.0 MgO 2.0 Fe[60] 3.5 W 4.0 Fe[80] 3.5 MgO 2.0 Pt 2.0 4.17

[Fe90°|W]2 MgO 2.0 Fe[60] 3.5 W 4.0 Fe[80] 3.5 MgO 2.0 4.22
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4.2.2.1 Magnetic field

To control the magnetic field on the spintronic THz emitters, the samples were mounted
on a copper holder at the center of the gap of an electromagnet. Because the iron core
of the electromagnet has a certain hysteresis, the electrical current that drives it should
always be adjusted by following the same path in order to reproducibly reach the same
magnetic field. Before each measurement, the electromagnet is systematically driven to
±4A, the largest one delivered by the power supply, to saturate its magnetization. Its
current is thenmonotonically decreased or increased, respectively, to adjust themagnetic
field.
For these two paths along the hysteresis curve to the electromagnet, we calibrated the

correspondence between the current and the horizontal component of the magnetic field
at the center of the sample holder. A range of −40mT to 40mT is sufficient to switch
the magnetization of all samples. In this range, the relationship is linear with an offset
depending on the direction of the current swipe. The calibration is displayed in Fig. 4.8.

4.2.2.2 IR pump

After the separation of the laser beam into a pump arm and a probe arm, the collimated
pump beam is propagated by the distance needed to match the path length of the probe,
and chopped to a repetition rate of 1.5 kHz to improve the detection of the THz signal.
In order to illuminate the sample homogeneously, the center of the beam profile, which
is approximately Gaussian, is truncated to a diameter of ∼5mm by an iris immediately
before the sample. This ensures the illuminated region is always the center of the sample,
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Figure 4.8: Correspondence between the chosen current in the electromagnet and the
magnetic field at the center of the sample holder. The linear fits (dotted lines)
are calculated from the corresponding points with markers.
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where we calibrated the magnetic field.
Duringmostmeasurements, the energy in the pumpwas in the order of 1mJ. Typically

50% to 75% of it are absorbed by the metallic layers of the sample. We calculated the
relative power absorbed in each layer𝑚 from the difference of the Poynting vectors at its
interfaces [202]:

𝑃𝑚(𝑡) = 𝑆𝑚 − 𝑆𝑚+1 (4.13)

𝑆𝑚 = Re(
𝑛𝑚
μ𝑚

(𝐸∗→ + 𝐸∗←) (𝐸→ − 𝐸←)) (4.14)

where 𝐸 is the complex left- or right-propagating IR electric field at the beginning of the
layer 𝑚, and is obtained from a transfer-matrix calculation. Since the spin current is
generated by the heat of the absorbed pump and the samples are not birefringent, the
polarization of the beam has no influence.
After the sample, the transmitted part of the pump copropagates with the generated

THz field. To remove it, a 5mm-thick germanium filter is placed before theTHz collection
optics.

4.2.2.3 IR probe

The probe arm of the laser system is used to sample the emitted THz radiation. We de-
signed the setup to be able to resolve a spectrum potentially extending up to 30 THz [21].
The probe pulses, which are 35 fs long in the best conditions, can at most resolve half of
this bandwidth and thus require further compression.
The compression setup was published in Calendron et al. [203]. Its concept is to

increase the bandwidth of the beam by self-phase modulation (SPM), then recompress
the pulse on chirped mirrors. For more efficiency, this is repeated three times. To avoid
introducing dispersion on the beam between the compressor of the laser system and the
additional compression setup, the probe arm is the one reflected on each TFP splitting
the beam. Its energy is maintained at 200 µJ.
Before the compression, the beam diameter 𝑑 is reduced from 6mm × 7mm to 1.5mm

by two successive telescopes to reach a sufficient intensity in the FS plate. These are
made of 4 concave silver mirrors of focal length of respectively −1000mm, +300mm,
−1500mm and +400mm. Modeling the input pulse as Gaussian with a FWHM duration
of τ = 35 fs and the energy 𝐸 = 200 µJ, the peak intensity of the probe beam is 𝐼0 =
8𝑃0 / π𝑑2 = 6.1 × 1015Wm−2, where 𝑃0 = 2𝐸√ ln(2) / π / τ.
The nonlinear medium used for self-phase modulation is an uncoated 2mm-thick

fused silica plate. Self-phase modulation is a third-order nonlinear process, hence the
refractive index changes with the square of the field amplitude:

𝑛2 = 1 + χ(1) + χ(2)𝐸 + χ(3)𝐸2. (4.15)

Because of the inversion symmetry, the second-order susceptibility χ(2) vanishes in
centrosymmetric or noncrystalline materials such as fused silica. The refractive index
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Figure 4.9: e) Spectrum and f) beam profile of the probe beam before and after the
compression setup, retrieved from the FROG traces in a–d, as well as the
corresponding instantaneous frequency shift Δ𝑓.

can thus be separated into its first-order component and intensity-dependent component:
𝑛(𝑡) = 𝑛0 + 𝑛2 𝐼(𝑡). For a complex index 𝑛 = 𝑛′ − 𝑖κ, the nonlinear refractive index 𝑛2 is
linked to the susceptibility χ(3) by [204]:

𝑛2 =
3

4𝑛20𝑐ϵ0
χ(3) ((χ(3)𝑅 +

κ0
𝑛′0
χ(3)𝐼 ) − 𝑖 (χ(3)𝐼 −

κ0
𝑛′0
χ(3)𝑅 ))

≈ 3
4𝑛20𝑐ϵ0

χ(3) in a lossless material (κ = 0).
(4.16)

In the case of fused silica, 𝑛2 = 2.43 × 10−16 cm2W−1 [205]. Since the intensity of a
laser pulse varies with time, the refractive index of the fused silica plate varies too, which
induces a time-dependent phase shift. During the propagation of the pulse through
a length 𝐿 = 2mm, it accumulates a nonlinear phase δ2 = 𝑛2𝐼𝐿ω / 𝑐. The induced
frequency shift is then approximately:

Δ𝑓(𝑡) ≈ −𝜕δ2𝜕𝑡 = −
𝑛2𝑓0𝐿
𝑐

𝜕 𝐼(𝑡)
𝜕𝑡 . (4.17)
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As shown in Fig. 4.9, the initial pulse has in practice a full width half maximum (FWHM)
duration of τ = 37.5 fs and a FWHM bandwidth of 18.7 nm centered at 𝑐 / 𝑓0 = 817nm.
The corresponding instantaneous frequency shift reaches a maximum of 54 nm.
The peak intensity of the probe incident on the fused silica wafer is above the critical

power for self-focusing, which is 𝑃crit = αλ2 / (4π𝑛0𝑛2) = 2.8 × 106W, with α = 0.148
for a Gaussian beam. When the beam profile is inhomogeneous, this tends to split it into
separate filaments and make the alignment of the probe fluctuate with its energy. It is
therefore important for the measurements to maintain a clean beam profile. For this,
we placed an almost-closed iris after the fused silica wafer, which removes the parasitic
filaments.
Finally, the dispersed beam is recompressed by being reflected six times on five

different dichroic chirped mirrors (DCMs). The first two of them are used after each
of the three passes through the fused silica wafer. They compensate each a group
delay dispersion of 54 fs2 per bounce, equivalent to 1.5mm of fused silica. The near-
recompression allows the intensity to remain high for the next pass through the wafer,
enabling the further broadening of the spectrum. The remaining dispersion after the
third pass is balanced by three DCMs compensating 26 fs2 per pair.
As shown in Fig. 4.9, we measure after recompression a bandwidth of 68.9 nm and

duration of 21.3 fs FWHM. This would allow the resolution of frequencies reaching
23 THz.

4.2.2.4 THz measurement

As illustrated in Fig. 4.7, the THz emitted by the spintronic emitters on the side opposed
to the incident pump is collected and focused by two off-axis parabolas (OAPs) with
reflected focal lengths of 6" and 4", respectively. We measured the THz energy with
the pyroelectric detector MPY-RS from WiredSense, with a sensitivity at 1.5 kHz of
14.6V µJ−1. An additional 2mm-thick polyethylene cover, measured to have a THz
transmission of 60%, was used to filter the remaining IR radiation, bringing the sensitivity
down to 8.8V µJ−1.
Our first samples were CoFeB|Pt bilayers, giving a THz signal in the range of 20mV to

50mV when pumped by 1mJ IR pulses. The emitted THz energy was thus 4.0 ± 1.7 nJ.
This indicates that IR-to-THz conversion efficiency of the setup is of the order of
∼4 × 10−6.
Due to the low THz energy and our interest in measuring its spectrum, the rest of the

measurements are done by electro-optic sampling (EOS). The second OAP has a centered
hole with a 3mm diameter on the reflecting surface, allowing the compressed probe to
propagate collinearly to the converging THz beam and overlap with the THz focus.
Asmentioned earlier, the intensity profile of the pump beam on the spintronic emitters
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eff according to Eq. (B.4).

is cut to approximately 5mm diameter by an iris. Since the THz is emitted proportionally
to the absorbed pump energy as shown by Eq. (4.3), the emitted THz beam size can be
approximated to have the same diameter. Assuming it has a𝑀2 of 1, its divergence is 2°
and the OAPs should collect the entire beam. The estimated diameter of the THz focus
on the EOS crystal is 3.3mm. The compressed probe is not focused to avoid reintroducing
dispersion.
The mechanisms of EOS and balanced detection are detailed in Appendix B. In the

EOS crystal, the polarization of the probe rotates proportionally to the amplitude of
the overlapping THz electric field. The delay of the probe is thus scanned to measure
the complete THz waveform. The acquisition and control of the delay are made using
Labview. The choice of EOS crystal controls the measurable THz bandwidth, as shown
by Fig. 4.10 which compares the crystal that were available for the experiment. The
measurements in Section 4.3 were performed with the 500 µm-thick ZnTe crystal, as
we first thought that the resonance of GaSe at 0.6 THz would prevent the measurement
of the low frequencies. The experimental waveforms shown in this chapter are not
corrected to account for the frequency-dependency of 𝑇EOS(ω), as this was not necessary
to compare them.

4.3 Experimental results

We now present the different experiments we performed with spintronic THz emitters.
In Sections 4.3.1 and 4.3.2, we look at the influence of the pump energy and other
non-magnetic-related effects on the emitted THz field. In Section 4.3.3, we compare
samples deposited with and without the OIDmethod described in Section 4.2.1. We then
introduce samples with several FM layers and study their behavior.
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4.3.1 Influence of the pump energy

Since the spin current is triggered by the absorption of the pump in the FM layer, a
higher pump energy is expected to lead to a higher THz amplitude according to Eq. (4.3).
However, increasing the temperature of the FM layer might lead to a reduction of its
magnetization (see Section 3.2.4.4). Using a W|Py*|Pt sample, we increased the fraction
of the laser energy going into the pump beam while keeping the energy of the probe
beam constant. The magnetization of the sample was saturated by applying a magnetic
field of −3mT at the center of the sample. For each pump energy, we measured the
temperature of the sample using an IR camera and recorded 1 to 3 EOS traces of the
emitted THz while the temperature stabilized.
Figs. 4.11a and 4.11b shows the THz peak-to-peak amplitude versus the pump fluence

and the emitter temperature. The signal amplitude is better correlated with the fluence
than with the lattice temperature, mainly due to the difficulty of accurately measuring
the temperature of the FM layer at the pump location. We see that the signal initially
increases linearly with the fluence as expected, but quickly saturates around 300 µJ cm−2,
above which the THz output decreases. The fluence is too low to attribute the output re-
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Figure 4.11: Influence of the pump fluence and spintronics emitters temperature on a–b)
the THz amplitude and c) the THz waveform measured from a W|Py*|Pt
sample. The colors indicate the corresponding energy in the pump pulse.
The insert in b) is an example of an image from the infrared camera used to
measure the temperature of the spintronic emitters (yellow square).
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duction to optical damage [206] or the saturation of the ultrafast demagnetization [207].
Saturation was reported in different spintronic emitters by Zhang et al. [208] at fluences
in the order of 1mJ cm−2 to 1.5mJ cm−2, and attributed the saturation of the spin ac-
cumulation in the NM layer preventing the spin transport [155]. Their model does not
reproduce the subsequent decrease of the THz amplitude in Fig. 4.11a. Since the Curie
temperature of Py films is strongly reduced at low thicknesses [209], we suspect it is
caused by the decrease of the saturation magnetization with the temperature of the
sample.
Fig. 4.11c shows the corresponding THz waveforms measured by EOS, without com-

pensating for the EOS-induced deformation. We can see that in addition to the amplitude,
the change in energy is accompanied by a slight change in carrier-envelope phase (CEP).
The total thermal expansion experienced by the 6.7 nm-thick sample for a 15 °C heating
is 9 × 10−4 nm, which would delay a single-pass of the THz pulse by a negligible quantity.
It appears more likely that the phase shift is caused by the rotation, which we did not
quantify, of the two half-waveplates used to increase the pump energy while keeping the
probe energy constant.

4.3.2 Identification of the origin of the signal

Considering the symmetry of the samples allows to isolate the parts of the THz signal
that are of different origins. According to Eqs. (4.6) and (4.10), the polarity of a THz
waveform generated by ISHE depends on the orientation of the magnetization and the
direction of the spin current, which reflects the orientation of the FM|NM interface.
The polarity of a THz waveform generated by magnetic dipole radiation in the FM layer
depends only on the magnetization. Additionally, non-magnetic signals do no depend
on the magnetization at all. Therefore, we can verify which phenomenon is at the origin
of the THz field by inverting the direction of the magnetic field or changing which face
of the sample is illuminated.
Fig. 4.12a shows an example of such ameasurement for the sample Fe*|Pt. As expected,

when the magnetic field is inverted, the waveform follows. However, the amplitude and
the pulse delay differ slightly. The same behavior was seen on all samples, pointing to a
systematic non-magnetic component.
Fig. 4.12b shows the THz field emitted by W|Py|Pt, illuminating it from either the

substrate side or the Pt side. The two waveforms are the inverse of each other, indicating
that the THz signal originates from the ISHE and not from the demagnetization of the
FM layer. The amplitude and phase difference can here be attributed to the displacement
of the sample.
To investigate the origin of the non-magnetic component, weuse the fact that according

to the symmetry of the OID samples, rotating them by 180° in their plane should yield
an identical result. This is shown for [Pt|Fe*]2 in Fig. 4.12c. As seen before, for both
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sample 180° along the laser propagation axis. d) Arrival time of the pulse,
as defined by the peak of its envelope. e) Main part of the THz waveform of
two samples only differing by the depositionmethod, taken at three different
fields. f-h) Projection of the waveforms in e) on the surface normal to the
propagation axis, showing a slightly elliptical polarization.
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traces the THz amplitude is noticeably different when the magnetization direction is
inverted. In addition, rotating the sample changes the overall THz amplitude and inverts
the direction of the field for which the amplitude is higher. If the magnetic asymmetry
was only due to the sample, the same amplitude should be seen at negative fields for
the upright sample and at positive fields for the upside-down sample, and vice-versa.
Hence, two effects seem to be at play: the THz output depends on the orientation of the
magnetization along the easy axis, and the measured THz amplitude depends on the
physical direction of the THz polarity.

The latter effect is linked to the polarization of the THz, as shown in Figs. 4.12e to 4.12h
for W|Py*|Pt and W|Py|Pt. We measured the 3D shape of the THz waveforms by using a
rotating polarizer to obtain both ±45° polarization components. The polarization is as
expected mostly vertical (perpendicular to the magnetic field) and only weakly elliptical.
At −5mT, the main peak of the waveforms points down for both samples. At 0mT, the
polarization of W|Py|Pt is tilted, as the Py layer has no easy axis. At 5mT, the main peak
of the waveforms points up but with an additional tilt.

We found this behavior in all samples: the polarization is tilted when the main peak
of the THz points up, regardless of the sign of the magnetic field for which this occurs.
For trilayer samples, the tilt direction is always anticlockwise (as defined on the plot). It
is this tilt that, when measured by EOS, results in a lower amplitude. The cause of the
tilt is unknown, but is unrelated to the magnetic field and the sample direction, hence
seems linked to the measurement setup.

Because each sample is glued on the copper holder, and the latter is manually rein-
stalled in the electromagnet before each new measurement, the easy axis of the sample
can be tilted compared to the magnetic field. We aimed to mount the sample always
in the same manner, with the help of a reference edge in the holder. By measuring on
one occasion the angles on a photography of the mounted sample, we found a tilt of 1°
between the sample and its holder, and using a spirit level a tilt of 2° in the opposite
direction of the holder compared to the table. Assuming this was representative of the
assembly of all samples, we expect only a ∼1° bias in the THz polarization, which does
not explain the systematic tilt.

Since the direction of the main peak depends on the direction of the current
#»

𝒋 𝒄 , it is
possible that an initial difference in the path of the electrons leads to a difference in the
propagation of the THz pulse. Due to the large difference in refractive index between
the metallic layers and air, small deviations of the propagation direction inside the
sample are then amplified in air, and can be transformed by the OAPs into a polarization
rotation [210]. This hypothesis of a change in the beam path is supported by Fig. 4.12d:
the arrival time of the pulse, shown here for the upright [Pt|Fe*]2 sample, changes by up
to ∼100 fs as the sample switches.
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4.3.3 Influence of OID

We have established that the setup is able to produce and detect THz radiation, and that
most of the signal originates from the ISHE. We now investigate the influence of the
deposition methods employed for the FM layers, in order to demonstrate that the OID
confines the magnetization and examine whether it affects the THz output.
We compare two samples identical except for the deposition method of the FM layer:

Fe*|W (θ = 60°) and Fe|W (θ = 0°). The surface roughness induced byOID is transmitted
to the W layer deposited above it. Both samples emit THz at one interface only, as
illustrated in Fig. 4.13.
The goal of the OID is to increase the anisotropy of the Fe layer so that the magnetiza-

tion has only two states: aligned in either direction along the easy axis. Fig. 4.14a shows
the hysteresis curves of both samples, with the magnetic field applied along the easy axis.
We can see that without OID, themagnetization of Fe|W switches progressively following
the field. Fe*|W shows on the contrary a behavior close to an ideal hard magnet: it has
a coercivity of 1mT and retains its saturation magnetization until the field exceeds the
OID-induced anisotropy, at which point it switches abruptly.
The effect is reflected in the THz polarization. As already mentioned in Section 4.3.2,

it is linear and approximately vertical, but we observe a slight asymmetry with respect to
the switching field. Fig. 4.14b shows the average linear fit of the tilt of the polarization.
Excluding a step at ∼2mT when its magnetization switches, the polarization of the THz
radiation emitted by Fe*|W is constant, indicating that the axis of the magnetization is
stable. By contrast, the polarization of Fe|W starts rotating as the field approaches 0mT
and reaches amaximum tilt of 15° at +0.6mT, before realigning when themagnetization
is again saturated. The large error bars around the switching point indicate that the
average orientation of the magnetic domains in the absence of field is random.
Fig. 4.14c shows one measurement of the THz amplitude for both samples. That

Fe*|W generates a higher THz amplitude than Fe|W was not seen in all measurements
of both samples and can be due to either an alignment difference or an actual difference
in the thickness of theoretically identical samples. Both samples exhibits a dip in their
emission at their switching field. There is an offset in the switching fields compared
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Figure 4.13: Schemes of a) Fe|W and b) Fe*|W.
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Figure 4.14: Measurements of Fe*|W (red) and Fe|W (blue). a) Hysteresis curves. Inserts:
EOS traces taken at the indicated field. b) Fitted polarization tilt. The
error bars denote the standard deviation of the resulting tilt for repeated
measurements. c) Measured THz amplitude while increasing the external
field.

to the magneto-optic Kerr effect (MOKE) measurement, which can be caused by the
illuminated part of the sample not being exactly located where the magnetic field was
measured (Section 4.2.2.1).

The decrease in THz amplitude of both samples shows the apparition of magnetic
domains. As the external field approaches zero, the magnetization of each domain
reverts to its own easy axis. In the case of Fe|W, since the layer is polycrystalline, the
distribution of the domain orientations is isotropic in the plane of the sample, and
can theoretically span half of the disk as the field is removed. With this model, the
remanence magnetization of Fe|W is𝑀 /𝑀𝑠 ≈ 0.6, which is difficult to confirm from the
MOKE measurement. In the case of Fe*|W, the easy axes of the domains, at least on the
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upper surface of the layers, are constrained by the OID anisotropy, thus its remanence
magnetization is 1.
The THz polarization of each sample confirms the difference in behavior of the

domains. We observe the center of the sample, where the magnetic field from the
electromagnets is the weakest. In the case of Fe|W, the polarization starts to rotate
before the change in amplitude, which indicates that as the magnetic field disappears,
the average magnetization rotates, probably to align on a surrounding background field.
Then as the field is increased, the Fe layer breaks into domains, whose magnetization
rotates in a non-reproducible way to align again on the field from the electromagnet. In
the case of Fe*|W, the decrease in THz amplitude is only accompanied by larger error bars
in the polarization measurement, as domains are unable to tilt away from the OID axis.
The domains on the edges of the sample near the electromagnet switch first, leading to a
large frustration of the exchange interaction as domains have an antiparallel alignment.
After a quick drop in THz amplitude, the observed domains realign as well.

4.3.4 AFM samples

We have seen that the magnetization of FM layers fabricated with the OID method is as
expected confined to the easy axis imparted during the deposition. We now introduce
the five-layer samples with two FM layers, that make use of this technique to control
the relative orientation of their magnetizations. In Section 4.3.4.1, we will observe
this decoupling of the two FM layers, then in Section 4.3.4.2 we will examine the THz
generation efficiency of such samples. Finally, simulations of the spin current and THz
generation are presented in Section 4.3.4.3.

4.3.4.1 FM and AFM states

Trilayer samples are so thin that less than half of the pump power is absorbed. Following
the same principle of alternating NM materials with opposite spin Hall angles (see
Section 4.2.1.3), we expect to be able to enhance the THz output by stacking more layers
to make use of the remaining pump power. As shown by Fig. 4.15, because of the mirror
symmetry of the sample structure, the charge currents from each half are parallel when
the magnetizations are antiparallel, forming an artificial antiferromagnet. Other groups
came to the same idea and achieved this using an antiferromagnetic exchange coupling
between the FM layers [187, 211] to lock their relative magnetization, or two FM layers
with respectively a free and a pinned magnetization [188]. Instead, we used the OID
technique to give a different anisotropy to each FM layer and investigated the possible
parameters to increase the range between the switching fields of both layers.
Fig. 4.16 shows the measurements of two such samples, [Pt|Fe*|W]2 and [Pt|Fe*]2.

During the sputtering of the samples, the polar deposition angle φ was kept constant
so the FM layers have the same easy axis, but we used a different azimuthal angle for
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Figure 4.15: Scheme of [Pt|Fe*|W]2 in the antiferromagnetic configuration. In [Pt|Fe*]2,
the central W layer is replaced by MgO, where no THz emission occurs.

the first (θ = 60°) and second (θ = 80°) FM layer to compel them to switch at different
fields. Fig. 4.16a shows their hysteresis curves measured by MOKE along their easy axis.
Similarly to simple trilayer OID samples presented in the last section, they have a high
coercivity and a square-shaped hysteresis curve. In addition, they distinctively switch in
two steps, one FM layer after the other. For comparison, a MOKE measurement along
the hard axis of such a sample shows a smooth hysteresis curve with little structure.
The field at which the switching occurs depends on the anisotropy of each FM layer but

also on the interlayer exchange coupling. In the absence of coupling, the layers can switch
independently, which maximizes the range in which they are in an antiferromagnetic
configuration. With the FM layers separated by a 4 nm insulating MgO layer, [Pt|Fe*]2
has a 17mT-wide range. In the case of [Pt|Fe*|W]2, the interlayer exchange coupling
transmitted by the 4 nm W layer reduces the antiferromagnetic range to 2.5mT. The
similar [W|Fe*|Pt]2 sample, despite having a thicker central 5 nm Pt layer, showed after
several uses a reduced antiferromagnetic range of 0.2mT. A more successful decoupling
of the FM layers using W rather than Pt was also reported by Fix et al. [188].
Fig. 4.16b shows the corresponding THz amplitudewhenmeasuring the samples along

the lower branch of the hysteresis curve. Both have a high emission in the range where
the total magnetization is zero, namely in the antiferromagnetic configuration, due to the
fact that all charge currents have the same sign. Outside of this range, themagnetizations
are in a ferromagnetic configuration, and the THz radiation emitted from both halves of
the samples partially cancel each other.

4.3.4.2 Efficiency of the samples

One interesting observation fromFig. 4.16b is that while [Pt|Fe*|W]2 has four interfaces at
which the ISHE can happen and [Pt|Fe*]2 only two, the amplitude of their THz output in
the antiferromagnetic configuration is similar. Comparing the absolute amplitude of the
THz emitted by different samples proved difficult. Due to short-term fluctuations of the
laser energy, measurements of the THz amplitude were typically repeated by scanning
themagnetic field several times in a row. However these longmeasurements are sensitive
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Figure 4.16: Measurements of [Pt|Fe*|W]2 (red) and [Pt|Fe*]2 (blue). a) Hysteresis curves
of both samples along the easy axis, and for comparison one of a different
sample along the hard axis. Inserts: EOS traces taken at the indicated fields
for each magnetization configuration of the samples. b) Measured THz
amplitude when increasing the external field.

to the slow drift of the laser energy. In addition, as mentioned in Section 4.2.2.4, the
amplitude of the measured EOS signal was later found to depend on the probe alignment
as well.
Fig. 4.17a shows the evolution of the THz amplitude emitted by [Pt|Fe*]2 with the

increase of the pump energy. Two half waveplates were used to change the total energy
entering the setup while keeping constant the energy going into the probe beam. As
also seen in Fig. 4.16b and as found in all samples (see Section 4.3.2), the THz amplitude
emitted by [Pt|Fe*]2 when its magnetization is saturated (in FM configuration) depends
on the direction of the magnetic field. The amplitude ratio between the three magneti-
zations configurations is approximately constant over the whole plot. In both FM and
AFM configurations, the THz amplitude increases at an average rate of ∼0.2%µJ−1 with
respect to the amplitude at 180 µJ. A similar result was found by Yang et al. [212] for
a sample consisting of the same materials, whose emitted peak THz field increases by
0.11%µJ−1 with respect to its amplitude at 200 µJ between 200 µJ to 360 µJ. This allows
us to assume that the spin current responds linearly with the pump energy as given in
Eq. (4.3).
Contrarily to the result for W|Py*|Pt in Fig. 4.11, whose THz emission started decreas-
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Figure 4.17: Factors contributing to the THz output. a) Amplitude of the THz field emit-
ted by [Pt|Fe*]2 as a function of the pump energy and external magnetic
field. b) Average THz amplitude generated by different samples as a func-
tion of their number of FM|NM interfaces. For five-layer samples, the bar
represents the output in the AFM configuration, and errorbars inside the
bar represent the two FM configurations. Arrows to the right (left) above
the bars indicate amplitudes measured while increasing (decreasing) the
magnetic field. These amplitudes were obtained during a single scan of
the magnetic field by averaging over different fields. The absence of arrow
indicate the amplitudes obtained by averaging successive measurements at
a single field. The dotted line is a guide to the eye for the overall maximum
output of each sample.
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ing for a pump fluence around 300 µJ cm−2, the output here shows no saturation as high
as 830 µJ, or 8.4mJ cm−2. One of the reasons for this difference is the thickness and
composition of the sample: at equal pump fluence, the two Fe layers of [Pt|Fe*]2 absorbs
less energy each than the single Py layer of W|Py*|Pt. Additionally, the current in Py
has a greater spin polarization than in Fe, due to the larger difference in mean-free path
between majority and minority electrons [11, 213]; this results in a quicker saturation of
the spin-majority conduction bands in the NM layers [155].
Fig. 4.17b shows a comparison of the THz output of many different samples. A first

set consists of MgO|Fe*|MgO, [Pt|Fe*]2, [Fe*|W]2, [Pt|MgO|Fe*|W]2, [Pt|Fe*|W]2 and the
nominally identical sample [Pt|Fe*|W]2(2), whichweremeasured in rapid succession one
after the other. [Pt|Fe*|W]2(2)wasmeasured first and last to confirm that the sensitivity of
the measurement was not impacted by any drift of the laser energy nor probe alignment
during the measurement series. For each of these samples, we scanned the external
field once in each direction. The plotted THz amplitudes are thus the average over the
different fields for which the magnetization is in the same configuration. A second set
of samples, consisting of Fe*|W, and again [Pt|Fe*]2 and [Pt|Fe*|W]2 were measured
later, after realignment of the laser. For each sample, we repeated several times the
measurement of only one field, in the antiferromagnetic configuration. By coincidence,
both measurements of [Pt|Fe*]2 and [Pt|Fe*|W]2 yielded an almost identical amplitude.
It is thus assumed that the two sets of measurements are comparable, and their relative
amplitudes are not corrected.
The ferromagnetic configuration of five-layer samples is shown as error bars inside to

the main bar. As expected, we can see that for all samples, the THz amplitude when the
samples are saturated is the same irrespective of along which branch of the hysteresis
curve was the field scanned (full vs. empty markers). However, there is an offset between
the THz amplitude depending on the direction of the saturating magnetic field. This
offset, also visible in Fig. 4.17a and Fig. 4.16b, is the biggest for [Pt|Fe*]2.
The dotted line indicates the overall evolution of the maximal THz output compared

to the number of emitting FM|NM interfaces. MgO|Fe*|MgO emits almost zero signal,
confirming that, as expected from the study of the symmetry of the signal in Section 4.3.2,
the THz emission come from the inverse spin Hall effect. The existing THz signal can be
attributed to THz generation in the Ge filter reflecting the IR pump away from the EOS
setup.
Fe*|W has a single interface, and reaches 40% of the emitted field of an average five-

layer sample. It will thus be necessary to investigate howmuch the sample thickness and
materials are influencing the THz output.
Five-layer samples with two contributing FM|NM interfaces have a large variation of

output amplitude, presumably because of their diversity of structure. The THz radiation
in [Pt|Fe*]2 is generated in the outside layers, while for [Fe*|W]2 it is generated in the
central layer. Both have a noticeable difference in measured amplitude depending on
the branch of the hysteresis curve, explained in Section 4.3.2 by a difference in the THz
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polarization. [Pt|MgO|Fe*|W]2 has an additional MgO layer inserted between the FM
layers and the external NM layers, blocking the spin current. Compared to [Fe*|W]2, it is
presumably the additional Pt layers that are responsible for reducing the THz amplitude
by absorbing the pump.
Since [W|Fe*|Pt]2 was unable to maintain an antiferromagnetic configuration, the

only samples with four contributing FM|NM interfaces are the nominally identical
[Pt|Fe*|W]2 and [Pt|Fe*|W]2(2). They have a very similar but not identical output, as can
be expected from the difficulty of sputtering identical layers at the nm scale. Compared to
[Pt|MgO|Fe*|W]2, which has the samemetallic layers but half the number of contributing
interfaces, they emit almost double the THz signal.
Overall, it seems that the gain from increasing the amount of contributing interfaces

is partially canceled out by the losses from the additional metallic layers. The same
behavior was seen by Yang et al. [212], who obtained a decreasing THz output with
samples consisting of more than three stacked Pt|Fe|MgO structures.

4.3.4.3 Simulations of the THz emission

We have seen that the structure and materials of the samples influence heavily the THz
generation. We are now interested in verifying whether the THz amplitude is entirely
predicted by the optical properties of the samples, or whether the spin current is affected.
The relevant equations were described in Section 4.1. Given a stack of layers defined

by a material and a thickness, we calculate the distribution of the absorbed IR power
and deduce the strength of the generated spin currents. Estimating the efficiency of
the spin-to-charge current conversion depending on the material, we then calculate the
generated THz field at each interface and the total THz field exiting the sample.
Table 4.3 presents the fraction of pump energy absorbed in the samples previously

shown in Fig. 4.17b, calculated for the pump incident on the substrate side. Because of
themultiple internal reflections of the IR beam, the energy is well distributed throughout
the samples and the FM layer on the substrate side absorbs at most 10% more energy
than the other layer. The substrate and MgO layers are transparent for the IR, so that
the absorption patterns in [Pt|MgO|Fe*|W]2 and [Pt|Fe*|W]2 are equivalent and their
difference in THz emission is well explained by their different amount of contributing
FM|NM interfaces. Within the samples with two contributing interfaces, the THz
emission scales roughly with the absorption in the FM layers. However, the single
iron layer of Fe*|W absorbs slightly more energy than the two irons layers combined of
[Pt|MgO|Fe*|W]2, and yet has a significantly lower THz emission. As the spin current is
proportional to the absorbed power (Eq. (4.3)) and the ISHE occurs for both samples at
Fe|W interfaces, we expect the total THz emission to be similar. There is thus another
factor at play in these samples: the THz propagation.
As detailed in Appendix C, we use transfer matrices to calculate the propagation of the

THz field from the FM|NM interface where it is emitted, to the output interface of the
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Table 4.3: Fraction of pump power absorbed by full spintronic THz emitters and by each
of their FM layers, and fraction of THz electric energy at the sample output,
on the side opposed to the substrate, compared to the energy emitted by each
THz source at an FM|NM interface. The values are given in the order of the
interfaces in the sample, assuming that the pump is incident on the side of the
substrate.

Pump power THz energy output (×10−3)

Sample Total In FM layers In NM layers

MgO|Fe*|MgO 37.6% 37.6% - - - - -

Fe*|W 48.8% 32.7% - 3.49 - - -

Fe*|Pt 54.3% 29.6% - 4.17 - - -

[Pt|Fe*]2 69.6% 19.5% 17.8% 3.68 - 3.76 -

[Fe*|W]2 67.3% 22.9% 22.3% 4.76 - 4.89 -

[Pt|MgO|Fe*|W]2 72.5% 16.1% 14.5% 4.76 - 4.89 -

[Pt|Fe*|W]2 72.7% 16.2% 14.7% 4.83 3.17 3.25 4.88

sample on the exterior side. The refractive index and absorption coefficient of the metals
are two orders of magnitude higher for the THz frequencies than for the 800 nm pump
(see TDS measurements in Appendix A), so it is heavily absorbed. The last four columns
of Table 4.3 shows the proportion of energy on the THz beam exiting the sample. Here
too, the many internal reflections homogenize the THz field so that the output of all
sources is similar, irrespective of their distance to the exit surface. The output of Fe*|W
is about 25% lower than the output of each THz source in [Pt|MgO|Fe*|W]2, which
is enough to compensate its stronger spin current and reduce the THz amplitude as
observed in Fig. 4.17b.
We now recall the two samples from Fig. 4.16, [Pt|Fe*]2 and [Pt|Fe*|W]2: although

their THz output is almost identical in the antiferromagnetic state, the waveforms and
their amplitudes in the ferromagnetic states are very different. To understand this, we
now need to simulate the THz output. For this, we are missing one last component: the
values of the interface transmission coefficients 𝑡Fe|W and 𝑡Fe|Pt in Eq. (4.7).
The coefficients are fitted frommeasurements of reference samples, Fe*|W and Fe*|Pt.

These samples have a single FM|NM interface each, are identical except for the material
of the NM layers, and are measured in the same experimental conditions. As shown
in Fig. 4.18a, although the spin Hall angle of W is almost an order of magnitude larger
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Figure 4.18: a) Experimental and b) simulated THz waveforms from the bilayer samples.
The transfer function 𝑇prop(ω) 𝑇EOS(ω) for the THz propagation after the
samples was calculated from Fe*|W.

(ϑW = −33% and ϑPt = 4.2±2.9%), the output of Fe*|Pt is twice higher. Light propagation
is unable to explain the difference: according to Table 4.3, the FM layer of Fe*|W absorbs
slightly more IR power, but the THz output of Fe*|Pt is slightly higher for equal emission,
so the purely optical properties only account for the emission of Fe*|Pt being 8% higher.
We assume that the discrepancy is caused by the material-dependent transmission of the
spin current through the FM|NM interface.
From Eq. (4.7), the THz amplitude is proportional to the transmission factor 𝑡Fe|x. The

ratio of the amplitudes of both samples is thus:

𝑅 = 𝐸W
𝐸Pt

=
𝑡Fe|WϑW 𝑗𝑠(W)𝑇W
𝑡Fe|PtϑPt 𝑗𝑠(Pt)𝑇Pt

(4.18)

where 𝑇𝑥 is the transfer function of the THz field in the sample Fe*|𝑥. The experimental
ratio is 𝑅exp = 0.546 (Fig. 4.18a). If we do not consider the interface transmission,
𝑡Fe|W = 𝑡Fe|Pt = 1 and we obtain 𝑅sim = 8.98 (Fig. 4.18b). As expected from their spin
Hall angles, the output of Fe*|Pt would be significantly smaller that that of Fe*|W. Using
these two values, we have:

𝑡Fe|Pt
𝑡Fe|W

=
𝑅sim
𝑅exp

= 16.4. (4.19)

To take the interface transmission into account in the simulations, whose absolute
amplitude is not calibrated, we simply use:

𝑗𝑐(Pt) =
𝑡Fe|Pt
𝑡Fe|W

ϑPt 𝑗𝑠(Pt); 𝑗𝑐(W) = ϑW 𝑗𝑠(W), (4.20)

so that the relative amplitudes of emissions from Fe|W and Fe|Pt interfaces match the
measurements, as shown by the rescaled waveform in Fig. 4.18b. This process does not
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Figure 4.19: Comparison of measured and simulated samples. Each line corresponds
to a sample. The arrows indicate the magnetization configuration: c–f)
antiferromagnetic and g–j) ferromagnetic.

change the shape of the waveforms, thus we can now see that the CEP of Fe*|Pt is not
perfectly reproduced.
With this value, we are now able to simulate samples with both types of interfaces

as well as compare the THz output from different samples. Fig. 4.19 shows the THz
waveforms and spectra for [Pt|Fe*]2 and [Pt|Fe*|W]2 as well as Fe*|W for reference. The
measured waveforms are averaged over several successive measurements at the same
magnetic field. Their amplitudes are the same as shown in Fig. 4.17b. The transfer
function for the THz propagation and detection was calculated for Fe*|W by comparing
the measured THz waveform and the simulated waveform at the output of the sample.
The same transfer functionwas then applied to the simulated THzwaveforms of the other
samples. The difference in the experimental waveforms of Fe*|W between Figs. 4.18a
and 4.19a is due to alignment differences in the experimental setup between both
measurements. For this reason, the transfer function of the THz propagation is individual
to each set of measurements.
For both five-layer samples in both of their configurations, we can see that the CEP of

the simulated waveforms is similar to the CEP of the measured waveforms. The shape
of the simulated pulses is entirely controlled by the propagation transfer function: at the
output of the sample, the electric field of each THz emission looks like a single positive
peak followed by a long negative tail (shown in Fig. 4.3a). The similarity of thewaveforms
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thus indicates that the propagation transfer function is adequate. The measured spectra
have however a strong peak at 2 THz which is not as prominent in the simulated spectra,
and which we presume to be due to a difference in the THz propagation due to the
additional thickness of the five-layer samples.
In theAFMmagnetization configuration (Figs. 4.19c to 4.19f), the simulated amplitude

is too high for both samples, indicating that there are losses our model does not take
into account, either in the samples themselves or in the THz propagation. In the FM
magnetization configuration (Figs. 4.19g to 4.19j), it is the opposite. In this state, the THz
fields of each half of the sample have the opposite polarity and should cancel each other,
which means that there are differences between both halves that the model does not take
into account. Since all THz waveforms have the same shape at the output of the sample,
only their relative amplitudes and delays determine how efficiently they cancel out.
The simulations assume that each THz emission takes place when the IR pump is

first reaching the relevant FM layer, and do not take into account the diffusion time of
the currents. In [Pt|Fe*|W]2, this leads to a first 0.087 fs delay between the emissions of
each half of the sample. Since the spin current is not saturated, the photoexcitation of
electrons and the launch of the spin current is an ongoing process while the IR beam is
reflected internally. This is thus an absolute upper bound on the IR-caused delay.
Then the internal propagation of the THz fields further delays each component: in

[Pt|Fe*|W]2, the emission at the Fe|Pt interface on the output side is the first to arrive
outside, followed by the emission of each interface in order, with delays of 3.05 fs,
4.58 fs and 5.34 fs. The THz propagation itself is thus the biggest contributor to the
delay between the emissions of both halves of the sample, but this delay is nonetheless
negligible compared to the duration of the THz pulse.
Thismodel neglects any difference in the propagation speed of the spin current through

the different FM|NM interfaces and in the NM layers. Since the samples are symmetrical,
adding such a difference would impact the coherence of the emission within each half
of the sample, but not contribute to the delay between both halves. It would thus
decrease the THz amplitude in both magnetization configurations for [Pt|Fe*|W]2 but
not [Pt|Fe*]2. In addition, any significant delay between the THz components would lead
to a change in the shape of the final waveforms, which would not be corrected by the
propagation transfer function calculated from Fe*|W. This effect is thus unlikely to be
the cause of the amplitude differences between the simulations and the measurements.
Having excluded all sources of timingmismatch between the THz emissions from each

half of the samples, the remaining option is an amplitude mismatch. In the simulations,
the THz field in the FM configuration is calculated by inverting the THz emission from
the second half of the sample, thus assuming that the magnetization of the second FM
layer is switched. Since the polarity of the measured waveforms is the same in FM and
AFM configurations for both samples, we know that the second half of the sample emits
less than the first.
A potential cause of imbalance is the magnetization of the FM layers. The relative
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permeability μ𝑟 = 1 + χeff (see Section 3.1.4) is involved in the calculation of the Fresnel
coefficients and the Poynting vector for the IR pump [214]. Fully magnetized FM layers
have χeff = d𝑀/d𝐻 = 0, as a small magnetic field does not modify the magnetization.
The partial demagnetization of Fe recovers after several picoseconds [215] and thus
overlaps with the propagation of the THz pulses. We used μ𝑟 = 1 in the simulations,
and obtain with it the best match for the proportion of IR energy transmitted by the
samples: 24.8% vs. 27.4% for [Pt|Fe*]2 and 20.5% vs. 15.8% for [Pt|Fe*|W]2. Using
χeff > 0 reduces the absorption in the FM layers and thus decreases the THz amplitude
in the AFM configuration, while increasing the proportion of remaining THz in the FM
configuration, but it worsens our estimations of the pump transmission.
Another potential cause of imbalance is the fact that the FM layers are deposited on

differentmaterials, whichwas reported to influence their saturationmagnetization [188].
This affects the spin polarization of the currents, and thus has a direct influence on the
THz amplitude in each half of the sample. Finally, the difference in surface quality
of the FM|NM interfaces likely plays a role: the first NM layer is deposited on the
polished substrate, while the others are deposited above one or two OID layers, which
have a rougher surface. As the surface quality influences the transmission of the spin
current [216], this would reduce the amount of THz emitted by the second half of the
sample.
While we can only conjecture which effects or combinations thereof are responsible

for the mismatch in THz amplitudes, we estimate it is most likely that the latter two
effects are impairing the extinction in the FM state. The THz emission is otherwise
satisfactorily reproduced by the model.

4.3.5 Orthogonal magnetizations

As a final experiment, we investigated the consequences of a five-layer sample having
FM layers with different easy axes. The [Fe90°|W]2 sample has, like the others, two FM
layers deposited with incidence angles of θ = 60° and 80°, respectively. However, we
now change the polar direction of deposition to φ = ±45°, so that the easy axis is of each
layer is now parallel to a diagonal of the sample, as shown in Fig. 4.20. The central layer
is thickened to 4 nm to avoid any spin-transfer torque between the FM layers.

4.3.5.1 Expectations

With the sample mounted in the electromagnet, the magnetic field is now as a 45°
angle from the easy axes of the sample. At high fields, we can expect that the OID
anisotropy is not enough to maintain the magnetization of each layer in its easy axis.
We used the equations in Section 3.3.2 to model the orientation of the magnetization
of each FM layer when scanning the magnetic field. For iron, the assumed saturation
magnetization is μ0𝑀𝑠 = 2.15T [99, table 7.3.1]. Since the FM layers of [Fe*|W]2 switch

155



4 Spintronic THz emitters

#»𝒋 𝒔
#»𝒋 𝒔

#»𝑴#»𝑴

#»𝒋 𝒄

#»𝒋 𝒄

𝜑W
< 0

a) Fe FeMgO MgOW

60∘ 80∘

#»𝑴

#»𝒋 𝒄

#»𝒋 𝒔

b)
#»𝑴

#»𝒋 𝒄

#»𝒋 𝒔

#»𝑯

THz

Figure 4.20: Scheme of [Fe90°|W]2. a) Cut along the beam propagation axis and b) front
view of the vectors in each half of the sample.

for 𝐻𝑐 = 1.2mT and 7.7mT when the magnetic field is applied along the easy axis, and
the samples are otherwise similar, we expect [Fe90°|W]2 to switch at half these fields.
Although the labels of ferromagnetic and antiferromagnetic configurations are now

technically incorrect, we will continue to refer to the two states of the sample as such,
by analogy with the other five-layer samples from Section 4.3.4. Fig. 4.21a shows that
we can expect that a small external field is sufficient to rotate the magnetizations, which
are only lying in the easy axes for 𝐻 = 0. The rotation of the magnetizations towards
the field is however almost symmetrical, so that in the ferromagnetic configurations the
THz polarization is almost constant (Fig. 4.21c). In the antiferromagnetic configuration,
which is well-defined in Fig. 4.21b despite the hard-axis component, the THz polarization
rotates by up to 90°.
If the magnetizations were confined to their easy axes, we would expect that contrarily

to the previous samples, the total amplitude of the emitted THz is constant and only its
polarization rotates (see Table 4.4). However, as shown by Fig. 4.21c, we can expect that
the amplitude is reduced at high field because the magnetizations are almost parallel, as
well as a jump in the amplitude when the second layer switches.
The sample can be mounted in two distinct orientations with respect to the magnetic

field, which are distinguished by the angle of the two magnetization vectors with respect
to the flow of the spin current. They are summarized as orientations A and B in Table 4.4.
To change the orientation, we can equivalently rotate the sample 90° in its plane or change
the illuminated face.
In the FM configurations, the magnetization of both layers are aligned on the field:

∠( #»𝑯, # »𝑴) ≤ ±45°. From Eq. (4.6), since both spin currents have the opposite sign
when they cross the Fe|W interface, ∠( # »𝑴,

#»

𝒋 𝒄) = 90° for the lower FM layer and −90°
for the upper FM layer. Depending on the orientation of the sample, we thus have
∠( #»𝑯,

#»

𝒋 𝒄) = ±45° or ±135°. If the phase difference between the two components is
negligible as we previously calculated in Section 4.3.4.3, the THz field has a linear
polarization. In both cases, it is horizontally polarized, as expected from Fig. 4.21c,
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Figure 4.21: Simulated properties of [Fe90°|W]2: a) orientation of the magnetization
of each FM layer of [Fe90°|W]2 with respect to the applied field. ϕ is the
angle between the field and their respective easy axis, whose orientation is
indicated by the horizontal lines. b) Corresponding hysteresis curve. c) THz
polarization (left axis) and amplitude (right axis), assuming an emission
with the same amplitude and phase from both layers.

although with a different polarity.
In the AFM configuration, the magnetization of the lower layer switches, leading to

either ∠( #»𝑯, # »𝑴) = 45° and 135° or −45° and −135°. We thus have for both orientations
∠( #»𝑯,

#»

𝒋 𝒄) = −45° and − 135°, which means that in both cases, the resulting THz has a
vertical polarization, with the same polarity. Table 4.4 summarizes the expected vector
orientations.

4.3.5.2 Measurement

Since EOS is polarization-dependent, the measurement of the polarization must be done
with two polarizers: the first one is adjusted to transmits the ±45° components of the
THz polarization, while the second one transmits the remaining vertical component on
the EOS crystal.
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Table 4.4: Direction of the spin and charge currents in each FM layer as well as the THz
polarization, in each magnetization configuration and for both orientations of
the sample in the field.

Orientation A Orientation B

Conf. #»𝑯 Layer # »𝑴
#»

𝒋 𝒄 THz # »𝑴
#»

𝒋 𝒄 THz

FM →
lower ↙ ↖

←
↖ ↗

→
upper ↖ ↙ ↙ ↘

AFM ←
lower ↗ ↘

↓
↘ ↙

↓
upper ↖ ↙ ↙ ↘

FM ←
lower ↗ ↘

→
↘ ↙

←
upper ↘ ↗ ↗ ↖

From a field 𝐸 polarized at an angle ϕwith respect to the vertical axis, the first polarizer
transmits 𝐸±45° = 𝐸 cos (±45 − ϕ) = 𝐸 cosϕ ± sinϕ / √2. The second polarizer transmits
the vertical components of this, or 𝐸±0° = 𝐸 (cosϕ ± sinϕ) /2. One can then reconstruct
the vertical and horizontal components of the original polarization as 𝐸vert = 𝐸+0° + 𝐸−0°
and 𝐸hor = 𝐸+0° − 𝐸−0°, where 𝐸 = √𝐸2vert + 𝐸2hor.
We measured the two diagonal components 𝐸±45° one after the other to minimize

the change of experimental conditions. For each measurement, 57 EOS traces were
acquired over a range from −7mT to +7mT. The measurements were noisy due to the
low transmission of the second polarizer and the low amplitude of the original signal. To
minimize the noise, each measurement was repeated 30 times in a row before repeating
the same steps with the other orientation of the first polarizer. As each measurement
took about 30 h, the measured THz energy was slowly fluctuating, probably because of
the drifting of the probe, which adds another source of noise.
Accuratelymeasuring the relative amplitude of the two diagonal components is crucial

to retrieve the correct polarization. To remove the slow energy drift, we calculated the
average THz amplitude of each scan (one EOS trace per value of the external field), then
rescaled the measured waveforms so that the average THz amplitude of all scans made
for one angle of the waveplate was the same. We used as reference the amplitude of the
last scan for the first angle of the waveplate and the first scan for the second angle of the
waveplate, which were done one after the other and are thus the least affected by the
energy drift.
We then used the average THz waveform for eachmagnetic field and each polarization

to retrieve 𝐸vert and 𝐸hor for each value of the external magnetic field.
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4.3.5.3 Results

Fig. 4.22a shows the MOKE measurement of the sample. As we calculated, it has the
two-step switching characteristic of five-layer samples, with an additional slope due to
the mixing of the easy-axis and hard-axis magnetizations. The slope is however less
pronounced that in Fig. 4.21b. In addition, the switching of the layers occur for an
external field of 1.7mT and 5mT respectively, which is for both layers about 1.1mT
higher than expected. We thus slightly underestimated the coercivity of the FM layers.
The amplitude of the different THz components is shown in Fig. 4.22b. The total am-

plitude is approximately constant, with the same asymmetry described in Section 4.3.2.
There is no clear jump in the total amplitude as we had expected from Fig. 4.21c. Be-
tween 1.5mT and 4mT, with a slight offset compared to the MOKE measurement, the
𝐸vert component takes precedence on 𝐸hor, as expected. We can however see that both
polarization components are non-zero, indicating that the THz polarization is either
tilted or elliptical. This is confirmed in Fig. 4.22c, which shows the tilt of the linear fit of
the THz polarization. In the two FM configurations, the polarization has an average tilt
of 33° and −4°, as well as 92° in the AFM configuration. This is noticeably off from the
expected 5° and 65° to 80° in the FM and AFM configurations, respectively.
More insight can be gained from Fig. 4.22f, which shows the average polarization

ellipses formed at each magnetic field by the projection of the THz electric field onto
the plane of the sample. There are three distinct groups of ellipses, corresponding to the
three magnetization configurations of the sample. Although the ellipses are noisy due
to the low signal-to-noise ratio of the measurements, it is clear that the polarization is
significantly elliptical, contrarily to all previous samples.
Figs. 4.22d and 4.22e show the measured ±45° components of the THz beam, which

correspond to the individual emission of each FM layer. The increased pulse duration
compared to the previous results was also shown by other samples and is due to the laser.
There is a 0.5 ps offset between the pulses of the two plots, which causes the observed
ellipticity. The pulses coming from the FM layer switching at 1.5mT (Fig. 4.22d), that is
to say the lowest layer, are delayed compared to the pulses coming from the upper layer.
We measured a linear THz polarization for [Pt|Fe*|W]2, [Pt|Fe*]2, as well as [Fe*|W]2,

who has the same layer structure and thickness as [Fe90°|W]2. We can thus assume that
the timing offset is, directly or indirectly, caused by the change of orientation of the
easy axes. In Section 4.3.4.3, we discussed potential causes of asymmetry between the
two halves of the sample, and concluded that the impaired THz extinction was unlikely
to be caused by a timing offset between the two emissions. This discussion excluded
the birefringence of the sample, which is now relevant. The materials of all layers are
isotropic; however a small birefringence is caused by the grating-like interfaces of the
OID layers [217]. The refractive index at 1 THz of the first Fe|W interface, with θ = 60°,
is 188.8 for the field emitted there, which is polarized along the deposition direction, and
194.1 for the THz field emitted by the other FM layer. The latter shows a slightly different
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Figure 4.22: a) Hysteresis curve of [Fe90°|W]2 measured at 45° between both easy axes.
b) Peak-to-peak amplitude of the total THz field 𝐸 and its retrieved compo-
nents 𝐸hor ∥

#»𝑯 and 𝐸vert ⟂
#»𝑯 . c) Fit of the orientation of the THz polariza-

tion extracted from f. d) Polarization-resolved EOS traces of the emission
generated in the lower and e) upper halves of the sample. f) Projection of
the THz electric field in the plane normal to the propagation direction. Each
ellipse represents the average experimental waveform at a given magnetic
field, indicated by the colors. The dotted lines represent the simulated po-
larization ellipses.
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birefringence due to its 80° deposition angle, leading to a net delay. The inclusion of
this effect in simulations of [Fe90°|W]2, by inserting fictitious layers to represent these
interfaces, doubles the delay between both THz components from 0.76 fs to 1.53 fs. The
birefringence for the IR pump is negligible and does not contribute to the delay.
We thus deduce that the delay and the associated ellipticity is rather an artifact of

the beam propagation in the measurement setup. In Section 4.3.2, we showed the
0.1 ps magnetization-dependent delay that is seen in all samples, and attributed it to the
amplification at the metal-air interface of small beam path differences in the samples.
This offset is also visible in both of Figs. 4.22d and 4.22e. We argue that a similar
mechanism is likely to be at play in the case of the two magnetization axes of [Fe90°|W]2.
Since the magnetic field of the electromagnet and the IR pulse are no longer parallel
to the spin polarization of the electrons, it is expected that they affect the currents to
some degree. A small effect is sufficient: the measured 150 µm path difference over the
propagation length of the THz beam can be caused by a deflection of just ∼2 × 10−6 rad
inside the sample, highlighting asymmetries that are otherwise negligible. For example,
such a rotation of the expectation value of the spin polarization is obtained if 10 out
of 106 electrons in the spin currents align on the magnetic field. This is the same
order of magnitude as the induced magnetization of the W layer (10−6μB / atom with a
susceptibility of χ𝑚 = 6.8 × 10−5), which is caused by the same mechanism.

4.4 Conclusion

In this chapter, we aimed to study spintronic THz emitters as an efficient and easy-to-use
THz source, experiment with the geometry of the sample and examine the impact on the
emitted THz radiation. Through the innovative use of oblique incidence deposition to
deposit FM layerswith a controlled in-plane surface anisotropy, we are able tomanipulate
the behavior of the samples. The resulting remanence allows the magnetization of the
FM layers to remain saturated in the absence of external magnetic field. Samples
deposited with OID have the same THz emission as samples deposited without, and
their additional surface roughness only plays a role when comparing the relative THz
emission at opposite ends of the samples.
Our experiments demonstrated the ability of two FM layers with a different coercivity

to switch between ferromagnetic and antiferromagnetic configurations, respectively
minimizing and maximizing the THz emission as the radiation of individual layers
superpose destructively or coherently. The additional thickness compensates the added
interfaces, so that such five-layer samples have a similar THz output compared to trilayer
samples. Minimizing the thickness of the sample conflicts with the need to maximize
the rate of inverse spin Hall effect (ISHE) and avoid the coupling of ferromagnetic layers,
leaving little room for optimization. Using FM layers with perpendicular easy axes, we
demonstrated the control of the orientation of the THz polarization.
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To simulate the samples, we drew on the work of Rouzegar et al. [163] to calculate
the spin current, then implemented our own transfer-matrix algorithm to calculate the
propagation of the THz fields inside the multilayer samples. This propagation algorithm
proved largely accurate for reproducing the waveforms of the five-layer samples in the
antiferromagnetic and ferromagnetic configurations, and provided valuable insights
into the influence of the OID interface quality in obtaining a good extinction of the THz
radiation.
Compared to sources such as phase matching in LiNbO3, THz generation using spin-

tronic emitters allows a more compact and robust setup. From the IR-to-THz conversion
efficiency of CoFeB|Pt samples, whose EOS amplitude was similar to that of W|Py*|Pt,
we estimate the conversion efficiency of our samples to be 4 × 10−6. This is close to the
efficiency measured by Seifert et al. [22]. The measurement of the THz emission pre-
sented a few unexpected challenges. Despite an anticipated bandwidth of 10 THz for our
pump duration, the available EOS crystals limited the measurable bandwidth to 3 THz.
In addition, minor magnetization-dependent variations in alignment of the emitted THz
radiation in the sample were amplified by the use of OAPs as collection optics, leading
to measurements of tilted polarizations. This issue could potentially be mitigated by
employing THz lenses instead.
Moving forward, further investigation would be needed into the cause of themeasured

changes in the beam path, in order to confirm their magnetic origin inside the sample.
Understanding and mitigating this phenomenon is particularly important for samples
such as [Fe90°|W]2, to ensure a linear polarization of the THz emission.
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5
Conclusion

The field of spintronics, which focuses on manipulating the spin degree of freedom,
has lead in the last decades to many advances in the development of electronic devices.
Its potential to further enhance the energy efficiency and speed of applications such
as memories and magnetic sensors remains promising. By integrating spintronics with
ultrafast magnetism, it becomes possible to leverage the femtosecond speed of lasers to
stimulate the launch of spin currents. The use of THz radiation, which corresponds to
the timescale of low-energy processes in matter, presents an energy-efficient alternative
to optical pulses. The resonant excitation of magnons with generates less heat in the
sample, crucial for ensuring the stability of magnetic memories and increasing storage
density.
In the first part of this thesis, we aimed to develop a high-energy THz source for

resonantly exciting the spin dynamics of antiferromagnets. Two THz setups based on
optical rectification in LiNbO3were built, yielding up to 19 µJ and 2.6 µJ with conversions
efficiencies of 8.8 × 10−4 and 1.2 × 10−3, respectively. A focusing horn was designed
to amplify the THz electric field by a factor of 8.6. We employed the resulting THz
radiation to trigger the uniform magnetization resonance modes in the model canted
antiferromagnet FeBO3. The antiferromagnetic magnon mode, which has an order
of magnitude higher frequency than the ferromagnetic mode, has applications for a
faster magnetization switching, further highlighting the potential of THz radiation in
spintronic applications.
In the second part of the thesis, we explored spintronic THz emitter designs to find

novel approaches to manipulate spin currents for THz pulse emission. Theses devices,
consisting of pairs of ferromagnetic and non-magnetic layers, convert the picosecond
dynamics of spin currents into transient charge currents, emitting THz pulses via
the inverse spin Hall effect. By employing oblique incidence deposition to induce
surface anisotropy in the ferromagnetic layers, it became possible to maintain their
magnetization without an external magnetic field, which is in an advantage in the
pursuit of miniaturization. By controlling the relative orientation of magnetizations in
the ferromagnetic layers in a spin valve-like structure, we demonstrated the ability to
either enhance or suppress the THz emission. Such samples offers a practical way to
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generate on-demand THz pulses. Additionally, imparting orthogonal anisotropies in the
ferromagnetic layers enables the dynamic control of the THz polarization.
Looking ahead, the continued integration of spintronics, ultrafast magnetism, and

THz technology holds great promise for advancing the efficiency and speed of electronic
devices, paving the way for innovative applications in data storage, sensing, and commu-
nication systems. Further research and development in this interdisciplinary field are
essential for unlocking the full potential of spintronics and THz technology in shaping
the future of electronics.
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A
Material characterization

To calculate the transfer function of electro-optic sampling (EOS), the propagation of
THz radiation in LiNbO3 as in Chapter 2, or in spintronic THz emitters as in Chapter 4,
it is necessary to know the refractive index and absorption coefficient of the materials
over the whole spectrum of the THz pulse. In many cases, this data is not available in
the literature, or only for sporadic frequencies. To remedy to this problem, we measured
the materials in question by time-domain spectroscopy (TDS).

A.1 Principle of time-domain spectroscopy

Our THz-time-domain spectroscopy (TDS) setup is a MenloSystems TERA K15 spec-
trometer. An antenna emits radiation with a spectrum spanning nominally 0 THz to
6 THz. Four TPX lenses with a focal length of 54mm [218] form a double 4𝑓 telescope:
the first pair collects and focuses the THz radiation in free space, while the second pair
recollects the THz radiation and refocuses it on the detecting antenna. The transparent
sample to be measured is placed in the first focus. A measurement can be done in a
single-shot as the system records the time-dependent signal received by the detecting
antenna. The properties of the material can then be deduced from its Fourier transform.
To improve the resolution, the signal is averaged over typically 400 to 800 shots (50 s to
100 s of integration time). Nitrogen gas is injected in the measurement box until the
relative humidity drops under 1%, to avoid the absorption of the THz radiation by water
vapor. The system is also equipped with a cryogenic chamber with TPX windows that
can be inserted in the THz focus. The sample is then glued on a copper holder with a
5mm-diameter hole, and cooled down to 77K by liquid nitrogen.

To retrieve the complex refractive index of the material, we compare the Fourier
spectrum of the field measured by the detecting antenna with the sample to a reference
spectrum taken without the sample. The reference is taken in the same conditions
than the measurement: low humidity and presence of the chamber or any other mate-
rial. When the THz beam goes through the sample, assuming a single non-magnetic,
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homogeneous layer of thickness 𝑑, its amplitude becomes:

𝐸𝑠(ω) = 𝐸0(ω) 𝑡in(ω) 𝑡out(ω)𝑒−𝑖𝑘(ω)𝑑

= 𝐸0(ω)
4𝑛

(1 + 𝑛)2
𝑒−𝑖𝑛ω𝑑/𝑐,

(A.1)

where 𝑡(ω) are the Fresnel transmission coefficients and 𝑛 = 𝑛′ − 𝑖κ is the complex
refractive index of the material. Separating the real and complex part to express the
absorption coefficient α = 2ωκ / 𝑐, we obtain:

𝐸𝑠(ω) = 𝐸0(ω)
4𝑛′

(1 + 𝑛′)2
𝑒−𝑖𝑛′ω𝑑/𝑐𝑒−α𝑑/2, (A.2)

where we neglected the contribution of the imaginary part of the refractive index in the
Fresnel coefficients. Taking the Fourier transform of the measured signal, we thus have
the amplitude and the phase of 𝐸𝑠(ω):

𝐴𝑠(ω) = 𝐸0(ω)
4𝑛′

(1 + 𝑛′)2
𝑒−α𝑑/2, (A.3a)

ϕ𝑠(ω) =
𝑛′ω𝑑
𝑐 , (A.3b)

while for the reference which propagates the same distance in air:

𝐴𝑟(ω) = 𝐸0(ω), (A.4a)

ϕ𝑟(ω) =
ω𝑑
𝑐 . (A.4b)

The formula for the refractive index and the absorption can thus be retrieved by sub-
tracting Eq. (A.4b) to Eq. (A.3b) and taking the ratio of Eq. (A.3a) by Eq. (A.4a) to
obtain [219]:

𝑛′(ω) = 1 + 𝑐
ω𝑑 (ϕ𝑠(ω) − ϕ𝑟(ω)) (A.5)

α(ω) = −2𝑑 ln (
𝐴𝑠(ω)
𝐴𝑟(ω)

(1 + 𝑛′(ω))2

4 𝑛′(ω) ) . (A.6)

Fig. A.1 shows an example of a measurement and retrieval of the refractive index and
absorption for Al2O3. To avoid oscillations in the spectrum when performing the Fourier
transform, the time signal is truncated before analysis to remove the echoes occurring
after the main signal. It then has to be padded or interpolated for the unwrapping of the
phase to be correct. This however only works for samples thick enough that the echoes
do not overlap with the main pulse.
This analytical method has disadvantages: it neglects the contribution of the complex

part of the refractive index in the Fresnel coefficients, which modifies the phase of the
beam, and it gives unreliable values when the noise level is too high. We can see in
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Figure A.1: Example TDS measurement of a wrongly assumed 500 µm-thick Al2O3 sam-
ple. a) Measured THz signal with and without sample, truncated before the
Fourier transform. Calculated b) spectrum and c) phase of both signals.
Resulting d) refractive index and e) absorption of Al2O3.

Figs. A.1d and A.1e that the results become noisy above 3.5 THz when the amplitude
of the measurement with sample becomes too low. This is clearly seen in the sudden
change of trend of its unwrapped phase in Fig. A.1b. However, it is not as clear in the low-
frequency end at which point the results become erroneous. In addition, this example
shows a negative absorption coefficient under 1.6 THz, which is unphysical. This is due
to an imprecise knowledge of the thickness of the sample: setting 𝑑 too low results in
both overestimating 𝑛′ and underestimating α. While here the error is exaggerated for
the sake of demonstration, it is easy for very thin or irregular samples to have a significant
error in the expected thickness without having an obvious way of recognizing it.

Other sources of errors in the TDS data arise from the measurement itself. Figs. A.2a
and A.2b shows the detected THz pulse immediately after starting the TDS and after
letting it warm up overnight. The amplitude of the pulse increased by 2.2% and its
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Figure A.2: Other sources of errors in the TDS data: a–b) the change of the pulse timing
between immediately after starting the TDS and 16 h later (both measure-
ments averaged over 500 pulses) and c–d) the additional low-frequency noise
measured in the absence of a THz pulse (averaged over 17 000 measure-
ments).

arrival time decreased by 67 fs, which would introduce an error principally on the
refractive index if either the measurement or the reference is taken with a cold TDS.
Fig. A.2d shows the spectrum of the dark noise measured while the THz pulse was
blocked: there is an minor source of noise under 500GHz measured by the detecting
antenna. This contributes minimally to the error of the absorption coefficient on the
low-frequency end of the measurement. A further source of error is the assumption
of Eq. (A.1) that the THz radiation arrives at normal incidence on both surfaces of the
sample, which necessitates that the latter is perfectly flat, sits in the focus of the beam,
and is thinner than the Rayleigh length. When this is not the case, due to refraction,
light rays that were focused at one point of the detecting antenna might be focused on
another point or not reach the antenna. The issue is particularly problematic for thick
transparent samples and is worse for higher frequencies.

A.2 Fit of the permittivity

To remedy to these problems, we use the Fit@TDS [220] software. We select one or
several models for the complex refractive index such as the Drude, Lorentz or Debye
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models, and the software fits their the parameters to the TDS data. This allows the
relative permittivity ϵ𝑟 = ϵ′𝑟 − 𝑖ϵ″𝑟 = 𝑛2 to satisfy the Kramers-Kronig relations linking its
real and imaginary parts [33]:

ϵ′𝑟(ω) = 1 + 2
π ∫

∞

0

ω′ ϵ″𝑟 (ω′)
ω′2 − ω2 dω

′ (A.7)

ϵ″𝑟 (ω) = 1 + −2ω
π ∫

∞

0

ϵ′𝑟(ω′)
ω′2 − ω2 dω

′. (A.8)

When the permittivity is constant over the THz range, this relationship reduces the
refractive index and the absorption to a single unknown. The phase difference between
the measurement with sample and the reference measurement depends only on the
permittivity and the thickness of the sample. However, in practice, the thickness is
usually known with some error, as was illustrated in Fig. A.1. In this case, the presence
of an echo in the measurement supplies a second equation to fit both the permittivity
and the actual thickness, as the phase of the main pulse and the 𝑥th echo are:

ϕ0 = ϕt(ϵ) +
𝑛′ω𝑑
𝑐 , (A.9)

ϕ𝑥 = ϕt(ϵ) + 𝑥ϕr(ϵ) + (2𝑥 + 1) 𝑛
′ω𝑑
𝑐 , (A.10)

where ϕt and ϕr are the phases coming from the transmissions and internal reflections
on both interfaces. For more complex models of the refractive index with an increasing
number of variables, more echoes give a better result. The thickness of the sample should
thus be chosen so that a sufficient number of echoes are visible. The measurement
window must contain all echoes to avoid folding issues with the Fourier transform. In
practice, Fit@TDS solves the equation [220]:

𝐸𝑠(ω) =
4𝑛

(1 + 𝑛)2
exp(−𝑖 (𝑛 − 1)ω𝑑 / 𝑐)

(1 − (𝑛−1
1+𝑛

)
2
exp(−2𝑖𝑛ω𝑑 / 𝑐))

𝐸𝑟(ω) (A.11)

where the denominator of the second factor is the Fabry-Pérot term.
The different components of the relative permittivity as they are defined in the software

are:

• The constant permittivity at high frequency ϵ∞, which is always included.

• The Drude model:

ϵDrude(ω) = −
ω2𝑝

ω2 − 𝑖γ𝑝ω
(A.12)

where ω𝑝 is the plasma frequency and γ𝑝 the damping rate. The Drude model is
adapted to conducting materials and represents the contribution of free charges. It
manifests as a refractive index diverging at ω = 0 and, at low frequencies (ω < γ𝑝), the
absorption increasing with the frequency.
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• The Lorentz model:

ϵLorentz(ω) =
Δϵ𝑖ω2𝑖

ω2𝑖 − ω2 + 𝑖γ𝑖ω
(A.13)

where Δϵ𝑖 is the oscillator strength, ω𝑖 its angular frequency and γ𝑖 its damping rate.
Many materials have optical phonons in the THz range, which are represented by the
Lorentz model a harmonic oscillators with exponential damping. Each oscillator is
recognizable as an absorption peak accompanied by a step in the refractive index.

• The Debye model:

ϵDebye(ω) =
Δϵ𝑗

1 + 𝑖ω / γ𝑗
(A.14)

whereΔϵ𝑗 is the oscillator strength and γ𝑗 its damping rate. TheDebyemodel represents
the slow thermal relaxation of polar molecules, and is adapted for materials such as
liquids and polymers. It manifests as an rising absorption and falling refractive index
with frequency.

• Scattering:

ϵscatt(𝑓) = {
(−𝑖α𝑓3)2 − 2𝑖α𝑓3√ϵ∞ + ϵDrude if 𝑓min < 𝑓 < 𝑓max
0 otherwise.

(A.15)

where α is the scattering coefficient and 𝑓min/max is the minimum/maximum scattering
frequency. Its formula is equivalent to adding δκ = α𝑓3 to the existing imaginary part
of the refractive index. Scattering represents additional losses of THz radiation due
to defects in porous or textured materials, and results in featureless losses increasing
with frequency.

The total function to fit the TDS data is thus:

ϵ𝑟(ω) = ϵ∞ + ϵDrude(ω) + ϵscatt(ω, ϵ𝑟) +∑
𝑖
ϵLorentz(ω) +∑

𝑗
ϵDebye(ω). (A.16)

Thin metallic samples have the difficulty that the permittivity depends on their
thickness: few nm-thick samples have a lower contribution of theDrudemodel than bulk
samples because of the smaller amount of conduction electrons decreasing the plasma
frequency, and the decreased metallicity of the sample [221]. We are also assuming that
the samples are not magnetic (μ𝑟 = 1), which influences the Fresnel coefficients [222].
In addition, we had access to a version of Fit@TDS able to fit a multilayer structure

one unknown layer at a time, which was necessary for samples sputtered on a substrate.
In the case of such samples, reference measurements taken with only the substrate have
different Fresnel coefficients at the point of contact. This requires adapting Eq. (A.11) to
the modified transfer functions describing the sample and reference.
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A.3 Results

Table A.1 presents the fit parameters for the materials in this section. Unless written
otherwise, the measurements were performed at room temperature and without mount-
ing the sample in the vacuum chamber. We used Fit@TDS to fit the time-domain TDS
data, selecting models and the constrains on their parameters according to the available
literature.

A.3.1 Fused Silica

Fig. A.3 shows the measurement and fit of a fused silica wafer at room temperature in
the TDS chamber. We based the starting parameters of the fit on the Lorentz oscillators
identified by Komandin et al. [223] at 8.5 THz and 13.6 THz. Due to the amorphous
nature of fused silica glass, the peaks are broad and the phonon at 13.6 THz has a large
influence on the absorption we measure. The low-frequency features visible in the data
fromChudpooti et al. [224] andMarkelz [225] are reproduced by a small Debye oscillator.

A.3.2 KTP

Fig. A.4 shows the extraordinary 𝑧 axis of a 𝑥-cut KTP sample measured at cryogenic
temperature. The losses in the 2mm-thick sample were too large to allow an accurate fit
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Figure A.3: Fit of fused silica at room temperature. Markers in c) and d): values from
Refs. [224–226], the error bars indicating the distribution of other measure-
ments compiled in [226, table 2].
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Figure A.4: Fit of the 𝑧 axis of KTP at cryogenic (77K) temperature. Markers in c) and
d): room-temperature values from Refs. [227, 228].
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Figure A.5: Fit of Kapton along the ordinary and extraordinary axes. Markers in c) and d):
values from Refs. [229, 230] along a unknown and mixed axis, respectively.
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above 2 THz. Because of the limited bandwidth, the best fit was obtained with a strong
peak at 4.7 THz. For comparison, the results of Antsygin et al. [227] and Mounaix et al.
[228] at room temperature are shown, on which the same phonon at 1.74 THz is visible.

A.3.3 Kapton

We measured both the ordinary and extraordinary axes of a sheet of Kapton, which
is a dielectric polymeric plastic. As the axes were not indicated, we identified the
extraordinary axis as the angle at which the transmitted THz pulse has the largest
delay. The precision of this method is however limited by the time resolution of the
TDS (33.4 fs), which is as large as the 39.2 fs separation between the measured ordinary
and extraordinary pulses.

The absorption under 3 THz is well reproduced by a Debye oscillator alone. Two
Lorentz oscillators at 3.5 THz and 4.7 THz allow to fit the higher-frequency data. The
further two Lorentz peaks provided in Table A.1 are estimates based on the data from
Cunningham et al. [229], whose axis is not specified, and Smith and Loewenstein [230],
which is an average of the two optical axes. We obtained a lower extraordinary refractive
index than Ref. [229], which may indicate that our measurement underestimates the
birefringence of Kapton.
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Figure A.6: Fit of FeBO3 including back-reflection by the pinhole.
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A.3.4 FeBO3

Fig. A.6 shows our measurement of a (0 0 1)-plane multicrystalline FeBO3 sample. To be
able to manipulate the extremely brittle crystal, we glued it over a 4.5mm-diameter hole
between two Kapton sheets, which we then fixed loosely over a 3mm-diameter metallic
pinhole in the TDS focus.
The ∼1 THz-wide oscillations in Fig. A.6b are due to internal reflections in FeBO3,

and are reproduced by a fit of ϵ∞ and the sample thickness alone. Due to the irregular
surface of the sample, we fitted the additional losses as scattering.
However, the ∼0.13 THz-wide oscillations, corresponding to the reflection after 7.5 ps,

cannot be reproduced by fitting the measurement. Because of the loose mounting of the
FeBO3 sample in front of the relatively small pinhole, we hypothesized that a part of the
THz beam which is blocked by the latter during the reference measurement is reflected
forward on the sample and passes through the pinhole, creating the second pulse.
This process is modeled by an additional transfer function representing a reflection
with 100% efficiency on the pinhole of a variable proportion of a THz pulse, and its
reflection on the sample at a variable distance to the pinhole. The fit in Fig. A.6 is
obtained by multiplying the reference beam with this transfer function, before as usual
applying the transfer function of the sample. We found that the timing of the additional
reflection is reproduced for gap of 1.01mm. To match the amplitude of the oscillations,
we set that 100% of the THz field that is passing through the pinhole during the reference
measurement is still passing through in the presence of the sample, and that an additional
50% of the field which is normally blocked can pass through the pinhole when it is
reflected on the FeBO3 crystal.

A.3.5 Al2O3

Fig. A.7 shows the measurement of a double-polished c-plane wafer of Al2O3, which is
used as substrate for the spintronic THz emitters in Chapter 4. Based on the parameters
given by Barker [233], we fitted the featureless increase in absorption as the side of a
pair of strong Lorentz oscillators at 13.3 THz and 17.1 THz. To minimize the number of
fit parameters, we neglected the smaller oscillators at 11.55 THz and 19.05 THz, which
is compensated by a higher value of ϵ∞. While the results are close to other published
experimental values [231, 232], all our measurements show a clear absorption peak at
3.55 THz not mentioned in the literature. We measured different samples from different
manufacturers and found a similar peak in each one: at 3.4 THz in one and at 2.7 THz
and 2.9 THz in a second, with one peak appearing and the other disappearing as the
sample was rotated.
We assume that this peak corresponds to an additional IR-active phonon caused by the

mechanical polishing of the surface [233]. This hypothesis is supported by the observed
temperature dependence of the absorption peak. Fig. A.8 shows a succession of THz
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Figure A.7: Fit of Al2O3 along its ordinary axis. Markers in c) and d): values from
Refs. [231, 232].
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3.15 THz to 3.65 THz.
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spectra as an Al2O3 sample warms up from cryogenic temperatures. Due to the weight
of the liquid nitrogen shifting the TDS chamber, it was not possible to take a reference
measurement to retrieve the absorption coefficient. Over most of the frequency range,
the spectrum is stable as shown in Fig. A.8b. However, around 3.4 THz, we see that
the transmitted amplitude decreases progressively as the sample warms up, which is
consistent with the hypothesis of a phonon.

A.3.6 MgO

WemeasuredMgO as a 50 nm layer sputtered over the Al2O3 substrate, after determining
the permittivity of the latter. Due to its small absorption and thickness, the influence
of the MgO layer is however not distinguishable from the substrate by itself. We used
the parameters of the Lorentz model given by Ren et al. [234] to describe MgO layers in
Chapter 4.

A.3.7 Pt

We measured Pt as an Al2O3|Pt(50 nm) sample. With the permittivity of the substrate
known, the one of the Pt layer can be determined. The delay of the transmitted pulse
and its reflection come from the substrate, while its amplitude depends almost entirely
on the Pt layer.
As a metal, Pt is described by the Drude model. We used as starting parameters for

the fit those given by Seifert et al. [19], converting between conductivity and permittivity
with:

ϵ𝑟 = ϵ′𝑟 − 𝑖ϵ″𝑟 = (σ″ − 𝑖σ′) / ωϵ0, (A.17)

ω𝑝 = √σDCγ𝑝 / ϵ0. (A.18)

Using Eq. (A.18), Eq. (A.12) simplifies to ϵDrude(ω) = −𝑖σDC / ϵ0ω when γ𝑝 ≫ ω, making
the fit is insensitive to the relaxation rate. We thus retain its value from Ref. [19] and use
σDC and ϵ∞ as only variable parameters.
Fig. A.10a shows that the THz absorption is high enough that noise distorts the

measured waveform, even after correcting for the dark noise of the TDS measured in
Fig. A.2. Since the Pt layer is too thin to create visible internal reflections, Fit@TDS
is unable to unambiguously determine its thickness, and thus the target absorption.
Assuming that σDC = 3.9 × 106 Sm−1 as in Ref. [19] results in 𝑑 = 90nm instead of the
nominal 50 nm, which is an unrealistic error on the thickness of the sample. We thus
instead assume that 𝑑 = 50nm, which results in σDC = 7.5 × 106 Sm−1.
The larger conductivity is explained by the thickness dependence of the conductivity

of thin films, due to the increased contribution of electron scattering at the interfaces.
Fig. A.11a compares our resultwith different values for the conductivity of polycrystalline
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Figure A.9: Fit of MgO over an Al2O3 substrate. Markers in c) and d): values from
Ref. [234]. The absorption peak at 3.6 THz is due to the substrate.

0 10 20 30
Time (ps)

−0.05

0.00

0.05

0.10

TH
z
si
gn
al
(a
.u
.) a) Pt

Ref./50
Fit

0 2 4
Frequency (THz)

0

250

500

750

1000

Re
fr
ac
tiv
e
in
de
x c) [19]

0 2 4
Frequency (THz)

10−3

10−1

101

A
m
pl
itu
de

(a
.u
.) b)

0 2 4
Frequency (THz)

0

1

2

3

Lo
ss
es
(c
m

−
1 )

×105

d)

Figure A.10: Fit of Pt within an Al2O3|Pt sample. Markers in c) and d): values calculated
from the complex conductivity given in Ref. [19].
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Pt films found in the literature. We fit the thickness dependency of σDC using the Fuchs–
Sondheimer equation [235]:

σ
σbulk

= 1 − 3
2𝑘 ∫

∞

1
( 1𝑡3 −

1
𝑡5 ) (1 − 𝑒−𝑘𝑡) d𝑡, (A.19)

where 𝑘 = 𝑑 / λ and λ is the electron mean free path. The literature values of λ =
22.4nm [236] and σbulk = 9.27×106 Sm−1 at room temperature [237] match the collected
data. The fit shows that our estimation of σDC falls into the expected range for a 50 nm-
thick layer. In the case of the spintronic THz emitters discussed in Chapter 4, we are
interested in the absorption of 2 nm-thick Pt layers. In this case, we estimate σDC =
1.8 × 106 Sm−1.

A.3.8 Fe

Fewasmeasuredwithin anAl2O3|Fe(50 nm)|Pt(2 nm) sample. It was sputtered at normal
incidence, to avoid the influence of oblique incidence deposition (OID) on its permit-
tivity [244, 245]. The refractive indices of the external layers are fixed, with the one of
Pt adapted for its reduced thickness as described above. As before, only the substrate
contributes to the delay of the pulse, which makes the fit insensitive to 𝑑 and ϵ∞. We
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Figure A.11: Thickness-dependence of the conductivity of thin films at room temper-
ature, comparing values from the litterature fitted by Eq. (A.19) to the
conductivity obtained with Fit@TDS. Empty markers denote values taken
from epitaxial samples, whose conductivity is expected to be higher. The
error bars indicate the range of values of σDC which give visually undistin-
guisable results in the reconstruction of the TDS measurement.
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Figure A.12: Fit of Fe within an Al2O3|Fe|Pt sample. Markers in c) and d): values calcu-
lated from the complex conductivity given in Refs. [19, 240].
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Figure A.13: Fit of Py within an Al2O3|Py|Pt sample.
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assume that, as was the case for Pt, the nominal thickness of 𝑑 = 50nm is a good approx-
imation. The permeability of iron is neglected, which leads to a slight overestimation of
the Fresnel coefficients. Since the internal reflections are absorbed in the thick Fe layer,
the effect is negligible.
As shown in Fig. A.12, a fit with the Drude model alone reproduces the refractive

index and absorption measured by Seifert et al. [19]. Strong scattering due to the rough
interfaces of the sample is visible above 2 THz. We presume that the structural disorder
of the layer is responsible for the low conductivity compared to what can be expected for
a 50 nm-thick layer, as shown by Fig. A.11b. The measurements of Refs. [19, 238, 239]
fall on a curve described by σbulk = 10.3 × 106 Sm−1 [239] and λ ≈ 50nm. The annealed
epitaxial samples of Ref. [240] have a particularly large conductivity, while the sputtered
polycrystalline samples of Ref. [241] have a lower conductivity than ours. We expect for
the 3.5 nm-thick layers of the spintronic THz emitters a conductivity of σDC ≈ 106 Sm−1.

A.3.9 Py

Py was measured within an Al2O3|Py(50 nm)|Pt(2 nm) sample and fitted with a Drude
model and scattering as shown in Fig. A.13. The same concerns mentioned for Fe also
apply to Py. The resulting plasma frequency is of the same order of magnitude as the one
measured in the visible range by Tikuišis et al. [246].

A.3.10 W

Like the previousmaterials,Wwasmeasuredwithin anAl2O3|W(50 nm)|Pt(2 nm) sample
and fitted with the Drude model and scattering, as shown in Fig. A.14. We find a
relaxation rate and conductivity similar to the ones given by Seifert et al. [19], with σDC
falling within the expected range for a 50 nm-thick layer based on the measurements
of Petroff et al. [242], as shown by Fig. A.11c. Fitting the thickness dependency with
λ = 20nm, which is within the expected range [247], and σbulk = 4 × 106 Sm−1, we
estimate σDC = 0.84 × 106 Sm−1 for a 2 nm-thick layer.

A.3.11 ZnTe

The permittivity of ZnTe, shown in Fig. A.15, is used in Chapter 4 to simulate the
propagation of the THz pulse into the EOS crystal. It was not measured in the TDS, but
instead is reconstructed from the Lorentz parameters fitted by Casalbuoni et al. [248]
from the measurement of Gallot and Grischkowsky [249].
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Figure A.14: Fit of W within an Al2O3|W|Pt sample. Markers in c) and d): values calcu-
lated from the complex conductivity given in Ref. [19].
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Figure A.15: Simulation of the propagation through a 500 µm-thick ZnTe crystal, using
the Lorentz model of Ref. [248].
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Table A.1: Fit parameters for modeling the optical properties of the given materials under ∼3 THz.

Drude Scattering Lorentz Debye

Thickness (m) ϵ∞ ω𝑝 (Hz) σDC (Sm−1) γ𝑝 (Hz) α (Hz−3) Δϵ𝑖 ω𝑖 (Hz) γ𝑖 (Hz) Δϵ𝑗 γ𝑗 (Hz)

fused silica 255.1 × 10−6 3.32 - - - - 0.0655
0.47

8.5 × 1012
1.4 × 1013

5.5 × 1012
1.5 × 1012 0.0592 1.9 × 1011

KTP (77K) 1.972 × 10−3 4.74 - - - - 0.02
9.4

1.7 × 1012
4.7 × 1012

1.5 × 1011
1.6 × 1011 - -

ZnTe 500 × 10−6 7.4 - - - - 2.7 5.3 × 1012 9 × 1010 - -

kapton (ord.)
kapton (extr.) 122.1 × 10−6 2.91

3.25 - - - -
0.01
0.06
0.006
0.02

3.5 × 1012
4.7 × 1012
6 × 1012
7.8 × 1012

9 × 1011
1 × 1012
6 × 1011
4 × 1011

0.168 1.5 × 1012

FeBO3 (ord.) 34.89 × 10−6 15.5 - - - 4 × 10−3 - - - - -

Al2O3 (ord.) 635.01 × 10−6 4.02 - - - -
0.019
2.7
3.0

3.6 × 1012
1.3 × 1013
1.7 × 1013

2.5 × 1011
3.5 × 1011
1 × 1012

- -

MgO 50 × 10−9 3.01 - - - - 0.062
6.55

3.2 × 1012
1.2 × 1013

9 × 1011
2 × 1011 - -

Pt 50 × 10−9 6.53 6.6 × 1015 7.5 × 106 5.1 × 1013 - - - - - -

Fe 50 × 10−9 1 5.8 × 1015 2.7 × 106 1.1 × 1014 2.3 - - - - -

Py 50 × 10−9 1 5.0 × 1015 3.2 × 106 6.9 × 1013 2.8 - - - -

W 50 × 10−9 1 9.8 × 1015 3.2 × 106 2.7 × 1014 1.4 - - - - -
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Electro-optic sampling

Electro-optic sampling (EOS) is a technique allowing to measure the temporal shape
of a signal that is too fast for an electronic detection, by transforming the temporal
dependency of the signal into a spatial dependency. A probe pulse, short with respect
to the sampled signal, is spatially superposed to the latter in a nonlinear material. It
polarization rotates in proportion to the instantaneous amplitude of the signal. Scanning
their relative delay allows to reconstruct the whole pulse. In this work, we use it to
characterize pulses with a bandwidth spanning 0.1 THz to 3 THz using near-infrared (IR)
probes.

B.1 Theory

We introduced nonlinear optics in Section 2.1.1.1. EOS uses a second-order effect,
the linear electro-optic or Pockels effect, in which the electric field of the THz pulse
ℰDC(Ω ≈ 0), approximated constant, modulates the phase of the probe beam ℰp(ω) [56,
250]:

𝒫(2)
𝑖 (ω) = 2ϵ0∑

𝑗𝑘
χ(2)𝑖𝑗𝑘(ω; ω, 0) ℰ

p
𝑗 (ω)ℰ

DC
𝑘 . (B.1)

The effect is usually described using the electro-optic tensor 𝑟𝑖𝑗𝑘(ω) = − χ(2)𝑖𝑗𝑘(ω; ω, 0) /
(ϵ0𝑖𝑖(ω) ϵ

0
𝑗𝑗(ω)), where ϵ

0
𝑖𝑖 = 1 + χ(1)𝑖𝑖 is the linear dielectric constant in the coordinate

system of the principal axes of the medium [251]. The electric field of the THz beam

adds a nonlinear component to the refractive index tensor 𝑛𝑖𝑗(ω) = √1 + χ(1)𝑖𝑗 + 2χ(2)𝑖𝑗𝑘ℰ
DC
𝑘 ,

nearly instantaneously inducing birefringence in the plane of the crystal: Δ (1 / 𝑛(ω))𝑖𝑗 =
𝑟𝑖𝑗𝑘(ω)ℰDC𝑘 . The polarization of the probe beam, initially linear, becomes elliptical and
rotates proportionally to the instantaneous strength of the THz field.
The effect is alternatively described as a mixture of sum frequency generation (SFG)

and difference frequency generation (DFG) [249]:

𝒫(2)
𝑖 (ω′) = ϵ0∑

𝑗𝑘
χ(2)𝑖𝑗𝑘(ω′; ω,Ω) ℰ

p
𝑗 (ω) ℰTHz𝑘 (Ω)

= ϵ0∑
𝑗𝑘
χ(2)𝑖𝑗𝑘(ω′; ω,Ω) ̂𝐸p𝑗 (ω) ̂𝐸THz𝑘(Ω)𝑒−𝑖(𝓀(ω)±𝓀(Ω))𝑧,

(B.2)
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where ω′ = ω±Ω. AsΩ is typically smaller than the bandwidth of the probe, ω′ ≈ ω and
the nonlinear polarization gives rise to a new wave ℰEOS(ω). After propagation through
the crystal, this additional component of the probe beam is equivalent to an additional
phase, proportional to the amplitude of the THz field [249]:

ℰ𝑖(ω) = ℰp𝑖 + ℰEOS𝑖 = ℰp𝑖 (1 + 𝑖
(ℰSFG𝑖 + ℰDFG𝑖 )

𝑖ℰp𝑖
) ≈ ℰp𝑖 𝑒𝑖φ𝑖, (B.3)

where φ𝑖 = (ℰSFG𝑖 + ℰDFG𝑖 ) / (𝑖ℰp𝑖 ).
We measure the modulation using a balanced detector, which consists of a half

waveplate to rotate the polarization of the probe, a polarizer to separate the probe beam
into two polarization components, and two detectors. The angle of the waveplate is
chosen so that the probe intensity on both detectors is initially equal. We then record
the difference in intensity as it is modulated by the THz beam: 𝑆EOS(τ) ∝ ∫|𝐸𝑥(𝑡 − τ)|2 −
|𝐸𝑦(𝑡 − τ)|2 d𝑡 ∝ 𝐸THz(τ). Scanning the delay τ of the probe allows to sample the whole
THz signal.
When it is only needed to compare the relative amplitude of EOS measurements done

in the same conditions as we have done throughout this manuscript, considering 𝑆EOS
directly is sufficient. However, if the goal is to reconstruct the exact waveform of the THz
pulse or the strength of its electric field, the frequency-dependent effects distorting the
waveformmust be corrected for. Most of these effects are linear with the THz amplitude,
allowing us to model them as a transfer function in the frequency domain:

𝑆EOS(Ω) = 𝑇inter𝑇crystal𝑇env𝑇pol𝑇prop𝑇overlap ℰTHz(Ω), (B.4)

where each transfer function is explained in the following sections.

B.2 Interfaces and reflections: 𝑇inter

When the THz pulse enters the detection crystal, and particularly if it is thin or has a thin
substrate, it undergoes multiple reflections which give rise to a Fabry-Pérot effect. In the
case of a single-layer EOS crystal of thickness 𝐿, the transfer function for the Fabry-Pérot
effect is [185]:

𝑇FP(Ω) =
∞
∑
𝑛=0

(𝑟in𝑟out exp(−2𝑖𝑘𝐿))
𝑛 = 1

1 − 𝑟2out exp(−2𝑖𝑘𝐿)
(B.5)

where 𝑟out = (𝑍0 − 𝑍) / (𝑍0 + 𝑍) = (𝑛 − 1) / (𝑛 + 1) is the Fresnel reflection coefficient at
the output interface for a complex impedance 𝑍 and index 𝑛, assuming normal incidence
and a non-magnetic material. For EOS, we are interested in the THz electric field near
the input surface of the setup, where it can start interacting with the probe. The transfer
function of the single layer is thus:

𝑇inter(Ω) =
𝑡in

1 − 𝑟2out exp(−2𝑖𝑘𝐿)
. (B.6)
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Figure B.1: Demonstration of the EOS deconvolution in a 190 µm-thick ZnTe crystal. a)
Measured signal 𝑆EOS and retrieved THz field 𝐸THz. b) Spectrum before and
after correction of the interference pattern by 𝑇inter, including (𝑎′ + 𝑐′) or
excluding (𝑎′) the back-propagating THz field. Transfer functions for c) the
nonlinear process, d) the interference pattern and e) the time resolution of
the probe.

Some EOS crystals are however mounted on a substrate. For the general case, one can
use the transfer matrix method to calculate the transfer function of an arbitrary structure
of 𝑀 flat layers. We define a matrix linking the field at the beginning of each layer to
field at the beginning of the next:

⎡
⎢
⎢
⎣

ℰ+𝑚−1

ℰ−𝑚−1

⎤
⎥
⎥
⎦

= 𝑪𝑚
⎡
⎢
⎢
⎣

ℰ+𝑚

ℰ−𝑚

⎤
⎥
⎥
⎦

. (B.7)

where𝑪𝑚 is defined as per Eq. (C.1). In the case of EOS, we are interested in the THz field
ℰ+𝑁 entering the nonlinear layer 𝑁, as a function of the incoming field ℰ+0 . Multiplying
the matrices of each layer, we can relate the field at the input and output of the whole
structure:

⎡
⎢
⎢
⎣

ℰ+0

ℰ−0

⎤
⎥
⎥
⎦

= 𝑪1𝑪2…𝑪𝑀+1
⎡
⎢
⎢
⎣

ℰ+𝑀−1

0

⎤
⎥
⎥
⎦

, (B.8)
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and in the layer 𝑁 to the output:

⎡
⎢
⎢
⎣

ℰ+𝑁

ℰ−𝑁

⎤
⎥
⎥
⎦

= 𝑪𝑁+1𝑪𝑁+2…𝑪𝑀+1
⎡
⎢
⎢
⎣

ℰ+𝑀−1

0

⎤
⎥
⎥
⎦

. (B.9)

Defining the product of the matrices as:

⎡
⎢
⎢
⎣

𝑎 𝑏

𝑐 𝑑

⎤
⎥
⎥
⎦

= 𝑪1𝑪2…𝑪𝑀+1 and
⎡
⎢
⎢
⎣

𝑎′ 𝑏′

𝑐′ 𝑑′

⎤
⎥
⎥
⎦

= 𝑪𝑁+1𝑪𝑁+2…𝑪𝑀+1 , (B.10)

the total field in the active nonlinear layer is then:

ℰ𝑁 = ℰ+𝑁 + ℰ−𝑁 = 𝑎′ + 𝑐′
𝑎 ℰ+0 . (B.11)

This includes the forward- and backward-propagating THz field. However, the backward-
propagating field is usually poorly phase-matched with the probe and using the transfer
function:

𝑇inter(Ω) =
𝑎′
𝑎 (B.12)

is sufficient to completely remove the Fabry-Pérot oscillations in the measured spectrum.
As shown inFig. B.1b, including 𝑐′ leads to overcompensating for the interference pattern.
As the probe pulse is integrated in the detector and only its amplitude considered, the
multiple reflections of the probe can be ignored.

B.3 Nonlinear process: 𝑇crystal and 𝑇env

As mentioned in Appendix B.1, the nonlinear polarization:

𝒫(2)
𝑖 (ω) = ̂𝑃(2)𝑖 𝑒−𝑖(𝓀(ω±Ω)∓𝓀(Ω))𝑧,

= ϵ0∑
𝑗𝑘
χ(2)𝑖𝑗𝑘(ω; ω ± Ω,Ω) ̂𝐸p𝑗 (ω ± Ω) ̂𝐸THz𝑘 (Ω)𝑒−𝑖(𝓀(ω±Ω)∓𝓀(Ω))𝑧

(B.13)

gives rise to a new wave propagating according to the wave equation [33, chapter 2]:

(∇2 − 𝓀(ω)) ℰEOS𝑖 (ω) = ω2

ϵ0𝑐2
𝒫(2)
𝑖 (ω), (B.14)

which simplifies to:
d
d𝑧

̂𝐸EOS𝑖 (ω) = 𝑖ω2

2ϵ0𝑐2𝓀
̂𝑃(2)𝑖 (ω)𝑒−𝑖Δ𝓀𝑧, (B.15)

where 𝓀 = ω√1 + χ(1)𝑖𝑖 / 𝑐 is the complex wavevector and Δ𝓀 = 𝓀(ω ± Ω)∓𝓀(Ω)−𝓀(ω)
the complex phase mismatch parameter. Integrating over the length 𝐿 of the crystal, we
get:

̂𝐸EOS𝑖 (ω) = 𝑖ω2

2ϵ0𝑐2𝓀
̂𝑃(2)𝑖 (ω)𝑒

−𝑖Δ𝓀𝐿 − 1
𝑖Δ𝓀 . (B.16)
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The real part of the factor (𝑒−𝑖Δ𝓀𝐿 − 1) / 𝑖Δ𝓀 can be simplified to 𝐿 sinc (Δ𝓀𝐿 / 2) and
represents the loss of amplitude when the waves are mismatched. Its imaginary part
accounts for the absorption of the waves as they go through the crystal, which is why it
is important that 𝑇inter is defined to give the THz field at the beginning of the layer.
The components due to SFG and DFG can be shown to be equivalent [249]. From

Eqs. (B.3), (B.13) and (B.16), the modulation φ𝑖 created by the new wave is thus:

φ𝑖(ω) =
ℰEOS𝑖 (ω)
𝑖 ℰp𝑖 (ω)

= 𝑖ω2

2ϵ0𝑐2𝓀
χ(2)𝑖𝑗𝑘

̂𝐸p𝑗 (ω − Ω) ̂𝐸THz𝑘 (Ω)

𝑖 ̂𝐸p𝑖 (ω)
𝑒−𝑖Δ𝓀𝐿 − 1

𝑖Δ𝓀 . (B.17)

The EOS crystal we generally use is ZnTe, for which only the 𝑟41 coefficient is non-zero.
In term of the nonlinear susceptibility, we thus have:

φ ∝ χ(2)231 (
̂𝐸p3 (ω − Ω) ̂𝐸THz1 (Ω)

𝑖 ̂𝐸p2 (ω)
+

̂𝐸p2 (ω − Ω) ̂𝐸THz1 (Ω)
𝑖 ̂𝐸p3 (ω)

) , (B.18)

where the directions 1, 2 and 3 refer to the crystal axes [1 0 0], [0 1 0] and [0 0 1], respec-
tively.
We use the waveplate of the balanced detector to rotate the polarization of the probe

so that the amplitude of both beams is identical in the absence of THz radiation [249]:

ℰ𝑥 =
1
2ℰ

p (1 +
φ
2 ) and ℰ𝑦 =

1
2ℰ

p (1 −
φ
2 ) (B.19)

where 𝑥 and 𝑦 refer to the coordinate system of the polarizer. For a given delay of the
probe, the EOS signal is given by the difference in intensity of the beam on the two
detectors:

𝑆EOS(τ) = ∫
∞

0
|ℰ𝑥(ω)|

2 − ||ℰ𝑦(ω)||
2 dω.

= ∫
∞

0
−12 ℰ

p(ω) ℰp∗(ω) Im(φ) dω

= ∫
+∞

−∞

ω2

8ϵ0𝑐2𝓀
χ(2)eff ̂𝐸p(ω) ̂𝐸p∗(ω − Ω) ̂𝐸THz𝑘 (Ω)𝑒

−𝑖Δ𝓀𝐿 − 1
𝑖Δ𝓀 dω

(B.20)

where the effective susceptibility tensor χ(2)eff = χ(2)231 in the case of ZnTe.
From this, we can extract two transfer functions. The transfer function of the nonlinear

behavior, including the susceptibility of the crystal and the phase matching of the beams,
is [185, 249]:

𝑇crystal(Ω) = χ(2)eff
𝑒−𝑖Δ𝓀𝐿 − 1

𝑖Δ𝓀 = χ(2)eff
𝑒−𝑖

Ω
𝑐 (𝑛𝑔(ω)−𝑛(Ω))𝐿 − 1

𝑖Ω
𝑐
(𝑛𝑔(ω) − 𝑛(Ω))

, (B.21)

As we derived in Eq. (2.20), the phase matching depends on the THz refractive index
and the group index of the probe. The second is the spectrum of the envelope of the
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B Electro-optic sampling

probe and represents the loss of temporal resolution due to the duration of the probe
pulse [249]:

𝑇env(Ω) = ∫
+∞

−∞

̂𝐸p(ω) ̂𝐸p∗(ω − Ω) dω. (B.22)

𝑇crystal and 𝑇env are plotted for ZnTe in Fig. B.1.

B.4 Polarization angles: 𝑇pol

The value of χ(2)eff depends on the angle between the crystal axes and the polarization of
the THz and probe beams. ZnTe is usually used with a (1 1 0) cut, so that both beams
propagate along the [1 1 0] axis. The plane of the sample contains only the [0 0 1] or 𝑍
axis. With α and β the angles between the 𝑍 axis and the THz and probe polarization
respectively, we get the transfer function [252]:

𝑇pol(Ω) = cosα sin 2β + 2 sinα cos 2β. (B.23)

The signal is maximum for α = ±π
2
and β− α = 0 or ±π

2
. It is thus best to have the probe

beam polarized orthogonal or parallelly to the THz beam.

B.5 Propagation to the EOS crystal: 𝑇prop

If we want to reconstruct the generated THz field and not the field incident on the
crystal, the optical path between the generation point and the crystal should be taken
into account. In general, it consists of the propagation through air or vacuum, as well as
a collecting optic and a focusing optic, such as a pair of off-axis parabolas (OAPs).
In collinear geometry, a Gaussian pump with an radius 𝑟𝑝 generates a Gaussian THz

beam with an radius of 𝑟0 = 𝑟𝑝 / √2. For frequencies satisfying the condition 𝑘𝑟0 ≫ 1,
the paraxial approximation holds and the typical diffraction length of the THz beam is
the Rayleigh length 𝑧𝑅 = 𝑘𝑟20 / 2, while for 𝑘𝑟0 ≪ 1 the beam is in Bethe’s regime and
the smaller diffraction length is 𝑧𝐵 = 𝑘2𝑟30 / 2 [253]. Faure et al. [185] showed that a
good approximation in both cases for the transfer function of a collecting optic of half
diameter 𝐷col and focal length 𝑓col is:

𝑇col(Ω) = √
1 − exp (−

tan2 θcol𝑧2diff
𝑟20

) (B.24)

where θcol = arctan (𝐷col / 2𝑓col) is the half collection angle, and 𝑧diff = 𝑧𝑅 or 𝑧𝐵.
The radius of the collected THz beam for each frequency is either determined by the

initial diffraction or limited by the diameter of the collecting optic: 𝑟1(Ω) = min [𝐷col / 2 ,

𝑟0√1+ 𝑓2col / 𝑧2diff]. Assuming that the beam is collimated between the collecting and
focusing optics, the radius on the focusing optic is then 𝑟2(Ω) = min [𝐷foc / 2, 𝑟1]. If
𝐷foc < 𝐷col, some energy is lost: 𝑇clip = erf(𝑟2 / 𝑟1).
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B.6 Probe size: 𝑇overlap

In the focus, the spot size of each frequency component is 𝑟foc(Ω) = 2𝑐𝑓foc / (Ω𝑟2).
The larger it is, the weaker is the sampled field amplitude. The transfer function for the
focusing is thus 𝑇foc = 𝑟2 / 𝑟foc [185].
The total transfer function for the propagation of the THz radiation is thus:

𝑇prop(Ω) = 𝑇col𝑇clip𝑇foc. (B.25)

It is accurate in the case of two perfectly aligned OAPs. For propagation in humid air,
the absorption of water over the propagation distance should also be taken into account,
as it creates an oscillatory tail following the pulse [254].

B.6 Probe size: 𝑇overlap

As in the previous section, this transfer function can be left out if the aim is to reconstruct
the THz waveform as encountered by the probe, for example in the case of the FeBO3

sample replacing the EOS crystal in Section 2.3.2. Since the different THz frequency
components have different spot sizes in the focus, the overlapwith the probe is frequency-
dependent.
If the two beams are centered on one another on the crystal, the EOS signal can be

expressed as a function of the radial distance to the center [185]:

𝑆EOS(Ω) ∝ | ̂𝐸𝑝(r)|2 𝐸THz(𝑟, Ω). (B.26)

Assuming that both beams are Gaussian and integrating over 𝑟 gives the transfer
function [185]:

𝑇overlap(Ω) =
𝑟2foc

√2𝑟2foc + 𝑟2probe
. (B.27)

B.7 Balanced photodetectors

The amplitude of the probe transmitted through the EOS crystal is acquired using a
balanced photodetector. Such a detector works by separating the two components of the
probe polarization and measuring each separately. The EOS signal is then given by the
normalized voltage difference of the two channels, so as to be insensitive to the total
energy in the probe: 𝑆 = (𝑉A − 𝑉B) / (𝑉A + 𝑉B). The beam is aligned to hit both detectors
and the angle of the polarizer is manually balanced such that 𝑉A = 𝑉B in the absence of
THz generation.
The electric signal from the detector is transmitted to a lock-in amplifier, whose goal

is to amplify a precise frequency within the signal. In the case of the measurements of
Chapter 4, its internal oscillator generates a reference oscillation at ω𝑟 = 1.5 kHz, which
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Figure B.2: Simulation of a signal cleaned by the lock-in amplifier. a) The original signal
is composed of noise, a component at 3 kHz from the unbalanced probe, and
a component at 1.5 kHz with a relative amplitude of 1 (case A), 0.5 (case B)
or 0 (case C). b) The lock-in amplifier mixes the signal with a reference signal
at 1.5 kHz and uses a narrow low-pass filter to keep only the DC component.
c) The lock-in amplifier returns the average amplitude of the filtered signal,
which has a better signal-to-noise ratio than the original signal.
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B.7 Balanced photodetectors

we synchronize with the rest of the laser system. The input signal 𝑆 is then multiplied by
this reference 𝑅:

𝑆𝑅 = (𝑅0𝑒𝑖(ω𝑟𝑡+θ𝑟) + c.c.) ⋅ (𝑆0𝑒𝑖(ω𝑠𝑡+θ𝑠) + c.c.)

= 𝑆0𝑅0𝑒𝑖(ω𝑟+ω𝑠)𝑡+𝑖(θ𝑟+θ𝑠) + 𝑆0𝑅0𝑒𝑖(ω𝑟−ω𝑠)𝑡+𝑖(θ𝑟−θ𝑠) + c.c.
(B.28)

and the Fourier spectrum of the mixed signal shows two peaks at the frequencies ω𝑟+ω𝑠
and ω𝑟 − ω𝑠. The signal is then averaged for τ = 300ms, which corresponds to using a
low-pass filter of bandwidth 1 / (2πτ) = 0.53Hz, to keep only the ω𝑠 = ω𝑟 component.
In the time domain, this makes use of the fact that the average of cos2(ω𝑡 + θ) is 1: if
ω𝑠 = ω𝑟 and θ𝑠 = θ𝑟, the product of both oscillations averages to a non-zero value, while,
for any other frequency, the oscillations average to zero given sufficient time. The lock-in
amplifier then outputs the amplitude of the filtered signal.
This process is simulated in Fig. B.2. The input signal is created by superposing a high

level of random noise, a parasitic signal with a repetition rate of 3 kHz representing the
improper balancing of the probe, and a second probe signal with a 1.5 kHz modulation
representing the THz beam. Three different modulations strengths are used, indicated
as A, B and C on the plot, with relative amplitudes 1, 0.5 and 0, respectively.
In the time domain (Fig. B.2a), the peaks due to the THz pulses are distinguishable in

the total signal, but the level of noise is high. In the frequency domain (Fig. B.2b), the
1.5 kHz component is buried in the noise. Fig. B.2c shows the average amplitude of the
different components after integrating for τ = 300ms. The amplitude of the total input
signal for the case C (no THz radiation) consists only of the noise and unbalanced probe.
It is half as high as the amplitude of the full input signal. If we were to record the signal
without lock-in amplifier, the signal-to-noise ratio would thus be 1.98.
After mixing the input signal and the reference, the spectrum has a significantly

lower noise level and shows a well-defined peak at 1.5 kHz. The filtering operation
then discards everything except for the zero-frequency component. We see that the
amplitude of the noise (filtered output C) is reduced, while the amplitude of the THz
signal (filtered output A) increases. The signal-to-noise ratio is now 5.26 and the output
signal reproduces better the original THz amplitude. The random noise is almost
completely filtered, but the output is still biased by the unbalanced probe, as its spectrum
overlaps with the THz signal.
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C
Spintronic THz emitters sources

The transfer-matrix method [255, 256] is used to calculate the one-dimensional propa-
gation of a beam through thin multilayered structures where multiple reflections at the
interfaces need to be taken into account. It uses two-component vectors to represent
forward- and backward-propagating fields, and two-by-two matrices representing each
a layer. In the frequency domain, the field at the beginning of each layer 𝑚 is related to
the field in the previous layer by the matrix 𝑪𝑚(ω):

⎡
⎢
⎢
⎣

𝐸+𝑚−1

𝐸−𝑚−1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑒𝑖δ𝑚−1 0

0 𝑒−𝑖δ𝑚−1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 / 𝑡𝑚 𝑟𝑚 / 𝑡𝑚

𝑟𝑚 / 𝑡𝑚 1 / 𝑡𝑚

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐸+𝑚

𝐸−𝑚

⎤
⎥
⎥
⎦

= 1
𝑡𝑚

⎡
⎢
⎢
⎣

𝑒𝑖δ𝑚−1 𝑟𝑚𝑒𝑖δ𝑚−1

𝑟𝑚𝑒−𝑖δ𝑚−1 𝑒−𝑖δ𝑚−1

⎤
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

𝑪𝑚

⎡
⎢
⎢
⎣

𝐸+𝑚

𝐸−𝑚

⎤
⎥
⎥
⎦

.

(C.1)

This matrix is formed from the product of the propagation matrix, representing the
propagation through the layer 𝑚 − 1, and the interface matrix, where 𝑟𝑚 and 𝑡𝑚 are the
complex Fresnel coefficients at the𝑚− 1 | 𝑚 interface [214]:

𝑟𝑚 =
𝑍𝑚 − 𝑍𝑚−1
𝑍𝑚 + 𝑍𝑚−1

, 𝑡𝑚 =
2𝑍𝑚

𝑍𝑚 − 𝑍𝑚−1
. (C.2)

As the layers are metallic, μ𝑟 ≠ 1 and we use the impedance 𝑍 = √μ / ϵ = 𝑛 / (𝑐ϵ)
where 𝑛 = √ϵ𝑟μ𝑟 is the frequency-dependent complex refractive index. The factor
δ𝑚 = 𝑘𝑚𝐿𝑚 = 𝑛𝑚ω𝐿𝑚 / 𝑐 represents the added phase and the absorption during the
propagation through the layer 𝑚 of thickness 𝐿𝑚. 𝐸+𝑚 = 𝑡𝑚𝐸+𝑚−1𝑒−𝑖δ𝑚−1 is then the
positively propagating field taken directly after entering the layer 𝑚. By setting 𝐿0 = 0,
𝐸0 represents the field incoming on the sample.

Using this recurrence relation, one can relate the field at the input and output of a
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𝑀-layer structure by the product of the matrices:

⎡
⎢
⎢
⎣

𝐸+0

𝐸−0

⎤
⎥
⎥
⎦

= 𝑪1𝑪2…𝑪𝑀+1
⎡
⎢
⎢
⎣

𝐸+𝑀+1

𝐸−𝑀+1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐶11 𝐶12

𝐶21 𝐶22

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐸+𝑀+1

𝐸−𝑀+1

⎤
⎥
⎥
⎦

.

(C.3)

In the case of a beam incoming on one side of the sample (𝐸in = 𝐸+0 ), there is no
incoming field on the other size (𝐸−𝑀+1 = 0), and one can easily calculate the incoming,
transmitted (𝐸+𝑀+1) and reflected (𝐸−0 ) fields, provided one of them is known:

𝐸+0 = 𝐶11𝐸+𝑀+1, (C.4)

𝐸−0 = 𝐶21𝐸+𝑀+1. (C.5)

However, in the case of spintronic THz emitters, the THz field is generated inside the
structure, so the transfer function needs to be adapted.

C.1 Single punctual source

We use a source vector #»𝑺𝑚 representing the THz field generated by inverse spin Hall
effect (ISHE) in a layer𝑚, assuming in a first time that the THz field is emitted directly at
the input interface. The total field in layer𝑚 is then constituted of #»𝑺𝑚 and the reflections
Δ #»𝑺𝑚 created at the interfaces and propagating back and forth, as represented in Fig. C.1:

⎡
⎢
⎢
⎣

𝐸+𝑚

𝐸−𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑆+𝑚

𝑆−𝑚

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

Δ𝑆+𝑚

Δ𝑆−𝑚

⎤
⎥
⎥
⎦

. (C.6)

When considering the layers 𝑚 + 1 to the end of the sample, the forward emission of
the source is visible while 𝑆−𝑚 only contributes in the form of reflections. The recurrence
relation then reads:

⎡
⎢
⎢
⎣

𝑆+𝑚 + Δ𝑆+𝑚

Δ𝑆−𝑚

⎤
⎥
⎥
⎦

= 𝑪𝑚+1𝑪𝑚+2…𝑪𝑀+1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑭𝑚

⎡
⎢
⎢
⎣

𝐸+𝑀+1

𝐸−𝑀+1

⎤
⎥
⎥
⎦

. (C.7)

Reciprocally, when considering the layers before the source, only the backward emis-
sion contributes directly:

⎡
⎢
⎢
⎣

𝐸+0

𝐸−0

⎤
⎥
⎥
⎦

= 𝑪1…𝑪𝑚−1𝑪𝑚⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑩𝑚

⎡
⎢
⎢
⎣

Δ𝑆+𝑚

𝑆−𝑚 + Δ𝑆−𝑚

⎤
⎥
⎥
⎦

. (C.8)
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𝛥𝑆−

𝑆+𝑆−

#»𝑩 #»𝑭

Figure C.1: Multiple internal reflections of the electric field generated by the source 𝑺
inside a multilayer structure.

We call 𝑭𝑚 and 𝑩𝑚 the forward and backward products of the transfer matrices for the
source 𝑺𝑚. Since there is no field incoming on the structure, 𝐸+0 = 𝐸−𝑀+1 = 0. We can
expand Eq. (C.7) and Eq. (C.8) as:

⎡
⎢
⎢
⎣

0

𝐸−0

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐵11 𝐵12

𝐵21 𝐵22

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

Δ𝑆+𝑚

𝑆−𝑚 + Δ𝑆−𝑚

⎤
⎥
⎥
⎦

(C.9a)

⎡
⎢
⎢
⎣

𝑆+𝑚 + Δ𝑆+𝑚

Δ𝑆−𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐹11 𝐹12

𝐹21 𝐹22

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝐸+𝑀+1

0

⎤
⎥
⎥
⎦

. (C.9b)

In the case of the spintronic emitters, the THz field is generated by accelerated electrons
moving in the plane of the layers, thus we set 𝑆+𝑚 = 𝑆−𝑚 = 𝑆𝑚. The system has five
unknowns: 𝐸−0 , 𝐸+𝑀+1, 𝑆𝑚, Δ𝑆+𝑚 and Δ𝑆−𝑚. Solving the system provides two frequency-
dependent transfer functions, mapping the amplitude of the initial source field to the
emitted THz amplitude on each side of the sample:

𝑆𝑚 = 𝐵11𝐹11 + 𝐵12𝐹21
𝐵11 − 𝐵12

𝐸+𝑀+1, (C.10a)

𝑆𝑚 = 𝐵11𝐹11 + 𝐵12𝐹21
𝐵11𝐵22𝐹11 + 𝐵11𝐵22𝐹21 − 𝐵12𝐵21𝐹11 − 𝐵12𝐵21𝐹21

𝐸−0 . (C.10b)

C.2 Single punctual source at the output interface

As shown in Fig. C.1, the transfer functions in Eq. (C.10) assume the THz field to be
emitted at the input interface of the layer 𝑚. To replicate spintronic emitters, we also
need the transfer functions for a source on the output interface of a layer.
The recurrence relation of the transfer-matrix model in Eq. (C.1) defines every field at

the input interface, irrespective of the point where it is generated. Hence we can define,
for the source 𝑆𝑚 located at any position 0 < 𝑧 < 𝐿𝑚 in the layer, the corresponding
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0 1 2 3 4 5 6

𝐸+
𝑀+1

𝐸−
0

𝑆 𝑆′

#»𝑩 #»𝑭

Figure C.2: Multiple internal reflections of the electric field generated by the source 𝑺
inside a multilayer structure, calculated as coming from the virtual source 𝑺′ .

virtual source 𝑆′𝑚 at the input interface (𝑧 = 0). To maintain the correct amplitude of the
field at the position of the real source, we substitute in Eq. (C.9) S𝑚 by S′𝑚, defined as:

⎡
⎢
⎢
⎣

𝑆′+𝑚

𝑆′−𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑒𝑖𝑘𝑚𝑧 0

0 𝑒−𝑖𝑘𝑚𝑧

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑆+𝑚

𝑆−𝑚

⎤
⎥
⎥
⎦

. (C.11)

Another option, illustrated in Fig. C.2, is to replace a source at the output interface of
the layer𝑚 by a virtual source at the input interface of the layer𝑚+1, using the interface
matrix defined in Eq. (C.1):

⎡
⎢
⎢
⎣

𝑆+𝑚

𝑆−𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 / 𝑡𝑚+1 𝑟𝑚+1 / 𝑡𝑚+1

𝑟𝑚+1 / 𝑡𝑚+1 1 / 𝑡𝑚+1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑆′+𝑚+1

𝑆′−𝑚+1

⎤
⎥
⎥
⎦

. (C.12)

This second version is numerically more robust than Eq. (C.11) in the case of thick lay-
ers through which some frequencies are completely absorbed, as the Fresnel coefficient
𝑡𝑚+1 of the𝑚 | 𝑚 + 1 interface only approaches zero when 𝑛𝑚+1 ≫ 𝑛𝑚. In addition, the
isotropy of the source is preserved: if 𝑆+𝑚 = 𝑆−𝑚 = 𝑆𝑚, then Eq. (C.12) gives:

𝑆′+𝑚+1 = 𝑆′−𝑚+1 = 𝑆′𝑚+1 =
𝑡𝑚+1

𝑟𝑚+1 + 1𝑆𝑚. (C.13)

Using Eq. (C.10) to calculate the virtual source 𝑆′𝑚+1 and Eq. (C.13) to convert it to the
real source 𝑆𝑚, the transfer functions for a source at the output interface are:

𝑆𝑚 =
𝑟𝑚+1 + 1
𝑡𝑚+1

𝐵11𝐹11 + 𝐵12𝐹21
𝐵11 − 𝐵12

𝐸+𝑀+1 (C.14a)

𝑆𝑚 =
𝑟𝑚+1 + 1
𝑡𝑚+1

𝐵11𝐹11 + 𝐵12𝐹21
𝐵11𝐵22𝐹11 + 𝐵11𝐵22𝐹21 − 𝐵12𝐵21𝐹11 − 𝐵12𝐵21𝐹21

𝐸−0 . (C.14b)

where the coefficients of the matrices 𝑩 and 𝑭 are defined with respect to the virtual
source in layer𝑚+ 1.

196



C.3 Several punctual sources

C.3 Several punctual sources

We are generally interested in calculating the amplitude of the sources from an exper-
imental value of 𝐸+𝑀+1, for example the Fourier transform of an electro-optic sampling
(EOS)measurement. As the layers are thin compared to thewavelength of THz radiation,
the emission from all the sources propagate in the sample at the same time and their
output will be superposed in the measurement:

𝐸tot = ∑
𝑚
𝐸+𝑀+1(𝑆𝑚). (C.15)

As the individual 𝐸+𝑀+1(𝑆𝑚) are linear functions of the source 𝑆𝑚, we can solve this
equation if we can express the amplitudes of every source as a function of a single one.
We make the following assumptions:

• The spin current 𝑗𝑠 inside a ferromagnetic layer is proportional to the absorbed IR
power 𝐴𝑚 in this layer [21] and is the same in the forward and backward directions.

• The charge current in a nonmagnetic layer is proportional to the spin current in the
adjacent ferromagnetic layer and its spin Hall angle: 𝑗𝑐 = ϑ𝐻𝑗𝑠.

• The amplitude of the source is proportional to the charge current and the conductivity
of the layer: 𝑆𝑚 ∝ 𝑗𝑐 / σ𝑚.

This allows us to express each source as 𝑆𝑚 ∝ 𝐴𝑚ϑ𝐻,𝑚σ𝑚. The absorbed power𝐴𝑚 can
be calculated as the difference of the Poynting vector at the entrance of each layer using
the usual transfer matrix method [202], while ϑ𝐻,𝑚 and σ𝑚 are known properties of the
material. We arbitrarily choose one of the sources as reference 𝑆0. The other sources are
thus:

𝑆𝑚 = 𝑆0
𝐴𝑚ϑ𝑚σ𝑚
𝐴0ϑ0σ0

. (C.16)

Inserting either Eq. (C.10a) or Eq. (C.14a) in Eq. (C.15) depending on whether each
source is at the input or output interface of its layer, we can express Eq. (C.15) as a
function of 𝑆0:

𝐸tot = ∑
𝑚

𝐵11 − 𝐵12
𝐵11𝐹11 + 𝐵12𝐹21

𝑆′𝑚

= ∑
in

𝐴𝑚ϑ𝑚σ𝑚
𝐴0ϑ0σ0

𝐵11 − 𝐵12
𝐵11𝐹11 + 𝐵12𝐹21

𝑆0 +∑
out

𝐴𝑚ϑ𝑚σ𝑚
𝐴0ϑ0σ0

𝑡𝑚+1
𝑟𝑚+1 + 1

𝐵11 − 𝐵12
𝐵11𝐹11 + 𝐵12𝐹21

𝑆0

(C.17)
where the dependency on 𝑚 or 𝑚 + 1 of the coefficients of 𝑭 and 𝑩 is implied. This
equation can be analytically solved without specialized computational resources for a
small number of sources. The solution can be then applied to any sample with the same
number of sources, and at the same positions. We performed the analytical calculations
for 1 to 4 sources in Python with the SymPy module, and later numerically evaluated the
value of the matrix coefficients for specific samples.
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C.4 Extended sources

The THz wavelength is significantly larger than the few-nanometer thickness of the
layers of the spintronic emitters used in Chapter 4. In addition, the absorption for the
materials measured in Appendix A is negligible at this scale. The THz field within a
layer is thus almost constant and it makes little difference where in the layer the field is
generated. We could then so far assume that the sources were punctual and located at
the interfaces.
However, in certain samples we are interested in observing the behavior of the spin

currents, by comparing the amplitude of the THz emission while varying the thickness
of the non-magnetic (NM) layer where the THz source is located. The thickness of the
layers is similar to the spin diffusion length, which means that the spin current is only
partially converted into charge current, and thus into THz field. Each point in the NM
layer𝑚 contributes to the emitted THz radiation proportionally to the local amplitude of
the spin current, which decays exponentially [155] with a decay length of λ𝑚. To quantify
the THz emission, we integrate it over the source layer of thickness 𝐿𝑚, where the spin
current enters the layer at 𝑧 = 0:

𝑆part𝑚 =
∫𝐿𝑚0 𝑆𝑚 exp(−𝐿𝑚

λ𝑚
) d𝑧

∫∞0 exp(−𝐿𝑚
λ𝑚
) d𝑧

= 𝑆𝑚 (1 − exp(−
𝐿𝑚
λ𝑚

)) . (C.18)

The transfer-matrix formalism only supports punctual sources. In a first time, we rep-
resented the delocalized THz emission by dividing the source layer into several identical
sub-layers, each emitting at its interface parts of the total THz radiation according to
Eq. (C.18). Calculating numerically the sample output 𝐸tot, we found only a negligible
difference on the THz waveform compared to using a single source layer. We thus con-
tinue assuming that all the energy of the reduced source is generated at the interface of
the layer. We thus update Eq. (C.16):

𝑆𝑚 = 𝑆0
𝐴𝑚ϑ𝑚σ𝑚 (1 − exp(−𝐿𝑚

λ𝑚
))

𝐴0ϑ0σ0 (1 − exp(−𝐿0
λ0
))

. (C.19)

We neglect in this model that a significant part of the spin current reaching the end of
the layer is reflected at the interface [257]. Although a part of the spin current then flips
its spin, the spin polarization of the whole current is conserved as long as the spin flip
ratio is less than 1 / 2. This means that the reflected spin current contributes to a charge
current with the opposite sign, and the overall THz generation in the layer is reduced.
We however neglect this contribution, as there is no available data on the spin reflection
coefficients of the layers.
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