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Abstract

This dissertation aims to advance modeling capabilities in estuarine contexts and study phy-
toplankton community fate in the Elbe estuary. Eutrophication effects cause large upstream
blooms that collapse in the deep, turbid waters of Hamburg’s port, leading to oxygen deple-
tion and environmental concerns. The prevailing narrative attributes this collapse primarily
to zooplankton grazing, but we argue that underlying processes causing the mortality are not
sufficiently well understood, necessitating improvements in estuarine ecosystem modeling.

To address this, we have developed a Lagrangian model of the Elbe estuary by extending
the Oceantracker modeling framework to provide a new perspective on these problems. Our
model offers improved performance, outperforming its closest alternative by over an order
of magnitude, while providing a more accurate representation of key physical processes and
maintaining flexibility.

Using this model, we challenge the prevailing narrative that phytoplankton collapse is
primarily due to grazing pressure. Instead, we propose that collapse may be partly due to ag-
gregation of phytoplankton with inorganic suspended sediment, resulting in sinking aggregates
and light-limiting conditions in the highly turbid shipping channel. To test this, we incorpo-
rated an aggregation model into OceanTracker and evaluated different mortality mechanisms.
Our results suggest that this aggregation process may play a significant role, especially for
larger aggregates (50 µm), suggesting that light limitation-induced mortality may be more
important than previously thought. This suggests that effective turbidity management in the
fairway may be crucial for the maintenance of the phytoplankton community.

Furthermore, our study of phytoplankton retention mechanisms revealed that shallow
marshes and mudflats are vital for the survival of the phytoplankton community in the Elbe
estuary. These areas allow phytoplankton to persist through periods of stranding and resus-
pension. We suggest that careful management of these areas is essential for the long-term
stability and resilience of the phytoplankton community in the estuary. We strive to bring
new impulses, both in the field of Lagrangian modeling in coastal and estuarine environments
and in ecosystem management of the Elbe estuary.
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Zusammenfassung

Im Laufe der Jahrhunderte haben antropogene Einflüsse das Elbestuar erheblich verändert.
Dazu gehören der Bau von Deichen zur Landgewinnung und zum Schutz vor Stürmen sowie
das Ausbaggern der Fahrrinne, die sich von der Nordsee bis zum Hamburger Hafen erstreckt.
Diese Veränderungen bringen eine Vielzahl von Umweltauswirkungen mit sich, die häufig zu
Konflikten zwischen den beteiligten Interessenvertreter führen, wobei die jüngste Vertiefung
der Fahrrinne ein aktuelles, kontroverses Beispiel ist. Die Auswirkungen auf das Ökosystem
sind oft schwer vorherzusagen und werden nach der Fertigstellung nur selten verifiziert. Wir
sind der Meinung, dass Fortschritte bei der Modellierung von Ökosystemen erforderlich sind,
um die Auswirkungen von Ökosystemprojekten und des Klimawandels besser zu verstehen
und vorherzusagen.

Die Eutrophierung, die durch landwirtschaftliche Abwässer im Einzugsgebiet verursacht
wird, führt zu großen Phytoplanktonblüten in den flussaufwärts gelegenen Flüssen. Diese Phy-
toplanktongemeinschaft bricht jedoch schnell zusammen, wenn sie die tiefen und trüben Ge-
wässer des Hamburger Hafens erreicht. Die daraus resultierende Sauerstoffverarmung, auf-
grund der Remineralisierung des abgestorbenen Phytoplanktons, ist ein großes Problem für
die Gesundheit des Ästuar-Ökosystems. Die vorherrschende Meinung führt diesen Kollaps in
erster Linie auf das Abweiden des Zooplanktons zurück. Wir sind jedoch der Meinung, dass
die zugrundeliegenden Prozesse, die die Mortalität verursachen, nicht hinreichend verstanden
sind. Das Verständnis dieser Prozesse ist jedoch entscheidend für eine angemessene Bewirt-
schaftung des Ästuars und unterstreicht die dringende Notwendigkeit, unser Verständnis des
Ästuar-Ökosystems und unsere Modellierungsmöglichkeiten zu verbessern.

Um dieses Problem anzugehen, haben wir ein Lagrangesches Modell des Elbe-Ästuars
entwickelt, indem wir das Oceantracker-Modell erweitert haben, um eine neue Perspektive
auf diese Probleme zu ermöglichen. Unser Modell ist leistungsfähiger und übertrifft seine
engste Alternative um mehr als eine Größenordnung, während es gleichzeitig eine genauere
Darstellung der wichtigsten physikalischen Prozesse bietet und dabei flexibel bleibt.

Mithilfe dieses Modells stellen wir die vorherrschende Meinung in Frage, dass der Kollaps
des Phytoplanktons in erster Linie auf Zooplankton zurückzuführen ist. Stattdessen vermuten
wir, dass der Kollaps zum Teil auf die Aggregation von Phytoplankton mit anorganischen
Schwebstoffen zurückzuführen sein könnte, was zu sinkenden Aggregaten und lichtlimitieren-
den Bedingungen in der stark getrübten Fahrrinne führt. Um dies zu testen, haben wir ein
Aggregationsmodell in OceanTracker integriert und verschiedene Mortalitätsmechanismen be-
wertet. Unsere Ergebnisse deuten darauf hin, dass dieser Aggregationsprozess und die von
ihnen verursachte Mortalität durch Lichtlimitierung eine bedeutende Rolle spielen kann, ins-
besondere bei größeren Aggregaten (50 µm). Dies deutet darauf hin, dass ein wirksames Trü-
bungsmanagement in der Fahrrinne für die Erhaltung der Phytoplanktongemeinschaft von
entscheidender Bedeutung sein könnte.

Darüber hinaus hat unsere Studie über die Mechanismen der Phytoplanktonrückhaltung
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gezeigt, dass flache Marsch- und Wattflächen für das Überleben der Phytoplanktongemein-
schaft im Elbeästuar von entscheidender Bedeutung sind. Diese Gebiete ermöglichen es dem
Phytoplankton, durch regelmäßiges stranden und resuspendieren zu überleben. Wir vermu-
ten, dass eine sorgfältiges Managment dieser Gebiete für eine langfristige Stabilität und Wi-
derstandsfähigkeit der Phytoplanktongemeinschaft im Ästuar unerlässlich ist. Mit dieser Ar-
beit möchten wir neue Impulse, sowohl auf dem Gebiet der Lagrange’schen Modellierung von
Küsten- und Ästuarumgebungen als auch für das Ökosystemmanagement des Elbästuars setz-
ten.



Contents

Declaration on Oath 7

Abstract 11

1 Introduction 17
1.1 Ecology, ecosystems and their management . . . . . . . . . . . . . . . . . . . . 17
1.2 The Elbe estuary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Elbe ecosystem models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Studies 27
2.1 Study I: Lagrangian particle tracking in unstructured grids . . . . . . . . . . . 29
2.2 Study II: Effects of coagulation on phytoplankton mortality . . . . . . . . . . . 51
2.3 Study III: Phytoplankton retention mechanisms . . . . . . . . . . . . . . . . . . 69

3 Synthesis 85

4 Appendix 89
4.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

List of Figures 100

List of Tables 101

References 101

15



16 CONTENTS



17

Chapter 1

Introduction

1.1 Ecology, ecosystems and their management

During the 1960s, ecological issues such as air and water pollution, deforestation, and loss of
biodiversity became an increasingly apparent side effect of industrialization and population
growth, fueling an environmental movement in both the scientific ecological community and
the public at large (McIntosh, 1985, p. 308). As the vulnerability of these ecosystems became
apparent, so did the need for their management. Although there is ongoing debate about the
objectives and strategies, ecosystem management has now become a common practice.

In recent decades, ecosystem management has focused primarily on either maintaining
or restoring existing systems. However, there is a growing trend to evaluate these efforts
not only for their environmental benefits, but also for their potential to mitigate climate
change impacts through carbon sequestration. This shift reflects a growing awareness that
“healthy” ecosystems - those that are stable and resilient (Karr, 1999) - play a critical role in
capturing and storing carbon dioxide, the primary greenhouse gas. Consequently, strategies to
optimize ecosystem functions specifically to enhance carbon sequestration are gaining attention
(Birkhofer et al., 2015). For example, there is concern about the melting of permafrost in
Siberia, not only because of ecosystem changes due to anthropogenic pressures, but also
because of the expected release of methane, which could further accelerate climate change
(McGuire et al., 2018).

In January 2024, the 1.5 degree maximum global warming target set by the Paris Agree-
ment was exceeded (Cop). This milestone has profound implications for global ecosystems,
pushing many beyond their natural equilibrium and making traditional conservation strategies
increasingly unfeasible. A prominent example is the continuing decline of coral reefs, which
are particularly sensitive to rising ocean temperatures. Warming oceans cause coral bleach-
ing,and ultimately lead to their death. It is expected that most of the world’s coral reefs will
be lost even if the increase in global mean temperature is limited to 2 degrees Celsius (Frieler
et al., 2013). A similar fate is expected for many other ecosystems, which are being pushed
out of their natural equilibrium by climate change (Hooper et al., 2012).

Unsurprisingly, there is a growing interest in reshaping remaining ecosystems or replac-
ing lost ones to enhance their carbon sequestration capabilities. Research efforts have been
conducted to evaluate the increased global carbon sink potential of ecosystems under more
“optimal” management strategies (Kooten and Sohngen, 2007; Noormets et al., 2014; Sha
et al., 2022). Given these developments, we suspect that ecosystem management is on the
verge of a global paradigm shift.
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However, engineering ecosystems requires a deeper understanding of the underlying eco-
logical processes to avoid unintended consequences and achieve desired outcomes (Naeem
et al., 2015). Traditionally, ecosystem management has had relatively simple objectives: ei-
ther to protect ecosystems from external disturbances caused by human activities or other
“non-natural” events such as invasive species, or, in the case of restoration, to reverse imposed
changes (Beller et al., 2020). By definition, ecosystem engineering will push these systems out
of their current, relatively well-understood steady states into new and unknown conditions
where existing ecological principles may no longer apply. Consequently, this transition will
require that these systems be understood and modeled with a more holistic approach and
greater accuracy than before (Naeem et al., 2015).

One of the earliest and most notable attempts at ecosystem engineering was the 1996
“IRONEX” experiment, which explored the potential of iron fertilization. The open ocean
is the largest sequesterer of carbon. It is estimated that the oceans absorb about 3 Gt of
carbon per year, compared to about 2 Gt per year by the terrestrial biosphere of the 9 Gt of
anthropogenic carbon emissions (Friedlingstein et al., 2022; Planchat et al., 2023). This made
the oceans an attractive target for large-scale engineering projects. IRONEX attempted to
increase the ocean’s carbon sequestration potential by fertilizing the growth of phytoplank-
ton, which would bind dissolved carbon in the ocean through photosynthesis and eventually
transport it to the ocean floor. While the experiment successfully increased phytoplankton
growth, subsequent research questioned the overall effectiveness of the method and raised
concerns about its economic feasibility, potential side effects, and the political implications
of such projects. Research continued, and after controversial discussions, a moratorium was
placed on large-scale non-scientific iron fertilization projects in 2008 (Cullen and Boyd, 2008).

Ecosystems have also often been “inadvertently” engineered to achieve other goals. A
large-scale example is the Dutch “Delta Works”, a series of dikes and sluices built after the
devastating 1953 storm surge to protect the Dutch coastline in the delta between Antwerp
and Rotterdam (Pilarczyk, 2012). Most of the planning was done in the 1950s and 1960s,
a time when environmental concerns were less important. As a result, major changes to the
ecosystem were considered acceptable side effects rather than intended outcomes (Smaal et al.,
1991; Nienhuis et al., 1994).

A somewhat similar engineering process took place in the Elbe estuary. In this case,
however, the goal was not to keep the sea out, but to let it in, to improve access to the
port of Hamburg for larger ships. Since the beginning of the 20th century, the main channel
of the estuary has been dredged from a depth of about 5 to nearly 20 meters, with the
most recent dredging campaign ending in 2021. Historically, ecosystem impacts have been an
afterthought. However, the last dreadging campaign has been controversial and was one of
the most contested infrastructure projects in Germany in recent years (Hein and Thomsen,
2023). While such trade-offs can of course be considered accaptable, it is often difficult to
predict the extent of the impact of such projects on the ecosystem accurately and only rarely
are they actually audited post completion (Gray, 2000).

We think that the Elbe estuary is a prime example of the challenges that come with ecosys-
tem engineering. The estuary is a complex system with a long history of human intervention.
It is well studies with long term observational data sets on many aspects of the physical and
biochemical system. State-of-the-art coupled hydrodynamic-biogeochemical models have been
developed and used to examine and predict many facets of the system. Nevertheless, signif-
icant challenges and uncertainties remain in understanding and managing the estuary which
shows the difficulty of predicting the effects of ecosystem engineering on complex systems.
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1.2 The Elbe estuary

In this work we will focus exclusively on the Elbe estuary. Originating in the Czech Republic,
the Elbe River stretches 1094 km with a catchment area of 148 000 km2, two-thirds of which is
in Germany. Approximately 24.5 million people live in this catchment area. The Elbe estuary
itself is about 140 km long and is characterized by tidal influences.

The Elbe is a lowland river, with only about half of its length rising above 200m above
sea level. The temperate climate of the region sees average air temperatures of 8 ◦C to 9 ◦C
in the lowlands, and the highest flows typically occur in the spring. At Geesthacht Weir, the
last gauge upstream of the tidal limit, the long-term mean freshwater discharge is 713m3 s−1,
with summer low flows averaging 301m3 s−1 and winter high flows reaching 1870m3 s−1 (HPA,
2014). The estuary, is typcally described as a well-mixed mesotidal or macrotidal coastal plain
estuary, but effects of stratification during the summer months have been described as well
(Holzwarth and Wirtz, 2018; Kappenberg and Grabemann, 2001; Middelburg and Herman,
2007; Pein et al., 2021). The estuarine delta extends 100 km inland to the Port of Hamburg,
Germany’s largest seaport and the third largest container port in Europe and rank 21 in the
world (Nightingale, 2022).

Human activities have significantly altered the Elbe estuary over the centuries. Diking
and drainage began around 1000 AD, and the first permanent port was established in the
12th century located at the river mouths of the tributaries Alster and Bille (Krieger, 2006).
Reclamation of tidal marshes began in the 13th century (Renes, 2013), accelerated with indus-
trialization about 150 years ago, and accelerated further since the 1960s (Hein and Thomsen,
2023).

Technological advances allowed for major hydrological interventions, including channel
dredging and large-scale land reclamation projects (Ratter and Weig, 2012). Since 1868, there
have been nine fairway adjustments, increasing its depth from about five meters in 1818 to 18
meters in 2022 (Boehlich and Trotmann, 2008, p. 302). The widening and deepening of the
fairway, together with the reclamation of tidal floodplains - especially after the 1962 storm
surge - have had a profound environmental impact and widened the tidal range.

In addition to geometric changes, human activities have significantly affected the biochem-
istry of the region’s waters, with the most pronounced impacts on water quality observed in
the 1980s before German reunification, when the highest levels of organic pollutants, phos-
phorus, and contaminants were recorded. Since then, water quality has generally improved.
Yet, concentrations of nitrate and certain heavy metals remain elevated (Pusch and Fischer,
2006).

Elevated nutrient levels, specifically total nitrogen and total phosphorus, combined with
favorable light conditions and prolonged retention times in river reaches, facilitate increased
limnic primary production. (Pusch and Fischer, 2006; Quiel et al., 2011). Upon arrival in
the turbid estuary, phytoplankton encounter unfavorable conditions, particularly in terms of
light availability, resulting in a rapid decline in phytoplankton concentration. The resulting
detriPtus is heterotrophically degraded, which consistently leads to the formation of an oxygen
minimum zone (OMZ) in the freshwater section of the estuary during summer (Bergemann
et al., 1996; Schroeder, 1997; Amann et al., 2014).

Phytoplankton, essential microscopic autotrophic organisms, play a central role in aquatic
ecosystems. Primarily drifting in the water, the name “phytoplankton” is derived from the
Greek words phyton, meaning “plant”, and planktos, meaning “wanderer” or “drifter”. They
perform photosynthesis, using sunlight to convert carbon dioxide into organic compounds while
releasing oxygen. Through this process, they introduce energy into the system and are often
considered the base of the food chain and referred to as primary producers. Phytoplankton are
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highly sensitive to environmental factors such as light availability, nutrient levels, temperature,
and salinity, making them valuable indicators of ecosystem health and productivity (Winder
and Sommer, 2012).

Due to high nutrient loads, phytoplankton is proliferating in the Elbe River. Phytoplank-
ton concentrations, indicated by chlorophyll-a, increase from a seasonal mean of 45 µg L−1

(April-October, 1994-2006) at km 375 from the source in Schmilka to 128 µg L−1 at km 846
in Schnackenburg, with peak concentrations exceeding 300 µg L−1. (Pusch and Fischer, 2006;
Quiel et al., 2011). These high values are typically observed during the summer months, when
high light availability, warm temperatures and low flow velocities favor primary production.

Centric diatoms (e.g. Stephanodiscus) are the dominant phytoplankton group, accounting
for about half of the biovolume. Recent results from a metabarcoding study (Martens et al.,
2024) suggest that picophytoplankton and flagellates with potential for mixotrophy (e.g.,
cryptophytes) also play important roles and are currently underrepresented in microscopic
datasets. Picophytoplankton and mixotrophic flagellates are particularly ecologically impor-
tant in the mid to lower estuary, where high turbidity creates unfavorable living conditions
and capabilities such as phagotrophy provide fundamental advantages.

Upon reaching the Port of Hamburg phytoplankton concentration drops suddenly. A
strong correlation with depth suggests that the collapse may be caused directly or indirectly
by the bathymetric jump i.e. the increase in depth from the upstream river to the navigational
channel (Schroeder, 1997). Measurements of low oxygen concentrations (<3mg/l) and high
ammonium (15mmolm−3) concentrations at the bottom and high disolved inorganic nitrogen
downstream of the bathymetric jump suggest a high remineralisation rate of organic matter
(Schroeder, 1997; Holzwarth and Wirtz, 2018; Sanders et al., 2018; Spieckermann et al., 2022).
This indicates that upstream phytoplankton is not being diluted or vertically dispersed in a
way that allows it to elude the monitoring stations, but is actually dyingTheir The collapse of
the phytoplankton community in the Elbe estuary has been consistently observed in chloro-
phyll concentrations since at least the 1980s (Schöl et al., 2014). Looking at this trend over
time we see that this effect has increased over recent years and shows to be correlated with
the increase in turbidity which has more then tripled since 2010 (Weilbeer et al., 2021)

Most studies suggest that the phytoplankton collapse in the Elbe is due to grazing or light
limitation. The grazing hypothesis assumes that most of the phytoplankton is consumed by
zooplankton. A common explanation (Schöl et al., 2014; Kopmann and für Wasserbau, 2014;
Pein et al., 2019) is that marine zooplankton are pushed into the estuary with the tides up to
the bathymetric jump. Upstream of the bathymetric jump, the flow velocity is much higher,
making it difficult for them to migrate further upstream. This could explain the sudden drop
in phytoplankton concentration in this area. Although marine zooplankton species have been
observed in this area, (Steidle and Vennell, 2024) showed that retention in this area without
a sophisticated mechanism is difficult for planktonic organisms. Hence, an accumulations of
marine zooplankton to large enough concentrations that could explain this drop in chlorophyll
concentrations might not be possible. This suggest that the grazing hypothesis might instead
be dependant on upstream freshwater zooplankton that could still easily survive in the low
salinity port area. Alternatively, the grazing pressure could be in part due to benthic grazers.
With much lower flow velocities close to the bed and a potential ability to hold on or even
burry themselves in the sediments they would have a much easier time to persist in that
area. Informal reports of there existance have been made but no systematic study has been
performed to date to try and quantize their abundance.

The last zooplankton survey that could be used to examine the effect of zooplankton
grazing has been performed in 1992 (Bernat et al., 1994) with a small unpublished survey
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mentioned in (Schöl et al., 2014) At that time the bathymetry was significantly different with
a narrower navigational channel and a target depth of 13m instead of the current 18m (Hein
and Thomsen, 2023). Additionally the upstream biochemistry has changed significantly since
the collapse of the German Democratic Republic (GDR) with a drastic increase in water
quality and a corresponding increase in in upstream chlorophyll concentrations (Adams et al.,
1996; Matthies et al., 2006). This effectively leaves us in the dark about the current impact
of grazing on the chlorophyll concentrations.

The light limitation hypothesis is based on the sudden increase in turbidity downstream of
the bathymetric jump and the sharp decrease in mean downstream velocity and corresponding
increase in residence time. This increase in turbidity in turn increased the aphotic to photic
volume ratio, effectively reducing light availability for phytoplankton. Note that the turbidity
in the navigational channel is so high that water at a depth of bewlow two meters is aphotic
(below 1% of surface light). However, a 1D-modelling study by (Schroeder, 1997), and the
light limitation induced mortility rates measured by (Walter et al., 2017) suggest that light
limitation alone would be too slow to explain the sudden drop in phytoplankton concentra-
tions around the bathymetric jump. Instead, it could be explained with a combination of
light limitation, grazing, and the sharp decrease in downstream velocity. While light limi-
tation restricts most of the phytoplankton growth, the decrease of the downstream velocity
drastically increases residence times around the bathymetric jump. Combining this with an
grazing pressure from upstream zooplankton could cause the sudden drop of the phytoplank-
ton community. Typically chlorophyll concentrations are presented relative to the position
along the channel obscuring the shift in residence times between these to regions which might
in part explain the perceived suddenes of this effect.

While the collapse of the phytoplankton community in itself can be considered a significant
issue, it creates the additional problem of oxygen deficits. Fertilizer run off in the catchment
area leads to large phytoplankton blooms in the river section of the estuary causing large
phytoplankton blooms in the estuary. Remineralization processes of the dead phytoplank-
ton matter take up large portion of the dissolved oxygen in the water column. The low
surface-to-volume ration in the channel does not allow for sufficient oxygen exchange with the
atmosphere to compensate for this oxygen deficit resulting in anoxy conditions during summer.
(Holzwarth and Wirtz, 2018). Dissolved oxygen is crucial for the survival for most aquatic
species. Low dissolved oxygen concentrations can therefore have severe impacts on aquatic
life. Most notably, the upstream migration of fish is hindered by low oxygen concentrations,
reshaping the fish community in the estuary (Eick and Thiel, 2014; Hein and Thomsen, 2023).

In the past, financial interests - such as those of the Port of Hamburg and other large
industrial entities - have often taken precedence over ecological conservation, leading to con-
flicts among stakeholders with competing interests. This prioritization has not only caused
environmental problems, but also contributed to the decline of local industries, such as fishing,
that depend on a healthy estuarine ecosystem.

Managing the estuary requires navigating a complex landscape of diverse, often conflicting
stakeholder interests. There is an urgent need to improve our understanding of estuarine
ecosystem processes in order to develop successful and sustainable management strategies.
By delving deeper into these ecological dynamics, the goal is to strike a balance between
supporting economic activities and preserving this vital ecological corridor. This approach
is essential to address the increasing incidence of phytoplankton community collapse, the
resulting anoxia and its impact on estuarine biodiversity and the livelihoods that depend on
this ecosystem.
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1.3 Elbe ecosystem models

1.3.1 Ecosystem models in the Elbe estuary

The estuarine environment is typically characterized by high-energy hydrodynamic processes
driven by tides, water density differences, and river inflow. The complexity and variability
of these processes usually require three-dimensional simulations of water movement, which
include the transport of salinity and sometimes water temperature (Zhang et al., 2016; Warner
et al., 2005; Gross et al., 2009; Sehili et al., 2014).

In recent decades, 3D hydrodynamic simulations have become standard practice. There
has been a notable trend toward increasing the complexity of these models, as evidenced by
the growing number of computational cells and the reduction of the maximum grid resolution.
Common frameworks for high-resolution 3D hydrodynamic models include Delft3D, SCHISM,
FVCOM, and UnTRIM (Ganju et al., 2016).

In contrast, modeling ecological processes is complicated by the inherent complexity of
biological systems, limited understanding of some processes, and sparse availability of obser-
vational data. These challenges lead to over-parameterization, high model uncertainty, and
error propagation (Ganju et al., 2016). In addition, the goal of developing models that are as
general as possible for easy transferability (Evans et al., 2013) has hindered the establishment
of 3D, high-resolution estuarine biogeochemical models in a manner similar to hydrodynamic
models.

Currently, there are two major 3D coupled hydrodynamic-biogeochemical models main-
tained for the Elbe estuary: one developed by the Bundesanstalt für Wasserbau (BAW) and
the other by the Helmholtz-Zentrum Hereon (formerly Helmholtz-Zentrum Geesthacht, HZG).
The Federal Waterways Engineering and Research Institute (Bundesanstalt für Wasserbau -
BAW) is a central technical and scientific higher federal authority supporting the Federal Min-
istry of Digital Affairs and Transport (Bundesministerium für Digitales und Verkehr - BMDV).
As a central service provider, it advises and supports the ministry and the Federal Waterways
and Shipping Administration (Wasserstraßen- und Schifffahrtsverwaltung des Bundes - WSV)
in their hydraulic engineering tasks. Their model is therefore primarily designed to support
the management of the Elbe estuary and can be considered the more conventional of the two.

The model is based on the UnTRIM hydrological model (Casulli, 2009; Casulli and Stelling,
2011) and is coupled with the Deltares water quality model (Postma et al., 2003; Blauw et al.,
2009; Smits and van Beek, 2013). It is used to assess the impact of dredging campaigns
on the estuary and to predict the effects of future interventions. The model can also use a
sediment transport module called “SediMorph” to predict sediment transport and deposition.
The unstructured orthogonal computational grid consists of approximately 11,000 horizontal
elements with 25 subgrids per edge and a maximum of 31 vertical z-layers, each 1 meter
thick. The model domain extends along the 170 km estuarine shipping channel from the tidal
boundary to the end of the maintained shipping channel in the Inner German Bight in the
North Sea (see Fig. 13a). The domain includes the entire volume between the main dikes and
includes the eight largest tributaries of the estuary.

The Helmholtz Center Hereon (formerly HZG) focuses more on academic research without
direct connection to the management of the estuary. It is based on the SCHISM model (Zhang
et al., 2016) and coupled to the biogeochemical model ECOSMO (Schrum et al., 2006). We
use the hydrodynamic data of the latest SCHISM model of the Elbe estuary (Pein et al.,
2021) from the weir at Geesthacht to the North Sea, including several side channels and and
the port area (see Fig. 2.20). SCHISM solves the Reynolds-averaged Navier-Stokes equations
on unstructured meshes, assuming hydrostatic conditions and using a 60 s time step. The
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unstructured mesh is three-dimensional and consists of 32,000 horizontal nodes with terrain
coordinates based on the LSC2 technique (Zhang et al., 2016) for the vertical grid, with a
maximum of a maximum of 20 levels. Regions with depths less than 2 m are resolved using
only one vertical level. and have a horizontal resolution of 50 m in the German Bight, 10 m
in the Elbe estuary, and 5 m in the Port of Hamburg (Stanev et al., 2019). The boundary
include sea surface elevation, horizontal currents, salinity, and temperature (Stanev et al.,
2019), and those on the landward side include the discharge and temperature of the Elbe
River. Atmospheric forcing includes wind, air temperature, precipitation, and shortwave and
longwave shortwave and longwave radiation (Stanev et al., 2019). Model validation is based
on tide gauge stations and long-term stationary measurements of salinity, water temperature,
and horizontal currents. Biochemical variables, including chlorophyll, are based on long-
term measurements at the Seemannshöft and Grauerort stations (Pein et al., 2021). The
model provides us with a node-based containing a range of information such as water velocity,
salinity, water level, and dispersion. The year represented by this dataset is 2012.

The two previously mentioned BAW and Hereon models are Eulerian models. They de-
scribe the dynamics as concentration changes within volumes on a fixed grid, providing the
perspective of a stationary observer. An alternative approach is the Lagrangian model, which
takes the perspective of a small particle drifting through the water, describing the environment
from the particle’s point of view. This change of perspective has several advantages.

First, Lagrangian models allow us to represent certain individual-based processes that are
difficult to describe from an Eulerian perspective. Typical examples in ecology include life
cycle models, a type of individual-based model. In these models, a population is represented
by a set of particles, each representing an individual or group of individuals whose behavior
changes as a function of personal history. For example, in a study by (Hense and Beckmann,
2015), a population of diatoms is modeled where each individual’s shell size decreases with
each asexual reproductive cycle until a sexual reproductive cycle resets their size. Using a
Lagrangian model allows for a straightforward representation of current size and life history,
which would be cumbersome in an Eulerian model.

Second, Lagrangian models can be used to analyze Eulerian models. Large hydrodynamic
models are often too complex to be fully understood in their entirety. Post-processing of their
results is usually required to make sense of them, such as generating simple time and depth
averages to produce 2D maps. Consider, for example, the analysis of the periodicity of a large
ocean gyre. The flow field computed by an Eulerian model contains all the information needed
to predict how long it will take the gyre to complete a full cycle. However, extracting this
information directly from the 4D flow field (three spatial dimensions and one time dimension)
is often impractical. Using a Lagrangian model, we can simplify this by releasing particles into
the vortex and measuring how long they take to complete a lap around the vortex (Van Sebille
et al., 2018).

Another common problem is the connectivity between two bodies of water. From an
Eulerian perspective, one could track dye concentrations to see how much water flows from
one body to the other. Alternatively, one could release particles and express the connectivity
as the fraction of particles that reach the other body. A key advantage of Lagrangian models
in such applications is their computational efficiency. Lagrangian models are typically orders
of magnitude faster than Eulerian models because they can use pre-calculated flow fields
generated by a previous Eulerian model. This computational efficiency allows Lagrangian
models to be used for large-scale sensitivity studies or in real-time applications such as oil
spill prediction (Van Sebille et al., 2018).

For the following work we will use a Lagrangian model based on the OceanTracker model
first published in 2021 (Vennell et al., 2021). To represent the complex topology and resulting
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physical features, estuarine models of the Elbe estuary use unstructured grids, also known as
meshes. These unstructured meshes make particle tracking significantly more complicated and
computationally expensive than structured meshes, primarily because many of the symmetries
used to determine the particle’s current grid cell are lost.

Of the 11 particle tracking models reviewed in (Van Sebille et al., 2018), only one, called
OpenDrift (Dagestad et al., 2018), was able to handle unstructured grids. Counterintuitively,
determining the current grid cell using OpenDrift’s approach is actually the most computa-
tionally expensive step.

OceanTracker (Vennell et al., 2021) proposed a novel method to find the current cell of
a particle by using its history, specifically its last location. Using a method described as a
“barycentric walk”, they were able to reduce the scaling of the computational cost of this step
from O(log n) to O(1), meaning that it scales from being logarithmically dependent on the
number of grid cells to being independent of grid size. Using this method, they showed that
OceanTracker could outperform OpenDrift by up to two orders of magnitude.

For our work, we have continued to develop OceanTracker, adding new functionality both
on the physical side, such as dynamic dispersion based on eddy diffusivity, and on the biological
side, such as particle splitting to represent phytoplankton growth.

1.3.2 Outline
This work focuses on the development of a new Lagrangian model of the Elbe estuary to
study the fate of phytoplankton in this complex and dynamic environment. Our Lagrangian
model will be based on the OceanTracker model (Vennell et al., 2021), taking advantage of
its efficient particle tracking capabilities, and coupled with the SCHISM model of the Elbe
estuary (Pein et al., 2021). which is known for its versatility in handling unstructured grids
and detailed hydrodynamic simulations.

In our first study, we further developed OceanTracker, adding new functionalities to better
represent both physical and biological processes as just described, which enabled us to study
the ecosystem of the Elbe estuary from a Lagrangian point of view.

In our second study, we investigated the collapse of the phytoplankton community at
the bathymetric jump - the increase in water depth from the upstream Elbe River to the
estuarine shipping channel - which marks the beginning of the Port of Hamburg. Our research
focused on how these altered conditions affected phytoplankton mortality, particularly through
coagulation processes. We challenged the common explanation that phytoplankton loss at
the bathymetric jump was due to grazing pressure from zooplankton and suggested that
coagulation processes between phytoplankton and suspended sediment might be an important
process to explain the collapse.

Our third study investigated the retention mechanisms of phytoplankton in the Elbe es-
tuary. Using our extended Lagrangian model, we estimated outwash losses and identified
critical regions where phytoplankton could persist. For this study, we put special emphasis on
bathymetric interactions, especially stranding and resuspension processes of phytoplankton.

By integrating these new approaches, our model aims to provide deeper insights into the
interactions between hydrodynamic and biological processes in the Elbe estuary. Understand-
ing these interactions is vital for effective estuarine management strategies, particularly in
addressing challenges such as habitat degradation, and the impact of human activities on the
estuarine ecosystem. This approach seeks to aid in balance economic with the ecological in-
terests in the Elbe estuary and to offer a new tool in the estuarine ecosystem managment in
general.
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Chapter 2

Studies

Study I Vennell, R., Steidle, L., Smeaton, M., Chaput, R., and Knight, B.: OceanTracker
0.5: Fast Adaptable Lagrangian Particle Tracking in Structured and Unstructured Grids
(manuskript), 2024.

Contribution: Improving model performance, designing and running the performance com-
parisons with other models. Implementation of new features including biological and physical
processes, i.e. particle splitting to represent reproduction. Writing the corresponding section
in the manuscript and editing.

Study II Steidle, L., Pein, J., Vennell, R. and Burd, A.: Potential effects of coagulation
processes on phytoplankton mortality in the Elbe estuary from a Lagrangian point of view,
(manuskript), 2024.

Contribution: Design of the study concept and its implementation, aquired hydrodynamic
data, development of the required biological model features, performing the simulations, post-
processing, and visualization. Writing the of the manuskript.

Study III Steidle, L. and Vennell, R.: Phytoplankton retention mechanisms in estuaries: a
case study of the Elbe estuary, Nonlin. Processes Geophys., 31, 151–164, https://doi.org/10.
5194/npg-31-151-2024, 2024.

Contribution: Design of the study concept and its implementation, aquired hydrodynamic
data, development of the required biological model features, performing the simulations, post-
processing, and visualization. Writing the of the manuskript.

https://doi.org/10.5194/npg-31-151-2024
https://doi.org/10.5194/npg-31-151-2024
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2.1 Study I:

Fast Adaptable Lagrangian Particle Tracking in Struc-
tured and Unstructured Grids

2.1.1 Asbtract
Particle tracking code is frequently used to compute where particles move within hydrody-
namic ocean models. OceanTracker’s code is designed to minimise the user effort required to
obtain the statistics required about that movement. Firstly, by being computationally fast.
This enables user to scale to large numbers of particles, to obtain better statistics or wider
exploration of cases within acceptable run times. It is able to model 1 million particles for one
one month in 48 min on a single core of a basic laptop computer. Secondly, OceanTracker can
calculate multiple particle statistics during the computational run, eliminating the need to
analyse large volumes of recorded particle track output. The adaptability of OceanTracker’s
modular computational-pipeline enables users to add and modify particle physics, behaviour
and statistics. Coders and non-coders have access to the same adaptability with in-built
components, as the computational-pipeline is entirely assembled from user given parameters,
supplied as text file or Python dictionary. Coders can easily modify existing components
through inheritance. OceanTracker currently supports ocean model data from unstructured
grids (SCHSIM, FVCOM, DELFT3D-FM ) and structured grids (ROMS).



30 CHAPTER 2. STUDIES

2.1.2 Introduction

Particle tracking is key to answering many scientific and practical questions about bio-physical
transport in the ocean (Lynch et al., 2014; Van Sebille et al., 2018). Questions might include,
determining the movement of larvae, quantifying residence time (Lucas and Deleersnijder,
2020), the spread of pollution, or quantify connectivity between regions. Using physical drifters
to answer these questions is currently limited by budget and logistics. Thus tracking large
numbers of virtual particles advected by currents obtained from hydrodynamic ocean models
is commonly used to answer many such questions. Some examples of ocean particle trackers
are PARTRACK (Knight et al., 2009), LIGHT (Wolfram et al., 2015), OpenDrift (Dagestad
et al., 2018) and Parcels (Delandmeter and Van Sebille, 2019). This paper outlines the features
and structure of the latest version of the OceanTracker particle tracker (Vennell et al., 2021).
OceanTracker is designed to minimise the time required to obtain the results needed by the
user, while having a high level adaptability to build a “computational pipeline ” customised to
their specific needs. Minimising a user’s time has two main components 1.) computationally
fast code, 2.) minimising the time and effort required to post-process the computational
outputs (see Sec. 2.1.3). OceanTracker takes a step towards addressing a major challenge
in particle tracking: simulating billions of particles (Van Sebille et al., 2018). Its speed
allows users to scale to millions of particles within acceptable run times. This scaling enables
better estimates of particle statistics, such as heat-maps or connectivities. For example, large
numbers are useful when estimating connectivities between regions, where connectivity is
weak but the consequences are significant, such as the spread of invasive species. Scaling
also facilitates a much wider exploration of particle behaviours (e.g. light dependent vertical
velocities of larvae) and the sensitivity of results to parameters governing those behaviours.

Computational speed makes it possible to scale particle numbers on modest computer
hardware. Table 2.1 shows that on the basic Laptop I, OceanTracker can compute one month
of particle trajectories for 1 million particles in less than an hour on a single CPU. The
comparison in Sec. 2.1.5 indicates that OpenDrift would require 32 hours to accomplish the
same task. The times in Table 2.1 for computers with more CPUs and memory are not
significantly faster. When more CPUs and RAM are available, OceanTracker enables the
easy division of the required runs into separate cases, which can then be run in parallel to
significantly reduce run times, see Sec. 2.1.5.

The second component of minimising a user’s time and effort is that spent in post-
processing. Having the computational speed to scale to millions of particles will produce
large files containing the computed particle trajectories. The time needed to analyses these
tracks to yield the required particle statistics becomes a major bottleneck for the user, along
with the logistical issues of storing and accessing what may be terabytes of output for analysis.
OceanTracker resolves both of these issues by recording particle statistics during the compu-
tational run, e.g. by counting particles inside grid cells “on-the-fly” to produce a heat-map,
or counting particles inside polygons to calculate connectivities between regions, as shown in
Fig. 2.1 and Sec. 2.1.4. On-the-fly statistics address the post-processing time and storage
issues, as no particle trajectories need to be recorded, and the statistics outputs take up much
less space than the particle trajectories from which they are calculated. On-the-fly statistics
produce data volumes which are independent of the number of particles released.

A key aspect of OceanTracker is the ability for users to easily adapt how particles behave
and the statistics calculated. To achieve this, OceanTracker is built around the concept of a
computational pipeline , which is a set of components assembled into a sequence that carries out
the user’s particle tracking, as shown in Fig. 2.3 and Sec. 2.1.4. This pipeline is broken up into
a series of configurable roles, into which the user adds the components required to implement
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their particle tracking model, see Sec. 2.1.4. These roles include the physics of particle
movement, dispersion or suspension, modifications to their trajectories due to behaviours
(e.g. larvae settling within a polygon) and particle statistics. This approach allows users to
add multiple versions of a component into some roles. This can reduce user effort; for example
allowing them to have multiple release groups with different locations and release schedules,
along with multiple on-the-fly statistics, all done within a single computational run.

A challenge in having an adaptable computational pipeline is to enable both coders and
non-coders to access the same level of adaptability. For both, OceanTracker’s computational
pipeline is entirely constructed from a user-supplied set of parameters that define both which
components are added to the computational pipeline and their individual settings (see Sec.
2.1.4). Figure 2.4 provides a minimal example of this, showing the same run executed either
through coding, or from parameters supplied in one of two standard text file formats. Another
advantage of this approach is it allows web-based particle tracking on-demand services to easily
access the same level of computational pipeline adaptability, e.g. (Vennell et al., 2019).

A single particle tracking framework that works for both structured and unstructured grids
simplifies the particle tracking process for users by having a uniform approach regardless of the
hydrodynamic model underpinning their location of interest. Particle trackers for unstructured
grid are rare due to the complexity involved in coding the movement and interpolations within
the grid. A review of ocean Lagrangian analysis (Van Sebille et al., 2018) lists 11 particle
trackers, of which only one is designed for use with unstructured grids. Those compatible
with both types of grid are even rarer, e.g. OpenDrift (Dagestad et al., 2018). A secondary
goal for OceanTracker is to provide a single framework that auto-detects the type of grid from
multiple hydrodynamic model formats and identifies useful optional variables, such as bottom
stress used in particle re-suspension. This enables users to focus on the outcomes they need
from particle tracking, rather than the details of underlying hydrodynamic model.

Like many other particle trackers OceanTracker saves users’ time by performing particle
tracking “offline”, based on the recorded output from a hydrodynamic model. In contrast,
“online” particle tracking performs computations during the hydrodynamic model run. Hy-
drodynamic model run-times are typically much longer than those of particle tracking. Thus,
any new variations in particle tracking requires re-running the slow hydrodynamic model.
As a result, offline particle tracking facilitates faster exploration of variations in behaviours
and the sensitivity of results to parameters, e.g. fall velocity. Examples of OceanTracker’s

applications to date are:

• Backtracking to infer likely locations of the parents of settled mussel larvae. Approx-
imately 600 million particles were released over ten years and tracked for their 6-week
lifetimes. (Atalah et al., 2022).

• Investigating phytoplankton retention mechanisms in an estuary with populations that
grow through particle splitting. One billion particles were released, with up to 1 million
active at any one time.(Steidle and Vennell, 2024).

• Inferring the area within which the eDNA of a species can be detected from water
samples (Ane et al., in prep.).

• Estimating the risk of invasive species from ballast water discharged from ships transiting
coastal shipping routes (Smeaton et al., in prep.).

• Determining pathways for the spread of diseases between aquaculture farms from con-
nectivities between 500 farms based on 150 million particles (Knight et al., in prep.).
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• Online ocean plastics public engagement tool, allows users to drop virtual plastic and see
where it travels to. Returns 20 particle trajectories in less than 1 sec from an on-demand
particle tracker server (Vennell et al., 2019).

This paper outlines the comprehensive list of design objectives in Sec. 2.1.2 and provides
an overview of its features in Sec. 2.1.3, including some example outputs in Fig. 2.1. Sec.
2.1.4 details its structure, characterized as a “computational pipeline” composed of components
within “roles” Sec. 2.1.4 and describes how to configure the computational pipeline in Sec.
2.1.4. Additionally, Sec. 2.1.4 outlines ‘integrated models’ which combine roles to achieve
a higher level functionality, such as calculating Lagrangian coherent structures. Sec. 2.1.5
explores the features contributing to OceanTracker’s speed and compares its performance to
OpenDrift.

Design objectives

OceanTracker has been constructed to meet a number of design objectives. The design objec-
tives in order of importance were:

Computational speed: Speed enables the user to release millions of particles.

Minimizing user time and effort: Minimizing the time and effort it takes to go from
running the particle tracking to having the required analysis results, e.g. the heat-maps
in Fig. 2.1.

Adaptability: Ability to easily modify or extend functionality.

Parameter-built computational pipeline : A single set of parameters or settings, is
entirely responsible for enacting user options and building their computational pipeline
(see Fig. 2.4). This enables coders and non-coders access to the same level of adaptability
when using inbuilt components, exploit distributed compute and to develop particle
tracking as an online service, Sec. 2.1.4.

The first two objectives can conflict. For example, consolidating all particle operations
in the computational pipeline within a single kernel loop would be faster, i.e. performing all
required computations for each particle one at a time. This approach increases efficiency, as
the data required for each particle is likely to be in the faster chip memory cache if used more
than once, and avoids the need to create, read or write arrays in main memory for intermediate
results. However, it is much harder to adapt a single kernel loop when there are many
operations with different variants. OceanTracker takes a middle ground, by breaking up the
computational pipeline into a series of modular kernel operations on all particles as illustrated
in Fig. 2.3. These operations are associated with different roles within the computational
pipeline. This modular approach compromises speed, but significantly enhances adaptability,
allowing for easier modification of individual operations to meet user needs.

2.1.3 Overview

At a high level particle tracking code, takes the Eulerian water velocity field from a hy-
drodynamic model, interpolates these velocities to provide Lagrangian velocities at particle
locations, and then numerically integrates these to output particle trajectories. OceanTracker
decomposes this process into a series of components that fulfill specific roles within the com-
putational pipeline outlined in Fig. 2.2, Fig. 2.3 and Sec. 2.1.4. This section highlights some
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Specifications Minutes per modelled month
CPU RAM Gb Freq. MHz Read Computation Total

Laptop I 4 8 1.6-3.9 7 41 48
Laptop II 10 16 1.7-4.7 4 23 27
Desktop I 8 32 3.7-4.4 8 32 40
Desktop II 32 128 3.7-4.5 4 25 30
Work station 36 256 2.7-3.7 8 39 47

Table 2.1: OceanTracker run times for modeling 1 million particles over a period of 1 month. The runs utilised
a single core, a time step of 15 minute and Runge-Kutta 4 time integration. The 3D SCHISM hydrodynamic
model included 79k nodes and 140k triangles.

a) b)

c) d)

Figure 2.1: Examples of simultaneous point, polygon and grid particle release groups, Sec. 2.1.4. a) A
snapshot of the particles: blue indicates particles are moving, grey signifies particles on the bottom that may
later resuspend and green represends those stranded by the outgoing tide. Dry cells are shown in brown,
with the blue shading indicating water depth. b) Particles sized and coloured according to a decaying particle
property Sec. 2.1.4. c) Heat-map of log particle counts from a release of 1.3 million particles from a pair of
point sources. d) Heat-map of decaying particle property on a logarithmic scale. The code to run this example
is in Appendix 4.1.1.
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of OceanTracker features that minimise user effort, its physics and an example use case is
presented in Fig. 2.1.

Features reducing user effort

In addition to computational speed, OceanTracker incorporates an number of features that
significantly reduce the time and effort required to obtain results from the analysis of particle
trajectories. The most significant features are:

Release groups: This feature allows simultaneous release of multiple groups of particles,
each with distinct locations and timing. This functionality enables users to obtain more
comprehensive results from a single computational run, as shown in Fig. 2.1, Sec. 2.1.4
and Appendix 4.1.1. This eliminates the need for setting up and managing multiple runs to
explore different release scenarios. Moreover, separating into release groups enables on-the-
fly statistics to separately calculate statistics for each release group, i.e. such as individual
heat-maps for each release site.

On-the-fly particle statistics: OceanTracker enables the addition of multiple statistics
components to a computational run. This enables the calculation of diverse statistics from the
same set of particle trajectories. For instance, it can generate different heat-maps for moving
particles and those on the bottom, and calculate connectivities between areas, all within the
same computational run.

Multiprocessing: OceanTracker leverages multiple computer cores allows users to run
multiple scenarios in parallel. It simplifies multiprocessing by orchestrating all cases within a
unified set of user parameters and organises the output in a consistent structure.

Coding productivity New functionality for tailored applications can be added to Ocean-
Tracker using the widely used Python language Numpy package. For complex computationally
intensive operations Numba can be used (Lam et al., 2015b). A major advantage of Numba is
that users do not need to learn new coding syntax, such as C, to speed for intensive operations.
More on Numba in Sec. 2.1.5.

Physics

OceanTracker implements the core physical processes using components that users can re-
place with their own implementations. Users can also enhance particle physics by adding
components to the velocity modifiers role (e.g. sinking velocities) or trajectory modifiers role
(e.g. particle splitting or larval behaviours) as outlined in Sec. 2.1.4 and Sec. 2.1.4 The core
physical processes include:

Dispersion role: A random walk mechanism simulates dispersion due to sub-hydrodynamic
grid scale processes (Lynch et al., 2014). By default constant turbulent eddy viscosities are
applied. If vertical 3D turbulent viscosity profiles are available in the hydrodynamic model
files, these profiles are interpolated profile to calculate the vertical random walk instead, neces-
sitating a vertical velocity correction (Ross and Sharples, 2004). Note that, the random walk
is not applied as a step change in position, but as an equivalent additional velocity applied to
each RK sub-step in the velocity modifiers loop (see Fig. 2.3 and Sec. 2.1.4).

Re-suspension role: Particles on the bottom may re-suspend if flows are strong enough.
Whether and how far re-suspending particles jump above the sea bed depends on the friction
velocity (equation 9.28 in (Lynch et al., 2014)). Thus, particles are more likely to re-suspend
and jump higher, in stronger flows. The friction velocity is calculated from the near seabed
velocity assuming a logarithmic velocity profile, or the bottom-stress field if it can be found
in the hydrodynamic model output.
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Figure 2.2: Outline of data flow through the two main data structures, fields and particle properties, from
hindcast to output. These data structure roles are outlined in Sec. 2.1.4. Each have “managers” to orchestrate
operations on the variants of each data structure, to deliver particle properties to the solver.
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Tidal stranding role: Particles in dry hydrodynamic model cells remain stationary until
the cell becomes wet again. Dry cells flags are set from data in the hydrodynamic model. If
this data is not available, then a cell is dry if the total water depth at the cell’s center is less
than a user given minimum value.

Along with the above core user replaceable physics roles, OceanTracker has other features
that affect particle movement. For example:

Nested grids: To enable particle tracking beyond the open boundaries of a single hy-
drodynamic grid, OceanTracker can nest multiple inner grids within a broader scale outer
grid. Particles exiting the open open boundary of an inner grid are transferred to the outer
grid, and particles on the outer grid which move inside an inner grid, are transferred to that
grid. Each particle is aware of its current grid, allowing field values to be interpolated from
the relevant grid. The inner and outer grids may consist of any combination of structured or
unstructured grids.

Backtracking: OceanTracker supports reverse time simulations, which can be useful for
identifying potential sources of particles arriving at a given location (Thygesen, 2011). Note
that dispersion is not time-reversible, and this operates the same in the forward direction
time, producing outputs, like heat-maps, that offer a probabilistic view of sources.

Example

Fig. 2.1 presents some basic examples of OceanTracker outputs from a 3D simulation. This
example shows point, polygon and regular grid particle releases within the same computational
run, add discussed in Sec. 2.1.4. The snapshot in Fig. 2.1a displays particles coloured
according to their status, moving (blue), stranded by the tide (green) or on the bottom
(grey).

Heat-maps can illustrate the decay and dispersion of a pollutant from its source. To
construct heat-maps using particle tracking, sufficient particles must fall within each grid cell
to ensure spatially smooth heat-maps. The efficiency of OceanTracker allows for the release of
millions of particles, enabling the direct creation of heat-maps without the need for additional
radial smoothing of particle counts. In Fig. 2.1c 1.3 million particles were sufficient to produce
a detailed the heat-map. This heat-map was generated by counting particles into grid cells on
the fly, thereby avoiding the need to record large volumes of particle trajectories. Fig. 2.1d
illustrates a heat-map of the average value of a user-added exponentially decaying particle
property.

2.1.4 OceanTracker structure

At a high level, Fig. 2.2 illustrates the data flow in OceanTracker from hydrodynamic model
files to outputs, via the two main data structures. Fields store data from the hydrodynamic
model, such as water velocity, salinity, wind stress, as well as derived fields calculated from
other fields, such as friction velocity. Particle-proprieties hold data for each particle, which
could include its current location, status or a value interpolated from a field. These data
structures enable access to and operation on their data. At a higher level these data stuctures
are collectively “managed” as outlined in Sec. 2.1.4.

The high-level flow of data is implemented by the computational pipeline (see Fig. 2.3).
This system is constructed from components assigned to specific roles within the pipeline.
From a user’s perspective, the adaptability of OceanTracker comes from the ability to add
components and their settings within each role of their specific configuration. Internally
dividing these tasks into roles enhances adaptability, by enabling the computational pipeline



2.1. STUDY I: LAGRANGIAN PARTICLE TRACKING IN UNSTRUCTURED GRIDS 37

to automate the computations. This is achieved by updating components individually for
certain roles, and by looping over components for others.

Computational pipeline

The computational pipeline splits the core computational loop into steps which implement a
specific role within the pipeline (see Fig. 2.3). One or more components execute each role.
These components are constructed as Python classes, which are dynamically added to the
computational pipeline during setup. The computational pipeline proceeds sequentially by
simply calling the “update” method of each class within a role. Some roles, such as dispersion
and re-suspension, allow only one class to be added. Others allow multiple classes to be added
to that role, which then are looped over, updating all before progressing to the next role in the
computational pipeline. For example, multiple trajectory modifiers which can combine to give
the required particle behaviour, such as initially floating then later settling on the bottom.

Configuring the computational pipeline

The computational pipeline can be fully configured using parameters from a text file or a
Python dictionary, eliminating the need to code to run OceanTracker , e.g. Fig. 2.1b,c.
However, coders may find it easier to create complex simulations using a ‘helper’ wrapper
for OceanTracker . This allows coders to build their parameter dictionary using keyword
arguments, bu using two provided methods “settings” and “add class” (see Fig. 2.1a). Users
can also build their own Python parameter dictionary directly in code, which adheres to the
same structure as the JSON format shown in Fig. 2.1c.

There are simple configuration settings, such as time step and more complex settings
nested by role for each component. The configuration for each selected component typically
includes the name of the class that the user is choosing for that role. This name is used to
dynamically import the class into the computational pipeline at runtime. The main roles in
the computational pipeline are outlined in Fig. 2.3, Sec. 2.1.4, Sec. 2.1.4 and Sec. 2.1.3.

Most component settings have default values defined within the class, while some require
user specified values. Settings provided by the user are automatically checked for type and
value range appropriateness. Children of a class inherit their parent’s default settings and can
redefine, remove or add new settings.

Computational steps automation

The updating of each component is automated within the time stepping of the computational
pipeline, with updates grouped by role (see Fig. 2.3). The order in which the roles are updated
reflects their temporal dependence on the data from other roles. For example, custom particle
properties may be calculated from field particle properties and are thgerfore updated after
the interpolated field properties. The Solver class implements the time stepping by managing
the classes within the computational pipeline and the associated bookkeeping functions. By
default, fourth order Runge-Kutta (RK) time integration is used, while first and second order
RK are also available.

The first step involves looping over the release groups and releasing a single pulse for
any scheduled release at the current time step. Next, the solver checks if field time buffers
contain the required time steps: if not, the reader fills the buffers and any custom fields are
calculated. After this, each particle’s current horizontal and vertical cell is updated and used
to interpolate the water velocity field to each particle’s location from the cells’ nodal values.
In addition to the water velocity from the hydrodynamic model, the user may add additional
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Figure 2.3: Components of the computational pipeline within the time stepping of the Solver role. These
operation roles are outlined in Sec. 2.1.4. For large runs, the most computational expensive steps in order
are typically, finding the cell containing each particle and evaluating the field interpolation. These steps are
coloured yellow.
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a) python
1 from oceantracker.main import OceanTracker
2 # make instance of oceantracker
3 ot = OceanTracker()
4
5 # add settings
6 ot.settings(output_file_base=’minimal_example’,
7 root_output_dir=’output’,
8 time_step= 120.)
9 # reader for hindcast files, format is auto detected

10 ot.add_class(’reader’,
11 input_dir= ’..\\demos\\demo_hindcast’,
12 file_mask= ’demoHindcastSchism∗.nc’)
13 # add (x,y,z) locations where particles are released
14 # note: can add multiple release groups
15 ot.add_class(’release_groups’, name =’my_release_points’,
16 points= [[1595000., 5482600.,−1.],
17 [1599000., 5486200.,−2.]],
18 release_interval= 3600, pulse_size= 10)
19 # start computation
20 ot.run()
21

b) yaml
1 output_file_base: minimal_example
2 root_output_dir: output
3 time_step: 120.0
4 reader:
5 input_dir: "..\\demos\\demo_hindcast"
6 file_mask: "demoHindcastSchism∗.nc"
7 release_groups:
8 my_release_point:
9 points: [[1595000,5482600],

10 [1599000,5486200]]
11 release_interval: 3600
12 pulse_size: 10

c) json
1 {
2 "output_file_base": "minimal_example",
3 "root_output_dir": "output",
4 "time_step": 120.0,
5 "reader": {
6 "input_dir": "..\\demos\\demo_hindcast"

,
7 "file_mask": "demoHindcastSchism∗.nc"
8 },
9 "release_groups": {

10 "my_release_point": {
11 "points": [[1595000,5482600],
12 [1599000,5486200]],
13 "release_interval": 3600,
14 "pulse_size": 10}
15 }
16 }

Figure 2.4: Minimal example of building a computational pipeline by a) Coding, using the “helper” wrapper to
build a Python parameter dictionary, or as user supplied parameters within a text file following the b) YAML
or c) JSON standard.
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particle velocities, such as fall velocity. The total velocity due to all the “velocity modifiers”
is then calculated, The next step is the time integration, where the particles are advected by
the water velocity plus the total velocity modification.

Next, re-suspension and trajectory modifiers apply any additional movements to the par-
ticles. To calculate the properties of the moved particles, their current horizontal and vertical
cells and Barycentric coordinates are updated. Then, all field-derived particle proprieties are
looped over and updated by interpolation; the status of each particle is changed if it is in a
dry cell. The subsequent steps involve updating any custom particle properties, calculating
any particle statistics that have been added to the computational pipeline, and then writing
out time series of particle trajectories and particle properties if requested.

Mechanisms enabling computational pipeline adaptability

The mechanisms that enable computational pipeline adaptability within OceanTracker are:
Dynamic importing: This feature imports each Python class component into the com-

putational pipeline based on the name provided by the user in their configuration, described
in Sec. 2.1.4. Users can add novel variants of any role simply by naming that class in their
configuration, just as they would do for in-built classes.

Inheritance: Variants of a components are created by inheriting the base class for its
role, or one of its children, and overwriting some of the methods to alter its computation.
Commonly, this would involve overwriting the update method to meet specific needs. For
example the polygon particle release class inherits most of its operations from its parent point
release.

Data roles in the computational pipeline

OceanTracker’s two main data structures are fields and particle properties, Fig. 2.2. This
section outlines these data roles, while Sec. 2.1.4 describes their management.

Field role

The spatial fields stored within the hydrodynamic model’s files are the foundation of offline
particle tracking. These are stored and accessed using the “field” data structure (see Fig. 2.2).
The water velocity field is a crucial spatial field for particle tracking, but there may be many
other relevant fields, such as water depth , tide or wind-stress. These fields can be 2D or
3D, time-dependent or independent or scalar or vector. They also have an associated grid
variables, including nodal locations, triangulation and cell adjacency.

Fields are read from files as detailed in Sec. 2.1.4. Additionally, custom fields can also be
integrated into to the computational pipeline. These fields are derived on the fly by calculation
from existing fields. For example, a friction velocity field can be computed from the 3D velocity
field near the sea-bed to determine whether a particle can be re-suspended by the flow. Custom
fields are calculated using their update method, which is used to automatically executed after
the primary fields have been read from the hydrodynamic model files.

Particle property role

“Particle properties” store the values for each particle and enable high level operations on
these values as shown in Fig. 2.2b. These properties have different types, depending of how
they are updated each time step and may be scalars or vectors.
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Field particle properties These sore field values at each particle location, such as water
velocity. Field particle properties. They are updated by interpolating the field data structure
with the same internal name.

Custom particle properties store values calculated from other particle properties.
These are updated after the field types, via the class’s update method. For example, the
“inside-polygons” class uses the location particle property to determine which user given poly-
gon contains each particle.

Core particle properties are not updated using their class update method, but are
managed by the main code. Examples include particle location and book keeping particle
properties, such as particleID and release groupID numbers.

Some examples of currently available custom particle properties are:
Age decay: models an exponentially decaying particle load, such as bacteria, based on

the core “age” particle property
Inside polygon: records which of a given set of polygons, a particle is currently inside.

This is used calculate polygon connectivity statistics, or to allow larvae to settle when over a
reef.

Total water depth: represents the sum of tidal elevation and water depth. This property
is useful for particles whose behaviour differs in different water depths, such as larvae that
only settle in shallow water, even if a cell is not completely dry.

Manager roles in the computational pipeline

Instances of field and particle properties store, update, and manage access to individual fields
or proprieties. Higher level operations on all the individual instances are orchestrated by
“managers” which automate key processes. Similarly the reader role manages access to the
files of the hydrodynamic model. The primary role of these managers is to deliver fields
interpolated to particle locations, as required by the solver (see Fig. 2.2).

Fields group manager role

This orchestrates the setup, reading, updating and interpolation of fields, along with setting
up the required grid variables, such as nodal locations, triangulation and the adjacency matrix.
It also manages the process of finding each particles current horizontal and vertical cell and
updates the status of dry cells. By default, the fields group manager automatically adds a
particle property with the same internal name as the field to the computational pipeline, to
be interpolated from that field at each time step.

Particle group manager role

This orchestrates the release of particles and the updating all three types of particle properties.
It also manages the dynamic memory buffers which hold the individual particle property
values, expanding them as needed when particle numbers grow and culling computationally
dead particles that are no longer of interest. Additionally, if required, this manager handles
the writing time series of particle trajectories and properties.

Reader role

The primary function of the reader to convert hydrodynamic model file variables into stan-
dardised internal formats. Initially, it reads file grid variables maps then to standard internal
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variable names. It subsequently calculates other necessary grid variables, such as the triangle
adjacency matrix.

Secondly it reads fields from hydro-files into buffers, determining their characteristics,
such as being time-dependent ot independent, 2D or 3D and vector orscalar. For vector fields,
several file variable names can be mapped to a single internal vector variable, allowing vector
fields to be treated as a single variable within computations.

To support OceanTracker’s current approach to interpolation is for the reader to convert
all fields to values at the nodal values on triangles through interpolation, unless they are
already nodal values. OceanTracker’s modular approach allows development and substitution
of a reader and interpolator for a hydrodynamic model’s native grid, that do not require
to this conversion. To facilitate automation, the reader stores all fields in 4D arrays with
dimensions (corresponding to time, node, z-depth and vector components). Some of these
array dimensions may be of size one, for instance water depth, a 2D time-independent scalar
field, would have unitary dimensions for time, z-depth and vector components.

Currently SCHISM, FVCOM, DEFLT3D-FM and ROMS hydrodynamic model formats
are supported (Zhang et al., 2016; Lai et al., 2010; Moore et al., 2011). For SCHISM and
DEFLT3D-FM, any quad cells are divided into triangles. The interpolator supports the native
grid interpolation of SCHISM’s LSC vertical grid, which reduces the number of vertical layers
in shallow water, to decrease the computational load. For the structured ROMS grid, fields
are interpolated to its ψ grid, before being converted to triangular nodal values.

The reader loads fields into memory buffers as they are needed. For time-dependent
variables it reads multiple field time steps into ring buffers if the time steps required by
the RK computation are not already in the buffer. By default the ring buffers maintain 24
hindcast time steps for each field. To ensure files are loaded in the correct order, during setup
OceanTracker sorts all files in a folder and its sub-folders into time order, based on their
internal time variable. The reader also alerts users to any significant time gaps between files.

Operational roles in the computational pipeline

Computational operations access the fields and particle properties as outlined in Sec. 2.1.4.
These operations are grouped within roles, as illustrated in Fig. 2.3 and described in this sec-
tion, while operational roles associated with core physics are detailed in Sec. 2.1.3. Grouping
components within each role enables automation within the computational pipeline. Internally
components are referred to using standard or user-provided names.

Interpolator role

The interpolator serves as the link between the hydrodynamic model’s fields and the corre-
sponding particle properties. After determining each particle’s current triangle, horizontal and
vertical cell, the interpolator converts field data values to values at each particle’s location,
which are then stored as particle properties. In the horizontal, OceanTracker currently uses
linear interpolation in unstructured triangular grids from nodal values, utilizing a particles’
Barycentric coordinates within their current triangle. Linear interpolation is applied within
vertical layers and between time steps, except for the water velocity within the seabed layer.
Here, vertical interpolation is based on a logarithmic layer, ensuring that particles near the
seabed experience more realistic horizontal velocities, which is crucial for newly re-suspended
particles. OceanTracker automatically applies an appropriate interpolator to each type of
field, depending on whether it is 2D or 3D, scalar or vector, time-dependent or independent.
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Particle release groups role

A “particle release group” introduces new particles to the computational pipeline. Each release
group generates new particles at specified locations, which are released at designated times,
in defined pulses sizes. Multiple release groups can be added, each with its specific locations
and release schedule. The current release types inculde:

Point release spawns particle from a set of specified locations and depths. A optional
radius setting allows particle releases randomly within a circular area around each point.

Polygon release: Particles are spawned at random locations within a user-defined given
2D polygon.

Grid release: spawns particles from points of a regular grid.
Particles will not be released in any locations outside the domain (see Fig. 2.1a). Also,

by default, particles are not released within cells currently dry due to the tide. For all types
is possible to restrict releases to be randomly distributed within a given vertical layer, or to
locations with water depth in a given range, e.g. for seaweed propagules whose parents only
live in the shallow areas within a release polygon.

Velocity modifiers role

Additional bio-physical processes can modify the water velocity experienced by each particle.
These are incorporated into the computational pipeline as “Velocity modifiers”, where the
effects of each are added to the water velocity for use in the time integration (see Fig. 2.3).
An example of an in-built modifier is:

Terminal velocity: The modifier adds the the terminal sinking or buoyant velocity to
the ambient water velocity, either as a uniform value or a particle specific value drawn from
a normal distribution.

Trajectory modifiers role

“Trajectory modifiers” are bio-physical processes that alter the movement patterns at each
time step. Examples of in-built modifiers include:

Settlement: Allows larvae to settle on reefs defined by polygons. The trajectory is
modified by changing its status to “stationary”.

Floating: Sets each particle’s vertical position to that of the free-surface height at its
current location.

Culling: Flags particles that are no longer of interest as dead, allowing then to be removed
from subsequent computations.

Splitting: This splits particles in two to simulate reproduction, at a set rate or probability.
This can rapidly generate very large numbers of particles which need to be contained by a
culling mechanism (Steidle and Vennell, 2024).

On-the-fly particle statistics roles

Scaling up particle numbers to millions can create large volumes of particle track data. The
on-the-fly counting statistics approach produces a data output volume independent of the
number of particles released. Currently there are four main types of spatial particle statistics:

Gridded: Used to produce heat-maps. These count particles inside cells of a regular grid
at a user-specified time interval.

Polygon: Calculates the physical connectivity matrix between each release group and
areas bounded by given polygons.
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Both types record particle counts from each release group separately and have two variants.
Time series: Counts particles at specified time intervals, providing time series of heats-

maps or connectivities.
Age bins series: Counts particles within each spatial bin into age bins, to produce age-

based heat-maps or connectivities. This has applications in tracking the age distribution of
particles in specific areas.

It is also possible to limit which particles are counted, for example, only counting particles
in a given vertical “z” range or only those lying on the bottom. Users can add multiple on-
the-fly statistics components, all calculated from the same particles during the computational
run, such as adding a particle statistic counting particles in different depth ranges. In addition
to particle statistics, average values of particle properties within the spatial counting bins can
also be calculated on-the-fly, such as water temperature or distance travelled.

An additional in-built statistic is residence time:, which calculates time series of the
average time that particles released within a polygon reside within that polygon (Lucas and
Deleersnijder, 2020).

Integrated models

Many use cases require users to combine multiple roles to create higher level functionality.
OceanTracker supports this aggregation of roles into a single class for reuse. These integrated
models only require the parameters essential for executing their higher level function; the
model manages the intricacies of assigning classes to appropriate roles to complete the overall
function. Current integrated models include:

On-the-fly sea-bed flux: Released pollutants, such as waste from fish aquaculture farms,
may sink to the bottom while being advected by the current flows. This model generates flux
heat-maps by calculating the depostional flux of particles into cells of a regular grid around
each user-specified release location. It performs these calculations this on-the-fly, by counting
particles that have reached the seabed since the last flux estimation. It it does not allow
re-suspension and marks counted particles as dead.

On-the-fly Lagrangian Coherent Structures: These structures identify regions of
convergence or divergence within a fluid flow over time. In OceanTracker they are imple-
mented as time series of Finite-Time Lyapunov Exponents (FTLE) (Haller, 2015; Harrison
and Glatzmaier, 2012). FTLE calculation use the largest Eigenvalue of the strain tensor after
specified lag times. This process involves releasing particles on a regular grid and calculating
the distances between adjacent released particles. The user only needs to designate one or
more grid locations and the required time lags. The integrated model sets up new regular grid
releases at regular time intervals and calculates the FTLE on-the-fly for each lag, eliminating
the need to record and post process large volumes of particle trajectories.

2.1.5 Computational speed

The primary features contributing to computational speed of OceanTracker are:
Finding cell: In unstructured grids, significant computational time is spent determining

the horizontal and vertical cells containing a particle. OceanTracker leverages the particles
history to improve the speed of its cell search. Short triangle and vertical walk algorithms
improved the search speed by an order of magnitude as outlined in (Vennell et al., 2021).

Calculate once, use many: To avoid repetition in performing key computational tasks,
a particle’s current triangle, barycentric coordinates, vertical cell and fraction of the vertical
cell are recorded at each time step. These values then used repeatedly to interpolate multiple
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fields to the particle’s location. Adopting this, ‘calculate once, use many times’ methodology
significantly improves the efficiency of interpolations. (Vennell et al., 2021).

Dynamic Particle Buffer: Particle proprieties are stored in memory buffers, which
expanded as needed to accommodate newly released particles. System performance and and
memory utilisation can be optimised by periodically culling dead particles. For instance,
setting a maximum particle age for a release group, beyond which they are no longer relevant,
interest, will remove theses older particles from computations. When more than 20% are dead,
particle memory buffers are compacted by removing dead particles.

Uniform sigma-grid: For 3D SCHSIM and FVCOM, models the search for the vertical
cell is the most time consuming step as their fractional layer thicknesses vary spatially. Thus,
the vertical search for each particle’s cell is done within different layer thicknesses. Optionally
for these models, the vertical cell search can be made 5 times faster by vertically interpolating
to spatially uniform sigma-layer fractional thicknesses. With uniform fractional thicknesses,
finding the vertical cell is significantly quicker using rounding within a pre-calculated layer
map, followed by a correction step. The time spent re-interpolating to this near-native vertical
grid, is minimal compared to the time saved by the faster vertical cell search. DEFT3D-FM
and ROMS employ uniform S-grids, thus can directly can exploit the faster approach to
vertical cell search at no additional cost.

Numba: Particle tracking requires complex operations with nested loops making per-
particle decisions. These would be are computationally slow in Python. For example, the
triangle walk to find each particle’s horizontal cell requires calculating its barycentric coordi-
nates, while being aware of any adjacent dry cells and lateral boundaries. To make complex
looping 100s of times faster OceanTracker uses the Python extension Numba (Lam et al.,
2015b). Numba understands a large subset of Python and NumPy code, only requiring a
decorator to speed code. Numba can outperform NP by eliminating the need to create tem-
porary array memory for intermediate results. Thus, Numba’s computational speed is similar
to those of C or Cython. Numba complies functions when first called and the complied code
is reused on subsequent calls. The compilation of many Numba functions adds 20-30 seconds
to OceanTracker’s start up processes. Optional caching the complied Numba code to disk
between runs can prevent this delay.

Parallelization: Optionally OceanTracker can employ an embarrassingly parallel ap-
proach to execute cases simultaneously, as described in (Vennell et al., 2021). This is achieved
by providing shared parameters that apply to all cases, along with a list of parameters specific
to each case. For instance, while all cases share the same on-the-fly-statistics, but each parallel
case might release particles at different locations.

Speed comparisons

The following section compares the computational performance of OceanTracker with its clos-
est alternative, OpenDrift (Dagestad et al., 2018). A similar comparison hass been reported
in (Vennell et al., 2021). Since that publication the code base has undergone a significant
overhaul. Previously relying on NumPy and SciPy for critical computational steps, it now
uses Numba. This transition has facilitated the implementation of far more particle-specific
decisions processes that enhances the realism of their movement, as outlined in Sec. 2.1.3.

The performance comparisons uses two 3D hydro-dynamic models. The first is a high
resolution unstructured mesh estuarine model described in (Steidle and Vennell, 2024) and
built using SCHISM (Zhang et al., 2016). This model features 32,000 horizontal nodes and
employs terrain-following coordinates for the vertical grid, with up to 20 levels. Its spatial
resolution varies from 5 m and 1400 m. The second model is a regular grid ROMS model
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Figure 2.5: Comparison of the computational speed of OceanTracker and OpenDrift for structured (ROMS)
and unstructured (SCHISM) grids. a) Compares the total run time measured as wall time. b) shows the
normalized computational time per particle per RK4 time step.

presented in (López et al., 2020), consisting of about 250,000 nodes and 40 vertical levels with
a uniform horizontal resolution of 7 km. Both models had a temporal resolution of 1 hours.

The computational experiments were performed on the desktop computer I of table Table
2.1, which is equipped with an Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz and 16 GB RAM.
The computations covered 10 model days using 5 minute time steps, resulting in a total of
2880 time steps. Particles were released at 30 locations, with total particle numbers varying
from 1000 to one million particles per model run. All computations were done on a single
core.

Figure 2.5a displays the total run time across OceanTracker and OpenDrift on both struc-
tured and unstructured grids. Figure 2.5b illustrates the scaling of both models in terms of
time per particle per RK4 time step. Which indicates that OceanTracker can process nearly
a million particles per second on a single desktop core.

Model setup times are the main contributor to OceanTracker’s run time for particle
counts up to 10000 particles. For these small numbers, OpenDrift’s minimum run time was
approximately 2 minutes, while OceanTracker’s completed these runs in 30 seconds. For
particle counts exceeding 10,000 setup times become negligible for both models. In 1 million
particle simulations OceanTracker is up to 35 times faster than OpenDrift, resulting in total
run times of 15 hours for OpenDrift and half an hour for OceanTracker .

OceanTracker treats structured grids as unstructured grids by triangulating them, whereas
OpenDrift uses a native reader for the structured ROMS grids. Surprisingly, the native ROMs
reader of OpenDrift does significantly enhance its performance with unstructured grids. Also,
OceanTracker does not experience a significant speed penalty for treating structured grids as
unstructured.

Multi-processing scaling.

Fig. 2.6 shows that for a small grid, speed scales almost linearly with the number of processors,
with 25 processors yielding nearly 25 times the speed. For a large hindcast, the time required
to access field data from disk and main memory results in sub-linear scaling, as illustrated
in Fig. 2.6b. This data access bottleneck, suggested that restructuring the code to allow
processors to share the data would improve how speed scales with the number of processors.
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(a) (b)

Figure 2.6: Scaling of computation speed of cases run in parallel mode. Speed is the total number of particles
across all processors simulated per second of total run time. Colors show results for 50,000 to 500,000 particles
released in single pulse on each processor. As reference, dashed line shows linear scaling of a single 500k pulse.
a) Small demo grid, 12 nodes. b) Large grid Cook Strait NZ, 180k nodes (Vennell et al., 2021).

2.1.6 Discussion

(Vennell et al., 2021) found OceanTracker to be significantly faster than OpenDrift for
unstructured grids. Fig. 2.5 demonstrated there is a similar speed advantage for OceanTracker
over OpenDrift on structured grids. This is surprising, as typically cell finding in structured
grids is much faster, as it can be done by simple rounding of coordinates. This suggests that
the speed difference is not due to differences in their cell finding algorithm, but to some other
aspects of their approaches.

For unstructured grids, the original OceanTracker was over two orders of magnitude faster
than OpenDrift (Vennell et al., 2021). The latest version of OceanTracker is an order of
magnitude slower than its predecessor. However, the latest version has much improved physics
Sec. 2.1.3. This enhancement has required in more costly computations of particle by particle
decisions regarding their movement. These decisions result in slower branching code, but yield
more realistic physics.

OceanTracker’s implementation is a compromise between speed and adaptability, which
imposes a limitations. One is illustrated in Fig. 2.3, where core particle properties, such as
a water velocity, location, current horizontal and vertical cell are updated at every RK sub-
step. However, velocity and trajectory modifiers are updated only once per full RK step. This
is a compromise between speed, adaptability and numerical accuracy of trajectories. This
approach assumes that modifiers vary slowly enough in space and time, that they can be
treated as constant within the full RK time step. This assumption limits the acceptable time
step size, requiring users need to choose a small enough computational time step that these
modifiers can be treated as constant.

A recommended test for particle trackers is a circular flow of known period (Van Sebille
et al., 2018). A 2D synthetic eddy test was performed, with a 1 ms−1 peak flow at a 10 km
radius and 12 hour period. For 15 minute RK4 time steps the deviation of particles released
10 km from the center was less than 0.3 m from their initial radius after 10 days.

Future improvements to enhance OceanTracker’s speed. might include greater use of Single
Instruction Multiple Data instructions on conventional CPUs (SMID). Additional optimisation
should be possible by adapting expensive computational kernels to take advantage of GPUs.
Table 2.1 indicates around 20% of run time is spent in reading the hindcast. An asynchronous
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reader sharing it memory with parallel particle computational processes could minimise this
impediment.

2.1.7 Summary
OceanTracker provides a comprehensive ocean particle tracking framework compatible with
both structured and unstructured grids. Its speed allows users to scale to larger numbers of
particles on modest computer hardware within acceptable run times. This capability facili-
tates enhanced particle statistics and broader exploration of variations in particle behaviours.
Integrating the calculation of particle statistics directly within computational runs signifi-
cantly reduces the time required to derive needed statistics. In addition, on-the-fly-statistics
produce more manageable data volumes, as their size does not depend on the number of
particles released. The ability to add multiple release groups and statistics also reduces user
efforts, by enabling multiple outcomes within the same computational run. Adaptability is
enabled by a modular approach to roles within the computational pipeline.
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2.2 Study II:

Potential effects of coagulation processes on phyto-
plankton mortality in the Elbe estuary from a La-
grangian point of view

Abstract
Within the Elbe estuary, a sudden change in depth occurs when the river water reaches the
shipping channel in the Port of Hamburg. This change in depth correlates with a sharp decline
in phytoplankton concentrations. This decline affects the estuarine food web and shifts the
ecosystem from autotrophic to heterotrophic during the summer months. Previous studies
have hypothesized that this collapse is primarily driven by zooplankton grazing. We question
this narrative and investigate the effect of phytoplankton aggregation with inorganic suspended
matter and its impact on light limitation. In this study, we present a novel individual-based
Lagrangian model to investigate the influence of aggregation on phytoplankton mortality. By
incorporating data from the hydrodynamic model SCHISM and the sediment transport model
SediMorph, we simulate the movement and aggregation of phytoplankton in the estuary. Our
results show that aggregation with inorganic particles significantly increases sinking rates,
leading to increased light limitation-induced mortality, suggesting that aggregation processes
may play an important role in explaining the collapse of phytoplankton concentration.
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2.2.1 Introduction
On the one hand, estuaries are typcially highly productive ecosystems and contribute dis-
proportionately to the global carbon cycle, in addition to their role as a source of nutrients
and breeding or hatching grounds for marine ecosystems (Cloern et al., 2014; Arevalo et al.,
2023). On the other hand, they are heavily influenced by anthropogenic stressors such as dik-
ing, dredging and fishing, and are of enormous importance for anthropogenic use (Jennerjahn
and Mitchell, 2013; Brown et al., 2022; Wilson, 2002). Modern ecosystem management must
balance the long-term sustainability of the ecosystem and climate with the economic interests
of stakeholders.

The Elbe estuary is a particularly challenging example. Unlike other major European
ports, the Port of Hamburg is located well inland, approximatelly 100 km from the coast. In
order to provide access to the port for the largest class of container ships, the main channel
experiences a sudden jump in bathymetry from about 5 m at the edge of the city to about
20 m in the harbour and downstream (see Fig. 2.7). This bathymetric jump is thought to be
the main cause of the phytoplankton collapse (Pein et al., 2021; Schöl et al., 2014; Holzwarth
et al., 2019).

Figure 2.7: Bathymetry used in the Elbe model around Hamburg. Note the bathymetric jumps from 5 m
upstream (the right-hand side) to 10 m for a short step in the upper port area to 20 m in the lower port
area all the way to the North Sea. Also note that there is only one channel to enter the harbor section of the
estuary, which is 20m deep from shore to shore. So anything that passes through has to travel through deep
water.

The Elbe estuary is located in northern Germany and flows into the North Sea. Like
most alluvial estuaries, it is relatively shallow near the sea, with an average depth of only
a few metres in most parts. Like other European estuaries, it has been subject to strong
anthropogenic pressures over the last century. In particular, dykes for land reclamation and
flood protection have confined the Elbe to a narrow channel, and dredging to improve access
to the port of Hamburg. Since 1900, the navigational channel has been dredged nine times
from a depth of 7 m, the most recent of which will deepen it to 18 m in 2020. Ongoing
dredging is also carried out to maintain the depth of the navigational channel. The increase
in depth and the ongoing dredging are suspected to be the drivers for the increase in measured
turbidity (Weilbeer et al., 2021; Kappenberg and Grabemann, 2001). While important aspects
of the biochemical dynamics along the channel have been studied, little is known about their
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Figure 2.8: Chlorophyll concentrations as a proxy for phytoplankton biomass (green) and mean depth along a
downstream transect averaged from shore-to-shore (black), showing the phytoplankton collapse and correlation
with the bathymetric jump. Note, that the x-axis is inverted to keep consistancy with the map based plots.

vertical and cross-channel or shore-to-shore dynamics (Goosen et al., 1999; Dähnke et al.,
2008; Sanders et al., 2018).

Like most ecosystems, estuarine ecosystem dynamics are strongly controlled by primary
producers, particularly phytoplankton, which form the basis of the estuarine food web (Chen
et al., 2023). Apart from benthic biofilm-forming phytoplankton or microphytopbenthos
(Cheah and Chan, 2022), the vast majority of phytoplankton organisms drift passively in
currents.

Phytoplankton concentration drops suddenly in the harbour area of the estuary (see Fig.
2.8). The correlation with depth suggests that the collapse may be caused directly or indi-
rectly by the bathymetric jump (Schroeder, 1997). Measurements of low oxygen concentra-
tions (<3mg/l) and high ammonium (15mmolm−3) concentrations at the bottom and high
disolved inorganic nitrogen downstream of the bathymetric jump suggest a high reminerali-
sation rate of organic matter (Schroeder, 1997; Holzwarth and Wirtz, 2018; Sanders et al.,
2018; Spieckermann et al., 2022). This indicates that upstream phytoplankton is not being
diluted or vertically dispersed in a way that allows it to elude the monitoring stations, but
is actually dying. The collapse of the phytoplankton community also turns the estuary from
a net autotrophic to a net heterotrophic system during the summer months (Schöl et al.,
2014). Although this effect is well observed, the mechanisms behind this collapse are not well
understood.

The collapse of the phytoplankton community in the Elbe estuary has been consistently
observed in chlorophyll concentrations since the 1980s (Schöl et al., 2014). Looking at this
trend over time we see that this effect has increased over recent years and shows to be correlated
with the increase in turbidity which has more then tripled since 2010 (Weilbeer et al., 2021)
(see Fig. 2.9).

Most studies suggest that the phytoplankton collapse in the Elbe is due to grazing or light
limitation. The grazing hypothesis assumes that most of the phytoplankton is consumed by
zooplankton. A common explanation (Schöl et al., 2014; Kopmann and für Wasserbau, 2014;
Pein et al., 2019) is that marine zooplankton are pushed into the estuary with the tides up to
the bathymetric jump. Upstream of the bathymetric jump, the flow velocity is much higher,
making it difficult for them to migrate further upstream. This could explain the sudden drop
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Figure 2.9: Chlorophyll concentraions as a proxy for phytoplankton biomass and turbidity. Measured from
2005 until 2023 at the station “Seemannshöft (Strom-km 628,9)” based on data open data available at FGG-
Elbe https://www.fgg-elbe.de/elbe-datenportal.html (last access: 3 March 2024).

in phytoplankton concentration in this area. Although marine zooplankton species have been
observed in this area, (Steidle and Vennell, 2024) showed that retention in this area without
a sophisticated mechanism is difficult for planktonic organisms. Hence, an accumulations of
marine zooplankton to large enough concentrations that could explain this drop in chlorophyll
concentrations might not be possible. This suggest that the grazing hypothesis might instead
be dependant on upstream freshwater zooplankton that could still easily survive in the low
salinity port area. Alternatively, the grazing pressure could be in part due to benthic grazers.
With much lower flow velocities close to the bed and a potential ability to hold on or even
burry themselves in the sediments they would have a much easier time to persist in that
area. Informal reports of there existance have been made but no systematic study has been
performed to date to try and quantize their abundance.

The last zooplankton survey that could be used to examine the effect of zooplankton
grazing has been performed in 1992 (Bernat et al., 1994) with a small unpublished survey
mentioned in (Schöl et al., 2014). At that time the bathymetry was significantly different
with a narrower navigational channel and a target depth of 13m instead of the current 18m
(Hein and Thomsen, 2023). Additionally the upstream biochemistry has changed significantly
since the collapse of the German Democratic Republic (GDR) with a drastic increase in water
quality and a corresponding increase in in upstream chlorophyll concentrations (Adams et al.,
1996; Matthies et al., 2006). This effectively leaves us in the dark about the current impact
of grazing on the chlorophyll concentrations.

The light limitation hypothesis is based on the sudden increase in turbidity downstream of
the bathymetric jump and the sharp decrease in mean downstream velocity and corresponding
increase in residence time. This increase in turbidity in turn increased the aphotic to photic
volume ratio, effectively reducing light availability for phytoplankton. Note that the turbidity
in the navigational channel is so high that water at a depth of bewlow two meters is aphotic
(below 1% of surface light). However, a 1D-modelling study by (Schroeder, 1997), and the
light limitation induced mortility rates measured by (Walter et al., 2017) suggest that light
limitation alone would be too slow to explain the sudden drop in phytoplankton concentra-
tions around the bathymetric jump. Instead, it could be explained with a combination of
light limitation, grazing, and the sharp decrease in downstream velocity. While light limi-

https://www.fgg-elbe.de/elbe-datenportal.html
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tation restricts most of the phytoplankton growth, the decrease of the downstream velocity
drastically increases residence times around the bathymetric jump. Combining this with an
grazing pressure from upstream zooplankton could cause the sudden drop of the phytoplank-
ton community. Typically chlorophyll concentrations are presented relative to the position
along the channel obscuring the shift in residence times between these to regions which might
in part explain the perceived suddenes of this effect. Another process considered in some mod-
els is referred to as sedimentation (Hagy et al., 2005; Iversonl et al., 2000). This is based on
the assumption that individuals in the phytoplankton community have, on average, negative
buoyancy. Therefore, they slowly sink, where some of them are assumed to be buried in the
sediment. This process is also implemented in two Elbe models presented in (Schöl et al.,
2014; Pein et al., 2021). However, this process lacks calibration and validation data in both
models and with their choice of sinking losses are considered negligible compared to grazing
losses.

We suggest another explanation that has not yet been explored. Phytoplankton are typ-
ically thought to be sticky due to their excreted polysaccharides or transparent exopolymer
particles (TEP) (Passow et al., 1994; Logan et al., 1995). If the suspended inorganic mat-
ter causing the high turbidity were to aggregate with the upstream phytoplankton, it would
increase their sinking velocity. An increase in sinking velocity would shift their vertical distri-
bution to deeper and henceforth darker waters. This in turn would increase light limitation
effects and amplify the losses due to light limitation described above. A deeper average in
the vertical column also reduce the downstream velocity as velocities towards the bottom
are much lower and may even flow upstream (Pein et al., 2021) further skewing the speed of
the collapse after the batymetric jump when measured relative to the along channel position
rather then residence time. The phytoplankton aggregates would also be more likely to settle
to the bottom, further increasing their residence time, while creating an additional loss term
due to potential benthic grazing. We therefore suspect that this turbidity induced sinking may
be an important factor in the recent increase in the collapse of the phytoplankton community
in the Elbe estuary.

Similar aggregation and settling processes, sometimes also referred to as flocculation and
percipitation, have already demonstrated in lab studies (Deng et al., 2019) and observed in the
North sea on the border between Wadden Sea and North Sea (Schartau et al., 2019; Neumann
et al., 2019) The North Sea typically shows high organic aggregates concentrations while the
Wadden Sea aggregates shows to be high in inorganic content. At their boundary hisometimes
also referred to as flocculation and percipitation, gh precipitation can be observed, which is
thought to be due to the aggregation of organic and inorganic particulates, which increases
their sinking rate.

Particle aggregation in marine environments is a complex topic with many open questions.
It is best researched in the context of open oceans where marine snow is a major pathway in
the global carbon cycle and part of global climate forecasting models (Burd and Jackson, 2009;
Jackson and Burd, 2015). First advances have been made studying phytoplankton coagulation
in coastal environments (Chen and Skoog, 2017; Horemans et al., 2021) while most studies
focus on inorganic sediments compared to the organic focus of open ocean models (Weilbeer
et al., 2021; Cox et al., 2019). Aggregates in different environments differ drastically in their
size distribution and composistion which in turns strongly effects their characteristics like
shape, density, stickiness, and settling velocities making it hard to genererallize aggregation
processes (Kriest, 2002; Cael et al., 2021; Laurenceau-Cornec et al., 2020).

The most common modelling approaches are from an Eulerian perspective where aggregates
are modeled as concentration field for a set of aggregate size classes. Changes between these
size classes are estimated using so called coagulation kernels (Stemmann et al., 2004; Burd,
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2013). This in turn allows for the estimation of a particle size distribution and vertical
fluxes. These Eularian aggegation models have the same advantages and disadvantages as
other Eularian models - most notably that trajectories or life histories of individual particles
and individual based processes are not represented.

Recently, several studies have studied aggregation processes from a (semi-)Lagration per-
spective (Jokulsdottir and Archer, 2016). So far, no study has examined the aggregation
processes in coastal or estuarine environments from a Lagrangian perspective. Until the
development of the OceanTracker model (Vennell et al., 2021) this was computationally ex-
pensive and difficult to implement. While there has not been a Lagrangian model examining
aggregation in the Elbe estuary there have been severel Eulerian models.

All current Elbe estuary models represtend phytoplankton mortality as a combination of
a non-linear grazing loss function and a linear “natural mortality” or respiration loss function.
Light limitation mortality is indirectly represtented as a limitation function in the growth rate.
Aggregation processes are note represented in any of the existing models. Furthermore, while
several models include Zooplankton grazing (Pein et al., 2021; Schöl et al., 2014; Holzwarth
et al., 2019) they also use zooplankton grazing a tuning parameter such that the modeled
concentrations fit the observed trends. Hence, a inference on the grazing induced mortality
is not possible by these models, even though it is claimed in several publication (Schöl et al.,
2014; Kopmann and für Wasserbau, 2014; Pein et al., 2019).

We will present a novel model study that attempts to draw attention to this issue. With
this model we will investigate the effect phytoplankton aggregation processes from a La-
grangian perspective to examine the impact of “turbidity induced sinking” and the resulting
light limitation induced mortality on the phytoplankton population. Although we have the
same limitation of validation data as the previous studies, we try to provide first estimates of
the relative importance of these processes that can serve as a basis for future research.

2.2.2 Methods

Model description

We have further developed the individual-based Lagrangian model OceanTracker (Vennell
et al., 2021) and applied it to the Elbe estuary, similar to (Steidle and Vennell, 2024). Particle
tracking on unstructured grids was relatively computationally expensive until recently, when
(Vennell et al., 2021) improved the performance by two orders of magnitude to the current state
of the art. Looking at the problem from a Lagrangian perspective offers several advantages.
First, it allows us to reuse computationally expensive hydrodynamic models to model tracer-
like objects. This is overall much faster by several orders of magnitude than recalculating the
advection-diffusion equation for tracers in an Eulerian model. Second, because we simulate
particles individually, we are able to observe their tracks. This makes the interpretation of
our results not only intuitive, but also allows us to include individual-based properties and
processes that cannot be represented, or only indirectly, in Eulerian models.

We use the hydrodynamic data from the latest SCHISM model of the Elbe (Pein et al.,
2021). This model uses a three-dimensional unstructured grid to represent the entire Elbe
estuary from the weir at Geesthacht to the North Sea, including several side channels and
the port area (see Fig. 2.10). The model provides us with a node-based mesh containing a
range of information such as water velocity, salinity, water level and dispersion. The year
represented in this dataset is 2012 with a temporal resolution of 1 hour and a dynamically
varying spatial resolution with node spacing ranging from 5 to 1400 m with a median spacing
of about 75 m.
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Figure 2.10: Map of the full model domain, with Geesthacht being the upstream boarder on the right and the
North-sea being the downstream border on the left. The black outline marks the edge of the model domain.
Blue and green dots show an example snapshot of a fraction of the phytoplankton in the model. The location
of the initial release is shown in red. Blue represents floating, green particles stranded by the receding tide.
The red area is the initial release location. The background map has been provided by © OpenStreetMap
contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Suspended particulate matter data has been provided by the SediMorph model (Malcherek
et al., 2005) developed by the German Federal Waterways Engineering and Research Institute
(Bundesanstalt für Wasserbau, BAW). SediMorph is coupled to the hydrodynamic model
UnTRIM and provides data on the concentration of suspended particulates for five different
size classes (see table 2.2).

Sediment −log2[mm] d [µm]
Fine sand > 3 128 - 256
Very fine sand > 4 64 - 128
Coarse silt > 5 32 - 64
Medium silt > 6 16 - 16
Fine silt > 7 8 - 16
Very fine silt > 8 4 - 8

Table 2.2: SediMorph size classes and their corresponding size ranges.

The data was provided based on simulations for the year 2016 as a monthly average with
a horizontal resolution ranging from 10 to 1000 m. The data was interpolated to the SCHISM
grid as depth averaged values using a barycentric interpolation for the horizontal layer.

In this study we continuously release phytoplankton aggregates representing a subset of
the incoming upstream phytoplankton population at the weir in Geesthacht. We then examine
how the population distributes throughout the estuary by following their trajectory and, most
importantly, their cause of death. As we are primarily interested in their cause of death and
the mechanism behind hit we will be ignoring many other biological processes like cell growth
and division.

Mortality is induced by one of the following three processes: high salinity, light-limitation
or “dry-out” when phytoplankton aggregates are stranded on the shore for to long.

When particles are exposed to high salinity water above 20PSU, a mortality probability
of 0.5% per minute is imposed. This threshold is chosen based on a range of the salinity
tolerances of estuarine phytoplankton species presented in (von Alvensleben et al., 2016).
This is only an approximation and salinity tolerances many estuarine phytoplankton species
deviate from this. However, the main motivation for this choice is that most of the particles
that die through this process have passed the isohaline for more than 12 hours, one tidal cycle,
and are assumed not to return again through this isohaline. Anything outside the 20 PSU
isohaline is not considered part of the estuary for the purposes of this study. Therefore, we are
not tailoring our salinity tolerance to a specific species, but rather testing whether they can
retain themselves within this isohaline. This salinity induced mortality also allows us to reach
a steady state population size, required to compare upstream and downstream populations
easily.

We consider phytoplankton cells that were stranded out of the water by the receding tide
and have lain dry for more than 7 consecutive days to be dead. Note that these dry cells
are not typically devoid of water, but they are considered “dry” if the majority of their area
has a water level below 0.1 m. Additionally, in nature, these areas typically contain small
sub-resolution structures such as tidal ripples or small puddles and vegetation that allows
these areas to remain wet for periods longer than one tidal cycle.

Light limitation is modelled based on observations presented in (Walter et al., 2017).
They showed that phytoplankton can survive for several days with little or no light before
the population starts to decline. To represent this, we model phytoplankton cells with a
light budget. This light budget is represented as a moving average of their past illumination.
Illumination is calculated once a minute at their current water depth. (Walter et al., 2017)
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showed that cell number growth rates during illumination and cell number death rates during
darkness differ by about an order of magnitude. To compensate for this, we calculate the
light budget using the maximum of two moving averages. The moving average (I) of the local
irradiance Ia at step t+ 1 is calculated by

I(I, T )t+1 = I(T − dt)t +
Ia(t)

T
(2.1)

which allows them to recover from light limitation faster than they are starved of light. T
is the averaging time and dt is the time step between averages. The light budget is then
calculated as

LB = max(I(I, Tg), I(I, Td)) (2.2)

where Td is set to 12 days and Tg is set to 1/10 of Td.
When the light budget falls below a threshold of 30Wm−2, the cells are considered light-

limited and die with a probability of approximately 3.5 × 10−5 min−1 (Walter et al., 2017).
The sensetivity of this threshold is examined in a sensetivity analysis presented in Sec. 4.2.2.

The surface light intensity or irradiance is modelled using the pvlib library (Anderson
et al., 2023). We use pvlib to calculate the irradiance field based on the position of the sun
relative to the location and time of year, assuming a clear sky.

The surface irradiance is then attenuated by the turbidity of the water column using the
Beer-Lambert law.

I(z) = (1− αa)I0e
−ϵcz (2.3)

where I(z) is the irradiance at depth z, I0 is the surface irradiance, αa is the surface albedo, ϵ
is the attenuation coefficient, c is the turbidity based on the SPM concentration and z is the
depth. The surface albedo is set to 0.1 and the chosen attenuation coefficient is 0.15 m−1.

We represent turbidity induced buoyancy by estimating particle collision and coagulation
rates between the phythoplankton cells and the suspended particulate matter.

Typically three processes are considered when representing aggregation processes between
organic and inorganic particles in marine environments: differential sedimentation, turbulent
shear, and Brownian motion. Brownian motion can be neglected in our case because its effect
is several orders of magnitude smaller for the size classes that we are considering. Differential
sedimentation represents the potential for particles to aggregate based on different settling
velocities causing relative motion between the particles, causing them to potantially collide.
Turbulent shear represents the potential of particles to aggregate based on relative motion
due to shear or small scale turbulences. We refer to these coagulation processes as different
coagulation kernels These kernels can be represented in a rectilinear or curviliniear way. The
later accounts for particles avoiding each other due the changes in the local flow field that
the particles themselves cause while the first does not. The curviliniear kernels for turbulent
shear βC

sh and differential sedimentation βC
ds are defined by

βC
sh = (

8πϵ

15ν
)(1− 1 + 5p+ 2.5p2

(1 + p)5
)(ri + rj)

3 (2.4)

βC
ds =

1

2
πr2i |vi − vj | (2.5)

where ϵ is the turbulent kinetic energy dissipation rate, ν is the kinematic viscosity of the
fluid, p is the particle size ratio ri/rj , ri and rj are the radii of the particles, vi and vj are
the sinking velocities of the particles. Turbulent kinetic energy dissipation rate and kinematic
viscosities are calculated and provided by the SCHISM model.
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Estimating particle sinking velocities for aggregated particles is difficult as particle shape,
size, and density can vary significantly between different aggregates. The classical approach
using the Stokes law, which assumes that aggregates are spherical and homogeneously dense
been show to be inadequate for complex marine aggregates as it drastically overestimates
the sinking velocities (Kriest, 2002; Cael et al., 2021; Laurenceau-Cornec et al., 2020). Data
availability for aggregates composition and size distritbution is typcially limititing in coastal
environments that makes it difficult to apply tailord models. For our case we chose to use
an empirical model presented by Kriest (Kriest, 2002). Here sinking velocities are calculated
based on a power law and the fractal radius. Whilst there are many other potential models to
represent the sinking velocities of aggregates, we found this to be the most suitable as it has
been successfully applied in a modeling study already (Kriest, 2002) and because it is tuned
to best represtend dense phytoplankton-based aggregates.

Sinking velocities are calculated using

vi(d) = Bdν (2.6)

d is the diameter of the aggregate, B and ν are fitting constants. Based on the “dense
Phytoplankton aggregation model” (dPAM) presented in Kriest they are set to 942d1.17 md−1.

We assume that aggregates are sticky due to their exudates. This makes their stickiness
proportional to the organic content. We therefore model the stickiness using the ratio of
organic to inorganic content presented in (Jokulsdottir and Archer, 2016). The total particle
coagulation rate is then calculated by

β = αs
Vo
Vi

(βC
sh + βC

ds) (2.7)

where αs is the maximum sticking probability of particles upon collision for a completely or-
ganic aggregate, Vo and Vi are the volumes of organic and inorganic content in each aggregate,
and βC

sh and βC
ds are the curvilinear coagulation kernels for turbulent shear and differential

sedimentation. The amount of individual coagulations for each time step is then calculated
based on the coagulation probabilities using a Poisson distribution.

Aggregate radius after collision is calculated assuming volume conservation

rt+1
a = (r3a + nr3SPM )1/3 (2.8)

where ra is the radius of the aggregate, rSPM is the radius of the SPM particle, and n is the
number of SPM particles that collided with the aggregate.

We include a settling and resuspension model to represent tidal stranding and particles
settling on the bed of the estuary. Particles become stranded when the current grid cell
becomes dry. They are not allowed to move from wet cells to dry cells, by the random walk
dispersion applied to all particles. A grid cell is considered dry based on the flag given in
the SCHISM hydrodynamic model output. Once this cell is rewetted all stranded particles
resuspend and are able to move again. Particles settle on the bed once they attempt to move
below the bottom model boundary and are resuspended based on a critical sheer velocity of
0.009 ms−1 (see appendix for details). The velocity profile in the bottom layer, or log layer,
is calculated by

U(z) =
u∗
κ
ln
z

z0
, (2.9)

where U is the friction velocity representing the drag at height z above the seabed, κ is the van
Karman constant, z0 is a length scale reflecting the bottom roughness, and u∗ is the critical
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friction velocity. If the friction velocity is above the critical friction velocity the particle is
resuspended. Particles that are stranded or settled on the bed are allowed to reproduce.

Particles are not only advected but also dispersed based on eddy diffusivity. This allows
us implement a dynamic dispersion that is crucial to represent tidal-pumping processes. Dis-
persion was modeled using a random walk using a random number generator with a normal
distribution. Horizontally the standard distribution of the random walk was set to 0.1 ms−1.
The displacement by vertical dispersion ∂z of particle i is calculated by

∂zi = K
′

v(zi(n))∂t+N(0, 2Kv(zi)) (2.10)

based on (Yamazaki et al., 2014) where zi is the vertical position of the particle, K
′

v is the
vertical eddy diffusivity gradient, Kv is the vertical eddy diffusivity and N is the normal
distribution. The term based K

′

v is needed to avoid particle accumulation on the top and
bottom of the water column from the hydrodynamic model output.

For each particle we log their distance traveled, age, water depth, and status (whether they
are drifting or settled on the river bank or bottom). These observables are recorded every 12
hours starting at midnight.

Model simulations and visualizations were performed in Python making heavy use of
Numba, a LLVM-based Python JIT compiler (Lam et al., 2015a) to significantly speed up
the simulations (Vennell et al., 2021). Trajectories were calculated using a second order
Runge-Kutta scheme with a fixed time step of 60 seconds. Flow velocities, like any other hy-
drodynamic data, were interpolated linearly in time and space using barycentric coordinates,
with the exception of water velocity in the bottom model cell, where logarithmic vertical
interpolation is used.

Experimental configurations

Conceptually, we run two kind of experimental setups, one with aggregation and one without.
These experiments are accompanied by a series of sensitivity analyses to compensate for the
lack of calibration data.

We model our population for a period of 1 year. The choice of 1 year is considered
reasonable because it covers the full seasonal cycle and is also much longer than the average
exit or flushing time of the estuary (see Fig. 2.19). We release 10 individuals per minute
for one year at the weir in Geesthacht, resulting in approximately 5 million individuals per
case, with approximately 50,000 individuals simultaneously alive. This corresponds to an
approximate 1:1 ratio of simulated phytoplankton cells to mesh nodes in the hydrodynamic
model at each time step. The released individuals are homogeneously distributed in a volume
covering the entire water column at the Geesthacht weir (bottom right in Fig. 2.10).

We also perform a number of sensitivity analyses to account for a lack of validation data.
Most importantly, we test a range of different coagulation rates by tuning the sticking proba-
bility between 0 and 1 in steps of 0.1. We also test a range of light limitation induced mortality
rates by tuning both the required average illumination threshold between 10W and 100W and
a mortality rate between 0.03% and 0.0003% per minute when below this threshold.

We will compare the model using two metrics. As we are using a Lagrangian model, we
can track the fate of each individual particle, in particular its cause of death. To compare
the relative importance of the different mortaility causes, we compare the relative amount of
aggregates dying to each of them for different model configurations, e.g. with and without
aggregation.

The second metric use is the horizontal distribution of locations at which the death or-
ccured. To visualize these we divide the model domain into equally sized hexagons. The
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color of each hexagon indicates the amount of phytoplankton aggregates that have died off in
that particular bin. We use these to compare the along-stream alignment of the location of
death to the observed oxygen minimum zone which is generally considered to be cause by the
degradation and remineralization of the dead upstream phytoplankton.

Computations were performed on the supercomputer Mistral at the German Climate Com-
puting Center (DKRZ) in Hamburg, Germany. The simulations were performed on a compute
node with two Intel Xeon E5-2680 v3 12-core processor (Haswell) and 128 GB of RAM with
a total run time of approximately 4 hours.

2.2.3 Results

Figure 2.11 and 2.12 shows the relative cause of death for a range of sticking probabilities.
A a sticking probability αs of zero represents the case without aggregation. In the following
we will present the results observed throughout the summer months (April-September) while
assuming initial aggregate diameters of 10,50 and 100 µm while focusing on the 50 µm case as
the default. In the appendix Sec. 4.2.1 and 4.2.2 we are examining the sensetivity regarding
the light limitation parameterisation.

Figure 2.11: Relative cause of death for a range of stickiness parameterisations for an initial aggregate size of
50 µm.

For the 50 µm non-aggregation case (see Fig. 2.11), i.e. stickiness of zero, the main cause of
death is salinity with losses due to light limitation around 4% while losses due to stranding are
around 1%. Implying that most particles are advected out of the estuaries 20PSU isohaline.
With an increase in sticking probability, we see a shift in the cause of death towards light
limitation. For a sticking probability of 0.2, light limitation increases to around 53% and finds
it maximum around 60% when the sticking probability is set to 1. With an increase in sticking
probability, we also see an increase in the relative importance of stranding. Starting at around
1% for the non-aggregating case, it increases to around 28% for a sticking probability of 0.2
and remains that that level for a sticking probability of 1.

Comparing the 50 µm case to the 10 µm and 100 µm cases (see Fig. 2.12), we see a large
sensetivity to the initial aggregate size. The importance of light limitation increases quickly
with inital aggregate size. For the 10 µm case, light limitation induced mortality is below 20%
for all sticking probabilities with salinity induced mortality causing 80% of deaths. Also, note
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(a) 10 µm (b) 100 µm

Figure 2.12: Relative cause of death for a range of stickiness parameterisations for an initial aggregate size of
a) 10 µm and b) 100µm.

the slow increase in light-induced mortality with increasing sticking probability, compared to
the 50 µm or 100 µm cases, rising from approximately 4% at a sticking rate of 0 to just over
17% at a sticking rate of 1.

For the 100 µm case, light limitation induced mortality rapidly increases with sticking
probability, reaching over 80% of the total mortality at a sticking probability of 1. For sticking
probabilities over 0.1 we also see a decline in relative mortalities for stranding, something we
do not see in the other cases, reaching its maximum at 0.1 sticking probabiliy with 30% of the
total mortality and declining to 17% at a sticking probability of 1.

We now analyze the horizontal distribution of aggregate deaths with a hexagonal heatmap.
Figure 2.13 shows the location of death for the non-aggregating and aggregating for the som-
mer months (April-September) for non-aggregating case (top) and for the aggregating case
(bottom). Both presented cases assume an initial aggregate size of 50 µm. The brightness of
the collor in each hexagon indicates the relative amount of phytoplankton aggregates dying at
that location. Note, the difference in scale between the two figures with the non-aggregation
case ranging up to 1% and the aggregating case up to 12%. Hexagons where no aggregate
died within the summer months are not colored.

Comparing the two, we see a clear shift in the location of death. For the non-aggregating
case the main area of high mortality are located close to the mouth of the estuary with its peak
close to Brunsbüttel. Note that this area coincides not only with a sharp increase in salinity
but also in turbidity and ist often refered to as the maximum turbidity zone. A second but
significantly less pronounced area of high mortality is located shortly after the bathymetric
jump in both the Norder and Süderelbe.

For the aggregating case we see a shift in the location of death away from the maximum
turbidity zone towards the bathymetric jump where where the majority - approximatelly 25%
- of all aggregates die. A second area of high mortality is located close to the city Stade
where two harbor bays seem to act as a sediment trap in our model. The previously observed
area of high mortality around the turbidity maximum zone is now less pronounced. While it
accounted for over 90% of the mortality in the non-aggregating case, it now accounts for less
than 20% of the mortality in the aggregating case.

Taking a look at the outer end of the estuary, we also see a difference in the locations
where no particles died. Notably, the tidal flats are largely empty of dead aggregates in the
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Figure 2.13: Hex-bin heatmap of the location of death for the summer months (April-September). The
Hamburgs port area is located on the right with the North Sea to the left. Colors indicate the relative amount
of phytoplankton aggregates dying at that location. The top figure represtens the non-aggregating case with
yellowish colors indicating a loss greater than 1% of the community at that location, while the bottom figure
represents the aggregating case with yellowish colors indicating a loss greater than 12% of the community at
that location. Both caseses assume an initial aggregate size of 50µm.

aggregating case, with almost all deaths occurring within the deeper sections of the estuary.

Interpretation and contextualization of the results

In this study, we examined the effect of aggregation processes on phytoplankton mortality in
the Elbe estuary. Primarily, we focused on buoyancy changes due to aggregation with inorganic
suspended particulate matter, which are suspected to increase mortality rates due to light
limitation. We found that aggregation processes can significantly increase light limitation-
induced mortality by over an order of magnitude (as shown in Fig. 2.11). These results
were consistent with observed changes in the location of death. The main location of death
for phytoplankton aggregates, when accounting for buoyancy changes due to aggregation with
suspended inorganic matter, was found to be shortly after the bathymetric jump. This finding
is consistent with other studies examining the phytoplankton community from an Eulerian
point of view (Pein et al., 2021; Schöl et al., 2014; Schroeder, 1997).

These results are also consistent with a recent taxonomic study by Martens et al. (2024).
They showed that the large centric diatoms, which make up the majority of the upstream
phytoplankton biomass, exhibit a negative correlation with the downstream position in the
estuary. After the bathymetric jump, the composition shifts towards flagellates with the po-
tential for mixotrophy and picophytoplankton (phytoplankton <3 µm in size), both of which
have historically been underrepresented in microscopic studies. In the context of our study,
the centric diatoms are typically in a size class represented by Fig. 2.12b, while the small
picophytoplankton are in a size class represented by Fig. 2.12a. Hence, we suggest that the
observed shift in the phytoplankton community composition might partly be explained by the
increased light limitation-induced mortality of larger diatoms, the ability of mixotrophic flag-
ellates to actively migrate within the water column, and their capacity to withstand darkness
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for longer periods due to their mixotrophic potential.
In our study we tested a range of sticking probabilities ranging from zero to one, i.e. from

non-agreggating to always aggregating upon collision. Models representing aggregation that
do not distinquish the content of aggregates typically work with sticking probabilities between
0.1 and 0.5 (Burd, 2013; Karakaş et al., 2009; Kriest, 2002), while the models that distinguishes
between organic and inorganic content use a sticking probability of 1 (Jokulsdottir and Archer,
2016). Hence, we argue that for our case the sticking probability of 1 is the most realistic as
well.

With the increase in depth, the volume for a cross-section segment increases significantly,
which could lead one to conclude that the decrease in concentration is due to dilution. How-
ever, dilution requires mixing. In this case, it would require mixing the upstream high-
chlorophyll freshwater with other low-chlorophyll waters. Because there are no significant
tributaries that could dilute the upstream water with other freshwater, the only water that
could mix with the upstream water is from the North Sea. While the North Sea water shows a
lower chlorophyll concentration than the riverine water, it is also highly saline, with a salinity
of above 30 PSU. Hence, any mixing is expected to be visible in the salinity concentrations.
Because the collapse happens in a freshwater section of the estuary, with salinities of below
0.1 PSU, we do not expect dilution with seawater to account for the observed decrease in
chlorophyll. However, our model design is currently not able to confirm this hypothesis.

Initially, we were surprised to observe how little light limitation contributed to mortality in
the non-aggregating case. By examining the vertical velocities and locations of the aggregates,
we found that they were traveling up and down the water column quickly, regularly reaching
the surface where they could recover from light limitation. This is consistent with the general
understanding of the Elbe estuary as a mostly “well-mixed” system. While the time spent at
the surface is typically short and does not allow for much primary production, it seems to be
sufficient to prevent light limitation-induced mortality in our model.

Model limitations & future perspectives

A major limitation of our study is the lack of grazing representation in our model. We would
have liked to include a grazing model to directly compare the suggested light-limitation losses
to grazing losses. This was not possible due to technical reasons within the time constraints
of this study. Representing grazing losses would require an ecosystem model that tracks the
zooplankton community and accounts for changes in, for example, the nutrient concentration
field. This would necessitate an online particle tracking model that is directly coupled to
the hydrodynamic model, which was too expensive both in terms of development time and
computational resources. We hope that this study can motivate further work that includes
an aggregation model into the existing Eulerian models to directly compare light limitation
losses to grazing losses.

The lack of grazing in our model also limits us to making a weaker statement regarding
the relative importance of light limitation losses compared to grazing losses. We are therefore
not able to discuss the claim of (Schöl et al., 2014; Kopmann and für Wasserbau, 2014; Pein
et al., 2019) that grazing is the main cause of phytoplankton losses in the Elbe estuary. We
can only suggest that light limitation losses due to aggregation-enhanced sinking could be a
significant cause of mortality.

Another limitation of our study is the uncertainty in the sinking velocities of the phy-
toplankton aggregates. As we highlighted in the methods section, the sinking velocities are
based on a model by Kriest (Kriest, 2002). However, there are many other potential models to
represent the sinking velocities of aggregates, as presented in (Cael et al., 2021; Laurenceau-
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Cornec et al., 2020). These different models can vary by an order of magnitude in their sinking
velocities, making this a major source of uncertainty in our model. Additionally, these models
are generally based on marine aggregates formed in significantly different environments than
the Elbe estuary, most notably with much lower concentrations of suspended inorganic matter.
We therefore assume that our sinking model is, in general, underestimating the sinking veloc-
ities of the phytoplankton aggregates, as the aggregates in the Elbe estuary are expected to
be much denser than those in the open ocean. Thus, our estimates of the aggregation-induced
light limitation losses are likely conservative.

The choice of coagulation kernel, whether to use a rectilinear or curvilinear kernel, also
has a large effect on the effective coagulation rates. (Burd, 2013) compared the effects of these
kernels on coagulation rates and showed that they can differ by several orders of magnitude,
with the difference becoming more pronounced for larger aggregate size differences. See Sec.
4.2.3 for a comparison of coagulation rates between these two kernels. Both kernels are analyt-
ically derived; however, a systematic comparison of these kernels in a real-world environment
is missing. We chose to use the curvilinear kernels as they are generally assumed to be more
accurate and also represent a more conservative estimate of the coagulation rates. Hence, our
results of aggregation-induced light limitation losses are also a conservative estimate in that
regard as well.

Another process that we neglect is the deaggregation of the phytoplankton aggregates.
Shear and turbulence can cause the breakup of aggregates into smaller particles, which limits
their size since they are more likely to deaggregate the larger they become. This would be an
interesting process to examine in our model, especially because we represent sinking speeds
based on aggregate size. However, deaggregation is even less understood than aggregation,
with next to no applicable data available. While some marine snow aggregation models include
deaggregation processes, they represent them as fixed deaggregation rates or fixed upper size
limits in a zeroth-order approximation (Burd, 2013; Karakaş et al., 2009; Jokulsdottir and
Archer, 2016). Without data available to tune these rates, we decided to ignore this process
in our model. We believe this to be reasonable as our aggregates are quickly growth-limited
by Equation 2.7 and rarely exceed 1 mm in size.

We limit our aggregation model to inorganic particles exclusively. Hence, organic phyto-
plankton aggregates only aggregate with inorganic suspended matter. While this is a sim-
plification, we believe it is justified by the difference in concentration between organic and
inorganic particles. Particle concentration differences between organic and inorganic particles
in the starting harbor, where most of the coagulation occurs, are around 1:1000. Assuming
that they are of similar size, this also corresponds to a ratio in expected collisions of 1:1000,
allowing us to ignore this process. Organic matter concentrations in the sediments of the
channel are similarly low, with concentrations of less than 5% (Spieckermann et al., 2022).
Aggregation processes can become strongly limited by the ratio of organic content in the larger
aggregates, drastically reducing the sticking probability of aggregates with inorganic partic-
ulates, which could compensate for the difference in particle concentrations. Representing
organic-to-organic aggregation would either require an online particle tracker that keeps track
of the organic particle concentration or drastically increase the number of particles represented
in the model (typical phytoplankton aggregate concentrations in nature can exceed million
aggregates per cubic meter). Both options were infeasible, so we decided to ignore this process
in our model.

We use hydrodynamic and SPM data representing the year 2012 and 2016 respectively. It
would have been ideal to use data from the same year, but the two distingued models did not
offer any overlapping years. While this represents an obvious inaccuracy we assume that this
is justifiable as the bathymetriy did not change significantly between these years. To mask
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the natural variability between these datasets we used the SPM concentraions as monthly
averages.

Outlook

We would like this study to be read as a proof of principle. We showed that aggregation
processes can significantly increase light limitation-induced mortality in the Elbe estuary.
Yet, we were not able to include grazing processes, which are currently assumed to be the
major driver for phytoplankton community collapse. To achieve a better understanding of
the relative importance of these processes, they would need to be integrated into a single
model. This could be accomplished by either developing an interface between OceanTracker
and SCHISM to enable online particle tracking or by implementing aggregation processes and
size- and density-dependent buoyancy into existing Eulerian models. While the first approach
would enable many interesting studies, it would also be more difficult to implement. The
latter approach seems to be the simpler and more feasible way forward.

Another completely different approach to tackling this problem would be to gather zoo-
plankton data. This would enable us to directly estimate filtration volumes and therefore
grazing losses in the estuary, allowing us to evaluate the validity of the grazing hypothesis
without a complex modeling study.
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2.3 Study III:

Phytoplankton retention mechanisms in estuaries: a
case study of the Elbe estuary

2.3.1 Abstract
Due to their role as primary producers, phytoplankton are essential to the productivity of
estuarine ecosystems. However, it is important to understand how these nearly passive or-
ganisms are able to persist within estuaries when river inflow results in a net outflow to the
ocean. Estuaries also represent challenging habitats due to a strong salinity gradient. Little
is known about how phytoplankton are able to be retained within estuaries. We present a
new individual-based Lagrangian model of the Elbe estuary which examines possible retention
mechanisms for phytoplankton. Specifically, we investigated how reproduction, sinking and
rising, and diel vertical migration may allow populations to persist within the estuary. We
find that vertical migration, especially rising, favors retention, while fast sinking does not.
We further provide first estimates of outwashing losses. Our simulations illustrate that river-
banks and tidal flats are essential for the long-term survival of phytoplankton populations,
as they provide refuges from strong downstream currents. These results contribute to the
understanding needed to advance the ecosystem-based management of estuaries.
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2.3.2 Introduction

Estuaries are highly productive ecosystems. Their relatively small area disproportionally
contributes to the global carbon cycle, along with their roles as a source of nutrients and
hatching grounds for marine ecosystems (Cloern et al., 2014; Arevalo et al., 2023). Estuaries
are of great importance for anthropogenic use, which also exposes them to many stressors such
as diking, dredging and fishing (Jennerjahn and Mitchell, 2013; Brown et al., 2022; Wilson,
2002). Estuaries present challenging dynamics to their smallest residents due to their strong
salinity gradient and net transport to the ocean. Here, we explore how phytoplankton, drifting
small primary producers that form the basis of estuarine food webs, can persist within such
dynamic environments.

Like most ecosystems, estuarine ecosystem dynamics are strongly controlled by primary
producers, in particular phytoplankton (Chen et al., 2023). Apart from biofilm-forming phy-
toplankton, which are attached to their substrate (Cheah and Chan, 2022), the vast majority
of phytoplankton organisms drift passively in currents, though they may be able to influence
their vertical movement. With the estuary having a net outwards flow, we would expect
phytoplankton to move downstream over time and to be washed out from limnic waters into
marine waters via brackish waters. Hence, the question of how phytoplankton, the drifting
base of estuarine food webs, are able to maintain their population size without declining due
to the net transport into the open ocean arises. If we assume that the population is not exclu-
sively maintained by a self-maintaining source population upstream that is washed into the
estuary, then there must be some sort of retention mechanism that enables the phytoplankton
population to persist within the estuary.

There are different theories about how estuarine phytoplankton populations are able to
maintain their position. Previous observational studies suggested several possible mechanisms
that could enable the retention of phytoplankton populations within estuarine systems: ver-
tical migration – in the form of sinking, rising, or diel migration – and stickiness.

Diel vertical migration is a process where organisms move up and down in the water column
in response to the sun. This movement may favor retention by allowing plankton to reduce the
time they spend in the faster downstream currents at the water surface. A study by (Ander-
son and Stolzenbach, 1985) showed that diel-migrating dinoflagellates were able to outcompete
other non-motile phytoplankton in an embayment environment and even compensate for out-
washing losses through reproduction, increasing their abundance. However, this also implies
that the growing part of the population is somehow retaining their position. If the regrowing
population is also continuously drifting downstream it will not be able to sustain itself in that
area and will ultimately die out due to unfavorable salinity conditions in marine waters (Ad-
miraal, 1976; von Alvensleben et al., 2016; Jiang et al., 2020). The presence of diel migration
has mostly been demonstrated for motile phytoplankton such as dinoflagellates (Hall et al.,
2015; Crawford and Purdie, 1991; Hall and Paerl, 2011) and zooplankton species (Kimmerer
et al., 2002). While the motivation for diel migration differs for autotrophs, mixotrophs, and
heterotrophs, the consequence remains the same: an upward movement during the day and a
downward movement during the night.

Estuaries are complex and strongly dynamic systems, such that it is still difficult to pre-
dict their ecosystem dynamics or the effects of anthropogenic impacts due to their complex
bathymetry (MacWilliams et al., 2016; Fringer et al., 2019). Nevertheless, there are sophisti-
cated estuarine models that are able to reproduce the complex dynamics of estuaries reason-
ably well. This includes currents and water levels on the physical side but also chlorophyll
concentrations and other biologically driven properties (Pein et al., 2021; Schöl et al., 2014).
However, these are Eulerian models. This means that they are based on a fixed grid and
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calculate the concentration of a tracer, such as phytoplankton, at each grid cell. This makes
it difficult to study concepts such as retention times, as they lack temporal consistency, mean-
ing that the life history and trajectory of a phytoplankton cell cannot be tracked. Previous
modeling studies have attempted to overcome this problem using a Lagrangian approach. A
Lagrangian model does not try to track, e.g., concentrations at fixed positions but rather
follows the motion of individual particles that can be used to represent, e.g., water parcels or
organisms. Their ability to resolve the interactions of individual phytoplankton cells or aggre-
gates with the bathymetry (e.g., through settling or stranding) while maintaining temporal
consistency is essential for investigating retention mechanisms.

(Simons et al., 2006) and (Kimmerer et al., 2014) used a Lagrangian model to study zoo-
plankton retention. (Simons et al., 2006) examined the dispersal and flushing times of mussel
larvae in the St. Lawrence estuary, while (Kimmerer et al., 2014) examined zooplankton
movement in the San Francisco estuary. They were able to show that sinking and diel vertical
migration slow the outwashing process and might be a beneficial retention strategy. However,
they did so by ignoring key processes like reproduction, mortality, stranding, and sedimenta-
tion processes. Moreover, both studies were based on low-resolution structured grid models,
which, we suspect, under-represent the complex bathymetry of estuarine systems (Ye et al.,
2018).

Diatoms or benthic microalgae in particular have been observed to be strongly negatively
buoyant and hence sink to the riverbed, remaining there for a long time (Passow, 1991; Thomas
Anderson, 1998). Studies also found that phytoplankton aggregates have sticky compounds
that are suspected to allow them stick to suspended particles, enabling them to sink to the
riverbed or stick to their surroundings, aiding retention (Kiørboe and Hansen, 1993; van der
Lee, 2000).

In summary, different retention mechanisms have been observed or examined in modeling
studies. However, the observational studies were performed in isolation and major simplifica-
tions were used in the modeling studies. There is currently a lack of theoretical studies that
allow for a more comprehensive overview of the interplay of vertical migration and reproduc-
tion in combination with settling and stranding as retention mechanisms.

Here, we explore possible retention mechanisms of phytoplankton, using the Elbe estuary
as a case study. This is located in the north of Germany and flows into the North Sea.
Like most alluvial estuaries, it is relatively shallow, with most of it averaging only a few
meters in average depth. Similar to other European estuaries, it has experienced strong
anthropogenic pressure over the last few centuries, most notably diking (to restrain it to a
narrow channel) and dredging (to improve access to Hamburg harbor). Unlike other major
European ports, the port of Hamburg is located far (roughly 100 km) from the coast. To
create port access, the main channel is dredged and presents a sudden jump in bathymetry
from approximately 5 m at the border of the city to up to 20 m in the port and downstream
(see Fig. 2.14). This bathymetric jump is suspected to be the cause of a collapse in the
phytoplankton population in the area, as the jump results in an increase in oxygen depletion
and high ammonium remineralization downstream of the bathymetric jump (Schroeder, 1997;
Holzwarth and Wirtz, 2018; Sanders et al., 2018). Ongoing dredging is carried out to maintain
the depth of the navigational channel, causing high turbidity (Kappenberg and Grabemann,
2001). While important aspects of the along-channel biochemical dynamics have been studied,
little is known about the shore-to-shore dynamics (Goosen et al., 1999; Dähnke et al., 2008;
Sanders et al., 2018).

For this purpose, we further developed the individual-based Lagrangian model Ocean-
Tracker (Vennell et al., 2021) and applied it to the Elbe estuary using the hydrodynamics
calculated by a recent model, SCHISM (Pein et al., 2021). While the Lagrangian model sim-
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Figure 2.14: Bathymetry used in the Elbe model around Hamburg. Note the bathymetric jumps from 5m
upstream (the right-hand side) to 10m for a short step in the upper port area to 20 m in the lower port area all
the way to the North Sea. Also note that there is only one channel to enter the harbor section of the estuary,
which is 20m deep from shore to shore. So anything that passes through has to travel through deep water.

ulated the movement of the inanimate organisms, we included key phytoplankton features
such as reproduction and mortality, sinking and rising, and diel vertical migration. Using this
model, we investigate the conditions under which phytoplankton retention can be reproduced.

2.3.3 Methods
Model description

In our study we use a Lagrangian approach with the particle tracking model OceanTracker
(Vennell et al., 2021). While off-line particle tracking on unstructured grids has been relatively
computationally expensive until recently (Vennell et al., 2021), it offers several advantages.
Firstly, it allows us to reuse computationally expensive hydrodynamic models to model tracer-
like objects. This is much faster overall than recalculating the advection–diffusion equation
in an Eularian model. Secondly, because we are simulating individually particles, we are able
to observe their tracks. In our model, we use these particles to represent phytoplankton cells.
Alternatively, these particles could also be interpreted as aggregates colonized by phytoplank-
ton. The temporal consistency of a Lagrangian model – the fact that we know the history of
each particle – makes the interpretation of our results more intuitive and allows us to include
individual-based properties and processes that cannot be represented in Eulerian models, e.g.,
retention times.

We use the hydrodynamic data generated by the latest SCHISM model of the Elbe estuary
(Pein et al., 2021) from the weir at Geesthacht to the North Sea, including several side chan-
nels and the port area (see Fig. 2.10). SCHISM solves the Reynolds-averaged Navier–Stokes
equations on unstructured meshes, assuming hydrostatic conditions and using a time step
of 60 seconds. The unstructured mesh is three-dimensional and consists of 32 000 horizontal
nodes that use terrain-following coordinates based on the LSC2 technique (Zhang et al., 2016)
for the vertical grid, allowing a maximum of 20 levels. Regions with depths of less than 2m
are resolved using only one vertical level. Bathymetric data were provided by the German
Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie,
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Figure 2.15: Map of the full model domain, with Geesthacht representing the upstream border on the right
and the North Sea representing the downstream border on the left. The black outline marks the edge of the
model domain. Blue and green dots indicate snapshots of the status of a fraction of the phytoplankton in
the model. The location of the initial release is shown in red. Blue represents floating phytoplankton; green
represents phytoplankton stranded by the receding tide. The background map was provided © OpenStreetMap
contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

BSH) and the German Waterways Agency (Wasserstraßen- und Schifffahrtsamt, WSA) and
have a horizontal resolution of 50m in the German Bight, 10 m in the Elbe estuary, and 5 m
in Hamburg port (Stanev et al., 2019). The boundary conditions on the seaward side include
the sea surface elevation, horizontal currents, salinity, and temperature (Stanev et al., 2019),
and those on the landward side include the discharge and temperature of the Elbe River. At-
mospheric forcing includes wind, air temperature, precipitation, and shortwave and longwave
radiation (Stanev et al., 2019). Model validation is based on tide gauge stations and long-term
stationary measurements of salinity, water temperature, and horizontal currents. Biochemical
variables, including chlorophyll, are based on long-term measurements at the Seemannshöft
and Grauerort stations (Pein et al., 2021). The model provides us with a node-based mesh
containing a range of information such as water velocity, salinity, water level, and disper-
sion. The year represented by that dataset is 2012. The temporal resolution of the dataset
is 1 hours, and it has dynamically varying spatial resolution, with the distance between nodes
ranging from 5 to 1400m (the median distance is approximately 75m).

We give a set of biological features to the otherwise inanimate organisms. These features
include reproduction and mortality, vertical movement in the form of sinking, rising, or diel
vertical migration, stranding, and settling on the riverbed.

Reproduction is represented as a fission process where each phytoplankton cell has a proba-
bility of splitting, effectively producing a copy. This is a novel feature applied in OceanTracker
that has not been included in any previous Lagrangian model of this type. OceanTracker’s
recent advances in computational efficiency (Vennell et al., 2021) and buffer handling make
it possible to simulate a large number of particles over a long period of time on unstructured
grids for the first time. We perform multiple simulations for a range of reproduction rates,
implemented as fission probabilities evaluated every minute, that are constant over the life-
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time of the cell. While a fixed reproduction rate is a simplification that does not allow for
more realistic simulation of the population dynamics of a particular species, it does allow us
to investigate the general mechanisms that enable plankton retention.

Mortality is induced by one of three processes: high salinity, drying out while stranded,
or long-term light limitation. When particle cells are exposed to high-salinity water (above
20PSU), a mortality probability of 0.5% min−1 is applied, with dead phytoplankton cells
removed from the simulation (see the salinity map in Fig. 4.8). This threshold was chosen
based on the range of salinity tolerances of the estuarine phytoplankton species presented in
(von Alvensleben et al., 2016). This is only an approximation, and the salinity tolerances of
many estuarine phytoplankton species deviate from this. However, the main motivation for
this choice is that most of the phytoplankton cells that die through this process have been
beyond the isohaline for more than 12 hours (one tidal cycle), after which it is assumed that
they will not return through this isohaline. Anything outside the 20PSU isohaline is not
considered part of the estuary for the purposes of this study. Therefore, we are not tailoring
our salinity tolerance to a specific species but rather testing whether they can persist within
this isohaline. We consider phytoplankton cells that were stranded out of the water by the
receding tide and have lain dry for more than 7 consecutive days to be dead and remove
them. Note that these dry cells are not typically devoid of water, but they are considered
“dry” if the majority of their area has a water level below 0.1m. Additionally, in nature,
these areas typically contain small sub-resolution structures such as tidal ripples or small
puddles and vegetation that allows these areas to remain wet for periods longer than one
tidal cycle. There are currently no studies investigating the time range for the survival of
phytoplankton stranded on tidal flats or marshes in estuaries. Therefore, we performed a
sensitivity analysis to determine the effect of this parameter on the retention success of the
phytoplankton population (see Appendix 4.3.1). Phytoplankton cells will also die if they are
light limited for 14 days. This value is based on measurements presented in (Walter et al.,
2017) which imply that the majority of the phytoplankton are dead after 14 days of light
limitation. A sensitivity analysis for this parameter is presented in Appendix 4.3.2. They are
considered light limited below a depth of 1 m, as estimated with the Beer–Lambert law using
SPM data presented in (Stanev et al., 2019). The initial batch of phytoplankton cells start
their life with a full light budget of 14 days, and each minute below 1m reduces this budget
by 1 min, while the opposite applies if the cells are above 1 m. When a cell splits, both inherit
the same remaining light budget.

We investigate the effects of different patterns of vertical motion. The first is monodi-
rectional upward or downward vertical motion, representing either positively or negatively
buoyant phytoplankton. This buoyancy can be interpreted as either being due to the active
choice of buoyancy by the organism through adaptation or being governed by the suspended
matter aggregate on which it lives. For monodirectional vertical motion, we assign each phy-
toplankton cell a vertical velocity which remains constant throughout its lifetime. The second
mode of vertical motion is diel vertical migration. Here, phytoplankton cells change their
direction of motion based on the current phase of the sun, creating a motion pattern where
they rise during the day and sink during the night. This behavior is often assumed to be
performed to maximize light capture while avoiding predation – or, as we suspect, to increase
retention.

We include a settling and resuspension model to represent tidal stranding and phytoplank-
ton cells settling on the bed of the estuary. Stranded phytoplankton and microphytobenthos
have been shown on several occasions to be a major driver of estuarine primary production
(Carlson et al., 1984; De Jonge and Van Beuselom, 1992; Kromkamp et al., 1995; Savelli et al.,
2019). Phytoplankton cells become stranded when the current grid cell becomes dry, and they
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stay in place until they are resuspended or dry out. They are not allowed to move from wet
cells to dry cells by the random walk diffusion applied to all phytoplankton cells. A grid cell
is considered “dry” based on the flag it is given in the SCHISM hydrodynamic model output.
Once this grid cell is flooded again, all the stranded phytoplankton cells are resuspended and
able to move again. Phytoplankton cells settle on the bed once they attempt to move below
the model’s bottom boundary, and they are resuspended based on a critical sheer velocity of
0.009ms−1. The velocity profile in the bottom layer, or log layer, is calculated by

U(z) =
u∗
κ

ln
z

z0
, (2.11)

where U is the friction velocity (representing the drag at height z above the seabed), κ is
the von Kármán constant, z0 is a length scale reflecting the bottom roughness, and u∗ is
the critical friction velocity. If the friction velocity is above the critical friction velocity, the
phytoplankton cell is resuspended. Phytoplankton cells that are stranded or have settled on
the bed are allowed to reproduce. Phytoplankton cells are not only advected but also diffused
based on eddy diffusivity, which is crucial to represent tidal-pumping processes. Diffusion
is modeled using a random walk obtained using a random number generator with a normal
distribution. Horizontally, the standard distribution of the random walk is set to 0.1ms−1.
The vertical displacement of a phytoplankton cell ∂zi is calculated by

∂zi = K ′
v(zi(n))∂t+N(0, 2Kv(zi)), (2.12)

based on (Yamazaki et al., 2014), where zi is the vertical position of the phytoplankton cell,
K ′

v is the vertical eddy diffusivity gradient, Kv is the vertical eddy diffusivity, and N is the
normal distribution. The term K ′

v is needed to avoid phytoplankton accumulation at the top
and bottom of the water column in the hydrodynamic model output.

For each phytoplankton cell, we log their distance traveled, age, water depth, and status
(whether they are drifting or have settled on the river bank or bottom). This allows us to, for
example, compare a successfully retained phytoplankton cell (older than 3 months) with an
unsuccessfully retained phytoplankton cell (dead after less than 3 months). These observables
are recorded every 12 hours starting at midnight.

Model simulations and visualizations are performed in Python, making heavy use of
Numba, a LLVM-based Python JIT compiler (Lam et al., 2015a), to significantly speed up the
simulations (Vennell et al., 2021). Trajectories are calculated using a second-order Runge–
Kutta scheme with a fixed time step of 60 seconds. Flow velocities, like all other hydrodynamic
data, are interpolated linearly in time and linearly in space on the vertical axis and on the hor-
izontal axis using barycentric coordinates, with the exception of water velocity in the bottom
cell, where logarithmic vertical interpolation is used to represent drag forces more accurately.

Experimental configurations

We perform two sets of experiments to test the influences of different vertical movements on
the retention success of phytoplankton in the Elbe estuary.

In the first experiment, we examine a range of different monodirectional upward or down-
ward particle velocities from −10 to +10mms−1 in 2mms−1 steps, which represent sinking or
rising phytoplankton organisms (Fennessy and Dyer, 1996). Each vertical velocity is examined
for a range of different reproduction rates expressed as population doubling times ranging from
40 to 404 days with logarithmic scaling. In the following, we use “reproduction rate” to refer to
the prescribed population growth rate under idealized conditions and “growth rate” whenever
we describe the population growth in nature. The prescribed population growth rate can be
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interpreted as the potential average net doubling time in the presence of predation, mortality,
and nutrient availability when testing the effect of outwashing. In the second set of model
experiments, we study the influences of possible diel vertical migration patterns for the same
vertical velocities and reproduction rates. Hence, a total of 187 different scenarios are tested.

In both sets of experiments, we release 10 000 individuals representing a subset of the the
studied phytoplankton population at the beginning of the year. This results in over 1 billion
individual particles being simulated for each case, with approximately 1 million simultaneously
active particles counted over all cases for a total of 500 000 time steps. This corresponds to an
approximately 1:1 ratio of simulated phytoplankton cells to mesh nodes in the hydrodynamic
model at each time step. The initial population is homogeneously distributed in a volume
covering the full water column at the weir in Geesthacht (see Fig. 2.15), and we examine
how the population distributes itself over the estuary and whether it is able to maintain its
population size over time. Conceptually, we consider a population to be successfully retained
if it is able to sustain itself over the long term or even shows growth. Practically, this is
evaluated by comparing the population size at the end of the year to the size after release.
The choice of 1 year is considered reasonable because it covers the full seasonal cycle and is
also much longer than the average exit or flushing time of the estuary (see Fig. 2.19). The
first 3 months of the simulations are considered an initial model spin-up time during which the
initial population is dispersed downstream throughout the estuary. Population size changes
are measured at the end of the year relative to the population size after this initial spin-up
time.

Computations were performed on the supercomputer Mistral at the German Climate Com-
puting Center (DKRZ) in Hamburg, Germany. The simulations were performed on a compute
node with two Intel Xeon E5-2680 v3 12-core processors (Haswell) and 128 GB of RAM for a
total run time of approximately 4.5 hours.

2.3.4 Results
Retention success in different scenarios

The results of the retention experiments are visualized as heatmaps in Fig. 2.16. Figure 2.16a
shows the results for the monodirectional vertical migration scenarios, i.e., constant sinking
or rising. Figure 2.16b shows the results for the diel vertical migration scenarios. Each pixel
in the heatmap represents a simulation with a specific combination of vertical velocity and
reproduction rate expressed as a population doubling time. The color indicates the relative
population change after 1 year. White pixels and the boundary between green and brown
pixels represent net-zero growth rate simulations. In this case, the losses are equal to the
growth. Therefore, we can use the reproduction rate as an estimate for the total relative
losses due to downstream transport, drying out while being stranded, and light starvation.

Our simulations show that the population is able to successfully persist under certain
conditions. Passively drifting phytoplankton are able to sustain themselves in the estuary
if they have a reproduction rate that doubles their population size within approximately
3 months (see Fig. 2.16). Note that the growth rates realized in nature may vary from this
value due to, e.g., nutrient or temperature limitations. The reproduction thresholds should
be interpreted as an upper bound rather than an accurate estimate of the growth rate.

For the case of monodirectional movement, we see that a higher positive velocity (rep-
resenting buoyancy) and higher reproduction rates are more beneficial for retention success
than a downward-oriented velocity (sinking) and lower reproduction rates. As expected, sim-
ulations in which the reproduction is set to zero do not show any retention success. While
it is easy to understand that high reproduction rates aid retention, we were surprised that
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Figure 2.16: Relative population changes for the monodirectional movement (a) and diel migration (b) sce-
narios. Positive vertical velocities indicate an upwards drift. Positive population changes represent a retention
success (green), while negative population changes represent an eventual total loss of the population (brown).
The vertical black lines indicate the boundary between the successfully and unsuccessfully retained scenarios.

buoyant phytoplankton cells are more successful at maintaining their growth in an estuary
than sinking ones.

For the case of diel vertical migration in the velocity range of 4 to 10mms−1, we see equal
or higher retention success compared to the case with no vertical migration. A diel velocity
of 2mms−1 is less successful than no migration. Most importantly, none of the diel migration
scenarios improve the retention success when compared to passively drifting organisms.

Spatial factors

We now take a closer look at spatial factors that allow phytoplankton cells to maintain net
growth in the estuary. For this analysis, we used data from both sets of experiments, i.e., from
all cases. Figure 2.17 compares two box plots of the average water depth at the location of
each phytoplankton cell: the first box plot is for those cells that remained alive for less than
3 months (short living) and the second is for those cells that remained alive for more than
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3 months (long living). Depth is measured relative to the current water surface. Therefore, a
value greater than zero indicates that the phytoplankton cell is stranded on the shore during
an ebb tide. For reference, the water level varies on average by about 5 m due to the tides
(Stanev et al., 2019; Schöl et al., 2014). These analyses show that long-living phytoplankton
predominantly live close to the river banks in shallower waters or on tidal flats.

Figure 2.17: Box and violin plots showing vertical distributions of phytoplankton that are passively drifting.
The plot labeled “short living” is for the phytoplankton younger than 3 months, and the plot labeled “long
living” is for all those older than that. Depth is measured relative to the current water surface, with positive
numbers indicating phytoplankton above the water surface, i.e., stranded on the shore.

Moreover, we analyze the horizontal spatial distribution of long- and short-living phyto-
plankton in Fig. 2.18. To do this, we divide the model domain into equally sized hexagons.
The color of each hexagon indicates the average age of the phytoplankton cells within it, cal-
culated across all cases. Note that the spatial age structure is similar for all cases. Hexagons
with a yellow color indicate an average age of over 3 months. These yellow areas are mainly
found along the river banks in shallow waters or tidal flats.

For comparison, the average exit time for water parcels to reach the 20PSU isohaline
per hexagon is shown in Fig. 2.19. This calculation is based on a separate simulation where
we released approximately 1.8 million particles that were homogeneously distributed over

Figure 2.18: Hex-bin heatmap of the average age of phytoplankton cells in the Elbe estuary across all cases.
Hamburg’s port area is located on the right, with the North Sea to the left. Colors indicate the age of the
phytoplankton, with yellowish colors indicating an average age of over 3 months. Yellow areas are mainly
found along the river banks in shallow waters or tidal flats. The important areas are Mühlenberger Loch (a),
Wedeler Marsch (b), Haseldorfer Binnenelbe (c), Asseler- and Schwarztonnensand (d), at the mouths of the
Stör (e) and Wischhafener Süderelbe (f), and at Nordkedding (g) and Neufelder Marsch (h).
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Figure 2.19: Hex-bin heatmap showing the average exit times from the Elbe estuary (Hamburg’s port area,
as shown in Fig. 2.14, is on the right) without any reproduction, light limitation, stranding, or settling on the
riverbed. The color indicates the time taken for a water parcel to reach the 20PSU isohaline from the hexagon
in which it originated.

the estuary. We released one batch in winter during high-discharge conditions on 1 January
and another batch in summer during low-discharge conditions on 1 July. Note that for this
simulation, reproduction, light limitation, stranding, and settling on the riverbed were disabled
to isolate the effect of advection and dispersion.

To further investigate the reasons for the positive effect of buoyancy and the importance
of shallow waters and tidal flats, we repeated the first set of simulations and disabled the
reproduction of settled and stranded phytoplankton. Under these conditions, populations
were unable to persist within the estuary, regardless of their vertical velocity and reproduction
rate, indicating that tidal flats are essential for the survival of the population.

Interpretation and contextualization of the results

In this study, we investigated different strategies to explain how phytoplankton populations
are able to maintain their population sizes in estuaries while constantly being at risk of being
transported into the open ocean.

The limit on the population doubling time that we found necessary for the survival of
passively drifting plankton is about 4 months (see Fig. 2.16). Doubling times typically realized
in nature are of the order of a few days, which is 2 orders of magnitude smaller than those that
we found necessary in our model (Koch et al., 2004; Wirtz, 2011). The low reproduction rates
required for successful retention demonstrate that our model is also meaningful under more
realistic environmental conditions, for example, if maximum growth rates cannot be reached
due to nutrient or temperature limitations.

Our results suggest that shallow areas are very important for maintaining the estuary
phytoplankton population. Plankton that consistently find themselves in areas that fall dry
due to the tides will regularly become stranded and therefore do not move for much of the
tidal cycle. We further see that positively buoyant plankton are more successful at maintaining
themselves. This is probably because they are more likely to be transported high up on the
river bank, where the water is less likely to reach them. This effect is emphasized in flatter
regions, as the distance between the wash margin and constantly flooded areas is larger,
increasing the chance of settlement or of them becoming stranded again.

Initially, we expected sinking phytoplankton to have a higher retention success than buoy-
ant ones. However, we found that faster sinking phytoplankton are less successful at persisting.
Sinking velocities of less than 2mms−1 are common for diatoms (Passow, 1991), while larger
velocities have been observed for aggregates in the Elbe estuary (Fennessy and Dyer, 1996).
Sinking phytoplankton have a reduced downstream velocity because they either settle on the
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riverbed, where they do not move at all, or they become close to the bed, where the average
downstream velocity is lower. In addition, due to temperature-induced density stratification,
the deeper water layers of the Elbe either have, on average, a lower downstream velocity than
the upper water column or they move upstream (Pein et al., 2021). Nevertheless, buoyant
phytoplankton showed more successful retention in our simulations. The low chance of sur-
vival in the estuary for sinking phytoplankton might be explained by light limitation in deeper
waters. We expected phytoplankton to die if they are exposed to dark conditions for more
than 2 weeks. Thus, sinking phytoplankton have a disadvantage compared to buoyant phyto-
plankton, since they are more likely to become light limited and eventually die. This suggests
that dredging has a negative impact on sinking plankton because it increases both depth and
turbidity (de Jonge et al., 2014), which increases the aphotic depth and therefore the volume
of dark water relative to the volume of illuminated water.

We suspect that the reason for the increased retention success of diel-migrating organisms
is similar to the monodirectional case. When the upwards diel migration coincides with a
high tide, phytoplankton are more likely to be stranded far out on the shore, reducing their
risk of being washed out quickly. The higher the upward velocities, the greater the chance of
being at the waterline during high tide. However, because they are sinking for half of the day,
they also tend to be light limited more frequently than positively buoyant phytoplankton. It
appears that these favorable and unfavorable processes balance each other out, resulting in a
similar retention success to that in the monodirectional case.

Model limitations and future perspectives

In this study, we aimed to thoroughly investigate different possible retention mechanisms in a
complex Lagrangian model system with a highly resolved bathymetry. Due to this computa-
tional and spatial complexity, the biological particle properties needed to remain simple to keep
computational costs manageable and interpretability high and due to a lack of high-resolution
validation data.

Our model design does not resolve more complex ecosystem dynamics such as nutrient
limitation and grazing by higher trophic levels. The Lagrangian model is performed offline,
meaning it is not coupled to the Eulerian model that calculates the hydrodynamics and is
performed after the fact. Therefore, modeling the advection and dispersal of changes in
concentration fields, e.g., those of nutrients (due to growth or remineralization), was not
easily possible. Future modeling efforts could couple the Lagrangian model to an Eulerian
model that disperses changes in concentration fields caused by biotic activity throughout
the model domain. However, this would have drastically increased both the development
and computational times to a point where the study would have become infeasible in our time
frame and also would have required validation data that do not exist. The key drawback of this
is that growth rates could only be modeled as being constant in the current model description,
similar to ad libitum experiments. This can lead to systematic errors in estimating population
growth. In nature, phytoplankton growth is often limited by nutrient availability, so nutrient
limitation, which slows down the growth of the population, can occur, especially in the most
light-saturated areas near the shore. For this reason, we may overestimate the role of shallow
areas in our model.

To be consistent with the complexity of the representation of biotic mechanisms, we use
a simplistic light limitation. Phytoplankton are expected to be light limited below a water
depth of 1m and not to be light limited above this threshold. We have not included a more
complex light-limitation model that takes into account current light availability and attenua-
tion. A more realistic formulation of light limitation could particularly favor phytoplankton
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that exhibit diel vertical migration.
A process we mostly ignore in our study is dormancy. Our organisms can survive for

14 days in light-limited waters. However, phytoplankton species have life stages in which
they can remain dormant for a long period of time and germinate again when they find
themselves in more favorable waters (Thomas Anderson, 1998). In the process of choosing the
light-limitation threshold, we conducted sensitivity studies testing the effect of higher light
budgets. We found that light budgets of over 3 months begin to significantly increase the
survivability of sinking organisms when we crudely assume that they could still reproduce
under these conditions. Whether dormancy plays a significant role in an environment where
the river bed is continuously dredged is unknown.

Another limitation in our modeling efforts is the lack of sub-grid-resolution structure on
the shores. In our representation, we assume perfectly flat surfaces with a median distance
between nodes of approximately 60 m. This “polished” model representation can lead to an
underestimation of the retention success, since the surface area on which phytoplankton organ-
isms can settle is underestimated. In nature, vegetation, rocks, or other surface irregularities
provide a larger surface area on which the phytoplankton organisms can settle in moist con-
ditions.

Our hydrodynamic dataset was limited to the year 2012. Therefore, we were not able
to study different release times with the same methodology. While we do not expect the
general dynamics to change, future research could examine the effect of varying the discharge
throughout the seasons on retention and could address the very-long-term success (>1 year)
of the population, as it is affected by inter-annual variability and climate change.

While our model does have settling and resuspension mechanics based on critical sheer
velocities, we still assume a static bathymetry in which sediments are not able to move or
bury phytoplankton. This masks potential losses due to phytoplankton being buried but also
decreases resuspension times.

Our results clearly suggest the importance of tidal flats and shallow areas along the river
banks for the persistence of primary production in the Elbe estuary. However, their effect
cannot currently be quantified due to the lack of validation data. Chlorophyll data with a
sufficient temporal and spatial resolution is only gathered in the center of the river. Future
monitoring efforts should therefore also include data along the river shores on tidal flats or
from shore to shore to quantify the effect of potential future changes caused by dredging,
diking, or restoration attempts.

Frequently stranded plankton have been shown to be essential to the survival of populations
in our model. However, data on their ability to survive under these conditions are scarce.
Our results suggest that these conditions may be as important as their ability to quickly
regrow under more favorable conditions, and we suggest that further research on plankton
survivability when they are stranded is needed.

For several decades, the annual average chlorophyll concentration in the Elbe estuary
has been decreasing (data available at https://www.fgg-elbe.de/elbe-datenportal.html (last
access: 3 March 2024) or see (Hardenbicker et al., 2014; Schöl et al., 2014)), while upstream
concentrations do not show this effect. The reasons for this are not fully understood, but one
possible reason is the increase in dredging activity. This increases the average turbidity and
thus the aphotic depth, reducing the volume of water in which phytoplankton can grow. A
large fraction of the phytoplankton measured upstream of Hamburg port consists of diatoms
(Muylaert and Sabbe, 1999), which typically have negative buoyancy (Passow, 1991), making
them particularly susceptible to sinking in light-limited waters. Our finding that sinking
phytoplankton have a harder time surviving in the estuary supports this theory.

Another mechanism that might, in part, explain the drop in phytoplankton concentration

https://www.fgg-elbe.de/elbe-datenportal.html
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at the bathymetric jump, which has not yet been explored in our model, is the phytoplankton
stickiness. Phytoplankton, especially blooming phytoplankton, have been shown to be sticky
due to exudates (Kiørboe and Hansen, 1993; van der Lee, 2000; Dutz et al., 2005). Some
phytoplankton also produce transparent exopolymer particles, which increase their stickiness
to other particles (Windler et al., 2015; De Brouwer et al., 2005). We suspect that this, in
combination with the higher turbidity induced by dredging, results in losses due to plankton
aggregates sticking to negatively buoyant suspended matter and subsequently sinking to the
ground, where they are starved of light. A future model study could obtain estimates of the
phytoplankton losses caused by this effect.

2.3.5 Conclusions
In this study, we investigated the roles of different retention strategies for phytoplankton or-
ganisms to persist in an estuarine environment. We showed that stranding in shallow nearshore
areas is essential for phytoplankton retention, and that phytoplankton that are not stranded
are rapidly washed away. Our model simulations suggest that growth rates much lower than
those observed in nature may be sufficient to prevent population decline due to outwashing,
implying that stranding may be sufficient to maintain the population. Moreover, buoyancy
and strong diel vertical migration enhance retention within the estuary. These results high-
light the importance of shallow nearshore areas in maintaining the productivity of estuarine
ecosystems. Our results suggest that current state-of-the-art models of estuarine ecosystems
may overlook an important process, and they emphasize the need for informed ecosystem-
based management to avoid the degradation of estuarine ecosystems by dredging and diking
activities.

2.3.6 Code and data availability
Input data can be requested from Johannes Pein (johannes.pein@hereon.de). The source
code, model configuration and output are available in the Zenodo repository https://doi.org/
10.25592/uhhfdm.13235. The current version of OceanTracker is available at https://github.
com/oceantracker/oceantracker (last access: 3 March 2024).

https://doi.org/10.25592/uhhfdm.13235
https://doi.org/10.25592/uhhfdm.13235
https://github.com/oceantracker/oceantracker
https://github.com/oceantracker/oceantracker
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Chapter 3

Synthesis

The aim of this thesis was to explore the fate of phytoplankton in the Elbe estuary - a fate
which is of particular interest, as most of the upstream phytoplankton community quickly
dies off after reaching the Port of Hamburg. Although this phenomenon has been observed
for decades, the precise mechanisms driving this collapse remain unclear. Our investigation
approached this issue from a novel perspective through Lagrangian particle tracking.

Lagrangian models represent a relatively novel approach, particularly in coastal and estu-
arine settings. In these environments, high spatial resolutions are essential for accurately pre-
dicting the trajectories and behavior of phytoplankton. To capture the intricate bathymetry
of these environments, a unstructured, terrain-following grid is required. Historically, particle
tracking using such grids has been computationally expensive, rendering more sophisticated
or complex studies impractical.

The development of the ocean tracker modeling framework has enabled us to address these
questions in a more effective manner. From our perspective, the primary design objective was
speed. Its computational efficiency enables the scaling of larger numbers of particles on modest
computer hardware within acceptable run times—something previously unattainable. Another
important objective was its composability and flexibility, allowing for the easy production of
ensemble studies. This is particularly vital for testing this new approach in environments
largely limited by validation data.

Another noval and crucial feature was the focus on bathymetric interactions. Most La-
grangian models focused on open oceans or deeper coastal environments where collisions with
the bathymetry like the sea bed or stranding are rare and implemented as an afterthought.
In an estuary like the Elbe, with many shallow regions with average water levels of less then
2m, and many narrow channels these interactions are crucial to accurately represent the phy-
toplankton community. Considereable effort has therefore been put into the development of
stranding and resuspension mechanics, which e.g. resulted in a log-layer representation of
the bottom layer velocity profile to more accurately represent the critical sheer velocity for
resuspension.

We developed this model, in part, with a particular application in mind. However, we
designed it in such a way that it can be easily applied to a wide range of new coastal or
estuarine questions, hopefully enabling many new studies.

In our second study, we employed OceanTracker to investigate the collapse of the phy-
toplankton community in the estuary upon reaching the port of Hamburg. We questioned
the prevailing narrative that the collapse is primarily due to phytoplankton grazing. Instead,
we proposed that the collapse might be partly due to the aggregation of phytoplankton with
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inorganic suspended particulate matter and the subsequent sinking of these aggregates to
light-limiting depths caused by the high turbidity in the navigational channel. This process is
not currently represented in any existing models. To explore this hypothesis, we implemented
an aggregation model into OceanTracker and assessed the relative importance of different mor-
tality mechanisms. Our results indicate that this process might play a significant role in the
phytoplankton community collapse, particularly for larger aggregates (>100 µm), suggesting
that light limitation-induced mortality might be significantly higher than previously assumed.
Consequently, managing turbidity in the navigational channel might be crucial in maintaining
the phytoplankton community in the Elbe estuary.

In our third study, we examined the mechanisms of phytoplankton retention. We were
motivated by the simple question of how phytoplankton can persist in an environment where
they should be quickly washed out. The existence of phytoplankton species adapted to es-
tuarine environments implies that there must be mechanisms allowing their persistence. To
investigate the of various retention strategies for phytoplankton in an estuarine environment,
we implemented several new features into OceanTracker, including the ability for particles to
split to represent reproduction and improved mechanisms to simulate interactions with the
bathymetry, such as settling, stranding, and resuspension. We found that shallow marshes
and tidal flats play a pivotal role in the survival of the phytoplankton community in the Elbe
estuary. These regions allowed phytoplankton to remain stranded for most of the tidal cycle.
Phytoplankton communities that were not allowed to reproduce while being stranded could
not survive in the long run and were ultimately washed out of the estuary. This suggests
that careful management of these regions is essential for the stability and resilience of the
phytoplankton community in the Elbe estuary.

A key limitation of our approach is the inability to effectively represent concentration
changes resulting from advection and dispersion. This prevents our model from functioning
as a comprehensive ecosystem model, as it cannot account for changes in factors like nutrient
concentrations. Consequently, many questions we aim to address, such as the relative impor-
tance of grazing versus light limitation losses, remain out of reach and will need to be further
explored using Eulerian models.

Although we were able to increase the number of represented particles by one or two
orders of magnitude compared to existing models, we are still far from being able to represent
realistic aggregate concentrations. Consequently, we are limited to examining subsets of these
communities. Typical phytoplankton aggregate concentrations are estimated to be of the order
of millions (106) aggregates per cubic meter. While our model is able to represent billions
(109) of particles in the estuary over a the time span of a year, this puts us still six orders of
magnitude away from representing the full community.

We hope that our study bring new impulses, both in the field of Lagrangian modeling in
coastal and estuarine environments and in ecosystem management of the Elbe estuary. The
lagrangian approach offers a inexpensive way of examining new hypothesis and offers a new
perspective on many processes that are easily overlooked from an Eularian point of view.
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Chapter 4

Appendix

4.1 Appendix A: For Study I - OceanTracker 0.5: Fast
Adaptable Lagrangian Particle Tracking in Structured
and Unstructured Grids

4.1.1 Code for Fig. 2.1

1 # code to run particle tracking for Fig 1
2
3 from oceantracker.main import OceanTracker # load
4 ot= OceanTracker() # create an instance to build parameter dictionary= ot.params
5
6 # add settings
7 ot.settings(output_file_base=’OTpaper_exmaple_A’, root_output_dir=’output’, time_step= 600.)
8
9 # add reader to acces the hyrdo−model

10 ot.add_class(’reader’, input_dir=r’oceantracker\demos\demo_hindcast’,
11 file_mask= ’demoHindcastSchism∗.nc’) # file mask to search for
12 # add a point release
13 ot.add_class(’release_groups’,name = ’my_point_release’, class_name=’PointRelease’,
14 points= [[1595000, 5482600, −2], [1594000, 5484200, −2]], # (x,y,z) of release points
15 release_interval= 600, pulse_size= 5000)
16 # add polygon release at random depths between two z values
17 ot.add_class(’release_groups’, name = ’my_polygon_release’, class_name=’PolygonRelease’,
18 points=[[1597682., 5486972], [1598604, 5487275], [1598886, 5486464],
19 [1597917., 5484000], [1597300, 5484000], [1597682, 5486972]],
20 release_interval= 600, pulse_size= 50, z_min= −2., z_max = 0.5)
21 # add grid releasing at random depths between two z values
22 ot.add_class(’release_groups’, name = ’my_grid_release’, class_name=’GridRelease’,
23 grid_center=[1592000, 5489200], grid_span=[500, 1000], grid_size=[3, 4],
24 release_interval= 1800, pulse_size= 2, z_min= −2, z_max = −0.5)
25 # add a decaying particle property,# with exponential decay based on age
26 ot.add_class(’particle_properties’, name =’a_pollutant’, class_name=’AgeDecay’,
27 initial_value= 1000, decay_time_scale = 7200.) # exponential decay time scale 2hours
28 # add a gridded particle statistic to use as heat map
29 ot.add_class(’particle_statistics’, name = ’my_heatmap’, class_name= ’GriddedStats2D_timeBased’,
30 grid_size=[120, 121], release_group_centered_grids = True, update_interval = 600,
31 particle_property_list = [’a_pollutant’], status_min =’moving’, z_min =−10.)
32 ot.add_class(’resuspension’, critical_friction_velocity=0.01) #set value for particle

resupension
33
34 # run OT and return file name useful in plotting
35 case_info_file= ot.run()
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4.2 Appendix B: For Study II - Effects of coagulation pro-
cesses on phytoplankton mortality

4.2.1 Sensitivity analysis on the light limitation culling threshold

Figure 4.1 presents a sensitivity analysis for the light limitation culling threshold. This thresh-
old determines the average light input required over the past 12 days to prevent phytoplankton
aggregates from dying due to light limitation (see Sec. 2.3.3). We tested thresholds ranging
from 10 to 100Wm−2 in increments of 5Wm−2.

Note that the threshold used in the main part of the study was 30Wm−2. The results
indicate that this parameter is relatively insensitive compared to the initial aggregate size.
However, doubling or halving the default light limitation culling threshold would cause the
importance of light limitation as a cause of death to increase by about 20%, from 59% to 77%,
or decrease by about 15%, from 59% to 44%, respectively.

We also observed that the relative changes in mortality causes diminish for larger thresh-
olds, suggesting that this parameter becomes less sensitive at higher values.

The default threshold of 30Wm−2 is based on an assumed light compensation point of
10 µmolm−2 s−1, within a range of photosynthetically active radiation from 400 nm to 700 nm
and a white light spectrum (Behrenfeld and Falkowski, 1997).

Figure 4.1: Relative cause of death for a range of light limitation thresholdes before inducing a mortality rate
for an initial aggreage size of 50 µm.

4.2.2 Sensitivity analysis on the light limitation mortality rate

Figure 4.2 presents a sensitivity analysis for the light limitation mortality rate. This rate is
applied to phytoplankton aggregates that have received, on average, less than 30Wm−2 of
light in the past 12 days and is applied every 60 s (see Sec. 2.3.3). We tested values ranging
from one-tenth to ten times the default rate, i.e., from 3.56× 10−6 s−1 to 3.56× 10−4 s−1, in
20 steps of 7.19× 10−6 s−1. The tested initial aggregate size is 50 µm with a stickiness factor
of one. Note that while we are examining a range spanning two orders of magnitude, the data
is presented with linear scaling to maintain consistency with previous plots.
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Our default value of 3.56 × 10−5 s−1 lies near a point of changing sensitivity. At this
rate, the light limitation mortality ratio is approximately 60%. Reducing the light limitation
mortality rate by a factor of 10 decreases this value to about 20%, while increasing it by
a factor of 10 raises it to 80%. Halving the default value would reduce the light limitation
mortality ratio to approximately 40%, while doubling it would increase the ratio to about
65%.

The chosen light limitation mortality rate is estimated based on an assumed exponential
decay, as shown in the measurements presented by (Walter et al., 2017), where an average
decline of 3% in cell numbers was reported after 12 days.

Figure 4.2: Relative cause of death for a range of light limitation mortality rates after falling below the light
limitation threshold for an initial aggreage size of 50µm

4.2.3 Sensitivity analysis on the coagulation kernel
Figure 4.3 compares the curvilinear coagulation kernel used in the study to a the simpler rec-
tilinear kernel (see Sec. 2.3.3 for details on the coagulation kernels). We show the curvilinear
kernel normalized to the rectilinear kernel for a range of partilce sizes from 1 × 10−5 m to
1× 10−3 m. Note, that the color scale is logarithmic, ranging from a ratio of 1/1000 to 1/10.
As the curvilinear kernel accounts for particles avoiding each other due to the particle itself
changing the flow in its proximity, effectively making particles avoid each other. Hence, the
curvilinear kernels estimate smaller coagulation rates then rectilinear ones. For particles of
equal size this effect reduces coagulation rates by approximatelly a factor of ten. For larger
particle size differences this effects becomes more pronounced. Particles with a different in size
of one order of magnitude have coagulation rates reduced by close two three orders of mag-
nitude, while particles with a difference in size of two orders of magnitude have coagulation
rates reduced by four to four orders of magnitude.

Hence, the choice between rectilinear and curvilinear kernels has an profound effect on the
coagulation rates and consequently the relative importance of light limitation as a cause of
death. While the curvilinear kernel are considered to me more accurate, the precise estimation
of coagulations rates in a generalized form remains a challange (Burd, 2013). Nevertheless, as
curvilinear kernels are strictly smaller then there rectilinear counterpart, they offer a conser-
vative estimate on the importance of coagulation as a cause of death.
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Figure 4.3: Comparison of the curvilinear coagulation kernel to the rectilinear kernel for a range of particle
sizes. Note the logarithmic color scale.

4.3 Appendix C: For Study III - Phytoplankton retention
mechanisms

4.3.1 Sensitivity analysis of drying out
In Fig. 4.4 and 4.5, we present the results of a sensitivity analysis of stranding mortality (i.e.,
due to drying out) thresholds of 1 and 14 days compared to the results for 7 days shown in
Fig. 2.16. Varying this parameter changes the breakeven point of growth and loss slightly, as
expected. However, no regime shift occurs, and the observed trends remain the same.

4.3.2 Sensitivity analysis of light limitation
In Fig. 4.6 and 4.7, we present the results of a sensitivity analysis of mortality thresholds due
to light limitation of 7 and 28 days compared to the 14 days shown in Fig. 2.16. Similar to the
stranding mortality threshold, perturbations in this parameter change the breakeven point
of growth and loss as expected. Reducing the tolerated light deficit to half that observed
in laboratory studies (Walter et al., 2017) has a particularly pronounced effect on sinking
phytoplankton cells, which are more frequently light limited. This is most clearly visible in
the −10 mm case, which shows that the breakeven point is reached at a doubling time of below
40 days. Nevertheless, the trends discussed, e.g., breakeven points at doubling times that are
much larger then those observed in nature, the favoring of buoyant cells over sinking cells,
and the importance of shallow areas, remain the same.

4.3.3 Salinity
Figure 4.8 shows a map of average salinity of the Elbe estuary. Salinity is averaged across
depths and over the whole year.
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Figure 4.4: Sensitivity analysis of mortality due to stranding (i.e., drying out) showing that the retention
success obtained with a threshold of 1 d without resuspension is similar to that obtained with a threshold of
7 d before phytoplankton are culled (as shown in Fig. 2.16).
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Figure 4.5: Sensitivity analysis of mortality due to stranding (i.e., drying out) showing that the retention
success obtained with a threshold of 14 d without resuspension is similar to that obtained with a threshold of
7 d before phytoplankton are culled (as shown in Fig. 2.16).
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Figure 4.6: Sensitivity analysis of mortality due to light limitation showing that the retention success obtained
with a light deficit threshold of 7 d is similar to that obtained with a threshold of 14 d before phytoplankton
are culled (as shown in Fig. 2.16).
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Figure 4.7: Sensitivity analysis of mortality due to light limitation showing that the retention success obtained
with a light deficit threshold of 28 d is similar to that obtained with a threshold of 14 d before phytoplankton
are culled (as shown in Fig. 2.16).
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Figure 4.8: Salinity map of the Elbe estuary, with Hamburg’s port area (as shown in Fig. 2.14) at the bottom
right. Salinity is averaged across depths and over the whole year. The 20PSU isohaline is marked with a black
line. Note that this plotted area has been extended downstream compared to Fig. 2.18. Also note that the
color map has been capped at 25PSU for better visibility in low-salinity areas.
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