
Multiscale Finite Element method application to
Canopies in Earth System

Dissertation

with the aim of achieving a doctoral degree at the

Faculty of Mathematics, Informatics and Natural Sciences

Department of Earth Sciences at Universität Hamburg

Heena Kiritbhai Patel

from Surat, Gujarat, India

Faculty: University of Hamburg, Department of Mathematics /

Center for Earth System Research and Sustainability (CEN)

Supervisor: Prof. Jörn Behrens, Dr. Konrad Simon

Date of oral defense: 16 July 2024

Abstract ii

Abstract

Urban canopies consist of buildings and trees that are aligned along a street in the

horizontal direction. These canopies in cities and forests modulate the local climate in

an intricate and complex way. Canopies constitute very fine subgrid features that actually

have a significant impact on other components of earth system models. However, their

feedback on larger scales is represented in rather heuristic ways. The problem with

simulating their impact is twofold: first, their local modeling is delicate and second, the

numerical modeling of the scale interaction between fine and large scales is complicated.

We will mostly focus on the second aspect.

Multiscale finite element methods (MsFEM) in their classical form have been applied

to various porous media problems, but the situation in climate and hence flow-dominated

regimes is different from porous media applications. In order to study the effect of various

parameters like the concentration of pollutants or the dynamics of the background velocity

and of the temperature in the atmospheric boundary layer, a semi-Lagrangian multiscale

reconstruction method (SLMsR) based multiscale finite element framework developed

in [38, 39, 40] for passive tracer transport modeled by an advection-diffusion equation

with high-contrast oscillatory diffusion is applied.

These methods are composed of two parts: a local-in-time semi-Lagrangian offline phase

that precomputes basis functions and an online phase that uses these basis functions

to compute the solution on a coarse Eulerian simulation mesh. The overhead of

pre-computing the basis functions in each coarse block can be further reduced by

parallelization. The online phase is approximately as fast as a low-resolution standard

finite element method. Using the modified basis that carries subgrid information, however,

still reveals fine scale features and is therefore accurate. This approach is studied in order

to reveal the feedback of processes in the canopy layer on different scales present in

climate simulation models. In particular, it is studied in the atmospheric boundary layer.

We will show the results of massively parallel simulations of passive tracer transport in

an urban region using the novel multiscale approach and compare them with classical

approaches. Also, data from the wind tunnel experiment were used to test the high

resolution finite element method. Further the lidar data for Hamburg mesh is taken and a

single building of 30 m is upscaled in a 2 km grid cell as shown in Figure (1).

Abstract iii

Figure 1: Graphical overview of our work, from the wind tunnel tests at the University
of Hamburg’s Environmental Wind Tunnel Laboratory to models that incorporate the
multiscale finite element method (MsFEM). Figure courtesy of Heena Patel and the
Environmental Wind Tunnel Laboratory at the University of Hamburg.

Kurzfassung iv

Kurzfassung

Städtische grenzschicht (canopy layer) bestehen aus Gebäuden und Bäumen, die entlang

einer Straße in horizontaler Richtung angeordnet sind. Diese grenzschicht in Städten

und Wäldern modulieren das lokale Klima auf komplizierte und komplexe Weise.

Baumkronen stellen sehr feine Teilgitter dar, die tatsächlich einen erheblichen Einfluss auf

andere Komponenten von Erdsystemmodellen haben. Ihre Rückkopplung auf größeren

Skalen wird heute jedoch eher heuristisch dargestellt. Das Problem bei der Simulation

ihrer Auswirkungen ist ein zweifaches: Erstens ist ihre lokale Modellierung sensibel

und zweitens ist die numerische Modellierung der Wechselwirkung zwischen feinen

und großen Skalen kompliziert. Wir werden uns hauptsächlich auf den zweiten Aspekt

konzentrieren.

Multiskalen-Finite-Elemente-Methoden (MsFEM) wurden in ihrer klassischen Form

auf verschiedene Probleme in porösen Medien angewandt, aber die Situation im

Klima und damit in strömungsdominierten Regimen unterscheidet sich von den

Anwendungen in porösen Medien. Um die Auswirkungen verschiedener Parameter

wie der Schadstoff-konzentration oder der Dynamik der Hintergrundgeschwindigkeit

und der Temperatur in der atmosphärischen Grenzschicht zu untersuchen, wird

ein auf semi-Lagrangescher Rekonstruktionsmethode (SLMsR) basierendes

Multiskalen-Finite-Elemente-Framework angewandt, das in [38, 39, 40] für den passiven

Tracer-Transport entwickelt wurde, der durch eine Advektions-Diffusionsgleichung mit

kontrastreicher oszillierender Diffusion modelliert wird.

Diese Methoden bestehen aus zwei Teilen: einer zeitlich begrenzten semi-Lagrangeschen

Offline-Phase, in der Basisfunktionen vorberechnet werden, und einer Online-Phase, in

der diese Basisfunktionen zur Berechnung der Lösung auf einem groben Eulerschen

Simulationsnetz verwendet werden. Der Aufwand für die Vorberechnung der

Basisfunktionen in jedem groben Block kann durch Parallelisierung weiter reduziert

werden. Die Online-Phase ist ungefähr so schnell wie eine Standard Finite Elemente

Methode mit niedriger Auflösung. Die Verwendung der modifizierten Basis, die

unterhalb der gitterauflösung informationen enthält, zeigt jedoch immer noch Merkmale

auf feiner Skala und ist daher genau. Dieser Ansatz wird untersucht, um die

Rückkopplung von Prozessen in der Baumkronenschicht auf verschiedenen Skalen in

Klimasimulationsmodellen aufzuzeigen. Insbesondere wird er in der atmosphärischen

Grenzschicht untersucht.

Wir werden die Ergebnisse massiv paralleler Simulationen des passiven Tracer-Transports

in einer städtischen Region unter Verwendung des neuartigen Multiskalen-Ansatzes

Kurzfassung v

zeigen und sie mit klassischen Ansätzen vergleichen. Außerdem wurden Daten aus dem

Windkanal-Experiment verwendet, um die hochauflösende Finite-Elemente-Methode zu

testen. Weiterhin werden die Lidar-Daten für Hamburg herangezogen und ein einzelnes

Gebäude von 30 m in eine 2 km-Gitterzelle hochskaliert wie in der Abbildung (1) gezeigt.

Acknowledgments vi

Acknowledgments

First and foremost, I would like to express my sincere gratitude to supervisor Dr. Konrad

Simon for introducing me to the world of multiscale finite element method, C++, and

deal.II as when I started my PhD, I was a blank piece of paper to put my baby steps in

this research field. I learned a lot from you that I could not give back. The knowledge

and discussion you have was the baseline for my research, as it was the only your two

papers on Google I have on to start with my topic. It was a big favor you did for us when

you presented at the CLICCS retreat in 2020. I would like to give a big thank you to my

supervisor, Big Boss, of my project CLICCS A3 and Faculty advisor of SIAM Student

chapter Hamburg Prof. Jörn Behrens as you are the person you have always given me the

space to explore my ideas and openness to talk to you about science and other aspects of

life. We have shared many professional positions in different duties. It has always been

a pleasure to discuss funding, presentation, and my professional future plans with you.

You have so much patience to hear all my supernatural ideas and have generously given

me the opportunity to attend many scientific conferences. I am super grateful for the big

spaghetti ice cream you gave us for your 10th work anniversary. It has always acted as

motivation during tough times.

I am blessed to be part of and funded by Cluster of Excellence “Climate, Climatic

Change, and Society” (CLICCS) subproject A3: Canopies in the Earth System. This

project is my adopted professional child. CLICCS is the most international and gender

equal project in the world. I have met many wonderful colleagues worldwide from

various disciplines. It enhances my scientific, leadership, and project management skills.

Since I was the first person to be hired for the project, it has always been my responsibility

to get everyone together. I have had the best moment of my life leading the whole

presentation in a Theme A project meeting on 13 Feburary 2020. This was in my first

presentation in Hamburg, thanks to the chairs of A3: Prof. Jörn Behrens, Prof. Bernd

Leitl and Prof. Felix Ament. I would like to express my gratitude to Dr. Sylvio Freitas,

who conducted a wind tunnel experiment in a pandemic when 1.5 distance rules exist.

It was always a pleasure to discuss the wind tunnel setup with you. I would also like to

thank Frank Harms, Bernd Leitl, and the entire Environmental Wind Tunnel Laboratory

(EWTL) group for clearing all the basic doubts we had about the experiment. I would

like to thank PhD student and co-worker Ge Cheng, Dr. David Grawe, and Prof. Dr.

Heinke Schlünzen Mesoscale from Microscale Modelling (MeMi) for discussing the

meteorological aspects of the project. It was always a pleasure when we all from the

Numerical Methods in Geosciences group, ETWL group, and MeMi group colleagues

Acknowledgments vii

had project meetings as the beauty of seeing the research and discussion we had was

always a wonderful experience. The CLICCS retreat was always fun to attend to discuss

science and also enjoy dinner and dancing with all colleagues. Thanks to Dr. Martina

Bachmann, Anke Allner, Rita Moller, and Charlotta Mirbach for organizing more than

200 people together. Prof. Felix Ament is also my panel chair. I am thankful for the

meetings and discussions.

It is a pleasure to be a part of the School of Integrated Climate System Sciences (SICSS)

at the University of Hamburg. It is a structured doctoral program where I have learned

many soft skills, met many international colleagues. It always feels like you are part

of a large community. Thanks to Dr. Berit Hachfeld, Dr. Ingo Hams, Dr. Sebastian

Zubrzycki, and Dr. Alexandra Franzke for all the Christmas parties, retreats, summer

schools, and workshops you have organized for us. It was a thrilling experience to be

part of Student Chapter Hamburg. Thanks to Hannes von Allwörden for enrolling me

in the chapter and inspiring me to serve as Secretary and as the first woman of color

president of Student Chapter Hamburg. It was always a pleasure to host events such as

Life after PhD for alumni students in the mathematics department. In addition, Stages of

Academia where faculty members expressed their journey. Again, a beautiful experience

to take my South Asian origin, representing Student Chapter Hamburg Germany Europe

as chapter president at SIAM Annual meeting 2022 in USA and historic discussion to hire

GAMM Faculty Advisor for Student Chapter Hamburg, toughest decision as PhD student

but strongest decision as the President of Student Chapter Hamburg.

It was nice to be part of the Numerical Methods in Geosciences group and my colleagues

Yumeng Chen, Anusha Sunkisala, Michel Bänsch, Ezra Rozier, Mouhanned Gabsi and

Maša Avakumović in office 410, Grindelberg 5, 20144 Hamburg. Teffy Sam for help

to save files from server to laptop and Dr. Claudine von Hallern for getting to know

each other. Yumeng, you said something exquisite when I was going through tough

times “Many people develop numerical models, but people like you give life to them by

implementing applications". It was always a heart-touching experience with colleagues

in the Grindelberg 5-7 corridor with the Atmospheric Dynamics and Predictability group,

formerly the Theoretical Meteorology working group. On paper, I have no terms with

you, but you all have always reserved a place for me at every birthday and Christmas

party. You also had a postdoc position for me. I am always grateful to have lunches with

you, even when the 1.5 distance rule exists. I might have gone into depression if we did

not have these lunches. Thanks to Denny Gohlke for being a German friend who cooks

Indian for me, PD Dr Richard Blender for Swiss chocolates, Iana Strigunova for hugs, Dr

Sergiy Vasylkevych for being my bestie, Qiung Ma for the compliment you are as strong

as man, Yuan-Bing Zhao for taking my photo with giant panda furries, Gözde Özden

Acknowledgments viii

for my autograph in your copy of Hamburg Climate future outlook. Katharina Holube

and Chen Wang for the band we play together, my favourite Sándor Mahó for being shy

always reminds me of Finland, Valentino Neduhal for bearing my words and desire to

work for me in the future, Dr. Frank Lunkeit for the morning talks, Frank Seilmann and

Alexia Krawat for helping with German bureaucracy and someone who somehow inspires

Prof. Nedjeljka Žagar: Thank you for allowing me to break many protocols for cakes and

spending time with your group.

I am very thankful to my Mom Gitaben Kiritbhai Patel for giving me permission to fly

to Europe. It was not easy to change apartments 7 times in Europe single-handedly. But

I have grown stronger and braver through these years. Thank you for understanding that

it was more than three years not going to India that was difficult for you without me.

You have always trusted me that I will survive the toughest situations. I had given my

professional life more priority than my personal life, and it would not have been possible

without my sister Khyati Kiritbhai Patel to be with Mom. Thanks for taking care of Mom

and Dad and all the sacrifices you have made. To my late father Kiritbhai Kantibhai

Patel for the strong personality I inherited from you. You would be proud that my male

colleagues say they cannot move like I have moved in Europe. Thank you to all my friends

and colleagues worldwide for their wise words. Thanks to Emmi Koskimies, Iiro-Juhani

Pylkkänen and their wonderful kids Viljo, Väino, Vilma and Veikko from my Finnish host

family, Väino I missed you a lot my boy Minä rakastan sinua, it took almost 4 years and

10 months for me to fly to Finland. And Antje Mizera, Mike Mizera, Andrea Mizera,

Rino Mizera and meine Oma Else Priebe ich liebe dich from my German host family for

my European family experiences. It is hard to maintain my soul in India, my heart in

Finland, and my brain in Germany. But I am born to break normal. To my Hamburg city,

I love you for all reasons for strength, for new friendships, for Hamburg DOM, for Cruise

days and Hafengeburtstag. Thanks to all readers of my thesis.

List of Contents ix

List of Contents

Abstract ii

Kurzfassung iv

Acknowledgments vi

List of Figures x

List of Tables xi

List of Algorithms xii

Listings xiii

Notations xiv

1 Introduction 1
1.1 Background and Motivation . 1

1.2 Numerical Modelling of subgrid scales 5

1.3 Multiscale Modelling . 6

1.4 Knowledge Gap . 8

1.5 Aim of the thesis . 9

1.6 Talks at conferences . 10

1.7 Publication . 11

2 Finite Element Method 12
2.1 Poisson’s Equation . 12

2.2 Steps for Solution of Poisson’s Equation using the finite element method . 14

2.2.1 Step 1: Strong formulation of Poisson’s equation 15

2.2.2 Step 2: Weak formulation of Poisson’s equation 15

2.2.3 Step 3: Finite Element Approximation 17

2.2.4 Step 4: Derivation of a Linear System of Equations 18

2.3 Compute the discrete solution with building blocks of Finite Element

Method . 18

2.3.1 Finite elements in 1D . 19

2.3.2 Finite elements in 2D . 22

2.3.3 Assemble System . 28

2.3.4 2-D elements: coordinate transformation 32

2.3.5 Computing with quadrature rules 34

2.3.6 Compute the error . 35

2.4 Abstract form of Finite Element Method 36

List of Contents x

2.5 Galerkin Orthogonality . 38

3 Multiscale Finite Element Method 39
3.1 Introduction Multiscale Modeling . 39

3.1.1 Introduction to Multiscale in canopy 40

3.2 Homogenization theory . 41

3.3 Multiscale Finite Element Method . 45

3.4 Objective of Multiscale Finite Element Method 46

3.5 Steps of Multiscale Finite Element Method 46

3.5.1 Localization . 47

3.5.2 Basis functions . 48

3.5.3 Global coarse-grid problem . 50

3.5.4 Assembly of stiffness matrix. 52

4 Advection-Diffusion Equation 58
4.1 Semi-Lagrangian Multiscale Finite Element 58

4.2 The Reconstruction Mesh . 62

5 Software Concepts 65
5.1 Introduction . 65

5.2 The deal.II workflow . 65

5.3 Triangulation . 75

5.3.1 Refinement . 75

5.3.2 Mesh generation . 77

5.4 Degree of Freedom Handler . 80

5.5 Finite Element . 81

5.6 Quadrature . 81

5.7 Mapping . 82

5.8 FEValues . 82

5.9 Linear System . 84

5.10 Linear Solver . 84

5.10.1 Direct Solver . 85

5.10.2 Iterative Solver . 85

5.11 Output . 86

5.12 Compute the error . 87

5.13 Parallelization Concept . 93

5.13.1 Motivation . 93

5.13.2 Distributed Triangulation . 95

5.13.3 New Feature implementation . 96

List of Contents xi

5.14 Parallel code implementation of advection-diffusion equation solution

with FEM method in deal.II . 97

5.14.1 Step 1 : Create Mesh . 99

5.14.2 Step 2 : Set Degrees of Freedom 100

5.14.3 Step 3 : Assemble the system matrix and right hand side 103

5.14.4 Step 4 : Solve the system . 104

5.14.5 Step 5 : Output the result . 106

5.14.6 Step 6 : Compute the error . 107

5.15 Implementation of diffusion equation solution with MsFEM method in

deal.II . 110

5.15.1 Global formulation code . 111

5.15.2 Multiscale basis function code 115

5.16 Connection between main code and basis code 118

5.17 Implementation of advection-diffusion equation solution with

Semi-Lagrangian Multiscale Finite Element in deal.II 120

5.17.1 Step 1 : construct a coarse grid 121

5.17.2 Step 2 : For every cell K ∈ TH a fine mesh T K
h is to be initialized . 127

5.17.3 Step 3 : For K ∈ TH (Online Phase), Reconstruct the basis u0(x)|K 132

5.17.4 Step 4 : For n = 0 to n≤ Nsteps 138

5.17.5 Step 4a : Each node in K is trace back one time step from tn+1 to tn 138

5.17.6 Step 4b : Basis un(x)|K̃ from 4.10 to be reconstructed 141

5.17.7 Step 4c : Propagate the boundary conditions of the optimal basis

forward onto K . 146

5.17.8 Step 5 : Postprocess the solution 152

6 Numerical result 154
6.1 Numerical Experiments. 154

6.1.1 Test case 1 . 155

6.1.2 Test case 2 . 163

6.1.3 Test case 3 . 171

6.1.4 Test case 4 . 180

6.1.5 Test case 3D . 189

7 Canopy Parameterization 193
7.1 Introduction . 193

7.2 Test Case 5 . 198

7.3 Test Case 6 . 201

7.4 Test Case 7 . 204

7.5 Test Case 8 . 206

List of Contents xii

8 Application 210
8.1 Wind tunnel test cases . 210

8.1.1 Setup . 211

8.2 Test Case 9 : Building with 0° rotation 212

8.2.1 Test case 9 : Wall times distribution 216

8.2.2 Test case 9 : Error Table . 218

8.3 Test Case 10 : Building with 0° rotation and source term 218

8.3.1 Test case 10 : Wall time distribution 220

8.3.2 Test case 10 : Error Table . 221

8.3.3 Test case 10 : Wind tunnel Validation 221

8.3.4 Test 10a : Building with 0° rotation and full source term 226

8.4 Test Case 11 : Building with 45° rotation 227

8.4.1 Test case 11 : Wall time distribution 230

8.4.2 Test case 11 : Error Table . 231

8.4.3 Test Case 11a : Building with 45° rotation with increase in

MsFEM refinement . 232

8.4.4 Test Case 11b : Building with 45° rotation with decrease in

diffusion . 233

8.5 Test Case 12 : Building with 45° rotation and source term 233

8.5.1 Test case 12 : Wall time distribution 237

8.5.2 Test case 12 : Error Table . 238

8.5.3 Test case 12 : Wind tunnel Validation 238

8.5.4 Test Case 12a : Building with 45° rotation with increase in

MsFEM refinement . 244

8.5.5 Test Case 12b : Building with 45° rotation with decrease in

diffusion . 245

8.6 Hamburg mesh . 245

8.6.1 Hamburg mesh : Wall time distribution 251

9 Conclusion and Future Work 253
9.1 Research Contribution . 253

9.1.1 Software development . 253

9.2 Key Findings . 254

9.2.1 Canopy Modeling . 254

9.3 Future Work . 255

10 Appendix 257
I Mathematical Concept . 257

I.1 Well-posedness (Hadamard 1923) 257

List of Contents xiii

I.2 Create mathematical models . 257

II What is finite element method? . 259

II.1 Introduction . 259

III Norms and Functional Spaces . 260

III.1 Test 1 . 267

III.2 Test 2 . 268

IV Glossary for C++ terms . 269

V Implementation of advection diffusion equation in deal.II 276

Bibliography 286

Eidesstattliche Versicherung 290

List of Figures xiv

List of Figures

Fig. 1 Graphical overview of our work, from the wind tunnel tests at the

University of Hamburg’s Environmental Wind Tunnel Laboratory to

models that incorporate the multiscale finite element method (MsFEM).

Figure courtesy of Heena Patel and the Environmental Wind Tunnel

Laboratory at the University of Hamburg. iii

Fig. 1.1 Scale Interaction between resolved and unresolved regions of climate

models [36]. 5

Fig. 1.2 Multiscale Modelling at various scales [26]. 6

Fig. 1.3 Canopy research in CLICCS A3 proposal. 9

Fig. 2.1 Unit square domain. 14

Fig. 2.2 Steps of Finite Element Method. 14

Fig. 2.3 A function v ∈Vh. 20

Fig. 2.4 Basis in 1 dimension. 20

Fig. 2.5 (a) Conformal mesh and (b) Non-Conformal mesh. 22

Fig. 2.6 2D triangular mesh. 23

Fig. 2.7 2D square mesh. 23

Fig. 2.8 Global numbering of nodes. 24

Fig. 2.9 Basis in two dimension. 24

Fig. 2.10 Supports of nodal basis functions. 25

Fig. 2.11 A triangle and its three vertices. 25

Fig. 2.12 The 23rd triangle and their vertex numberings. 29

Fig. 2.13 The basis function ψ j associated with K. 30

Fig. 2.14 The reference element. 31

Fig. 2.15 The real element in left and reference element right. 32

Fig. 2.16 Q1 Basis Function. 34

Fig. 2.17 2D basis for square mesh in deal.II. 35

Fig. 2.18 2D basis for square mesh with mesh in deal.II. 35

Fig. 2.19 Galerkin orthogonality. 38

Fig. 3.1 Canopy representation at various scales. Figure is courtesy of Laurens

Ganzeveld [41]. 39

Fig. 3.2 Scales in Canopy [33]. 40

Fig. 3.3 Domain Ω with oscillation ε . 42

Fig. 3.4 Objective of Multiscale Method. 46

List of Figures xv

Fig. 3.5 Mesh in Multiscale Finite Element Method. 47

Fig. 3.6 Coarse Mesh and fine mesh in Multiscale Finite Element Method. . . . 48

Fig. 3.7 One modified Basis in 2 dimension. 49

Fig. 3.8 Four modified Basis in 2 dimension on coarse mesh. 50

Fig. 3.9 One-dimensional multiscale basis function. Figure courtesy of [12]. . . 54

Fig. 3.10 One-dimensional basis functions and the solution. Figure courtesy of

[44]. 54

Fig. 3.11 Multiscale Finite Element Method Flow Chart. 55

Fig. 3.12 Basis in 2 dimension for Multiscale finite element method. 56

Fig. 3.13 All four basis of two-dimensional basis functions for Multiscale finite

element method. 56

Fig. 3.14 Two dimensional basis functions for Finite Element Method and

Multiscale Finite Element Method. 57

Fig. 4.1 Solution (A) is for FEM and (B) is for MsFEM. 59

Fig. 4.2 Semi-Lagrangian algorithm for high advection. 59

Fig. 4.3 Eulerian coarse cell with its fine mesh is traced back with one time step

where global solution is taken to reconstruct a basis. 63

Fig. 5.1 Finite Element setup in deal.II. Figure courtesy deal.II website [7]. . . . 65

Fig. 5.2 Main folder of code with this sub-folders. 67

Fig. 5.3 Sub-folder source that constant C++ files. 67

Fig. 5.4 Sub-folder include that constant header files. 68

Fig. 5.5 Connection between the most important classes in deal.II. 75

Fig. 5.6 Mesh refinement in deal.II. 75

Fig. 5.7 Quad-tree of cells. 76

Fig. 5.8 Mesh refinement in deal.II. 76

Fig. 5.9 Periodic edges in 2D. 78

Fig. 5.10 Grid generation. 79

Fig. 5.11 Degree of freedom in deal.II. 80

Fig. 5.12 Flow chart of advection diffusion equation solution code in

advectiondiffusion_problem.hpp file: left is the C++ programming

code and right is deal.II classes used in the code. 89

Fig. 5.13 Flow chart of the boundary conditions connected to main code in

advectiondiffusion_problem.hpp file code in assemble system with

object functions. 90

Fig. 5.14 Distributed and Shared mesh. 94

Fig. 5.15 Types of cells in parallelization [19]. 95

List of Figures xvi

Fig. 5.16 MPI parallelization of code the color code hexagon is for external

parallel library which deal.II. uses for parallelization. 96

Fig. 5.17 Flow chart of advection diffusion equation solution parallel code in

advectiondiffusion_problem.hpp file. 97

Fig. 5.18 Flow chart of diffusion equation finite element solution code main code

in diffusion_problem.hpp file. 109

Fig. 5.19 Flow chart of boundary condition code connected to main file

diffusion_problem.hpp file. 110

Fig. 5.20 Flow chart of diffusion equation multiscale finite element solution

parallel main code. 111

Fig. 5.21 Flow chart of Q1 Basis function in multiscale basis code. 116

Fig. 5.22 Flow chart of diffusion equation multiscale finite element basis code. . 117

Fig. 5.23 Flow chart of interface between diffusion equation multiscale finite

element solution main code and multiscale basis code. 118

Fig. 5.24 Flow chart of advection-diffusion equation multiscale finite element

solution code header files connections. 121

Fig. 5.25 Flow chart of advection-diffusion equation multiscale finite element

solution code main code. 122

Fig. 5.26 Flow chart of advection-diffusion equation multiscale finite element

solution main code in advectiondiffsuion_multiscale.hpp header file

and boundaries condition in other header files connections. 125

Fig. 5.27 Flow chart of advection-diffusion equation multiscale finite element

solution code in advectiondiffsuion_multiscale.hpp header file and

C++ config file code in config.h header file. 125

Fig. 5.28 Flow chart of advection-diffusion equation multiscale finite element

main code connections with other 3 main codes: basis code, interface

code and reconstruction basis code. 127

Fig. 5.29 Flow chart of advection-diffusion equation multiscale finite element

solution Q1 basis code. 128

Fig. 5.30 Flow chart of advection-diffusion equation multiscale basis code. . . . 130

Fig. 5.31 Flow chart of advection-diffusion main code connection with

multiscale basis function code. 131

Fig. 5.32 Flow chart of advection-diffusion multiscale basis code connections

with other header files. 132

Fig. 5.33 Flow chart of Interface code in basis_interface.hpp header file. 133

Fig. 5.34 Flow chart of advection-diffusion equation main code connected to

interface code. 136

List of Figures xvii

Fig. 5.35 Flow chart of advection-diffusion equation multiscale finite element

solution connection of interface code with other codes. 138

Fig. 5.36 Flow chart of reconstruction basis code from basis code. 139

Fig. 5.37 Flow chart of find point in unit cell code connection with point

belonging to MPI processor code. 140

Fig. 5.38 Flow chart of reconstruct basis code first part in

reconstruct_assembler.hpp header file. 142

Fig. 5.39 Flow chart of reconstruct basis code second part in

reconstruct_assembler.hpp header file. 146

Fig. 5.40 Flow chart of reconstruct basis code for global cell in

reconstruction_base.hpp header file. 147

Fig. 5.41 Flow chart of reconstruction multiscale basis code connection with

main code. 148

Fig. 6.1 Domain with boundary condition. 154

Fig. 6.2 Test case 1 Solution of High resolution FEM, Low resolution FEM and

Low resolution MsFEM for stationary diffusion equation. 155

Fig. 6.3 Test case 1 Wall times with respect to MPI rank for High resolution

FEM method. 156

Fig. 6.4 Test case 1 Wall times with respect to MPI rank for Low resolution

MsFEM method. 157

Fig. 6.5 Test case 1 Wall times with respect to MPI rank for Low resolution

FEM method. 157

Fig. 6.6 Test case 1 Memory consumption for High resolution FEM method. . 158

Fig. 6.7 Test case 1 Memory consumption for Low resolution MsFEM method. 159

Fig. 6.8 Test case 1 Memory consumption for Low resolution FEM method. . . 159

Fig. 6.9 Test case 1 Wall times with respect to DOF for FEM method. 161

Fig. 6.10 Test case 1 Wall times with respect to DOF for MsFEM method. . . . 161

Fig. 6.11 Test case 1 Memory Consumption with respect to DOF for FEM method.162

Fig. 6.12 Test case 1 Memory Consumption with respect to DOF for MsFEM

method. 163

Fig. 6.13 Test case 2 Solution of High resolution FEM, Low resolution FEM and

Low resolution MsFEM for stationary diffusion equation. 164

Fig. 6.14 Test case 2 Wall times with respect to MPI rank for High resolution

FEM method. 165

Fig. 6.15 Test case 2 Wall times with respect to MPI rank for Low resolution

MsFEM method. 166

List of Figures xviii

Fig. 6.16 Test case 2 Wall times with respect to MPI rank for Low resolution

FEM method. 166

Fig. 6.17 Test case 2 Memory consumption for High resolution FEM. 167

Fig. 6.18 Test case 2 Memory consumption for Low resolution MsFEM. 168

Fig. 6.19 Test case 2 Memory consumption for Low resolution FEM. 168

Fig. 6.20 Test case 2 Wall times with respect to DOF for FEM method. 169

Fig. 6.21 Test case 2 Wall times with respect to DOF for MsFEM method. 169

Fig. 6.22 Test case 2 Memory Consumption with respect to DOF for FEM method.170

Fig. 6.23 Test case 2 Memory Consumption with respect to DOF for MsFEM

method. 171

Fig. 6.24 Test case 3 Solution of High resolution FEM, Low resolution FEM and

Low resolution MsFEM for advection-diffusion equation. 172

Fig. 6.25 Test Case 3 Wall times with respect to MPI rank for High resolution

FEM for direct and iterative solver. 174

Fig. 6.26 Test Case 3 Wall times with respect to MPI rank for Low resolution

MsFEM for direct and iterative solver. 175

Fig. 6.27 Test Case 3 Wall times with respect to MPI rank for Low resolution

FEM for direct and iterative solver. 176

Fig. 6.28 Test Case 3 Memory consumption for High resolution FEM method for

direct and iterative solver. 177

Fig. 6.29 Test Case 3 Memory consumption for Low resolution MsFEM method

for direct and iterative solver. 178

Fig. 6.30 Test Case 3 Memory consumption for Low resolution FEM method for

direct and iterative solver. 179

Fig. 6.31 Test case 4 Solution of High resolution FEM, Low resolution FEM and

Low resolution MsFEM for advection-diffusion equation. 181

Fig. 6.32 Test Case 4 Wall times with respect to MPI rank for High resolution

FEM method. 182

Fig. 6.33 Test Case 4 Wall times with respect to MPI rank for Low resolution

MsFEM method. 183

Fig. 6.34 Test Case 4 Wall times with respect to MPI rank for Low resolution

FEM method. 184

Fig. 6.35 Test Case 4 Memory consumption for High resolution FEM method. . . 186

Fig. 6.36 Test Case 4 Memory consumption for Low resolution MsFEM method. 187

Fig. 6.37 Test Case 4 Memory consumption for Low resolution FEM method. . 188

Fig. 6.38 Solution for advection-diffusion Equation 3 dimensional. 190

List of Figures xix

Fig. 6.39 Test case 12 : Wall time distribution for solution of High

resolution FEM, Low resolution FEM and Low resolution MsFEM for

advection-diffusion equation. 191

Fig. 7.1 The advection-diffusion Equation. 193

Fig. 7.2 Canopy Parameterization. 193

Fig. 7.3 Implementation of building. 195

Fig. 7.4 Sketch of rectangle building with conditions. 198

Fig. 7.5 Rectangle building. 201

Fig. 7.6 Sketch of triangle building with conditions. 202

Fig. 7.7 Triangular building. 203

Fig. 7.8 Sketch of Hip Triangular building with conditions. 204

Fig. 7.9 Hip Triangular building. 206

Fig. 7.10 Sketch of three building with conditions. 206

Fig. 7.11 Mix Triangular buildings. 209

Fig. 8.1 Sketch of the boundary layer wind tunnel “Blasius” at the

Meteorological Institute of Hamburg University [34]. 210

Fig. 8.2 Wind tunnel setup with 0° rotation. 211

Fig. 8.3 Wind tunnel setup with 45° rotation. 211

Fig. 8.4 Setup for wind tunnel. 212

Fig. 8.5 Computational Domain. 212

Fig. 8.6 Face numbering in deal.II. 213

Fig. 8.7 Domain Test 9 High resolution Mesh. 213

Fig. 8.8 Domain Test 9 Low resolution Mesh. 213

Fig. 8.9 Test case 9 Wind tunnel test case single building with 0° degree rotation

(A) High resolution FEM with refinement = 7 (B) Low resolution

MsFEM with coarse refinement = 3, fine refinement = 4 and (C) Low

resolution FEM with refinement = 3. 216

Fig. 8.10 Test Case 9 Wall times distribution for High resolution FEM method,

Low resolution MsFEM method and Low resolution FEM method. . . 217

Fig. 8.11 High resolution FEM solution with a point source for Test 10. 219

Fig. 8.12 Test case 10 Wind tunnel test case single building with 0° degree

rotation and point source (A) High resolution FEM with refinement = 7

(B) Low resolution MsFEM with coarse refinement = 3, fine refinement

= 4 and (C) Low resolution FEM with refinement = 3. 219

Fig. 8.13 Test Case 10 Wall times distribution for High resolution FEM method,

Low resolution MsFEM method and Low resolution FEM method. . . 220

Fig. 8.14 Wind tunnel Validation results for Test Case 10 for P01 and P02. . . . 222

List of Figures xx

Fig. 8.15 Wind tunnel Validation results for Test Case 10 for P03 and P04. 223

Fig. 8.16 Wind tunnel Validation results for Test Case 10 for P05 and P06. 224

Fig. 8.17 Wind tunnel Validation results for Test Case 10 for P07 and P08. 225

Fig. 8.18 Wind tunnel Validation results for Test Case 10 for P09. 226

Fig. 8.19 Test Case 10a for full source. 226

Fig. 8.20 Test case 11 Wind tunnel test case single building with 45° degree

rotation (A) High resolution FEM with refinement = 7 (B) Low

resolution MsFEM with coarse refinement = 3, fine refinement = 4 and

(C) Low resolution FEM with refinement = 3. 229

Fig. 8.21 Test Case 11 Wall times distribution for High resolution FEM method,

Low resolution MsFEM method and Low resolution FEM method. . . 230

Fig. 8.22 Test case 11a Wind tunnel test case single building with 45° degree

rotation (A) High resolution FEM with refinement = 8 (B) Low

resolution MsFEM with coarse refinement = 4, fine refinement = 4 and

(C) Low resolution FEM with refinement = 3. 232

Fig. 8.23 Test case 11b Wind tunnel test case single building with 45° degree

rotation (A) High resolution FEM with refinement = 8 (B) Low

resolution MsFEM with coarse refinement = 4, fine refinement = 3 and

(C) Low resolution FEM with refinement = 3. 233

Fig. 8.24 Test case 12 Wind tunnel test case single building with 45° degree

rotation and source (A) High resolution FEM with refinement = 7 (B)

Low resolution MsFEM with coarse refinement =4, fine refinement = 4

and (C) Low resolution FEM with refinement = 3. 236

Fig. 8.25 Test Case 12 Wall times distribution for High resolution FEM method,

Low resolution MsFEM method and Low resolution FEM method. . . . 237

Fig. 8.26 Wind tunnel Validation results for Test Case 12 for point P01 and P02. . 239

Fig. 8.27 Wind tunnel Validation results for Test Case 12 for point P03and P04. . 240

Fig. 8.28 Wind tunnel Validation results for Test Case 12 for point P05 and P06. . 241

Fig. 8.29 Wind tunnel Validation results for Test Case 12 for point P07 and P08. . 242

Fig. 8.30 Wind tunnel Validation results for Test Case 12 for point P09. 243

Fig. 8.31 Test case 12a Wind tunnel test case single building with 45° degree

rotation and source (A) High resolution FEM with refinement = 8 (B)

Low resolution MsFEM with coarse refinement = 4, fine refinement =

4 and (C) Low resolution FEM with refinement = 3. 244

Fig. 8.32 Test case 12b Wind tunnel test case single building with 45° degree

rotation and source (A) High resolution FEM with refinement = 8 (B)

Low resolution MsFEM with coarse refinement = 4, fine refinement =

3 and (C) Low resolution FEM with refinement = 3. 245

List of Figures xxi

Fig. 8.33 Hamburg mesh. 246

Fig. 8.34 Result of Hamburg Mesh for 2 km urban block. 248

Fig. 8.35 Result of Hamburg Mesh for 30 m building for High resolution FEM

with the building. 249

Fig. 8.36 Result of Hamburg Mesh with 30 m high building. 250

Fig. 8.37 Wall time distribution for Hamburg Mesh. 251

Fig. 9.1 Scales in canopy [11]. 256

Fig. 9.2 Arctic sea ice at 1 cm, 5 cm, 5 m, 100 m, 100 km [16]. 256

Fig. 10.1 Venn diagram of different spaces. 262

Fig. 10.2 Test 1 Solution of High resolution FEM, Low resolution FEM, Low

resolution MsFEM and Adaptive mesh refinement FEM. 267

Fig. 10.3 Solution of High resolution FEM, Low resolution FEM, Low resolution

MsFEM and Adaptive mesh refinement FEM. 268

List of Tables xxii

List of Tables

Tab. 1.1 The characteristics of urban form are scaled based on the characteristics

of the surface [22]. 3

Tab. 6.1 Test case 1 Error in simulation with Low resolution FEM and Low

resolution MsFEM. 156

Tab. 6.2 Test case 2 Error in simulation with Low resolution FEM, High

resolution FEM and Low resolution MsFEM. 165

Tab. 6.3 Test case 3 Error in simulation with Low resolution FEM, High

resolution FEM and Low resolution MsFEM. 173

Tab. 6.4 Test case 4 Error in simulation with Low resolution FEM, High

resolution FEM and Low resolution MsFEM. 181

Tab. 6.5 Test 3D Error in simulation with Low resolution FEM, High resolution

FEM and Low resolution MsFEM. 190

Tab. 8.1 Test case 9 Error in simulation with Low resolution FEM and Low

resolution MsFEM. 218

Tab. 8.2 Test case 10 Error in simulation with Low resolution FEM and Low

resolution MsFEM. 221

Tab. 8.3 Test case 11 Error in simulation with Low resolution FEM and Low

resolution MsFEM. 231

Tab. 8.4 Test case 12 Error in simulation with Low resolution FEM and Low

resolution MsFEM. 238

Tab. 10.1 Test 1 Error in simulation of Low resolution FEM, Low resolution

MsFEM and Adaptive mesh refinement FEM. 268

Tab. 10.2 Test 2 Error in simulation of Low resolution FEM, Low resolution

MsFEM and Adaptive mesh refinement FEM. 269

List of Algorithms xxiii

List of Algorithms

1 Algorithm for Assembly of global stiffness matrix. 31

2 Algorithm for Multiscale Finite Element Method. 52

3 Algorithm for Time dependent Finite Element Method in deal.II. 70

4 Pseudo code for reconstruction basis algorithm in the Semi-Lagrangian

Multiscale Finite Element Method in deal.II. 120

5 Algorithm for Canopy parameterization in Time dependent Finite

Element Method. 194

6 Algorithm for Canopy parameterization in Time dependent Multiscale

Finite Element Method. 194

7 Algorithm for Adaptive Mesh Refinement Method. 267

Listings xxiv

Listings

1 The advection-diffusion AdvectionDiffusionProblem.cc source file. . . . 68

2 The advection-diffusion problem class definition and object functions in

advectiondiffusion_problem.hpp header file. 71

3 The advection-diffusion problem initialization of object functions in

advectiondiffusion_problem.hpp header file. 74

4 The advection-diffusion problem destruction

advectiondiffusion_problem.hpp header file. 74

5 Active cells in triangulation. 76

6 Mesh of arbitrary dimension. 77

7 Iterator for periodic faces. 78

8 Applying periodic faces on the boundaries. 78

9 Grid output of triangulation. 79

10 Initialization of a DoFHandler for Q1 elements. 80

11 Set Dirichlet boundary conditions. 80

12 Finite Element. 81

13 Quadrature formula for the evaluation of the integrals. 82

14 FEValues in deal.II. 83

15 Linear system. 84

16 Direct Solver. 85

17 Output. 87

18 Compute error. 88

19 Diffusion Coefficient. 90

20 Diffusion Coefficient implemented in assemble system. 92

21 New Feature find point owner rank. 96

22 Parallel Advection diffusion class define constructor and destructor. . . . 98

23 Parallel advection diffusion initialize object function. 99

24 Parallel Distributed Triangulation. 100

25 Parallel Degrees of Freedom. 101

26 Parallel Degrees of Freedom distributions of cells. 101

27 Parallel Degrees of Freedom initialize solution and right hand side. 101

28 Parallel affine constraints. 102

29 Parallel initializes the matrix and sparsity pattern. 103

30 Parallel assemble the system matrix and right hand side. 103

31 Parallel compress. 104

Listings xxv

32 Parallel solve the system. 105

33 Parallel output the result. 106

34 Write the output the result. 106

35 Parallel compute the error. 107

36 Diffusion multiscale basis class. 112

37 Compute the error for parallel code. 113

38 Send global weights to cell. 114

39 Collection of solution from all processor. 115

40 The advection-diffusion multiscale code in

advectiondiffsuion_multiscale.hpp header file. 123

41 C++ config file in config.h header file. 126

42 Cell basis map. 128

43 Basis Interface class in basis_interface.hpp header file. 134

44 The advection diffusion base code in advectiondiffusion_base.hpp
header file. 137

45 Get local basis. 137

46 Get basis from the cell id. 137

47 Semi-Lagrangian trace back mesh semilagrangian.hpp header file. . . . 139

48 Point finder in unit cell in get_domain_points.hpp header file. 140

49 Find point owner rank in Multiscale_FEFieldFunction.hpp header file. . 140

50 AdvectionDiffusionBasis_Reconstruction class in

reconstruction_assembler.hpp header file. 142

51 Flow chart of reconstruct basis code for global cell in

reconstruction_base.hpp header file. 149

52 Output the solution in main code. 152

53 Canopy parametrization in deal.II. 195

54 Dirichlet Condition for Test Case 5. 198

55 Initial Condition for Test Case 5. 198

56 Neumann Condition for Test Case 5. 199

57 Velocity for Test Case 5. 200

58 Diffusion coefficient for Test Case 5. 200

59 Class. 269

60 Structure. 275

61 The advection-diffusion problem header file. 276

Notations xxvi

Notations

Ω open set in Rn.

Γ ∂Ω.

ΓD part of the boundary on which Dirichlet conditions are prescribed.

ΓN part of the boundary on which Neumann conditions are prescribed.

∆ Laplace operator.

L2(Ω) space of square-integrable functions over Ω.

Hm(Ω) Sobolev space of L2 functions with square-integrable derivatives up to order m.

Hm
0 (Ω) subspace of Hm(Ω) of functions with generalized zero bounary conditions.

Ck(Ω) set of functions with continuous derivatives up to order k.

Ck
0(Ω) subspace of Ck(Ω) of functions with compact support.

||.||m Sobolev norm of order m.

|.| Sobolev semi-norm of order m.

||.||∞ supremum norm.

H1 dual space of H.

n exterior normal.

∂ ,∂n derivative in the direction of the exterior normal.

∇ f (∂ f/∂x1,∂ f/∂x2,,∂ f/∂xn).

div f ∑
n
i=1(∂ f/∂xi).

Vh finite element space.

ϕh basis function in Vh.

Th partition of Ω.

K (triangular or quadrilateral) element in Th.

K̂ reference element.

∑ set of linear functionals in the definition of affine families.

aε diffusion tensor.

cδ velocity.

1 Introduction 1

1 Introduction

"Give me a place to stand, and I will move the earth."

- Archimedes

1.1 Background and Motivation

According to UN estimates, more than 6.6 billion people (68%) will live in cities by

2050. The skylines of many large cities are already dominated by tall (> 50 m high)

and super-high (> 300 m high) buildings. As urban populations grow, tall buildings

will become increasingly common outside of city centers, especially if urban sprawl is

geographically limited [5]. Industrialization resulted in the emission of various gases

into the atmosphere that harmed the environment. Consequently, the Earth’s temperature

increased abnormally and weather patterns fluctuated. With the Paris climate agreement

from December 2015, climate policy and climate research have been given a powerful

impetus to curb climate change. In order to address the resulting new challenges,

the Cluster of Excellence for Climate, Climatic Change, and Society (CLICCS)
developed a long-term program that covers a broad range of topics ranging from

climate dynamics to climate-related social dynamics to transdisciplinary explorations of

human–environment interactions [4]. The human interaction with the Earth creates a

question about future climate possibilities. The A3: Canopies in the Earth System
sub-project examines local scale climate futures that are possible and plausible from a

global perspective. It explains the variability of climate in canopies, a crucial part of the

Earth’s System. According to [3], the purpose of this study is to answer the fundamental

question in climate modeling as to what extent and how much canopies modulate
climate in the lowest 100 meters of the atmosphere.

"Urban" refers to a complex buildings including houses, commercial buildings, roads,

industrial facilities, and city parks built in densely populated areas. Urban areas include

towns, cities, and suburbs. "Rural" refers to areas surrounding urban environments. Rural

areas may consist of natural areas, where human intervention is minimal or not evident,

or anthropogenically modified areas, such as agricultural and forestry areas. Water bodies

can also be found in rural areas. Urban heat islands (UHI) in the lower part of the

urban canopy layer (UCL), occur when cities experience much warmer temperatures than

nearby rural areas. There is a difference in temperature between urban and less-developed

rural areas due to how well the surfaces absorb and hold heat in each environment.

Humans directly experience the canopy layer UHI (CL-UHI) in the lower part of the

1 Introduction 2

atmosphere’s canopy layer. CL-UHI refers to the microscale to mesoscale warming

effect of cities on the atmosphere. CL-UHI is generally calculated from synchronous

differences in near-surface air temperatures between urban and non-urban areas. For both

areas, the typical measurement height is approximately 1.5 m above ground level (AGL).

Those who live in cities may be at risk from the CL-UHI effect, as exposure to high

temperatures, especially in hot weather, can increase morbidity and mortality. As

nighttime temperatures rise, CL-UHI directly affects human health [22].

In order to simulate CL-UHI intensities, three mathematical models are available. A

statistical model, an obstacle-resolving model, and a numerical weather prediction model

(NWP). With a spatial resolution of 1 m, the obstacle-resolving model (ORM) attempts to

resolve processes in the urban canopy layer (UCL). Model domains typically range from

1 to 100 km2. Due to Courant-Friedrichs-Lewy’s (CFL) criterion for ensuring numerical

method stability, the ORM’s time step is small due to its high resolution. The amount

of grid points also determines the computing power needed for integration. Due to this,

ORM runs are typically limited to a few hours or days. Most models cover only one or

two neighborhoods (1–2 km) and not the entire region of interest with urban and rural

components. If large cities that cover several grid cells are properly resolved, they can

have significant effects on the modeled atmosphere. A 1-km grid does not represent

urban effects at the neighborhood level since the model captures atmospheric processes

between 5 and 8 grid lengths. Mesoscale variations in CL-UHI intensity may be simulated

by models of regional atmospheric circulation and numerical weather prediction (NWP)

that include urban energy and momentum fluxes. With a grid resolution of 1 km, they

cover domains 102–103 km and more horizontally. These models can resolve mesoscale

atmospheric phenomena at these spatial scales. To avoid confusion, regional models

(RMs) are called regional scales (Table 1.1), which are used to classify urban forms [22].

1 Introduction 3

Scale Urban form Horizontal
length
(HL)

Vertical
extent

Related
parameters

Atmospheric
phenomena
HL scale

Micro

Facet (roof, wall,

road)

1-10 m UCL Materials Microscale γ

Building 10+ m UCL H Microscale γ

Street canyon 130-200 m UCL H, W Microscale

β

Local

Block (bounded by

canyons, interior

courtyards)

300-500 m RSL λp, Hmax,

σH

Microscale

α

Neighbourhood 1-2 km RSL,

ISL

λp, Hmax,

σH

Microscale

α

Meso Urban area

(city centre to

low-density

residential areas that

are contiguous)

10-100 km UBL λp, Hmax,

σH

Mesoscale γ ,

Mesoscale β

Regional Region (urban

and non-urban

surroundings)

> 100 km PBL λp, Hmax,

σH

Mesoscale

β ,

Mesoscale α

Note: The vertical extent depends on the urban form, where H: building/urban
canyon height; W: street/urban canyon width; λp: plan area fraction of buildings;
Hmax: maximum H; σH : standard deviation of H; UCL: urban canopy layer,
RSL: roughness sublayer, ISL: inertial sublayer, UBL: urban boundary layer, PBL:
planetary boundary layer.

Source: Modified from Cleugh and Grimmond (2012) and Oke et al. (2017).

Atmospheric phenomena characteristic scales based on Orlanski (1975).

Table 1.1: The characteristics of urban form are scaled based on the characteristics of
the surface [22].

If a model covers the entire globe, it is referred to as a global climate model (GCM).

Regional climate model (RCM) simulates the local climate using GCM outputs as inputs

to high-resolution climate models.

There are no operational weather forecasting models that consider urban characteristics

performed by the National Meteorological and Hydrological Services (NMHSs);

however, such models are already used by research institutions in 13 countries across

1 Introduction 4

Europe, Brazil, Canada, and northern China, with typical resolutions of 1–4 km. For

some models, they also calculate time-dependent 3D fields of temperature, airflow,

and humidity, as well as clouds, rain, and air pollutant concentrations. Additionally,

ORMs’ computational cost is influenced by their spatial extent, resolution, and time

step (CFL). All models simulate heat, moisture, and momentum exchanges using land

surface schemes. In order for CL-UHI to be effective, both urban and rural settings must

follow a consistent approach. Urban canopy parameterization (UCP) is based on a coarser

resolution than ORMs, so individual buildings and other urban structures (such as trees)

are not resolved. The North American Mesoscale Forecast System (NAM), which has a

horizontal grid spacing of 12 km, and the High Resolution Rapid Refresh (HRRR) model

have too coarse resolutions, which prevent direct CL-UHI calculations [22].

The urban extent of most GCMs is not sufficient to cover enough grid cells to be

meaningful, since the grid resolution is generally coarse (∼ 50 km to ∼ 200 km). At

the global level, many models do not provide adequate urban parameters or only provide

a simple representation of urban areas. To improve the model’s ability to determine

CL-UHI, it is necessary to refine the model and input data. Model runs with high

resolution (10 km) are now available, which will help to overcome some of the current

limitations for megacities. Grid resolution of RCMs (∼ 1 km to ∼ 50 km) is generally

better than that of GCMs. CL-UHI can be predicted using km-scale RCMs in larger cities

[22].

High-resolution climate projections are computationally expensive. Methods for

downscaling the CL-UHI include using statistical models along with GCM or RCM

projections [43]. For estimating the CL-UHI, GCM and RCM projections can also

be used. As ensemble techniques require less computing power, they can be used.

Bias correction must be applied to GCM/RCM input data in order to prevent statistical

models from being influenced by predictor bias. In contrast, statistical models are more

reliable when used with training data because they don’t account for changes in city

characteristics. Given that climatic timescales are likely to influence urban characteristics,

both must be considered. Due to the uncertainty associated with urban development

projections, scenarios are used instead. In modeling CL-UHI, the main limitations are the

mesoscale (O(1km)) and microscale (∼O(1m)) model resolutions. Despite advances in

expressing complexity within the urban canopy layer (UCL), many studies aim to improve

the flux from the UCL to the upper atmosphere in order to assess the NWP and the climate

of the city. In addition to correctly accounting for horizontal heterogeneity in urban areas,

the effects of individual tall buildings or small groups of tall buildings are not yet well

parameterized. There is still a challenge in simulating the interaction of urban vegetation

with other surfaces [22].

1 Introduction 5

1.2 Numerical Modelling of subgrid scales

Physical and dynamical processes occur in the atmosphere, which contribute to

atmospheric circulation, as described by numerical models. Our atmosphere and oceans

have a wide range of spatial and temporal scales. As a result, climate models must

consider the interactions among many scales, since each affects the others. Climate

sciences simulations typically use coarse grids because of computational constraints.

However, unresolved subscale information affects prognostic variables significantly and

cannot be ignored for reliable long-term predictions. Even if microscales are highly

heterogeneous, algorithms for modeling complex physical processes at macroscales

attempt to elicit their effective behavior at large scales. It would be safer to resolve

microscopic processes, but due to their computational cost, such a strategy is usually

prohibitive. Microscopic processes, however, have a significant influence on macroscopic

behavior and should not be overlooked [38]. Microscale effects are challenging to

incorporate into macro simulations in a mathematically consistent manner. This demands

mathematically rigorously justified multiscale methods [39].

The challenge lies in coming up with a solution that is computationally inexpensive and

capable of representing the impact of small-scale features, such as canopy, on a large

scale.

Figure 1.1: Scale Interaction between resolved and unresolved regions of climate
models [36].

1 Introduction 6

Figure (1.1) presents two regions of climate models: the dynamical core, which deals

with grid-resolved problems, and parameterizations, which represent sub-grid processes

that cannot be resolved by grids. If you want to project a large-scale effect onto a small

scale, it is normally done by interpolation. If you want to know whether a fine -scale

feature is relevant to a coarse-scale feature, refer to this as an upscale problem.

1.3 Multiscale Modelling

Complex systems in nature operate on a variety of length scales. In order to accurately

describe the true behavior of a system, multiple length scales are required as scientific

models become more complex. Multiscale modeling involves multiple scales. By using

multiscale models, global degrees of freedom can be reduced while flow and transport

processes are preserved as shown in Figure (1.2).

Figure 1.2: Multiscale Modelling at various scales [26].

In order to transfer information from the subgrid scale to the coarse grid, a mathematically

consistent method must be developed. Multiscale numerical modeling at multiple scales

offers a promising mathematical framework for achieving this goal. Although such

methods are well established in other communities, such as porous media, they are rarely

used in climate simulations. As basis functions resolve fine scale behavior, multiscale

finite element methods have been extensively investigated in the porous media community

[44] and [17]. Multiscale methods can be found in [39]. A variational multiscale method

divides the solution space into coarse and fine scale parts, and tests coarse scale functions

in one part and fine scale functions in another part of the variational form. Due to the use

of non-polynomial basis functions, the multiscale finite element method (MsFEM) and

variational multiscale method are closely related. The method is highly scalable since it

allows for massive parallelization. For a basis function to be constructed, it must satisfy

an equation leading order.

Multiscale finite element method is composed of two components: multiscale basis

1 Introduction 7

functions and global numerical formulations that combine multiscale-based functions.

A multiscale basis function captures the fine scale features of a solution. It is important

that these localized basis functions include information about scales that are smaller than

the local numerical scale determined by these localized basis functions. In particular, we

need to incorporate the features of the solution that can be localized. We need to use

functions to capture information about features to be separately included in the coarse

space. An accurate approximation of the solution [15] can be obtained by coupling

these basis functions. A key objective of this research is to examine and apply MsFEM

to urban climate simulations and take into account the advection-diffusion equation to

observe various flow parameters - such as velocity and pollutants - extending the work

in [38, 39, 40]. Here we use deal.II (Differential Equations Analysis Library) [7] a C++

program library that targets the computational solution of partial differential equations.

Massively parallel high-performance computing features are available for various

applications and have several advantages, including user control of mathematical

implementation, availability of different preconditioner solvers, and detailed

documentation. Using deal.II, we implemented a parallelization algorithm for

semi-Lagrangian meshes on different processors to support the application of MsFEM to

transport-dominated problems.

To implement the canopy effect in numerical weather prediction (NWP) or climate

models, parameterization schemes are developed for various models. In [10], the

numerical aspects of physical parameterization are discussed mainly within the context

of the ECMWF Integrated Forecasting System. Clouds and land cover were incorporated

into the equation by adding source terms. Different processes have different numerical

problems. Numerical design requires a thorough understanding of physics and the

interactions between different processes. It was found that a more accurate canopy

representation comes with a higher computational cost when different urban canopy

models are coupled with weather forecast models in [20]. Hence, it is necessary to

understand the effect of the canopy at various scales. The size, shape, urban infrastructure,

and climatic conditions of cities all play a significant role in the formation of the Urban

Heat Island (UHI). UHI is studied using various modelling techniques, but none of them

accurately represent the physical phenomena and complex urban infrastructure. Different

canopy models were discussed and their limitations were outlined in [35]. It is necessary

to investigate mathematical methods that can integrate mesoscale and microscale models

so that the Urban Heat Island (UHI) effect can be captured. A velocity and diffusion

coefficient effect below and above canopy height was included in the advection-diffusion

equation [28, 23].

1 Introduction 8

1.4 Knowledge Gap

In this study, we use a novel approach to show how buildings are represented as

obstructions with differences in diffusivity and the effect of tracer transport near the

building. The entire setup mimics the real situation of a single building under wind and

concentration conditions. The idea here is to implement a simple stationary obstacle in

the advection-diffusion equation, solved with high resolution finite element method, low

resolution finite element method and low resolution multiscale finite element method. The

result of the high resolution finite element method is then used to verify the experimental

results obtained in a wind tunnel experiment conducted in the Environmental Wind Tunnel

Laboratory (EWTL) at the University of Hamburg. A simple step toward multiscale finite

element method application can be observed here, from the microscale scale to larger

scales to overcome the limitations of modelling Urban Heat Island (UHI) as described in

[35]. The code development for fully parallelized code in C++ is developed in the deal.II

library. The code was developed for 2D and 3D cases.

Research Questions

These prompt questions will be addressed in the current study.

• Does MsFEM effectively account for the non-trivial subgrid scale structure in

canopies? i.e., when representation of canopies in the global km scale normally

the whole city is considered in a few grid cells and average effect is considered,

which does not take into account the local climate effects at the m scale.

• How much computational cost does MsFEM require for effective representation of

tracer transport?

• What is the high- resolution FEM model’s performance compared with real-world

wind tunnel data?

Figure (1.3) shows the significant phenomenon around canopy at 100 metres atmospheric

height.

1 Introduction 9

Figure 1.3: Canopy research in CLICCS A3 proposal.

1.5 Aim of the thesis

This study investigates and implements multiscale FEM methods in urban climate

simulations. We have used deal.II in the present study [7], a C++ program library for

solving partial differential equations. Various applications can be implemented using this

advanced mathematics library with high-performance computing capabilities. There are

a number of preconditioner solvers available, as well as detailed documentation, which

makes it a desirable mathematical implementation tool. The parallelization algorithm is

employed for semi-Lagrangian meshes on different processors. The implementation is

fully parallelized and is tested for millions of degrees of freedom but could also be run

across billions of processors. The new canopy parameterization considers the subgrid

scale feature using the diffusion coefficient as the building geometric. In the next step, it

is upscaled to a larger scale using a multiscale basis function.

As the diffusion coefficient, the canopies are implemented, extending the work done by

[38, 39, 40]. Diffusion coefficients have been previously described as the components of

the flow that advects. This study, shows how buildings are represented as obstructions

to show the difference in diffusivity and the effect of tracer transport on a building.

The entire setup mimics a real situation with a single building under wind and

concentration conditions. Our goal is to incorporate a simple stationary obstacle into

the advection-diffusion equation and verify the experimental results obtained in the

University of Hamburg’s Environmental Wind Tunnel Laboratory (EWTL). A simple step

toward multiscale finite element method application can be seen here, from microscale to

macroscale.

1 Introduction 10

1.6 Talks at conferences

Based on this work, the following publications were derived: 6 a set of talks given in

international conferences.

• Patel, H., Simon, K., and Behrens, J.: Massively Parallel Multiscale Simulations of

the Feedback of Urban Canopies, EGU General Assembly 2021, online, 19–30 Apr

2021, EGU21-2507, https://doi.org/10.5194/egusphere-egu21-2507,

2021.

• Heena Patel Konrad Simon and Jörn Behrens : Multiscale Method for Application

to Urban Canopies,PDEs on the Sphere 2021, online 17-21 May 2021, https:

//www.dwd.de/EN/specialusers/research_education/seminar/2021

/pdes_on_the_sphere/pdes_2020_en_node.html.

• Heena Patel Konrad Simon and Jörn Behrens : Multiscale Finite Element

Method for Advection Dominated Geoscientific Applications,SIAM Conference on

Mathematical and Computational Issues in the Geosciences (GS21), online, 21-24

June 2021, https://meetings.siam.org/sess/dsp_talk.cfm?p=1117

78.

• Patel, H., Simon, K., and Behrens, J.: Towards Canopy parameterization for

Multiscale Finite Element Method, EGU General Assembly 2022, Vienna, Austria,

23–27 May 2022, EGU22-3807, https://doi.org/10.5194/egusphere-e

gu22-3807,2022.

• Heena Patel: MultiScale Finite Element for Transport- Dominant Equations

Applied to Canopies, Hybrid:2022 SIAM Annual Meeting (AN22), Philadelphia,

Pennsylvania, USA. 11–15 July 2022, https://www.siam.org/Portals/0/C

onferences/AN/AN22/AN22_ABSTRACTS_V2.pdf.

• Heena Patel: Multiscale Finite Element Method for Urban Canopies in Climate

Models, Offline :2023 SIAM Conference on Mathematical & Computational Issues

in the Geosciences (GS23), 19-23 June 2023, https://meetings.siam.org/

sess/dsp_talk.cfm?p=129644.

https://doi.org/10.5194/egusphere-egu21-2507, 2021
https://doi.org/10.5194/egusphere-egu21-2507, 2021
https://www.dwd.de/EN/specialusers/research_education/seminar/2021/pdes_on_the_sphere/pdes_2020_en_node.html
https://www.dwd.de/EN/specialusers/research_education/seminar/2021/pdes_on_the_sphere/pdes_2020_en_node.html
https://www.dwd.de/EN/specialusers/research_education/seminar/2021/pdes_on_the_sphere/pdes_2020_en_node.html
https://meetings.siam.org/sess/dsp_talk.cfm?p=111778
https://meetings.siam.org/sess/dsp_talk.cfm?p=111778
https://doi.org/10.5194/egusphere-egu22-3807, 2022
https://doi.org/10.5194/egusphere-egu22-3807, 2022
https://www.siam.org/Portals/0/Conferences/AN/AN22/AN22_ABSTRACTS_V2.pdf
https://www.siam.org/Portals/0/Conferences/AN/AN22/AN22_ABSTRACTS_V2.pdf
https://meetings.siam.org/sess/dsp_talk.cfm?p=129644
https://meetings.siam.org/sess/dsp_talk.cfm?p=129644

1 Introduction 11

1.7 Publication

• Reviewer of CLICCS Hamburg Future Outlook Report 2021 https://www.clic

cs.uni-hamburg.de/results/hamburg-climate-futures-outlook/d

ocuments/cliccs-hamburg-climate-futures-outlook-2021.pdf

• Blog Research Article published in SIAM news 9 September 2022 for talk in SIAM

Annual Meeting USA

https://sinews.siam.org/Details-Page/multiscale-finite-eleme

nt-method-for-urban-canopies-in-climate-models

• Reviewer of CLICCS Hamburg Future Outlook Report 2023 https://www.clic

cs.uni-hamburg.de/results/hamburg-climate-futures-outlook/d

ownload.html

https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/documents/cliccs-hamburg-climate-futures-outlook-2021.pdf
https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/documents/cliccs-hamburg-climate-futures-outlook-2021.pdf
https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/documents/cliccs-hamburg-climate-futures-outlook-2021.pdf
https://sinews.siam.org/Details-Page/multiscale-finite-element-method-for-urban-canopies-in-climate-models
https://sinews.siam.org/Details-Page/multiscale-finite-element-method-for-urban-canopies-in-climate-models
https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/download.html
https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/download.html
https://www.cliccs.uni-hamburg.de/results/hamburg-climate-futures-outlook/download.html

2 Finite Element Method 12

2 Finite Element Method

"Just because we can’t find a solution it doesn’t mean that there isn’t one."

- Andrew Wiles

2.1 Poisson’s Equation

Let us consider Poisson’s equation (D). Readers unfamiliar with some basic mathematical

theories should refer to Appendix Section [I, II and III] .

(D)


−∇(a∇u) = f in Ω⊂ Rd

u = u0 on ΓD ⊂ ∂Ω

∇nu = g on ΓN ⊂ ∂Ω

(2.1)

The solution u to the boundary value differential equation (D) also is the solution to

the minimization problem (M) and the variational problem (V). In order to formulate

problems (M) and (V) we introduce the notation

(v,w) =
∫
Ω

v(x)w(x)dx,

for real-valued piecewise continuous bounded functions. We also introduce the linear

space

V = {v : v is a continuous function on Ω,∇v are piecewise continuous on Ω,

and v(x) = 0 on ΓD}

and the linear functional F : V → R given by

F(v) =
1
2
(∇v,∇v)− (f ,v).

The problems (M) and (V) are the following:

(M) Find u ∈V such that F(u)≤ F(v) ∀v ∈V ,

(V) Find u ∈V such that (∇u,∇v) = (f ,v) ∀v ∈V .

If u is the solution to (D), then u is the solution to the equivalent problems (M) and (V)

2 Finite Element Method 13

which we write symbolically as

(D)⇒ (V)⇔ (M).

For proof of above expression refer [21]. When u is the solution of (V) and in addition

satisfies a regularity assumption (u′′ is continuous), then u is the solution of (D). By

now, we can show that if u is the solution to (V) , then u satisfies the desired regularity

assumption and thus we have (V)⇒ (D), demonstrating that the three problems (D),(V)

and (M) are equivalent. Hence we will now construct the (V) form of (D).

We also introduce the linear space

Definition 1. Lebesgue space

The Lebesgue space L2(Ω) is defined by

L2(Ω) =

{
u : Ω→ R|

∫
Ω

|u(x)|2 dx < ∞

}
It is a Hilbert space with scalar product

< u,v >L2=
∫
Ω

uv dx

Definition 2. Sobolev space

The Sobolev space H1(Ω) is defined as

H1(Ω) =

u ∈ L2(Ω)|u has a weak gradient with
∫
Ω

|∇u(x)|2 dx < ∞


It is also a Hilbert space with the scalar product

< u,v >H1=
∫

Ω

uv dx+
∫
Ω

∇u ·∇v dx

Definition 3. The Sobolev space with zero boundary conditions H1
Γ
(Ω), where Γ ⊂ ∂Ω,

is defined as

H1
Γ(Ω) =

{
u ∈ H1(Ω)|u|Γ = 0

}

2 Finite Element Method 14

2.2 Steps for Solution of Poisson’s Equation using the finite
element method

Let’s consider a 2-dimensional unit square [0,1]× [0,1], the Neumann boundary condition

(ΓN) is at right and top edge while the Dirichlet boundary condition (ΓD) is at left and

bottom edge. We will use the deal.II [7] library with a template (template is a feature

provided by the C++ language in which the code basic structure is written once and

can be used to extend different dimensions of the problem with the change in template

parameter.) code that can be extended to 3 dimensions in order to solve the problem with

the finite element method as shown in Figure (2.1).

Figure 2.1: Unit square domain.

As shown in Figure (2.2), this is the flow chart to be followed in present Chapter 2 for

mathematical theory and later in Chapter 5 for implementation of code.

Figure 2.2: Steps of Finite Element Method.

2 Finite Element Method 15

The following section will walk you through all steps of the finite element method solution

for stationary diffusion equation.

2.2.1 Step 1: Strong formulation of Poisson’s equation

A partial differential equation with elliptic form exists in the domain. This is second

order stationary diffusion equation (2.2). The boundary conditions or boundary values

are imposed on the solution at the boundary.


−∇(a∇u) = f in Ω = [0,1]2

u = u0 on ΓD ⊂ ∂Ω

∇nu = g on ΓN ⊂ ∂Ω

(2.2)

where

• u = u(x) is unknown defined on domain Ω.

• a : Ω→ R(d×d) is some positive definite and symmetric coefficient matrix. a is the

average diffusion coefficient. Such a matrix can for example describe the diffusivity

of a certain medium (i.e., the domain) Ω⊂ Rd for a tracer gas.

• The source function f = f (x) is given. In other words, it is the concentration of

pollutants emitted from a building or chimney.

• ∂Ω of Ω is formed by the union of two subboundaries, ∂Ω= ΓD∪ΓN , ΓD∩ΓN = /0,

where ΓD is the Dirichlet boundary and ΓN is the Neumann boundary.

• Dirichlet boundary conditions specify a prescribed value for u on ΓD for the

unknown u. Neumann’s boundary condition ∇nu = g specifies a value for the

normal derivative of u on ΓN .

• ∇n stands for the exterior normal derivative, i.e., ∇nu = ∇u · n, where n stands for

the unit normal vector pointing always outward, and ∇u stands for the gradient of

u.

2.2.2 Step 2: Weak formulation of Poisson’s equation

Using a weak or variational formulation, we can replace the classical representation

equation (2.2).

Given the strong form

2 Finite Element Method 16

−∇ · (a∇u) = f (2.3)

We test the equation with any smooth test function (infinitely continuously

differentiable) that does not change the value of the solution on ΓD, i.e., the test function

must be zero on the boundary ΓD. The unknown function u is called the solution whereas

v is the so-called test function.

In order to obtain the weak form of the equation, we multiply the strong form by a test

function v, and then integrate the result.

−
∫
Ω

(∇ · (a∇u)) · v dx =
∫
Ω

f · v dx ∀v ∈V (2.4)

Now by integration by parts and with Green theorem we get,∫
Ω

a∇u ·∇v dx−
∫

∂Ω

a∇nu · v dS =
∫
Ω

f · v dx ∀v ∈V (2.5)

The set of test functions vanishes on ΓD.∫
Ω

a∇u ·∇v dx−
∫

ΓN

a ∇nu︸︷︷︸
=g

·v dS =
∫
Ω

f · v dx ∀v|ΓD = 0 (2.6)

The test space H1
0,ΓD

(Ω) is a Sobolev space with zero boundary condition that consists of

a set of test functions vanishing on ΓD to test with functions that do not alter the Dirichlet

boundary condition:

H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}

and the trial space H1
u0,ΓD

, containing the unknown function u, is defined similar to

H1
0,ΓD

(Ω) but with a shifted Dirichlet condition:

H1
u0,ΓD

(Ω) = {v ∈ H1(Ω) : v = u0 on ΓD}

The final weak form or variational form of equation (2.2) is then to find u in an appropriate

space such that

∫
Ω

a∇u ·∇v dx =
∫

ΓN

a g · v dS+
∫
Ω

f · v dx ∀v ∈ H1
0,ΓD

(Ω) (2.7)

The equation (2.7) only requires first order weak derivative of the solution u, rather than

2 Finite Element Method 17

the equation (2.2) requiring second order derivatives. One can easily see that any classical

solution is a solution to the weak form. The reverse statement is not necessarily true.

Without specifying the spaces where u and v are, the weak formulation can be written as

follows:

(V)


f ind u ∈ H1(Ω), such that

u = u0 on ΓD ⊂ ∂Ω∫
Ω

a∇u ·∇v dx =
∫

ΓN

a g · v dS+
∫
Ω

f · v dx ∀v ∈ H1
0,ΓD

(Ω)

(2.8)

In this formulation, the two boundary conditions appear at very different places: The

boundary condition ∇nu = g on ΓN is called natural since it is part of the variational

form and is enforced weakly while the condition u = g on ΓD is called essential.

Theorem 1. For each f ∈ L2(Ω) the weak form of the Possion equation (2.7) has a unique

weak solution u ∈ h+H1
ΓD
(Ω) (i.e., u has boundary values h on ΓD and g on ΓN) that

continuously depends on f, g, h [37].

2.2.3 Step 3: Finite Element Approximation

We now know about existence and uniqueness of (weak) solutions to the Poisson problem,

and we can introduce a very simple approximation. The solution space and the test

function space are simply replaced with finite-dimensional subspaces V ΓD
h ⊂H1(Ω). The

finite element problem is to find uh ∈Vh such that

∫
Ω

a∇uh ·∇vh dx =
∫

ΓN

a g · vh dS+
∫
Ω

f · vhdx ∀vh ∈V ΓD
h (2.9)

The parameter h > 0 usually indicates the quality of the approximation.

(Vh)


f ind uh ∈Vh, such that

u = u0 on ΓD ⊂ ∂Ω∫
Ω

a∇uh ·∇vh dx =
∫

ΓN

a g · vh dS+
∫
Ω

f · vh dx ∀v ∈V ΓD
h

(2.10)

This idea is called the Galerkin projection and transforms the infinite-dimensional

problem (V) into a finite-dimensional problem (Vh). For minimization problems (M),

this process of converting into (Mh) is called Ritz’s method.

2 Finite Element Method 18

2.2.4 Step 4: Derivation of a Linear System of Equations

Since Vh is finite-dimensional, say the dimension is denoted by dim Vh = n, for the solution

of Vh we can find a basis (vi)
n
i=1 of (Vh) and replace in equation (2.9) we get

∫
Ω

a∇uh ·∇vi dx =
∫

ΓN

a g · vi dS+
∫
Ω

f · vi dx ∀i = 1,,n (2.11)

The solution uh ∈Vh can also be expanded in terms of the basis

uh =
n

∑
j=1

u j v j(x) (2.12)

which we plug into equation (2.11) and get

n

∑
i=1

u j

∫
Ω

a∇v j ·∇vi dx =
∫

ΓN

a g · vi dS+
∫
Ω

f · vi dx ∀i = 1,,n (2.13)

which is similar to liner system of equation Ax = b is called Galerkin system.

Au = b (2.14)

where u = (ui)
n
i=1 and the system matrix and the right hand-side are given by

Ai j =
∫
Ω

a∇v j ·∇vidx bi =
∫

ΓN

a g · vi dS+
∫
Ω

f · vi dx (2.15)

The system matrix Ai j is called stiffness matrix and bi on the right-hand side is the load

vector. Stiffness matrix is symmetric and semidefinite.

2.3 Compute the discrete solution with building blocks of Finite
Element Method

Let us discuss some of the essential features of a computer program implementing a finite

element method. We will follow the Flow chart (2.2).

• Triangulations: Create mesh on the domain.

• Linear Finite elements: Define on each mesh element Ki := [xi,xi+1], i = 0, ...,n

polynomials for trial and test functions.

• Use the variational (or weak) form of the given problem and derive a discrete

version.

2 Finite Element Method 19

• Evaluate the arising integrals.

• Collect all contributions on all Ki leading to a linear equation system AU = B.

• Solve this linear equation system; the solution vector U = (u0, ...,un)
T contains the

discrete solution at the nodal points x0, ...,xn.

• Compute error of solution.

We will now see the finite element for 1 dimension and then 2 dimensions. Here 1

dimension is introduced in order to make things simple when we introduce 2 dimensions.

2.3.1 Finite elements in 1D

Triangulations in 1D

Consider the partition of 1D domain Ω = [0,1] into many small interval Ki = [xi,xi+1], i =

0,,n where 0 = x0 < x1 < ... < xn+1 = 1. The points xi are called nodes, The interval

Ki are called elements and their union T h =
⋃n

k=1 Ki is called mesh or triangulation (it

is not always triangles). The mesh parameter h is simply h := max j=0,.....,n+1h j where

h j = |x j+1− x j|.

Linear finite elements in 1D

Definition 4. Let Pk the space that contains all polynomials up to order k with coefficients

in R:

Pk :=

{
k

∑
i=0

aixi|ai ∈ R

}

For 1D case : The space of linear polynomials is

P1 := {a0 +a1x|a0,a1 ∈ R}. (2.16)

A finite element is now a function localized to an element Ki ∈ Th and is uniquely defined

by the values in the nodal points xi, xi+1 called local degrees of freedom.

We define the space Vh ⊂V as the space of all functions v such that

1. v is continuous on [0,1],

2. v|Ki is a linear polynomial for each i = 0,,n+1,

3. u = 0 on ΓD.

2 Finite Element Method 20

The space V (1)
h is then written as:

V (1)
h =Vh := {v ∈C[0,1]|uh|K ∈ P1,∀Ki = [xi,xi+1],uh = 0 on ΓD}.

Figure 2.3: A function v ∈Vh.

All function in Vh are known as shape functions and can be represented by hat functions.

Hat functions are linear functions on each element Ki. Connecting them gives a hat

geometrically. It is easy to show that the set of n functions in Vh as shown in Figure

(2.3) defined through

ϕ(x j) = δi j, i, j = 1,,n, (2.17)

Figure 2.4: Basis in 1 dimension.

where δi j is the Kronecker delta constitutes a basis in Vh as shown in Figure (2.4). hence

2 Finite Element Method 21

ϕ j(xi) = δi j =

1 j = i

0 j ̸= i i, j = 1,2,....,n
(2.18)

The aspect of one of these functions is shown in Figure (2.4) and (2.9).

In the piecewise linear case, we can show that

ϕi(x) =



0 x < xi−1,

(x− xi−1)/(xi− xi−1) xi−1 < x < xi,

1− (x− xi)/(xi+1− xi) xi < x < xi+1,

0 x≥ xi+1

Lemma 1. [42] The space Vh is a subspace of V := H1(Ω) and has dimension n

(because we deal with n basis functions). Thus the such constructed finite element method

is a conforming method. Furthermore, for each function vh ∈ Vh we have a unique

representation:

vh(x) =
n

∑
j=1

vh, jϕ j(x) ∀x ∈ [0,1], vh, j ∈ R.

The process to construct the shape functions

We define properties of a finite element as follows:

• Interval [xi,xi+1],

• A linear polynomial ϕ(x) = a0 +a1x,

• Nodal values at xi and xi+1 (the so-called degrees of freedom).

Let’s find the unknown coefficients a0 and a1 of the shape function. The key property

(2.18) using it we get

ϕ j(x j) = a0 +a1x j = 1,

ϕ j(xi) = a0 +a1xi = 0,
(2.19)

We solve a small linear equation system to find a0 and a1 as follows:(
1 x j

1 xi

)(
a0

a1

)
=

(
1

0

)

2 Finite Element Method 22

We get

a1 =−
1

xi− x j

and

a0 =
xi

xi− x j

Then

ϕ j(x) = a0 +a1x =
xi− x
xi− x j

(2.20)

2.3.2 Finite elements in 2D

Now, we divide the 2D domain Ω = [0,1]2 into triangles. The method of partitioning

domain Ω into triangles is called triangulation. The partitions can also be quadrilaterals.

The triangle must contain all sides but not more than that, and it must meet the following:

Definition 5. A partition Th =K1,K2, ...,Kn of Ω into triangular or quadrilateral elements

is called admissible provided the following properties hold

1. Ω =
⋃n

i=1 Ki.

2. If Ki∩K j consists of exactly one point, then it is a common vertex of Ki and K j.

3. If for i ̸= j,Ki∩K j consists of more than one point, then Ki∩K j is a common edge

of Ki and K j .

Conformality: Conformal meshes are characterized by a perfect match of edges and faces

between neighbouring elements. Non-conforming meshes exhibit edges and faces that

do not match perfectly between neighbouring elements, giving rise to so-called hanging

nodes or overlapped zones. Figure (2.5). a) conforming mesh, b) non-conforming mesh.

Figure 2.5: (a) Conformal mesh and (b) Non-Conformal mesh.

Let us construct the triangulation of Ω by subdividing Ω into a set Th = K1, ...,Kn of

non-overlapping triangles Ki, i = 1, ...,n, as shown in Figure (2.6) and (2.7). The points

xi, i = 1, ...,n are called nodes.

2 Finite Element Method 23

Ω =
⋃

K∈Th

K = K1∪K2......∪Kn,

such that no vertex of one triangle lies on the edge of another triangle.

Figure 2.6: 2D triangular mesh.

Figure 2.7: 2D square mesh.

The mesh parameter is defined as

h = max
K∈Th

diam(K),diam(K)= diameter of K ≃ longest side of K.

Vh = {v ∈C[0,1]2|vh|K ∈ P1,∀K ∈ Th,vh = 0 on ΓD}.

If we fix values on the vertices of the triangulation Th, then there will exist a unique v∈Vh

containing those values on the vertices. As a result, an element of Vh can be uniquely

2 Finite Element Method 24

determined by its values at the triangulation’s vertex points. Global degrees of freedom
is the coefficients at vertices define in the function uh. We will refer to the nodes as points

where values are taken at the vertices in this context.

Let’s now look at how triangulation nodes (or vertices) are numbered. The nodes of the

triangulation of our model domain are numbered in Figure (2.8).

Figure 2.8: Global numbering of nodes.

The space Vh consists of all piecewise linear functions in Ω and vanishes on Γ. As

parameters to describe a function uh ∈Vh we choose the values uh(Ni) of uh at the nodes

Ni, i = l, ...,n , of Th (see Fig (2.8)) but exclude the nodes on the boundary because uh = 0

on Γ. The corresponding ϕ j ∈Vh, j = 1,,n, then leads to property as follows as shown

in Figure (2.9):

ϕ j(xi) = δi j =

1 j = i

0 j ̸= i i, j = 1,2,....,n

Figure 2.9: Basis in two dimension.

It can seen from Figure (2.10) that the support of ϕ j (the set of points x for which ϕ j(x) ̸=

2 Finite Element Method 25

0) consists of the triangles with the common node N j (the green shaded area in Figure

(2.10)). A function v ∈Vh can be represented as

v(x) =
n

∑
j=1

v(N j)ϕ j(x). f or x ∈Ω∪Γ

Figure 2.10: Supports of nodal basis functions.

Linear finite elements in 2D

Let K be an element of Th . A P1(K) function is defined as

v(x1,x2) = a00 +a10x1 +a01x2

and coefficients ai j ∈ R

Figure 2.11: A triangle and its three vertices.

2 Finite Element Method 26

Definition 6. (Basis of P1) A basis of the polynomial space P1 is denoted by

P1 = {ϕ1,ϕ2,ϕ3}

with the basis functions

ϕ1 = 1− x1− x2,ϕ2 = x1,ϕ3 = x2.

for unit triangle with (0,0),(0,1) and (1,0) coordinate points. The dimension is dim(P1) =

3. As in Figure (2.11), marking its three vertices, we mean a function as follows

p ∈ P1 = {a00ϕ1 +a10ϕ2 +a01ϕ3|ai j ∈ R}

is uniquely determined at values of these points.

Definition 7. (Basis of Pn) A basis of the polynomial space Pn is denoted by

Pn =

{
v : v(x1,x2) = ∑

0≤i+ j≤n
ai jxi

1x j
2

}

The dimension is dim(Pn) =
(n+1)(n+2)

2 .

In deal.II we will use square mesh as shown in Figure (2.7) with Q1 finite element method

define as follows.

p ∈ Q1 = {a00ϕ1 +a10ϕ2 +a01ϕ3 +a11ϕ4|ai j ∈ R}

Definition 8. (Local degrees of freedom) Let K be a triangle with vertices ai, i = 1,2,3.

The values on vertices ai is called local degrees of freedom.

Theorem 2. [21] Let K ∈ Th be a triangle with vertices ai =(ai
1,a

i
2), i= 1,2,3. A function

v ∈ P1(K) is uniquely determined by the degrees of freedom definition (8), i.e, given the

values αi, i = 1,2,3, there is a uniquely determined function v ∈ P1(K) such that

v(ai) = αi

Algorithm (Construction of P1 shape function). For (nodal) basis function of P1(K) we

need to solve

v(ai) = a00 +a10ai
1 +a01ai

2 = αi, i = 1,2,3

2 Finite Element Method 27

for the unknown coefficients ai j. This requires three basis functions

ψi(a j) = δi j

One need to solve the following system of equation

ψi(a j) = a00 +a10a j
1 +a01a j

2 = α j, i, j = 1,2,3

Then we construct local basis function with

ψi(x) = ai
00 +ai

10x1 +ai
01x2 = αi, i = 1,2,3

The nodes ai is sufficient to obtain a globally continuous function, which is in particular

also continuous at the edges between two elements. Extending to all edges of Th be

conclude that the function v is a globally continuous function and that indeed v ∈C[0,1]2.

Definition 9. (C0 elements). The class of finite elements that fulfills the continuity

condition at the edges are called C0 elements.

Definition 10. (Basis of Q1) A basis of the polynomial space Q1 is denoted by

Q1 = {ϕ1,ϕ2,ϕ3,ϕ4}

with the basis functions

ϕ1 = 1,ϕ2 = x1,ϕ3 = x2.ϕ4 = x1x2

The dimension is dim(Q1) = 4.

p ∈ P1 = {a00ϕ1 +a10ϕ2 +a01ϕ3 +a11ϕ4|ai j ∈ R}

Definition 11. (Finite Element.) A finite element introduced by Ciarlet is a triple

(K,Pk,∑) where

• K ⊂ Rd open, bounded connected and with piece-wise smooth boundary is a cell

(e.g., triangle, quadrilateral, tetrahedron etc).

• Pk is a finite-dimensional space of simple functions (mostly polynomials) on Rd ,

often called shape functions.

• ∑=σi
dimPK
i=1 is a basis of space Pk , the so-called degrees of freedom (dof).

2 Finite Element Method 28

2.3.3 Assemble System

Assembly involves looping over all cells since all cells must be assembled together. The

elements AK
i j(ϕi,ϕ j) in the stiffness matrix A are computed by summing the contributions

from the different triangles:

AK
i j(ϕi,ϕ j) = ∑

K∈T h

AK(ϕi,ϕ j) = ∑
K∈T h

∫
K

a∇ϕi∇ϕ j dx (2.21)

and

bi =
∫

ΓN

a g ·ϕi dS+
∫

Ω

ϕi f dx = ∑
K∈T h

∫
K∩Γ

a g ·ϕi dS+ ∑
K∈T h

∫
K

ϕi f dx (2.22)

Let Ni, N j and Nk be the vertices of the triangle K. We define element (local) stiffness

matrix for K as follows:
AK(ϕi,ϕi) AK(ϕi,ϕ j) AK(ϕi,ϕk)

AK(ϕi,ϕ j) AK(ϕi j,ϕ j) AK(ϕ j,ϕk)

AK(ϕi,ϕk) AK(ϕ j,ϕk) AK(ϕk,ϕk)

 (2.23)

The global stiffness matrix A is computed by first computing the element stiffiness

matrices for each K ∈ Th and then sum the contribution from each triangle according to

equation (2.21). Similarly the right-hand side b is computed. The process of computing

A and b by summation is called assembly of A and b.

Let Ni, i = 1,,M and Kn,n = 1,,N be enumerations of the nodes and triangles of

Th, respectively. Then Th may be defined with two arrays Y (2,M) and Z(3,N), where

Y (j, i), j = 1,2, are the coordinates of nodes Ni and Z(j,n), j = 1,2,3, are the number of

the vertices of triangle Kn. Consider the following triangulation where the numbers of the

triangles are denoted by a square see the Figure (2.12).

2 Finite Element Method 29

Figure 2.12: The 23rd triangle and their vertex numberings.

As shown in Figure (2.12), the assembly process requires a given number of triangles.

The numbering order is only used for computations and does not affect the final results.

Z =




1 6 2 2 11 7 7 3 3 16 12 12 8 8 4 4

2 7 7 3 12 12 8 8 4 17 17 13 13 9 9 5

6 11 6 7 16 11 12 7 8 21 16 17 12 13 8 9

17 17 13 13 9 9 5 18 18 14 14 10 19 19 15 20

22 18 18 14 14 10 10 23 19 19 15 15 24 20 20 25

21 22 17 18 13 14 9 22 23 18 19 14 23 24 19 24





Computation of the element stiffness matrices

Now to compute the element stiffness matrices with elements AK
i j given by equation (2.21).

The matrix AK
i j ̸= 0 if both Ni and N j are nodes of K. Let Kn ∈ Th. Then Z(α,n),α = 1,2,3

are the numbers of the vertices of Kn, and the xi-coordinates, i= 1,2, for these vertices are

given by Y (i,Z(α,n)),α = 1,2,3. Since the vertices of Kn are known one can compute

the element stiffiness matrix An = (An
αβ

),α,β = 1,2,3, for element Kn

An
αβ

=
∫

Kn

∇ψα ·∇ψβ dx,

2 Finite Element Method 30

where ψα is the linear function on Kn that takes the following values:

ψα(NZ(β ,n)) =

1 α = β

0 α ̸= β α,β = 1,2,3.

Figure 2.13: The basis function ψ j associated with K.

The stiffness matrix (2.23) is computed using the basis functions ψi, ψ j and ψk which are

restricted to the triangle K. By denoting these by ψi, ψ j and ψk, we have that each ψ is a

linear function on K that takes one value at one vertex and vanishes at the other two. The

basis functions on the triangle K are ψi, ψ j and ψk as shown in Figure (2.13). When w is

a linear function on K, then w is written as

w(x) = w(Ni)ψi(x)+w(N j)ψ j(x)+w(Nk)ψk(x), x ∈ K (2.24)

Similarly b is computed as

bn
α =

∫
Kn

f ψα dx+
∫

K∩Γ

a g ·ψα dS, α = 1,2,3.

In terms of code. we need subrotine that computes the element stiffiness matix An =(An
αβ

)

and the right hand side bn = (bn
α) for a given triangle Kn. This process is done by looping

over all elements of Kn and store local matrix.

Assembly of global stiffness matrix

For global stiffness matrix A = (Ai j) we loop over all elements Kn and add their

contributions from different Kn as follows for A(M,M) and b(M) arrays for matrix A and

right hand side b :

2 Finite Element Method 31

Set A(i, j) = 0, b(i) = 0, i, j = 1, ..M.

For n = 1, ...,N fetch An = (An
αβ

) and bn = (bn
α) from the local matrix and set

A(Z(α,n),Z(β ,n)) = A(Z(α,n),Z(β ,n))+An
αβ

,

b(Z(α,n)) = b(Z(α,n))+bn
α α,β = 1,2,3.

Algorithm 1 Algorithm for Assembly of global stiffness matrix.
Let Kn, n = 0, ...N be an element and let i and j be the indices of the degrees of freedom

(namely the basis functions).

The basic algorithm to compute all entries of the system matrix and right hand side vector

is:

for all elements Kn with n = 0, ...,N

for all DoFs i with i = 0, ...,n+1

for all DoFs j with j = 0, ...,n+1

Ai j+=
∫

Kn
∇ϕi(x)∇ϕ j(x)dx

where + = means that entries with the same indices i, j are summed.

For the right hand side, we have

for all elements Kn with n = 0, ...,N

for all DoFs i with i = 0, ...,n+1

bi+=
∫

Kn∩Γ

a g ·ϕi dS+
∫

Kn

ϕi(x)dx.

Again + = means that only the bi with the same i are summed.

In order to optimize the evaluation of the nodal basis functions and their gradients (as well

as to increase performance and accuracy), all calculations are performed on a reference

cell.

The reference element for P1 finite element method

Let (K̂,PK, ∑̂) be a finite element where K̂ is the reference triangle in the (x̂1, x̂2)- plane

with vertices at â1 = (0,0), â2 = (1,0) and â3 = (0,1), as shown in Figure (2.14).

Figure 2.14: The reference element.

2 Finite Element Method 32

2.3.4 2-D elements: coordinate transformation

Let ∑̂ as the Langrage type degree of freedom, i.e. ∑̂ is a set of function values at certain

points âi ∈ K̂, i = 1,,n. Let F be a one to one mapping of K̂ onto the traingle K in the

(x1,x2) plane as shown in Figure (2.15) with inverse F−1

Let us now define transformation F by

F(x̂) =
3

∑
j=1

a j
ϕ j(x̂), x̂ ∈ K̂,

and let us write

K = F(K̂) = x ∈ R2 : x = F(x̂) = a1 +(a2−a1)x̂1 +(a3−a1)x̂2, x̂ ∈ K̂

Then F : K̂ → K and F(â j) = a j, j = 1,2,3 the points â j in the x̂-plane are mapped

onto the points â j in the x-plane as shown in Figure (2.15).

Figure 2.15: The real element in left and reference element right.

The local basis functions on K are given by

ϕ j = ϕ̂ j(F−1(x)), j = 1,,6

where ϕ̂ j, j = 1,2,3 is basis for P1(K̂).

To compute the integrals

aK
i j =

∫
K

∇ϕi∇ϕ j dx, i, j = 1,2,3.

2 Finite Element Method 33

By chain rule
∂ϕi

∂x j
=

(ϕ̂i(F−1(x)))
∂x j

=
∂ ϕ̂i

∂ x̂1

∂ x̂1

∂x j

∂ x̂2

∂ x̂ j

so that

∇ϕi = J−T
∇ϕ̂i,

where J−T is the transposed Jacobian of the mapping F−1,

J−T =

[
∂ x̂1
∂x1

∂ x̂2
∂x1

∂ x̂1
∂x2

∂ x̂2
∂x2

]

To transform the integral in equation 2.3.4 to an integral K̂ using the mapping F : K̂→ K,

we get

J−T = (J−1)T =
1

detJ
J0,

where

J0 =

[
∂F2
∂ x̂2

−∂F2
∂ x̂1

∂F1
∂ x̂2

−∂F1
∂ x̂1

]

so finally

aK
i j =

∫
K̂
(J0∇ϕ̂i)(J0∇ϕ̂ j)

dx̂
|detJ|

(2.25)

Thus the matrix element aK
i j can be computed by evaluating an integral over the reference

element K̂ .

2 Finite Element Method 34

The reference space for Q1 finite element method

Figure 2.16: Q1 Basis Function.

2.3.5 Computing with quadrature rules

The stiffness matrix (2.25) is computed using suitable quadrature formula. In practice,

such integrals would be evaluated using a numerical quadrature formula of the form:

∫
K

f (x)dx∼
q

∑
j=1

f (y j)w j (2.26)

where the w j, j = 1, ...q, are certain weights and the y j are points in the element

K. Based on the complexity of the problem (we are dealing with a very simple model

problem), all computations can be performed on the reference element or directly on the

triangle K. Here are two quadrature rules for triangles: the three-point rule with vertices∫
K

ϕ ≈ areaK
3

(
ϕ(pK

1)+ϕ(pK
2)+ϕ(pK

3)
)

and the midpoints approximation∫
K

ϕ ≈ areaK
3

(
ϕ(mK

1)+ϕ(mK
2)+ϕ(mK

3)
)

where mK
α are the midpoints of the edges of K. If ϕ is a polynomial of degree one, the first

formula gives the exact value. The second formula is even better : if ϕ is a polynomial

of degree two, the midpoint formula is exact. The local matrix contribution aK
i j can be

2 Finite Element Method 35

approximated using quadrature as follows

aK
i j = ∑

q
∇ϕ̂i(xq) ·∇ϕ̂ j(xq)wq, 0≤ i, j < q, (2.27)

where xq are a set of quadrature points and wq are the corresponding weights.

In deal.II using Q1 finite element with square mesh 2D basis function as shown in Figure

(2.17) and (2.18).

Figure 2.17: 2D basis for square mesh in deal.II.

Figure 2.18: 2D basis for square mesh with mesh in deal.II.

2.3.6 Compute the error

Lemma 2. (Céa’s lemma) Let V be a Hilbert space, Vh be a linear subspace of V . Let

the bilinear form a(·, ·) and the linear form f (·) satisfy the conditions of the Lax-Milgram

lemma . Let u ∈ V be the solution to the variational problem, and uh ∈ Vh satisfy the

2 Finite Element Method 36

equation

a(uh,ϕ) = f (ϕ) ∀ϕ ∈Vh.

Then, there exist a constant C independent of Vh, such that

||u−uh|| ≤C inf
ϕ∈Vh
||u−ϕ||

where || · || is the norm of V .

According to Céa’s lemma, the accuracy of a numerical solution depends essentially on

choosing function spaces which are capable of approximating the solution u well. For

polynomials, the order of approximation is determined by the smoothness of the solution.

Céa’s lemma holds for Poisson’s equation when using the finite element method.

2.4 Abstract form of Finite Element Method

Lemma 1.1 (The Lax-Milgram Lemma). Assume the following

1. V is a Hilbert space;

2. a(,) is continuous on V , i.e. there exists C > 0 such that

|a(u,v)| ≤C||u||V ||v||V ∀u,v ∈V ;

3. a(,) is V –coercive on V , i.e. there exists α > 0 such that

|a(u,v)| ≥ α||u||2V ∀u ∈V ;

4. l() is continuous on V , i.e. there exists M > 0 such that

|l(u)| ≤M||v||V ∀v ∈V ;

Then, there exists a unique solution u ∈V to a(u,v) = l(v) ∀v ∈V such that

||u||V ≤
M
α
||l||V ′

2 Finite Element Method 37

Let us consider the general problem
Lu = f in Ω⊂ Rd

u = u0 on ΓD ⊂ ∂Ω

∇nu = g on ΓN ⊂ ∂Ω

This is the strong form. Now let write the weak form for that let V be a Hilbert space with

inner product < ., . >, then

< Lu,v >=< f ,v >

Define a(u,v) =< Lu,v >

f (v) =< f ,v >

where a is a bilinear form(not necessarily an inner product) and f is a linear form(a

functional):

a : V ×V̂ → R

F : V̂ → R

The vartional problem becomes: find u ∈V such that

a(u,v) = f (v) ∀v ∈ V̂

For a discrete solution: find uh ∈ V̂h

a(uh,v) = f (v) ∀v ∈ V̂h

Let {ϕi}n
i=1 be a basis for Vh. Take an Anzats

uh(x) =
n

∑
j=1

u jϕ j(x)

Insert this to the vartional form, we get(
n

∑
j=1

u jϕ jϕ̂i

)
= F(ϕ̂i) i = 1,2,,n

n

∑
j=1

u ja(ϕ jϕ̂i) = F(ϕ̂i) i = 1,2,,n

2 Finite Element Method 38

As previous, uh is computed by solving a linear system

n

∑
j=1

Ai ju j = bi i = 1,2,,n

Au = b

where Ai j = a(ϕ j, ϕ̂i),bi = F(ϕ̂i)

2.5 Galerkin Orthogonality

Given a(u,v) = F(v) ∀v ∈V

a(uh,v) = F(v) ∀v ∈Vh ⊂V

Using these results and the linearity of the bilinear form, we get

a(u−uh,v) = a(u,v)−a(uh,v) = F(v)−F(v) = 0 ∀v ∈Vh

or written symbolically Using these results and the linearity of the bilinear form, we get

u−uh ⊥a Vh

This property is called Galerkin orthogonality. The error e = u− uh is orthogonal to the

test space Vh. Thus, uh is the best approximation of u in Vh as shown in Figure (2.19).

Figure 2.19: Galerkin orthogonality.

Here we conclude the mathematical description of finite element method. The reader is

then required to read Chapter 5 and view the whole code in the Github https://gith

ub.com/heena008/Diffusion-Equation-with-MsFEM.io.

https://github.com/heena008/Diffusion-Equation-with-MsFEM.io
https://github.com/heena008/Diffusion-Equation-with-MsFEM.io

3 Multiscale Finite Element Method 39

3 Multiscale Finite Element Method

"Divide each difficulty into as many parts as is feasible and necessary to

resolve it."

- Rene Descartes

3.1 Introduction Multiscale Modeling

Multiscale modeling involves modeling two or more scales coupled bidirectionally, with a

finer scale enclosing a coarser scale. Multiscale models are based on the idea of reducing

global degrees of freedom while preserving important features of flow and transport

processes.

Figure 3.1: Canopy representation at various scales. Figure is courtesy of Laurens
Ganzeveld [41].

There are scaling issues for surface exchange outlined in Figure (3.1), but the idea here is

to show canopy representation at different scales.

Our focus will be on problems of various scales. A transition from a finer to a coarser scale

is called upscaling, while a transition from a coarser to a finer scale is called downscaling.

3 Multiscale Finite Element Method 40

A classic upscaling strategy is the asymptotic expansion (homogenization) and volume

averaging. An effective parameter in the upscale equations usually compensates for the

loss of fine-scale information due to averaging. A typical methodology for downscaling

specifies boundary conditions at the boundaries of a coarse-grid block and solves a

fine-grid problem in each domain. Boundary conditions were either obtained directly

from coarse-scale problems or rescaled from coarse-scale results using fine-scale material

parameters. Alternatively, fine-grid boundary conditions can be specified along the

boundaries of the downscaling domain.

3.1.1 Introduction to Multiscale in canopy

• Canopy dimensions are in meters and time steps are in seconds.

• Climate models that have a mesh size in km and time steps in minutes cannot

resolve canopy at given computational cost.

• Hence Canopy is parameterized and their coupling to climate models does not

represent the subgrid process correctly.

Figure 3.2: Scales in Canopy [33].

Figure (3.2) shows that canopy resolution ranges from microscale, where flow around two

buildings is considered, to mesoscale, where time steps are in seconds. The flow around

3 Multiscale Finite Element Method 41

neighboring buildings can also be resolved to some extent on a local scale. Mesoscale,

however, when the entire city is considered, the mesh would be kilometers and the time

steps would be minutes. There is not computationally feasible to considering a fine mesh

that resolves scale and flow. In climate models, canopy features are taken into account

through parametrization, and the way they are coupled to larger scales by averaging does

not represent them accurately.

3.2 Homogenization theory

Homogenization theory studies the limiting behavior uε → u0 as ε → 0. Weak

convergence and averaging procedures share many features with this procedure. The

content in these section is from the reference book [44]. Consider the second-order elliptic

equation.

− ∂

∂xi

(
ai j(x/ε)

∂

∂x j

)
uε +a0(x/ε)uε = f , uε|∂Ω

where x is also called the macroscopic variable, (x/ε) the microscopic variable. The

matrix aε = ai j(x/ε) diffusion coefficient can be any second order tensor that is bounded

and positive definite, ai j(y) and a0(y) are 1-periodic in both variables of y, ξ ∈ RN is any

vector, that satisfy ai j(y)ξiξ j ≥ αξiξ j, with α > 0, a0 > α0 > 0, and bounded.

Here we have used the Einstein summation notation; that is a repeated index means

summation with respect to that index.

Homogenization theory studies the limiting behavior uε → u0 as u→ 0.

The main task is to find the homogenized coefficients, a∗i j and a∗0, and the homogenized

equation for the limiting solution u.

− ∂

∂xi

(
a∗i j

∂

∂x j

)
u0 +a∗0u0 = f , u0|∂Ω = 0

We define the bilinear form

aε(u,v) =
∫
Ω

aε
i j(x)

∂u
∂x j

∂v
∂xi

dx+
∫
Ω

aε
0uv dx.

The elliptic problem can also be formulated as a variational problem: find uε ∈ H1
0

aε(uε ,v) = (f ,v), for all v ∈ H1
0 (Ω),

3 Multiscale Finite Element Method 42

where (f ,v) is the usual L2 inner product,
∫
Ω

f v dx .

Consider the domain Ω with oscillation ε as shown in Figure (3.3).

Figure 3.3: Domain Ω with oscillation ε .

Let multiscale differential or integral equation be given by

Fε(uε) = 0 (3.1)

where Fε represents the differential equations with initial and boundary conditions.

Analytically, we are interested in the following the limit process

lim
ε→−0

uε = ū, F̄(ū) = 0 (3.2)

The type of convergence could be weak or strong and in different norms depending on the

application. F represents an effective equation for large scale.

One-dimensional problem

Let Ω = (x0,x1) and take a0 = 0. We have

− d
dx

(
a(x/ε)

duε

dx

)
= f , in Ω,

where uε(x0) = uε(x1) = 0, and a(y)> α0 > 0 is y-periodic with period y0.

By taking v = uε in the variational problem, we have

||uε ||1,Ω ≤C.

Therefore one can extract a subsequence, still denoted by uε , such that

uε → u in H1
0 (Ω) weakly.

3 Multiscale Finite Element Method 43

Next, we introduce

ξε = aε

duε

dx

Because aε is bounded, and duε

dx is bounded in L2(Ω), so ξε is bounded in L2(Ω).

Moreover, because −dξε

dx = f , we have ξε ∈ H1(Ω). Thus we get

ξε → ξ in L2(Ω) stronly.

so that
1
aε

ξε → m(1/a)ξ in L2(Ω) weakly.

Furthermore, we note that ξε/aε = duε/dx. Therefore, we arrive at

du0

dx
= m(1/a)ξ .

On the other hand, −dξε/dx = f implies −dξ/dx = f . This gives

− d
dx

(1
m(1/a)

du0

dx

)
= f

This is the correct homogenized equation for u.

Note that a∗ = 1/m(1/a) is the harmonic average of aε .

It is in general not equal to the arithmetic average āε = m(a) [44]. It shows that climate

models are over diffused due to incorrect averaging.

Multiscale asymptotic expansions.

It is not possible to generalize the above analysis to multidimensions. A multiscale

expansion technique is presented in this subsection for obtaining homogenized equations.

We find for uε(x) in the form of asymptotic expansion

uε(x) = u0(x,x/ε)+ εu1(x,x/ε)+ ε
2u2(x,x/ε)+,

where the functions u j(x,y) are periodic in y with period 1.

Denote by Sε the second-order elliptic operator

Sε(x) =−
∂

∂xi

(
ai j(x/ε)

∂

∂x j

)

Differentiating a function ϕ(x,x/ε) with respect to x, we have

3 Multiscale Finite Element Method 44

∂

∂x j
=

∂

∂x j
+

1
ε

∂

∂y j

where y is evaluated at y = x/ε . With this notation, we can expand Sε as follows,

Sε(x) = ε
−2S1 + ε

−1S2 + ε
0S3, (3.3)

where

S1 =−
∂

∂yi

(
ai j(y)

∂

∂y j

)
,

S2 =−
∂

∂yi

(
ai j(y)

∂

∂x j

)
− ∂

∂xi

(
ai j(y)

∂

∂y j

)
,

S3 =−
∂

∂xi

(
ai j(y)

∂

∂x j

)
+a0.

(3.4)

Substitute the expansions for uε and Sε into Sεuε = f , and equating the terms of the same

power, we get

S1u0 = 0, (3.5)

S1u1 +S2u0 = 0, (3.6)

S1u2 +S2u1 +S3u0 = f . (3.7)

Equation (3.5) can be written as

− ∂

∂yi

(
ai j(y)

∂

∂y j

)
u0(x,y) = 0,

where u0 is periodic in y. u0(x,y) is independent of y; that is u0(x,y) = u0(x). This

simplifies equation (3.6) for u1,

− ∂

∂yi

(
ai j(y)

∂

∂y j

)
u1 =

(
∂

∂yi
ai j(y)

)
∂u
∂x j

(x).

Define χ j = χ j(y) as the solution to the following cell problem

∂

∂yi

(
ai j(y)

∂

∂y j

)
χ

j =− ∂

∂yi
ai j(y),

3 Multiscale Finite Element Method 45

where χ j is periodic in y. The general solution of (3.6) for u1 is then given by

u1(x,y) = χ
j(y)

∂u
∂x j

(x)+ ũ1(x).

Finally, the equation u2 is given by

∂

∂yi

(
ai j(y)

∂

∂y j

)
u2 = S2u1 +S3u0− f . (3.8)

The solvability condition implies that the right-hand side of equation (3.8) must have

mean zero in y over one periodic cell Y = [0,1]× [0,1]; that is∫
Y

(S2u1 +S3u0− f)dy = 0.

This solvability condition for second-order elliptic PDEs with periodic boundary

condition requires that the right-hand side of equation (3.8) have mean zero with respect

to the fast variable y. This solvability condition gives rise to the homogenized equation

for u:

− ∂

∂xi

(
a∗i j

∂

∂x j

)
u+m(a0)u = f , (3.9)

where m(a0) = (1/|Y |)
∫
Y

a0(y)dy and

a∗i j =
1
|Y |

∫
Y

(ai j−aik
∂ χ j

∂yk
)dy

 (3.10)

The homogenized coefficients are often difficult to compute when the periodic cell

problem requires very fine discretization. It is useful to know the bounds for the

homogenized coefficients in this case. It is difficult to find accurate bounds for

heterogeneities. A number of works have been published that compute bounds and

determine optimal microstructures. For homogenized solutions, one can avoid solving the

cell problems if there are tight bounds [44]. Hence we cannot use homogenized process

for our problem.

3.3 Multiscale Finite Element Method

A MsFEM consists of two major parts: multiscale basis functions and a global numerical

formulation that combines these multiscale basis functions. Multiscale features of the

3 Multiscale Finite Element Method 46

solution are captured by basis functions. They contain information about scales defined

by scales smaller (and larger) than the local numerical scale defined by the basis functions,

which are important for multiscale features of the solution. Global formulations provide

an accurate approximation of the solution by coupling these basis functions.

3.4 Objective of Multiscale Finite Element Method

• To resolve H > ε , we solve some coarse scale global problems as shown in Figure

(3.4).

• By considering the microstructure, significant features of the solution are captured

(to resolve h < ε).

• On a fine scale, the problem is fully resolved, but it is not fully coupled.

• The global problem is the reduced degree of freedom system.

Figure 3.4: Objective of Multiscale Method.

3.5 Steps of Multiscale Finite Element Method

Given a second-order diffusion equation in a domain Ω ∈ Rd with d ∈ {2,3}. The aim is

to find u : Ω→ R solution of the following equation.

3 Multiscale Finite Element Method 47

Figure 3.5: Mesh in Multiscale Finite Element Method.

−∇ · (aε(x)∇u) = f in Ω (3.11)

where f is a given function and aε(x) is the diffusion tensor. Additionally, aε(x) is

assumed to be positive definite and symmetric. There are multiple scales within aε(x).

The next step is to discuss some basic multiscale basis functions and global formulations.

3.5.1 Localization

To begin, discretize the global domain Ω into a coarse mesh. Let TH represent the usual

partition of Ω into finite elements (triangles, quadrilaterals, etc) and let N be the total

number of vertices in TH . This partition is called the coarse grid. In the middle of the

Figure (3.5) shows a partition TH of size H. The finite element is a quadrilateral in two

dimensions. As shown in Figure (3.6) we have a coarse grid and we denote K as the

coarse block consist of four vertices on which the coarse-grid nodal values are calculated.

On the partition TH(K) on this coarse mesh there exist a regular mesh Th that consists of

fine elements for each fine block η , each with height and width h in Figure (3.6).

3 Multiscale Finite Element Method 48

Figure 3.6: Coarse Mesh and fine mesh in Multiscale Finite Element Method.

3.5.2 Basis functions

Basis functions: Basis functions are constructed to capture the multiscale features of the

solution. Let xi be the interior nodes of the mesh TH and ϕ0
i be the nodal basis of the

standard finite element space VH = span{φ 0
i } in Figure (3.6). Let us assume VH to be

consists of piecewise linear functions. Let us denote ωi = supp(ϕ0
i) and define ϕi with

support in ωi as following

−∇

(
a
(x

ε

)
∇ϕi

)
= 0 in K,ϕi = φ

0
i on ∂K, ∀K ∈ TH , K ⊂ ωi (3.12)

The multiscale basis functions ϕi, i = 1,2, ...,N, are solutions obtained as the result of

solving the above local problems given by equation (3.12). The multiscale basis function

coincides with standard finite element basis functions at the boundary of coarse elements

3 Multiscale Finite Element Method 49

K, and are oscillatory in the interior of each coarse-grid block. The local problem (3.12)

defined on element K ⊂ ωi is totally independent of that defined on the adjacent element

K′ ⊂ ωi. As a result, local problems can be solved simultaneously on different elements

(blocks like K) of TH . Therefore, it reduces computing time and memory requirements.

This phase is called offline phase. The local subproblems (3.12) are given appropriate

boundary conditions and solved on the fine scale h < ε to determine the multiscale finite

element. The finite-dimensional space PH is spanned by ϕi.

PH = span{ϕi}

The multiscale modified basis function obtained as a result of (3.12) is shown in Figure

(3.7) where one basis function is illustrated on coarse mesh TH . We see here the fine scale

oscillation added to the solution in form of wiggles on the basis. Figure (3.8) shows all

four basis functions on coarse mesh obtained by solving fine scale local problems.

Figure 3.7: One modified Basis in 2 dimension.

3 Multiscale Finite Element Method 50

Figure 3.8: Four modified Basis in 2 dimension on coarse mesh.

3.5.3 Global coarse-grid problem

Global formulation: The next step is to discuss the global formulation of MsFEM. This is

called online phase. Using multiscale basis functions to represent the fine-scale solution

reduces the computation dimension.

The approximation uH of the solution is :

uH(x) = ∑
i

ui
Hϕi(x) ∀x ∈Ω (3.13)

with ui
H the solution value at the nodal point xi of the coarse mesh. When uH is substituted

into the fine-scale equation, the resulting system is projected onto the coarse-dimensional

space to find ui
H . To do this, multiply the resulting fine-scale equation with the

coarse-scale test function.

In the case of Galerkin finite element methods, when the basis functions are conforming

(PH ⊂ H1
0 (Ω)), the coarse-scale problem is: find uH ∈ PH such that

∑
K∈TH

∫
K

aε ∇uH ·∇vH =
∫

Ω

f vH ∀vH ∈ PH (3.14)

where vH is the coarse-scale test functions. Therefore, the resulting linear equation system

determines the solution on the coarse grid by determining the values of the solution at the

3 Multiscale Finite Element Method 51

nodes of the coarse-grid block.

Substituting uH(x) (3.13) in the equation (3.14) leads to a linear system of equations

involving nodal values ui
H . The matrix system obtained is as follows:

Aunodal = b (3.15)

where

A = (Ai j),Ai j = ∑
K∈TH

∫
K

aε∇ϕi ·∇ϕ
0
j , (3.16)

unodal = (u1, ...,ui, ...) are the nodal values of the coarse-scale solution

b = (bi), bi =
∫
Ω

f ϕ
0
i

Boundary conditions are not discretized here. The stiffness matrix A is sparse, just like

in standard finite element methods. In order to compute the stiffness matrix, we must

compute the integrals for (Ai j) and (bi). Calculating (Ai j) requires the evaluation of

integrals on a fine grid. You can use a simple quadrature rule, for example, one point

per fine grid cell. In this case,
∫

K∈TH
aε∇ϕi ·∇ϕ0

j ≈ ∑η∈Th⊂K∈TH (aε∇ϕi)|η ·∇ϕ0
j where

η is a fine grid block and (aε∇ϕi)|η is the value within a fine grid block η . We can

reuse the pre-computed matrix A when the source term changes, but the matrix b must be

recomputed.

A global formulation can generally be modified easily and various formulations based

on finite volume, mixed finite element, discontinuous Galerkin finite element, and other

methods can be derived.

Error Estimates in MsFEM

Theorem: Let uε ∈ H2(Ω) solve the model problem and uε
H ∈ PH be the computed

solution by the multiscale FEM.

Then if H < ε

||uε −uε
H ||H1(Ω) ≤CH(|u|H2(Ω)+ || f ||L2(Ω)

If H > ε and u0 ∈ H2∩W 1,∞ is the solution to the homogenized problem then

||uε −uε
H ||H1(Ω) ≤C(H + ε)|| f ||L2(Ω)+C

(√
ε

H

)
||u0||W 1,∞(Ω)

from [[44], Ch 6].

Following are the Algorithm for MsFEM.

3 Multiscale Finite Element Method 52

Algorithm 2 Algorithm for Multiscale Finite Element Method.

1. Setup mesh (coarse).

2. Setup system and constraints.

3. For each coarse grid block K

• For each vertex i

• Solve equation (3.12) ϕi

• End for.

End do

4. Assemble system and right hand side for coarse mesh

5. Solve for coarse problem u

3.5.4 Assembly of stiffness matrix.

In order to assemble the stiffness matrix, fine-scale basis functions can be used to

represent multiscale basis functions. In code development, this is particularly useful.

Let’s suppose that multiscale basis function (in discrete form) ϕi can be written as

ϕi = di jϕ
0, f
j

where D = (di j) is a matrix and ϕ
0, f
j are fine-scale finite element basis functions

(e.g., piecewise linear functions). The ith row of this matrix contains the fine-scale

representation of the ith multiscale basis function. Substitute this expression into the

formula for the stiffness matrix di j in equation (3.13), we have

(Ai j) =
∫

Ω

aε ∇ϕi ·∇ϕ jdx = dil

∫
Ω

aε ∇ϕ
0, f
l ·∇ϕ

0, f
m dx d jm.

The stiffness matrix for the fine-scale problem is denoted by A f = (a f
lm),

a f
lm =

∫
Ω

aε ∇ϕ
0, f
l ·∇ϕ

0, f
m dx, we have

A = DA f DT

Similarly, for the right-hand side, we have b =
∫

Ω
ϕidx = Db f , where b f = (b f

i),

b f
i =

∫
Ω

f ϕ
0, f
i dx. This is used in the assembly of the stiffness matrix.

3 Multiscale Finite Element Method 53

One-dimensional example.

A one-dimensional stiffness matrix and basis functions can almost explicitly be computed

(see 3.15). Let’s consider a simple example

−(aε(x)u′)′ = f (3.17)

u(0) = u(1) = 0, where refers to the spatial derivative. We assume that the interval [0,1] is

divided into N segments 0 = x0 < x1 < x2 < < xi < xi+1 < ... < xN = 1. The multiscale

basis function for the node i is given by

(aε(x)ϕ ′i)
′ = 0

with the support in [xi−1,xi+1]. The boundary conditions for the basis function ϕi are

defined as ϕi(xi−1) = 0, ϕi(xi) = 1 in the interval [xi−1,xi]. The boundary conditions

for the basis function ϕi are defined as ϕi(xi) = 1, ϕi(xi+1) = 0 in the interval [xi,xi+1].

We compute aεϕ ′i . It is seen from Equation (3.17) that aεϕ ′i is constant with different

constant in interval [xi−1,xi] and [xi,xi+1].

For the interval [xi−1,xi] the constant can be computed as ϕi = const/aε(x) and then

integrating over the interval we get

aε(x)ϕ ′i =
1∫ xi

xi−1
dx

aε (x)

and for [xi,xi+1].

aε(x)ϕ ′i =−
1∫ xi+1

xi
dx

aε (x)

The stiffness matrix A (3.16) is given by

ai j =
∫ xi

xi−1

aεϕ
′
i (ϕ

0
j)
′dx+

∫ xi+1

xi

aεϕ
′
i (ϕ

0
j)
′dx

=
1∫ xi

xi−1
dx

aε (x)

∫ xi

xi

(ϕ0
j)
′dx− 1∫ xi+1

xi
dx

aε (x)

∫ xi+1

xi

(ϕ0
j)
′dx

Taking the values
∫ xi

xi−1
(ϕ0

i−1)
′dx = −1,

∫ xi
xi−1

(ϕ0
i)
′dx = 1,

∫ xi+1
xi

(ϕ0
i+1)

′dx = −1,∫ xi+1
xi

(ϕ0
i+1)

′dx = 1, we have

ai,i−1 =−
1∫ xi

xi−1
dx

aε (x)

, aii =
1∫ xi

xi−1
dx

aε (x)

+
1∫ xi+1

xi
dx

aε (x)

, ai,i+1 =−
1∫ xi+1

xi
dx

aε (x)

3 Multiscale Finite Element Method 54

As result we get the stiffness matrix has a tridiagonal form and the linear system is (3.15),

where bi =
∫ 1

0 f ϕ0
i dx.

Figure (3.9) and (3.10) illustrates the solution and a few multiscale basis functions.

Figure 3.9: One-dimensional multiscale basis function. Figure courtesy of [12].

Figure 3.10: One-dimensional basis functions and the solution. Figure courtesy of [44].

3 Multiscale Finite Element Method 55

Figure 3.11: Multiscale Finite Element Method Flow Chart.

In Figure (3.11) is a Flow chart illustrating the implementation of the multiscale Finite

Element Method. It is apparent from the purple coloration of the global formulation that

it is the same as the standard finite element code in Chapter 2, while the green coloration

denotes the Multiscale Basis Function solving local problems shown in section (3.5.2),

and the Assemble system local to global is exactly what’s explained in (3.5.4). The reader

is then required to read Chapter 5 and view the whole code in the Github https://gi

thub.com/heena008/Diffusion-Equation-with-MsFEM.io.

Basis in 2 dimension

The Figures (3.12 and [3.13) shows the basis in 2 dimesion is obtained from solving

stationary diffusion equation using the Multiscale finite element method. In Figure (3.14)

we compare the basis of standard Finite element method and Multiscale finite element

method we see that for Standard Finite element basis does not capture fine scale feature

for which one needs very high resolution. The basis of the multiscale finite element

method captures fine scale features and upscales them using a modified basis function.

https://github.com/heena008/Diffusion-Equation-with-MsFEM.io
https://github.com/heena008/Diffusion-Equation-with-MsFEM.io

3 Multiscale Finite Element Method 56

Figure 3.12: Basis in 2 dimension for Multiscale finite element method.

Figure 3.13: All four basis of two-dimensional basis functions for Multiscale finite
element method.

3 Multiscale Finite Element Method 57

Figure 3.14: Two dimensional basis functions for Finite Element Method and
Multiscale Finite Element Method.

Here we conclude Chapter 3 and move towards an advection-diffusion multiscale finite

element solution in the next chapter.

4 Advection-Diffusion Equation 58

4 Advection-Diffusion Equation

"It is more important to have beauty in one’s equations than to have them

fit experiment."

- Paul Dirac

4.1 Semi-Lagrangian Multiscale Finite Element

In 2 and 3 dimensions, consider the following equation for advection and diffusion.

∂tu+ cδ ·∇u = ∇ · (aε∇u)+ f in Td× [0,T]∼ [0,1]d× [0,T]

u(x,0) = u0(x)
(4.1)

and

∂tu+∇ · (cδ u) = ∇ · (aε∇u)+ f in Td[0,1]d× [0,T]

u(x,0) = u0(x)
(4.2)

• where velocity is given by cδ .

• This diffusion matrix aε(x, t) represents the canopy in our case in a positive definite

way (on a uniform ε scale and point-wise in x).

• (4.1) does not conserve the tracer u if f = 0, but (4.2) conserves it if f = 0.

• u0 is the initial condition

• Td is the d-dimensional torus which is topologically equivalent to [0,1]d .

• Bold letters for the vectors and tensors independent of the dimension.

• Indices δ > 0 and ε > 0 represents large variations on small scales that are not

resolved on coarse scales H > 0 of the multiscale method.

• h≪ H is the local scale that can resolve the variations in the coefficients.

Further details about the assumption and mathematical analysis where done in work [39,

40]

A standard MsFEM method works for elliptic and parabolic stationary problems.

Figure (4.1) illustrates how high advection creates artificial boundary layers, since in

4 Advection-Diffusion Equation 59

multiscale finite elements flow blocks at coarse cell boundaries, resulting in blocked flow

information.

Figure 4.1: Solution (A) is for FEM and (B) is for MsFEM.

A Lagrangian framework was proposed in [39] to overcome this problem. Higher

dimensions and high velocity do not work with it. Since the semi-Lagrangian method

is unconditionally stable, it is used in [39] which would be used in our problem.

Figure 4.2: Semi-Lagrangian algorithm for high advection.

Figure (4.2) is the flow chart for the high advection problem. It is an extension of the flow

chart for the elliptic problem presented in Chapter 3.

Weak formulation is obtained by multiply equation (4.1) by ϕms on both side and integrate

over Td we get

∫
Td

ϕ
ms ·∂tu dx+

∫
Td

cδ ϕ
ms ·∇u dx =

∫
Td

∇ϕ
ms · (aε∇u) dx+

∫
Td

ϕ
ms · f dx (4.3)

The global time step in 2D/3D.

With multiscale basis functions in conformal finite element settings, we approximate the

global solution at each time step using a spatially coarse subspace V H(t) ⊂ H1(Td) in

4 Advection-Diffusion Equation 60

which the solution u is sought (almost everywhere). The definition of a finite-dimensional

space is as follows:

V H(t) = span{ϕH,ms
j (., t)| j = 1,,NH} (4.4)

Let the solution uH(x, t) in terms of the basis at time t ∈ [0,T] as follows

uH(x, t) =
NH

∑
j=0

uH
j (t)ϕ

H,ms
j (x, t) (4.5)

Replacing the above equation in equation (4.3) with ϕms
i basis function we get

∴
∫
Td

ϕ
H,ms
i (x, t) ·∂t

(
NH

∑
j=0

uH
j (t)ϕ

H,ms
j (x, t)

)
dx

+
∫
Td

cδ (x, t)ϕ
H,ms
i (x, t) ·∇

(
NH

∑
j=0

uH
j (t)ϕ

H,ms
j (x, t)

)
dx

=
∫
Td

∇ϕ
H,ms
i (x, t) ·aε(x, t)∇

(
NH

∑
j=0

uH
j (t)ϕ

H,ms
j (x, t)

)
dx+

∫
Td

ϕ
H,ms
i (x, t) · f dx

(4.6)

Now use chain rule in first term

∴
d
dt

NH

∑
j=0

∫
Td

ϕ
H,ms
i (x, t) ·uH

j (t)ϕ
H,ms
j (x, t) dx+

NH

∑
j=0

uH
j (t)

∫
Td

ϕ
H,ms
i (x, t) ·∂tϕ

H,ms
j (x, t) dx

=
NH

∑
j=0

uH
j (t)

∫
Td

∇ϕ
H,ms
i (x, t) ·aε(x, t)∇ϕ

H,ms
j (x, t) dx

−
NH

∑
j=0

uH
j (t)

∫
Td

cδ (x, t)ϕ
H,ms
i (x, t) ·∇ϕ

H,ms
j (x, t) dx+

∫
Td

ϕ
H,ms
i (x, t) · f dx

(4.7)

Rearrange the terms

∴
NH

∑
j=0

d
dt

uH
j (t)

(∫
Td

ϕ
H,ms
i (x, t) ·ϕH,ms

j (x, t) dx

)
+

NH

∑
j=0

uH
j (t)

(∫
Td

ϕ
H,ms
i (x, t) ·∂tϕ

H,ms
j (x, t) dx

)

=
NH

∑
j=0

uH
j (t)

∫
Td

∇ϕ
H,ms
i (x, t) ·aε(x, t)∇ϕ

H,ms
j (x, t) dx

−
NH

∑
j=0

∫
Td

cδ (x, t)ϕ
H,ms
i (x, t) ·∇ϕ

H,ms
j (x, t) dx+

∫
Td

ϕ
H,ms
i (x, t) · f dx

(4.8)

4 Advection-Diffusion Equation 61

M(t)
d
dt

uH(t)+N(t)uH(t) = A(t)uH(t)+ f H(t)

uH(0) = uH,0
(4.9)

where

Ai j(t) =
∫
Td

∇ϕ
H,ms
i (x, t) ·aε(x, t)∇ϕ

H,ms
j (x, t) dx

−
∫
Td

cδ (x, t)ϕ
H,ms
i (x, t) ·∇ϕ

H,ms
j (x, t) dx

The mass matrix is given by

Mi j(t) =
∫

T d
ϕ

H,ms
i (x, t) ·ϕH,ms

j (x, t) dx

f H(t) contains forcing and boundary conditions and the initial condition uH,0 is the

projection of u0 ∈ L2(Td) onto V H(0). Note that equation (4.9) contains a derivative

of the mass matrix:

Ni j(t) =
∫
Td

ϕ
H,ms
i (x, t) ·∂tϕ

H,ms
j (x, t) dx

Discretization is first done in space then time as basis are time dependent. The implicit

Euler method is used for time discretization.

M(tn+1)un+1−M(tn)un

∆t
+[(1−θ)N(tn)un(tn)+θN(tn+1)un+1(tn+1)] = [(1−θ)A(tn)un(tn)

+θA(tn+1)un+1(tn+1)]+ [(1−θ) f n(tn)+θ f n+1(tn+1)]

(4.10)

For θ = 1 we have implicit Euler Scheme.

M(tn+1)un+1−M(tn)un

∆t
+[N(tn+1)un+1(tn+1)] = [A(tn+1)un+1(tn+1)]+ [f n+1(tn+1)]

(4.11)

M(tn+1)un+1 = M(tn)un +∆t[A(tn+1)un+1(tn+1)−N(tn+1)un+1(tn+1)+ f n+1(tn+1)]

(4.12)

For θ = 0 we have explicit Euler Scheme.

4 Advection-Diffusion Equation 62

M(tn+1)un+1−M(tn)un

∆t
+[N(tn)un(tn)] = [A(tn)un(tn)]+ [f n(tn)] (4.13)

M(tn+1)un+1 = M(tn)un +∆t[A(tn)un(tn)−N(tn)un(tn)+ f n(tn)] (4.14)

For θ = 0.5 we have Crank-Nicolson.

M(tn+1)un+1−M(tn)un

∆t
+0.5[N(tn)un(tn)+N(tn+1)un+1(tn+1)] = 0.5[A(tn)un(tn)

+A(tn+1)un+1(tn+1)]+0.5[f n(tn)+ f n+1(tn+1)]

(4.15)

M(tn+1)un+1 = M(tn)un +0.5∆t[A(tn)un(tn)+A(tn+1)un+1(tn+1)−N(tn)un(tn)+

N(tn+1)un+1(tn+1)+ f n(tn)+ f n+1(tn+1)]

(4.16)

4.2 The Reconstruction Mesh

Trace back

From time tn+1, trace back an Eulerian cell K ∈ TH where the basis and solution are

unknown to tn. We know the solution un on this distorted cell, but we don’t know the

multiscale basis ϕ̃i, i = 1,2. Backward Euler method is used to solve ordinary differential

equations [40].

• Trace back the local cell tn→ tn−1 (parallel).

• This gives an initial value problem.

d
dt

x̂l(t) =−cδ (x̂l(t),−t), t ∈ [−tn+1,−tn]

x̂l(−tn+1) = xl

• It is solved by backward Euler.

for each xl and then take x̃l = x̃l(−tn) , see Figure (4.3) for an illustration. The process is

then parallelized.

4 Advection-Diffusion Equation 63

Figure 4.3: Eulerian coarse cell with its fine mesh is traced back with one time step
where global solution is taken to reconstruct a basis.

Basis Reconstruction

You must compute the solution un on K̃ by tracing the point xl of K ∈ TH back to its origin

x̃l in the coarse distorted cell K̃. A solution is reconstructed from previous time step tn by

looping all coarse edges of distorted cell.

Evolve Basis

Now reconstructed basis on each coarse cell obtained from previous time step K̃ is a

conformal basis does not belong on the coarse Eulerian grid TH that we initially fixed.

Now we solve evolution problem on K̃ to get the i-th basis at tn+1 on TH .

4 Advection-Diffusion Equation 64

d
dt

ϕK,i +(∇̃ · c̃δ)ϕΓ,i = ∇̃ · (ãε∇̃ϕK,i) in K̃× [tn, tn+1]

ϕK,i(., t)|Γ̃l
= ϕ̃

Γ̃l ,i(., t), t ∈ [tn, tn+1]

ϕK,i(x̃, tn) = ϕ̃K̃,i(x̃)

(4.17)

Local reconstruction step is semi-Lagrangian and the global step is completely Eulerian.

The final step ϕK,i(x̃, tn+1) on K̃ can be again be mapped onto the Eulerian element K ∈ TH

to obtain the desired basis function ϕK,i(x̃, tn+1) ∼ ϕ
n+1
K,i (x) at the next time step. We

conclude Chapter 4 with all of the mathematical theory we need for the next chapters.

5 Software Concepts 65

5 Software Concepts

"The invisible pieces of code that form the gears and cogs of the modern

machine age, algorithms have given the world everything from social media

feeds to search engines and satellite navigation to music recommendation

systems."

- Hannah Fry

5.1 Introduction

Mathematical models in science and engineering are solved with scientific computing.

A number of libraries have been developed to solve partial differential equations. In

the last few decades, many finite element-based libraries have been developed to solve

complex problems using robust algorithms that require minimal code while still allowing

for maximum mathematical control. There are several open-source libraries, including

DUNE [13], GetDp [14], GetFEM [31], FreeFEM [18], FENICS Project [25, 24],

Sundance (C++) [27], Analysa (C++) [8] and Feel++ (C++) [29, 30]. They either rely on

a domain-specific language (Python, the freefem language, etc.) to describe PDEs, or they

are geometry-dependent, or they do not express mathematics well, and use programming

details to hide mathematics. Readers unfamiliar with C++ concepts should read Appendix

Section IV.

5.2 The deal.II workflow

In deal.II, one can create fully functional finite element models using C++.

Figure 5.1: Finite Element setup in deal.II. Figure courtesy deal.II website [7].

5 Software Concepts 66

A C++ library aimed at solving partial differential equations is used in the present study,

deal.II, the Differential Equations Analysis Library. There are a number of applications

that can benefit from the powerful high-performance computing features of this advanced

mathematical library. Besides having control over the mathematical implementation,

different preconditioned solvers are available, and detailed documentation is available.

As shown in Figure (5.1) here are the main components of the FEM you need to follow.

• Triangulation: Geometry creation and mesh generation are performed by

triangulation.

• DoFHandler : The module assigns degrees of freedom to each triangulation cell

according to the finite element space described by a finite element object.

• Finite elements: It allows access to shape functions and includes all shape functions

functionality.

• Quadrature: It provides quadrature point locations for the unit cell [0,1]d , d being

dimension 1, 2, or 3 as well as the quadrature point’s weight.

• Mapping : This function maps a point between a unit cell and a physical cell.

• FEValues: It is used for assembling matrices or vectors. It connects elements,

quadrature, and mappings.

• Linear System: The classes in this module deal with linear algebra, i.e., matrices,

vectors, and linear systems

• Linear Solver: This item contains linear solvers with iterative, direct, and

eigenvalue algorithms.

• Output: The output is divided into three types. Besides creating meshes, it can also

output matrices in a graphical format, which will be used to visualize data.

Code folders workflow

In the advection diffusion folder as shown in Figure (5.2) , there are four folders out of

which two main subfolders for code, namely:

1. The include folder contains files with a .hpp format, which contains various header

files and code that can be used by files in another folder, titled source.

• Predefined header files define functions that you can include with a

preprocessor directive #include followed by < >. As an example, the

<iostream> predefined header file in C++ defines input-output functions.

• A user-defined header file is one that is created by the user and is included by

5 Software Concepts 67

using #include in the program followed by "".

2. The source folder contains files of the format .cc, which are source code files

containing C++ programs.

3. The remaining two folders namely doc and documentation are used for generating

documentation for the code. There is also README.md file for the instructions of

the code, and a LICENSE file for the software license that tells others what they

can and cannot do with your source code.

It also contains a CMakeLists.txt file for compiling the code, which means all the header

files from the include folder are compiled with the .cc files in the source folder and an

object file is created (the code is transformed into machine language). Object files are

then run and the output is converted from machine language to program output.

Figure 5.2: Main folder of code with this sub-folders.

The source folder contains two files as shown in Figure (5.3) . One is the main code file

named AdvectionDiffusionProblem.cc and the other is the (CMAKELists.txt) file.

Figure 5.3: Sub-folder source that constant C++ files.

Some of the header files in the include folder as shown in Figure (5.4) will be discussed

in more detail in the later sections. In deal.II, the advection diffusion equation is solved

5 Software Concepts 68

using the standard finite method and the multiscale finite method.

Figure 5.4: Sub-folder include that constant header files.

Now let understand the file AdvectionDiffusionProblem.cc code.

1 // User defind Headers

2

3 // File that contains code for Multiscale finite element method implementation

4 #include "advectiondiffusion_multiscale.hpp"

5 // File that contains code for Finite element method implementation

6 #include "advectiondiffusion_problem.hpp"

7 //−−//

8 //C++ Predefined Headers

9 //File include standard library in C++

10 #include <cstdlib>

11 //In C++, fstreams is a library that creates files, writes to files, and reads data from files.

12 #include <fstream>

13 //In C++, iostream is a library that declares objects that control reading from and writing to the standard streams.

14 #include <iostream>

15 //−−//

16 int main()

17 {

18 bool is_periodic = false;

19 unsigned int n_refine = 3;

20 const int dim =2;

21

22 // Solution for Low resolution Standard Finite Element Method

23 Timedependent_AdvectionDiffusionProblem::AdvectionDiffusionProblem<dim>

24 advectiondiffusion_problem_2d_coarse(n_refine, is_periodic);

5 Software Concepts 69

25 advectiondiffusion_problem_2d_coarse.run();

26

27 // Solution for High resolution Standard Finite Element Method

28 Timedependent_AdvectionDiffusionProblem::AdvectionDiffusionProblem<dim> advectiondiffusion_problem(7, is_periodic);

29 advectiondiffusion_problem.run ();

30

31 // Solution for Low resolution Multiscale Finite Element Method

32 using ReconstructionType = Timedependent_AdvectionDiffusionProblem::BasicReconstructor<dim>;

33

34 using BasisType = Timedependent_AdvectionDiffusionProblem::SemiLagrangeBasis<dim, ReconstructionType>;

35

36 Timedependent_AdvectionDiffusionProblem::AdvectionDiffusionProblemMultiscale<dim, BasisType>

37 advectiondiffusion_ms_problem_2d(n_refine, is_periodic);

38 advectiondiffusion_ms_problem_2d.run();

39

40 return 0;

41 }

Listing 1: The advection-diffusion AdvectionDiffusionProblem.cc source file.

Let us now understand the code in Listing (1).

• The green sentences in the code are comments that start with // and /* */ . This

helps us understand what the following line does in the code.

• In code, the violet represents variables or parameters in C++.

• The red is the user-defined header file.

• The blue lines in the code are C++ objects and functions in deal.II.

• Line 4 and 6 in the code represent adding user-defined header files to the code.

There are two header files that contain implementation code for multiscale and

standard finite element method solutions. Lines 1, 3 and 5 are comments regarding

lines 4 and 6.

• Lines 9 to 14 are needed to include C++ header files. Here, the green lines represent

the purpose of lines 10, 12 and 14.

• A program’s start is always called main in Line 16. Line 20 is for the periodic

boundary condition set to false, i.e. it is not periodic. The refinement level is

indicated by line 21. Here we have chosen 3 for coarse mesh. Line 22 is for code

dimension. Here it is set to 2.

• Line 24 to 27 is for Standard finite element coarse mesh here Namespace (refer

Appendix IV [5]) Timedependent_AdvectionDiffusionProblem follows with class

(refers Appendix IV [2]) AdvectionDiffusionProblem, which has dimensions to

be considered, followed by object advectiondiffusion_problem which takes into

account dimension and periodic boundary condition. Then at line 27 run function

is used on object to get the program result.

5 Software Concepts 70

• Line 29 to 32 does the same thing, but with a finer resolution mesh, since 7

represents how many refinements the code takes.

• The lines 38 to 42 are for the multiscale finite element method, while the lines 35 to

36 are for the first basis reconstruction type. Basically, it is the same way to call the

function and object as above, except the object runs multiscale finite element code.

Remark: From now the deal.II related terms will be colored as deal.II and C++ related

terms will be colored as C++. Also, the stationary diffusion equation solution discussed

in Chapter 1 and Chapter 2 will follow the same implementation style except the

time-dependent term and the advection term are zero. The workflow folder style for the

diffusion equation solution is also similar to above.

Algorithm (3) is used to solve the advection-diffusion equation using a standard finite

element method.

Algorithm 3 Algorithm for Time dependent Finite Element Method in deal.II.
Step1 Triangulation : Generate mesh

Step2 Degree of Freedom : Setup and associate DoFs on the mesh

Step3 Initialize with initial condition

Assemble the system :

time_step =0,

Choose theta (1 = implicit time stepping, 0 = explicit time stepping and 0.5 for

Crank-Nicolson time stepping)

while (time≤ Time_Maximum)

Finite Element : Define type of finite element

Quadrature : Define quadrature rule

FEValues : Mapping from reference to real cell.

Loop over cells

Loop over DoFs

Step4 Linear System: Collect Ax=b from previous step

Linear Solver : Compute U = A−1b with direct solver or use iterative solver

Step5 Output : Output solution

Solve for n time steps with time =time +time_step as updated time

End while loop

Now we will see the file advectiondiffusion_problem.hpp in the include folder and see

how the deal.II function works step by step as shown in Algorithm (3).

5 Software Concepts 71

Listing (2) is advectiondiffusion_problem.hpp header file that contains different types

of constructor (refer Appendix IV [2]) is used in order to initialize the object and then

after the program is complied it gets destroyed destructors is called in order to delete the

function. This process is done to save memory. The text in green are the comments that

gives the explanation of all the class created, followed by public class (refer Appendix IV

[2]) function that can be access anywhere in the code and private class (refer Appendix IV

[2]) that can be access only in certain part of code. An object(refer Appendix IV [2]) is

created when a class is instantiated (i.e. a class is defined). Objects can be accessed

using the dot (’.’) operator with their data members and member functions. To access

a member function with the name printName() on an object named obj, you will need

obj.printName().

template <int dim> class AdvectionDiffusionProblem {

public:

/*!

* Standard constructor disabled.

*/

AdvectionDiffusionProblem() = delete;

/*!

* Default constructor.

*/

AdvectionDiffusionProblem(unsigned int n_refine, bool is_periodic);

/*!

* Destructor.

*/

~AdvectionDiffusionProblem();

/*!

* @brief Run function of the object.

*

* Run the computation after object is built. Implements theping loop.

*/

void run();

private:

/*!

* @brief Set up the grid with a certain number of refinements

* with either peridic or non−periodic bounday conditions.

*

* Generate a triangulation of \f$[0,1]^{\rm{dim}}\f$ with edges/faces

* numbered form \f$1,\dots,2\rm{dim}\f$.

*/

void make_grid();

/*!

* @brief Setup sparsity pattern and system matrix.

*

* Compute sparsity pattern and reserve memory for the sparse system matrix

* and a number of right−hand side vectors. Also build a constraint object

* to take care of Dirichlet boundary conditions.

*/

void setup_system();

5 Software Concepts 72

/*!

* @brief Assemble the system matrix and the right hand side at currtent time.

*

* Assembly routine to build the time−dependent matrix and rhs.

* Neumann boundary conditions will be put on edges/faces

* with odd number. Constraints are applied here.

*/

void assemble_system (double current_time);

/*!

* @brief Iterative solver.

*

* Parallel sparse direct solver through Amesos package.

*/

void solve_direct();

/*!

* @brief Iterative solver.

*

* CG−based solver with preconditioning.

*/

void solve_iterative();

/*!

* @brief Write results to disk.

*

* Write results to disk in vtu−format.

*/

void output_results(Vector& vector_out) const;

/*!

* @brief Write results to disk.

*

* Calculate error.

*/

void compute_errors();

/*!

* triangulation

*/

Triangulation<dim> triangulation;

FE_Q<dim> fe;

DoFHandler<dim> dof_handler;

/*!

* Time−dependent matrix coefficient (diffusion).

*/

Coefficients::MatrixCoeff<dim> matrix_coeff;

/*!

* Time−dependent vector coefficient (velocity).

*/

Coefficients::AdvectionField<dim> advection_field;

/*!

* Time−dependent scalar coefficient (forcing).

*/

Coefficients::RightHandSide<dim> right_hand_side;

/*!

5 Software Concepts 73

* Time−dependent scalar coefficient (boundary flux).

*/

Coefficients::NeumannBC<dim> neumann_bc;

AffineConstraints<double> constraints;

SparsityPattern sparsity_pattern;

SparseMatrix system_matrix;

Vector solution;

Vector old_solution;

Vector system_rhs;

double time;

double time_step;

unsigned int timestep_number;

/*!

* parameter to determine the "implicitness" of the method.

* Zero is fully implicit and one is (almost explicit).

*/

const double theta;

/*!

* Final simulation time.

*/

const double T_max;

/*!

* Number of initial refinements.

*/

unsigned int n_refine;

/*!

* If this flag is true then periodic boundary conditions

* are used.

*/

bool is_periodic;

ConvergenceTable convergence_table;

};

Listing 2: The advection-diffusion problem class definition and object functions in

advectiondiffusion_problem.hpp header file.

Note : Following are the points the reader should keep in their mind.

• A reader should note that for the diffusion equation solution with standard finite

element method some of the terms would be removed and can be found in file of

the Github link described in Chapter 1.

• All the codes follow same structure, first, we define a class with a constructor and

destructor, functions and declare the object functions, then we initialize the function

we defined in the class, and finally we delete the destructor.

• A programmer can designate that a new class should inherit the members of an

5 Software Concepts 74

existing class instead of writing entirely new data members and member functions.

The base class is the existing one, and the derived class is the newly created one.

• The use of C++ feature called pointer "*" for dynamic memory allocation of object.

This pointer requires an address "&"in order to access a cell.

Listing (3) shows initialization of all the object function defined above.

template <int dim>

AdvectionDiffusionProblem<dim>::AdvectionDiffusionProblem(unsigned int n_refine,

bool is_periodic)

: triangulation()

, fe(1)

, dof_handler(triangulation)

, time(0.0)

, time_step(1. / 100)

, timestep_number(0)

/*

* theta=1 is implicit Euler,

* theta=0 is explicit Euler,

* theta=0.5 is Crank−Nicolson

*/

, theta(1.0)

, T_max(0.5)

, n_refine(n_refine)

, is_periodic(is_periodic)

{}

Listing 3: The advection-diffusion problem initialization of object functions in

advectiondiffusion_problem.hpp header file.

The Listing (4) destroys the construction once the program has been complied.

template <int dim>

AdvectionDiffusionProblem<dim>::~AdvectionDiffusionProblem()

{

system_matrix.clear();

constraints.clear();

dof_handler.clear();

}

Listing 4: The advection-diffusion problem destruction

advectiondiffusion_problem.hpp header file.

Figure (5.5) shows inter connection between deal.II classes. When explaining the code, it

would be helpful to understand the dependencies between the classes.

5 Software Concepts 75

Figure 5.5: Connection between the most important classes in deal.II.

Now we dive into steps of deal.II in detail using advectiondiffusion_problem.hpp header

file in order to understand Figure (5.5) and Algorithm (3).

5.3 Triangulation

The triangulation function provides line segments (1D), quadrilaterals (2D), and

hexahedra (3D). As with almost the entire library, the triangulation class is structured

so that the space dimension is determined by a template parameter [9]. In the result, users

can write codes independent of space dimensions. This enables them to develop and test

a program in 2D, then run it in 3D. Listing (6) illustrates how a Triangulation object

is created. This function contains a template parameter that specifies the dimension.

Depending on the value of the template parameter dim, a hypercube [0,1]dim (i.e., the

unit line, unit square, or unit cube) is generated and refined uniformly twice into 4dim

mesh cells. It should be noted that the dimension is a compile-time constant.

5.3.1 Refinement

In deal.II, regular refinement (bisection) leads to 2, 4, or 8 children per cell in 1D, 2D,

and 3D, respectively. As shown in Figure (5.6) in 2D the first refinement is 41 = 4 cells in

the left figure. In the middle Figure it is 42 = 16 cells and in the last Figure 43 = 64 cells.

Figure 5.6: Mesh refinement in deal.II.

5 Software Concepts 76

A triangulation of cells is therefore a binary tree, quad-tree, or oct-tree [32], with terminal

nodes corresponding to active cells without children. As shown in Figure (5.7) 0.0 is a

parent cell with four children namely 1.0,1.1, 1.2 and 1.3. Thereafter, 1.3 is the parent of

four children 2.0,2.1,2.3, and 2.4. Non-terminal nodes refer to cells that are inactive, that

is, cells that have children but are not part of the mesh hierarchy. Listing (5) shows code to

output the number of all active cells in a triangulation using triangulation.n_active_cells().

Figure 5.7: Quad-tree of cells.

std::cout << "Number of active cells: "<< triangulation.n_active_cells()<< std::endl;

Listing 5: Active cells in triangulation.

Figure (5.8) shows a refined 2D mesh along with its tree of cells.

Figure 5.8: Mesh refinement in deal.II.

5 Software Concepts 77

5.3.2 Mesh generation

The GridGenerator class (for class refer Appendix IV [2]) provides functions to

automatically generate the most common and simplest geometries. Gmsh, Lagrit, and

Cubit are programs that support grid data input formats. In the triangulation class, meshes

can be improved or modified when they are created or loaded.

In triangulation, a domain is created, followed by mesh generation. First one needs to

define the predefined headers of deal.II for mesh generation to visualization as follows.

#include <deal.II/grid/grid_generator.h>

#include <deal.II/grid/grid_tools.h>

#include <deal.II/grid/tria.h>

#include <deal.II/grid/tria_accessor.h>

#include <deal.II/grid/tria_iterator.h>

Then in order to generate C++ output, we call the predefined C++ header. To use math

functions, we use the C++ header that includes math functions.

#include <fstream>

#include <iostream>h>

#include <cmath>

Lastly, import deal.II by placing all the functions and classes in a namespace deal.II, so

that they don’t conflict with other libraries you may want to use together.

using namespace dealii;

The triangulation object is first defined.

Triangulation<dim> triangulation;

GridGenerator::hyper_cube(triangulation, 0,1,true);

Listing 6: Mesh of arbitrary dimension.

The following template (for template refer Appendix IV [7]) code in Listing (6) creates a

square domain with the help of function hyper_cube. Here void in C++ means it does not

return a value. In the previous section, dim is 2 and n_refine was defined as 3. It would

be used here as 43 = 64.

In deal.II mesh cells is accessible by iterators rather than indices. For this purpose,

the Triangulation class provides Standard Template Library (STL) (for STL refer

Appendix IV [8]) like iterators that "point" to objects describing cells, faces, edges, and

5 Software Concepts 78

other objects in a mesh. Listing (7) provides iterator that goes to each cell in triangulation

find the periodic faces and pairs them using GridTools::PeriodicFacePair structure (for

structure refer Appendix IV [9]).

for (unsigned int d = 0; d < dim; ++d)

{

GridTools::collect_periodic_faces(triangulation,/*b_id1*/ 2 * (d + 1) − 2, /*b_id2*/ 2 * (d + 1) − 1,

/*direction*/ d, periodicity_vector);

}

Listing 7: Iterator for periodic faces.

The periodic condition is applied from top to bottom (top is 2 edge and bottom is 3 edge

in deal.II) and left to right (left is 0 edge and right is 1 edge in deal.II) as seen from Figure

(5.9) and in the Listing (8).

Figure 5.9: Periodic edges in 2D.

template <int dim>

void AdvectionDiffusionProblem<dim>::make_grid()

{

GridGenerator::hyper_cube(triangulation, 0,1,true);

if (is_periodic)

{

std::vector<GridTools::PeriodicFacePair<typename Triangulation<dim>::cell_iterator>> periodicity_vector;

for (unsigned int d = 0; d < dim; ++d)

{

GridTools::collect_periodic_faces(triangulation, /*b_id1*/ 2 * (d + 1) − 2,

/*b_id2*/ 2 * (d + 1) − 1, /*direction*/ d, periodicity_vector);

}

triangulation.add_periodicity(periodicity_vector);

} // if

5 Software Concepts 79

triangulation.refine_global(n_refine);

std::cout << "Number of active cells: " << triangulation.n_active_cells() << std::endl;

}

Listing 8: Applying periodic faces on the boundaries.

Now we need to call the make_grid function in run to generate the grid. The following

lines from 7 to 10 in Listing (9) are required to visually represent grids in paraview

software.

1 template <int dim>

2 void

3 AdvectionDiffusionProblem<dim>::run()

4 {

5

6 make_grid();

7 std::ofstream out(filename);

8 GridOut grid_out;

9 grid_out.write_vtk(triangulation, out);

10 std::cout << " written to " << filename << std::endl << std::endl;

11 }

Listing 9: Grid output of triangulation.

Finally we can see the grid as follows as shown in Figure (5.10)

Figure 5.10: Grid generation.

Note : This is part of the big code in advectiondiffusion_problem.hpp header file. Lines

7 to 10 in Listing (9) are used to write the output. Here it is just to visualize the grid, they

are not present in Appendix IV [61]. To keep it simple, only the triangulation part is

shown. Later, we will discuss parallelization in more detail.

5 Software Concepts 80

5.4 Degree of Freedom Handler

Handling degrees of freedom is the responsibility of the Degree of Freedom Handler

(DoFHandler) class. Class DoFHandler provides a global enumeration of degrees of

freedom, given a Triangulation object describing the mesh and a Finite Element object

describing how degrees of freedom are associated with vertices, faces, and cells. These

classes are built on triangulation and finite element classes.

Figure (5.11) shows such enumerations for the mesh presented in Figure (5.8).

Figure 5.11: Degree of freedom in deal.II.

Listing (10) shows a typical code fragment for initializing a DoFHandler based on the

triangulation of Listing (6). Due to the fact that we are using the FE_Q class and set

the polynomial degree to 1, or bilinear elements, we get one degree of freedom for each

vertex. As we generate output, let’s also check the degree of freedom:

DoFHandler<dim> dof_handler;

FE_Q<dim> fe;

dof_handler(triangulation);

dof_handler.distribute_dofs(fe);

std::cout << std::endl<< "===" << std::endl

<< "Number of active cells: " << triangulation.n_active_cells()<< std::endl

<< "Number of degrees of freedom: " << dof_handler.n_dofs()<< std::endl<< std::endl;

Listing 10: Initialization of a DoFHandler for Q1 elements.

There is one DoF for each vertex. Since we have a 8× 8 grid, the number of DoFs should

be 9 × 9, or 81. Now we apply Dirichlet boundary conditions as shown in Listing (11).

constraints.clear();

DoFTools::make_hanging_node_constraints(dof_handler, constraints);

/*

* Set up Dirichlet boundary conditions.

*/

5 Software Concepts 81

const Coefficients::DirichletBC<dim> dirichlet_bs;

for (unsigned int i = 0; i<dim; ++i)

{

VectorTools::interpolate_boundary_values(dof_handler, /*boundary id*/ 2*i, // only even boundary id dirichlet_bs,constraints);

}

constraints.close();

Listing 11: Set Dirichlet boundary conditions.

5.5 Finite Element

The finite element that describes the shape functions on the reference cell (which is

always unit interval [0,1], square [0,1]2 or cube [0,1]3 in deal.II, depending on your

space dimension). Here we used an object of type FE_Q<dim>, which denotes the usual

Lagrange elements that define shape functions by interpolation on support points. The

simplest one is FE_Q<dim>(1), which uses a single polynomial degree. Since they are

linear in each of the two coordinates of the reference cell, they are often called bilinear in

2D [7].

Listing (12) shows FE_Q<dim> class that describes Lagrange elements. The constructor

takes one argument, which is a polynomial degree representing the element, in this case

one (a bi-linear element); there is one degree of freedom at each vertex, while none on

lines or inside the quadrilateral.

FE_Q<dim> fe;

Listing 12: Finite Element.

5.6 Quadrature

A quadrature formula is provided in deal.II, along with the base class quadrature. The

quadrature formula provides two essential pieces of information: the location and weight

of the quadrature points in the unit cell.

Quadrature formulas in arbitrary dimensions are represented by this base class. This class

stores quadrature points and weights in the coordinate system of a reference cell and

represents quadrature points and weights on the unit line segment [0,1] in 1 dimension,

on the unit square or unit triangle in 2 dimensions, as well as unit tetrahedrons, cubes,

pyramids, and wedges in 3 dimensions.

Integration formulae are denoted by derived classes. There is a Q prefix on their names.

5 Software Concepts 82

The quadrature formulas of quadrilaterals and hexahedra (or, more precisely, the unit

square and unit cube, since we work on reference cells) are typically tensor products of

one-dimensional formulas.

In the following Listing (13) we see that the Gauss formula with two quadrature points in

each direction is applied for the evaluation of the integrals in each element.

QGauss<dim> quadrature_formula(fe.degree + 1);

QGauss<dim − 1> face_quadrature_formula(fe.degree + 1);

Listing 13: Quadrature formula for the evaluation of the integrals.

5.7 Mapping

Matrixes and vectors are typically assembled by looping over all cells, and computing

the contribution of each cell to the global matrix and right hand side by quadrature. It is

important to understand now that we need to know the values of the shape functions at

quadrature points on the real cell. Finite element shape functions and quadrature points,

however, can only be defined on the reference cell. Since they are of little use to us, we

rarely query finite element shape functions or quadrature points from them.

Instead, we need a way to map this data from the reference cell to the real cell. This can

be done with classes derived from the Mapping class, although one is not often forced to

use them directly: many functions in the library take a mapping object as an argument,

but if it is not given, they resort to the standard bilinear Q1 mapping which is the case in

our code.

5.8 FEValues

In this module, one can construct matrices and vectors. They connect finite elements,

quadrature objects, and mappings. As integration happens at quadrature points on the real

cell, the values and gradients of finite element shape functions at these points must be

known. This information is coordinated by the FEValues class. FEFaceValues provides

similar functionality to FEValues for integrations on faces (for example, on the boundary

or between cells). In addition, the FESubfaceValues class can integrate on parts of faces

if the neighboring cell has been refined and the current cell shares only a part of its face

with the neighboring cell.

Listing (14) gives an overview of the assembly part we discussed in chapter 1.

FEFaceValues initialize the cell and assemble system by taking quadrature point for all

5 Software Concepts 83

parts of integral to be evaluated with respect to Q1 finite element and degrees of freedom

on the cell.

FEValues<dim> fe_values (fe, quadrature_formula,update_values | update_gradients |

update_quadrature_points | update_JxW_values);

FEFaceValues<dim> fe_face_values(fe,face_quadrature_formula, update_values | update_quadrature_points |

update_normal_vectors |update_JxW_values);// for Neumaan boundary condition to evaluate boundary condition

fe_values.reinit (cell);

// Now actually fill with values.

matrix_coeff.value_list(fe_values.get_quadrature_points (),matrix_coeff_values);

advection_field.value_list(fe_values.get_quadrature_points(),advection_field_values);

right_hand_side.value_list(fe_values.get_quadrature_points(),rhs_values);

/*

* Integration over cell.

*/

for (unsigned int q_index=0; q_index<n_q_points; ++q_index)

{

for (unsigned int i=0; i<dofs_per_cell; ++i)

{

for (unsigned int j=0; j<dofs_per_cell; ++j)

{

cell_diffusion_matrix(i,j) += fe_values.shape_grad(i,q_index) * matrix_coeff_values[q_index] *
fe_values.shape_grad(j,q_index) *fe_values.JxW(q_index);

cell_advection_matrix(i,j) += fe_values.shape_grad(i,q_index) *advection_field_values[q_index]

*fe_values.JxW(q_index);

cell_mass_matrix(i,j) += fe_values.shape_value(i,q_index) *fe_values.shape_value(j,q_index) *
fe_values.JxW(q_index);

} // end ++j

cell_rhs(i) += fe_values.shape_value(i,q_index) *rhs_values[q_index] *fe_values.JxW(q_index);

} // end ++i

} // end ++q_index

/*

* Boundary integral for Neumann values for odd boundary_id.

*/

for (unsigned int face_number = 0; face_number < GeometryInfo<dim>::faces_per_cell;

++face_number)

{

if (cell−>face(face_number)−>at_boundary() &&

(

(cell−>face(face_number)−>boundary_id() == 1) ||(cell−>face(face_number)−>boundary_id() == 3) ||

(cell−>face(face_number)−>boundary_id() == 5)

)

)

{

fe_face_values.reinit(cell, face_number);

/*

* Fill in values at this particular face.

5 Software Concepts 84

*/

neumann_bc.value_list(fe_face_values.get_quadrature_points(),neumann_values);

for (unsigned int q_face_point = 0; q_face_point < n_face_q_points; ++q_face_point)

{

for (unsigned int i = 0; i < dofs_per_cell; ++i)

{

cell_rhs(i) += time_step *neumann_values[q_face_point] * // g(x_q)

fe_face_values.shape_value(i, q_face_point) * // phi_i(x_q)fe_face_values.JxW(q_face_point); // dS

} // end ++i

} // end ++q_face_point

} // end if

} // end ++face_number

Listing 14: FEValues in deal.II.

5.9 Linear System

Linear System consists of classes that involve linear algebra, such as matrices, vectors,

and linear systems. Listing (15) gives the object definition for linear algebra classes

like SparsityPattern and SparseMatrix<double> followed by applying dirichlet boundary

condition and initializing different matrices.

SparsityPattern sparsity_pattern;

SparseMatrix<double> mass_matrix;

SparseMatrix<double> diffusion_matrix;

SparseMatrix<double> advection_matrix;

SparseMatrix<double> system_matrix;

DynamicSparsityPattern dsp(dof_handler.n_dofs());

DoFTools::make_sparsity_pattern (dof_handler, dsp, constraints,

/*keep_constrained_dofs = */ true, // for time stepping this is essential to be true

sparsity_pattern.copy_from(dsp);

system_matrix.reinit (sparsity_pattern);

diffusion_matrix.reinit (sparsity_pattern);

advection_matrix.reinit (sparsity_pattern);

mass_matrix.reinit(sparsity_pattern);

Listing 15: Linear system.

5.10 Linear Solver

Several control classes are included, such as the iterative and direct solvers, the eigenvalue

solvers, and the direct solvers. deal.II defines matrix and vector classes that operate on

these objects.

5 Software Concepts 85

5.10.1 Direct Solver

The linear system with sparse LU decomposition provided by UMFPACK(Unsymmetric

MultiFrontal PACKage). It often works well for 2D problems despite high degrees

of freedom. It is a set of routines used to solve nonsymmetric sparse linear systems,

Ax = b, using the Unsymmetric-pattern MultiFrontal method and direct sparse LU

factorization. Sparsity patterns and entries in matrices may be symmetric or asymmetric.

A SparseDirectUMFPACK class provides the deal.II interface to UMFPACK, which is

very easy to use and allows us to solve our linear system in just a few lines of code.

The code to solve the linear system is simple: First, we allocate an object A_direct of the

right type. The initialization call below provides a SparseDirectUMFPACK object with

a matrix and initiates the LU-decomposition. In this program, most computation occurs

here.

As a result of the decomposition, we can use A_direct as the inverse of our system matrix.

We can compute its solution by multiplying with the right hand side vector as shown in

Listing (16).

SparseDirectUMFPACK A_direct;

solution = system_rhs;

A_direct.solve(system_matrix, solution);

A_direct.vmult(solution, system_rhs);

Listing 16: Direct Solver.

5.10.2 Iterative Solver

A discretized equation can be solved with the solve_iterative() function. Due to the

large system, we use a Conjugate Gradient algorithm such as Gauss elimination or LU

decomposition instead of direct solvers.

template <int dim>

void AdvectionDiffusionProblem<dim>::solve_iterative ()

To begin with, we need an object that tells when to terminate the CG algorithm. The

SolverControl object is used to accomplish this. As a stopping criterion, we say: stop

after 1000 iterations (which is much more than needed for 81 variables; see the results

section to find out how many were actually used) and terminate when the residual norm

is below 10−12. As a result, the second criterion will stop iteration.

5 Software Concepts 86

SolverControl solver_control(1000, 1e−12);

After that, we need the solver itself. The SolverCG class takes a template parameter that

specifies the type of vectors. However, the empty angle brackets indicate that we simply

use the default (which is Vector<double>).

SolverCG<> solver(solver_control);

Let’s solve the system now. As its fourth argument, the CG solver accepts a

preconditioner. With a relaxation factor of 1.2, we will use SSOR (symmetric successive

overrelaxation). SSOR steps are performed by the SparseMatrix class. We need to

package its address together with the invert matrix, the relaxation factor, and the matrix

on which the SSOR step should act into one object. PreconditionSSOR does this for us.

(The PreconditionSSOR class takes a template argument that indicates what matrix type

it should work on. The default value is SparseMatrix<double>, which is exactly what we

want, so we use that and do not specify anything in the angle brackets.)

PreconditionSSOR<> preconditioner;

preconditioner.initialize(system_matrix, 1.2);

solver.solve (system_matrix,solution,system_rhs,preconditioner);

5.11 Output

There are three types of graphical output generated by deal.II as follows:

1. Grid output: Meshes, without any data vectors associated with them, can also be

written in multiple formats. The GridOut class handles this, it output a triangulation

to a file in different formats.

2. Visualization of data: In deal.II, the DataOutBase class supports a large number of

popular visualization formats, such as OpenDX, gmv, or gnuplot. DataOutBase is a

base class for outputting data on meshes of general form. As a set of patches, output

data is written to the output stream in the format expected by the visualization tool.

A patch represents a single logical cell of a mesh, which can be subdivided number

of times to represent higher order polynomials defined on this cell.

3. A graphical representation of matrices can also be generated by deal.II through the

MatrixOut class. DataOutBase handles MatrixOut output.

Listing (33) gives code to get solution output.

5 Software Concepts 87

DataOut<dim> data_out;

data_out.attach_dof_handler (dof_handler);

data_out.add_data_vector (solution, "solution");

data_out.build_patches ();

Listing 17: Output.

5.12 Compute the error

Let f : Ω → Rc be a finite element function with c components where component c

is denoted by fc and f̂ be the reference function (the fe_function and exact_solution

arguments to integrate_difference()). Let ec = f̂c− fc be the difference or error between

the two. Further, let w : Ω→ Rc be the weight function of integrate_difference(), which

is assumed to be equal to one if not supplied. Finally, let p be the exponent argument

(for Lp-norms) [7]. Let Ek the local error computed by integrate_difference() on cell K,

whereas E is the global error computed by compute_global_error().

Note that integrals are approximated by quadrature in the usual way:∫
A

f (x)dx≈∑
q

f (wq)wq.

Similarly for suprema over a cell T :

sup
x∈T
| f (x)|dx≈ maxq| f (xq)|.

L2 error

The square of the function is integrated and the square root of the result is computed on

each cell [7]:

E =
√

∑
K

E2
k =

√∫
Ω

∑
k

e2
cwc

H1 error

The square of this norm is the square of the L2_norm plus the gradient term [7]:

E =
√

∑
K

E2
k =

√∫
Ω

∑
k
(e2

c +(∇ec)
2)wc

5 Software Concepts 88

L∞ error

The square of the function is integrated and the square root of the result is computed on

each cell [7]:

E = max
k

Ek = sup
Ω

max
c
|ec|wc

Listing (35) gives the computing error based on the formulas discussed above. The

TableHandler writes the table as text for the output of the solution.

Vector<float> difference_per_cell(triangulation.n_active_cells());

VectorTools::integrate_difference(dof_handler,solution,ZeroFunction<dim>(),difference_per_cell,

QGauss<dim>(fe.degree + 1),VectorTools::L2_norm);

const double L2_error = VectorTools::compute_global_error(triangulation,difference_per_cell,VectorTools::L2_norm);

const unsigned int n_active_cells = triangulation.n_active_cells();

const unsigned int n_dofs = dof_handler.n_dofs();

VectorTools::integrate_difference(dof_handler,solution,ZeroFunction<dim>(),difference_per_cell,

QGauss<dim>(fe.degree + 1),VectorTools::H1_norm);

const double H1_error = VectorTools::compute_global_error(triangulation, difference_per_cell,VectorTools::H1_norm);

VectorTools::integrate_difference(dof_handler,solution,ZeroFunction<dim>(),

difference_per_cell,QGauss<dim>(fe.degree + 1),VectorTools::Linfty_norm);

const double Linfty_error =VectorTools::compute_global_error(triangulation,difference_per_cell, VectorTools::Linfty_norm);

pcout << " Number of active cells: "<< n_active_cells<< std::endl

<< " Number of degrees of freedom: "<< n_dofs<< std::endl;

convergence_table.add_value("cells", n_active_cells);

convergence_table.add_value("dofs", n_dofs);

convergence_table.add_value("L2", L2_error);

convergence_table.add_value("H1", H1_error);

convergence_table.add_value("Linfty", Linfty_error);

convergence_table.set_precision("L2", 3);

convergence_table.set_precision("H1", 3);

convergence_table.set_precision("Linfty", 3);

convergence_table.set_scientific("L2", true);

convergence_table.set_scientific("H1", true);

convergence_table.set_scientific("Linfty", true);

convergence_table.set_tex_caption("cells", "\\# cells");

convergence_table.set_tex_caption("dofs", "\\# dofs");

convergence_table.set_tex_caption("L2", "L^2−error");

convergence_table.set_tex_caption("H1", "H^1−error");

convergence_table.set_tex_caption("Linfty", "L^\\infty−error");

convergence_table.set_tex_format("cells", "r");

convergence_table.set_tex_format("dofs", "r");

std::cout << std::endl;

convergence_table.write_text(std::cout);

std::ofstream error_table_file("tex−conv−table.tex");

convergence_table.write_tex(error_table_file);

5 Software Concepts 89

deallog << " Error in the L2 norm : " << L2_error << std::endl;

deallog << " Error in the H1 norm : " << H1_error <<std::endl;

deallog << " Error in the Linfty norm : " << H1_error<< std::endl;

Listing 18: Compute error.

Flow chart (5.12) shows the summary of the whole code which we discussed in part

above. The reader should see the bottom box that is the legend for the flow chart colors.

The vertical arrow shows the steps to call the function in an orderly manner. In some

cases, the function on top appears in the bottom function. It is explicitly mentioned, or

sometimes it uses the C++ set↔ get feature to define set functions in one part of code. It

is called using get on the function in another part code.

Figure 5.12: Flow chart of advection diffusion equation solution code in
advectiondiffusion_problem.hpp file: left is the C++ programming code and right is
deal.II classes used in the code.

Figure (5.13) gives the summary of the boundary conditions implemented in the code of

the solution of the advection diffusion equation. The boundary conditions are individual

header files containing functions implemented using deal.II class. The boundary

conditions, diffusion coefficient and advection are then called in the assembly part of the

5 Software Concepts 90

code in advectiondiffusion_problem.hpp file by using there respective object functions.

Figure 5.13: Flow chart of the boundary conditions connected to main code in
advectiondiffusion_problem.hpp file code in assemble system with object functions.

Listing (19) gives diffusion coefficient defined as MatrixCoeff class and we have defined

an object function matrix_coeff for it in the main file. Furthermore, it is used in the

assembly part of the code.

Note : All the coefficients and Neumann boundary condition are used to assemble system

part of code only Dirichlet boundary condition goes in set degree of freedom part of the

code.

#ifndef INCLUDE_MATRIX_COEFF_HPP_

#define INCLUDE_MATRIX_COEFF_HPP_

// Deal.ii

#include <deal.II/base/tensor_function.h>

// STL

#include <cmath>

5 Software Concepts 91

#include <fstream>

// My Headers

#include "coefficients.h"

namespace Coefficients {

using namespace dealii;

/*!

* @class MatrixCoeff

* @brief Diffusion coefficient.

*

* Class implements a matrix valued diffusion coefficient.

* This coefficient must be positive definite.

*/

template <int dim> class MatrixCoeff : public TensorFunction<2, dim>

{

public: MatrixCoeff() : TensorFunction<2, dim>() {}

virtual Tensor<2, dim> value(const Point<dim> &point) const override;

virtual void value_list(const std::vector<Point<dim>> &points,

std::vector<Tensor<2, dim>> &values) const override;

const bool is_transient = false;

private:

const int k = 240;

const double scale_factor = 0.9999;

};

template <int dim>

Tensor<2, dim> MatrixCoeff<dim>::value(const Point<dim> &p) const

{

Tensor<2, dim> value;

value.clear();

const double t = this−>get_time();

for (unsigned int d = 0; d < dim; ++d)

{

using numbers::PI;

value[d][d] =1*(1− sin(2 * PI*2* p(d)/0.05));

}

return value;

}

template <int dim>

void MatrixCoeff<dim>::value_list(const std::vector<Point<dim>> &points,

std::vector<Tensor<2, dim>> &values) const

{

Assert(points.size() == values.size(),ExcDimensionMismatch(points.size(), values.size()));

for (unsigned int p = 0; p < points.size(); ++p)

{

values[p].clear();

for (unsigned int d = 0; d < dim; ++d)

{

using numbers::PI;

values[p][d][d] =1*(1− sin(2 * PI *2* points[p](d)/0.05));

}

}

5 Software Concepts 92

}

} // end namespace Coefficients

#endif /* INCLUDE_MATRIX_COEFF_HPP_ */

Listing 19: Diffusion Coefficient.

Lisiting (20) gives the code for implementation of diffusion coefficients in the assemble

system step of the main code. As we can see, matrix coefficients that are tensors take

quadrature values as input, is used to evaluate the integrals defined on a finite element at

each degree of freedom.

template <int dim>

void AdvectionDiffusionProblem<dim>::assemble_system(double current_time)

{

TimerOutput::Scope t(computing_timer, "assembly");

const QGauss<dim> quadrature_formula(fe.degree + 1);

const QGauss<dim − 1> face_quadrature_formula(fe.degree + 1);

FEValues<dim> fe_values(fe,quadrature_formula,update_values |

update_gradients |update_quadrature_points | update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;

const unsigned int n_q_points = quadrature_formula.size();

const unsigned int n_face_q_points = face_quadrature_formula.size();

FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);

Vector<double> cell_rhs(dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

std::vector<Tensor<2, dim>> matrix_coeff_values_old(n_q_points);

std::vector<Tensor<2, dim>> matrix_coeff_values(n_q_points);

for (const auto &cell : dof_handler.active_cell_iterators())

{

if (cell−>is_locally_owned())

{

cell_matrix = 0;

cell_rhs = 0;

fe_values.reinit(cell);

cell−>get_dof_indices(local_dof_indices);

/*

* Values at current time.

*/

matrix_coeff.set_time(current_time);

matrix_coeff.value_list(fe_values.get_quadrature_points(),matrix_coeff_values);

/*

* Values at previous time.

*/

5 Software Concepts 93

matrix_coeff.set_time(current_time − time_step);

matrix_coeff.value_list(fe_values.get_quadrature_points(),matrix_coeff_values_old);

for (unsigned int q_index = 0; q_index < n_q_points; ++q_index)

{

for (unsigned int i = 0; i < dofs_per_cell; ++i)

{

for (unsigned int j = 0; j < dofs_per_cell; ++j)

{

// Diffusion is on rhs. Careful with signs here.

cell_matrix(i, j) += (fe_values.shape_value(i, q_index) *
fe_values.shape_value(j, q_index) + time_step * (theta) *(fe_values.shape_grad(i, q_index) *
matrix_coeff_values[q_index] *fe_values.shape_grad(j, q_index) +

fe_values.shape_value(i, q_index) *advection_field_values[q_index] *fe_values.shape_grad(j, q_index))) *
fe_values.JxW(q_index);

}

}

}

}

Listing 20: Diffusion Coefficient implemented in assemble system.

Here we conclude the steps of solving advection diffusion equation with standard finite

element method using deal.II. The reader can see the whole code in Appendix IV

[61]. Now for the larger problems with high degree of freedoms the code needs to be

parallelized.

5.13 Parallelization Concept

Parallelization is mainly used for high degrees of freedom, especially for canopy

applications that have millions of degrees of freedom. In order to modify code for parallel

computing we need to know some parallelization concepts.

5.13.1 Motivation

A single core can often handle a 2-dimensional problem of higher complexity. The real

world, however, is three-dimensional, and applications are very high in demand. A single

processor cannot solve these 3-dimensional problems due to their degree of freedom. The

code is adapted to multiple cores in order to speed up simulation time. A Linux machine

and a Marin cluster (https://www.cen.uni-hamburg.de/facilities/cen-it/

compute.html) are used to run the code.

In deal.II, two kinds of parallelization strategies, distributed mesh and shared mesh, are

used for optimal efficiency as shown in Figure (5.14).

https://www.cen.uni-hamburg.de/facilities/cen-it/compute.html
https://www.cen.uni-hamburg.de/facilities/cen-it/compute.html

5 Software Concepts 94

Figure 5.14: Distributed and Shared mesh.

• MPI stands for Message Passing Interface, and is an Application Program Interface

that defines a parallel computing model where each parallel process has its

own memory, and data must be explicitly shared between processes by passing

messages. It enables programs to scale beyond the processors and shared memory

of a single computing server to combine the processors and memory of multiple

computing servers. MPI ranks with fully distributed mesh partitions only store

a portion of the mesh, vectors, matrices, etc. MPI ranks do not have access to

the entire mesh. In contrast, an MPI rank owns some elements, nodes, degrees

of freedom, etc that it can read and modify. MPI ranks must communicate with

neighboring ranks in finite element methods. In a "ghost" layer, information

exchange occurs between elements owned by specific MPI ranks and their direct

neighbors. Ghost layers cannot be written to, but can be read by MPI ranks. Ghost

elements are set by the MPI ranks that own them. As a result of distributed mesh

partitioning, a lot of memory can be saved by storing only a portion of the mesh,

vectors, matrices, etc.

• The shared mesh partition uses a more straightforward approach. Although each

rank only writes to its own partition, it keeps a copy of the entire mesh, so it is

aware of all the information in the domain. A distributed mesh with a large ghost

layer covers all nodes and elements that are not owned locally. On each rank, it uses

more memory than the distributed mesh. The mesh should not cause any problems if

5 Software Concepts 95

it is not too large to be a bottleneck. Figure (5.14) illustrates the difference between

distributed mesh and shared mesh.

In order to make communication between processors we will use MPI.

5.13.2 Distributed Triangulation

On any particular processor, a deal.II mesh has different kinds of cells see the Figure

(5.15):

Figure 5.15: Types of cells in parallelization [19].

• An active cell is one that does not have children. The entire domain is covered by

active cells. Active cells are leaves of the global distributed forest that forms the

mesh if they belong to a part of it owned by the current processor. Then it is referred

to as a locally owned active cell.

• Ghost cells are active cells represents leaves of the distributed forest that are

adjacent to active cells that are locally owned.

• A cell that is artificial is an active cell that is neither locally owned nor ghostly. In

deal.II, hanging nodes will never be stored more than once per face or edge, and

all common coarse mesh cells will be stored. Every algorithm inside deal.II skips

artificial cells, even if they correspond to leaves of the distributed forest.

• Cells that have children are considered non-active. Between coarse mesh cells and

active cells, deal.II stores all intermediate cells.

In deal.II MPI parallelization is done using external library line p4est, PETSC and

Trillions (see Figure (5.16)) as follows:

• For mesh parallelization deal.II is built on p4est. The p4est library decomposes

this "real" mesh into pieces that are stored by the various processes. The p4est

data structure stores the entire mesh as a parallel forest. Parallel forests consist of

quad-trees (in 2d) or oct-trees (in 3d), which represent the refinement structure from

5 Software Concepts 96

parent cells to their four (2d) or eight (3d) children. Parallel forests are internally

represented by (distributed) linear arrays of cells that correspond to depth-first

traversals of trees, with each process storing a section of this linear array. The

Triangulation class is based on this, and further degrees of freedom are built on it.

• The parallel functionality of PETSc and Trilinos is based on the Message Passing

Interface (MPI). In MPI, communication is based on collective communication:

if one process wants something from another, the other must accept this

communication. It contains several subroutines that help with assembly and the

degree of freedom of vectors and matrices. It also contains a number of parallel

solvers that can be used to solve the system in parallel.

Figure 5.16: MPI parallelization of code the color code hexagon is for external parallel
library which deal.II. uses for parallelization.

5.13.3 New Feature implementation

In deal.II, Konrad Simon developed a new feature to identify the processor to which the

point belongs. This is when the mesh is traced back using semi-Lagrangian methods. It

is possible to find the MPI ranks of cells containing specified points by using the newly

added member function. find_point_owner_rank() of parallel::distributed::Triangulation

as shown in Listing (21). This functionality is based on p4est (>version 2.2) and is

communication-free. This implementation was merged and released in deal.II version

9.4 in 24 June 2022.

std::vector<types::subdomain_id> Triangulation<dim, spacedim>::find_point_owner_rank(const std::vector<Point<dim>> &points)

5 Software Concepts 97

Listing 21: New Feature find point owner rank.

5.14 Parallel code implementation of advection-diffusion
equation solution with FEM method in deal.II

Here are the steps for FEM parallelization

Figure 5.17: Flow chart of advection diffusion equation solution parallel code in
advectiondiffusion_problem.hpp file.

Figure (5.17) gives the summary of the parallel code implementation of the solution of the

advection diffusion equation. The reader can see the advectiondiffusion_problem.hpp
header file the whole implementation in Github https://github.com/heena008/Ad

vection-Diffusion_MsFEM.io.

https://github.com/heena008/Advection-Diffusion_MsFEM.io
https://github.com/heena008/Advection-Diffusion_MsFEM.io

5 Software Concepts 98

For AdvectionDiffusionProblem class we have defined before in previous section adding

an extra prefix to existing deal.II in order to run in parallel. Following lines describe the

changes needed to the existing file.

• MPI_Comm mpi_communicator is used for communication between different

processors.

• ConditionalOStream pcout is used in parallel output.

• TimerOutput computing_timer is used for time measurements of different

subsections in a program.

• parallel::distributed:: is used as prefix to deal.II triangulation.

• TrilinosWrappers::MPI:: is used as prefix to deal.II Vectors.

• TrilinosWrappers:: is used as prefix to deal.II SparsityPattern.

• TrilinosWrappers:: is used as prefix to deal.II SparseMatrix .

Listing (22) gives the changes discussed above, along with a few constructors, destructors,

functions and the object functions defined in the AdvectionDiffusionProblem class.

template <int dim> class AdvectionDiffusionProblem {

public:

/*!

* Standard constructor disabled.

*/

AdvectionDiffusionProblem() = delete;

/*!

* Default constructor.

*/

AdvectionDiffusionProblem(unsigned int n_refine, bool is_periodic);

/*!

* Destructor.

*/

~AdvectionDiffusionProblem();

/*!

* @brief Write results to disk.

*

* Write results to disk in vtu−format.

*/

void output_results(TrilinosWrappers::MPI::Vector& vector_out) const;

void compute_errors();

MPI_Comm mpi_communicator;

/*!

* Distributed triangulation

*/

parallel::distributed::Triangulation<dim> triangulation;

FE_Q<dim> fe;

DoFHandler<dim> dof_handler;

5 Software Concepts 99

/*!

* Index Set

*/

IndexSet locally_owned_dofs;

IndexSet locally_relevant_dofs;

TrilinosWrappers::SparsityPattern sparsity_pattern;

TrilinosWrappers::SparseMatrix system_matrix;

TrilinosWrappers::MPI::Vector solution;

TrilinosWrappers::MPI::Vector old_solution;

TrilinosWrappers::MPI::Vector system_rhs;

ConditionalOStream pcout;

TimerOutput computing_timer;

};

Listing 22: Parallel Advection diffusion class define constructor and destructor.

Listing (23) shows the initialization of an object function. This is a list of all processors

assigned to this job by the batch scheduling system, such as MPI_COMM_WORLD. It

is further taken as a variable in mpi_communicator, which is then used in deal.II class

steps, computing time, and parallelizing.

template <int dim>

AdvectionDiffusionProblem<dim>::AdvectionDiffusionProblem(unsigned int n_refine,

bool is_periodic)

: mpi_communicator(MPI_COMM_WORLD)

, triangulation(mpi_communicator,

typename Triangulation<dim>::MeshSmoothing(

Triangulation<dim>::smoothing_on_refinement |

Triangulation<dim>::smoothing_on_coarsening))

, fe(1)

, dof_handler(triangulation)

, pcout(std::cout, (Utilities::MPI::this_mpi_process(mpi_communicator) == 0))

, computing_timer(mpi_communicator,

pcout,

TimerOutput::summary,

TimerOutput::wall_times)

{}

Listing 23: Parallel advection diffusion initialize object function.

5.14.1 Step 1 : Create Mesh

Set up mesh in different processors using parallel::distributed::Triangulation.

• In parallel distributed mode, the parallel::distributed::Triangulation object only

5 Software Concepts 100

stores a subset of cells on each processor. Specifically, each MPI process owns

a number of cells in the global mesh.

• It contains only the cells it owns locally, as well as one layer of ghost cells around

them. It also contains a number of artificial cells. These cells ensure that each

processor has a mesh that includes all coarse level cells. This mesh respects the

invariant that neighboring cells cannot differ by more than one refinement level.

Listing (24) gives the lines in code required to achieve parallel triangulation with deal.II.

Here make_grid() function is used in AdvectionDiffusionProblem<dim> class for the

main code and deal.II function parallel::distributed::Triangulation is used to create a

domain.

template <int dim>

void AdvectionDiffusionProblem<dim>::make_grid()

{

TimerOutput::Scope t(computing_timer, "mesh generation");

parallel::distributed::Triangulation triangulation;

Listing 24: Parallel Distributed Triangulation.

5.14.2 Step 2 : Set Degrees of Freedom

Distribute degrees of freedom with the DOFHandler.

• We assign DoF indices to all the degrees of freedom defined on all the cells we own

locally and, in the case of subdomains that are owned by different processors, that

are not owned by the neighboring processor, to the degrees of freedom defined on

them.

• Each processor then exchanges how many degrees of freedom it owns locally and

shifts its own index so that all degrees of freedom on all subdomains are uniquely

identified by an index between zero and DoFHandler::n_dofs() (returns the global

number of degrees of freedom, accumulated across all processors). Once this step is

completed, each process’s degrees of freedom will form a contiguous range, which

can be obtained by calling DoFHandler::locally_owned_dofs().

• All degrees of freedom are assigned unique indices by the

DoFHandler::distribute_dofs() function, which then loops over all ghost cells

and communicates with neighboring processors to ensure that these ghost cells

have global indexes of degrees of freedom that correspond to those assigned by

their neighbors.

5 Software Concepts 101

Listing (25) gives the lines in code that are required to achieve parallel degrees of freedom

with deal.II.

dof_handler.distribute_dofs(fe);

Listing 25: Parallel Degrees of Freedom.

Extract the locally owned DOF with the DOFHandler.

Next, two index sets are extracted from the following lines.

• These include one that indicates the degrees of freedom owned by the current

processor. This information will be used to initialize the solution and right-hand

side vectors, as well as the system matrix, which will indicate which elements to

store on the current processor and which to expect to be stored elsewhere.

• And another that indicates which degrees of freedom are locally relevant. For

example, we need these degrees of freedom to estimate the error on the local cells

if they live on cells that the current processor owns, or on the layer of ghost cells

around these cells.

Listing (26) gives the lines in code that are required to distribute parallel degrees of

freedom into different categories in deal.II.

locally_owned_dofs = dof_handler.locally_owned_dofs();

DoFTools::extract_locally_relevant_dofs(dof_handler, locally_relevant_dofs);

Listing 26: Parallel Degrees of Freedom distributions of cells.

Initialize solution and right hand side.

Let’s now initialize the solution and the right-hand side vectors. Solution vectors do

not only store elements we own, but also ghost entries, as previously mentioned; on the

other hand, the right hand side vector does not need to have entries owned by the current

processor because we will only ever write into it, never read from it on cells owned locally.

Listing (27) gives the lines in code required to initialize solution and right hand side in

deal.II.

solution.reinit(locally_owned_dofs, locally_relevant_dofs, mpi_communicator);

old_solution.reinit(locally_owned_dofs, locally_relevant_dofs, mpi_communicator);

system_rhs.reinit(locally_owned_dofs, mpi_communicator);

5 Software Concepts 102

Listing 27: Parallel Degrees of Freedom initialize solution and right hand side.

Compute boundary value constraints.

Our next step is to compute boundary value constraints, which we then combine into one

object.

• Parallel processing must be based on the mantra that no processor can store all

information about the entire universe. We must therefore specify for which degrees

of freedom the AffineConstraints object can store constraints, and for which it

should not expect to store any.

• For our case, we need to care about local degrees of freedom, so we pass this to the

AffineConstraints::reinit function. AffineConstraints will allocate a length equal to

the largest DoF index it has seen if you forget to pass this argument.

constraints.clear();

constraints.reinit(locally_relevant_dofs);

DoFTools::make_hanging_node_constraints(dof_handler, constraints);

const Coefficients::DirichletBC<dim> dirichlet_bc;

for (unsigned int i = 0; i < dim; ++i)

{

VectorTools::interpolate_boundary_values(dof_handler,/*boundary id*/2*i, // only even boundary id

dirichlet_bc, constraints);

}

constraints.close();

Listing 28: Parallel affine constraints.

Initializes the matrix and sparsity pattern.

The last part of this function initializes the matrix and sparsity pattern.

As an intermediate, we use SparsityPattern to initialize the system matrix.

• DoFTools::make_sparsity_pattern fills the sparsity pattern based on its size and

what DoFs we need to add items to (this function ignores all cells that are not

locally owned).

• In this way, each processor will have a complete picture of all entries that will exist

in that part of the finite element matrix that it will own after we call the function

that exchanges sparsity pattern entries.

5 Software Concepts 103

• Finally, we need to initialize the matrix with the sparsity pattern.

sparsity_pattern.reinit(locally_owned_dofs, mpi_communicator);

DoFTools::make_sparsity_pattern(dof_handler,sparsity_pattern,constraints,

/* keep_constrained_dofs */ true,Utilities::MPI::this_mpi_process(mpi_communicator));

sparsity_pattern.compress();

system_matrix.reinit(sparsity_pattern);

solution.reinit(locally_owned_dofs, locally_relevant_dofs, mpi_communicator);

old_solution.reinit(locally_owned_dofs, locally_relevant_dofs,

mpi_communicator);

system_rhs.reinit(locally_owned_dofs, mpi_communicator);

Listing 29: Parallel initializes the matrix and sparsity pattern.

5.14.3 Step 3 : Assemble the system matrix and right hand side

A similar function to the one we have seen before assembles the linear system. Here are

some points to keep in mind:

• The assembly must only loop over cells that are owned locally. This can be tested

in several ways; for example, we could compare the subdomain_id of a cell with

the information from the triangulation

(cell->subdomain_id() == triangulation.locally_owned_subdomain()), or skip

all cells where the condition cell->is_ghost() || cell->is_artificial() is true. To

determine whether a cell belongs to a local processor, simply ask it.

• In order to copy local contributions into the global matrix, boundaries and

constraints must be distributed. Therefore, we cannot copy every local contribution

to the global matrix first, and then handle constraints and boundary values later.

Since the parallel vector classes have been assembled into a matrix, arbitrary

elements cannot be accessed once they have been assembled in part because they

may simply no longer reside on the current processor but have been shipped to a

different machine.

const QGauss<dim> quadrature_formula(fe.degree + 1);

const QGauss<dim − 1> face_quadrature_formula(fe.degree + 1);

FEValues<dim> fe_values(fe,quadrature_formula,

update_values | update_gradients |update_quadrature_points | update_JxW_values);

FEFaceValues<dim> fe_face_values(fe,face_quadrature_formula,update_values | update_quadrature_points |

update_normal_vectors |update_JxW_values); // for Neumaan boundary condition to evaluate

// boundary condition

5 Software Concepts 104

for (unsigned int q_index = 0; q_index < n_q_points; ++q_index)

{ for (unsigned int i = 0; i < dofs_per_cell; ++i)

{ for (unsigned int j = 0; j < dofs_per_cell; ++j)

{

// Diffusion is on rhs. Careful with signs here.

cell_matrix(i, j) +=(fe_values.shape_value(i, q_index) *fe_values.shape_value(j, q_index) +

time_step * (theta) *(fe_values.shape_grad(i, q_index) *matrix_coeff_values[q_index] *
fe_values.shape_grad(j, q_index) +fe_values.shape_value(i, q_index) * advection_field_values[q_index] *
fe_values.shape_grad(j, q_index))) *fe_values.JxW(q_index);

// Careful with signs also here.

cell_rhs(i) += (fe_values.shape_value(i, q_index) *fe_values.shape_value(j, q_index) −

time_step * (1 − theta) * (fe_values.shape_grad(i, q_index) *matrix_coeff_values_old[q_index] *
fe_values.shape_grad(j, q_index) +fe_values.shape_value(i, q_index) *advection_field_values_old[q_index] *
fe_values.shape_grad(j, q_index))) *fe_values.JxW(q_index) *old_solution(local_dof_indices[j]);

} // end ++j

cell_rhs(i) += time_step * fe_values.shape_value(i, q_index) * ((1 − theta) * rhs_values_old[q_index] +

(theta)*rhs_values[q_index]) * fe_values.JxW(q_index);

} // end ++i

} // end ++q_index

Listing 30: Parallel assemble the system matrix and right hand side.

The assembling in Listing (30) is basically a local operation. A synchronization between

all processors is therefore required to form a "global" linear system. By invoking

compress(), this can be accomplished see Listing (35).

/*For the "global" linear system to work, all processors must be synchronized.

/* By calling compress(), this can be accomplished. More information about compress() can be found in

/* @ref GlossCompress "Compressing distributed objects". */

system_matrix.compress(VectorOperation::add);

system_rhs.compress(VectorOperation::add);

Listing 31: Parallel compress.

5.14.4 Step 4 : Solve the system

Solve the system with different parallel solvers and preconditioner.

There are two key things to consider when solving linear systems on tens of thousands of

processors:

• Solvers and preconditioners are provided by the deal.II wrappers of PETSc

and Trilinos. When building massively parallel linear solvers, scalability of

preconditioners is more of a concern than communication between processors.

• A vector should ultimately store not only the degrees of freedom that the current

processor owns, but also all other locally relevant degrees of freedom. Conversely,

5 Software Concepts 105

the solver itself needs a vector without overlap between processors. To solve the

linear system, we create a vector that has these properties at the beginning of the

function, and we assign it to the vector we want at the end. In this final step, all

ghost elements are also copied.

template <int dim>

void AdvectionDiffusionProblem<dim>::solve_direct()

{

TimerOutput::Scope t(computing_timer,"parallel sparse direct solver (MUMPS)");

TrilinosWrappers::MPI::Vector completely_distributed_solution(locally_owned_dofs, mpi_communicator);

SolverControl solver_control;

TrilinosWrappers::SolverDirect solver(solver_control);

solver.initialize(system_matrix);

solver.solve(system_matrix, completely_distributed_solution, system_rhs);

pcout << " Solved in with direct solver." << std::endl;

constraints.distribute(completely_distributed_solution);

solution = completely_distributed_solution;

}

template <int dim>

void AdvectionDiffusionProblem<dim>::solve_iterative()

{

TimerOutput::Scope t(computing_timer, "iterative solver");

TrilinosWrappers::MPI::Vector completely_distributed_solution(locally_owned_dofs, mpi_communicator);

SolverControl solver_control(/* max number of iterations */ dof_handler.n_dofs(),

/* tolerance */ 1e−7, /* print log history */ true);

TrilinosWrappers::SolverGMRES gmres_solver(solver_control);

TrilinosWrappers::PreconditionIdentity preconditioner;

TrilinosWrappers::PreconditionIdentity::AdditionalData data;

preconditioner.initialize(system_matrix, data);

gmres_solver.solve(system_matrix,completely_distributed_solution, system_rhs, preconditioner);

pcout << " Solved in " << solver_control.last_step() << " iterations (theta = " << theta << ")." << std::endl;

constraints.distribute(completely_distributed_solution);

solution = completely_distributed_solution;

}

Listing 32: Parallel solve the system.

5 Software Concepts 106

5.14.5 Step 5 : Output the result

Collect output from all processor. High-performance, parallel MPI-IO (I=Input
O=Output) routines are used to write to a small, fixed number of visualization files.

Additionally, a .pvtu record is generated, which can be viewed directly in visualization

tools such as paraview and visit.

• The data vector that stores the subdomain of each cell is attached along with the

solution vector (the one that contains entries for all locally relevant elements, not

only those owned locally). It’s a bit tricky because not every processor knows about

every cell.

• DataOut will ignore all entries that correspond to cells that are not owned by the

current processor in the vector we attach (locally owned cells, ghost cells, and

artificial cells).

• Consequently, it doesn’t matter what values we write into these vector entries: we

simply fill them with the current MPI process number (i.e. the subdomain_id);

this sets the values we care about correctly, namely those that correspond to locally

owned cells, while providing the wrong values for all other elements but these are

ignored anyway.

template <int dim>

void AdvectionDiffusionProblem<dim>::output_results(TrilinosWrappers::MPI::Vector &vector_out) const

{

std::string filename = (dim == 2 ? "solution−std_2d" : "solution−std_3d");

DataOut<dim> data_out;

data_out.attach_dof_handler(dof_handler);

data_out.add_data_vector(vector_out, "u");

Vector<float> subdomain(triangulation.n_active_cells());

for (unsigned int i = 0; i < subdomain.size(); ++i)

{

subdomain(i) = triangulation.locally_owned_subdomain();

}

data_out.add_data_vector(subdomain, "subdomain");

data_out.build_patches();

Listing 33: Parallel output the result.

The final step is to write the data to disk. MPI-IO allows us to write up to total number

of time steps .vtu files in parallel. In addition, a .pvtu record is generated, which groups

the .vtu files that have been written.

if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)

5 Software Concepts 107

{

std::vector<std::string> file_list;

for (unsigned int i = 0; i < Utilities::MPI::n_mpi_processes(mpi_communicator) ++i)

{

file_list.push_back(filename + "_refinements−" + Utilities::int_to_string(n_refine, 1) +"." +

"theta−" + Utilities::to_string(theta, 4) + "." + "time_step−" +

Utilities::int_to_string(timestep_number, 4) + "." + Utilities::int_to_string(i, 4) + ".vtu");

}

std::string filename_master(filename);

filename_master += "_refinements−" + Utilities::int_to_string(n_refine, 1) + "." +

"theta−" + Utilities::to_string(theta, 4) + "." + "time_step−" +

Utilities::int_to_string(timestep_number, 4) + ".pvtu";

std::ofstream master_output(filename_master);

data_out.write_pvtu_record(master_output, file_list);

}

Listing 34: Write the output the result.

5.14.6 Step 6 : Compute the error

As part of parallel::TriangulationBase, entries in cellwise_error that do not correspond

to locally owned cells are assumed to be 0.0 and a parallel reduction is performed using

MPI to calculate the global error.

Next, we calculate the error in the L2 norm, HI norm and Linfty norm on each cell using

a function from the library. The DoF handler object, the vector holding the numerical

solution nodal values, the continuous solution as a function object, the vector into which

the error norms of each cell will be placed, a quadrature rule by which they will be

computed, and the type of norms that will be used must be passed to it. Using a Gauss

formula with three points in each space direction, we compute the L2 norm.

Finally, we need the global L2 norm, HI norm and Linfty norm. The square root of the

norm on each cell can be obtained by summing the squares of the norms on those cells.

Each cell’s l2 norm (lower case l) corresponds to the following:

template <int dim>

void AdvectionDiffusionProblem<dim>::compute_errors()

{

Vector<float> difference_per_cell(triangulation.n_active_cells());

VectorTools::integrate_difference(dof_handler, solution, ZeroFunction<dim>(),

difference_per_cell, QGauss<dim>(fe.degree + 1),VectorTools::L2_norm);

const double L2_error = VectorTools::compute_global_error(triangulation, difference_per_cell,VectorTools::L2_norm);

const unsigned int n_active_cells = triangulation.n_active_cells();

5 Software Concepts 108

const unsigned int n_dofs = dof_handler.n_dofs();

VectorTools::integrate_difference(dof_handler,solution, ZeroFunction<dim>(),

difference_per_cell,QGauss<dim>(fe.degree + 1), VectorTools::H1_norm);

const double H1_error = VectorTools::compute_global_error(triangulation,

difference_per_cell, VectorTools::H1_norm);

VectorTools::integrate_difference(dof_handler, solution,

ZeroFunction<dim>(), difference_per_cell, QGauss<dim>(fe.degree + 1),

VectorTools::Linfty_norm);

const double Linfty_error = VectorTools::compute_global_error(triangulation,

difference_per_cell,VectorTools::Linfty_norm);

}

Listing 35: Parallel compute the error.

Note : In the example we discussed above for advection diffusion equation parallel code,

the code for the diffusion equation solution with the standard finite element method is

more simple. To understand clear code, readers can follow the steps above and the Flow

charts (5.18) and (5.19) below.

5 Software Concepts 109

Figure 5.18: Flow chart of diffusion equation finite element solution code main code in
diffusion_problem.hpp file.

5 Software Concepts 110

Figure 5.19: Flow chart of boundary condition code connected to main file
diffusion_problem.hpp file.

5.15 Implementation of diffusion equation solution with MsFEM
method in deal.II

The diffusion equation solution with multiscale finite element code follows the method

explained in Chapter 3. We discussed the steps for solving the problem in a Flow chart

(3.11). Now to make it simple we split the code into two major parts or code files.

• The first part is called the global formulation, which is the main code. See the

Flow chart (5.20). It follows all the steps we discussed for the advection-diffusion

equation.

• Multiscale basis function which is the basis code, as shown in the Flow chart (5.22).

Further Flow chart (5.23) explains connection between main code and basis code.

5 Software Concepts 111

5.15.1 Global formulation code

Now for global formulation in Flow chart (5.20) the reader knows most steps we discussed

in the advection-diffusion finite element solution. Boundary condition in Flow chart

(5.19) and coefficients are similar to those discussed in the previous section.

Figure 5.20: Flow chart of diffusion equation multiscale finite element solution parallel
main code.

The multiscale basis is implemented in header file diffusion_basis.hpp are introduced in

diffusionproblem_multiscale file to get access to multiscale basis in main code. The

5 Software Concepts 112

Listing (36) shows the code with three new functions added to the existing code, followed

by a function for local mesh refinement and map to connect the local basis and global cell.

template <int dim>

class DiffusionProblemMultiscale

{

public:

/*!

* Constructor.

*/

DiffusionProblemMultiscale(unsigned int n_refine, unsigned int n_refine_local);

/*!

* @brief Run function of the object.

*

* Run the computation after object is built.

*/

void run();

private:

/*!

* @brief Set up the grid with a certain number of refinements.

*

* Generate a triangulation of \f$[0,1]^{\rm{dim}}\f$ with edges/faces

* numbered form \f$1,\dots,2\rm{dim}\f$.

*/

void make_grid();

/*!

* Set all relevant data to local basis object and initialize the basis

* fully. Then compute.

*/

void initialize_and_compute_basis();

/*!

* @brief Setup sparsity pattern and system matrix.

*

* Compute sparsity pattern and reserve memory for the sparse system matrix

* and a number of right−hand side vectors. Also build a constraint object

* to take care of Dirichlet boundary conditions.

*/

void setup_system();

/*!

* @brief Assemble the system matrix and the static right hand side.

*

* Assembly routine to build the time−independent (static) part.

* Neumann boundary conditions will be put on edges/faces

* with odd number. Constraints are not applied here yet.

*/

void assemble_system();

/*!

* @brief Iterative solver.

*

* CG−based solver with AMG−preconditioning.

5 Software Concepts 113

*/

void solve_iterative();

/*!

* @brief Send coarse weights to corresponding local cell.

*

* After the coarse (global) weights have been computed they

* must be set to the local basis object and stored there.

* This is necessary to write the local multiscale solution.

*/

void send_global_weights_to_cell();

/*!

* @brief Write coarse solution to disk.

*

* Write results for coarse solution to disk in vtu−format.

*/

void output_result() const;

/*!

* Collect local file names on all mpi processes to write

* the global pvtu−record.

*/

std::vector<std::string> collect_filenames_on_mpi_process() const;

/*!

* Number of local refinements.

*/

const unsigned int n_refine_local;

/*!

* STL Vector holding basis functions for each coarse cell.

*/

std::map<CellId, DiffusionProblemBasis<dim>> cell_basis_map;

};

Listing 36: Diffusion multiscale basis class.

We will now focus on the three new steps for connecting global formulation to multiscale

scale basis in main code.

Initialize the basis

In the following Listing (37) is used to pair multiscale basis from local cell to global cell

using C++ std:: map and then it is solved on each basis using run() function from basis

code for multiscale basis function.

template <int dim>

void

DiffusionProblemMultiscale<dim>::initialize_and_compute_basis()

{

TimerOutput::Scope t(computing_timer,"basis initialization and computation");

5 Software Concepts 114

typename Triangulation<dim>::active_cell_iterator cell = dof_handler.begin_active(),endc = dof_handler.end();

for (; cell != endc; ++cell)

{

if (cell−>is_locally_owned())

{

DiffusionProblemBasis<dim> current_cell_problem(n_refine_local, cell,triangulation.locally_owned_subdomain(),

mpi_communicator);

CellId current_cell_id(cell−>id());

std::pair< typename std::map<CellId, DiffusionProblemBasis<dim>>::iterator, bool> result;

result = cell_basis_map.insert(std::make_pair(cell−>id(), current_cell_problem));

Assert(result.second, ExcMessage("Insertion of local basis problem into std::map failed. "

"Problem with copy constructor?"));

}

} // end ++cell

/*

* Now each node possesses a set of basis objects.

* We need to compute them on each node and do so in

* a locally threaded way.

*/

typename std::map<CellId, DiffusionProblemBasis<dim>>::iterator

it_basis = cell_basis_map.begin(), it_endbasis = cell_basis_map.end();

for (; it_basis != it_endbasis; ++it_basis)

{

(it_basis−>second).run();

}

}

Listing 37: Compute the error for parallel code.

Send global weights to cell

Listing (38) shows code to connect global degrees of freedom to local degrees of freedom

for each global cell. Further extracted_weights vector is created in order use to add with

local basis solution to global solution.

template <int dim>

void DiffusionProblemMultiscale<dim>::send_global_weights_to_cell()

{

// For each cell we get dofs_per_cell values

const unsigned int dofs_per_cell = fe.dofs_per_cell;

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

// active cell iterator

typename DoFHandler<dim>::active_cell_iterator cell =dof_handler.begin_active(), endc = dof_handler.end();

for (; cell != endc; ++cell)

{

if (cell−>is_locally_owned())

{

5 Software Concepts 115

cell−>get_dof_indices(local_dof_indices);

std::vector<double> extracted_weights(dofs_per_cell, 0);

solution.extract_subvector_to(local_dof_indices,extracted_weights);

typename std::map<CellId, DiffusionProblemBasis<dim>>::iterator

it_basis = cell_basis_map.find(cell−>id());

(it_basis−>second).set_global_weights(extracted_weights);

}

} // end ++cell

}

Listing 38: Send global weights to cell.

Collect filenames on MPI process

Listing (39) shows the code for connecting all multiscale basis from each cell in given

processor to global cell. It uses C++ feature set and get so set_filename_global and

get_filename_global is defined in basis code and get_filename_global is used in main

code to make file list of all local basis on global cell.

template <int dim>

std::vector<std::string> DiffusionProblemMultiscale<dim>::collect_filenames_on_mpi_process() const

{

std::vector<std::string> filename_list;

typename std::map<CellId, DiffusionProblemBasis<dim>>::const_iterator

it_basis = cell_basis_map.begin(),

it_endbasis = cell_basis_map.end();

for (; it_basis != it_endbasis; ++it_basis)

{

filename_list.push_back((it_basis−>second).get_filename_global());

}

return filename_list;

}

Listing 39: Collection of solution from all processor.

5.15.2 Multiscale basis function code

Multiscale basis function code follows similar steps, but here it is necessary to define

the Q1 basis function first in a header file named q1bais.hpp, which is then applied

to advectiondiffusion_basis.hpp file. The header file of Q1 basis file is then called in

advectiondiffusion_basis.hpp file and is used by defining object function basis_q1 for

class Q1Basis.

5 Software Concepts 116

Figure 5.21: Flow chart of Q1 Basis function in multiscale basis code.

Next, we will explain following steps for solving multiscale basis functions in basis code
file as shown in Flow chart (5.22).

• the run function is created and all the following function are called in it. As in C++

run is used to call the function.

• In make_grid function, with the help of Triangulation domain is created using the

coordinates of global cell and then grid is generated.

• In setup_system , with DOFHandler degrees of freedom are added. At the

boundary Q1 Basis is added with object function basis_q1.

The local system is assembled in assemble_system using the same process we

discussed previously.

• In assemble_global_element_matrix is used to take all the local contribution from

above assemble_system() function and multiplying be test function on left and

trial function on right to form global assemble system with local assemble system

contribution. It was discussed in Chapter 3 in section (3.5.4). This part will then be

called in the global formulation file.

• In set_filename_global collects local solution from all the processor add to global

cell. This would be called in the main code.

• In solve_iterative or solve_direct is used to solve local the system to local solution.

• In set_global_weights global solution is obtained by multiplying global weights

5 Software Concepts 117

and local solution from above step.

• In output_basis is used to output local basis.

• In output_global_solution_in_cell is used to obtained global solution on each cell.

This is also called in the main code in the global formulation

Figure 5.22: Flow chart of diffusion equation multiscale finite element basis code.

5 Software Concepts 118

5.16 Connection between main code and basis code

Now we will see all the interconnection between the main code file and the basis code file

as shown in the Flow chart (5.23).

Figure 5.23: Flow chart of interface between diffusion equation multiscale finite
element solution main code and multiscale basis code.

• The first inter connection is when we use the run function from basis code in

5 Software Concepts 119

initialize_and_compute_basis function in main code to calculate basis on every

global cell.

• From assemble_global_element_matrix in basis code we have global assemble

matrix and global right hand side by calling get_global_element_matrix and

get_global_element_rhs defined in the basis code, the system is assemble in the

main code.

• In set_global_weights in the basis code extract local solution. Local solution is

then multiplied with global weights to get a global solution. In the main code

file, extracted_weights is defined as the input variable for set_global_weights
function, which is applied to all local bases in a domain for the purpose to get a

global solution. The theory was shown in section (3.5.2).

• In set_filename_global in basis code is used for collection of local solution

at all processors and add then to global cell and it is called in main code as

set_filename_global to apply it on all basis and collect it in one file.

• In collect_filenames_on_mpi_process collects local file names of fine mesh

solution in basis code on all mpi processes to write the global pvtu-record. The C++

set↔ get is use set function is in basis code and it is called with get in main code.

• In the main code, output_global_solution_in_cell is called on multiscale basis to

get global solution for each processor.

5 Software Concepts 120

5.17 Implementation of advection-diffusion equation solution
with Semi-Lagrangian Multiscale Finite Element in deal.II

Algorithm 4 Pseudo code for reconstruction basis algorithm in the Semi-Lagrangian
Multiscale Finite Element Method in deal.II.

Step 1 : Construct a coarse grid and initialize it with multiscale basis function.

begin A coarse mesh TH is to be initialized.

Step 2 : For every cell K ∈ TH a fine mesh T K
h is to be initialized.

Step 3 :
for K ∈ TH (Online Phase). in parallel. do
Reconstruct the basis u0(x)|K .

end for
/* The time stepping begins. The solution at tn+1 is computed. */

Step 4 :
for n = 0 to n≤ Nsteps do

for K ∈ TH in parallel. do
Basis Reconstruction :

(i) Step 4a : Each node in K is trace back one time step from tn+1 to tn.

(ii) Step 4b : Basis un(x)|K̃ from equation (4.10) to be reconstructed.

(iii) Step 4c :Propagate the boundary conditions of the optimal basis forward onto K.

Global Formulation: Assemble the global (coarse) system matrices

Now do a global backward Euler time step.

end for
Step 5 : Postprocess the solution.

Return

end for
end

An overview of all the files and their interconnections can be seen in Figure (5.24). Code

will be divided into four main parts as follows :

1. The main code that resembles the global formulation. It is code for coarse mesh.

2. The multiscale basis function that is the basis code. It is code for local fine mesh.

3. The interface code for the interface between codes and

4. The semi-Lagrangian multiscale basis reconstruction code that is the basis
reconstruction code. Reconstructed code is for the distorted cell we get after

5 Software Concepts 121

tracing back the mesh. The mathematical derivation was discussed in Chapter 4.

The reader can see the whole implementation in Github https://github.com/heena

008/Advection-Diffusion_MsFEM.io.

The Figure (5.24) shows the connection between all the files required for the entire

solution Semi-Lagrangian basis based multiscale finite element code. In the code

workflow section we discussed previously, we had seen this file in the include folder.

Figure 5.24: Flow chart of advection-diffusion equation multiscale finite element
solution code header files connections.

Now we will connect steps of Algorithm (4) and Figure (5.24) in order to understand the

whole code.

5.17.1 Step 1 : construct a coarse grid

This part come in global formulation of code.

https://github.com/heena008/Advection-Diffusion_MsFEM.io
https://github.com/heena008/Advection-Diffusion_MsFEM.io

5 Software Concepts 122

Advection Diffusion equation multiscale finite element solution main
code connections

Figure 5.25: Flow chart of advection-diffusion equation multiscale finite element
solution code main code.

We create advectiondiffsuion_multiscale.hpp code and define all the functions as shown

in Flow chart (5.25) for global formulation. The code follows the same structure and

steps of deal.II as advectiondiffsuion_problem.hpp with Flow chart (5.17) file discussed

5 Software Concepts 123

before for advection diffusion equation solution with standard finite element method. The

reader has already learned this concept. There are some new edition as follows:

• The template requires one more basis parameter BasisType compared to previous

codes. It is for holding basis functions for each coarse cell.

• For interface code and reconstruct basis code, some additional functions are

defined in the main code.

• The function output_result gets global solution in this cell as vtu by calling

output_global_solution_in_cell function in reconstruct basis code.

• There are two functions in code: send_global_weights_to_cell and output_result.
The first is to initialize this system and the second is to update it after the system

has been solved.

The reader can see the full code in the link mentioned above. In the next sections, only

the new function will be explained, and the old implementation will be referenced.

In the following sections, we will explain in detail the constructor, destructor, and new

functions found in Listing (40). The function get_basis_from_cell_id defined in main
code is used to get the reconstructed basis from reconstruction basis code in main code.

The get_dof_handler is define in main code to get degrees of freedom in main code and

then is used interface code.

namespace Timedependent_AdvectionDiffusionProblem {

using namespace dealii;

template <int dim, class BasisType>

class AdvectionDiffusionProblemMultiscale : public AdvectionDiffusionBase<dim>

{

public:

AdvectionDiffusionProblemMultiscale() = delete;

AdvectionDiffusionProblemMultiscale(unsigned int n_refine, bool is_periodic);

AdvectionDiffusionProblemMultiscale(const AdvectionDiffusionProblemMultiscale<dim, BasisType> &other) = delete;

AdvectionDiffusionProblemMultiscale<dim, BasisType> &

operator=(const AdvectionDiffusionProblemMultiscale<dim, BasisType> &other) = delete;

~AdvectionDiffusionProblemMultiscale();

virtual const DoFHandler<dim> & get_dof_handler() const override;

virtual Timedependent_AdvectionDiffusionProblem::BasisInterface<dim> *get_basis_from_cell_id(CellId cell_id) override;

void run();

private:

5 Software Concepts 124

std::map<CellId, BasisType> cell_basis_map;

};

template <int dim, class BasisType>

Timedependent_AdvectionDiffusionProblem::BasisInterface<dim>

*AdvectionDiffusionProblemMultiscale<dim, BasisType>::get_basis_from_cell_id(CellId cell_id)

{

return &(cell_basis_map.find(cell_id)−>second);

}

template <int dim, class BasisType>

const DoFHandler<dim> & AdvectionDiffusionProblemMultiscale<dim, BasisType>::get_dof_handler() const

{

return dof_handler;

}

Listing 40: The advection-diffusion multiscale code in

advectiondiffsuion_multiscale.hpp header file.

Connect main code to boundary conditions

In Flow chart (5.26), the boundary condition and coefficients implementations and their

connection to the main code. In previous sessions, we introduced similar concepts.

5 Software Concepts 125

Figure 5.26: Flow chart of advection-diffusion equation multiscale finite element
solution main code in advectiondiffsuion_multiscale.hpp header file and boundaries
condition in other header files connections.

Connect main code to C++ config file

In Flow chart (5.27), the C++ config.h shows connectionof config.h file to the main code

in advectiondiffsuion_multiscale.hpp header file.

Figure 5.27: Flow chart of advection-diffusion equation multiscale finite element
solution code in advectiondiffsuion_multiscale.hpp header file and C++ config file
code in config.h header file.

5 Software Concepts 126

Listing (41) is the implementation of numerical limits in C++ programming language

for real numbers using advanced library called Standard Template Library STL is in

config.h file. This file appears in all other header files as well.

#ifndef INCLUDE_CONFIG_H_

#define INCLUDE_CONFIG_H_

#include <deal.II/base/config.h>

#include <algorithm>

#include <cmath>

#include <iomanip>

#include <limits>

#include <type_traits>

#if !(defined(DEAL_II_WITH_TRILINOS))

#error DEAL_II_WITH_TRILINOS required

#endif

namespace Timedependent_AdvectionDiffusionProblem {

namespace Timedependent_AdvectionDiffusionProblemUtilities {

/*!

* Numeric epsilon for types::REAL. Interface to C++ STL.

*/

static const double double_eps = std::numeric_limits<double>::epsilon();

/*!

* Numeric minimum for types::REAL. Interface to C++ STL.

*/

static const double double_min = std::numeric_limits<double>::min();

/*!

* Numeric maximum for types::REAL. Interface to C++ STL.

*/

static const double double_max = std::numeric_limits<double>::max();

/*!

* Function to compare two non−integer values. Return a bool. Interface to C++

* STL.

*/

template <class T>

typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type

is_approx(T x, T y, int ulp = 2) {

/* Machine epsilon has to be scaled to the magnitude of the values used and multiplied by the desired precision

* in ULPs (units in the last place) */

return std::abs(x − y) <= std::numeric_limits<T>::epsilon() * std::abs(x + y) * ulp

/* unless the result is subnormal. */ || std::abs(x − y) < std::numeric_limits<T>::min();

}

} // namespace Timedependent_AdvectionDiffusionProblemUtilities

} // namespace Timedependent_AdvectionDiffusionProblem

#endif /* INCLUDE_CONFIG_H_ */

Listing 41: C++ config file in config.h header file.

5 Software Concepts 127

Connect main code to three main other part of code

The Figure (5.28) shows all the connections between main code and 3 other important

parts of code: basis code, interface code and reconstruction basis code. Now we introduce

and explain all the connections to the main code.

Figure 5.28: Flow chart of advection-diffusion equation multiscale finite element main
code connections with other 3 main codes: basis code, interface code and reconstruction
basis code.

1. The main code and basis code are connected using run() function of basis code in

main code to get local multiscale basis and local solution.

2. The main code and interface code are connected using get_basis_from_cell_id

pointer in main code to get reconstructed basis from local cell to global cell.

3. The main code and reconstruction basis code are connected using

initial_reconstruction() to initialize the reconstructed basis.

5.17.2 Step 2 : For every cell K ∈ TH a fine mesh T K
h is to be

initialized

This part is for local mesh with multiscale basis function.

Connect main code to multiscale basis code

The next step is to create the multiscale basis file, as we did with diffusion equation

solutions using multiscale finite element methods.

We follow the same steps we did in the diffusion equation solution with

MsFEM. We first create the Q1 Basis file as q1bais.hpp and add as header in

advectiondiffusion_basis.hpp. Further Q1 Basis is called as object function basis_q1
in file advectiondiffusion_basis.hpp as shown in Flow chart (5.29).

5 Software Concepts 128

Figure 5.29: Flow chart of advection-diffusion equation multiscale finite element
solution Q1 basis code.

Also, the following code of lines are added to map basis to cell in main code.

std::map<CellId, BasisType> cell_basis_map;

Listing 42: Cell basis map.

We follow the same steps for advectiondiffusion_basis.hpp as we did for

diffusion_basis.hpp header file following the Flow chart (5.22) with the following

changes.

1. The class name changes form DiffusionProblemBasis to

AdvectionDiffusionBasisFirst

2. The code is spitted into two functions namely initialize and make_time_step which

are used in main code and reconstruction code in order to used the deal.II class in

there respective function.

3. For initialize we have following sub function for local cell.

• For local mesh make_grid function is used.

• For degree of freedom setup_system function is used.

• Multiscale basis function is initialized and set with appropriate filename link

to global cell with set_filename_global function.

• and for given timesteps before the output. Initial basis output is generated

with output_basis.

4. For make_time_step the time step update steps are created with the following sub

function to be updated with time.

5 Software Concepts 129

• The system is assembled with assemble_system(time) and is updated every

time.

• Then local system is solved using solve_direct or solve_iterative function,

• Followed by global assembly with assemble_global_element_data() for

global matrix and global right hand side. The get function is used to obtain

these function at each time steps.

• The compute_time_derivative compute time derivative of basis at current

time step using backward difference.

• Then with set_filename_global defines the global filename for pvtu-file in

global output. The function get_basis_info_string is to gives basis filename,

which then used in set_filename_global to add local basis to global cell.

• The output_basis is called to write basis results to disk in vtu-format.

• Global weight is generated with function set_global_weights and global

assemble system is written in basis code but used in main code functions.

• In order to get global solution for each processor

output_global_solution_in_cell is called to get multiscale basis on

each global cell in main code.

5 Software Concepts 130

Figure 5.30: Flow chart of advection-diffusion equation multiscale basis code.

5 Software Concepts 131

In Flow chart (5.31), the code in two yellow backgrounds for the functions

initialize_basis and set_global_weights is already explained in the diffusion equation

solution only the class name is changed as mentioned above.

Figure 5.31: Flow chart of advection-diffusion main code connection with multiscale
basis function code.

The basis code explained above would be used in following header files see Figure (5.32)

as follows:

• The main code is connected to basis code with run function.

• The basis code is sent to interface code for initialization of local cell.

• The basis code passes to semilagragian.hpp header file to get advection field for

trace back mesh to generate distorted mesh.

5 Software Concepts 132

• The basis code is sent to reconstruction basis code to get known solution for

distorted cell.

Figure 5.32: Flow chart of advection-diffusion multiscale basis code connections with
other header files.

5.17.3 Step 3 : For K ∈ TH (Online Phase), Reconstruct the basis
u0(x)|K

Here first interface code in basis_interface.hpp header file would be introduced. Flow

chart (5.33) shows the function for interface code.

The functions in the interface code works as follows:

• The get_filename_global function in interface code returns filename for local pvtu

record that would be used in collect_filenames_on_mpi_process function in main
code to gather all the semi-lagrangian basis solution together.

• The get_global_dof_handler function read-only access to global distributed

DOFHandler this is used in Muiltscale_FEFieldFunction.hpp header file to access

DOF for distributed mesh. Note that the Muiltscale_FEFieldFunction.hpp file

will be explained in detail later.

• The get_global_cell function gets reference to global cell as

pointer "*" to CellAcessor which then applied to local basis in

Muiltscale_FEFieldFunction.hpp file.

• The get_global_cell_dof_accessor function gets reference "&" to global cell as

pointer "*" to DoFCellAcessor. It gives all the information about global cell degree

of freedom.

5 Software Concepts 133

• The get_other_local_basis function get constant reference "&" to other local cell

basis from locally owned cell_id function. It gives basis from the cell.

• The get_local_field_function function get constant reference "&" to locally owned

field function object it is declared here, and then defined as reference "&" to

the local cell basis in Muiltscale_FEFieldFunction.hpp header file and is called

reconstruction_base.hpp header file.

• The initial_reconstruction function initializes reconstructed basis. Here it would

just be declared but implemented in reconstructed basis code.

• The get_basis_info_string function gets strings information to added filename

for reconstructed basis. Here it would just be declared but implemented in

reconstructed basis code.

Figure 5.33: Flow chart of Interface code in basis_interface.hpp header file.

Listing (43) gives the code of Basis Interface class where first constructor and destructor

are created and some of functions are initialized that where part of basis code. We

also have several functions with prefix virtual void it is written in Basis Interface class
and implemented in basis code and reconstruction basis code. One can see some key

functions from local basis code in advectiondiffusion basis.hpp file and from main code

5 Software Concepts 134

file in the below code.

template <int dim>

class BasisInterface

{

public:

BasisInterface() = delete;

BasisInterface(typename Triangulation<dim>::active_cell_iterator &global_cell,

bool is_first_cell, unsigned int local_subdomain,

MPI_Comm mpi_communicator, AdvectionDiffusionBase<dim>& global_problem);

/*!

* Copy constructor is necessary since cell_id−basis pairs will

* be copied into a basis std::map. Copying is only possible as

* long as large objects are not initialized.

*/

BasisInterface(const BasisInterface<dim> &X);

/*!

* Destructor must be virtual.

*/

virtual ~BasisInterface()=0;

/*!

* Initialization function of the object. Must be called before first time

* step update.

*/

virtual void initialize() = 0;

/*!

* Make a global time step.

*/

virtual void make_time_step()= 0;

/*!

* Write out global solution in this cell as vtu.

*/

virtual void output_global_solution_in_cell() const = 0;

/*!

* Return the multiscale element matrix produced

* from local basis functions.

*/

virtual const FullMatrix<double> & get_global_element_matrix(bool current_time_flag) const = 0;

/*!

* Get the right hand−side that was locally assembled

* to speed up the global assembly.

*/

virtual const Vector<double> &get_global_element_rhs(bool current_time_flag) const = 0;

/*!

* Return filename for local pvtu record.

*/

virtual const std::string &get_filename_global() const final;

/*!

* Get reference to global cell as pointer to DoFCellAcessor.

*/

virtual typename DoFHandler<dim>::active_cell_iterator get_global_cell_dof_accessor() final;

/*!

* Get reference to global cell as pointer to CellAcessor.

*/

virtual typename Triangulation<dim>::active_cell_iterator get_global_cell() final;

5 Software Concepts 135

/*!

* Get global cell id.

*/

virtual CellId get_global_cell_id() const final;

/*!

* For some basis objects an initial reconstruction must be done. The

* default implementation in the base class does nothing bit it could be

* reimplemented in derived classes.

*/

virtual void initial_reconstruction();

/*!

* @brief Set global weights.

*

* The coarse weights of the global solution determine

* the local multiscale solution. They must be computed

* and then set locally to write an output.

*/

virtual void set_global_weights(const std::vector<double> &global_weights)= 0;

/*!

* Get an info string to append to filenames.

*/

virtual const std::string get_basis_info_string() = 0;

/*!

* Read−only access to global distributed DoFHandler.

*/

virtual const DoFHandler<dim> & get_global_dof_handler() const final;

/*!

* Get a const reference to locally owned (classic) field function object.

*/

virtual std::shared_ptr<Functions::FEFieldFunction<dim>>

get_local_field_function();

/*!

* Get const reference to other local cell basis from locally owned cell_id

*/

virtual BasisInterface<dim> * get_other_local_basis(CellId other_local_cell_id) final;

protected:

/*!

* Current MPI communicator.

*/

MPI_Comm mpi_communicator;

std::string filename_global;

/*!

* Guard for global filename passing without proper value for pvtu−file in

* global output.

*/

bool is_set_filename_global;

/*!

* Reference to global cell.

*/

typename Triangulation<dim>::active_cell_iterator global_cell;

/*!

* Global cell id.

*/

const CellId global_cell_id;

/*!

* Bool indicating if global_cell is the first in global mesh. Relevant to

5 Software Concepts 136

* output.

*/

const bool is_first_cell;

const unsigned int local_subdomain;

private:

/*!

* Pointer to global problem. This should not be accessible in derived

* classes.

*/

AdvectionDiffusionBase<dim> *global_problem_ptr;

};

Listing 43: Basis Interface class in basis_interface.hpp header file.

Connect main code to interface code

In order to connect main code to interface code we follow following steps:

• First a advectiondiffusionproblem_base.hpp header file is created as shown in

Figure (5.34) and the class AdvectionDiffusionBase is defined in order to access

global degree of freedom from global cell in main code.

• To access the reconstructed bases in the interface code basis_interface.hpp header

file with class BasisInterface defined in it.

Figure 5.34: Flow chart of advection-diffusion equation main code connected to
interface code.

Listing (44) shows how virtual function(refers Appendix IV [10]) is created to access

global cell and reconstructed basis in main code and interface code respectively.

5 Software Concepts 137

namespace Timedependent_AdvectionDiffusionProblem

{

template <int dim>

class BasisInterface;

template <int dim>

class AdvectionDiffusionBase

{

public:

AdvectionDiffusionBase() = default;

virtual ~AdvectionDiffusionBase(){};

virtual const DoFHandler<dim> & get_dof_handler() const = 0;

virtual BasisInterface<dim> *get_basis_from_cell_id(CellId cell_id) = 0;

};

}

Listing 44: The advection diffusion base code in advectiondiffusion_base.hpp header

file.

After that the file is added to the main code and interface code. In main code the object

function get_basis_from_cell_id called to get reconstructed basis at each global cell.

Listing (45) gives reconstructed multiscale basis code corresponding to global cell in the

form of C++ feature called pointer "*". This pointer requires an address "&" in order to

access a cell.

template <int dim>

BasisInterface<dim> * BasisInterface<dim>::get_other_local_basis(CellId other_local_cell_id)

{

return global_problem_ptr−>get_basis_from_cell_id(other_local_cell_id);

}

Listing 45: Get local basis.

Listing (46) is code to get a reconstructed basis using C++ pointer "*" feature

get_basis_from_cell_id in main code is accessed using address "&".

template <int dim, class BasisType>

Timedependent_AdvectionDiffusionProblem::BasisInterface<dim> *
AdvectionDiffusionProblemMultiscale<dim, BasisType>::get_basis_from_cell_id(CellId cell_id)

{

return &(cell_basis_map.find(cell_id)−>second);

}

Listing 46: Get basis from the cell id.

Figure (5.35) shown connection of interface code with other code. The local basis

5 Software Concepts 138

function declared in interface code are define in advectiondiffusion_basis.hpp and

reconstruction_base.hpp files.

Figure 5.35: Flow chart of advection-diffusion equation multiscale finite element
solution connection of interface code with other codes. .

5.17.4 Step 4 : For n = 0 to n≤ Nsteps

Now are the steps above that are initialize would be used.

5.17.5 Step 4a : Each node in K is trace back one time step from
tn+1 to tn

To account for dominant advection, we combine semi-Lagrangian methods with

multiscale methods. Reconstruction is based on the observation that the global solution at

a previous timestep contains local information about the entire domain of dependence. A

Eulerian multiscale basis can be constructed this way: we trace back at the time tn+1 an

Eulerian cell K ∈ TH with unknown solution and basis.are unknown to the previous time

step tn. This results in a distorted cell K̃, over which the solution un is known, but not the

multiscale basis ϕi, i = 1,2.

Our goal is to trace back all nodes in T K
H from time tn+1 to tn in order to find the points

5 Software Concepts 139

where information is transported. To accomplish this, one simply needs to solve an ODE

with the time-reversed velocity field.

In the first line of code, the constructor, destructor and function are declared and we

initialize the functions. Listing (47) gives the code to solve ODE with backward Euler step

in semilagrangian.hpp, where the time_step is the global time step and n_steps_local is

the local time step. Here we see that advection field as dependent variable that is traced

back in order to get distorted cell at previous time step.

template <int dim>

Point<dim> SemiLagrangian<dim>:: operator()(const Point<dim> &in) const

{

Assert(is_initialized, ExcNotInitialized());

Assert(is_set_current_time, ExcNotInitialized());

Point<dim> out(in);

for (unsigned int j = 0; j < n_steps_local; ++j)

{

advection_field−>set_time(current_time − j * time_step / n_steps_local);

out = out − (time_step / n_steps_local) * advection_field−>value(out);

}

return out;

}

Listing 47: Semi-Lagrangian trace back mesh semilagrangian.hpp header file.

Figure (5.36) shows how semilagrangian.hpp header file is connected to different files

as follows:

Figure 5.36: Flow chart of reconstruction basis code from basis code.

• The basis code in advectiondiffusion_basis.hpp header file has advection field

5 Software Concepts 140

that is been used in current semilagrangian.hpp header file.

• The result of semilagrangian.hpp header file is the distorted cell that would be

used to reconstruct the basis in reconstruction basis code.

Now in order to find whether the point belongs to unit cell or not, we create

get_domain_points.hpp header file as shown in Listing (48).

template <int dim>

Point<dim> UnitCellPointFinder<dim>::value(const Point<dim> &p)

{

//transform_real_to_unit_cell : Map the point p on the real cell to the corresponding point on the unit cell, and return its coordinates.

Point<dim> unit_cell_point =mapping.transform_real_to_unit_cell(this_global_cell,p);

// is_inside_unit_cell : Return true if the given point is inside the unit cell of the present space dimension.

bool inside_unit_cell=GeometryInfo<dim>::is_inside_unit_cell(unit_cell_point);

if(inside_unit_cell)

return unit_cell_point;

}

Listing 48: Point finder in unit cell in get_domain_points.hpp header file.

Figure 5.37: Flow chart of find point in unit cell code connection with point belonging
to MPI processor code.

Then we use this function by declaring an object function name point_finder
for it and along with header file semilagrangian.hpp in the header file

Multiscale_FEFieldFunction.hpp as shown in Figure (5.37). Now, the

Multiscale_FEFieldFunction.hpp header file is the magic file as it solves the bottleneck

of which MPI processor is associated with each semi-Lagragian trace back point. Thanks

to Konrad Simon for implementing the new feature of find_point_owner_rank in

section (5.13.3) to find the MPI rank of the processor in deal.II

Listing (49) shows the code that takes the object function point_finder to find the

point in the unit cell. The result is value p. In order to find which process p
belongs to, find_point_owner_rank is used. The result is allocated to shared pointer

local_field_function_ptr that takes pointer for get_local_field_function function

declared in interface code.

Coefficients::UnitCellPointFinder<dim> point_finder;

template <int dim, typename DoFHandlerType, bool is_periodic>

double MsFEFieldFunctionMPI<dim, DoFHandlerType, is_periodic>::value(

const Point<dim> & point,const unsigned int comp) const

5 Software Concepts 141

{

Assert(is_initialized, ExcNotInitialized());

const Point<dim> p = point_finder(point);

// Shared pointer

std::shared_ptr<Functions::FEFieldFunction<dim>> local_field_function_ptr = local_basis_ptr−>get_local_field_function();

double value;

typename DoFHandler<dim>::active_cell_iterator cell = this_global_cell;

if (cell == global_dh−>end()) cell = global_dh−>begin_active();

return value = local_field_function_ptr−>find_point_owner_rank.value(point);

}

Listing 49: Find point owner rank in Multiscale_FEFieldFunction.hpp header file.

5.17.6 Step 4b : Basis un(x)|K̃ from 4.10 to be reconstructed

We have two important header files for reconstruct basis code namely

reconstruct_base.hpp header file for reconstruct basis to global cell and

reconstruct_assembler.hpp header file to reconstruct basis. We will discuss

reconstruct_assembler.hpp header file. The file now contains two important classes,

namely AdvectionDiffusionBasis_Reconstruction and BasicReconstructor as shown

in Flow chart (5.38).

The class AdvectionDiffusionBasis_Reconstruction in reconstruct_assembler.hpp
header file has following function as shown in Flow chart (5.38). The function has the

following role:

• The function copy_triangulation defines local cells.

• The function initialize is to initialize mesh with distorted cell with function

mesh_back_tracer. We also initialize the solution, the solution time derivative,

the matrix coefficient, and the right hand side of the equation.

• The function trace_back_mesh is called to transform local cell mesh to distorted

cell mesh.

• The function print_traced_mesh_info to print mesh and solution information.

• The remaining functions solution_vector, solution_vector_old,

solution_vector_time_derivative, matrix_coeff, advection_field and

right_hand_side is to get pointers "*" for solution, solution old, solution

time derivatives, matrix coefficients, advection field and right hand side.

5 Software Concepts 142

Figure 5.38: Flow chart of reconstruct basis code first part in
reconstruct_assembler.hpp header file.

Listing (50) gives the code of Basis Interface class where first constructor and destructor

are created and some of functions are initialized that where part of basis code.

template<int dim>

class AdvectionDiffusionBasis_Reconstruction {

public:

/*

* Default Constructor.

*/

AdvectionDiffusionBasis_Reconstruction() = delete;

/*!

* Constructor. Does not initialize fully.

*/

5 Software Concepts 143

AdvectionDiffusionBasis_Reconstruction(BasisInterface<dim> & _local_basis,

MPI_Comm mpi_communicator,

const FE_Q<dim> & _fe,

Coefficients::MatrixCoeff<dim> & _matrix_coeff,

Coefficients::AdvectionField<dim> &_advection_field,

Coefficients::RightHandSide<dim> & _right_hand_side,

std::vector<Vector<double>> & _solution_vector,

std::vector<Vector<double>> & _solution_vector_old,

std::vector<Vector<double>> & _solution_vector_time_derivative,

bool _is_first_cell);

/*!

* Copy constructor is deleted.

*/

AdvectionDiffusionBasis_Reconstruction(const AdvectionDiffusionBasis_Reconstruction<dim> &X) = delete;

/*!

* Copy assignment is deleted.

*/

AdvectionDiffusionBasis_Reconstruction<dim> &

operator=(const AdvectionDiffusionBasis_Reconstruction<dim> &X) = delete;

/*!

* Destructor must be virtual.

*/

virtual ~AdvectionDiffusionBasis_Reconstruction()=0;

/*!

* Late initialization.

*/

void

initialize(const double _time_step,

const unsigned int _n_steps_local,

Coefficients::MatrixCoeff<dim> & _matrix_coeff,

Coefficients::AdvectionField<dim> &_advection_field,

Coefficients::RightHandSide<dim> & _right_hand_side,

std::vector<Vector<double>> & _solution_vector,

std::vector<Vector<double>> & _solution_vector_old,

std::vector<Vector<double>> &_solution_vector_time_derivative);

/*!

* Virtual function to implement a

* reconstruction for the initial basis. This is done from an initial

* condition. Does nothing by default.

*/

virtual void

basis_initial_reconstruction(){};

/*!

* Pure virtual function to implement a reconstruction step for the basis

* at current_time.

*/

virtual void

basis_reconstruction(const double current_time,

const double time_step,

const double theta) = 0;

/*!

* Get an info string to append to filenames.

*/

virtual const std::string

5 Software Concepts 144

get_info_string() = 0;

/*!

* Interface to copy a triangulation into the object.

*/

void

copy_triangulation(Triangulation<dim> &other_tria);

/*!

* Plot trace back mesh with info for diagnostic purposes. Only

* implemented in base class.

*/

virtual void

print_traced_mesh_info(const Vector<double> &solution,

const std::string & filename) final;

/*

* These members and functions should be available in derived classes.

*/

protected:

void

trace_back_mesh(const double current_time);

Coefficients::MatrixCoeff<dim> & matrix_coeff();

Coefficients::AdvectionField<dim> & advection_field();

Coefficients::RightHandSide<dim> & ight_hand_side();

std::vector<Vector<double>> & solution_vector();

std::vector<Vector<double>> & solution_vector_old();

std::vector<Vector<double>> & solution_vector_time_derivative();

MPI_Comm mpi_communicator;

Triangulation<dim> local_tria;

DoFHandler<dim> dof_handler;

const FE_Q<dim> fe;

private:

Coefficients::MatrixCoeff<dim> *matrix_coeff_ptr;

/*!

* Reference to time−dependent vector coefficient (velocity).

*/

Coefficients::AdvectionField<dim> *advection_field_ptr;

/*!

* Reference to time−dependent scalar coefficient (forcing).

*/

Coefficients::RightHandSide<dim> *right_hand_side_ptr;

std::vector<Vector<double>> *solution_vector_ptr;

5 Software Concepts 145

std::vector<Vector<double>> *solution_vector_old_ptr;

std::vector<Vector<double>> *solution_vector_time_derivative_ptr;

bool is_initialized;

protected:

bool is_first_cell;

private:

Coefficients::SemiLagrangian<dim> mesh_back_tracer;

const unsigned int n_refine_local =4;

protected:

BasisInterface<dim> *local_basis_ptr;

};

Listing 50: AdvectionDiffusionBasis_Reconstruction class in

reconstruction_assembler.hpp header file.

Now we go through BasicReconstructor class reconstruct_assembler.hpp header file.

Flow chart (5.39) gives overview of the functions in the class. The implication of these

functions is as follows:

• The BasicReconstructor is defined with public constructor for class

AdvectionDiffusionBasis_Reconstruction to use all the functions defined in

it.

• The function initialize is to initialize global cell and local cell with all the functions

solution_vector, solution_vector_old, solution_vector_time_derivative,

matrix_coeff, advection_field and right_hand_side is to get pointers for solution,

solution old, solution time derivatives, matrix coefficients, advection field and

right hand side. Q1Basis and global degrees of freedom is initialized with function

setup_system.

• In the assemble_system(time) function, the local system is assembled with the this

pointer of the C++ and updated every time.

• Then compute_time_derivative is set with this pointer and is updated every time.

• Followed by global assembly with assemble_global_element_matrix with help of

this pointer.

• The assemble_global_element_rhs is also created with the help of this pointer.

• The basis_reconstruction updates the assembled local system every time steps.

• The get_info_string gives the filename output for reconstructed basis at every time

5 Software Concepts 146

steps.

Figure 5.39: Flow chart of reconstruct basis code second part in
reconstruct_assembler.hpp header file.

5.17.7 Step 4c : Propagate the boundary conditions of the optimal
basis forward onto K

Global Formulation: Assemble the global (coarse) system matrices with

reconstructed basis function. We follow the steps for reconstruct basis code in

reconstruction_base.hpp header file following the Flow chart (5.40) with the

corresponding changes from basis code.

5 Software Concepts 147

Figure 5.40: Flow chart of reconstruct basis code for global cell in
reconstruction_base.hpp header file.

Figure (5.41) gives the overview of how the different files would be connected in

5 Software Concepts 148

reconstruction process.

Figure 5.41: Flow chart of reconstruction multiscale basis code connection with main
code.

Now we will walk through the steps in class SemiLagrangianBasis and its connection to

main code.

1. Create reconstruction_basis.hpp header file with class SemiLagrangianBasis.

It has one more parameter ReconstructionType for including

reconstruct_assembler.hpp header file functions in reconstruction_basis.hpp
header file.

2. The code is spitted into three functions instead of two. These functions are

initialize, initialize_reconstruction and make_time_step which are used in main
code and reconstruction basis code to used the deal.II class in there respective

function.

3. For initialize we have the following sub function for local cell.

• For local mesh copy triangulation from basis code in make_grid in

reconstruction basis code.

• For degree of freedom setup_system function reinitialize solution vectors, old

solution vectors and global right hand side.

• The function get_local_field_function was declared in

interface code to get local pointer "*" for locally owned

field function object in MsFEFieldFunctionMPI function of

Multiscale_FEFieldFunctionMPI.hpp header file.

• Multiscale basis function is initialized and set with appropriate filename link

to global cell with set_filename_global function. Initial reconstruction for the

5 Software Concepts 149

basis can now be done since the initial global solution is locally set.

4. and the function initial_reconstruction initial reconstructed basis output is

generated with output_basis for solution at previous time step.

5. For make_time_step the time step update steps are created with the following sub

function to be updated with time.

• Global weight is generated with function set_global_weights is updated in

main code functions.

• Followed by global assembly with for global matrix which is obtained from

function get_global_element_matrix. This part is connected with the main
code.

• and global right hand side is obtained from function

get_global_element_matrix respectively. This part is connected with

the main code.

• The filename is added as semi-Lagrangian basis at each reconstructed basis

step with get_basis_info_string function. This part is initialize in interface
code.

• Then filename is updated with set_filename_global at every time steps.

• The output_basis is called for the new updated solution in main code and

function global_cell_id to write local reconstructed basis for global cell.

• The get_local_field_function is return constant reference to locally owned

field function object, defined in Muiltscale_FEFieldFunction.hpp header

file.

• The output_global_solution_in_cell is called get global solution for each

processor. It is called to get multiscale basis on each global cell in main
code.

Listing (51) gives the implementation of function in deal.II.

template <int dim, class ReconstructionType>

void SemiLagrangeBasis<dim, ReconstructionType>::initialize()

{

Timer timer;

timer.restart();

make_grid();

setup_system();

if (verbose)

5 Software Concepts 150

{

std::cout << " Initializing local basis in global cell id "

<< this−>global_cell_id.to_string() << " (subdomain "<< this−>local_subdomain << " "

<< triangulation.n_active_cells() << " active fine cells "

<< dof_handler.n_dofs() << " subgrid dofs)";

}

if (verbose_all)

std::cout << std::endl;

{

/*

* The global solution must be set in this case for an initial

* reconstruction.

*/

AffineConstraints<double> constraints_fake;

constraints_fake.clear();

DoFTools::make_hanging_node_constraints(dof_handler, constraints_fake);

constraints_fake.close();

VectorTools::project(dof_handler, constraints_fake, QGauss<dim>(fe.degree + 1),

initial_value,global_solution);

local_field_function_ptr.reset(new Functions::FEFieldFunction<dim>(dof_handler, global_solution));

is_set_global_solution = true;

}

basis_reconstructor.initialize(this−>global_cell, time_step, /* n_steps_local */ 1,

matrix_coeff, advection_field, right_hand_side, solution_vector,

solution_vector_old, solution_vector_time_derivative);

/*

* Must be set with appropriate name for this timestep before output.

*/

set_filename_global();

if (verbose)

{

timer.stop();

std::cout << " done in " << timer.cpu_time() << " seconds." << std::endl;

}

}

template <int dim, class ReconstructionType>

void SemiLagrangeBasis<dim, ReconstructionType>::initial_reconstruction()

{

/*

* Initial reconstruction for the basis can now be done since the initial

* global solution is locally set.

*/

time = 0.0;

basis_reconstructor.basis_initial_reconstruction();

if (this−>is_first_cell)

{

output_basis(solution_vector_old);

}

5 Software Concepts 151

}

template <int dim, class ReconstructionType>

void SemiLagrangeBasis<dim, ReconstructionType>::make_time_step()

{

Timer timer;

if (verbose)

{

timer.restart();

std::cout << " Time step for local basis in global cell id "

<< this−>global_cell_id.to_string() << " (subdomain " << this−>local_subdomain << " "

<< triangulation.n_active_cells() << " active fine cells " << dof_handler.n_dofs() << " subgrid dofs)";

}

if (verbose_all)

std::cout << std::endl;

time += time_step;

++timestep_number;

// reset

is_set_global_weights = false;

this−>is_set_filename_global = false;

is_solved = false;

{

basis_reconstructor.basis_reconstruction(/* current time = */ time,

/* dt = */ time_step, /* theta = */ theta);

is_solved = true;

}

basis_reconstructor.assemble_global_element_data(global_element_matrix,

global_element_matrix_old, global_element_rhs, global_element_rhs_old,

time_step, theta);

/*

* Must be set with appropriate name for this timestep before output.

*/

set_filename_global();

if (output_first_basis && this−>is_first_cell)

output_basis(solution_vector);

if (verbose)

{

timer.stop();

std::cout << " done in " << timer.cpu_time() << " seconds." << std::endl;

}

}

Listing 51: Flow chart of reconstruct basis code for global cell in

reconstruction_base.hpp header file.

5 Software Concepts 152

5.17.8 Step 5 : Postprocess the solution

Listing (52) gives the code for output basis. In the first few lines of code, the local

reconstructed basis is gathered, and then all the basis for MPI processes is gathered using

a for loop. After that pvtu files are generated for collecting solution of global cell and

then for collecting output for local cell.

template <int dim, class BasisType>

void AdvectionDiffusionProblemMultiscale<dim, BasisType>::output_results(TrilinosWrappers::MPI::Vector &vector_out) const

{

// write local fine solution

typename std::map<CellId, BasisType>::const_iterator it_basis = cell_basis_map.begin(),

it_endbasis =cell_basis_map.end();

for (; it_basis != it_endbasis; ++it_basis)

{

(it_basis−>second).output_global_solution_in_cell();

}

// Gather local filenames

std::vector<std::string> filenames_on_cell;

{

std::vector<std::vector<std::string>> filename_list_list = Utilities::MPI::gather(mpi_communicator,

collect_filenames_on_mpi_process(), /* root_process = */ 0);

for (unsigned int i = 0; i < filename_list_list.size(); ++i)

for (unsigned int j = 0; j < filename_list_list[i].size(); ++j)

filenames_on_cell.emplace_back(filename_list_list[i][j]);

}

std::string filename = (dim == 2 ? "solution−ms_2d" : "solution−ms_3d");

DataOut<dim> data_out;

data_out.attach_dof_handler(dof_handler);

data_out.add_data_vector(vector_out, "u");

Vector<float> subdomain(triangulation.n_active_cells());

for (unsigned int i = 0; i < subdomain.size(); ++i)

{

subdomain(i) = triangulation.locally_owned_subdomain();

}

data_out.add_data_vector(subdomain, "subdomain");

// Postprocess

// std::unique_ptr<Q_PostProcessor> postprocessor(

// new Q_PostProcessor(parameter_filename));

// data_out.add_data_vector(locally_relevant_solution, *postprocessor);

data_out.build_patches();

std::string filename_local_coarse(filename);

filename_local_coarse += "_coarse_refinements−" + Utilities::int_to_string(n_refine, 2) + "." +

"theta−" + Utilities::to_string(theta, 4) + "." + "time_step−" +

Utilities::int_to_string(timestep_number, 4) + "." +

5 Software Concepts 153

Utilities::int_to_string(triangulation.locally_owned_subdomain(), 4) + ".vtu";

std::ofstream output(filename_local_coarse.c_str());

data_out.write_vtu(output);

/*

* Write a pvtu−record to collect all files for each time step.

*/

if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)

{

std::vector<std::string> all_local_filenames_coarse;

for (unsigned int i = 0;

i < Utilities::MPI::n_mpi_processes(mpi_communicator); ++i)

{

all_local_filenames_coarse.push_back(

filename + "_coarse_refinements−" + Utilities::int_to_string(n_refine, 2) + "." + "theta−" +

Utilities::to_string(theta, 4) + "." + "time_step−" + Utilities::int_to_string(timestep_number, 4) + "." +

Utilities::int_to_string(i, 4) + ".vtu");

}

std::string filename_master(filename);

filename_master += "_coarse_refinements−" + Utilities::int_to_string(n_refine, 2) + "." + "theta−" +

Utilities::to_string(theta, 4) + "." + "time_step−" + Utilities::int_to_string(timestep_number, 4) + ".pvtu";

std::ofstream master_output(filename_master);

data_out.write_pvtu_record(master_output, all_local_filenames_coarse);

}

// pvtu−record for all local fine outputs

if (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)

{

std::string filename_master = filename;

filename_master += "_fine_refinements−" + Utilities::int_to_string(n_refine, 2) + "." + "theta−" +

Utilities::to_string(theta, 4) + "." + "time_step−" + Utilities::int_to_string(timestep_number, 4) + ".pvtu";

std::ofstream master_output(filename_master);

data_out.write_pvtu_record(master_output, filenames_on_cell);

}

}

Listing 52: Output the solution in main code.

The error is computed similar as for advection-diffusion problem. Here we use main
code to find error. Here we conclude Chapter 5 with lots of implementation and Flow

chart descriptions.

6 Numerical result 154

6 Numerical result

"I have had my results for a long time: but I do not yet know how I am to

arrive at them."

- Carl Friedrich Gauss

6.1 Numerical Experiments.

All implementations were performed in C++ using deal.II 9.4.0 [7] . Now apply this

methods to two model problems of increasing complexity. The first model problem

involves a periodically oscillating coefficient function. We calculate quantitative results

in terms of explicit L2, L∞ and H1 errors. The second model problem involves diffusion

with the Neumann condition on odd boundaries and the Dirichlet boundary on even

boundaries as shown in Figure (6.1). Here, the exact solution is unavailable. We

qualitatively evaluate our MsFEM approximations and Low resolution FEM results by

comparing them with finite element computations on a highly resolved grid.

Figure 6.1: Domain with boundary condition.

The computations were performed on a Linux based Marin cluster from 10 to 80 CPUs.

6 Numerical result 155

6.1.1 Test case 1

Let Ω = [0,1] ε = 0.05 . We define Poisson’s Equation

−∇ · (aε∇u) = f in Ω

Dirichlet condition is

u = 0 on ∂Ω

where

Diffusion coefficient

aε(x, t) =

(
I2 +

[
sin(4πx/ε) 0

0 sin(4πy/ε)

])

and

f =−∇ · (Aε∇u)≈ sin(2πx)sin(2πy)

Figure 6.2: Test case 1 Solution of High resolution FEM, Low resolution FEM and Low
resolution MsFEM for stationary diffusion equation.

According to Figure (6.2), the high-resolution FEM captures all small scales because

its mesh resolution is high, whereas the low-resolution FEM does not provide accurate

results. Low-resolution MsFEM gives acceptable results.

6 Numerical result 156

Test case 1: Error Table

The error is calculated using the difference between the reference solution, which is a

high resolution FEM solution, and the low resolution FEM and MsFEM solutions.

Relative Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.0080 0.1011 0.0146

Low resolution MsFEM 0.0019 0.0555 0.0041

Table 6.1: Test case 1 Error in simulation with Low resolution FEM and Low resolution
MsFEM.

It can be seen from the above Table (6.1) that low-resolution MsFEM has less error then

low-resolution FEM.

Test case 1: Wall times with respect to MPI rank

10 20 30 40 50 60 70 80
MPI RANK

10 1

W
al

l t
im

es

High resolution FEM Method run with 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.3: Test case 1 Wall times with respect to MPI rank for High resolution FEM
method.

6 Numerical result 157

10 20 30 40 50 60 70 80
MPI RANK

10 3

10 2

W
al

l t
im

es
Low resolution MsFEM Method run with 80 processor

assembly
iterative solver
mesh generation
system setup

Figure 6.4: Test case 1 Wall times with respect to MPI rank for Low resolution MsFEM
method.

10 20 30 40 50 60 70 80
MPI RANK

10 2

W
al

l t
im

es

Low resolution FEM Method run with 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.5: Test case 1 Wall times with respect to MPI rank for Low resolution FEM
method.

6 Numerical result 158

In Figures [(6.3),(6.4) and (6.5)] here we run 3 different simulations for test case 1

with 81 degrees of freedom for low-resolution FEM. For high-resolution FEM, there

are 16641 degrees of freedom while for multiscale finite element method, there are 81

degrees of freedom. Mesh generation in high-resolution FEM takes the maximum time;

however, it decreases with the number of processors, except for the 50 and 70 MPI ranks.

For low-resolution FEM and low-resolution MsFEM, there are 81 degrees of freedom.

Because of the size of the problem, mesh generation wall times does not vary much.

For the remaining steps, such as assembly, the iterative solver and system setup decrease

except at 50 MPI ranks in high-resolution FEM. The number of iterative solvers increases

in low-resolution FEM, but setup and assembly does not increases much. In the case

of a low-resolution MsFEM assembly, the system setup and iterative solver wall times

increase then becomes almost constant. The number of degrees of freedom is less than

10,000 in Low Resolution FEM and MsFEM are not capable of showing good scaling.

The idea here is to compare three cases of parallel computing.

Test case 1: Memory Consumption

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

Highresolution FEM Memory consumption with 80 processor
TRI MEMORY
DOF MEMORY

Figure 6.6: Test case 1 Memory consumption for High resolution FEM method.

6 Numerical result 159

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104
M

em
or

y
Co

ns
um

pt
io

n
Low resolution MsFEM Memory consumption with 80 processor

TRI MEMORY
DOF MEMORY

Figure 6.7: Test case 1 Memory consumption for Low resolution MsFEM method.

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution FEM Memory consumption with 80 processor

TRI MEMORY
DOF MEMORY

Figure 6.8: Test case 1 Memory consumption for Low resolution FEM method.

The deal.II function calculates memory consumption. Here TRI_MEMORY gives the

maximum memory used for triangulation that is mesh generation by the processor. And

6 Numerical result 160

DOF_MEMORY gives maximum memory used for degree of freedom by the given

process. For example the output below

Running with PETSc on 10 MPI rank(s)...

FEM Coarse TRI MEMORY — 14519

FEM Coarse TRI MEMORY — 19271

FEM Coarse TRI MEMORY — 15951

FEM Coarse TRI MEMORY — 16015

FEM Coarse TRI MEMORY — 15983

FEM Coarse TRI MEMORY — 14519

FEM Coarse TRI MEMORY — 17943

FEM Coarse TRI MEMORY — 17943

FEM Coarse TRI MEMORY — 19335
FEM Coarse TRI MEMORY — 15951

FEM Coarse DOF MEMORY — 3106

FEM Coarse DOF MEMORY — 3766
FEM Coarse DOF MEMORY — 3514

FEM Coarse DOF MEMORY — 3170

FEM Coarse DOF MEMORY — 2834

FEM Coarse DOF MEMORY — 3514

FEM Coarse DOF MEMORY — 3170

FEM Coarse DOF MEMORY — 2834

FEM Coarse DOF MEMORY — 3766

FEM Coarse DOF MEMORY — 3106

Here TRI_MEMORY is taken 19335 and DOF_MEMORY is 3766. The goal is to

determine which methods consume the most memory. Memory usage at high resolutions

decreases as processors increase. Low-resolution FEM and MsFEM consume very few

CPUs, and problem resolution is small. It is seen from Figures [(6.6), (6.7) and (6.8)]

for high-resolution FEM, the degrees of freedom decrease. It remains constant for

low-resolution FEM and MsFEM.

6 Numerical result 161

Test case 1: Wall times with respect to DOF

102 103 104 105 106 107

No of DOF

10 2

10 1

100

101

102

W
al

l t
im

es
DOF versus Wall times for FEM

assembly
iterative solver
mesh generation
system setup

Figure 6.9: Test case 1 Wall times with respect to DOF for FEM method.

102 103 104

No of DOF

10 3

10 2

10 1

W
al

l t
im

es

DOF versus Wall times for MsFEM
assembly
iterative solver
mesh generation
system setup

Figure 6.10: Test case 1 Wall times with respect to DOF for MsFEM method.

6 Numerical result 162

In Figures [(6.9) and (6.10)] here we run 2 different simulations for test case 1 with

80 MPI rank for FEM and MsFEM. Mesh generation in high-resolution FEM takes

the maximum time; however, it increases with the number of degrees of freedom. For

MsFEM, wall times increase with respect to DOF. For the remaining steps, such as

assembly, the iterative solver, and system setup, there is an increase in wall times for

FEM and for low-resolution MsFEM.

Test case 1: Memory Consumption with respect to DOF

Figures [(6.11) and (6.12)] shows memory consumption for FEM and MsFEM methods.

Memory usage for FEM increases as the number of DOFs increases. MsFEM consumes

very small memory and problem resolution is small.

102 103 104 105 106 107

No of DOF

104

105

106

107

M
em

or
y

Co
ns

um
pt

io
n

Memory consumption with 80 processor for FEM
TRI MEMORY
DOF MEMORY

Figure 6.11: Test case 1 Memory Consumption with respect to DOF for FEM method.

6 Numerical result 163

102 103 104

No of DOF

104

105

M
em

or
y

Co
ns

um
pt

io
n

Memory consumption with 80 processor for MsFEM
TRI MEMORY
DOF MEMORY

Figure 6.12: Test case 1 Memory Consumption with respect to DOF for MsFEM
method.

6.1.2 Test case 2

Let Ω = [0,1] and ε = 0.6666 and k=23 . We define Poisson’s Equation

−∇ · (aε∇u) = f in Ω

Dirichlet condition is

u = (x−0.5)2 +(y−0.5)2 on le f t and bottom ∂Ω

Neumann Condition is

∇u.n = cos(2πx)∗ cos(2πy) on right and top ∂Ω

where

6 Numerical result 164

Diffusion coefficient

aε(x, t)=

(
I2−ε

[
0.5∗ sin(2πkx)+0.5∗ sin(2πky) 0

0 0.5∗ sin(2πkx)+0.5∗ sin(2πky)

])

and

f = 2

Figure 6.13: Test case 2 Solution of High resolution FEM, Low resolution FEM and
Low resolution MsFEM for stationary diffusion equation.

It is obvious that a reference solution with high resolution yields the best results, but

computation power and memory are increased.. As shown Figure (6.13) Low-resolution

FEM does not provide accurate results. With low computation and memory demands, the

multiscale finite element MsFEM exhibits excellent performance. It captures the subgrid

scale features in the solution.

Test case 2: Error Table

Here the error is calculated with the difference in the reference solution which is high

resolution FEM.

6 Numerical result 165

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.0159 0.073 0.14

Low resolution MsFEM 0.0025 0.034 0.056

Table 6.2: Test case 2 Error in simulation with Low resolution FEM, High resolution
FEM and Low resolution MsFEM.

In the above Table (6.2), the error is calculated using high-resolution FEM as the reference

solution. The low-resolution MsFEM has the least error, whereas the low-resolution FEM

has the most error.

Test case 2: Wall times with respect to MPI rank

10 20 30 40 50 60 70 80
MPI RANK

10 1

W
al

l t
im

es

High FEM Method run with 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.14: Test case 2 Wall times with respect to MPI rank for High resolution FEM
method.

6 Numerical result 166

10 20 30 40 50 60 70 80
MPI RANK

10 3

10 2

W
al

l t
im

es

Low MsFEM Method run with 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.15: Test case 2 Wall times with respect to MPI rank for Low resolution
MsFEM method.

10 20 30 40 50 60 70 80
MPI RANK

10 2

W
al

l t
im

es

Low FEM Method run with 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.16: Test case 2 Wall times with respect to MPI rank for Low resolution FEM
method.

6 Numerical result 167

In Figure [(6.14), (6.15) and (6.16)] here we run 3 different simulations for test case

2 with 81 degrees of freedom for low-resolution FEM. The high-resolution FEM has

16641 degrees of freedom, while the multiscale FEM has 81 degrees of freedom. Mesh

generation in the high-resolution FEM takes maximum time; however, it decreases with

the number of processors, except for the 50 and 70 MPI ranks. For low-resolution FEM

and low-resolution MsFEM, there are 81 degrees of freedom. Because of the size of

the problem, mesh generation does not vary much. For the remaining steps, such as

assembly, the iterative solver and system setup decrease mostly in high-resolution FEM.

Low-resolution FEM increases iterative solvers, setup and assembly. In the case of a

low-resolution MsFEM assembly, the system setup and iterative solver increase with MPI

rank.

Test case 2: Memory Consumption

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

High FEM Memory consumption with 80 processor
TRI MEMORY
DOF MEMORY

Figure 6.17: Test case 2 Memory consumption for High resolution FEM.

6 Numerical result 168

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104
M

em
or

y
Co

ns
um

pt
io

n
Low MsFEM Memory consumption with 80 processor

TRI MEMORY
DOF MEMORY

Figure 6.18: Test case 2 Memory consumption for Low resolution MsFEM.

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low FEM Memory consumption with 80 processor

TRI MEMORY
DOF MEMORY

Figure 6.19: Test case 2 Memory consumption for Low resolution FEM.

As shown in Figure [(6.17), (6.18) and (6.19)], low-resolution FEM and MsFEM consume

less memory than high-resolution FEM.

6 Numerical result 169

Test case 2: Wall times with respect to DOF

102 103 104 105 106 107

No of DOF

10 2

10 1

100

101

102

W
al

l t
im

es
DOF versus Wall times for FEM

assembly
iterative solver
mesh generation
system setup

Figure 6.20: Test case 2 Wall times with respect to DOF for FEM method.

102 103 104

No of DOF

10 2

10 1

W
al

l t
im

es

DOF versus Wall times for MsFEM
assembly
iterative solver
mesh generation
system setup

Figure 6.21: Test case 2 Wall times with respect to DOF for MsFEM method.

6 Numerical result 170

In Figures [(6.20) and (6.21)] here we run 2 different simulations for test case 2 with

80 MPI rank for low-resolution FEM. Mesh generation in high-resolution FEM takes the

most time; however, it increases with the number of degrees of freedom. For MsFEM,

wall times increase with respect to DOF. For the remaining steps, such as assembly,

the iterative solver, and system setup, wall times increase for FEM. In the case of a

low-resolution MsFEM assembly, system setup and iteration increase with wall time.

Test case 2: Memory Consumption with respect to DOF

102 103 104 105 106 107

No of DOF

104

105

106

107

M
em

or
y

Co
ns

um
pt

io
n

Memory consumption with 80 processor for FEM
TRI MEMORY
DOF MEMORY

Figure 6.22: Test case 2 Memory Consumption with respect to DOF for FEM method.

6 Numerical result 171

102 103 104

No of DOF

104

105

M
em

or
y

Co
ns

um
pt

io
n

Memory consumption with 80 processor for MsFEM
TRI MEMORY
DOF MEMORY

Figure 6.23: Test case 2 Memory Consumption with respect to DOF for MsFEM
method.

As shown in Figures [(6.22) and (6.23)] , memory consumption increases with increase

in DOF in FEM and MsFEM increases with increase in DOF in MsFEM. Both in Test 1

and Test 2 the memory is maximum memory and not total memory hence the figure is not

linear.

6.1.3 Test case 3

Here the domain is square. Model problem advection-diffusion involve periodic

boundaries on left-right and top-bottom and Dirichlet boundary conditions on all

boundaries.

∂tu+ cδ ·∇u = ∇ · (aε∇u)+ f

Dirichlet condition is

u =
1

2
√

(2π)2

2

∑
i=1

exp{−1
2
(x− ri)

T (x− ri)}∂Ω

6 Numerical result 172

where ri = [i
3 ,

1
2], i=1,2

Initial condition at t = 0

u(x,y) =
1

2
√

(2π)2

2

∑
i=1

exp{−1
2
(x− ri)

T (x− ri)}

where ri = [i
3 ,

1
2], i=1,2

Velocity

cδ (x, t) = 2

[
sin(30πx)cos(30πy)

−cos(30πx)sin(30πy)

]

Diffusion coefficient

aε(x, t) = 0.001∗

(
1−0.999

[
sin(60πx) 0

0 sin(60πy)

])

Figure 6.24: Test case 3 Solution of High resolution FEM, Low resolution FEM and
Low resolution MsFEM for advection-diffusion equation.

In the given square domain with high advection it is found in Figure (6.24) that low

resolution MsFEM shows better results when compared to high resolution FEM compared

to low resolution FEM. The coarse line of mesh are seen in low resolution MsFEM. The

low resolution FEM solution does not converge due to high advection.

6 Numerical result 173

Test case 3: Error Table

Here the error is calculated with the difference in the reference solution which is high

resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.0085 0.3920 0.0693

Low resolution MsFEM 0.0003 0.031 0.0004

Table 6.3: Test case 3 Error in simulation with Low resolution FEM, High resolution
FEM and Low resolution MsFEM.

According to Table (6.3), low resolution FEM has more error compared to low resolution

MsFEM.

6 Numerical result 174

Test 3 Wall Times with Direct and Iterative solvers

10 20 30 40 50 60 70 80
MPI RANK

10 1

100

101

W
al

l t
im

es

High resolution FEM Method run upto 80 processor
assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 1

100

101

W
al

l t
im

es

High resolution FEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.25: Test Case 3 Wall times with respect to MPI rank for High resolution FEM
for direct and iterative solver.

6 Numerical result 175

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es
Low resolution MsFEM Method run upto 80 processor

assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es

Low resolution MsFEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.26: Test Case 3 Wall times with respect to MPI rank for Low resolution
MsFEM for direct and iterative solver.

6 Numerical result 176

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es
Low resolution FEM Method run upto 80 processor

assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es

Low resolution FEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.27: Test Case 3 Wall times with respect to MPI rank for Low resolution FEM
for direct and iterative solver.

In Figures [(6.25), (6.26) and (6.27)] three different simulations for test case 3 with 81

degrees of freedom for low resolution FEM, 16641 degrees of freedom for high resolution

FEM and multiscale finite element method with degrees of freedom 81 are run with direct

and iterative solvers. In low resolution MsFEM and high resolution FEM solutions, the

6 Numerical result 177

direct solver requires the longest time, whereas assembly consumes the longest time in

low resolution MsFEM. For high resolution assembly, it takes the longest with an iterative

algorithms. Assembly and iterative solver assembly take the most time for low resolution

MsFEM and low resolution FEM.

Test Case 3 Memory Consumption

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

High resolution FEM Memory consumption for direct solver
TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

High resolution FEM Memory consumption for iterative solver
TRI MEMORY
DOF MEMORY

Figure 6.28: Test Case 3 Memory consumption for High resolution FEM method for
direct and iterative solver.

6 Numerical result 178

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution MsFEM Memory consumption for direct solver

TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution MsFEM Memory consumption for iterative solver

TRI MEMORY
DOF MEMORY

Figure 6.29: Test Case 3 Memory consumption for Low resolution MsFEM method for
direct and iterative solver.

6 Numerical result 179

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution FEM Memory consumption for direct solver

TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution FEM Memory consumption for iterative solver

TRI MEMORY
DOF MEMORY

Figure 6.30: Test Case 3 Memory consumption for Low resolution FEM method for
direct and iterative solver.

According to Figures [(6.28), (6.29) and (6.30)], memory consumption decreases as MPI

rank increases for high-resolution FEM. For low-resolution FEM and MsFEM, there is a

slow increase in memory consumption, but it decreases for high-resolution FEM due to

the problem size.

6 Numerical result 180

6.1.4 Test case 4

Here the domain is square. The advection-diffusion problem involves a non-periodically

oscillating coefficient function with the Neumann condition on odd boundaries and the

Dirichlet boundary on even boundaries

∂tu+ cδ ·∇u = ∇ · (aε∇u)+ f

Dirichlet condition is

u = (x−0.5)2 +(y−0.5)2 on le f t and bottom ∂Ω

Neumann Condition is

∇u.n = 0 on right and top ∂Ω

Initial condition

u0(x) = (x−0.5)2 +(y−0.5)2

Velocity

cδ (x, t) =

[
10

10

]

Diffusion coefficient

aε(x, t) = 0.1∗

(
I2−0.9999

[
sin(60πx) 0

0 sin(60πy)

])

6 Numerical result 181

Figure 6.31: Test case 4 Solution of High resolution FEM, Low resolution FEM and
Low resolution MsFEM for advection-diffusion equation.

In the given square domain with high advection it is found in Figure (6.31) that low

resolution MsFEM shows better results when compared to high resolution FEM compared

to low resolution FEM.

Test case 4: Error Table

Here the error is calculated with the difference in the reference solution which is a high

resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.0052 0.2646 0.0367

Low resolution MsFEM 0.0038 0.2618 0.036

Table 6.4: Test case 4 Error in simulation with Low resolution FEM, High resolution
FEM and Low resolution MsFEM.

In the above Table (6.4), the error is calculated using a high resolution FEM solution as

the reference solution. The low-resolution MsFEM has less error in L2 and H1, compare

to the low-resolution FEM.

6 Numerical result 182

Test Case 4 Wall Times for direct and iterative solvers

10 20 30 40 50 60 70 80
MPI RANK

10 1

100

101

W
al

l t
im

es

High resolution FEM Method run upto 80 processor
assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 1

100

101

W
al

l t
im

es

High resolution FEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.32: Test Case 4 Wall times with respect to MPI rank for High resolution FEM
method.

6 Numerical result 183

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es
Low resolution MsFEM Method run upto 80 processor

assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es

Low resolution MsFEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.33: Test Case 4 Wall times with respect to MPI rank for Low resolution
MsFEM method.

6 Numerical result 184

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es
Low resolution FEM Method run upto 80 processor

assembly
direct solver
mesh generation
system setup

10 20 30 40 50 60 70 80
MPI RANK

10 2

10 1

W
al

l t
im

es

Low resolution FEM Method run upto 80 processor
assembly
iterative solver
mesh generation
system setup

Figure 6.34: Test Case 4 Wall times with respect to MPI rank for Low resolution FEM
method.

In Figures [(6.32), (6.33) and (6.34)] are plots of all three simulation runs for the MPI

run versus wall time. It is clear that the direct solver has the maximum wall time in

high-resolution FEM, whereas assembly requires more time with an iterative algorithm

solution. For low resolution MsFEM, direct solvers and iterative solvers require more

6 Numerical result 185

time than assembly, mesh generation, and system setup. In the case of low resolution

FEM assemble a system takes longer for the direct algorithm solution but for iterative

algorithm solution iterative solver takes the longest time.

6 Numerical result 186

Test Case 4 Memory Consumption

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

High resolution FEM Memory consumption for direct solver
TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

105

M
em

or
y

Co
ns

um
pt

io
n

High resolution FEM Memory consumption for iterative solver
TRI MEMORY
DOF MEMORY

Figure 6.35: Test Case 4 Memory consumption for High resolution FEM method.

6 Numerical result 187

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution MsFEM Memory consumption for direct solver

TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution MsFEM Memory consumption for iterative solver

TRI MEMORY
DOF MEMORY

Figure 6.36: Test Case 4 Memory consumption for Low resolution MsFEM method.

6 Numerical result 188

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution FEM Memory consumption for direct solver

TRI MEMORY
DOF MEMORY

10 20 30 40 50 60 70 80
MPI RANK

104

4 × 103

6 × 103

2 × 104

M
em

or
y

Co
ns

um
pt

io
n

Low resolution FEM Memory consumption for iterative solver

TRI MEMORY
DOF MEMORY

Figure 6.37: Test Case 4 Memory consumption for Low resolution FEM method.

Figure [(6.35), (6.36) and (6.37)] shows that memory consumption decreases with an

increase in MPI rank in high-resolution FEM. There is a slow increase in memory

consumption, which then becomes constant for low-resolution FEM and MsFEM, but

the memory consumption is not as large as that of high-resolution FEM because of the

size of the problem.

6 Numerical result 189

6.1.5 Test case 3D

Here the domain is a cube. The advection-diffusion problem is solved. Dirichlet

boundaries are present at every boundary and periodic boundary conditions are present

on the left-right and top-bottom sides.

∂tu+ cδ ·∇u = ∇ · (aε∇u)+ f

Dirichlet condition is

u = (x−0.5)2 +(y−0.5)2

Initial condition

u0(x) = (x−0.5)+(y−0.5)2

Velocity

cδ (x,y,z) =


10

10

10



Diffusion coefficient

aε(x, t) = 0.1∗

(
I2−0.9999

[
sin(240πx1) 0

0 sin(240πx2)

])

6 Numerical result 190

Figure 6.38: Solution for advection-diffusion Equation 3 dimensional.

In the given cube domain with high advection, it is found in Figure (6.38) that

low resolution MsFEM shows better results when compared to high- resolution FEM

compared to low resolution FEM.

Test case 3D: Error Table

Here the error is calculated with the difference in the reference solution which is high

resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.0042 0.1785 0.0984

Low resolution MsFEM 0.0001 0.0084 0.0093

Table 6.5: Test 3D Error in simulation with Low resolution FEM, High resolution FEM
and Low resolution MsFEM.

According to Table (6.5), low resolution FEM has more error compared to low resolution

MsFEM.

6 Numerical result 191

Test case 3D : Wall time distribution

Figure 6.39: Test case 12 : Wall time distribution for solution of High resolution FEM,
Low resolution FEM and Low resolution MsFEM for advection-diffusion equation.

6 Numerical result 192

It is found that the basis initialization and computation takes the maximum time for low

resolution MsFEM, and assembly takes the most computation for high resolution FEM

and for low resolution FEM. The total wall clock time elapsed since start is 2960 seconds

for high resolution FEM, 146 seconds for low resolution MsFEM and 2.02 seconds for

FEM. We see that MsFEM method gives good result with low resolution. As Chapter 6

draws to a close, you can see how the seeds sowed in Chapter 5 have blossomed.

7 Canopy Parameterization 193

7 Canopy Parameterization

"Marie Curie is my hero. Few people have accomplished something so rare

- changing science. And as hard as that is, she had to do it against the tide of

the culture at the time - the prejudice against her as a foreigner, because she

was born in Poland and worked in France. And the prejudice against her as

a woman."

- Alan Alda

7.1 Introduction

Consider the following advection-diffusion equation for two and three dimensions as

shown in Figure (7.1):

Figure 7.1: The advection-diffusion Equation.

where cδ is the wind velocity. aε is a diffusion coefficient, f and u0 are smooth external

forcing and initial conditions.

As shown in Figure (7.2) we parameterize the building with a maximum diffusion

coefficient inside the structure and an outside linear function. The velocity is set to zero

inside the building, grows exponentially in a small transition layer near the building to a

preset profile in the horizontal direction, and grows logarithmically above the building in

the vertical direction, as expected for a boundary layer profile.

Figure 7.2: Canopy Parameterization.

7 Canopy Parameterization 194

This leads to canopy parameterization added to previous algorithms as follows: Algorithm

(5) canopy parameterization is part of assemble system whereas in Algorithm (6) is part

of local assemble system which is then added to global assembly.

Algorithm 5 Algorithm for Canopy parameterization in Time dependent Finite Element
Method.

1. Setup mesh

2. Setup system and constraints f or(n = 0 to n = Nsteps)

3. while(time≤ Tmax)

• Assemble system

Canopy parameterization

• Solve for un+1

• Set n = n+1

end while loop

Visualize the output of solution.

Algorithm 6 Algorithm for Canopy parameterization in Time dependent Multiscale Finite
Element Method.

1. Setup mesh (coarse).

2. Setup system and constraints.

3. Compute Ms-basis at t = 0 f or(n = 0 to n = Nsteps)

4. while(time≤ Tmax)

5. compute basis at tn+1

• Assemble system

Canopy parameterization as part of local system

• Solve for un+1

• Set n = n+1

end while loop

Visualize the output of solution.

7 Canopy Parameterization 195

Implementation of canopy parameterization

Let us see how canopies are implemented in the code.

Figure 7.3: Implementation of building.

As shown in Figure (7.3) we have a mesh with nodes in red circle. The green diamonds

are the quadrature point used to represent the blue rectangle that is a single building.

Numerical evaluation of integrals is based on the quadrature point. The canopy here is

a single building which is implemented as diffusion coefficient, which is the maximum

value, which is implemented as QGauss quadrature rule in deal.II as shown below in

Listing (53). The whole process takes place at the assembly of the code.

1 template <int dim>

2 void AdvectionDiffusionProblem<dim>::assemble_system(double current_time)

3 {

4 TimerOutput::Scope t(computing_timer, "assembly");

5

6 const QGauss<dim> quadrature_formula(fe.degree + 1);

7 const QGauss<dim − 1> face_quadrature_formula(fe.degree + 1);

8

9 FEValues<dim> fe_values(fe,quadrature_formula,update_values | update_gradients |

10 update_quadrature_points | update_JxW_values);

11 FEFaceValues<dim> fe_face_values(fe,face_quadrature_formula,

12 update_values | update_quadrature_points | update_normal_vectors |update_JxW_values);

13 // for Neumaan boundary condition to evaluate boundary condition

14

15 const unsigned int dofs_per_cell = fe.dofs_per_cell;

16 const unsigned int n_q_points = quadrature_formula.size();

17 const unsigned int n_face_q_points = face_quadrature_formula.size();

18 FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);

19 Vector<double> cell_rhs(dofs_per_cell);

20

21 std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

7 Canopy Parameterization 196

22

23 // Canopy parameterization

24 std::vector<double> matrix_coeff_values_old(n_q_points);

25 std::vector<double> matrix_coeff_values(n_q_points);

26

27 std::vector<Tensor<1, dim>> advection_field_values_old(n_q_points);

28 std::vector<Tensor<1, dim>> advection_field_values(n_q_points);

29

30 std::vector<double> rhs_values_old(n_q_points);

31 std::vector<double> rhs_values(n_q_points);

32

33 std::vector<double> neumann_values_old(n_face_q_points);

34 std::vector<double> neumann_values(n_face_q_points);

35

36 for (const auto &cell : dof_handler.active_cell_iterators())

37 {

38 if (cell−>is_locally_owned())

39 {

40 cell_matrix = 0; cell_rhs = 0;

41

42 fe_values.reinit(cell); cell−>get_dof_indices(local_dof_indices);

43 /* * Values at current time. */

44 matrix_coeff.set_time(current_time);

45 advection_field.set_time(current_time);

46 right_hand_side.set_time(current_time);

47 advection_field.value_list(fe_values.get_quadrature_points(), advection_field_values);

48 matrix_coeff.value_list(fe_values.get_quadrature_points(), matrix_coeff_values);

49 right_hand_side.value_list(fe_values.get_quadrature_points(), rhs_values);

50 /*
51 * Values at previous time.

52 */

53 matrix_coeff.set_time(current_time − time_step); advection_field.set_time(current_time − time_step);

54 right_hand_side.set_time(current_time − time_step);

55 advection_field.value_list(fe_values.get_quadrature_points(), advection_field_values_old);

56 matrix_coeff.value_list(fe_values.get_quadrature_points(), matrix_coeff_values_old);

57 right_hand_side.value_list(fe_values.get_quadrature_points(), rhs_values_old);

58 /*
59 * Integration over cell.

60 */

61 for (unsigned int q_index = 0; q_index < n_q_points; ++q_index)

62 {

63 for (unsigned int i = 0; i < dofs_per_cell; ++i)

64 {

65 for (unsigned int j = 0; j < dofs_per_cell; ++j)

66 {

67 // Diffusion is on rhs. Careful with signs here.

68 cell_matrix(i, j) +=(fe_values.shape_value(i, q_index) *
69 fe_values.shape_value(j, q_index) +time_step * (theta) *
70 (fe_values.shape_grad(i, q_index) *matrix_coeff_values[q_index] *
71 fe_values.shape_grad(j, q_index) +fe_values.shape_value(i, q_index) *
72 advection_field_values[q_index] *fe_values.shape_grad(j, q_index))) *
73 fe_values.JxW(q_index);

74 // Careful with signs also here.

75 cell_rhs(i) += (fe_values.shape_value(i, q_index) *fe_values.shape_value(j, q_index) −

76 time_step * (1 − theta) *(fe_values.shape_grad(i, q_index) *
77 matrix_coeff_values_old[q_index] *fe_values.shape_grad(j, q_index) +

78 fe_values.shape_value(i, q_index) *advection_field_values_old[q_index] *

7 Canopy Parameterization 197

79 fe_values.shape_grad(j, q_index))) *fe_values.JxW(q_index) *
80 old_solution(local_dof_indices[j]);

81 } // end ++j

82 cell_rhs(i) += time_step * fe_values.shape_value(i, q_index) *
83 ((1 − theta) * rhs_values_old[q_index] +(theta)*rhs_values[q_index]) *
84 fe_values.JxW(q_index);

85 } // end ++i

86 } // end ++q_index

87

88 if (!is_periodic)

89 {

90 /* Boundary integral for Neumann values for odd boundary_id in non−periodic case.*/

91

92 for (unsigned int face_number = 0;face_number < GeometryInfo<dim>::faces_per_cell; ++face_number)

93 {

94 if (cell−>face(face_number)−>at_boundary() && ((cell−>face(face_number)−>boundary_id() == 1) ||

95 (cell−>face(face_number)−>boundary_id() == 3) ||

96 (cell−>face(face_number)−>boundary_id() == 5)))

97 {

98 fe_face_values.reinit(cell, face_number);

99 /* Fill in values at this particular face at current time.*/

100 neumann_bc.set_time(current_time);neumann_bc.value_list(fe_face_values.get_quadrature_points(), neumann_values);

101 /* Fill in values at this particular face at previous time.*/

102 neumann_bc.set_time(current_time − time_step);neumann_bc.value_list(

103 fe_face_values.get_quadrature_points(),neumann_values_old);

104

105 for (unsigned int q_face_point = 0;q_face_point < n_face_q_points;++q_face_point)

106 {

107 for (unsigned int i = 0; i < dofs_per_cell; ++i)

108 {

109 cell_rhs(i) +=time_step *((1 − theta) *
110 neumann_values_old[q_face_point] * // g(x_q, t_n) = A*grad_u at t_n

111 +(theta)*neumann_values[q_face_point]) * // g(x_q, t_{n+1}) = = // A*grad_u at t_{n+1}

112 fe_face_values.shape_value(i, q_face_point) *//phi_i(x_q)

113 fe_face_values.JxW(q_face_point); // dS

114 } // end ++i

115 } // end ++q_face_point

116 } // end if

117 } // end ++face_number

118 }

119 constraints.distribute_local_to_global(cell_matrix,cell_rhs,local_dof_indices,

120 system_matrix,system_rhs, /* use_inhomogeneities_for_rhs */ true);

121 } // if

122 } // ++cell

123 system_matrix.compress(VectorOperation::add);

124 system_rhs.compress(VectorOperation::add);

125 }

Listing 53: Canopy parametrization in deal.II.

For MsFEM method, it is implemented in basis code and reconstruction basis code.

The following test cases are implemented for the high resolution standard finite element

method with refinement = 8.

7 Canopy Parameterization 198

7.2 Test Case 5

Domain is−50≤ x≤ 150 and 0≤ y≤ 50. In Figure (7.4) each of the boundary conditions

is color coded. We see the details of the values and their implementation in the code as

follows.

Figure 7.4: Sketch of rectangle building with conditions.

1. Dirichlet condition

u0 =

0 40≤ x≤ 60, and y≤ 30 Building

1 else,

template <int dim>

double DirichletBC<dim>::value(const Point<dim>& p, const unsigned int /*component*/) const

{

double return_value=0;

if (p[0]>=40 && p[0]<=60 && p[1]<=30)

return_value =0;

else

return_value =1;

return return_value;

}

Listing 54: Dirichlet Condition for Test Case 5.

2. Initial condition at time t = 0

u(x,y) =

0 40≤ x≤ 60, and y≤ 30 Building

1 else,

template <int dim>

double InitialValue<dim>::value(const Point<dim>& p, const unsigned int /*component*/)const

7 Canopy Parameterization 199

{

double return_value=0;

if (p[0]>=40 && p[0]<=60 &&p[1]<=30)

return_value =0;

else

return_value =1;

return return_value;

}

Listing 55: Initial Condition for Test Case 5.

3. Neumann condition

g = A∗ exp(−B∗ (x−25)2)

where A = B = 1

template <int dim>

double NeumannBC<dim>::value(const Point<dim> &p,

const unsigned int /*component*/) const

{

double A = 1; double B = 1;const double x_minus_mui = p[1] − 25;

double sum= A*std::exp(−B * (x_minus_mui)* (x_minus_mui));

return sum;

}

Listing 56: Neumann Condition for Test Case 5.

4. Velocity

c(x,y)=



0

0

 −50≤ x≤ 150, y = 0 Bottom Boundary

0

0

 40≤ x≤ 60, and y≤ 30 Building

ch ∗ exp(−(1− (y/30)))

0

 y≤ 30 Around the Building where uh

is reference velocity

(c∗/κ) · log((y+ y0)/y0)

0

 else Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 30, y0 = 0.5 is the surface roughness , k is

7 Canopy Parameterization 200

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

template <int dim>

Tensor<1, dim> AdvectionField<dim>::value(const Point<dim> &p) const

{

Tensor<1, dim> value;

value.clear();

double c_h = 4;

double c_star = 0.35;

double k = 0.4;

double z0=0.5;

if (p[0]>=−50 && p[0]<=150 && p[1]==0)

{

value[0]=0;

value[1] =0;

}

else if (p[0]>=40 && p[0]<=60 &&p[1]<=30)

{

value[0]=0;

value[1] =0;

}

else if (p[1]<=30)

{

value[0]=c_h*exp(−(1−(p[1]/h)));

value[1] =0;

}

else

{

value[0]=(c_star/k)*log((p[1]+z0)/z0);

value[1] =0;

}

return value;

}

Listing 57: Velocity for Test Case 5.

5. Diffusion coefficient

a(x,y) =

10000 when 40≤ x≤ 60, and y≤ 30 Building

y else

template <int dim>

Tensor<2, dim> MatrixCoeff<dim>::value(const Point<dim> &p) const

{

Tensor<2, dim> value;

value.clear();

for (unsigned int d = 0; d < dim; ++d)

{

if (p[0]>=40 && p[0]<=60 &&p[1]<=30)

{

7 Canopy Parameterization 201

value[d][d] =10000;

}

else

{

value[d][d] =p[1];

}

}

return value;

}

Listing 58: Diffusion coefficient for Test Case 5.

Figure 7.5: Rectangle building.

Here, the domain is 200 m long and 50 m tall. Here, we use quadrature points to

implement different initial and boundary conditions. The initial condition is a non-zero

value outside the building and zero inside the building. The velocity is zero inside the

building, exponential near the building, and logarithmic above the building. The diffusion

inside the building is very high and linear function outside the facility is very high. We

can see the rectangle building in Figure (7.5) due to high diffusion, and trace transport

around it.

7.3 Test Case 6

Domain is −50 ≤ x ≤ 150 and 0 ≤ y ≤ 50. Now we consider boundary conditions for

triangle building.

7 Canopy Parameterization 202

Figure 7.6: Sketch of triangle building with conditions.

1. Dirichlet condition

u0 =


0 40≤ x≤ 60, y≤ x−40 and y≤ 60− x Building

1 else,

2. Initial condition at time t=0

u(x,y) =


0 40≤ x≤ 60, y≤ x−40 and y≤ 60− x Building

1 else,

3. Neumann condition

g = A∗ exp(−B∗ (x−25)2)

where A = B = 1

7 Canopy Parameterization 203

4. Velocity

c(x,y)=



0

0

 −50≤ x≤ 150, y = 0 Bottom Boundary

0

0

 when 40≤ x≤ 60, y≤ x−40

and y≤ 60− x Building

ch · exp(−(1− (y/20)))

0

 y≤ 20 Around the Building where ch

is reference velocity

(c∗/κ) · log((y+ y0)/y0)

0

 else Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 20, y0 = 0.5 is the surface roughness , k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

5. Diffusion coefficient

a(x,y)=


10000 when 40≤ x≤ 60, y≤ x−40 and y≤ 60− x Building

y else

Figure 7.7: Triangular building.

In Test Case 6, a domain size and concept similar to Test Case 5 is implemented for the

initial and boundary condition to get a triangle shape building. Tracer transport through

the canopy is shown in Figure (7.7).

7 Canopy Parameterization 204

7.4 Test Case 7

Domain is −50≤ x≤ 150 and 0≤ y≤ 50

Figure 7.8: Sketch of Hip Triangular building with conditions.

1. Dirichlet condition

u0 =


0 40≤ x≤ 60, y≤ 60 and y≤ x−40 Building

1 else,

2. Initial condition at time t=0

u(x,y) =


0 40≤ x≤ 60, y≤ 60 and y≤ x−40 Building

1 else,

3. Neumann condition

g = A∗ exp(−B∗ (x−25)2)

where A = B = 1

7 Canopy Parameterization 205

4. Velocity

c(x,y)=



0

0

 −50≤ x≤ 150, y = 0 Bottom Boundary

0

0

 40≤ x≤ 60, y≤ 60 and y≤ x−40 Building

ch ∗ exp(−(1− (y/20)))

0

 y≤ 20 Around the Building where ch

is reference velocity

(c∗/κ) · log((y+ y0)/y0)

0

 else Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 20,y0 = 0.5 is the surface roughness , k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

5. Diffusion Coefficient

a(x,y) =


10000 40≤ x≤ 60, y≤ 60 and y≤ x−40 Building

y else

7 Canopy Parameterization 206

Figure 7.9: Hip Triangular building.

As in previous test cases, a similar domain size and concept is implemented for the

initial and boundary conditions to obtain a triangle shape building. In Figure (7.9) tracer

transports through the canopy.

7.5 Test Case 8

Domain is −50≤ x≤ 150 and 0≤ y≤ 50

Figure 7.10: Sketch of three building with conditions.

7 Canopy Parameterization 207

1. Dirichlet condition

u0 =



0 10≤ x≤ 30, y≤ x−10 and y≤ 30− x Left Building

0 40≤ x≤ 60, y≤ x−30 and y≤ 70− x Middle Building

0 70≤ x≤ 90, y≤ x−70 and y≤ 90− x Last Building

1 else,

2. Initial condition at time t=0

u(x,y) =



0 10≤ x≤ 30, y≤ x−10 and y≤ 30− x Left Building

0 40≤ x≤ 60, y≤ x−30 and y≤ 70− x Middle Building

0 70≤ x≤ 90, y≤ x−70 and y≤ 90− x Last Building

1 else,

3. Neumann condition

g = A∗ exp(−B∗ (x−25)2)

where A = B = 1

7 Canopy Parameterization 208

4. Velocity

c(x,y)=



0

0

 −50≤ x≤ 150, y = 0 Bottom Boundary

0

0

 10 ≤ x ≤ 30, y ≤ x− 10 and y ≤ 30−
x Left Building

0

0

 40≤ x≤ 60, y≤ x−30 and y≤ 70− x

Middle Building

0

0

 70≤ x≤ 90, y≤ x−70 and y≤ 90− x

Last Building

ch ∗ exp(−(1− (y/20)))

0

 y≤ 20 Around the Building where ch

is reference velocity

(c∗/κ) · log((y+ y0)/y0)

0

 else Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 20, y0 = 0.5 is the surface roughness , k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

5. Diffusion Coefficient

a(x,y)=



10000 10≤ x≤ 30, y≤ x−10 and y≤ 30− x Left Building

10000 40≤ x≤ 60, y≤ x−30 and y≤ 70− x Middle Building

10000 70≤ x≤ 90, y≤ x−70 and y≤ 90− x Last Building

y else

7 Canopy Parameterization 209

Figure 7.11: Mix Triangular buildings.

Here, we construct a heterogeneous canopies with three triangular canopies and

implement the same initial and boundary conditions as in the previous test case. As shown

in Figure (7.11) the trance transport occurs near the building. Chapter 7 concludes with

complete implementation of all computational bits needed for the real-world application

discussed in Chapter 8.

8 Application 210

8 Application

"What interests me is the connection between maths and the real world."

- Terence Tao

8.1 Wind tunnel test cases

The "small" boundary layer wind tunnel "Blasius" at the meteorological institute of the

University of Hamburg was used for all experiments. Approximately 16 m long, 1.5 m

wide, and 1 m high, the wind tunnel’s test section measures 4.5 m long, 1.5 m wide, and

1 m high. There is a 7 m boundary layer development section in the tunnel. There is an

adjustable ceiling in the tunnel, as shown in Figure (8.1).

Figure 8.1: Sketch of the boundary layer wind tunnel “Blasius” at the Meteorological
Institute of Hamburg University [34].

A wooden cuboid with a height of 30 m at full scale (0,06 at Model scale) was placed

inside the tunnel’s test section. Ethane (15 litres/hour release) is the tracer gas released

in a wind tunnel. For all measurements, velocity and concentration were measured. A

cuboid with a size of h = 30 m representing idealized urban roughness was positioned in

the wind tunnel test section. The experiments were conducted by Sylvio Freitas. There

were 2 setups with 0° in Figure (8.2) and 45° in Figure (8.3) rotation of the building for

flow and concentration measurements.

8 Application 211

Figure 8.2: Wind tunnel setup with 0° rotation.

Figure 8.3: Wind tunnel setup with 45° rotation.

8.1.1 Setup

As shown in Figure (8.4) following details for wind tunnel measurement.

1. Main flow direction (wind tunnel) represented by U.

2. 0° (bold outline of building) and 45° (dashed outline) inflows.

3. Dimensions in full-scale.

4. Origin of coordinate system: P02: (X,Y) = (0,0) [m].

5. Flow measurement points (2 x 2D): P01–P09 (7 heights: z = 20, 30, 40, 60, 80, 100

and 120 m)

6. Location of the gas release source: P01: (X,Y) = (-236.5, 0) [m]

7. Concentration measurement points: P01c to P09 (5 heights above Y = 0 m axis: z

= 20, 30, 40, 50 and 60 m), (2 heights above P03, P04, P07, P08:

z = 20 and 40 m)

8 Application 212

Figure 8.4: Setup for wind tunnel.

8.2 Test Case 9 : Building with 0° rotation

Consider the rectangular computational domain of size 800 × 500 × 120 as shown in

Figure (8.5). In deal.II the hyper_rectangle is used to create this domain. A building

of size 100 × 50 × 30 is constructed using the canopy parametrization described in the

previous section.

Figure 8.5: Computational Domain.

The Figure (8.6) shows the face numbers of deal.II. Face 0 is on the left-hand side of the

domain, which is the inlet, and the face on the right-hand side of the domain is the outlet.

8 Application 213

Figure 8.6: Face numbering in deal.II.

The high-resolution FEM test case 9 as shown in Figure (8.7) has 2146689 degree of

freedom.

Figure 8.7: Domain Test 9 High resolution Mesh.

The low-resolution FEM and MsFEM test case 9 as shown in Figure (8.8) has 729 degrees

of freedom.

Figure 8.8: Domain Test 9 Low resolution Mesh.

The following are the initial and boundary conditions

8 Application 214

Domain is −300≤ x≤ 500, −125≤ y≤ 125 and 0≤ z≤ 120

1. Dirichlet Condition on right and top boundaries

u0 =


0 when −25≤ x≤ 25, −50≤ y≤ 50 and 0≤ z≤ 30 Building

0.1 else

2. Initial Condition at t = 0

u(x,y,z)=


0 when −25≤ x≤ 25, −50≤ y≤ 50 and 0≤ z≤ 30 Building

0.1 else

3. Neumann Condition at the Left hand boundary

g = exp(−(z−60)2)

4. Diffusion Coefficient

a(x,y,z)=


10000 when −25≤ x≤ 25, −50≤ y≤ 50 and 0≤ z≤ 30 Building

z else

8 Application 215

5. Velocity

c(x,y,z)=




0

0

0

 when −25≤ x≤ 25,−50≤ y≤ 50

and 0≤ z≤ 30 Building


0

0

0

 when −300≤ x≤ 500, and

z = 0 Bottom Building


ch · exp(−(1− (z/30)))

0

0

 else Around the Building where ch is

reference velocity


(c∗/κ) · log((z+ z0)/z0)

0

0


z ≥ 30 Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 30, y0 = 0.5 is the surface roughness, k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

6. Right hand side

f = 0

8 Application 216

Figure 8.9: Test case 9 Wind tunnel test case single building with 0° degree rotation
(A) High resolution FEM with refinement = 7 (B) Low resolution MsFEM with coarse
refinement = 3, fine refinement = 4 and (C) Low resolution FEM with refinement = 3.

As shown in Figure (8.9) the cross-section at the y normal of the 3D domain, where (A)

is a high resolution FEM that accurately shows the canopy structure, is our reference

solution which requires high computation times, and (B) is the low resolution MsFEM

that shows some similarity with the high resolution FEM, but the (C) low resolution FEM

does not display an accurate representation of the canopy in the domain. Hence we can

say with low computation MsFEM can be reasonable choice for representing canopy on

large scale.

8.2.1 Test case 9 : Wall times distribution

For all heavy simulations, column-charts would be shown to display results unlike 2D

case as the maximum number of nodes where needed to carry out one simulation. It is

found in Figure (8.10) that the iterative solver takes the maximum time for low resolution

FEM iterative solver and basis initialization and computation takes the maximum time,

and for low resolution MsFEM, whereas assembly takes the most computation for high

resolution FEM. The total wall clock time elapsed since start is 3220 seconds for high

resolution FEM, 130 seconds for low resolution MsFEM and 243 seconds for FEM.

8 Application 217

Figure 8.10: Test Case 9 Wall times distribution for High resolution FEM method, Low
resolution MsFEM method and Low resolution FEM method.

8 Application 218

8.2.2 Test case 9 : Error Table

Here, the error is calculated using the difference in the reference solution, which is a

high-resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 2.9 2.9 0.011

Low resolution MsFEM 2.7 2.7 0.0103

Table 8.1: Test case 9 Error in simulation with Low resolution FEM and Low resolution
MsFEM.

Table (8.1) shows the error analysis of the low resolution FEM and low resolution MsFEM

compared with the high resolution FEM. It is found that low resolution MsFEM is more

accurate than low resolution FEM.

8.3 Test Case 10 : Building with 0° rotation and source term

There is no change in the domain set, but a point source has been added before the

building.

A high-resolution FEM test case 10 has 2146689 degrees of freedom.

The low resolution FEM and MsFEM test case 10 has 729 degrees of freedom.

Following are initial and Boundary condition is same values as Test 9 except the right

hand side

1. Dirichlet Condition on left and bottom boundary

2. Initial condition at t = 0

3. Neumann Condition on right hand side

4. Diffusion Coefficient

5. Velocity

6. Right hand side

f =


1 when −239.5≤ x≤−236.5, y≤ 1 and z≤ 1 point source

0 else

8 Application 219

Figure 8.11: High resolution FEM solution with a point source for Test 10.

Figure (8.11) shows high resolution FEM solution with a point source.

Figure 8.12: Test case 10 Wind tunnel test case single building with 0° degree rotation
and point source (A) High resolution FEM with refinement = 7 (B) Low resolution
MsFEM with coarse refinement = 3, fine refinement = 4 and (C) Low resolution FEM
with refinement = 3.

Figure (8.12) shows a 2D cross-section of a 3D domain with a point source before the

canopy at y normal is taken. Here, we observe that in (C) low resolution FEM, the canopy

structure is distorted, and in (B), the low-resolution MsFEM canopy structure shows some

similarity to the reference solution that is (A) high resolution FEM.

8 Application 220

8.3.1 Test case 10 : Wall time distribution

Figure 8.13: Test Case 10 Wall times distribution for High resolution FEM method,
Low resolution MsFEM method and Low resolution FEM method.

8 Application 221

It is found in Figure (8.13) that the iterative solver takes the maximum time for low

resolution FEM, and basis initialization and computation for low resolution MsFEM,

whereas assembly takes the most computation for high resolution FEM. The total wall

clock time elapsed since start is 4060 seconds for high resolution FEM, 126 seconds for

low resolution MsFEM and 22.1 seconds for FEM.

8.3.2 Test case 10 : Error Table

Here, the error is calculated using the difference in the reference solution, which is a

high-resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 5.9 6 0.0492

Low resolution MsFEM 4.4 4.5 0.0525

Table 8.2: Test case 10 Error in simulation with Low resolution FEM and Low
resolution MsFEM.

Table (8.2) shows that the error in low resolution MsFEM is lower than that in low

resolution FEM in L2 and H1. L∞ error is similar in both cases.

8.3.3 Test case 10 : Wind tunnel Validation

The simulation data is normalized by multiplying the value of ethane gas passed which

was 4.16 milliliters/second below the canopy. Above the canopy the simulation value

was multiplied by 4.16 the result is then divided by height of the canopy. Figure (8.14)

presents the simulation of wind tunnel validation compared with the numerical simulation

with the source point at 2 measurement points before and above the building taken at

different heights. It can be seen that some points at the building height match the wind

tunnel measurements. The emission point occurs before the building. First, the graph on

the top shows a reasonable agreement between the source and the building. The second

graph on the bottom is the point above the building. Here wind tunnel measurements and

numerical simulations is close at a 50m building height.

8 Application 222

Figure 8.14: Wind tunnel Validation results for Test Case 10 for P01 and P02.

8 Application 223

Figure 8.15: Wind tunnel Validation results for Test Case 10 for P03 and P04.

Figure (8.15) shows the results for points 3 and 4 at the height at the left and right corner

of the domain. It shows that at 40m building height concentration data match the wind

tunnel measurements and the numerical simulations.

8 Application 224

Figure 8.16: Wind tunnel Validation results for Test Case 10 for P05 and P06.

Figure (8.16) displays the results for points 5 and 6 at the domain heights. The points are

located after the canopy. It shows that in the first graph on the top there is less agreement

between wind tunnel measurements and numerical simulations. The remaining graph

shows points measured after the building and on the left and right sides. As can be seen in

the second graph on the bottom, measurements and simulations of high resolution FEM

concentration data are close above building heights.

8 Application 225

Figure 8.17: Wind tunnel Validation results for Test Case 10 for P07 and P08.

Figure (8.17) shows the results for points 7 and 8 at the height at the left and right corner

of the domain. It shows that at 40m height concentration data is close between wind

tunnel measurements and numerical simulations.

8 Application 226

Figure 8.18: Wind tunnel Validation results for Test Case 10 for P09.

According to the graph (8.18), some points above the building height show some

similarity between the simulated and wind tunnel measurements.

Generally, some points match and some do not because the wind tunnel data contains

turbulence and simulated data does not. Simulated and wind tunnel data points do not

match when close to domain boundaries.

8.3.4 Test 10a : Building with 0° rotation and full source term

Figure 8.19: Test Case 10a for full source.

Figure (8.19) illustrates the 2D cross section of the 3D domain. Same as the previous

test case with 100% source it is found that in Low resolution MsFEM is able to show the

point source effect on a large scale. High resolution FEM can capture the point source

8 Application 227

most accurately, whereas low resolution FEM shows some effect of the point source.

8.4 Test Case 11 : Building with 45° rotation

The domain setup is the same except the building is rotated to 45° as shown in Figure 8.3.

The high-resolution FEM test case 11 has 16974593 degrees of freedom.

There are 729 degrees of freedom in both the low resolution FEM and MsFEM.

1. New position

newx = xcos(θ)− ysin(θ)

newy =−xsin(θ)+ ycos(θ)

where θ=45 is the rotation angle given in radians.

2. Dirichlet Condition on odd boundaries

u0 =


0 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

0.1 else

3. Initial condition at t = 0

u(x,y,z)=


0 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

0.1 else

4. Neumann Condition on left hand side boundary

g = exp(−(z−60)2)

8 Application 228

5. Diffusion Coefficient

a(x,y,z)=


3000 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

4z else

6. Velocity

c(x,y,z)=




0

0

0

 when −55≤ newx ≤ 55,−47≤ newy ≤ 47

and 0≤ z≤ 30 Building


0

0

0

 when −300≤ x≤ 500,and

z = 0 Bottom Building


ch

0

0

 else Around the Building where ch is

reference velocity


(c∗/κ) · log((z+ z0)/z0)

0

0


z ≥ 30 Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 30, y0 = 0.5 is the surface roughness, k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

7. Right hand side

f = 0

8 Application 229

Figure 8.20: Test case 11 Wind tunnel test case single building with 45° degree rotation
(A) High resolution FEM with refinement = 7 (B) Low resolution MsFEM with coarse
refinement = 3, fine refinement = 4 and (C) Low resolution FEM with refinement = 3.

As shown in Figure (8.20) shows a 2D cross-section of a 3D domain the building with 45°

rotations at the 10m z normal, (A) high-resolution FEM is the reference solution, whereas

(B) low resolution MsFEM shows the canopy structure at a larger scale with 45° rotation.

In (C) the low-resolution FEM cannot maintain 45° rotations.

8 Application 230

8.4.1 Test case 11 : Wall time distribution

Figure 8.21: Test Case 11 Wall times distribution for High resolution FEM method,
Low resolution MsFEM method and Low resolution FEM method.

8 Application 231

Figure (8.21) presents the wall time distribution of the computation. It is found that the

iterative solver takes the maximum time for low- resolution FEM, and for low resolution

MsFEM basis initialization and computation takes maximum time, whereas assembly

takes the most computation for high resolution FEM. The total wall clock time elapsed

since start is 23200 seconds for high resolution FEM, 132 seconds for low resolution

MsFEM and 24 seconds for FEM.

8.4.2 Test case 11 : Error Table

Here, the error is calculated using the difference in the reference solution, which is a high

resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.1 0.1 0.0055

Low resolution MsFEM 0.1 0.1 0.0077

Table 8.3: Test case 11 Error in simulation with Low resolution FEM and Low
resolution MsFEM.

Table (8.3) shows contrary to Test 9, the error in low resolution MsFEM is higher

than low resolution FEM. As the building is located diagonally in the coarse mesh, the

quadrature points are less for low resolution MsFEM than high resolution FEM. Also in

the MsFEM there quadrature points for the building are calculated as diffusion coefficient

at subgrid mesh. For both the low and high resolution FEM these quadrature points are

on coarse and fine mesh respectively. L∞ error does not perform well for functions with

jumps. Therefore, even though low resolution FEM has fewer quadrature points than high

resolution FEM, overall their error calculation on each cell is close.

8 Application 232

8.4.3 Test Case 11a : Building with 45° rotation with increase in
MsFEM refinement

Figure 8.22: Test case 11a Wind tunnel test case single building with 45° degree
rotation (A) High resolution FEM with refinement = 8 (B) Low resolution MsFEM with
coarse refinement = 4, fine refinement = 4 and (C) Low resolution FEM with refinement
= 3.

As shown in Figure (8.22) shows a 2D cross-section of a 3D domain of the building with

45° rotations at the 10m z normal, (A) high-resolution FEM is the reference solution,

whereas (B) low resolution MsFEM with 4 refinement levels both on coarse and fine grid

shows the canopy structure at a larger scale with 45° rotation and edges are also seen due

to increase in refinement. In (C) the low-resolution FEM with 3 refinement levels cannot

maintain 45° rotations.

8 Application 233

8.4.4 Test Case 11b : Building with 45° rotation with decrease in
diffusion

Figure 8.23: Test case 11b Wind tunnel test case single building with 45° degree
rotation (A) High resolution FEM with refinement = 8 (B) Low resolution MsFEM with
coarse refinement = 4, fine refinement = 3 and (C) Low resolution FEM with refinement
= 3.

As shown in Figure (8.23) shows a 2D cross-section of a 3D domain of the building with

45° rotations and diffusion coefficients inside canopy is 1000, at the 1m z normal, (A)

high-resolution FEM is the reference solution, but canopy edges are not clear whereas

in (B) low resolution MsFEM and in (C), the low-resolution FEM shows similar canopy

structure except the near canopy effect is better in low resolution MsFEM.

Overall, the canopy structure with rotation varies in mesh size and diffusion coefficient

from case 11 to case 11a and case 11b, but it is more difficult to get a simulation in case

11 because of rotation than in case 9 and 10.

8.5 Test Case 12 : Building with 45° rotation and source term

As with test case 11, the setup is similar, but source is added before building.

In high-resolution FEM test case 11, there are 16974593 degrees of freedom.

Low-resolution FEMs and MsFEMs have 729 degrees of freedom.

1. New position

newx = xcos(θ)− ysin(θ)

8 Application 234

newy =−xsin(θ)+ ycos(θ)

where θ = 45 is the rotation angle given in radians.

2. Dirichlet Condition on right and top boundaries

u0 =


0 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

0.1 else

3. Initial condition at t = 0

u(x,y,z)=


0 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

0.1 else

4. Neumann Condition on left hand side boundary

g = exp(−(z−60)2)

5. Diffusion Coefficient

a(x,y,z)=


3000 when −55≤ newx ≤ 55, −47≤ newy ≤ 47 and 0≤ z≤ 30 Building

4z else

8 Application 235

6. Velocity

c(x,y,z)=




0

0

0

 when −55≤ newx ≤ 55,−47≤ newy ≤ 47

and 0≤ z≤ 30 Building


0

0

0

 when −300≤ x≤ 500,and

z = 0 Bottom Building


ch

0

0

 else Around the Building where ch is

reference velocity


(c∗/κ) · log((z+ z0)/z0)

0

0


z ≥ 30 Above the Building where c∗
is friction velocity, κ is von Kármán

constant and z0 is roughness length

where ch = 4 is the wind velocity at h = 30, y0 = 0.5 is the surface roughness , k is

the von Kármán constant (k = 0.4),and c∗ = 0.35 is the friction velocity.

7. Right hand side

f =


1 when −239.5≤ x≤−236.5, y≤ 1 and z≤ 1 point source

0 else

8 Application 236

Figure 8.24: Test case 12 Wind tunnel test case single building with 45° degree rotation
and source (A) High resolution FEM with refinement = 7 (B) Low resolution MsFEM
with coarse refinement =4, fine refinement = 4 and (C) Low resolution FEM with
refinement = 3.

In Figure (8.24),shows a 2D cross-section of a 3D domain the building with 45° rotations

at the 1m z normal with a point source (A) High resolution FEM is the reference solution,

and (B) low-resolution MsFEM shows canopy structure at large scale. The point source is

also seen because the refinement was high at coarse scale. In (C) the low resolution FEM

cannot maintain 45° rotations.

8 Application 237

8.5.1 Test case 12 : Wall time distribution

Figure 8.25: Test Case 12 Wall times distribution for High resolution FEM method,
Low resolution MsFEM method and Low resolution FEM method.

Figure (8.25) presents the computation wall time distribution. It is found that the

iterative solver takes the maximum time for low- resolution FEM, and for low resolution

8 Application 238

MsFEM the basis initialization and computation takes maximum time, whereas assembly

takes the most computation for high resolution FEM. The total wall clock time elapsed

since start is 26300 seconds for high resolution FEM, 296 seconds for low resolution

MsFEM and 17.2 seconds for FEM.

8.5.2 Test case 12 : Error Table

Here, the error is calculated using the difference in the reference solution, which is a

high-resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution FEM 0.1 0.1 0.0928

Low resolution MsFEM 0.1 0.1 0.0864

Table 8.4: Test case 12 Error in simulation with Low resolution FEM and Low
resolution MsFEM.

Table (8.4) shows the error in low resolution MsFEM is less than low resolution FEM.

8.5.3 Test case 12 : Wind tunnel Validation

The simulation data is normalized by multiplying the value of ethane gas passed which

was 4.16 milliliters/second below the canopy. Above the canopy the simulation value

was multiplied by 4.16 the result is then divided by height of the canopy. A comparison

between a simulation of wind tunnel validation and a numerical simulation is shown in

Figure (8.26). At some points in the building height, the wind tunnel measurements

match. Emission occurs before the building. In the graph on the top, we can see a

some agreement between the source and the building. In the second graph on the bottom,

you can see the point above the building. At a building height of 50m, wind tunnel

measurements and numerical simulations agree.

8 Application 239

Figure 8.26: Wind tunnel Validation results for Test Case 12 for point P01 and P02.

8 Application 240

Figure 8.27: Wind tunnel Validation results for Test Case 12 for point P03and P04.

The results are shown in Figure (8.27) at the height in the left and right corners of the

domain for points 3 and 4. The wind tunnel measurements and numerical simulations

match the concentration data at 40m building height.

8 Application 241

Figure 8.28: Wind tunnel Validation results for Test Case 12 for point P05 and P06.

Figure (8.28) shows the results for points 5 and 6 at the domain heights. Points are located

after the canopy. According to the first graph at the top, numerical simulations and wind

tunnel measurements are not always in agreement. On the left and right sides of the

building, points were measured after the building. In the bottom graph, we can see that

measurements and simulations of the high resolution FEM concentration data values are

close above the building heights.

8 Application 242

Figure 8.29: Wind tunnel Validation results for Test Case 12 for point P07 and P08.

In Figure (8.29), you can see the results at points 7 and 8 at the left and right corners of

the domain. Data from wind tunnel measurements and numerical simulations are similar

at 40 meters height.

8 Application 243

Figure 8.30: Wind tunnel Validation results for Test Case 12 for point P09.

The Figure (8.30) shows similarities between simulated and wind tunnel measurements

above building height.

Generally, some points match and some do not because the wind tunnel data contains

turbulence and simulated data does not. Simulated and wind tunnel data points do not

match when close to domain boundaries.

8 Application 244

8.5.4 Test Case 12a : Building with 45° rotation with increase in
MsFEM refinement

Figure 8.31: Test case 12a Wind tunnel test case single building with 45° degree
rotation and source (A) High resolution FEM with refinement = 8 (B) Low resolution
MsFEM with coarse refinement = 4, fine refinement = 4 and (C) Low resolution FEM
with refinement = 3.

As shown in Figure (8.31) shows a 2D cross-section of a 3D domain of the building with

45° rotations at the 10m z normal, (A) high-resolution FEM is the reference solution,

whereas in (B) low resolution MsFEM with 4 refinement levels both on coarse and fine

grid shows the canopy structure at a larger scale with 45° rotation and edges are also seen

due to increase in refinement. In (C) the low-resolution FEM with 3 refinement levels

cannot maintain 45° rotations.

8 Application 245

8.5.5 Test Case 12b : Building with 45° rotation with decrease in
diffusion

Figure 8.32: Test case 12b Wind tunnel test case single building with 45° degree
rotation and source (A) High resolution FEM with refinement = 8 (B) Low resolution
MsFEM with coarse refinement = 4, fine refinement = 3 and (C) Low resolution FEM
with refinement = 3.

As shown in Figure (8.32) shows a 2D cross-section of a 3D domain of the building with

45° rotations and diffusion coefficients inside canopy is 1000, at the 1m z normal, (A)

high-resolution FEM is the reference solution whereas (B) low resolution MsFEM and in

(C), the low-resolution FEM shows similar canopy structure except the source is better

seen in low resolution MsFEM.

Overall, the canopy structure with rotation varies in mesh size and diffusion coefficient

from case 12 to case 12a and case 12b, but it is more difficult to get a simulation in case

12 because of rotation than in case 9 and 10.

8.6 Hamburg mesh

Mesh is obtained from derived, comprehensive digital terrain models with a grid width of

25 meters. For the Free and Hanseatic City of Hamburg (without the Hamburg Wadden

Sea), a laser scan (Airborne Laser Scanning) was carried out in 2020. The data are

available in field 310 (ETRS89/UTM), with heights of normal height zero (NHN).

The accuracy of a single measuring point lies in clearly defined areas, e.g. on road

surfaces, at approx. ± 255 cm. In areas of shade (bridges), vegetation, particularly forest

8 Application 246

and shrub areas and in highly inclined terrain, accuracy is lower.

By default, the Landesbetrieb Geoinformation und Vermessung (LGV) offers the

following grid widths: Digital Ground Model (DGM), 25 (grid width 25 m). An annual

update of this data is carried out via aerial surveys.

The high-resolution FEM for Hamburg Mesh has 1002433 degrees of freedom.

A low resolution FEM and MsFEM have 292 degrees of freedom.

Figure 8.33: Hamburg mesh.

Here we consider 2 km × 4 km urban area.

1. Dirichlet Condition on even boundary

u0 =


0 when 570≤ x≤ 572 5936≤ y≤ 5940 Building

1 else

2. Initial condition at t = 0

u(x,y) =


0 when 570≤ x≤ 572 5936≤ y≤ 5940 Building

1 else

8 Application 247

3. Neumann Condition on right hand side

g = 0

4. Diffusion Coefficient

a(x,y) =


10000 when 570≤ x≤ 572, 5936≤ y≤ 5940 Building

0.001∗ y else

5. Velocity

c(x,y) =



0 when 570≤ x≤ 572 5936≤ y≤ 5940 Building

4 else

6. Right hand side

f = 0

It is seen from Figure (8.34) that canopy is well represented in high resolution FEM and

low resolution MsFEM shows similarity with results to high resolution FEM whereas low

resolution FEM does not represent the urban block well.

8 Application 248

Figure 8.34: Result of Hamburg Mesh for 2 km urban block.

Here we consider 30 m × 30 m building in 2 km mesh.

1. Dirichlet Condition on even boundary

u0 =


0 when 570≤ x≤ 570.030, 5936≤ y≤ 5936.030 Building

1 else

2. Initial condition at t = 0.

u(x,y) =


0 when 570≤ x≤ 570.030, 5936≤ y≤ 5936.030 Building

1 else

3. Neumann Condition on right hand side

g = 0

8 Application 249

4. Diffusion Coefficient

a(x,y)=


10e15 when 570≤ x≤ 570.030, 5936≤ y≤ 5936.030 Building

0.001∗ y else

5. Velocity

c(x,y) =



0 when 570≤ x≤ 570.030, 5936≤ y≤ 5936.030 Building

4 else

6. Right hand side

f = 0

Figure 8.35: Result of Hamburg Mesh for 30 m building for High resolution FEM with
the building.

Figure (8.35) shows a high resolution simulation with the building zoomed in. The

building is 30 m highis in blue.

8 Application 250

Figure 8.36: Result of Hamburg Mesh with 30 m high building.

It is seen from Figure (8.36) that canopy is well represented in high resolution FEM

and low resolution MsFEM shows some agreement as yellow building structure with the

results of high resolution FEM. Low resolution FEM does not represent canopy structure.

8 Application 251

8.6.1 Hamburg mesh : Wall time distribution

Figure 8.37: Wall time distribution for Hamburg Mesh.

8 Application 252

Figure (8.37) presents the computation wall time distribution. It is found that the

direct solver takes the maximum time for low- resolution FEM, and for high- resolution

FEM. For low resolution MsFEM basis initialization and computation takes maximum

times. The total wall clock time elapsed since start is 5980 seconds for high resolution

FEM, 77 seconds for low resolution MsFEM and 13 seconds for FEM.

In all cases, high resolution FEM provides accurate results, but at high computation costs.

In real-world climate or weather models, low precision MsFEM can be an appropriate

choice since it is computationally less expensive but can show subgrid scale effects like

canopy on larger scales. Chapter 8 concludes with the application part for readers and

Chapter 9 begins with conclusion and future work.

9 Conclusion and Future Work 253

9 Conclusion and Future Work

"I like crossing the imaginary boundaries people set up between different

fields - it’s very refreshing."

- Maryam Mirzakhani

Numerical simulations of climate models can be computationally expensive if they run

at high resolution. Because of the physical component and grid resolution limitations,

applying numerical methods to climate models is challenging. Developing a method that

considers the subgrid scale while being computationally efficient is essential. We solve

the Poisson’s equation with standard FEM and MsFEM using deal.II 9.4.0 version. This

study provides an overview of the upscaling approach with multiscale finite elements.

A gradient-based adaptive mesh refinement method is accurate; however, with every

new step, it becomes more computationally expensive, see Appendix Section III for

preliminary results. For high-resolution FEM, these methods are impractical to implement

in climate models. For representative subgrid scale features, we find accurate results with

MsFEM because it uses a modified basis function that can be run in parallel. Therefore, it

is computationally inexpensive compared with the high-resolution finite element method

and adaptive mesh refinement. The Github code is now available

https://github.com/heena008/Diffusion-Equation-with-MsFEM.io and

https://github.com/heena008/Advection-Diffusion_MsFEM.io

In conclusion, the multiscale finite element method gives accurate results when

considering subgrid processes compared with the standard finite element method for

advection-diffusion equations. If advection is the dominant in the problem, the

algorithm is modified by semi-Lagrangian trace back. You can see that this process is

computationally intensive because the basis are calculated in parallel. In the present study

a lot of code development and parallel architecture for high performance computing is

carried out with C++ based dealii library.

9.1 Research Contribution

9.1.1 Software development

1. The code has been developed from scratch in C++ library dealii.

2. The code template can therefore run for 2D and 3D cases easily.

https://github.com/heena008/Diffusion-Equation-with-MsFEM.io
https://github.com/heena008/Advection-Diffusion_MsFEM.io

9 Conclusion and Future Work 254

3. It is fully parallelized and can work on a supercomputer.

4. The implicit, Crank-Nicolson and explicit schemes are implemented.

5. The High Order Finite Element Method is accurate but expensive.

6. Low resolution Finite Element Method does not show accurate result and Multiscale

Finite Element Method often gives better results than Low resolution Finite Element

Method.

7. Semi-Lagrangian trace back is computationally intensive, but Konrad Simon

implemented a new feature to find points owned by the processor that was

not previously developed, that solved the bottleneck of MPI computing of

semi-Lagrangian trace back mesh.

8. Code works well with 16 millions of degrees of freedom, it can also work with

billions. The whole architecture can be extended to global circulation models.

9. Canopy parameterization is key contribution of my work

10. It is open source code and can be extended to solve a variety of real world problems.

9.2 Key Findings

9.2.1 Canopy Modeling

The new achievement in this study from previous work done by [38, 39, 40] for an

oscillating diffusion traveling with the flow is that it can also be used for stationary

obstacles of subgrid scale. We apply this method to urban climate simulations. The

combination of different parallel processes will decrease simulation time, making it easy

to include subgrid processes such as canopies in the diffusion coefficient. These show the

impact of canopies on a large scale.

Regional climate models usually use downscaling techniques that use external forcing at

finer scales. Our approach, on the other hand, upscales fine scales and adds features to

large scales as well. In this way, fine scale features can be included on a large scale. In

terms of urban climate simulation, this algorithm is unique. Downscaling methods are

computationally expensive.

The canopy exists at a subgrid scale in climate models but plays an influential role in the

modulation of local—but large-scale climate. Canopy modeling has become increasingly

significant as global temperatures rise above pre-existing limits. While numerous studies

have been conducted in this area, they incur high computational costs. To account

for canopy effects, models include canopy parametrization as a source term in flow or

9 Conclusion and Future Work 255

transport equations. Researchers typically add a source or sink term to the equation to

represent canopies — i.e., buildings are considered solid and surrounded by the fluid

domain in the mesh, based on the different boundary conditions applied to the fluid and

solid domains. They then solve the system using terrain-following coordinates or the

immersed boundary method. Mesoscale models also account for external forcing of data

from climate simulations. All these methods are computationally expensive when the

models are run at high spatial resolution.

Our approach simplifies this complexity by representing the obstacles in the canopy with

a (large) diffusion coefficient and employing MsFEM discretization for the subgrid-scale

structure of the canopy layer. We tested our approach by conducting wind tunnel

experiments with simple one-building setups and comparing the data with numerical

solutions. While our experiments are idealized cases that demonstrate the general

feasibility of this new method, a generalization promises to enable new ways to solve the

so-called upscaling problem in which small-scale features—which are not representable

numerically—must be represented in large-scale dynamics. Furthermore, the Hamburg

mesh test case shows promising results for single building effects. Thus, we established

the potential for future implementation in global climate models.

9.3 Future Work

In the future, work

• The adaptive feature can be implemented at a local scale by parameterizing the

canopy so that the near field flow (the shape of flow in the region immediately next

to an object) can be captured. See the Appendix Section III.

• Further Reduce Order Model techniques can be used to implement effective modes

represented by a Full Order model [6].

• The code can be run and tested in supercomputers and also transformed to Domain

Specific Language to couple with large models.

• The entire city of Hamburg is estimated to be underwater due to sea ice melt in 80

years. Due to my fascination with Antarctica, I want to implement this framework

for sea ice modeling refer Figure (9.1) and (9.2).

9 Conclusion and Future Work 256

Figure 9.1: Scales in canopy [11].

Figure 9.2: Arctic sea ice at 1 cm, 5 cm, 5 m, 100 m, 100 km [16].

• Also, I want to add turbulence to the model, to determine how it upscales on a large

scale.

10 Appendix 257

10 Appendix

I Mathematical Concept

I.1 Well-posedness (Hadamard 1923)

The concept of well-posedness is general and simple.

Definition 12. Let A : X ← Y be a mapping and X ,Y topological spaces. Then, the

problem

Ax = y (10.1)

is well posed i f

• for each y ∈ Y , Problem (12) has a solution x,

• the solution x is unique,

• the solution x depends continuously on the problem data.

This is the first condition that is immediately evident. In many physical processes, there

are no unique solutions to the second condition, which is also apparent, but difficult to

achieve. Lastly, if the input data (right hand side, boundary values, initial conditions)

vary just a little bit, so should the unique solution.

I.2 Create mathematical models

Consider the second order differential equation as follows:

A
∂ 2u
∂x2 +B

∂ 2u
∂x∂y

+C
∂ 2u
∂y2 +D

∂u
∂x

+E
∂u
∂y

+Fu = G (10.2)

where A,B,C, and F are functions of x and y. The above equation (10.2) can be classified

based on this discriminant as follows according to the value of L = B2−AC.

L = 0⇔ parabolic

L > 0⇔ hyperbolic

L < 0⇔ elliptic

(10.3)

10 Appendix 258

The heat equation (10.4) given below is an example of a parabolic equation.

∂u
∂ t
− ∂ 2u

∂x2 = 0 (10.4)

The wave equation (10.5) is a hyperbolic equation.

∂ 2u
∂ t2 = c

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
(10.5)

where c is a fixed non-negative real coefficient. The Laplace equation (10.6) is elliptic

equation.
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0 (10.6)

Types of problems govern by differential equation

1. Initial Value Problems (IVP) : An initial value problem is one in which the

dependent variables and their derivatives are defined at the same time as the

independent variables and at the same value at the initial time t = 0.

In this case, u(x,0) and ut(x,0) are the initial values of u(x,0) at time t = 0.

∂u
∂ t

= α
∂ 2u
∂x2 , u(x, t0) = f (x)

2. Boundary Value Problems (BVP) : Dependent variables and their derivatives are

defined at the extremes of independent variables in boundary value problems. To

solve a differential equation, boundary conditions are applied to boundary points.

Types of Boundary Conditions

There are three kinds of Boundary Conditions

1. Dirichlet Boundary Conditions : In the domain (0,L), consider a stationary

diffusion equation with Dirichlet boundary conditions.

∂ 2u
∂x2 = f (x), u(0) = u(L) = 0

PDE specifies the dependent variables at different points in the domain based on

the value of the given function u.

2. Neumann Boundary Conditions : As a rule, Neumann boundary conditions are

10 Appendix 259

derivatives of solution values on the boundary of a given domain.

In the domain (0,L), consider the following heat equation in one dimension.

∂u
∂ t

=
∂ 2u
∂x2

∂u
∂n

= 0

u(x,0) = u0(x),x ∈ R

3. Mixed Boundary Conditions :

A mixed boundary condition is a linear combination of Dirichlet and Neumann

boundary conditions.

Here is the stationary heat equation in one dimension in domain (0,L).

∂ 2u
∂x2 = f (x), 0 < x < 1

u(0) = 0, c(1)
∂u
∂x

= g1

II What is finite element method?

This chapter introduces Galerkin methods for approximating partial differential equations

(PDEs).

II.1 Introduction

Computing Finite Element Methods (FEMs) uses variational methods. FEM provides

a convenient method for solving complex mathematical models in complex geometric

domains. FEM can solve a wide range of PDE problems. Domain of interest is defined,

and boundary conditions are specified.

FEM discretizes the domain of interest, where the PDE is defined, to obtain an

approximate solution. Basis functions are combined linearly within each subdomain

to accomplish this. As a result of repositioning the finite elements into their original

positions, the assembly of subdomains results in a discrete set of equations equivalent to

the original mathematical problem.

10 Appendix 260

III Norms and Functional Spaces

Let us define some Functional Spaces, norms and inner products.

Vector space

Definition 13. Vector space (over a field F ∈R). A vector space is a set V equipped with,

• addition + : V ×V →V

• multiplication · : F×V →V

Where + and · satisfy the following conditions

1. + is commutative: v + u = u + v

2. + is associative: u + (v + w) = (u + v) + w

3. additive identity: ∃ 0 ∈V such that v + 0 = 0 + v = v

4. additive inverse: ∃ − v ∈V such that v + (-v) = (-v) + v = 0

5. · is distributive: c ·(u + v) = c · u + c · v

6. · is distributive: (c + d) · v = c · v + d · v

7. · is associative: c · (d · v) = (c · d) · v

8. multiplicative identity: 1 · v = v

or all u, v, w ∈V andc,d ∈ R

Examples:

1. V = R3

2. V = RN , [x1, ...,xN] + [y1, ...,yN] = [x1 + y1, ...,xN + yN] and α[x1, ...,xN] =

[αx1, ...,αxN]

3. V = {v : [0,1]→ R | v is continuous}

Definition 14. Inner product space (over a field F = R).

An inner product space is a vector space with an inner product, a map,

⟨., .⟩ V ×V → F,

satisfying the following conditions:

1.

⟨v,w⟩= ⟨w,v⟩ ∀v,w ∈V (con jugate symmetry)

10 Appendix 261

2.
⟨αv,w⟩= α⟨v,w⟩ ∀v,w ∈V and α ∈ F

⟨u+ v,w⟩= ⟨u,v⟩+ ⟨v,w⟩ ∀u,v,w ∈V

 linearity

3.

⟨v,v⟩ ≥ 0 with ⟨v,v⟩= 0 i f f v = 0 (positive de f inite)

Examples:

1. V = RN ⟨v,w⟩= ∑
N
i=1 viwi

2. V = l2 ⟨v,w⟩= ∑
N
i=1 viwi

3. V =C∞(Ω) ⟨v,w⟩=
∫

Ω
vwdx

l2 is the space of all sequences (or infinite vectors) that satisfy ∑i v2
i < ∞.

Definition 15. Orthogonality

Let V be an inner product space. Two vectors u, v ∈ V are said to be orthogonal if

⟨v,w⟩= 0.

Examples:

1. V = R3 v = (1,2,3) w = (3,0,−1)

2. V = P2 u = 1, v = x, w = 0.5(3x2−1) (Legendre polynomials)

Definition 16. Normed vector space (over a field F)

A normed vector space is a vector space with a norm, a map,

||.|| : V → R,

satisfying the following conditions:

1. ||αv||= |α||v||, ∀v ∈V and ∀α ∈ F (Positive homogeneity)

2. ||u+ v|| ≤ ||u||+ ||v||, ∀u,v ∈V (triangle inequality)

3. ||v||= 0⇒ v = 0 (point separation)

Examples:

1. V = RN ||v||p = (∑N
i=1 vp

i)
1
p , 1≤ p < ∞

2. V =C∞(Ω) ||v||p = (
∫

Ω
vpdx)

1
p , 1≤ p < ∞

Definition 17. Cauchy sequence (on normed space)

Let V be a normed space. A sequence {vi}∞
i=1 ⊂ V is a Cauchy sequence if for all ε > 0

10 Appendix 262

there exists a number N > 0, such that

||vm− vn||< ε ∀m,n > N

Examples:

1. The 2-norm: ||v||2 =
√

∑
n
i=0 v2

i

2. The 1-norm: ||v||1 = ∑
n
i=0 |vi|

3. The inf-norm: ||v||∞ = max|vi|

4. V = R ||v||= |v|, vn =
1
n

5. V =C([0,1]), ||v||= ||v||∞, vn(x) = ∑
n
i=0

xi

i!

Definition 18. Completeness

A (metric) space, V, is complete if all Cauchy sequences converge to a point in V.

Definition 19. Banach space

A Banach space is a complete normed vector space.

Definition 20. Hilbert space

A Hilbert space is a complete normed inner product space.

Figure 10.1: Venn diagram of different spaces.

Definition 21. (Continuous) Dual space

Let V be a normed vector space. The dual space V ′ (sometimes denoted V ∗) is the space

of all continuous, linear functionals on V:

V ′ = {l : V → R| ||l||< ∞} where, ||l||= sup
||v||≤1

|l(v)|

10 Appendix 263

Theorem 3. Cauchy–Schwartz inequality

Let V be an inner product space. Then

|⟨v,w⟩| ≤ ||v|| · ||w|| ∀v,w ∈V

Theorem 4. Banach fixed-point theorem

Let V be a Banach space and let

T : V →V

be a continuous mapping on V, that is,

∃ M < 1 : ||T (v)−T (w)|| ≤M||v−w|| ∀v,w ∈V.

Then ∃! v ∈V,such that T v = v

Examples:

1. V = R T v = v
2 ,v = 0

2. V = R+ T v = v+2/v
2 , v =

√
2

Theorem 5. Riesz representation theorem

Let H be a Hilbert space and let H ′ denote its dual space. Then for all l ∈ H ′ there exists

a unique element l ∈ H, such that

l(v) = ⟨v̂,v⟩ ∀v ∈ H

Theorem 6. Gauss theorem

Let Ω⊂ Rd be bounded and sufficiently regular with outward normal n. Then∫
Ω

u∇ · v dx =
∫

∂Ω

v ·n dS

for a differentiable vector field v : Ω→ Rd .

The following integration by parts formula can be seen as an expression of the product

rule

∇(uv) = u ·∇v+ v ·∇u

Theorem 7. Integration by parts

Let Ω ⊂ Rd be bounded and sufficiently regular with outward normal n. Then the

10 Appendix 264

integration by parts formula holds∫
Ω

∇u · v dx+
∫
Ω

u∇ · v dx =
∫

∂Ω

uv ·n dS

for a differentiable vector field u : Ω→ R and v : Ω→ Rd .

Definition 22. (Weak derivative). Suppose that∫
Ω

u∂xkv dx =−
∫
Ω

gv dx for all test functions v

holds for some function g : Ω→ R. Then g is called the k-th weak (partial) derivative

of u. The integration by parts formula and its variations enables us to introduce a

generalization of classical derivatives.

We say that a vector field g : Ω→ Rd is the weak gradient of u if∫
Ω

u∇v dx =−
∫
Ω

gv dx for all vector valued test functions v

In this case we also just write ∇u = g.

Similarly, we say that a function g : Ω→ R is the weak divergence of a vector field u if∫
Ω

u∇v dx =−
∫
Ω

gv dx for all scalar test functions v

Also, in this case, we simply write ∇u = g.

Classical and weak derivatives are the same for smooth functions. Weak derivatives can

often be found even for functions that are not classically differentiable.

Sobolev spaces

Definition 23. The Lebesgue space L2(Ω) space

Let Ω be an open subset of Rn, with piecewise smooth boundary, then L2(Ω) is defined by

L2(Ω) =

u : Ω→ R|
∫
Ω

|u(x)|2 dx < ∞



10 Appendix 265

It is a Hilbert space with scalar product

⟨u,v⟩L2 =
∫
Ω

uv dx

Examples:

1. v(x) = 1√
x Ω = (0,1), v ̸∈ L2(Ω)

2. v(x) = 1

x
1
4

Ω = (0,1), v ∈ L2(Ω)

Theorem 8. L2 with ⟨v,w⟩=
∫
Ω

vw dx is a Hilbert space.

Definition 24. Weak derivative (first order)

Let v ∈ L2(Ω). The weak derivative of v (if it exists), is a function ∂v
∂xi
∈ L2(Ω) satisfying,

∫
Ω

∂v
∂xi

ϕ dx =−
∫
Ω

v
∂ϕ

∂xi
dx, ∀ϕ ∈C∞

0 (Ω)

Definition 25. Weak derivative (general order)

Let v ∈ L2(Ω). The weak derivative of v (if it exists), is a function ∂ αv ∈ L2(Ω) satisfying,

¸
∫
Ω

∂
αvϕ dx = (−1)|α|

∫
Ω

v∂
αv dx, ∀ϕ ∈C∞

0 (Ω)

where ∂ αϕ = ∂ |α|

∂ α1x1∂ α2x2...∂ αn xn

Lemma 3. A weak derivative (if it exist), is unique.

Lemma 4. A (strong) derivative (if it exist), is a weak derivative.

Theorem 9. Poincaré inequality

Let v ∈ H1
0 (Ω). Then ,

||v||L2(Ω) ≤C|v|H1(Ω)′

where C depends only on Ω.

Convergence in FEM

Theorem: For a sequence of "uniformly regular" meshes in 2-d or 3-d, there exists a

constant C, independent of h and u such that

||u−uh||H1(Ω) ≤Ch||u||H2(Ω)

10 Appendix 266

(roughly, ||u||H2(Ω) ≈ ||∇∇u||L2(Ω))

Remark : In the case of oscillating coefficients A(x
ε
) the Q1 Finite Element method can

converge only if h << ε

Adaptive Mesh refinement

An adaptive mesh refinement technique begins by imposing a coarse grid over the entire

problem domain. The grid defines the cell spacing, or resolution, of computations in the

domain. In order to solve the PDE, more grid points are introduced as the grid spacing

becomes finer.

An error estimation algorithm estimates the interpolation error of a solution, resulting in

the Kelly indicator.

η
2
K = ∑

F∈∂K
h1/2

K

∫
∂F

[[
a

∂uh

∂n

]]2

This is the error estimator for cell K. There is a jump in the function in square brackets at

the face, and there is a factor called cF discussed below. Kelly et al. derived this form of

the interface terms for their error estimator in the paper referenced above. As a result, the

overall error estimate can be calculated as follows:

η
2 = ∑

K
η

2
K

Adaptative mesh refinement is an adhoc algorithm. There is no global refinement that is

mark those cells that have large errors for refinement, mark those that have particularly

small errors for coarsening, and leave the rest alone. The eight here is taken as a heustric

constant.

10 Appendix 267

Algorithm 7 Algorithm for Adaptive Mesh Refinement Method.

1. for (unsigned int cycle = 0; cycle < 8; ++cycle)

2. if (cycle == 0)

Setup mesh (coarse).

refine grid(1);

else

refine grid()

Kelly Error Estimator checker

3. • Setup system and constraints.

• Assemble system

• Solve for un+1

• Set n=n+1

III.1 Test 1

Figure 10.2: Test 1 Solution of High resolution FEM, Low resolution FEM, Low
resolution MsFEM and Adaptive mesh refinement FEM.

10 Appendix 268

Test case 1: Error Table

Here the error is calculated with the difference in the exact solution and approximate

solution.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution

FEM

0.0080 0.1011 0.0146

Adaptive Mesh

FEM

0.00304 0.0208 0.01156

Low resolution

MsFEM

0.0019 0.0555 0.0041

Table 10.1: Test 1 Error in simulation of Low resolution FEM, Low resolution MsFEM
and Adaptive mesh refinement FEM.

III.2 Test 2

Figure 10.3: Solution of High resolution FEM, Low resolution FEM, Low resolution
MsFEM and Adaptive mesh refinement FEM.

10 Appendix 269

Test case 2: Error Table

Here the error is calculated with the difference in the reference solution which is high

resolution FEM.

Error Analysis

Simulation Type L2 Error H1 Error L∞ Error

Low resolution

FEM

0.0159 0.073 0.14

Adaptive Mesh

FEM

0.0097 0.019 0.027

Low resolution

MsFEM

0.0025 0.034 0.056

Table 10.2: Test 2 Error in simulation of Low resolution FEM, Low resolution MsFEM
and Adaptive mesh refinement FEM.

IV Glossary for C++ terms

The content is from [1] and [2]

1. alias:

Terms Description
Type alias Type alias is a name that refers to a previously defined type.

Alias template Alias template is a name that refers to a family of types.

2. Class: A class is a user-defined data type with its own data members and member

functions, which can be accessed and used by creating an instance of the class. The

data members are the variables and the member functions are the functions used

to manipulate these variables. They together define the properties and behavior of

objects in a class.

An Object belongs to a Class. An object is created when a class is instantiated (i.e.

a class is defined).

C++ classes are defined by class followed by their names. Class bodies are enclosed

in curly brackets and terminated by semicolons.

class class_name {

access_specifier_1:

10 Appendix 270

member1;

access_specifier_2:

member2;

...

} object_names;

Listing 59: Class.

An optional list of names for objects of a class can be found in object_names, where

class_name is the class’s identifier. Declaration bodies can contain data or function

declarations, as well as access specifiers.

Declaring Objects: An object’s specification is the only thing defined when a class

is defined; memory and storage are not allocated. It is necessary to create objects

to access and use the class data.

Constructor : Constructors are special member functions of classes, and they

share the same name as their classes. The constructor is called whenever an object

of the class is created by the compiler; it allocates memory and initializes class data

members with default values or values passed by the user.

Destructors :Destructors are member functions that are called instantly when an

object is destroyed. Compilers call the destructor automatically when an object

goes out of scope, for example, when a function ends.

Accessing member data and member functions:

Objects can be accessed using the dot (’.’) operator with their data members and

member functions. To access a member function with the name printName() on an

object named obj, you will need obj.printName().

• Class members who are private are only accessible to other class members (or

their "friends").

• A protected member can be accessed by members of the same class (or their

"friends"), but also by members of their derived classes.

• Finally, public members can access the object from anywhere.

Member Functions in Classes: There are 2 ways to define a member function:

• Inside class definition

• Outside class definition

We must use the scope resolution :: operator along with the class name and function

name to define a member function outside of the class definition.

A dot (.) can be inserted between the name of the object and the name of any public

member as if they were normal variables or functions. For private members, use the

10 Appendix 271

scope resolution operator.

3. Data Types: When variables are declared, they use data-type to restrict the type of

data they can store. This means that data types tell variables what type of data they

can store. C++ allocates some memory for variables based on the data-type with

which they are declared. There is a different amount of memory needed for each

type of data.

Data types in C++ is mainly divided into three types:

a) Primitive Data Types: These types of data are built-in or predefined and can

be used directly to declare variables. For example, int, char, float, bool, etc.

The following primitive data types are available in C++:

• Integer: The keyword int is used for integer data types. The range of

integers typically ranges from -2147483648 to 2147483647 and requires

4 bytes of memory space.

• Character: The character data type is used to store characters. The

character data type is referred to as char. Characters typically take up

one byte of memory and range from -128 to 127 or 0 to 255.

• Boolean: Boolean data types store boolean or logical values. It is possible

to store either true or false in a boolean variable. The keyword used for

boolean data types is bool.

• Floating Point: A floating point value is a value that can be stored as a

single precision value or as a decimal value. Float is the keyword used

for floating point data types. A float variable typically requires 4 bytes of

memory.

• Double Floating Point: This data type stores floating point or decimal

values with double precision. This data type uses the keyword double as

its keyword. Memory space for double variables is typically 8 bytes.

• Valueless or Void: A void means that it has no value. The void datatype

represents an entity without any value. For functions that return no value,

void data types are us.

• Wide Character: The wide character data type is also a character data

type, but it has a larger size than the normal 8-bit data type. This type is

represented by the wchar_t type. There are usually two or four bytes in

it.

Datatype Modifiers: A datatype modifier, as its name suggests, modifies the

10 Appendix 272

amount of data a built-in data type can hold. C++ provides the following data

type modifiers:

Data Type Size in Bytes Range
short int 2 -32,768 to 32,767

unsigned short int 2 0 to 65,535

unsigned int 4 0 to 4,294,967,295

int 4 -2,147,483,648 to 2,147,483,647

long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

long long int 8 −(263)to(263)−1

unsigned long long int 8 0 to 18,446,744,073,709,551,615

unsigned char 1 0 to 255

float 4

double 8

long double 12

wchar_t 2 or 4 1 wide character

Note : Above values may vary from compiler to compiler. In above

example, we have considered GCC 64 bit.

b) Derived Data Types: Derived data types are derived from primitive or

built-in data types. There are four types of these:

• Function

• Array

• Pointer

• Reference

c) Abstract or User-Defined Data Types: Data types are defined by the user.

In C++, for example, defining a class. The following user-defined datatypes

are available in C++:

• Class

• Structure

• Union

• Enumeration

• Typedef defined DataType

4. Float: Floating point variables hold real numbers, such as 4320.0, -3.33, or

0.01226. There can be a variable number of digits before and after the decimal

10 Appendix 273

point due to the floating part of the name floating point.

Terms Description
float single precision floating point type. Usually IEEE-754 32 bit

floating point type.

double double precision floating point type. Usually IEEE-754 64 bit

floating point type.

long double extended precision floating point type. Does not necessarily map

to types mandated by IEEE-754. Usually 80-bit x87 floating point

type on x86 and x86-64 architectures.

5. Namespaces: We can give namespace scope to named entities that otherwise

would have global scope. A program can be organized by name into various logical

scopes.

Note: using and using namespaces are valid only within the block in which they

are stated, or in the entire source code file if they are applied directly in global scope.

Terms Description
using The keyword using introduces a name into the current

declarative region (such as a block), thus avoiding the

need to qualify the name.

namespace new_name

= current_name;

Existing namespaces can be aliased with new names.

std namespace All the entities (variables, types, constants, and

functions) of the standard C++ library are declared

within the std namespace.

6. Preprocessor: The preprocessor directive is a line of code that precedes a hash sign

(#). Preprocessor directives are not program statements. Preprocessors examine

code before compilation and resolve all directives before regular statements

generate any code.Pre] Types of directives and their functions.

10 Appendix 274

Terms Description
#define When the preprocessor encounters this directive, it replaces

any occurrence of identifier in the rest of the code by

replacement.

#undef undefined with the preprocessor directive.

The operator ## concatenates two arguments leaving no

blank spaces between them

#ifdef allows a section of a program to be compiled only if the

macro that is specified as the parameter has been defined,

no matter which its value is.

#ifndef compiled if the specified identifier has not been previously

defined.

#if, #else and

#elif

directives serve to specify some condition to be met in order

for the portion of code they surround to be compiled.

#error This directive aborts the compilation process when it is

found, generating a compilation error that can be specified

as its parameter.

#include When the preprocessor finds an #include directive it

replaces it by the entire content of the specified header or

file.

7. Template: A function template is a special function that operates with generic

types. Our function template can be adapted to more than one type or class without

having to repeat the entire code.
Terms Description
Class templates A class template defines a family of classes.

Template specialization If we want to define a different implementation for a

template when a specific type is passed as template

parameter, we can declare a specialization of that

template.

8. Standard Template Library (STL) STL provides common programming data

structures and functions, such as arrays, stacks, and lists, as a set of C++ template

classes.

The STL includes the following components:

a) Containers : The STL provides a range of containers, such as vector, list, map,

set, and stack, for storing and manipulating data.

b) Algorithms: STL provides algorithms for manipulating data in containers,

10 Appendix 275

such as find, sort, and binary_search.

c) Iterators: An iterator is an object that traverses the elements of a container.

For different types of containers, the STL provides iterators such as

forward_iterator, bidirectional_iterator, and random_access_iterator.

d) Function Objects: Algorithms can use function objects, also called functors,

as arguments. An algorithm can be customized by passing it a function.

e) Adapters: Adapters modify the behavior of other STL components. A

container can be reversed by using the reverse_iterator adapter.

9. Structure Structs, short for C++ Structures, are user-defined data types available

in C++. It allows users to combine data items of (possibly) different types under

single name.

struct structure_name

{

member data_type1 member_name1 ;

.

.

.

member data_typeN member_nameN;

} ;

Listing 60: Structure.

10. Virtual Function in C++: The term "virtual function" refers to a member function

that is declared within a base class and is overridden by derived classes. Using a

pointer or reference to a base class object, you can call a virtual function for that

object and execute the version of the function that was implemented in the derived

class.

• In virtual functions, the correct function is called for an object, regardless of

the type of reference (or pointer) used to call it.

• Runtime polymorphism is achieved by using them.

• Virtual functions are declared in base classes.

• Run-time resolving of function calls takes place.

Rules for Virtual Functions

a) A virtual function cannot be static or a friend function of another class.

b) Run-time polymorphism can be achieved by accessing virtual functions

through pointers or references of base class types.

c) Base and derived classes should share the same prototype for virtual functions.

10 Appendix 276

d) In derived classes, they are overridden by the base class. In that case, the base

class version of the function is used instead of overriding (or redefining) the

virtual function.

e) Virtual destructors are allowed, but virtual constructors are not.

V Implementation of advection diffusion equation in deal.II

1 #ifndef INCLUDE_ADVECTIONDIFFUSION_PROBLEM_HPP_

2 #define INCLUDE_ADVECTIONDIFFUSION_PROBLEM_HPP_

3

4 #include <deal.II/base/quadrature_lib.h>

5 #include <deal.II/base/function.h>

6 #include <deal.II/base/tensor_function.h>

7 #include <deal.II/base/logstream.h>

8

9 #include <deal.II/lac/vector.h>

10 #include <deal.II/lac/full_matrix.h>

11 #include <deal.II/lac/sparse_matrix.h>

12 #include <deal.II/lac/dynamic_sparsity_pattern.h>

13 #include <deal.II/lac/solver_cg.h>

14 #include <deal.II/lac/precondition.h>

15 #include <deal.II/lac/affine_constraints.h>

16 #include <deal.II/base/convergence_table.h>

17 #include <deal.II/grid/tria.h>

18 #include <deal.II/grid/tria_accessor.h>

19 #include <deal.II/grid/tria_iterator.h>

20 #include <deal.II/grid/grid_generator.h>

21

22 #include <deal.II/dofs/dof_handler.h>

23 #include <deal.II/dofs/dof_accessor.h>

24 #include <deal.II/dofs/dof_tools.h>

25

26 #include <deal.II/fe/fe_q.h>

27 #include <deal.II/fe/fe_values.h>

28

29 #include <deal.II/numerics/vector_tools.h>

30 #include <deal.II/numerics/matrix_tools.h>

31 #include <deal.II/numerics/data_out.h>

32 #include <deal.II/lac/sparse_direct.h>

33

34 #include <deal.II/fe/fe_system.h>

35

36 #include <deal.II/base/timer.h>

37 // STL

38 #include <cmath>

39 #include <fstream>

40 #include <iostream> // std::cout, std::endl

41 #include <thread> // std::this_thread::sleep_for

42 #include <chrono> // std::chrono::seconds

43

44 // My Headers

45 #include "matrix_coeff.hpp"

10 Appendix 277

46 #include "right_hand_side.hpp"

47 #include "neumann_bc.hpp"

48 #include "dirichlet_bc.hpp"

49 #include "initial_value.hpp"

50 #include "advection_field.hpp"

51

52 /*!

53 * @namespace TransientAdvectionDiffusionProblem

54 * @brief Contains implementation of the main object

55 * and all functions to solve a time dependent

56 * Dirichlet−Neumann problem on a unit square.

57 */

58 namespace Timedependent_AdvectionDiffusionProblem

59 {

60 using namespace dealii;

61

62 template <int dim>

63 class AdvectionDiffusionProblem

64 {

65 public:

66

67 AdvectionDiffusionProblem() = delete;

68 AdvectionDiffusionProblem(unsigned int n_refine, bool is_periodic);

69 void run ();

70

71 private:

72 void make_grid ();

73 void setup_system ();

74 void assemble_system ();

75 void solve_iterative ();

76 void solve_direct ();

77 void output_results () const;

78 void compute_errors();

79 // void timestep();

80

81 Triangulation<dim> triangulation;

82 FE_Q<dim> fe;

83 DoFHandler<dim> dof_handler;

84

85 AffineConstraints<double> constraints;

86

87 SparsityPattern sparsity_pattern;

88 SparseMatrix<double> mass_matrix;

89 SparseMatrix<double> diffusion_matrix;

90 SparseMatrix<double> advection_matrix;

91 SparseMatrix<double> system_matrix;

92

93 Vector<double> solution;

94 Vector<double> old_solution;

95 Vector<double> static_rhs; // only the time independent part

96 Vector<double> system_rhs;

97

98 double time;

99 double time_step;

100 unsigned int timestep_number;

101

102 const double theta;

10 Appendix 278

103 const double T_max;

104 ConvergenceTable convergence_table;

105

106 };

107

108

109 template <int dim>

110 AdvectionDiffusionProblem<dim>::AdvectionDiffusionProblem (unsigned int n_refine, bool is_periodic) :

111 fe (1),

112 dof_handler (triangulation),

113 time(0.0),

114 time_step(1. / 100),

115 timestep_number(0),

116 theta(1),

117 T_max(0.5)

118 {}

119

120

121 template <int dim>

122 void AdvectionDiffusionProblem<dim>::make_grid ()

123 {

124 GridGenerator::hyper_cube (triangulation, 0, 1, /* colorize */ true);

125

126 triangulation.refine_global (2);

127

128 std::cout << "Number of active cells: " << triangulation.n_active_cells()<< std::endl;

129 }

130

131

132 template <int dim>

133 void AdvectionDiffusionProblem<dim>::setup_system ()

134 {

135 dof_handler.distribute_dofs (fe);

136

137 std::cout << std::endl

138 << "===" << std::endl

139 << "Number of active cells: " << triangulation.n_active_cells()

140 << std::endl

141 << "Number of degrees of freedom: " << dof_handler.n_dofs()<< std::endl << std::endl;

142

143

144 constraints.clear();

145 DoFTools::make_hanging_node_constraints(dof_handler, constraints);

146

147 /*
148 * Set up Dirichlet boundary conditions.

149 */

150 const Coefficients::DirichletBC<dim> dirichlet_bs;

151 for (unsigned int i = 0; i<dim; ++i)

152 {

153 VectorTools::interpolate_boundary_values(dof_handler,/*boundary id*/ 2*i, // only even boundary id

154 dirichlet_bs, constraints);

155 }

156

157 constraints.close();

158

159

10 Appendix 279

160 DynamicSparsityPattern dsp(dof_handler.n_dofs());

161 DoFTools::make_sparsity_pattern (dof_handler,dsp,

162 constraints,/*keep_constrained_dofs = */ true); // for time stepping this is essenttial to be true

163 sparsity_pattern.copy_from(dsp);

164

165 system_matrix.reinit (sparsity_pattern);

166 diffusion_matrix.reinit (sparsity_pattern);

167 advection_matrix.reinit (sparsity_pattern);

168 mass_matrix.reinit(sparsity_pattern);

169

170 solution.reinit (dof_handler.n_dofs());

171 old_solution.reinit(dof_handler.n_dofs());

172 static_rhs.reinit (dof_handler.n_dofs());

173 system_rhs.reinit (dof_handler.n_dofs());

174 }

175

176

177 template <int dim>

178 void AdvectionDiffusionProblem<dim>::assemble_system ()

179 {

180 const QGauss<dim> quadrature_formula(fe.degree + 1);

181 const QGauss<dim − 1> face_quadrature_formula(fe.degree + 1);

182

183 FEValues<dim> fe_values(fe,quadrature_formula,update_values |

184 update_gradients |update_quadrature_points | update_JxW_values);

185

186 FEFaceValues<dim> fe_face_values(fe,face_quadrature_formula, update_values| update_quadrature_points |

187 update_normal_vectors | update_JxW_values); // for Neumaan boundary condition to evaluate

188 // boundary condition

189

190 const unsigned int dofs_per_cell = fe.dofs_per_cell;

191 const unsigned int n_q_points = quadrature_formula.size();

192 const unsigned int n_face_q_points = face_quadrature_formula.size();

193

194 FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);

195 Vector<double> cell_rhs(dofs_per_cell);

196

197 std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

198

199 std::vector<Tensor<2, dim>> matrix_coeff_values_old(n_q_points);

200 std::vector<Tensor<2, dim>> matrix_coeff_values(n_q_points);

201

202 std::vector<Tensor<1, dim>> advection_field_values_old(n_q_points);

203 std::vector<Tensor<1, dim>> advection_field_values(n_q_points);

204

205 std::vector<double> rhs_values_old(n_q_points);

206 std::vector<double> rhs_values(n_q_points);

207

208 std::vector<double> neumann_values_old(n_face_q_points);

209 std::vector<double> neumann_values(n_face_q_points);

210

211 for (const auto &cell : dof_handler.active_cell_iterators())

212 {

213 if (cell−>is_locally_owned())

214 {

215 cell_matrix = 0;

216 cell_rhs = 0;

10 Appendix 280

217

218 fe_values.reinit(cell);

219 cell−>get_dof_indices(local_dof_indices);

220 /*
221 * Values at current time.

222 */

223 matrix_coeff.set_time(current_time);

224 advection_field.set_time(current_time);

225 right_hand_side.set_time(current_time);

226 advection_field.value_list(fe_values.get_quadrature_points(), advection_field_values);

227 matrix_coeff.value_list(fe_values.get_quadrature_points(), matrix_coeff_values);

228 right_hand_side.value_list(fe_values.get_quadrature_points(), rhs_values);

229

230 /*
231 * Values at previous time.

232 */

233 matrix_coeff.set_time(current_time − time_step);

234 advection_field.set_time(current_time − time_step);

235 right_hand_side.set_time(current_time − time_step);

236 advection_field.value_list(fe_values.get_quadrature_points(), advection_field_values_old);

237 matrix_coeff.value_list(fe_values.get_quadrature_points(), matrix_coeff_values_old);

238 right_hand_side.value_list(fe_values.get_quadrature_points(), rhs_values_old);

239

240 /*
241 * Integration over cell.

242 */

243 for (unsigned int q_index = 0; q_index < n_q_points; ++q_index)

244 {

245 for (unsigned int i = 0; i < dofs_per_cell; ++i)

246 {

247 for (unsigned int j = 0; j < dofs_per_cell; ++j)

248 {

249 // Diffusion is on rhs. Careful with signs here.

250 cell_matrix(i, j) +=

251 (fe_values.shape_value(i, q_index) *fe_values.shape_value(j, q_index) +

252 time_step * (theta) *(fe_values.shape_grad(i, q_index) *
253 matrix_coeff_values[q_index] *fe_values.shape_grad(j, q_index) +

254 fe_values.shape_value(i, q_index) *advection_field_values[q_index] *
255 fe_values.shape_grad(j, q_index))) *fe_values.JxW(q_index);

256 // Careful with signs also here.

257 cell_rhs(i) += (fe_values.shape_value(i, q_index) *
258 fe_values.shape_value(j, q_index) −time_step * (1 − theta) *
259 (fe_values.shape_grad(i, q_index) *matrix_coeff_values_old[q_index] *
260 fe_values.shape_grad(j, q_index) +fe_values.shape_value(i, q_index) *
261 advection_field_values_old[q_index] *fe_values.shape_grad(j, q_index))) *
262 fe_values.JxW(q_index) *old_solution(local_dof_indices[j]);

263 } // end ++j

264

265 cell_rhs(i) += time_step * fe_values.shape_value(i, q_index) *
266 ((1 − theta) * rhs_values_old[q_index] +

267 (theta)*rhs_values[q_index]) *fe_values.JxW(q_index);

268 } // end ++i

269 } // end ++q_index

270

271 if (!is_periodic)

272 {

273 /*

10 Appendix 281

274 * Boundary integral for Neumann values for odd boundary_id in

275 * non−periodic case.

276 */

277 for (unsigned int face_number = 0;

278 face_number < GeometryInfo<dim>::faces_per_cell;

279 ++face_number)

280 {

281 if (cell−>face(face_number)−>at_boundary() &&

282 ((cell−>face(face_number)−>boundary_id() == 1) ||

283 (cell−>face(face_number)−>boundary_id() == 3) ||

284 (cell−>face(face_number)−>boundary_id() == 5)))

285 {

286 fe_face_values.reinit(cell, face_number);

287

288 /*
289 * Fill in values at this particular face at current

290 * time.

291 */

292 neumann_bc.set_time(current_time);

293 neumann_bc.value_list(fe_face_values.get_quadrature_points(), neumann_values);

294

295 /*
296 * Fill in values at this particular face at previous

297 * time.

298 */

299 neumann_bc.set_time(current_time − time_step);

300 neumann_bc.value_list(fe_face_values.get_quadrature_points(), neumann_values_old);

301

302 for (unsigned int q_face_point = 0;

303 q_face_point < n_face_q_points;

304 ++q_face_point)

305 {

306 for (unsigned int i = 0; i < dofs_per_cell; ++i)

307 {

308 cell_rhs(i) +=time_step * ((1 − theta) *
309 neumann_values_old[q_face_point] * // g(x_q, t_n) = A*grad_u

310 // at t_n+(theta)*neumann_values

311 [q_face_point]) * // g(x_q, t_{n+1}) = =// A*grad_u at t_{n+1}

312 fe_face_values.shape_value(i, q_face_point) * // phi_i(x_q)

313 fe_face_values.JxW(q_face_point); // dS

314 } // end ++i

315 } // end ++q_face_point

316 } // end if

317 } // end ++face_number

318 }

319

320 constraints.distribute_local_to_global(cell_matrix,cell_rhs,

321 local_dof_indices, system_matrix, system_rhs,/* use_inhomogeneities_for_rhs */ true);

322 } // if

323 } // ++cell

324

325 system_matrix.compress(VectorOperation::add);

326 system_rhs.compress(VectorOperation::add);

327 }

328

329

330

10 Appendix 282

331

332 template <int dim>

333 void AdvectionDiffusionProblem<dim>::solve_iterative ()

334 {

335 SolverControl solver_control (1000, 1e−12);

336 SolverCG<> solver (solver_control); // when program is runned CG iteration should not be zero//

337

338 PreconditionSSOR<> preconditioner;

339 preconditioner.initialize(system_matrix, 1.2);

340

341 solver.solve (system_matrix, solution, system_rhs, preconditioner);

342

343 constraints.distribute (solution);

344

345 std::cout << " " << solver_control.last_step()

346 << " CG iterations needed to obtain convergence."

347 << std::endl;

348

349 }

350

351 template <int dim>

352 void AdvectionDiffusionProblem<dim>::solve_direct ()

353 {

354

355 SparseDirectUMFPACK A_direct;

356

357 solution = system_rhs;

358 A_direct.solve(system_matrix, solution);

359 A_direct.vmult(solution, system_rhs);

360

361 }

362

363

364 template <int dim>

365 void AdvectionDiffusionProblem<dim>::output_results () const

366 {

367 DataOut<dim> data_out;

368 data_out.attach_dof_handler (dof_handler);

369 data_out.add_data_vector (solution, "solution");

370 data_out.build_patches ();

371

372 const std::string filename =

373 "solution−" + Utilities::int_to_string(timestep_number, 3) + ".vtk";

374 //std::ofstream output(filename);

375 std::ofstream output (dim == 2 ?"solution−2d.vtk"+filename :"solution−3d.vtk"+ filename);

376 data_out.write_vtk (output);

377

378 }

379

380 template <int dim>

381 void AdvectionDiffusionProblem<dim>::compute_errors()

382 {

383 Vector<float> difference_per_cell(triangulation.n_active_cells());

384 VectorTools::integrate_difference(dof_handler, solution,

385 ZeroFunction<dim>(), difference_per_cell,

386 QGauss<dim>(fe.degree + 1), VectorTools::L2_norm);

387

10 Appendix 283

388 const double L2_error = VectorTools::compute_global_error(triangulation,

389 difference_per_cell, VectorTools::L2_norm);

390

391

392 const unsigned int n_active_cells = triangulation.n_active_cells();

393 const unsigned int n_dofs = dof_handler.n_dofs();

394 VectorTools::integrate_difference(dof_handler,

395 solution, ZeroFunction<dim>(),

396 difference_per_cell, QGauss<dim>(fe.degree + 1),

397 VectorTools::H1_norm);

398

399 const double H1_error = VectorTools::compute_global_error(triangulation,

400 difference_per_cell,VectorTools::H1_norm);

401

402 VectorTools::integrate_difference(dof_handler,

403 solution, ZeroFunction<dim>(),

404 difference_per_cell, QGauss<dim>(fe.degree + 1),

405 VectorTools::Linfty_norm);

406 const double Linfty_error =VectorTools::compute_global_error(triangulation,

407 difference_per_cell, VectorTools::Linfty_norm);

408 pcout << " Number of active cells: "

409 << n_active_cells<< std::endl

410 << " Number of degrees of freedom: " << n_dofs

411 << std::endl;

412 convergence_table.add_value("cells", n_active_cells);

413 convergence_table.add_value("dofs", n_dofs);

414 convergence_table.add_value("L2", L2_error);

415 convergence_table.add_value("H1", H1_error);

416 convergence_table.add_value("Linfty", Linfty_error);

417 convergence_table.set_precision("L2", 3);

418 convergence_table.set_precision("H1", 3);

419 convergence_table.set_precision("Linfty", 3);

420 convergence_table.set_scientific("L2", true);

421 convergence_table.set_scientific("H1", true);

422 convergence_table.set_scientific("Linfty", true);

423 convergence_table.set_tex_caption("cells", "\\# cells");

424 convergence_table.set_tex_caption("dofs", "\\# dofs");

425 convergence_table.set_tex_caption("L2", "L^2−error");

426 convergence_table.set_tex_caption("H1", "H^1−error");

427 convergence_table.set_tex_caption("Linfty", "L^\\infty−error");

428

429 convergence_table.set_tex_format("cells", "r");

430 convergence_table.set_tex_format("dofs", "r");

431

432 std::cout << std::endl;

433 convergence_table.write_text(std::cout);

434

435 std::ofstream error_table_file("tex−conv−table.tex");

436 convergence_table.write_tex(error_table_file);

437

438 deallog << " Error in the L2 norm : " << L2_error << std::endl;

439 deallog << " Error in the H1 norm : " << H1_error <<std::endl;

440 deallog << " Error in the Linfty norm : " << H1_error << std::endl;

441 }

442 template <int dim>

443 void AdvectionDiffusionProblem<dim>::run ()

444 {

10 Appendix 284

445 std::cout << "Solving problem in " << dim << " space dimensions." << std::endl;

446

447 make_grid ();

448

449 setup_system ();

450

451 assemble_system ();

452

453 Vector<double> tmp;

454 Vector<double> forcing_terms;

455

456 tmp.reinit(solution.size());

457 system_rhs.reinit(solution.size());

458

459 // initialize with initial condition

460 VectorTools::project(dof_handler,

461 constraints, QGauss<dim>(fe.degree + 1),

462 Coefficients::InitialValue<dim>(),old_solution);

463

464 solution = old_solution;

465

466 // output initial condition

467 output_results();

468

469

470 while (time <= T_max)

471 {

472 time += time_step;

473 ++timestep_number;

474

475 std::cout << "Time step " << timestep_number << " at t=" << time<< std::endl;

476

477 // re−initializes the system_rhs = M*old_solution

478 mass_matrix.vmult(system_rhs, old_solution);

479

480 // system_rhs = M*old_solution − (1−theta)*dt*A*old_solution

481 diffusion_matrix.vmult(tmp, old_solution);

482 advection_matrix.vmult(tmp, old_solution);

483 system_rhs.add(−(1−theta) * time_step, tmp);

484

485 // system_rhs = M*old_solution − theta*dt*A*_old_solution + dt*static_rhs

486 system_rhs.add(time_step, static_rhs);

487

488 // Now create the full system matrix to get system_matrix = M + dt+theta*A

489 system_matrix.copy_from(mass_matrix);

490 system_matrix.add(theta * time_step, advection_matrix);

491 system_matrix.add(theta * time_step, diffusion_matrix);

492 // Now take care of constraints

493 constraints.condense(system_matrix, system_rhs);

494

495 // Now solve

496 solve_direct ();

497

498 output_results ();

499

500 // reinitialize

501 tmp.reinit(solution.size());

10 Appendix 285

502 system_rhs.reinit(solution.size());

503 system_matrix.reinit (sparsity_pattern);

504

505 // hand over solution value for next time step

506 old_solution = solution;

507

508 }

509 deallog << "Solve" << std::endl;

510 compute_errors();

511 }

512

513 } // namespace Timedependent_AdvectionAdvectionDiffusionProblem

514

515 #endif /* INCLUDE_DIFFUSION_PROBLEM_HPP_ */

Listing 61: The advection-diffusion problem header file.

Bibliography 286

Bibliography

[1] C++ language. https://www.cplusplus.com.

[2] C++ programming language. https://www.geeksforgeeks.org/c-plus-plu

s/,.

[3] Canopies in the earth system. https://www.cliccs.uni-hamburg.de/en/res

earch/theme-a/a3.html. Last accessed on Jun 15, 2019.

[4] Climate, climatic change, and society (CLICCS). http://www.cliccs.uni

-hamburg.de/about-cliccs.html. Last accessed on Jun 15, 2019.

[5] (2018). 2018 revision of world urbanization prospects. Report,

Population Division of the United Nations Department of Economic and

Social Affairs (UN DESA).

[6] Alebrand, S. (2015). Efficient Schemes for Parameterized Multiscale

Problems. Ph. D. thesis, Universität Stuttgart.

[7] Arndt, D., W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister,

L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko,

B. Turcksin, and D. Wells (2022). The deal.II library, version 9.4.

Journal of Numerical Mathematics 30(3), 231–246.

[8] Bagheri, B. and R. Scott. (2003). Analysa. http://people.cs.uchicago.edu

/ridg/al/aa.ps,.

[9] Bangerth, W. (2000, 8). Using modern features of c++ for adaptive

finite element methods: Dimension-independent programming in deal.ii.

Michel Deville;Robert Owens,IMACS – Department of Computer

Science, Rutgers University, New Brunswick., booktitle.

[10] Beljaars, A., G. Balsamo, P. Bechtold, A. Bozzo, R. Forbes, R. J. Hogan,

M. Köhler, J.-J. Morcrette, A. M. Tompkins, P. Viterbo, and N. Wedi

(2018). The numerics of physical parametrization in the ecmwf model.

Frontiers in Earth Science 6.

[11] Blocken, B., Y. Tominaga, and T. Stathopoulos (2013). Cfd simulation of

micro-scale pollutant dispersion in the built environment. Building and

Environment 64, 225–230.

[12] Chung, E., Y. Efendiev, and T. Hou (2023). Multiscale Model Reduction:

Multiscale Finite Element Methods and Their Generalizations. Springer

International Publishing.

https://www.cplusplus.com
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.cliccs.uni-hamburg.de/en/research/theme-a/a3.html
https://www.cliccs.uni-hamburg.de/en/research/theme-a/a3.html
http://www.cliccs.uni-hamburg.de/about-cliccs.html
http://www.cliccs.uni-hamburg.de/about-cliccs.html
http://people.cs.uchicago.edu/ ridg/al/aa.ps
http://people.cs.uchicago.edu/ ridg/al/aa.ps

Bibliography 287

[13] Dedner, A., R. Klöfkorn, M. Nolte, and M. Ohlberger (2010). A Generic

Interface for Parallel and Adaptive Scientific Computing: Abstraction

Principles and the DUNE-FEM Module. Computing 90(3–4), 165–196.

[14] Dular, P., C. Geuzaine, F. Henrotte, and W. Legros (1998, September).

A general environment for the treatment of discrete problems and

its application to the finite element method. IEEE Transactions on

Magnetics 34(5), 3395–3398.

[15] Efendiev, Y. and J. Galvis (2012, 08). Coarse-grid multiscale model

reduction techniques for flows in heterogeneous media and applications.

Lecture Notes in Computational Science and Engineering 83.

[16] Golden, K. M., L. G. Bennetts, E. Cherkaev, I. Eisenman, D. Feltham,

C. Horvat, E. Hunke, C. Jones, D. K. Perovich, P. Ponte-Castañeda,

C. Strong, D. Sulsky, and A. J. Wells (2020, 9). Modeling sea ice. Notices

of the Ameican Mathemical Society 10, 1535–1553.

[17] Graham, I. G., T. Y. Hou, O. Lakkis, and R. Scheichl (2012). Numerical

Analysis of Multiscale Problems. Springer.

[18] Hecht, F. (2012). New development in freefem++. J. Numer.

Math. 20(3-4), 251–265.

[19] Heister, T. (2015, August). Parallel computations. https://www.dealii.org

/workshop-2015/slides/heister.pdf.

[20] Jandaghian, Z. and U. Berardi (2019, 01). Proper choice of urban canopy

model for climate simulations.

[21] Johnson, C. (1987). Numerical solution of partial differential equations

by the finite element method. Cambridge University Press, Cambridge

England ; New York.

[22] K. Heinke Schlünzen, S. G. and A. Baklanov (2023). Guidance on

Measuring, Modelling and Monitoring the Canopy Layer Urban Heat

Island (CL-UHI). World Meteorological Organization.

[23] Kanda, I., Y. Yamao, T. Ohara, and K. Uehara (2012, 04). An

urban atmospheric diffusion model for traffic-related emission based on

mass-conservation and advection-diffusion equations. Environmental

Modeling and Assessment 18.

[24] Kirby, R. C. and A. Logg (2007). Efficient compilation of a class of

variational forms. ACM Transactions on Mathematical Software 33(3).

https://www.dealii.org/workshop-2015/slides/heister.pdf
https://www.dealii.org/workshop-2015/slides/heister.pdf

Bibliography 288

[25] Kirby, R. C., A. Logg, L. R. Scott, and A. R. Terrel (2006). Topological

optimization of the evaluation of finite element matrices. SIAM Journal

on Scientific Computing 28(1), 224–240.

[26] Lamoureux, P. (2017, 01). Computational Modeling in Heterogeneous

Catalysis.

[27] Long., K. Sundance: Rapid development of high-performance parallel

finite-element solutions of partial differential equations. http://software.s

andia.gov/sundance/,.

[28] Park, Y.-S. and K. Tha Paw U (2004). Numerical estimations

of horizontal advection inside canopies. Journal of Applied

Meteorology 43(10), 1530 – 1538.

[29] Prud’homme, C. (2006, 01). A domain specific embedded language in

c++ for automatic differentiation, projection, integration and variational

formulations. Scientific Programming 14, 81–110.

[30] Prud’homme, C. (2007, 12). Life, a modern and unified c++

implementation of finite-element and spectral-element methods in 1d, 2d

and 3d. PAMM 7, 1010605 – 1010606.

[31] Renard, Y. and J. Pommier. Getfem++:generic and efficient c++ library

for finite element methods elementary computations. http://getfem.org/.

Last accessed on July 17, 2020.

[32] Rheinboldt, W. C. and C. K. Mesztenyi (1980). On a data structure for

adaptive finite element mesh refinements. ACM Trans. Math. Softw. 6,

166–187.

[33] Rotach, M., R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen,

A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer,

V. Mitev, T. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet,

D. Ruffieux, J. Salmond, M. Schatzmann, and J. Voogt (2005, 07). Bubble

- an urban boundary layer meteorology project. Theoretical and Applied

Climatology 81, 231–261.

[34] Schultz, M., M. Schatzmann, and B. Leitl (2005, 01). Effect of

roughness inhomogeneities on the development of the urban boundary

layer. International Journal of Environment and Pollution - INT J

ENVIRON POLLUTION 25.

[35] Shammas, M. and H. M. Imran (2021, 11). Causes, modeling and

mitigation of urban heat island: A review. Earth Sciences 10, 244–264.

http://software.sandia.gov/sundance/
http://software.sandia.gov/sundance/
http://getfem.org/

Bibliography 289

[36] Simon, K. (2020a, October). 3d high-performance multiscale simulations

of urban canopies. Presentation at CLICCS Retreat University of

Hamburg.

[37] Simon, K. (2020b, July). Numerical methods for pdes. Lecture notes at

University of Hamburg.

[38] Simon, K. and J. Behrens (2019). A semi-lagrangian multiscale

framework for advection-dominant problems. In International

Conference on Computational Science. Springer, 393–409.

[39] Simon, K. and J. Behrens (2020). Multiscale finite elements for transient

advection-diffusion equations through advection-induced coordinates.

Multiscale Modeling & Simulation 18(2), 543–571.

[40] Simon, K. and J. Behrens (2021, 05). Semi-lagrangian subgrid

reconstruction for advection-dominant multiscale problems with rough

data. Journal of Scientific Computing 87.

[41] Suni, T., A. Guenther, H.-C. Hansson, M. Kulmala, M. Andreae,

A. Arneth, P. Artaxo, E. Blyth, M. Brus, L. Ganzeveld, P. Kabat,

N. Noblet-Ducoudré, M. Reichstein, A. Reissell, D. Rosenfeld, and

S. Seneviratne (2015, 12). The significance of land-atmosphere

interactions in the earth system - ileaps achievements and perspectives.

Anthropocene 12.

[42] Wick, T. (2020, September). Numerical methods for partial differential

equations. https://www.repo.uni-hannover.de/handle/123456789/9301.

[43] Wilby, R. L. (2003). Past and projected trends in london’s urban heat

island. Weather 58(7), 251–260.

[44] Yalchin Efendiev, T. Y. H. (2009). Multiscale Finite Element Methods:

Theory and Applications, Volume 4. Springer.

https://www.repo.uni-hannover.de/handle/123456789/9301

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation mit

dem Titel: „Multiscale Finite Element method application to Canopies in Earth

System” selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel –

insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt

habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen

wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit

vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte

schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, 19 September 2024 Unterschrift:

	Abstract
	Kurzfassung
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Notations
	Introduction
	Background and Motivation
	Numerical Modelling of subgrid scales
	Multiscale Modelling
	Knowledge Gap
	Aim of the thesis
	Talks at conferences
	Publication

	Finite Element Method
	Poisson's Equation
	Steps for Solution of Poisson's Equation using the finite element method
	Step 1: Strong formulation of Poisson's equation
	Step 2: Weak formulation of Poisson's equation
	Step 3: Finite Element Approximation
	Step 4: Derivation of a Linear System of Equations

	Compute the discrete solution with building blocks of Finite Element Method
	Finite elements in 1D
	Finite elements in 2D
	Assemble System
	2-D elements: coordinate transformation
	Computing with quadrature rules
	Compute the error

	Abstract form of Finite Element Method
	Galerkin Orthogonality

	Multiscale Finite Element Method
	Introduction Multiscale Modeling
	Introduction to Multiscale in canopy

	Homogenization theory
	Multiscale Finite Element Method
	Objective of Multiscale Finite Element Method
	Steps of Multiscale Finite Element Method
	Localization
	Basis functions
	Global coarse-grid problem
	Assembly of stiffness matrix.

	Advection-Diffusion Equation
	Semi-Lagrangian Multiscale Finite Element
	The Reconstruction Mesh

	Software Concepts
	Introduction
	The deal.II workflow
	Triangulation
	Refinement
	Mesh generation

	Degree of Freedom Handler
	Finite Element
	Quadrature
	Mapping
	FEValues
	Linear System
	Linear Solver
	Direct Solver
	Iterative Solver

	Output
	Compute the error
	Parallelization Concept
	Motivation
	Distributed Triangulation
	New Feature implementation

	Parallel code implementation of advection-diffusion equation solution with FEM method in deal.II
	Step 1 : Create Mesh
	Step 2 : Set Degrees of Freedom
	Step 3 : Assemble the system matrix and right hand side
	Step 4 : Solve the system
	Step 5 : Output the result
	Step 6 : Compute the error

	Implementation of diffusion equation solution with MsFEM method in deal.II
	Global formulation code
	Multiscale basis function code

	Connection between main code and basis code
	Implementation of advection-diffusion equation solution with Semi-Lagrangian Multiscale Finite Element in deal.II
	Step 1 : construct a coarse grid
	Step 2 : For every cell K TH a fine mesh ThK is to be initialized
	Step 3 : For K TH (Online Phase), Reconstruct the basis u0(x)|K
	Step 4 : For n = 0 to n Nsteps
	Step 4a : Each node in K is trace back one time step from tn+1 to tn
	Step 4b : Basis un(x)| from 4.10 to be reconstructed
	Step 4c : Propagate the boundary conditions of the optimal basis forward onto K
	Step 5 : Postprocess the solution

	Numerical result
	Numerical Experiments.
	Test case 1
	Test case 2
	Test case 3
	Test case 4
	Test case 3D

	Canopy Parameterization
	Introduction
	Test Case 5
	Test Case 6
	Test Case 7
	Test Case 8

	Application
	Wind tunnel test cases
	Setup

	Test Case 9 : Building with 0° rotation
	Test case 9 : Wall times distribution
	Test case 9 : Error Table

	Test Case 10 : Building with 0° rotation and source term
	Test case 10 : Wall time distribution
	Test case 10 : Error Table
	Test case 10 : Wind tunnel Validation
	Test 10a : Building with 0° rotation and full source term

	Test Case 11 : Building with 45° rotation
	Test case 11 : Wall time distribution
	Test case 11 : Error Table
	Test Case 11a : Building with 45° rotation with increase in MsFEM refinement
	Test Case 11b : Building with 45° rotation with decrease in diffusion

	Test Case 12 : Building with 45° rotation and source term
	Test case 12 : Wall time distribution
	Test case 12 : Error Table
	Test case 12 : Wind tunnel Validation
	Test Case 12a : Building with 45° rotation with increase in MsFEM refinement
	Test Case 12b : Building with 45° rotation with decrease in diffusion

	Hamburg mesh
	Hamburg mesh : Wall time distribution

	Conclusion and Future Work
	Research Contribution
	Software development

	Key Findings
	Canopy Modeling

	Future Work

	Appendix
	Mathematical Concept
	Well-posedness (Hadamard 1923)
	Create mathematical models

	What is finite element method?
	Introduction

	Norms and Functional Spaces
	Test 1
	Test 2

	Glossary for C++ terms
	Implementation of advection diffusion equation in deal.II

	Bibliography
	Eidesstattliche Versicherung

