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2 Presentation of the Publication 

2.1 Scientific Background 

2.1.1 Human Immunodeficiency Virus 

The human immunodeficiency virus-1 (HIV-1), first isolated and discovered in the 1980s, 

originated from several independent zoonotic transmissions of simian immunodeficiency 

viruses [1–3]. HIV-1, hereafter referred to as HIV, belongs to the family of Retroviridae and 

hijacks the host cell’s machinery to convert viral ribonucleic acid (RNA) into 

deoxyribonucleic acid (DNA) and then replicate itself, using reverse transcriptases, 

proteases, and integrases [1]. It predominantly infects, and in the process depletes, the pool 

of CD4+ T cellsa, leading to chronic immune activation, immune dysfunction, and most 

eventually lethal Acquired Immunodeficiency Syndrome (AIDS) without sufficient therapy 

[4–7].  

The global incidence of HIV-1 in 2019 was 36.9 million with 5000 new infections occurring 

every day and an increasing incidence, globally, specifically in Europe and the United States 

[8]. The Highly active antiretroviral therapy (ART) suppresses viral replication with a 

combination of at least two drugs to treat HIV-positive patients, but no cure is available to 

date [1,9,10]. Nearly half of HIV-infected individuals are not receiving ART mainly in sub-

Saharan Africa [8,11]. 

2.1.2 Definition and Role of γδ T Cells 

Among CD4+ T cells, unconventional T cells appear to play a role in HIV infection [12–16]. 

Besides natural killer T cells (NK) and mucosal-associated invariant T cells (MAIT), γδ T 

cells seem to have important immunomodulatory properties relevant to the disease [7]. 

γδ T cells are “innate-like” unconventional T cells that makeup 1-15% of circulating 

leukocytes and that exert a direct cytotoxic activity independent of major histocompatibility 

complex (MHC) presentation [17–28]. They recognize stress-induced molecules, non-

peptide- and phosphoantigens, self- or MHC-related molecules, and lipids and show 

different effector functions [17,18,21–23,29–38]. They can kill infected or transformed cells 

by death-inducing pathways and release perforins, granzymes, and other bacteriostatic or 

bacteriolytic molecules [17,18,21–23,29–38]. In addition, γδ T cells produce pro-

inflammatory cytokines but also anti-inflammatory cytokines and have been shown to act 

as immunomodulators and inhibitors of T and B cell responses [22,23,32,37,39–46]. 

 
 
a CD: cluster of differentiation 
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While the conventional T-cell receptor is a heterodimer, consisting of an alpha and beta 

unit, γδ T cells express a T-cell receptor with a gamma and a delta chain [19,20,24,26–28]. 

The two main subsets of γδ T cells, Vδ1 T cells, and Vδ2 T cells, are present in different 

anatomic compartments [29–31,33,38]. While Vδ1 T cells can be found in the intraepithelial 

layer of mucosal surfaces, the Vδ2 T-cell population is mostly detected in the blood and 

secondary lymphoid tissues (ratio in the peripheral blood Vδ1/Vδ2 T cells: 3:10) [17,29–

31,33,38,43,47–51]. About 30% of γδ T cells express a CD8 T-cell co-receptor, less than 

1% express a CD4 cell co-receptor, and 70% do not express any of the conventional T-cell 

co-receptors [31]. 

2.1.3 γδ T Cells in HIV Infection 

In the acute phase of primary HIV infection, an inversion of the Vδ1/Vδ2 T-cell ratio can be 

observed in blood while the ratio of total γδ T cells remains relatively stable [17,25]. While 

the pool of Vδ2 T cells is depleted, Vδ1 T cells become more abundant [7,17,52]. 

γδ T cells can inhibit or stimulate inflammation in the blood and different tissues and might 

be used to target HIV-infected cells directly but can also become infected by HIV themselves 

[17,25,53,54]. 

The observed change in the ratio of Vδ1 and Vδ2 T cells is reminiscent of the inverted 

CD4/CD8 T-cell ratio observed in untreated HIV infection [52,55]. Vδ1 T cells are suggested 

to be involved in antiviral immunity and one reason for expansion in peripheral blood is an 

indirect consequence of viral infection. It reflects the increased translocation of stimulatory 

bacterial products across the gut epithelium in non-human primate studies [7,55–59]. 

It has been demonstrated that Vδ2 T cells express high levels of HIV co-receptors CCR5b 

and integrin α4β7, which could contribute to their preferential depletion in HIV infection [60–

63]. Another possible mechanism of depletion is the inhibition of Vδ2 T cells by HIV-infected 

dendritic cells (DCs) [58]. Their abundance, but also activation remains below that of healthy 

controls even after successful implementation of ART and restoration of the CD4 T-cell 

compartment [64,65]. Due to the importance of Vδ2 T-cell clones for direct cytotoxicity 

against HIV-infected and otherwise diseased cells, this rarefication of Vδ2 T cells is 

unfavorable for people living with HIV, especially in their defense against opportunistic 

infections [66–69]. 

 
 
b CCR5: C-C chemokine receptor type 5 
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2.1.4 The Ectonucleotidases CD39 and CD73 

Immune responses are fine-tuned by a multitude of cell- and molecule-based mechanisms, 

one of them being the purinergic pathway. Adenosine triphosphate (ATP) can bind to 

purinergic receptors on the cell surface, increasing influx of Calcium ions and enhancing 

cellular activation. The dephosphorylated metabolite Adenosine dampens the response of 

T effector cells by binding to class P1 purinergic receptors (members of the G protein-

coupled receptor family) or ATP-gated ion channels [70]. Mutations in the purine system 

could cause severe primary immunodeficiency diseases [71–73]. 

The ectonucleotidases CD39 and CD73, members of the Adenosine pathway that are 

expressed in several lymphocyte subpopulations, convert extracellular pro-inflammatory 

ATP and Adenosine diphosphate (ADP) to anti-inflammatory Adenosine (ADO) [74–76]. 

In healthy individuals, the level of extracellular ADO is low but can increase 100-1000-fold 

in situations of severe inflammation and tissue injury [63]. ADO strengthens epithelial barrier 

functions and inhibits leukocyte extravasation as well as the production of cytokines and T-

cell proliferation [77–83]. Moreover, ADO can induce IL-10c production [84–87]. 

Over the last decade, multiple roles of CD39 and CD73 in the regulation of inflammation 

have been revealed [72,88–94]. CD39 and CD73 are players of murine regulatory T cells 

and mediate immune suppression [74,75]. Importantly, both CD39 and CD73 can work in 

cis (interaction on the same cell), trans (interaction with enzymes expressed on different 

cells), and as soluble effectors [76,88]. 

2.1.5 CD39+ and CD73+ γδ T Cells Are Associated With Immune 
Suppression 

Conventional regulatory T cells (Tregs) can control exaggerated or inappropriate immune 

activation via CTLA-4d, IL-10, and TGF-β [95,96]. Tregs proliferate in response to the 

cytokine stimulus of IL-10 and TGF-βe and they downregulate excessive immune responses 

via ADO [97]. However, this effect does not seem to be sufficient to compensate for the 

overarching immune activation in HIV infection [98]. Human Tregs also express CD39, but 

only a small amount expresses CD73 [71,72]. 

 
 
c IL: interleukin 
d CTLA-4: cytotoxic T-lymphocyte-associated Protein 4 
e TGF: transforming growth factor 
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Interestingly, γδ T cells can also act in an immunosuppressive manner, infiltrate tumors, 

and suppress dendritic and T cells [46,99,100]. Liang et al. demonstrated that the regulation 

of γδ T cells in autoimmunity is associated with ADO [101]. Otsuka et al. have reported a 

potential regulatory role of CD39+ γδ T cells via IL-10 function in mice [102]. In contrast, Hu 

et al. described CD39+ γδ T cells suppressing T cells through an Adenosine-mediated 

pathway but independent of IL-10 and TGF-β [100]. Libera et al. have also recently identified 

CD39+ γδ T cells with an immunosuppressive phenotype in the gut [94]. 

Higher CD73 levels have been associated with immunosuppression and poor prognosis in 

e.g. breast or ovarian cancer [89,103–106]. Suppressive activities of CD73+ γδ T cells via 

Adenosine were shown in mice [101]. 

2.1.6 CD39+ and CD73+ γδ T Cells in HIV Infection 

In HIV-infected untreated individuals, an over-expression of CD39 on lymphocytes and an 

increased hydrolysis of ATP by lymphocytes have been observed [107,108]. Schulze zur 

Wiesch et al. and others have previously shown that the relative frequency of CD39 

expression of FoxP3+ Tregsf correlates with the progression of HIV infection and that CD39+ 

Tregs themselves are targets of the HI virus and absolute numbers were reduced [92,109]. 

Inversely, a variant of the CD39 gene associated with low CD39 expression on lymphocytes 

and a slower progression to AIDS has been described [107,108,110]. 

In HIV infection, the plasma concentration of IL-10 increases over time and limits specific 

T-cell responses [111]. IL-10 secretion is associated with the expression of CD39 

[90,102,112,113]. 

Dierks et al. demonstrated that elevated levels of CD39+ NK cells in viremic patients, which 

secrete IL-10, correlated directly with viral load and activation, and negatively correlated 

with CD4+ T-cell count [112]. In viremic people living with HIV, the frequencies of CD73+ B 

Cells, CD73+ Tregs, and CD73+ CD8+ T cells are decreased and correlate with progressive 

HIV disease [72,90,112,114]. 

2.1.7 Elite Controllers and Long-Term Non-Progressors 

HIV elite controllers (EC) were defined as people living with HIV capable of spontaneously 

controlling HIV infection (maintaining stable CD4+ T-cell counts and viral loads below the 

 
 
f FoxP3: forkhead box protein P3 
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level of detection) without the need for antiretroviral medication [115–117]. Interestingly, 

elite controllers exhibit higher frequencies of Vδ2 T cells than untreated or ART-treated HIV 

progressors, begging the question if Vδ2 T cells are involved in immune control [118,119]. 

Furthermore, Tregs of elite controllers showed the lowest levels of CD39 [92,109]. 

Bhatnagar et al. suggested a suppressive activity of γδ T cells, especially of Vδ2 T cells via 

TGF-β, which is dysregulated in progressed HIV infection [42]. Other authors also report an 

immunosuppressive Vδ2 T-cell phenotype [120,121]. Little is known yet about the 

combination of CD39 and γδ T cells in EC. 

The definition criteria for HIV long-term non-progressors (LTNP) are to remain 

asymptomatic and present CD4+ T-cell counts in peripheral blood higher than 500 cells/μL 

despite low to intermediate plasma viremia [122–124]. Little is known about the behavior of 

γδ T cells or CD39 and CD73 in LTNP patients. 

To sum up, the ectonucleotidases CD39 and CD73 have been described as important 

immunoregulatory molecules on Tregs and T effector cells [72,76,88–92,94,100,102–

104,109,112,125]. In mice and human colorectal cancer, CD39+ γδ T cells with a regulatory 

phenotype have already been described [100,102,126]. However, the role of CD39+ and 

CD73+ expression on γδ T cells in healthy humans and the context of viral infections like 

HIV infection is still largely unknown. 
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2.2 Working Hypothesis 

This dissertation hypothesizes that CD39+ γδ T cells and notably CD39+ Vδ2 T cells might 

play a role in the immune regulation of HIV through adenine nucleotide signaling.  

In the present thesis, a comprehensive assessment of the expression of CD39 and CD73 

on different γδ T-cell subsets including Vδ1 and Vδ2 T cells concerning phenotype and 

function within a large cohort of uninfected individuals and people living with HIV with 

different disease statuses including HIV elite controllers and long-term non-progressors was 

performed.  

Using sensitive surface antigen and intracellular cytokine staining and subsequent analysis 

via fluorescence-activated cell sorting (FACS), the following aims were addressed: 

• Assessment of the CD39 and CD73 expression pattern on peripheral γδ T cells and 

their subsets in uninfected and HIV-infected individuals with different disease 

courses 

• Comparison of the expression levels of the ectonucleotidases concerning 

differentiation, activation, and exhaustion status of peripheral γδ T cells 

• Evaluation of the immunomodulatory properties of γδ T cells, specifically their 

cytokine profiles in relation to the expression of CD73 and CD39 
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2.3 Methods 

2.3.1 Study Subjects and Samples 

Peripheral blood mononuclear cell samples (PBMC) of people living with HIV and 

uninfected, hereafter referred to as healthy, volunteers were collected and cryopreserved. 

For better readability, the terms patient, HIV-positive, and HIV-infected are also used in this 

dissertation. PBMCs of HIV patients with different disease statuses were included: 

treatment-naive HIV patients (viremic), HIV antiretroviral-treated patients (ART-treated), 

HIV elite controllers (EC), and HIV long-term non-progressors (LTNP). 

Written informed consent was obtained from all people who were recruited for this study 

and co-infections like hepatitis B and C were ruled out serologically. 

PBMCs from patients suffering from acute and chronic hepatitis B or C infections were also 

stained using the flow cytometry surface panel to compare them with people living with HIV. 

2.3.2 Immune Phenotypic Analysis for Surface Markers 

For the immune phenotypic analysis of surface markers PBMCs of 18 healthy individuals, 

25 ART-treated, 25 viremic, 6 EC, and 10 LTNP were isolated and stained with anti-human 

monoclonal fluorochrome-conjugated antibodies. The flow cytometry panel developed for 

phenotypic characterization contained the markers CD19, CD14, and viability stain to sort 

out dead cells, monocytes, and B-cells; CD3, CD4, CD8, Panγδ, and Vδ2 to distinguish 

between the different types of γδ T cells; CD45RA, CD27, and CD28 for differentiation 

status; HLA-DRg and CD38 for activation status; PD-1h and TIGITi for exhaustion status as 

well as CD39 and CD73. 

2.3.3 Immune Phenotypic Analysis for Surface and Intracellular Markers 
After In Vitro Stimulation of PBMCs 

For the analysis of released cytokines, intracellular staining with anti-human monoclonal 

fluorochrome-conjugated antibodies was performed. After in vitro-stimulating PBMCs with 

phorbol 12-myristate 13-acetate (PMA)/Ionomycin for 18 hours, the surface staining was 

performed with CD4, CD8, CD28, Panγδ, Vδ2, CD39, CD19, CD14, CD73, CD3, and 

viability stain. Surface characterization data of 8 healthy volunteers, 7 ART-treated, 11 

viremic, and 2 EC could be added to previous phenotypic analyses. Moreover, PBMCs were 

permeabilized and stained for assessing the intracellular production of pro- and anti-

 
 
g HLA: human leukocyte antigen 
h PD-1: programmed cell death protein 1 
i TIGIT: T cell immunoreceptor with Ig and ITIM domains 
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inflammatory cytokines (IL-2, TGF-ß, TNF-αj, Granzyme B, IL-10, and IFN-γk). The 

intracellular flow cytometry panel contained samples of 10 healthy controls, 10 ART-treated, 

10 viremic, and 3 EC. 

2.3.4 Kinetic of CD39 Expression After In Vitro Stimulation of PBMCs 

For kinetic studies of CD39 surface expression, cells were stimulated with PMA/Ionomycin, 

anti-CD3/CD28 dynabeads, rhIL-2l, or combinations thereof. They were cultured for up to 

six days before staining with the previously described surface panel and FACS analysis. 

2.3.5 Data Analysis and Statistics 

All samples were run on a 16-color flow cytometer and cytometric data were analyzed using 

FlowJo version 10.7.1 (BD Biosciences).  

Statistical analysis was performed using GraphPad Prism version 7.04 (GraphPad 

Software, Inc.). Multiple comparisons were performed using Kruskal-Wallis and Dunn's 

post-test. For two-way comparisons, the Mann-Whitney test and for correlations the 

Pearson correlation and the Spearman Rank correlation were used. 

For further multidimensional comparisons of FACS data, Simplified Presentation of 

Incredibly Complex Evaluations (SPICE; version 6, written by J. Nozzi and Dr. M. Roederer) 

analyses were performed. 

  

 
 
j TNF: tumor necrosis factor 
k IFN: interferon 
l Rh: recombinant 
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2.4 Results 

2.4.1 The Frequency of CD39+ γδ T Cells Increases While the Frequency of 
CD73+ γδ T Cells Is Decreased in People Living With HIV 

First, the results of previously published data were confirmed, as the percentage of total γδ 

T cells was stable during HIV infection regardless of the stage of HIV infection while the 

ratio between the subsets Vδ1 and Vδ2 T cells was inverted [7,17,25,54]. 

In long-term non-progressors, the proportions of Vδ1 and Vδ2 T cells were similar. In elite 

controllers, an inversion of the Vδ1/Vδ2 T-cell ratio was also observed which, however, was 

not statistically significant. 

Subsequently, the expression pattern of the ectonucleotidases CD39 and CD73 of γδ T 

cells in different stages of HIV disease was determined. The highest frequency of CD39+ γδ 

T cells was detected in samples from viremic HIV-infected patients. In viremic individuals 

and individuals on ART, the CD39+ γδ T-cell frequency was significantly increased 

compared to healthy individuals (viremic: 11,3% vs. 1,4%, p<0,0001; ART: 3,2% vs. 1,4%, 

p=0,0146). In samples from EC, the frequency of CD39+ γδ T cells was similar compared 

to samples from healthy controls (2,7%), while it was slightly elevated in LTNP compared 

to healthy controls (5,1%). The differences between CD39+ γδ T cells in EC/LTNP and 

healthy controls did not show statistical significance. 

Inversely, the frequency of CD73+ γδ T cells was markedly decreased in PBMCs from HIV-

infected individuals regardless of their infection status compared to healthy individuals. The 

lowest expression level was observed in viremic individuals, followed by ART-treated and 

LTNP (healthy: 20,7% vs. viremic: 3,7%, p<0,0001; ART: 5,8%, p<0,0001; LTNP: 6,8%, 

p=0,0016). The difference between healthy controls and EC was the smallest and non-

significant (9,4%).  

Next, the expression behavior of CD39 and CD73 on γδ T cells as a combination was 

observed. The frequency of double positive CD39+CD73+ γδ T cells was extremely low in 

PBMCs from all study groups and did not differ significantly between uninfected and people 

living with HIV (healthy: 0,25%; ART: 0,11%; viremic: 0,15%; EC: 0,11%; LTNP: 0,14%). 

Because hardly any double positive γδ T cells were detected in all study groups, the number 

of CD39+CD73- γδ T cells was similar to the number of CD39+ γδ T cells in healthy 

individuals and all subgroups of HIV patients. Also, the frequency of CD73+CD39- γδ T cells 

did not differ from the frequency of CD73+ γδ T cells.  
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To compare the findings with other viral infections, the same analyses were conducted with 

PBMCs from patients with acute and chronic hepatitis B (HBV) and chronic hepatitis C 

(HCV). No increase of CD39+ γδ T cells was found in patients with acute HBV, chronic HBV, 

or chronic HCV compared to healthy individuals. In contrast, a decreased frequency of 

CD73+ γδ T cells could be observed compared to healthy controls (7,8% vs. 23,9%) in acute 

HBV, PBMCs of chronically infected HBV, and HCV patients showed the tendency of 

decreased CD73 levels. Differences were not significant. 

2.4.2 CD39 Expression on γδ T Cells From People Living With HIV 
Correlates With Viral Load, CD4+ T-Cell Counts, and Immune 
Activation 

The expression results for CD39 and CD73 on γδ T cells in PBMCs from people living with 

HIV compared to uninfected individuals were subsequently correlated, with standard clinical 

parameters defining the HIV disease course and immune activation indicated by the co-

expression of HLA-DR and CD38 on CD8+ and total γδ T cells. 

A positive correlation between the frequency of CD39+ γδ T cells and plasma viral load 

(Spearman r=0,43, p<0,0001) and a negative correlation between CD4+ T-cell counts and 

the frequency of CD39+ γδ T cells (Spearman r=-0,44, p<0,0001) was observed. 

Furthermore, the frequency of CD39+ γδ T cells correlated with the proportion of activated 

CD8+ T cells (Spearman r=0,26, p=0,0375) and activated γδ T cells (Spearman r=0,42, 

p=0,0004). Regardless of disease status, a significantly higher frequency of activated cells 

was measured among CD39+ compared to CD39- γδ T cells. 

The same analyses for CD73+ γδ T cells revealed opposite findings: the frequency of CD73+ 

γδ T cells positively correlated with CD4+ T-cell counts (Spearman r=0,35, p=0,0013) and 

negatively with viral load (Spearman r=-0,32, p=0,0033). No correlation between the 

frequency of CD73+ γδ T cells and activated γδ T cells or activated CD8+ T cells in HIV-

infected patients could be detected. 

In addition, the frequency of CD39+ γδ T cells increased continuously for 6 days after in vitro 

stimulation with CD3/CD28 or PMA/Ionomycin. Taken together, the frequency of activated 

CD8+ and γδ T cells correlated with the frequency of CD39+ γδ T cells in HIV infection, and 

CD39+ γδ T cells expanded in response to in vitro stimulation. 
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2.4.3 Vδ2 T Cells are Less Exhausted and Less Differentiated Than Their 
Vδ1 T-Cell Counterparts but Do Not Differ in Their Activation Status 
During HIV Infection 

Next, the expression pattern of CD39+ Vδ1 versus CD39+ Vδ2 T cells in uninfected 

individuals and HIV patients was examined. Vδ1 and Vδ2 T cells differ in their phenotype 

and functionality and there are indications that CD39+ Vδ2 T cells might have a stronger 

immunomodulatory function [42,52,55–57,60–63,66–69,92,109,120,121]. 

Similar to total γδ T cells, there was a marked increase of CD39+ Vδ1 and Vδ2 T cells in 

PBMCs from viremic patients compared to healthy controls. 

The expression of CD39 on the Vδ2 T-cell subset was significantly lower than on the Vδ1 

T-cell subset in all study groups except EC. The largest differences in CD39 expression 

between Vδ1 and Vδ2 T cells were observed in healthy controls, viremic individuals, and 

LTNP (healthy: 3,7% vs. 1,0%, p=0,0001; viremic: 14,8% vs. 6,98,3%, p<0,0001; LTNP: 

7,2% vs. 3,0%, p=0,0039). In samples from patients on ART and EC, the expression levels 

of CD39+ γδ T cells were similar in Vδ1 and Vδ2 T-cell subsets (ART: 3,7% vs. 3,0%, 

p=0,0266; EC: 3,5% vs. 2,6%, p=0,3125). 

CD39 expression on total γδ T cells correlated with immune activation in HIV patients. Total 

Vδ1 T cells were significantly more activated than Vδ2 T cells, regardless of disease status. 

Thus the frequency of activated (HLA-DR+CD38+) CD39+ Vδ1 and CD39+ Vδ2 T-cell 

subsets were compared and similar frequencies in all studied groups except LTNP were 

noticed, where the frequency of activated CD39+ Vδ2 T cells was significantly lower than 

the frequency of activated CD39+ Vδ1 T cells (CD39+ Vδ1 vs.CD39+ Vδ2 T cells: healthy: 

11,2% vs. 7,0%; ART: 9,8% vs. 11,0%; viremic: 12,7% vs. 12,8%; EC: 24,8% vs. 16,4%; 

LTNP: 24,8% vs.6,0%, p=0,0020).  

Then the differentiation and exhaustion status of Vδ1 and Vδ2 T cells in the context of CD39 

expression were assessed, using co-expression patterns of the exhaustion markers PD-1 

and TIGIT as an indicator of exhaustion and the absence of CD27 and CD28 as an indicator 

for a late stage of differentiation [127–132]. 

As observed for activation, a significantly higher frequency of total Vδ1 compared to Vδ2 T 

cells was exhausted (PD-1+TIGIT+) in all study groups. 

Significantly lower levels of exhausted (PD-1+TIGIT+) γδ T cells were found among CD39+ 

Vδ2 T cells compared to CD39+ Vδ1 T cells regardless of disease status (healthy: 21,15% 
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vs 2,56%, p<0,0001; ART: 14,90% vs. 8,49%, p<0,0001; viremic: 25,76% vs. 17,22%, 

p=0,0018; EC: 16,5% vs. 2,67%, p=0,0312; LTNP: 32,21% vs. 5,87, p=0,0020).  

A higher frequency of cells with late differentiation status (CD27-CD28-) was found among 

CD39+ Vδ1 compared to CD39+ Vδ2 T cells in healthy individuals and HIV patients 

regardless of the disease status (healthy: 44,02% vs. 20,4%, p=0,0032; ART: 73,71% vs. 

27,44%, p<0,0001; viremic: 68,08% vs. 51,86%, p=0,0018; EC: 45,97% vs. 29,24%, 

p=0,3125; LTNP: 61,56% vs. 34,42%, p=0,0645). 

In summary, markers of T-cell exhaustion were more frequently expressed among CD39+ 

Vδ1 than CD39+ Vδ2 T cells regardless of disease status, and late differentiation of cells 

was more often detected in CD39+ Vδ1 than CD39+ Vδ2 T cells of healthy individuals and 

HIV progressors. 

2.4.4 Expression of CD39 and CD73 Marks γδ T Cells That Produce IL-10 
at High Levels After In Vitro Stimulation 

After that, the functional profile of CD39+ γδ T cells was characterized and their potential 

immunomodulatory effector functions were assessed by performing intracellular cytokine 

staining of γδ T cells for IL-10 after unspecific stimulation of PBMCs with PMA and 

Ionomycin. 

The highest frequency of IL-10+ γδ T cells was found in viremic HIV-infected patients, which 

also expressed the highest amount of CD39 on γδ T cells, compared to healthy controls, 

ART-treated, and EC. Comparing the frequency of IL-10-producing CD39+ and CD39- γδ T 

cells within each study group, the samples from healthy donors, viremic HIV-infected 

individuals and patients on ART showed a significantly higher frequency of IL-10 producing 

γδ T cells among CD39+ than CD39- cells (healthy: 14,8% vs. 0,2%, p=0,0195; ART: 7,4% 

vs. 0,2%, p=0,0156; viremic: 10,4% vs. 2,3%, p=0,0171). In PBMCs from EC, similar 

frequencies of IL-10 producing γδ T cells between CD39+ and CD39- cells were detected 

(1,7% vs. 1,7%, p=0,5556). 

Similarly, in all groups but EC, the frequency of IL-10+ cells was significantly higher among 

CD73+ than CD73- γδ T cells upon in vitro stimulation (healthy: 1,5% vs. 0,3%, p=0,0273; 

ART: 1,4% vs. 0,2%, p=0,0273; viremic: 13,2% vs. 2,2%, p=0,0034), although the frequency 

of IL-10+ cells was overall lower than in CD39+ γδ T cells. 

Next, the capacity of the small population of CD39+CD73+ versus CD39-CD73- γδ T cells to 

produce IL-10 was assessed and it was found that CD39+CD73+ γδ T cells produced more 

IL-10 than CD39-CD73- γδ T cells regardless of the disease status. In all groups but EC, the 
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differences reached statistical significance (healthy: 22,6% vs. 0,2%, p=0,0078; ART: 

22,9% vs. 0,2%, p=0,0156; viremic: 35,2% vs. 2,2%, p=0,0005; EC: 32,8% vs. 1,7%, 

p=0,2500). 

Due to the small sample size and cell number, the differences between the IL-10 production 

of CD39+ Vδ1 versus CD39+ Vδ2 T cells were examined as pooled data (combined data 

from all study groups). A higher frequency of IL-10+ CD39+ Vδ2 T cells compared to the 

frequency of pooled IL-10+ CD39+ Vδ1 T cells was observed (16,2% vs. 3,7%, p=0,01). 

Comparing the study groups, the frequency of IL-10+ CD39+ Vδ2 T cells was highest in 

samples from healthy donors and decreased in samples from HIV-infected individuals 

(31,3% vs. ART: 10,5%; viremic: 15,0%; EC: 4,2%), however, observed differences were 

not statistically significant. 

2.4.5 Cytokine Profiles of CD39+ Versus CD39- Vδ2 T Cells 

Next, the cytokine profiles for IL-2, IFN-γ, TNF-α, TGF-β, and Granzyme-B were assessed 

after in vitro stimulation and a multidimensional analysis of the cytokines secreted by CD39+ 

Vδ2 T cells versus CD39- Vδ2 T cells was conducted via SPICE analysis. 

There are several CD39+ Vδ2 T-cell subpopulations in samples from healthy individuals that 

co-expressed the anti-inflammatory cytokines IL-10 and TGF-ß, which are found to a lesser 

extent in the corresponding CD39- Vδ2 T cells. These subpopulations are greatly reduced 

in samples from HIV-infected individuals across all disease stages.  

To summarize, the polyfunctionality of CD39+ versus CD39- Vδ2 T cells, i. e. the number of 

different cytokines that can be produced by the respective subset, was plotted. 

In samples from healthy controls, all the CD39+ Vδ2 T-cell subsets expressed at least two 

cytokines, with approximately three-quarters of them expressing three cytokines. In 

contrast, most cells in the CD39- Vδ2 T subset did not produce any of the analyzed 

cytokines, and only approximately 15% produced three different cytokines.  

In samples from patients with HIV, the differences between CD39+ and CD39- Vδ2 T cells 

were less pronounced. Most of the Vδ2 T cells from viremic patients produced none of the 

analyzed cytokines, and about one-third produced three or fewer of the analyzed cytokines, 

regardless of CD39 expression. 

CD39- Vδ2 T cells of patients on ART had a similar pattern to CD39- Vδ2 T cells from viremic 

individuals. The fraction of the CD39+ Vδ2 T cells producing three different cytokines of 
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patients on ART was larger than the fraction of the CD39+ Vδ2 T cells from viremic patients 

and the CD39- Vδ2 T-cell fractions of both study groups. 

In EC, the majority of CD39+ Vδ2 T cells expressed one cytokine, followed by one-third that 

produced three different cytokines and a smaller fraction that produced two different ones. 

CD39- Vδ2 T cells from EC mostly did not produce any of the analyzed cytokines.  

In summary, Vδ2 T cells from viremic HIV patients lost their polyfunctionality partially and 

produced fewer anti-inflammatory cytokines. This development seems to be more 

pronounced in CD39- Vδ2 than in CD39+ Vδ2 T cells. 

2.4.6 Moderate Changes in the Composition, but Divergent Cytokine 
Repertoire of γδ T Cells From HIV Elite Controllers Compared to 
Healthy Controls 

Finally, the differences in phenotype and functionality of γδ T cells were evaluated by 

comparing samples from HIV elite controllers and those of viremic and ART-treated 

patients. 

Initially, the frequency of CD39+ γδ T cells was not increased compared with samples from 

healthy controls, and there were less pronounced changes in the Vδ1/Vδ2 T-cell ratio. Also, 

the frequency of CD73+ γδ T cells was not significantly decreased compared to healthy 

controls. There were no differences in the expression of CD39 and CD73 between Vδ1 and 

Vδ2 T cells. EC showed only low frequencies of IL-10 producing γδ T cells across all subsets 

except for CD39+CD73+ γδ T cells. In addition, CD39+ Vδ2 T cells lost polyfunctionality like 

the other HIV cohorts but appear to assume an intermediate position between samples of 

other HIV-infected and healthy individuals concerning the number of secreted cytokines. 
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2.5 Discussion 

γδ T cells are regarded as unconventional T cells associated with different effector functions 

such as recognizing various antigens and direct cytotoxic activity in viral infections [17–38]. 

Their subsets Vδ1 and Vδ2 T cells differ in their phenotype and functionality and behave 

differently in HIV infection [52,55–57,60–63,66–69,92]. The ectonucleotidases CD39 and 

CD73 are part of the purinergic pathway and have been described as important 

immunoregulatory molecules on Tregs and T effector cells [72,76,88–92,94,100,102–

104,109,112,125]. They are expressed in several lymphocyte populations and seem to be 

important for HIV pathogenesis [72,108,112,114,133]. 

Interestingly, the protective HIV-specific proliferative response of CD8+ T cells, restricted by 

human leukocyte antigen system (HLA) alleles B27 and B57, which are associated with 

delayed HIV disease progression, are not suppressible by Tregs [134–136]. This indicates 

that there must be other immunomodulatory cell groups or molecules to control HIV 

infection. 

γδ T cells are associated with immunosuppression and infiltrating tumors for creating an 

anti-inflammatory environment and suppressing cell proliferation [46,99–101]. CD39 has 

recently been defined as a potential marker for immunomodulatory cells such as Treg and 

NK cells, and CD39+ Vδ2 T cells may have a particular immunomodulatory role in HIV 

infection [42,91,94,100,102,109,112,119,125]. CD39+ Tregs have been described to inhibit 

IL-2 production via the CD39/ADO pathway [137,138]. Otsuka and Hu described a possible 

regulatory role of CD39+ γδ T in mice and human cancer cells, whereas the mediator 

(Adenosine pathway, IL-10, or TGF-β) remains unclear [100,102].  

It is hypothesized that CD39+ and CD73+ γδ T cells might play a role in immunomodulatory 

functions in HIV infection that are mediated by the ATP-Adenosine signaling pathway. To 

test this hypothesis, a detailed phenotypical and functional characterization of CD39 and 

CD73 expression on different γδ T-cell populations from people living with HIV at different 

disease stages in comparison with healthy controls was assessed. 

A significant increase in the frequency of CD39+ γδ T cells in samples of viremic HIV patients 

compared to healthy controls was observed, positively correlating with disease progression 

(higher viral load, lower CD4+ T-cell count) and immune activation (HLA-DR+CD38+ 

expression of γδ T cells as well as of CD8+ T cells). CD39 expression on γδ T cells of ART-

treated patients returned to levels comparable with those of healthy individuals. These 

results are consistent with those of other groups that have analyzed CD39 expression on 

other cell populations in HIV infection [92,107–109,112]. 
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Inversely, the frequency of CD73+ γδ T cells decreases in samples of viremic patients 

compared to healthy controls and correlates negatively with disease progression. As with 

CD39, Tóth et al. and others have recently noted comparable dynamics in other cell 

populations in HIV infection that also correlate with progressive HIV disease 

[72,90,112,114]. Higher CD73 levels have been associated with immunosuppression and 

poor prognosis, for instance in breast or ovarian cancer [89,103–106]. In contrast, low levels 

of CD73 are associated with lower T-cell activation and immunosuppression mediated by 

Adenosine and/or TGF-β [71–73,101,114,139,140]. 

A very small population of γδ T cells co-expressing CD39 and CD73 that produce more IL-

10 than other examined subsets after in vitro stimulation in healthy individuals and HIV 

patients was observed. A potential interpretation is that this subpopulation of CD39+CD73+ 

γδ T cells, which secretes an anti-inflammatory cytokine, has immunomodulatory potential 

but is unable to inhibit HIV-specific immune response, may be due to small frequency. The 

frequency of CD39+CD73+ γδ T stayed relatively unaffected by HIV infection. Bastid et al. 

demonstrated inhibition of other T-cell subsets by CD39+CD73+ cancer cells, which could 

be abrogated by CD39 inhibitors, improving proliferation and cytotoxicity [141]. 

CD39 and CD73 transform extracellular pro-inflammatory ATP and ADP to anti-

inflammatory ADO, which is able to induce IL-10 production; IL-10 secretion is also directly 

associated with CD39 expression [74–76,84–87,102,112,113,142]. It was found that the 

ability of γδ T cells to produce IL-10 is higher among the CD39+ than the CD39- or the CD73+ 

subset. The highest frequency of IL-10-producing cells was found among viremic γδ T cells 

and CD39+CD73+ γδ T cells. In addition, the proportion of IL-10-producing cells tended to 

be higher among CD39+ Vδ2 compared with CD39+ Vδ1 T cells.  

In this dissertation, only HIV elite controllers showed an expression of CD73 and CD39 on 

γδ T cells comparable to healthy controls, while the expression pattern of CD39 and CD73 

was altered in viremic patients and not fully normalized in individuals on ART. Chaudhry et 

al. reported that the T-cell receptor (TCR) repertoire also does not appear to fully recover 

under ART [143]. Carrière et al. also found high CD73 frequencies in blood samples of elite 

controllers but on CD8+ T cells [144]. 

The CD39 gene polymorphism matches the low CD39 frequency on γδ T cells of elite 

controllers: a gene variant with low CD39 expression has been described, which is 

associated with a slower progression to AIDS indicating that CD39 plays a role in HIV 

pathogenesis [116,117,145]. 
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In the polyfunctionality of CD39+ γδ T cells, elite controllers seem to occupy an intermediate 

position between healthy and HIV-infected individuals which needs further investigation. 

In chronic HIV infection, IL-10 and TGF-β concentrations in the blood plasma were reported 

to increase over time and to correlate with disease progression [111,146,147]. In addition, 

the frequency of CD39+ cells secreting IL-10 correlates with viral load and immune activation 

[102,111–113,142,146]. The data from elite controllers, who maintain low levels of CD39 

and produce considerably less IL-10 than viremic HIV-infected patients, fit these 

observations. IL-10 appears to either play a pathogenetic role in HIV infection or is 

upregulated reactively. Nevertheless, it could not be confirmed that Vδ2 T cells will not be 

depleted at EC as described by Riedel et al. [118]. 

In general, the role of γδ T cells in HIV, especially Vδ2 T cells, remains not entirely clear. 

Vδ2 T cells have been associated with a protective role in HIV and peripheral blood of elite 

controllers tend to show higher frequencies of Vδ2 T cells than untreated patients or those 

on ART [69,118,119,148]. Interestingly, Vδ2 T cells have been associated with the 

formation of part of the viral reservoir, notably because of their infectivity via the high surface 

expression of CCR5 and α4β7 [61–63,92,149]. Follow-up experiments should investigate 

CD39+ Vδ2 T in relation to the HIV reservoir. 

A significantly lower expression of CD39 on the Vδ2 T-cell subset than on the Vδ1 T-cell 

subset in all study groups except for elite controllers was observed. The activation level of 

CD39+ Vδ1 and CD39+ Vδ2 T cells was similar while there were significantly more 

exhausted (PD-1+TIGIT+) and terminally differentiated (CD27-CD28-) CD39+ Vδ1 compared 

to CD39+ Vδ2 T cells. A loss of polyfunctionality, defined as cells capable of producing three 

or more cytokines after in vitro stimulation, within the CD39+ Vδ2 T-cell population of viremic 

HIV patients was observed that was not fully restored under ART. These results are in line 

with observations made by Casetti et al., who measured a reduction of polyfunctionality 

(cytokine/chemokine production and cytotoxicity) in Vδ2 T cells from ART-treated patients 

[150,151]. Others also showed that the functionality as well as the number of Vδ2 T does 

not recover after a prolonged successful ART and restoration of the CD4+ T-cell 

compartment [64,65]. In contrast, some studies indicate a partial functional and cell level 

recovery with using ART for a sufficiently long time [64,152,153]. 

The data for this dissertation in combination with other results lead to the hypothesis that 

better virus control could be achieved by restoration of the inverse ratios of Vδ1/Vδ2 T cells 

and CD39/CD73. This is supported by the similarity to the ratio reversal of CD4/CD8 and 
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by fewer changes in CD39 expression and Vδ2 T-cell counts in individuals capable of 

controlling the virus without medication [116–118,145]. 

Fittingly, Bhatnagar et al. show a transformation of a suppressive phenotype in primary HIV 

infection of Vδ2 T cells into a pro-inflammatory phenotype with participation in the 

sustenance of immune activation in chronic HIV infection [42]. Others also report a shift of 

viremic Vδ2 T cells to an activated and terminally differentiated phenotype with damage to 

the TCR-chain repertoire [118,154–156]. Pauza et al. hypothesize that HIV-mediated 

depletion of Vδ2 T cells is part of the mechanism for HIV evasion of host defenses and 

establishment of chronic, persistent infection with progressing disease [66]. 

The goal of targeting γδ T cells for immunotherapy is the prevention or reversal of damage 

to the Vδ2 T-cell subset and regain antiviral functions [66]. Garrido et al. demonstrated Vδ2 

T cells from ART-suppressed HIV-infected individuals are capable of targeting and killing 

reactivated autologous HIV-infected CD4+ T cells in vitro [16]. The group also showed a 

correlation between γδ T-cell cytotoxic capacity with lower recovery of replication-

competent HIV cultures of resting CD4+ T cells from ART-suppressed HIV-seropositive 

individuals indicating the capacity of Vδ2 T cells to be used in immunotherapeutic 

approaches towards an HIV cure [157]. Clinical studies demonstrate the potential of Vδ2 T 

cells for cancer immunity by autologously or allogeneically – for treating HIV with CCR5 

delta32 mutation - targeting diverse cancer cells after stimulation with phosphoantigens, 

thereby partially slowing progression or inducing remission [15,33,158–174]. A lot of 

cytokines and combinations thereof as well as Vitamin C have been tried out for expansion 

of Vδ2 T cells [166]. The amino bisphosphonate zoledronate was shown to be able to 

increase Vδ2 T-cell numbers and function both ex vivo and directly in HIV-positive patients 

[175–179]. Recent trials have not shown sufficient success with cell transfer or zoledronate 

treatment in humanized mouse models and HIV patients [58,152,178–182]. Stimulation and 

expansion of Vδ2 T cells was also successfully achieved by the monoclonal antibody BTN3, 

which results from the involvement of transmembrane butyrophilin (BTN) in intracellular 

phosphoantigen signaling [166]. 

In recent years, checkpoint blockades of human cells have become increasingly important 

in both research and clinical applications. PD-1 and PD-L1 inhibitors have been in clinical 

use for several years and have shown unprecedented effects on cancer patient survival, 

even in the metastatic setting [183,184]. Pre-clinical in vitro studies have shown improved 

T-cell function and better recognition of the latent reservoir in simian immunodeficiency virus 

(SIV) and HIV infection during PD-1 inhibitor therapy [185–190]. 
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The blockade of IL-10 signaling at the time of therapeutic vaccine immunization improves 

the clearance of chronic viral infection and shows recovery of T-cell effector functions in in 

vitro experiments with HIV-infected cells [191–195]. 

Ectonucleotidases are also considered new checkpoint inhibitor targets, and an anti-CD73 

antibody is currently in pivotal clinical trials [76,196–199]. With the monoclonal antibody and 

protein kinase inhibitor Ceritinib, only one indirect CD39 inhibitor exists to date [200–202]. 

Immune checkpoint inhibitor blockade and blockade of Adenosine signaling could be an 

opportunity to revert the function of virus-specific effector T cells. Li et al. demonstrated a 

reversion of CD8+ T-cell exhaustion by concomitant blockade of PD-1 and Adenosine 

pathways in HIV infection in vitro while PD-1 blockade alone showed only limited efficacy 

[203–205]. Schachter et al. showed impaired HIV infection of macrophages by inhibiting 

ecto-ATPase activities [206]. 

Interestingly, CD39+ T cells often also express PD-1 and other markers of cellular 

exhaustion [203,207,208]. The data of this dissertation and others demonstrate that CD39, 

PD-1, and IL-10 were increased on γδ T cells and other cell types in viremic HIV infection, 

which leads to the question why an adequate immunosuppressive environment is not 

established that can eliminate the HI virus [92,108,109,111,112,146,203,209,210]. It must 

be deciphered whether these increases are a reaction of insufficient immune control, or 

whether CD39, PD-1, and IL-10 have pro-inflammatory properties and a pathogenic role in 

HIV infection. Interestingly, the data reveal that neither IL-10 nor PD-1 nor CD39 increases 

strongly in EC, who can control the infection spontaneously. Brockman et al. suggest an 

immunosuppressive environment through IL-10 which impairs immunity and virus clearance 

in HIV infection and shows enhanced HIV-specific T-cell responses after IL-10 blockade in 

mice [111]. (IL-10+CD39+) γδ T cells could be reactivated by blockade of IL-10 or PD-1, 

CD39, or combinations thereof, and restored CD4+ T-cell function was previously achieved 

by immune checkpoint blockade of PD-1 and/or IL-10 in HIV-infected patients [93,195,211]. 

Some human cancer cell types create an immunosuppressive microenvironment to evade 

the immune system's defense and thereby protect themselves. In colorectal and breast 

cancer, CD39+ tumor-infiltrating cells are associated with poor prognosis [100,212]. CD39 

appears to play a role in tumor immune escape by being expressed on CD8+ T cells, γδ T 

cells, and Tregs, either via direct suppressive activity or indirectly as an exhaustion marker 

[100,140,202,212–215]. Li et al. described the use of a CD39 antibody in the humanized 

mouse model, which enhances intratumor T-cell effector function and overcomes anti-PD-

1 resistance via eATP-P2X7-inflammasome-IL18 axis [216]. 
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This brings out the question of whether the elevated frequencies of CD39+ γδ T cells in 

viremic patients also result in an inadequate immune response to HIV infection. Low CD39 

expression on γδ T cells from elite controllers and slower disease progression in individuals 

with genetically lower CD39 expression indicates this. In contrast, solid tumors with solid 

cell clusters do not compare well with peripheral blood, so an examination of the alterations 

in the number and function of CD39+ γδ T cells in lymphoid organs would be informative. 

Because the gut is one of the major sites of virus dissemination and formation of the viral 

reservoir, it will be worthwhile to explore the gut-associated lymphoid tissue (GALT) from 

primary and chronic HIV-infected individuals compared to healthy controls [217–219]. 

Libera et al. detected CD39+ γδ T cells with an immunosuppressive phenotype in the 

intestine [94]. 

Nevertheless, in human autoimmune diseases where the immune system shows 

pathological overactivity, CD39 expression on Tregs in peripheral blood appears to be lower 

than in healthy controls [220–222]. This is associated with reduced suppressive activity, and 

lower levels of IL-10 and ADO, which can be partially remedied with immunosuppressants 

[220–222]. In a mouse model of rheumatoid arthritis, the blockade of CD39 abrogated the 

antiarthritic effect of methotrexate (MTX) treatment [222]. Suitable for this, Libera et al. have 

previously demonstrated that the frequency of mucosa-derived CD39+ γδ T cells is 

decreased in patients with inflammatory bowel diseases compared to healthy controls [94]. 

However, this raises the question of whether virus clearance is reduced by the reversal of 

these conditions, as the virus creates an immunosuppressive environment, or whether this 

is due to the inadequate containment of the virus and the body counter-regulates or whether 

the increase in CD39 expression is merely reactive. Chevalier and Weiss suggest a similar 

theory for the ambivalent role of Tregs in HIV infection and name it ‘the split personality of 

Tregs in HIV infection’ [134]. The majority of γδ T cells show changes in the CD39/CD73 

expression ratio comparable to the changes observed in the effector cell compartment, most 

likely to a general immune activation in HIV, suggesting CD39 to be an activation and 

exhaustion marker [102,110,126,207,214,223,224]. Plus, a strong correlation between the 

frequency of CD39+ and CD73+ γδ T cells and immune activation as well as disease 

progression (viral load and CD4+ T-cell count) was determined. In support of this hypothesis, 

TCR engagement, IL-6, IL-2, and IL-27 can promote the expression of CD39 but also TGF-

β [225–227]. A proportional increase in CD39 expression on γδ T cells after ex vivo 

stimulation for several days was shown. 
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The behavior of CD39 expression on γδ T cells in other viral infectious diseases does not 

support the hypothesis of CD39 increase being solely due to immune activation and 

resulting exhaustion. No significant increase in CD39+ γδ T cells was measured in HCV or 

HBV compared with healthy controls. Similar to HIV infection, (chronically) HBV-infected 

individuals experience loss of peripheral Vδ2 T cells, proliferation of peripheral Vδ1 T cells, 

and strong immune activation [228,229]. The reasons for the specific expansion of CD39+ 

γδ T cells in HIV compared to other viral infections are unclear and must be unraveled. 

Elsaghir et al. combine both hypotheses while dividing CD39+CD4+ T cells into two 

populations, T-effector lymphocytes and T-regulatory lymphocytes [230]. 

This dissertation is the first study on the CD39 and CD73 expression pattern and 

functionality of γδ T cells in HIV patients and this work has some limitations. Firstly, the 

frequency of circulating γδ T cells expressing both CD39 and CD73 is particularly low as 

well as the subsets of the γδ T-cell population per se. Another limitation is the limited number 

of parameters that could be measured in a respective panel by flow cytometry analysis. In 

further studies, the expression of CD16, CD56, and NKG2Dm, which is expressed by the 

vast majority of Vδ2 T cells and can activate γδ T cells in an innate TCR-independent 

manner, should be included [33,231–233]. CD16 mediates antibody-dependent cell-

mediated cytotoxicity (ADCC) in the early phase of infection and chronic infection and is 

associated with slower disease progression [16,148,157]. It would merit investigating 

NKG2A on Vδ2 T cells, which is associated with inhibitory signals and highly cytotoxic 

potential [166,234–236]. In the context of cytotoxicity, it would be interesting to evaluate the 

expression pattern of CD244, DNAM-1n, and CD107a on γδ T cells and additionally 

CD94/NKG2C, NKp44o, NKp30, NKp4 on γδ1 T cells as well as the production of perforin 

[59]. 

In addition, attention should be paid to the transcription profile, if necessary by use of single-

cell transcriptional RNA expression analysis, of interest would be FoxP3, HIF-1p, and AhRq 

[237–241]. 

It will be interesting to further investigate this scarce population of CD39+ γδ T cells and 

their subpopulations, especially regarding their suppressive capacities. Additional research 

 
 
m NKG2D, NKG2A, NKG2C: natural killer cell receptors 
n DNAM-1: DNAX accessory molecule-1 
o NKp44, NKp30, NKp4: natural cytotoxicity receptors 
p HIF-1: hypoxia-inducible factor-1 
q AhR: aryl hydrocarbon receptor 
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should distinguish between acute and chronic viremic HIV infection, as immune activation 

may still be controlled in acute infection [98]. 

Further studies should include suppression assays with CD39+ γδ T cells, CD39+ Vδ2 T 

cells, or CD39+CD73+ γδ T cells to demonstrate the immunosuppressive potential, such as 

Figueiró et al. performed with human B cells [242]. 

Additional experiments could be blockading assays with CD39, CD73, IL-10, PD-1, 

Adenosine, or combinations thereof. For other cell types, a possible reinvigorated HIV-

specific immune response has already been demonstrated in vitro when one or more of 

these molecules are blocked [111,195,203,242]. 

A major problem, besides technical difficulties, in these assays will be cell quantity, since 

both γδ T cells and its subgroups are scarce in peripheral blood, especially when evaluating 

blood samples from HIV patients. Since live cell sorting and subsequent co-culture with 

activated T cells is difficult concerning low cell numbers, transcriptional analyses such as 

single-cell sequencing must be used to understand the capabilities of these and other γδ T-

cell populations. Alternatively, γδ T-cell subpopulations could be expanded in vitro before 

life-sorting, co-culture, and flow-based read-out, with the disadvantage that this expansion 

may alter the phenotype and the function of the γδ T cells. 

Another limitation of this work is the slightly different gender and age distribution between 

HIV-positive and HIV-negative people. The healthy controls were on average 15 years 

younger than the HIV-positive people (healthy: 29.1 years vs. HIV-infected individuals: 44.4 

years) and predominantly female (healthy: 63% female vs. HIV-infected individuals: 28% 

female), while the HIV-infected people, except the subgroup of elite controllers, were 

predominantly male. 

The results of the current dissertation show that the expression pattern of these 

ectoenzymes is associated with different functional states and can be used as a marker to 

identify activated and exhausted cells. Significant differences in the expression of CD39 and 

CD73 on total γδ T cells and Vδ1 and Vδ2 T cells between healthy and HIV-infected 

individuals were observed depending on clinical status. Overall, the CD39/CD73 expression 

ratio on γδ T cells is reversed in untreated HIV patients and is associated with immune 

activation and disease progression. Altered functionality and higher IL-10 production were 

found in viremic HIV patients. In addition, a small population of CD39+CD73+ γδ T cells that 

produce IL-10 at high frequency after in vitro stimulation was defined. 
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An immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic 

HIV infection potentially mediated by IL-10 secretion is hypothesized. Similar to the 

deleterious role of suppressive cells in the microenvironment of tumors, the frequency of 

CD39+ γδ T cells and inversely CD73+ γδ T cells was correlated with HIV disease 

progression in this dissertation. This is further supported by the findings in elite controllers, 

who maintain stable frequencies of (IL-10-producing) CD39+ and CD73+ γδ T cells 

compared to healthy controls. Also, double-positive CD39+CD73+ produced significantly 

more IL-10 than γδ T cells expressing only one ectonucleotidase. Future studies will have 

to determine the role of Adenosine metabolism for γδ T-cell function and elucidate the 

effects of alterations of CD39 and CD73 expression on γδ T cells in HIV in more detail. 

Currently, there is neither a vaccination nor a causal therapy to cure HIV infection. In some 

cases, it has been possible to eliminate the HI virus with an allogeneic hematopoietic stem 

cell transplant with CCR5 deletion. Based on these observations, other groups are pursuing 

similar strategies for curing HIV utilizing gene editing [243–248]. The ‘shock and kill’ strategy 

is also very promising, using latency-reversing agents (LRAs) to reactivate viral replication 

and subsequently eliminate it with an enhanced immune response [249–254]. With the help 

of public health measures and the World Health Organization's 90-90-90 target, and 

improvements in antiretroviral therapy such as the dual therapy regime or long-acting 

injectables, the HIV pandemic has been mitigated in parts of the world [247]. 

It is hypothesized that CD39+ Vδ2 T cells have an anti-inflammatory function that is 

attenuated in HIV infection, as demonstrated by decreased frequency of Vδ2 T cells. 

Therefore, CD39+ Vδ2 T cells were proposed as a promising therapeutic target in HIV 

infection. The mechanisms leading to Vδ2 T-cell dysfunction should be evaluated and 

further attempts with checkpoint blockades and stimulation of Vδ2 T cells will have to be 

explored to pave the way for novel therapeutic approaches.  
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3 Summaries 

3.1 English Summary 

Background: HIV infection leads to chronic immune activation and dysfunction in humans, 

without a causal cure currently existing. γδ T cells (γδT) are unconventional T cells that 

have been shown to play a significant role in the pathogenesis and immune response of 

viral infections in general and in HIV infection in particular. In addition to conventional T 

cells, HIV also affects γδT and inverts the ratio of its subsets Vδ1 T cells (Vδ1) and Vδ2 T 

cells (Vδ2). The ectonucleotidases CD39 and CD73 are part of the purinergic pathway 

which can regulate inflammation by degradation of pro-inflammatory ATP to Adenosine. 

Human γδ T cells may exhibit immunosuppressive functions and a potential role of CD39+ 

γδT with a regulatory function in mice has previously been discussed. However, the 

expression of the ectoenzymes CD73 and CD39 in human γδT and their role in HIV remains 

unclear. Therefore, the main aim of this dissertation was to study the expression patterns 

of CD39 and CD73 on γδ T cells in people living with HIV and to identify a potentially 

suppressive activity of (CD39+) γδ T cells through adenine signaling. Additionally, a distinct 

group of patients, elite controllers who control their HIV infection without any medication, 

was evaluated. 

Methods: PBMCs of 86 people living with HIV (36 viremic patients; 32 antiretroviral therapy 

(ART) –treated; 8 elite controllers; 10 long-term non-progressors) and 26 HIV-negative 

individuals using a multiparametric flow cytometry panel (16-colored) were studied by 

determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 in association with 

markers of differentiation (CD45RA, CD28, CD27), activation (CD38 and HLA-DR) and 

exhaustion (TIGIT and PD-1), and evaluating the intracellular production of pro- and anti-

inflammatory cytokines (IL-2, TGF-ß, TNF-a, Granzyme B, IL-10, IFN-g) after in vitro 

stimulation with PMA/Ionomycin. 

Results: A significant increase in the frequency of CD39+ γδ T cells in samples of viremic 

HIV-infected individuals in comparison to uninfected controls was observed, while the 

frequency of CD73+ γδ T cells decreased. CD39, but not CD73, expression on γδ T cells of 

ART-treated individuals returned to levels comparable with those of uninfected individuals. 

The frequency of CD39+ γδ T cells correlated with disease progression (higher viral load, 

lower CD4+ T-cell count) and immune activation (HLA-DR+CD38+ expression of γδ T cells 

as well as CD8+ T cells). Inversely, the frequency of CD73+ γδ T cells correlated negatively 

with disease progression. 
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The expression of CD39 on the Vδ2 T-cell subset was significantly lower than on the Vδ1 

γδ T-cell subset in all study groups except in elite controllers. 

The expression of CD39 on activated, HLA-DR+CD38+ γδ T cells was found to be higher 

than on HLA-DR-CD38- γδ T cells while the activation level of CD39+ Vδ1 and CD39+ Vδ2 T 

cells was similar. Moreover, there were significantly more exhausted (PD-1+TIGIT+) and 

terminally differentiated (CD27-CD28-) CD39+ Vδ1 compared to CD39+ Vδ2. 

A higher production of IL-10 in CD39+ γδ T cells vs CD39- γδ T cells regardless of disease 

status was noticed and the highest IL-10 production level of γδ T cells was seen in viremic 

HIV patients. The expression of CD39+CD73+ on γδ T cells remained low (< 1%) regardless 

of disease status, but nevertheless, showed the highest release of IL-10. Also, CD39+ Vδ2 

T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all studied 

individuals. Analysis of other cytokines revealed that Vδ2 lost their polyfunctionality in parts 

and produced fewer anti-inflammatory cytokines in HIV infection. 

Elite controllers appear to assume an intermediate position between HIV-uninfected and -

infected individuals regarding CD39 and CD73 expression and cytokine profile on γδ T cells. 

Conclusions: Our results suggest a potential immunomodulatory role of CD39+ and CD73+ 

γδ T cells in the pathogenesis of chronic HIV infection. To identify novel therapeutic 

approaches for HIV infections, suppression assays, immunotherapeutic approaches with 

Vδ2 T cells, and blocking monoclonal antibodies should be considered. 
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3.2 Zusammenfassung in deutscher Sprache 

Hintergrund: Eine HIV-Infektion führt beim Menschen zu einer chronischen Aktivierung 

und Dysfunktion des Immunsystems. γδ-T-Zellen sind unkonventionelle T-Zellen, die 

nachweislich eine wichtige Rolle bei der Pathogenese und der Immunreaktion auf 

Virusinfektionen im Allgemeinen und insbesondere bei der HIV-Infektion spielen. Zusätzlich 

zu den konventionellen T-Zellen beeinflusst das HI-Virus auch γδ-T-Zellen und kehrt das 

Verhältnis ihrer Subgruppen Vδ1-T-Zellen und Vδ2-T-Zellen um. Die Ektonukleotidasen 

CD39 und CD73 sind Teil des purinergen Signalwegs, der Entzündungen durch den Abbau 

von entzündungsförderndem ATP zu Adenosin regulieren kann. Menschliche γδ-T-Zellen 

können immunsuppressive Funktionen aufweisen. Eine mögliche Rolle von CD39+ γδT mit 

einer regulatorischen Funktion bei Mäusen wurde bereits diskutiert. Die Expression der 

Ektoenzyme CD73 und CD39 auf menschlichen γδ-T-Zellen und ihre Rolle in der HIV-

Infektion sind jedoch weitgehend unklar. Daher bestand das Hauptziel dieser Arbeit darin, 

die Expressionsmuster von CD39 und CD73 auf γδ-T-Zellen von Menschen, die mit HIV 

leben, zu untersuchen und eine potenziell suppressive Aktivität von (CD39+) γδ-T-Zellen 

durch Adenin-Signalisierung zu identifizieren. Darüber hinaus wurde eine bestimmte 

Gruppe von Patient:innen, die sogenannten Elite-Controller, die in der Lage sind, ihre HIV-

Infektion ohne Medikamente zu kontrollieren, untersucht. 

Methoden: PBMCs von 86 Menschen, die mit HIV leben (36 virämische, 32 mit 

antiretroviraler Therapie (ART) behandelte, 8 Elite-Controller, 10 Long-term non-

progressors), und 26 nicht HIV-infizierte Personen wurden untersucht. Dafür wurde ein 

multiparametrisches Durchflusszytometrie-Panel (16-farbig) zur Bestimmung der 

Oberflächenexpression von CD39 und CD73 auf Vδ1- und Vδ2-T-Zellen verwendet. 

Besonders Augenmerk wurde auf Marker dieser Zellen gelegt, die mit Differenzierung 

(CD45RA, CD28, CD27), Aktivierung (CD38 und HLA-DR) und Erschöpfung (TIGIT und 

PD-1) assoziiert sind. Anschließend wurde die intrazelluläre Produktion von 

entzündungsfördernden und entzündungshemmenden Zytokinen (IL-2, TGF-ß, TNF-a, 

Granzyme B, IL-10, IFN-g) nach In-vitro-Stimulation mit PMA/Ionomycin bestimmt. 

Ergebnisse: Es wurde ein signifikanter Anstieg des Anteils von CD39+ γδ-T-Zellen in 

Proben von virämischen HIV-Infizierten im Vergleich zu gesunden Kontrollen beobachtet, 

während der Anteil von CD73+ γδ-T-Zellen abnahm. Die Expression von CD39 auf γδ-T-

Zellen von mit ART behandelten Personen kehrte auf ein Niveau zurück, das mit dem von 

gesunden Personen vergleichbar war. Bei der Expression von CD73 war dies nicht der Fall. 
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Die Frequenz von CD39+ γδ-T-Zellen korrelierte mit dem Fortschreiten der Krankheit 

(höhere Viruslast, niedrigere CD4+-T-Zellzahl) und der Immunaktivierung (HLA-DR+CD38+ 

Expression auf γδ-T-Zellen sowie CD8+ T-Zellen). Umgekehrt korrelierte die Frequenz von 

CD73+ γδ-T-Zellen negativ mit dem Fortschreiten der Krankheit. 

Die Expression von CD39 auf der Vδ2-T-Zell-Untergruppe war in allen Studiengruppen mit 

Ausnahme der Elite-Controller signifikant niedriger als auf der Vδ1-γδ-T-Zell-Untergruppe. 

Die Expression von CD39 auf aktivierten HLA-DR+CD38+ γδ-T-Zellen war höher als auf 

HLA-DR-CD38- γδ-T-Zellen, während das Aktivierungsniveau von CD39+ Vδ1 und CD39+ 

Vδ2-T-Zellen ähnlich war. Außerdem gab es deutlich mehr erschöpfte (PD-1+TIGIT+) und 

terminal differenzierte (CD27-CD28-) CD39+ Vδ1 im Vergleich zu CD39+ Vδ2-γδ-T-Zellen. 

Es wurde eine höhere Ausschüttung von IL-10 in CD39+ γδ-T-Zellen im Vergleich zu CD39- 

γδ-T-Zellen unabhängig vom Krankheitsstatus festgestellt und die höchste IL-10-Produktion 

von γδ-T-Zellen bei virämischen HIV-Patienten gesehen. Die Expression von CD39+CD73+ 

auf γδ-T-Zellen blieb unabhängig vom Krankheitsstatus niedrig (< 1 %), zeigte 

nichtsdestotrotz dazu die höchste Freisetzung von IL-10. Außerdem produzierten CD39+ 

Vδ2-T-Zellen bei allen untersuchten Personen häufiger IL-10 als ihre CD39+ Vδ1 

Gegenparts. Die Analyse anderer Zytokine ergab, dass Vδ2-γδ-T-Zellen ihre 

Polyfunktionalität teilweise verloren hatten und bei einer HIV-Infektion weniger 

entzündungshemmende Zytokine produzierten. 

Elite-Controller scheinen hinsichtlich der CD39- und CD73-Expression und des 

Zytokinprofils auf γδ-T-Zellen eine Zwischenstellung zwischen gesunden und HIV-

infizierten Personen einzunehmen. 

Schlussfolgerungen: Die Ergebnisse deuten auf eine mögliche immunmodulatorische 

Rolle von CD39+ und CD73+ γδ-T-Zellen bei der Pathogenese der chronischen HIV-

Infektion hin. Um neue therapeutische Ansätze für HIV-Infektionen zu identifizieren, sollten 

Suppressionstests, immuntherapeutische Ansätze mit Vδ2-T-Zellen und blockierende 

monoklonale Antikörper in Betracht gezogen werden.  
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