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Abstract

The digitalization of health care leads to the accumulation of huge amounts
of biomedical data that is used in clinical research and studies to uncover
therapies, treatments, or novel biomarkers. One important set of tools in
clinical research is time-to-event analysis. These kinds of algorithms are used to
analyze censored data. For such data, the exact time of an event is not known,
since the event does not necessarily occur during observation time. These
and other biomedical and clinical datasets are typically collected centrally at
a single institution and then analyzed using statistical methods or machine
learning. For gathering larger amounts of data, data sharing with a central
institution is necessary. However, current privacy regulations make it difficult
to share sensitive data with other institutions and gather them at a central
instance. To address this issue, recently, a novel approach known as federated
learning was introduced. Federated learning enables the application of machine
learning on geographically distributed datasets. Therefore, the raw data of each
institution stays locally and only model parameters or summary statistics are
shared with a central aggregator. Despite recent advances in this field, there
are still only a few accessible and privacy-preserving solutions for biomedical
research, especially in time-to-event analysis.

The results of this cumulative dissertation are based on three main publi-
cations. The first publication introduces Partea, a platform for privacy-aware
time-to-event analysis. Partea incorporates the most commonly employed
time-to-event techniques and makes them accessible through a graphical user
interface without requiring any programming expertise. The second publica-
tion describes FeatureCloud, a federated learning platform that goes beyond
time-to-event analysis and enables both the use and development of federated
learning algorithms by providing the necessary infrastructure. Finally, in the
third publication, FeatureCloud was used to develop and evaluate a federated
survival support vector machine for the analysis of distributed time-to-event
data.

The developed methods and tools in this work extend existing approaches
for analyzing time-to-event data on decentralized datasets and are directly
accessible to researchers, statisticians, and clinicians. Furthermore, the disser-
tation demonstrates that federated learning algorithms possess the capability
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to attain a comparable level of accuracy on distributed datasets as compared
to the original algorithms that solely operate on centrally collected datasets.
By providing a broader set of algorithms, implementing privacy-enhancing
technologies and providing user-friendly interfaces, the results of this disserta-
tion increase the accessibility of federated learning in biomedical and clinical
research environments and reduce the hurdles of complex federated learning
infrastructures.



Zusammenfassung

Die Digitalisierung des Gesundheitswesens führt zur Anhäufung riesiger Mengen
biomedizinischer Daten. Diese Daten werden in der klinischen Forschung und
in Studien verwendet, um Therapien, Behandlungen oder neue Biomarker zu
erforschen. Ein wichtiges Instrument in der klinischen Forschung ist die Ereig-
niszeitanalyse. Diese Art von Algorithmen wird verwendet, um zensierte Daten
zu analysieren. Bei solchen Daten ist der genaue Zeitpunkt eines Ereignisses
nicht bekannt, da das Ereignis nicht unbedingt während der Beobachtungszeit
eintritt. Diese und andere biomedizinische und klinische Datensätze werden
in der Regel zentral in einer einzigen Einrichtung gesammelt und dann mit
statistischen Methoden oder maschinellem Lernen analysiert. Für die Erfassung
größerer Datenmengen ist das Teilen von Daten mit einer zentralen Einrichtung
erforderlich. Die derzeitigen Datenschutzbestimmungen erschweren jedoch die
Weitergabe sensibler Daten an andere Einrichtungen und deren Sammlung
an einer zentralen Stelle. Um dieses Problem zu lösen, wurde kürzlich ein
neuartiger Ansatz eingeführt, der als Federated Learning bekannt ist. Federated
Learning ermöglicht die Anwendung von maschinellem Lernen auf verteilten
Datensätzen. Dabei verbleiben die Daten jeder Einrichtung lokal und nur die
Modellparameter oder zusammenfassende Statistiken werden mit einem zentra-
len Institut ausgetauscht. Trotz der jüngsten Fortschritte in diesem Bereich gibt
es immer noch nur wenige zugängliche und privatsphäreschützende Lösungen
für die biomedizinische Forschung, insbesondere für die Ereigniszeitanalyse.

Die Ergebnisse dieser kumulativen Dissertation stützen sich auf drei Haupt-
publikationen. Die erste Veröffentlichung stellt Partea vor, eine Plattform
für privatsphäreschützende Ereigniszeitanalysen. Partea unterstützt die am
häufigsten verwendeten Ereigniszeitanalyse-Methoden und macht sie über eine
grafische Benutzeroberfläche zugänglich, ohne dass Programmierkenntnisse
erforderlich sind. Die zweite Veröffentlichung beschreibt FeatureCloud, eine
Plattform für Federated Learning, die über die reine Ereigniszeitanalyse hin-
ausgeht und sowohl die Nutzung als auch die Entwicklung von Algorithmen
für Federated Learning ermöglicht, indem sie die notwendige Infrastruktur be-
reitstellt. In der dritten Publikation wurde schließlich FeatureCloud verwendet,
um eine Survival Support Vektor Maschine für die verteilte Ereigniszeitanalyse
zu entwickeln und zu evaluieren.
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Die entwickelten Methoden und Werkzeuge dieser Arbeit erweitern beste-
hende Ansätze der Ereigniszeitanalyse für den Einsatz auf dezentral gespei-
cherten Datensätzen und sind für Forscher, Statistiker und Mediziner direkt
zugänglich. Darüber hinaus zeigt die Dissertation, dass Federated Learning
in der Lage ist, auf dezentral gespeicherten Datensätzen eine vergleichbare
Genauigkeit erreichen zu können wie die ursprünglichen Algorithmen, die aus-
schließlich auf zentral gesammelten Datensätzen arbeiten. Die in dieser Arbeit
bereitgestellte Palette an Algorithmen, die implementierten Methoden zum
Schutz der Privatsphäre und die benutzerfreundlichen Schnittstellen erhöhen die
Zugänglichkeit von Federated Learning in der biomedizinischen und klinischen
Forschung und verringern die Hürden komplexer Infrastrukturen.
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1. Introduction

1.1 Motivation

The digitalization of healthcare, accelerated through electronic health records
(EHRs) and enhancements in sequencing technologies for measuring molecular
(OMICS) data, drastically increased the amount of biomedical data that is
available today [1]. Especially high-dimensional OMICS data, such as genomics
(DNA sequence), transcriptomics (RNA transcripts), or proteomics (protein
expression), have become a critical part of clinical research, diagnosis, and
therapies. For example, in cancer research, OMICS technologies enabled the
detection and research of various novel disease biomarkers [2].

The huge amount of data that is generated all over the world requires
efficient analysis techniques to generate new knowledge and accelerate research
[3]. Similar to other industries, artificial intelligence (AI) and statistics are
essential in biomedical data analysis [4]. However, large sample sizes are needed
to perform accurate analyses and apply machine learning (ML) that are often
unavailable at a single institution. This is especially the case in time-to-event
analysis, a common type of analysis in clinical trials. Here, individuals are
observed over time until an event of interest, such as death or relapse, occurs
[5]. As the event of interest does not necessarily occur during observation time
for all participating individuals, large sample sizes are even more critical for
obtaining accurate results [6].

Until now, the standard approach for collecting large amounts of data for
analysis is central data collection. One example of these data collections are
data repositories, such as the International Cancer Genome Consortium [7]
or the Cancer Genome Atlas [8]. These repositories collect data from various
institutions to increase the sample size and make it available for research. For
this, institutions are encouraged to share their local data with a central entity.
However, sharing sensitive medical data comes with the risk of privacy leakage
and patients losing control over their data [9]. Threats of re-identification do
still exist even if data is anonymized [10]. Therefore, sharing data often leads
to conflicts with current privacy regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) in the United States of America,
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2 CHAPTER 1. INTRODUCTION

or the General Data Protection Regulation (GDPR) in the European Union
(EU) [11, 12]. Being compliant with these regulations comes with a high level
of bureaucratic and anonymization efforts. Another popular approach for
increasing data size is meta-analysis. Meta-analysis collects published data
from comparable studies and incorporates their statistics into a new analysis.
Unfortunately, this approach leads to inaccuracies as only summaries and
not the raw data itself can be used. Another problem is, that many studies,
especially in time-to-event analysis, publish their results with deficiencies in
method reporting, making it difficult to assess the quality of the resulting
statistics [13].

Recent research has shown that Federated Learning (FL) has a high potential
to overcome the lack of data accessibility without sharing sensitive raw data
[14, 15]. In Federated Learning (FL), only model parameters are exchanged
with a central entity and not the sensitive raw data itself. These locally trained
model parameters are then aggregated to a global model at the central entity.
It could be shown that this aggregation results in only little, or in some cases
even without any accuracy loss, compared to centralized data analysis [16]. The
invention of FL led to a lot of research and developments in biomedicine, such as
the analysis of EHRs [17, 18, 19], Coronavirus disease [20, 21, 22], genome-wide
association studies (GWASs) [23, 24, 25], differential gene expression analysis
[26], and many more [27, 28]. Also in time-to-event analysis, decentralized and
(hybrid) FL approaches were developed and published recently [29, 30, 31, 32].
While the current FL approaches work in principle, they are still impracticable
or inaccessible for researchers and physicians without training in federated
analyses. One reason for that is the need for specific infrastructure that handles
the exchange of insensitive parameters between clients. This also relates to the
second issue, the complicated deployment of FL algorithms. All clients need
to run the same version of the algorithm on various operating systems and
environments that might largely differ across clients. Additionally, the data
should also be available in a compatible format across clients. Finally, there
are often no user interfaces available to run FL pipelines, making it impractical
for users without programming knowledge. As privacy gets more and more in
the focus of patients and the public, FL is already mentioned as an important
future direction for AI in healthcare [33, 27]. Therefore, there will be a massive
need for practical and accessible solutions.

Considering the high potential of FL and its existing hurdles, making FL
available and accessible to the research community, physicians, and bioinfor-
maticians is the primary goal of this dissertation. As time-to-event analysis has
a particular need for large sample sizes and is one of the most common types of
clinical data analysis, it is the main application and focus of this dissertation.
The work of this dissertation focuses on three publications: Publication 1
(section 3.1) introduces a platform for privacy-aware time-to-event analysis
called Partea [34]. Partea allows the execution of federated time-to-event anal-
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ysis in combination with privacy-enhancing technologies (PETs), without any
programming knowledge and without additional infrastructure. Partea provides
the most popular time-to-event analysis models and makes them applicable
in a FL scenario using a graphical user interface (GUI). By doing so, users
can perform collaborative time-to-event studies with other institutions without
sharing their raw data and without notable quality loss.

To even go beyond time-to-event analysis, Publication 2 (section 3.2) demon-
strates a unified platform for all kinds of FL algorithms in biomedicine, called
FeatureCloud [35]. The platform addresses all stages of an FL lifecycle: algo-
rithm development, deployment, and execution. On the one hand, FeatureCloud
provides all necessary functions for developers to implement FL algorithms and
publish them in the integrated AI store. On the other hand, it allows clinicians
or researchers to execute federated workflows with other collaboration part-
ners without any programming knowledge by choosing from various federated
algorithms. These algorithms can be assembled into workflows and executed
via a user-friendly interface. Thereby, the platform solves several hurdles of
federated infrastructures, handling complex deployment, project coordination,
and network communication. As proof-of-concepts, the algorithms developed in
Publication 1 have also been implemented as apps in FeatureCloud. However,
Publication 2 goes beyond the application of federated time-to-event analysis.
It rather focuses on the implementation and execution of all kinds of machine
learning algorithms, such as linear and logistic regression, random forest (RF),
and deep learning (DL).

Finally, Publication 3 (section3.3 introduces a federated implementation
of the survival support vector machine (SVM) and its application in the
FeatureCloud platform [35]. Here, an app for the survival SVM was developed
and published in the FeatureCloud AI store, and compared its results in various
scenarios for different numbers of clients and datasets with the centralized
approach.

1.2 Outline

This section briefly describes the outline of this dissertation to provide a broad
overview of its content.

Chapter 2 contains all relevant background information for this dissertation.
It describes the basic concepts of time-to-event analysis as an essential tool in
clinical data analysis (section 2.1). Moreover, the chapter introduces the back-
ground about FL (section 2.2), PETs (section 2.3), and hybrid FL (section 2.4).
Finally, the chapter ends with an overview of the state-of-the-art, a description
of the open challenges (section 2.5), and a collection of the objectives of this
dissertation (section 2.6).
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The three main publications of this cumulative dissertation are listed in
Chapter 3. Besides the full citations of the publications, the summary, au-
thor contributions are depicted, as well as further information regarding the
publications are depicted in detail.

Thereafter, the results and importance of the publications are summarized
and discussed in Chapter 4. Here, the collected objectives are compared with
the actual results, the implications of the results are discussed, and an outlook
into the future is given.



2. Background

This chapter introduces the basics of time-to-event analysis (section 2.1),
FL (section 2.2), privacy-enhancing technologies (PETs) (section 2.3), and
combinations of FL and PETs called hybrid FL (section 2.4). Finally, it
provides an overview of the state of the art and open challenges in federated
time-to-event analysis (section 2.5 and ends with a collection of the objectives
and contributions of this dissertation (section 2.6).

2.1 Time-to-Event Analysis

As already mentioned in the introduction, time-to-event analysis, sometimes
also called survival analysis, is an important tool in clinical research. It refers to
the analysis of data that observes the time until a particular event occurs, such
as death or relapse of a patient. Such data is frequently collected in clinical
trials where participants are observed over a period of time. A unique feature of
this data is that it suffers from censorship, distinguishing time-to-event analyses
from other statistical methods [36, 37]. Censoring can be categorized into three
main types [38]:

1. Right censoring occurs when the event of interest has not occurred
up to the time point of censoring. This is the case, for example, for
individuals who drop out early or if the study terminates before observing
the event of interest.

2. Left censoring occurs for individuals whose events of interest happened
before observation time. This happens, if the event of interest already
occurred before the observation.

3. Interval censoring occurs if the exact time of the event of interest is
unknown, but the time range in which it occurs is known.

This work focuses on right censoring, the most common type in clinical trials
[39]. Here, the events of interest, such as death or relapse, do not necessarily
occur during observation time, meaning that the observed survival time is less

5



6 CHAPTER 2. BACKGROUND

than the actual survival time. Naively using the observed survival time will
underestimate the actual underlying survival probability of the population, as
the event of interest for censored individuals might happen at a later time point
or, in extreme cases, never. Furthermore, ignoring censored individuals in the
analysis is incorrect, as this usually causes an underestimation of the actual
survival probability [40]. The concept of right censorship is explained in more
detail in Figure 2.1. As depicted in the figure, not considering censorship in
the analysis leads to underestimating the underlying survival distribution, as
all information on the right side of the dashed line would not be considered.

Figure 2.1: Example of right-censorship. Considering the end of observation
at time ten, only for the red individuals did the event occur during the observation
time. The blue lines represent right-censored individuals. Without considering
the censorship, the information on the right side of the observation point (dashed
line) would get lost, leading to an underestimation of the actual underlying
survival distribution.

The following subsections will introduce the commonly used algorithms and
state-of-the-art methods for time-to-event analysis.

2.1.1 Non-parametric Approaches

Non-parametric survival analysis approaches consider the population’s time and
event information and have no predictive features. Generally, three primary
methods are applied in biomedical time-to-event analysis: the survival function
S(t) (A), the hazard function h(t) (B), and the log-rank test (C), shown in
Figure 2.2.
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Figure 2.2: Non-parametric survival analyses. The survival function
shows the survival probability of the population (y-axis) over time (x-axis). B.
The CHF shows the hazard rate of the population (y-axis) over time (x-axis).
C. The log-rank test is a statistical test for significance in survival analysis. It
compares the CHF of two subpopulations and calculates a p-value to estimate
the significance of the difference. In this example, the population that received
treatment (Rx = 0) has a significantly lower hazard rate than the control group
(Rx = 1).

Survival Function

The survival function S(t) gives the probability for an individual that the event
will happen later than a time point t. In practice, the survival function is a
step function ranging from study start 0 until end t− 1 on the x-axis and from
0 to 1 on the y-axis (Figure 2.2 A). Each step indicates an event that occurred
at this time point, causing a drop in survival probability [5]. A non-parametric
survival function is estimated using the Kaplan-Meier estimation [41]. An
equation of the Kaplan-Meier estimator is provided in Equation 2.1, with dj
representing the number of events that occurred at a time point j, and nj

representing the number of individuals at risk before time point j [42].

S(tj) = S(tj − 1)(1− dj
nj

) (2.1)

Hazard Function

In contrast to the survival function, the hazard function h(t) estimates failing
instead of non-failing. Instead of a probability, it gives the instantaneous
potential for an event to happen, given that the individual has survived up
to time t [5]. It is generally estimated by the Nelson-Aalen algorithm for the
cumulative hazard function (CHF), which is the integral of the hazard function
between 0 and t [43]. As shown in Figure 2.3, the survival function, hazard
function, and CHF are related [5]. Knowing one of the functions is enough to
calculate the others.
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Figure 2.3: Relation between hazard and survival. Taking the negative
logarithm of the survival function results in the cumulative hazard function. The
hazard function is simply the derivative of the cumulative hazard function.

Log-Rank Test

The log-rank test statistic is a very common statistical test to compare the
survival and hazards functions of two populations [44]. It is a non-parametric
test that does not make any assumptions about the underlying distribution
and is based on the expected (Ei) and observed (Oi) numbers of events in
both groups. The formula is stated in Equation 2.2. The statistic follows a
chi-squared distribution, from which, ultimately, a p-value can be obtained to
indicate its significance.

χ2 =

g∑
i=1

(Oi − Ei)
2

Ei

(2.2)

In the two-group case, rejecting the null hypothesis implies that the ratio
of the hazard rates of the two groups is different from one [42]. As shown in
Figure 2.2 C, the log-rank test statistic allows a quantitative comparison of
two survival or hazard curves. In this example, the placebo group (Rx = 1)
has a significantly higher hazard curve (p < 0.005) than the treatment arm
(Rx = 0), indicating a positive effect for the evaluated treatment.

Even though the log-rank statistic is one of the most used algorithms in
survival analysis, it has several limitations that should be considered before
using it [45]. One such limitation is that the log-rank test statistic has an
increased chance for type II errors if the survival curves of the two groups cross
[46]. A type II error occurs if an actual, true effect is not detected.

2.1.2 Cox Proportional Hazard Model

Non-parametric approaches are very popular as they are easy to understand,
allow the estimation of survival probabilities and hazard rates, and allow the
comparison of different populations, such as a treatment and control arm in
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a clinical study. However, non-parametric approaches do not provide any
information about the underlying effects. These algorithms do not take any
covariates into account. For this, the Cox proportional hazard model provides
a way to regress one or more covariates against the outcome variable time,
considering the censorship of the data [47, 48]. The formula of the Cox model is
shown in Equation 2.3, with h(t) being the hazard function, h0(t) the baseline
hazard function, the covariates x, and the regression coefficients [49].

h(t) = h0(t) ∗ exp{β1x1 + β2x2 + ...+ βpxp} (2.3)

As its name implies, the Cox proportional hazards model assumes that
the hazard curves for each model are proportional. The equation is solved
by an iterative approach using the Newton-Raphson algorithm by updating
parameters to maximize the likelihood function until convergence [50].

The resulting hazard ratio of the Cox proportional hazards model are
typically visualized in a plot of the coefficients and their 95% interval, as shown
in Figure 2.4. In this example, the covariate sex has a slight positive effect
(0.31); however, its confidence intervals (CIs) shows this effect is insignificant.
For the covariate logWBC (logarithm of the count of white blood cells), and
the treatment arm Rx, the effect is much higher than for sex (1.68 and 1.5).
Moreover, the CI do not cross the zero line. Therefore, the two covariates,
logWBC and Rx, can be considered to have a significant effect on the censored
outcome time.

Figure 2.4: Logarithm of hazard ratios (log(HR)). The log(HR) (white
box) depicts the actual effect strength of the covariate. The effect is significant
if the CI does not cross the dashed line at 0.
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2.1.3 Machine Learning Approaches

While the previously explained methods are heavily used in practice and
provide sufficient statistical results for most problems they have problems
with high dimensional data, as it is often the case for OMICS data [51, 52].
Therefore, many of the classic ML methods have been extended to time-to-event
analysis models. In the following subsections, two popular models will be briefly
described: the random survival forest (RSF), and the survival SVM.

Random Survival Forest

The RSF is an extension of the popular random forest (RF) algorithm for the
application to right-censored time-to-event data [53, 54]. It follows the original
approach by Breiman et al. from 2001, but uses a splitting rule that involves
the time-to-event and the censoring status to grow a tree [55]. An RF consists
of multiple decision trees. These trees consist of a root node, daughter nodes,
and leaf nodes. Each node splits the data into subgroups based on a splitting
criterion. After the forest was created, a new sample can be put into each tree,
predicting the label for this sample based on the majority vote of the tree’s
leafs.

The broad description of the algorithm, as implemented in the original R
package by Ishwaran et al. in 2007 is depicted in Algorithm 1 [56].

Algorithm 1: Random Survival Forest [56]

1. Draw B bootstrap samples from the original data.
2. Grow a tree for each bootstrapped data set. At each node of the tree,
randomly select p predictors (covariates) for splitting on. Split on a
predictor using a survival splitting criterion. A node is split on that
predictor which maximizes survival differences across daughter nodes.

3. Grow the tree to full size under the constraint that a terminal node
should have no less than n unique deaths.

4. Calculate an ensemble cumulative hazard estimate by combining
information from the B trees. One estimate for each individual in the
data is calculated.
5. Compute an out-of-bag error rate for the ensemble derived using the
first b trees, where b = 1, ..., ntree.

In the first step, B bootstrap samples are generated from the data. Boot-
strapping is a method where random samples are drawn from the original
data, usually with replacement. For each bootstrap sample, a tree is generated,
leading to a forest of B trees is created on different subset of samples to increase
diversity of the trees and reduce overfitting. Trees are created in the following
way (step 2): At each node, a random set of p covariates are selected. For these



2.1. TIME-TO-EVENT ANALYSIS 11

p covariates, a survival splitting criterion is applied to identify the covariate
and threshold with the best split. A commonly used criterion is the log-rank
test, which then splits the node on the covariate and threshold that maximizes
the survival differences across the daughter nodes. This is repeated until the
tree has reached full size or the terminal node constrained has been reached
(step 3). Finally, the ensemble CHF is calculated for each tree leaf, averaging
the CHF calculated by the Nelson-Aalen estimator of each tree (step 4). To
validate the accuracy of the tree, the out-of-bag error rate can be calculated,
or it can be validated on an external dataset (step 5).

To use the RSF to predict the survival probability of a new, unseen sample,
the sample is propagated down the tree and ends up in a unique leaf node.
The ensemble CHF of this leaf node can finally be used to predict the survival
probability of the new sample.

Survival Support Vector Machine

Another popular machine learning method are SVMs [57]. In contrast to
RFs they are not based on bootstrapping and decision tress, but try to find
the optimal hyperplane with the maximum margin to separate two classes in
the binary classification problem. Similarly, for regression, it tries to fit the
hyperplane to the data within a certain margin, to capture as many data points
as possible. SVMs are very popular in biomedical research, especially due
to its kernel trick for high dimensional data. By mapping the input features
into high-dimensional spaces, they can efficiently model complex, non-linear
patterns in the data.

A very efficient method for using SVMs for survival analysis was proposed
by Pölster et al. in 2015 [58]. The authors suggested three efficient training
algorithms for linear survival SVMs: a ranking-based, a regression-based, and
a combined approach. Equations 2.4 and 2.5 show the objective to minimize
the formula for the regression-based survival SVM:

argmin
ω,b

fRegr(ω, b) =
1

2
ωTω +

γ

2

n∑
i=0

(xiω,b(γi, xi, δi))
2 (2.4)

δω,b(yi,xi, δi) =

{
max(0, yi − ωTxi − b) if δi = 0

yi − ωTxi − b if δi = 1
(2.5)

The formula uses the training data consisting of a feature vector xi, survival
time yi ≥ 0, and the event indicator δi ∈ 0, 1. The parameter γ determines the
amount of regularization applied inversely. Minimizing the objective is finally
performed via a truncated Newton optimization [59]. The pseudocode for the
training of a survival SVM is depicted in Algorithm 2.
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Algorithm 2: Survival SVM [60]

Data: Training data D = (xi, yi, δi)
n
i−1, hyper-parameter γ > 0.

Result: coefficients ω.
Randomly resolve ties in survival times yi∀i ∈ 1, ..., n;
ω0 ← 0;
t← 0;
while not converged do

Use conjugate gradient to determine search direction
u = ( ∂2f

∂ω∂ωT )1−1 ∂
∂ω

with ω = ωT ;
Choose step size µ by backtracking line search;
Update ωt+1 ← ωt + µu;
t← t+ 1;

end
ω ← ωt ;

2.1.4 Validation of Time-to-Event Models

For evaluating time-to-event models, such as the survival SVM, RSF, or Cox
proportional hazard model, common metrics for regression are not very practical,
as they were not developed for censored samples. To address this issue, the
concordance index (c-index) was developed as a generalization of the area under
the receiver operating characteristic curve by Harrell et al. [61]. A c-index of
0.5 indicates a randomly predicting model, and 1.0 is a perfect model. As shown
in the simplified Equation 2.6, the c-index is the probability of concordance
between observed and predicted survival based on each pair of individuals [62].

C =
number of concordant pairs + 0.5 ∗ number of tied pairs

total number of pairs
(2.6)

To obtain the concordant pairs, first, only comparable pairs are considered.
A pair is comparable if the shorter survival time is not censored. If both are
censored, the survival time is equal. A concordant pair is then a pair where the
subject with the earlier event is having a greater risk and discordant otherwise
[63]. If both subjects have a tied risk, it is defined as a tied pair.

2.2 Federated Learning

The introduced time-to-event analysis algorithms in section 2.1 were designed
for the application on single, centralized datasets. FL has the goal to enable the
application and training of algorithms on data that is geographically distributed.
It was first introduced in 2017 [14, 15]. As shown in Figure 2.5, a basic FL
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workflow consists of a central aggregation server (orange box) and two or
more participating clients (blue boxes) [27]. (1) The central aggregation server
initially shares an initialized global model with all clients. This global model
can be any ML model containing model parameters or weights. (2) After
receiving the global model, each client uses its data to update it to a new,
local model by using the same optimizer as in a centralized analysis. (3) The
updated models are sent to the global aggregation server, which (4) aggregates
the models (typically their parameters) with an aggregation approach, such as
a weighted average. If the algorithm has multiple iterations, the whole process
starts again from the beginning. Once all iterations are completed, the final
aggregated model will be shared with all clients.

Figure 2.5: Basic FL workflow with central aggregation server. (1)
Central aggregation server (orange box) shares the initialized global model with
all participating clients (blue boxes). (2) Each client trains its local model
(gray circle) using its local data. (3) The clients send their local models to the
aggregation server. (4) The aggregation server aggregates the local models into
a common global model. If multiple iterations are needed, the process starts
again from (1). (Figure inspired by [27]).

FL can be broadly categorized into two main approaches, mostly dependent
on the number of participating clients:

1. Cross-device FL: This type of FL aims to train ML models across many
participating (even millions) devices (clients), such as mobile phones.

2. Cross-silo FL: Focusing on only a few clients, such as hospitals or com-
panies. These institutions can use FL to train ML models while the
data stays at each site, and only model parameters are exchanged with a
central aggregator.

Both approaches share similar properties but have different challenges to
face, especially in the context of privacy and scalability [64]. In addition to
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the differentiation between cross-device and cross-silo, FL can be performed on
either horizontally partitioned or vertically partitioned data. Horizontal FL
trains a model on samples distributed across the clients with the same feature
sets. Vertical FL learns a model on distributed feature sets for the same set
of samples. In this dissertation, FL refers to on horizontal cross-silo FL if not
stated otherwise.

Algorithm 3: FederatedAveraging

Data: The K clients are indexed by k; B is the local minibatch size,
E is the number of local epochs, C is a random fraction of
clients, and n is the learning rate. [14]

Result: Global weights ω
Server Executes:
Initialize ω
ClientUpdate(k, ω): // Run on client k
for each round t = 1, 2, .. do

m ← max(CK , 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

ωk
t+1 ← ClientUpdate(k, ωt)

end

ωk
t+1 ←

∑K
k=1

nk

n
ωk
t+1

end
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
ω ← ω − η∆l(ω, b)

end

end
return ω to server

Depending on these categories, an aggregation approach needs to be chosen.
When FL was introduced first by McMahan et al. in 2017, the authors
proposed an aggregation approach called FederatedAveraging (FedAvg), shown
as pseudocode in Algorithm 3 [15]. FedAvg was originally implemented for
communication-efficient DL in cross-device scenarios, and therefore supports
some desirable properties for this kind of FL, such as being communication
efficient and applicable to various types of optimization algorithms. First, a
server initializes the weights globally. Then, in each iteration, a random subset
of clients is used to perform the learning to reduce communication overhead.
Each client receives the global weights from the server, locally updates them
based on their local data, and sends them to the server for averaging. The
local update is performed in batches and for a specific number of epochs, such
that not necessarily each epoch needs to be averaged.
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As FL has the property of only exchanging parameters rather than the
raw data (in FedAvg, only local weights are exchanged), it is often advertised
as a method for privacy-preserving ML. However, its basic properties do not
guarantee security and privacy [65]. The model parameters of the local models
could still reveal insights into the original data on which they were trained.
Further, it is open to specific attacks on distributed architectures, such as
malicious servers or inference attacks. The central aggregator is a potential
target, as it knows about all local models in each iteration of every client. This
problem can partly be solved by using hybrid approaches that combine FL with
PETs [66], which will be explained in detail in the next chapters 2.3 and 2.4.

2.3 Privacy-Enhancing Technologies

PETs are defined as additional measures to reduce the risk of privacy leakage in a
system without losing its functionality [67]. These measures do not necessarily
need to be technical. Examples of non-technical PETs are compliance, or
consent. In the context of ML, the most prominent PETs are purely technical:
differential privacy (DP), homomorphic encryption (HE), secure multi-party
computation (SMPC), and confidential computing [68]. The PETs mentioned
can also be applied in combination with FL (hybrid FL).

2.3.1 Differential Privacy

DP, first introduced by Dwork et al. in 2006, is a concept that adds a controlled
amount of random noise to the data to ensure and quantify the privacy of
individuals in a database[69, 70]. The most common DP approaches, (ϵ)-DP
and (ϵ, δ)-DP, draw random noise from a Laplacian or Gaussian distribution.
The amount of the controlled noise is determined by the sensitivity of the
function and the parameters ϵ and δ.

Sensitivity is a measure of how much a function’s output changes when one
entry of the database is removed. Formally, the L1 sensitivity of a function
f : Dn → Rd is defined as the smallest number S(f) such that the following
holds for all x, x′ ∈ Dn that differ in a single entry:

f(x)− f(x′) ≤ S(f) (2.7)

For example, when considering a function that counts the number of death
events in a study cohort, the sensitivity of this function would be one since
removing one study participant could, at most, change the function output by
one.

The parameter ϵ quantifies the privacy loss of an individual, considering the
dataset would be released. It handles the level of privacy needed for the DP
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mechanism. Together with the sensitivity, it defines the scale of the Laplacian or
Gaussian distribution. For a reasonable trade-off between privacy and accuracy,
the scale is proposed to be sensitivity divided by ϵ. As the strong requirements
of (ϵ)-DP are often inapplicable in practice due to the high amount of noise
added to the calculation, (ϵ, δ)-DP introduced an additional privacy parameter
δ. The parameter allows softening the ϵ-privacy by representing a probability
that the data of an individual will still be revealed after DP. Consequently, it
should be set to a very low value to maintain a high level of privacy while still
improving the accuracy of the analysis.

2.3.2 Homomorphic Encryption

In contrast to the noise-adding mechanism in DP, HE enables calculations on
encrypted data directly without decrypting it. The first fully homomorphic
encryption (FHE) scheme was introduced by Gentry in 2009 [71]. Fully means
that the HE scheme allows any type of computation on encrypted data. However,
it comes with high computational complexity. Only recently, practical tools
and frameworks for FHE emerged and are used in practice, such as Microsoft’s
SEAL library [72] or Google’s FHE compiler [73]. Still, FHE requires high
computational resources and special hardware to be practically usable. A more
practical solution is partial homomorphic encryption (PHE), with the downside
of only allowing for restricted calculations, such as addition or multiplication.
One example of PHE is the popular RSE algorithm from 1978 [74].

With HE, it is now possible to send a client’s encrypted data to a server. The
server performs the calculation directly on the encrypted data and broadcasts
the result to the clients. After decrypting the result, the clients obtain the
global result in clear text. As only encrypted data leaves the client’s site, there
is no risk of leaking any local privacy here.

2.3.3 Secure Multi-Party Computation

SMPC aims to perform multi-party computations securely without revealing the
local data of the participants, based on an underlying secret sharing protocol
[75]. Shamir introduced the first efficient secret-sharing scheme in 1979 [76].
Shamir’s secret sharing is a (k, n)-threshold scheme, where only k out of n
shares are needed to recover the secret. This threshold also makes it practical
for numerous participants, as the number of shares to be created does not
increase exponentially anymore.

A still widespread approach for a low number of participants is linear secret-
sharing schemes, such as additive secret sharing, based on an (n, n)-threshold
[77]. Here, all n shares are required to reconstruct the secret. The secret of
each participant is split into n shares, so the sum of all n shares equals the
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secret. The sum of the shares of all participants reveals the actual sum of all
clients. The same is also possible with multiplication [78].

2.4 Hybrid Federated Learning

As FL alone is not necessarily privacy-preserving, it must be combined with
one or more PETs to increase privacy and security. This combination of FL
and PETs is also known as hybrid FL. The properties of the different hybrid
approaches are shown and compared in Figure 2.6, as proposed in earlier work
already [66].

Figure 2.6: Hybrid approaches in comparison. To reduce data leakage,
FL (blue) can be combined with various PETs, such as DP (yellow), HE (green),
and SMPC (red). The different combinations differ in network traffic, accuracy
loss, computational effort and model leakage.

FL without any additional PET (blue) has a higher data leakage than hybrid
approaches. Even though only insensitive model parameters are exchanged,
these might potentially leak sensitive information about the local model and
local data. A combination of FL with DP, HE, or SMPC can reduce the leakage
of local data. The potential data leakage by the final model is decreased by DP,
as this is the only approach where noise is used to disturb the actual model
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parameters. However, this also leads to the highest accuracy loss for FL + DP.
FL + HE needs the highest computational effort, while FL + SMPC has the
highest network traffic due to the exchange of shards between the clients. Both
come with slight accuracy loss, in contrast to only FL due to floating-point
precision.

It can be seen, that FL should be combined with PETs to avoid data
leakage and keep the local data private. Which PET to choose depends mainly
on the application case, as all hybrid approaches have some advantages and
disadvantages against others. In a recent publication by Soykan et al., the
authors conducted a survey on PETs for collaborative ML and concluded
with a guideline to ease the choice [68]. The guideline considers two main
parts: requirements and constraints. The requirements of the collaborative ML
setup encourage thinking about the collaboration model, ML algorithm, data
distribution, threat models, and domain needs. The constraints should be eval-
uated concerning communication rounds, transmitted data size, computation
capabilities, accuracy, computation environment, and the number of device
dropouts. For example, if only a few hospitals with low sample sizes participate
in a collaboration study, DP might not be the PET of choice. For medical
studies, accuracy is crucial, and for low sample sizes and few participants,
the amount of noise to keep the data private might result in an impracticable
model. Instead, an SMPC approach might be preferred, as with only a few
participants, the communication overhead is still acceptable with only a few
participants.

2.5 State-of-the-Art and Open Challenges

While the list of generic FL frameworks is quite long, the number of tools for
federated time-to-event analysis is rather low. The special need to consider
censored data samples in the analysis makes general FL algorithms not simply
applicable to this kind of data.

2.5.1 Web Service for Distributed Cox Model Learning

One of the first algorithms for a distributed Cox model was proposed with
WebDISCO in 2015 [30]. Its pseudocode is shown in Algorithm 4. A major
advantage of WebDISCO is that it produces nearly identical solutions compared
to centralized analysis due to its iterative update of the weights. To achieve that,
each client calculates its local statistics using the current global β and sends
them to the global server. The global server aggregates these statistics to update
β by calculating the first and second derivatives of the likelihood function and
broadcasting them to the clients. This is repeated until convergence occurs.
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WebDISCO was implemented as a web service, and therefore the authors
took care of deployment. However, the web service is not available anymore, and
also the code of the application can no longer be found. Therefore, the algorithm
is only of theoretical value but cannot be easily used in biomedical environments.
Another issue is that they do not use any additional PETs to secure the
exchanged local statistics and avoid any leakage of private information.

Algorithm 4: WebDISCO [30]

Local initialization for all sites: Each site initializes index subsets
Rk

i and Dk
i based on their local data. Each site sends the aggregated

statistics
∑D

i=1

∑
l∈Dk

i
zlr to the global server to avoid additional

communication overhead, as this value is unchanged during the whole
learning process.
Global initialization: The global server requests distinct event times
from each site to initialize the parameters D and |Dk

i |. Additionally,
the global server aggregates the incoming statistics from all sites as
ẑr =

∑M
k=1

∑D
i=1

∑
l∈DK

i
zlr. The server initializes β0 and broadcasts it

to each size
while parameters not converged do

for all sites (parallel update) do
Receive an updated βτ from the global server

Calculate the following aggregated statistics:
∑

l∈Rk
i
exp (βTzl),∑

l∈Rk
i
zlq exp (β

Tzl) and
∑

l∈Rk
i
zlrz

l
q exp (β

Tzl)

Send these statistics back to the global server

end
Calculate the first and second derivatives of the likelihood function
using the statistics received from each site

Update βτ+1 using the Newton-Raphson algorithm and send it back
to each site

end
Send converged model parameters to each site.

2.5.2 One-Shot Distributed Algorithm for Cox Model

Another recent approach for a distributed Cox model was proposed recently,
which is called “One-shot distributed algorithm for Cox model (ODAC)” [79].
Compared to an iterative calculation, its one-shot approach improves runtime
and communication (Algorithm 5) overhead drastically while still outperforming
meta-analysis approaches.

Even though most of the examples in the publication achieved almost
identical results compared to centralized analysis, some of them did not, which
might lead to problems in some heterogeneous datasets. Moreover, ODAC does
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not implement any PETs to reduce privacy leakage of the exchanged models.
Therefore, exchanged model parameters might leak sensitive information.

Algorithm 5: ODAC [79]

(1) Initialization:
for all sites (parallel update) do

Fit a Cox model and obtain the local estimate β̂k and the variance
estimate V̂k; broadcast β̂k, V̂k, and the set of unique event time
points in site k.

end
(2) Local surrogate estimator:
for all sites (parallel update) do

obtain β̃ and all the unique event time points across all sites t1...td;
calculate and broadcast the intermediate summary-level statistics
Uj(T ), Wj(T ) and Zj(T ); construct the surrogate likelihood L̃k(β)
by treating the k-th site as the local site; obtain and broadcast β̃k

and the variance Ṽk

end
(3) Evidence synthesis:
Obtain β̃ by plugging in β̃ and Ṽk

return β̃

2.5.3 Federated Analytics Multiparty Homomorphic En-
cryption

This federated approach is based on multi-party homomorphic encryption
that enables the computation and encryption of local patient-level statistics
and the homomorphic aggregation of these results. The FAMHE version of
the Kaplan-Meier estimator achieved identical survival curves compared to
centralized computation, with still good runtime and scalability. Remembering
the formula of the Kaplan-Meier estimator in Equation 2.1, each client creates
a vector with the number of censored event times cj, the number of events dj
and the numbers of individuals at risk nj at the time tj for tj = 0, ..., T . These
vectors are encrypted and collectively aggregated, obtaining the exact survival
curve.

This sophisticated approach introduces PETs to the federated computation
and therefore ensures the privacy of the exchanged data. However, it does not
consider that the resulting survival curve might still reveal patient-level data
[80, 81]. The code is not publicly available as its license does not allow for
open-source distribution, making it unusable and inaccessible for general FL in
biomedical environments.
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2.5.4 Survival Models for Federated Individual Patient
Meta-Analysis in DataSHIELD

DataSHIELD is an early approach and framework from 2014 that aims to
facilitate distributed research settings [82]. Recently, an approach for Cox
models has also been proposed, called dsSurvival. The dsSurvival framework is
more of a meta-analysis approach than an actual FL. A complete Cox model
is built at each site, and the model statistics are sent to a global server. An
interesting approach of dsSurvival is that these statistics are stored on the global
server and can be used again in future meta-analyses. Another advantage of the
approach is that they provide an R package and open-source code. However,
the approach does not lead to results comparable to centralized analysis, does
not implement univariate approaches, and has no UI.

2.5.5 Open Challenges

A closer look at the state-of-the-art approaches in federated time-to-event
analysis, listed in Table 2.1, shows that there is already some research in the field.
There are various approaches with different techniques, from federated meta-
analysis to federated homomorphic encryption or distributed Cox regression as
a web server. However, none of the tools actually provides a complete solution.

Table 2.1: Existing solutions for privacy-preserving time-to-event analysis.
ACC=accuracy, FL=Federated Learning, PET=privacy-enhancing technology,
KM=Kaplan-Meier estimator, NA=Nelson-Aalen estimator, LRT=log-rank test,
COX=Cox model, OS=open source, GUI=graphical user interface

Method ACC FL PET KM NA LRT COX OS GUI

WebDISCO [30] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

ODAC [79] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

FAMHE [31] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

AusCAT [32] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

dsSurvival [83] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

The combination of FL and PETs is highly important, as even local models
can be considered as personal data in the GDPR. Unfortunately, FAMHE, the
only solution that uses PETs, does not provide any code or deployed version
and is therefore not directly usable by researchers and clinicians. None of the
tools covers all the most widely used time-to-event algorithms (Kaplan-Meier
estimator, Nelson-Aalen estimator, log-rank test, and Cox proportional hazard
model) but rather concentrates on one specific algorithm. This is impractical,
as in clinical time-to-event studies, there is often a need to apply multiple
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approaches to enhance the interpretation of the results. In the current state-of-
the-art, researchers would need to switch between different tools. Moreover,
except for WebDISCO and AuSCAT, no UIs are provided for better usability
and accessibility of the algorithms. Most of the tools leave the responsibility
of deployment to the researchers or their IT departments. This increases the
hurdles to using this technique, potentially leading researchers to just stick to
the centralized methods they are used to already.

2.6 Objectives and Contributions

As shown in this section, there is an actual lack of usable, accessible, and
privacy-preserving FL solutions for time-to-event analysis. This dissertation
aims to fill this gap.

The main objective of this dissertation is to increase the applicability and
accessibility of FL in biomedical research and bring privacy-aware algorithms
to researchers in biomedicine. Due to its high importance and occurrence in
clinical studies, and the lack of accessible and privacy-aware methods, time-to-
event analysis was chosen as the main algorithmic field for this dissertation.
In the following chapter 3, three publications are presented that aim to fulfill
critical parts of the objectives.

In the first publication, a tool for multi-institutional time-to-event analysis
is proposed, called Partea, providing a complete, accessible, and privacy-aware
all-in-one tool for clinical studies and other areas. Here, the author of this
dissertation was the first author and responsible for the development, analysis,
evaluation, and writing.

The second publication is based on the promising results of Partea and
other tools that were developed recently, such as sPLINK [25] or Flimma [26].
FeatureCloud, a unified platform for FL in biomedicine, is presented, which eases
both the development and deployment of all kinds of federated algorithms as well
as their execution in clinical infrastructures. In this publication, first authorship
was shared between the author of this dissertation and Julian Matschinske, as
the development and evaluation of this platform were a gigantic effort. The
leading contribution of the author of this dissertation was the development of the
interactive web interface, the AI store for FL applications and implementation
of several apps, and the accuracy evaluation of the algorithms compared to
their central machine learning algorithms.

The third publication presents the first available federated survival SVM,
which was entirely developed using FeatureCloud and is accessible through
the platform. In this publication, the author of this dissertation is the first
author and was responsible for the algorithm elaboration and evaluation, app
development, as well as the evaluation and writing.
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3.1 Publication 1: Partea

The article Privacy-aware multi-institutional time-to-event analysis
was published online at PLOS Digital Health on September 6, 2022. The
full publication is available in Appendix A.1

Citation

Julian Späth, Julian Matschinske, Frederick K. Kamanu, Sabina A. Murphy,
Olga Zolotareva, Mohammad Bakhtiari, Elliott M. Antman, Joseph Loscalzo,
Alissa Brauneck, Louisa Schmalhorst, Gabriele Buchholtz, and Jan Baumbach.
Privacy-aware multi-institutional time-to-event studies. PLOS Digital Health,
1(9):1–16, 09 2022. doi: https://doi.org/10.1371/journal.pdig.0000101

Summary

Time-to-event analysis is an essential tool in clinical studies for analyzing
censored data, in which an event of interest is not always observed during
observation time. Collecting large amounts of data for these clinical studies
is necessary to improve the quality of the study, and often requires the col-
laboration of multiple institutions. As strict data regulation rules complicate
study collaborations, new machine learning technologies, such as federated
learning have shown high potential for enabling privacy-aware and accurate
decentralized analyses across institutions. However, especially for time-to-event
analysis, federated implementations do not exist for common algorithms or are
not available for the research community.

To address these issues, the authors developed the intuitive web app Partea
that offers an intuitive environment for the federated execution of the most
popular time-to-event methods: survival function, hazard function, log-rank test,
and Cox model. Our evaluations on several benchmark datasets and a real-world
dataset from a previous clinical study show that all federated implementations
achieve highly similar, or even identical results as the centralized methods.
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With the support of privacy-enhancing technologies, the exchanged local model
parameters are encrypted and not even visible to the global aggregator. Data
leakage from published survival curves is hindered by adding random noise
to the calculation, using differential privacy. All algorithms can be accessed
using graphical user interfaces, removing expertise in federated infrastructure
and programming knowledge. Therefore, as the first tool of its kind, Partea
accelerates the accessibility of privacy-aware time-to-event analysis.

Availability

The entire source code of the Partea platform is available on GitHub (https:
//github.com/federated-partea). The lung [84], veteran [85], and colon
[86] benchmark datasets are available through the R survival package. The
rossi [87] benchmark dataset is available via the lifelines Python package. Data
from the ENGAGE-TIMI 48 Trial is not publicly available but is discussed in
detail in the original publication of Giugliano et al. [88].

Author contribution

The author of this thesis conceptualized this work and was mainly responsible
for the content. He developed and implemented the federated algorithms
and evaluated them on the benchmark datasets. With the help of Julian
Matschinske, the author implemented the web platform and deployed the tools.
Olga Zolotareva and Mohammad Bakhtiari provided constructive feedback
in the context of federated learning and supported writing the manuscript.
Frederick K. Kamanu and Sabina A. Murphy performed the federated and
centralized analysis on the ENGAGE-TIMI 48 trial data. Elliott M. Antman
and Joseph Loscalzo provided medical expertise to make the platform usable in
clinical environments and supported writing the manuscript. Alissa Brauneck,
Louisa Schmalhorst, and Gabriele Buchholtz supported the work from a legal
perspective and performed in the GDPR evaluation. Prof. Dr. Jan Baumbach
supervised the project, supported the writing of the manuscript, and provided
valuable feedback. The author wrote the main parts of the manuscript, finalized
it, and produced the figures.

Rights and permissions

©2022 Späth et al. This is an open access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author
and source are credited.

https://github.com/federated-partea
https://github.com/federated-partea
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Supplementary material

Supplementary data are available online at PLOS Digital Health
https://journals.plos.org/digitalhealth/article?id=10.1371/

journal.pdig.0000101#sec014

https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000101#sec014
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000101#sec014
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3.2 Publication 2: FeatureCloud

The article The FeatureCloud Platform for Federated Learning in
Biomedicine: A Unified Approach was published online at the Journal
of Medical Internet Research (JMIR) on July 12th, 2023. The full
publication is available in Appendix A.2

Citation

Julian Matschinske, Julian Späth, Mohammad Bakhtiari, Niklas Probul, Mo-
hammad Mahdi Kazemi Majdabadi, Reza Nasirigerdeh, Reihaneh Torkzadehma-
hani, Anne Hartebrodt, Balazs-Attila Orban, Sándor-József Fejér, Olga
Zolotareva, Supratim Das, Linda Baumbach, Josch K Pauling, Olivera
Tomašević, Béla Bihari, Marcus Bloice, Nina C Donner, Walid Fdhila, Tobias
Frisch, Anne-Christin Hauschild, Dominik Heider, Andreas Holzinger, Walter
Hötzendorfer, Jan Hospes, Tim Kacprowski, Markus Kastelitz, Markus List,
Rudolf Mayer, Mónika Moga, Heimo Müller, Anastasia Pustozerova, Richard
Röttger, Christina C Saak, Anna Saranti, Harald H H W Schmidt, Christof
Tschohl, Nina K Wenke, and Jan Baumbach. The featurecloud platform for
federated learning in biomedicine: Unified approach. J Med Internet Res,
25:e42621, Jul 2023. doi: https://doi.org/10.2196/42621

Summary

While vast amounts of data are gathered in healthcare nowadays, this data
is usually distributed among different institutions and thus not usable for
machine learning (ML) algorithms, requiring centralized datasets. Sharing
highly sensitive patient data is still difficult due to privacy regulations, such as
the GDPR in the EU or HIPAA in the US, new technologies were developed
recently to address this problem. Federated Learning (FL) is a solution that
enables the training of distributed ML models without sharing confidential
data itself, but rather exchanging locally trained model parameters with a
global aggregator. Despite advancements, FL implementation remains complex
and time-consuming, requiring advanced technical skills and complex infras-
tructures. While there are many frameworks for centralized ML, there is a
gap in practical solutions for FL that focus on both developing and executing
federated algorithms.

To address this issue, the authors developed FeatureCloud, an all-in-one FL
platform for biomedicine and beyond. The platform addresses two audiences:
developers and researchers. Our platform enables a straightforward way for
developers to implement FL algorithms. Using the platform’s application
programming interface, developers do not need to worry about infrastructure,

https://doi.org/10.2196/42621
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execution, and deployment of the algorithms but rather about the federated
method itself. After implementation, developers can publish their method as
an app in the AI Store, making it available for researchers to use. Researchers
can then compose workflows out of various apps and run their ML pipeline
on data distributed among different institutions that they can invite to the
computation.

To increase the privacy of the exchanged data, FeatureCloud incorporates
privacy-enhancing technology (PET), such as secure aggregation, to secure
the locally exchanged model parameters. Further, the implementation and
infrastructure of the platform are explained in detail. The authors show, that for
several apps, highly similar results to centralized models are achieved. Further,
the results are more generalizable and accurate compared to institutions that
train models solely on their data.

Availability

The Survey of Health, Aging and Retirement in Europe (SHARE) data are
distributed by SHARE-European Research Infrastructure Consortium (ERIC)
to registered users through the SHARE Research Data Center. We used only
data from the 8 waves [89]. Except for the SHARE data, all our data sets,
including the Indian Liver Patient Dataset [90], Breast Invasive Carcinoma
data set [91], Boston data set [92], and Diabetes data set [93], and scripts
used for our evaluation results are available in our GitHub repository (https:
//github.com/FeatureCloud/evaluation). To increase interpretation and
reproducibility, we followed the minimum information about clinical artificial
intelligence modeling (ML-CLAIM) reporting standard (Norgeot et al. [94]).
The filled-out ML-CLAIM clinical checklist is also available in our GitHub
repository.

Author contribution

As this publication was the major publication of the FeatureCloud consortium,
many authors contributed to this work. The main work in developing the
FeatureCloud platform, the AI store, and the manuscript was done by Julian
Matschinske and the author of this thesis. In detail, the author of this thesis
was mainly responsible for the frontend and backend development of the AI
store and many federated learning apps such as linear and logistic regression,
various time-to-event analysis apps (Kaplan-Meier Estimator, Nelson-Aalen
Estimator, Random Survival Forest, and Survival SVM), and useful apps for
federated machine learning pipelines (Cross-validation, Evaluation). Further,
the author of this thesis equally contributed as a first author to the publication,
being primarily involved in the writing, the comparison to existing work, and
the evaluation of the accuracy for different datasets and algorithms. The other

https://github.com/FeatureCloud/evaluation
https://github.com/FeatureCloud/evaluation
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first author, Julian Matschinske, mainly contributed to writing the publication,
explaining the methodology, infrastructure, and functions of the platform, and
evaluating the network traffic and runtime.

Rights and permissions

©Julian Matschinske, Julian Späth, Mohammad Bakhtiari, Niklas Probul, Mo-
hammad Mahdi Kazemi Majdabadi, Reza Nasirigerdeh, Reihaneh Torkzadehma-
hani, Anne Hartebrodt, Balazs-Attila Orban, Sándor-József Fejér, Olga
Zolotareva, Supratim Das, Linda Baumbach, Josch K Pauling, Olivera
Tomašević, Béla Bihari, Marcus Bloice, Nina C Donner, Walid Fdhila, Tobias
Frisch, Anne-Christin Hauschild, Dominik Heider, Andreas Holzinger, Walter
Hötzendorfer, Jan Hospes, Tim Kacprowski, Markus Kastelitz, Markus List,
Rudolf Mayer, Mónika Moga, Heimo Müller, Anastasia Pustozerova, Richard
Röttger, Christina C Saak, Anna Saranti, Harald H H W Schmidt, Christof
Tschohl, Nina K Wenke, Jan Baumbach. Originally published in the Journal
of Medical Internet Research (https://www.jmir.org), 12.07.2023.

This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work, first published in the Journal of
Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on https://www.jmir.org/, as
well as this copyright and license information must be included.

Additional supplementary material

Supplementary data are available online at JMIR https://www.jmir.org/

2023/1/e42621#app1
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3.3 Publication 3: Federated Survival SVM

The article Privacy-Preserving Federated Survival Support Vector
Machines for Cross-Institutional Time-To-Event Analysis: Algorithm
Development and Validation was published online at JMIR AI (JAI) on
March 29th, 2024. The full publication is available in Appendix A.3

Citation

Julian Späth, Zeno Sewald, Niklas Probul, Magali Berland, Mathieu Almeida,
Nicolas Pons, Emmanuelle Le Chatelier, Pere Ginès, Cristina Solé, Adrià
Juanola, Josch Pauling, and Jan Baumbach. Privacy-preserving federated
survival support vector machines for cross-institutional time-to-event analysis:
Algorithm development and validation. JMIR AI, 3:e47652, Mar 2024. doi:
https://doi.org/10.2196/47652

Summary

Federated Learning has become an efficient tool to enable multi-institutional
data analysis without sharing the actual raw data. However, many algorithms
are still not available and accessible for federated learning in clinical analysis. In
this publication, the authors aimed to develop and validate a privacy-preserving
and federated survival SVM algorithm that is easily applicable and accessible.
The authors extended the centralized survival SVM algorithm to work in a
federated environment and implemented it as an app in the FeatureCloud
platform, which is freely and openly available in the FeatureCloud AI store.
Finally, the authors evaluated the algorithm on three benchmark datasets, one
real-world microbiome dataset, and a synthetic large sample size dataset for
various number of clients and compared it to the centralized method. The
authors could show that the federated version is highly similar to the centralized
version for all datasets and scenarios, with only minimal differences in c-index
and model weights of the final model. Furthermore, they showed the high
importance of including more sites in the analysis to increase sample size.

Availability

The data sets generated and analyzed during this study are avail-
able in the GitHub repository (https://github.com/julianspaeth/
federated-survival-svm). The code for the implementation of the feder-
ated survival SVM is available in the GitHub repository (https://github.
com/FeatureCloud/fc-survival-svm). The microbiome data set is not pub-
licly available due to privacy regulations but is available from the corresponding
author on reasonable request.

https://doi.org/10.2196/47652
https://github.com/julianspaeth/federated-survival-svm
https://github.com/julianspaeth/federated-survival-svm
https://github.com/FeatureCloud/fc-survival-svm
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Author contribution

The author of this thesis conceptualized this work and was mainly responsible
for the content. He developed and implemented the federated survival SVM
algorithm and FeatureCloud app together with Zeno Sewald. The writing was
mainly performed by the author of this thesis, with the help of Niklas Probul.
Preprocessing of the microbiome dataset, as well as explaining the methodology
of the dataset, was performed by Magali Berland, Mathieu Almeida, Nicolas
Pons, and Emmanuelle Chatelier. Pere Ginès, Cristina Solé, and Adrià Juanola
were responsible for the generation and provision of the microbiome dataset.
Josch Pauling and Jan Baumbach supervised the work and provided valuable
feedback on the conception and development of the work, as well as support in
writing the publication.

Rights and permissions

©Julian Späth, Zeno Sewald, Niklas Probul, Magali Berland, Mathieu Almeida,
Nicolas Pons, Emmanuelle Le Chatelier, Pere Ginès, Cristina Solé, Adrià
Juanola, Josch Pauling, Jan Baumbach. Originally published in JMIR AI
(https://ai.jmir.org), 29.03.2024.

This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR AI, is properly cited.
The complete bibliographic information, a link to the original publication on
https://www.ai.jmir.org/, as well as this copyright and license information
must be included.

Additional supplementary material

Supplementary data are available online at JMIR AI https://ai.jmir.org/
2024/1/e47652
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4. Discussion and Outlook

The large amount of biomedical data generated by the digitalization of health-
care, as well as cheaper and faster sequencing technologies, have drastically
accelerated biomedical research in the last decade. Especially, the application
of ML algorithms enabled the extraction of knowledge from large amounts of
biomedical data and the identification of novel biomarkers or therapies. This
valuable biomedical data is now available and used for data analysis and re-
search. Although this biomedical is now being collected systematically, it often
highly sensitive regarding privacy and scattered across different institutions.
This makes the data difficult to access, as it cannot be easily shared with other
institutions, nor easily collected centrally due to privacy regulations worldwide.
In time-to-event analysis, which is a common evaluation tool in clinical studies,
data is frequently collected from different institutions to increase sample size
(multicenter studies). Collecting this data at a central institution to enable ML
and other data analyses comes with high bureaucratic efforts. For a long time,
ML research solely focused on analyzing centrally collected data. This focus
shifted in 2017 with the introduction of FL as a novel concept for applying
ML on geographically distributed datasets [14]. Since then, lots of research has
been performed to address the open challenges of FL, such as communication
efficiency or accuracy [64, 95].

Unfortunately, most of the existing FL solutions are still not accessible to
researchers without profound knowledge regarding federated infrastructure or
deployment. This is a massive hurdle, especially for clinicians and biomedical
researchers without proper training in informatics and programming. Another
issue is that most of the existing FL tools solely focused on DL algorithms.
While DL is certainly one of the most popular ML approaches today, it is
not the best choice for each problem. For example, it is not appropriate for
datasets with low sample sizes, due to factors like overfitting or sampling bias
[96]. However, a small sample size is often the standard in biomedical research
or clinical studies. Datasets with hundreds of thousands of samples are the
exception, even when applying FL to make use of the data from multiple
data centers. Another issue is the fact that DL requires state-of-the-art GPU
hardware, which is usually not available in hospitals or small research labs.
This is one reason why in biomedical or clinical research, other ML methods
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are sometimes preferred over DL. Methods such as RF, SVM, and differential
expression analysis, or GWAS for the analysis of OMICS data, as well as
time-to-event analysis algorithms for clinical studies, are broadly used and work
efficiently even without GPU hardware. A considerable gap in FL research
is therefore the focus on various biomedical and clinical algorithms such as
time-to-event analysis. In the past, only a few theoretical FL approaches were
developed, and practical, usable solutions do still not exist.

The purpose of this dissertation is to fill this gap and make FL available
for clinicians and researchers working in the biomedical field. To achieve this,
several commonly used ML and time-to-event analysis algorithms have been
extended to be applicable in a federated environment. Additionally, an easy-to-
use infrastructure has been provided to make them available and accessible for
the research community. A high focus in the implementation of the algorithms
was on protecting the privacy of the potentially sensitive data. Therefore,
the results of this dissertation support additional PETs to securely exchange
model parameters using additive secret sharing or hiding the sensitive results
of survival curves using DP.

The performed research was published in multiple publications, of which
three are part of this dissertation. In publication 1 (section 3.1), a platform
for privacy-aware time-to-event analysis (Partea) has been implemented. The
platform incorporates various federated implementations of the most commonly
used time-to-event algorithms (survival curves, hazard rate, log-rank test, and
Cox proportional hazard model), and makes them available in an intuitive
user interface. In publication 2 (section 3.2), the FeatureCloud platform for
FL in biomedicine has been introduced, which enables the development of FL
methods without taking care of the necessary infrastructure. The integrated
AI store takes care of the deployment of the developed methods, making them
accessible for the actual users for running FL workflows. In publication 3
(section 3.3), the FeatureCloud platform has been used to implement and
evaluate a federated survival SVM. All federated algorithms implemented in
the three publications were evaluated in depth on various datasets and different
client scenarios. They achieved highly similar or in some cases even identical
results to their corresponding centralized approach.

The results of this dissertation extend the current research field of FL, dom-
inated by DL and theoretical approaches, by introducing new platforms, tools,
and algorithms for federated clinical time-to-event analysis and biomedicine.
Further, the results of this dissertation show that many algorithms that were
not yet considered in FL research produce accurate results while maintaining a
high level of privacy. The developed algorithms are not just introduced on a
theoretical and mathematical level, but are accessible through intuitive web
apps without programming knowledge by using GUIs. For this reason, they
are available for clinicians and researchers without profound knowledge about
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FL infrastructure and programming. As shown in Table 4.1, the developed
methods in this dissertation extend the current state-of-the-art (as previously
described in section 2.5) by combining various algorithms in one tool, providing
open-source code for maintainability and expendability, as well as improving
accessibility through GUIs.

Table 4.1: Developed solutions of this dissertation compared to the existing
solutions in federated time-to-event analysis. ACC=accuracy, FL=Federated
Learning, PET=privacy-enhancing technology, KM=Kaplan-Meier estimator,
NA=Nelson-Aalen estimator, LRT=log-rank test, COX=Cox model, OS=open
source, GUI=graphical user interface, *Accuracy depends on the implementation

Method ACC FL PET KM NA LRT COX OS GUI

WebDISCO [30] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

ODAC [79] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

FAMHE [31] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

AusCAT [32] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

dsSurvival [83] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Partea [34] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FeatureCloud [35] * ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Moreover, the results of the dissertation, indicate that centralized data
collection in time-to-event analysis or biomedical data analysis is not neces-
sarily needed to obtain accurate results. FL can be a serious alternative to
keeping control over sensitive institutional data, such as patient data, but still
collaborating with other institutions or providing this data for analyses and
studies.

Besides the achievements, there are still limitations that could not be
addressed in this dissertation. One limitation that was not specifically addressed
is communication efficiency. The hybrid approaches used in this dissertation are
based on consists of a combination of FL and SMPC. As currently an additive
secret sharing scheme is used, communication efficiency could be enhanced by
replacing it with a more efficient scheme, such as Shamir’s secret sharing.

Another problem that still exists is data harmonization between different
institutions. FL in general expects datasets in a common structure across
different participants. This might affect the names of the features, the order
of the features, or the metric, in which a certain feature is documented (e.g.,
height of a patient in meters or centimeters). For analyses based on raw data,
such as sequencing data, preprocessing could be part of the FL pipeline already.
As an example, a common preprocessing could be implemented as an app in
FeatureCloud to harmonize and standardize the input data for the FL algorithm.
However, in most cases the participating institutions need to make sure that
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their datasets are harmonized. A possibility to achieve this is to define data
standards before the analysis starts and communicate them to all participants.
For studies, this is often declared in a data collection strategy. Clearly, future
research should focus on simplifying this problem to ensure compatible data
across the participants. A related issue is fairness in FL, where a trained
FL might be biased towards the dataset of a specific participating institution.
This was neither a focus of this dissertation, but is an important topic that is
currently investigated in the research community and should be further in the
future [97, 98, 99].

Finally, a critical focus in the future should be the privacy of the patient
data and the accordance of the methods to privacy regulations. Currently,
there are still no clear regulatory requirements for FL. As the exchanged, local
models trained on personal data are themselves personal data according to
GDPR, the combination with PETs is required [100]. Although the results
of this dissertation use PETs already, further research should focus more on
the concordance with regulatory requirements and to create a better picture of
which measures are appropriate to satisfy the requirements.

As shown in this dissertation, privacy-aware FL has the potential to change
the way data analysis and machine learning is performed in clinical (time-to-
event) studies and research in the future. Each institution can keep control over
their sensitive data, and studies and analyses can be performed collaboratively
with other institutions without raw data sharing. This can possibly accelerate
the access to larger sample sizes and more diverse datasets, especially when
considering privacy regulations. One application, where this could play a major
role in the future, is the research of rare diseases. Patients might be scattered
across the whole world, and obtaining a large enough sample size is challenging
even when considering the data of a whole country.



Bibliography

[1] Kris A Wetterstrand. DNA sequencing costs: Data from the
NHGRI genome sequencing program (GSP). www.genome.gov/

sequencingcostsdata, March 2019. Accessed: 2023-1-24.

[2] Nishu Dalal, Rekha Jalandra, Minakshi Sharma, Hridayesh Prakash,
Govind K Makharia, Pratima R Solanki, Rajeev Singh, and Anil Kumar.
Omics technologies for improved diagnosis and treatment of colorectal
cancer: Technical advancement and major perspectives. Biomedicine &
Pharmacotherapy, 131:110648, 2020.

[3] Christine M Micheel, Sharly J Nass, Gilbert S Omenn, Board on Health
Care Services, Board on Health Sciences Policy, and Institute of Medicine.
Omics-Based Clinical Discovery: Science, Technology, and Applications.
National Academies Press (US), March 2012.

[4] Adam Bohr and Kaveh Memarzadeh. The rise of artificial intelligence
in healthcare applications. Artificial Intelligence in Healthcare, page 25,
2020.

[5] David G Kleinbaum and Mitchel Klein. Survival Analysis: A Self-Learning
Text, Third Edition. Springer New York, August 2011.

[6] Jaclyn M Beca, Kelvin KW Chan, David MJ Naimark, and Petros
Pechlivanoglou. Impact of limited sample size and follow-up on single event
survival extrapolation for health technology assessment: a simulation
study. BMC Medical Research Methodology, 21(1):1–12, 2021.

[7] Junjun Zhang, Rosita Bajari, Dusan Andric, Francois Gerthoffert, Alexan-
dru Lepsa, Hardeep Nahal-Bose, Lincoln D Stein, and Vincent Ferretti.
The international cancer genome consortium data portal. Nature biotech-
nology, 37(4):367–369, 2019.

[8] Robert L Grossman, Allison P Heath, Vincent Ferretti, Harold E Varmus,
Douglas R Lowy, Warren A Kibbe, and Louis M Staudt. Toward a
shared vision for cancer genomic data. New England Journal of Medicine,
375(12):1109–1112, 2016.

37

www.genome.gov/sequencingcostsdata
www.genome.gov/sequencingcostsdata


38 BIBLIOGRAPHY

[9] Elliott Antman. Data sharing in research: benefits and risks for clinicians.
BMJ, 348, 2014.

[10] Luc Rocher, Julien M Hendrickx, and Yves-Alexandre De Montjoye.
Estimating the success of re-identifications in incomplete datasets using
generative models. Nature communications, 10(1):1–9, 2019.

[11] W Nicholson Price and I Glenn Cohen. Privacy in the age of medical big
data. Nature medicine, 25(1):37–43, 2019.

[12] Becky McCall. What does the gdpr mean for the medical community?
The Lancet, 391(10127):1249–1250, 2018.

[13] Sarah Batson, Gemma Greenall, and Pollyanna Hudson. Review of the
reporting of survival analyses within randomised controlled trials and the
implications for meta-analysis. PLoS One, 11(5):e0154870, 2016.

[14] Brendan McMahan and Daniel Ramage. Federated learning: Collabora-
tive machine learning without centralized training data. Google Research
Blog, 3, 2017.

[15] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Aarti Singh and Jerry Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research,
pages 1273–1282. PMLR, 2017.

[16] Micah J Sheller, Brandon Edwards, G Anthony Reina, Jason Martin,
Sarthak Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel
Marcus, Rivka R Colen, et al. Federated learning in medicine: facilitating
multi-institutional collaborations without sharing patient data. Scientific
reports, 10(1):1–12, 2020.

[17] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioan-
nis Ch Paschalidis, and Wei Shi. Federated learning of predictive models
from federated electronic health records. International journal of medical
informatics, 112:59–67, 2018.

[18] Songtao Lu, Yawen Zhang, and Yunlong Wang. Decentralized federated
learning for electronic health records. In 2020 54th Annual Conference
on Information Sciences and Systems (CISS), pages 1–5. IEEE, 2020.

[19] Trung Kien Dang, Xiang Lan, Jianshu Weng, and Mengling Feng. Fed-
erated learning for electronic health records. ACM Transactions on
Intelligent Systems and Technology (TIST), 13(5):1–17, 2022.



BIBLIOGRAPHY 39

[20] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare
Gentili, Anas Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Brad-
ford J Wood, Chien-Sung Tsai, et al. Federated learning for predicting
clinical outcomes in patients with covid-19. Nature medicine, 27(10):1735–
1743, 2021.

[21] Adnan Qayyum, Kashif Ahmad, Muhammad Ahtazaz Ahsan, Ala Al-
Fuqaha, and Junaid Qadir. Collaborative federated learning for healthcare:
Multi-modal covid-19 diagnosis at the edge. IEEE Open Journal of the
Computer Society, 3:172–184, 2022. doi:10.1109/OJCS.2022.3206407.

[22] Sadaf Naz, Khoa T Phan, and Yi-Ping Phoebe Chen. A comprehensive
review of federated learning for covid-19 detection. International Journal
of Intelligent Systems, 37(3):2371–2392, 2022.

[23] Scott D Constable, Yuzhe Tang, Shuang Wang, Xiaoqian Jiang, and
Steve Chapin. Privacy-preserving gwas analysis on federated genomic
datasets. In BMC medical informatics and decision making, volume 15
(Suppl 5), pages 1–9. BioMed Central, 2015.

[24] Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed, Feng Chen,
Xiaoqian Jiang, and Shuang Wang. Safety: secure gwas in federated
environment through a hybrid solution. IEEE/ACM transactions on
computational biology and bioinformatics, 16(1):93–102, 2018.

[25] Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian Matschinske, To-
bias Frisch, Markus List, Julian Späth, Stefan Weiss, Uwe Völker, Esa
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A survey and guideline on privacy enhancing technologies for collaborative
machine learning. IEEE Access, 10:97495–97519, 2022.

[69] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis, 2006.

[70] Cynthia Dwork. Differential privacy, 2006.

[71] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
STOC ’09, pages 169–178, New York, NY, USA, May 2009. Association
for Computing Machinery.

[72] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL,
January 2023.

[73] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam,
Royce Wilson, Asra Ali, Eric P Astor, Itai Zukerman, Sam Ruth,
Christoph Dibak, Phillipp Schoppmann, Sasha Kulankhina, Alain Forget,
David Marn, Cameron Tew, Rafael Misoczki, Bernat Guillen, Xinyu
Ye, Dennis Kraft, Damien Desfontaines, Aishe Krishnamurthy, Miguel
Guevara, Irippuge Milinda Perera, Yurii Sushko, and Bryant Gipson. A
general purpose transpiler for fully homomorphic encryption. Cryptology
ePrint Archive, Paper 2021/811, 2021.

[74] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[75] Ronald Cramer, Ivan Bjerre Damgard, and Jesper Buus Nielsen. Secure
multiparty computation and secret sharing, 2015.

[76] Adi Shamir. How to share a secret, 1979.

[77] Daniel Escudero. An introduction to Secret-Sharing-Based secure multi-
party computation. Cryptology ePrint Archive, 2022.

[78] Daniel Kales. Secret sharing. https://www.iaik.tugraz.at/

wp-content/uploads/teaching/mfc/secret_sharing.pdf. Accessed:
2023-1-20.

[79] Rui Duan, Chongliang Luo, Martijn J. Schuemie, Jiayi Tong, C. Jason
Liang, Howard H. Chang, Mary Regina Boland, Jiang Bian, Hua Xu,
John H. Holmes, Christopher B. Forrest, Sally C. Morton, Jesse A. Berlin,
Jason H. Moore, Kevin B. Mahoney, and Yong Chen. Learning from

https://github.com/Microsoft/SEAL
https://www.iaik.tugraz.at/wp-content/uploads/teaching/mfc/secret_sharing.pdf
https://www.iaik.tugraz.at/wp-content/uploads/teaching/mfc/secret_sharing.pdf


BIBLIOGRAPHY 45

local to global: An efficient distributed algorithm for modeling time-to-
event data. Journal of the American Medical Informatics Association,
27:1028–1036, 7 2020. doi:10.1093/jamia/ocaa044.

[80] Patricia Guyot, AE Ades, Mario JNM Ouwens, and Nicky J Welton.
Enhanced secondary analysis of survival data: reconstructing the data
from published kaplan-meier survival curves. BMC medical research
methodology, 12:1–13, 2012.

[81] Zhihui Liu, Benjamin Rich, and James A Hanley. Recovering the raw
data behind a non-parametric survival curve. Systematic reviews, 3:1–10,
2014.

[82] Amadou Gaye, Yannick Marcon, Julia Isaeva, Philippe LaFlamme, An-
drew Turner, Elinor M Jones, Joel Minion, Andrew W Boyd, Christo-
pher J Newby, Marja-Liisa Nuotio, et al. Datashield: taking the analysis
to the data, not the data to the analysis. International journal of epi-
demiology, 43(6):1929–1944, 2014.

[83] Soumya Banerjee, Ghislain N Sofack, Thodoris Papakonstantinou,
Demetris Avraam, Paul Burton, Daniela Zöller, and Tom RP Bishop.
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Abstract

Clinical time-to-event studies are dependent on large sample sizes, often not available at a

single institution. However, this is countered by the fact that, particularly in the medical field,

individual institutions are often legally unable to share their data, as medical data is subject

to strong privacy protection due to its particular sensitivity. But the collection, and especially

aggregation into centralized datasets, is also fraught with substantial legal risks and often

outright unlawful. Existing solutions using federated learning have already demonstrated

considerable potential as an alternative for central data collection. Unfortunately, current

approaches are incomplete or not easily applicable in clinical studies owing to the complex-

ity of federated infrastructures. This work presents privacy-aware and federated implemen-

tations of the most used time-to-event algorithms (survival curve, cumulative hazard rate,

log-rank test, and Cox proportional hazards model) in clinical trials, based on a hybrid

approach of federated learning, additive secret sharing, and differential privacy. On several

benchmark datasets, we show that all algorithms produce highly similar, or in some cases,

even identical results compared to traditional centralized time-to-event algorithms. Further-

more, we were able to reproduce the results of a previous clinical time-to-event study in vari-

ous federated scenarios. All algorithms are accessible through the intuitive web-app Partea

(https://partea.zbh.uni-hamburg.de), offering a graphical user interface for clinicians and

non-computational researchers without programming knowledge. Partea removes the high

infrastructural hurdles derived from existing federated learning approaches and removes

the complexity of execution. Therefore, it is an easy-to-use alternative to central data collec-

tion, reducing bureaucratic efforts but also the legal risks associated with the processing of

personal data to a minimum.
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Author summary

Collecting data centrally from different sites in the clinical time-to-event analysis is still

challenging due to the high bureaucratic effort and strict data protection laws such as the

GDPR. However, huge datasets are needed to extract valuable insights from the data by

applying statistical and machine learning approaches. Current approaches are still incom-

plete: they often do not address privacy issues in any depth, have inaccessible user inter-

faces, do not cover multiple algorithms, or are not open-source. In contrast, the approach

we present in this work is an open-source tool for privacy-aware time-to-event analysis

(Partea) that can be intuitively used by clinicians, statisticians, and other researchers. It

allows the users to run state-of-the-art privacy-aware time-to-event analysis on data dis-

tributed between multiple sites through an easy-to-use interface and solves technical and

legal issues for the underlying technologies.

1. Introduction

Time-to-event analysis is a standard tool in clinical trials to model censored data [1]. In these

data, the event of interest (e.g. death or relapse) is not necessarily observed until the end of the

study, making usual statistical methods unemployable [2]. Time-to-event analysis is often

applied in clinical trials that are designed to identify significant survival-related biomarkers or

compare the efficacy of drugs [3–5]. As with many statistical analyses, large sample sizes are

needed to produce reliable results and reduce bias. These large sample sizes are usually not

available at a single institution. Therefore, different research institutions frequently participate

in joint studies using a central data collection strategy. Owing to strict privacy regulations,

such as the European General Data Protection Regulation (GDPR), collecting data centrally

from different institutions is challenging, imposes substantial bureaucratic burdens, and might

even be illegal in some cases [6,7]. Common approaches in clinical data sharing, such as de-

identification or anonymization, come with a trade-off between data privacy and data quality

[8]. If de-identification is not sufficiently strong, re-identification attacks can still reveal sensi-

tive patient information [9,10]. Successful re-identification of shared anonymized data would

harm data subjects in their fundamental right to privacy, thereby exposing the associated

researchers to severe legal penalties. This is but one example of how crucial privacy-aware

analysis of sensitive biomedical data is for the analysis of clinical studies.

Federated learning (FL) was developed to overcome these obstacles by enabling data analy-

sis on geographically distributed data and keeping the sensitive data private [11,12]. FL allows

the training of statistical models without sharing the raw data that contains private informa-

tion about patients. Only summary statistics or model parameters, so-called local models, are

shared with a trusted central aggregator [13]. These local models also fall under GDPR rules if

they are generated from personal data. Still, FL systems can add technical security measures to

make aggregation possible in a way that would not be the case with the data itself. One funda-

mental measure is encryption, preventing the aggregation server from being able to mount

reconstruction attacks. Moreover, a combination of FL and privacy-enhancing technologies

(PETs), such as additive secret sharing or differential privacy (DP), is needed to increase the

privacy and security of the whole analysis, reduce the need for trust in the aggregation server,

and ensure compliance with data protection laws [14–16]. Such a combination of FL and PETs

is often called a hybrid approach. FL or hybrid implementations of various algorithms have

already been shown to deliver accurate results in different biomedical applications, such as
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genome-wide association studies [17,18], differential gene expression analysis [19], the analysis

of electronic health records [20], or the prediction of patient outcomes with COVID-19 [21].

For time-time-to-event analysis, the first privacy-preserving and federated approaches were

already developed in recent years. A concept of a distributed time-to-event regression was

published by Lu et al. in 2015 [22]. WebDISCO was a web platform for distributed Cox propor-

tional hazards models without patient-level data sharing. Another approach for calculating

federated survival functions using multi-party homomorphic encryption was published by

Froelicher et al. in 2021, being the first hybrid approach with an enhanced focus on privacy

[23]. The current approaches already show the high potential of FL for time-to-event analysis,

however, they do not offer fully extensive solutions. WebDISCO is not maintained any longer

and does not consider PETs, requiring a high trust in the aggregating server and making it a

potential point of cyber-attack [24]. Also, it only supports the Cox proportional hazards model

and no other time-to-event algorithms. Froelicher et al. strongly focused on the privacy of the

raw data and the exchanged model parameters. However, while their approach offers a strong

level of privacy, the resulting survival curves can still leak information about the included

patients without much effort [25]. Also, they solely focused on one type of algorithm, the

Kaplan-Meier estimator. Another disadvantage is that their tool is unavailable to the general

public, and their implementation is not open-source. A comprehensive toolset of widely used

time-to-event algorithms is needed that is straightforward to understand and intuitive to set

up and use. Ideally, it should reduce technical hurdles to a minimum, achieving similar results

to the centralized approaches while preserving the patients’ privacy and being GDPR compli-

ant. Furthermore, when it comes to privacy-aware methods, open-source solutions have tre-

mendous advantages by revealing the source code and therefore increasing the trust in the

software. Also, open-source software enables future maintenance, security updates, commu-

nity-driven development, and code usage in other projects. From a data privacy perspective,

the open-source approach has the potential to maintain privacy through faster discovery and

remedy of vulnerabilities. At the same time, it poses the risk of hackers exploiting their access

to the code. However, from a technical point of view, this risk is not necessarily higher than in

closed-source software [26].

To address the existing problems, we propose easily applicable, privacy-aware, federated

implementations of the most widely used algorithms in clinical time-to-event studies: survival

function, cumulative hazard function, log-rank test, and Cox proportional hazards model. Our

implementations are based on a hybrid approach of FL and additive secret sharing to increase

the privacy of FL by hiding the shared local statistics and model parameters from the global

aggregator [27]. We extended the federated survival function, cumulative hazard function, and

log-rank test by a previously published approach to render the resulting outputs differentially

private and reduce the privacy leakage of published data [28]. Moreover, we extended the fed-

erated Cox proportional hazards model to support L1- and L2 penalization, which was not

supported before in WebDISCO. We demonstrate that our approach performs as well as cen-

tralized approaches. Additionally, we reproduced a multi-institutional clinical study with cen-

tralized data collection with very high similarity. All methods are accessible through the open-

source platform Partea (https://partea.zbh.uni-hamburg.de), enabling complete transparency

about the implementations and allowing for further maintenance and extendibility by the

community. The platform provides an entire federated infrastructure and makes privacy-

aware multi-institutional time-to-event analysis accessible and ready for clinicians, statisti-

cians, and bioinformaticians without deeper technical knowledge. It also incorporates PETs

that represent the state-of-the-art in data privacy and ensure sufficient data protection to

enable GDPR compliance even in large, complex collaborations. The entire source code is

available on GitHub (https://github.com/federated-partea).
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2. Materials and methods

2.1 Implementation

In this work, we implemented a hybrid approach combining FL and additive secret sharing to

enable privacy-aware multi-institutional time-to-event analysis without central data collection.

The FL architecture consists of local clients handling sensitive data analysis at each participat-

ing site and a global aggregation server that receives the local parameters from each site to

incorporate them into a common, global model. At the beginning of each project, the public

keys of each site are exchanged with all other sites. After that, our workflow consists of five

major steps, as illustrated in Fig 1. (1). Each site creates a secret of its exchanging parameters

for each other site, which, summed up together, will reveal the actual parameters again. Each

secret is encrypted by the public key of a certain site, and can therefore only be decrypted by

this site. (2) The server collects all secrets and distributes them to the corresponding sites. (3)

Each site decrypts the received secrets using its private key and sums them up. (4) The

summed-up parameters still do not reveal any information and are sent to the aggregation

server. (5) Finally, the server sums up the received sums of each site to obtain the actual global

aggregate and broadcast it to the local sites. For algorithms with an iterative approach, such as

the Cox proportional hazards model, the whole process from step (1) to (5) is repeated until

convergence or a stopping criterion has been reached.

The main advantage of this hybrid combination of FL and additive secret sharing is that

participants and the aggregating server can only see the global aggregate of the calculation.

They are not able to identify or reconstruct any of the exchanged parameters by still maintain-

ing almost identical results. With this approach, we implemented privacy-aware and federated

methods for the most commonly used time-to-event algorithms in clinical trials: the Kaplan-

Fig 1. Hybrid federated learning workflow using additive secret sharing. Each institution calculates its local statistics and creates a secret for each participant

(1). The global aggregation server receives the secrets and distributes them to the corresponding participants (2). Each local client decrypts the secrets and sums

them up (3). The sum is shared with the global aggregation server (4), which sums them up again, revealing the final global aggregation (5). Created with

Biorender.com.

https://doi.org/10.1371/journal.pdig.0000101.g001
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Meier estimator for estimating the survival function [29], the Nelson-Aalen estimator for esti-

mating the cumulative hazard function [30], the log-rank test for the comparison of two indi-

vidual cohorts [31], and the Cox proportional hazards model for time-to-event regression

[32,33].

Previous work has shown that it is possible to reconstruct the time of the event and event

status directly from the survival function [34,35]. This potential leak in privacy also occurs in

survival functions computed on centrally collected datasets. DP can be used to address this

potential limitation. In DP, random noise is added to a model to hide the characteristics of

individual data points. The noise level is chosen to prevent re-identification but not change the

global properties of the dataset [36,37]. Therefore, we integrated the functionality of differen-

tially private survival functions, cumulative hazard function, and log-rank test as proposed by

Gondara et al. in 2020 into our approach. The authors added random Laplacian noise to the

number of events, subjects at risk, and censored individuals for each time point [28].

All algorithms are accessible through the “Partea—Privacy-AwaRe Time-to-Event Analy-

sis” platform, making them easily applicable in clinical trials. Partea consists of three main

parts: (1) a global web frontend (Angular) to create federated projects, invite participants and

visualize the results; (2) a local client application running on all major operating systems

(Ubuntu, macOS, Windows) for local computations on sensitive data; (3) and a server for han-

dling the data communication (Django). Through its intuitive user interface, Partea is not

only applicable to statisticians or (bio)informaticians but can also be used by clinicians or biol-

ogists without programming knowledge. After creating a new study and adjusting several ini-

tial settings, the study coordinator can invite other participants by sharing unique invitation

tokens. With these tokens, an invited participant can join the project through the local Partea
client, choose its local dataset, and follow the progress of the federated study through the web

app. After every participant has joined and the clients are running, the study coordinator can

start the federated analysis through the web app. After the run, all results are available through

the web app and can be explored interactively or downloaded.

2.2 Federated time-to-event analysis algorithms

2.2.1 Survival function, cumulative hazard function, and log-rank test. The survival

function S(t) and cumulative hazard function H(t) are defined as:

S tð Þ¼
Y

ti�t
1 �

di
ni

� �

;H tð Þ ¼
X

ti�t

di
ni

In our federated approach, each participating site k calculates the number of events dik and

the number of individuals at risk nik locally for each time point ti and shares the resulting

matrix mk with the global aggregator. The aggregator sums up di and ni of all K sites, leading to

the formula for the federated survival function, and federated cumulative hazard function

Hfed(t):

Sfed tð Þ¼
Y

ti�t
1 �

P
k�KdikP
k�K nik

 !" #

;Hfed tð Þ ¼
X

ti�t

P
k�KdikP
k�Knik

 !

Only counts of the observed events and of the individuals at risk are exchanged with the

server to calculate the global survival function Sfed(t) and cumulative hazard function Hfed(t)
by the global aggregator. Using the additive secret sharing scheme for data exchange, the

aggregating server can only see the aggregated, global matrix m instead of all local matrices mk

that are being received, leading to a similar level of privacy as the centralized approach.
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We further extended the approach to allow for the comparison of different cohorts or study

groups using the log-rank test. For this comparison, each site needs an additional column in

their input data indicating the corresponding group or cohort. For each group c, a separate

matrix mck is calculated locally and aggregated to a global matrix m by the global aggregator.

Based on this strategy, a pairwise federated log-rank test statistic X2
fed can be calculated centrally

at the aggregator using the expected (E) and observed (O) values of each group pair A and B:

X2

fed ¼
ðOA � EAÞ

EA

2

þ
ðOB � EBÞ

EB

2

with

OA ¼
X

i

X

k�K

dAik
� �

;OB ¼
X

i

X

k�K

dBik
� �

and

EA ¼
X

i

P
k�Kn

A
ik � dikP

k�Knik
;EB ¼

X

i

P
k�Kn

B
ik � dikP

k�Knik
;

2.2.2 Federated Cox proportional hazards model. Further, we reimplemented the Web-

DISCO [22] approach for the Cox proportional hazards model to enable federated time-to-

event regression and extended it by the additive secret sharing scheme. Our implementation is

based on lifelines, an open-source, state-of-the-art Python package for time-to-event analysis

[38].

As WebDISCO did not address any normalization, we extended the approach with a feder-

ated z-score normalization. For this purpose, two exchanges with the server are needed. The

local mean mk and the local number of samples nk for each site k and covariate are calculated

and shared with the global aggregator to calculate the global mean m and share it with the local

sites. Thereafter, each site uses the global mean m to compute their local ∑ikXi−mk2 and shares

it with the global aggregator to calculate the global standard deviation. This result is broadcast

to the local sites again and used to normalize their local data, resulting in the formula for feder-

ated z-score normalization:

Xfed;normk
¼
Xk � mfed

sfed
;mfed ¼

P
k�Kmk � nkP

k�Knk
; sfed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k�K

P
ikXik � mfedk

2

ð
P

k�KnkÞ � 1

 !v
u
u
t

We perform the initialization similar to as was done in the WebDISCO approach. After nor-

malization, each site initializes the model statistics based on its local data. These statistics

remain the same for the entire training process and are aggregated to the initialized global sta-

tistics on the aggregation server.

• Dk: distinct event times of site k

• dk: number of events at each time point i of site k

• zk: sum of the covariates over all individuals with an event that occurred at site k

resulting in the global aggregates:

D ¼ Uk�KDk; d ¼
X

k�K

dk; z ¼
X

k�K

zk

Furthermore, the beta vector containing the coefficient values is initialized with zeros. In

our hybrid approach, instead of sharing the distinct event times of each site k we share a
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common, predefined timeline. This hides the actual distinct event times of each site from the

global aggregator and assures higher privacy.

Iteratively, until convergence, the global beta vector is broadcasted to the clients and the

local statistics are calculated and shared again with the global aggregator:
X

l2Ri

expðbTzlÞ;
X

l2Ri

zlq � expðb
TzlÞ;

X

l2Ri

zlr � z
l
q � expðb

TzlÞ

with Ri being the index set of individuals who are at risk for failure at the time i. The global

aggregator then calculates the first and second-order derivates of the likelihood function,

updates the beta vector according to the Newton-Raphson method, and if convergence is not

achieved, a new iteration starts.

We further extended the WebDISCO approach, to make use of lifelines penalized regression

functionality and allow the use of both L1 and L2 penalties by specifying the l1-ratio (α) and

penalty (p):

1

2
pðð1 � aÞ � kbk2

2
þ a � kbk

1
Þ

After convergence, the final coefficients of the model are known and can be used to prepare

the final plots and statistics, such as p-values and hazard ratios for each covariate.

3. Results

3.1 Benchmark evaluation

To evaluate the performance of our approach, we ran analyses on four benchmark datasets

that are commonly used in time-to-event analysis: US Veterans’ Administration lung cancer

study data [39] (Veteran, 137 samples), NCCTG lung cancer data [40] (Lung, 168 samples),

criminal recidivism data [41] (Rossi, 432 samples), and chemotherapy for Stage B/C colon can-

cer trial data [42] (Colon, 888 samples). More details about the datasets can be found in the

supporting information, S1 Text. Each dataset was split randomly and equally into 3, 5, and 10

parts to simulate various federated scenarios with different numbers of sites and sample sizes.

For this, we simulated a federated environment using docker. Each site’s local client was exe-

cuted in a separate docker container to simulate network communication and different envi-

ronments of the local datasets realistically.

3.1.1 Survival function. We calculated the survival function for each federated scenario

using the federated approach (FL) and the hybrid approach of FL and additive secret sharing

(sFL). We compared it to the central survival function estimated using lifelines, a state-of-the-

art Python package for time-to-event analysis [38]. Both the federated and hybrid approaches

resulted in identical survival functions compared to the central analysis (lifelines) for all evalu-

ated datasets and scenarios of varying numbers of participants. The resulting survival curves

are shown in Fig 2. Owing to the same underlying statistics, this also proves that our FL and

sFL approach of the Nelson-Aalen estimator and the log-rank test provide identical results

compared to the central analysis.

3.1.2 Differentially private survival functions. We also included the functionality for dif-

ferentially private survival functions and evaluated the approach by comparing DP survival

functions to the actual non-DP survival functions. The main goal of this evaluation was to sug-

gest the privacy loss metric epsilon of the DP computation for future time-to-event analyses.

Note that this evaluation is independent of the federated computation, as both provide identi-

cal results. In the method for differentially private survival function estimation by Gondara

et al. in 2020, they show that the sensitivity of the survival function estimation is 1. With this
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sensitivity and a variable privacy loss metric epsilon, the amount of noise is calculated, which

is added to the survival function to guarantee a certain amount of privacy.

The smaller the privacy loss metric epsilon is, the more privacy is assured by the algorithm.

For each dataset, we ran 1000 simulations with different epsilons (3, 2, 1, and 0.75). We next

compared each differentially private function to the original non-DP function by applying a

log-rank test to test whether two functions significantly differ from each other. A significant

log-rank test means that the DP function is not similar to the actual function, making it inac-

curate in clinical studies. The results of the log-rank tests are depicted in the supporting infor-

mation, S1 Table.

As shown in Fig 3, the smaller epsilon is, the greater the resulting survival function differs

from the original non-DP survival function. This finding, and the fact that smaller sample

sizes are more affected by noise, match the observations in the original publication by Gondara

et al. and is a common observation when applying DP.

Using epsilons of 3 and 2 resulted in 100% non-significant differences between the differen-

tially private and non-differentially private survival function, using the log-rank test for all

datasets. Except for the two datasets with smaller sample sizes (Lung and Veteran), epsilon

equal to 1 and 0.75 led to significantly different survival functions in very few cases (worst

being Veteran with an epsilon of 0.75, resulting in 2.4% significantly different functions). This

observation indicates that, only in some rare cases, an epsilon of 1 and smaller can lead to too

much noise if the sample sizes are small. Again, our results of the DP survival function evalua-

tion are transferable to the Nelson-Aalen estimator and log-rank test as they are all calculated

using the same underlying statistics.

Based on this analysis, we suggest three predefined epsilons to reduce complexity and

understandability for users: “high DP” with an epsilon of 0.75, which can be applied if more

than 400 samples are available; “medium DP” with an epsilon of 1, which can be applied with

more than 200 samples; for smaller sample sizes, “low DP” for which an epsilon of 3 should be

used.

3.1.3 Cox proportional hazards model. Similarly to the evaluation of the survival func-

tion, we simulated a federated scenario using the Cox proportional hazards model to compare

the resulting logarithmized hazard ratio (HR) and its 95% confidence interval (CI). Fall data-

sets and the various number of participants, our federated-only approach, and the hybrid

approach resulted in almost identical hazard ratios and corresponding CI for all covariates. A

detailed overview of the comparison for each covariate and dataset is shown in Fig 4.

Fig 2. Evaluation of the survival function on benchmark datasets. For both the hybrid approach of FL and additive secret sharing (sFL, yellow) and the

federated-only approach (FL, blue), identical survival functions are achieved compared to lifelines’ Kaplan-Meier estimator (lifelines, red) for all four datasets

and the various number of participants.

https://doi.org/10.1371/journal.pdig.0000101.g002
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The evaluation shows that the federated-only approach is identical to the centralized Cox

proportional hazards model. The hybrid approach with additive secret sharing is slightly more

inaccurate because we not only transmit the timeline of the actual samples. Instead, a time

range is used, including intermediate time points not existing in the local datasets. This assures

Fig 3. Comparison of DP survival functions against the non-DP baseline. The non-DP survival function (red) is used as a baseline against 1000 runs of DP

survival functions for different epsilons and datasets. The resulting DP survival functions (blue) become noisier with decreasing epsilon. Note that the influence

of the noise increases with decreasing sample size.

https://doi.org/10.1371/journal.pdig.0000101.g003
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more privacy, as what timepoints are derived from which site is inapparent in the data

exchange. As we show on the four benchmark datasets, this slight inaccurateness does not

influence the overall interpretation of the results, which remain close to the centralized or fed-

erated-only results.

Fig 4. Evaluation of the Cox proportional hazards model on benchmark datasets. For each dataset, we compared the logarithmized hazard ratio and

corresponding 95% CI of our algorithms for 3, 5, and 10 clients with the results of the centralized lifelines model. For all covariates (distinguished by colors), the

federated-only (3, 5, 10) and hybrid approach (S3, S5, S10) resulted in almost identical results compared to the centralized calculation using lifelines (C).

https://doi.org/10.1371/journal.pdig.0000101.g004
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3.2 Reproduction of a clinical study

To show the practical benefit of our framework for actual clinical time-to-event studies, we

attempted to reproduce the results of the ENGAGE-TIMI 48 study conducted by the TIMI

study group [43]. The study data were collected by the TIMI study group as part of a phase

three, randomized, double-blind, double-dummy, parallel-group, multi-center, multi-national

study, ENGAGE-TIMI 48, and contains more than 21,000 participants [43] from initially

more than 1,300 sites. ENGAGE-TIMI 48 compared two different doses of edoxaban, a direct

oral factor Xa inhibitor, with warfarin to evaluate the long-term efficacy and safety in patients

with atrial fibrillation. Analyses were performed using a Cox proportional hazards model com-

paring each edoxaban dose group to warfarin and included the two randomization stratifica-

tion factors. For our analysis, we split the centralized dataset equally into 3, 5, and 10 sites. We

used the federated-only and hybrid Cox proportional hazards model to reproduce the results

for the five outcome variables: stroke or systemic embolic event (Stroke/see), stroke, see or

death from cardiovascular causes (Cv death/stroke/see), major adverse cardiac event (Mace),

Stroke, and All-cause death.

Fig 5 depicts the logarithmized hazard ratios for each of the five outcome variables (col-

umns) and covariates (indicated by different colors), calculated with our federated only (3, 5,

Fig 5. Federated time-to-event analysis of the ENGAGE-TIMI 48 study. Reproducing the ENGAGE-TIMI 48 study using 3, 5, and 10 clients (number) of

both federated-only and hybrid approaches (number + S) compared with the results of the central analysis (C). The different covariates (colors) were regressed

against five outcome variables (each subplot). The results of all five outcome variables and covariates are highly similar to the central analysis performed using

the lifelines package.

https://doi.org/10.1371/journal.pdig.0000101.g005
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10) and hybrid Cox proportional hazards model (3S, 5S, 10S). As apparent in the plots, our

results are highly similar to the centralized calculation (C). The number of sites over which the

data was distributed does not play any role. This shows that the federated, as well as the hybrid

Cox proportional hazard model could accurately reproduce the analysis of the ENGAGE-TIMI

48 study, indicating the high potential of our approaches for future multi-institutional time-

to-event studies.

4. Discussion

Clinical time-to-event studies are mainly performed on centralized data from one or more

institutions. If multiple institutions participate in one study, a complicated data collection

strategy is needed with high bureaucratic hurdles and legal pitfalls regarding the privacy

of the utilized data. Prior work has already shown the potential of privacy-aware distrib-

uted analysis techniques in time-to-event analysis. However, current approaches are not

complete. They either are not accessible, only support one kind of algorithm, do not inte-

grate PETs, or are not open-source. In this work, we introduced a hybrid approach of FL

and additive secret sharing for the most widely used time-to-event analysis algorithms:

the Kaplan-Meier estimator for survival functions, the Nelson-Aalen estimator for cumu-

lative hazard functions, the log-rank test, and the Cox proportional hazards model. All

algorithms are bundled in our open-source platform Partea, making them easily accessible

for usage in clinical trials and increasing trust and maintenance by having a published

code-base. Our analyses on several benchmark datasets and the reproduction of a previous

clinical study show highly similar results compared to central time-to-event studies. Our

platform Partea has the possibility of being an intuitive and privacy-aware alternative to

central data collection for future multi-institutional time-to-event studies with geographi-

cally distributed datasets.

The hybrid approach of FL and additive secret sharing can currently be considered state-of-

the-art, privacy-aware, and potentially GDPR compliant. However, evaluating the GDPR com-

pliance of machine learning systems is not trivial, owing to unclear criteria and definitions and

the lack of jurisprudence. Even though the status of local and global models as personal data is

still uncertain, it is very likely that the GDPR at least remains applicable to local models trained

on personal data [15,44]. Likewise, the extent to which the addition of PETs such as additive

secret sharing and DP is sufficient to result in GDPR compliance is not conclusively resolved.

These questions will need answers from the courts or legislators in the future. The flexibility of

Partea’s open-source architecture allows it to rapidly be adapted and extended with commu-

nity input in response to regulatory changes.

Open-source systems like Partea have further benefits compared to closed-source systems

regarding maintainability and transparency. The source code is openly visible, so everyone can

see how personal data is processed, increasing users’ trust. This is also relevant for controllers

of personal data, who are legally obligated under Article 32 of the GDPR to protect this data

according to the state of art in technical and organizational measures. In the case of open

source, the controller can show which PETs are used, how the program treats the data, what is

sent around, and whether it holds its promises. In case of any security or privacy issues, users

have a much higher chance of discovering this (legally relevant) breach and of holding the data

controller accountable. Another advantage is that security gaps can be identified more quickly

by the community. One downside of open-source is that it may also facilitate the identification

of the existing security breaches for the attackers. However, there are indications that this does

not lead to more attacks. In fact, experience has also shown that the security through obscurity

of closed-source systems is very brittle [26].
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In addition to these promising results, a few problems need to be considered, both technical

and legal. Our hybrid scheme is only applicable if at least three sites participate in the analysis.

In addition, it is apparent that the results of the hybrid approach differ slightly more from the

centralized and federated-only analysis, mainly owing to the stronger privacy mechanism we

implemented in this approach. Instead of sharing the exact distinct event times occurring at

each site, we use a predefined timeline, including times that do not appear in the local dataset.

This approach prevents the global aggregator from reading the event times of a single site.

However, users can still use the federated-only approach if they trust the global aggregation

server or work with non-sensitive data.

Another problem appearing in most of the federated learning tools is data harmonization.

Our algorithms include several preprocessing steps for the computation (e.g. standardization

of the data in the Cox proportional hazards model). Also, we allow for a detailed description of

the data, such as the used time format (days, weeks, months, years) or the naming of the time

and event columns. However, especially in the case of the Cox proportional hazards model,

Partea expects similar datasets, meaning that besides the event and time columns, all other col-

umns should be harmonized between different sites. The automatic harmonization of data is

not trivial and out of the scope of Partea. However, this also encourages the participating sites

to communicate and discuss a thorough study design upfront which might be even advanta-

geous over an automatic data harmonization.

Our approaches can be easily extended in future work. As already mentioned, by offering

an open-source platform and algorithms, Partea can be quickly adapted to potential changes

in privacy regulations. Also, subsequent analyses such as checking the proportional hazard

assumption based on scaled Schoenfeld residuals could be integrated in the future [45,46]. Fur-

thermore, our platform could be easily extended by further privacy-aware time-to-event analy-

sis implementations, such as Random Survival Forests [47] or Survival Support Vector

Machines [48,49]. We believe that through the combination of extendibility through its open-

source code, the strong focus on privacy, its accessibility, and its support of the most used

time-to-event analysis algorithms, Partea has the potential to become the new gold standard in

multi-institutional time-to-event analyses and provides various advantages to current

solutions.
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Abstract

Background: Machine learning and artificial intelligence have shown promising results in many areas and are driven by the
increasing amount of available data. However, these data are often distributed across different institutions and cannot be easily
shared owing to strict privacy regulations. Federated learning (FL) allows the training of distributed machine learning models
without sharing sensitive data. In addition, the implementation is time-consuming and requires advanced programming skills and
complex technical infrastructures.

Objective: Various tools and frameworks have been developed to simplify the development of FL algorithms and provide the
necessary technical infrastructure. Although there are many high-quality frameworks, most focus only on a single application
case or method. To our knowledge, there are no generic frameworks, meaning that the existing solutions are restricted to a
particular type of algorithm or application field. Furthermore, most of these frameworks provide an application programming
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interface that needs programming knowledge. There is no collection of ready-to-use FL algorithms that are extendable and allow
users (eg, researchers) without programming knowledge to apply FL. A central FL platform for both FL algorithm developers
and users does not exist. This study aimed to address this gap and make FL available to everyone by developing FeatureCloud,
an all-in-one platform for FL in biomedicine and beyond.

Methods: The FeatureCloud platform consists of 3 main components: a global frontend, a global backend, and a local controller.
Our platform uses a Docker to separate the local acting components of the platform from the sensitive data systems. We evaluated
our platform using 4 different algorithms on 5 data sets for both accuracy and runtime.

Results: FeatureCloud removes the complexity of distributed systems for developers and end users by providing a comprehensive
platform for executing multi-institutional FL analyses and implementing FL algorithms. Through its integrated artificial intelligence
store, federated algorithms can easily be published and reused by the community. To secure sensitive raw data, FeatureCloud
supports privacy-enhancing technologies to secure the shared local models and assures high standards in data privacy to comply
with the strict General Data Protection Regulation. Our evaluation shows that applications developed in FeatureCloud can produce
highly similar results compared with centralized approaches and scale well for an increasing number of participating sites.

Conclusions: FeatureCloud provides a ready-to-use platform that integrates the development and execution of FL algorithms
while reducing the complexity to a minimum and removing the hurdles of federated infrastructure. Thus, we believe that it has
the potential to greatly increase the accessibility of privacy-preserving and distributed data analyses in biomedicine and beyond.

(J Med Internet Res 2023;25:e42621) doi: 10.2196/42621

KEYWORDS

privacy-preserving machine learning; federated learning; interactive platform; artificial intelligence; AI store; privacy-enhancing
technologies; additive secret sharing

Introduction

The Problem of Scattered Data
Machine learning (ML) and artificial intelligence (AI) have
increased in popularity over the last decade, leading to
discoveries in various fields, including biomedicine [1-3]. The
utility of ML and AI models depends on the size and quality of
the available training data. However, data sources are often
scattered across multiple facilities, and privacy regulations
restrict data sharing, rendering large-scale, centralized ML
infeasible. Particularly in biomedicine, the collection of
molecular and clinical data is becoming ubiquitous with the
successful applications of ML in diagnostics [4] or drug
discovery [5]. Privacy concerns hinder even faster advances
because of the small sample size of the individual data sets
available, such as in the case of rare diseases.

Federated Learning and Privacy-Enhancing
Technologies
One way to overcome these challenges is federated learning
(FL). FL allows distributed data analysis by only exchanging
model parameters and local models instead of sensitive raw
data [6]. Hence, analyses can benefit from considerably larger
data sets and be exploited with a lower risk of revealing primary
data. FL can be divided into several subcategories that address
different problems in decentralized computation and differ in
their requirements [7]. First, FL can be categorized according
to how the data are distributed among the clients. Horizontal
FL addresses the training of a model on distributed data that
has the same features but different samples. Vertical FL, in
contrast, trains a model for the same samples but distributed
features. Second, FL is distinguished by the number of clients
that participate. Training a model on decentralized data from
several organizations or data silos, such as hospitals or
companies, is called cross-silo FL. If model training involves

thousands or millions of clients, such as mobile phones or
internet of things devices, we speak of cross-device FL. A
typical FL setup consists of several clients and a central
aggregator. Each client updates a local model based on its local
data and sends it to a central aggregator. Here, the local models
are aggregated into a common global model by an aggregation
function, such as federated average [6]. This global model is
then broadcasted to each client again. The entire process is
repeated for the iterative algorithms.

Although other techniques, such as homomorphic encryption
(HE), also allow for the analysis of distributed data by enabling
calculations on encrypted data directly, they are computationally
expensive compared with FL. In addition, they often require
drastic changes to their original ML algorithm. In contrast, FL
alone cannot always fulfill strict privacy requirements [8,9].
Therefore, to improve data privacy, FL can be combined with
privacy-enhancing technologies (PETs) [10], such as secure
aggregation [11] or differential privacy (DP) [12,13]. A recent
study demonstrated that federated algorithms could achieve
comparable or identical results compared with centralized ML
[14-18].

Prior Work
Several frameworks have recently been developed to make FL
available for a broader user group. Backend frameworks provide
developers with methods to simplify the implementation of
federated and privacy-aware algorithms [19-22]. They are
limited to users with a strong background in software
development or programming experience. Such skills are usually
not expected from clinical experts and researchers, which
considerably restricts their usability. All-in-one frameworks
bring privacy-aware analyses to users without in-depth
programming skills by providing a graphical user interface
(GUI) [23-26]. However, most existing all-in-one frameworks
are either not extendible or highly specific, focusing on a certain
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type of algorithm (eg, deep learning [DL] only) or application
(eg, neuroimaging and genomics).

Existing Shortcomings
Although the available frameworks demonstrate that FL is
applicable and accelerates research in health care or
biomedicine, the focus on 1 specific application or algorithm
is also a huge restriction, especially in the collaboration of
different fields. To the best of our knowledge, a generic,
low-code, and open-source platform that can be driven and
extended openly by the community to cover different algorithms
and fields has been unavailable. However, such a platform is
needed to enable FL across different applications and to make
it applicable for users without technical knowledge of FL
infrastructure or coding skills.

Goal of This Work
To close this gap, we present FeatureCloud, a comprehensive
platform covering all the required steps from project
coordination and workflow execution for the development of
algorithms for cross-silo FL [27]. It incorporates and facilitates
the development and deployment of federated algorithms and
alleviates the technical difficulties of end users by providing a
complete and ready-to-use infrastructure. Contrary to existing

programming frameworks, FeatureCloud provides a running
all-in-one platform that eliminates the need for developers and
users to arrange a server deployment to conduct a federated
study.

Methods

Overview
FeatureCloud was developed as a unified platform to increase
the accessibility of FL for two large user groups as follows: (1)
end users running FL algorithms to train ML models on
distributed data sets and (2) developers implementing federated
algorithms for statistics or ML that are not easily accessible in
federated environments yet. As illustrated in Figure 1, the
interface between developers and end users is our integrated AI
store. Application developers can easily implement their own
applications and publish them in the AI store, making them
easily accessible to end users. Out of a broad collection of
applications in the AI store, end users can assemble tailored
workflows, invite collaborators, and perform FL on
geographically distributed data. Therefore, FeatureCloud
provides a complete infrastructure, including secure
state-of-the-art communication, no raw data sharing, and several
mechanisms to keep the actual data private.

Figure 1. Outline of the FeatureCloud system. Medical institutions collaborate in a federated study with all primary or raw data remaining at their
original location. FeatureCloud handles the distribution, execution, and communication of certified artificial intelligence (AI) applications from the
FeatureCloud AI store and addresses developers and end users.

Implementation
In this section, we present our implementation of the
FeatureCloud platform: its system architecture, the FeatureCloud
application programming interface (API) for developers, and
the FL scheme and PETs used. Furthermore, we present the FL
algorithms used for the evaluation of our platform.

System Architecture
FeatureCloud was developed as a system consisting of several
interacting parts distributed between the participants and a
central server. The central components include the backend
(Python and Django), frontend (Angular), and Docker registry.
The local components include the controller (Golang), the
Docker engine, and the application instances (Docker images).
Figure 2 shows the system components and the communication
channels between them. Further details regarding their
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implementation and technology used can be found in Multimedia
Appendix 1.

The frontend is a web application running on a web browser. It
uses the FeatureCloud backend API (link 1 in Figure 2) to offer
all the features of the AI store and for collaborative project
management. It is also connected to the controller to allow for
monitoring and handing over data for workflow runs (link 2 in
Figure 2).

The controller is responsible for orchestrating the local part of
the workflow execution. It receives information via the
FeatureCloud backend API (link 3 in Figure 2), indicating which
applications to execute next, and reports about the progress.
Contrary to the relay server traffic, this traffic only contains
metainformation about the execution and no data used in the
algorithms themselves. It uses the Docker API (link 4 in Figure
2) to instruct the Docker engine to manage containers that serve
as isolated application instances and pulls the images of the
required applications for a workflow from the Docker registry
(link 5 in Figure 2). When pushing new application versions,
the Docker registry ensures that the user is entitled to do so by
verifying their credentials through the backend (link 6 in Figure
2). In addition, the controller is an integral part of the security
and privacy system of FeatureCloud. It handles local data
processing and is the only part of FeatureCloud that has access
to the local computer system. The controller runs in a Docker
container to prevent random access to data on the system.
Therefore, it only has access to selected data sets that were
actively chosen by a system administrator or a user through a
FeatureCloud application.

The participants of a federated workflow must also agree on a
common relay server. The relay server, implemented in Go, is
responsible for transmitting all traffic of the federated algorithms
via a secure socket connection (link 7 in Figure 2). This central
communication hub is aware of all the participants and their
roles in the federated execution. It follows the required
communication pattern, sending aggregated models to all the
participants and local model parameters to the coordinating
party only. Although FeatureCloud provides a relay server
instance used by default, it is possible to use a private instance
to completely shield the traffic from anyone outside the
collaboration by adjusting the configuration file for the
controller.

As FeatureCloud applications are a dynamic system component,
partly contributed by external developers, it is necessary to
isolate their implementation. This is achieved by using Docker,
which ensures that they cannot access system resources other
than required, especially the filesystem and network, and allows
for limiting resource use, such as central processing unit or
memory. They receive their input data inside a Docker volume
and communicate with the controller through a defined API
(link 8 in Figure 2). This API is the main interface between
externally developed applications and the FeatureCloud system.
It is http based and requires the application to act as a web
server, which means that it needs to wait for the controller to
query for data and cannot actively send data by itself; thus,
active network access can be forbidden.

Figure 2. System architecture of FeatureCloud with 2 participants. The controller, frontend, Docker engine, and application instances run locally at
each participant’s site. The FeatureCloud backend and Docker registry are running on FeatureCloud servers. The relay server can be run on a separate
server, or participants can use a provided instance from FeatureCloud. The components are connected via transmission control protocol/IP connections
(straight lines). All links are http based, except for link 7, which uses a raw socket connection. Links 1 to 3 use JSON for serialization, and links 4 to 6
use the Docker application programming interface.
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The FeatureCloud API for Developers
To avoid restricting end users to the current selection of
applications, FeatureCloud invites external developers to
implement their own federated applications and publish them
in our AI store. A FeatureCloud application is a program isolated
inside a Docker container that communicates with other
instances using the FeatureCloud API [28]. Several templates
and example applications are provided to further facilitate the
implementation by directly explaining the API with code.

In addition to the AI store and the API, FeatureCloud provides
tools to accelerate the development of federated applications.
When developing a new federated method, application
developers can directly start with the federation of the AI logic
by using an existing template. To verify that the API has been
implemented correctly, a simulation tool aids the developer in
testing their application before publishing. Each test run
specifies the number of participants, test data, and
communication channels and subsequently starts the
corresponding instances, simulating a real-world execution on
multiple machines. During the test run, it shows logs and results
for each participant and the network traffic to monitor the
execution and identify bugs and potential communication
bottlenecks.

After the development phase, applications can be published in
the FeatureCloud AI store. Developers need to fill out a form
prompting all relevant information about the application, which
is displayed to the end users and used for the search and filter
functions. Subsequently, they can push their Docker image into
the Docker registry of the FeatureCloud platform. For end users
collaborating with the developer, who explicitly enables
uncertified applications, it is already usable and can be tested
in a real-world scenario. For other end users, we enforce a
certification process to increase the hurdle for malicious
applications and maintain high privacy standards in the AI store.
To this end, the developer must provide the necessary
documentation and details regarding the implemented privacy
mechanism. Furthermore, the application’s source code must
be accessible so that the application can be exhaustively tested
and vetted by the FeatureCloud team and community for
possible privacy leaks. When the certification process has been
successfully completed by a member of the FeatureCloud
consortium according to a defined checklist (Multimedia
Appendix 1), the application will be displayed in the AI store
and can be used by all end users. If the certification process is
unsuccessful, the developer is notified and requested to address
the issues raised. Upon each update of an application, a new
certification procedure is triggered.

As FeatureCloud does not impose restrictions on the types of
algorithms it supports, the running environment of the federated
applications is kept very general. It allows the implementation
of any type of ML algorithm and an optional custom GUI for
user interaction in the form of a web-based frontend. This GUI
can be used to receive input parameters, indicate the current
progress, or display the results. No direct internet access is
granted to the applications to avoid security risks.

FL Scheme and PETs
FL generally involves two possibly alternating operations as
follows: (1) local optimization and (2) global aggregation. In
FeatureCloud, all running instances of a federated application
have 1 of 2 roles (participant and coordinator) performing the
respective federated operation. FeatureCloud expects precisely
1 coordinator and an arbitrary number of participants, leading
to a star-based architecture. We chose this architecture over
others because it mirrors the general design of a FL scheme
with a central aggregator and clients with local data sets.

After the local learning operation has been completed by a
participant, it sends the local parameters to the coordinator. The
coordinator collects these parameters and aggregates them into
a collective (global) model, which is shared with the participants
again. Depending on the type of ML algorithm, these 2
operations can alternate multiple times, for example, until
convergence or a predefined number of iterations has been
reached (Figure S1 in Multimedia Appendix 1). For some
algorithms (eg, random forest [RF] and linear regression), only
1 iteration is necessary. However, this strict separation between
optimization and aggregation is not actively enforced by
FeatureCloud. In many cases, aggregation can start after the
first parameters have been received, thereby increasing
efficiency through parallelization of the computation. During
the implementation of a federated application, the distinction
between the coordinator and the participant is of conceptual
relevance. However, in practice, the coordinator can also obtain
local data that can be used for training. Therefore, FeatureCloud
allows the coordinator to simultaneously adopt the role of a
participant.

Although FL improves privacy, it can still leak information to
the coordinator, who can see all individual models before
aggregating them. Local updates of the model based on a
previously distributed global model may reveal information
regarding the primary data [29]. Secure aggregation techniques
can address this problem. In FeatureCloud, we integrated
additive secret sharing as a mitigation method to obtain the
global sum without revealing the local submodels. Application
developers can use this method with minimal or no added
complexity to their algorithms. More details can be found in
Multimedia Appendix 1.

Federated Algorithms

Comparing Federated Algorithms
As there are unique challenges for federating individual
algorithms, each ML model needs to be developed independently
and, therefore, needs to be based on a different underlying
federation mechanism. This means that each algorithm has
challenges regarding effectiveness, privacy, or scalability that
need to be solved by the application developers. For the
evaluation of our platform in this work, we used 4 FeatureCloud
FL applications: the linear and logistic regression applications,
a RF, and a DL application.

Federated Linear and Logistic Regression
For the implementation of the linear and logistic regression
applications, the methods introduced by Nasirigerdeh et al [17]
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have been adapted from genome-wide association studies
(GWAS) to a general ML use case. For linear regression, the

local XTX and XTY matrices are computed by each participant
individually, where X is the feature matrix and Y is the label
vector. Then, they are sent to the coordinator, aggregating the
local matrices to the global matrices by adding them. Using
these global matrices, the coordinator can calculate the beta
vector through the federated method in such a way that it is
identical to the beta vector calculated through the nonfederated
method.

Logistic regression was implemented as an iterative approach.
On the basis of the current beta vector, the local gradient and
Hessian matrices of each participant are calculated and shared
with the coordinator in each iteration. The coordinator
aggregates the matrices again by adding them, updates the beta
vector, and broadcasts it back to the participants. This process
is repeated until convergence or the maximum number of
iterations (prespecified for each execution) is achieved.

Internally, the scikit-learn model API has been used to
implement the applications [30,31]. In the performance
evaluation, we used the default scikit-learn hyperparameters for
the linear regression models. For logistic regression, the penalty
was set to none; the maximum number of iterations was set to
10,000; and the “lbgs” solver was used to fit the models.

Federated RF
We used the popular RF classifier and RF regressor as the
second algorithm for our evaluation. As an ensemble algorithm,
RF can be easily federated in a naive manner [32]. Our
implementation trains multiple classification or regression
decision trees on the local primary data of each participant. The
fitted trees are then transmitted to the coordinator and merged
into a global RF. To account for the different number of samples
for each participant, each of them contributes a portion of the
merged RF proportional to the number of samples. To achieve
a similar behavior as the centralized implementation, the size
of the merged RF is kept constant, meaning that an increasing
number of participants decreases the number of required trees
per participant. The federated computation occurs in three steps,
each involving data exchange as follows: (1) participants
indicate the number of samples and receive the total number of
samples; (2) participants train the required number of trees, and
the aggregator merges them into a global RF; and (3)
participants receive the aggregated model to evaluate its
performance on their data and share the results to obtain a global
summary.

As the aim is not to achieve the highest possible accuracy but
to compare the federated version with the nonfederated version,
the hyperparameters were set to the default values of sklearn,
namely, 100 decision trees, Gini impurity minimization as the
splitting rule, and feature sampling equal to the square root of
the features. Prepruning parameters such as maximum depth,
minimum samples per node, and other constraints were not
applied.

Federated DL
Our federated DL application is based on the federated average
algorithm [6]. In the training phase, the weights and biases

update is performed iteratively, where each iteration implies
the parameter aggregation performed in three steps as follows:
(1) the local weights and biases are computed by every
participant individually and shared with the coordinator, (2) the
coordinator averages the parameters and broadcasts them back
to participants, and (3) the participants receive the new values
of weights and biases and update the weights and biases of their
model accordingly. After the final number of iterations is
reached, the model performance of each participant is
independently assessed using their data. The local weights and
biases update is performed with the back-propagation algorithm,
applied to data batches of a specified size. The neural network
model architecture and training were implemented using the
PyTorch library [33]. The application enables the
implementation of any architecture and provides a centralized
version of a PyTorch code. The application also enables
federated transfer learning to be applied to a pretrained model,
whose specified layers are trained in the same federated fashion.

Results

The results comprise the unified platform and an evaluation
demonstrating the technical capabilities of FeatureCloud to run
different workflows. The platform consists of the open AI store,
development and debugging tools, and an execution environment
for federated workflows.

Unified Platform
The unified platform (Figure 1) provides developers with an
API to quickly develop privacy-enhancing FL applications. This
supports a hybrid communication scheme for FL and secure
aggregation (additive secret sharing). The integrated AI store
is the interface between developers and end users, displaying
and describing all available applications. Developers can publish
(deploy) their applications in the AI store that are then available
for use in federated workflows for the end users, for example,
biomedical researchers. They can quickly create projects,
assemble federated workflows with the applications from the
AI store, invite other sites to the study, and view and download
the results of each run. The interface of end users with the
complicated federated architecture is reduced to only a web
frontend and the FeatureCloud controller, running in the
background and responsible for the local processing of sensitive
data. Moreover, all applications and the entire architecture of
FeatureCloud are open source, making it the first unified and
open-source FL platform that considers all steps including
development, deployment, and execution.

AI Store
The integrated AI store provides an intuitive and user-friendly
interface for biomedical researchers and developers. It offers a
variety of applications and displays basic information about
them, including short descriptions, keywords, end-user ratings,
and certification status. Users can easily find applications of
interest via a textual search and filter them by type
(preprocessing, analysis, and evaluation) and their
privacy-enhancing techniques (FL, DP, and HE). End users can
review the applications and provide feedback. The application
pages display a method summary, description, user reviews,
developer name, and contact details to report bugs. Each

J Med Internet Res 2023 | vol. 25 | e42621 | p. 6https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



application provides either a GUI or a configuration file to set
the application parameters and adapt them to different contexts.
This reduces technical details and makes applications user
friendly for end users, independent of their background. When
users add applications to their library, they can assemble them
into a workflow and manage the execution with other
collaborators on the FeatureCloud website without having to
download any additional software.

The AI store has a broad selection of popular ML models, as
listed in Table 1. The applications are categorized into

preprocessing, analysis, and evaluation. Some analysis
applications, such as linear regression and RF, are generic and
suitable for different data types and application scenarios. These
applications can be easily integrated into a federated workflow
with preprocessing and evaluation applications, such as a
federated standardization of the input data and a final evaluation
of the trained classifier with several performance metrics. Other
applications, such as the sPLINK [17] application for federated
GWAS, integrate all the necessary steps of an
application-specific workflow and do not require combination
with other applications.

Table 1. Applications in the FeatureCloud artificial intelligence (AI) storea.

DescriptionTypeApplication

Classification model based on boosting treesMachine learningAda boost

Random forest classifying patients into their CACSMachine learningCACSb forest

Survival regression based on the lifelines librarySurvival analysisCox PHc model

Local splits for a k-fold cross-validationPreprocessingCross-validation

Deep neural networks implemented in PyTorchMachine learningDeep learning

Evaluation with various classification metrics (eg, accuracy)EvaluationEvaluation (Classification)

Evaluation with various regression metrics (eg, mean squared error)EvaluationEvaluation (Regression)

Evaluation of survival or time-to-event predictionsEvaluationEvaluation (survival)

Differential expression analysis based on limma-voomDifferential expressionFlimma

Random forest classification, regression, and survival based on graphsMachine learningGraph-guided random forest

Survival function estimation and log-rank testSurvival analysisKaplan-Meier estimator

Regression modelMachine learningLinear regression

Classification modelMachine learningLogistic regression

Hazard function estimation and log-rank testSurvival analysisNelson-Aalen estimator

Standardizing input dataPreprocessingNormalization

One-hot encoding for categorical variablesPreprocessingOne-hot encoder

Classification and regression model based on decision treesMachine learningRandom forest

Survival prediction based on scikit-survivalSurvival analysisRandom survival forest

SVD for dimensionality reductionMachine learningSVDd

GWAS based on PLINKGWASfsPLINKe

Survival prediction based on scikit-survivalSurvival analysisSurvival SVMg

aThe growing list of applications available in the AI store covers preprocessing, analysis, and evaluation. All-in-one applications cover the entire
workflow for a more specific domain and can be executed without other applications.
bCACS: coronary artery calcification score.
cPH: proportional hazard.
dSVD: singular value decomposition.
esPLINK: secure PLINK.
fGWAS: genome-wide association studies.
gSVM: support vector machine.

Multi-institutional Federated Workflows
FeatureCloud offers easy project management for the execution
of FL workflows. In these workflows, users can select from a
large variety of applications in the AI store and connect them

to the entire workflow. Before collectively running a federated
workflow, all collaborating sites (participants) must download
and start the client-side FeatureCloud controller on their
machines. It only requires Docker, which is freely available for
all the major operating systems. Users also need to create an
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account on the FeatureCloud website, which serves as a web
frontend and is used to coordinate the FeatureCloud system
(refer to the Methods section and Multimedia Appendix 1 for
details on the architecture). Each collaborative execution of
applications is organized into so-called projects on the web
frontend. They contain a description of the planned analysis,
connect the collaborating partners by allowing invited
participants to join, and show the current status of the workflow
(Figure S2 in Multimedia Appendix 1).

Workflows are composed of 1 or multiple applications from
the AI store that are to be executed consecutively. Each
application produces intermediate results that serve as input for
the consecutive application. Intermediate results are maintained
on the respective machines and are not shared with other
participants. The last application produces the final results,
which are then shared with all the project participants. During
the execution of a workflow, its progress can be monitored on
the FeatureCloud website, showing the current stage,
computational progress, and intermediate results from each
application. Applications can provide their own user interface,
allowing for user interaction if necessary and for showing
specific reports. Users can monitor application logs and react
in case something unexpected occurs (eg, stop and rerun the
workflow with other data or a different configuration). When
the last application in the workflow successfully completes its
computation, the final results are automatically shared with all
project participants. Intermediate results and application logs
remain available on the local machines to allow for later
verification. For example, the results may include a report
showing the effectiveness of the trained model and the model
itself. The latter can also be used outside of FeatureCloud. For
example, if a project fails because a participant drops out, it can
be restarted quickly after the problem has been solved. During
the entire process, no programming knowledge or command-line
interaction is required, making the system especially suited for
medical personnel without technical education.

Evaluation

Methods and Data Sets
To evaluate the practical applicability of FeatureCloud, multiple
workflows operating on different data sets were created. Except
for DL, each workflow consists of a cross-validation (CV)
application (10-fold CV), a standardization application, a model
training application, and a final evaluation application (Figure
3). For DL, we evaluated a 20% test set, as this is more common
for big data to reduce the training time. Individual applications
are data-type agnostic and are suitable for various applications.
Classification analyses were performed on the Indian Liver
Patient Dataset [34] with 579 samples and 10 features and the
Cancer Genome Atlas Breast Invasive Carcinoma [35] data set
with 569 samples and 20 features. For regression analyses, they
were evaluated on the Diabetes [36] data set with 442 samples
and 10 features and the Boston [37] house prices data set with
506 samples and 13 features, both provided by scikit-learn [30].
Finally, for DL regression, we used a large data set from the
Survey of Health, Aging, and Retirement in Europe [38], with
12 questionnaire variables and the target 12-item critical
assessment of protein structure prediction quality of life score.
After dropping samples with “Refusal” and “Don’t know” type
values in those 12 variables and nonavailable 12-item critical
assessment of protein structure prediction quality of life score,
we were left with 42,894 (91.79%) out of 46,733 samples.
Further details regarding the network architecture are provided
in Multimedia Appendix 1.

For each workflow, we split the central data set into 5
participants with uneven data distribution. Participants 1, 2 and
3, and 4 and 5 each had 10% (4289/42,894), 15% (6434/42,894),
and 30% (12,868/42,894) of the samples, respectively. We used
the F1-score to evaluate the classification models and the root
mean squared error for the regression models, as both are
common metrics used to evaluate ML models. Furthermore, we
also investigated the scalability concerning runtime and network
traffic for 2 to 8 participants as well as a larger number of
participants and iterations.
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Figure 3. Workflow structure used for evaluation. The first application (purple—Cross-Validation) creates splits for cross-validation (CV). All following
applications perform their tasks on each split individually, in a federated fashion, only transmitting model parameters. The gray dots represent intermediate
training and test data. The second application (green—“Normalization”) performs normalization, and the third application (blue—“Random Forest”)
trains the models, generating a global model based on the output of the normalization application. The resulting global model is evaluated in the evaluation
application (orange—“Evaluation [Classification]”). The evaluation results are finally aggregated to obtain an evaluation report based on the initial CV
splits.

Performance
Previous studies have shown that FL can achieve similar
performance to centralized learning in many scenarios
[14,15,39]. To verify the approach used in FeatureCloud, we
compared the performance of 4 federated FeatureCloud
applications integrated into an ML workflow with their
corresponding centralized scikit-learn [30] models. The results
are shown in Figure 4. For logistic regression and linear
regression, the FeatureCloud workflow achieved a performance
identical to that of scikit-learn, which is consistent with the
previous results of federated linear and logistic regression
applications [17,40]. A similar performance was achieved for
the RF regression and classification models. Owing to the simple
aggregation method that combines the local trees into 1 global
tree, identical results were not obtained or expected. Owing to
the bootstrapping mechanism and its attached randomness, the
federated RF sometimes performs slightly better than the
centralized approach. As a final example, our federated DL
model trained in 300 epochs produced a very close root mean
squared error compared with the centralized model.

Furthermore, we compared the federated models with the
individual models trained and evaluated by each participant
(10-fold CV, except DL). Here, we distinguish between the
central evaluation of the models on the overall test splits (central
test data), identical to the test splits for the centralized and
federated models, and the local evaluation of the models on the
local test splits only (local test data). As shown in Figure 4, the
local evaluation performance varies widely but is worse on
average than the federated models. For classification, the local

evaluation performed worse than the federated models.
However, for the regression models, the locally evaluated
models of the individual participants sometimes outperformed
the centralized model. Nevertheless, compared with the central
test data, it is obvious that these models did not generalize well
and only performed well for the individual participants with a
very small test set. This can be deceptive, as in this case, even
the 10-fold CV cannot be trusted. Furthermore, our DL model
evaluated on a 20% test set performs much more reliably than
individual client models, which can have drastically worse
results than the federated or centralized models. This highlights
the effectiveness of FL, as these models use more training and
test data, resulting in more generalized models. Our RF
application is based on a previously published implementation
[32] and confirms that our platform yields comparable results,
including scenarios in which the data are neither independent
nor identically distributed (nonindependent and identically
distributed). It performed much more reliably than only using
individual client data.

As an additional example of clinical data analysis, we evaluated
the Kaplan-Meier estimator application that implements an
already published approach for federated survival curves and a
log-rank test for multi-institutional time-to-event analyses [18].
The application, implemented and run in FeatureCloud,
produced identical results to the centralized analysis (Table S1
in Multimedia Appendix 1) on the lung cancer data set of the
North Central Cancer Treatment Group [41]. Similarly, we
evaluated the Flimma application for differential gene expression
analysis [16] as an example of biomedical data on a subset of
152 breast cancer expressions from the Cancer Genome Atlas
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repository [42] with 20,536 features. Our Flimma application
produced highly similar results to those of the centralized
analysis (Figure S3 in Multimedia Appendix 1). These 2

examples further show that FeatureCloud has the capability of
implementing and running different approaches and bringing
them into a production system.

Figure 4. Performance evaluation of federated artificial intelligence methods. The box plots show the results of a 10-fold cross-valuation for the different
classification and regression models and data sets in multiple settings. Only the deep learning model was evaluated on a test set. The centralized results
are shown in orange, the corresponding federated results in blue, and the individual results obtained locally at each participant in gray. Each model was
evaluated on the entire test set (dark gray) such as the centralized and federated models and on the individual (local) parts of the test set (light gray).
The federated logistic and linear regressions perform in identical fashion to their centralized versions, and the federated random forest and deep learning
models perform in similar fashion to their centralized versions. BRCA: Breast Invasive Carcinoma; ILDP: Indian Liver Patient Dataset; SHARE: Survey
of Health, Aging and Retirement in Europe.

Runtime and Network Traffic
Multiple executions with varying numbers of clients were
performed to assess the scalability of the FeatureCloud platform
and the federated methods. RF and linear regression classifiers
were chosen as the iterative and noniterative methods,
respectively, and both were applied to the Indian Liver Patient
Dataset. Both were tested with 2, 4, 6, and 8 clients and the
same number of samples to ensure comparability across the
executions. To investigate the impact of network bandwidth on
runtime, all executions were performed on a normal and throttled
internet connection with a maximum transmission of 100 kB
per second.

Figure 5 shows that runtime mildly increases for logistic
regression but decreases for RF. This is because the logistic
regression models are of equal size for all clients, whereas the
size of the RF models depends on the number of trees. In our
implementation of federated RF, the global model is of a fixed
size (100 trees), which means that each client contributes a
portion that decreases with a higher number of participants. The
throttling bandwidth significantly increases the runtime for RF
but leaves the runtime for logistic regression almost unaffected.

This is because the transmitted data for RF are more extensive
and come in 1 chunk, whereas logistic regression requires
approximately 10 iterations, each exchanging a few parameters.
The centralized versions take 2 to 3 seconds to complete for
both logistic regression and RF, implying that their federated
versions take 10 to 20 times longer to complete.

In this setting, an increasing number of participating parties has
a weak impact on the duration of the aggregation part for these
methods, compared with the total runtime. The local
computations occur in parallel such that an increasing number
of participants does not have a huge impact. However, because
the aggregation step cannot be completed before all participants
send their models, the runtime of each aggregation step depends
on the slowest participant, which poses a potential problem for
large federations. FeatureCloud primarily focuses on being used
in a tightly regulated medical research environment. Therefore,
there is currently no automatic “matchmaking” in place, but all
participants must join each project actively. In this context,
running an analysis with data sets of >8 participants is still an
uncommon scenario. To demonstrate its scalability and
robustness for more sophisticated scenarios, we evaluated the
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FeatureCloud platform using the logistic regression application
for 1, 5, 10, 15, 20, 25, and 30 clients on simulated data, with
each client containing 1000 samples and 1, 5, and 10 iterations.
Our analysis shows that the FeatureCloud platform is also

computationally suitable for larger numbers of clients and higher
numbers of iterations, confirming the results of our runtime
analysis for a small number of clients (Figure S4 in Multimedia
Appendix 1).

Figure 5. Runtime and network traffic. The left plots show runtime for unlimited and throttled connections, the right plots show network traffic for the
coordinator and participants evaluated on the ILPD. The lines represent the median values measured over 10 executions. The areas show the 25% and
75% quartiles to illustrate variance across the executions. ILPD: Indian Liver Patient Dataset; s:second; B: byte; M: million.

Discussion

In this section, we summarize our main findings and provide a
discussion about its comparison with prior work, its limitations,
the potential for future work, and conclusions of our work.

Summary of Results
In this study, we presented the FeatureCloud platform, a
comprehensive platform for the application and development
of privacy-preserving FL workflows in biomedicine and beyond.
Through its high generalization, it allows the application of
various ML workflows to a variety of data types. In addition,
it offers prebuilt solutions for common-use cases in the form
of applications in the AI store or application templates for
developers. The concept of freely composing applications in a
workflow is challenging because of the need for a standard data
format, which is not always available and can reduce flexibility.
The same applies to the initial data, which need to be provided
in a form that is processable and understandable by the desired
application. As FL adaptation is still in its early stages, it is
necessary to understand which functionality and types of data
will be used, which ML techniques prove to be most prevalent
in federated settings, and which challenges arise when using
the platform. Therefore, several assumptions can be made in
advance.

Comparison With Prior Work
One main goal of FeatureCloud was to keep the platform as
flexible and extensible as possible, to align new functionality
closely to the demand of its users. The possibility of integrating
additional PETs, such as DP or additive secret sharing, on the
application layer of the API demonstrates the versatility of this
approach. Although the current implementation of additive
secret sharing has a quadratic increase in network traffic, it
shows that flexible communication can be achieved through
asymmetrical encryption and can serve as a blueprint for similar
scenarios and future developments.

The prediction performance of our FL workflows is consistent
with the current research, with some performing equally well
compared with the central implementations (linear and logistic
regression and normalization) or highly similar (RF).
Computational and communication overheads are acceptable
for an ordinary FL. In our opinion, it plays a smaller role than
the additional overhead related to human-to-human coordination
of federated projects. We demonstrated that the currently
available applications and the platform scale well for up to 8
participants.

The main novelty, in contrast to prior work, is the high flexibility
of the AI store, ranging from prebuilt task-centered applications,
such as GWAS, to generic method-centered applications, such
as RF. Therefore, we address a broad spectrum of end users and
developers. Less experienced users without deeper
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methodological or statistical knowledge benefit from the ease
of use of a task-centered application. Advanced users can tailor
the workflow to their needs. In contrast, application developers
can use our API to develop FL applications that can be easily
deployed into the AI store and reach a broad user base. They
are incentivized to build their applications to be compatible
with existing ones (eg, a new AI method that processes data
preprocessed by an existing normalization application) to
maximize their utility. Thus, the FeatureCloud AI store aims to
become an ecosystem for FL, driving collaborative research.

Limitations
In addition to the huge potential of FeatureCloud, some issues
still need to be addressed. Our secure aggregation approach,
directly implemented into the developer API, only applies to
≥3 participants. Its application on workflows with only 2
participants would allow the coordinator to reveal the local
parameters of the other participant and therefore has no benefit.
In addition, as it is currently implemented, our additive
secret-sharing approach only supports addition and
multiplication and is, therefore, not applicable to more complex
types of calculations. Although the open AI store accelerated
the development and deployment of FL applications and
workflows, it is the responsibility of the application developers
to provide proof that their implementations provide accurate
results. FeatureCloud certifies applications that provide a
reasonable amount of privacy and security measures but cannot
check the prediction quality of every application. However,
through its open-source design, the community can exchange
experiences, provide feedback, and enhance applications and
algorithms to keep them up to date with the current state of the
art.

Future Work
The generic and extendable design of FeatureCloud makes it
highly interesting for future studies. FeatureCloud envisions
being driven by an emerging community whose features are

closely aligned to their needs. As FeatureCloud is entirely open
source, it can be quickly maintained and extended and it can
accelerate the development, deployment, and execution of
privacy-preserving FL workflows in biomedicine and other
areas. FeatureCloud applications can be developed by anyone
using the developer API and easy-to-start templates. One part
could focus on integrating more PETs into the API for the
application developers to ease their use and increase adoption
in federated algorithms. Although FeatureCloud already
integrates an additive secret-sharing scheme, there are many
more PETs, such as DP or HE schemes, that can be
implemented. Other potential enhancements could focus on
nonlinear workflows, the integration of the AIMe registry [43]
into the certification process of FeatureCloud applications, and
reducing Docker dependency by also supporting other secure
containerization systems such as Singularity [44]. To address
the problem of data harmonization and preprocessing of different
formats at different sites, it may be useful to add a federated
database with a common ontology to the FeatureCloud controller
[45]. Through this, the problem of different data formats
between sites is solved, as the input data for workflows can be
directly created from the database. Integrating local data into
this database can be performed using predefined
Extract-Transform-Load scripts for the most common data
formats and standards.

Conclusions
In conclusion, FeatureCloud provides an all-in-one platform
for privacy-preserving FL. In contrast to other FL frameworks,
FeatureCloud considers every aspect of FL from development
and deployment to the execution and project planning of
federated analyses. Furthermore, it is highly generic to support
all types of algorithms and is not restricted to only DL or a
certain application. Thus, we believe that it has a huge potential
to accelerate the development of FL workflows and the
application of federated analyses in biomedicine.
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Abstract

Background: Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially
in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single
institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent
and privacy-preserving alternative to data sharing.

Objective: This study aims to develop and validate a privacy-preserving, federated survival support vector machine (SVM) and
make it accessible for researchers to perform cross-institutional time-to-event analyses.

Methods: We extended the survival SVM algorithm to be applicable in federated environments. We further implemented it as
a FeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we evaluated
our algorithm on 3 benchmark data sets, a large sample size synthetic data set, and a real-world microbiome data set and compared
the results to the corresponding central method.

Results: Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal
difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over
all data sets was 0.0002. We further show that by including more data in the analysis through federated learning, predictions are
more accurate even in the presence of site-dependent batch effects.

Conclusions: The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine
learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a
federated survival SVM, is freely accessible for all kinds of researchers, and can be directly used within the FeatureCloud platform.

(JMIR AI 2024;3:e47652) doi: 10.2196/47652
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Introduction

Accessing data to apply machine learning (ML) in biomedical
settings is still challenging [1]. Large amounts of data exist in
clinical settings but are scattered across numerous institutions.
Due to strict privacy regulations, such as the General Data
Protection Regulation (GDPR), this data cannot be easily shared
or collected at a central institution [2]. This causes hurdles for
cross-institutional biomedical analyses that depend on highly
sensitive patient data. One example is time-to-event analysis,
aiming to find parameters that prolong or shorten the time until
a particular event, such as death, occurs [3]. In these studies,
the event of interest does not necessarily occur for all samples,
increasing the need for large sample sizes [4]. Until today, the
need for large sample sizes and heterogeneous data for
time-to-event studies is still mainly solved through traditional
data sharing, leading to the central collection of various
deidentified and anonymized data sets from different centers.
Since using anonymized data in the training of ML models tends
to weaken model performance [5], this comes with a tradeoff
of data privacy and data quality, accelerating the need for
alternative methods that keep data private and ensure the quality
of the data [6].

In recent years, federated learning (FL) has become a feasible
alternative to central data collection by enabling the training of
models on distributed data sets. Instead of sharing sensitive data
with a central institution, in FL, only insensitive model
parameters are shared with a central aggregation server [7,8].
Therefore, each participating party calculates its own model
with local model parameters on their local data. These local
model parameters are then shared with the aggregator and
aggregated into a global model. Afterward, the global model is
shared again with each participant and can be updated in another
iteration. The first and probably most widely used aggregation
approach is the federated average [9], calculating the weighted
mean of the exchanged model parameters. Besides using
different aggregation approaches, FL can also be distinguished
between horizontal and vertical learning, as well as cross-device
and cross-silo learning. Horizontal learning describes FL on
data with the same features but different samples, while vertical
learning performs on the same samples but with different
features between the participating parties. Cross-device FL
trains models across millions of participants (such as mobile
phones), cross-silo FL, on the other hand, focuses on a few
clients only, such as hospitals or research institutes [10].

Especially in combination with privacy-enhancing techniques
(PETs), model parameters can be exchanged securely, such that
a global aggregator or potential attacker cannot even see the
local parameters of each participant [11]. This secure exchange
of model parameters is necessary to comply with the GDPR, as
even local models can be considered personal data [12].
Therefore, FL enables the training on a significantly larger data
set compared with single-institution scenarios. While federated
algorithms still often struggle with communication efficiency,

the significantly increased amount of data can offset this
performance issue, making FL a serious competitor to classical
ML. Additionally, since FL models are trained on a larger
variety of data, they typically generalize better than traditional
ML models and even generalize faster in some cases [13,14].
Many FL approaches are already published for biomedical
applications, such as medical imaging analysis, genome-wide
association studies, or gene expression analysis [15-17].

In addition to federated ML approaches, several federated
time-to-event analysis algorithms have been introduced recently
and confirmed their high potential for privacy-preserving
analyses [18-21]. However, existing approaches solely cover
traditional statistical methods such as the estimation of survival
functions and the Cox proportional hazards model. Modern ML
algorithms for survival analysis, such as survival Support Vector
Machines (SVMs), are not yet available in a federated fashion,
even though SVMs belong to one of the most popular ML
methods. If algorithms are not available in federated scenarios,
this might be a reason why researchers chose not to perform
FL, if their favorite algorithms are not available. Many
well-performing centralized algorithms are challenging to
translate to a federated scenario while keeping sensitive data
private. Another limitation of FL is communication efficiency.
FL algorithms need to exchange the intermediate statistics with
a central aggregator, which is especially inefficient for
algorithms with many iterations. This inefficiency even increases
when adding secure aggregation schemes, such as additive secret
sharing. This PET ensures that only masked and encrypted
model parameters are shared with the aggregating party, securing
the local models from data leakage [18].

To address the lack of availability of federated time-to-event
methods, we propose a privacy-preserving, horizontally
federated, cross-silo survival SVM based on the survival analysis
package scikit-survival [22]. Compared with other existing
time-to-event methods, such as the Cox proportional hazard
model, the survival SVM allows an actual prediction of the time
until an event happens. It can be used to predict the risk of
individual samples, which is not possible in univariate
time-to-event algorithms and is not the aim of the Cox
proportional hazards model. Therefore, to the best of our
knowledge, it is the first freely available federated survival
prediction method. We implemented the algorithm as an app in
the FeatureCloud platform to make it publicly accessible and
to minimize the hurdles of FL infrastructure [23]. Based on a
combination of FL and additive secret sharing, we show on 3
benchmark data sets, that our approach achieves highly similar
results compared with central data analysis. Additionally, we
apply it to a set of real-world microbiome data sets to
demonstrate its applicability to original clinical data.
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Methods

Here, we propose the adapted algorithm for the federated
survival SVM, describe its implementation as a FeatureCloud
app, and explain how we evaluated its performance.

Federated Survival SVM
We extended the regression objective of scikit-survival’s
FastSurvivalSVM without ranking to be applicable in federated
environments [24]. As shown in Figure 1, instead of calculating
the sum of the squared ζ-function centrally, it is calculated at
each site, with the feature vector xi, the survival time yi>0, and
the binary event indicator δi. Each site’s local sum of squared
ζ-function is then sent to a global aggregator and summed up
to the global sum of squared ζ-function. The below equations
show the central objective function and our corresponding
federated objective function, with C being the set of all
participating clients.

Mathematically, our federated formula leads to the same solution
as the centralized calculation of the objective function. Similar
to the centralized analysis, a truncated Newton method (such
as Newton-CG) can be used to optimize the objective function.
For this, in each iteration, the gradient and Hessian matrix of
each client are also sent to the global aggregator to sum them
up to the global gradient and Hessian matrix. To reduce potential
privacy leakage from the exchanged data, the implementation
of the federated algorithm should support a secure aggregation
scheme that hides the locally exchanged data from attackers or
the global aggregation server.

Figure 1. Federated calculation of a survival support vector machine (SVM). Each site calculates the sum of squares locally and sends it to the global
aggregation server. The aggregation server aggregates the local sum of squares by summing them up to the global sum of squares. The objective function
is minimized in a federated fashion by a truncated Newton approach. After convergence, the global model is distributed to all participating clients.

FeatureCloud
We developed an FL app on the FeatureCloud platform to make
our approach publicly available. To develop this app, we used
the app template and application programming interface
provided by FeatureCloud [25]. Using the scikit-survival
package and Python, we implemented our algorithm, put it into
the FeatureCloud app template, and published it in the
FeatureCloud artificial intelligence store. It can be used with
other apps in a workflow or standalone using the platform. Our
code is entirely open source.

In FeatureCloud, 1 participating client also takes the aggregating
role and is called the coordinator. The app is implemented as a
state machine, meaning that the app switches between states to
perform different tasks. All states and their transitions are shown
in Multimedia Appendix 1. After reading the local data and
config files, minimizing the objective function using a federated
Newton conjugate gradient is performed iteratively. Therefore,
the local gradient and Hessian matrices are calculated and sent
to the coordinator. The coordinator aggregates these data to
obtain the global matrices, updates the weight vector ω, and
broadcasts it to all clients. This is repeated until convergence.
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A considerable advantage of the FeatureCloud platform is its
native support of 2 very popular PETs, such as secure multiparty
computation (SMPC). For applying SMPC, FeatureCloud
supports a secure aggregation scheme for hiding locally
exchanged parameters using additive secret sharing [26].
Through this, the exchanged local models are protected, and
only the global aggregations are visible to attackers, clients,
and the global aggregator. This is achieved by splitting the value
that needs to be exchanged with the global aggregator into n
shards, where n is the number of participating clients, and the
sum of these n shards would result in the actual value [23]. Each
shard is encrypted using a public key of each participant. These
encrypted shards are shared with the global aggregator, sending
them to the corresponding client holding the private key. The
clients decrypt the received shards, sum them up, and send them
back to the global aggregator, which sums up all received sums.
This final sum results in the actual, nonhidden, global aggregate.

Ethical Considerations
According to German regulations, for our retrospective study
performed on publicly available data or data with explicit
consent, approval from an ethical committee was not required.

Evaluation
We evaluated our approach using the developed FeatureCloud
app on 3 benchmark data sets, all available via the scikit-survival
package. The breast cancer data set (BRCA) [27] contains the
gene expression profiling of microarray experiments from 198
primary breast tumors, originally used to validate a 76-gene
prognostic signature able to predict distant metastases in lymph
node–negative patients with breast cancer. The German Breast
Cancer Study Group 2 data set (GBSG2) [28] contains data
from a multicenter randomized clinical trial to compare the
effectiveness of 3 versus 6 cycles of cyclophosphamide,
methotrexate, and fluorouracil on recurrence-free and overall

survival of 686 women. The observed parameters were hormonal
therapy (yes or no), age of the patients, menopausal status (pre
vs post), tumor size (in mm), tumor grade, number of positive
tumor nodes, progesterone receptor (in fmol), and estrogen, as
well as the censoring indicator and recurrence-free survival time
(in days). The Worcester Heart Attack Study data set
(WHAS500) [29] contains data from 500 patients with acute
myocardial infarction, collected during thirteen 1-year periods.
Parameters were age, gender, initial heart rate, initial systolic
and diastolic blood pressure, body mass index, history of
cardiovascular disease, atrial fibrillation, cardiogenic shock,
congestive heart complications, complete heart block,
myocardial infarction order and type, vital status, and total
length of follow-up.

Additionally, we evaluated our algorithm on a recent,
high-dimensional gut microbiome data set from the Hospital
Clinic of Barcelona, containing data from 150 patients with
liver cirrhosis [30]. The data set was aimed at assessing the
predicting role of the gut microbiome for the survival of the
patients in the context of liver cirrhosis, using shotgun
metagenomic sequencing performed on fecal DNA isolated
from stool samples. A former version of the data has been
previously analyzed with a different methodology [30]. For this
study, the Metagenomic Species Pangenome (MSP) was used
to identify and quantify microbial species associated with the
IGC2 reference catalog [31]. MSPs are clusters of coabundant
genes (minimum size >100 genes) used as a proxy for microbial
species, reconstructed from 1601 metagenomes to 1990 MSP
species [32]. MSP abundances were estimated as the mean
abundance of their 100 marker genes, as far as at least 20% of
these genes are detected. The MSP abundance table was then
normalized in each sample by dividing its abundance by the
sum of MSP abundances detected in the sample. Further details
regarding the data sets are shown in Table 1.

Table 1. Overview of all data sets. Our 4 evaluation data sets differ greatly in the number of samples, features, events, and censored individuals. Features
indicate the number of clinical variables or microbial species abundance in the data set; median follow-up indicates the median follow-up time of the
patients in days; events indicate the number of patients for whom the event of interest was observed during observation time; and censored indicates
the number of patients for whom the event of interest was not observed during observation time.

End pointCensored, nEvents, nMedian follow-up
(days)

Features, nSamples, nData set

Presence of metas-
tases

147514384.084198BRCA

Recurrence-free
survival

3872991084.011686GBSG2

Death285215631.516500WHAS500

Death9951416.01995150Microbiome

aBRCA: breast cancer data set.
bGBSG2: German Breast Cancer Study Group 2 data set.
cWHAS500: Worcester Heart Attack Study data set.

We one-hot encoded nonbinary categorical features. For each
data set, we created either 1 client (100%) as the centralized
scenario, 3 clients (20%, 50%, and 30%) as the multicentric
imbalanced scenario, and 5 clients (20% each) as the
multicentric balanced scenario, and we split the data
accordingly.

To evaluate the accuracy of our model, we used the Harrell
concordance index, which was developed as a generalization
of the area under the receiver operating characteristic curve for
time-to-event models [33]. It corresponds to the probability of
concordance between observed and predicted survival based on
each pair of individuals. A c-index of 0.5 means that the model
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performs as well as a random guess, and a c-index of 1.0 means
that the model predicts perfectly well.

After preprocessing, we performed a 3 × 3-fold cross-validation
(CV) for a FeatureCloud workflow consisting of a federated
normalization, the federated survival SVM, and a federated
survival evaluation (c-index). We then compared our results
with the centralized analysis of every client and the merged data
set (simulating a central data collection). Centralized analysis
was performed using scikit-survival’s FastSurvivalSVM with
a rank ratio of 0, α of 0.0001, true fit intercept, and a maximum
of 50 iterations. The same hyperparameters were used for the
federated analysis, respectively.

Privacy
FeatureCloud supports several properties to increase the privacy
and security of the computations. One important step is that FL
projects can be only executed with invited participants. For this,
a unique and secret code is needed to join the project. Every
participant can see the workflow and each individually executed
FeatureCloud app that will run in the workflow. As
FeatureCloud apps are open source, even the executed code of
the apps can be examined.

The execution of apps and workflows in FeatureCloud is
containerized and strictly monitored. Due to the containerization,
individual apps are not allowed to establish a connection to the
internet, which prevents the extraction of data from malicious
code. Even though the communication between clients does not
contain sensitive patient information, it is RSA
(Rivest–Shamir–Adleman) encrypted through the standard
HTTPS protocol. This prevents unauthorized third parties from
gaining insights into parameters exchanged during training.

Exchanged parameters from each individual site are masked
through the secure aggregation scheme, hiding the intermediate
statistics from other participating clients and the global
aggregator. This efficiently addresses the problem of local
models considered as personal data in GDPR [18].

Our federated survival SVM app currently uses a hybrid
approach of SMPC and FL. This hybrid approach increases the
privacy of the exchanged local parameters from both participants
and potential attackers, as explained in the methods section.

Differential privacy (DP) [34] is not yet supported by
FeatureCloud but is currently in development and could be
added to the algorithm as an additional layer to improve privacy.
However, as the app trains a linear model, it is less prone to
overfit, reducing the surface for potential membership and
attribute inference attacks [35]. In DP, noise is added to the
model parameters during the training process to guarantee a
mathematically quantifiable amount of privacy for each sample.
While this comes with large advantages regarding privacy, the
application of DP has also various weaknesses. The addition of
noise lowers the performance of the model significantly,

especially when applying the amount of noise necessary for a
meaningful level of privacy [36]. Further, this guarantee only
is applicable for a limited number of interactions with the
resulting model. As the final model is distributed to all
participants, they can interact with the model arbitrarily, making
the privacy guarantee void, thus not warranting an inclusion in
this analysis.

A PET not supported by FeatureCloud currently is homomorphic
encryption (HE), which allows the computation of the model
on encrypted values, making sharing of data even more secure.
While this is great in theory, it actually gains very little benefit
in this analysis scenario. The data we share is already
nonsensitive and through the use of SMPC, we can hide not
only the data but the data’s origin. This is why FeatureCloud
currently supports SMPC instead of HE.

Our implementation of the federated survival SVM app uses
all the functionalities offered by FeatureCloud and does not
deviate from these best practices.

Results

Performance
Our workflow delivered a highly similar model performance
and model parameters for all federated analyses compared with
the ones performed on the corresponding centralized data sets.
The resulting c-indices to estimate the performance of our
time-to-event models are depicted in Figure 2 [33]. For each
data set (subplot), we show a boxplot consisting of the evaluated
c-index for each CV split of our federated workflow with secure
aggregation (green), federated workflow without secure
aggregation (orange), and centralized calculation for each
individual client (blue). The CV results show that our federated
as well as the federated and secure aggregation approach
perform highly similar to the centralized estimates. The
calculation of the federated c-index in FeatureCloud causes
small deviances in the c-index between centralized and
federated. This is because FeatureCloud calculates a local
c-index and aggregates to the mean c-indices of all sites.
Therefore, it does not lead to the same c-index as a central
computation would. The mean c-indices for the 4 data sets are
in the range between 0.658 (GSBG2) and 0.76 (WHAS500). In
contrast to the accuracy, achieving very high c-indices is rather
difficult and depends very much on the problem. In a
bioinformatics context, the lowest c-index of 0.658 (GBSG2)
can be considered as moderate. The model achieves
discrimination between individuals with different survival
outcomes. However, it might not be of clinical utility and needs
further refinement. The c-index of 0.76 (WHAS500) on the
other hand, can be considered as good and has predictive value.
Improving the predictive value of the models and increasing
c-index was out of the scope of this work. A complete table of
the results is available in Multimedia Appendix 2.
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Figure 2. Comparison of federated and centralized analysis. The boxplots show the evaluated c-indices (3 × 3-fold cross validation) of the central, 3
participants, and 5 participants analysis (rows). For each scenario, we compared the federated and secure aggregation approach (green), the federated-only
approach (orange), and the performance of every single site (blue). BRCA: breast cancer data set; GBSG2: German Breast Cancer Study Group 2 data
set; WHAS500: Worcester Heart Attack Study data set.

The model weights are nearly identical, with a maximum
difference of only 0.001 and a mean difference of 0.0002
(Multimedia Appendices 1 and 3). These tiny differences
between the weights of the central model and our model are
negligible, as they do not change the overall prediction results
and still lead to equal c-indices. The resulting model is therefore
almost identical to the one that was trained on central data. A
useful property of the linear survival SVM is, that the model
weights can be used as a feature importance measure, which is
also supported in our approach.

Besides calculating the feature importance from model weights
directly, our federated survival SVM app uses Shapley additive
explanations (SHAP), an explainable artificial intelligence
framework for the interpretation of ML models [37]. Using
SHAP, we compared the final models of the central, federated
without secure aggregation, and federated with secure
aggregation runs. For each data set, the SHAP shows highly
similar model interpretations with a mean Pearson correlation
of 0.991 between the central and the federated model without
secure aggregation, and a mean Pearson correlation of 0.985
between the central model and the federated model with secure
aggregation. A slightly worse correlation in the secure
aggregation model is expected, as the masking of local
parameters leads to floating-point issues. The worst correlation

is shown in the microbiome data set (0.964), which can be
explained by the high correlation between features in this data
set. The results of the SHAP correlation analysis are listed in
Multimedia Appendix 4 and the corresponding SHAP beeswarm
plots are available in Multimedia Appendix 5.

Our results further demonstrate the importance of large data
sets, as the performance of the locally trained models on single
clients (smaller sample size) shows a much higher variance than
our federated models. If 5 institutes combine their small data
sets, they can perform a much more reliable time-to-event
analysis compared with isolated institutions. This further
supports the high practical value of FL in real-world clinical
time-to-event analysis, especially for institutions with small
sample sizes, homogenous cohorts, or only a few patients with
rare diseases.

Runtime
As shown in Figure 3, the runtime largely depends on the data
set. In the case of FL, the number of iterations and, therefore,
the number of data exchanges are the bottleneck. While the
federated-only approach has linear runtime, the runtime of
federated and secure aggregation is much worse and increases
with an increasing number of clients. As described in the
FeatureCloud publication, providing better privacy by hiding
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the exchanged parameters from the global aggregator, the simple
additive secret sharing grows quadratic with the number of
participants. Especially when many iterations and data

exchanges are needed, this has a bad influence on the runtime
of the FL implementation.

Figure 3. Runtime analysis. The lines represent the runtime for each data set and the number of participating clients. The federated-only approach is
depicted on the left, and the federated and secure aggregation approach is depicted on the right.

All results of the runtime analysis are shown in Multimedia
Appendix 6. Additionally, we performed the runtime analysis
on a data set with a large sample size. As real-world
time-to-event data sets are difficult to find, we used a
synthetically generated, published data set from an example
colon data set with 15,564 samples [38]. Our results show that
our method scales well for large sample sizes, as the number of
iterations is the bottleneck in FL (Multimedia Appendix 7).

FeatureCloud App
The app we developed can easily be used within the
FeatureCloud platform. For this, a project coordinator creates
a project, selects the app, and invites collaborators. Each
participant installs FeatureCloud and joins the project. The app
expects 2 CSV files as input, one for the training data and
another for the test data. A config file can be used to define
hyperparameters and other descriptors, such as the time and
event label columns. After the federated computation has
finished, each client receives the globally trained model as a
pickle file, as well as a prediction file containing all predictions
on the local test data set. The app can also be used in a
FeatureCloud workflow, supporting various preprocessing
methods, such as CV, normalization, feature selection, one-hot
encoding, and subsequent evaluation of survival models using
the c-index.

The requirements for running the survival SVM app are the
same as for executing the FeatureCloud platform. It requires a
stable internet connection to exchange the incentive model
parameters with the central aggregator and to run the app on
the website. Docker needs to be installed on a Mac, Linux, or
Windows computer with the corresponding requirements for
running Docker [39]. Moreover, enough memory should be
available to process the data set. This depends mainly on the
data set size, and not on the algorithm itself.

Discussion

Principal Findings
Our federated survival SVM has been demonstrated to offer a
highly viable alternative to centralized data collection in a
time-to-event analysis. It achieves comparable levels of accuracy
without compromising the privacy of highly sensitive patient
data. This makes it a compelling solution for organizations
seeking to safeguard sensitive data while still gaining the
benefits of advanced analysis and the application of ML.
Through its availability as a FeatureCloud app, the platform
takes care of deployment and federated infrastructures, making
it directly usable with little programming knowledge. The results
of the real-world microbiome data set are promising and show
that FL might be an accelerator in microbiome research and the
analysis of time-to-event microbiome data sets. Using FL
combined with additive secret sharing, our approach can be
currently considered GDPR compliant and, therefore, practically
usable in real clinical time-to-event studies [12].

Comparison to Existing Work
Only a few federated survival analysis approaches were
developed in recent years, such as the distributed Cox
proportional hazards model WebDISCO or an approach for
federated survival curves using multiparty HE [18,20]. In a
recent study about privacy-aware multi-institutional
time-to-event analysis, it was criticized that the existing work
was mainly focusing on theoretical solutions, rather than
practical [21]. Therefore, lack of usability was a huge issue that
was addressed by the authors, who developed the platform
“Partea” [21]. The platform supports the Kaplan-Meier estimator
for survival curve estimation [40], Nelson-Aalen estimator for
cumulative hazard ratios [41], and Cox proportional hazards
model for survival regression [42]. Compared with “Partea,”
FeatureCloud does not only address the execution of FL
algorithms, but also development. The FeatureCloud developer
application programming interface for implementing FL
algorithms that can be executed through FeatureCloud and
published in the App Store is a huge advantage in terms of
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development speed and also accessibility for the potential user
group.

To our knowledge, the survival SVM FeatureCloud app is one
of the first time-to-event analysis ML models implemented as
a FL algorithm. This makes the accuracy (or c-index in our case)
between the algorithms not directly comparable. However,
similar to the existing solutions [20,21], our approach achieves
almost identical results compared with the central algorithms.

Regarding runtime, univariate methods without iterations, such
as Kaplan-Meier estimator, Nelson-Aalen estimator, or log-rank
test are much more efficient in FL settings. However, these
approaches cannot be used to analyze high dimensional data
and multivariate settings. The efficiency of our approach is
comparable to the iteratively trained Cox proportional hazard
model, which is trained iteratively and requires communication
and aggregation for every parameter update step.

Limitations
Our current approach does not support the more efficient ranking
objective, as federated ranking is not trivial to implement.
Instead, it is based on scikit-survival’s regression objective.
Moreover, it solely supports the linear SVM and does not
support the kernel SVM yet. Calculating a kernel matrix in a
federated setting is not trivial, as it represents pairwise
similarities (or distances) between the training data points. For
supporting more complex, nonlinear relationships, this should
be further investigated in the future. We still decided to
implement and use a survival SVM in this work, as SVMs are
very popular in health care and the only available time-to-event
analysis ML model in scikit-survival that is not based on an
ensemble approach. Ensemble models, such as random survival
forests [43] or survival gradient boost, are both based on a set
of survival trees. While ensemble models are also popular in
time-to-event analysis, the federated aggregation of the local
forests produces slightly worse results than centrally trained
models in imbalanced scenarios [44]. A federated aggregation
of each local tree, on the other hand, is computationally costly.
The SVM in our implementation produces highly accurate
results compared with central learning for model weights,
c-index, and feature importance and can therefore lower the

burden of applying FL in health care (eg, microbiome analysis),
as the participants can be sure that the results are equal to the
ones they would obtain in a central setting.

FeatureCloud currently only supports a simple additive
secret-sharing scheme, increasing runtime for calculations with
many clients and iterations. This could be solved in the future
by using a more efficient secret-sharing scheme, such as Shamir
secret sharing, that is currently not supported by FeatureCloud
[45]. By using FeatureCloud as the execution platform, our
approach does not solve the still existing open problems of FL,
such as fairness, debugging, and communication efficiency
(especially when using secret sharing) [46]. Furthermore, there
are attacks on FL architectures that cannot be prevented through
the existing methods, such as privacy inference from the global
model, and model or data poisoning [47]. It is therefore
recommended to use the algorithms and FeatureCloud platform
only with trusted parties.

Another limitation that comes from the FeatureCloud platform
is data standardization. Data formatting and standards need to
be discussed and determined in advance by the participants of
the federated analysis. However, FeatureCloud provides the
possibility to include federated data preprocessing applications
in the workflow. While this does not remove the need for
external communication of data standards, such as included
features and naming conventions, it makes it straightforward
to guarantee the same format and preprocessing for the used
data before the actual model training process. Possible
applications include imputation, normalization, train or test
splitting, and CV [48,49].

Conclusions
In conclusion, we developed an open-source federated survival
SVM that performs time-to-event analysis on geographically
distributed data sets without sharing sensitive raw data. It is
freely available in the FeatureCloud App Store. The trained
models are almost identical compared with centrally trained
survival SVMs. This extends the palette of existing federated
time-to-event analysis approaches by another algorithm that
can be applied to various problems.
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