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Quote

“A process cannot be understood by stopping it. Understanding must move with the
flow of the process, must join it and flow with it.” - Frank Herbert, Dune
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Zusammenfassung

Neue Funktionalitäten können entstehen, wenn ein System aus dem Gleichgewichtszus-
tand gebracht wird.
Wir haben Nicht-Gleichgewichts-Eigenschaften von Licht-Materie gekoppelten Systemen
mittels einer statischen Pumpe oder periodischem Treiben untersucht. Als primäres
Beispiel haben wir die Eigenschaften von sogenannten Zeitkristallen erforscht. Zeitkris-
talle brechen spontan die Zeit-Translations-Symmetrie (ZTS) und sind robust gegenüber
lokalen Störungen. Wenn das System eine zugrunde liegende kontinuierliche ZTS hat,
die gebrochen wird, nennt man die Phase einen kontinuierlichen Zeitkristall. Liegt dem
System nur eine diskrete Zeit-Translations-Symmetrie zugrunde, so wird die entstehende
Phase als diskreter Zeitkristall bezeichnet. In der zugrunde liegenden Thesis haben wir
in Verö↵entlichung [1] die Robustheit eines diskreten Zeitkristalls gegenüber Moleku-
larfeld brechenden Termen wie Kontaktwechselwirkungen und räumlicher Beschränkung
untersucht und in Verö↵entlichung [2] die Rolle des dissipativen Kanals im o↵enen Dicke-
Modell erforscht. Des Weiteren haben wir das Dicke-Modell in den Verö↵entlichung [3–
5] um ein drittes Energieniveau erweitert. Durch das Hinzufügen des dritten atom-
aren Niveaus im Vergleich zum Standard Dicke-Model, welches aus zwei Energieniveaus
besteht, haben wir in Verö↵entlichung [3] das Auftreten eines inkommensurablen Zeitkris-
talls theoretisch erklärt und haben explizit gezeigt wie ein Atom-Hohlraumresonator-
System auf das von uns vorgeschlagene drei-Niveau Dicke-Modell abgebildet werden
kann. Wir haben diese Vorhersage in Zusammenarbeit mit der Gruppe von Andreas
Hemmerich in der Verö↵entlichung [4] experimentell bestätigt. Im Anschluss an diese
Arbeit haben wir in Verö↵entlichung [5] numerisch und experimentell gezeigt, wie das
Bose-Einstein-Kondensat (BEC) mit dem gleichen Schema, aber stärkerem Treiben als
zuvor, in einen dunklen Zustand des Lichtfeldes gebracht werden kann.
In den Verö↵entlichungen [6] und [7] haben wir einen kontinuierlichen Zeitkristall in
einem Hohlraumresonator-BEC-System untersucht. In Zusammenarbeit mit der exper-
imentellen Gruppe von Andreas Hemmerich konnten wir Grenzzyklen in einem Quan-
tengasexperiment beobachten. Indem wir numerisch und experimentell die Robustheit
gegenüber zeitlichem Rauschen in der Licht-Materie-Kopplungsstärke sowie Fluktuatio-
nen in der Teilchenzahl und den Quantenkorrekturen niedrigster Ordnung unter Verwen-
dung der Methode der ”truncatedWigner approximation” (TWA)Methode nachgewiesen
haben, konnten wir die Realisierung des ersten kontinuierlichen Zeitkristall vermelden.
In der darauf folgenden Verö↵entlichung [7] haben wir ein allgemeines Minimalmodell
vorgeschlagen, das Grenzzyklen in einem Licht-Materie-System beherbergt, und das Ex-
periment auf dieses Modell abgebildet. Wir haben die Existenz von Grenzzyklen sowohl
für repulsive als auch für attraktive Potentiale vorhergesagt und experimentell bestätigt.
Darüber hinaus haben wir die Existenz einer zugrundeliegenden Hopf-Bifurkation gezeigt,
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die zu dieser Dynamik führt, indem wir die Eigenwerte der Jacobi-Matrix sowie das ein-
hergehende Skalierungsverhalten bestimmt haben. In der Verö↵entlichung [8] haben wir,
wiederum in Zusammenarbeit mit der Gruppe von Andreas Hemmerich, den Übergang
von einem kontinuierlichen zu einem diskreten Zeitkristall untersucht, indem wir den zu-
vor entdeckten kontinuierlichen Zeitkristall periodisch getrieben haben. In der Sprache
der nichtlinearen Dynamik kann dies als die erste Beobachtung von ”Entrainment” und
”Sub-Entrainment” in einem Quantengasexperiment angesehen werden.
Wir haben die Plattform, bestehend aus einem Hohlraumresonator und einem BEC, die
wir bereits ausgiebig untersucht haben, genutzt, um einen Rotationssensor vorzuschla-
gen, der den o↵enen Charakter des Systems für eine verbesserte Nutzbarkeit verwen-
det. Die Idee besteht darin, das aus dem Hohlraum austretende Lichtfeld als Fenster
in die Dynamik des Systems zu nutzen, um die Eigenschaften der Atomtronik und der
Echtzeitauslesung zu kombinieren. Um diese Idee als Sensor zu nutzen, haben wir die
Abhängigkeit zwischen der angelegten externen Drehung und der Anzahl der aus dem
Hohlraum austretenden Photonen gezeigt, die wiederum als Signal für den Sensor ver-
wendet werden. Der theoretische Vorschlag wird in der Verö↵entlichung [9] vorgestellt.
Wir haben außerdem die Kontrolle einer aktiven Raman-Mode durch Kopplung mit einer
Hohlraummode in Verö↵entlichung [10] untersucht. Mithilfe von analytischen Werkzeu-
gen und TWA haben wir gezeigt, dass die Raman-Mode stark eingegrenzt werden kann,
wenn sie auf Resonanz mit der doppelten Hohlraumfrequenz abgestimmt ist.
Wir haben die Dynamik von topologischen Defekten wie ”Vortices” in Supraflüssigkeiten
in der Verö↵entlichung [11] untersucht. Dazu haben wir die Ergebnisse für die Gross-
Pitaevskii (GP)-Gleichung, die nicht Teilchen-Loch-symmetrisch ist, und die nichtlin-
eare Klein-Gordon (NLKG)-Gleichung, die eine Teilchen-Loch-Symmetrie aufweist, ver-
glichen. Wir konnten auf das Fehlen der Magnus-Kraft für die Klein-Gordon-Flüssigkeit
hinweisen und Protokolle zur Messung dieser E↵ekte in modernen Experimenten vo-
raussagen. In einem gemeinsamen Manuskript mit der Gruppe von Henning Moritz,
das in Vorbereitung ist und bald verö↵entlicht wird, haben wir das Modell auf den
berühmten Übergang vom Bardeen-Cooper-Schrie↵er-Zustand von Paaren aus Fermio-
nen zum Bose-Einstein-Kondensat von zweiatomigen Molekülen angewendet (BEC-BCS-
Übergang). Wir haben explizit gezeigt, wie die e↵ektiven Parameter durch die Verwen-
dung von Quanten-Monte-Carlo-Daten (QMC) bestimmt werden können. Wir haben
die numerisch beobachteten kollektiven Moden, die durch einen räumlichen Einschluss
verschoben sind, mit experimentellen Daten der Gruppe von Henning Moritz verglichen
und eine große Übereinstim-
mung festgestellt. Wir haben gezeigt, wie sich der Charakter der am tiefsten liegenden
kollektiven Mode von einer ”breathing” Mode auf der BEC-Seite zur Higgs-Mode auf
der BCS-Seite für ein System mit starkem räumlichen Einschluss ändert.

xii



Abstract

New functionalities can emerge if a system is pushed away from its equilibrium. We
study non-equilibrium properties of light-matter systems by applying either a static or a
periodic drive. As a prime example we investigate properties of so-called time crystals.
Time crystals (TC) spontaneously break the time translational symmetry (TTS) and
are robust against local perturbations. If the system has an underlying continuous TTS
that becomes broken, the phase is called a continuous time crystal (CTC). If the system
only has an underlying discrete time translational symmetry, then the emerging phase
is called a discrete time crystal (DTC). In this thesis, we have studied the robustness of
a DTC against mean-field breaking terms such as contact interactions and confinement
in publication [1] and have studied the role of the dissipative channel in the open Dicke
model in publication [2]. We have also extended the Dicke model to the three-level Dicke
model in the publications [3–5]. By adding a third atomic level to the standard two-level
Dicke model, we theoretically explain the emergence of an incommensurate time crystal
(ITC) in publication [3] and explicitly show the mapping of an atom-cavity system to the
proposed three-level Dicke model. We confirmed this prediction experimentally in col-
laboration with the group of Andreas Hemmerich in publication [4]. Following this work,
we highlight theoretically as well as in the experiment, how the same driving scheme can
be used with a stronger driving amplitude to push the Bose-Einstein-condensate (BEC)
into a dark state of the light field [5].
In publications [6] and [7] we studied a CTC in a cavity-BEC system. In collaboration
with the experimental group of Andreas Hemmerich, we have been able to observe limit
cycles in a quantum gas experiment. By showing numerically and experimentally the ro-
bustness against temporal noise in the light-matter coupling strength, as well as against
fluctuations in the particle number and against the lowest order quantum corrections
using the truncated Wigner approximation method (TWA), we have been able to report
the realisation of the first CTC. In the follow-up publication [7], we have proposed a
general minimal model, which hosts limit cycles in a light-matter system, and mapped
the atom-cavity experiment onto it. We have predicted and confirmed the existence of
limit cycles for both repulsive as well as attractive potentials. Further, we have shown
the existence of an underlying Hopf bifurcation leading to this dynamics by computing
the eigenvalues of the Jacobian as well as by means of scaling laws. In publication [8] we
have studied, again in collaboration with the group of Andreas Hemmerich, the transi-
tion from a CTC to a DTC by periodically driving the previously discovered CTC. In the
language of nonlinear dynamics this can be seen as the first observation of entrainment
and sub-entrainment in a quantum gas experiment.
We have used the atom-cavity platform, which we have extensively studied before, to
propose a rotational sensor that exploits the open character of the system for improved
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usability. The idea is to use the light-field leaking out of the cavity as a window into
the dynamics of the system to combine the features of atomtronics and real-time read
out. To use this idea as a sensor, we show the dependence between the external rotation
applied and the number of photons leaking out of the cavity, which is in return used as
the signal for the sensor. The theoretical proposal is reported in publication [9].
We also studied the control of an active Raman mode by coupling it to a cavity mode
in publication [10]. We have shown, by use of analytical tools as well as TWA, that
the Raman mode can be strongly confined, if tuned to resonance with twice the cavity
frequency.
We studied the dynamics of topological defects such as vortices in superfluids in publi-
cation [11]. We compared the results for the Gross-Pitaevskii (GP) equation, which is
not particle-hole symmetric, and the nonlinear Klein-Gordon (NLKG) equation, host-
ing a particle-hole symmetry. We point out the absence of the Magnus force for the
Klein-Gordon fluid and predict protocols to measure these e↵ects in state-of-the-art ex-
periments. In a joint manuscript with the group of Henning Moritz, that is in preparation
and will be published soon, we have applied the model to the famous crossover from the
Bardeen–Cooper–Schrie↵er state of pairs of fermions to the Bose–Einstein-condensate
of diatomic molecules (BEC-BCS crossover). We have explicitly demonstrated how the
e↵ective parameters can be fixed by the use of quantum Monte Carlo (QMC) data. We
compared the numerically observed collective modes including a spatial confinement and
experimental data of the group of Henning Moritz and find great agreement. We show
how the character of the lowest lying collective mode changes from a breathing mode
on the BEC side to the Higgs mode on the BCS side for a system with strong spatial
confinement.
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1 Introduction

Life is in perpetual motion. This ranges from the branches of a tree, experiencing a
mild breeze, predator-prey communities, our daily body temperature changes, our sleep
cycle, to the ongoing beating of our heart [12–15]. It is crucial to understand the un-
derlying laws of nature that lead to these complex systems with its nontrivial dynamics.
Before attempting to understand these phenomena in such large systems, the goal is
to understand its ingredients individually on the small scale before putting everything
back together. In order to do this, quantum simulators can be used as first proposed
by Richard Feynman [16]. The underlying idea is that as the world is quantum on its
smallest length and energy scales, we need to use quantum devices to simulate it. One of
the most used platforms to do so are ultracold atoms [17]. These platforms have become
available after the first realisations of Bose-Einstein condensates (BEC) [18, 19] in the
90s. These experiments o↵er high controllability, stability and reproducibility. Later, by
the means of laser light, optical lattices could be applied to the BECs, which allowed to
simulate quantum solid state physics at slower time scales and without defects [20–23].
The great controllability has allowed studying phase transitions in a controlled way by
changing system parameters [24]. The understanding of phase transitions and the asso-
ciated properties is crucial to understand the dynamics and response of the system to
perturbations.
Hence, the study of phase transitions and the associated changes in material properties
are of great interest and at the heart of solid state physics [25]. During a phase transition,
a symmetry is spontaneously broken [25–27]. A symmetry is said to be broken if the
ground state possesses a lower symmetry class then the underlying equations governing
the dynamics. One of the standard examples is the transition from liquid water to ice.
While for water, the density of molecules has a continuous translational symmetry, as
it freezes into a solid, a spatial pattern occurs. The water molecules arrange in a fixed
spatial pattern leading to a reduced discrete symmetry for the density of water.
A scope of modern physics is to first understand the mechanisms behind non-equilibrium
dynamics and ultimately to design new phases of matter with new functionalities and
applications. The idea is to not to just use ultracold atom platforms to study ground
state or steady state properties of the emulated solid state systems, but also to quantum
simulate the dynamics of more complex systems. This can either be done by changes
in the environment due to variations in light-matter interactions of the physical system
in question [28–30] or by applying an external periodic drive [31–34]. This will either
renormalise properties of the system or can even push it into a new phase of matter with
possibly new properties that are forbidden in equilibrium.
As a particular example of non-equilibrium physics, we have been interested in so-called
time crystal. This phase of matter spontaneously breaks the time translational symme-
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try. The phenomenon was first coined in biology byWinfree [13,35] and later rediscovered
and translated into the language of physics by Wilczek and Shapere in 2012 [36, 37]. It
can be seen as the analog of a space crystal, were the atoms spontaneously break the
translational symmetry to form a crystal, but in the time domain. Time crystals allow
to study the stability and the underlying structure of such non-equilibrium phases in a
very controlled way.
The quantum simulator we are interested combines the physics of using BECs in optical
lattices with the controllability of the light-matter coupling. For further readings on
various implementations of strong light-matter couplings we refer the reader to [38–44].
The majority of the systems considered in this PhD thesis correspond to atom-cavity
systems. Atom-cavity systems [43–49] allow to study the interactions between ultracold
quantum gases and electromagnetic fields at strong couplings. Further, the controllabil-
ity of this platform makes it especially useful to study nonlinear physics and dissipative
e↵ects due to light leaking out of the cavity. Due to the light-field leaking out of the
cavity the dynamics can be in-situ observed. Hence, with a single experimental trace
a time series can be measured without destructive measurements of the atoms. The
cavity-BEC platform allows to measure the photon number as well as the relative phase
of a pump laser and the light-field leaking out of the cavity. In addition to these in-situ
measurements, a destructive time-of-flight measurement can be done to extract direct
information on the momentum states of the BECs.
In this thesis, we have studied the stability of discrete and continuous time crystals [1–9]
including the first demonstration of a continuous time crystal [6]. One key aspect of
these results is the so-called recoil-resolved atom-cavity system. This means that the
timescale of the dynamics of the atoms as well as of the light-field are comparable and
none of those two can be adiabatically eliminated. This particular case allows for the
extended stability of discrete time crystals [1–5] as well as the emergence of limit cy-
cles [6–8]. We have contributed to atomtronics in the form of a rotation sensor [9] as
well as cavity enhanced localisation of a Raman mode [10].
We have shown how symmetries, such as particle-hole symmetry, can drastically change
the dynamics of superfluids. Furthermore, we have first used this to show the absence
of the Magnus force for nonlinear Klein-Gordon fluids [11] and also have been able to
use this theory to map it on the BEC-BCS crossover as is implemented in the experi-
ment done in the group of Henning Moritz. Additionally, we have used this to predict
the lowest relevant collective modes during the BEC-BCS crossover including a spatial
confinement. A joint manuscript with the group of Henning Moritz is in preparation.
This thesis is structured as follows:

Overview

• Chapter 2 introduces the atom-cavity system, shows the mapping to the toy mod-
els considered, and briefly discusses the numerical as well as analytical tools used.
The chapter further gives a short introduction to the field of time crystals and
discuss to some extent the basics of bifurcation theory. The chapter includes pub-
lication [1], where the stability of a dissipative time crystal is discussed for varying
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mean-field breaking terms such as inhomogeneous trapping potentials and contact
interactions. Publication [2] discusses the connection between the dissipative time
crystal found in open systems with infinite-range interactions, namely the open
Dicke model and the Lipkin-Meshkov-Glick model. Publication [3] introduces the
three-level Dicke model and shows how this model can be realised using phase-
modulation in an atom-cavity system. Publication [4] shows the experimental
realisation of the model proposed in publication [3] and shows the realisation of
an incommensurate time crystal. Publication [5] follows up on publication [3] and
publication [4], but uses a stronger drive to realise the condensation in a dark state
of the atom-cavity system by a transfer due to the cavity. Publication [6] presents
the first experimental realisation of a continuous time crystal. Here, a blue-detuned
atom-cavity system is used. Publication [7] provides the theoretical framework to
understand the mechanism that lead to the limit-cycle in publication [6]. It further
generalises the mechanism to also include attractive light potentials and further
provides an experimental realisation for such attractive light potentials. Publica-
tion [8] shows the entrainment of a continuous time crystal. It is highlighted that
this can be understood as a phase transition from a continuous to a discrete time
crystal. In publication [9] we propose to use a version of a Dicke-Hubbard model of
the atom-cavity system to use it as a rotational sensor. We discuss the sensitivity
of the sensor and its dependencies on the di↵erent parameters. Publication [10]
proposes the use of a cavity to control and manipulate the equilibrium properties
of Raman modes.

• Chapter 3 discusses the dynamical properties of particle-hole symmetric superflu-
ids. It includes a derivation of the conserved quantities, the mode structure and
presents a simplified model to partially describe the experimental results found in
the group of Henning Moritz. For this collaboration the manuscript is in prepara-
tion and not included in this thesis. The chapter includes publication [11], which
discusses the dynamics of topological defects like vortices and solitons.

• Chapter 4 concludes and briefly discusses an outlook for future work.
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2 Atom-cavity systems

Large parts of my research during my PhD have been focused on atom-cavity systems.
In publications [1–9] we focus on cavity-BEC systems or atom-cavity systems, where a
BEC is placed inside a high-finesse cavity and is transversely pumped by external laser
beams. For an introduction to this particular setup including many examples, we refer
to [50]. In publication [10] we study a generic model of atom-cavity systems, where a
Raman-mode is coupled to a high-finesse cavity, which leads to Raman-cavity hybrid
modes.

2.1 Cavity-BEC system

m
irr

or

photon loss

pump laser

Retro-reflected
beam

BEC, N

Figure 2.1: Sketch of the atom-cavity setup. A BEC consisting of N atoms is placed
inside a high-finesse cavity and is transversely pumped by a laser beam with
wavelength � that is retro reflected such that it forms a standing wave po-
tential. The pump laser strength is given by ✏ and the phase of the standing
wave potential by �. Light inside the cavity is leaking out of the cavity with
the loss rate .

The full e↵ective atom-cavity Hamiltonian can be decomposed into an atomic, a cavity
and a light-matter interaction part [50–52]. We assume to be in the dispersive regime,
such that the excited states can be adiabatically eliminated. A sketch of the setup is
shown in Fig. 2.1. We consider a two-dimensional setup with the pump beam aligned
with the y-direction and the cavity aligned along the z-direction. A BEC consisting of
N atoms is placed inside two mirrors that form a cavity with a photon loss rate . The
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atoms are transversely pumped by a laser beam with wavelength � that is retro-reflected
such that it forms a standing wave potential for the atoms. The strength of the laser
beam is given by ✏, which can be periodically modulated, and the phase of the standing
wave potential is given by �, which can also be periodically driven by applying an electro-
optic modulator to the laser beam. Depending on the wavelength of the pump laser, the
atoms can either feel an attractive or repulsive light potential. The total Hamiltonian
decomposed into di↵erent contributions then reads

Ĥ = ĤC + ĤA + ĤAC . (2.1)

The single-mode cavity light field has a mode function of cos(kz) and a resonance fre-
quency of !C . The pump laser frequency is given by ! and the system is described within
the rotating frame of the pump laser, and we define the detuning as �C = !P �!C with
!P the frequency of the pump laser. The cavity Hamiltonian is given by

ĤC/~ = ��C â
†
â (2.2)

with the cavity mode annihilation and creation operators â
† and â, respectively. The

atomic Hamiltonian is given by

ĤA/~ =

Z
dydz ̂†(y, z)


�

~
2m

r
2
� !rec✏p cos

2(ky)

�
 ̂(y, z), (2.3)

where  ̂† and  ̂ are the bosonic annihilation and creation field operators for the atoms,
k = 2⇡/� describes the wave number of the pump light field, and ✏p = ✏/!rec is the
corresponding pump strength. It is quantified in terms of the maximal energy depth
of the pump lattice in units of the recoil energy Erec = ~!rec with the recoil frequency
Erec = ~2k2/2m, where m is the atomic mass. Finally, the atom-cavity interaction is
given by

ĤAC/~ =

Z
dydz ̂†(y, z)


U0â

†
â cos2(kz)

+sign(U0)
q
!rec|U0|✏p cos(ky) cos(kz)(a

† + a)

�
 ̂(y, z), (2.4)

where U0 is the maximal light-shift per single atom, which can be positive or negative de-
pending on whether a blue- or red-detuned pump laser with respect to the relevant atomic
transition is used. As depicted in Fig. 2.2, the system exhibits a normal-superradiant
phase transition. In the so-called normal phase (NP) below the phase transition the
atoms acquire a density modulation from the applied standing wave potential. However,
photons scattered from the pump beam will, due to the density of the atoms, decon-
structively interfere with each other such that there is no net light field in the cavity
and no light is leaking out of the cavity as shown in Fig. 2.2(a). As the intensity of
the laser beam is increased the critical pump strength ✏crit is reached and the system
undergoes the superradiant phase transition. The atoms spontaneously self-organise in
one of the two degenerate checkerboard patterns as depicted in Fig. 2.2(b). The atoms
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(a) (b)

Figure 2.2: Sketch of the cavity-BEC setup below and above the superradiant phase
transition. (a) For a pump strength below the critical value, atoms can
scatter photons from the standing wave potential into the cavity. However,
the atom density is homogeneous plus a small modulation due to the standing
wave along the y-direction with the periodicity of �/2. This means that for
every scattered photon a second photon is scattered exactly with the opposite
phase and there is no light field inside the cavity. (b) Above the critical pump
strength, the atoms spontaneously self-organise in one of the two possible
checkerboard patterns with spacing �. The atoms fulfill the Bragg condition
and scatter light into the cavity. This can be measured by the light field
emitted from the cavity.

now perfectly fulfill the Bragg condition and the photons are constructively scattered
into the cavity. Photons leaking out of the cavity can be detected and the Z2 symmetry
breaking can be inferred by measuring the phase of the cavity photons compared to the
pump beam. In the superradiant phase it is energetically favorable to acquire kinetic
energy as this new pattern reduces the light-matter-coupling energy.
The focus of our research is related to the dynamics of the experiment in the group
of Andreas Hemmerich in Hamburg. The experiment operates in the recoil-resolved
regime [53, 54], this means that the dynamics of the light-field and the atoms evolve at
the same timescale and the usual adiabatic elimination of the cavity dynamics employed
in the extremely lossy cavity regime is not justified. Hence, in our numerics we solve the
equations of motion for both the light field and the atomic sector simultaneously.
Typical parameters implemented in both the experiment and our numerics are  =
2⇡ ⇥ 4 kHz, the total particle number NA = 60 ⇥ 103 and U0 in the order of Hz.
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Variations of this Hamiltonian have been used in publications [1, 3–9].

2.1.1 Methods

In the following, we briefly discuss the main methods we have repeatedly used and point
towards further literature for a more in depth introduction.

Truncated Wigner approximation (TWA)

In publications [1,2,5,6,8–10] we have used the semiclassical TWA to include the leading-
order quantum corrections to the mean-field e↵ects [55,56]. Roughly speaking, the idea
is to sample over the initial Wigner distribution and to average over all trajectories to
estimate the observable of interest. This method is well established in its continuous
version [52, 55–59] as well as for spin models [2, 60–64]. In our case, we use a modified
version of the TWA for open systems. Meaning, that we additionally consider the
stochastic noise ⇠ associated to the dissipation of photons out of the cavity, which is
defined as h⇠

⇤(t0)⇠(t)i = �(t � t
0) [52, 65].

For a review we refer to [56]. There, the Wigner distribution is derived for the special
cases of Fock states and coherent states in the initial state as well as an explicit recipe
on how to derive the equations of motion. In our atom-cavity system we initiate the
light field as well as the atoms as coherent states.

Schwinger-boson mapping

The Schwinger-boson mapping [66–68], sometimes called the Jordan–Schwinger map, is
used to connect M bosonic N -level systems represented by the states |1i(i),...,|Ni

(i) with
i 2 {1, ...,M} to SU(N) spin models. Therefore, the operators Â

s
r =

PM
i=1

= |ri
(i)

hs|

are introduced [68]. In our studies we have primarily focused on the case that N = 3 and
N = 2 leading to SU(3) and SU(2) spin models. For details, we refer to the appendix
of publication [3], where we discuss this in great detail and explicitly show the mapping
for a three-level system. We note that this mapping is just a rewriting of the same
systems and no approximation is done during this mapping. Fig. 2.3(b)-(c) depict how
this mapping is done after the low mode approximation of the full atom-cavity system
to go from two-level systems to the Dicke model.

Holstein-Primako↵ (HP) transformation

As the name suggests, the HP transformation is a priori no approximation [69–71].
However, the method is often used for large spin systems after the Schwinger-boson
mapping such that an expansion in the large spin number can be done by the use of a
Taylor expansion. In our case, we are often interested in the HP transformation, if we
take the thermodynamic limit, meaning that the large spin number N ! 1 [72,73]. In
the following we represent the HP transformation for SU(3) spins, which we obtained
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using the Schwinger-boson mapping above. The transformation is given by

Ĵ
12

z = â
†
12
â12 � Na/2

Ĵ
12

+ = â
†
12

r
Na �

⇣
â
†
12
â12 + â

†
13
â13

⌘

Ĵ
12

� =

r
Na �

⇣
â
†
12
â12 + â

†
13
â13

⌘
â12

Ĵ
13

z = â
†
13
â13 � Na/2

Ĵ
13

+ = â
†
13

r
Na �

⇣
â
†
12
â12 + â

†
13
â13

⌘

Ĵ
13

� =

r
Na �

⇣
â
†
12
â12 + â

†
13
â13

⌘
â13

Ĵ
23

+ = â
†
12
â13

Ĵ
23

� = â
†
13
â12. (2.5)

At this level there is no approximation, and we note that while the number of 8 spin
operators are reduced to 3 bosonic modes, the system is now highly non-linear in bosonic
mode. The approximation can now be done, if N is large. We Taylor expand the square
roots to obtain a linear theory again. We discuss this in greater detail in the appendix
of publication [3]. The approximation step is sketched in Fig. 2.3(c)-(d).

Jim Skulte

2Levels of approximation

JS, et al., draft in preparation 

cavity / z-axispum
p / y-axis

Few mode 

approximation

Atom-cavity system Few-mode boson system Dicke model 1 boson + 1 photon mode

Schwinger-boson

mapping

Holstein-Primakoff

tranformation

(a) (b) (c) (d)

Figure 2.3: Sketch of the di↵erent levels of approximations starting from the full atom-
cavity system for the example of the mapping to the Dicke model. (a) A BEC
is transversely pumped by a retro reflected laser beam along the y-direction
to form a standing wave potential. Light can be scattered into a high-finesse
cavity with a photon loss rate  and is oriented along the z-direction. (b) By
employing a few-mode approximation, a few-mode boson model is obtained.
(c) The system in (b) can be mapped, using a Schwinger-boson mapping,
onto SU(2) spins, which can be written as the Dicke model. (d) By applying
a Holstein-Primako↵ transformation and by only taking the lowest order
contributions we obtain a system of two coupled oscillators.
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2.1.2 Toy models

In the following we discuss the relevant toy models we have studied in the publications [2–
7, 9]. We start with the full-atom cavity system and first apply a low-mode expansion.
This is done by considering the relevant spatial modes, see Fig. 2.3. During my PhD
the relevant spatial modes changed depending on whether we used amplitude driving
to study the system, see publications [1, 2, 8], phase shaking of the pump beam, see
publications [3–5] or whether we studied e↵ects for stronger light-matter couplings as in
publication [7]. To map these few-boson systems to spin systems we used the Schwinger-
Boson mapping, see Fig. 2.3(b)-(c). Finally, for these simple models we used the Holstein-
Primako↵ approximation to either gain further analytical insights or to arrive at the
model in question as in publication [10], see Fig. 2.3(c)-(d). Fig. 2.3 sketches these steps
for the case of only two relevant spatial modes, leading to the standard Dicke model.

Dicke model

The Dicke model is a standard model in quantum optics that captures a wide class of
light-matter systems. It describes N two-level systems coupled to a single quantised light
mode. The model is called open Dicke model if any loss channels are included, usually
in the form of a loss in the light mode. By applying a rotating wave approximation,
the Dicke model reduces to the Tavis-Cummings model [74]. The limit of one two-level
system coupled to a single quantised light mode is captured by the quantum Rabi model.
Taking both limits of the rotating wave approximation and taking the number of two-
level systems to one reproduces the Jaynes-Cummings model [74].
The Dicke model was first introduced in the context of a superradiant burst [75]. Here,
N inverted two-level systems collectively emit light in a single mode with an intensity
scaling as / N

2. This emission is enhanced compared to the emission due to sponta-
neous emission which scales as / N . Hence, this e↵ect was dubbed superradiance. The
study of superradiant bursts in free space [76], in special geometries of atoms [77–81] as
well as in superradiant lasers [82–88] is still an active field of research. However, these
phenomena are not discussed in this thesis.
Later, the Dicke model was introduced with the superradiant phase as a steady state
phenomenon, which we have studied during my PhD. It was first pioneered in the
70s [89–93] and has been extensively studied including extensions and further gener-
alisations in [3, 68, 73, 94–101]. However, soon after the first proposals, no-go theorems
have been put forth, which have shown that this transition cannot occur for bare atomic
levels due to the fact that the term ~A

2, with ~A being the electromagnetic vector poten-
tial, cannot be dropped as it is done for the derivation of the Dicke model with minimal
coupling [102–105].
However, scientists have found ways to circumvent these no-go theorems by using ef-
fective levels instead of the bare atomic levels. The first experimental proposals using
ultracold atoms coupled to an open cavity have been discussed in [106–108] and the
following first experimental realisations have been reported in [43–46, 95, 109–111]. For
further reading we suggest to start with the following papers [72,73,112–114]. The Dicke
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model can be defined as

ĤDicke

~ = !pâ
†
â+ !0

NX

`=1

�
z
` +

2�
p
N

NX

`=1

(â+ â
†)�x` , (2.6)

where we have introduced the individual spin operators �µ` obeying the SU(2) algebra,
and the bosonic operators â and â

† annihilate and create a photon in the quantised light
mode, respectively. !p is the frequency of the light mode, !0 the spacing of the individual
spins, N the total number of spins and � the light-matter coupling strength. Due to
the collective coupling, we can further introduce collective spin operators as Ĵµ =

P
` �

µ
`

with µ 2 x, y, z and obtain

ĤDicke

~ = !pâ
†
â+ !0Ĵz +

2�
p
N

(â+ â
†)Ĵx. (2.7)

As mentioned before, the Dicke model contains a superradiant phase transition. If a
critical light-matter coupling strength is crossed, the system spontaneously acquires a
finite light-field occupation. The transition is a so-called Z2 breaking pitchfork bifur-
cation as the superradiant phase has two degenerate ground states with di↵erent light
phases, as is discussed for the full atom-cavity system. We discuss bifurcation to greater
detail later in this chapter. Pitchfork describes the form of the stationary fixed points
of the system. In the normal phase with a vanishing light-field, the only fixed point is
hâi = 0. If the critical point at �crit is crossed, the fixed point becomes unstable and
the new two stable fixed points are given by hâi / ±

p
�� �crit. This shape of the fixed

points for varying � leads to the name pitchfork bifurcation. To map the full atom-cavity
Hamiltonian to the Dicke model a two-mode approximation is carried out as sketched
in Fig. 2.3. The atomic field operator is expanded as

 (y, z) = ĉ0 +
ĉ1
p
2
cos(ky) cos(kz) (2.8)

with ĉi as bosonic annihilation operators. Below and closely above the superradiant
phase transition this approximation is valid and the Dicke model is obtained, details can
be found in [43]. We study the open periodically driven Dicke model in publication [2].

Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) model can be obtained from the Dicke model by
adiabatic elimination of the light-field in the limit  ! 1 [74, 112]. First, the LMG
model was introduced in the context of nuclear spins [115–117] and was applied to fully
connected spin models later [118–120]. Recently, it attracted interests from the time
crystal community due to its strong all-to-all coupling, which in return can stabilise the
time crystalline phase [2, 121–123]. The Hamiltonian is given by

ĤLMG

~ = !0Ĵz � ⇤Ĵ2

x (2.9)

with ⇤ = 4�2!p/
�
N
�

2 + !

2
p

��
. We have studied the connection between the open

Dicke model and the LMG for dissipative time crystals in publication [2].
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Three-level Dicke model

One natural extension of the Dicke model, which as discussed above describes N two-
level systems coupled to a single quantised light mode, is to study N three-level systems
coupled to a single quantised light-mode. Variations of this model have been studied
in [3–5,124–130]. Using large spin operators the three-level Dicke model can be defined
as

Ĥthree�level

~ = !pâ
†
â+ !12Ĵ

12

z + !13Ĵ
13

z +
2

p
N

⇣
â
† + â

⌘⇣
�12Ĵ

12

x + �13Ĵ
13

x

⌘
. (2.10)

To obtain such Hamiltonian from the atom-cavity system a third spatial mode needs to be
considered. We have shown that a third spatial mode can alter the dynamics drastically
by considering a dark spatial mode sin(ky) cos(kz). This mode is a dark state relative
to the cavity as the mode functions do not fit in the field produced by constructive
interference of the pump and cavity field. We couple to this mode dynamically by phase
shaking of the pump laser beam. We have shown the condensation in this dark state of
the system in publication [5]. Furthermore, we have also shown that the density wave
that builds up along the cavity direction cos(2kz) can destabilise, due to the back action
on the e↵ective light-field detuning stemming from the localisation of atoms. This e↵ect
becomes important for stronger light-matter coupling deep into the superradiant phase
leading to limit cycle oscillations as have been observed in publication [6] and further
studied in publication [7] and [8].

Dicke-Hubbard model

If an optical lattice is added to the full atom-cavity Hamiltonian and assuming that
the optical lattice is su�ciently deep, we can expand our wavefunction into Wannier
functions [5, 50, 131–133]

 (y, z) =
X

n,m

w(y � yn)w(z � zm)b̂nm (2.11)

with yn = �/2⇥ n, zm = �/2⇥m and n,m 2 Z. By regrouping the terms we can arrive
at the Dicke-Hubbard Hamiltonian, where we neglected overall energy shifts due to the
pump lattice and the shift due to the dynamical cavity lattice

ĤDH

~ = !pâ
†
â � J

X

he,oi

⇣
b̂
†
eb̂o + h.c.

⌘
+ U

X

i,j

n̂n,m (n̂n,m � 1) � g

⇣
â
† + â

⌘ X

e

n̂e �

X

o

n̂o

!

(2.12)

with J the tunneling amplitude, h., .i denoting nearest neighbor hopping and e/o de-
noting even and odd sites. A site is called even if the indices (�1)n+m = 1 and odd

if (�1)n+m = �1. b̂n,m and b̂
†
n,m are the bosonic annihilation and creation operators

at the site (n,m), n̂n,m is defined as b̂
†
n,mb̂n,m and g denotes the e↵ective light-matter

coupling. In our publication [7] we used the Dicke-Hubbard Hamiltonian to model the
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system. For simplicity, we neglected shifts due to the pump-beam and have set the
contact interaction U to zero. A derivation of the Dicke-Hubbard model from the full
atom-cavity Hamiltonian can be found in [133].

2.2 Time crystals

(a)

(b)

Figure 2.4: Sketch of the di↵erent kinds of time crystal. (a) Sketch of a discrete time
crystal. A periodic drive is applied to the system and some observable A(t)
oscillates with the driving period Tdr. As some tuning parameter � is tuned
a critical point occurs and the system undergoes a phase transition into
a discrete time crystal. The observable A(t) oscillates at a subharmonic
responds of the driving period. Here, the case of period doubling is depicted
with TTC = 2 ⇥ Tdr. (b) Sketch of a continuous time crystal. Below the
transition the observable is time independent. As the tuning parameter �
is increased the system spontaneously starts to oscillate at a period TTC.
In both cases, the dynamics of the observable before the phase transition is
shown as a light gray background.

As the publications [1–4, 6–8] use the term “time crystals” to describe non-equilibrium
dynamics, we will give a short introduction to this topic.
The concept of symmetry breaking is vital in physics [25,27]. It ranges from the spatial
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symmetry breaking as can be found in crystals [27] to the breaking of gauge symmetries
as is done in the Higgs mechanism [26].
In physics, this concept was taken to the time domain by Wilczek and Shapere in
2012 [36,37]. They proposed that some observable Â could spontaneously start to oscil-
late in the ground state of the system, which would be the analogue to spatial crystals.
However, it was quickly shown that such phases cannot exist due to energy conserva-
tion [134–136]. Despite this drawback, the initial proposal sparked so much attention
that people have shown ways to circumvent these no-go theorems. First, this has been
done in periodically driven closed systems [137–142] and by studying so-called discrete
time crystal, later discrete time crystal have been studied in open systems [143,144] and
recently, continuous time crystal have been proposed [145–148] and observed [6,149–152].

Discrete time crystal (DTC)

A pictorial sketch of a discrete time crystal is shown in Fig. 2.4(a). For this class of
time crystals, the system is periodically driven, which already breaks the continuous
time translation symmetry and the system is left with a discrete time translational
symmetry. On the level of the Hamiltonian, this translates to Ĥ(t) = Ĥ(t + nTdr)
with n 2 N and Tdr the driving period such that all observables also oscillate with this
frequency. As some tuning parameter is changed the system spontaneously breaks this
discrete symmetry such that A(t) 6= A(t+ nTdr) for some observable A. The observable
starts to oscillate with some subharmonic frequency of the drive A(t) = A(t + Tdr/m)
with m > 1 2 R, see Fig. 2.4. Quickly after the first theoretical proposals [137–140] the
first period-doubling DTCs have been observed in spin systems [141, 142]. In [52] we
have proposed an incommensurate time crystal, meaning that the TC frequency is not
a multiple integer of the drive. We have further investigated this in publications [3–5].

Continuous time crystal (CTC)

In contrast to DTCs, CTCs are thought to break the continuous time translation sym-
metry. As sketched in Fig. 2.4(b), before the transition, the system is in a steady state
without any temporal dependence. After the transition point, the system spontaneously
starts to oscillate at an intrinsic frequency TTC. This phenomenon can often be linked
to a Hopf bifurcation leading to a limit cycle as is discussed in the following section.
After the first theoretical proposals [145–148], the first CTC has been experimentally ob-
served in 2022 [6] and many experimental realisations have followed since then [149–152].
Today, DTCs and CTCs have been studied in a wide range of physical systems rang-
ing from spin systems [121, 123, 137, 138, 153–162] to bosonic platforms [1–4, 6, 52, 143,
144, 148, 150, 163–169] to superconductors [10, 170, 171]. Recently, it has been proposed
to use CTCs for sensing [172]. For extended reviews on this topic we refer the reader
to [173–176].
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2.3 Raman-Cavity coupling

In publication [10] we have studied the hybridization of a Raman and a cavity mode [10].
In the following we discuss the basic coupling of Raman active modes and how to derive
the toy model we have studied analytically and numerically using TWA.
Raman active modes can be found in phonon systems [177, 178], as molecular vibra-
tions [179] and as the Higgs mode in superconductors [180–182]. For an extensive dis-
cussion of examples and methods that rely on Raman modes we refer to [183].
We can define the induced electric dipole moment µin as [183]

µin = ↵E (2.13)

with E the electric field and ↵ is the electronic polarizability tensor with its 9 com-
ponents. The polarizability depends on the electric charge distribution of the system.
Hence, we can expand ↵ for small displacements of the nuclei in a normal coordinate Q

and obtain

↵ij = (↵ij)0 +
X

k

✓
@↵ij

@Qk

◆
Qk . (2.14)

The first term (↵ij)0 is simply the often considered part of the polarizability tensor

and the second term
⇣
@↵ij

@Q0

⌘
Q0 leads to the first order Raman-e↵ect [183]. Hence,

if we neglect the contribution from (↵ij)0, the light-matter interaction U is given by
U = µinE ⇡ E

2
Q0, which is the typical form for a Raman coupling.

Our model studied in publication [10] can be derived by taking the HP approximation for
the two-Photon Dicke model [184, 185]. With this we obtain the light-Raman coupling

in the form of
�
â+ â

†�2
⇣
b̂+ b̂

†
⌘

as expected for a Raman mode coupled to the light

field.
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2.4 Bifurcation theory

Most systems that can be found in nature are complex and highly nonlinear. However,
solving nonlinear equations analytically is only in special cases possible. Due to this
fact, many physical systems are approximated into a linear regime. A famous example
is that of a swinging pendulum. Even though this example is very simple, the equa-
tions are nonlinear and finding an analytical solution is very di�cult. Though, for small
excitations, or if one is only interested in the low energy dynamics of the system, ap-
proximations can be done and the system can be described by the famous harmonic
oscillator, which is easy to solve.
If one does not want to be limited to low-energy excitations, the nonlinearities have to
be included and cannot be neglected. We know that a pendulum is swinging back and
forth for low energies. We also know that for high energies the solution is simple again.
The pendulum simply swirls over the top. The goal of bifurcation theory is now to find
a framework that allows to predict points in parameter space, where the dynamics dras-
tically changes. We want to predict the transition from swinging back and forth to the
swirling over the top. In other words, we want to classify the dynamics of the system,
whether it settles into an equilibrium, follows a drive, enters an oscillating regime, or
exhibits chaotic behavior.
In our discussion we follow the book ‘Nonlinear dynamics and Chaos’ by Strogatz [12].
For any further readings and more examples we refer the reader to this book.

Fixed points and bifurcations

We are considering an equation of the form

@tx = f(x), (2.15)

where we have introduced the shorthand notation @
@ar ⌘ @ar and with f(x) some func-

tion of x. Starting from an initial point x0, we can use this equation to propagate x

and obtain x(t). This function is then called a trajectory for the initial state x0. If
we plot all qualitatively distinct trajectories for di↵erent initial points, we obtain the
phase portrait. We use a phase portrait in publication [7]. Points, where trajectories
flow to and stagnate, are called fixed points. These fulfil the condition f(x⇤) = 0. Fixed
points represent equilibrium solutions. They can either be called stable fixed points, if
all small perturbations away from the point decay or can be classified as unstable fixed
points, if small perturbations grow in time away from the fixed point. Bifurcation theory
is considering the change of the fixed points of the system as a parameter is changed.
The points with this qualitative change in the dynamics due to the changed fixed points
structure are called bifurcation points. As the most simple example we consider the
buckling of a metal beam due to a weight placed on top of the beam. Fig. 2.5 shows the
two scenarios. If the weight is small enough, the beam will remain vertical. The fixed
point would be no deflection of the beam. If we increase the weight, at some point, the
system will suddenly change and the beam will start to buckle. The deflection becomes
finite, and we obtain two finite fixed points as the beam can buckle to the left or right.
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This mean this scenario can be understood as a pitchfork bifurcation.

(a) (b)

Figure 2.5: Sketch of a bifurcation. A weight is placed on a beam. For su�ciently small
weights, the beam is not buckling, and the vertical displacement is zero, see
(a). (b) As the weight increases the system passes a bifurcation point and
the beam buckles, while acquiring a finite horizontal displacement.

2.4.1 Limit cycles

After having discussed what a bifurcation is, we want to use this framework to describe
the particular class of oscillating phases. These are of particular interest as one can
observe the following: ‘Life is not standing still’. We can observe this in our daily life
by our daily rhythm in body temperature, our sleep cycle and by the ongoing beating
of our heart [12, 13, 15]. In neurosciences, we find that pace-maker neurons fire in a
periodic fashion [186]. In biological systems such as the membrane potential of the frog
hair cells in the low-frequency hearing organ oscillates in time already before any signal
is received [187,188], or we observe that almost all predator-prey models have oscillating
solutions [14].
While these examples all appear in very di↵erent setups, what they all have in common
is that the system spontaneously oscillates without an external periodic drive. These
oscillations occur in complex, non-linear systems and are called limit cycles. Limit
cycles can be described using e↵ective models containing the relevant few degrees of
non-linear systems, which contain oscillating solutions. A limit cycle can be defined as
an isolated closed trajectory. Isolated means that all trajectories nearby either spiral
away or towards the limit cycle and are not closed. If all neighboring trajectories spiral
towards the limit cycle trajectory, the limit cycle is called stable. This means that
all local perturbations will decay, and the trajectory will flow towards the limit cycle
trajectory. In contrast, if the nearby trajectories spiral away, the limit cycle is called
unstable, as any perturbation will take the dynamics away from the limit cycle. Limit
cycles can only occur in nonlinear systems. While there can be closed trajectories in
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linear systems, as for the harmonic oscillator with some initial state, these trajectories are
never isolated. Intuitively this can be understood by the following reasoning. Assume
we have found some periodic solution cx(t). As the systems is linear, we know that
(c + ✏)x(t) is a solution as well. As ✏ ! 0 any perturbation will lead us to this closed
trajectory without any trajectories that are not closed in between [12].
For two-dimensional systems there are four classes of limit cycles, which all have di↵erent
scaling laws for the amplitude of the limit cycle as well as the period of the limit cycle.
Namely, the saddle-node, Infinite-period, Homoclinic and Hopf -bifurcation. Here, we
will only focus on the Hopf bifurcation. We refer to the book by Strogatz [12] for details
on the other types of limit cycles.

Hopf bifurcations

Framework

Here, we will briefly discuss the theoretical framework we have used to study limit cycles
in publication [7]. The recipe allows studying Hopf bifurcations analytically, as well as
numerically if needed. Extended discussion can be found in [7,12,189–191]. We assume
that we have some equations of motion in the form of

@tX = F(X). (2.16)

First, we compute the fixed points X0 by solving for F(X0) = 0. Next, a Taylor series
expansion around those fixed points leads to

@t�X = J0�X (2.17)

with �X = X0 � X and J0 = @F(X)

@X

���
X0

the Jacobian stability matrix. To consider the

stability of the fixed points we compute the eigenvalues (EV) of the Jacobian !EV,i.
Around the fixed points the dynamics of �X is proportional to exp(!EV,it). Hence, only
if the real part of all EVs are negative the fixed point will be stable. A Hopf bifurcation
now occurs, if a conjugate pair of EVs crosses from negative to positive real parts, while
having a finite imaginary part. The resulting limit cycle frequency will be approximately
the imaginary value. In contrast, for the previously mentioned pitchfork bifurcation the
imaginary parts are zero, while the real part crosses the imaginary axis [12].
In publication [7], our equations of motions are highly nonlinear, and we solve for the
fixed points and for the EVs numerically.

Examples

A simple limit cycle

To showcase the basic tools we have introduced above, we will briefly discuss a simple
example.
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The equation of motion describing a radial and angular direction, r and ✓, are given by:

@tr = µr � r
3

@t✓ = ! + br
2
. (2.18)

As we will see the parameter µ is controlling the stability of the fixed points, ! describes
the oscillation frequency and b relates the dependence of the frequency on the amplitude
of the oscillations. We want to discuss the appearance of a Hopf bifurcation as we tune
the parameter µ. It can be quickly seen that for µ < 0 the only fixed point is given by
r = 0. All trajectories spiral towards the origin. The sign of ! determines the direction
of the spirals. We will use the framework developed above to determine the character of
transition as µ becomes positive. To compute the Jacobian it is convenient to convert
the equations back into Cartesian coordinates, and we find for the Jacobian [12]

✓
µ �!

! µ

◆
(2.19)

with its eigenvalues �± = µ ± i!. Fig. 2.6 sketches the phase portrait below and above
the Hopf bifurcation. Below the transition all trajectories spiral to the single fixed point.
Above the transition a limit cycle occurs.

(a) (b)

Figure 2.6: Sketch of the phase portrait below µ < 0 and above µ > 0 the Hopf bifurca-
tion. (a) All trajectories spiral towards the fixed point in the centre. (b) All
trajectories are attracted towards the stable limit cycle with radius

p
µ.

Van der Pol oscillator

The van der Pol oscillator is undoubtedly the most famous example model hosting a
limit cycle and still plays a great role in developing new tools for nonlinear dynamics
and subject of research in quantum mechanical systems [192–196]. The van der Pol
equation was historically first used to describe nonlinear electrical circuits in radios and
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is given by

@ttx+ µ
�
x
2
� 1
�
@tx+ x = 0 (2.20)

with µ � 0. For µ = 0 the equation reduces to the equation of a simple harmonic oscilla-
tor. However, for finite µ a nonlinear damping term is added. Without further analysis
it can be seen that for large x (|x| > 1) this term acts as an ordinary positive damping
term, while for small x (|x| < 1) it acts a negative damping term. This means the
dissipation e↵ectively pumps energy into the system in this case. Intuitively, it becomes
clear why limit cycle can appear. Limit cycle will occur if over one complete cycle the
dissipation balances between the energy lost for positive damping and negative damping.
As a remark, we note that this example does not fit into the standard classification of
limit cycles, but the bifurcation is akin to the degenerate Hopf bifurcation. This is due
to the degenerate case µ = 0. Details on this extra complications, if there are additional
symmetries, are also found in the book by Strogatz [12].

2.4.2 Entrainment and synchronisation

Previously we discussed what a limit cycle is. Here, we will briefly discuss which phe-
nomena can occur if many limit cycle interact and synchronise. One of the most famous
examples of synchronisation, and maybe even one of the most beautiful examples, due
to its simplicity and complexity at the same time, in nature is the unison flashing of
fireflies as can be observed in Southeast Asia [12]. Essentially the male fireflies gather
in trees and flash on and o↵ to attract the female fireflies. The male fireflies interact
with each other and slow down or speed up the flashing until they are flashing in unison.
To appreciate the beauty of this spectacle, we highly recommend the reader to see the
episode ‘Talking to Strangers’ by David Attenborough’s television series ‘The Trials of
Life’ from 1992.

Entrainment vs synchronisation

In this thesis we will distinguish between entrainment and synchronisation. We will refer
to entrainment if a limit cycle is externally forced by some oscillator and there is no back
action from the limit cycle to the external oscillator. We will refer to synchronisation if
the system consists of many limit cycles that are all coupled to each other and interact.
A sketch of these two di↵erent kinds of interaction structures can be found in Fig. 2.7.
In this thesis we will not discuss the phenomenon of synchronisation further. However,
we note that there are many interesting questions to ask and potentially answered with
the models and platforms we have discussed in this thesis and suggest this for future
work.

Entrainment

Fireflies cannot only synchronise, they can also be entrained by a torch [197]. Another
example is the entrainment of the cardiac system, namely the heart [198] or the injection
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Jim Skulte
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Entrainment

Synchronisation

A A BB

A A BB

Figure 2.7: Sketch of entrainment vs synchronisation. Curly lines denote interaction
and the arrows the direction of the interaction. While for entrainment only
limit cycle A influences limit cycle B and not the other way around, for
synchronisation limit cycle A and B interact and influence each other.

Jim Skulte
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Subharmonic entrainment

Entrainment

Drive
Response

Response

Response

Drive

Response

Figure 2.8: Sketch of the phase relation between the drive and the response of the limit
cycle. Solid lines denote times when cos(!t) > 0. ✓ denotes the phase
di↵erence between the drive and the entrained limit cycle.

locking of laser [199]. While this phenomenon occurs in very di↵erent settings, they all
have in common that the central idea is that an external drive is applied to a limit cycle.
Now depending on whether the external frequency is slower or faster than the limit cycle
frequency, the limit cycle will speed up or will slow down to have the same frequency
of the drive. This will only be possible for a symmetric range around the limit cycle
frequency. For a toy model capturing these findings and more details we refer to the
book by Strogatz [12].
Here, we will briefly focus on the phase relation of the drive and the response [12] as
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this has been used in publication [8]. Fig. 2.8 depicts this relation. The solid black
line denotes the times when the drive / cos(!drt) is larger than 0. The corresponding
response for a limit cycle with a smaller frequency than the drive is depicted in purple
and for a limit cycle frequency larger than the drive in red. It can be seen that the phase
di↵erence ✓ is negative for !LC < !dr, 0 if !LC = !dr and becomes positive if !LC > !dr.
We note that this only occurs for entrained limit cycle, for a simple periodically driven
harmonic oscillator (HO) this is not the case. Here, for slow driving the HO can follow
the drive and both are in phase as the HO is not oscillating preciously to the drive. As
the driving becomes faster than the HO frequency, the solution flips sign and the HO is
exactly out of phase with the drive.
In publication [8] we were considering subharmonic entrainment [200,201]. In this case,
the definition of the phase ✓ is more subtle. We sketch the response for di↵erent relative
frequencies in Fig. 2.9. We choose ✓ such that for the resonant case of !dr = 2!dr

the phase is zero. More details and numerical results for subharmonic entrainment can
be found in the supplemental material of publication [8]. We note that subharmonic
entrainment is an example of a discrete time crystal.

Jim Skulte

Theoretical predictions 56

Subharmonic entrainment

Entrainment

Drive
Response
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Drive
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Figure 2.9: Sketch of the phase relation between the drive and the response of the limit
cycle for subharmonic entrainment. Solid lines denote times when cos(!t) >
0. ✓ denotes the phase di↵erence entrained limit cycle if !dr = 2!LC and the
entrained limit cycle with a di↵erent driving frequency.
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2.5 Atomtronics

In publication [9] we proposed an atom-cavity based rotation sensor. In this section, we
briefly discuss the field of atomtronics and atom interferometry and discuss one of the rel-
evant quantities to compare sensors. Atomtronics is a subfield of the wider research field
of quantum technologies [202]. Quantum technologies are promised to enable important
innovations in areas as communication, sensing, simulation and computing [202, 203]
within the next decades.

2.5.1 Atom-interferometry

Electronics

Atomtronics

Electrons                   Carriers          Ultracold atoms

    Electric potential             Potential difference          Chemical potential

 E.g. Semiconductors                     Materials                    Optical lattices  
 ... 

Figure 2.10: Sketch of a circuit from electronics and atomtronics. While in electronics
the electrons are carrying the charge, in atomtronics this is done by atoms.
The electric potential is replaced by the chemical potential and instead of
using a semiconductor device an optical lattice might be used. Adapted
from [204].

Atomtronics realises matter-wave circuits based on ultracold atoms, see the sketch in
Fig. 2.10. Due to the analogy between these circuits consisting of cold atoms and those
formed by electron circuits of conductors the name atomtronics was coined. To just
name a few examples, the role of the carriers of the electronic charge are electrons in
electronics and in atomtronics the atoms carry the charge. Further, the electric potential
is mimicked by the chemical potential and so on. This mapping from parameter and
concepts from electronics to atomtronics is shown in Fig. 2.10. However, it is important
to stress that atomtronics has not just the goal of copying and maybe improve parts of
electronics by some previously defined goals, but also to be used for di↵erent tasks such
as sensors, optical devices and so on. This is sketched in Fig. 2.11, but is by no means
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Atomtronics

Electronics
 

Interface with 
circuit QED 

Optical devices
 

Sensors and 
imaging devices
 

Spintronics
 

Figure 2.11: Sketch of fields of application of atomtronics. This can range from building
better electronics, to better sensors, to spintronic devices to optical devices.
Adapted from [204].

a complete list of fields of application. So it is really an e↵ort to go beyond electronics
and use these platform for a larger set of tasks.
Atomtronics promises to utilise the accuracy and long-time stability of ultracold atoms
platforms. As an example, current technologies use laser interferometry based on op-
tical Sagnac interferometers for rotational sensing, however these can fall short due to
its limited sensitivity and long-term stability [205]. To overcome these obstacles, atom
interferometers can combine the benefits of atomtronics and the setup of interferome-
ter. Atom interferometry allows building high precision rotation and acceleration sen-
sors [206–211] with applications ranging from fundamental physics [212–214], absolute
gravimetry [215, 216] to inertial navigation [217–219]. For a review of atomtronics and
atom-interferometry we refer to [202].

Inertial navigation

For inertial navigation it is crucial to have a high repetition rate in the measure-
ments [219, 220], which can be challenging, if the frequency of interest is large. We
propose to overcome this constraint by the use of an open system that allows for mea-
surements of fast time-varying signals due to the light leaking out of the system that
allows to trace back the dynamics inside the sensor [9].
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(a) (b)

Figure 2.12: (a) The steady state light field intensity |↵|
2 obtained using TWA simu-

lations as a function of the external rotation frequency and light-matter
coupling strength. The light-matter coupling strength is rescaled by the
critical value for the non-rotating case. The red curve corresponds to the
analytically derived phase boundary. (b) The random walk RW on a log-
arithmic scale using the same axis and method as in (a). For each data
point, we average over 102 TWA trajectories.

Sensitivity

To quantify the sensitivity of our proposed sensor we define the Allan deviation as �(Ti)
with Ti the interrogation time as

�(Ti) =
hN

2
p i

dNp/d⌦
(2.21)

with ⌦ the external rotation frequency and Np the photon number leaking out of the
cavity. The number of photons can be obtained from the atom-cavity system via
Np = Ti|↵|

2. We present a numerically obtained phase diagram by the use of TWA
in Fig. 2.12(a) for di↵erent Peierls phases of ✓, which is directly proportional to the
externally applied external rotation ⌦ and for di↵erent light-matter coupling strength
g. We rescale g by the critical light-matter strength required to enter the superradiant
phase without any external rotation applied. We observe a strong dependence of the
photon number on the external rotations applied as can be seen for fixed light-matter
coupling strength g. Furthermore, we also observe that the critical light-matter cou-
pling is strongly lowered as an external rotation is applied. This happens as the external
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rotations e↵ectively decreases the real part of the tunneling amplitude. To enter the
superradiant phase it is a competition between the cost of the light-matter energy and
tunneling energy. By changing the tunneling energy, due to the external rotation, we
can change the critical light-matter coupling strength needed to enter the superradiant
phase. This is the key mechanism to use the system as a rotation sensor as changes
in external rotations are translated into changes in the photon number detected. We
note that the system can even be pushed from the normal to superradiant phase and
vice versa due to changes in the external rotation. We use the same parameter as for
the atom-cavity system and for the tunneling amplitude J = 2 kHz. Intuitively, the
quantity describes the ratio between the standard deviation of the photon number and
the change in the photon number by change of the external rotation frequency. In simple
words, how much does the rotation frequency need to change to be not hidden in the
fluctuations. Using a mean-field ansatz and the model obtained in publication [9] we
can compute this quantity to be

�(Ti) =
2!rec

ns⇡
2

s
�
3

C

TiNAJ
�
�
2

C + 2
�
x
2

q
x2 �

cos(✓)2

x2

cos(✓) sin(✓)
(2.22)

/
!rec

ns
p
NA

s
�
3

C�
�
2

C + 2
�
TiJ

with x = g/gcrit,0, gcrit,0 the critical light-matter coupling without external rotations, J
the tunneling amplitude between neighboring sites, �C the e↵ective light-field detuning,
 the loss rate of the cavity, ns the number of sites, NA the number of atoms and
✓ the Peierls phase obtained via the externally applied rotation. We deduct that the
sensitivity can be increased by adding more atoms, by increasing the number of sites

or if the interrogation time is increased. The Allan deviation scales with T
�1/2
i , which

is as expected for systems with white Gaussian noise. A further path to increase the
sensitivity is to reduce �C , while keeping the loss rate  constant or by further increasing
. However, one should note that the system can become unstable in this limit as back
action on the light-field frequency due to the localisation of the atoms becomes relevant.
Another relevant quantity is the so-called random walk parameter RW . This quantity
can be obtained by from the Allan deviation via RW = �(Ti)

p
Ti and is independent of

the interrogation time. We obtain for the random walk

RW = �(Ti)
p
Ti /

!rec

ns
p
NA

s
�
3

C�
�
2

C + 2
�
J

. (2.23)

This quantity measures the accumulated drift over time in the measure angle due to the
noise in the time-integrated signal and is usually presented in deg/

p
hr. In Fig. 2.12(b)

we present the numerical TWA results for the RW again for varying ✓ and g on the same
range of parameters as for the photon number. As expected, the sensitivity is increased
as the sensor operates closer to the phase transition. It is beneficial to operate the sensor
with an initial o↵set rotation, which lowers the critical light-matter coupling and expands
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the area in the phase diagram in which we achieve the best sensitivities. However, we
note that it is crucial to be close to the phase transition. This might be challenging in an
experiment as this requires high stability in the number of atoms, which ideally should
saturate the fluctuations of the atom number as expected for coherent states. With
realistic parameter, we find for values down to 10�1.5 for the RW in units if �

/
p
hr.

To further reduce this value the same parameter need to be changed as for the Allan
deviation. We find the numerically by the use of TWA that the emitted light field of
the cavity is phase squeezed. This increases the variance of the photon number, which
we assume to be in a coherent state for our analytical prediction. If one is able to push
the light field into being amplitude squeezed, one could highly increase the sensitivity of
the sensor. For more details we refer to the publication [9], which will be updated soon.
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2.6 Publication I: Dissipative time crystal in an atom-cavity
system: Influence of trap and competing interactions

R.J.L. Tuquero, J. Skulte, L. Mathey and J.G. Cosme — Physical Rev. A 105,

043311 (2022)

Motivation

This work was motivated by the first realisation of a dissipative discrete time crys-
tal (DTC) in a laser-pumped atom-cavity system in the group of Andreas Hemmerich.
The goal of this project was to analyse in detail the long-time stability of this new
non-equilibrium phase against contact interactions and a confining potential as they are
present in the experiment.

Main findings

In this work, first-authored by Richelle J.L. Tuquero, we have investigated the stability
of the DTC adding mean-field breaking terms as can be found in the experiment in Ham-
burg on time scales that cannot be realised in experiments today. We have mapped out
the dynamical phase diagram for various strength of contact interactions and harmonic
trapping confinements. We have found regimes in which the DTC is indeed long-lived
despite the mean-field breaking terms we have added.
Furthermore, we have found regimes in which metastable DTCs can emerge. These can
either exist with prethermalization plateaus for tight harmonic potentials or without
prethermalization plateaus for su�cient strong contact interactions.

Contribution

My contribution to this work consisted of adding analytical calculations. RJLT per-
formed the numerical studies under the supervision of JGC. All authors contributed to
the discussion and interpretation of the results, as well as to writing the manuscript.
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Dissipative time crystal in an atom-cavity system: Influence of trap and competing interactions

Richelle Jade L. Tuquero ,1 Jim Skulte ,2,3 Ludwig Mathey,2,3 and Jayson G. Cosme 1
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While the recently realized dissipative time crystal in a laser-pumped atom-cavity system in the experiment
of Keßler et al. [Phys. Rev. Lett. 127, 043602 (2021)] is qualitatively consistent with a theoretical description
in an idealized limit, here, we investigate the stability of this dissipative time crystal in the presence of an
inhomogeneous potential provided by a harmonic trap, and competing short- and infinite-range interactions. We
note that these features are ubiquitous in any realization of atom-cavity systems. By mapping out the dynamical
phase diagram and studying how it is modified by the harmonic trap and short-range interactions, we demonstrate
the persistence of long-lived dissipative time crystals beyond the idealized limit. We show the emergence of
metastable dissipative time crystals with and without prethermalization plateaus for tight harmonic confinement
and strong contact interaction, respectively.

DOI: 10.1103/PhysRevA.105.043311

I. INTRODUCTION

Time crystals are nonequilibrium many-body phases, in
which time-translation symmetry is spontaneously broken
[1–5]. Time crystals that are induced by periodic driving ex-
hibit a robust subharmonic response in relation to the driving
frequency. Isolated systems under periodic driving, however,
continuously heat up, in general, causing the time crystalline
order to “melt” into a featureless state. One approach to stabi-
lize periodically driven time crystals, also known as Floquet
time crystals, consists of adding strong disorder to push the
system into a many-body localized phase [6–8]. This has
enabled the experimental observation of discrete time crys-
tals in various periodically driven systems [9–13]. Discrete
time crystals, which do not rely on many-body localization,
have been realized in other experimental platforms [14–16].
Alternative strategies to stabilize time crystals include cou-
pling the system to an environment [17–21] or including
long-range interaction [22–26].

Dissipation, in particular, has been utilized to create a
dissipative time crystal (DTC) in an atom-cavity system [27].
Due to the approximation of the atom-cavity system via the
Dicke model [28], this paradigmatic DTC can be regarded as
a realisation of the Dicke time crystal [18]. The open Dicke
model describes an ensemble of two-level systems interacting
with photons in a leaky cavity [29]. Note that the standard
Dicke model does not have any notion of spatial dimension as
it is a zero-dimensional model. That is, it excludes spatially
dependent potential for the atoms. More importantly, it only
captures the all-to-all photon-mediated coupling between the
atoms. These approximations provide an idealized limit, in
which the spatial Z2 symmetry breaking in the superradi-
ant phase is intimately tied to the temporal Z2 symmetry
breaking of the period-doubled Dicke time crystal. Moreover,

the infinite-range nature of the cavity-mediated interaction
makes this approximate description mean-field solvable and,
in fact, exactly solvable in the thermodynamic limit [18,30].
The absence of an inhomogeneous potential and other forms
of interaction distinguishes the Dicke model from an atom-
cavity system in Ref. [27] and any other realisations, where
an external harmonic trap and inherent collisional interactions
between the atoms are present. These subtle yet important
distinctions pose the question about the stability of DTCs,
or any prediction based on the Dicke approximation, in re-
alistic atom-cavity setups, in addition to the finite lifetime
of Bose-Einstein condensates. On the one hand, inhomoge-
neous potentials, such as a harmonic trap, break the spatial
symmetry, which could affect the Z2 symmetry broken states
responsible for the period-doubling response. On the other
hand, short-range interactions break the mean-field solvability
of the Dicke model [30]. Given that these features are ubiqui-
tous in any atom-cavity system, it is imperative to point out
their influence. In the absence of dissipation, beyond mean-
field effects on discrete time crystals in a spin model with
competing short- and long-range interactions are studied in
Ref. [31].

In this work, we investigate the influence of harmonic
confinement and short-range interaction on the DTC found
in a periodically driven atom-cavity system. We show that a
DTC remains stable in the presence of weak perturbations that
explicitly break spatial symmetry and mean-field solvability
of the model. This is in contrast to the absence of a stable
period-doubling response predicted in a similar atom-cavity
setup but for the bad cavity limit, wherein the cavity dynam-
ics is orders of magnitude faster than the atomic dynamics
[32]. While it was mentioned in Ref. [27] that strong contact
interaction may lead to a DTC with finite lifetime, similar to
a metastable Dicke time crystal [30], a detailed analysis of
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FIG. 1. (a) Schematic diagram of the atom-cavity system con-
sisting of a Bose-Einstein condensate with a harmonic trap inside a
high-finesse optical resonator. The solid curve denotes the particle
distribution ρ(z) in the self-organized density wave phase and the
dashed curve denotes the combined dipole potential U (z) due to the
cavity field and the harmonic trap. The cavity photon loss rate is
κ . The pump and cavity wavelength is λ. Dynamics of the atomic
density for a (b) stable and (c) metastable dissipative time crystal
with harmonic trap frequency ω = h̄/m(3.5λ)2 and short-range in-
teraction energy Eint/Erec = 0.26 with Eint as defined Sec. IV. In
(b), the driving strength is fd = 0.7 and the driving frequency is
ωd/2π = 5 kHz. While in (c), fd = 0.5 and ωd/2π = 3.5 kHz.

this phase, which we call metastable DTC, is still lacking.
Aside from the Dicke time crystal, other dynamical phases
in dissipative systems are found to exhibit metastability when
pushed out of the idealized limit [33,34]. Here, we show that
metastable DTCs may emerge not only because of short-range
interaction competing with the infinite-range interaction but
also due to the influence of harmonic confinement.

This work is organized as follows. We discuss the system,
the method for simulating the dynamics, and the driving pro-
tocol in Sec. II. The properties of the stable DTC in the ideal
atom-cavity system is reviewed in Sec. III. In Sec. IV, we map
out and analyze the dynamical phase diagram for different
combinations of contact interaction strength and harmonic
trap frequency. In Sec. V, we further study the metastable
dissipative time crystal and its lifetime. Finally, we conclude
this paper in Sec. VI

II. SYSTEM

We consider an atom-cavity system with a Bose-Einstein
condensate (BEC) of 87Rb atoms as depicted in Fig. 1(a). An

external laser is applied along the y direction, which is perpen-
dicular to the cavity axis aligned in the z direction. Photons
leak out of the cavity at a rate of κ . The cavity wavelength
is λ. An external harmonic trap is present along the z direc-
tion. In the following, we consider the one-dimensional limit
of the system and investigate only the dynamics along the
cavity axis.

We vary the pump intensity ε to investigate the dynamical
response of the system. The transversely pumped atom-cavity
system hosts a self-organisation phase transition [35]. Above a
critical value εcrit , it becomes energetically favourable for the
atoms to self-organise into a chequerboard density wave (DW)
phase to scatter photons from the pump into the cavity [36,37].
This self-organisation phase transition is as an approximate
emulation of the superradiant phase transition in the Dicke
model [29]. In the density wave phase, the system breaks
the Z2 symmetry as the atoms spontaneously localise either in
the odd or even sites of the emergent standing wave formed by
the cavity photons. These two symmetry broken states can be
distinguished by the sign of the density wave order parameter
' = 〈cos(kz)〉 where k = 2π/λ. That is, a non-zero positive
(negative) value for ' corresponds to an even (odd) DW state
[35–38].

The Hamiltonian for the system is a combination of the
cavity and the atom Hamiltonian, as well as the short-range
atom-atom interaction and the atom-cavity interaction, i.e.,

Ĥ = ĤC + ĤA + ĤAA + ĤAC. (1)

The Hamiltonian for the cavity with a mode function cos(kz)
is given by

ĤC = −h̄δCα̂†α̂. (2)

where δC is the pump-cavity detuning and α̂† (α̂) is the cre-
ation (annihilation) operator for the cavity photon. We include
a harmonic trap for the atoms with trap frequency ω. The
single-particle Hamiltonian for the atoms is

ĤA =
∫

*̂†(z)
[
− h̄2

2m
d2

dz2
+ 1

2
mω2z2

]
*̂(z) dz (3)

where m is the mass of a 87Rb atom and *(z) is the bosonic
field operator associated with the BEC. We are interested
in the interplay between the infinite-range cavity-mediated
interaction and the inherent short-range collisional inter-
action between the atoms. The short-range interaction is
described by

ĤAA = gaa

2

∫
*̂†(z)*̂†(z)*̂(z)*̂(z)dz. (4)

where gaa is the contact interaction strength. On the other
hand, the atom-cavity interaction, which gives rise to a
dynamical infinite-range interaction between the atoms, is
modeled by

ĤAC =
∫

*̂†(z)h̄U0[cos2(kz)α̂†α̂

+
√

ε

h̄|U0|
cos(kz)(α̂† + α̂)]*̂(z) dz. (5)

The pump frequency is red-detuned with respect to the atomic
transition frequency leading to a negative light shift per
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photon U0 < 0. Note that the atom-cavity interaction strength
depends on U0 and the pump intensity ε.

The dynamics of the system is captured by the following
Heisenberg-Langevin equations

∂

∂t
*̂ = i

h̄
[Ĥ, *̂] (6)

∂

∂t
α̂ = i

h̄
[Ĥ, α̂] − κα̂ + ξ , (7)

where ξ is the stochastic noise due to the cavity dissi-
pation with 〈ξ ∗(t )ξ (t ′)〉 = κδ(t − t ′) [35]. We employ the
truncated Wigner approximation (TWA) to simulate the quan-
tum dynamics [39,40]. The TWA goes beyond the mean-field
approximation through the inclusion of quantum noise from
the initial state and the fluctuations corresponding to the dissi-
pation in the cavity. This method treats the quantum operators
as c numbers and it is applicable for large number of atoms
and weak coupling. For the initial states, we choose coher-
ent states for the BEC and the empty cavity mode. We then
propagate an ensemble of initial states, which samples the ini-
tial Wigner distributions, according to the coupled stochastic
differential equations in Eq. (6). The TWA has been used to
confirm robustness of dissipative time crystals [41–43] and in
comparison with experiment [27,44].

We assume the initial state of the BEC to be homogeneous
in the absence of a harmonic trap. When a harmonic trap
is present, we use imaginary time propagation to initialize
the system in the ground state (see Appendix A for details).
We consider the pump protocol depicted in Fig. 2(a). The
pump intensity is linearly increased for 2.5 ms until it reaches
ε0 = 1.02εcrit , where εcrit is the critical pump intensity for
self-organisation for a given contact interaction strength and
harmonic oscillator frequency. Next, ε is held constant until
30 ms allowing the system to relax to the corresponding DW
state. Finally, the pump intensity is periodically modulated
according to

ε(t ) = ε0(1 + fd sin(ωdt )), (8)

where fd is the driving strength and ωd is the driving fre-
quency. The driving period is T = 2π/ωd.

In the following, we use realistic parameters according to
the experimental set-up in Ref. [27]. The particle number is
Na = 65 × 103 atoms, recoil frequency ωrec = 2π2h̄/mλ2 =
2π × 3.55 kHz, decay rate κ = 2π × 4.55 kHz, U0 = −2π ×
0.36 Hz, and effective pump detuning δeff = δC − NaU0/2 =
−2π × 18.5 kHz. We simulate the dynamics for 200 driving
cycles.

III. IDEAL DISSIPATIVE TIME CRYSTAL

In this section, we recall the defining properties of a DTC
in the ideal limit when both contact interaction and harmonic
trap are absent, as a preparational step to determine their
influence in Sec. IV. In this limit, the atom-cavity system
maps approximately onto the Dicke model if inhomogeneous
trap and contact interactions are neglected, and thus, the DTC
observed here is equivalent to the paradigmatic Dicke time
crystal [18].

Modulation of the pump intensity leads to the formation
of a DTC in the atom-cavity system, for a specific regime of

FIG. 2. (a) Protocol for the pump intensity. Dynamics of a sin-
gle TWA trajectory for the (b) order parameter during periodic
modulation. Zoom-in of the dynamics for the (c) order parameter,
(d) intracavity photon number |α|2, and (e) the correlation function
C(t ). The driving parameters are fd = 0.5 and ωd/2π = 4 kHz in the
absence of a harmonic trap and contact interactions.

driving strength and frequency [27,41]. This dynamical phase
is characterized by a period-doubled switching between the
symmetry broken DW states. The mean-field approximation
of the ideal DTC is depicted in Fig. 2(b)–2(c). The periodic
switching of the sign of the order parameter in Fig. 2(c) under-
pins how the system switches between the odd and even DW
states. Moreover, the switching occurs at twice the driving
period as seen in Fig. 2(c). Another important characteristic
of a DTC is seen from the dynamics of the cavity mode oc-
cupation |α|2, which exhibits pulsating behavior at the driving
frequency, see Fig. 2(d). This means that the DTC rely on the
presence of cavity photons, which mediate an infinite-range
interaction between the atoms, and thus highlights the many-
body nature of the DTC phase.

To quantify the behavior of the time crystal using the TWA,
we obtain the two-point temporal correlation function

C(t ) = Re{〈α̂†(t )α̂(t0)〉}/〈α̂†(t0)α̂(t0)〉, (9)

where t0 is the time before modulation is switched on. In
Fig. 2(e), we present an example of the dynamics of C(t ) in
a ideal DTC. Note that it closely follows the behavior of the
order parameter '. In the following, we use C(t ) instead of ',
which averages out in TWA due to the Z2 symmetry breaking
response of the DTC.
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FIG. 3. Gallery of dynamical phase diagrams for increasing contact interaction strength, from left (zero contact interaction) to right, and
increasing harmonic oscillator trap frequency, from top (no harmonic trap, ω = 0) to bottom. The oscillator strengths in units of recoil energy
from top to bottom are Eosc/Erec = {0, 0.004, 0.013}.

IV. DYNAMICAL PHASE DIAGRAMS

We now explore the influence of harmonic confinement and
short-range interactions between the atoms on the stability of
the DTC. The harmonic trap frequency ω is related to the os-
cillator length lz via ω = h̄/(l2

z m). Alternatively, we measure
the confinement strength by comparing Eosc = h̄ω with the
recoil energy Erec = h̄ωrec We quantify the contact interaction
via the mean-field interaction energy Eint = gaaNa/λ, where
gaa > 0 is the repulsive contact interaction strength.

We use C(t ) to classify the phases in the dynamical phase
diagrams shown in Fig. 3. Specifically, we classify a stable or
persistent DTC if C(t ) perfectly switches sign every driving
cycle for the final 100 driving periods. We also observe the
emergence of a metastable DTC phase. On the level of a
single TWA trajectory, we define a metastable DTC by hav-
ing a C(t ) that switches sign at least six consecutive times
(or equivalently three consecutive period doubling) during
the initial stage of driving, t ∈ [0, 6T ], before eventually be-
coming chaotic, in which C(t ) does not change sign over
multiple driving periods with irregular intervals. We identify
a completely chaotic phase by the lack of consecutive period
doubling over t ∈ [0, 6T ] in addition to the obvious irregular
dynamics of C(t ) (see Appendix B for an example). In Fig. 3,
the dynamical phase diagrams are arranged in increasing
contact interaction strength from left to right and increasing
harmonic oscillator frequency from top to bottom. The res-
onant nature of DTCs in atom-cavity systems [27,45,46] is
evident from the fact that both stable and metastable DTCs

are only found in some range of the driving frequency in
Fig. 3.

The dynamical phase diagram in the ideal scenario, in
which both harmonic trap and contact interaction are ne-
glected is shown in Fig. 3(a). A stable DTC can be found
in a large area of the driving parameter space, specifically
for ωd/2π ∈ [1, 6] kHz. We also observe a DTC in a much
smaller region of the parameter space for low driving fre-
quencies, ωd/2π < 1.0 kHz. This phase is distinct from the
usual DTC phase due to the presence of faster but subdomi-
nant oscillations in the order parameter corresponding to third
harmonics as exemplified in Appendix C. While this phase is
robust against the quantum noise included in TWA, it is no-
ticeably less robust against contact interaction and harmonic
confinement as inferred from the gradual disappearance of the
relevant region in Fig. 3.

We find stable DTC in the presence of inhomogeneous
trapping and short-range interaction. This suggests that indeed
a stable DTC phase can form in the atom-cavity system with
harmonic trap and inherent collisional interaction, and thus
supports the experimental observation of a DTC in Ref. [27].
Moreover, the presence of both short-range collisional inter-
action and infinite-range cavity-mediated interaction between
the atoms implies the departure of the DTC from the mean-
field regime. This persistence of the DTC phase agrees with
the prediction of a long-lived Dicke time crystal despite the
presence of short-range interaction, which breaks the mean-
field solvability of the Dicke model [30]. Typical dynamics of
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the atomic distribution in the stable DTC phase in the nonideal
limit is demonstrated in Fig. 1(b), which shows the system
periodically switching between the odd and even DW states.

The parameter regime with a stable DTC phase decreases
with increasing short-range interaction strength and harmonic
confinement as seen in Fig. 3. The stable DTC is replaced by
either a chaotic phase or a metastable DTC. In general, the re-
gion of the chaotic phase expands with increasing Eint, which
is a consequence of the nonlinear nature of the short-range
interaction that couples the periodic motion to a continuum of
excitations of the atomic cloud. Strong driving enables a DTC
with large photon number and deep intracavity field, thereby
forming large density modulations in the atomic distribution
(see Appendix D). The energy associated with the colli-
sional interaction is large for a distribution with large density
modulation, which means that repulsive contact interaction
penalizes its formation. As demonstrated in Figs. 3(a)–3(d),
this leads to the suppression of stable DTCs in the strong
driving regime, fd > 0.5, for increasingly strong contact in-
teraction.

In addition to contact interaction, strong harmonic confine-
ment can also destabilize a DTC due to trap-induced coupling
between relevant momentum modes becoming dominant over
cavity-induced coupling, see Appendix E. Note that strong
harmonic confinement increases the density at the center of
the trap, while strong contact interaction reduces it. These
two system properties therefore have competing influence on
the density. This explains how strong harmonic confinement
“melts” the DTCs with small density modulation correspond-
ing to weak driving strength fd , as demonstrated in Fig. 3(i),
which is in contrast to the effect of contact interaction shown
in Fig. 3(c). Because of their competing effect on the particle
density, one may have naively expected that the contact inter-
action may be tuned appropriately to cancel the effect of the
harmonic trap and therefore stabilize the DTC phase. How-
ever, we highlight in Figs. 3(e)–3(h) and 3(i)–3(l) that this
is not the case and, in fact, increasing the contact interaction
strength leads to further destabilisation of the DTC. Similarly,
for a fixed contact interaction strength, tightening the trap
in an attempt to counteract the repulsive interaction shrinks
the area in the phase diagram where a stable DTC persists,
as seen in Figs. 3(b), 3(f), and 3(j). The harmonic trap or
any inhomogeneous potentials, in general, will couple various
momentum modes. Such a coupling may significantly deplete
the momentum modes that are important for the Z2 symmetry
broken states participating in the DTC phase, namely the |k =
0〉 and |k = 2π/λ〉 momentum modes. Thus, we demonstrate
the importance of ensuring a weak inhomogeneous trap to
obtain a stable DTC.

V. METASTABLE DISSIPATIVE TIME CRYSTAL

We now further investigate the metastable dissipative time
crystal, the predominant nontrivial dynamical phase for large
oscillator frequency and large contact interaction strength, as
seen in the phase diagrams in Fig. 3. The metastable DTC
exhibits a period-doubled response on a time scale larger than
the oscillation period before the dynamics become irregular as
shown in Fig. 1(c), for example.

We first focus on the case without a harmonic trap but
with a nonzero short-range interaction. In the metastable DTC
phase, the irregularity in the dynamics for a single trajectory
translates into an exponentially decaying oscillations of the
temporal correlation C(t ) after averaging over multiple trajec-
tories in TWA as shown in Fig. 4(a). Moreover, we obtain the
stroboscopic correlation function C(t ) defined as the envelope
of the oscillations in the correlation function. A metastable
DTC is characterized by having a finite lifetime, τ , which
we extract by fitting an exponential decay ∼ exp(−t/τ ) to
the corresponding stroboscopic correlation function C(t ), as
depicted in Fig. 4(b). We demonstrate in Fig. 4(c) that the life-
time decreases with the contact interaction strength. Similar to
the metastable Dicke time crystal [30], we emphasise that the
metastable DTC for Eint > 0 without harmonic confinement
is distinct from the prethermal discrete time crystals, which
rely on high driving frequency to increase the relaxation time
towards a featureless thermal state [16,47,48]. Unlike in a
prethermal discrete time crystal, there is no visible prether-
malization plateaus in Fig. 4(b) for the metastable DTCs
induced by contact interaction.

Next, we present in Fig. 4(d) the representative dynamics
of C(t ) when there is a harmonic confinement but short-
range interaction is ignored. The fluctuation in the oscillation
amplitude of C(t ) is more pronounced during the initial dy-
namics, t/T ∈ [0, 20], but it stabilizes in the long-time limit
for a stable DTC under weak confinement. The fluctuating
oscillation amplitude is highlighted in the relatively noisy
dynamics of the stroboscopic correlation functions shown in
Fig. 4(e). The oscillations inferred from Fig. 4(b) are more
stable compared to those in Fig. 4(e), which corroborates
the role of the harmonic trap in introducing small irregular-
ity in the period-doubling response and the photon number
dynamics observed in the experiment [27]. In Fig. 4(f), we
find that the lifetime of a metastable DTC decreases with
increasing harmonic oscillator frequency similar to the effect
of the short-range interaction. Both energy scales Figs. 4(c)
and 4(f) are in relation to the recoil energy, i.e. Eosc/Erec,
and Eint/Erec. We further observe that the typical lifetime of
metastable DTCs with harmonic confinement is shorter by
an order of magnitude than those without the trap but with
contact interaction, as inferred from comparing Figs. 4(c) and
4(f). This implies that an inhomogeneous potential, such as the
harmonic trap, has a more detrimental effect on the stability of
dissipative time crystals that rely on states with spatial long-
range order, like the DW phase in the atom-cavity system.

A different kind of metastable DTC emerges for strong har-
monic confinement without contact interaction. We observe
in Fig. 4(e) the appearance of prethermalization plateaus,
wherein the amplitude of the period-doubling response is
fixed, reminiscent of those found in prethermal discrete time
crystals [16,47,48]. This behavior is different from the expo-
nential decay observed as soon as the periodic driving starts in
the standard metastable DTCs for strong contact interactions
and without harmonic trap, see Fig. 4(b). Thus, we propose
a second kind of metastable DTC, a prethermal dissipative
time crystal (PDTC). This phase can be understood in the
paradigm of prethermalization arising from fast driving. In
the presence of a harmonic trap, the energy of the system
can be rescaled by the oscillator frequency ω. Then, the ratio
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FIG. 4. (a)-(c) Behaviour of the correlation function for varying contact interaction strength (Eint > 0) and zero oscillator frequency (Eosc =
0) obtained using TWA with 103 trajectories. (a) Exemplary dynamics of C(t ). (b) Stroboscopic correlation function C(t ) for different contact
interaction strength. (c) Dependence of the lifetime τ on the harmonic oscillator frequency. The driving parameters are fd = 0.5 and ωd/2π =
4 kHz. (d)-(f) Similar to (a)-(c) but for varying harmonic trap frequency (Eosc > 0) and zero contact interaction (Eint = 0).

between the driving frequency and the oscillator frequency be-
comes the relevant energy scale for defining the “fast-driving
regime”, ωd/ω ) 1. Similar to a prethermal discrete time
crystal [16,47,48], the relaxation time in the PDTC can be
increased by increasing the relative driving frequency, ωd/ω,
which is effectively achieved by decreasing the oscillator
frequency as demonstrated in Fig. 4(e). This point of view
is consistent with the infinitely long-lived DTC found in the
mean-field limit ω = 0, in which ωd/ω → ∞.

VI. CONCLUSIONS

In conclusion, we have investigated the properties of
dissipative time crystals under realistic conditions of the atom-
cavity system. Specifically, we included a harmonic confining
potential and short-range interactions that compete with the
infinite-range interaction mediated by the cavity photons. Our
results demonstrate that the DTC phase is robust for a nonzero
harmonic potential and contact interaction strength, consistent
with the observation of a DTC in a similar setup [27]. We also
show that the irregular amplitude of oscillations observed in
the experiment [27] can be attributed to the harmonic trap.
We point out that for the bad cavity κ ) ωrec, and similar
conditions, there seems to be no evidence for a stable DTC
phase [32], which may hint at the importance of having recoil
resolution κ ∼ ωrec as considered in this work and in the
experimental setup in Ref. [27].

For sufficiently strong harmonic confinement and con-
tact interaction, a DTC may become unstable towards the
formation of two kinds of metastable DTC. Strong contact in-

teractions lead to an exponentially decaying period-doubling
response. On the other hand, strong harmonic trap gives rise
to prethermal DTC with prethermalization plateaus, during
which the correlation function exhibits subharmonic response
at a fixed amplitude. Our work sheds light on the crucial
role of trapping on the stability of a DTC, which we ex-
pect to apply to inhomogeneous potentials, in general. The
metastable DTCs are a genuine many-body phase produced
by the interplay between driving, dissipation, and mean-field
breaking effects, such as competing range of interaction and
inhomogeneity in space. We provide not only a strategy for
stabilising DTC but also a route for systematic realization
of a standard metastable DTC and a prethermal DTC. As an
outlook, the transition from a stable to a metastable DTC can
be experimentally explored using a combination of Feshbach
resonance for tuning the contact interaction strength [49] and
digital micromirror device for creating arbitrary potential for
the atoms [50]. Finally, we emphasise all atom-cavity systems
have a confining potential and atomic interactions. Our study
demonstrates a general strategy to determine the influence
of these inevitable features on any many-body state that is
created in these systems.
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APPENDIX A: INITIAL GROUND STATE

We use imaginary time propagation t → −it in the under-
lying equations of motion to initialize the system in the ground
state with harmonic trap and contact interaction. To check if
our scheme works, we also propagate the system in real time
with the same harmonic trap and contact interaction, which
in principle should render the density profile unchanged. As
an initial guess for the case when there is only a harmonic
trap, we use the exact ground state of the quantum harmonic
oscillator, which is a Gaussian function. Fig. 5(a) confirms the
validity of the imaginary time propagation as the exact ana-
lytical ground state matches both the density profiles obtained
from the imaginary and real time propagation methods. On the
other hand, for nonzero contact interaction, the appropriate
initial guess is the density profile according to the Thomas-
Fermi approximation [51]. Fig. 5(b) displays good agreement
between the three methods.

APPENDIX B: CHAOTIC PHASE

The chaotic phase is characterized by intermittent dynam-
ics as the system gets stuck in one of the DW states randomly
in time. In Fig. 6, we show the dynamics of the order parame-
ter in the chaotic phase.

APPENDIX C: DTC FOR LOW DRIVING FREQUENCY

In Fig. 7, we present an example of a DTC found in low
driving frequencies and large driving strength. As briefly dis-
cussed in the main text, this unique DTC phase is marked
by subdominant third harmonic oscillations of the period-
doubling response.

FIG. 6. Time evolution of the order parameter ' in the chaotic
phase. The driving parameters are fd = 0.8 and ωd/2π = 2.5 kHz.

FIG. 7. (a) Dependence of pump intensity and order parameter '

on time for ω = 0 and Eint = 0. The driving parameters are fd = 0.5
and ωd/2π = 1 kHz. (b) Corresponding power spectrum of ' in (a).

APPENDIX D: DTC FOR VARYING DRIVING STRENGTH

We show in Fig. 8 the dependence of the DTC on the
driving strength for an ideal atom-cavity system, where both
short-range interaction and harmonic trap are neglected. The
amplitude of oscillations in the intracavity field dynamics
increases with fd suggesting that the density modulations in
the DW phase becomes more prominent, see Fig. 8(b).

APPENDIX E: COUPLING OF MOMENTUM STATES
DUE TO THE HARMONIC TRAP

An inhomogeneous single-particle potential leads to cou-
pling of various single-particle momentum states. In the case
of the harmonic trap considered here, this can be seen by
going to the momentum space for the following single-particle
Hamiltonian

ĤHO =
∫

dz*̂†(z)V (z)*̂(z), (E1)

where the potential is

V (z) = mω2
recb2z2

2
. (E2)

FIG. 8. (a) Time evolution of the intracavity photon number for
varying driving strength fd. (b) Snapshots of the single-particle den-
sity distribution of the atoms over a unit cell of the density wave. The
snapshots are taken at the time denoted by the vertical dashed line in
(a). The driving frequency is ωd/2π = 4 kHz.
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FIG. 9. (a) Snapshots of the momentum distributions for a stable
DTC ( fd = 0.3) and a metastable DTC ( fd = 0.6). The remaining
parameters lz/λ = 3.5, ωd/2π = 3.5 kHz, and zero contact interac-
tion, Eint = 0. (b) Effective coupling induced by the harmonic trap
for momentum states with difference of .k = π/λ as a function of
the unitless trap frequency b.

The harmonic trap frequency relative to the recoil frequency
is given by b = λ2/(2π2l2

z ), which follows from ω = h̄/(l2
z m)

and ωrec = 2π2h̄/(mλ2). We expand the field operators ac-
cording to *̂(z) =

∑
k exp(ikz)âk and obtain

ĤHO =
∑

k1,k2

V (k1 − k2)â†
k1

âk2 , (E3)

where

V (k) =
∫

dz exp(ikz)V (z). (E4)

We can infer from Eq. (E3) that different pairs of mo-
mentum states can be coupled depending on the potential
Eq. (E4). To gain further analytical insight, we approximate
the harmonic potential via

Veff (z) = h̄ωrecb
(

1 − exp
(

− z2

2l2
z

))
(E5)

= V (z) + O(z4). (E6)

Note that this effective potential underestimates the effect of
the actual harmonic potential which leads to an underestima-
tion of the coupling strength between the momentum modes.
Nevertheless, we will use this Gaussian potential to obtain an
analytical expression for V (k). Taking the Fourier transform
of Veff (z) yields

V (.k) = h̄ωrecλ

√
b

π
√

2
exp(−(.k)2 l2

z /2), (E7)

The presence of the harmonic trap creates additional mo-
mentum excitations and it broadens the distribution around
the relevant ones, namely |k0〉 ≡ |k = 0〉 and |k1〉 ≡ |k =
±2π/λ〉, as demonstrated in Fig. 9(a). The coupling between
these two modes is crucial in the formation of both DW
and DTC phases. If other momentum modes become signif-
icantly coupled to these two modes, then the DTC phase may
become unstable as atoms occupy other momentum modes.
To get an order of magnitude estimate for the strength of
harmonic confinement that may lead to instability of the DTC
phase, we calculate the effective coupling strength between
the relevant momentum modes and a momentum state be-
tween them, i.e., .k = (k1 − k0)/2 = π/λ. Using Eq. (E7),
we get

V ≡ V (.k = π/λ) = h̄ωrecλ

√
b

π
√

2
exp (−1/4b). (E8)

In Fig. 9(b), we show the dependence of the trap-induced
coupling between |k0〉 and |k1〉 on b. The coupling is neg-
ligible for b < 0.05, which corresponds to a ratio between
the pump wavelength and oscillator length of λ/lz < 1.
We then get an order of magnitude condition lz > O(λ)
for which the momentum modes |k0〉 and |k1〉 are mainly
coupled by the cavity and the effect of the trap remains
minimal. That is, we do not expect to observe any stable
DTC for lz < O(λ) when the trap-induced coupling becomes
significant.
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2.7 Publication II: Bridging closed and dissipative discrete time
crystals in spin systems with infinite-range interactions

J.G. Cosme, J. Skulte, and L. Mathey — Phys. Rev. B 108, 024302 (2023)

Motivation

This work was motivated by the first realisation of a dissipative discrete time crys-
tal (DTC) in a laser-pumped atom-cavity system in the group of Andreas Hemmerich,
the previous work on the stability of such DTCs and the findings of DTCs in the closed
Dicke and the closed Lipkin-Meshkov-Glick (LMG) model. These model connect as the
under- and overdamped limit of the Dicke model, on which the atom-cavity DTC can
be mapped on. Our goal was to understand the role of the dissipation strength  on the
stability of the DTCs.

Main findings

In this work, first-authored by Jayson G. Cosme, we have investigated the role of the
dissipation strength in a bosonic mode on the presence and stability on sub-harmonic
oscillations, which are classified as DTCs, in the periodically driven Dicke model. In the
limit of strong dissipation  we studied an e↵ective atom-only description and in the
limit of  ! 1 the closed LMG model. For vanishing dissipation, we studied the closed
Dicke model. This allowed us to compare phase diagrams of the open Dicke model for
dissipation strengths ranging e↵ectively from 0 to infinity and varying driving strengths.
In our driving protocol we considered varying strength and duty cycle, which is defined
as the ‘bright’ time in one periodic cycle, for a ’bang-bang-protocol‘. For all dissipation
strength we found stable TCs in the closed, as well as DTCs in the open regime. However,
we found that the DTC regime grows for dissipation strengths on time scales similar to
the intrinsic time scales and in general that DTCs are more robust against fluctuations
in the initial state and random noise in the drive. We further analysed scaling e↵ects for
finite particle numbers by comparing discrete truncated Wigner approximation (DTWA)
and full quantum simulations for varying interaction strengths and number of spins.

Contribution

I performed the full-quantum simulations under the supervision of JGC and LM. JGC
performed the semi-classical simulations. All authors contributed to the discussion and
interpretation of the results, as well as to writing the manuscript.
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We elucidate the role that the dissipation in a bosonic channel plays in the prevalence and stability of time
crystals (TCs) in a periodically driven spin-boson system described by the Dicke model. Here, the bosons are
represented by photons, and they mediate the infinite-range interactions between the spin systems. For strong
dissipation, we study the dynamics using an effective atom-only description and the closed Lipkin-Meshkov-
Glick model. By mapping out the phase diagrams for varying dissipation strengths, ranging from zero to infinitely
strong, we demonstrate that the area in the phase diagram, where a TC exists, grows with the dissipation strength
but only up to an optimal point, beyond which most of the TCs become unstable. We find TCs in both closed-
system and dissipative regimes, but dissipative TCs are shown to be more robust against random noise in the
drive and are only weakly affected by the choice of initial state. We present the finite-sized behavior and the
scaling of the lifetime of the TCs with respect to the number of spins and the interaction strength within a fully
quantum mechanical description.

DOI: 10.1103/PhysRevB.108.024302

I. INTRODUCTION

A time crystal (TC) is a nonequilibrium phase of mat-
ter signified by the spontaneous breaking of time-translation
symmetry [1–5]. This characteristic behavior manifests itself
in the emergence of a periodic pattern in time distinct from the
underlying temporal symmetry of the system. For example, a
TC in a system described by the periodically driven Hamil-
tonian H (t ) = H (t + Td ), where Td is the driving period, will
display an observable Ô oscillating at a lower frequency or
higher period, i.e., 〈Ô(t )〉 = 〈Ô(t + nTd )〉 with n > 1. TCs
are formed through an interplay between periodic driving,
many-body interactions, and possibly dissipation. Initial pre-
dictions and subsequent realizations of TCs involve closed
systems, wherein tailored interactions and strong disorder pre-
vent heating dynamics that would otherwise destabilize a TC
[6–23]. Controlled dissipation has also been demonstrated as
an alternative strategy for stabilizing TCs [24–40]. In most
of these physical systems, time-crystalline dynamics can be
understood using the spin language [6–20,24–35].

Focusing on fully connected spin systems or, equivalently,
spins with all-to-all interactions, time-crystalline phases have
been studied both for closed and dissipative systems through
the Lipkin-Meshkov-Glick (LMG) model and the open Dicke
model (DM), respectively. Introduced in the context of nuclear
physics [41–43], the LMG model describes N fully connected
spin- 1

2 particles in a transverse field [44,45]. A similar model

*jcosme@nip.upd.edu.ph

for photon-mediated interactions is the DM [46]. The DM
typifies a spin-boson system, wherein the bosons, specifically,
photons in a single mode, mediate the all-to-all interactions
between the spins [47,48]. The open version of the DM in-
cludes a dissipation channel via the photon decay. On the
one hand, discrete TCs and the related subharmonic response
are predicted to exist in the periodically driven closed LMG
model [9,10,49]. We note that direct experimental observation
of a TC in such an infinite-range interacting closed system
remains elusive, even though existing platforms could in prin-
ciple simulate the LMG model, for example, in Refs. [50–53].
On the other hand, the paradigmatic discrete TC in open
systems is proposed in the driven-dissipative DM [24,25].
Using a cavity-quantum-electrodynamics (QED) platform as
a quantum simulator of the open DM, indeed, a Dicke TC
has been realized experimentally [39], despite the mean-field
breaking terms in cavity-QED systems that compete with
the infinite-range interactions necessary for emulating the
DM [54].

In the limit of an extremely strong photon decay rate
κ → ∞, adiabatic elimination of the rapidly evolving photon
field will map the open DM onto the closed LMG model,
which establishes the relation between these two fully con-
nected models [45,48,55]. However, it has been suggested
for selected parameters that too strong dissipation could be
detrimental to the stability of TCs in the open DM [24,25],
which then poses the question of how this relates to the TC
phenomenology in the closed LMG model [9,10]. As we will
show later, the precise form of driving and the choice of
the initial state become crucial in the closed-system limits of

2469-9950/2023/108(2)/024302(16) 024302-1 ©2023 American Physical Society
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FIG. 1. (a) Driving protocol. The duty cycle D is the duration
of the bright time in one Floquet cycle. (b) During the bright times,
photons mediate the all-to-all interactions between the spins. (c)–(e)
Dynamical phase diagrams as a function of D and driving frequency
ωd for varying dissipation strengths κ . The light-matter coupling
is fixed at λ0 = 1.1λcr , and the photon frequency is ωp = ω0. As
depicted in the left-most panels of (c)–(e), three types of initial
product states are considered: (c) one of the Z2-symmetry broken
states, (d) spins polarized along the positive x direction, and (e)
spins polarized along the negative z direction. The dark areas in each
phase diagram denote the period-doubling time crystalline phases.
We use the Dicke model (DM) for κ/ω0 6 103, the atom-only DM
for 103 6 κ/ω0 < ∞, and the Lipkin-Meshkov-Glick (LMG) model
for κ = ∞.

vanishing and infinitely strong dissipation rates. In contrast,
we will demonstrate that the time-crystalline dynamics occur
more ubiquitously in the dissipative regime.

In this paper, we present a thorough investigation of TCs
in the transition from closed-system to dissipative limits, or
vice versa, for spin systems with infinite-range interactions
mediated by photons. By doing so, we shed light on the
precise roles of dissipation and the form of driving on the
emergence of TCs in infinite-range interacting systems, such
as the cavity-QED setup used in the realization of the dis-
sipative Dicke TC [34]. To describe the system, we use the
open DM for weak and intermediate dissipations and an ef-
fective atom-only description and the LMG model for strong
dissipations in which the photons are adiabatically eliminated.
We consider a binary drive wherein the system periodically
switches between interacting and noninteracting Hamiltoni-
ans as shown in Fig. 1(a). Mapping out the phase diagrams
for a range of dissipation strengths κ ∈ [0,∞), we connect the
TCs in the closed and dissipative regimes and demonstrate that

the areas in the phase diagram with TCs and time quasicrystals
(TQCs) expand with increasing dissipation but only up to an
optimal value, as depicted in Figs. 1(c) and 1(d). We also
find numerical evidence suggesting that the mechanism for
generating TCs in the dissipative system is a period-doubling
instability arising from a parametric resonance, and therefore,
we generalize the conditions first proposed in Ref. [24]. Fur-
thermore, the TCs in the open DM are found to be more robust
against random errors in the drive and are less sensitive to the
choice of initial states than their counterparts in the closed-
system limits, κ = 0 and κ → ∞. Nevertheless, the TCs in
the closed LMG model display enhanced stability for few
spins, wherein quantum effects dominate, as their lifetimes
can be increased by simply increasing the interaction strength
without changing the number of spins, and they have longer
lifetimes than the TCs in the open DM in general.

This paper is organized as follows. In Sec. II, we introduce
the relevant physical models, namely, the DM, its atom-only
description, and the LMG model, and the driving protocol.
In Sec. III, we explore using mean-field theory, the dynami-
cal phase diagrams for varying dissipation strengths, and the
robustness of TCs against noises in the drive and choices of
initial states. In Sec. IV, we investigate the properties of TCs
for both closed-system and dissipative limits in the quantum
regime of few spins. Finally, we conclude in Sec. V.

II. MODELS AND DRIVING PROTOCOL

The Hamiltonian for the open DM is [47]

Ĥ
h̄

= ωpâ†â + ω0Ĵz + 2λ√
N

(â† + â)Ĵx, (1)

where N is the total number of spins, â (â†) is the bosonic
annihilation (creation) operator for the photons, and Ĵµ =∑N

i=1 σ
µ
i (µ = x, y, z) are the collective spin operators. The

light-matter coupling strength is λ, the photon frequency is
ωp, and the transition frequency of the two-level atoms repre-
sented by the spins operators is ω0. In the presence of photon
losses, the dynamics of the system can be described by the
Lindblad master equation [56]:

∂t ρ̂ = −i

[
Ĥ
h̄

, ρ̂

]

+ κD[â]ρ̂, (2)

where D[â]ρ̂ = 2âρ̂â† − (â†âρ̂ + ρ̂â†â). The rate of photon
emission is characterized by the photon decay rate or dissipa-
tion strength κ .

An effective atom-only description can be obtained for
large but finite dissipation strength ∞ > κ ( ω0 [57,58],
which in this paper will be called the atom-only DM (ADM).
The ADM Hamiltonian is [58]

ĤADM

h̄
= ω0Ĵz−

[
4λ2ωp

N
(
κ2 + ω2

p

)
]

Ĵ2
x −



 4λ2κωpω0

N
(
κ2 + ω2

p

)2



{Ĵx, Ĵy}

−
[

2λ2ω0
(
ω2

p − κ2
)

N
(
κ2 + ω2

p

)
]

Ĵz. (3)

In the thermodynamic limit, the ADM Hamiltonian yields the
correct set of equations of motion obtained in Ref. [57].
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In the limit of κ → ∞, the photonic mode can be adi-
abatically eliminated to obtain a Hamiltonian that depends
only on the spins, equivalent to the anisotropic LMG model
[41–43,59]:

ĤLMG

h̄
= ω0Ĵz −

[
4λ2ωp

N
(
κ2 + ω2

p

)
]

Ĵ2
x . (4)

The last term in Eq. (4) reveals that indeed the photons me-
diate the effective all-to-all interactions between the spins. In
addition to the light-matter coupling strength λ, the param-
eters related to the photonic degree of freedom, namely, the
photon frequency ωp and dissipation rate κ , also contribute to
the strength of the effective spin-spin interactions.

In the thermodynamic limit, we rescale a = 〈â〉/
√

N and
jµ∈{x,y,z} = 〈Ĵµ〉/N . The three models described above all pos-
sess a symmetry-breaking phase transition at a critical value
of the coupling strength given by [45,47,56,57]

λcr = 1
2

√
ω0

ωp

(
ω2

p + κ2
)
. (5)

Below the critical coupling strength, the stable phase or steady
state corresponds to all the spins pointing in the negative z
direction { jx, jy, jz} = {0, 0,− 1

2 }. This phase is sometimes
referred to as the normal phase (NP) and for the DM. Another
defining feature of the NP is the absence of photons a = 0.
Above the critical coupling strength, the system undergoes
a quantum phase transition as it spontaneously breaks the
Z2 symmetry, {â, Ĵx} → {−â,−Ĵx}. The steady state in the
symmetry-broken phase has a spin configuration of [56]

{ jx, jy, jz} = 1
2




±

√

1 −
(

λ2
cr

λ2

)2

, 0,−λ2
cr

λ2




. (6)

In the DM, the photon mode is occupied in the symmetry-
broken phase, also known as the superradiant phase. The
corresponding steady-state photon amplitude is

a = ∓ λ

ω − iκ

√

1 −
(

λ2
cr

λ2

)2

. (7)

We are interested in a binary Floquet drive or bang-bang
protocol wherein the interactions periodically switch accord-
ing to

λ(t ) =
{
λ0, nTd 6 t < (n + D)Td
0, (n + D)Td 6 t < (n + 1)Td ,

(8)

where n ∈ [0, 1, 2, . . . ], Td is the driving period related to
the driving frequency via ωd = 2π/Td , and D ∈ [0, 1] is a
unitless quantity called the duty cycle. The duty cycle controls
the duration of the dark (λ = 0) and bright (λ = λ0) times in
a driving cycle. For D = 0, the the light-matter coupling is
always off, while for D = 1, the light-matter coupling has a
constant nonzero value λ0 for all times. This binary driving
protocol has been shown to host a period-doubling dissipa-
tive TC for D = 0.5 [24,25]. We note that, for D → 1, this
protocol is not identical to the kicking protocol considered
in Ref. [9] because, there, the spins are flipped using a π
pulse along the x direction during the kicking times, i.e., the
transverse field ω0 is driven. Instead of applying a spin-flip

operation, we allow the spins to rotate freely according to the
coherent time evolution during the dark times, at least for the
closed-system or nondissipative regimes.

III. MEAN-FIELD RESULTS

We first consider the thermodynamic or mean-field limit of
a large number of spins N . In the limit of a large number of
spins, cavity-QED systems based on quantum gases [60,61]
are ideal platforms for quantum simulations since the typical
number of atoms, emulating the two-level systems, reaches
N ∼ 105. In fact, various phenomena predicted in the DM
ranging from the normal-superradiant phase transition [50,62]
to the formation of dissipative discrete TCs [34] have been
observed using quantum-gas-cavity systems.

The mean-field dynamics can be obtained by solving the
corresponding semiclassical equations of motion. Depending
on the value of κ , we use the appropriate model, i.e., the
DM for κ/ω0 < 103, the ADM for 103 6 κ/ω0 < ∞, and the
LMG model for κ = ∞. The semiclassical equations of mo-
tion for the three models are presented in Appendix A. In the
following, we numerically integrate the equations of motion
and mainly focus on the dynamical behavior of the expecta-
tion value of the total magnetization along the x component jx.
We consider a total driving time of t f = 100Td in accordance
with the typical time scales in state-of-the-art experiments on
closed and dissipative discrete TCs [15–17,19,39].

In Secs. III A and III B, we choose as the initial state one of
the Z2-symmetry-broken states amounting to all spins having
a nonzero component in the positive x direction, which is
denoted by the upper sign solution in Eq. (6). For the DM,
the additional initial condition for the photon amplitude is
given by Eq. (7). In Sec. III C, we investigate other types of
initial states, namely, spins that are fully polarized either along
the positive x direction or the negative z direction. We fix the
light-matter coupling to λ0 = 1.1λcr and the photon frequency
to ωp = ω0. Fixing λ0/λcr makes the results for the LMG
model independent of ωp and κ since the interaction strength
in the LMG Hamiltonian Eq. (4) only depends on this ratio.
In Appendix C, we show similar results for other choices of λ
and ωp.

A. Dynamical phases

A generic many-body system with periodic driving, espe-
cially in the absence of dissipation, is expected to inevitably
heat up and approach a featureless state [63,64]. TCs in closed
systems are particularly interesting since they are exceptions
to this. To distinguish between nontrivial phases and a thermal
or chaotic phase, we define the decorrelator:

d = 1
(t f − ti )

t f∑

t=ti

[| jx(t )| − | j′x(t )|], (9)

where j′x(t ) is the dynamics of a slightly perturbed initial
state relative to jx(t ). Specifically, we choose j′x(0) = jx(0) −
0.5 × 10−3, j′y(0) = 0, and j′z(0) = −

√
1 − | j′x(0)|2/2. The

decorrelator provides a measure for the distance between the
time-evolving observables to probe the emergence of chaos
[65,66]. A large decorrelator d ∼ 1 signifies sensitivity to
initial conditions consistent with classical chaos. We obtain
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FIG. 2. (a) (Top panel) Exemplary dynamics of jx for κ/ω0 = 20 with driving parameters {D, ωd} = {0.3, 1.4ω0}. These driving parameters
are denoted as a circle in (d)–(j). The dark curve with duration TTC denotes the period-doubling response, while the light curve corresponds
to the transient quasi-period-doubling behavior. (Bottom panel) Corresponding time-frequency power spectrum of jx in log scale for the two
highest peaks. (b) and (c) Dependence of TTC and the decorrelator d on the dissipation strength κ for driving parameters marked by (b) circles
and (c) diamonds in (d)–(j). The driving parameters are (b) {D, ωd} = {0.65, 1.3ω0} and (c) {D, ωd} = {0.3, 1.4ω0}. The horizontal dashed
lines denote d = 0.01, which is the threshold used to distinguish between thermal and nonthermal phases. (d)–(j) Various phases identified for
different driving parameters D and ωd . Each panel corresponds to a specific value of κ . Harmonic, superharmonic, and n-tupling dynamics are
all represented in the white areas. For the results shown here, the photon frequency and light-matter coupling strength are fixed to ωp = ω0 and
λ0 = 1.1λcr , respectively.

the decorrelator for a time window spanned by ti = 50Td and
t f = 100Td . To classify thermal phases, we set a threshold of
d > 0.01.

In the top panel of Fig. 2(a), we show an exemplary
dynamics exhibiting both a TQC for transient times and a
period-doubling TC for long times. To quantify the lifetime
of the TC TTC, we calculate a time-frequency power spectrum
according to P(ω, t ) = |F (ω, t )|2/

∑Nf

i=1 |F (ω, t )|2, where
F (ω, t ) is the Fourier transform of jx for the time window
starting at time t and ending at t f = 100Td . The total
number of discrete frequencies resolved by the Fourier
transform is Nf . To demonstrate how we obtain TTC using
P(ω, t ), we present in the bottom panel of Fig. 2(a) an
example of the time-frequency power spectrum. A TQC is
marked by the appearance of a secondary peak in the power
spectrum in addition to the primary peak associated with the
period-doubling response [65]. We then use the appearance of
a secondary peak in the power spectrum with ln P(ω, t ′) > −8
as a criterion for detecting TQC phases. That is, the lifetime
of the TC phase for simulation times considered here is
TTC = 100Td − t ′. In Fig. 2(a), we indeed find a secondary
peak around t ′ ≈ 20Td consistent with a visual inspection of
the dynamics shown in the top panel. Thus, for this example,
the system is in a time-quasicrystalline phase for t < t ′,
and the TC emerging for t > t ′ has a lifetime of at least
TTC = 80Td .

The lifetime TTC and the decorrelator d as a function of the
dissipation strength κ are shown in Figs. 2(b) and 2(c), which
correspond to driving parameters {D,ωd} = {0.65, 1.3ω0}
and {D,ωd} = {0.3, 1.4ω0}, respectively. In Fig. 2(b), the val-
ues of the decorrelator d for thermal phases are several orders
of magnitude larger than those for nonthermal phases. We set
TTC = 0 for thermal phases, regardless of whether a transient
TQC is found for early times or a time-crystalline signal is
detected for a single mean-field trajectory.

For time-translation symmetry-breaking responses, we find
the following phases: (i) pure TC, (ii) pure TQC, and (iii)
mixed TC and TQC. A pure TC is characterized by having
period-doubling dynamics for the entire duration of the simu-
lation TTC = 100Td , as exemplified by κ/ω0 = 1 in Fig. 2(b)
and κ/ω0 = 10−3 in Fig. 2(c). On the other hand, a pure
TQC, while insensitive to initial conditions d < 0.01, still has
TTC = 0 since its spectrum has at least one additional subhar-
monic frequency peak, which in general is incommensurate
with the driving frequency for the entire simulation time. An
example of the dynamics and the power spectrum for a pure
TQC is κ/ω0 = 21 shown in Appendix B. Lastly, a mixed TC
and TQC phase is denoted by a transient TQC at early times
and a TC at long times, as shown in Fig. 2(a), for example.
We label the pure TC phase and mixed TC-and-TQC phase as
simply TC for the rest of the paper since both have long-time
period-doubling behavior.
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The results presented in Figs. 2(b) and 2(c) highlight one
of the key findings of this paper, which is the nonmonotonic
behavior in the presence and lifetime of TCs as a function of
the dissipation strength. The optimal dissipation strength will
strongly depend on the specific choice of driving parameters.
This is illustrated by the absence of TCs for κ/ω0 < 10−1 and
κ/ω0 > 102 in Fig. 2(b), while they are present in Fig. 2(c) for
the same regimes of dissipation strength. In fact, for interme-
diate dissipation strengths 10−1 < κ/ω0 < 102, wherein TCs
are seen in Fig. 2(b), the driving parameters in Fig. 2(c) push
the system into a light-induced NP, which is a NP dynamically
stabilized by the drive and is defined by having zero photon
number despite λ0 > λcr [30] (see also Appendix B).

In Figs. 2(d)–2(j), the dynamical phase diagrams as a func-
tion of the driving parameters are shown, wherein each panel
corresponds to a particular choice of dissipation strength κ .
That is, we demonstrate in Figs. 2(d)–2(j) how the dynamical
phase diagram changes with the dissipation strength. In the
following, we will not discuss harmonic, superharmonic, and
n-tupling dynamics, which are all indicated by the white areas
in the dynamical phase diagrams. Instead, we concentrate on
the influence of dissipation on the thermal, time-crystalline,
and time-quasicrystalline phases.

1. Closed systems

We find TC and TQC phases in the closed-system limits,
namely, the closed DM (κ = 0), the ADM (κ/ω0 = 103), and
the LMG model (κ → ∞), albeit only in a relatively narrow
region of the driving parameter space. The dynamical phase
diagrams for closed systems in Figs. 2(d), 2(i), and 2(j) share
a strong similarity with each other, especially in the location
of the TC phases. The qualitative agreement between the
ADM and LMG phase diagrams implies the applicability of
the LMG model for dynamical states, such as a TC, which is
in contrast to the limitation of the LMG model in describing
steady states [57,58].

The apparent period-doubling response seen for D = 0, as
illustrated in Fig. 3(a), can be considered trivial since this sim-
ply corresponds to a sudden quench at t = 0 from λ = 1.1λcr
to 0. Within the LMG model, this leads to a coherent dynamics
of the spins precessing around the z axis at a frequency ω0, i.e.,
a precession period of T0 = 2π/ω0. For a driving frequency of
ωd = 2ω0, such a response will seemingly appear as subhar-
monic even though the periodic drive is actually absent for
D = 0, as illustrated in Fig. 3(a).

Based on the location of the TC phases in the phase dia-
grams in Figs. 2(d), 2(i), and 2(j), for the closed DM, ADM,
and LMG model, we identify that a period-doubling insta-
bility emerges for bang-bang protocols when the duty cycle
follows

Dins = 1 − ωd

2ω0
. (10)

The above condition appears as a line in the phase diagram,
and it can be analytically understood as follows. The mag-
netization jx for the noninteracting limit will have the same
magnitude but opposite sign as its initial value every (n +
1/2)T0, where n is an integer. Hence, for the driven system,
the dark time must be exactly half the precession period in
the absence of spin interactions tdark = T0/2. The instability

FIG. 3. Dynamics of jx in the (left panels) Lipkin-Meshkov-
Glick (LMG) model and (right panels) Dicke model with κ/ω0 = 1.
(a) and (b) In the absence of driving and for a sudden quench
D = 0, the spins precess around the z direction due to the first term
in the Hamiltonian in Eq. (4). The top axis displays time in units of
the precession period T0 = ω0/(2π ), while the bottom axis shows
time in units of the driving period Td = ωd/(2π ). This apparent
period doubling is trivial as the periodic driving is absent. (c) and
(d) Time crystals for the periodically driven systems with parame-
ters (c) {D, ωd} = {0.3, 1.4ω0} and (d) {D,ωd} = {0.7, 1.3ω0}. The
shaded areas indicate the dark time when the spin interactions are
switched off. The arrow in (c) indicates that the dark time is tdark =
T0/2. The remaining parameters are the same as in Fig. 2.

condition Eq. (10) precisely satisfies this:

tdark = (1 − Dins )Td = 2π

2ω0
= T0

2
. (11)

The state at times t = (n + 1/2)T0 is the symmetry-broken
partner of the initial state, which is chosen to be an eigenstate
of the Hamiltonian with spin-spin interactions. As such, the
states do not change during the bright times of each driving
cycle, as depicted in the white areas in Fig. 3(c), which then
yields the apparent period-doubling response for the bang-
bang protocol. Therefore, the emergence of a period-doubling
response in the absence of dissipation strongly hinges on the
appropriate timing of when the interactions are switched on
and off. This interplay between the internal dynamics of the
spins and the timing of the external drive is also argued to
be important for the n-tupling response in a variable-range
interacting spin model with binary driving [49].

We remark that the equivalence of the dynamics in the
ADM and the LMG model for a TC is solely attributed to
the specific form of the binary drive. For both models, during
the bright times, the state of the system is the same initially
prepared symmetry-broken phase defined by Eq. (6). During
the dark times, the additional terms in the ADM Hamiltonian
[last two lines in Eq. (3)] are also set to zero, which means
that the resulting equations of motion are the same for both
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models. Thus, the spins in the ADM will simply precess in
the same way as they would in the LMG model during the
dark times.

In general, for an integer m, the period doubling arises if
tdark = (m + 1/2)T0. The driving parameters for the isolated
islands of TCs in Figs. 2(d), 2(i), and 2(j) and more clearly in
Fig. 1(c) for κ/ω0 = {0, 103,∞} satisfy this general condition
for the period doubling instability. We emphasize that the
arguments discussed so far hold only if the initial state is an
eigenstate of the Hamiltonian during the bright times. Other-
wise, the system will dephase, and a clean period-doubling
dynamics will not be observed. This will be discussed further
in Sec. III C. Moreover, Eqs. (10) and (11) only apply to
binary drives, in which the system becomes noninteracting
at well-defined times. For smooth sinusoidal driving, we do
not find any clean period-doubling response for all relevant
types of initial states in the absence of dissipation, as shown
in Appendix D. This underscores the sensitivity to the specific
driving protocol of the TC in the closed-system limit.

2. Open systems

We now discuss the results for the open DM with dissipa-
tion strength 0 < κ/ω0 < 103. For D = 0, the photonic and
spin degrees of freedom decouple, leading to a spin dynamics
equivalent to the D = 0 case in the LMG model. The initially
nonzero photon number eventually vanishes due to dissipa-
tion. The magnetization jx oscillates at a frequency ω0 around
zero, as seen in Fig. 3(b), and the apparent period doubling
for D = 0 is trivial since the periodic driving is in fact ab-
sent. We show an example of a dissipative TC in the DM in
Fig. 3(d), in which the specific driving parameters yield bright
and dark times that are both incommensurate to the precession
period, tbright ≈ 0.5385T0 and tdark ≈ 0.2308T0, respectively.
This demonstrates that the period-doubling instability con-
ditions for the nondissipative limits based on Eqs. (10) and
(11) are no longer applicable, in general, when dissipation is
present.

Going from κ = 0 to κ/ω0 = 0.1 [Figs. 2(d) and 2(e)], we
see that, while time-crystalline phases remain along the line
defined by Eq. (10), new TCs start to emerge in other parts
of the phase diagram associated with driving parameters that
would otherwise lead to thermal phases in the closed DM.
Moreover, some of the thermal phases for κ = 0 are converted
to not only TCs but also TQCs after dissipation is introduced.
Thus, we provide a concrete demonstration of dissipation, the
photon decay, counteracting the heating induced by the peri-
odic drive. Increasing the dissipation strength pushes the TCs
away from the instability line in the closed-system limit, as
seen from the change in the phase diagram from κ/ω0 = 0.1
to κ/ω0 = 1, see Figs. 2(e) and 2(f). Further increase in the
dissipation strength leads to an expansion of the area in the
phase diagram with TCs, as demonstrated in Figs. 1(c) and
2(d) for κ/ω0 ∈ [1, 10].

Note, however, that the dissipation-induced enhancement
of TC in the phase diagram only applies up to a certain value
of κ . In Fig. 1(c), comparing the area of the time-crystalline
phase in κ/ω0 = 5 and κ/ω0 = 10, we find that the TC area
decreases for κ/ω0 > 5. While the overall shape of the area
with both TC and TQC is not significantly changed from

κ/ω0 = 10 to κ/ω0 = 102, as displayed in Figs. 2(g) and 2(h),
there are more TQCs in the phase diagram for κ/ω0 = 102

than for κ/ω0 = 10, which implies that the TCs are converted
to TQCs with increasing dissipation strength. This can also
be inferred from the expansion of the TQC domain as the
dissipation strength increases from κ/ω0 = 10 to κ/ω0 = 21
in Appendix B.

We have seen that, for the ADM and LMG model, the TCs
are restricted along the instability line Eq. (10). The question
remains whether the phase diagrams for dissipative systems
will change gradually or suddenly as κ increases to large
enough values, such that the adiabatic approximation and thus
the ADM and LMG model can be applied. To address this
issue, we consider even stronger dissipation strengths on the
order of κ/ω0 ∼ 102 while still solving the full semiclassical
equations including the photon dynamics. For even stronger
dissipation beyond the optimal value, we find that the dynam-
ical phase diagram gradually develops features that resemble
its closed-system counterpart, as seen in Figs. 1(c) and 2(d) for
κ/ω0 = 102. Comparing κ/ω0 = 102 and κ/ω0 = {103,∞},
some of the TQCs, which were previously TCs for weaker
dissipation, turn into thermal phases in the closed-system
models. Moreover, going from κ/ω0 = 10 to κ/ω0 = 102, the
time-crystalline phases start to gather toward the instability
line Eq. (10) for closed systems.

To summarize Sec. III A, we identify the condition for
creating TCs in the closed-system limit with a periodic binary
drive or bang-bang protocol. We also demonstrate that dissi-
pation, in general, leads to the expansion of the TC and TQC
areas in the phase diagram. The two limits κ = 0 and κ → ∞
are smoothly connected by the gradual change of the phase
diagram as dissipation is increased.

B. Robustness against random driving errors

We will now investigate the role of dissipation on the
robustness of TCs against temporal noise. To this end, we
introduce a random driving error in the duty cycle for every
Floquet drive:

λ(t ) =
{
λ0, nTd 6 t < (n + Dn)Td
0, (n + Dn)Td 6 t < (n + 1)Td ,

(12)

where Dn = D + (Dn, and (Dn is a random number drawn
from a box distribution (Dn ∈ [−(D,(D]. A single real-
ization of this disordered drive is depicted in Fig. 4(a) [see
also the inset of Fig. 4(c)]. We also consider another kind
of temporal perturbation, namely, in the light-matter coupling
strength such that

λ(t ) =
{
λ0 + λn, nTd 6 t < (n + D)Td
0, (n + D)Td 6 t < (n + 1)Td ,

(13)

where λn/λ0 ∈ [−(λ0,(λ0]. An example of a periodic drive
with this disorder is shown in the inset of Fig. 4(e).

In the following, we use driving parameters corresponding
to the circles and diamonds in Fig. 2, where TCs exist for
clean driving or in the absence of temporal disorder. We take
100 disorder realizations when calculating the dynamics of jx
and the crystalline fraction ), which we define as the average
of the power spectrum of jx at ωd/2. We present in Fig. 4(b)
the disorder-averaged dynamics of jx for a noisy duty cycle,
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FIG. 4. (a) One realization of the disordered drive. (b) Dynamics
of the total magnetization along the x direction jx for different disor-
der strengths (D as indicated in the legend. The driving parameters
are {D, ωd} = {0.65, 1.3ω0}, and the dissipation strength is κ/ω0 =
1. The initial state is a Z2-symmetry broken phase for λ0 = 1.1λcr .
(c) and (d) Dependence of the relative crystalline fraction )/)0 on
the strength of the random driving error or temporal disorder (D.
(e) and (f) Like (c) and (d) but for a noisy light-matter coupling with
disorder strength (λ. Insets: One realization of the disordered drive.

Eq. (12). As the disorder strength increases, the oscillation
amplitude of jx deviates from being a constant as the TC
becomes unstable. This is expressed in the reduction of the
relative crystalline fraction )/)0, where )0 is the crystalline
fraction in the clean case, for increasing disorder strength
(D, as shown in Figs. 4(c) and 4(d). Additional frequencies
introduced by the noise broaden the power spectrum of jx and
thereby decrease the crystalline fraction. More importantly,
Figs. 4(c) and 4(d) demonstrate another key finding of this
paper, which is the role of dissipation in making a TC more
robust against temporal noise. For the nondissipative cases
κ/ω0 = {0, 103,∞} in Fig. 4(d), the crystalline fraction de-
cays rapidly with (D. In contrast, the decay is slower when
dissipation is introduced, i.e., the crystalline fraction remains
large over a wide range of disorder strengths. This is evident
in Fig. 4(c) for intermediate dissipation strengths, wherein the
crystalline fraction is found to slowly decrease with (D.

The dissipation-induced robustness against temporal noise
can be understood as a consequence of the dissipation-induced
expansion of the TC area in the phase diagram discussed in
the previous subsection. In the phase diagram for κ/ω0 = 10
in Fig. 2(g), the TC corresponding to the driving parameters
marked by the circle is surrounded by other period-doubling
TCs, and thus, a perturbation in D, ωd , and ω0 will not easily
push the system into a different dynamical phase. On the other

hand, for closed systems, we see in Figs. 2(d), 2(i), and 2(j)
that, for driving parameters marked by the diamonds, a slight
variation in D away from the instability condition Eq. (10)
will take the system to a different dynamical phase other than
a period-doubling TC. This leads to a TC that is less robust
against temporal perturbations of the driving parameters D
and ωd . This also explains the relatively weak robustness
observed for strong dissipation in the right panel of Fig. 4(d)
since the TC area is relatively small and highly fragmented
for dissipation strengths of this order of magnitude, as seen
for κ/ω0 = 102 in Fig. 1(c). In Figs. 4(e) and 4(f), we observe
similar findings for a drive with noisy light-matter coupling.
Both dissipative and nondissipative models appear to be more
robust against this type of noise, as seen from the larger
plateaus in the crystalline fractions in Fig. 4(f) than those in
Fig. 4(d). This can be attributed to the presence of TCs even
for higher values of λ0, as seen in Appendix C.

C. Initial fully polarized states

For potential applications and experimental realizations,
we discuss how close the initial state must be to the desired
state to create a TC. So far, we have considered one of
the symmetry-broken states as the initial state. In Ref. [9],
robustness against the choice of initial state for TCs in the
kicked LMG model has been demonstrated but only for ini-
tial symmetry-broken states corresponding to an interaction
strength different from the one in the Hamiltonian, i.e., λ(t =
0) .= λ0. Here, we explore other types of initial states, namely,
fully polarized states either along the positive x direction
{ jx, jy, jz} = {1/2, 0, 0} or negative z direction { jx, jy, jz} =
{0, 0,−1/2}, which we label as |⇒〉 or |⇓〉, respectively. A
symmetry-broken state interpolates between these two limits.
For the DM, we include a small fluctuation in the photon
mode, such that a(t = 0) = 0.01.

We present in Figs. 5(a) and 5(b) the evolution of the phase
diagrams as a function of the dissipation strength for initial
fully polarized states |⇒〉 and |⇓〉, respectively. Crucially,
we find that, for both types of fully polarized initial states,
time-crystalline phases are absent in the closed system models
κ/ω0 = {0, 103,∞}, and the phase diagrams are dominated
by thermal phases, see also Figs. 1(d) and 1(e). The behavior
is strikingly different for dissipative cases, as seen in Fig. 5 for
κ/ω0 = {1, 10}. The choice of initial state between | ⇒〉 and
| ⇓〉 does not significantly alter the area in the phase diagram
with TCs. This is further emphasized if we include the initial
symmetry-broken state in the comparison as evidenced by the
results for κ/ω0 ∈ [1, 10] in Figs. 1(c)–1(e). This implies that
dissipation allows for flexibility in the fidelity of the initial
state preparation. In Appendix D, we observe similar results
for a smooth sinusoidal or continuous driving protocol, which
further corroborates the positive role of controlled dissipation
for infinite-range interacting spin systems.

The results for the ADM and LMG model κ/ω0 =
{103,∞}, shown in Fig. 5(b), exhibit resonance lobes remi-
niscent of parametric resonances that appear when the driving
frequency satisfies ωd/ω0 = 2/n, where n ∈ Z+. Notice that,
in Fig. 5(b), the shape of the TC area for κ/ω0 = 10 is like
that of the primary resonance lobe (ωd/ω0 = 2) for κ/ω0 =
{103,∞}. This points to a period-doubling instability arising
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FIG. 5. Dynamical phase diagrams like Fig. 2 but for initial fully polarized states (a) | ⇒〉 and (b) | ⇓〉 as schematically illustrated in the
leftmost panels. The dashed vertical lines in κ = ∞ denote the parametric resonance condition ωd/ω0 = 2/n, where n = {1, 2, 3}. The system
parameters are the same as in Fig. 2.

from a parametric resonance as the main mechanism behind
the formation of dissipative TCs with binary driving, like
the smooth sinusoidal driving in Refs. [34,67]. Note that the
parametric resonance also applies to initial symmetry-broken
states as evinced by the shape of the thermal region, including
the TC and TQC phases, in Fig. 2(d) for κ = 0. There, the
absence of dissipation heats up the system, resulting in a more
prominent thermal phase except at the special points along the
instability line for initial symmetry-broken states, Eq. (10).

IV. QUANTUM RESULTS

We now study the TCs in the limit of a small number of
spins, wherein quantum effects and many-body correlations
become dominant. Platforms for physical implementations of
a relatively small number of artificial or effective spins include
circuit QED systems based on superconducting qubits [24,68–
72] and ion chains [51–53]. In the following, we obtain the
full quantum results using the QuantumOptics.jl library [73],
and we employ the discrete truncated Wigner approximation
(DTWA) [74,75] for a larger number of spins beyond the reach
of full quantum mechanical simulations.

We focus on the initial fully polarized state along the pos-
itive x direction | ⇒〉 =

⊗
N | →〉, which in the mean-field

regime corresponds to { jx, jy, jz} = { 1
2 , 0, 0}, to gain insights

into the features of TCs in the quantum regime. By comparing
exact quantum and DTWA results, we will also assess the
applicability of DTWA in capturing the time-crystalline dy-
namics for periodically driven infinite-range interacting spins.
For the DM, the photon mode is initialized in the vacuum state
|0〉, such that the initial state of the system is |ψ (t = 0)〉 =
| ⇒〉 ⊗ |0〉.

The results for the LMG model with N = 8 spins and driv-
ing parameters {D,ωd} = {0.3, 1.4ω0} are depicted in Fig. 6.
In Fig. 6(a), for λ0 = 1.1λcr, the system is in the thermal
phase even in the mean-field limit of N → ∞. This again
exemplifies the importance of initializing the system in a
symmetry-broken eigenstate to create a TC in the closed-
system limit. In the quantum regime, the irregular mean-field

dynamics translate into a beating of the oscillations in the
expectation value of the total magnetization 〈Ĵx〉/N like the
behavior found in the kicked LMG model [9]. The full
quantum mechanical and DTWA results agree on the overall
qualitative behavior of the dynamics. While we find excellent
agreement between the exact and DTWA results for short
times, quantitative deviations appear in the long-time dy-
namics, which is expected in simulations of closed system
quantum dynamics using phase-space methods [76].

For stronger interactions, e.g., λ0 = 4λcr in Fig. 6(b), a
TC is formed, and interestingly, the mean-field, exact quan-
tum, and DTWA results agree for the entire simulation time
of 100 driving cycles, which is noteworthy, considering the
relatively small number of spins N = 8. This also hints at the
ability of the DTWA to capture the dynamics of TCs even for
long times, provided that the interactions in a fully connected

FIG. 6. Dynamics of the expectation value of the total magneti-
zation along the x direction for an initial fully polarized state | ⇒〉 in
the Lipkin-Meshkov-Glick (LMG) model. The interaction strengths
are (a) λ0 = 1.1λcr and (b) λ0 = 4.0λcr. For the exact quantum me-
chanical (QM) results and discrete truncated Wigner approximation
(DTWA), the number of spins is N = 8. The driving parameters are
D = 0.3 and ωd = 1.4ω0.
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FIG. 7. Dynamics of the peaks in the total magnetization in the
Lipkin-Meshkov-Glick (LMG) model for an initial state of |⇒〉.
The solid (dotted) curves denote the full quantum [discrete truncated
Wigner approximation (DTWA)] results. The interaction strengths
are (a) λ0 = 1.1λcr , (b) λ0 = 2.0λcr , and (c) λ0 = 4.0λcr. The driving
parameters are the same as in Fig. 6.

model are sufficiently strong. We note that the overlap of
a symmetry-broken eigenstate with the fully polarized state
along the x direction increases with the interaction strength,
which can also be inferred from the mean-field steady-state
solution in Eq. (6). This explains the appearance of a TC in
Fig. 6(b) despite the initial state not being a symmetry-broken
eigenstate for λ0 = 4λcr. Thus, we propose utilizing large in-
teraction strengths for creating TCs in fully connected systems
with few spins if, for a given platform, it is easier to prepare
an initial fully polarized state.

Next, we study the dependence of the beating oscillations
on the number of spins in the LMG model. To this end, we
obtain the peaks in the oscillatory dynamics of the magne-
tization Jpeak

x , which is directly related to the envelope of
the oscillations in 〈Ĵx〉. In Fig. 7, we display the dynamics
of Jpeak

x for different N including the mean-field limit. For
weak interactions, the chosen driving parameters in Fig. 7 lead
to irregular and therefore non-time-crystalline dynamics. The
convergence toward the mean-field limit for increasing N is
slow and can only be seen at short times due to the irregularity
of the long-time dynamics. The tendency toward the mean-
field prediction becomes more clear for stronger interactions,
as seen in Fig. 7(b) for λ0 = 2λcr. We observe that the beat
period increases with N , implying that it becomes infinitely
large as N → ∞, consistent with the mean-field prediction of
an infinitely long-lived TC. This behavior is more apparent
if the system is initialized in a symmetry-broken eigenstate.
as shown in Appendix E. For sufficiently strong interactions
represented by λ0 = 4λcr in Fig. 7(b), we recover results con-
sistent with Fig. 6(b), especially the emergence of long-lived
period-doubling response for a relatively small number of
spins (N ∼ 4).

We present in Fig. 8 the quantum dynamics in the
open DM for κ = ω0. In Fig. 8(a), the driving parameters

FIG. 8. Like Fig. 6 but for the open Dicke model with κ = ω0.
The light-matter coupling strengths are (a) λ0 = 1.1λcr , (b) λ0 =
2.0λcr , and (c) λ0 = 4.0λcr . The photon frequency is ωp = ω0. The
driving parameters are D = 0.5 and ωd = 1.6ω0.

correspond to a TC in the mean-field limit. For few spins, the
period-doubling oscillations rapidly decay, and for N < 10,
the time-translation symmetry-breaking response only sur-
vives for short times, typically around five driving cycles
t ≈ 5Td . These exponentially decaying oscillations are anal-
ogous to the beating oscillations in the closed-system limit.
However, unlike the beat period in the LMG model, the decay
constant characterizing the exponential suppression of oscil-
lations in the open DM does not monotonously depend on
the interaction strength. This is evident from the longer-lived
oscillations in Fig. 8(b) compared with those in Fig. 8(c),
even though λ0 is larger in Fig. 8(c). This means that using
the interaction strength to prolong the lifetime of a TC in the
open DM is not as efficient as in closed systems, if the driving
parameters are fixed. Alternatively, increasing the number of
spins could also increase the lifetime of a dissipative TC
[26,28,77]. Indeed, we find in Fig. 8 that the decay slows down
with N , irrespective of the interaction strength. In contrast to
the LMG model, in which as few as N = 4 spins generate a
period-doubling signal lasting for t > 10Td , the number of
spins needed for the open DM for the same time scale is
N > 20.

We point out that, in Fig. 8(c), despite the mean-field
dynamics showing irregular or chaotic behavior, both full
quantum and DTWA simulations predict periodic albeit de-
caying oscillations. This apparent inconsistency between
mean-field and quantum approaches, regarding the presence
or absence of a transition to a chaotic phase, is also reported
in a driven-dissipative LMG or fully connected Ising model
[78]. Lastly, we note that, for N = 6, in Fig. 8, DTWA is in
good agreement with the numerical data obtained from the
full quantum mechanical treatment, thereby suggesting that,
in dissipative scenarios, DTWA can capture time-crystalline
dynamics even for small N . This stabilizing effect of dissi-
pation on the performance of DTWA as a method is like that
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TABLE I. Summary of the properties of the period-doubling TCs
in infinite-range interacting spins.

Closed Open
(LMG model) (DM)

Mean-field
Robust against:

Random errors in the drive Weak Strong
Choice of initial state Weak Strong
Choice of driving protocol Weak Strong
Variation in system parameters Stronga Strongb

Quantum
Oscillations Beating Exponential

decay
Lifetime increases with Interaction Number of

strength spins

aIn the LMG model, strong means that it is strongly robust only for
variations and random errors in the interactions strength.
bIn the open DM, strong means strong robustness only within the
resonance area in the phase diagram.

found in the positive-P approach for driven-dissipative bosons
[79].

V. SUMMARY AND DISCUSSION

In this paper, we have extensively studied the influence
of dissipation on TCs in a spin system with infinite-range
interactions with binary driving. We have employed both
mean-field and quantum mechanical treatments of the dy-
namics in the open DM for different dissipation strengths.
For large dissipation strengths κ > 102, we approximate
the system as closed using the ADM and LMG model. In
Table I, we summarize the key properties of TCs, specifically,
robustness in the thermodynamic limit and dynamical features
in the quantum limit, for the closed-system and dissipative
regimes.

From our mean-field approach, we have identified a sim-
ple but finely tuned set of conditions, involving the driving
parameters and initial state, for creating a period-doubling
response in the closed-system limit. We have demonstrated
that dissipation expands this instability line to include larger
areas in parameter space. Thus, we connect the TC phe-
nomenology in the open- and closed-system limits of the
infinite-range interacting spins. Moreover, we have observed
that the presence and lifetime of TCs do not monotonously
depend on the dissipation strength. This implies the exis-
tence of an optimal dissipation strength for realizing TCs,
like dissipative-driven Heisenberg chains [33]. However, here,
we show that the optimal dissipation depends strongly on the
specific choice of driving parameters, and in certain cases,
the absence of dissipation, κ = 0 or κ → ∞, could in fact
be the optimal choice, if one is only interested in generating
a period-doubling response. If the goal, however, is to create
a TC that is also robust against unwanted errors in the drive
and imperfect preparation of the initial state, we ascertain that
controlled dissipation is helpful. We find that the TC area in
the phase diagram becomes relatively large for intermediate
dissipation strengths κ ∼ ω0. A large TC area in the phase

diagram contributes to the robustness not only against varia-
tions in system parameters but also against noise in the drive.
Furthermore, we demonstrate that dissipation can form TCs,
which are insensitive to the choice of initial state. We also
attribute the formation of dissipative TCs using a binary drive
to a period-doubling instability of a parametric resonance, and
thus, we generalize the mechanism and conditions proposed in
Ref. [24].

Our quantum results for finite N obtained using nu-
merically exact calculations and the DTWA indicate an
exponential decay of the period-doubling oscillations when
dissipation is present. On the other hand, in the two extremes
κ = 0 or κ → ∞, the TCs exhibit beating behavior, the pe-
riod of which increases with the number of spins, consistent
with Ref. [9]. The scaling with the interaction strength of
the lifetime of closed-system TCs is more favorable than the
scaling with the number of spins for open-system TCs. This
suggests a possible advantage of TCs in the closed-system
limits if the underlying platform operates with few spins,
albeit the driving parameters must be finely tuned according to
Eq. (10).

Finally, we remark on the apparent lack of experimental
evidence for TCs in the closed fully connected spin systems.
As we have shown in this paper, the period-doubling instabil-
ity in the LMG model and the closed DM strongly depends
on the specific driving protocol. For sinusoidal driving, which
was utilized for the realization of dissipative TC in the small-κ
regime of a cavity-QED system [34], the DM with κ = 0 and
κ → ∞ does not host any TCs as shown in Appendix D. In-
stead, a binary drive according to Eq. (8) is required to induce
a period-doubling response but only in a narrow region in the
phase diagram spanned by the driving parameters, i.e., they
must follow Eq. (10). It remains to be seen whether alterna-
tive schemes that periodically drive the transverse field (as in
Refs. [9,10]), instead of the spin-spin interaction strength (as
done here), would yield a larger TC area in the relevant phase
diagram. Assuming a binary drive, high-fidelity state prepa-
ration is still required, i.e., the initial state should not veer
too far from the symmetry-broken state of the Hamiltonian
during the bright times. For the cavity-QED system operating
in the regime that emulates the ADM and LMG models, which
is realized for dissipation strengths that are several orders of
magnitude larger than the atomic transition frequency κ ( ω0
[50], the above considerations for the driving protocol and
initial state preparation may not be an issue. However, for this
system, authors of future studies need to address whether the
large bandwidth of the cavity would cause higher momentum
modes to participate in the dynamics. If so, this leads to a
breakdown of the two-level approximation of the atoms and
therefore the mapping onto effective spin- 1

2 particles.
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APPENDIX A: EQUATIONS OF MOTION

For a Hamiltonian Ĥ and the type of dissipator in Eq. (2),
the dynamics of the expectation value of an operator Ô is

∂t 〈Ô〉 = i
h̄
〈[Ĥ, Ô]〉 + κ〈(2â†Ôâ − â†âÔ − Ôâ†â)〉. (A1)

Within mean-field theory, we approximate 〈âĴµ〉 ≈ 〈â〉〈Ĵµ〉.
We present the equations of motion for collective and individ-
ual spins, as the former is used in the mean-field treatment,
while the latter is used in DTWA.

1. DM

The equations of motion for the DM are

∂t a = −(iωp + κ )a − i2λ jx, (A2)

∂t jx = −ω0 jy, (A3)

∂t jy = ω0 jx − 2λ(a + a∗) jz, (A4)

∂t jz = 2λ(a + a∗) jy. (A5)

If we decompose jµ in terms of individual spins, we obtain

∂t a = −(iωp + κ )a − iλ
1√
N

∑

i

sx
i , (A6)

∂t sx
i = −ω0sy

i , (A7)

∂t s
y
i = ω0sx

i − 2λ
1√
N

(a + a∗)sz
i , (A8)

∂t sz
i = 2λ

1√
N

(a + a∗)sy
i . (A9)

For beyond mean-field approaches, a fluctuation or stochastic
term associated with the dissipation must be included in the

equations of motion [60,75]. In our implementation of the
equations of motion governing the trajectories in the DTWA,
we separate the real and imaginary components of the photon
field a = aR + iaI, which yields

daR = (−κaR + ωpaI )dt +
√

κ

2
dW1, (A10)

daI =



−ωpaR − κaI − λ√
N

∑

j

sx
j



dt +
√

κ

2
dW2,

(A11)

∂t sx
i = −ω0sy

i , (A12)

∂t s
y
i = ω0sx

i − 4λ
1√
N

aRsz
i , (A13)

∂t sz
i = 4λ

1√
N

aRsy
i . (A14)

The two independent Wiener processes W1 and W2 account
for the stochastic noise, and they satisfy 〈dWi〉 = 0 and
〈dWidWj〉 = δi, j dt .

2. ADM

Next, for the ADM in the thermodynamic limit, the equa-
tions of motion are [57,58]

∂t jx = −ω0 jy, (A15)

∂t jy = ω0 jx + 8λ2ωp(
κ2 + ω2

p

) jx jz + 16λ2κωpω0
(
κ2 + ω2

p

)2 jy jz, (A16)

∂t jz = − 8λ2ωp(
κ2 + ω2

p

) jx jy − 16λ2κωpω0
(
κ2 + ω2

p

)2 ( jy)2. (A17)

FIG. 9. Exemplary dynamics for different dissipation strengths κ with fixed driving parameters denoted by circles and diamonds in
Figs. 2(d)–2(j). The left panels depict the dynamics of jx , and the right panels show the corresponding power spectrum ln P. The y axis
range of each plot is [−0.5, 0.5] for jx and [−22, 0] for ln P. The horizontal line in the power spectrum plots denote the threshold used for
identifying the presence of a time quasicrystal (TQC), which is ln P = −8. The remaining parameters are the same as in Fig. 2.
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FIG. 10. Dynamical phase diagrams for different dissipation
strengths. Along the vertical axis, we vary the the coupling strength
and fix the frequency to ωp = ω0.

The corresponding equations for the individual spins are

∂t sx
j = −

{

ω0 −
[

2λ2ω0
(
ω2

p − κ2
)

N
(
κ2 + ω2

p

)
]}

sy
j, (A18)

∂t s
y
j = ω0sx

j + 4λ2ωp

N
(
κ2 + ω2

p

) sz
j

N∑

i=1

sx
i

+ 8λ2κωpω0

N
(
κ2 + ω2

p

)2 sz
j

N∑

i=1

sy
i , (A19)

∂t sz
j = − 4λ2ωp

N
(
κ2 + ω2

p

) sy
j

N∑

i=1

sx
i

− 8λ2κωpω0

N
(
κ2 + ω2

p

)2 sy
j

N∑

i=1

sy
i . (A20)

3. LMG model

Finally, for the LMG model, we have [44,45]

∂t jx = −ω0 jy, (A21)

∂t jy = ω0 jx + 8λ2ωp(
κ2 + ω2

p

) jx jz, (A22)

∂t jz = − 8λ2ωp(
κ2 + ω2

p

) jx jy. (A23)

For the individual spins, we have

∂t sx
j = −ω0sy

j, (A24)

∂t s
y
j = ω0sx

j + 4λ2ωp

N
(
κ2 + ω2

p

) sz
j

N∑

i=1

sx
i , (A25)

∂t sz
j = − 4λ2ωp

N
(
κ2 + ω2

p

) sy
j

N∑

i=1

sx
i . (A26)

FIG. 11. Like Fig. 10 but for varying photon frequency along the
vertical axis and fixed coupling strength λ0 = 1.1λcr .

APPENDIX B: EXEMPLARY DYNAMICS FOR DIFFERENT
DISSIPATION STRENGTHS

We display in Fig. 9 the exemplary dynamics for different
values of dissipation strength as indicated by the labels along
the vertical axis. The left panels depict the mean-field results
for the time evolution of jx for driving parameters as indicated
in the figure. For the specific choice of driving parameters
in Fig. 9(a), the optimal dissipation strength, identified by
a response that is mostly dominated by a clean period dou-
bling, appears to be in the intermediate range κ ∼ ω0. As we
further increase the dissipation strength, time-quasicrystalline
dynamics permeate during the early times, which is signified
by the appearance of extra peaks in the power spectrum.
The lifetimes of the TQCs increase with the dissipation rate,
as seen in Fig. 9 for κ/ω0 ∈ [10, 21]. The system is in a
thermal phase for zero- and strong-dissipation limits κ/ω0 =
{0, 102, 103,∞}.

In Fig. 9(b), we show the dynamics for a set of driving
parameters along the instability line defined by Eq. (10).
Here, we find period-doubling response in the nondissipative
regimes and a light-induced NP for an intermediate dissipa-
tion strength κ = ω0.

FIG. 12. Dynamical phase diagrams according to the (a) and
(b) Dicke model (DM) and (c) and (d) atom-only Dicke model
(ADM) for large dissipation strength and photon frequency as in-
dicated. The coupling strength is fixed at λ0 = 1.1λcr .
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FIG. 13. Dynamical phase diagrams for a smooth sinusoidal
drive and varying dissipation strengths. The remaining parameters
are the same as in Fig. 2. The insets in the leftmost panels depict the
initial state, namely, (a) fully polarized along the positive x direction,
(b) one of the symmetry-broken states, and (c) fully polarized along
the negative z direction.

APPENDIX C: DEPENDENCE ON THE LIGHT-MATTER
COUPLING STRENGTH AND PHOTON FREQUENCY

The phase diagrams for varying dissipations strengths and
coupling strengths λ are depicted in Fig. 10. We find similar
results as discussed in the main text. More importantly, we
demonstrate in Fig. 10 that the TCs persist for larger coupling
strengths.

The results for other choices of photon frequency ωp are
shown in Fig. 11. We find that the phase diagrams for the
dissipative scenarios are weakly affected by ωp. Motivated by
the typical values of the photon frequency in Ref. [50], we
present in Fig. 12 the results for photon frequencies ωp that
are comparable with or larger than the dissipation strength κ .
The phase diagrams for both DM and ADM corroborate our
claim that the regions with TCs do not significantly change
with ωp. In fact, the number of thermal phases increases
with ωp.

APPENDIX D: CONTINUOUS SINUSOIDAL DRIVING

We briefly consider a different driving protocol given by a
smooth sinusoidal drive of the light-matter coupling strength:

λ(t ) = λ0[1 + fd sin(ωdt )], (D1)

FIG. 14. Dynamics in the Lipkin-Meshkov-Glick (LMG) model
for an initial symmetry-broken eigenstate. The interaction strengths
are (a) λ0 = 1.1λcr , (b) λ0 = 2.0λcr , and (c) λ0 = 4.0λcr . The driving
parameters are D = 0.3 and ωd = 1.4ω0.

where fd is the modulation or driving strength. This protocol
has been implemented to experimentally observe the Dicke
TC in the cavity-QED platform composed of Bose-Einstein
condensates inside a high-finesse optical cavity pumped in the
transverse direction by an optical standing wave [34].

In Fig. 13, we present the dynamical phase diagrams for
such a continuous driving scheme. In addition to varying the
dissipation strength, we also consider different initial states
as sketched in the insets of Fig. 13. In the dissipative cases
κ/ω0 = {1, 10}, time-crystalline phases appear within the res-
onance lobes, which have similar shape as those found in the
cavity-QED simulator for the DM [34,54]. Contrary to the
binary drive, we do not observe any TCs in the closed-system
limits κ/ω0 = {0, 103,∞}, irrespective of the initial state, for
a sinusoidal drive as depicted in Fig. 13.

APPENDIX E: QUANTUM RESULTS FOR AN INITIAL
SYMMETRY-BROKEN STATE IN THE LMG MODEL

The results obtained using full quantum simulations for
an initial symmetry-broken eigenstate are shown in Fig. 14.
The driving parameters are chosen such that the system is in
a time-crystalline phase in the thermodynamic limit for the
interaction strengths considered in Fig. 14. The beat period
clearly increases with number of spins N , see Fig. 14(b). Fur-
thermore, the dynamics shown in Fig. 7(b) appear to fluctuate
around the dynamics in Fig. 14(b).
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Motivation

This work was motivated by the previous proposal to study incommensurate time crystal
(ITC) in an atom-cavity system during my Bachelor’s project, which was motivated by
the proposal of time crystal by Frank Wilczek. Our goal was to find a simplified model
to study this phenomena, allowing for analytical insights into the mechanism.

Main findings

In this work, we studied the open three-level Dicke model, which describes one of the
most fundamental class of light-matter systems. We assumed dissipation of the light
mode stemming from photon losses. Furthermore, we mapped out the phase diagram
for varying coupling strengths between the ground level and the two excited level. By
applying a periodical drive to the coupling between the ground state and the highest
excited state, while keeping the coupling between the ground state and the first excited
state constant, we found an ITC. Using both numerical and analytical methods, we
mapped out the phase diagram and characterized the ITC. We found the phenomena
emerges due to a sum resonance between the hybrid polaron mode of atomic and light
field and the energy di↵erence between the ground and highest excited state. While we
found the ITC emerging for blue detuned driving compared to the sum resonance, we
found for red detuned driving a light induced and light enhanced superradiant phase
depending on the initial state being in the normal phase or superradiant phase. We
showed that by driving the phase of the pump beam of an atom-cavity system, the
system can be approximated via the parametrically driven dissipative three-level Dicke
model, which we discussed before.

Contribution

JGC, LM and I conceptualized the work. I performed the analytical calculations sup-
ported by JGC and supervised by LM. JGC and I performed the numerical simulations,
supervised by LM. PK, HK and AH provided experimental insights on the system. All
authors contributed to the discussion and interpretation of the results, as well as to
writing the manuscript.

59



PHYSICAL REVIEW A 104, 063705 (2021)

Parametrically driven dissipative three-level Dicke model

Jim Skulte ,1,2 Phatthamon Kongkhambut,1 Hans Keßler ,1 Andreas Hemmerich ,1,2

Ludwig Mathey,1,2 and Jayson G. Cosme 3

1Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
2The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

3National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines

(Received 26 August 2021; accepted 22 November 2021; published 13 December 2021)

We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems.
We determine the phase diagram in the presence of dissipation, which we assume to derive from photon
loss. Utilizing both analytical and numerical methods we characterize the incommensurate time crystalline,
light-induced, and light-enhanced superradiant states in the phase diagram for the parametrically driven system.
As a primary application, we demonstrate that a shaken atom-cavity system is naturally approximated via a
parametrically driven dissipative three-level Dicke model.

DOI: 10.1103/PhysRevA.104.063705

I. INTRODUCTION

The Dicke model is a paradigmatic model capturing the
physics of a fundamental class of light-matter systems [1].
The standard two-level Dicke model describes the interaction
between N two-level systems and a quantized single-mode
light field. The dissipative or open standard Dicke model was
first realized by using an atom-cavity setup allowing for an
approximate description, in which the intracavity light field
is adiabatically eliminated [2]. Later, it was also implemented
in the recoil-resolved regime, which requires independent dy-
namical descriptions of the cavity and the matter field [3].
Meanwhile, extensions of the two-level Dicke models [4–11]
and variations of the transversely pumped atom-cavity sys-
tems [12–19] have been studied.

An important class of quantum optical phenomena de-
rive from three-level systems interacting with light. These
phenomena include electromagnetically induced transparency
(EIT) [20,21] and lasing without inversion (LWI) [22,23], as
well as methods such as stimulated Raman adiabatic passage
(StiRAP) [24,25]. They are based primarily on three-level
systems in a λ or a V configuration. These three-level system
configurations occur naturally in numerous physical systems,
which is the origin of the universality of the phenomena that
derive from them. In the context of the Dicke model, its
generalization to three-level atoms interacting with a multi-
mode photonic field has been proposed in Ref. [26]. A similar
three-level model has been used to demonstrate subradiance
[27–30].

In this work, we study a system of three-level atoms cou-
pled to a photonic mode modeled by a three-level Dicke
mode, in which the three-level system forms a V configura-
tion, as depicted in Fig. 1(a). The three-level system can be
described by using pseudospin operators following the algebra
of the SU(3) group. Our representation maps onto the standard
SU(3) basis, the Gell-Mann matrices [31], spanning the Lie

algebra in the defining representation of the SU(3) group. The
Gell-Mann matrices are commonly used in particle physics
to explain color charges [32,33]. We obtain the equilibrium
phase diagram of the three-level Dicke model in the presence
of dissipation due to photon loss. Moreover, we show that
periodic driving of the light-matter interaction strength may
lead to the emergence of new nonequilibrium phases, such as
an incommensurate time crystal (ITC), light-induced superra-
diance (LISR), and light-enhanced superradiance (LESR).

Here, we present a comprehensive discussion of a para-
metrically driven three-level Dicke model. We discuss its
dynamical phase diagram including the incommensurate crys-
talline phase, predicted by us in Ref. [34] and experimentally
implemented in Ref. [35]. We show that this phase is a char-
acteristic signature of the driven three-level Dicke model. We
give a detailed account of how this model can be approxi-
mately implemented by a light-driven atom-cavity system.

This work is organized as follows: In Sec. II, we introduce
the three-level Dicke model and discuss its phase diagram. We
explore the dynamical phase diagram of the driven three-level
Dicke model in Sec. III. The mapping of a shaken atom cavity
system onto the periodically driven three-level Dicke model is
presented in Sec. IV. In Sec. V, we conclude this paper.

II. THREE-LEVEL DICKE MODEL

We are interested in the properties of the three-level Dicke
model for a system of N three-level atoms interacting with
a quantized light mode, as schematically shown in Fig. 1(a).
Each atom has three energy states |1〉, |2〉, and |3〉. We define
the three-level Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ω12Ĵ12
z + ω13Ĵ13

z

+ 2√
N

(â† + â)
(
λ12Ĵ12

x + λ13Ĵ13
x

)
, (1)
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FIG. 1. (a) Three-level system coupled to a single light mode.
(b) Schematic diagram of the shaken atom-cavity system. The cavity
photon loss rate is κ . This atom-cavity configuration can emulate the
driven dissipative three-level Dicke model.

where ω is the photon frequency, ωnm is the detuning between
states |m〉 and |n〉, and λnm is the light-matter interaction
strength associated with the photon-mediated coupling be-
tween states |n〉 and |m〉. The bosonic operators â and â†

annihilate and create a photon in the quantized light mode,
respectively. There are three classes of pseudospin operators
Ĵ12
µ , Ĵ13

µ , and Ĵ23
ν with µ ∈ {z,±} and ν ∈ {±}, corresponding

to the transitions |1〉 ↔ |2〉, |1〉 ↔ |3〉, and |2〉 ↔ |3〉, respec-
tively. These operators obey the commutation relation of the
SU(3) algebra (see Appendix A). The x and y components
of the pseudospins are defined as Ĵ%

x = (Ĵ%
+ + Ĵ%

−)/2 and Ĵ%
y =

(Ĵ%
+ − Ĵ%

−)/2i, respectively, with % ∈ {12, 13, 23}.
Note that, in principle, there is a light-matter coupling

term proportional to Ĵ23
x in Eq. (1) [26]. However, this term

is neglected here since we are only interested in the case
when ω12 ≈ ω13. This leads to a negligibly small λ23 since
the light-matter coupling strength is proportional to the energy
difference between the relevant states [36,37]. Moreover, we
could also use the Gell-Mann matrices as the representation of
the SU(3) group in our system. To retain a form of the Hamil-
tonian reminiscent of the standard two-level Dicke model,
which is often written using a representation of the SU(2)
group, we instead use the pseudospin operators as described
above. Nevertheless, the Gell-Mann matrices can be obtained
from appropriate superpositions of the pseudospin operators
(see Appendix A).

The Hamiltonian in Eq. (1) is superficially similar to
the two-component Dicke model [9,10,16,17] (see also
Appendix B for a brief discussion). However, we emphasize
that, unlike in the two-component Dicke model, which de-
scribes two types of two-level systems coupled through the
light field, the pseudospin operators introduced in Eq. (1)
obey the SU(3) algebra resulting from the use of three-level
systems. This fundamentally changes the dynamics of the
parametrically driven system out of equilibrium since new

FIG. 2. Long-time average of the mean-field dynamics of the
(a) cavity mode occupation |a|2, (b) | j12

x |2, and (c) | j13
x |2 for ω =

ω12 = ω13 = κ . The black curve denotes the critical line separating
the normal and superradiant phases in the thermodynamic limit.

terms corresponding to additional spin operators are now
present in the equations of motion.

A. Holstein-Primakoff transformation

To obtain analytical predictions of the phase boundaries,
we employ a Holstein-Primakoff (HP) approximation in the
thermodynamic limit, i.e., N → ∞. This leads to the follow-
ing Hamiltonian:

H/h̄ = ωâ†â + ω12â†
12â12 + ω13â†

13â13

+ (â† + â)[λ12(â†
12 + â12) + λ13(â†

13 + â13)]. (2)

We obtain an elliptic equation for the critical light-matter cou-
pling from the stability matrix (see Appendix C for details):

(κ2 + ω2)
4ω

=
(

λ2
12

ω12
+ λ2

13

ω13

)
. (3)

In the standard open Dicke model, λ13 = 0, the critical light-
matter coupling, λcr = [(κ2 + ω2)(ω12/ω)]1/2/2, is recovered
[38]. To illustrate the resulting phases, we consider the case
ω = ω12 = ω13. Then, the critical line in Eq. (5) defines a
circle in the parameter space spanned by λ12 and λ13, as seen
in Fig. 2. For combinations of light-matter coupling strengths
{λ12, λ13} within the area enclosed by Eq. (5), the stable phase
corresponds to a normal phase (NP), while those outside the
area will lead to an instability towards the formation of a
superradiant phase (SP).

063705-2
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B. Phase diagram

Next, we employ a mean-field approximation 〈âĴ%
µ〉 ≈

〈â〉〈Ĵ%
µ〉 starting from Eq. (1) to obtain the dynamics of the

system in a semiclassical approximation (see Appendix D for
details). This approximation becomes exact in the thermody-
namic limit N → ∞ in or near the steady state. Furthermore,
we introduce the rescaled c numbers a ≡ 〈â〉/

√
N and j%µ ≡

〈Ĵ%
µ〉/N . The resulting mean-field equations of motion that

we simulate are shown in Appendix E. We further note that
the SU(3) group inherits two Casimir charges, a quadratic
C1 and a cubic C2. In contrast with this, the group SU(2)
has only one quadratic Casimir charge, namely, the total spin
J2 = (Jx )2 + (Jy)2 + (Jz )2. The expressions for the charges
are shown in Appendix A. We track these quantities when
solving the equations of motion to ensure convergence of
our numerical results. In our simulations, we initialize in
the normal phase j%µ = 0, except for j12

z = j13
z = −1/2. This

amounts to all the atoms initially occupying the lowest energy
state |1〉. We initialize the cavity field as a = 10−2.

An observable of interest is the occupation of the photonic
mode |a|2 because this differentiates the normal (|a|2 → 0
for N → ∞ ) and superradiant (|a|2 > 0) phases. Moreover,
we are interested in the magnitude of the x component of
the collective spin operators corresponding to the transition
|1〉 ↔ |2〉 and |1〉 ↔ |3〉, which are | j12

x | and | j13
x |, respec-

tively. In Fig. 2, we present the long-time average of |a|2, | j12
x |,

and | j13
x |, calculated by numerically solving the equations of

motion. Similar to the standard two-level Dicke model [39],
the photonic mode occupation or the x component of the pseu-
dospin operators can be regarded as order parameters because
they are zero in the NP and are nonzero in the SP. Furthermore,
we demonstrate in Fig. 2 that the onset of superradiance ac-
cording to our mean-field dynamics agrees with the analytical
critical line defined by Eq. (5). In the superradiant phase,
| j12

x | > | j13
x | for λ12 > λ13 and | j12

x | < | j13
x | for λ12 < λ13, as

inferred from Figs. 2(b) and 2(c).

III. PARAMETRICALLY DRIVEN OPEN
THREE-LEVEL DICKE MODEL

We now explore the parametrically driven three-level
Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ωDĴD
z + ωBĴB

z + 2φ(t )(ωB − ωD)ĴDB
x

+ 2λ√
N

(â† + â)
(
ĴD

x − φ(t )ĴB
x

)
. (4)

This particular choice of the Hamiltonian is motivated by
its connection to the shaken atom-cavity system, which we
demonstrate and explore in more detail later. Comparing with
the undriven case in Eq. (1), it can be seen that ω12 = ωD,
ω13 = ωB, Ĵ12

µ = ĴD
µ , Ĵ13

µ = ĴB
µ , λ12 = λ. We define φ(t ) =

f0 sin(ωdrt ), which then means that λ13 = − f0 sin(ωdrt )λ.
This labeling is motivated by the association of the pseu-
dospins with the density wave states in the atom-cavity setup
discussed later in Sec. IV. For now, we simply note that the
photonic mode corresponds to a single cavity mode while
the operators ĴD

µ and ĴB
µ are associated with the density

wave (DW) and bond-density wave (BDW) states in the
shaken atom-cavity system, respectively [34]. A small term

proportional to Ĵ23
x ≡ ĴDB

x is included in Eq. (6) since this will
appear later when we show how the atom-cavity system can
be mapped onto the specific form of the parametrically driven
three-level Dicke model Eq. (6).

A. Holstein-Primakoff transformation

In Sec. II A, we have applied the HP transformation to the
undriven system described by Eq. (3). We now extend this
analysis to include the driving term. Applying the transfor-
mation and identifying d̂ ≡ â12 and b̂ ≡ â13, we obtain a HP
Hamiltonian shown in Eq. (F3) of Appendix F. In particular,
we are interested in d ≡ 〈d̂〉 and b ≡ 〈b̂〉.

We recall that, for a quantum harmonic oscillator, f̂ † =√
ωF /h̄[xF − (i/ωF )pF ] and f̂ =

√
ωF /h̄[xF + (i/ωF )pF ].

Then, we can express the corresponding HP Hamiltonian in
momentum-position representation as

H = ω2

2
x̂2 + p̂2

2
+ ω2

D

2
x̂2

D + p̂2
D

2
+ ω2

B

2
x̂2

B + p̂2
B

2
+ 2λ

√
ωωDx̂x̂D − 2φ(t )λ

√
ωωBx̂x̂B

+ φ(t )(ωB − ωD)
√

ωDωB

(
x̂Dx̂B + p̂D p̂B

ωDωB

)
. (5)

This has the form of a Hamiltonian for three coupled oscilla-
tors: (i) the cavity oscillator, (ii) the DW oscillator, and (iii)
the BDW oscillator with frequencies ω, ωD, and ωB, respec-
tively. Here, the two coupling constants connecting the BDW
oscillator to the cavity and DW oscillators are periodically
switched on and off or parametrically driven. Interestingly,
due to the shaking of the pump, the momenta of the DW
and BDW oscillators are also periodically coupled, as seen
from the last term in Eq. (8). However, we find that this does
not alter the qualitative features of the dynamics, as shown in
Fig. 8 in Appendix E.

We initialize the system in the normal state corresponding
to having d = 0 and b = 0, which amounts to the absence
of bosons in the excited states |2〉 and |3〉, respectively. Note
that a small nonzero occupation of the photonic mode 〈â〉 ≡
a = 10−2 is necessary to push the system out of the normal
phase when it becomes an unstable state [9]. The dynamics is
obtained according to Eq. (F4) for varying driving strength f0
and driving frequency ωdr. A parametric resonance in a linear
system corresponding to a bilinear Hamiltonian, such as the
simplified toy model (F3), manifests itself as an oscillatory
solution with exponentially diverging amplitude. The dotted
curves in Figs. 3(a)–3(d) denote the points in the (ωdr, f0)
space, where (b + b∗) exceeds unity within the first 100 driv-
ing cycles, signaling a diverging solution (see also Fig. 5).
They indicate the regions where the normal phase is unstable
towards a different collective phase.

We identify two resonances responsible for the driving-
induced destabilization of the normal phase: (i) resonance
at the BDW oscillator frequency ωB and (ii) a sum reso-
nance involving ωB and the lower polariton frequency ωLP
of the atomic modes dressed by the cavity mode forming the
lower polariton state [40]. Note that we derive the expres-
sion for ωLP within the HP approach and we describe our
method for obtaining the lower polariton frequency by ex-
ploiting a parametric resonance in Appendix G. The resonance

063705-3
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FIG. 3. Dynamical phase diagram for (a)–(d) λ = 0.98λcr and (e), (f) λ = 1.02λcr . Time-averaged (a), (e) j̃D
x and (b), (f) |̃ jB

x | taken over
100 driving cycles, τ = 100T , for varying modulation parameters. The dominant or peak frequency in the power spectrum of (c), (g) jD

x and
(d), (h) jB

x for ωdr > ωB. The dotted lines in panels (a) and (b) denote the instability boundary according to the oscillator model. In panels (c),
(d), (g), and (h), we are only showing the response frequencies ωDW and ωBDW for parameter sets, which yield |̃ jB

x | > 0.01 and j̃D
x < 0. Note

that we are rescaling the response frequencies in panels (c) and (g) to ωDW/(ωdr − ωB) and it is rescaled in panels (d) and (h) to ωBDW/ωB. The
vertical dashed lines in panels (a)–(d) correspond to the sum frequency ωsum = ωLP + ωB.

frequencies are identified as the driving frequencies with the
lowest modulation strength needed to induce an exponential
instability. For ωdr < ωB, the resonance frequency is close to

ωB. For ωdr > ωB, the sum resonance at ωsum = ωB + ωLP is
the main mechanism, as highlighted by the vertical dashed
line in Figs. 3(a)–3(d) (see also Fig. 5).

(a)

� = 0.98�cr

(d)

� = 1.02�cr

(b) (e)

(c) (f)

FIG. 4. Comparison between unmodulated and resonantly modulated dynamics for light-matter coupling strengths close to the NP-SR
phase of the unmodulated system, (a)–(c) λ = 0.98λcr and (d)–(f) λ = 1.02λcr . The relevant observables are the (a), (d) cavity mode occupation
|a|2, and the order parameters (b), (e) jD

x and (c), (f) jB
x . The modulation frequency is fixed at ωdr = 1.05ωB.
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FIG. 5. Time-averaged cavity mode occupation |a|2 taken over
100 driving cycles, τ = 100T , according to (a), (b) the three-level
Dicke model and (c), (d) the full atom-cavity model. For the three-
level model, the light-matter coupling strengths are (a) λ = 0.98λcr

and (b) λ = 1.02λcr . The broken lines denote the instability boundary
from the oscillator model. The vertical dashed line in panel (a) cor-
responds to the sum frequency ωsum = ωLP + ωB involving the lower
polariton frequency ωLP. ωLP has the value ωLP/2π ≈ 1.06 kHz for
this example. For the full atom-cavity model, the pump strengths
are (c) εp = 0.96εcr and (d) εp = 1.04εcr , which corresponds to λ =
0.98λcr and λ = 1.02λcr , respectively.

B. Dynamical phase diagrams

To further understand the resonant collective phases, we
obtain the dynamics of the system. Within the mean-field
approximation, we simulate the semiclassical equations of
motion shown in Appendix E. Similar to the HP theory in
the previous section, we initialize the system in the normal
phase with small nonzero occupation of the photonic mode
a = 10−2, We further choose j%µ = 0, except for jD

z = jB
z =

−1/2. In addition to the photonic mode occupation |a|2, we
are also interested in the x component of the pseudospins jD

x
and jB

x . Time is in units of the modulation period T = 2π/ωdr.
The parameters for the simulation are shown in Appendix H.

In Fig. 4, we present exemplary dynamics for reso-
nant modulation, specifically for ωdr = 1.05ωB. We choose
light-matter coupling strengths close to the phase boundary
between the normal and superradiant phases, specifically λ =
0.98λcr and λ = 1.02λcr, respectively. In the absence of driv-
ing, f0 = 0, we reproduce the prediction of a normal phase NP
and superradiant phase SP from the standard two-level Dicke

model. Periodic driving closed to but blue-detuned from ωB
leads to similar long-time behavior for λ < λcr and λ > λcr.
That is, the spin components related to the order parameters in
the atom-cavity system, jD

x and jB
x , periodically changes their

sign concomitant to pulses of light being emitted. The slow
subharmonic oscillations in jD

x , as exemplified in Fig. 4(b),
reflects the temporal periodicity of the entire light-matter sys-
tem. Note that jB

x rapidly switches sign, as shown in Figs. 4(c)
and 4(f). We quantify the dynamical regimes in the system
using the response frequencies ωDW and ωBDW, which we
define as the frequency at which jD

x and jB
x has a maximum in

the power spectrum. Considering blue-detuned driving with
respect to the BDW oscillator frequency ωdr > ωB, we find
that the DBDW phase is characterized by fast oscillations
of jB

x at ωBDW = ωB and slow oscillations of jD
x at ωDW =

ωdr − ωB. These observations are valid for both λ < λcr and
λ > λcr, as demonstrated in Figs. 3(c), 3(d), 3(g), and 3(h),
where the relations ωDW/(ωdr − ωB) = 1 and ωBDW/ωB = 1
are satisfied over a wide range modulation parameters. In
general, the system’s response frequency ωDW is subharmonic
and incommensurate with respect to the driving frequency
ωdr, underpinning the classification of the DBDW phase as
an ITC. Thus, we show that the emergence of the ITC phase is
one of the signatures of the parametrically driven three-level
Dicke model. In contrast, the system has a harmonic response,
meaning that |a|2 and jD

x have the same response frequency
ωDW = 2ωdr [34], for combinations of driving parameters out-
side the dark areas in Figs. 3(c), 3(d), 3(g), and 3(h), including
red-detuned driving ωdr < ωB.

In the ITC phase for ωdr > ωB, the oscillations of jD
x and

jB
x around zero translate to vanishing time-averaged values,

j̃%x = 1
τ

∫ τ

0
j%x dt . (6)

This property is visible in the light area in Fig. 3(e). Note,
however, that even though j̃D

x = 0, the time-averaged cavity
mode occupation |̃a|2 does not necessarily vanish, especially
when jD

x has nonzero oscillation amplitude, as shown in
Figs. 3(a) and 5(a). The normal phase has jD

x = 0 for all
times and as such, |̃ jD

x | also vanishes, albeit trivially, similar to
the ITC phase. Therefore, to distinguish between the normal
phase and the ITC phase, we calculate |̃ jB

x |, a quantity that
vanishes for the normal phase and is nonzero for the ITC
phase. In Figs. 3(b) and 3(f), it can be seen that the BDW states
are resonantly excited not only for the ITC phase in ωdr > ωB
but also for red-detuned driving ωdr < ωB. We emphasize that
the dynamical response for ωdr < ωB remains harmonic, mak-
ing this phase distinct from the ITC, normal, and superradiant
phases.

We now focus on red-detuned driving ωdr < ωB to illus-
trate the effects of resonantly exciting the BDW states in this
case. For λ < λcr, the normal phase, expected to be dominant
in the absence of driving, is suppressed, which then gives rise
to a superradiant phase enabled by the excitation of the BDW
states. We call this resonant phase for λ < λcr and ωdr < ωB
the light-induced superradiant (LISR) phase. In this phase,
the long-time average of the cavity mode occupation |a|2 and
jD
x are both nonzero, similar to the superradiant phase, as seen

from the resonance lobe in Figs. 3(a) and 5(a) for ωdr < ωB.
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However, the occupation of BDW states, demonstrated in
Fig. 3(b), distinguishes the LISR phase from the usual SR
phase in the undriven case. An analogous effect for λ > λcr
is the enhancement of the superradiant phase, the stationary
phase in the absence of driving. This light-enhanced superra-
diant (LESR) phase is identified by an increase in |a|2 and jD

x ,
accompanied by large amplitude oscillations of jB

x , as shown
in Figs. 5(b), 3(e), and 3(f). In addition to the ITC phase,
the presence of LISR and LESR phases, depending on λ, is
another signature of the driven dissipative three-level Dicke
model.

IV. EMULATION USING A SHAKEN
ATOM-CAVITY SYSTEM

We now show that the parametrically driven open three-
level Dicke model can be emulated by a shaken atom-cavity
system. To this end, we first describe the many-body Hamil-
tonian of the shaken atom-cavity. Then, we present the
approximation needed to obtain Eq. (6) from the atom-cavity
Hamiltonian.

A. Shaken atom-cavity Hamiltonian

We consider a minimal model for describing the dynamics
along the pump and cavity directions of an atom-cavity system
schematically depicted in Fig. 1(b). The corresponding many-
body Hamiltonian is given by [34]

Ĥ/h̄ = −δCâ†â +
∫

dydz+̂†(y, z)
[

− h̄
2m

∇2

− ωrecεp cos2 [ky + φ(t )] + U0â†â cos2 (kz)

−
√

ωrec|U0|εp cos [ky+φ(t )] cos(kz)(a†+a)
]
+̂(y, z),

(7)

where â (â†) annihilates (creates) a photon in the single-mode
cavity and +̂(y, z) is the bosonic field operator for the atoms
with mass m. The pump-cavity detuning is δC. The frequency
shift per atom is taken to be redshifted, U0 < 0. The pump
intensity εp is measured in units of the recoil energy Erec =
h̄2k2/2m, where the wave vector is k = 2π/λp. Note that, in
Eq. (11), we neglect the effects of short-range collisional inter-
action. The pump lattice is periodically shaken by introducing
a time-dependent phase in the pump mode

φ(t ) = f0 sin (ωdrt ), (8)

where f0 is the unitless modulation strength and ωdr is the
modulation frequency. The characteristic timescale is thus set
by the driving period T = 2π/ωdr.

The dynamics of the atom-cavity system follows from the
Heisenberg-Langevin equations [40,41],

∂

∂t
+̂ = i

h̄
[Ĥ, +̂], (9)

∂

∂t
â = i

h̄
[Ĥ, â] − κ â + ξ , (10)

where κ is the cavity dissipation rate and the associated
fluctuations are captured by the noise term ξ satisfying

〈ξ ∗(t )ξ (t ′)〉 = κδ(t − t ′). In the mean-field limit of large par-
ticle number N , quantum fluctuations are neglected and the
bosonic operators can be approximated as c numbers. The dy-
namics can then be obtained by numerically solving the
resulting coupled differential equations corresponding to the
equations of motion of the system. This approach and its
extension beyond a mean-field approximation have been suc-
cessfully used to predict and observe various dynamical
phases in the transversely pumped atom-cavity system from
a driving-induced renormalization of the phase boundary to
time crystals [34,42–47].

B. Low-momentum approximation

The atom-cavity system can be mapped onto the Dicke
model using a low-momentum approximation. To this end,
we assume that the majority of the atoms only occupy the
five-lowest momentum modes, namely the zero-momentum
mode, |ky, kz〉 = |0, 0〉, and the states associated with the self-
organized checkerboard phase, | ± k,±k〉. These momentum
modes are coupled by the scattering of photons between the
pump and cavity fields. This low-momentum approximation is
valid close to the phase boundary between the homogeneous
BEC phase and the self-organized DW phase.

Resonant shaking has been shown to lead to the emergence
of an incommensurate time crystal, where atoms localize at
positions between the antinodes of the pump lattice [34,35].
That is, in addition to the spatial mode cos(ky) cos(kz) in
the DW phase, the atoms are driven into additional states,
namely the BDW states, as the atomic distribution acquires
an overlap with the spatial mode sin(ky) cos(kz). Note that
this mode is made available by the periodic shaking of the
pump lattice since it explicitly breaks the spatial symmetry
along the pump axis. Owing to how the system periodically
switches between superpositions of DW and BDW states, we
call this dynamical phase as the dynamical BDW (DBDW)
phase. Since the DBDW phase has been previously identified
as an incommensurate time crystal (ITC), we will use the term
DBDW and ITC phase interchangeably.

The atomic field operator is expanded to include the rele-
vant spatial modes

+̂(y, z) = ĉ1 + 2ĉ2 cos (ky) cos (kz) + 2ĉ3 sin (ky) cos (kz),
(11)

where the ci are bosonic annihilation and creation operator.
We use this expansion in the many-body Hamiltonian (11).
Evaluating the integrals within one unit cell and for weak driv-
ing f0 . 1, we obtain a Hamiltonian in a reduced subspace,

H/h̄ = −δCâ†â + 2ωrec(ĉ†
2ĉ2 + ĉ†

3ĉ3) + U0

2
â†â[ĉ†

1ĉ1

+ 3
2

(ĉ†
2ĉ2 + ĉ†

3ĉ3)] −
ωrecεp

4
[2(ĉ†

1ĉ1 + ĉ†
2ĉ2 + ĉ†

3ĉ3)

+ (ĉ†
2ĉ2 − ĉ†

3ĉ3) − 2φ(t )(ĉ†
2ĉ3 + ĉ†

3ĉ2)] −
√

ωrec|U0|εp

2

× (â† + â)[(ĉ†
1ĉ2 + ĉ†

2ĉ1) − φ(t )(ĉ†
1ĉ3 + ĉ†

3ĉ1)].
(12)
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C. Schwinger boson representation

We transform the bosonic operators in Eq. (12) into col-
lective pseudospin operators through the Schwinger boson
representation. The additional spatial mode sin(ky) cos(kz) is
described by the operator c3, so the atomic motion is repre-
sented as a three-level system. We introduce the pseudospin
operators obeying SU(3) algebra via

N = ĉ†
1ĉ1 + ĉ†

2ĉ2 + ĉ†
3ĉ3,

ĴD
+ = ĉ†

2ĉ1, ĴD
− = ĉ†

1ĉ2, ĴD
z = 1

2 (ĉ†
2ĉ2 − ĉ†

3ĉ3 − ĉ†
1ĉ1),

ĴB
+ = ĉ†

3ĉ1, ĴB
− = ĉ†

1ĉ3, ĴB
z = 1

2 (ĉ†
3ĉ3 − ĉ†

2ĉ2 − ĉ†
1ĉ1),

ĴDB
+ = ĉ†

2ĉ3, ĴDB
− = ĉ†

3ĉ2. (13)

This representation suggests that the operators ĴD
µ are associ-

ated with the DW state while ĴB
µ are related to the BDW state.

Applying the commutation relations for the bosonic operators
[ĉm, ĉ†

n] = δmn, we recover the same commutation relations for
the pseudospin operators presented in Eq. (A1). That is, we
identify ĴD

µ ≡ Ĵ12
µ , ĴB

µ ≡ Ĵ13
µ , and ĴDB

µ ≡ Ĵ23
µ .

Substituting the Schwinger boson representation in
Eq. (14) into Eq. (12) yields the driven dissipative three-level
Dicke model (6). Within the shaken-atom cavity platform,
the effective cavity field frequency is ω = (3U0N )/4 −
δC = U0N/4 − δeff , the effective pump-cavity detuning is
δeff , and the light-matter coupling strength is λ/

√
N =

−
√

ωrecεp|U0|/2. The pump intensity εp shifts the frequen-
cies of the pair of two-level transitions, ωD = 2ωrec(1 −
εp/8) and ωB = 2ωrec(1 + εp/8). We can infer from Eq. (6)
that weak periodic shaking effectively leads to a paramet-
ric driving of the light-matter coupling between the cavity
and the spin associated with the BDW state. With these
correspondences, we find that indeed the shaken atom-
cavity system can be approximated by the driven three-level
Dicke model presented in Eq. (6) and discussed in Sec. III.
Moreover, we can identify the order parameters of the
self-organized density wave states, namely the DW order pa-
rameter .DW = 〈cos(ky) cos(kz)〉 = jD

x and the BDW order
parameter .BDW = 〈sin(ky) cos(kz)〉 = jB

x .

D. Comparison with the full atom-cavity model

We compare the dynamics of the cavity mode occupation
and the DW order parameter for the full atom-cavity model
(11) and the effective three-level model according to Eq. (E2).
The parameters for the simulation are shown in Appendix H.
For results based on the full atom-cavity model Eq. (11), we
numerically determine εcr from the onset of intracavity photon
number [34]. Moreover, the BDW oscillator frequency ωB for
the full atom-cavity model is extracted from the oscillation
frequency of the BDW order parameter .BDW [34]. We show
in Fig. 5 the time-averaged occupation of the cavity mode |a|2,

|̃a|2 = 1
τ

∫ τ

0
|a|2dt, (14)

for τ = 100T , as a function of modulation strength f0 and
modulation frequency ωdr. For λ < λcr, we obtain a qualita-
tively similar dynamical phase diagrams for the three-level
Dicke model and the full atom-cavity model, as depicted in

(a)

(b)

FIG. 6. Comparison of the dynamics between the full atom-
cavity model [in purple (black)], three-level [in green (light gray)],
and coupled two-level Dicke model [in blue (dark gray)] for the
(a) cavity mode occupation and (b) DW order parameter. For the
Dicke models, the light-matter coupling strength is λ = 1.02λcr . This
corresponds to a pump strength of εp/εcr = 1.04 in the full-atom
cavity model. The driving parameters are fixed to f0 = 0.03 and
ωdr = 1.05ωB.

Figs. 5(a) and 5(c). Therefore, in this regime, the approx-
imation of Eq. (11) via Eq. (6) is applicable. That is, the
parametrically driven open three-level Dicke Hamiltonian is
realized approximately by the shaken atom-cavity system.
Moreover, the instability region from the oscillator model in
the thermodynamic limit Eq. (F3) matches the onset of the
cavity mode occupation in Fig. 5(a).

For λ > λcr, the dark areas in Figs. 5(b) and 5(d) signify
that the system has entered the DW or SR phase indicated
by a nonvanishing cavity mode occupation, as expected for
weak and off-resonant driving. However, the DW phase is
suppressed for driving frequencies blue-detuned from ωB as
indicated by the relative decrease in the cavity photon num-
ber in the light areas in Figs. 5(b) and 5(d). Crucially, the
correspondence between Eqs. (11) and (6) breaks down for
driving frequencies far-detuned from ωB as inferred from the
parameter region ωdr > ωB in Figs. 5(b) and 5(d). This can
be attributed to the occupation of higher momentum modes,
specifically | ± 2k, 0〉, in the full atom-cavity system [34],
which is not captured in the low-momentum expansion (11)
utilized in the mapping. Nevertheless, we still find good
agreement on the qualitative features for driving frequencies
near ωB.

FIG. 7. Dynamics of the density wave order parameter for ωdr =
0.8ωB and f0 = 0.05. The remaining parameters are the same as in
Fig. 6.
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We also consider the dynamics according to a coupled
two-level Dicke model for the same set of parameters (see
Appendix B for details). In Fig. 6, we present the dynamics for
λ > λcr with a driving frequency blue-detuned with respect to
ωB. The results of the coupled two-level systems clearly do
not capture the dynamics of the full atom-cavity system. On
the other hand, the three-level Dicke model and the full atom-
cavity model predict the same dynamical response, which is a
subharmonic motion exhibited as a pulsating photon number
[see Fig. 6(a)] and a periodic switching of the sign of the
DW order parameter [see Fig. 6(b)]. This further supports our
claim that the mapping between the three-level Dicke model
and the full-atom cavity system is applicable to λ > λcr for as
long as the driving frequency is close to ωB. Note, however,
that the coupled two-level systems model and the three-level
model agree with each other for off-resonant driving when
jB
x ≈ 0, as demonstrated in Appendix B.

V. CONCLUSIONS

In this work, we have investigated a three-level Dicke
model, and derived its equilibrium phase diagram, which fea-
tures a normal phase and a superradiant phase. We advanced
the model to a driven dissipative system by including a dis-
sipation mechanism via photon loss and a periodic driving
process. For this system, we developed the dynamical phase
diagram, which shows the phases for varying driving parame-
ters, utilizing analytical and numerical methods. As a central
result we characterized the regime of an incommensurate time
crystalline state in the phase diagram. Furthermore, we ob-
tained light-enhanced and light-induced superradiant states, in
which the equilibrium superradiant state is dynamically stabi-
lized. As a physical system that can be naturally approximated

via the three-level Dicke model, we identified a periodically
shaken atom-cavity system. While the nonshaken atom-cavity
system can be approximated via the standard two-level Dicke
model, the shaking induces the atoms to populate additional
states that are modeled via a third state in the three-level
Dicke model. We note that the LISR and LESR phases display
similarities with light-induced [48] and light-enhanced super-
conductivity [49], for which mechanisms have been proposed
that involve the excitation of auxiliary modes, such as phonons
[50–52] and Higgs bosons [53], by means of optical pumping.
Photoexcitation of the Higgs mode in cuprate superconductors
has also been predicted to lead to an incommensurate time
crystal [54]. In this work, the BDW state plays the role of
such an auxiliary mode, as its excitation [or equivalently, the
|1〉 → |3〉 in Fig. 1(a)] can be used to dynamically control
the system to induce or enhance superradiance, or to enter a
genuine dynamical order, namely, the incommensurate time
crystalline phase. We therefore expand the dynamical control
of phases in atom-cavity systems to include light-induced and
light-enhanced superradiance, in addition to the previously
observed light-enhanced BEC or normal phase [42,43].

Note added. Recently, an example of the driven three-level
Dicke model was presented in Ref. [55].
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APPENDIX A: THE SU(3) ALGEBRA, GELL-MANN MATRICES, AND CASIMIR CHARGES

[Ĵ12
z , Ĵ12

± ] = ±Ĵ12
± , [Ĵ12

− , Ĵ12
+ ] = 2Ĵ12

z + Ĵ13
z + N

2
,

[Ĵ13
z , Ĵ13

± ] = ±Ĵ13
± , [Ĵ13

− , Ĵ13
+ ] = 2Ĵ13

z + Ĵ12
z + N

2
,

[Ĵ12
± , Ĵ13

∓ ] = ±Ĵ23
± , [Ĵ23

+ , Ĵ23
− ] = Ĵ12

z − Ĵ13
z ,

[Ĵ12
z , Ĵ23

± ] = ±Ĵ23
± , [Ĵ13

z , Ĵ23
± ] = ∓Ĵ23

± ,

[Ĵ12
± , Ĵ23

∓ ] = ∓Ĵ13
± , [Ĵ13

± , Ĵ23
± ] = ∓Ĵ12

± . (A1)

The remaining commutators not listed above vanish. Our choice of pseudospin operators for the SU(3) algebra can be mapped
onto the Gell-Mann matrices [31] via

F1 ≡ J12
x = 1

2
λ1,

F2 ≡ J12
y = 1

2
λ2,

F3 ≡ J12
z + 1

2
J13

z + N/4 = 1
2
λ3,

F4 ≡ J23
x = 1

2
λ4,

F5 ≡ J23
y = 1

2
λ5,
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F6 ≡ J13
x = 1

2
λ6,

F7 ≡ −J13
y = 1

2
λ7,

F8 ≡ −
√

3
2

(
J13

z + N/6
)

= 1
2
λ8. (A2)

Casimir charges

The group SU(3) enjoys two Casimirs, which can be written in matrix form using the Gell-Mann basis as

C1 =
8∑

i=1

FiFi, (A3)

C2 =
8∑

j,k,l=1

d jkl FjFkFl , (A4)

with

d jkl = 1
4 Tr({λ j, λk}λl ). (A5)

In our chosen basis, they take the form of

〈C1〉/N = 1
12

+
(

j12
x

)2 +
(

j12
y

)2 +
(

j12
z

)2 +
(

j13
x

)2 +
(

j13
y

)2 +
(

j13
z

)2 +
(

j23
x

)2 +
(

j23
y

)2 + 1
2

(
j12
z + j13

z + 2 j12
z j13

z

)
, (A6)

〈C2〉/N3/2 = 1
72

{
− 18

(
j12
y

)2 + 216 j23
y

(
j12
y j13

x − j12
x j13

y

)
+ 216 j23

x

(
j12
x j13

x + j12
y j13

y

)

−
(
1 + 6 j12

z

)[
1 + 3 j12

z + 18
(

j13
x

)2 + 18
(

j13
y

)2] − 9 j13
z + 36

(
j23
x

)2(
1 + 3 j12

z + 3 j13
z

)

+ 36
(

j23
y

)2(
1 + 3 j12

z + 3 j13
z

)

− 18
{(

j12
x

)2(
1 + 6 j13

z

)
+ j13

z

[
6
(

j12
y

)2 + j13
z + 2 j12

z

(
2 + 3 j12

z + 3 j13
z

)]}}
. (A7)

APPENDIX B: TWO-COMPONENT DICKE MODEL

A modified version of the two-component Dicke model [9,10], which can be realized in a spinor BEC coupled to an optical
cavity [16,17], is given by

H/h̄ = ωâ†â + ω1Ĵ1
z + ω2Ĵ2

z + 2√
N

(â† + â)
(
λ1Ĵ1

x + λ2Ĵ2
x

)
. (B1)

Note that this has the same form as the three-level Hamiltonian in Eq. (1) except that here, the pseudospin operators fulfill to the
SU(2) group algebra with the commutation relations,

[
Ĵ%

z , Ĵ%
±
]

= ±Ĵ%
±, [Ĵ%

−, Ĵ%
+] = 2Ĵ%

z , (B2)

where % ∈ {1, 2}. Applying the same mean-field approximation as in Sec. II B, we obtain the following equations of motion
consistent with those in Refs. [9,10,16,17],

da
dt

= −(iω + κ )a − i2
2∑

%=1

λ% j%x ,

d j%x
dt

= −ω% j%y ,

d j%y
dt

= ω% j%x − 2λ%(a + a∗) j%z ,

d j%z
dt

= 2λ%(a + a∗) j%y . (B3)

To obtain the relevant curves in Fig. 6, we propagate the above set of coupled equations with ω1 = ωD, ω2 = ωB, λ1 = λ, and
λ2 = −λ f0 sin(ωdrt ). The exact values of these parameters are the same as those described in the main text. We present in Fig. 7
a comparison of the dynamics according to the two-component Dicke model and the three-level Dicke model for off-resonant
driving.
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APPENDIX C: CRITICAL LIGHT-MATTER COUPLING

Using the Hamiltonian in Eq. (3) and the Heisenberg equation in Eq. (D1), we obtain the equations of motion as

da
dt

= −(iω − κ )a − iλ12(a†
12 + a12) − iλ13(a†

13 + a13),

da12

dt
= −iω12a12 − iλ12(a∗ + a), (C1)

da13

dt
= −iω13a13 − iλ13(a∗ + a).

We can then construct the matrix M as ∂t 1v = M1v to obtain

M =





κ − iω 0 −iλ12 −iλ12 −iλ13 −iλ13
0 κ + iω iλ12 iλ12 iλ13 iλ13

−iλ12 −iλ12 −iω12 0 0 0
iλ12 iλ12 0 iω12 0 0

−iλ13 −iλ13 0 0 −iω13 0
iλ13 iλ13 0 0 0 iω13




. (C2)

A phase transition occurs if M inherits a zero energy eigenstate [39]. This means, to find the critical light-matter coupling λ, we
need to calculate det(M ) = 0, giving us

(κ2 + ω2)
4ω

=
(

λ2
12

ω12
+ λ2

13

ω13

)
. (C3)

APPENDIX D: HEISENBERG EQUATIONS OF MOTION

The dynamics of an observable Ô in the dissipative system considered here is governed by the Heisenberg equation

d〈Ô〉
dt

=
〈

i
h̄

[Ĥ, Ô] + κ (2â†Ôâ − {â†â, Ô})
〉
. (D1)

Using the commutation relations Eq. (A1), we get the following equations for the expectation values of relevant operators in the
open three-level Dicke model (1):

d〈a〉
dt

= −(iω + κ )〈a〉 − i
2√
N

(
λ12

〈
Ĵ12

x

〉
+ λ13

〈
Ĵ13

x

〉)
,

d
〈
Ĵ12

x

〉

dt
= −ω12

〈
Ĵ12

y

〉
+ λ13√

N

〈
(a† + a)Ĵy

23

〉
,

d
〈
Ĵ12

y

〉

dt
= ω12

〈
Ĵ12

x

〉
− λ12√

N

[
2
〈
(a† + a)Ĵ12

z

〉
+

〈
(a† + a)Ĵ13

z

〉
+

〈
(a† + a)N/2

〉]
− λ13√

N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ12

z

〉

dt
= 2λ12√

N

〈
(a + a†)Ĵ12

y

〉
,

d
〈
Ĵ13

x

〉

dt
= −ω13

〈
Ĵ13

y

〉
− λ12√

N

〈
(a† + a)Ĵ23

y

〉
,

d
〈
Ĵ13

y

〉

dt
= ω13

〈
Ĵ13

x

〉
− λ13√

N

[
2
〈
(a† + a)Ĵ13

z

〉
+

〈
(a† + a)Ĵ12

z

〉
+

〈
(a† + a)N/2

〉]
− λ12√

N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ13

z

〉

dt
= 2λ13√

N

〈
(a + a†)Ĵ13

y

〉
,

d
〈
Ĵ23

x

〉

dt
= (ω13 − ω12)

〈
Ĵ23

y

〉
+ λ12√

N

〈
(a† + a)Ĵ13

y

〉
+ λ13√

N

〈
(a† + a)Ĵ12

y

〉
,

d
〈
Ĵ23

y

〉

dt
= (ω12 − ω13)

〈
Ĵ23

y

〉
+ λ12√

N

〈
(a† + a)Ĵ13

x

〉
− λ13√

N

〈
(a† + a)Ĵ12

x

〉
. (D2)
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On the other hand, the equations of motion for the parametrically driven open three-level Dicke model are

d〈â〉
dt

= −(iω + κ )〈â〉 − i
2λ√

N

〈
ĴD

x

〉
+ iφ(t )

2λ√
N

〈
ĴB

x

〉
,

d〈ĴD
x 〉

dt
= −ωD

〈
ĴD

y

〉
− φ(t )(ωB − ωD)

〈
ĴB

y

〉
− φ(t )

λ√
N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴD

y

〉

dt
= ωD

〈
ĴD

x

〉
− λ√

N

[
2
〈
(a† + a)ĴD

z

〉
+

〈
(a† + a)ĴB

z

〉
+ 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴB

x

〉
+ φ(t )

λ√
N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴD
z 〉

dt
= 2λ√

N

〈(
a + a†)ĴD

y

〉
+ 2(ωB − ωD)φ(t )

〈
ĴDB

y

〉
,

d〈ĴB
x 〉

dt
= −ωB

〈
ĴB

y

〉
− φ(t )(ωB − ωD)

〈
ĴD

y

〉
− λ√

N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴB

y

〉

dt
= ωB

〈
ĴB

x

〉
+ φ(t )

λ√
N

[
2
〈
(a† + a)ĴB

z

〉
+

〈
(a† + a)ĴD

z

〉
+ 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴD

x

〉
− λ√

N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴB
z 〉

dt
= −φ(t )(ωB − ωD)

〈(
a + a†)ĴB

y

〉
− 4λ2

U0N
φ(t )

〈
ĴDB

y

〉
,

d〈ĴDB
x 〉

dt
= (ωB − ωD)

〈
ĴDB

y

〉
+ λ√

N

〈
(a† + a)ĴB

y

〉
− φ(t )

λ√
N

〈
(a† + a)ĴD

y

〉
,

d
〈
ĴDB

y

〉

dt
= (ωD − ωB)

〈
ĴDB

x

〉
+ λ√

N

〈
(a† + a)ĴB

x

〉
+ φ(t )

λ√
N

〈
(a† + a)ĴD

x

〉
+ 2(ωB − ωD)φ(t )

〈
ĴB

z − ĴD
z

〉
. (D3)

APPENDIX E: MEAN-FIELD EQUATIONS OF MOTION

The mean-field equations for the dissipative three-level Dicke model are given by

da
dt

= −(iω + κ )a − i2λ12 j12
x − i2λ13 j13

x ,

d j12
x

dt
= −ω12 j12

y + λ13(a + a∗) jy
23,

d j12
y

dt
= ω12 j12

x − λ12(a + a∗)
(
2 j12

z + j13
z + 1/2

)
− λ13(a + a∗) j23

x ,

d j12
z

dt
= 2λ12(a + a∗) j12

y ,

d j13
x

dt
= −ω13 j13

y − λ12(a + a∗) j23
y ,

d j13
y

dt
= ω13 j13

x − λ13(a + a∗)
(
2 j13

z + j12
z + 1/2

)
− λ12(a + a∗) j23

x ,

d j13
z

dt
= 2λ13(a + a∗) j13

y ,

d j23
x

dt
= (ω13 − ω12) j23

y + λ12(a + a∗) j13
y + λ13(a + a∗) j12

y ,

d j23
y

dt
= (ω12 − ω13) j23

y + λ12(a + a∗) j13
x − λ13(a + a∗) j12

x . (E1)
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FIG. 8. Time-averaged cavity mode occupation |a|2 taken over 100 driving cycles, τ = 100T . We choose ωD = ωB = ωrec while the
remaining parameters are the same as those in Figs. 5(a) and 5(b).

For the parametrically driven open three-level Dicke model, the equations of motion are given by

da
dt

= −(iω + κ )a − i2λ jD
x + iφ(t )2λ jB

x ,

d jD
x

dt
= −ωD jD

y − φ(t )(ωB − ωD) jB
y − φ(t )λ(a + a∗) jDB

y ,

d jD
y

dt
= ωD jD

x − λ(a + a∗)
(
2 jD

z + jB
z + 1/2

)
+ φ(t )(ωB − ωD) jB

x + φ(t )λ(a + a∗) jDB
x ,

d jD
z

dt
= 2λ(a + a∗) jD

y + 2(ωB − ωD)φ(t ) jDB
y ,

d jB
x

dt
= −ωB jB

y − (ωB − ωD)φ(t ) jD
y − λ(a + a∗) jDB

y ,

d jB
y

dt
= ωB jB

x + φ(t )λ(a + a∗)
(
2 jB

z + jD
z + 1/2

)
+ φ(t )(ωB − ωD) jD

x − λ(a + a∗) jDB
x ,

d jB
z

dt
= −φ(t )2λ(a + a∗) jB

y − 2(ωB − ωD)φ(t ) jDB
y ,

d jDB
x

dt
= (ωB − ωD) jDB

y + λ(a + a∗) jB
y − φ(t )λ(a + a∗) jD

y ,

d jDB
y

dt
= (ωD − ωB) jDB

x + λ(a + a∗) jB
x + φ(t )λ(a + a∗) jD

x + 2(ωB − ωD)φ(t )
(

jB
z − jD

z

)
. (E2)

In Fig. 8, we demonstrate that the existence of the dynamical phases is independent of the term in the Hamiltonian with jDB
x .

That is, the momenta coupling inferred from Eq. (8) does not play a crucial role in the formation of the ITC, LESR, and LISR
phases. This suggests that the emergence of these dynamical phases originates from the last term in Eq. (6). To confirm this, we
set ωD = ωB in Fig. 8. For comparison, we show in dotted lines the phase boundary obtained for ωD 2= ωB.

APPENDIX F: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We present a Holstein-Primakoff approximation in the
thermodynamic limit, i.e., N → ∞ [5,56]. To capture the cor-
rect SU(3) algebra, we use an extended version of the
Holstein-Primakoff representation given by [57]

Ĵ12
z = â†

12â12 − N/2, Ĵ12
+ = â†

12

√
N − (â†

12â12 + â†
13â13),

Ĵ12
− =

√
N − (â†

12â12 + â†
13â13)â12,

Ĵ13
z = â†

13â13 − N/2, Ĵ13
+ = â†

13

√
N − (â†

12â12 + â†
13â13),

Ĵ13
− =

√
N − (â†

12â12 + â†
13â13)â13,

Ĵ23
+ = â†

12â13, Ĵ23
− = â†

13â12. (F1)

In the N → ∞ limit, we can further approximate the pseu-
dospin operators as

ĴD
z = â†

12â12 − N/2, ĴD
+ = â†

12

√
N, ĴD

− =
√

Nâ12,

ĴB
z = â†

13â13 − N/2, ĴB
+ = â†

13

√
N, ĴB

− =
√

Nâ13,

ĴDB
+ = â†

12â13, ĴDB
− = â†

13â12. (F2)
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In an analog fashion for the driven three-level Dicke model
we obtain the Hamiltonian with a12 → d and a13 → b

H/h̄ = ωâ†â + ωDd̂†d̂ + ωBb̂†b̂ + λ(â† + â)

× [(d̂† + d̂ ) − φ(t )(b̂† + b̂)]

+ φ(t )(ωB − ωD)(d̂†b̂ + b̂†d̂ ). (F3)

The mean-field equations of motion for Eq. (F3) are

∂a
∂t

= −(iω − κ )a − iλ(d∗ + d ) + iφ(t )λ(b∗ + b),

∂d
∂t

= −iωDd − iλ(a∗ + a) − i(ωB − ωD)φ(t )b,

∂b
∂t

= −iωBb + iφ(t )λ(a∗ + a) − i(ωB − ωD)φ(t )d. (F4)

APPENDIX G: LOWER POLARITON

Consider the standard closed Dicke model

Ĥ/h̄ = ωâ†â + ω0Ĵz + 2λ√
N

(â† + â)(Ĵx ). (G1)

In the thermodynamic limit, this can be diagonalized using
the Holstein-Primakoff transformation, which leads to two
polariton frequencies

ωLP,κ=0 =
((

ω2
0 + ω2

)

2
− 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

,

(G2)

ωUP,κ=0 =
((

ω2
0 + ω2

)

2
+ 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

.

(G3)

The lower polariton frequency, Eq. (G2), is the upper
bound in the presence of dissipation. When κ 2= 0, the
lower polariton frequency can be numerically determined by
exploiting the parametric resonance when the light-matter
coupling is periodically driven [5,6]:

λ(t ) = λ0[1 + f0 sin (ωdrt )]. (G4)

In the limit N → ∞, the Hamiltonian can be reduced to a
coupled oscillator, whereby the coupling strength is periodic
in time. This possesses a parametric resonance manifesting
as a resonance lobe centered at the primary resonance, ωdr =
2ωLP. Thus, we can determine ωLP by mapping the instability
region for varying modulation parameters f0 and ωdr. To this

FIG. 9. Maximum value of (b + b∗). The parameters are the
same as those in Figs. 3(a)–3(d).

end, we solve the corresponding equations of motion given by

i
∂a
∂t

= (ω − iκ )a + λ(t )(b∗ + b),

i
∂b
∂t

= ω0b + λ(t )(a∗ + a). (G5)

The unstable region indicating the parametric resonance is
signalled by a diverging (b + b∗), as depicted in Fig. 9. We ob-
tain a lower polariton frequency ωLP/2π ≈ 1.06 kHz, which
is the value used in the sum frequency condition denoted by
the vertical line in Figs. 3(a)–(d).

APPENDIX H: PARAMETERS

We consider realistic parameters based on the experimental
setup in Ref. [35]. A BEC of N = 65 × 103 87Rb atoms
is coupled to a high-finesse optical cavity with a photon
loss rate of κ = 2π × 3.6 kHz. This is very close to the
recoil frequency, ωrec = 2π × 3.55 kHz, associated with the
standing-wave potential of the pump. The cavity light shift
per atom is U0 = −2π × 0.36 Hz. The effective pump-cavity
detuning is fixed to δeff = −2π × 18.5 kHz. We are inter-
ested in the two regimes λ < λcr and λ > λcr, where λcr
is the critical light-matter coupling strength needed to enter
the DW phase in the absence of modulation, where λcr =
[(κ2 + ω2)(ωD/ω)]1/2/2. By equating the expression for λcr
and λ in terms of the atom-cavity parameters for the two-level
Dicke model, we find that the critical pump strength is given
by εcr = 8(ω2 + κ2)/[4Nω|/0| + (ω2 + κ2)].
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2.9 Publication IV: Realization of a Periodically Driven Open
Three-Level Dicke Model

P. Kongkhambut, H. Keßler, J. Skulte, L. Mathey, J.G. Cosme A. Hemmerich —
Phys. Rev. Letters 127, 253601 (2021)

Motivation

This work was motivated by the previous proposal to observe an incommensurate time
crystal (ITC) in an atom-cavity system during my Bachelor’s project and the previous
successful observation of a dissipative time crystal with amplitude driving in the same
atom-cavity setup. Our goal was to experimentally observe the ITC, to map out the
phase diagram for varying the experimentally relevant parameter, and to characterize
the phase.

Main findings

In this work, first authored by P. Kongkhambut, we experimentally studied the paramet-
rically driven dissipative three-level Dicke model by emulating it with an atom-cavity
system. As shown in the accompanying theoretical paper, we used resonant shaking of
the pump field to map our system to the three-level Dicke model. We found two key
signatures for the realisation of an incommensurate time crystal (ITC). First, we ob-
served the dynamical switching between the di↵erent order states on the relative phase
between the pump laser and the emitted cavity light at a small fraction of the driving
frequency. Secondly, we showed by measuring the net momentum asymmetry along the
pump axis during the drive the emergence of this dynamical phase. With these two ob-
servations, together with our theoretical analysis, we showed that this dynamical phase
can be classified as an ITC.

Contribution

JGC and I performed the analytical and numerical calculations supervised by LM. PK
and HK performed the experiments and data analysis supervised by AH. All authors
contributed to the discussion and interpretation of the results, as well as to writing the
manuscript.
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A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field
in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical
phase, in which the atoms periodically localize between the antinodes of the pump lattice, associated with
an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic
switching of the relative phase between the pump and cavity fields at a small fraction of the driving
frequency, suggesting that it exhibits a time crystalline character.
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Rapid technological advances have elevated cold-atom
systems to preeminent platforms for realizing model
systems of quantum–many body dynamics [1–6]. An
intriguing subclass is hybrid light-matter systems, which
are composed of cold atoms coupled to an optical cavity,
and display a strongly enhanced light-matter interaction,
giving access to the physics of strong light-matter coupling
and long-range correlations [7,8]. A specific feature of
these platforms is the well controlled dissipation, which
allows for fast nondestructive in situ monitoring of the
system dynamics [8–15]. One of the fundamental models
for light-matter interaction is the Dicke model [16,17].
It describes a collection of N two-level systems coupled to a
single light mode and displays a phase transition between a
normal and a superradiant phase [16]. An open version of
the Dicke model with a weak dissipation channel is
approximately realized by a Bose-Einstein condensate
(BEC) placed in a linear standing wave optical cavity and
pumped by an optical standing wave oriented perpendicu-
larly with respect to the cavity axis [10,11,15,18–26]. The
normal phase is characterized by a BEC, light shifted by the
pump potential, with a homogeneous density distribution
along the cavity axis and a small number of photons in the
cavity that do not display coherence. The superradiant phase
shows a density grating enabling pronounced scattering of
photons from the pump into the cavity and vice versa.
Various extensions of the standard two-level Dicke model
have been proposed and realized using atom-cavity systems,
such as the spin-1 Dicke model [27,28] and the two-
component Dicke model [29–31], all sharing the coupling
of two-level systems to the same monochromatic light mode.
The extension of the Dicke model to the case of three-

level systems has been theoretically considered in
Refs. [32–34]. A specific example in a ring cavity has
been used to experimentally demonstrate subradiance [35].

In the present work, we experimentally realize the peri-
odically driven open three-level Dicke model by shaking
the standing wave pump potential in an atom-cavity system
as depicted in Fig. 1(a). It has been predicted in Ref. [36]
that this enables a dynamical phase, characterized by atoms
periodically localizing between the antinodes of the pump
lattice, i.e., on the intersite bonds, which has been called
dynamical bond density wave (DBDW) phase. This
DBDW phase exhibits time crystalline character and is a
characteristic signature of the periodically driven open
three-level Dicke model. Its experimental observation is
the central topic of this work.
We define the three-level Dicke model to describe the

interaction between a single quantized light mode and N
three-level atoms comprising energy eigenstates j1i, j2i,
and j3i in a V configuration. Its Hamiltonian is

H=ℏ ¼ ωâ†âþ ω12Ĵ12z þ ω13Ĵ13z

þ 2ffiffiffiffi
N

p ðâ† þ âÞðλ12Ĵ12x þ λ13Ĵ13x Þ: ð1Þ

The bosonic operator â (â†) annihilates (creates) a photon
with frequency ω. The frequency detuning between the
lowest energy state j1i and the other two states j2i and j3i
are ω12 and ω13, respectively. For small detuning ω23

between the states j2i and j3i, i.e., when ω23 ≪ ω12;ω13,
the only relevant light-matter interactions are those that
couple state j1i with states j2i and j3i, the strengths of
which are given by λ12 and λ13, respectively. We introduce
the pseudospin operators Ĵlμ with l ∈ f12; 13; 23g, which
are related to the eight generators of the SU(3) group [37].
Note that the Gell-Mann matrices, the standard represen-
tation of the SU(3) group, can be obtained by an appro-
priate superposition of Ĵlμ [37]. Equation (1) is an extended
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form of the two-component Dicke model [29–31]. However,
the latter obeys the SU(2) algebra, while the pseudospin
operators in Eq. (1) fulfill the SU(3) algebra, instead.
To implement the three-level Dicke model, we consider

atoms in their electronic ground state occupying the
following three momentum states forming a V-shaped
level structure (see Fig. 1 in Supplemental Material
[38]). The ground state is the so called BEC state jBECi
given by the zero momentum state j0; 0i with respect to the
yz plane, light shifted by the pump field by an amount
−ϵ=2, where ϵ denotes the potential depth of the pump
wave [37]. The first excited state is the superpositionP

ν;μ∈f−1;1g jνℏk; μℏki of the four momentum modes
j% ℏk;%ℏki associated with the yz plane, light shifted
by the pump field by an amount −3ϵ=4 (here, k denotes the
wave number of the pump field) [37]. In view of its
spatially varying density ∝ j cosðkyÞ cosðkzÞj2, it is denoted
as the density wave state jDWi. The light shift for jDWi is
larger compared to that of jBECi, since the density
distribution of jDWi is localized in the antinodes of the

pump field [37]. The two states jBECi and jDWi span the
matter sector of the regular two-level Dicke model. If ϵ
exceeds a critical value ϵcrt, jBECi acquires an admixture of
jDWi. A Bragg grating is thus imprinted upon the density
of the jBECi state, which via efficient scattering of pump
light builds up a coherent intracavity light field. The jBECi
state, thus dressed by the cavity field, is denoted super-
radiant phase. In this work, we operate either with ϵ < ϵcrt
or with ϵ only very slightly above ϵcrt, such that the
additional dressing by the cavity field is zero or negligibly
small. The second excited state is associated with the
momentum state superposition

P
ν;μ∈f−1;1g νjνℏk; μℏki.

This state exhibits the smallest light shift −ϵ=4, because
its density distribution ∝ j sinðkyÞ cosðkzÞj2 matches with
the nodes of the pump wave [37]. This state is called bond
density wave (abbreviated jBDWi) as its density maxima
coincide with the bonds between two potential minima of
the pump wave. We denote the energy separation between
jDWi and jBECi as ℏωD, and that between jBDWi and
jBECi as ℏωB, respectively. See Supplemental Material for
a more detailed description [38].
In the atom-cavity implementation of the standard Dicke

model, jBDWi is not coupled to jBECi and hence can be
dropped. To implement a coupling between jBDWi and
jBECi, the transverse pump lattice is periodically shaken in
space [36]. In Ref. [37], we show that the Hamiltonian for
the shaken atom-cavity system can be mapped onto a
parametrically driven version of the three-level Dicke
model.

H=ℏ ¼ ωâ†âþ ĴDz ωD þ ĴBzωB þ 2ϕðtÞðωB − ωDÞĴDB
x

þ 2λffiffiffiffi
N

p ðâ† þ âÞ½ĴDx − ϕðtÞĴBx '; ð2Þ

where ϕðtÞ ¼ f0 sinðωdrtÞ is the time-dependent spatial
phase of the pump lattice introduced by the shaking
protocol, and λ is the overall coupling strength parameter.
The pseudospin operators ĴDμ and ĴBμ with μ ∈ fx; y; zg
are directly associated with the jDWi and the jBDWi
states via the relations to their order parameters ΘDW≡
hcosðkyÞcosðkzÞi¼ hĴDx i and ΘBDW ≡ hsinðkyÞ cosðkzÞi ¼
hĴBx i, respectively. Comparing Eqs. (1) and (2), we identify
Ĵ12μ ¼ ĴDμ , Ĵ13μ ¼ ĴBμ , Ĵ23μ ¼ ĴDB

μ , ω12 ¼ ωD, ω13 ¼ ωB,
λ12 ¼ λ, and a time-dependent light-matter coupling
λ13 ¼ −ϕðtÞλ. Moreover, in Eq. (2), the standing wave
potential of the pump introduces an additional albeit
negligible term proportional to ĴDB

x , which couples
jDWi and jBDWi [37].
For driving frequencies ωdr slightly above ωB, the DBDW

phase shows periodic oscillations of ΘBDW and ΘDW around
zero with frequencies ωBDW and ωDW, respectively. Theory
predicts the relation ωDW ¼ ωdr − ωBDW such that ωDW
is not an integer fraction of the driving frequency ωdr [36].
This is a hallmark of an incommensurate time crystal [36].

(a)

(c)

(b)

FIG. 1. (a) Schematic of the transversely pumped and shaken
atom-cavity system. A sample of cold atoms is placed in a cavity
oriented along the z axis. A standing wave potential is periodi-
cally shifted along the y axis using phase modulation techniques.
(b) Dynamical phase diagram with two distinct regions: In the red
area, the dynamics of the system is captured by a two-level Dicke
model. In the blue area, a three-level Dicke model is required.
(c) Dynamics of the product of the relevant order parameters for
strong driving in the three-level Dicke regime (blue) and for weak
driving in the two-level Dicke regime (red). The modulation
frequency is ωdr=2π ¼ 9.4 kHz and ωB=2π ¼ 8 kHz.
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Thus, the long-time average ofΘDW is zero in the three-level
Dicke region of the dynamical phase diagram, while it is
nonzero in the two-level Dicke region for an initial super-
radiant phase. This behavior is captured in Fig. 1(b), which
shows the time-averaged value of hĴDx i=N ≡ jDx obtained by
solving the equations of motion corresponding to Eq. (2) in
the semiclassical limit of a large atom number [37].
The DBDW dynamics may be experimentally studied

via the product of the order parameters ΘDW × ΘBDW,
which can be approximately measured by the normalized
occupation imbalance ΔF̃≡ ðFþ1;%1 − F−1;%1Þ=ðFþ1;%1−
F−1;%1Þmax, where F%1;%1 denotes the population of the
momentum state j% ℏk;%ℏki (see Supplemental Material
for details [38]). In the standard Dicke model realized for
off-resonant driving, ΘBDW ≈ 0 and ΔF̃ is negligible.
On the other hand, for driving frequencies ωdr slightly
above ωB, a beating signal is expected inΘDW × ΘBDW [see
Fig. 1(c)], which can be observed via ΔF̃. Furthermore,
the periodic switching of ΘDW in the three-level model
amounts to a periodic switching of the experimentally
observable relative phase of the pump and the cavity fields
φ≡ argðhâiÞ between 0 and π.
In our experiment, a BEC of 87Rb atoms is superimposed

with the fundamental mode of a high-finesse optical cavity
pumped by a retroreflected laser beam at wavelength
λP ¼ 803 nm. The resulting optical pump lattice has a
depth ϵ and is aligned perpendicular to the cavity axis,
as depicted in Fig. 1(a). The cavity has a field decay rate
κ ¼ 2π × 3.6 kHz comparable to the recoil frequency
ωrec ≡ ℏk2=2m (m ¼ atomic mass), such that the cavity
field and the atomic density distribution evolve on similar
timescales. This leads to a retarded infinite-range cavity-
mediated interaction between the atoms [13]. The system
realizes the Dicke phase transition from a homogeneous
BEC to a superradiant phase if ϵ exceeds a critical strength.
TheZ2 symmetry is spontaneously broken, when the atoms
localize at either the even or odd sites of a two dimensional
checkerboard optical lattice formed by the interference
between the pump and intracavity fields. The two sym-
metry broken states can be distinguished by the relative
phase difference φ between the pump and intracavity light
fields using a balanced heterodyne detection of the cavity
field. The appearance of the superradiant phase can be
detected in situ by the observation of a nonzero cavity mode
occupation NP [see red line in Fig. 2(b)], the locking of the
relative φ to zero or π [see green line Fig. 2(b)], or in a
destructive way through a nonzero occupation of the
fpy; pzg ¼ f%ℏk;%ℏkg modes in a momentum spectrum
[see Fig. 2(g)].
The experimental sequence proceeds as follows. We

prepare the system in the BEC phase or in the superradiant
phase close to the phase boundary towards the BEC phase,
followed by a 500 μs long waiting period to let the system
reach its steady state. Then, we shake the pump potential
by modulating the phase of the pump field using an

electro-optical modulator. The modulation strength f0 is
linearly increased to its desired value within 500 μs and
kept constant for 6.5 ms. A typical sequence of the pump
protocol is presented in Fig. 2(a). Resonant driving induces
a switching of the system between the two possible
sublattices of the superradiant phase at a frequency ωDW
and the intracavity photon number pulsates at a rate of
2ωDW. This behavior is exemplified in the green and red
curves in Fig. 2(b).
In Fig. 3(a), we plot ωDW as a function of ωdr and

average each data point over 100 experimental runs
including different modulation strength f0. The solid gray
trace shows a linear fit. We find good agreement with the
theoretical prediction ωDW ¼ ωdr − ωBDW of Ref. [36].
In Supplemental Material, we present a similar plot for
fixed ωdr and varying f0 to show that the dependence
of ωDW on f0 is very weak and negligible within the
experimental precision [38]. From the linear fit in Fig. 3(a),

N
N

F

FIG. 2. Single-shot realization of DBDW order. (a) Time
sequence for the pump lattice depth (blue) and the phase ϕ of
the pump field (red) with modulation strength f0 ¼ 0.1π and a
modulation frequency ωdr ¼ 11.5 kHz. (b) Phase difference φ
between the pump and intracavity field (green trace) and photon
number NP in the cavity (red trace). The dashed vertical lines
mark the time interval during which the modulation strength is
increased. The gray shaded area shows the time window for the
close-up presented in (c). (c) The red trace repeats the intracavity
photon numberNP from (b). The blue data points plot the product
ΘDW × ΘBDW, approximately given by ΔF̃ [see also Fig. 1(c)].
Each data point is averaged over five realizations. The solid line
shows a fit with a product of two harmonic oscillations. (d)–(h)
Single-shot momentum distributions recorded at the times
marked in (c).
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we extract the value of the parametric resonance as
ωBDW ¼ 9.93% 0.30 kHz. In Supplemental Material, we
also present an alternative protocol for measuring ωBDW
from the depletion of the cavity field for resonant modu-
lation [38]. In Fig. 3(b), we present the dynamical phase
diagram, highlighting the DBDW order obtained from
measuring the relative crystalline fraction Ξ quantified
by the color scale. The relative crystalline fraction is a
quantity commonly used in studies of time crystals. Here,
we define it as the amplitude of the Fourier spectrum,
calculated from the relative phase φ, at the expected DW
frequency ωDW, rescaled by its maximum value across
the parameter space spanned in the phase diagram [15].

The observed DW frequency follows the linear equation
ωDW ¼ ξ × ωdr − ωBDW with ξ determined according to the
linear fit in Fig. 3(a) as 0.98, i.e., very close to the expected
value of unity. This incommensurate subharmonic response
of the system with respect to the modulation frequency ωdr
is observed within a broad area of the dynamical phase
diagram in Fig. 3(b). In Supplemental Material, we present
the robustness of the subharmonic response against tem-
poral noise, which corroborates the classification of this
dynamical phase as an incommensurate time crystal.
Finally, we discuss the observed dynamics of the

momentum imbalance parameter ΔF̃ related to the calcu-
lations in Fig. 1(c). The oscillation frequencies ωDW and
ωBDW are extracted from the data in Fig. 2(c) using fðtÞ ¼
expð−τtÞA sinðωBDWtþ αÞ sinðωDWtÞ as a fit function.
Here, τ is the decay rate of NP and A is an overall amplitude
parameter. This measurement demonstrates a third option for
measuring ωBDW. However, since recording the momentum
spectra is a destructive measurement, this method is
much more time consuming than simply detecting the light
leaking out of the cavity, which makes it extremely difficult
to explore large areas in the parameter space. Nevertheless,
we repeated this measurement for a second set of modulation
parameters shown in Supplemental Material [38]. The
frequency ωBDW is independent of ωdr and we measure
ωBDW ¼ 2π × 9.8% 0.1 kHz. For a driving frequency of
ωdr ¼ 11.5 kHz, we measure a slow oscillation frequency
of ωDW ¼ 2π × 1.8% 0.1 kHz [see Fig. 2(c)], which
agrees well with the theoretical prediction of ωDW ¼
ωdr − ωBDW ¼ 2π × ð11.5 − 9.8Þ kHz ¼ 2π × 1.7 kHz.
While we have mostly focused on the case when initially

the superradiant state is prepared, we have also confirmed
that it is possible to enter the three-level regime heralded
by the emergence of the DBDW phase by initializing with
the homogeneous BEC or normal phase as exemplified
in Fig. 4.

(a)

(b)

dr

dr

D
W

DW = 0.98  x  dr - 9.93

FIG. 3. (a) ωDW is plotted against ωdr. ωDW is extracted by the
position of a Gaussian fit of the amplitude spectrum calculated
from the measured time evolution of the phase difference between
the pump and cavity fields φ. Each data point is averaged over
hundreds of realizations with different modulation strength f0
and fixed ωdr. The gray line is a linear fit yielding the result
shown in the plot legend. (b) The relative crystalline fraction Ξ is
plotted as a function of the modulation frequency ωdr and
strength f0. The diagram is constructed by dividing the parameter
space into 20 × 16 plaquettes and averaging over multiple
experimental runs within each.

dr

(a)

(b)

FIG. 4. Dynamics in the three-level Dicke regime using an
initial homogeneous BEC state. (a) Time sequence for the pump
lattice depth (blue) and the phase ϕ of the pump field (red) with
modulation strength f0 ¼ 0.1π and a modulation frequency
ωdr ¼ 11.5 kHz. (b) The phase difference φ between the pump
and intracavity field is plotted in green and the photon numberNP
in the cavity in red.
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The finite lifetime of the emergent DBDW phase in our
experiment can be mainly attributed to atom losses.
Furthermore, we note that our numerical simulations
indicate that contact interactions [36] and larger detunings
ωdr − ωB [38] decrease the lifetime of the time crystalline
response. In the experiment, however, it is difficult to
quantitatively separate the effects of atom losses, contact
interaction, and detuning from the resonance.
In conclusion, we have realized a periodically driven

open three-level Dicke model using a resonantly shaken
atom-cavity system. As the main signature of the three-
level Dicke model, we have demonstrated the emergence of
a dynamical bond density wave phase. When prepared
in the three-level Dicke regime, our system realizes an
incommensurate time crystal, whereby the atoms periodi-
cally self-organize along the bonds of the pump lattice. This
advances the understanding of cavity-BEC systems beyond
the standard two-level Dicke model, and broadens the
scope of dynamically induced many-body states in this and
related hybrid light-matter systems.
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I. EXPERIMENTAL DETAILS

The experimental set-up, as sketched in Fig. 1(a) in the main text, is comprised of a magnetically trapped BEC
of Na = 65 ⇥ 103 87Rb atoms, dispersively coupled to a narrow-band high-finesse optical cavity. The cavity field has
a decay rate of  = 2⇡⇥3.6 kHz, which almost equals the recoil frequency !rec = Erec/~ = 2⇡⇥3.55 kHz. The
wavelength of the pump laser is �P = 803 nm, which is red detuned with respect to the relevant atomic transition
of 87Rb at 795 nm. The maximum light shift per atom is U0 = �2⇡ ⇥ 0.36 Hz. We fix the e↵ective detuning to
�e↵ ⌘ �C � (1/2)NaU0 = �2⇡ ⇥ 18.5 kHz, where �C = !P � !C is the pump-cavity detuning. A typical experimental
sequence starts by preparing the system in the superradiant phase. This is achieved by linearly increasing the
pump strength ✏ from zero to its final value ✏0 = 3.3 Erec in 10 ms at a fixed e↵ective pump-cavity detuning
�e↵ = �2⇡⇥18.5 kHz.

II. THREE-LEVEL SYSTEM

> 0

|0,0

= 0
|BEC

|±

|DW

|BDW

}ωB
}ωD

2 }ωrec

c34

c12
c c

c14

FIG. 1. V-shaped three-level system. On the left, the case of zero pump field strength ✏ = 0 is shown with the zero momentum
ground state |0, 0i and two degenerate excited states |+i ⌘

P
⌫,µ2{�1,1} |⌫~k, µ~ki and |�i ⌘

P
⌫,µ2{�1,1} ⌫|⌫~k, µ~ki associated

with an energy 2~!rec above that of |0, 0i (~!rec = recoil energy). For ✏ > 0, these bare states acquire di↵erent light-shifts
giving rise to the modified states |BECi, |DWi, and |BDWi. They span a three-level system with the resonance frequencies
!D and !B for the left and right leg of the V-shaped coupling scheme, respectively.

Consider atoms in their electronic ground state. For each atom, a V-shaped three-level system arises as sketched
in Fig. 1. For a vanishing pump field ✏ = 0, the ground state is the bare zero momentum state |0, 0i and we consider
two degenerate excited momentum states given by the even and odd superpositions |+i ⌘

P
⌫,µ2{�1,1} |⌫~k, µ~ki

and |�i ⌘
P

⌫,µ2{�1,1} ⌫|⌫~k, µ~ki, respectively. Here, | ± ~k,±~ki denotes the momentum eigenstates with ±~k
momentum along the pump axis (y-axis) and ±~k momentum along the cavity axis (z-axis). As shown in Fig. 1,
in the presence of a pump field, these states acquire light-shifts of di↵erent sizes, giving rise to the three modified
states |BECi, |DWi and |BDWi. The |BECi state is associated with the zero momentum state |0, 0i, and hence a
homogeneous density distribution. The light-shift for this state is �✏/2 with ✏ denoting the potential depth of the
pump standing wave [1]. |DWi is associated with the bare momentum state |+i and therefore a density distribution
proportional to | cos(ky) cos(ky)|2. This distribution is localized in the antinodes of the pump wave and thus possesses
a larger light-shift �3✏/4 [1]. Finally, |BDWi is associated with |�i and therefore a density distribution proportional
to | sin(ky) cos(ky)|2, which matches with the nodes of the pump wave and hence possesses the smallest light-shift
�✏/4 [1].

The preceding discussion strictly applies, if ✏ remains below a critical value ✏crt, beyond which the |BECi state
undergoes a phase transition to the superradiant state of the regular two-level Dicke model. In particular, above
✏crt a coherent intra-cavity field arises, which mixes |BECi and |DWi and adds additional light-shifts to these states.
In the present work, we operate either below or slightly above ✏crt, where this additional mixing and the associated
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light-shifts are assumed su�ciently small to be neglected.

III. ATOM-CAVITY MODEL

Considering only the pump and cavity directions and neglecting contact interactions between the atoms, the shaken
atom-cavity system can be modeled by the many-body Hamiltonian

Ĥ/~ = ��Câ
†
â+

Z
dydz ̂†(y, z)


�

~
2m

r
2

� !rec✏ cos
2(ky + �(t)) + U0â

†
â cos2(kz) (1)

�

q
!rec|U0|✏p cos(ky + �(t)) cos(kz)(a† + a)

�
 ̂(y, z),

where �C is the pump-cavity detuning, U0 < 0 is the maximum light shift per atom, and ✏ is the pump intensity
in units of the recoil energy Erec. This Hamiltonian can be mapped onto the driven open three-level Dicke model
(cf. main text) by considering only the five lowest momentum modes of the atoms, |0, 0i and | ± ~k,±~ki, where
k = 2⇡/�P is the wavenumber of the pump (see [1] for details). This assumption is valid when the occupations of higher
momentum modes are kept negligible, by initializing the system close to the phase boundary between the homogeneous
|BECi state and the superradiant phase. The matter sector of the superradiant phase, then mainly consists of the
|BECi state with a small admixture of the |DWi state, which exhibits a density modulation / | sin(ky) cos(kz)|2 and
hence, the bosonic atomic field operator can be expanded as  ̂(y, z) ⇠ ĉ1 + ĉ22 cos(ky) cos(kz) [2]. The Schwinger
boson representation can be used to map the transversely pumped atom-cavity Hamiltonian onto the standard two-
level Dicke model [2, 3]. The order parameter for the |DWi state is ⇥DW = hcos(ky) cos(kz)i in bosonic operator
representation, while it is ⇥DW = hĴ

D

x
i in pseudospin representation. In our experiment, periodic shaking allows for

occupation of the |BDWi state, which displays a density modulation / | sin(ky) cos(kz)|2. The order parameter for
|BDWi is either ⇥BDW = hsin(ky) cos(kz)i or ⇥BDW = hĴ

B

x
i. Taking this into account, the atomic field operator

should be extended as  ̂(y, z) ⇠ ĉ1 + ĉ22 cos(ky) cos(kz) + ĉ32 sin(ky) cos(kz). The driven three-level Dicke model in
the main text can then be obtained using an extended Schwinger boson representation that includes this new mode
[1]. The mapping leads to an e↵ective cavity field frequency of ! = (3U0N)/4� �C. The strength of the light-matter
interaction is �/

p
N = �

p
!rec✏p|U0|/2. Moreover, we obtain !D = 2!rec(1 � ✏p/8) and !B = 2!rec(1 + ✏p/8) (see

Eq. (2) of the main text). These frequency shifts are depicted in Fig. 1.

IV. DEPENDENCE OF THE DENSITY WAVE FREQUENCY ON THE MODULATION STRENGTH

As shown in Fig. 2, the density wave frequency !DW depends weakly on the modulation strength f0 but the slope
is much smaller as for the dependence on the modulation frequency !dr and we neglect this e↵ect in the construction
of the phase diagram in Fig. 3(b) of the main text. It can be explained as follows. Due to the modulation the atoms
are sitting on the slope of the light-induced potential and they e↵ectively feel a slightly weaker pump lattice depth ✏.
This e↵ect increases with increasing f0. Since the position of the bond density wave resonance !BDW shifts to lower
values for smaller ✏ and !DW = !BDW � !dr, the density wave frequency response !DW increases with increasing
modulation strength f0.

V. MEASURING THE POSITION OF THE PARAMETRIC RESONANCE BY THE DEPLETION OF
THE INTRACAVITY FIELD.

As mentioned in the main text, there are three possibilities to measure the position of the bond density wave
resonance !BDW. Firstly, as shown in Fig. 3(a) of the main text, via a linear fit of the density wave frequency
response !DW, and, secondly, from the oscillation of the asymmetry of the momentum modes with negative and
positive momentum with respect to the pump direction F+1,±1 � F�1,±1. The third method is demonstrated in this
paragraph by looking at the depletion of the cavity field in the parameter space spanned by the modulation frequency
!dr and modulation strength f0. On resonance the intracavity photon number NP depletes fastest for a fixed f0. To
quantify this e↵ect, we divide the parameter space into 20 ⇥ 16 plaquettes. Then, we average

P
NP in the interval

from 2 to 3 ms after starting the modulation, and over multiple experimental runs.
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D
W
/2
(k
H
z)

FIG. 2. Response frequency !DW versus modulation strength. !DW is plotted against f0 for fixed !dr = 2⇡ ⇥ 11.5 kHz, using
the protocol described in Fig. 3(a) of the main text.

tΣ   NP x 10-3

dr

3ms

2ms

FIG. 3. Sum of NP in the interval from 2 to 3 ms. We follow the protocol described in Fig. 3 of the main text for variable
modulation frequencies !dr and strengths f0. The color scale parametrizes the sum over the intracavity photon number NP in
the interval [2,3] ms after reaching the final modulation strength f0.

VI. RELATION BETWEEN THE MOMENTUM IMBALANCE AND THE DENSITY WAVE/BOND
DENSITY WAVE ORDER PARAMETERS

The density wave and bond density wave order parameters are defined as

⇥DW =

Z
cos(ky) cos(kz)| (y, z)|2dxdy (2)

⇥BDW =

Z
sin(ky) cos(kz)| (y, z)|2dxdy , (3)
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(a) (b)

FIG. 4. Comparsion between the product of the two order parameters ⇥DW ⇥⇥BDW and the momentum imbalance �F . The
modulation strength is f0 = 0.1. (cf. text)

respectively. Using the spatial translation symmetry in the system we expand the atomic field in terms of plane waves
as

 (y, z) =
X

n,m

�n,me
iny

e
imz

. (4)

With this the order parameter can be written in the momentum basis as

⇥DW =
1

4

X

n,m

�
�
⇤
n+1,m+1

+ �
⇤
n+1,m�1

+ �
⇤
n�1,m+1

+ �
⇤
n�1,m�1

�
�n,m (5)

⇥BDW =
1

4i

X

n,m

�
�
⇤
n+1,m+1

+ �
⇤
n+1,m�1

� �
⇤
n�1,m+1

� �
⇤
n�1,m�1

�
�n,m . (6)

In the following we will only retain the lowest five momentum modes {�0,0,�±,±}. We approximate the order
parameters as

⇥DW =
1

4

�
�
⇤
+,+

+ �
⇤
+,� + �

⇤
�,+

+ �
⇤
�,�

�
�0,0 + h.c. (7)

⇥BDW =
1

4i

�
�
⇤
+,+

+ �
⇤
+,� � �

⇤
�,+

� �
⇤
�,�

�
�0,0 + h.c. . (8)

As the momentum modes along the z-direction will stay degenerate, we denote �+,± = �+ and ��,± = �� and
introduce the shorthand notation �0,0 = �0. Then, the order parameter can be written as

⇥DW =
1

2

�
�
⇤
+
+ �

⇤
�
�
�0 + h.c. (9)

⇥BDW =
1

2i

�
�
⇤
+

� �
⇤
�
�
�0 + h.c. . (10)

The product of these two order parameters leads to

⇥DW ⇥⇥BDW =
1

4i

�
(�⇤

0
)2
�
(�+)

2
� ��)

2
�

� (�0)
2
�
(�⇤

+
)2 � �

⇤
�)

2
�
+ 2|�0|

2
�
�
⇤
��+ � �

⇤
+
��

� 
(11)

=
|�0|

2

2

�
|�+|

2 sin (2(✓+ � ✓0)) � |��|
2 sin (2(✓� � ✓0)) + 2|�+||��| sin (✓+ � ✓�)

�
, (12)

where we used in the last line  i = | i| exp(i ✓i). From our numerics, we find that this observable, as measured in the
experiment, can be approximated by

⇥DW ⇥⇥BDW ⇡
|�0|

2

2

�
|�+|

2
� |��|

2
�

⌘ �F . (13)

Fig. 4 (a) shows a comparison between the product ⇥DW ⇥⇥BDW of the two order parameters and the momentum
imbalance �F . The blue trace shows the exact numerical result. The red trace shows an approximation, if only the
five lowest momentum modes are accounted for. To further validate our findings, we compute in Fig. 4 (b) the power
spectra of ⇥DW ⇥⇥BDW and �F . Fig. 5 shows that for a small (f0 = 0.001) driving strength ⇥DW ⇥⇥BDW and �F

approach zero. Hence, the driven three-level Dicke model regime can only be realized for su�ciently strong driving.
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FIG. 5. Comparison of ⇥DW ⇥⇥BDW and �F for driving strengths f0 = 0.1 and f0 = 0.001, respectively.

FIG. 6. Decay of the time crystal response for di↵erent detunings We choose a modulation strength of f0 = 0.05. The resonance
frequency is located at ⇡ 8.45 kHz. For larger detunings the time crystal melts more quickly.

VII. LIFETIME OF THE TIME CRYSTALLINE RESPONSE

As was pointed out in [4], the time crystalline response becomes unstable/pre-thermal as one scans further away
from the resonance. Using mean-field theory without contact interactions, Fig. 6 shows the decay of the oscillations
for di↵erent detunings of the driving frequency with respect to the resonance frequency. We note that this e↵ect
contributes to the decay observed in the experiment.
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FIG. 7. Robustness of the incommensurate time crystal. (a)-(c) Single-shot experimental runs for the noise strengths marked in
subplot (d) with the gray dashed lines. Top panels: single-shot protocols for the pump strength. Bottom panel: corresponding
time evolution of the relative phase ' (green trace) and intracavity photon number NP (red trace). (d) Dependence of the
relative crystalline fraction ⌅ on the noise strength averaged over 10 experimental runs with f0 = 0.1⇡ and !dr = 2⇡⇥11.5 kHz.
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b

a

c

F~

h
g

g h

c
dr

dr

FIG. 8. Single-shot realization of DBDW order. (a) Time sequence for the pump lattice depth (blue) and the phase � of the
pump field (red) with modulation strength f0 =0.13⇡ and a modulation frequency !dr = 12.0 kHz. (b) Phase di↵erence '
between the pump and intracavity field (green trace) and photon number NP in the cavity (red trace). The dashed vertical lines
mark the time interval during which the modulation strength is increased. The gray shaded area shows the time window for
the zoom presented in (c). (c) The red trace repeats the intracavity photon number NP from (b). The blue data points plot the
product ⇥DW ⇥⇥BDW, approximately given by the di↵erence between the number of atoms populating the momentum modes
with positive and negative momentum with respect to the pump direction �F̃ = (F+1,±1 � F�1,±1)/(F+1,±1 � F�1,±1)max

(see also Fig. 1(c) and Fig. 2(c) of the main text). Each data point is averaged over 5 realizations. The solid line shows a fit
with a product of two harmonic oscillations. (d)-(h) Single-shot momentum distributions recorded at the times marked in (c).

VIII. ROBUSTNESS AGAINST TEMPORAL PERTURBATIONS.

The robustness against temporal perturbations is one of the main characteristics of time crystalline dynamics. We
have tested the stability of the observed bond density wave phase against artificial white noise on the modulation signal
with a bandwidth of 20 kHz. The applied noise strength is measured by n ⌘

P
2⇡⇥20 kHz

!=0
|Enoisy(!)|/

P
2⇡⇥20 kHz

!=0
|Eclean(!)|,

where Enoisy (Eclean) is the Fourier spectrum of the pump in the presence (absence) of white noise. Figures 7(d) show
how the relative crystalline fraction ⌅ changes with increasing noise strength for fixed modulation parameters f0 = 0.1
and !dr = 11.5 kHz. Note that even for a strongly distorted pump signal, as in Fig. 7(b) the system still switches
multiple times between the two sublattices before the intracavity field disappears.

IX. SINGLE-SHOT REALIZATION OF DBDW ORDER FOR !dr = 12KHZ

We measured the momentum mode asymmetry for a second parameter set and present the results in Fig. 8. In
Fig. 8(c) we used f(t) = exp(�⌧ t)A sin(!BDWt + ↵) sin(!DWt) as a fit function. Here, ⌧ is the decay rate of NP

and A is an overall amplitude parameter. The fast BDW oscillation frequency is independent of !dr and we measure
!BDW = 2⇡ ⇥ 9.8± 0.1 kHz. We find a slow oscillation frequency of !DW = 2⇡ ⇥ 2.6± 0.1 kHz (see also Fig. 1(c) and
Fig. 2(c) of the main text) for a driving frequency of !dr = 12.0 kHz, which agrees well with the theoretical prediction
of !DW = !dr � !BDW = 2⇡ ⇥ (12.0 � 9.8) kHz = 2⇡ ⇥ 2.2 kHz.
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2.10 Publication V: Condensate Formation in a Dark State of
a Driven Atom-Cavity System

J. Skulte, P. Kongkhambut, S. Rao, L. Mathey, H. Keßler, A. Hemmerich and J.G.
Cosme — Phys. Rev. Letters 130, 163603 (2023)

Motivation

This work was motivated by the previous study of an incommensurate time crystal
(ITC) in an atom-cavity system in our theoretical and experimental work for weak driv-
ing. Our goal was to expand our previously introduced three-level Dicke model, such
that it can also capture the strong driving physics, that can be found in the experiment
and to explore the new emerging phases.

Main findings

In this work, we have demonstrated the formation of a condensate in a dark state of
momentum modes for su�ciently strong driving. We mapped the shaken atom-cavity
system, without any approximations concerning the driving strength, to an extended
three-level Dicke model and compared the dynamical phase diagrams and found good
agreement. We further obtained the dynamical phase diagram experimentally and found
qualitative agreement as well. Furthermore, we used time-of-flight and photon emission
measurements to demonstrate the successful preparation of the condensate in the dark
state. The dark state is a superposition of the atomic ground state and excited mo-
mentum states that e↵ectively decouples from the light field. This allowed us to show
that the cavity coupling and the dark state concept can be used to e�ciently produce
complex many-body states in open quantum systems.

Contribution

JGC, LM and I conceptualized the work. I performed the analytical and numerical
calculations supported by JGC and supervised by LM. PK, SR and HK performed the
experiments and data analysis under the supervision by AH. All authors contributed to
the discussion and interpretation of the results, as well as to writing the manuscript.
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We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and
shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which
is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic
ground state to a superposition of excited momentum states, which decouples from the cavity field. We
demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission
measurements. With this, we show that the dark state concept provides a general approach to efficiently
prepare complex many-body states in an open quantum system.

DOI: 10.1103/PhysRevLett.130.163603

While dissipation is in general perceived as a destructive
feature of a quantum system, it can also be utilized to
engineer nontrivial states, often in conjunction with driving
a system out of equilibrium. A prominent experimental
platform for this purpose is ultracold quantum gases
coupled to high-finesse optical cavities [1–4], due to the
well-controlled dissipative channel resulting from the
photon emission out of the cavity. Paradigmatic models
of light-matter interaction can be explored, such as the
celebrated Dicke model that describes the interaction
between N two-level atoms with a single quantized light
mode [5]. The driven-dissipative Dicke model, an exten-
sion of the standard Dicke model, captures the scenario,
when both external driving and dissipation are present
[6,7]. A wealth of phases, unique to driven light-matter
systems, have been proposed and realized using variations
of driven Dicke models, such as the three-level Dicke
model [8–20]. In particular, the dissipation channel of the
cavity has been utilized to demonstrate the emergence of
nonequilibrium or dynamical phases [19,21–35].
An intriguing class of quantum states in light-matter

systems, well known in quantum optics, are the so-called
dark states [36]. These are superpositions of matter states
with relative phases such that the quantum mechanical
amplitudes, coupling the different sectors to an irradiated
light field, interfere destructively. As a consequence, dark
states decouple from the light field. Dark states play a
crucial role in physical phenomena, such as stimulated
Raman adiabatic passage [37,38], electromagnetically
induced transparency [39,40], lasing without inversion
[41,42], and combinations of these topics [9,20,43,44].
In conventional quantum optics scenarios, dark states
typically arise on a single-particle level. In this Letter,
we use the dark state concept in a many-body context,

specifically condensation. Our study suggests how the
concept of dark state formation can be utilized in the
context of quantum state engineering via dissipation.
In this Letter, we demonstrate in theory and experiment a

robust condensate formation in a dark state of a driven
atom-cavity system, approximately described by a para-
metrically driven three-level open Dicke model introduced
in Refs. [17,19]. We consider a Bose-Einstein condensate
(BEC) prepared in a high-finesse cavity, which is trans-
versely pumped with a shaken one-dimensional optical
lattice, as sketched in Fig. 1(a). Previously, we explored the
weakly resonantly driven scenario leading to an incom-
mensurate time crystal (ITC) [17,19,26]. Here, technical
improvements in our setup allowed us to study theoretically
and experimentally the so far unexplored regime of strong
driving and a wider range of driving frequencies, which
reveals that the ITC has transient character in certain
parameter regimes, such that the atoms relax into a dark
state of the atom-cavity system eventually.
To understand the dark state and to identify the relevant

driving parameters, we employ the time-dependent atom-
cavity Hamiltonian in Refs. [17,45] and an approximative
parametrically driven three-level Dicke model [17,19],
which includes only three atomic modes denoted as jNi,
jBi, and jDi, in a plane-wave expansion of the atomic field
operator. These modes are illustrated in terms of their
momentum components in Fig. 1(b) and form the V-shaped
three-level system sketched in Fig. 1(c). The normal state
jNi≡ jð0; 0Þℏki corresponds to a homogeneous density in
real space, wherein all atoms occupy the lowest momentum
mode fpy; pzg ¼ f0; 0gℏk (k is the wave number of the
pump field). The pump leads to a light shift of −ϵpωrec=2,
where ϵp is the unitless pump intensity andωrec is the atomic
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recoil frequency. The bright state jBi≡P
ν;μ∈f−1;1g jνℏk;

μℏki is defined as the in-phase superposition of the f$1;
$1gℏkmomentummodes as depicted in Fig. 1(b). The real-
spacewave function of this state is∝ cosðkyÞ cosðkzÞ, which
has even parity with respect to the inversion ðy; zÞ →
ð−y;−zÞ. It exhibits a kinetic energy of 2Erec and is light
shifted by the pump wave by −3ϵpωrec=4 such that its
frequency separation relative to jNi isωB ¼ ð2 − ϵp=4Þωrec.
The dark state jDi≡P

ν;μ∈f−1;1g νjνℏk; μℏki is defined as
the out-of-phase superposition of the fþ1;$1gℏk and
f−1;$1gℏk momentum modes. In real space, its order
parameter is ∝ sinðkyÞ cosðkzÞ, which has odd parity under
the inversion ðy; zÞ → ð−y;−zÞ.
The density distributions of the dark state jDi and the

bright state jBi both prohibit collective scattering of
photons into the cavity. Nonetheless, any admixture of
the normal state jNi to the bright state jBi leads to a
checkerboard pattern of the atomic density that allows
pump photons to scatter into the cavity, which is the reason
we refer to jBi as a bright state. Above a critical pump
strength, the system forms a superradiant (SR) phase as its
stationary state, in which a superposition of jBi and jNi

produces a density grating trapped by the intracavity optical
lattice composed of the pump and cavity fields. In contrast
to jBi, the density grating of the dark state jDi, due to its
odd parity is shifted along the pump direction by a quarter
of the pump wavelength, such that the atomic positions
coincide with the nodes of the pump lattice, motivating our
terminology of bond-density waves in Refs. [17,19].
Hence, even if jNi is admixed to the dark state jDi,
scattering of pump photons remains suppressed, meaning
that for any superposition of the normal and the dark state
collective scattering of photons into the cavity cannot
occur. The dark state jDi exhibits the same kinetic energy
2Erec as jBi, while its light shift due to the pump lattice is
only −ϵpωrec=4. Thus, its frequency relative to that of jNi
is ωD ¼ ð2þ ϵp=4Þωrec.
To excite the dark state, we shake the pump lattice by

introducing a time-dependent phase in the pump field,
cosðkyþ ϕðtÞÞ, where ϕðtÞ ¼ f0 sinðωdrtÞ, f0 is the driv-
ing strength, and ωdr is the driving frequency. The
excitation mechanism is readily understood by means of
the three-level Dicke model Ĥ ¼ Ĥstat þ Ĥdyn with a static
part,

Ĥstat=ℏ ¼ ωâ†âþ ½ωB −Ωðf0Þ'ĴBz þ ½ωD þ Ωðf0Þ'ĴDz

þ 2λffiffiffiffiffiffi
Na

p ðâ† þ âÞJ0ðf0ÞĴBx ; ð1Þ

and a dynamical part,

Ĥdyn=ℏ ¼ h2ðtÞΔωBDðĴDz − ĴBz Þ þ 2g2ðtÞΔωBDĴBDx

þ 4λffiffiffiffiffiffi
Na

p ðâ† þ âÞ½h1ðtÞĴBx − g1ðtÞĴDx '; ð2Þ

whereΩðf0Þ¼ðϵpωrec=4Þ½1−J0ð2f0Þ',ΔωBD¼ðωB−ωDÞ,
hmðtÞ¼

P∞
n¼1 J2nðmf0Þcosð2nωdrtÞ, gmðtÞ¼

P∞
n¼1J2n−1×

ðmf0Þsin½ð2n−1Þωdrt', and JnðrÞ is the nth Bessel function
of the first kind. The time-dependent terms introduced
by the pump lattice shaking are hmðtÞ and gmðtÞ. Details
on the derivation of this Hamiltonian are given in the
Supplemental Material [45]. The pseudospin operators ĴBμ
(μ ∈ fx; y; zg) describe the coupling to the bright state
since ĴBþ ≡ ĴBx þ iĴBy ¼ jBihNj. Accordingly, ĴDμ is related
to the dark state as ĴDþ ≡ ĴDx þ iĴDy ¼ jDihNj. We see from
the last term of Eq. (2) that jDi can be coupled to the cavity
mode via the time-dependent shaking of the pump, result-
ing in a periodic coupling between jDi and jNi. Note that
the necessary nonzero amplitude g1ðtÞ can be provided by
phase modulation, which breaks the discrete translation
symmetry along the pump axis, but not by amplitude modu-
lation. We consider the recoil-resolved regime, i.e., the loss
rate of the cavity photons κ is comparable to the recoil fre-
quency ωrec, which for our system is ωrec ¼ 2π × 3.6 kHz.
We emphasize the importance of this regime [48,49] to

FIG. 1. (a) Sketch of the experimental setup. An electro-optical
modulator (EOM) is used to modulate the phase of the pump
field, which results in shaking the pump potential. The light
leaking out the cavity is detected using a photo diode (PD).
(b) Sketch of the momentum distribution of the three relevant
superpositions of momentum modes, the normal state jNi, the
bright state jBi, and the dark state jDi, which form a three-level
Dicke model shown in (c) with the atom-cavity coupling λ and the
shaking-induced functions h1ðtÞ and g1ðtÞ. The colors in (b) re-
present the phase of the momentum states, where blue indicates a
phase shift of π relative to red.
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protect the dark state from detrimental resonant excitations
to higher energy momentum states.
Next, we discuss the dynamics of the system by solving

the semiclassical equations of motion of the three-level
model Eq. (2) and those of the atom-cavity Hamiltonian
[45] including fluctuations due to photon emission out of
the cavity. For the three-level model, the dark state
occupation is hĴDiþ 1=2. For the full atom-cavity model,
we apply the following protocol: the pump laser strength is
linearly increased within 10 ms, such that we always
initially prepare the SR phase. After a holding time of
0.5 ms, the phase of the pump lattice is modulated for 7
driving cycles, starting at t ¼ t0. We choose 7 driving
cycles since, as is later seen in the experiment, the dark state
occupation ND is found to equilibrate after 6 driving cycles
due to heating [45]. Subsequently, we adiabatically ramp-
down the pump strength in 0.5 ms and calculate ND as the
sum of the occupations in the f$1;$1gℏk modes. The
ramp-down is necessary to remove all f$1;$1gℏk pop-
ulations, associated with jBi rather than jDi, by trans-
ferring jBi into jNi, which does not affect jDi. In Fig. 2, we
construct the phase diagrams of the three-level and the full
models, plotting ND for different driving parameters. Our
previous work on the emergence of an ITC involved the
regime around ωdr ∈ ½1; 1.2' × ωD and f0;theory < 0.4
[17,19]. We find qualitative agreement between the numeri-
cal simulations of the full atom-cavity system and the
driven three-level Dicke model as seen in Fig. 2. Significant
occupation of the dark state is observed in a large area of
the phase diagram for ωdr > ωD and also in a small area
close to the resonance ωdr ≈ ωD. We note that the area in
the driving parameter space, where the dark state becomes
dynamically occupied, is larger in the full atom-cavity
model as compared to the three-level Dicke model. This
can be attributed to the f0;$2gℏk and f$2; 0gℏk modes,

which are neglected in the three-level model [45]. Atoms in
these modes may be transferred to the dark state upon
scattering photons into the cavity, thus increasing its
efficient population. This process competes with a direct
resonant transfer of atoms into the second band of the pump
wave without scattering photons into the cavity, which
impedes efficient population of the dark state as detailed in
the Supplemental Material [45]. The respective resonance
frequency arises in Fig. 2 for ωdr=ωD ≈ 1.7, i.e., slightly
outside the shown range.
Next, we employ the truncated Wigner approximation

(TWA) to capture the leading-order quantum effects
[26,50–52]. We include not only the dissipation due to
photon emission out of the cavity but also the associated
fluctuations. We further demonstrate that the observed dark
state is indeed a finite momentum condensate by calcu-
lating the eigenvalues of the single-particle correlation
function at equal time, hΨðy; zÞ†Ψðy0; z0Þi, for our full
atom-cavity model. This appears in the Penrose-Onsager
criterion for condensates, and its largest eigenvalue corre-
sponds to the condensate fraction [53]. We denote the
eigenvalues as nNO. We show in Fig. 3(a) the nNO obtained
from TWA simulations for the same pump protocol used in
Fig. 2(b), but without the final ramp-down of the pump
wave. When the system enters the SR phase (at about
5.2 ms), the condensate fragments manifested in the

FIG. 2. (a),(b) Population of the dark state for different driving
frequencies ωdr and driving strengths f0;theory. The driving
frequency axis is rescaled by the characteristic frequency of
the dark state ωD. (a) The results from the three-level model and
(b) the full atom-cavity simulation. The phase diagrams are
constructed for 7 driving cycles.

FIG. 3. (a) Simulations of the evolution of the three highest
eigenvalues of the single-particle correlation function are shown.
Gray dashed and solid vertical lines denote, respectively, the
times when the snapshots of the single-particle densities in (b)
and (c) are taken. The real-space densities in (b) and (c) are color
coded to show the phase of Ψðy; zÞ. (d),(e) Evolution of the
occupations of jNi, jBi, and jDi, while the pump is adiabatically
ramped down. Panels (d) and (e), respectively, correspond to
initial conditions according to the dashed and solid gray vertical
lines in (a).
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reduction of the largest eigenvalue and the corresponding
increase of the second largest eigenvalue [54]. The real-
space density jΨðy; zÞj2 shown in Fig. 3(b) illustrates the
prevailing SR phase at the time indicated by the dashed
gray line, before driving starts at t ¼ t0. In Fig. 3(c), we
show jΨðy; zÞj2 at the time indicated by the solid gray line,
after driving has acted for about 0.6 ms, indicating a
substantial population of the dark state. The zeros (black
regions) coincide with the intensity maxima of the pump
lattice along the y direction, while there is no significant
standing wave potential along the cavity direction. The
different colors in Fig. 3(c) denote opposite phases of
Ψðy; zÞ. In Figs. 3(d) and 3(e), we show the occupations of
the relevant states as the pump lattice is ramped down at
the times indicated by the dashed [Fig. 3(d)] and solid
[Fig. 3(e)] gray lines. It can be seen in Fig. 3(d) that for the
SR phase [prevailing at the time denoted by the dashed
vertical line in Fig. 3(a)] practically all atoms are trans-
ferred back to the normal state jNi after the ramp-down. On
the other hand, for the driven case in Fig. 3(e), associated
with the time indicated by the solid gray line in Fig. 3(a),
the dark state jDi has the largest occupation at t ¼ tramp.
After the ramp-down, its occupation increases further,
forming a long-lived state, compared to the decay time
of the SR state. These results corroborate that the pop-
ulation of the f$1;$1gℏk modes after the pump is
adiabatically switched off is the appropriate observable
to quantify the in situ occupation of the dark state.
Finally, we experimentally demonstrate driving-induced

condensation into a dark state of the atom-cavity system
[45]. We present in Fig. 4(a) the resulting experimental
phase diagram of the occupation of ND for varying driving
parameters. We find qualitative agreement with the theo-
retical phase diagrams depicted in Fig. 2. For technical

reasons, such as atom losses, a complete population
inversion into the dark state, as seen in the numerical
simulations, is not observed in the experiment. We note that
there is a slight difference between the numerical and the
experimental results for the driving strength needed to
populate the dark state. This can possibly be attributed to
the pump in the experiment having a nonzero width in
frequency space, so that the effective pump power is
smaller than it would be for monochromatic pump beam.
Therefore, the experimental realization might require a
nominally larger pump power than in the theoretical model.
Figures 4(b)–4(d) show the occupation of the dark state

for varying numbers of driving cycles and fixed driving
frequencies. Each panel corresponds to a value of the
driving strength f0;exp indicated by the red markers in
Fig. 4(a). Between the red circular and the red rectangular
marker, there is a sharp transition from large occupation of
jDi [see also Fig. 4(c)] toward a region where jDi is
practically unoccupied [see also Fig. 4(d)]. In the limit of
strong driving around the diamond-shaped marker in
Fig. 4(a), the dark state becomes highly occupied after
only 2 driving cycles, but the occupation number slightly
decreases again for larger numbers of driving cycles as
shown in Fig. 4(b). This is explained by the excitation of
the j$ 2ℏk; 0i modes, as discussed below. Each data
point is obtained via averaging over 10 TOF images. We
also present the corresponding TOF images [see Figs. 4(e)
and 4(f)] at two instances of time, i.e., at t ¼ t0 before
driving is started and after six driving cycles at t ¼ t0 þ
6Tdr as indicated in Fig. 4(c). These TOF images corre-
spond to the spatial orders calculated in Figs. 3(d) and 3(e).
We display the time evolution of the cavity field for a
single experimental realization in Fig. 4(h) showcasing the
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FIG. 4. Experimental phase diagram of the population of the dark state for different driving frequencies ωdr and driving strengths
f0;exp. The driving frequency axis is rescaled by the characteristic frequency of the dark state ωD. The phase diagram is constructed for 6
driving cycles. (b)–(d) Population of the dark state as a function of the driving cycles for the parameter sets marked by a diamond, a
circle, and a rectangle in (a). The population of the dark state is rescaled by the total particle number Na for different driving cycles
derived from time-of-flight (TOF) images in (b)–(d). Examples of TOF images are provided before shaking starts at t ¼ 0 (e) and after
around 6 driving cycles (f). All TOF images are obtained after an adiabatic ramp-down of the pump wave and ballistic expansion of
25 ms. (g) Time sequence for the pump strength (red) and the phase ϕ of the pump field (blue). (h) Phase difference φ between the pump
and intracavity field (blue) and intracavity photon number NP (red) for the driving parameters marked by a circle in (a).
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vanishing intracavity light field as a macroscopic fraction
of the atoms occupy the dark state.
For the case depicted in Fig. 4(c), we find that initially

ND increases and saturates beyond 6 driving cycles. The
system approaches a steady state because of atom losses
before all atoms can be transferred into the dark state. In
contrast to the SR phase in Fig. 4(e), the large occupation of
the four momentum components f$1;$1gℏk in Fig. 4(f)
in combination with the small intracavity photon number in
Fig. 4(h) indicates a large occupation of the dark state jDi.
Furthermore, a substantial fraction of atoms populates the
f$2; 0gℏk momentum modes as the driving frequency is
tuned close to the resonance frequency for excitation to the
second band of the pump wave. This process inhibits
efficient population of the dark state as is discussed in the
Supplemental Material [45]. For reasons explained in
Ref. [45], in the experiment, the respective resonance is
shifted to ωdr=ωD ≈ 1.45, i.e., within the domain shown in
Fig. 4(a), acting to suppress the dark state population on the
right side of the red circle.
In conclusion, in an atom-cavity system pumped by a

periodically shaken standing wave, we have found that in a
specific parameter domain, a stationary excited dark state
condensate emerges, in which scattering of pump photons
into the cavity mode is suppressed. We show that a three-
level Dicke model captures this phenomenon qualitatively.
Both theoretically and experimentally, we observe that,
upon adiabatic ramp-down of the pump wave, the atomic
condensate in the dark state is essentially unaffected, while
the bright sector of the system undergoes a dynamical
phase transition [3]. Our work points out a general
approach to form stationary excited many-body states
using the concept of dark states known from single-particle
quantum optics.
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I. BEC, CAVITY, AND PUMP BEAM PROPERTIES

The experimental setup, as sketched in Fig. 1(a) in the main text, is comprised of a magnetically trapped BEC of Na = 4⇥104
87Rb atoms, dispersively coupled to a fundamental mode of a narrowband high-finesse optical cavity. The trap creates a harmonic
potential with trap frequencies (!x,!y,!z) = 2⇡ ⇥ (119.0, 102.7, 24.7) Hz. The corresponding Thomas-Fermi radii of the
ensemble are (rx, ry, rz) = (3.7, 4.3, 18.1) µm. These radii are significantly smaller than the size of the Gaussian shaped pump
beam, which has a waist of wpump ⇡ 125 µm. The pump beam is oriented transversally, with respect to the cavity axis, and
retro-reflected to form a standing wave. It passes through an electro-optic modulator (EOM) twice. An AC voltage is applied to
the EOM to modulate the phase of the pump field, which leads to an effective shaking of the pump lattice potential.

The pump laser is stabilized to the cavity resonance using high bandwidth servo electronics. As a drawback, the pump light
is not strictly monochromatic and besides the narrow carrier, the spectrum contains two servo bumps with a frequency shift of
roughly ±2 MHz. We estimate the light power with in these side peaks being about 30% of the total light power. Since this light
is far detuned, with respect to the cavity resonance, it cannot contribute to scatter photons into the cavity. In contrast, light of all
frequencies contribute to the depth of the standing wave potential, and hence, contributes to the shift of the resonance frequency
of the dark state !D = (2 + ✏p/4)!rec. Therefore the dark state resonance frequency in the experiment is larger than the one
used in our theoretical models.

The cavity field has a decay rate of  ⇡ 2⇡ ⇥ 3.6 kHz, which equals the recoil frequency !rec = Erec/~ = 2⇡ ⇥ 3.6 kHz
for 87Rb atoms at the pump wavelength of �P = 803.00 nm. The pump laser is red detuned with respect to the relevant atomic
transition of 87Rb at 794.98 nm. The maximum light shift per atom is U0 = 2⇡ ⇥ 0.4 Hz.

II. CAVITY FIELD DETECTION

Our experimental system is equipped with two detection setups for the light leaking out of the cavity. On one side of the cavity,
we use a single photon counting module (SPCM), which gives access to the intensity of the intracavity field and the associated
photon statistics. On the other side of the cavity, a balanced heterodyne detection setup is installed, which uses the pump beam
as a local reference. The beating signal of the local oscillator with the light leaking out of the cavity allows for the observation
of the time evolution of the intracavity photon number NP and the phase difference between the pump and the cavity field '.

III. EXPERIMENTAL PROTOCOL TO OBTAIN THE POPULATION OF THE DARK STATE ND

To obtain the population of the dark state ND experimentally, we ramp down the pump laser strength adiabatically within
0.5 ms, similar to the theoretical protocol described in the context of Fig.2(b) in the main text. Subsequently, a ballistic expansion
of 25ms is applied and an absorption image of the resulting density distribution is recorded, time-of-flight (TOF). Finally, ND

is obtained by summing up the occupations around the momentum modes {±1,±1}~k, in accordance with the findings in
Figs.3(d) and Fig.3(e) in the main text.

⇤ These authors have contributed equally to this work.
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(a)

(b)

(c)

FIG. 1. Typical experimental run. (a) Experimental protocol for the intensity (red) and the phase (dashed blue) of the pump field. (b) In situ
number of photons (red) in the cavity NP and the corresponding phase difference ' (blue) between the pump and cavity fields. (c) Population
of the dark state rescaled by the total particle number Na (coherent fraction) for different number of driving cycles derived from TOF images.

IV. DYNAMICS DURING A TYPICAL EXPERIMENTAL RUN

Our experimental sequence starts by preparing a BEC and overlap it with the TEM00 mode of our cavity. We linearly increase
the pump strength ✏ to its desired value to initialise the system into the self-organized superradiant phase. This is indicated by a
finite photon number NP (red trace in Fig. 1(b)) and by the fixed phase difference ' between the pump and cavity fields. At time
t� t0 = 0 we switch on the phase modulation of the pump lattice, which leads to a periodic shaking of the optical potential. The
system starts to oscillate between the two possible self-organized density patterns, which can be seen by the phase difference
' switching between 0 and ⇡. This is accompanied by an increase in the population of the dark state ND/Na until it reaches
its maximum value at time t � t0 = 5 Tdr, where Tdr is the driving period. Due to the increasing population of the dark state
the atoms step by step decouple from the cavity field and slowly stop scattering photons from the pump into the cavity and
vice versa. The photon number NP approaches zero and the light field phase ' shows random values between 0 and 2⇡. The
system is now in a steady state and the population of the dark state, normalized to the total number of coherent atoms ND/Na,
stays constant. Fig. 2(a) shows the dynamics of the relative population of all relevant momentum modes. Fig. 2(b) depicts the
corresponding time evolution of Na. As soon as the shaking starts (t � t0 = 0), the total particle number Na drops rapidly due
to cavity-field-induced heating. After the atoms are decoupled from the cavity field, the heating rate decreases.

V. COMPARISON OF THE RELATIVE POPULATION OF THE DARK STATE FOR PUMP LIGHT CLOSE AND FAR
DETUNED WITH RESPECT TO THE CAVITY RESONANCE

We present in Fig. 3(a),(c) the experimentally obtained phase diagrams showing the population of the dark state with respect
to the driving frequency !dr/!D and driving strength f0. In Figs. 3(b),(d), we show the population of the {py, pz} = {±2, 0}~k
momentum modes for the pump light, close and far detuned with respect to the cavity resonance. For the far detuned case,
the cavity is basically inactive and we do not observe population of the dark state, which demonstrates the importance of
cavity photons for the excitation of the dark state. Moreover, the parameter range, wherein we observe population of the
{py, pz} = {±2, 0}~k momentum modes, is very similar for both cases, only its amplitude increases for the far detuned case
since there are no atoms pumped into the dark state.

As explained in the second paragraph of Sec.I, the dark state frequency is larger in the experiment than in our theoretical
models. In our experimental observations, the resonance frequency for excitation of the {py, pz} = {±2, 0}~k momentum
modes lies at ⇡ 1.45!dr/!D. In SFig. 3(a), we see that in fact the transfer of atoms into the dark state is suppressed if the
{±2, 0}~k resonance is approached. Rather, the atoms are transferred into the second band, as shown in SFig. 3(b), without
photon scattering into the cavity. The plots in (c) and (d) for large pump-cavity detuning �C show that no dark state population
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(a)

(b)
4

FIG. 2. (a) Time evolution of the population of the relevant momentum modes normalized to the total number of atoms (coherent fraction). (b)
Time evolution of the total number of coherent atoms Na.
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FIG. 3. Relative population of the dark state for different driving frequencies !dr/!D and driving strengths f0 for (a) the pump light close to
resonance (�C = � 2⇡ ⇥ 30 kHz) and (c) far detuned from cavity resonance after six driving cycles. The driving frequency axis is rescaled
by the resonance frequency of the dark state !D. (b) and (d) show the relative population of the {py, pz} = {±2, 0}~k momentum modes,
which indicates the atoms populating the third band.



4

arises, while the direct excitation of the {±2, 0}~k momentum modes prevails. Finally, in our numerical models, the {±2, 0}~k
resonance arises at ⇡ 1.7!dr/!D, which lies outside of the range of our simulations.

VI. ATOM-CAVITY SYSTEM

Our system is well described by the Hamiltonian [1–4]

Ĥ/~ = ��Câ
†
â+

Z
dydz ̂†(y, z)


�

~
2m

r
2

� !rec✏p cos
2(ky + �(t)) + U0 â

†
â cos2(kz) (1)

�

q
!rec|U0|✏p cos(ky + �(t)) cos(kz)(a† + a)

�
 ̂(y, z),

where �C is the pump-cavity detuning, and U0 < 0 is the frequency shift of the cavity resonance due to a single atom (|U0| =
2⇡ ⇥ 0.4 kHz). The phase of the pump field is periodically driven according to �(t) = f0 sin(!drt) with the modulation index
f0 and the modulation frequency !dr. Furthermore, â (â†) is the annihilation (creation) operator for a photon in the single-mode
cavity, while  ̂ ( ̂†) is the bosonic annihilation (creation) field operator for the atoms. Here, k denotes the wave number of
the pump light, ✏p is the the pump strength, quantified in terms of the maximal energy depth of the pump lattice in units of the
recoil energy Erec = ~!rec with the recoil frequency !rec = ~k2/2m, where m is the atomic mass. The experiment operates
in the recoil-resolved regime, i.e., the loss rate of the cavity photons  is smaller than the recoil frequency !rec. For our system
!rec = 2⇡ ⇥ 3.6 kHz. We emphasize the importance of the recoil-resolved regime [5, 6] to excite the atoms into the dark state,
as the underlying mechanism relies on a coherent coupling of a limited number of momentum modes.

VII. PROCESSES FOR POPULATING THE DARK STATE

We briefly discuss the different scattering channels for populating the dark state in our theoretical models, i.e., the three-mode
Dicke model and full-atom cavity simulations, and in the experimental setup.

First, we discuss the difference between the full atom-cavity model and the three-level Dicke model. In the full atom-
cavity system, we achieve a higher dark state population as compared to the results of the three-mode Dicke model after 7
driving cycles. In the three-mode model, we only consider momentum modes up to {py, pz} = {±1,±1}~k and neglect
the {py, pz} = {±2, 0}~k modes. However, as can be seen from the last line in the Hamiltonian in Eq. 4, atoms in the
{py, pz} = {±2, 0}~k modes can be transferred into the dark state |Di ⌘

P
⌫,µ2{�1,1} ⌫|⌫~k, µ~ki. This enhances the dark

state population in the full atom-cavity system as compared to the three-mode Dicke model.
Next, we discuss the population of the dark state in the experiment. While the experiment includes the channel for scattering

from {py, pz} = {±2, 0}~k into the dark state, there are additional factors that decrease the efficiency of populating the dark
state, i.e., heating and atom loss introduced by phase modulation of the pump wave. The atom loss effectively shifts the critical
pump strength required to enter the superradiant phase, as the number of scatterers of photons decreases. Since cavity-photon-
mediated interactions are necessary for the transfer of atoms into the dark state, atom loss, which decreases the occupation of
the cavity mode, attenuates the process of populating the dark state. Furthermore, in the experiment, as discussed in Sec.I, the
additional side lobes of the pump beam frequency spectrum push the dark state resonance towards higher frequencies. This
effectively reduces the regime where the dark state can be populated, which is restricted to driving frequencies smaller than
the resonance for excitation of the {py, pz} = {±2, 0}~k momentum modes. The latter resonance gives rise to an efficient
transfer of the atoms into the maximum of the second band of the pump wave potential. The relevant driving term in Eq. 1
is 2�(t) sin(2ky), which arises by approximating cos(ky + �(t))2 for the case of small driving strengths. We note that the
corresponding resonance frequency is light-shifted by the pump beam, however, this effect can be neglected for the relatively
shallow pump lattice used in this work.

VIII. THREE-LEVEL SYSTEM

As first shown in [3], the Hamiltonian in Eq. 1 can be mapped onto a parametrically driven dissipative three level model.
Here, to capture the effects for strong driving, where f0 ⌧ 1 is not fulfilled, we use trigonometric identities and the following
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Jacobi-Anger expansions [7]

cos(z sin(✓)) = J0(z) + 2
1X

n=1

J2n(z) cos(2n✓) (2)

sin(z sin(✓)) = 2
1X

n=1

J2n�1(z) cos((2n � 1)✓). (3)

The Hamiltonian in Eq. 1 acquires the form

Ĥ/~ = ��Câ
†
â+ U0â

†
â

Z
dydz ̂†(y, z) cos2(kz) ̂(y, z) (4)

� !rec✏p

Z
dydz ̂†(y, z)

1 + cos(2ky) [J0(2f0) + 2h2(t)] � 2 sin(2ky)g2(t)

2
 ̂(y, z)

�

q
!rec|U0|✏p(a

† + a)

Z
dydz ̂†(y, z) cos(ky) cos(kz) (J0(f0) + 2h1(t))  ̂(y, z)

+
q
!rec|U0|✏p(a

† + a)

Z
dydz ̂†(y, z) sin(ky) cos(kz)2g1(t) ̂(y, z),

where we defined h2(t) =
P1

n=1
J2n(2f0) cos(2n!drt) and g2(t) =

P1
n=1

J2n�1(2f0) sin((2n � 1)!drt) and h1(t) =P1
n=1

J2n(f0) cos(2n!drt) and g1(t) =
P1

n=1
J2n�1(f0) sin((2n � 1)!drt).

Next, the atomic field operator is approximated as

 ̂(y, z) = ĉ0 0(y, z) + ĉ1 1(y, z) + ĉ2 2(y, z) (5)

where ĉi are bosonic annihilation operator, and  0(y, z) = 1,  1(y, z) = 2 cos(ky) cos(kz) and  2(y, z) = 2 sin(ky) cos(kz).
We note that in applying this approximation we neglect higher momentum mode contributions, e.g. cos(2ky), which contribute
heavily for higher driving frequencies around ⇠ 14.5 kHz as can be seen in Fig. 3.
Under parity change y ! �y these wave functions transform as

Py 0(y, z) =  0(�y, z) = + 0(y, z) (6)
Py 1(y, z) =  1(�y, z) = + 1(y, z) (7)
Py 2(y, z) =  2(�y, z) = � 2(y, z) . (8)

Hence, only  2 gets a minus sign upon application of Py . Using a Schwinger boson representation, the bosonic operators can
be mapped onto pseudo-spin operators to obtain a driven three-level Dicke Hamiltonian

H/~ = !â
†
â+ (!B ��f0) Ĵ

B

z
+ (!D +�f0) Ĵ

D

z
+ f2(t) (!B � !D)

⇣
Ĵ
D

z
� Ĵ

B

z

⌘
+ 2g2(t) (!B � !D) Ĵ

BD

x
(9)

+
2 (�f0 + ⌘(t))

p
N

�
â
† + â

�
Ĵ
B

x
�

2⇣(t)
p
N

�
â
† + â

�
Ĵ
D

x
,

where !D = 2!rec(1 �
✏p

8
), !B = 2!rec(1 + ✏p

8
), �f0 = ✏p!rec

4
(1 � J0(2f0)), 2� ⌘

p
Na✏p!rec|U0|, �f0 = J0(f0)�,

⌘(t) = 2h1(t)� and ⇣(t) = 2g1(t)�. Expanding this Hamiltonian up to linear order in the driving strength f0 leads to the
parametrically driven dissipative three-level Dicke model presented in [3, 4].

A. Large  limit

Within our three-level Dicke model we can adiabatically eliminate the light field, if  � !rec. That is, we assume da

dt
⇡ 0 and

solve for a to obtain an atom-only or spin-only like three-level model

Ĥe↵/~ = (!B ��f0) Ĵ
B

z
+ (!D +�f0) Ĵ

D

z
+ f2(t) (!B � !D)

⇣
Ĵ
D

z
� Ĵ

B

z

⌘
+ 2g2(t) (!B � !D) Ĵ

BD

x
(10)

� ⇤
⇣
(J0(f0) + 2h1(t))

2
Ĵ
D

x
Ĵ
D

x
� (J0(f0) + 2h1(t)) 2g1(t)

h
Ĵ
D

x
Ĵ
B

x
+ Ĵ

B

x
Ĵ
D

x

i
+ 4g1(t)

2
Ĵ
B

x
Ĵ
B

x

⌘
,

with⇤ = 8�2!/(N(2+!2)). This is the three-level generalisation of the prescription for mapping the standard two-level Dicke
model onto the Lipkin-Meshkov-Glick model by adiabatically eliminating the photon dynamics [8]. In Fig. 4, the corresponding
phase diagram for varying driving strength and driving frequency is shown for � = 1.05�crit. Note, that in a full description of
the atom-cavity setup in terms of Eq. 1, a large value of  would enable the excitation of higher modes, not included here, with
the consequence of decoherence and heating.
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FIG. 4. Population of the dark state for different driving frequencies !dr and driving strengths f0 calculated for the Hamiltonian Eq. 10. The
driving frequency axis is rescaled by the characteristic frequency of the dark state !D. The phase diagram is constructed for 7 driving cycles.

IX. DARK STATE CONDENSATION BELOW THE CRITICAL PUMP STRENGTH

Here, we briefly show the dark state condensation starting below the critical pump strength. We ramp up the pump strength
to ✏ ⇡ 0.96 ✏crit and start the modulation after 10 ms. In Fig. 5, it can be seen that after the modulation is switched on, the light
field builds up before it vanishes again after a large fraction of atoms occupies the dark state as can be seen from the long-time
behaviour in Fig. 6. This again highlights the importance of the intra-cavity field for transfering the atoms into the dark state.
We note that the transition into the dark state is slower compared to the case starting from the superradiant phase discussed in
the main text.

0 100 200
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2500

0

20155 2510

(t-t0)/Tdr

N
P

t (ms)

FIG. 5. Number of photons inside the cavity. The periodic drive is switched on at t0. The parameters are the same as those used in Fig. 4
except for ✏ ⇡ 0.96 ✏crit.

X. MODE POPULATION DURING THE RAMP-DOWN PROCESS

Fig. 7 presents the occupation of the sum of the {±1,±1}~k momentum modes, the |Di as well as the |Ni, before, during and
after the ramp-down of the pump laser for varying driving strength and driving frequencies rescaled by the characteristic dark
state frequency !D. Before the ramp-down process the population of the |Di and |Bi cannot be distinguished by summing up
the {±1,±1}~k momentum modes in a TOF image. However during the ramp-down the populations of |Bi is transferred back
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FIG. 6. (a) TWA results for the evolution of the five highest eigenvalues of the single-particle correlation function at equal time (SPCF). Gray
vertical lines denote the times when the snapshots of the single-particle density in (b) and (c) are taken. (b), (c) The real space densities are
color coded to show the phase within the (y, z)-plane. (d), (e) Momentum spectra at times indicated in (a).

into the |Ni and the phase diagram of the population of the {±1,±1}~k momentum modes and the population of the dark state
|Di are approximately the same. This motivates us to measure the population of |Di using this scheme.
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Motivation

This work was motivated by the recent proposal to realise time crystal by Frank Wilczek.
While discrete time crystal in closed and open systems have been observed previously,
the goal of this paper was to realise and understand the first, so called, continuous time
crystal (CTC). Here, the time translational symmetry is spontaneously broken as the
systems enters the CTC phase.

Main findings

In this work, first-authored by Phatthamon Kongkhambut, we successfully observed
the first CTC. On order to achieve this, a time-independent pump laser was used to
enter a limit cycle phase, which is characterised by emergent periodic oscillations in the
light-field intensity and the atomic density. We showed that the phase of those oscil-
lations is random for di↵erent realisations. Numerically, we showed that this is due to
quantum fluctuations in the initial state and stochastical noise stemming from cavity
losses. We mapped out the phase diagram and showed the robustness of the CTC against
temporal noise in the pump laser intensity. Numerically, we investigated the stability
against varying particle numbers. Hence, with all these studies, we successfully showed
the first realisation of a continuous time crystal.

Contribution

PK and HK performed the experiments and data analysis. The simulations were per-
formed by me and JGC, supported by LM. The project was designed and supervised by
HK and AH. All authors contributed to the discussion and interpretation of the results,
conceptualizing of the figures, as well as to writing the manuscript.
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QUANTUM DYNAMICS

Observation of a continuous time crystal
Phatthamon Kongkhambut1, Jim Skulte1,2, Ludwig Mathey1,2, Jayson G. Cosme3,
Andreas Hemmerich1,2*, Hans Keßler1*

Time crystals are classified as discrete or continuous depending on whether they spontaneously
break discrete or continuous time translation symmetry. Although discrete time crystals have been
extensively studied in periodically driven systems, the experimental realization of a continuous time
crystal is still pending. We report the observation of a limit cycle phase in a continuously pumped
dissipative atom-cavity system that is characterized by emergent oscillations in the intracavity photon
number. The phase of the oscillation was found to be random for different realizations, and hence,
this dynamical many-body state breaks continuous time translation symmetry spontaneously.
Furthermore, the observed limit cycles are robust against temporal perturbations and therefore
demonstrate the realization of a continuous time crystal.

T
ime crystals are dynamical many-body
states that break time translation sym-
metry in a spontaneous and robust man-
ner (1, 2). The original quantum time
crystal envisaged by Wilczek involves a

closed many-body system with all-to-all cou-
pling that breaks continuous time translation
symmetry by exhibiting oscillatory dynamics
in its lowest-energy equilibrium state even
though the underlying Hamiltonian is time-
independent (1). This would constitute a star-
tling state of matter in motion, fundamentally
protected from bringing this motion to a
standstill through energy removal. However,
a series of no-go theorems have shown that
nature prohibits the realization of such time
crystals in isolated systems (3–5). The search
for time crystals was thus extended to include
equilibrium scenarios in periodically driven
closed systems (6–8). This has led to realiza-
tions of discrete time crystals, which break the
discrete time translation symmetry imposed
by the external drive (9–17). In such discrete
time crystals, during a short initial phase, the
drive slightly excites the system until the sys-
tem decouples from the drive, so that further
energy or entropy flow is terminated. The sys-
tem develops a subharmonic response, an in-
trinsic oscillation at a frequency slower than
that of the drive. Initially, it was argued that
dissipation, and hence the use of open sys-
tems,must be carefully avoided; then, so-called
dissipative discrete time crystals were theoret-
ically predicted (18) and experimentally realized
(19–21). As shown in a number of theoretical
works (22–24), the use of open systems comes
with the unexpected consequence that contin-
uous instead of periodic driving suffices to
induce time crystal dynamics. These contin-
uous time crystals (CTCs) realize the spirit of

the original proposalmore closely than discrete
time crystals and circumvent the no-go theo-
rems through their open character.
Here, we report the observation of a CTC in

the form of a limit cycle phase in a continu-
ously pumped dissipative atom-cavity system
(Fig. 1A). In classical nonlinear dynamics, the
term “limit cycle”, coined by Poincaré in amath-

ematical context (25), denotes a closed phase
space trajectory, asymptotically approached by
at least one neighboring trajectory. Although
limit cycles are well-established in classical
nonlinear physics (26), there are two essential
conditions for limit cycles in open quantum
systems to form a CTC. First, the formation of
the limit cycle must be associated with spon-
taneous breaking of continuous time translation
symmetry. That is, the relative time phase of the
oscillations for repeated realizations takes ran-
dom values between 0 and 2p. Second, the limit
cycle phase is robust against temporal perturba-
tions of technical or fundamental character,
such as quantum noise and, for open systems,
fluctuations associated with dissipation. The
characteristic signature of the CTC presented
here is a persistent oscillation of the intra-
cavity intensity and atomic density (Fig. 1, B
and C), which complies with the robustness
and spontaneous symmetry-breaking criteria
(Fig. 1D).
Our experimental setup consists of a Bose-

Einstein condensate (BEC) ofNa ≈ 5 × 104 87Rb
atoms inside a high-finesse optical cavity. The
system is transversely pumpedwith a standing
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Fig. 1. CTC in an atom-cavity system. (A) Schematic drawing of the atom-cavity system pumped
transversely with an optical pump lattice, blue detuned with respect to an atomic transition. (Inset) The
photon field (blue) and the atomic density (red) of the limit cycle dynamics, based on simulations. The
blue color shading of the time axis indicates the intracavity photon number. (B) Single experimental
realization of the limit cycle phase for deff/2p = –3.8 kHz and ef = 1.25 Erec. The vertical dashed black line
indicates the start of the 10 ms holding time, during which the pump strength is held constant. The
black line indicates the time trace of the pump strength e, and the blue line indicates the time evolution of
the intracavity photon number NP(t). (C) Normalized and rescaled single-sided amplitude spectrum of NP

calculated from the data shown in (B). (D) (Top) Distribution of the time phase in the limit cycle phase
for deff/2p = –5.0 kHz and ef = 1.25 Erec. The error bars indicate the phase uncertainty within our discrete
Fourier transform resolution of 100 Hz. However, the uncertainty with regard to the radial dimension—the
amplitude uncertainty—is negligibly small. For clarity, we removed the errors bars, around 30%, which
are overlapping. (Bottom) The evolution of the intracavity photon number for two specific experimental
realizations, marked with “1” and “2” at top, which have a time phase difference of almost p.
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wave field with a wavelength lp = 792.55 nm
(Fig. 1A). This wavelength is blue detunedwith
respect to relevant atomic D1 transition of
87Rb at a wavelength of 794.98 nm. The cavity
operates in the recoil resolved regime (27)—its
field decay rate k = 2p × 3.4 kHz is smaller
than the recoil frequency wrec = 2p × 3.7 kHz.
The cavity resonance frequency wc is shifted
because of the refractive index of the BEC by
an amount of d– = NaU0/2, where U0 = 2p ×
1.3 Hz is themaximal light shift per intracavity
photon. We define the effective detuning as
deff ≡ dc – d–, where dc ≡ wp – wc is the detuning
between the pump field frequency wp and the
resonance frequency of the empty cavity wc.
To determine the regime of the CTC, we

measured the time dependence of the intra-
cavity photon number NP(t) that emerges in
the protocol given below. We show NP(t) in
Fig. 2A and two derived quantities, the crys-
talline fraction X and the limit-cycle frequency
wLC, in Fig. 2, B and C, respectively. In our
protocol, the intracavity photon number NP(t)
was recorded as we linearly ramped the pump
strength e from 0 to 3.5 Erec within 10 ms,
while keeping deff fixed. Initially, for weak
pump intensities, the BEC phase was stable,
and NP was zero. Above a critical value of e,
the BEC became unstable toward the forma-
tion of a self-organized superradiant phase

heralded by a nonzero NP. This represents a
many-body state as the cavity photons medi-
ate a retarded infinite-range interaction be-
tween the atoms. Although this superradiant
phase transition has been intensively studied
for a red-detuned pump (28–31), it has only
been realized recently for a blue-detuned pump
after its theoretical prediction (32, 33). For blue
detuning, the atoms are low-field seeking and
localize at the intensity minima of the light
field. Nevertheless, the atoms can still self-
organize into the superradiant phase, as evi-
dent from the large blue areas shown in Fig. 2A.
However, the self-organized superradiant
phase may become unstable for higher pump
strengths because it costs energy for the atoms
to localize away from the nodes of the pump
lattice. This behavior leads to the disappearance
of the self-organized phase for higher pump
strengths (32). A phase diagram in fig. S1 in
(34) shows a larger range of e, demonstrating
the disappearance of the self-organization for
strong pumping. In the recoil-resolved regime,
because of the retarded character of the cavity-
mediated interaction, we additionally observed
the emergence of a new dynamical phase or a
limit cycle phase characterized by self-sustained
oscillations of NP as the atoms cycled through
different density wave patterns (33, 35). The
resolution of the experimental imaging system

is insufficient to observe the real-space density
of the cloud; instead, simulations of the evo-
lution of the single-particle density by use of a
mean-field model are shown in fig. S3 (34). Phys-
ically, the limit cycles can be understood as a
competition between opposing energy contri-
butions: one coming from the pump lattice
potential, and another coming from the cavity-
induced all-to-all interaction between the atoms
(33). In the superradiant phase, the cavity-
induced interaction energy dominates, and the
atoms localize at the antinodes. In the limit
cycle phase for sufficiently strong pump inten-
sities, localization of low-field–seeking atoms
at the antinodes becomes energetically costly,
resulting in a decrease in the density modu-
lations and NP as the system attempts to go
back to the normal homogeneous phase. How-
ever, this is unstable toward self-organization
because the chosen pump strength already ex-
ceeds the critical value, and thus, the cycle
starts anew. The regime of recoil-resolution
of the cavity, in which the dynamics of the
atomic density and the light field evolve with
similar time scales, has turned out to be the
key ingredient to realize the limit cycle phase.
This can be understood by noting that the
delayed dynamics of the cavity field, with
respect to the atomic density, leads to cavity
cooling, which in contrast to broadband cavity
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Fig. 2. Determining the time-crystalline regime. (A) (Top) Pump strength
protocol. (Bottom) The corresponding intracavity photon number NP as a
function of deff and e. The area enclosed by the yellow dashed lines indicates
the parameter space spanned in (B) and (C). (B) Relative crystalline fraction
X and (C) limit cycle frequency wLC plotted versus deff and ef. To obtain (B)
and (C), for fixed deff, the pump strength is ramped to its final value ef and

subsequently held constant for 10 ms. The relative crystalline fraction X and the
corresponding value of wLC identify the time-crystalline state. The parameter
space is divided into 20 by 24 plaquettes and averages across 5 to 10
experimental implementations are produced. The white cross indicates the
parameter values deff/2p = –5.0 kHz and ef = 1.25 Erec. The white area in (C)
corresponds to data with X below 1/e.
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setups restricts the atoms to occupy only a
small number of momentum modes. This pre-
vents the system from heating up and enter-
ing chaotic dynamics. We observed the limit
cycle phase in the region shown in Fig. 2A
enclosed by the yellow dashed lines. To fur-
ther highlight the dynamical nature of this
phase, we show a typical single-shot realiza-
tion in Fig. 1, B and C.
Next, we quantitatively identified the area

in the parameter space, spanned by the pump
strength e and the effective detuning deff,
where limit cycles can be observed. For fixed
deff, we linearly ramped e to the desired final
value ef, using the same slope as for the
measurement shown in Fig. 2A, and held e
constant for 10 ms. The protocol is depicted
by the black curve in Fig. 1B. We show in
Fig. 1C an example of the normalized and
rescaled single-sided amplitude spectrum
NP wð Þ ¼ !NP wð Þ= !NP;max wLCð Þ obtained from
NP(t) within the holding timewindow [0,10]ms
in Fig. 1B. !NP wð Þ is the normalized single-
sided amplitude spectrum, and !NP;max wLCð Þ is
the maximum value of the measured limit
cycle amplitude. In the case of pronounced
limit cycle dynamics as in Fig. 1C, the single-
sided amplitude spectrum shows a distinct
peak, with a width associated with the limit
cycle lifetime of several milliseconds. The
narrowest peaks observed exhibit a e–2 width
Dw ≈ 2p × 1.4 kHz: The limit cycle frequency
wLC, plotted in Fig. 2C, is defined as the
frequency of the dominant peak in the single-
sided amplitude spectrumwithin the frequency
interval DLC = [3.5,15.5] × 2p Hz, chosen much
larger than dLC ∈ [wLC – Dw/2,wLC + Dw/2]. The
oscillation frequency of a CTC is not necessarily
fixed, and robustness refers to the persistence of
the CTC in the thermodynamic limit and for a
wide range of system parameters [finite-size
effects are discussed in the supplementary
materials (34)] (22). We calculated a common
measure for time crystallinity, the crystalline
fraction X′ (10, 11), as the ratio between the
area under the single-sided amplitude spec-
trumwithin dLC and the total areawithin DLC.
That is, X′ ≡

P
w∈dLCNP wð Þ=

P
w∈DLC

NP wð Þ. The
relative crystalline fraction X shown in Fig.

2B is normalized to the maximum crystalline
fraction measured in the parameter space
explored in this work. Because of the finite
lifetime of the BEC, it is difficult to access
the long-time behavior of the system, which
makes it experimentally challenging to dis-
tinguish between the areas of stable limit
cycle, chaos, and possible transient phases.
Hence, we define a cut-off or threshold value
for the relative crystalline fraction, Xcut = 1/e,
to identify regions with observable limit cycle
dynamics. In Fig. 2C, the frequency response
of the limit cycle phase is only shown if its
relative crystalline fraction is higher than the
cut-off value: X > Xcut. The experimental life-
time of our time crystal is limited by atom
loss. Furthermore, the short-range contact
interaction, due to collisions between the
atoms, leads to dephasing of the system and
hence melting of the time crystal. Simulations
that include contact interactions and phenom-
enological atom loss can be found in the sup-
plementary materials.
The spontaneous symmetry breaking of a

many-body system indicates a phase transition.
We demonstrated strong evidence that the
limit cycle phase emerges through spontaneous
breaking of continuous time translation sym-
metry, and thus, it is a CTC. We repeated the
experimental pump protocol shown as the Fig.
1B black line more than 1500 times with fixed
deff/2p = –5.0 kHz and ef = 1.25 Erec. These
parameter values are indicated in Fig. 2C with
a white cross. Because of technical instabil-
ities, the number of the atoms in the BEC Na

fluctuates by 5%. This leads to a fluctuating
value of deff and hence of wLC. Pictorially, this
can be understood by observing that fluctua-
tions in Na effectively shift the CTC regime in
Fig. 2C either up or down. For the parameter
values indicated by a white cross in Fig. 2C,
the median of wLC is !wLC ¼ 2p$ 9:69 kHz.
Our discrete Fourier transform resolution,
set by the 10-ms timewindow, is 100 Hz. Thus,
we only considered experimental runs, which
yielded response frequencies of wLC ¼ !wLC T
2p$ 50 Hzð Þ. For each single-shot measure-
ment, we obtained the time phase defined as
the principal argument arg[NP(wLC)] of the

Fourier transformed intracavity photon num-
ber NP(wLC) evaluated at the limit cycle fre-
quencywLC. In Fig. 1D, we show the distribution
of the observed time phases, which randomly
covers the interval [0,2p]. This corroborates the
spontaneous breaking of continuous time
translation symmetry in the limit cycle phase.
In the bottom of Fig. 1D, we show two specific
experimental realizations, which have a time
phase difference of almost p. Simulations rep-
resenting the BEC as a coherent state show a
range of the response frequency distribution
of 300 Hz. Because we post-selected our data
far below this limit, the origin of the spread
over 2p in the time phase distribution is not
due to technical noises but rather to quantum
fluctuations. In the supplementary materials,
we show amore detailed theoretical analysis to
support this argument. The error bars along the
angular direction in Fig. 1D indicate the phase
uncertainty within 100 Hz of our Fourier limit.
The average phase uncertainty is around
0.25p. The uncertainty in the radial direction
corresponding to the oscillation amplitude is,
however, negligible. Moreover, we removed
30% of the error bars for clarity in Fig. 1D.
Last, we demonstrated the robustness of the

limit cycle phase against temporal perturbations,
which is a defining feature of time crystals. We
introduced white noise onto the pump signal
with a bandwidth of 50 kHz. The noise strength
is quantified by n ≡

P2p$50 kHz
w¼0 Anoisy wð Þj j=P2p$50 kHz

w¼0 Aclean wð Þj j% 1, where Anoisy and
Aclean are the single-sided amplitude spec-
trum of the pump in the presence and absence
of white noise, respectively. We chose the pa-
rameters deff/2p = –5.0 kHz and ef = 1.25 Erec

in the center of the stable limit cycle region,
indicated by the white cross in Fig. 2C, and
added white noise with varying strengths. In
Fig. 3, A and B, top, single-shot realizations of
the noisy pump signal are shown for weak
and strong noise, respectively. The correspond-
ing dynamics ofNP is shown in Fig. 3, A and B,
bottom. In Fig. 3E, we show how increasing
the noise strength can “melt” the CTC as in-
ferred by the decreasing relative crystalline
fractions calculated from single-sided amplitude
spectra, similar to those shown in Fig. 3, C
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Fig. 3. Robustness against
temporal perturbations. (A and
B) Single experimental runs for
noise strengths indicated in (E).
(Top) Time traces of the
pump strength e. (Bottom)
Corresponding dynamics of NP.
(C and D) Single-sided amplitude
spectra of (A) and (B), respec-
tively. (E) Relative crystalline
fraction for varying noise strength
n and fixed deff/2p = –5.0 kHz
and ef = 1.25 Erec.
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and D. The system takes time to react to the
noise, so that a few oscillations can always be
observed before decay sets in. This leads to an
offset of 0.4 in the crystalline fraction, even for
very strong noise. Nevertheless, we found that
the limit cycle phase indeed exhibits robust
oscillatory behavior over a wide range of the
noise strength. This, together with the obser-
vation of spontaneous breaking of a continu-
ous time translation symmetry, suggests that
the observed limit cycle phase is a CTC.
We have experimentally demonstrated a

CTC and provided a theoretical understand-
ing. This class of dynamical many-body states
expands the concepts of long-range order and
spontaneous symmetry breaking into the time
domain and is therefore of fundamental in-
terest. This result, and the precision and con-
trol achieved with our atom-cavity platform,
paves the way toward a broad and compre-
hensive study of dynamical many-body states
of bosonic or fermionic quantummatter in the
strongly correlated regime. For example, an
increased atom-photon coupling could gener-
ate a new class of time crystals associated with
symmetry-broken periodic entanglement. Fur-
thermore, technological applications, such as
toward time metrology, can be envisioned.
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Continuous time crystals
Time crystals are a new dynamical phase of quantum matter resulting from the breaking of time-translation symmetry
and the subsequent interplay between interactions forming self-organized phases. To date, discrete time crystals have
been observed in periodically driven systems. By contrast, Kongkhambut et al. report the observation of spontaneous
breaking of a continuous time translation symmetry in an atomic Bose-Einstein condensate inside a high-finesse
optical cavity (see the Perspective by LeBlanc). Using a time-independent pump, the authors observed a limit cycle
phase that is characterized by emergent periodic oscillations of the intracavity photon number and is accompanied by
the atomic density cycling through recurring patterns: a continuous time crystal. —ISO
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Experimental details

The experimental setup, as sketched in Fig. 1(A) in the main text, is comprised of a mag-

netically trapped BEC of Na = 5 ⇥ 104 87Rb atoms, dispersively coupled to a narrowband

high-finesse optical cavity. The trap creates a harmonic potential with trap frequencies ! =

2⇡ ⇥ (119.0, 102.7, 24.7) Hz. The cavity field has a decay rate of  = 2⇡ ⇥ 3.4 kHz, which

almost equals the recoil frequency !rec = Erec/h̄ = 2⇡ ⇥ 3.7 kHz for pump wavelength of

�P = 792.55 nm. The pump laser is blue detuned with respect to the relevant atomic transition

of 87Rb at 794.98 nm. The maximum light shift per atom is U0 = 2⇡ ⇥ 1.3 Hz. A typical

experimental sequence starts by preparing the BEC and linearly increasing the pump strength ✏

to its desired value ✏f and subsequently holding it constant for 10 ms.

Phase diagram for large pump strength range

In Fig. S1A we present a phase diagram, similar to the one shown in Fig. 2A in the main text,

but for larger pump strength range. The experimental protocol is the same as for Fig. 2A but

the ramp time is increased to 20 ms. For strong pumping the system does not favor anymore

the self-organization, since the cost of localizing the atoms at the nodes of the potential exceeds

the decrease of energy due to the cavity-mediated coupling. In Fig. S1B the phase difference

between the pump and cavity field � is plotted against �e↵ and ✏. In the self-organized phase,

NP is finite and � locks to either 0 or ⇡ and stay constant. In Fig. S1C, we present the amplitude

of the Fourier spectrum calculated from the photon number data. The limit cycle region can be

identified by a peak in the frequency response around 10 kHz.
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Fig. S1. Phase diagrams for large pump strength range. (A) Top panel: Pump strength

protocol. Bottom panel: The corresponding intracavity photon number NP, as a function of

the effective detuning �e↵ and pump strength ✏ at a pump wavelength of �P = 792.55 nm. The

corresponding light shift per photon is U0 = 2⇡ ⇥ 1.3 Hz. (B) Top panel: Pump strength

protocol. Bottom panel: The phase difference between the pump and intracavity field �, as a

function of the effective detuning �e↵ and pump strength ✏. Note, due to technical instabilities

of the phase reference, we observe a drift of the phase signal of the cavity field of about 0.02⇡

per ms. (C) The single-sided amplitude of the Fourier spectrum calculated using the data of A,

as a function of the effective detuning �e↵ .

Atom-Cavity Model

We only consider the pump and cavity directions. The full atom-cavity system can be modeled

using the many-body Hamiltonian with four terms describing the cavity, the atoms, and the

atom-cavity interactions, given by

Ĥ = Ĥc + Ĥa + Ĥaa + Ĥac , (1)

3



where the cavity contribution is Ĥc = �h̄�c â
†
â and the detuning between the pump and cavity

frequencies is �c < 0. The cavity mode annihilation and creation operator are denoted by â and

â
†. The atomic part is described by

Ĥa =
Z
dydz  ̂†(y, z)

 

�
h̄
2

2m
r

2 +Vext(y, z)

!

 ̂(y, z) (2)

where the external potential due to the standing wave created by the pump beam is Vext(y, z) =

✏f cos2(ky) with the potential strength parameter ✏f and m the mass of an atom. The short-range

collisional interaction between the atoms can be captured via

Ĥaa = Ua

Z
dydz  ̂†(y, z) ̂†(y, z) ̂(y, z) ̂(y, z), (3)

where Ua =
p
2⇡ash̄/mlx is the effective 2D interaction strength with as the s-wave scattering

length and lx the harmonic oscillator length in the x direction. The atom-cavity interaction part

is described by

Ĥac =
Z

dydz  ̂†(y, z)
✓
h̄U0 cos

2(kz)â†â+ h̄

q
h̄✏fU0 cos(ky) cos(kz)

h
â
† + â

i◆
 ̂(y, z).

(4)

The light shift per intracavity photon is denoted by U0 > 0. For our numerical simulations of

the dynamics, we use the semiclassical method based on the truncated Wigner approximation

(TWA) (37,38). TWA approximates the quantum dynamics by solving the equations of moti-

ons over an ensemble of initial states, which are sampled from the initial Wigner distribution.

This methods allows us to incorporate the leading order quantum corrections to the meanfield

solution. The c number equation for the light field is

i
@↵

@t
=

1

h̄

@H

@↵⇤ � i↵ + i⇠ = (��c + U0B � i+ i⇠) +
q
h̄✏fU0�, (5)

where we have defined the bunching parameter B =
R
dydz cos2(kz)| (y, z)|2 and the density

wave order parameter that corresponds to a checkerboard ordering� =
R
dydz cos(ky) cos(kz)| (y, z)|2.
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We further included a decay term proportional to  in the cavity mode dynamics and the re-

sulting stochastic noise term ⇠(t), which is defined via h⇠
⇤(t)⇠(t0)i = �(t � t

0). We obtain the

atom-field equations via

i
@ (y, z)

@t
=

1

h̄

@H

@ ⇤(y, z)
=

 

�
h̄

2m
r

2 + Vdip(y, z) + 2Ua| (y, z)|
2

!

 (y, z) (6)

with

Vdip(y, z) = h̄

✓
U0|↵|

2 cos2(kz) + ✏f!rec cos
2(ky) +

q
h̄✏fU0 [↵ + ↵

⇤] cos(ky) cos(kz)
◆
. (7)

For the simulations we use the same set of parameters as in the experiment.

Breaking of continuous time translation symmetry

To gain further insights into the continuous time translation symmetry breaking, we consider

three different possibilities for including quantum noise in our theory. First, we sample over the

full initial Wigner distribution and also include the corresponding stochastic noise ⇠ correspon-

ding to the cavity-field decay rate . Secondly, we include only the sampling of the Wigner

distribution of the initial state and ignore the stochastic noise in time due to the fluctuation-

dissipation term in the cavity field. Third, we fix the initial state and include stochastic noise

in the cavity mode. For each case, we consider 103 trajectories but for clearer presentation we

only show the first 500 trajectories in Fig. S2(A-C). To obtain Fig. S2(A-C), we use �e↵ =

�2⇡⇥ 10.4 kHz and linearly ramp up the pump strength to its final value ✏f/!rec = 0.85 within

10 ms. We compute the fast Fourier transformation between tstart = 15 ms and tfinal = 65 ms.

We record every 0.00125 ms and thus, our frequency resolution is limited by �FFT = 20 Hz.

In Fig. S2A and S2B the limit cycle frequency varies ±150 Hz. For the data set in Fig. S2C, the

frequency is fixed. To minimize the fluctuations in the FFT signal due to the offset at ! = 0 we

normalize each trajectory by the maximum of the FFT. For better accessibility, after obtaining

5



the data from all trajectories we average over the mean value of all points. The TWA results

in Fig. S2A nicely show that all phases between 0 and 2⇡ are realized. The same holds true in

Fig. S2B and Fig. S2C. This suggests that the initial quantum noise and stochastic noise from

the leaky cavity are sufficient to exhibit the breaking of continuous time translation symmetry.

A CB

Fig. S2. Distribution of the time phase in the limit cycle phase. TWA simulations including

(A) both initial quantum noise and stochastic noise, (B) only initial quantum noise, and (C)

only stochastic noise. We use �e↵ = �2⇡ ⇥ 10.4 kHz and ✏f/!rec = 0.85.

Atom dynamics during one limit cycle

We present the dynamics of the light field and the relevant density wave order parameters for

a single exemplary trajectory in the limit cycle phase. We use �e↵ = �2⇡ ⇥ 10.4 kHz and

a final pump strength of ✏f/!rec = 0.85. We ramp up the pump intensity within 10 ms and

present in Fig. S3C the limit cycle dynamics after 20 ms. We find that the only non-zero order

parameters are those associated to the chequerboard density wave, � = hcos(ky) cos(kz)i, and

to the density waves related to the cavity and pump bunching parameters, B = hcos(kz)2i and

P = hcos(ky)2i, respectively. Fig. S3C shows the dynamics of the light field and the three order

parameters. The oscillations in the dynamics of the atomic field density wave order parameter

6



lags behind those in the cavity field occupation. In Fig. S3(A-B) and Fig. S3(C-D), the density

of the atomic-field is presented. The atoms slosh back and forth from a checkerboard pattern to

the minima of the light field intensity.

A B

C

D E

0

0.5

D EBA

15

10

5

P

-0.5

Fig. S3. Numerical results for the limit cycle dynamics. (A-B) and (D-E) Atomic density

distributions for different times during the limit cycle. The gray dashed lines in C indicate

the times for which the density distributions are calculated. Horizontal and vertical dashed

blue lines mark the extrema of cos(ky) and cos(kz), respectively and solid blue circles denote

the extrema of the product cos(ky) cos(kz), which determines the chequerboard density wave

order parameter �. C Dynamics of the three relevant order parameters and the cavity mode

occupation. The vertical dashed lines denote the times when (A-B) and (D-E) are taken. We

use �e↵ = �2⇡ ⇥ 10.4 kHz and ✏f/!rec = 0.85.
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Stability against short-range interactions and atom losses

We present the stability of the limit cycles against short-range interactions and phenomenologi-

cal atom losses. We measure the interaction strengths via the mean-field collisional interaction

energy (19)

Ea =
Ua

Na

Z
dydz | 0(y, z)|

4 (8)

with the wavefunction of the homogeneous BEC  0. We further add a phenomenological atom

loss term to our equations of motion of the form of

dNa

dt
= �2�Na (9)

to capture the atom losses in the experiment. To quantify the temporal long-range order we

compute the two-point temporal correlation function

C(t) = Re

 
hâ

†(t)a(t0)i

hâ†(t0)a(t0)i

!

. (10)

The time t0 is defined as the time of the first maximum of the limit cycle oscillations after the

transition into the superradiant phase.

We present the dynamics of the photon number NP and the nonequal time correlation C in

Fig. S4 for different collisional interaction strengths Ea and atom loss rates �. We observe that

short-range interactions do not destroy the temporal long range order for weaker collisional

interaction energies Ea = 0.1 Erec to strong interactions of Ea = 0.2 Erec. However, the

combination of strong short-range interactions Ea = 0.2 Erec and atom losses of � = 40 s
�1

lead to a decay of the temporal order similar as observed in the experiment. The loss rate is

chosen such that it models the observed atom decay rate in the experiment. We conclude that

the main limitation of the limit cycle lifetime stems from atom losses in the experimental set

up.
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=0,   =0)
C

(t)
P

P

time, t

Fig. S4. Numerical results on short-range interactions and atom losses. (A) Numerical re-

sults on the intracavity photon number NP and (B) the corresponding nonequal time correlation

C for different contact interaction energies Ea and atom losses �. For better readability, we

include an offset of 1, 2, 3 for the blue, green and yellow trace indicated by the dashed lines.

We fix �e↵ = �2⇡ ⇥ 10.4 kHz.

Stability with respect to pump-atom detuning

The pump-atom detuning is in our system parametrized by the single photon light shift U0. For

all the measurements presented in the main text U0 = 2⇡ ⇥ 1.3 Hz is kept constant. To de-

monstrate robustness with respect to the pump-atom detuning, and hence with respect to U0, we

present in Fig. S5 measurements of self-organization phase diagram for U0 = 2⇡⇥ 1.9 Hz. The

limit cycles are indicated by a peak in the Fourier spectrum of the intracavity photon number

(Fig. S5C), which can be found for small negative effective pump-cavity detuning �e↵/2⇡, bet-

ween �10 and �20 kHz. This measurement is only an example and we experimentally observe

stable limit cycles for different values of U0.
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A Ctime, t (ms)

0
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f
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Fig. S5. Phase diagrams for another pump-atom detuning. (A) Top panel: Pump strength

protocol. Bottom panel: The corresponding intracavity photon number NP, as a function of

the effective detuning �e↵ and pump strength ✏ at a pump wavelength of �P = 793.76 nm. The

corresponding light shift per photon is U0 = 2⇡ ⇥ 1.9 Hz. (B) Top panel: Pump strength

protocol. Bottom panel: The phase difference between the pump and intracavity field �, as a

function of the effective detuning �e↵ and pump strength ✏. (C) The single-sided amplitude of

the Fourier spectrum calculated using the data of A, as a function of the effective detuning �e↵ .

Red region around 8 � 10kHz at small negative �e↵ indicate a region where limit cycle can be

found.
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Finite-size effects

We investigate the effects of a finite particle number on the stability of the time crystal. To

this end, we compare the mean-field results, which simulate the thermodynamic limit, and the

results of single TWA trajectories, which include stochastic noise associated to cavity loss, for

different particle numbers. Owing to the cavity-induced all-to-all coupling between the atoms,

the thermodynamic limit is expected to be captured by our mean-field theory. We vary the

particle number while keeping NU0 fixed. We obtain the peaks in the dynamics of the intraca-

vity photon number, ÑP, to highlight the change in the oscillation amplitude of the limit cycle

phase for varying particle number. In Fig. S6A, we show the time evolution of ÑP/Na for some

exemplary particle numbers using TWA and the MF result corresponding to the thermodyna-

mic limit. It can be seen that as the particle number is increased, the results approach the MF

prediction. This means that the temporal dynamics becomes more regular as we increase the

particle number Na towards the thermodynamic limit. To further illustrate this point, we cal-

culate the relative crystalline fraction ⌅0
⌘
P

!2�LC
NP(!)/

P
!2�LC

NP(!). We rescaled the

relative crystalline fraction for varying Na by the value in the thermodynamic limit, i.e., the ⌅0

in our mean-field prediction is set to 1 as indicated by the gray dashed line in Fig. S6B. The

blue cross marks the typical particle number in our experiment. We find that as Na is increased,

the crystalline fraction approaches the mean-field prediction. This can be understood from the

fact that the initial quantum noise and stochastic noise scales with 1/N in TWA, meaning that

as expected for Na ! 1, we recover the thermodynamic limit.
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Fig. S6. Numerical results on the stability for different particle numbers (A) Numerical

results on the peak hight of the emerging limit cycles in time for different particle numbers. (B)

The crystalline fraction obtained for varying particle numbers from single run TWA trajectories

including stochastic noise from cavity losses. The gray dashed line represents the mean-field

crystalline fraction, which we set as reference to 1. The blue cross indicates the particle number

in which the experiment operates. We fix �e↵ = �2⇡ ⇥ 10.4 kHz and NU0 = 2⇡ ⇥ 60 kHz =

const. .

17

Fig. S6. Numerical results on the stability for different particle numbers (A) Results of a

single TWA trajectory for the peak height of the intracavity photon number in the limit cycle

phase for different particle numbers. (B) The relative crystalline fraction for varying particle

numbers obtained from single TWA trajectories, which include stochastic noise from the cavity

losses. The gray horizontal dashed line represents the mean-field crystalline fraction, which we

set to 1 as a benchmark for finite N . The blue cross indicates the particle number, in which the

experiment operates. We fix �e↵ = �2⇡ ⇥ 10.4 kHz and NU0 = 2⇡ ⇥ 60 kHz = const.

Stability against temporal perturbations

The stability of the limit cycle phase against temporal noise can be also explored using our

theoretical model. We focus on the mean-field regime to show that the limit cycle phases in

the thermodynamic limit exhibit the robustness expected of a continuous time crystal. We add

a Gaussian white noise onto the pump signal, which is band-limited to 0.025 GHz. This is

set by the integration step size of our stochastic differential equation solver. Note that the

noise in the experiment is band-limited to 50 kHz. Examples of the noisy pump signal are

shown in Fig. S7A. The noise strength is quantified by a parameter similar to the one in the
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experiment, n ⌘
P

! |Anoisy(!)|/
P

! |Aclean(!)| � 1, where A is the Fourier spectrum of the

pump signal. In Fig. S7B, we show the peaks in the dynamics of the intracavity photon number,

ÑP(t), for various noise strengths. We find that increasing the temporal noise strength leads to

more irregular oscillations in the limit cycle phase. To further quantify this behaviour, we again

obtain the relative crystalline fraction as defined in the previous section. The dependence of

the relative crystalline on temporal noise strength n is shown in Fig. S7C. We observe that for

small noise strength, the crystalline fraction appears unchanged. The time crystal starts to melt

for stronger noise strengths as expected. These numerical results qualitatively agree with the

experimental results shown in Fig. 3E and they suggest the robustness of the limit cycle phase

in the thermodynamic limit against temporal perturbation. 1
1
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Fig. S7. Numerical results on the stability against temporal noise (A) Time dependence of

the pump strength ✏ for different noise strengths and (B) the corresponding mean-field results

for the dynamics of peak height of the intracavity photon number in the limit cycle phase. (C)

The relative crystalline fraction for different noise strength.
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Route to chaos

Our system exhibits a route to chaos, which we have investigated theoretically in a previous

study. The full dynamical phase diagram including the chaotic regime can be found in Ref.

(24). We find that the limit cycle phase becomes unstable towards chaotic dynamics for large

pump strengths. Due to the limited lifetime of the BEC in our experimental setup, it is difficult

to experimentally identify such a chaotic phase, which manifests in its characteristic long-time

dynamics.
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Motivation

This work was motivated by the first observation of a continuous time crystal (CTC) in
our previous work. The goal of this work was to find an analytical explanation for the
previously observed CTC. We have proposed a generic model that captures the limit
cycle (LC) transition and used it to find further LC regimes in the atom-cavity system.

Main findings

In this work, we proposed a generic mechanism for generating LC oscillations. The
model consists of coupling a linear bosonic model to a dissipative nonlinear bosonic
mode. Using a stability analysis, we showed that the LCs appear due to a supercritical
Hopf bifurcation. As this phase appears in a many-body context, the LC phase can be
classified as a CTC. We showed that this model can be realised for three-level models
coupled to a single quantised dissipative light mode as found in atom-cavity systems.
By adiabatically eliminating the highest level and further taking the Holstein-Primako↵
approximation we arrived at our generic model. Due to this step we obtained the nonlin-
earity in the form of a Kerr-like interaction term. Using this platform, we experimentally
observed, for the first time, LC for an attractive optical pump lattice, thereby confirming
our generic model and mapping.

Contribution

JGC, LM and I conceptualized this work. I performed all numerical and analytical
studies under the supervision of LM and JGC. PK and HK performed the experiments
and data analysis under the supervision by AH. All authors contributed to the discussion
and interpretation of the results, as well as to writing the manuscript.
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We propose a general mechanism for generating limit cycle (LC) oscillations by coupling a linear bosonic
mode to a dissipative nonlinear bosonic mode. By analyzing the stability matrix, we show that LCs arise due
to a supercritical Hopf bifurcation. We find that the existence of LCs is independent of the sign of the effective
nonlinear interaction. The bosonic model can be realised in three-level systems interacting with a quantised light
mode as realised in atom-cavity systems. Using such a platform, we experimentally observe LCs for the first
time in an atom-cavity system with attractive optical pump lattice, thereby confirming our theoretical predictions
for the minimal model and interactions needed to generate LCs for a class of driven-dissipative systems.

I. INTRODUCTION

A central focus of quantum optics is the understanding of
few-level systems coupled to a single photonic mode [1]. A
quintessential example is the Dicke model [2, 3], in which a
large number of two-level systems are coupled to the same
light mode, giving rise to exciting physical phenomena, such
as super- and subradiance and the Dicke phase transition. Fur-
thermore, as was pointed out more recently, if this model is
extended to incorporate multi-level systems and dissipation,
the resulting many-body dynamics can give rise to LCs [4–
10] and continuous time crystals (CTCs) [11–18]. LCs are
closed phase space trajectories, inherently robust against noise
or perturbations in the initial state. They emerge via contin-
uous time translation symmetry breaking, manifesting in an
oscillatory motion despite the absence of an explicit time-
dependence in their equations of motion. A LC phase in a
many-body system with an unbiased distribution of the time
phase of its oscillatory motion is a CTC and has been recently
demonstrated experimentally in a continuously driven atom-
cavity system [16].

In this work, we put forth a model, giving rise to LC oscilla-
tions, that can either be understood in terms of a collection of
two-level systems coupled to a non-linear photonic mode, or a
collection of three-level systems, coupled to a linear photonic
mode. The transition between the representations with three-
and two-level systems arises by adiabatically eliminating one
of the levels in the three-level systems and thereby generat-
ing a nonlinearity in the photonic mode. The LC behavior is
striking since additional quantum modes beyond the two-level
approximation increase the complexity of a quantum system,
and thus are expected to support ergodicity in generic systems
[19]. To obtain a concrete implementation of LC dynamics,
we map our generic model onto an atom-cavity system, and
show that the current understanding, that the emergence of LC
phases in atom-cavity systems necessarily relies on the use of
a repulsive light-shift potential, is incomplete [16, 20–22]. In
this paper, we elucidate that the fundamental mechanism is
in fact a Kerr-like nonlinearity for the photons, which is in-
duced by a third atomic level, typically neglected in standard
Dicke-like models of atom-cavity systems. This nonlinearity

(a)

(e)

(c)

(d)

(b)

FIG. 1. (a) A bosonic mode (teal) b̂ interacts with a dissipative
bosonic mode (red) â with a nonlinearity proportional to � and damp-
ing . The width of the arrows denote the strength of the interactions.
(b) Approximate three-level model for (c) a BEC (teal) coupled to a
single light mode including single-photon coupling with strength �
and Kerr nonlinearity with strength �. In (c), the BEC is transversely
pumped by a standing wave potential formed by two laser beams and
placed inside a high-finesse cavity. The rate of emitted light from
the cavity is . (d) Exemplary dynamics of the Dicke model and the
Dicke model including a Kerr-like nonlinearity for varying coupling
strength �. While the Dicke model reaches a steady state after en-
tering the superradiant phase, the nonlinear Dicke model enters the
limit cycle phase for increasing �. (e) Dynamics of the light field in
phase space starting from a fixed point (gray diamond) and relaxing
towards the limit cycle (blue line).

can arise irrespective of the sign of the light-shift potential or
pump-atom detuning, such that an LC phase may emerge also
for negative coupling parameters, which we experimentally
demonstrate in this work.

We expect our results to apply to a wide class of systems,
wherein the interactions are mediated by a bosonic mode,
such as in cavity-magnon systems [23] and superconducting
circuits [24, 25], provided that they satisfy the form of the
coupling between the modes in our effective bosonic model
as schematically depicted in Figs. 1(a) and 1(b). In partic-
ular, the Kerr-like nonlinearity needed for the limit cycle to
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emerge could originate from either a density- or intensity-
dependent coupling of a degree-of-freedom and the dissipa-
tive mode. Some examples include a Kerr medium coupled
to a cavity field [26] and photon-phonon coupling in cavity-
optomechanical systems [27, 28].

The paper is organized as follows. In Sec. II, we discuss the
minimal model and use bifurcation theory to explore the insta-
bilities in the system. In Sec. III, we discuss the atom-cavity
implementation and present the experimental results showing
the emergence of limit cycles in an atom-cavity system with
attractive light-shift pump potential. Finally, we conclude in
Sec. IV.

II. THEORY

A. General model

We consider a general model describing three bosonic
modes (a, b, and c) with the a-mode being dissipative as its
occupation decays at a rate of . The three-mode Hamilto-
nian is

Ĥ = !pâ
†
â+ !10b̂

†
b̂+ !20ĉ

†
ĉ+ �

�
â
† + â

� ⇣
b̂
† + b̂

⌘
(1)

+ �â
†
â
�
ĉ
† + ĉ

�
.

The natural frequencies of the three modes are !p, !10, and
!20. The b-mode interacts with the a-mode via an amplitude-
dependent coupling with strength �. On the other hand, a
density- or intensity-dependent interaction characterized by �
couples the a- and c-modes.

Applying mean-field theory by setting hâi = ↵, hb̂i = �,
hĉi = �, and hÂB̂i ⇡ hÂihB̂i, we obtain the following set of
equations of motion (EOM) for the three-mode system

d↵

dt
= �i [!p � i+ � (� + �

⇤)]↵� i� (� + �
⇤) (2)

d�

dt
= �i!10� � i� (↵+ ↵

⇤)

d�

dt
= �i!20� � i�↵

⇤
↵ .

We can adiabatically eliminate the c-mode for !20 ⌧

!10,!p, such that we approximate d�/dt ⇡ 0 in the last line
of Eq. (2). This yields an expression for � given by

� = �
�

!20

|↵|
2
. (3)

Using this in the equation for the dissipative mode in the first
line of Eq. (2), we obtain an effective two-mode EOM

d↵

dt
= �i


!p � 2

�
2

!20

|↵|
2

� i

�
↵� i� (� + �

⇤)

d�

dt
= �i!10� � i� (↵+ ↵

⇤) , (4)

Quantising the remaining modes, an effective Hamiltonian
corresponding to Eq. (4) reads

Ĥ = !pâ
†
â+ !10b̂

†
b̂+ �

�
â
† + â

� ⇣
b̂
† + b̂

⌘
�

�
2

!20

â
†
ââ

†
â.

(5)

Thus, we show that the eliminated mode leads to a Kerr-like
nonlinearity for the dissipative boson, which for cavity-QED
systems correspond to the cavity photons.

In Fig. 2, we compare the mean-field dynamics for the
three-mode model and the two-mode model with the Kerr-like
nonlinearity obtained by numerically solving Eqs. (2) and (4),
respectively. Here, we fixed the coupling strength to � = �SR

with �SR as the critical point signalling the instability of the
trivial fixed point ↵ = � = � = 0. For larger !20 exempli-
fied in Fig. 2(b), the quantitative agreement between the two
models improves since the adiabatic elimination of the c-mode
hinges on the assumption that !20 ⌧ !10,!p. Nevertheless,
we find qualitative agreement for the type of response (i.e., an
LC phase) for !20 = 4, a parameter choice motivated by the
experiment that will be discussed later.

<latexit sha1_base64="w8B7BcNbapxmAxqQBuw1OTKti8w=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5KUUt0IBTcuK9gHNCHcTKft0JkkzEyEEurSjb/ixoUibv0Dd/6N08dCWw9cOJxzL/feEyacKe0431ZubX1jcyu/XdjZ3ds/sA+PWipOJaFNEvNYdkJQlLOINjXTnHYSSUGEnLbD0fXUb99TqVgc3elxQn0Bg4j1GQFtpMDGngA9lCIrwfnkwYsFHUCQVZzJVdUbQZJAYBedsjMDXiXughTRAo3A/vJ6MUkFjTThoFTXdRLtZyA1I5xOCl6qaAJkBAPaNTQCQZWfzT6Z4DOj9HA/lqYijWfq74kMhFJjEZrO6d1q2ZuK/3ndVPcv/YxFSappROaL+inHOsbTWHCPSUo0HxsCRDJzKyZDkEC0Ca9gQnCXX14lrUrZrZVrt9Vi3VnEkUcn6BSVkIsuUB3doAZqIoIe0TN6RW/Wk/VivVsf89actZg5Rn9gff4AGnCZ6Q==</latexit>

(a) !20 = 4

<latexit sha1_base64="+wB5vx/z2s4tSMdcVHSCirb8ZBQ=">AAACCXicbVA9SwNBEN2LXzF+nVraLAYhNuEuSEwjBGwsI5gPyIUwt9kkS3bvjt09IRxnaeNfsbFQxNZ/YOe/cS9JoYkPBh7vzTAzz484U9pxvq3c2vrG5lZ+u7Czu7d/YB8etVQYS0KbJOSh7PigKGcBbWqmOe1EkoLwOW37k+vMb99TqVgY3OlpRHsCRgEbMgLaSH0bewL0WIqk5J+nD14o6Aj6ScVJr2reBKII+nbRKTsz4FXiLkgRLdDo21/eICSxoIEmHJTquk6kewlIzQinacGLFY2ATGBEu4YGIKjqJbNPUnxmlAEehtJUoPFM/T2RgFBqKnzTmd2tlr1M/M/rxnpY6yUsiGJNAzJfNIw51iHOYsEDJinRfGoIEMnMrZiMQQLRJryCCcFdfnmVtCplt1qu3l4U684ijjw6QaeohFx0ieroBjVQExH0iJ7RK3qznqwX6936mLfmrMXMMfoD6/MHIjKZ7g==</latexit>

(b) !20 = 8

FIG. 2. Comparison of the mean-field dynamics according to the
two-mode model with Kerr-like nonlinearity and the three-mode
model for (a) !20 = 4 and (b) !20 = 8. The coupling strength
is fixed to � = 1.09�SR. The remaining parameters are  = !p =
�/2 = !10/2.

B. Bifurcation theory

To understand the nature of different critical transitions in
the system as shown in Fig. 1(d), we employ a stability matrix
analysis for fixed points of the semiclassical EOM Eq. (4).
The EOM for the three-mode model prior to the adiabatic
elimination, Eq. (2), can be recasted into @tX = F(X) with
X = {↵,↵⇤,�,�

⇤
, �, �

⇤
}. Numerically solving for the equi-

librium or fixed points X0 = {↵0,↵
⇤
0
,�0,�

⇤
0
, �0, �

⇤
0
}, such

that F(X0) = 0, and linearising the EOM around those, we
obtain a linearised set of EOM given by

@t�X = J0�X, (6)
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where �X = (X � X0) and J0 = @F(X)

@X

���
X0

is the Jacobian
stability matrix. In the case of the three-mode model, the Ja-
cobian matrix is

J0 =
@F(X)

@X

����
X0

=

0
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�i [!p + � (�0 + �
⇤
0
)] �  0 �i� �i� �i�↵0 �i�↵0

0 i [!p + � (�0 + �
⇤
0
)] �  i� i� i�↵

⇤
0

i�↵
⇤
0

�i� �i� �i!10 0 0 0
i� i� 0 i!10 0 0

�i�↵
⇤
0

�i�↵0 0 0 �i!20 0
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⇤
0

i�↵0 0 0 0 i!20

1

CCCCCA
. (7)

For the two-mode model with Kerr-like nonlinearity de-
scribed by Eq. (4), applying a similar linearisation leads to
the following Jacobian stability matrix

J0 =

0

BBB@

!p � i�
4|↵0|2�2

!20
�

2↵
2
0�

2

!20
� �

2(↵
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2
�
2

!20

4|↵0|2�2

!20
� i� !p �� ��

� � !10 0
�� �� 0 !10

1

CCCA
,

(8)

where X0 = {↵0,↵
⇤
0
,�0,�

⇤
0
}.

The solutions of Eq. (6) can be written as a superposition
of exp (!it) with !i being the eigenvalues (EVs) of the Ja-
cobian matrix (8). The fixed points are only stable if the real
part of all the EVs are negative Re (!i) < 0 8 i [29]. Focus-
ing on the two-mode model with Kerr-like nonlinearity de-
scribed by the stability matrix in Eq. (8), we present the real
and imaginary parts of the EVs of J0 using the appropriate
fixed points in Figs. 3(a) and 3(b), respectively. Exemplary
dynamics of the occupation |↵|

2, which in the atom-cavity
platform correponds to the photon number in the cavity, for
various phases are shown in Figs. 3(c)-3(e), which we obtain
by solving the mean-field EOM of Eq. (12). The parameters
are  = !p = �/2 = !10/2 = !20/4. We choose !p = 

since this corresponds to the weakest light-matter coupling
needed to enter the SR phase �SR for fixed , which can be
inferred by setting @�SR/@!p = 0 and solving for !p. In
Figs. 3(c)-3(e), we use the NP as the initial state and linearly
increase the light-matter coupling strength to its finale value
within ⇡ 150 T10, where T10 = 2⇡/!10. To rule out transient
behaviour we only present the dynamics after 600 T10.

In Fig. 3(a), for � < �SR, we use the fixed point ↵ = � =
� = 0 corresponding to the so-called normal phase (NP) and
find that, as expected, all Re (!i) are negative, thereby con-
firming its stability. The dynamics of the NP is depicted in
Fig. 3(c) confirming a steady-state value of |↵|

2 = 0. Above
the critical point �SR, the NP fixed point acquires an EV with
a positive real part (see Appendix A), which suggests an insta-
bility of this fixed point manifesting itself as a phase transition
from the NP to a superradiant (SR) phase in the context of the
Dicke model. This transition is a supercritical pitchfork bifur-
cation, meaning that the real and imaginary parts of the two

relevant EVs are zero at �SR. In the SR region highlighted by
the pink area in Figs. 3(a) and 3(b), we obtain two new fixed
points corresponding to the pair of symmetry broken states in
the SR phase. Expanding around the SR fixed points, indeed,
we find that they are stable in the SR region as their Re (!i)
are all negative. The time evolution in the SR phase depicted
in Fig. 3(d) shows a constant photon occupation.

Our model exhibits a second critical point �LC at which a
supercritical Hopf bifurcation occurs, which signals an insta-
bility towards a formation of a LC. The LC region in Figs. 3(a)
and 3(b) is depicted in light blue. In contrast to the pitch-
fork bifurcation, the relevant EVs cross the real axis, while
their imaginary parts are nonzero. An exemplary LC dynam-
ics is shown in Fig. 3(e). The photon number oscillates at a
frequency given by the imaginary part of the corresponding
EVs. For a Hopf bifurcation, the oscillation amplitude of the
LCs increases as

p
�� �LC [30] and we show that the LCs

in this paper follows this scaling behaviour in Appendix B. In
Fig. 1(e), we present the photon dynamics in the phase space

321 321

FIG. 3. Spectrum and dynamics for the two-mode model with a Kerr-
like nonlinearity. (a),(b) Real and imaginary part of the eigenvalues
obtained from numerically diagonalizing the stability matrix. Shaded
background indicates the different phases: normal phase (yellow
(1)), superradiant phase (pink (2)) and limit cycle phase (light blue
(3)). (c)-(e) corresponding light field dynamics in each shaded back-
ground.
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spanned by the real and imaginary parts of the photon field. It
demonstrates how the system approaches the stable LC orbit
starting from an SR phase marked by the gray diamond. The
red curves represent transient oscillations and the blue lines
correspond to the final LC orbit. In Appendix B, we show the
trajectories of different initial states converging to the same
LC orbit, which is a characteristic feature of a limit cycle at-
tractor.

Before we discuss the experimental results, we briefly men-
tion further features of the LCs found in the smaller islands
in the phase diagram as shown in Appendix B. Here, an LC
phase oscillates between the two fixed points while accumu-
lating a phase in the photon field at integer steps of ⇡. This
suggests the presence of a particle current similar to the self-
oscillating pumping reported in Ref. [31, 32]. We note that
this type of LC is not due to a Hopf bifurcation as the scal-
ing of the LC oscillations amplitude is approximately constant
with �, and therefore inconsistent with the Hopf bifurcation
scaling

p
�� �LC. Exemplary dynamics of the photon num-

ber and the phase winding are presented in Appendix B.

III. ATOM-CAVITY IMPLEMENTATION

A. Mapping from the atom-cavity system

In the following, we focus on a specific implementation us-
ing an atom-cavity setup [33, 34] as sketched in Fig. 1(c). In
the context of LCs and CTCs found in the atom-cavity plat-
form [16], an important implication of our theory is the possi-
bility of observing LCs even for attractive pump field poten-
tials as demonstrated in Fig. 3, which is consistent with the
predictions in Ref. [35]. We now show that this is indeed
the case for an atom-cavity system operating in the recoil-
resolved or good cavity limit  ⇠ !01 [36, 37]. The details of
the derivation for mapping the atom-cavity Hamiltonian onto
the effective model Eq. (12) can be found in Appendix C. In
what follows, we will simply sketch the crucial steps. We start
from a two-dimensional many-body Hamiltonian [38, 39] ne-
glecting both the trapping potential and contact interactions
between the atoms. A study on the influence of inhomoge-
neous trapping and short-range interactions on a dissipative
time crystal in an atom-cavity system reveals the persistence
of the time crystalline phase [40]. Next, we expand the atomic
field operator in the basis of three momentum excitations of
the BEC. The first state in the three-level model |0i is rep-
resented by the zero-momentum mode |px, pyi = |0, 0i with
an energy E0 = 0. The second level |1i is given by the co-
herent superposition of | ± ~k,±~ki momentum modes with
an energy E1 = 2~!rec. The third level |2i corresponds
to the coherent superposition of the |0,±2~ki momentum
modes along the cavity axis with an energy E2 = 4~!rec.
This expansion then leads to the effective three-level model in
Fig. 1(b). Similar models have been recently studied in [41–
47]. After using an SU(3) representation via the Schwinger
boson mapping, we apply the HP approximation [48] to fi-
nally obtain Eq. (2).

Now that we have shown that Eq. (2) can be obtained from

the atom-cavity model, one can simply follow the adiabatic
elimination discussed in Sec. II to get Eq. (4). Alternatively,
we can first derive a nonlinear Dicke model, which can then be
approximated as the two-mode model with Kerr-like nonlin-
earity in the thermodynamic limit, by first adiabatically elimi-
nating the third-level in the few-mode atom-cavity description
in Appendix C prior to employing the Schwinger-boson map-
ping. In doing so, we only need SU(2) spin operators as in the
standard Dicke model leading a nonlinear Dicke Hamiltonian

Ĥ = ĤDicke + ĤKerr, (9)

where the Dicke Hamiltonian is

ĤDicke

~ = !pâ
†
â+ !10

NX

`=1

�
z

`
+

2�
p
N

NX

`=1

(â+ â
†)�x

`
,

(10)

with �µ

`
as the individual SU(2) spin operators. The bosonic

operators â and â
† annihilate and create a photon in the quan-

tised light mode, respectively. The Kerr-like Hamiltonian is

ĤKerr/~ = �
�
2

!20

â
†
ââ

†
â. (11)

We emphasize that while we consider a third level to be the
origin of the Kerr nonlinearity, other physical processes gener-
ating this nonlinearity will result in the same phenomena, see
for example Refs. [26–28]. Introducing jµ = 1p

N
h
P

`
�
µ

`
i,

with µ 2 x, y, z, the EOM for the spin-boson model are given
by

d↵

dt
= �i


!p � 2

�
2

!20

|↵|
2

� i

�
↵� 2i�jx

djx
dt

= �!10jy

djy
dt

= !10jx � 2� (↵+ ↵
⇤) jz

djz
dt

= 2� (↵+ ↵
⇤) jy (12)

with !p is the photon frequency, and !nm is the level splitting
between the atomic states |ni and |mi, see Fig.1(b). The light-
matter interaction proportional to � couples the atomic modes
with the two lowest energies |0i and |1i as in the standard
dipole approximation. Here, we also consider a two-photon
coupling between the first and third atomic levels |0i and |2i,
which we adiabatically eliminate to obtain the Kerr-like non-
linearity for the photonic field. The strength of this nonlin-
earity is controlled by �. We included the decay strength 
in the photonic mode equation of motion, which captures the
rate at which photons are emitted from the cavity. We apply
a Holstein-Primakoff (HP) transformation and include only
terms up to linear order in the bosonic operator [42, 49] and
obtain precisely the EOM in Eq. (4)

B. Experimental results

We experimentally demonstrate the emergence of a LC
phase for an attractive light-shift pump potential in the atom-
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FIG. 4. Experimental data for a red-detuned CTC or LC. (a) Pump strength protocol (top) and the intracavity photon number |↵|2 (bottom)
for varying the effective cavity field frequency �e↵ and linearly ramped pump strength ✏ in units of the recoil energy Erec. The blue dashed
box depicts the area of the parameter space further analysed in (b). (b) Phase diagram for varying �e↵ and final pump strength ✏f . For each
plaquette, we linearly ramp the pump strength to ✏f while keeping �e↵ constant. We categorize the normal phase (NP), superradiant (SR)
phase, chaotic phase (CH), and the limit cycle (LC) phase. The colour represents the dominant oscillation frequency in the LC region. (c)-(e)
Exemplary dynamics and the resulting power spectrum ↵̃(!) of the SR, LC, and chaotic phase marked by crosses in (b). t0 is the time at which
the pump strength is fully ramped up and is kept constant.

cavity platform schematically shown in Fig. 1(b). We em-
phasise that this in contrast to the repulsive light-shift pump
potential used in the theoretical prediction [12, 22, 50] and
experimental realisation [16] of LCs in the atom-cavity sys-
tem. That is, we provide here the first experimental observa-
tion of a LC or CTC for an attractive light-shift pump poten-
tial, which underpins the mechanism put forth by our generic
model Eq. (12). That is, the transition from an SR to an LC
phase can be understood as a Hopf bifurcation induced by the
Kerr nonlinearity � that gives access to a third level |2i beyond
the usual two-level approximation that maps the atom-cavity
system onto an open Dicke model.

In our experiment, we place a BEC consisting of N ⇡

4⇥104 87Rb atoms inside a high-finesse cavity that is pumped
transversely by a retro reflected laser beam, which produces
a standing wave potential for the atoms. The pump wave-
length used is 803.63 nm, which is red-detuned to the relevant
atomic transition at 794.98 nm. The resulting two-photon
coupling strength is �/2⇡ ⇡ �6 kHz. The recoil energy
Erec/~ = 2⇡ ⇥ 3.55 kHz is comparable to the cavity decay
rate of  = 2⇡ ⇥ 3.6 kHz. Thus, the dynamics of the light
field and the atoms evolve on the same time scale and influ-
ence each other on equal footing. To identify the approximate
regime of LCs, we record the photon number |↵|

2 over 5 ms
after the pump strength is slowly ramped up from zero to its
final value at a rate of 0.6 Erec

ms
. We show the corresponding re-

sults for different effective pump-cavity detuning �e↵ ⇠ �!p

in Fig. 4(a). In addition to the standard NP-SR phase tran-
sition [33, 34], we observe oscillatory behaviour for certain
values of small |�e↵ | after entering the SR phase, which is in-
dicative of a LC phase.

We focus on the region enclosed by the dashed blue box
in Fig. 4(a). For these combinations of ✏f and �e↵ , we now
ramp up the pump strength with the same rate as before to
its desired final value, which is then kept constant, see Ap-
pendix D for details on the construction of the phase diagram.
The resulting phase diagram is shown in Fig. 4(b). Comparing
the overall shape of the experimental LC regime in Fig. 4(b)

and the theoretical results presented in Appendix B, we find
qualitative agreement. However, we point out that the approx-
imations applied in our theory lead to a larger area with stable
LCs than in the experiment. We further note that, in the exper-
iment, the lifetime of the LCs is limited by atom loss induced
by three-body collisions, which essentially reduces the light-
matter coupling � and non-linearity �, and by the inherent
short-range interactions, which has been proposed to make the
LC metastable [51]. The atom loss effectively drags the sys-
tem to the bottom-left region of the phase diagram Fig. 4(b),
which brings it back to the NP. In Figs. 4(c)-4(e), we present
three exemplary traces of the time evolution of the photon
number and their corresponding power spectra, characterizing
the chaotic (CH), LC and SR phases marked in Fig. 4(b). Ap-
proaching the LC phase boundary from the SR phase, in the
intra-cavity photon number versus time, shown in Fig. 4(c),
we observe a constant population level of the cavity mode to-
gether with noise, with a power spectrum showing a broad
peak around the LC-frequency, which we interpret as a pre-
cursor of the LC phase (see Appendix D for details). Increas-
ing the pump strength, and thus the light-matter coupling, we
observe LC dynamics with a single dominant frequency peak
in the power spectrum. Increasing the pump strength even
further leads to aperiodic dynamics as seen directly in the
time evolution of the photon number, which exhibits a largely
broadened power spectrum.

IV. CONCLUSIONS

In conclusion, we have proposed a generic three-mode
model and a nonlinear two-mode model that features different
types of LCs in a wide range of parameters. We motivate this
model as the mean-field approximation of an extended Dicke
model, but emphasize that it emerges generically in a broad
class of systems. The predominant type of LC in the model
arises from a supercritical Hopf bifurcation. The Hamiltonian
of this model can be implemented by systems that can be ap-
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proximated as coupled bosonic modes using a HP transforma-
tion. We show that the existence of LCs are independent of the
sign of the Kerr nonlinearity introduced by a two-photon pro-
cess, which is relevant for the formation of LCs in atom-cavity
systems. More specifically, it is the presence of a third mode
and its coupling with the density of a dissipative bosonic mode
that leads to an effective Kerr-like coupling, which introduces
the nonlinearity needed for the emergence of LCs. Using an
atom-cavity platform, we experimentally observe for the first
time the emergence of stable LCs for attractive or red-detuned
pump fields. We map out the phase diagram and find good
qualitative agreement with the theoretical results. Our work
puts forth a new mechanism for creating LCs and studying
nonlinear dynamics in highly controllable quantum systems.
We emphasise that our bosonic model Eq. (12) and Eq. (4)
is not limited to atom-cavity systems and can be used in a
wider class of systems involving boson-mediated interactions
and three-level systems, such as cavity-magnon models [23],
circuit QED [24, 25], or Rydberg platforms [8, 9].
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Appendix A: Spectrum using X0 = 0

We present in Fig. 5 the spectrum of the Jacobian using the
NP fixed point X0 = 0 for different �. For � > �SR, the
system acquires an EV with Re(!i) > 0 as seen in one of the
blue curves in Fig. 5(a). Hence, the NP fixed point becomes
unstable.
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FIG. 5. (a) Real and (b) imaginary parts of the eigenvalues of the
stability matrix for the boson-mediated three-level system with the
fixed point X0 = 0. The fixed point X0 = 0 becomes unstable for
� > �SR.

Appendix B: Limit cycle dynamics

1. Amplitude scaling of the LC transition

We show the characteristic scaling of the LC oscillations
amplitude as we cross the SR-LC phase transition. For LC
stemming from Hopf bifurcations, the amplitude of the LC
scales with µ = ���LC as µ1/2 for � > �LC [30]. We present
the scaling as a function of µ in Fig. 6. The scaling agrees well
with the theoretical prediction. We attribute deviations from
the expeted µ

1/2 behaviour to asymmetry in the LC dynamics
per cycle. We further note that, while we are very close to
the phase transition, numerically its not feasible to zoom in
further for even smaller µ as the systems takes too long to
approach the corresponding stable LC phase. This could also
further lead to deviations from the expected scaling.

FIG. 6. Scaling of the LC oscillations amplitude on µ = �� �LC.

2. Different initial states

We present the dynamics of the transient behaviour of the
light-field during the transition from a random initial state to-
wards the stable LC orbit. We find that independent of the
initial state, the steady state dynamics is the same LC orbit,
which is the defining behaviour of LC dynamics. We demon-
strate this for three different initial states in Fig. 7.

FIG. 7. Dynamics in the phase space of the photon mode ↵ for dif-
ferent initial states (gray diamonds) and their approach towards the
limit cycle (blue line).
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3. Phase diagram for blue- and red-detuned pump frequencies

Solving the corresponding equations of motion (EOM) al-
lows us to construct the phase diagram in Fig. 8(b) for differ-
ent combinations of !p and �. The vertical axis is displayed as
�!p/ since this is related to the effective detuning between
the pump and cavity fields, which is chosen to be negative
in atom-cavity experiments. Unless indicated otherwise, we
fix the two-photon coupling strength to �/ ⇡ 4, which is
a typical value in atom-cavity experiments as we will show
later. In Fig. 1(d), we only highlight the regimes with stable
LCs, although we note that the system also hosts a transition
between a normal (NP) and a superradiant (SR) phase at a crit-
ical light-matter interaction �SR =

p
(2 + !2)!10/4!. We

also find chaotic phases marked by irregular dynamics of the
photon occupation. We classify a periodic dynamics as a limit
cycle if the steady-state amplitude of the oscillations satisfy
max(|↵|

2)/mean(|↵|
2) > 0.02 and the long-time standard

deviation of the oscillation peaks is �|↵|2 < 0.025. These LC
phases are equivalent to the CTCs observed in Ref. [16].

(a)

(d)

(b)

FIG. 8. (a) Three-level model coupled to a single light mode includ-
ing single-photon coupling with strength � and two-photon coupling
with strength �. (b) Phase diagram of the three-level model in (a)
and Fig1. (c) for varying interaction strengths � and photon frequen-
cies !p. Areas enclosed by lines denote a stable limit cycle regime.
Black denotes results for the system in (a) without the level dressing
of the transverse pump field, while blue and red correspond to blue-
and red-detuned pump frequencies relative to !01, respectively.

The atomic levels can be dressed by the pump field leading
to energy shifts � = sign(�)✏!rec/4 = sign(�)�2/8!rec�,
where ✏ is the intensity of the pump field and !rec is the asso-
ciated recoil frequency. Neglecting the pump laser dressing in
the atom-cavity system means that the frequency splitting be-

tween the |0i and |1i is simply given by the recoil frequency,
i.e., !01 = 2!rec. A more accurate theory includes such dress-
ing [42, 43], which then adjusts the frequency of |1i depend-
ing on the sign of the frequency shift per single atom U0 as
depicted in Fig. 8(a).

In Fig. 8(b) we find two distinct regimes, wherein LCs can
emerge. For small !p and �, we find a large area in the phase
diagram hosting LCs. In contrast for large !p and �, we find
smaller disconnected islands of LCs. We note the energy shift
due to the pump dressing � simply moves the LC regions
without changing their overall shape in the phase diagram.
Therefore, our results suggest that the emergence of the LC
phase in atom-cavity systems [12, 16, 22] does not hinge on
the repulsive nature of the pump� > 0. Instead, the effective
Kerr-like nonlinearity � that couples the lowest energy mode
to a new third mode is the crucial ingredient for the existence
of the LCs or CTCs.

4. Phase-winding limit cycles

For the type of LC found in the small islands shown in
Fig. 8, we present the photon number dynamics and the corre-
sponding unwrapped phase in Fig. 9. We find that, in contrast
to the LCs discussed in the main text, these LCs pick up a
phase of ⇡ during each cycle.

(a) (b) (c)

FIG. 9. (a) Light-field dynamics of the photon number, (b) corre-
sponding unwrapped phase of ↵, and (c) phase space dynamics.The
parameters are !p/ = 1.9 and �/�SR = 1.02.

Appendix C: Mapping from the atom-cavity Hamiltonian

We start from the many-body Hamiltonian describing a
transversely pumped BEC inside a high-finesse cavity [16, 38]

Ĥ/~ = ��C â
†
â+

Z
dydz †(y, z)


�

~
2m

r
2 + sign (U0)!rec✏p cos

2(ky)

�
 (y, z) (C1)

+ †
✓
U0â

†
â cos2(kz) �

q
!rec|U0|✏p cos(ky) cos(kz)(â

† + â)

◆
 (y, z), (C2)

where the pump (cavity) axis is along the y(z)-direction, ✏p is
the pump strength, U0 is the maximum light-shift per atom,

!rec is the recoil frequency, and �C is the detuning between
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the pump and cavity frequencies. We expand our field opera-
tor as

 =  0c0 +  1c1 +  2c2 (C3)

with

 0 = 1 (C4)
 1 = 2 cos(ky) cos(kz) (C5)

 2 =
p
2 cos(2kz) . (C6)

With this, we obtain the effective Hamiltonian

H/~ = ��e↵ â
†
â+ !rec✏p/2 + (!10 +�) c†

1
c1 + !20c

†
2
c2

(C7)

+
U0

2
â
†
â

✓
1

2
c
†
1
c1 + (c†

2
c0 + c

†
0
c2)/

p
2

◆

+
�

p
N

(â† + â)
h
(c†

0
c1 + c

†
1
c0) + (c†

1
c2 + c

†
2
c1)

p
2
i
,

where �/
p
N = �!rec|U0|✏p/2, �e↵ = �C �U0N/2 = �C �

U/2, � = sign(�)✏!rec/4, !10 = !rec and !20 = 2!rec. In
the following we assume that the the lowest mode is highly
occupied. This means we neglect the term U0

4
a
†
ac

†
1
c1 and

�p
N
(a†+ a)(c†

1
c2+ c

†
2
c1)

p
2 as these scale as 1/N compared

to the other terms and we are interested in the limit N �

1. We further drop constant energy shifts of the Hamiltonian.
Thus, the simplified atom-cavity Hamiltonian is

H/~ = ��e↵ â
†
â+ (!10 +�) c†

1
c1 + !20c

†
2
c2 (C8)

+

p
2U0

4
â
†
â

⇣
c
†
2
c0 + c

†
0
c2

⌘
+

�
p
N

(â† + â)
⇣
c
†
0
c1 + c

†
1
c0

⌘
.

Next, we map the three atomic modes to SU(3) spins using
the Schwinger-Boson mapping [42] and obtain

H/~ = ��e↵ â
†
â+ (!10 +�) Ĵ01

z
+ !20Ĵ

02

z
(C9)

+

p
2U0

4
â
†
âĴ

02

x
+

�
p
N

(â† + â)Ĵ01

x
.

Finally, we use the Holstein-Primakoff representation given
by [48]

Ĵ
01

z
= b̂

†
b̂ � N/2, Ĵ

01

+
= b̂

†
r

N �

⇣
b̂†b̂+ ĉ†ĉ

⌘
, (C10)

Ĵ
01

� =

r
N �

⇣
b̂†b̂+ ĉ†ĉ

⌘
b̂,

Ĵ
02

z
= ĉ

†
ĉ � N/2, Ĵ

02

+
= ĉ

†
r
N �

⇣
b̂†b̂+ ĉ†ĉ

⌘
,

Ĵ
02

� =

r
N �

⇣
b̂†b̂+ ĉ†ĉ

⌘
ĉ,

and by retaining terms only up to the lowest order in N , with
!p = ��e↵ and � =

p
2/4U0N , we obtain Eq. (1).

Appendix D: Construction of the experimental phase diagram

To construct the phase diagram from the experimental data,
we consider the following three quantities to distinguish be-
tween the various phases. We consider the average photon
number |↵|2, the standard derivation of the fluctuating pho-
ton number divided by the mean photon number �|↵|2 =

�|↵|2/|↵|2, and the so-called crystalline fraction ⇠ [16, 52],
which is defined via the amplitude of a Gaussian fit around
the LC peak in the Fourier transform of the dynamics of the
photon number.

We classify trajectories with less then 2 ⇥ 103 photons on
average detected to be in the normal phase. To further distin-
guish between the SR phase, limit cycle phase and the chaotic
phase, we use the following criteria. If the average photon
number is larger then |↵|2 > 2⇥ 103 and ⇠  1/e⇥max (⇠),
then the system is classified to be in the SR phase. If the
average photon number is larger then |↵|2 > 2 ⇥ 103 and
�|↵|2 > 0.55, it is in the chaotic/aperiodic phase. Trajectories
not falling into one of the previous cases are identified as LC
phases.
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2.13 Publication VIII: Observation of a phase transition from a
continuous to a discrete time crystal

P. Kongkhambut, J.G. Cosme, J. Skulte, Michelle A. Moreno Armijo, L. Mathey,
A. Hemmerich, and H. Keßler — submitted to Reports on Progress in Physics:

Original Research (2024)

Motivation

This work was motivated by the first observation of a continuous time crystal (CTC)
in our previous work and the proposal to use amplitude driving of the pump beam to
trigger a phase transition from a CTC to a disspative discrete time crystal (DDTC).
The goal of this work was to showcase this transition and show that by doing so the
stability and reproducibility of the limit cycle oscillations can significantly be enhanced.
A further goal was to use this platform to study classical phenomena occurring in the
classical world such as entrainment.

Main findings

In this work, first-authored by Phatthamon Kongkhambut, we have experimentally
demonstrated the entrainment of a CTC in an atom-cavity setup. We mapped out
the dynamical phase diagram for varying driving strength and driving frequencies and
showed the phase locking from an initial random phase to two distinct phases, which
shows the transition from a CTC to a DDTC in certain regimes. Comparing our findings
to the expected results for classical entrainment we took the first step to bridge between
classical and quantum phenomena that occur in bifurcation and synchronisation theory.

Contribution

PK and HK performed the experiments and data analysis supervised by AH. The sim-
ulations were performed by JGC, supported by me. JGC and I provided insights into
bifurcation theory supervised by LM. All authors contributed to the discussion and
interpretation of the results, conceptualizing of the figures, as well as to writing the
manuscript.
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Discrete (DTCs) and continuous time crystals (CTCs) are novel dynamical many-body states, that are charac-
terized by robust self-sustained oscillations, emerging via spontaneous breaking of discrete or continuous time
translation symmetry. DTCs are periodically driven systems that oscillate with a subharmonic of the drive,
while CTCs are driven continuously and oscillate with a system inherent frequency. Here, we explore a phase
transition from a continuous time crystal to a discrete time crystal. A CTC with a characteristic oscillation fre-
quency !CTC is prepared in a continuously pumped atom-cavity system. Modulating the pump intensity of the
CTC with a frequency !dr close to 2!CTC leads to robust locking of !CTC to !dr/2, and hence a DTC arises.
This phase transition in a quantum many-body system is related to subharmonic injection locking of non-linear
mechanical and electronic oscillators or lasers.

INTRODUCTION

The conceptual idea of time crystals (TCs) was first de-
scribed as a self-sustaining oscillatory behavior in biological
systems Ref. [1], and then established as a dynamical many-
body state in physical systems in Refs. [2, 3]. A defining fea-
ture of these states is the spontaneous breaking of discrete or
continuous time translation symmetry, giving rise to robust
oscillatory motion in an extended region of their parameter
space. Two distinct scenarios for the emergence of these states
are as follows. Firstly, for closed systems, the continuous time
translation symmetry (CTTS) can be explicitly broken by a
periodic external drive and the remaining discrete time trans-
lation symmetry (DTTS) is spontaneously broken by an oscil-
latory response of the system with a period longer than that of
the drive. An ergodicity slowdown mechanism prevents the
system from heating up to infinite temperature for long times
[4, 5]. This scenario is referred to as a ”discrete TC” (DTC).
Secondly, a TC state can also arise for open systems coupled
to a bath. Similar to the DTC in closed systems, a periodic
drive triggers a subharmonic oscillatory motion of the system,
resulting in a dissipative DTC. For this state, the appropriately
designed coupling to the bath suppresses entropy production.
We note that, in contrast to closed systems, in open systems,
a TC can also emerge in the absence of periodic driving, re-
sulting in the spontaneous breaking of CTTS. This dynamical
state is referred to as a ”continuous TC” (CTC) [6–8].

The theoretical conceptualization of TCs in the context
of many-body physics was followed by rapid experimental
progress. DTCs in nearly closed systems have been realized
in arrays of trapped ions, nitrogen vacancy centers, and in a
mechanically kicked Bose-Einstein condensate (BEC) [9–11].
Discrete dissipative TCs were demonstrated in a BEC of neu-
tral atoms in an optical cavity [12–15] and in an optical mi-
crocavity filled with a Kerr medium [16]. Finally, continuous
dissipative TCs were, for example, realized in magnon BECs

[17], BECs of neutral atoms [18], in collections of spins in a
semi-conductor matrix [19], in photonic metamaterials [20],
or doped crystals [21].

Injection locking (IL) a phenomenon arising if a nonlinear
dissipative oscillator in a limit-cycle state [22] is driven ex-
ternally with a driving frequency !dr. For sufficiently strong
driving, the oscillator locks to the external driving process.
This locking can occur at the driving frequency itself, or, more
generally, at a rational ratio of the driving frequency [23, 24].
A specific case is subharmonic IL, in which the phase-locking
occurs at integer fraction of the driving frequency, i.e. !dr/n

with n 2 {1, 2, ...}. We note that IL is a key phenomenon
in electronic circuits, laser systems, and biological systems,
such as the circadian rhythms of organisms [25] or the syn-
chronization of flashing of fireflies exposed to a periodically
switching torch [26]. In biological systems or mathematical
science this phenomenon is referred to as entrainment [22].

RESULTS

In this article, we demonstrate subharmonic IL in the con-
text of time crystals. Here, a limit cycle is provided by a CTC
produced in an atom-cavity system, oscillating at a frequency
!CTC. We drive the system with a perturbation with a fre-
quency !dr, which is close to 2!CTC. As a result, the CTC
locks to the driving frequency, performing an oscillatory mo-
tion at !dr/2, i.e. at a subharmonic frequency. In the language
of time crystals, we realize a non-equilibrium phase transition
between a CTC and DTC. In the terminology of laser physics,
we establish subharmonic IL in a quantum many-body system.

Our setup is shown in Fig. 1(a). We start with a CTC pre-
pared in an atom-cavity system (cf. Fig. 1(a)) consisting of a
BEC located in a high-finesse optical cavity, pumped transver-
sally by an optical standing wave at constant intensity. As
reported in Ref. [18], this leads to robust self-sustained oscil-
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FIG. 1. (a) Schematic drawing of the atom-cavity system periodically pumped transversely with an optical standing wave potential. (b)
and (b) Distributions of the time phase of the oscillating intra-cavity photon number NP(t) at its main response frequency !CTC (b) for the
non-modulated and !DTC (c) for the modulated case, respectively. The error bars represent the phase uncertainty within the discrete FFT
resolution of 100 Hz. The uncertainty with regard to the radial dimension, i.e. the amplitude uncertainty, is negligibly small. Note that the
tilt of the two observed phase values by an angle of about ⇡/4 with respect to modulation signal is due the retardation of the cavity field
dynamics due to the small cavity bandwidth. (d) Histogram of the relative number of counts of the response frequency !DTC in units of the
driving frequency !dr = 2⇡⇥ 22.5 kHz for the non-modulated (f0 = 0) case in purple (dark) and for the modulated case (f0 = 0.45) in pink
(bright), respectively. Here, the same data is used as for B and C, respectively. (e) Pump protocol and (f) the evolution of NP(t) for a typical
experimental realization. Below t = �14Tdr (first dashed vertical line) "(t) is ramped up while the systems is in the SR phase, indicated by a
non-zero, non-oscillatory NP(t). Between t = �14Tdr and t = 0Tdr, "(t) reaches a critical value "f and the CTC phase arises, displayed by
an oscillatory NP(t). Above t = 0Tdr (second dashed vertical line), modulation results in a DTC, indicated by an oscillatory NP(t) with a
significantly lower bandwidth than that of the CTC (cf. d). The inset in F shows a zoom of "(t) and NP(t) for the time interval marked by the
gray rectangle. The effective cavity pump detuning is �e↵ = �2⇡ ⇥ 8.2 kHz and the final pump strength "f = 2.0 Erec for all measurements
presented in the main text.

lations of the intra-cavity photon number NP(t), which estab-
lishes a CTC. Its frequency !CTC can be associated with the
emergence of a limit cycle [7, 27–31]. As seen in Fig. 1(b), the
oscillation of the CTC breaks the CTTS. The real and imag-
inary parts of the Fourier spectrum of NP(t) at the dominant
frequency !CTC are plotted here for different experimental
implementations. The phase values of the Fourier spectra are
randomly distributed between 0 and 2⇡, confirming the ex-
pected spontaneous breaking of CTTS.

Next, we modulate the intensity of the pump field "(t) at
a frequency !dr close to 2!CTC. The periodic drive breaks
the CTTS of the atom-cavity platform such that the modulated
system only retains DTTS. Under the influence of the modula-
tion, the system converts into a DTC (cf. Ref. [13]) with an os-

cillation frequency !DTC approaching !dr/2, for sufficiently
strong driving. In Fig. 1(c), we analyze the Fourier spectra at
the emission frequency !DTC for different experimental im-
plementations. Only two almost equiprobable (49% and 51%)
phase values, approximately differing by ⇡, are observed, con-
firming spontaneous breaking of the DTTS. The modulation,
in addition to the observed frequency pulling towards subhar-
monic response, also gives rise to a line narrowing of the DTC
emission as presented in the histogram in Fig. 1(d). This is
also seen in Fig. 1(e) and (f), showing that the oscillations ob-
served in NP(t) become more regular as the modulation sets
in at t = 0 and the lifetime of the TC extends to more than a
hundred driving cycles.
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FIG. 2. (a) Relative subharmonic response S versus driving strength
f0 and frequency !dr for fixed effective detuning �e↵ = �2⇡ ⇥
8.2 kHz and final pump strength "f = 2.0 Erec. To obtain (a), we
ramped the pump strength "(t) to its final value "f for fixed �e↵ .
After a 0.5 ms long hold time, the driving strength is ramped to its
desired value f0 for selected driving frequency !dr within 0.5 ms
and subsequently held constant for 10 ms. The parameter space is
divided into 15 ⇥ 18 plaquettes and averaged over 5 to 10 exper-
imental realizations. The white cross indicates the parameter val-
ues f0 = 0.45 kHz and !dr = 2⇡ ⇥ 22.5 kHz, which are used for
the measurements in Figs. 1(c-f), Fig. 3 and Fig. 4. (b) Response
frequency !DTC in units of the driving frequency !dr, plotted ver-
sus the driving strength f0. !DTC is obtained as the frequency that
maximizes a Gaussian fit of the Fourier spectrum of the intra-cavity
photon number NP(t). (c) Relative amplitude of the main spectral
component at frequency !DTC, plotted versus f0. The plots in (b)
and (c) correspond to the path marked in (a) by the gray dashed line.
The error bars show the standard deviation and hence represent the
shot-to-shot fluctuations.

METHODS

The experimental set-up consists of a Bose-Einstein con-
densate (BEC) of Na = 4⇥ 104 87Rb atoms strongly coupled
to a single mode of an optical high-finesse cavity. The system
is pumped transversally, perpendicular to the cavity axis at a
wavelength �p = 791.59 nm (cf. Fig. 1(a)). The pump light is
blue detuned with respect to the relevant atomic transition, the
D1-line of 87Rb at 794.98 nm. The effective pump-cavity de-
tuning is chosen to be negative for all experiments presented
and is defined as: �e↵ ⌘ �c � ��, where �c ⌘ !p � !c is
the detuning between the pump field frequency !p and the
cavity resonance frequency !c, and �� = 1

2
NaU0 denotes

the collective light shift of the cavity resonance caused by
the atomic ensemble for the relevant left circular polarisation
mode of the cavity. For the chosen pump wavelength �p, the
light shift per photon is U0 = 2⇡ ⇥ 0.7Hz. The cavity op-
erates in the recoil resolved regime, meaning that the field
decay rate of the cavity  = 2⇡ ⇥ 3.2 kHz, which sets the
time scale for the intra-cavity light field dynamics, is compa-
rable to the recoil frequency !rec = 2⇡ ⇥ 3.7 kHz. The latter
sets the time scale for the density distribution of the BEC to
adapt to changes of the intra-cavity light field [32, 33]. This

 ω
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C /
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dr
 

modula�on strength, f0

FIG. 3. The blue markers show the response frequency !DTC in units
of the driving frequency !dr plotted versus the driving strength f0 for
a sinusoidal modulation waveform as used for the measurements pre-
sented in Figs. 1,2, and 4. The error bars show the standard deviation
and hence represent the shot-to-shot fluctuations, which are strongly
suppressed with increasing value of f0. The red (square) and green
(diamond) markers show the cases of modulation with square wave
or sawtooth waveforms, respectively. The experimental protocol is
the same as for the measurements in Figs. 2(b,c).

unique regime is a key prerequisite enabling the time crys-
talline phases [12, 13, 18], which are the starting point of
the work presented here. The experimental cycle starts with
preparing a CTC. For this, we first prepare the superradiant
(SR) phase [33] by linearly increasing the pump-field strength
"(t). When " exceeds a critical value, we observe a non-zero
intra-cavity photon number NP, indicating that the system is
in the SR phase. Increasing "(t) further and holding it at a
constant value " = "f , for appropriate settings of �e↵ and "f ,
causes the system to develop periodic motion, corresponding
to a CTC [18]. Subsequently, the pump strength is modu-
lated according to "(t) = "f [1 + f0 cos(!drt)] with the mean
pump strength "f , driving strength f0, and frequency !dr. If
the driving strength f0 is sufficiently large, the response fre-
quency !DTC locks to the first subharmonic of !dr and a DTC
is realized (cf. Fig. 1(e,f)).

DISCUSSION

As a first experiment, we identify the optimal parameter
values of f0 and !dr where the IL of the CTC works most ef-
ficiently. We fix the effective detuning �e↵ = �2⇡ ⇥ 8.2 kHz
and the final pump strength "f = 2.0Erec. For these param-
eters, we observed the strongest subharmonic response while
keeping f0 and !dr fixed (cf. Fig. 5 in the appendix). The
protocol used for the measurement presented in Fig. 2 is as
follows. We linearly increase the pump strength "(t) to its de-
sired final value "f = 2.0Erec for fixed �e↵ = �2⇡⇥8.2 kHz.
This is followed by a waiting time and a linear ramp-up of the
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FIG. 4. (a) Blue solid line: intra-cavity photon number NP(t) averaged over five experimental realizations. Orange and gray markers: relative
population of the sum of the four momentum modes {py, pz} = {±1,±1}~k. The dashed orange line connects the data points to guide the
eyes. (b-f) Averaged momentum spectra used to obtain the data points marked in (a) by the symbols highlighted in black. We chose the same
parameters as for the data presented in Fig. 1. Since the system spontaneously picks one of the two possible time phases, we first extract the
time phase as in Fig. 1(c) from a Fourier spectrum and then post-select realizations with similar phase values before averaging. More details
about the post-selection process are found in the appendix. (g) Phases of the oscillations of NP(t). The error bars show statistical errors for
averaging over multiple realizations.

driving strength f0, both with a duration of 0.5ms. Then, we
hold all the pump parameters constant, record NP(t) during
10 ms, and calculate the Fourier transform NP(!) of NP(t)
(using a Fast Fourier transform method (FFT)). To quan-
tify the degree of IL, we extract the subharmonic response
S = NP(!dr/2)/Max{!dr,f0}[NP(!dr/2)], which is the am-
plitude of the single-sided spectrum at half of the driving fre-
quency NP(!dr/2), normalized to its maximal value observed
across the considered portion of the {!dr, f0}-space.

In Fig. 2(a), we observe a large area showing a strong sub-
harmonic response S. For the optimal choice of �e↵ and "f

(see appendix), S is increased more than fourfold when com-
pared to its value without modulation. The maximal value of
S arises for a driving frequency !dr close to twice the CTC
frequency !CTC, where !CTC ⇡ 2⇡ ⇥ 11 kHz for the op-
timal choice of �e↵ and "f . The optimal driving strength of
about f0 = 0.45 exceeds the value predicted in our simula-
tions (cf. appendix), which may be attributed to the limited
experimental lifetime and the contact interaction of the BEC,
which is not accounted for in the calculations. For increas-
ing f0, the synchronization happens faster and is more robust
in the sense that larger values of the subharmonic response S

are observed together with an extension over longer time pe-
riods. Based upon the observation of spontaneous breaking
of DTTS (cf. Fig. 1(d)) and robustness of the subharmonic
response against temporal perturbations of all four pump and
modulation parameters (�e↵ , "f ,!dr, f0), we claim to observe
a transition between a CTC and a DTC (see appedix for de-
tails). We investigate this transition further for a fixed driv-

ing frequency !dr = 2⇡ ⇥ 22.5 kHz. For each experimental
implementation, we obtain the Fourier spectrum as described
above, but instead of considering its amplitude at !dr/2, we fit
a Gaussian to extract the dominant response frequency !DTC

as the frequency at the maximum of the Gaussian and its cor-
responding amplitude. These quantities are plotted versus the
driving strength f0 in Figs. 2(b) and (c), respectively. For
increasing f0, the response frequency !DTC approaches the
value !dr/2. Each data point is an average of around ten ex-
perimental realizations and the error bars in Figs. 2(b,c) indi-
cate the standard deviation, representing shot-to-shot fluctua-
tions. These fluctuations are due to atom number variations in
the BEC, originating from a combination of inherent quantum
noise and technical instabilities. Interestingly, we find that
for sufficiently strong driving, the emergence of the DTC is
accompanied by a strong suppression of the shot-to-shot fluc-
tuations of !DTC (cf. Fig. 2(b)), while at the same time, the
relative amplitude of the dominant spectral component at fre-
quency !DTC increases almost by a factor of 5 (cf. Fig. 2(c)).

To further assess the efficiency of the IL process with re-
spect to frequency pulling and locking, we plot in Fig. 3 the re-
sponse frequency !DTC, averaged over about ten experimen-
tal realizations, against the driving strength f0, using three
different modulation waveforms: sinusoidal (blue circles),
square wave (red squares), and sawtooth (green diamonds).
The protocol is otherwise the same as the one described in
the previous paragraph. For all three waveforms, !DTC is
pulled towards !dr/2 for a sufficiently strong driving strength
and we observe a plateauing of !DTC above f0 ⇡ 0.3. The
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shot-to-shot fluctuations, given by the error bars, are seen to
significantly decrease as the response locks onto the subhar-
monic of the drive. Moreover, frequency locking is reached
for smaller f0 when using a square wave or sinusoidal mod-
ulation when compared to a sawtooth modulation. This may
be explained as follows: the modulation is implemented as
"(t) = "f [1 + f0 g(t)], where g(t) denotes one of the three
waveforms oscillating between the maximal and minimal val-
ues 1 and �1. For this specification of f0, the amplitude of
the fundamental harmonic contribution of the square, sinu-
soidal, and sawtooth waveforms are {4/⇡, 1, 2/⇡}, respec-
tively. Hence, when compared to the sinusoidal waveform,
the square wave and the sawtooth modulation should produce
tighter or weaker locking, respectively. For the square wave,
however, the higher harmonic components give rise to in-
creased heating, which reduces the atom-cavity coupling and
hence acts to compensate for the tighter locking.

So far, we have restricted ourselves to draw information
about the atom-cavity system from analyzing the light field
leaking out of the cavity, which serves as a non-destructive
monitor for the light-matter dynamics. However, we also
have direct access to the matter sector via momentum
spectra measured after a 25ms long free expansion of the
ensemble. This time-of-flight (TOF) technique is destructive,
and we need to prepare a new matter sample every time a
momentum spectrum is recorded. In the CTC phase, in each
experimental realization, the intra-cavity light field and the
corresponding matter grating oscillate with a random time
phase as a consequence of CTTS breaking (cf. Fig. 1(b)).
Hence, averaging over multiple implementations, in order to
improve signal-to-noise, washes out the dynamical signatures
of the observed momentum distributions. In the DTC regime,
only two time phases, differing by ⇡, emerge. These phases
can be discriminated by analyzing Fourier spectra according
to Fig. 1(c), such that post-selection allows for averaging
momentum spectra with the same phase value. With this, we
directly observe the dynamics of the atomic matter grating. In
Fig. 4(a), the time evolution of NP(t) is plotted as a solid blue
line, and the time evolution of the sum N11 of the populations
of the four momentum modes {py, pz} = {±1,±1}~k,
normalized to the total atom number Na, is shown by orange
and gray markers. In order to obtain N11/Na, momentum
spectra as those shown in Figs. 4(b-f) are recorded, post-
selected to only account for similar time phase values, and
averaged. We observe an oscillation in the dynamics of
N11/Na at a frequency similar to that of the intra-cavity
photon number but notably with a time phase shifted relative
to the time phase of NP(t). This retardation between the
dynamics of the light field and the matter distribution is a
key feature of our recoil resolved atom-cavity system [34]
and is consistent with simulations using an idealized model
for the atom-cavity system (cf. appendix). In Fig. 4(g), the
phase of the oscillation of NP(t), with respect to the phase
of the drive, is plotted versus !dr, which is tuned across the
resonance !dr = 2!CTC. The observed dissipation-induced
change of the phase, when !dr is varied, is a characteristic

signature of IL or entrainment. The nearly linear decrease
with a negative slope is reproduced by the simulations in the
appendix.

CONCLUSION

In conclusion, we have demonstrated dynamical control of
a phase transition between two time crystalline phases. Tak-
ing the continuous time crystalline phase of a transversally
pumped atom-cavity system as a starting point, we have ap-
plied external driving at a frequency of approximately twice
the frequency of the continuous time crystal. For sufficiently
strong driving, the system locks to the external drive in a sub-
harmonic manner, resulting in a discrete time crystal. This
phenomenon establishes subharmonic IL of limit cycles of a
nonlinear dissipative oscillator in the context of many-body
systems. Therefore, we establish a non-trivial interface be-
tween classical non-linear dynamics and time crystals, which
suggests a vast range of dynamical phenomena to be under-
stood and established in time crystals and related dynamical
many-body states.
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APPENDIX

Experimental details

The experimental setup, as sketched in Fig. 1(a) in the main
text, is comprised of a magnetically trapped BEC of Na =
4 ⇥ 104 87Rb atoms, dispersively coupled to a narrowband
high-finesse optical cavity. The trap creates a harmonic poten-
tial with trap frequencies ! = 2⇡ ⇥ (119.0, 102.7, 24.7) Hz.
The corresponding Thomas-Fermi radii of the ensemble are
(rx, ry, rz) = (3.7, 4.3, 18.1) µm. These radii are signif-
icantly smaller than the size of the Gaussian-shaped pump
beam, which has a waist of wpump ⇡ 125 µm. The pump
beam is oriented transversally with respect to the cavity axis
and retro-reflected to form a standing wave potential. The cav-
ity field has a decay rate of  ⇡ 2⇡ ⇥ 3.2 kHz, which is com-
parable to the recoil frequency !rec = Erec/~ = 2⇡⇥3.7 kHz
for a pump wavelength of �p = 791.59 nm. The pump laser
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is blue detuned with respect to the relevant atomic transition
of 87Rb at 794.98 nm. The maximum light shift per atom is
U0 = 2⇡ ⇥ 0.7 Hz.

Cavity field detection

Our experimental system is equipped with two detection
setups for the light leaking out of the cavity. On one side of
the cavity, we use a single photon counting module (SPCM),
which provides access to the intensity of the intra-cavity field
and the associated photon statistics. On the other side of
the cavity, a balanced heterodyne detection setup is installed,
which uses the pump beam as a local reference. The beating
signal of the local oscillator with the light leaking out of the
cavity allows for the observation of the time evolution of the
intra-cavity photon number NP(t) and the phase difference
between the pump and the cavity field.

Identifying the optimal pump parameters

The standing wave pump field is characterized by two pa-
rameters: the effective pump-cavity detuning �e↵ and the
time-dependent pump strength "(t). The latter follows the
equation "(t) = "f [1 + f0 cos(!drt)], with the mean pump
strength "f after ramping is completed, the driving strength f0

and the driving frequency !dr. Fig. 2(a) in the main text shows
the dependence of the subharmonic response S, used to quan-
tify the IL process, for variable modulation parameters f0 and
!dr. S is the amplitude of the single-sided spectrum at half of
the driving frequency, normalized to the maximally observed
value. In this section, we hold the driving strength f0 = 0.45
and the driving frequency !dr = 2⇡ ⇥ 22.5 kHz constant and
identify the parameter regime in the space spanned by �e↵

and "f where IL works most efficiently, and hence, S is max-
imized. In Fig. 5(a), we observe an elliptically shaped island
with strong enhancement of S for large negative detunings,
compared to the non-modulated case shown in Fig. 5(b). The
value of S increases by almost a factor of five for the opti-
mal parameter set. Furthermore, the modulation leads to the
suppression of oscillations at small negative �e↵ . The white
and black crosses indicate an optimized set of parameters,
i.e., �e↵ = �2⇡ ⇥ 8.2 kHz and "f = 2.0Erec, used for the
measurements presented in Figs. 1-4 in the main text of this
manuscript.

Robustness against temporal perturbations

In this section, we investigate the robustness of the IL pro-
cess against temporal perturbations applied to all the parame-
ters that characterize the pump field of the periodically driven
atom-cavity system, which are �e↵ , "f , and the modulation
parameters f0 and !dr. For these experiments, we initial-
ize our system in the discrete time crystal (DTC) phase us-
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FIG. 5. Subharmonic response S for the modulated (a) and for the
non-modulated case (b), plotted versus the effective pump-cavity de-
tuning �e↵ and the mean final pump strength "f . The modulation
parameters !dr = 2⇡ ⇥ 22.5 kHz and f0 = 0.45 are kept con-
stant for the entire measurement. To obtain (a) and (b), we ramp
the pump strength " to its final value "f , for a fixed �e↵ . Af-
ter a hold time of 0.5 ms at "f , f0 is ramped to 0.45 for fixed
!dr = 2⇡ ⇥ 22.5 kHz within 0.5 ms and subsequently held constant
for 10 ms. The evolution of NP(t) is recorded during this time inter-
val and its Fourier spectrum is calculated by a discrete Fast-Fourier-
Transformation (FFT) method. The amplitude of the Fourier spec-
trum at ! = 0.5!dr, normalized to the maximally observed value
of S, is plotted according to the shown colour code. The parameter
space is divided into 21 ⇥ 27 plaquettes and averaged over 5 to 10
experimental realizations. The white and black crosses indicate the
parameter values �e↵ = �2⇡ ⇥ 8.2 kHz and "f = 2.0Erec, which
are used for the measurements presented in Figs. 1-4 in the main text
of this manuscript.

ing the following protocol: first, we linearly increase the
pump strength "(t) to its final value "f = 2.0 Erec for fixed
�e↵ = �2⇡ ⇥ 8.2 kHz to prepare our system in the con-
tinuous time crystal (CTC) regime. After a waiting time of
0.5 ms, followed by a 0.5 ms ramp of the driving strength to
f0 = 0.45 for !dr = 2⇡⇥22.5 kHz, we keep all pump param-
eters constant for 10 ms and separately add white noise with
a bandwidth of 50 kHz to each of them. The subharmonic
response S for increasing noise strength is plotted in Fig. 6.
We observe robustness of the oscillations for nonzero noise
strength for all four pump parameters.

IL for fractions of !dr/!CTC close to 1 and 1/2

Next, we investigate the IL process when the ratio between
the driving and the intrinsic limit cycle frequencies is close to
1 or 1/2. We prepare the system in the CTC regime, such that
its intrinsic frequency is around !CTC = 2⇡ ⇥ 11.10 kHz.
Fig. 7 shows the case of !dr

!CTC
⇡ 1. The experimental proto-

col and evaluation method are the same as in Figs. 2(b,c) of
the main text. However, for the data shown in Fig. 7, we drive
at !dr = 2⇡ ⇥ 11.30 kHz (a,b) and !dr = 2⇡ ⇥ 11.25 kHz
(c,d) to investigate how the CTC is entrained to the driving
frequency !dr. See results in Figs. 7(a,b) and Figs. 7(c,d), re-
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FIG. 6. (a) Temporal perturbation of the effective pump-cavity de-
tuning �e↵ . The maximum relative noise strength corresponds to
adding white noise with an amplitude of ��e↵,max = ±2.5 kHz.
(b) Temporal perturbation of the final pump strength "f . The maxi-
mum relative noise strength corresponds to adding white noise with
an amplitude of �"f,max = ±0.5Erec. (c) Temporal perturbation
of the driving strength f0. The maximum relative noise strength
corresponds to adding white noise with an amplitude equal to f0.
(d) Temporal perturbation of the driving frequency !dr. The max-
imal relative noise strength corresponds to adding white noise with
a deviation of �!dr = 2⇡ ⇥ 20 kHz. For all measurements, the
bandwidth of the white noise was 50 kHz, �e↵ = �2⇡ ⇥ 8.2 kHz,
"f = 2.0 Erec, f0 = 0.45, and !dr = 2⇡ ⇥ 22.5 kHz.

spectively.
Fig. 8 shows the IL process when the ratio between the driving
and the intrinsic CTC frequencies are close to 1/2. We drive
the CTC at !dr = 2⇡ ⇥ 5.625 kHz and observe the response
frequency !DTC entrained to twice the driving frequency. The
observations in this section emphasize a key feature of nonlin-
ear systems, i.e., their limit cycle frequencies can be entrained
to assume any rational fraction of the driving frequency.

Theoretical model

To theoretically model the experimental results, we only in-
clude the degrees of freedom along the pump and cavity axes.
In doing so, we consider a 2D system and neglect the short-
range contact interaction between the atoms. Thereby, the
atom-cavity Hamiltonian in second quantized form comprises
three contributions, one from the cavity photons, the atoms,
and the light matter interactions

Ĥ = Ĥc + Ĥa + Ĥac. (A1)

The Hamiltonian for the single-mode cavity is Ĥc =
�~�c â†â, where â (â†) is the bosonic annihilation (creation)
operator for the cavity photons and �c < 0 is the detuning
between the pump and cavity frequencies. The atomic Hamil-
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tonian is given by

Ĥa =

Z
dydz  ̂†(y, z)

✓
�

~2
2m

r
2 +Vext(y, z)

◆
 ̂(y, z),

(A2)
where m is the mass of a 87Rb atom, Vext(y, z) = "f cos2(ky)
describes the potential of the standing wave due to the pump
beam with its depth characterized by the parameter "f and its
wavelength �p incorporated in the wave vector k = 2⇡/�p.
The bosonic field operators for the atoms are  ̂(y, z) and
 ̂†(y, z). Finally, the light-matter interaction Hamiltonian is
given by

Ĥac =

Z
dydz  ̂†(y, z)

⇣
~U0 cos

2(kz)â†â+ ~
p

~"fU0 cos(ky) cos(kz)
⇥
â
† + â

⇤⌘

 ̂(y, z), (A3)
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where U0 > 0 is the light shift per intra-cavity photon. We
assume that the wave number of the cavity field is equal to the
wave number k of the pump field.

We simulate the dynamics of the system using a the trun-
cated Wigner approximation (TWA) for open systems [35,
36]. To this end, we first expand the atomic field operators
in the basis of plane waves

 ̂(y, z) =
X

n,m

�̂
†
n,m

e
inky

e
imkz

, (A4)

where the bosonic creation and annihilation operators are
�̂
†
n,m

and �̂n,m, respectively. Within the TWA, the operators
are treated as c numbers â ! a and �̂n,m ! �n,m. The
semiclassical equations of motion are

i
@�n,m

@t
=

1

~
@H

@�⇤
n,m

, (A5)

i
@a

@t
=

1

~
@H

@a⇤
n,m

� ia+ i⇠,

where the fluctuation strength ⇠ associated to the cavity field
decay follows h⇠

⇤(t)⇠(t0)i =  �(t � t
0). We initialize both

the atomic and photonic modes as coherent states and use the
appropriate Wigner distribution to sample the initial state for
the time evolution according to Eq. (A5). In doing so, we
effectively include the leading order quantum corrections to
the mean-field predictions. We consider 102 trajectories in our
TWA simulations. Furthermore, we use �e↵ = �2⇡ ⇥ 7 kHz,
"f = 1.7 Erec, and !dr = 2⇡ ⇥ 20.5 kHz. The remaining
parameters are the same as those in the experiment.

Finite size effects

To analyze the finite-size behaviour of the system, we vary
the particle number Na for fixed NaU0 = 2⇡ ⇥ 28 kHz.
We compare the results of exemplary trajectories within
TWA and mean-field theory. The all-to-all couplings of the
atoms due to the cavity photons suggest that mean-field the-
ory captures the thermodynamic limit Na ! 1, and thus
mean-field results provide an idealized scenario for the sys-
tem. To quantify the stability of the time crystals, we ob-
tain the power spectrum of the intra-cavity photon num-
ber NP(!). We then calculate the relative crystalline frac-
tion defined as the ratio between the maximum peak of the
power spectrum of the TWA and mean-field results, ⌅ =
max[NP,TWA(!DTC)]/max[NP,MF(!DTC)]. This quantifies
the stability of the time crystals for finite Na relative to the
idealized mean-field limit, which for the parameters chosen
here exhibits stable oscillations at a well-defined frequency.

We present in Fig. 9 the relative crystalline fraction ⌅ for
different particle numbers Na. For both driven and undriven
cases, the relative crystalline fraction increases ⌅ with Na as
it approaches the mean-field prediction in the thermodynamic
limit Na ! 1. This suggests that the oscillation amplitude of

the time crystals becomes more stable with increasing Na. For
small Na, in which quantum fluctuations become important,
the typical values of ⌅ for the undriven system are much less
than those for the driven system. This further highlights the
capability of periodic driving to enhance the stability of a time
crystal. Therefore, in general, the entrained time crystals are
more stable than their undriven counterparts.

Na

FIG. 9. Relative crystalline fraction ⌅ as a function of the particle
number Na for the undriven and driven systems. The parameters are
�e↵ = �2⇡ ⇥ 7 kHz and "f = 1.7 Erec. In the driven case, the
driving parameters are !dr = 2⇡ ⇥ 20.5 kHz and f0 = 0.15. All
other parameters are identical with those used in the experiment.

Atom number fluctuations

In the experiment, additional fluctuations from technical
noise are present when preparing the initial BEC. To study
its consequence on the IL process by the periodic drive, we
include artificial noise in the initial particle number in our
TWA simulations. Specifically, we increase the fluctuations
in the occupation of the lowest momentum mode, the BEC
mode, by increasing the standard deviation of the Gaussian
distribution used for initial state sampling. In the absence of
technical noise, the inherent number fluctuations of a coherent
state correspond to a standard deviation of �Na =

p
Na. We

model the experimentally observed particle number fluctua-
tion by increasing the standard deviation to a value consistent
with the experiment, which is �Na = 10

p
Na = 2 ⇥ 103.

In Fig. 10, we show the numerical results comparing the
dominant response frequency !DTC and its shot-to-shot fluc-
tuations, depicted as error bars, for the ideal case with only
the inherent quantum fluctuations of the initial BEC (A) and
the case with additional particle number fluctuations due to
technical noise (B). The shot-to-shot fluctuations of !DTC are
found to be generally larger when there is additional noise, es-
pecially for weak driving. However, we find that IL still works
not only with regard to locking the signal to a subharmonic of
the drive but also in suppressing the associated shot-to-shot
fluctuations, albeit for larger driving strength when compared
to the ideal scenario, which only includes the inherent quan-
tum noise.
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FIG. 10. Numerical results on the influence of atom number fluc-
tuations on the response frequency. The dominant response fre-
quency !DTC in units of !dr is plotted versus the driving strength
f0 for a system with (a) only inherent quantum fluctuations and (b)
with both quantum and technical noise with a mean atom number
Na = 40⇥ 103 and �Na = 10

p
Na.

Time evolution of momentum distribution

In Fig. 11, the time evolution of the sum N11 of populations
of the four momentum modes {py, pz} = {±1,±1}~k, nor-
malized to the total atom number Na, is shown by the orange
line graph. In addition, the time evolution of the intra-cavity
photon number NP(t) is plotted as a solid blue line. In agree-
ment with the experimental findings in Fig. 4(a) of the main
text, a delay between both graphs is found, as expected in the
recoil resolved regime which presents in our atom-cavity sys-
tem. The simulation closely follows the experimental proto-
col for DTC preparation. That is, TWA trajectories are cal-
culated in the momentum basis and post-selected to belong to
the same symmetry-broken state of the emerging DTC. The
momentum spectrum and thus N11 is obtained. The simula-
tion neglects contact interaction and atom loss due to technical
heating.
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FIG. 11. Numerical simulation of the time evolution of higher order
momentum components. The blue solid line plots NP(t) versus time
in units of the oscillation period Tdr of the external drive. The or-
ange solid line shows the corresponding time evolution of N11/Na,
where N11 denotes the sum of the populations of the momentum
components {py, pz} = {±1,±1}~k. The mean atom number is
Na = 40⇥ 103.

In Fig. 12, the calculated phases of the oscillations of NP(t)
(magenta markers) and N11(t) (orange markers) are plotted
against the driving frequency !dr varied across the resonance,
where !dr = 2!CTC. The phase of the the drive is defined
to be zero. Note that for !dr = 2!CTC the time phase of
the momentum occupation N11(t) becomes the same as that
of the drive, which is a characteristic feature of IL. We find
similar monotonously decreasing scaling with !dr for N11(t)
and NP(t). The photon dynamics NP(t) show an extra phase
lag introduced by the cavity dissipation . These findings are
compatible with the observations in Fig. 4(g) of the main text.

 Φ
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FIG. 12. Phase delays of matter and light sectors after IL. The cal-
culated phases of the oscillations of NP(t) (magenta markers) and
N11(t) (orange markers) are plotted against the driving frequency
!dr.
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Motivation

This work was motivated by the promising properties of atom interferometry, namely the
high precision and long-term stability in acceleration and rotation measurements. The
applications range from fundamental physics, metrology to inertial navigation. However,
current experiments use destructive measurements, which makes them di�cult to use for
inertial navigation. Our aim was to propose a new setup that overcomes this obstacle
and can be used for inertial navigation.

Main findings

In this work, we have proposed to combine the physics of neutral atoms exposed to
a Peierls phase induced via external rotation of the setup and the superradiant phase
transition as can be found in an atom-cavity system. This allows to build a highly sensi-
tive and fast quantum rotation sensor. Therefore, the atoms are placed in a rectangular
array of Bose-Einstein condensates (BEC) coupled to a single quantised light mode. We
analytically derived the dependence of the critical light-matter coupling, needed to enter
the superradiant phase depending on the external rotational frequency. We suggested
di↵erent options to increase the accuracy of the sensor. Furthermore, we demonstrated
robustness of the sensor against particle number fluctuations, quantum fluctuations in
the initial state according to the truncated Wigner approximation, and stochastic noise
induced by photon loss in the cavity.

Contribution

I performed all numerical studies supported by JGC under the supervision of LM. I
performed the analytical studies together with LM supported by JGC. LM conceptu-
alized this work. All authors contributed to the discussion and interpretation of the
results, as well as to writing the manuscript.
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Using an atom-cavity platform, we propose to combine the effective gauge phase of rotated neutral atoms
and the superradiant phase transition to build a highly sensitive and fast quantum rotation sensor. The atoms
in a well-controlled array of Bose-Einstein condensates are coupled to a single light mode of an optical cavity.
The photon emission from the cavity indicates changes in the rotation frequency in real time, which is crucial
for inertial navigation. We derive an analytical expression for the phase boundaries and use a semi-classical
method to map out the phase diagram numerically, which provides the dependence of the photon emission on
the rotation. We further suggest to operate the sensor with a bias rotation, and to enlarge the enclosed area, to
enhance the sensitivity of the sensor.

Quantum sensing aims to take advantage of the accuracy
and long-time stability of quantum platforms, such as ultra-
cold atoms, for new technological applications [1]. While
optical Sagnac interferometers are important tools in present
day navigation, they can fall short due to limited sensitivity
and long-term stability [2]. Atom interferometry emerged as a
promising platform to address these issues with high precision
rotation and acceleration measurements [3–8]. The applica-
tions range from testing fundamental physics [9–11], metrol-
ogy [12], absolute gravimetry [13, 14] to inertial navigation
[15, 16]. So far, the usage of atom interferometers as rotation
sensors to measure time-varying signals has been challenging.
Each measurement is done destructively, which means that
any change in the rotation that occurs during the preparation
of the new measurement is not detected. An interleaved oper-
ation can be used to increase the repetition rate [17]. However,
an accurate rotational measurement of a time-varying rotation
with an atom-only interferometry remains challenging, but is
crucial if the device is to be used for inertial navigation [18].

Rotating an ultracold atom system creates an artificial
gauge field [19–21], which was proposed to study gauge field-
driven atom dynamics in a controlled environment and to pro-
duce cat states for quantum metrology [20, 22]. A similar
setup described by a rotating Bose-Hubbard model has been
proposed for rotation sensing [23].

Open quantum systems such as atom-cavity systems
[24, 25] allow for a real-time monitoring of the photons emit-
ted out of the cavity. This has been used to in-situ observe
phase transitions [26–30]. The precise control of cold atom
experiments combined with the inherent cooling of the sys-
tem due to energy leaking out of the cavity, makes it an ideal
platform to study non-equilibrium dynamics [31–38].

In this letter, we propose to build a quantum rotation sen-
sor that allows to measure fast time-varying signals by incor-
porating atom interferometry, artificial gauge phases in ultra-
cold atoms, and real-time readout of open quantum systems.
Specifically, we propose to combine the control of the hop-
ping parameter J by an effective gauge phase, which can be
realized by rotations of neutral atoms, and the superradiant
(SR) phase transition that can be realized by coupling neu-
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⌦

FIG. 1. (a) Sketch of the proposed system. 1D tubes of Bose-Einstein
condensates are placed with a separation of �/2 in a high-finesse op-
tical cavity. The atoms are transversely pumped by a red-detuned
laser beam with wavelength � that forms a standing wave poten-
tial. The effect of an applied rotation around the z-axis at an angular
frequency of ⌦, as sketched in blue, can be measured in real time
through the intensity of the photons transmitted out of the cavity at
a rate , as shown in (b). (b) A schematic sketch of the measured
light field intensity for varying rotational frequencies ⌦ rescaled by
the intensity measured when the system is at rest. (c) Top view of
the proposed setup. Red and blue circles denote the sign of the light-
matter coupling ±g at each site. J denotes the tunnelling between
neighbouring sites. Using a DMD, a square annulus light potential
is applied shown in light blue. From left to right: the proposed setup
with increasing area enclosed by the atoms. This allows for an in-
creased frequency sensitivity of the sensor, which scales with the
number of array sites, 1/M .

tral atoms to a single mode cavity with a photon loss rate .
With this, we propose to create a quantum rotation sensor that
possesses both non-destructive detection and real-time obser-
vation of precise changes in the external rotational frequency
⌦ of the system.

Using an mean-field ansatz, we analytically show the de-
pendence of the phase boundary and the intracavity photon
number on the rotation, represented by a gauge phase. We fur-

ar
X

iv
:s

ub
m

it/
48

05
83

3 
 [q

ua
nt

-p
h]

  2
3 

M
ar

 2
02

3



2

ther use a semi-classical method to numerically determine the
phase diagram as a function of the rotation frequency, and the
light-matter coupling strengths. We explore the dynamics un-
der dynamical changes of the rotation. These changes can be
distinguished dynamically from the inherent quantum noise,
which we quantify as the standard deviation of the light field
fluctuations. We note that the timescale on which changes of
the phase cannot be dynamically distinguished is on the order
of the inverse of the hopping parameter, which corresponds to
1/J ⇡ 5⇥ 10

�4
s, for the parameters given below.

A sketch of our proposed sensor is shown in Fig. 1(a)
and with a top view depicted in Fig. 1(c). We propose
to split a Bose-Einstein condensate of 87Rb atoms into M

one-dimensional (1D) tubes and organize them in a two-
dimensional square array with a spacing of �/2, where � is
the wavelength of the laser beam used to produce the light-
matter coupling between the atoms and the cavity. To trap the
atoms and produce the atomic array, a DMD can be employed
to construct a square annulus potential with barriers running
along each side at a periodicity of �/2 to produce an atomic
array [8, 39]. This system is then placed inside a high finesse
cavity with a loss rate . In Fig. 1(c), we show schematic di-
agrams of the desired geometry of the atomic array including
the confining potential. The enclosed area can be enlarged
leading to an improved frequency sensitivity that scales with
1/L, a typical strategy done in atom interferometers [7]. This
sensor allows to measure changes in the rotational frequency
via the light intensity transmitted out of the cavity. The mech-
anism crucial for the operation is the following. For the SR
phase to occur, the light-matter coupling strength needs to ex-
ceed the tunnelling energy, which is minimized if all sites have
the same population (see Eq. 6). However, the SR phase relies
on an imbalance between neighbouring sites as is depicted in
red and blue in (c). Rotations of the system lead to an effective
gauge field that modifies the tunnelling amplitude. This leads
to an effective reduction of the real part of the tunnelling en-
ergy, which lowers the critical light-matter coupling needed to
enter the SR phase. For a fixed light-matter strength the rota-
tional frequency can now be read off by the light field intensity
leaking out of the cavity. This effect is used in our rotational
sensor. We note that the sensitivity is further increased with
an operation of the sensor close to the phase transition. This
allows for small changes in the rotational frequency induce
large changes of the photon number, as demonstrated below,
due to the strong dependence near the phase transition.

The atomic sector of our system is described by a bosonic
field operator �̂(r) and the many-body Hamiltonian

ĤA =

Z
�̂

†
(r)

✓
�~2r2

2m
� ⌦L̂z + V (r)

◆
�̂ (r) dr, (1)

where the external L̂z is the angular momentum operator and
V (r) is the external potential shaped by a DMD [8, 39]. A
DMD can be used to generate a square array of potential
wells, such that the atoms are confined with a width of �/2
as sketched on Fig. 1(c). We further assume that the external
potential will have a periodicity of �/2 [8] along the x� and

y�direction and is sufficiently weak such that the system re-
mains in the superfluid regime [40]. This condition places a
constraint on the length of each side L to be an integer multi-
ple of �/2. The cavity photon annihilation (creation) operator
is â (â†) and the corresponding Hamiltonian is ĤC = !â

†
â.

The atoms and photons interact according to [24]

ĤLM =

Z
�̂

†
(r) ⌘ cos(kx) cos(ky)

�
a+ a

†�
�̂ (r) dr, (2)

where ⌘ the strength of the coupling. We further assume
that the potential V (r) is deep enough to neglect next-nearest
neighbour tunneling and that the band gap is larger than the
rotational energy. With this, we expand the atomic field oper-
ators in Wannier orbitals [21]

W̃i = exp

✓
� im

~

Z
ri+1

ri

A(r
0
)dr

0
◆
Wi(r), (3)

where A(r) = ⌦ z⇥r is the effective vector potential induced
by the rotation.
In the rotating frame, the effective Hamiltonian for the system
is given by

Ĥ =! â
†
a� g

�
â
†
+ â

� MX

i=1

(�1)
i
n̂i (4)

� J exp (i✓ (⌦))

MX

i=1

⇣
b̂
†
i b̂i+1

⌘
+ h.c.

with the periodic boundary condition b̂M+1 = b̂1. J is the
tunneling energy between neighboring condensates, and g is
the light-matter coupling for the Wannier orbitals. These are
defined as J =

R
drW

⇤
i

h
�~2r2

2m + V (r)

i
Wi+1 and g =

⌘
R
drW

⇤
i cos(kx) cos(ky)Wi. The number operator at site

i is n̂i = b̂
†
i b̂i, and ✓ is an effective phase generated by the

gauge field ✓ =
R xi+1

xi
A(r)dr = ⇡

2
ns⌦/!rec. For the four-

site model shown in Fig. 1(c), this phase is the same four the
four bonds. For larger realizations, shown in Fig. 1(c) as well,
the gauge phase will be dependent on the bond. However, the
general functionality is retained. The recoil frequency due to
the pump is !rec = ~k2/2m and we define the number of sites
on each side as ns = M/4 + 1. We note that other geome-
tries, e.g. rectangular potentials instead of a square potential,
can be used as well. Here, the angle ✓ will be different for
the x� and y�axis. However, the functionality is retained
for this modification as well, even for the four-site realization.
Due to the geometry of the potential and the all-to-all cou-
pling mediated by the cavity light field, all atoms on the even
sites experience the same light-field interaction strength, as do
the atoms on the odd sites. We determine the phase diagram
for the square-shaped four-site realization with a mean-field
ansatz. We consider a product state of coherent states as an
ansatz

| i = (| �i| +i)M/2 |↵i (5)
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where  ± and ↵ are c-numbers representing the amplitude of
the coherent states.  + ( �) corresponds to the condensate on
the odd (even) sites. We compute the energy E = h |H| i,
define  ± =

p
(NA ±�) /M with NA the total particle

number, and find

E = !|↵|2 � 2g↵r�� 2J cos ✓

q
N

2
A ��2, (6)

where we denote ↵r ⌘ <(↵). By minimizing the energy, we
find the critical light-matter coupling strength to be gcrit =p

J! cos(✓)/NA. For an open system with dissipation rate ,
we obtain a modified critical coupling strength,

gcrit =

s
J cos ✓ (!2 + 2)

NA!
. (7)

Hence, the critical light-matter coupling strength can be sig-
nificantly reduced via rotation of the setup, due to the depen-
dence on cos (✓). This dependence is the origin of the func-
tionality as a rotation sensor, due to the dependence ✓ = ✓(⌦).
A change of⌦ results in a change of the emitted light intensity
in real time without any destructive measurement.

In the following, we determine the dynamics of the four-site
realization via a numerical implementation of the open Trun-
cated Wigner Approximation (TWA) method [29, 41, 42].
The TWA is a semi-classical phase space method, which uses
an ensemble of initial states sampled over the corresponding
Wigner distribution to predict the quantum dynamics. For
the cavity mode, we sample from a Wigner distribution cor-
responding to a coherent state with h↵i = 0. For the atoms on
each site, we sample from a Wigner distribution of a coherent
state with hnii = NA/M . Due to the dissipative nature of
the system, we propagate the initial states via stochastic dif-
ferential equations. The equations of motion are given by the
Heisenberg-Langevin equations

db̂i

dt
= i[Ĥ, b̂i] (8)

dâ

dt
= i[Ĥ, â]� â+ ⇠ (9)

where  is the cavity dissipation rate and ⇠ represents the
noise associated with the dissipation. The noise fulfills the
relation h⇠⇤(t0)⇠(t)i = �(t � t

0
). In the following, we

use experimentally realistic parameters [43]. In particular,
we consider 87Rb atoms and choose a particle number of
NA = 60⇥ 10

3 and a recoil energy of !rec = 2⇡ ⇥ 3.5 kHz,
which corresponds to a wavelength of � ⇡ 800 nm. We fur-
ther assume to be in or near the good cavity or recoil-resolved
regime !rec ⇡  = 2⇡ ⇥ 5 kHz. However, we want to stress
that our proposed sensor is not limited to operation in this
regime. Using a larger  is also feasible but with the trade-off
that the number of photons detected in real time would be
less than for smaller . For the tunnelling rate, we assume
J = 2⇡ ⇥ 2 kHz.

SR

NP

(a) (b)

FIG. 2. (a) Steady state light field intensity |↵|2steady as a function
of the rotation frequency and light-matter coupling strength. The
light-matter coupling strength is rescaled by the critical value for the
non-rotating case. For each data point, we average over 103 TWA
trajectories. The red curve corresponds to the analytically derived
phase boundary in Eq. (7). (b) Phase diagram inferred from (a) using
the criterion |↵|2steady > 10 for the superradiant phase.

In Fig. 2(a), we show the TWA results for the steady-state
values of the photon number for varying gauge phase ✓ and
light-matter coupling g rescaled by the critical light-matter
coupling for the system at rest, g0,crit = gcrit(✓ = 0). The
corresponding phase diagram is presented in Fig. 2(b). The
red curve corresponds to the the analytical critical light-matter
coupling strength in Eq. (7). We observe that the photon num-
ber strongly depends on the phase. In Fig. 2(b), we distin-
guish between the normal phase (NP), in which there are no
cavity photons and no imbalance between the population on
the even and odd sites, and the SR phase, in which photons
are scattered into the cavity and there is population imbalance
between the even and odd sites. We note that for a fixed light-
matter coupling the Z2 symmetry breaking phase transition
between the NP and SR phase can be induced by changes in
the gauge phase ✓ which originates from changes in the fre-
quency of the rotation.

In the following, we elaborate on dynamically sensing ro-
tational frequencies in real time. The timescale in which
changes of frequencies can be distinguished is roughly 1/J =

5 ⇥ 10
�4

s. This makes the sensor an ideal candidate for in-
ertial navigation, where quick dynamical changes in the the
rotational frequency need to be detected. Further, we propose
to increase the sensitivity of the sensor by using a bias rota-
tion, i.e. rotating the system at a fixed frequency, so that the
signal is the incremental change compared to the bias rota-
tion. In Fig. 3(a), we present TWA results for the light field
intensity in red and the corresponding standard deviation in
the shaded area. The results are obtained using 10

3 trajecto-
ries. The blue line corresponds to the phase ✓, which is now
modulated in time, as an example for time-dependent behav-
ior. We ramp up the light matter coupling to g = 1.09g0,crit

within 1 ms at the beginning of each run. Initially the system
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!" = 0

(b)
!" = %/4

(a)

FIG. 3. (a) In blue, the applied phase ✓ modulated with a sinusoidal
drive with strength �✓ = ⇡/20 and frequency !dr = 2⇡ ⇥ 0.5 kHz.
The dark red line shows the light field intensity derived from 10

3

TWA trajectories. The light red shaded area shows the correspond-
ing standard deviation due to quantum fluctuations within TWA.
The system is initialized at rest before driving the system. (b)
Same protocol as in (a) but the system is initialized with a phase
of ✓0 = ⇡/4. In both cases the amplitude change of ⌦ corresponds
to !rec/(20⇡ns) = 350 Hz/ns and we choose g = 1.09g0,crit.

is at rest, corresponding to ✓ = 0. After the time t0 we change
the phase via ✓ = ✓0+�✓ sin(!drt) to showcase the dynamical
detection of changes in the rotational frequency. We choose
!dr = 0.5 kHz and �✓ = ⇡/20 corresponding to a frequency
change of �⌦ = !rec/20⇡ns = 0.35/ns kHz.

As seen in Fig. 2(a) and Fig. 3(a) for ✓ = 0, any change in
the phase will increase the light intensity. Due to this effect the
applied phase change creates a frequency doubling in the light
intensity. We emphasize that the magnitude of the relative
change in the light field intensity is larger than the standard
deviation or uncertainty due to quantum fluctuations. Thus,
we can reliably distinguish between the dynamically varying
rotational frequencies. In Fig. 3(b), we use the same proto-
col as in Fig. 3(a) except that for the first 1 ms ramp of the
light-matter coupling, the phase ✓0 is also ramped up from 0 to
⇡/4. This corresponds to rotating the sensor before the sens-
ing starts. Fig. 3(b) shows that the overall photon number is
increased for fixed light-matter coupling strength g. Further-
more the response of the system to the changes in the phase
is more sensitive as inferred from the larger variations in the
photon number compared to Fig. 3(a). For the specific choice
of parameters considered here, the sensor must be rotated at
approximately ⌦0 = !rec/4⇡ns = 1.75/ns kHz to operate in
this regime.

We note that the change of the rotational frequency as de-
picted in Fig. 3 can still be detected if we assume large particle
number fluctuations with the width of � = 0.1 ⇥NA in each
run of the measurement. This is shown in the supplemental
material [44].

Before we conclude, we briefly discuss the influence of pa-
rameter choices on the sensitivity of the proposed rotational
sensor. In order to prepare a dynamical and sensitive sensor

we want to minimize the ratio �⌦ and ⌧ , where �⌦ is the
smallest change in the rotational frequency that can be distin-
guished from noise and ⌧ is the response time of the sensor.
Generally speaking, ⌧ is proportional to 1/J . Hence, we want
to maximize the tunnelling amplitude, while keeping it suffi-
ciently small to avoid exciting atoms into higher bands. To in-
crease the dynamical rotational sensitivity there are two routes
one can take. The first is to increase the enclosed area by
adding more sites to the array as discussed above, see Fig 1(c).
The second choice is to change the platform for implement-
ing the discrete model studied here. Specifically, the spacing
between different sites could be increased to decrease !rec,
which means that the system no longer operates in the optical
regime but in the near infrared regime instead, for example.
This suggests that this mechanism to detect changes in rota-
tional frequencies is not limited to atom-cavity systems, but
can be implemented in other light-matter coupled systems,
with a different recoil energy of atomic sector and/or which
allow to enclose even larger areas. This makes our approach
tunable to the desired frequency domain in which the sensor
is to operate.

In conclusion, we have presented a new mechanism for dy-
namical rotational sensing. Our proposed system utilizes the
artificial gauge field that neutral atoms experience due to ex-
ternal rotation, and combine it with the superradiant phase
transition of an array of atoms coupled to a single mode cav-
ity. This allows for a high precision measurement in real time.
We further highlight the possibility that the sensitivity can be
increased by increasing the enclosed area of the quantum sen-
sor. A change of�✓ = ⇡/400 of the gauge field, correspond-
ing to realistic parameters to ⇡ 17.5 Hz/M of the rotational
frequency, can be measured and distinguished from the cavity
noise, where M denotes the total number of sites. We note that
the influence of rotation on the superradiant phase transition
can be observed in current state-of-the-art atom-cavity exper-
iments [43, 45] using an actuator giving a dynamical twist to
the optical table. Our proposal puts forth to create quantum
rotational sensors not only for static high precision frequency
measurements but also for inertial measurements and naviga-
tion, where the ability to measure time-varying signals is cru-
cial.
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PARTICLE NUMBER FLUCTUATIONS

To further show the applicability of our detector we assume to have a gaussian particle number distribution with N = 40000

and � = 0.1 ⇥ N . SFig. 1 we use the same protocol and parameters as discussed in the main text Fig.3(b), but with the new
particle number distribution. The change of the rotational frequency can still be distinguished from the fluctuations.

FIG. 1. (a) In blue the applied phase ✓ modulated using a sinusoidal drive with strength �✓ = ⇡/20 and frequency !dr = 2⇡ ⇥ 0.5 kHz. The
dark red line shows the light field intensity derived from 10

3 TWA trajectories. The light red shaded area shows the corresponding standard
deviation due to quantum fluctuations within TWA. The system is initialized at rest before the drive starts. (b) Same protocol as in (a) but the
system is initialized with a phase of ✓ = ⇡/4. In both cases the amplitude change of ⌦ corresponds to !rec/(20⇡ns) = 350 Hz/ns and we
choose g = 1.09g0,crit.
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2.15 Publication X: Equilibrium parametric amplification in
Raman-cavity hybrids

H. P. Ojeda Collado, Marios H. Michael, J. Skulte, Angel Rubio and L. Mathey
— submitted to Phys. Rev. Letters (2023)

Motivation

This work was motivated by the recent experimental advances that showed the pos-
sibility to manipulate material properties solely through quantum fluctuations in the
light field. The goal of this work was to study precisely such scenarios by coupling a
Raman mode to a cavity, where the cavity frequency can be adjusted to control the
Raman mode due to the vacuum fluctuations of the cavity light field.

Main findings

In this work, first-authored by H.P. Ojeda Collado, we have shown that for certain
resonant conditions the phenomenon of parametric amplification can appear in equilib-
rium for Raman-cavity hybrid systems. The resonance appears if the cavity frequency
is tuned to half of the Raman frequency. Here, the thermal and quantum fluctuations
of the Raman mode can enhance the cavity light field. Using numerical and analyti-
cal methods, we showed the appearance of what we call an unusual parametric Raman
polariton. Using Raman spectroscopy we proposed a scheme to probe our findings and
concluded with possible experimental setups that can be used to study this phenomena
in more depth experimentally.

Contribution

HPOC conducted all numerical simulations supported by me and supervised by LM.
MHM carried out all analytical calculations supported by HPOC. All authors contributed
to the discussion and interpretation of the results, as well as to writing the manuscript.
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Parametric resonances and amplification have led to extraordinary photo-induced phenomena in pump-probe
experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present
the striking result of parametric amplification in equilibrium. In particular, we demonstrate that quantum and
thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman
mode frequency is twice the cavity mode frequency. This noise-driven amplification leads to the creation
of an unusual parametric Raman polariton, intertwining the Raman mode with cavity squeezing fluctuations,
with smoking gun signatures in Raman spectroscopy. In the resonant regime, we show the emergence of
not only quantum light amplification but also localization and static shift of the Raman mode. Apart from
the fundamental interest of equilibrium parametric amplification our study suggests a resonant mechanism for
controlling Raman modes and thus matter properties by cavity fluctuations. We conclude by outlining how to
compute the Raman-cavity coupling, and suggest possible experimental realizations.

Introduction.- Driving condensed matter with light provides
a methodology of controlling its properties in an active,
dynamic fashion, in contrast to the established, static methods,
as reflected in recent scientific studies [1–4]. In this
effort, driving matter with laser light has proved to be
a remarkably versatile tool in engineering properties of
quantum materials such as controlling ferro-electricity [5],
magnetism [6–9], superconductivity [10–15], topological
features [16] and charge ordering [17, 18]. Even more
interestingly, driving with light has provided the possibility
to create novel non-equilibrium states. A notable example
includes photonic time crystals [19–23], materials exhibiting
periodic variation in properties over time that can function
as parametric amplifiers for light. Another example is time
crystals, denoting a robust, collective dynamical many-body
state, in which the response of observables oscillates
subharmonically [24–32].

The conceptual approach of dynamical control with
light can be extended to the equilibrium domain through
cavity-matter hybrids, see e.g. [33–35]. This advancement of
control via light involves replacing laser driving by quantum
light fluctuations which are strongly coupled to matter
through resonant photonic structures, such as cavities [36],
plasmonic resonators [37], surfaces hosting surface phonon
polaritons [38, 39] and photonic crystals [40]. The feasibility
of this approach has been demonstrated experimentally, with
examples including manipulation of transport [41], control of
superconducting properties [42], magnetism [43], topological
features [37] and cavity control of chemical reactivity [44–
46].

In this paper, we demonstrate that quantum and thermal
noise of a Raman-active mode, can amplify cavity fluctuations
in equilibrium. We emphasize that parametric amplification
generally occurs in driven systems while here we present
it in the context of an equilibrium amplification process.
This amplification can in turn be used to resonantly control

properties of matter and constitutes a novel method of light
control, for Raman-cavity systems.

Our starting point is the nonlinear coupling between Raman
active collective modes and light. Here Raman-active modes
could be Raman phonons [47], molecular vibrations [13],
Higgs modes in superconductors [48–50] and amplitude
modes in charge density waves [18] that are even under
inversion symmetry, and the electric field of a local cavity
mode [51]. Therefore, at leading order, the Raman-light
Hamiltonian reads HRaman−light = �QE

2

cav
where Ecav is

the electric field in the cavity, Q is the coordinate of the
Raman collective mode and � is the light-matter coupling.
This quadratic coupling includes parametrically resonant
processes of the type â

†
â

†
b̂ + ââb̂

† where â and b̂ are
the photon and Raman annihilation operators respectively.
In the presence of coherent Raman oscillations, �b(t)� =
A0e

i!Rt, at the Raman frequency !R, the above coupling
leads to exponential growth of the light field when the cavity
frequency !c satisfies the parametric resonant condition,
2!c = !R. This observation naturally leads to the question:
can a randomly fluctuating field coming from Raman quantum
fluctuations also amplify light? We find that the answer is yes
which we demonstrate below.

To study this phenomenon, we use an open
Truncated-Wigner approximation method (open
TWA) [52–54] to simulate the semi-classical dynamics
of the Raman-cavity hybrids in the quantum fluctuation
regime. We also determine the signatures of equilibrium
parametric amplification in Raman spectroscopy (Fig. 1 (a)).
We find that a prominent feature of parametric resonance
and equilibrium light amplification is the appearance of
two Raman polariton branches in Raman spectroscopy as
shown in Fig. 1(b). We call this polariton parametric Raman
polariton and its formation is attributed to the nonlinear
process of mixing squeezed photon fluctuations with the
Raman coordinate. This is substantially different to the
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existent polariton panorama where polaritons typically arise
from a linear coupling between matter degrees of freedom
and light [55]. To quantify the coupling between the Raman
mode and the cavity, we compute the resonance splitting
between the upper and lower parametric Raman polariton.
This is a nonlinear extension of the usual Rabi-splitting in
the case of infrared active phonon polaritons [36]. We use a
frequency dependent Gaussian theory to provide an analytical
expression for this splitting as a function of the coupling
strength which agrees well with the simulations.

The key features of the parametric Raman polariton are as
follows: (i) The vacuum fluctuations of the cavity mode are
amplified. (ii) The fluctuations of the Raman are reduced, in
response to the amplification of the cavity fluctuations. This
corresponds to a localization of the Raman mode. (iii) The
average position of the Raman mode is statically shifted due
to the cavity fluctuations as shown schematically in Fig. 1(c).
These observations suggest that this mechanism can be used to
resonantly modify and control both the Raman mode and the
cavity in equilibrium. Furthemore we conclude by proposing
realistic experimental set-ups where this phenomenon can be
observed.

Raman-Cavity Model & Raman spectroscopy.- We consider
a model, in which cavity field fluctuations are locally coupled
to a Raman coordinate. The Hamiltonian for this system is
given by:

H

�h
= !câ

†
â+!Rb̂

†
b̂+g �b̂

†
+ b̂� �â

†
+ â�

2

+
g4

4
�â

†
+ â�

4

. (1)

The cavity creation (annihilation) operator is â† (â) and !c is
the cavity frequency. b̂† and b̂ are the creation and annihilation
operators for the Raman mode of frequency !R and g is the
coupling strength between the cavity and Raman mode. To
connect these operators to the electric field in the cavity we
require that Ê2

cav
= E

2

0
�â + â

†
�
2

, where E
2

0
is the nonzero

quantum noise of the electric field in the cavity that can be
measured experimentally [37], while the cavity itself is in
equilibrium, �Êcav� = 0 and the Raman coordinate is given
by Q̂ =

b̂
†+b̂√
2!R

. The last term of strength g4 is an Ê
4

cav
type

of nonlinearity necessary to make the system stable for finite
coupling g <

√
g4!R�2, a condition that is found analytically

in the Supplementary Information (SI).
We propose Raman spectroscopy as a natural probe for

Raman polaritons (see Fig. 1 (a)). The spectroscopic protocol
consists of an incoming probe laser of frequency !p that can
be scattered to free space as outgoing photons with frequency
!s after interacting with the Raman medium through a
Stimulated Raman Scattering (SRS) (shown scematically in
Fig. 1 (a)).

The probe is assumed to be a coherent light-source with
an associated electric field Ep(t) = E

0

p
sin(!pt) whereas the

scattered photons are described by the Hamiltonian Hs�
�h =

!sâ
†
s
âs. The SRS Hamiltonian can be written as:

Hp

�h
= gsEp(t) �b̂

†
+ b̂� �â

†
s
+ âs� (2)

Figure 1. Parametric Raman Polaritons. (a) Sketch of a Raman
medium (blue) coupled to a single-photon cavity mode of frequency
!c (light-red shading) with a constant coupling g. Light can leak out
of the cavity at a total decay rate  while � represents the damping
associated to the Raman mode !R. The wavy lines at the top and
bottom represent a Raman spectroscopy scheme in which a probe
field Ep(t) of frequency !p is sent into the sample, and a detector
(in green) collects the scattered photons at different frequencies
!s giving information about the hybrid Raman-cavity system. (b)
Representative Raman spectrum (in purple) in which an avoided
crossing appears at the resonant condition !R = 2!c indicating
the existence of two branches, the upper (URP) and lower (LRP)
Raman polaritons. (c) Sketch of how Raman (blue) and cavity (red)
properties are modified due to the coupling g. Full circles represent
the equilibrium position and shaded regions indicate fluctuations. In
the resonant regime the cavity fluctuations are amplified while the
Raman mode is statically shifted and localized, i.e. its fluctuations
decrease.

where â
†
s

(âs) is the creation (annihilation) operator for
scattered photons and gs the coupling between the Raman
mode and photons being scattered. The requirement for weak
probing is that gsE0

p
is much smaller than the magnitude of

the energies of the system such as g, as we will choose in the
following.

Considering the total Hamiltonian Ht = H + Hp + Hs

we derive the corresponding Heisenberg-Langevin equations
of motion and use the open TWA method to solve the
dynamics. This semi-classical phase-space method captures
the lowest order quantum effects beyond mean-field treatment
as extensively demonstrated in different contexts [52–54,
56] and consists of sampling the initial states from the
corresponding Wigner distribution to take into account the
quantum uncertainty. The semiclassical equations of motion
for the complex fields a, b and as associated with cavity
photons, Raman motion and scattered photons operators are
given by

i@ta =!ca + 2g(a + a
∗
)(b + b

∗
) + g4(a + a

∗
)
3

− ia + i⇠a,
(3)

i@tb =!Rb + g(a + a
∗
)
2
+ gsEp(t)(as + a

∗
s
)

− i�(b − b
∗
)�2 − ⇠b,

(4)

i@tas =!sas + gsEp(t)(b + b
∗
) − isas + i⇠s, (5)
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Figure 2. (a) Raman spectra ns (!) for different cavity frequencies
!c. We consider a probe laser of strength gsE

0
p = 0.04!R and

frequency !p = 5!R with g = 0.04!R, g4 =  = � = s = 0.01!R.
(b) Raman polariton branches at resonance as a function of the
coupling g on resonance, !c = !R�2. In both panels, the dashed
black lines correspond to an analytical solution using a Gaussian
approximation theory.

Here , � and s are the decay rates associated with the
cavity, Raman and scattered photon field while ⇠a, ⇠b and
⇠s are sources of Gaussian noise obeying the autocorrelation
relations �⇠∗

a
(t1)⇠a(t2)� = �(t1 − t2), �⇠b(t1)⇠b(t2)� =

��(t1 − t2) and �⇠∗
s
(t1)⇠s(t2)� = s�(t1 − t2). ⇠a and ⇠s

are complex-valued whereas ⇠b is real-valued and, along with
the damping term, enters only in the equation of motion for
the imaginary part of the Raman field which is associated
with the momentum of the Raman mode. The choice for the
Raman mode is motivated by the Brownian motion in which
the frictional force is proportional to the velocity.

We simulate the quantum Langevin Eqs. (3-5) using a
stochastic ordinary differential equation (ODE) solver and
compute relevant observables in the steady state. To initiate
the dynamics we ramp out the coupling g from zero to a finite
value and wait for the steady state before turning on the probe
field Ep(t) (see SI for details). In particular, we define the
Raman spectrum as the number of scattered photons ns = �as�

2

as a function of their frequencies which is computed after a
certain time of exposure to the probe field (see SI).

Parametric Raman polaritons.- In Fig. 2 (a) we show the
Raman spectra ns(!) for different cavity frequencies and a
fixed coupling strength where ! = !p − !s is the Raman
shift. Away from resonance we see only one peak at ! ≈ !R,
which corresponds to the Stokes peak [57, 58] of the Raman
mode [59]. Near the resonance at !c = !R�2 a second
peak appears showing an avoided crossing, which signals the
existence of a Raman polariton. To gain insight into the two
polariton branches found numerically using the TWA method,
we employ a Gaussian approximation. Within this method,
outlined in the SI, we find that the two polariton branches arise
from resonant coupling between the Raman phonon mode
oscillating at !R and Gaussian squeezing oscillations of the
photon, oscillating at 2!c leading to a new hybrid Raman
polariton. We have computed analytically the dispersion
of the lower and upper Raman polariton branches which
are plotted with black dashed lines in Fig. 2(a), showing
good agreement with the two numerical peaks in the Raman
spectrum (indicated by ✏LRP and ✏URP ). The exact position

of the avoided crossing is shifted to the left compared to the
condition !c = !R�2, due to the renormalization of the cavity
frequency by nonlinear interactions. Within the Gaussian
approximation the effective cavity frequency is found to be
!̄c = !c − 12g2�!R + 3g4 so the improved estimate of the
resonance condition is !̄c = !R�2.

To quantify the strength of the Raman-cavity coupling, we
define the Raman Rabi splitting as the difference between
the upper and lower Raman polaritons on resonance, 2� =
✏URP (!̄c = !R�2) − ✏LRP (!̄c = !R�2). In Fig. 2(b) we plot
the dependence of the Raman polariton branches on resonance
✏
r

URP
= ✏URP (!̄c = !R�2) and ✏

r

LRP
= ✏LRP (!̄c = !R�2) on

the coupling strength g, and overlay the analytical prediction
in black dashed lines. The Rabi splitting grows linearly
with the coupling strength g and is given analytically by the
expression:

� =

�

2�x̂2�!R �1 − 27g4�x̂
2
�
3
�2� g +O(g3). (6)

Interestingly, the Gaussian theory suggests that the Rabi
splitting could be parametrically enhanced by the cavity
quantum fluctuations �x̂2

�, where x̂ =
a+a†√
2!c

. Perturbatively,
�x̂

2
� =

1

2!c
+O(g

2
), which is the value we use in Eq. (6) to

plot the dashed lines in Fig.2(b).
Equilibrium parametric amplification- While Raman

spectroscopy provides experimental evidence for strong
Raman-cavity coupling, we now expand the discussion to
the equilibrium properties of the Raman polariton system
which exhibit equilibrium parametric amplification. This
phenomenology corresponds to the amplification of photon
fluctuations accompanied by a localization of Raman mode
fluctuations, i.e. suppression of fluctuations, depicted
schematically in Fig. 1 (c).

To illustrate the modification of each subsystem due to
the Raman-cavity coupling, we determine the deviation of
the Raman and cavity fluctuations �Q

2 and �x
2 from the

uncoupled case given by

�Q
2
=
�Q̂

2
� − �Q̂

2
�
0

�Q̂2�
0

, �x
2
=
�x̂

2
� − �x̂

2
�
0

�x̂2�
0

(7)

where �...� denotes the expectation value for a finite coupling
g and �...�

0
the expectation value in the absence of coupling

and cavity nonlinearities (g = g4 = 0). As in the previous
section, x̂ = â

†+â√
2!c

, is the cavity coordinate which is related to

the electric field, Êcav =
√
2!cE0x̂, where E0 is the electric

field amplitude of the noise of the cavity mode. Note that also
�x

2
=
�Ê2

cav�−�Ê2
cav�0�Ê2

cav�0 , and denotes the amplification of the
quantum fluctuations in the electric field. To compute these
Raman and cavity fluctuations we set the probe field Ep(t)

in Eqs. (3-5) to zero and average over steady states of the
Langevin equations of motion (see SI for details).

In Fig. 3 we show �Q
2 and �x

2 as well as the Raman
coordinate Q = �Q̂� for different cavity frequencies and
coupling strengths g. In all cases, a clear resonance can
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Figure 3. (a), (b) Variation of Raman and cavity fluctuations
compared to the uncoupled case g = 0 (see text) for different cavity
frequencies and coupling strengths g. (c) Raman displacement. The
dashed lines represent the parametric resonant condition !R = 2!̄c.
On resonance, the main features of parametric Raman polaritons
appear: localization (a) and shift (c) of the Raman mode in favor
of cavity field amplification (b). The decay rates and nonlinear
interaction g4 are the same as in Fig. 2.

be seen around !c ≈ !R�2 indicating a resonant regime
in which both the Raman mode and cavity fluctuations are
strongly modified. In this regime, the Raman fluctuations are
suppressed by the cavity, �Q2

< 0, so the Raman mode is
localized while the cavity fluctuations are amplified by the
Raman mode �x2

> 0. Outside this resonant region the Raman
fluctuations are unaffected and remain the same as in free
space (�Q2

≈ 0). In a similar way, for off-resonant cavity
frequencies, quantum vacuum fluctuations remain practically
unchanged meaning that the Raman medium barely perturbs
the photon field (�x2

≈ 0). This observation justifies our
choice to consider the coupling of a single cavity mode with
a single Raman mode: due to the resonant character of the
interaction, we expect that other off-resonant modes do not
contribute.

For the parameters used in Fig. 3, on resonance and
close to the instability g ≈

√
g4!R�2, the Raman mode is

strongly localized by ∼ 20% compared to the case of Raman
fluctuations in free space while the photon field increases by
the same amount with respect to the empty cavity case, even
though the coupling is only g ∼ 4%!R. We would like to
emphasize that the coupling values g used in Fig. 2 and Fig. 3
are of the same order of magnitude as the decay rates � and .
Therefore the system is between the weak and strong coupling
regime but not in the ultrastrong coupling situation (g > !c)
where these resonant effects may be more pronounced [60].

In Fig. 3 (c) the expectation value of the Raman coordinate
Q is shown as a function of coupling strength g and cavity
frequency !c. A clear shift of the Raman coordinate is
observed for large values of g which represents another form
of control of the Raman mode by the cavity field. Therefore,
the Raman mode is not only localized but also its coordinate
is shifted by the quantum vacuum fluctuations. This shift is
an off-resonant process and therefore depends only weakly
on the parametric resonance compared to the fluctuations in
Fig. 3 (a-b).

For the sake of completeness we have also checked that

these parametric resonances in �Q
2, �x2 and shift in Q survive

for stronger nonlinearties g4 and larger decay rates (see SI).
Experimental platforms.- Our mechanism can be realized

in materials hosting Raman phonon modes, coupled
resonantly with a Fabry-Pérot cavity in the THz range.
Interestingly, the strong coupling regime between infrared
phonons and a tunable THz cavity has been experimentally
demonstrated [36] opening the door to the study of
Raman-active materials in this setup. Possible Raman
candidates might be functionalized graphene nanoribbons
with Raman activity around 6 THz [61], twisted bilayer
graphene with low Raman modes � 3 THz [62] or transition
metal dichalcogenides (TMDs) with ultralow breathing and
shear modes even below 1 THz due to the weak van der Waals
coupling between the layers. All these examples lie in the
experimental frequency range of up to ∼8 THz in different
types of cavities [36, 37, 63, 64].

The Raman-cavity coupling between the cavity mode and
the zero-momentum Raman mode can be computed from first
principles through the Raman tensor (see SI for derivation)
and is given by:

g

!R

=

√
N

2

✏0E
2

0
Vcell

!R

R̃ (8)

where ✏0 is the vacuum permittivity, E0 is the electric field
noise amplitude measured in different photonic structures,
Vcell is the volume of the unit cell of the material hosting
the phonon mode and N =

Vsamp

Vcell
is the total number of

unit cells in the sample of volume Vsamp. The dimensionless
Raman coupling is given by R̃ ∝ �ec ⋅ @Q✏(Q) ⋅ �ec which
measures the change in electric permittivity ✏ as a function
of a shift of the Raman phonon coordinate Q per unit cell,
and �ec is the polarization vector of the cavity. The electric
field noise of a cavity is given by, E0 ∼

�
!c

✏0Veff
[37] and

therefore, on parametric resonance !R = 2!c, we estimate
that g

!R
∼

�
VsampVcell

Veff
R̃.

To circumvent the possible limitation of weak
photon-matter coupling g in Fabry-Pérot cavities, due to
the small value of Vcell�Veff , split-ring resonators (SRRs)
cavities could be a solution where large cavity mode
volume compression has been experimentally demonstrated.
Typically, SRRs are build with cavity frequencies between
0.5-1 THz [63–65] which matches the range of breathing
Raman modes of the order of 1 THz in twisted-TMDs like
MoSe2 or WSe2 [66, 67]. Thus the condition 2!c = !R can
be satisfied. From the above expression we may expect that
also the coupling strength will be particularly increased for
these twisted bilayer system of triangular lattices for twist
angles around 0° or 60°, where the unit cell becomes very
large. Considering 10nm x 10nm for the area of the unit cell,
1 µm

2 for the effective cavity area of SRRs, g�!R ∼ 0.01
assuming a Raman tensor of the order of 1 as estimated for
twisted TMDs using Density Functional Theory (DFT) [67].

Conclusion.- We have presented how parametric
resonances in Raman-cavity hybrids can be exploited to
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amplify photon quantum noise and localize Raman modes at
equilibrium. Our study represents a proof of principle of how
this nonlinear type of hybridization between Raman modes
and photons, at the quantum fluctuation level, gives rise to
equilibrium parametric amplification that can be leveraged to
control quantum materials. In particular, the cavity control
of Raman-active phonons demonstrated here is a crucial
step towards cavity-material engineering in more complex
systems. Strongly coupled Raman phonons are responsible
for superconductivity in K3C60 [68], and statically shifting
one of these modes was proposed as a mechanism for
photo-induced superconductivity [13, 39]. More broadly,
Raman phonons can change lattice symmetries, lift electronic
orbital degeneracies [69], gap out gapless electronic
systems [70] and manipulate spin-spin interactions [71]. Our
work paves the way to new studies on all of these topics and
the search of similar equilibrium parametric amplification
phenomena in different scenarios such as Higgs-light hybrids
in superconducting systems and in the quantum information
and quantum sensing realm using the recent three-photon
quantum-optics development [72, 73].
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Supplementary Information to ”Equilibrium parametric amplification in Raman-cavity hybrids”

Protocols and numerical implementation

We solve the stochastic Heisenberg-Langevin equations of motion introduced in the main text using the truncated Wigner
approximation (TWA) method [52, 53]. The equations read

@ta = − i!ca − 2ig(a + a
∗
)(b + b

∗
) − ig4(a + a

∗
)
3
− a + ⇠a, (S1)

@tbr =!Rbi, (S2)

@tbi = − !Rbr − g(a + a
∗
)
2
− 2gsEp(t)as,r − �bi + ⇠b, (S3)

@tas,r =!sas,i − sas,r + ⇠s,r, (S4)
@tas,i = − !sas,r − 2gsEp(t)br − sas,i + ⇠s,i. (S5)

where the subscripts r, i denote the real and imaginary part of the field. To initialize the modes we sample from the corresponding
Wigner distributions. We assume that all our modes have an expectation value of zero. Hence, the Wigner distribution from
which we sample corresponds to a Gaussian distribution with mean zero and standard deviation of 1�2. For each set of parameter
we sample over 15000 trajectories. We further include stochastic delta-correlated noise ⇠a, ⇠b and ⇠s satisfying �⇠∗

a
(t1)⇠a(t2)� =

�(t1 − t2), �⇠b(t1)⇠b(t2)� = ��(t1 − t2) and �⇠∗
s
(t1)⇠s(t2)� = s�(t1 − t2). Initially we ramp up the Raman-cavity coupling g

from zero to its final value at time t0 as:

g(t) = g(tanh((t − t0)�⌧) + 1)�2. (S6)

We hold this coupling for the rest of the dynamics until the steady state is reached and turn on the probing field at time tp

afterwards. We consider a probing field with an associated electric field Ep(t) = E
0

p
(t) sin(!pt) with

E
0

p
(t) = E

0

p
(tanh((t − tp)�⌧) + 1)�2. (S7)

Finally, to obtain the Raman spectra, we compute the number of scattered photons ns = a
∗
s
as = a

2

s,r
+a

2

s,i
at a fixed time t∗ � tp

by averaging over all the realizations. We take !Rt0 = 10 and for the decay rates that we use in the main text !Rtp ≈ 100
is enough to be in the steady state. We use ⌧ = 1�!R and checked that same results can be obtained for very different values
⌧ = 10�!R. We choose !Rt

∗
= 250 which means the system is under the probing field during a time window t

∗
− tp = 150�!R.

With these parameters we obtain clear Raman spectra.
To compute the modification of cavity and Raman fluctuations; �x2 and �Q

2, as well as Raman shift Q shown in Fig. 3 of the
main text, we drop the probe field (Ep(t) = 0) in the equation of motion and solve the dynamics to compute such observables at
the steady state !Rtp ≈ 100.

Raman spectra in the presence of thermal noise

Here we present the Raman spectra for the combined system in the presence of thermal noise associated to both the cavity and
Raman mode. In this case we solve the dynamics Eq. (S1)-(S5) but now considering white noises satisfying

�⇠
∗
a
(t1)⇠a(t2)� =  coth(!c�kBT )�(t1 − t2), (S8)

�⇠b(t1)⇠b(t2)� = � coth(!R�kBT )�(t1 − t2) (S9)

where kB is the Boltzmann constant. These autocorrelation relations guarantee the fluctuation-dissipation theorem hold for both
subsystem (in the uncoupled case) assuming they are connected to a reservoir at temperature T and considering a Markovian
approximation [74].

In Fig. S1(a) we plot the same Raman spectra shown in the main text (in the quantum noise limit) to be contrasted with the
Raman spectra in the presence of thermal noise shown in Fig. S1(b). In both cases we show the raw data ns(!s) instead of
ns(!) with ! = !p − !s being the Raman shift. It allows us to see Stoke and anti-Stoke contributions separately. As discussed
in the main text, in the quantum noise limit (Fig. S1(a)), only a Stoke peak appears in the spectra around !s = !p − !R = 4!R.
In contrast, if thermal noise is added anti-Stoke processes also occur and we find additional peaks around !s = !p + !R = 6!R

(see Fig. S1(b)).
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Figure S1. (a) Raman spectra ns (!s) for different cavity frequencies !c in the quantum noise limit. (b) Raman spectra including thermal
noise with kBT = 2.5�h!R. In both cases we consider a probe laser of strength gsE

0
p = 0.04!R and frequency !p = 5!R with g = 0.04!R,

g4 =  = � = s = 0.01!R.

Gaussian theory for cavity fluctuations

The semi-classical Langevin equations of motion, able to capture vacuum fluctuations for bosonic modes are given by the
equations (S1)-(S3) where the noise terms, ⇠a and ⇠b are delta-correlated noise, �⇠∗

a
(t1)⇠a(t2)� = �(t1 − t2), �⇠b(t1)⇠b(t2)� =

��(t1 − t2) and �⇠a(t1)⇠b(t2)� = 0. The equations of motion in terms of the frequency Fourier components defined as: a(!) =
∫ dte

i!t
a(t) and a(t) = ∫

d!

2⇡
e
−i!t

a(!), are given for the Raman mode by combining equations (S2)-(S3) as:

�−!
2
− i�! + !

2

R
� br = − g!R �

d!
′

2⇡
(a + a

∗
)(! − !

′
)(a + a

∗
)(!

′
) + !R⇠b(!). (S10)

Replacing this expression into equation (S1) for the cavity we find:

−i!a(!) = − i!ca(!) − ka(!) + ⇠a(!)

− 2ig�
d!
′

2⇡
(a(! − !

′
) + a

∗
(!
′
− !))

�

�

2!R

−(!′)2 − i�!′ + !2

R

⇠b(!
′
)

−
2g!R

−(!′)2 − i�!′ + !2

R

�

d!
′′

2⇡
(a(!

′
− !

′′
) + a

∗
(!
′′
− !

′
))(a(!

′′
) + a

∗
(−!

′′
))
�

�

− ig4 �

d!
′
d!
′′

(2⇡)2
(a(! − !

′
) + a

∗
(!
′
− !))(a(!

′
− !

′′
) + a

∗
(!
′′
− !

′
)(a(!

′′
) + a

∗
(−!

′′
)).

(S11)

In the absence of any interactions, g = g4 = 0, the first line recovers the expectation value of the vacuum fluctuations:
�
a
∗(t)a(t)+a(t)a∗(t)

2
� = ∫

d!d!
′

(2⇡)2 eit(!−!
′)
a
∗
(!)a(!

′
) = ∫

d!

2⇡



2+(!−!c)2 = 1

2
. To include fluctuations analytically, we use

a Gaussian ansatz for the equilibrium fluctuations: �a(t)� = 0 in equilibrium and �a∗(!)a(!′)� = 2⇡�(! − !
′
)n(!),

�a(!)a(!
′
)� = 2⇡�(! + !)f(!) and �b(t)� = b0. This form is fixed by symmetry and time-translation invariance in the

equilibrium state. The Gaussian approximation ignores higher order non-linear correlations and uses Wick’s theorem to derive a
self-consistent equations for n(!), f(!) and b0. Furthermore, on symmetry grounds the quantities a(!) and ⇠b are assumed to
be statistically independent to gaussian order. This gives rise to the result:

−i!a(!) = − i!ca(!) − ka(!) + ⇠a(!)

i
4g2

!R

(a(!) + a
∗
(−!))��

d!
′

2⇡
(2n(!′) + f(!′) + f∗(!′))�

i8g2 (a(!) + a∗(−!))� d!
′

2⇡

!R

−(!′)2 − i�! + !2

R

(2n(! − !′) + f(! − !′) + f∗(! − !′))

− i3g4 (a(!) + a
∗
(−!))��

d!
′′

2⇡
(2n(!′) + f(!′) + f∗(!′))� .

(S12)

the above result can be compactly re-written in terms of an effective cavity frequency, !̄c(!) and a squeezing parameter �(!):

(−i! + )a(!) = −i!̄c(!)a(!) − i�(!)a
∗
(−!) + ⇠a(!), (S13)
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where the effective parameters are given by:

!̄c(!) =!c + �−
4g2

!R

+ 3g4���
d!
′

2⇡
(2n(!′) + f(!′) + f∗(!′))�

− 8g2 ��
d!
′

2⇡

!R

−(!′)2 − i�!′ + !2

R

(2n(! − !′) + f(! − !′) + f∗(! − !′))�
, (S14)

�(!) =�−
4g2

!R

+ 3g4���
d!
′

2⇡
(2n(!′) + f(!′) + f∗(!′))�

− 8g2 ��
d!
′

2⇡

!R

−(!′)2 − i�!′ + !2

R

(2n(! − !′) + f(! − !′) + f∗(! − !′))� .
(S15)

The fluctuations are determined through the dependence of a(!), a∗(−!) to the noise terms ⇠(!) and ⇠
∗
(−!) :

�
−i! +  + i!̄c(!) i�(!)
−i�(−!) −i! +  − i!̄c(−!)

� ⋅ �
a(!)

a
∗
(−!)

� = �
⇠a(!)

⇠
∗
a
(−!)

� , (S16)

which leads to:

a(!) =
(−i! +  − i!̄c(−!)⇠a(!) + i�(!)⇠

∗
a
(−!)

�(−!)�(!) + (−i! +  − i!̄c(−!)(−i! +  + i!̄c(!))
. (S17)

Finally, the ground state fluctuations are found by solving the self consistent equations: �a∗(!)a(!′)� = 2⇡�(! − !′)n(!),
�a(!)a(!

′
)� = 2⇡�(! + !′)f(!).

Renormalized cavity frequency

We explore the normalized cavity frequency quoted in the main text analytically by using perturbation theory in g
2 and g4.

We express the fluctuations as a series expansion, n(!) ≈ n0(!) + n1(!) and f(!) = f0(!) + f1(!), where in the absence of
any coupling to the Raman mode, the fluctuations take the form:

n0(!) =


2 + (! − !c)
2
, (S18)

f0(!) =0, (S19)

To leading order in the couplings, the renormalized frequency, !̄c(!), and squeezing parameter, �(!) are given by:

!̄c(!) = !c −
4g2

!R

+ 3g4 − 8g
2

!R

!
2

R
− (! − !c)

2
− (i� + 2i)(! − !c) + � + 

2
, (S20)

�(!) = −
4g2

!R

+ 3g4 − 8g
2

!R

!
2

R
− (! − !c)

2
− (i� + 2i)(! − !c) + � + 

2
(S21)

for small  and �. Similarly, to leading order, the squeezing parameter is given by � = �(!c) = −
12g

2

!R
+ 3g4. Corrections

in the frequency of the cavity mode due to the squeezing go as ��(!)�2 ∼ O(g4, g4g2, g24), and corresponds to a higher order
contribution. As a result, to leading order in the couplings the cavity response frequency is given by:

!̄c(!) = !̄c(! = !c) = !c −
12g2

!R

+ 3g4. (S22)

Parametric enhancement of cavity fluctuations

To linear order in g
2 and g4, the fluctuation functions take the form:

n(!) =


2 + (! − !̄c)
2
, (S23)

f(!) =
i�(!)

(i! +  − i!c)(−i! +  − i!c)(−i! +  + i!c)
+

i�(−!)

(−i! +  − i!c)(i! +  − i!c)(i! +  + i!c)
(S24)
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The squeezing term, f(!), is resonantly amplified when !c ≈ !R�2, showing that Gaussian theory can indeed capture the
non-trivial equilibrium amplification process. On resonance, perturbation theory breaks down and one should self-consistently
solve for f(!) and n(!). In this Letter, we instead rely on the numerically evaluated solution.

Raman-cavity polariton frequency

As mentioned in the main text, the Raman coherent oscillations linearly hybridized with squeezing fluctuations of the cavity
mode. Here for convenience we write the Hamiltonian in the alternative but equivalent form

H =
!
2

R

2
Q̂

2
+
P̂

2

2
+ g × 2!c

√
2!RQ̂X̂

2

c
+ !

2

c

X̂
2

c

2
+
P̂

2

c

2
+ g4!

2

c
X̂

4

c
(S25)

where the Raman coordinate is defined as Q̂ = b̂+b̂†√
2!R

, the Raman conjugate momentum as P̂ = i
√
!R(b̂†−b̂)√

2
, the cavity coordinate

as X̂c =
â+â†√
2!c

and the cavity conjugate momentum as P̂c =
i
√
!c(â†−â)√

2
. In this basis, completing the square in Eq. (S25) the

Hamiltonian reads:

H =
!
2

R

2
�Q̂ + g

2
√
2!R!c

!
2

R

X̂
2

c
�

2

+ �g4!
2

c
−
4g2!2

c

!R

� X̂
4

c
+
P̂

2

2
+ !

2

c

X̂
2

c

2
+
P̂

2

c

2
, (S26)

which leads to the condition for stability quoted in the main text, g4 > 4g
2

!R
.

The equations of motion for the Raman mode, Q̂, and the fluctuations of the cavity mode, �X̂2

c
,{X̂c, P̂c}, P̂

2

c
� are given by:

dQ̂

dt
=P̂ , (S27)

dP̂

dt
= − !

2

R
Q̂ − g × 2!c

√
2!RX̂

2

c
, (S28)

dX̂
2

c

dt
={X̂c, P̂c}, (S29)

d{X̂c, P̂c}

dt
=2P̂ 2

c
− 2!2

c
X̂

2

c
− 4g × 2!c

√
2!RX̂

2

c
Q̂ − 2g4 × 4!

2

c
X̂

4

c
, (S30)

dP̂
2

c

dt
= − !

2

c
{X̂c, P̂c} − 2g × 2!c

√
2!RQ̂{X̂c, P̂c} − g4 × 4!

2

c
{X̂

3

c
, P̂c} (S31)

where {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator. Within a Gaussian approximation theory, the Raman coordinate and cavity
fluctuations form a complete system of equations in terms of the variables, ��Q̂�, �P̂ �, �X̂2

c
�, �{X̂c, P̂c}�, �P̂

2

c
��:

d�Q̂�

dt
=�P̂ �, (S32)

d�P̂ �

dt
= − �Q̂�!

2

R
− g × 2!c

√
2!R�X̂

2

c
�, (S33)

d�X̂
2

c
�

dt
=�{X̂c, P̂c}�, (S34)

d�{X̂c, P̂c}�

dt
=2�P̂ 2

c
� − 2!2

c
�X̂

2

c
� − 4g × 2!c

√
2!R�X̂

2

c
��Q̂� − 6g4 × 4!

2

c
�X̂

2

c
�
2
, (S35)

d�P̂
2

c
�

dt
= − !

2

c
�{X̂c, P̂c}� − 2g × 2!c

√
2!R�Q̂��{X̂c, P̂c}� − 3g4 × 4!

2

c
�X̂

2

c
��{X̂c, P̂c}�. (S36)

To make progress we first compute the equilibrium correlations, �Q̂� = Q0, �X̂2

c
� = X

2

0
and �P̂ 2

c
� = P

2

0
within the Gaussian

self-consistent approximation theory by taking the derivative of all quantities equal to zero in the above expressions which
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produces:

Q0 = −
g × 2!c

√
2!R

!
2

R

X
2

0
, (S37)

P
2

0
=!

2

c
X

2

0
− 2
(g × 2!c

√
2!R)

2

!
2

R

X
2

0
+ 3g4 × 4!

2

c
X

2

0
, (S38)

�{Xc, Pc}�0 =0. (S39)

Finally, we linearize around the equilibrium, to find the collective modes:

@t�Q =�P, (S40)

@t�P = − !
2

R
�Q − �2g!c

√
2!R� �X

2

c
, (S41)

@t�X
2

c
=�{Xc, Pc}, (S42)

@t�{Xc, Pc} = − 8g!c

√
2!RX

2

0
�Q − 2!2

c
�1 + �−16

g
2

!R

+ 24g4�X
2

0
� �X

2

c
+ 2�P 2

c
, (S43)

@t�P
2

c
= �−!

2

c
− 4g!c

√
2!RQ0 − 12g4!

2

c
X

2

0
� �{Xc, Pc}. (S44)

Considering an oscillating ansatz of the type X ∼ e
i!t, we find two distinct solutions corresponding to the hybridized Raman

mode with photon fluctuations (Raman polariton branches):

!
2± = 1

2!R

�

�
4!2

c
!R + !

3

R
+ 72g4!

2

c
!RX

2

0
− 64g2!2

c
X

2

0

±

�

−16!2
c
!
3

R
(−24g2X2

0
+ 18g4X2

0
!R + !R) + �−64g2X2

0
!2
c
+ (4 + 72g4X2

0
)!2

c
!R + !

3

R
�
2�

�

(S45)

Nonlinearities and dissipation effects on the parametric resonances

For the sake of completeness here we show the effects of increasing the nonlinear interaction and decay rates on the parametric
resonance discussed in the main text.

Fig. S2 (a-c) shows �Q
2, �x2 and Q for a larger value of g4. The main effect is a shift on the parametric resonance to the

left while how much localize the Raman mode is, how much it is shifted and how much the cavity field is amplified remain
practically the same. This shift to the left results from the analytical resonant condition !R�2 = !̄c = !c − 12g

2
�!R + 3g4 which

is the dashed line that matches nicely with the numerical TWA simulations (in color). For larger values of couplings g and g4,
not only the linear dependence of the parametric resonance on g4 is well described by this analytical expression, but also the
slow quadratic dependence on g.

In Fig. S2(d-f) we show how by increasing  and � four times while keeping g4 constant, the resonance weakens with the
Raman mode being less localized and cavity field less amplified in the steady state. Here the Raman and cavity fluctuations are
modified by ∼ 10% in resonance. Also the onset of the resonance is pushed to higher coupling strengths g which is reminiscent
of the physics of a periodically driven parametric oscillator in the presence of damping, where a critical amplitude of the external
drive is needed to overcome dissipation and get into the zone of amplification [75]. For these larger decay rates the Raman shift
decreases and becomes more independent on the cavity frequency (see Fig. S2 (f)).

We have checked that even for stronger nonlinearities (higher value of g4) and/or strong dissipation the parametric resonance
can still be seen so there is a resonant regime in which Raman mode fluctuations decrease in favor of cavity field amplification.

Raman phonon-cavity coupling strength

Following the references [67, 76], Raman phonons are coupled the electric field of light �E(x) through the Raman tensor R.
The Hamiltonian reads

H = � d
3
x

✏0
�E(x) ⋅ ✏(Q) ⋅ �E(x)

2
≈H0 + ✏0�

i

�Ei ⋅R ⋅
�Ei

2
Qi, (S46)
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Figure S2. Nonlinearities and dissipation effects on the parametric resonances. (a), (b), (c) The same as Fig. 3 of the main text but increasing
the quartic nonlinearity to g4 = 0.04!R keeping the same decay rates. (d), (e), (f) The same as Fig. 3 but in this case the decay rates have been
increased to  = � = 0.06!R keeping the same g4. Dashed lines are !R = 2!̄c.

where ✏0 is the vacuum permittivity and ✏(Q) is the phonon-coordinate dependent polarizability tensor (dielectric tensor).

Expanding linearly in the phonon coordinate Q one obtains a first term H0 = ∫ d
3
x
✏0
�E(x)⋅✏(Q=0)⋅ �E(x)

2
and the Raman-light

coupling which is given by the second term in the right hand side of Eq. (S46). We employ the dipole approximation for the
cavity mode where we assume that the electric field is constant over one unit cell and given by �Ei =

1

Vcell ∫V i d
3
x �E(x) where

Vcell is the volume of the unit cell and V
i the volume of the i-th unit cell. The Raman tensor is defined as

R↵� = Vcell

N

�
µ=1

3

�

l=1
@✏↵�

@rl(µ)

e
j

l
(µ)
�
Mµ

(S47)

where rl(µ) is the position of the µth atom along the direction l, @✏↵�

@rl(µ) is the first derivative of the dielectric tensor over the
atomic displacement, el(µ) is the displacement of the µth atom along the direction l of the Raman phonon and Mµ is the mass
of the µth atom. Considering that the cavity mode has a constant electric field over the entire sample, Êcav,i = E0�ec(â + â

†
),

the Raman-light coupling only involves the q = 0 phonon. Thus ∑i Q̂i =
√
NQ̂q=0 =

√
N

b̂+b̂†√
2!R

, where N =
Vsamp

Vcell
is the total

number of unit cells (Vsamp is the volume of the sample), giving rise to the coupling:

g

!R

=
✏0E

2

0

�
VsampVcell

2!R

R̃, (S48)

R̃ =�ec ⋅

N

�
µ=1

3

�

l=1
@✏

@rl(µ)

e
j

l
(µ)

�
Mµ

√
2!R

⋅ �ec, (S49)

where R̃ is the dimensionless Raman coupling and �ec is the polarization vector of the cavity field. Following references [67, 76]
R̃ ∼ 1 − 10 for TMDs. The electric field of cavities is given by the relationship:

E
2

0
=

!c

✏0Veff

, (S50)

where on parametric resonance !c = !R�2, leading to the final result:

g

!R

=
1

4
R̃

�
VsampVcell

Veff

. (S51)

These arguments are rather crude and detailed research needs to be carried out for different cavity designs and Raman-active
materials on a case by case basis.



3 Non-equilibrium dynamics in particle-hole
symmetric superfluids

Superfluidity can be found in Bose-Einstein condensates (BEC) and in the theory of
weakly interaction fermions, called Bardeen-Cooper-Schrie↵er (BCS) theory. It de-
scribes the property of frictionless flow [221,222]. To describe such systems, an e↵ective
field theory of the form of the Ginzburg-Landau theory of phase transitions can be
used [221, 223, 224]. The idea is to use a complex valued scalar field that can vary in
space and time to e↵ectively describe the order parameter of the system at su�ciently
low temperatures. The equilibrium, as well as the dynamical, properties of the complex
scalar field are defined in the e↵ective field theory via a Lagrangian and the overall struc-
ture of the e↵ective field theory is determined by the underlying symmetry. The first
order contribution for the time dependence in the Lagrangian of the Ginzburg-Landau
theory is i @t ⇤. This is the dominating term to describe the dynamics of BECs and
leads to the well known GP equation. However, some systems obey an approximate
particle-hole symmetry, such as BCS systems [170, 225–228] and certain types of neu-
tral atom systems [229–231]. In this case, the leading term for the time dependence is
incompatible with the symmetry, as this term is not particle-hole symmetric. As such,
the next order term dominates the dynamics. The next order term, @t @t ⇤, is indeed
particle-hole symmetric and leads to the well-known NLKG equation. This means that
this term is unchanged under the transformation of  !  ⇤.
In this chapter, we will first discuss the NLKG model to describe particle-hole sym-
metric superfluids, before we start to discuss the low energy modes of the system and
finally map our e↵ective field theory including both dynamical terms across the BEC-
BCS crossover and while doing that smoothly connect the spectra across the crossover.
This is a brief introduction to the e↵ective field theory, that we numerically study in the
publication [11]. In publication [11] we discuss the dynamics of vortices for the di↵er-
ent dynamical terms. In a manuscript that will be published soon, we use our e↵ective
model to describe the spectral results found in the BEC-BCS crossover experiment in
the group of Henning Moritz.
For reviews on the BEC-BCS crossover we refer to [221, 222]. For a review and further
readings with more examples on the e↵ective field theory we refer to [224,232]. The dis-
cussion in this chapter follows the discussion in the Pekker and Varma review [224] up to
the derivation of the low energy modes. Further derivations concerning the parameter
fixing of the e↵ective field theory within this section were a collaborative e↵ort with my
colleague Lukas Broers. A further discussion about the spectra in confining potentials
across the crossover can be found in his PhD thesis.

177



3.1 Generalised e↵ective superfluid Lagrangian

The e↵ective Lagrangian can be split into a dynamical Ldyn and a static part Lstat [11,
224,226], such that

L = Ldyn + Lstat. (3.1)

The static part can be written as

Lstat =
~2
2m

@x (x, t)@x 
⇤(x, t) � r (x, t) ⇤(x, t) +

U

2
( (x, t) ⇤(x, t))2 (3.2)

with m the mass, r a chemical potential like term and U being the contact interaction
strength via a density-density coupling. We note that all terms are particle-hole symmet-
ric under the exchange of  and  ⇤ and all terms are standard in the Ginzburg-Landau
theory of phase transitions [221,223,233]. The dynamical part can be written as

Ldyn = �iK1 [ (x, t)
⇤
@t (x, t) � (x, t)@t (x, t)

⇤] � K2@t (x, t)@t (x, t)
⇤ (3.3)

with K1 and K2 being constants that control the characteristics of the dynamics and will
be determined later. We note that K1 is in the units of ~ and corresponds to standard,
non particle-hole symmetric dynamics as can be found in the GP equation. On the
contrary, K2 leads to particle-hole symmetric dynamics and has the units of ~ divided
by some characteristic frequency ! and leads to the NLKG equation. As mentioned
before, e↵ective field theories used to study particle-hole symmetric dynamics need to
be symmetric under the exchange of  and  ⇤. Therefore, K1 = 0 and K2 6= 0 leads to
particle-hole symmetric dynamics.
By use of the Euler-Lagrange equation or by minimizing the action S =

R
dt
R
dxL one

derives the equations of motion as

@t (�K2@t + iK1) (x, t) =

✓
�

~2
2m

@
2

x � r + U | (x, t)|2
◆
 (x, t). (3.4)

It can be immediately seen that by setting K2 = 0 we recover the GP equation or
nonlinear Schrödinger equation, and by setting K1 = 0 we recover the NLKG equation.
To gain further insight on the interpretation of the e↵ective field  that is studied and
the role of K1 and K2 on the dynamics, we can compute the canonical momenta as

⇧(x, t) ⌘
@L

@(@t )
= �i

K1

2
 ⇤(x, t) � K2@t 

⇤(x, t). (3.5)

Hence, for the non particle-hole symmetric case the canonical momentum reduces to
⇧ / i ⇤ as is known for the GP equation and only for this case the system is fully
determined by specifying the field  . For K1 = 0, the canonical momentum becomes
⇧ / @t ⇤, which is an independent degree of freedom. In order to specify the system
in this case, we do not only need to fix  , but also the canonical momenta ⇧, as
expected for partial di↵erential equations of second order. In the following, we will use

178



Noether’s theorem to determine the Noether charge. The theorem can be applied, as the
Lagrangian obeys a U(1) symmetry under the exchange of the phase of  . The Noether
charge is given by

Q = i

Z
dx (⇧(x, t) (x, t) �⇧⇤(x, t) ⇤(x, t))

=

Z
dx

⇣
K1 | (x, t)|2 + iK2 [ 

⇤(x, t)@t (x, t) � (x, t)@t 
⇤(x, t)]

⌘
. (3.6)

The first term of the Noether charge, which is proportional toK1 conserves the integrated
density of the e↵ective field  . In the limit of K2 = 0 this term corresponds to the usual
particle number conservation. In this case the e↵ective field can be interpreted as the
usual particle probability wave function as is known for Schrödinger physics. For the
opposite case, K2 = 0, the density of the field  is not conserved. This signals that in
this limit, the field  cannot be interpreted as the particle probability wave function.
Rather, the ratio between particles and holes is conserved. However, a particle and a
hole can be created as a pair. This can be seen in the bases of the Feshbach-Villars
formalism [234] as is shown in the appendix of publication [11]. This can play a crucial
di↵erence for the dynamics in these systems. For systems with approximate particle-
hole symmetry, both terms K1 and K2 can be finite. Here, the interpretation of the
field becomes less transparent. It can be understood that some number of the density is
conserved, while it is still possible to create pairs of particles and holes. Though, as K1

becomes the dominant parameter, it costs more and more energy to create a pair. This
energy diverges as we approach the GP equation limit and the total particle number is
conserved. Fig. 3.1(a) shows the response of the field  at t = t0 as the solid line and the
response against a force pushing onto the center as the dashed line. Fig. 3.1(b) sketches
the following response of the particle number after this perturbation. We associate
non particle-hole dynamics with BEC, the mixed partially particle-hole symmetric case
with unitary and the particle-hole symmetric case with BCS like dynamics, in analogy
to the BEC-BCS crossover. We see that for the BEC case the fluid is pushed away,
while conserving the particle number. This can be interpreted as having an infinitely
large compressibility. As we go further along the crossover to particle-hole symmetry
the compressibility is lowered, and we cannot only push the fluid away, but can also
compress it, hence reduce the particle number. On the BCS side, the compressibility is
very low, and we can easily compress the fluid and reduce the particle number. Here,
the field rather has the analogy of a gas then a fluid. While this is not quantitative,
this already can be interpreted as a new mode that can only appear in particle-hole
symmetric models and not in GP equation models, namely the amplitude/Higgs mode.
In the following we will always refer to this mode as the amplitude mode. However, we
denote that in certain cases, if a gauge field is included, this mode corresponds to the
Higgs mode [224].
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(a) (b)

Figure 3.1: Sketch of the response of the order parameter if the density is locally reduced
in the center across the crossover. (a) depicts the density profile before (solid
line) and after the perturbation (dashed line). For the BEC regime in blue,
the unitary regime in purple and the BCS regime in red. (b) depicts the
response of the total integrated density after the perturbation. While this
is a conserved quantity on the BEC side and the number stays constant, as
we move towards the BCS regime, the system can dynamically change this
quantity.

3.2 E↵ective low-energy modes

As the next step, we want to determine the low energy modes of the model. For the
limit of K2 = 0 we will recover the well-known Bogoliubov spectra [221] and for K1 = 0
the uncoupled amplitude and phase mode [224].
We will first linearise the equations of motions (EOM) around the steady state solutions,
and then separate the imaginary and real parts before taking the Fourier transformation
to finally solve the resulting coupled equations to obtain the eigenmodes.
By setting all time derivatives to zero, we obtain the steady state solution as

| 0|
2 =

r

U
. (3.7)

In the next step, we expand our mode around its steady state solution

 ⇡  0 + �a + i 0� ⌘  0 + �a + i��, (3.8)

where we have used the U(1) symmetry of the system to choose the phase to be zero
in the steady state. Using this linearised form of the field back in the EOM, and by
keeping only the lowest orders in �a and ��, while separating the real and imaginary
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part we obtain

�K2@
2

t �a � K1@t�� = 2r�a +
~2
2m

q
2
�a (3.9)

�K2@
2

t �� � K1@t�a =
~2
2m

q
2
��. (3.10)

Finally, we take the Fourier transform and arrive at

K2!
2
�a � i!K1�� = 2r�a +

~2
2m

q
2
�a (3.11)

K2!
2
�� + i!K1�a =

~2
2m

q
2
��. (3.12)

Solving for ! we obtain the general result
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⇣
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⌘
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!A =

vuuutK
2
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2mq2 + r

⌘
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K
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1
+ 4K2

2
r2 + 4K2

1
K2
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~2
2mq2 + r

⌘

2K2

2

. (3.14)

To motivate the naming of this mode as the amplitude mode !A and the phase mode
!� as well as to gain intuition for these modes, we first consider the pure BCS limit
(K1 = 0)

!�
K1!0
����!

s
~2

2mK2

|q| (3.15)

!A

K1!0
����!

s
2r + ~2

2mq2

K2

(3.16)

and find that indeed in this limit !� is a phase or gap free Goldstone mode, while the
amplitude mode !A becomes gapped [224].
We can also consider the opposite limit, namely K2 = 0. In this case we obtain

!�
K2!0
����!

~
K1

s
~2
2mq2 + 2r

2m
|q|. (3.17)

This recovers the well known Bogoliubov spectra for K1 = ~ and r = µ.
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3.3 Mapping of the e↵ective field theory to the BEC-BCS
crossover

In this section we briefly discuss how the e↵ective field theory can be mapped to a
specific physical example, namely the BEC-BCS crossover. This is motivated by the
collaboration with the group of Henning Moritz, where we quantitatively compared our
model to the experimental results. Across the crossover the parameter ⌘ 2 (�1,1) is
used with ⌘ ! �1 being the BEC limit, ⌘ = 0 the unitary regime and ⌘ ! 1 the BCS
limit. We determine four physically motivated equations to fix our e↵ective field theory
that has four free parameters, namely r, U , K1 and K2.

K1 and K2 consistency

First, we want to find a relation linking K1 and K2 for varying ⌘ in the form of

K1 + ↵(⌘)K2 = � (3.18)

with ↵(⌘) being some parameter in units of [1/s] and � in units of [Js] to be determined.
First, we demand that in the limit of K2 = 0 we recover the usual GP equation. Hence,
� = ~. For the limit K1 = 0 we are left with

↵(⌘)K2 = ~. (3.19)

For simplicity, we will assume that ↵(⌘) is constant along the crossover, ↵(⌘) = ↵. We
note that this is a choice and can be seen as the lowest order approximation. With this,
we can use that in the BCS limit the speed of sound is given by v

BCS
s =

p
EF/m ⌘p

~2/2mK2 [221], see Eq. 3.13. We deduce that in the limit of BCS K
BCS

2
= ~2/2EF.

Hence, ↵ = 2EF
~ and we arrive at our final relation for K1 and K2

K1 + 2
EF

~ K2 = ~. (3.20)

Amplitude mode

Next, we expand the amplitude mode in 3.13 up to zeroth order in |q| and find

!A =

s
2(~ �

2EFK2
~ )2 + 4K2r

2K2

2

+ O(q1). (3.21)

We demand that this mode is associated with the amplitude mode as can be found in
the BEC-BCS crossover. The frequency of this mode is in the lowest order given by
2�/~ [224], which can be expressed using the Fermi energy and the parameter ⌘ as
2�/~ = 4EF/~e�⌘. With this we obtain the relation

!A(K1,K2, r, q = 0) ⌘
2�

~ =
4EF

~ e
�⌘

, (3.22)

where we have already inserted the relation between K1 and K2 to eliminate K1.
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Speed of sound

We expand the phase mode up to linear order in |q| and find

!� = ~2
r

r

m

s
1

(~2 � 2EFK2)
2 + 2~2K2r

|q| + O(q2). (3.23)

We define the speed of sound as vs = (@!�/@q)|q=0. We map this to the speed of sound

v
QMC
s that has been calculated in [235] using the quantum Monte Carlo method (QMC)
for the BEC-BCS crossover. Furthermore, we find the relation

@!�(K1,K2, r, q)

@q

����
q=0

=

r
r

m

s
~4

(~2 � 2EFK2)
2 + 2~2K2r

⌘ v
QMC

s . (3.24)

Equilibrium density

Finally, we use the equilibrium density to obtain the 4th relation to fix the free parameter
in our e↵ective field theory. In our model, the equilibrium density is computed by n0 =
r/U . By setting this value to the condensed fraction across the BEC-BCS crossover [236]
we obtain

n0 = r/U ⌘
n2d

2

⇡/2 + arctan(x�1)

x�1 +
p
1 + x�2

(3.25)

with x = �/µ. µ is taken from the QMC results in [235].
Tab. 3.3 summarizes our findings. By solving these four equations for our four free
parameter for each ⌘ along the crossover we fix our e↵ective field theory.

K1,K2 consistency K1 + 2EF
~ K2 ⌘ ~

Amplitude mode !A(K1,K2, r, q = 0) ⌘
2�

~ = 4EF
~ e

�⌘

Speed of sound
@!�(K1,K2,r,q)

@q

���
q=0

⌘ v
QMC
s

Equilibrium density r
U ⌘ n

QMC

0

Table 3.1: The table is summarising the equations to fix our parameter in the field theory
across the BEC-BCS crossover.

In Fig. 3.2 we show example dependencies for the four parameter across the crossover.
We have chosen parameters accordingly to the experiment by the group of Henning
Moritz and the QMC results from [235]. We choose !z = 2⇡⇥ 8.7 kHz, EF = 1.6⇥ ~!z.
U is not shown as it can be simply computed via U = r/n0 and follows the form of r.
It can be seen that K1 and K2 quickly change as ⌘ changes sign. Thus, as expected for
⌘ < 0 the dynamics is dominated by K1 and is approximately particle-hole symmetric
for ⌘ > 0.
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(a) (b)

Figure 3.2: The e↵ective parameters are shown across the crossover. (a) K1 and K2 in
units of ~ and ~2/2EF, respectively. (b) r in units of ~ kHz. It can be seen
that there is a rapid change of the parameter as ⌘ changes sign.

3.4 E↵ective two-mode model

We fix our parameter for a two-dimensional free superfluid across the BEC-BCS crossover.
We are interested in the case of having an additional third direction with strong spa-
tial confinement. For simplicity, we assume that there are no excitations within the
two-dimensional plane, and we are left with considering an e↵ective one dimensional
case with a deep harmonic trap. In the following we briefly sketch how we obtain the
two-mode model used starting from the e↵ective one-dimensional case. To simplify the
model, we eliminate the trapping direction z. We assume that the harmonic trap is su�-
ciently deep such that we can expand our wavefunction in the lowest three eigenstates of
the trap along the z-direction. We further assume that the contact interaction is small
enough such that it can be seen as a small perturbation around the idealised eigenstates
of the harmonic oscillator without contact interactions. Furthermore, we have checked
numerically that the first excited state is empty and as we drive the system periodically
by changing the strength of the laser beam, which translates into changes of the trap
depth, the parity is conserved such that the first excited state stays empty throughout
the simulation. Hence, we further approximate the system and only consider the ground
and second excited state of the harmonic oscillator. We can expand the wavefunction as

 (x, y, z) =
1

LxLy
[f0(z)↵0 + f2(z)↵2] (3.26)

with the harmonic oscillator (HO) eigenfunctions fi

fi(z) =
1

p
2nn!

⇣
m!z

~⇡

⌘
1/4

e
�m!z

2~ x2
H

✓
n,

r
m!z

~ x

◆
(3.27)

with H(n, x) being the n-th hermitian Hermite polynomial. Using this ansatz for the
wavefunction and by evaluating the integrals over space for the Lagrange density, we
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obtain the new e↵ective Lagrangian as
Z

d
3
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where we introduced !z(t)2 = !
2
z + a(t) and a(t) = b!

2
z sin(!drt) to include periodic

driving of the harmonic potential. Finally, we obtain the equations of motion
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In our numerics we choose b ⌧ 1 to ensure that we only probe the mode structure
by our drive without distorting it. We further add a phenomenological small dissipative
channel to prevent the system from heating and to reach a steady state within finite time.
We have also used this model to obtain the lowest order mean field shift added to the
analytical results of the harmonic oscillator during the K1 to K2 crossover as is discussed
in the PhD thesis of Lukas Broers and in the supplemental material of the manuscript,
which will be published soon. Our numerical results as well as a comparison with the
experimental results by the group of Henning Moritz can be found in the manuscript in
preparation with further details on our numerical protocol in the supplemental material.
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3.5 Publication XI: Vortex and soliton dynamics in
particle-hole-symmetric superfluids

J. Skulte, L. Broers, J.G. Cosme and L. Mathey — Phys. Rev. Res. 3, 043109

(2021)

Motivation

This work was motivated by the recent findings of chaotic phases in driven high-TC
superconductors. The model studied, can be seen as an analog model of superconduc-
tors without the gauge field. The aim of this work was to use a nonlinear particle-hole
symmetric (PHS) superfluid, namely the nonlinear Klein-Gordon equation, to study tur-
bulence and chaos. As the first primer towards this goal, we studied the dynamics of
single topological defects as vortices and the instability of a soliton decaying into single
vortices and compared this dynamics to the dynamics of a Bose-Einstein condensate
using the Gross–Pitaevskii equation.

Main findings

In this work, we have proposed a scheme to induce topological defects in PHS superfluids
with the example of the Bardeen-Cooper-Schrie↵er phase in ultracold neutral atoms ex-
periments. For this study we used the NLKG equation and compared our results to the
GP equation that is widely used to study BEC dynamics. We showed that the dynam-
ics of vortices is qualitatively distinct for PHS superfluids and showed numerically and
analytically the absence of the Magnus force. We further obtained results for varying
charges, which can be interpreted as smoothly connecting both ends of the BEC-BCS
crossover. Finally, we pointed out experimental signatures to distinguish the GP equa-
tion and NLKG equation dynamics.

Contribution

My contribution to this work consisted of conceptualizing and creating the pseudo-
spectral code in C++ using MPI, together with LB. I performed the analytical calcu-
lations, as well as the numerical studies supported by LB. JGC and LB assisted me in
analyzing the numerical results and in writing the manuscript. All of this was done un-
der the supervision of LM. All authors contributed to the discussion and interpretation
of the results, as well as to writing the manuscript.
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We propose to induce topological defects in particle-hole-symmetric superfluids, with the prime example
of the Bardeen-Cooper-Schrieffer state of ultracold atoms, and detect their time evolution and decay. We
demonstrate that the time evolution is qualitatively distinct for particle-hole-symmetric superfluids and point
out that the dynamics of topological defects is strongly modified in particle-hole-symmetric fluids. We obtain
results for different charges and compare them with the standard Gross-Pitaevskii prediction for Bose-Einstein
condensates. We highlight the observable signatures of the particle-hole symmetry in the dynamics of decaying
solitons and subsequent vortices.

DOI: 10.1103/PhysRevResearch.3.043109

I. INTRODUCTION

The presence or absence of particle-hole symmetry in
a physical system is a fundamental property pervading its
dynamical properties. Particle-hole symmetry is realized in
Lorentz invariant theories such as the standard model of
elementary physics [1], low-energy effective models close
to quantum criticality [2], and the famous Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [3,4].1 We note
that the order parameter dynamics of high-Tc superconduc-
tors can be described by an effective particle-hole-symmetric
theory, which allows for exploring the dynamics of the
Higgs/amplitude mode [5–8]. Similarly, in ultracold neutral
atoms the emergence of an effective particle-hole symmetry
has been predicted theoretically [9,10] and confirmed experi-
mentally [11,12]. Recently, amplitude oscillations of the order
parameter in the Bose-Einstein condensate (BEC) to BCS
crossover have been reported [13], suggesting the presence of
approximate particle-hole symmetry.

The dynamics of topological defects, such as solitons and
quantized vortices, derives from and exemplifies the proper-
ties of the underlying quantum fluid. The stability of solitons
has been discussed extensively for the nonlinear Schrödinger
equation or Gross-Pitaevskii (GP) equation [14–18]. Za-
kharov and Rubenchik coined the term snaking to refer to
the characteristic bending of solitons prior to their decay.

1Due to the close connection between relativistic Lorentz in-
variance and particle-hole symmetry, models that are particle-hole
symmetric are also sometimes referred to as relativistic models.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Snaking is a manifestation of the Magnus force. This has
been discussed for neutral bosonic systems within the GP
equation [19–25], in the BEC-BCS crossover [26–28], and in
superconductors [29,30].

We propose to determine the influence of particle-hole
symmetry on the dynamics of topological defects in two-
dimensional neutral superfluids. We focus on the BCS state
as our primary example, but our results hold for any ap-
proximately particle-hole-symmetric system, e.g., bosons in
an optical lattice near unit filling [12]. For this purpose
we present the similarities and differences in the dynam-
ics of topological defects in the absence and presence of
particle-hole symmetry. We also compare the dynamics of the
particle-hole-symmetric theory for zero and nonzero Noether
charge, corresponding to a balanced mixture of particles and
holes and an imbalanced mixture of particles and holes,
respectively. We find that the case with nonzero charge is
reminiscent of the dynamics of the GP equation. On the
other hand, for vanishing charge, in which the number of
particles and holes is balanced, we show that vortices do not
experience any Magnus force. This leads to a soliton decay
without snaking, setting it apart from soliton dynamics in
non-particle-hole-symmetric fluids, such as BECs. To induce
soliton dynamics of the quantum fluid in the BCS limit, we
propose to imprint a soliton on the BEC side of the crossover
in the presence of a potential barrier. As the next step, we
propose to ramp the fluid adiabatically across the crossover
into the BCS limit while keeping the barrier potential up.
Finally, the barrier potential is ramped to zero, to induce the
soliton dynamics. This protocol of initializing the dynamics
enables imprinting of the phase pattern with an off-resonant
optical pulse, whereas direct phase imprinting in the particle-
hole-symmetric limit is prohibited. We note that this statement
holds only for an exact particle-hole-symmetric case. In ex-
periments such as those in Ref. [27], particle-hole symmetry is
only approximately realized. That is, the appropriate effective
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FIG. 1. Schematic representation of (a), (c), and (e) the proposed
protocol to imprint a soliton and (b), (d), and (f) the corresponding
density profiles |ψ |2 and phase distributions θ . (a) A narrow laser
sheet is applied to a quantum fluid on the BEC side of the crossover
to create a density depletion in the condensate. (b) and (d) The
quantum fluid is split into two subsystems with a relative phase of
zero. (c) Next a π pulse is applied to half of the condensate to create
(e) and (f) the phase pattern of a dark soliton. Next the interaction is
adiabatically changed across the crossover deep into the BCS side.
The narrow laser sheet separating the two subsystems is removed,
which triggers the soliton dynamics. Here ξ is the healing length of
the condensate.

action is expected to have both K1∂t and K2∂
2
t contributions, as

we discuss below. The K1∂t term allows the phase imprinting
as it is the dominant term in the BEC regime. The proposed
protocol is displayed in Fig. 1.

II. SYSTEM

We consider a low-energy effective models of the form [3]

S =
∫

d2x dt
(

K2(∂tψ )(∂t ψ̄ ) − iK1(∂tψ )ψ̄

− 1
m

∇ψ̄∇ψ − µ|ψ |2 + g
2
|ψ |4 + Vext|ψ |2

− iµQ[(∂t ψ̄ )ψ − ψ̄∂tψ]
)

, (1)

where K1,2 are the above-mentioned parameters that deter-
mine the time dependence, µ is the square root of the gap
energy, which has the dimensions of a mass term, g is the
contact interaction strength, and Vext is the externally applied
potential. A similar effective field theory has been proposed
and discussed to model the BEC-BCS crossover in [31–34].
We include a Lagrange multiplier µQ to fix the Klein-Gordon
charge (7) (discussed below). By setting K2 = 0, K1 = 1, and
µQ = 0, we recover the GP equation

i∂tψ (x, t ) = ∇2

2m
ψ (x, t ) + V (|ψ |2)ψ (x, t ), (2)

where V [|ψ (x, t )|2] = µ − g|ψ (x, t )|2 + Vext (x). We refer to
a condensate described by the GP equation as a GP fluid. This
equation is manifestly not particle-hole symmetric under the
exchange ψ ↔ ψ̄ . On the other hand, particle-hole symmetry
is fulfilled in the action (1) by setting K1 = 0 and K2 $= 0.

We introduce a dimensionless representation via ψ = ψ̃/ξ ,
∇ = ∇̃/ξ , ∂t = cs/ξ ∂̃t , and V = µṼ , where ξ is the healing
length of the fluid and cs the speed of sound. This leads to the
modified nonlinear Klein-Gordon (NLKG) equation

∂2
t̃ ψ̃ (x, t ) = ∇̃2ψ̃ (x, t ) + Ṽ (|ψ̃ |2)ψ̃ (x, t ) + iµQ∂t̃ ψ̃ (x, t ).

(3)
We refer to condensates evolving according to the NLKG
equation as Klein-Gordon (KG) fluids. In the following we
drop the tilde. We trap the fluid using a box potential of the
form

Vext (x) = V0{1 + tanh[(|x| − r0)/ξ ]}. (4)

We note that this model is a relativistic BEC [35–37] and a
similar equation has been proposed to model cold dark matter
[38–40] and relativistic boson stars [41–43].

In the following we show the influence of particle-hole
symmetry on the dynamics of topological defects. For the
KG fluid, we introduce the canonical momentum &(x, t ) =
∂t ψ̄ (x, t ) + iµQψ̄ (x, t ) to obtain two coupled first-order par-
tial differential equations

∂tψ (x, t ) = &̄(x, t ) + iµQψ (x, t ), (5)

∂t&(x, t ) = ∇2ψ̄ (x, t ) + V (|ψ |2)ψ̄ (x, t ) − iµQ&(x, t ). (6)

A crucial feature of a KG fluid is that the particle number
N =

∫
|ψ (x, t )|2dx is not conserved, in contrast to a GP fluid.

Instead, in the KG fluid, the Noether charge

Q = −i
∫

[&̄(x, t )ψ̄ (x, t ) − &(x, t )ψ (x, t )]d2x (7)

is conserved. The Noether charge Q can be thought of as the
difference of particles and holes in the system. That is, a zero
Noether charge describes the situation with an equal number
of particles and holes. An intuitive example for illustrating
the Noether charge is a system of interacting bosons in an
optical lattice with unit filling. An excitation corresponds to
exciting one atom out of the lattice side and leaving behind a
hole. Thus, the Noether charge stays unchanged as the same
number of particles and hole were created. Another possible
excitation is to excite the atom out of the lattice and further
removing it from the system, which leaves a hole behind. The
system then slightly goes away from unit filling as there is
now an imbalance between the number of holes and particles
and this corresponds to an effective nonzero Noether charge.
Another example can be envisioned in the BCS regime for
nonzero temperature. Here a rf knife can be used to remove
some of the atoms occupying the Bogoliubov modes, leading
to an imbalance between particle and hole excitations.

We apply the Madelung transformation to the field and the
canonical momentum, in which the field ψ is written in an
amplitude-phase representation

ψ (x, t ) = A(x, t ) exp[iθ (x, t )], (8)

&(x, t ) =
(

Ȧ(x, t )
A(x, t )

+ i[µQ − θ̇ (x, t )]
)

ψ (x, t ), (9)
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and obtain the continuity equation and particle-hole-
symmetric Euler equation

∂tρKG + µQ

2
∂tρS = −∇(ρSu), (10)

(
ρKG

ρS
+ µQ

2

)
∂t u = u∇u + ∇ρS

2ρ0
− ∇

2

(⇤√
ρS√

ρS

)
, (11)

where we introduce the GP density ρS = A2, the KG den-
sity ρKG = A2∂tθ , the velocity u = ∇θ , and the box operator
⇤ = ∂2

t − ∇2. In this representation, the charge simplifies to
Q =

∫
ρKGdx. In the particle-hole-symmetric Euler equations

there is a prefactor ρKG/ρS in front of the time derivative of
the velocity field ∂t u. This prefactor depends on the charge Q.
This is a crucial difference to the GP Euler equation where
this prefactor is always 1.

The particle-hole-symmetric Euler equation (11) has two
quantum pressure terms. One term is due to the kinetic energy
of the condensate and is proportional to ∇2√ρS√

ρS
. It is the zero-

point motion of the condensate and becomes dominant if the
condensate has spatial variations on short length scales [44].
The second is proportional to ∂2

t
√

ρS√
ρS

and originates from the
second-order time derivative. It only exists for particle-hole-
symmetric condensates.

We present the local velocity field around a single vor-
tex. Therefore, we transform into the Feshbach-Villars basis,
which translates the NLKG to coupled GP equations for the
particles and antiparticles, respectively [45]

ψ = 1√
2

(ψp + ψa ), (12)

& = i√
2

(ψa − ψp). (13)

Next we expand the field around the vortex core position r0
with the amplitude Ai and phase θ i [see Eqs. (8) and (9)] and
propagate the location of the vortex core using the equations
of motion and compare the new location with the previous
location to obtain the local velocity field (for a detailed discus-
sion and derivation see [46–48]). For the two velocity fields
we obtain

va = − (−i, 1)T · ∇(Ap + Aa ) + (Ap + Aa ) (1, i)T · ∇θ

Aa
,

(14)

vp = (−i, 1)T · ∇(Ap + Aa ) + (Ap + Aa ) (1, i)T · ∇θ

Ap
, (15)

where the spatial plane (x, y) is represented as the complex
plane z = x + iy. Translating this back into the (ψ,&) basis,
we obtain

vψ = 1√
2

(vp + va ) =
√

2
(

1 − Aa

Ap

)
vp. (16)

For Q $= 0 we have Aa $= Ap, which means that we obtain a
nonzero velocity field. In this case the velocity is proportional
to the velocity obtained for GP fluids [47]. For Q = 0, we
have Ap = Aa and Np = Na, with Ni the total number of
particles/antiparticles. For this balanced scenario the local
velocity field vanishes precisely as shown in Fig. 2. As pointed
out before and as can be seen from Eq. (16), for a finite charge

FIG. 2. Schematic sketch of (a) and (c) the local velocity fields of
the particles (blue) and antiparticles (red) and (b) and (d) the resulting
total local velocity field for the ψ field (gray). (a) An unbalanced
mixture of particles and antiparticles with a finite charge Q leads to
(b) a nonzero effective velocity field for the ψ field. (c) A balanced
mixture of particles and antiparticles with a vanishing charge Q leads
to (d) a vanishing effective velocity field for the ψ field.

Q corresponding to an imbalance between particles and an-
tiparticles, the magnitudes of the velocity fields are different
[see Fig. 2(a)], which results in a nonzero velocity field for the
KG fluid ψ [see Fig. 2(b)]. In contrast, for a balanced mixture
the local velocity field magnitudes are the same [see Fig. 2(c)]
and due to the opposite direction of the velocity fields the
velocity field of the KG fluid vanishes [see Fig. 2(d)].

III. NUMERICAL RESULTS

To expand on our analytical predictions and to propose an
experimental setup to detect vortex dynamics of KG fluids, we
simulate the equations using the pseudospectral method [49]
for both the GP and KG fluids. We set the ratio between the
chemical potential µ and the contact interaction g to µ/g =
10/ξ 2. In the following we express all length scales in units
of ξ . Our simulations are discretized in a 256 × 256 grid. We
choose r0/ξ = 25, where r0 is half of the box size, as defined
in Eq. (4), and resolve ξ with three grid points. The phase and
density distribution for snapshots in real time are shown for
a GP fluid [see Fig. 3(a)] and for a KG fluid with vanishing
charge [see Fig. 3(c)]. Circles (KG fluid with Q = 0) and dia-
monds (GP fluid) in red correspond to a phase winding of +1,
while blue corresponds to −1 [see Fig. 3(b)]. The gray arrows
show the flow of time in the figure. It can be seen that for a
dipole distance d12 > 2ξ in the GP fluid the dipole will start
to propel forward perpendicular to the dipole axis and will not
annihilate. In contrast, the KG vortex dipoles will move along
the dipole axis and annihilate each other, due to the absence
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FIG. 3. Dynamics of vortex dipole pairs in a GP and a KG fluid.
The phase and the density of (a) the GP fluid and (c) the KG fluid
are shown. (b) The symbols display the locations of the vortices and
antivortices in red and blue, respectively, of the GP fluid (diamonds)
and the KG fluid (circles), and difference times. The snapshots of
(a) and (c) are indicated via black arrows. The gray arrows indicate
the movement of the vortices in time.

of a velocity field. Related observations of vortex dynamics
were reported in Ref. [50]. We note that the particle-hole
symmetry is the origin of this qualitatively distinct behavior
from GP fluid dynamics. We propose that the data from a fu-
ture experimental realization of our proposal could be used to
numerically fit the ratio of K1 and K2 for different interaction
strengths. This links our proposal to the parameters used in
the universal effective action of such systems.

To investigate the influence of the particle-hole symmetry
on the soliton dynamics, we initialize the condensate with
a modified Thomas-Fermi profile [44], as described in the
Supplemental Material [48], for a box potential in Eq. (4)
with V0 = 10 and r0 = 30 for the GP (KG) fluid and start
with a soliton imprinted in the fluid. We let the condensate
relax using the imaginary-time propagation [51] extended to
particle-hole-symmetric fluids [48]. For the KG fluids, we set
the initial canonical momentum as & = i µQ

2 ψ with µQ ∈ R,
resulting in a charge of Q = µQN . Furthermore, we add 1%
white noise on the initial condensate density to study the
stability of solitons.

The system is propagated in time according to Eqs. (2),
(5), and (6). At lowest order, the Higgs mode and the Gold-
stone mode decouple in a particle-hole-symmetric theory [3].
Within this approximation, this initial state only induces the
dynamics of the Goldstone mode. However, this approxi-
mation fails in soliton and vortex solutions. For the same
parameters µ and g, the healing length is twice as large in
the KG case compared to GP equation due to the difference in
the prefactor of the kinetic energy.

In Fig. 4 we present the real-time dynamics of the complex
field ψ shaded from white to black corresponding to decreas-
ing amplitude, i.e., black regions denote areas with vanishing
|ψ |. The phase of the wave function is represented as color.
The wave function is normalized for each snapshot such that
the maximum value is set to unity to make it easier to compare
GP and KG results.

In the GP fluid, we observe the established soliton instabil-
ity in Figs. 4(a)–4(c) [16] and the motion of trapped vortices
in Figs. 4(c)–4(e) [23,47]. The vortices move towards the edge
of the condensate. As they approach the edge, they experience
a net force and move along the trap boundary as depicted in
Figs. 4(d) and 4(e) [23]. The behavior of the KG fluid with
Q $= 0 is similar. As displayed in Figs. 4(f)–4(j), the soliton
decays into vortices, which then move around the condensate.
Similar to the GP fluid, as the phase rotates in Figs. 4(f)–4(j),
the vortices experience a net force leading to their motion
along the trap boundary as seen in Figs. 4(i)–4(j).

In contrast, for the KG fluid with Q = 0, the soliton de-
cays into vortices that are located along the soliton axis, as
shown in Figs. 4(k)–4(m). Similar results have been found
in [28]. Moreover, we find that the vortices are not rotating
as displayed in Figs. 4(m)–4(o), which is consistent with
Eqs. (14) and (16) and Fig. 3. When the vortices reach the
trap boundary, they evaporate into the thermal cloud as shown
in Figs. 4(n) and 4(o).

IV. CONCLUSION

In conclusion, we have shown that by measuring the den-
sity profile of a two-dimensional condensate after imprinting
a soliton in a particle-hole-symmetric superfluid, such as a
BCS state of neutral particles, it is possible to test the ef-
fective low-energy theoretical description of the system. We
have shown analytically and numerically that for particle-
hole-symmetric superfluids with vanishing Noether charge,
the Magnus force is absent. This allows for a dipole pair of
vortices to approach each other without transverse motion and
to annihilate, reminiscent of a recent observation in Ref. [50].
Another consequence of the vanishing Magnus force is that a
soliton does not bend as it decays into vortices. Probing these
effects experimentally will reveal how well particle-hole sym-
metry is realized in the dynamics of superfluids or whether the
non-particle-hole-symmetric term, the first-order derivative in
time, is the dominant contribution in the effective theory.
This is crucial in understanding the notion of turbulence in
particle-hole-symmetric fluids such as superconductors. Our
work reveals that turbulence in a BCS superconductor and
its scaling laws might deviate from Kolmogorov scaling laws
[52], which apply to classical systems as well to GP fluids.
We note that our predictions could be experimentally con-
firmed using refined experimental technique, such as in situ
observations of two-dimensional Fermi liquids when probing
the BEC-BCS crossover in neutral atoms [53,54] or the well-
controlled imprinting of vortex dipole pairs [50].
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FIG. 4. Overview of the soliton instability for the three distinct cases corresponding to (a)–(e) the GP results, (f)–(j) the KG results with
Q $= 0, and (k)–(o) the KG results with Q = 0. For a better comparison between the GP and KG results the ψ field density is normalized such
that the maximum value is set to unity in each snapshot. The shading of the plots ranging from black to white visualizes the magnitude of the
field |ψ |, while the colormap indicates the phase. (a), (f), and (k) Initial soliton seeded with white noise. (b), (g), and (l) Soliton bending. (c),
(h), and (m) Vortices appearing after the soliton decay. The long-time dynamics of the vortices inside the trap are presented in (d), (i), and (n)
and in (e), (j), and (o). White dashed lines indicate the soliton axis and the perpendicular axis. The spatial length is expressed in terms of the
healing length ξ . A movie showing the dynamics is presented in the Supplemental Material [48].
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I. FESHBACH-VILLARS FORMALISM

We want to rewrite the KG equations in a Hamiltonian form of

i@t = H . (1)

This can be done via the so called Feshbach-Villars formalism [1]. The Klein-Gordon equation reads

@
2

t
 (r, t) = r

2
 (x, t) + V

�
| |

2
�
 (r, t) + iµQ@t . (2)

The conjugate momentum is defined as ⇧ = @L
@(@t )

= @t ̄ + iµQ ̄. The equations of motion read

@t = ⇧̄+ iµQ (3)

@t⇧ = r
2
 ̄(x, t) + V

�
| |

2
�
 ̄(r, t) � iµQ⇧. (4)

The Feshbach-Villars particles or also sometimes called the particles  p and antiparticles/holes  a are introduced as
the following linear combination of the conjugate momentum and the KG field  

 
p/a =

1
p
2
( ± i⇧) . (5)

That is, we can write
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1

p
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( p +  

a) (6)
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�  
p) . (7)

Note that the conserved charge Q in this basis simplifies to the di↵erence between two positive definite densities as

Q =

Z
d
2
x
�
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p
| � | 
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|
2
�
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The equations read

i@t 
p = �
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� V  

p +
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p)|2( a +  
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a = +

r
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( a +  

p) + (µQ + µ) a + V  
a

�
g

4
|( a +  

p)|2( a +  
p) . (10)

II. LOCAL VELOCITY FIELD

A.  and ⇧ basis

We start by denoting our field and the canonical momentum as

 (r, t = 0) ⌘  r,0 = P (~z � ~z0)A exp (i✓) , (11)

⇧(r, t = 0) ⌘ ⇧r,0 = P̄ (~z � ~z0)
⇣
Ȧ+ iA

h
µQ � ✓̇

i⌘
exp (�i✓) (12)

where P ((x, y)T) = x + iy and the vortex core position is located at ~z0 = (x0, y0)T. Note that A(r, t) and ✓(r, t)
are real valued and smoothly varying functions of space and time. This field features a vortex, where P (~z � ~z0)
captures both the phase winding and the condensate density around the vortex core. We can propagate the field for
an infinitesimally small �t according to the Klein-Gordon equation as:

 r,�t ⌘  r,0 +�t
�
⇧̄r,0 + iµQ r,0

�
, (13)

⇧r,�t ⌘ ⇧r,0 +�t
�
r

2
 ̄r,0 + V

�
| r,0|

2
�
 ̄r,0 � iµQ⇧r,0

�
. (14)

Using rz̄ = (1,�i)T = ~ex � i~ey and r
2
z = 0, we obtain

r
2
 ̄r,0 =[P̄ (~z � ~z0)r

2
A+ 2(1,�i)T · ~rA � 2i{P̄ (~z � ~z0)~rA+A (1,�i)T} · ~r✓

+ P̄ (~z � ~z0)A{�ir
2
✓ � (~r✓)2}] exp(i✓) . (15)

The canonical momentum in Eq. (12) vanishes at the vortex core position ~z0 at t = 0. Thus, we can write the
new vortex core position as ~z�t = ~z0 + ~v�t after the small time �t, where the canonical momentum still vanishes.
Evaluating ⇧̄(z�t,�t), and demanding it to be zero while only keeping lowest order terms in �t, we obtain

0 ⇡�̄z

⇣
Ȧ � iA(✓̇ � µQ)

⌘
+�t

⇣
2(1,�i)T · ~rA+ 2A (1, i)T · ~r✓

⌘
, (16)

where we used P̄ (~z�t � ~z0) = �̄z. We rearrange this and take the complex conjugate to obtain an expression for the
velocity as

P (~v) ⌘
�z

�t
= �2

(1,�i)T · ~rA � A (i, 1)T · ~r✓

Ȧ+ iA(✓̇ � µQ)
. (17)

Similarly, the velocity field for the GP fluid can be obtained as [2, 3]

P (~v) ⌘
�z

�t
= (�i, 1)T · ~rA+A (1, i)T · ~r✓ . (18)

The discussion changes if we choose ⇧ = 0, (Q = 0) as the initial state. The derivation holds up to Eq. (16). From
this equation we obtain

0 ⇡ �t

⇣
2(1,�i)T · ~rA+ 2A (1, i)T · ~r✓

⌘
. (19)

As �t 6= 0 we deduce that
⇣
2(1,�i)T · ~rA+ 2A (1, i)T · ~r✓

⌘
= 0 . (20)

Hence, there is no dynamics up to lowest order for the canonical momentum ⇧ and the field  as can be seen from
plugging this result into (14).
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B. Particle and antiparticle basis

In the following we will redo the steps as before but now using the particle and antiparticle fields to obtain a
physical explanation of the vanishing velocity field for the zero charge case.
We denote our fields as

 
a/p(r, t = 0) ⌘  

a/p

r,0
= P (~z � ~z0)A

a/p exp (i✓) , (21)

where we have assumed that the two fields stay in phase. Note that for the choice of Aa = A
p the Noether charge is

vanishing. For small times �t the fields can be propagated in time via
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By performing the same steps as for the  and ⇧ basis we obtain for the local velocity fields

P ( ~vp) =
(�i, 1)T · ~r(Ap +A

a) + (Ap +A
a) (1, i)T · ~r✓
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(23)
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. (24)

We note that ~vpAp = � ~vaA
a and hence
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A

a
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~va . (25)

The velocity field of the  field can be recovered by the linear superposition as

~
v =

1
p
2

�
~vp + ~va

�
=

p
2

✓
1 �

A
a

Ap

◆
~vp . (26)

We can understand the vanishing local velocity of the total field  at vanishing Noether charge Ap = A
a as the result

of two counter rotating fields consisting of the particle and antiparticle field. This results is in a similar spirit as the
zero magnetization results for two component spinors in [4].

III. THOMAS-FERMI-APPROXIMATION

In order to find steady state solutions we demand that @t = 0 and @t⇧ = 0, while neglecting the kinetic energy.
This approximation is justified for large particle numbers and repulsive interactions [5]. We obtain the two equations

0 = ⇧̄+ iµQ (27)

0 =
�
V (x) � µ+ g| |

2
�
 ̄(r, t) � iµQ⇧. (28)

We find for the region, where V (x)  (µ+ µ
2

Q
)

| (x)|2 =
µ+ µ

2

Q
� V (x)

g
(29)

⇧(x) = �iµQ ̄(x) (30)

and  = ⇧ = 0 otherwise. The boundary of the fluid is at V (x) = (µ+ µ
2

Q
).

IV. IMAGINARY TIME METHOD FOR PARTICLE-HOLE SYMMETRIC FLUIDS

The particle-hole symmetry enforces the energy spectrum to be symmetric around E = 0. We will follow the same
line of arguments as in [6]. For Schrödinger like equations the fields can be propagated via

 
p/a(x, t+�t) = e

�i�tH
 
p/a(x, t) . (31)
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Expanding the fields in energy modes as  p/a(x, t) =
P

m
a
p/a

m (t)�p/am (x), we obtain

 
p/a(x, t+�t) =

X

m

a
p/a

m
(t)�p/a

m
(x)e⌥i�tEm (32)

To ensure that the wavefunction decays into the lowest energy state we rotate �t for the particles and antiparticles
as �t ! ⌥i�t. By doing so we obtain

 
p/a(x, t+�t) =

X

m

a
p/a

m
(t)�p/a

m
(x)e��tEm . (33)

After each propagating step we fix the total number

N
p/a =

Z
d
2
x| 

p/a
|
2
, (34)

which ensures that the total charge Q stays constant.
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4 Conclusion and Outlook

In this thesis, we have discussed various non-equilibrium phases in both atom-cavity
systems [1–10] and particle-hole symmetric superfluids [11]. We have shown how dis-
sipation can stabilise new emergent phases in light-matter coupled systems. First, we
have studied the stability of a dissipative TC against spatial confinement and contact
interactions [1], as well as against di↵erent dissipation strengths [2]. It is worth pointing
out that while contact interactions and strong spatial confinement often destabilise the
time crystalline phase and should be avoided in experiments, dissipation can actually
stabilies the TCs. It increases the robustness against noise in the drive and increases the
TC regime within the phase diagram. We have provided insights into the proposal of an
incommensurate TC [52] by modelling the systems with a toy-model [3,4] capturing the
e↵ect. The reduced model allowed us to find analytical insights into the resonance con-
ditions for this phenomenon and to explore the physics for applying a stronger drive [5].
Together with the group of Andreas Hemmerich, we have been able to observe limit
cycles in an ultracold atom experiment and together with further analysis and our the-
oretical simulations have been able to show that this LC can be understood as the first
realisation of a CTC [6]. Following up on this work, we have found a generalised mini-
mal model to describe these previous findings [7] by the use of a stability analyses and
suggested other platforms, which can be reduced to similar minimal models hosting the
same kind of limit cycle for certain parameter regimes. We have further showed by
adding a periodic drive the first realisation of a transition from a CTC to a DTC by
measuring the phase delay between the driving field and the light field oscillations. In
the language of nonlinear physics we have, for the first time, demonstrated entrainment
in a quantum gas experiment [8]. We have contributed to the field of atomtronics by us-
ing our knowledge about the cavity-BEC platform to propose a new rotation sensor [9],
which translates changes in the external rotations applied to changes in the number of
photons leaking out of the cavity. We have used numerical methods as well as analytical
tools to estimate the sensitivity, which can be achieved using realistic parameter from
existing experiments. Further, we have shown how a resonantly tuned cavity can be
used to manipulate active Raman modes [10] and discuss various platforms to observe
this phenomenon.
Finally, we have studied the influence of particle-hole symmetry on the dynamics in su-
perfluids as shown in publication [11] and find, due to the missing Magnus force for the
particle-hole symmetric case, qualitatively di↵erent dynamics for two attractive vortices
next to each other. We also applied this method to the BEC-BCS crossover. We have
used QMC data to fit our e↵ective field parameter to the experiment and found great
agreement between the collective modes across the crossover.
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Outlook

In the previous section I summarized the results during my PhD. In this section I would
like to briefly highlight some potential follow-up research topics and trends.
After the first realisation of a limit cycle in a quantum simulator [6], many experiments
have followed [151, 152, 237] and successfully realised limit cycle in their experiments.
Two possible explorations seem to be within reach. First, while all of these experi-
ments used some quantum simulator, they all have in common that they operate in a
regime with large atom numbers. It would be interesting to push the systems to small
atom numbers, where quantum e↵ects become crucial and dominant. First theoretical
work towards this direction has been done in [192–194, 238–240], but to the best of my
knowledge, experimental studies are still lacking. It would be interesting to measure
the Feigenbaum constant [191, 241] in a purely quantum system to see, if there is any
modification due to quantum mechanics or if this universal constant is unchanged. This
can be studied by measuring the recurrence rate of period-doubling bifurcations towards
chaotic dynamics. We recently did first steps towards this direction in a joint project
with the group of Andreas Hemmerich and Jayson Cosme, and a manuscript is currently
in preparation. We have shown by the use of Floquet-multiplier that further bifurca-
tions can be studied for stronger light-matter coupling strength with the use of our
proposed toy model in publication [7]. Likewise, we discuss how the type of bifurcation
can be altered from a period-doubling bifurcation to a Neimark-Sacker bifurcation by
change of the level spacing between the two lower energy states. We find that for the
two-dimensional scenario studied in the experiment that a Neimark-Sacker bifurcation is
present and confirm this prediction by the first study of the Neimark-Sacker bifurcation
in an ultracold gas experiment.
Secondly, it might be fruitful to study many coupled LCs. This will allow studying quan-
tum synchronisation [242,243] in a very controlled way. It would be interesting to see how
these networks compare to classical systems, which are naturally non-reciprocal [244].
Further, these networks might be used for some sort of quantum machine learning in-
spired from neuroscience [186], where the nonlinearities are within each subsystem con-
taining a limit cycle and the connection between subsystems can be linear a priori. These
networks relate to echo state networks [245, 246] and their exploration both numerical
and experimental might be promising. The use of tweezer arrays inside of cavities as has
been recently reported in [247] can be a useful tool to carry out these studies.
Another promising research line could be the further exploration of quantum sensors
using atom-cavity systems like our proposed sensor in publication [9]. It might be worth
considering di↵erent platforms with di↵erent, possibly more favorably, parameters for
sensing in certain frequency regimes. I believe that this platform, together with our
results on LC, is a promising platform to build early warning signals working close to
the Hopf bifurcation [172,248–250].
Finally, I would like to highlight our approach to use the NLKG equation to describe
complicated systems as the BEC-BCS crossover. While by no means we are able to
capture the full glory of the system, by adding a symmetry, namely the particle-hole
symmetry on the BCS side, one is able to describe certain aspects of the collective exci-
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tation spectrum very successfully. Our approach highlights how di↵erent spatial modes
can be used to design the collective mode structure within the crossover. Further, this
approach, after mapping the parameter to the experiment, as we did for the BEC-BCS
crossover, could be used in other physical systems with an approximate particle-hole
symmetry.
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[98] B. Buča and D. Jaksch. Dissipation induced nonstationarity in a quantum gas.
Phys. Rev. Lett., 123:260401, Dec 2019.

[99] K.C. Stitely, S.J. Masson, A. Giraldo, B. Krauskopf, and S. Parkins. Superradiant
switching, quantum hysteresis, and oscillations in a generalized dicke model. Phys.
Rev. A, 102:063702, Dec 2020.

211



[100] L. Broers and L. Mathey. Floquet engineering of non-equilibrium superradiance.
SciPost Phys., 14:018, 2023.

[101] L. Broers and L. Mathey. Robustness of the floquet-assisted superradiant phase
and possible laser operation, 2023.
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Jordan, J. Cohn, J.K. Freericks, A.M. Rey, and J.J. Bollinger. Verification of
a many-ion simulator of the dicke model through slow quenches across a phase
transition. Phys. Rev. Lett., 121:040503, Jul 2018.

[112] J. Keeling, M.J. Bhaseen, and B.D. Simons. Collective dynamics of bose-einstein
condensates in optical cavities. Phys. Rev. Lett., 105:043001, Jul 2010.

[113] P. Kirton, M.M. Roses, J. Keeling, and E.G. Dalla Torre. Introduction to the Dicke
Model: From Equilibrium to Nonequilibrium, and Vice Versa. Adv. Quantum
Technol., 2(1-2):1800043, 2019.

212



[114] F. Damanet, A.J. Daley, and J. Keeling. Atom-only descriptions of the driven-
dissipative dicke model. Phys. Rev. A, 99:033845, Mar 2019.

[115] H.J. Lipkin, N. Meshkov, and A.J. Glick. Validity of many-body approximation
methods for a solvable model: (i). exact solutions and perturbation theory. Nuclear
Physics, 62(2):188–198, 1965.

[116] N. Meshkov, A.J. Glick, and H.J. Lipkin. Validity of many-body approximation
methods for a solvable model: (ii). linearization procedures. Nuclear Physics,
62(2):199–210, 1965.

[117] A.J. Glick, H.J. Lipkin, and N. Meshkov. Validity of many-body approxima-
tion methods for a solvable model: (iii). diagram summations. Nuclear Physics,
62(2):211–224, 1965.

[118] S. Morrison and A.S. Parkins. Collective spin systems in dispersive optical cavity
qed: Quantum phase transitions and entanglement. Phys. Rev. A, 77:043810, Apr
2008.

[119] S. Morrison and A.S. Parkins. Dynamical quantum phase transitions in the dissi-
pative lipkin-meshkov-glick model with proposed realization in optical cavity qed.
Phys. Rev. Lett., 100:040403, Jan 2008.

[120] G. Engelhardt, V.M. Bastidas, C. Emary, and T. Brandes. ac-driven quantum
phase transition in the lipkin-meshkov-glick model. Phys. Rev. E, 87:052110, May
2013.

[121] A. Russomanno, F. Iemini, M. Dalmonte, and R. Fazio. Floquet time crystal in
the lipkin-meshkov-glick model. Phys. Rev. B, 95:214307, Jun 2017.

[122] Y. Zhou, S.-L. Ma, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li. Simulating the lipkin-
meshkov-glick model in a hybrid quantum system. Phys. Rev. A, 96:062333, Dec
2017.
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[187] M. Ospeck, V.M. Egúıluz, and M.O. Magnasco. Evidence of a hopf bifurcation in
frog hair cells. Biophysical Journal, 80(6):2597–2607, 2001.
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[239] E. Amitai, M. Koppenhöfer, N. Lörch, and C. Bruder. Quantum e↵ects in ampli-
tude death of coupled anharmonic self-oscillators. Phys. Rev. E, 97:052203, May
2018.

[240] I. Yusipov and M.V. Ivanchenko. Quantum neimark-sacker bifurcation. Scientific
Reports, 9(1):17932, 2019.

[241] K.T. Alligood, T.D. Sauer, and J.A. Yorke. Chaos: An Introduction to Dynamical
Systems. Textbooks in Mathematical Sciences. Springer New York, 2000.

[242] A. Roulet and C. Bruder. Quantum synchronization and entanglement generation.
Phys. Rev. Lett., 121:063601, Aug 2018.
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