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Preface 

Fishing is an ancient practice that has accompanied humanity for millennia. The ability to 

extract protein from the ocean has influenced the trajectory of human history and even 

facilitated the rise of kingdoms. Vikings discovered that dried Atlantic cod was a durable 

provision for sea journeys, enabling them to venture as far as modern Spain and Portugal, and 

the Hanseatic League would not have been as prosperous without rich Herring stocks. At the 

same time, the history of fisheries is tightly interwoven with unsustainable resource 

exploitation and devastating environmental consequences. Today, we may start witnessing a 

transformation of industrial fisheries in the southern North Sea. Marine space is increasingly 

used for green energy production and nature conservation, while fishing costs grow due to 

higher fuel prices, and questions arise concerning what the next 20 years will hold for fishers 

and their activities. This thesis presents insights into the current dynamics of German fisheries 

and tools to assess the effects of upcoming changes. I thereby provide information that may 

support management regimes integrating fisheries and other marine sectors such as nature 

conservation and offshore renewable energy. 
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Abstract 

 

For centuries, the North Sea has been a global hotspot for anthropogenic activities, including 

fisheries. Fishers have adapted to fluctuating fish stocks, new marine management regimes, 

and increasing fishing costs, but the competition for space with offshore wind farms (OWF) 

and area-based conservation measures is a relatively new pressure. Within this doctoral 

thesis, I apply quantitative methods to reveal the extent of pressures for the southern North 

Sea fisheries with emphasis on German fleets. Moreover, I present possible mitigation 

strategies, and insights into fishing behavior necessary for effective management.  

My co-authors and I quantified the race for space triggered by expanding OWFs and no-take 

zones by overlapping them with spatial fishing effort data. According to current plans, 60,000 

km2 of North Sea waters will be covered with OWFs by 2040, representing a 5-fold increase of 

conflict potential between fisheries and OWFs (Chapter I). A study on German vessels 

targeting Nephrops (Norway lobster; Nephrops norvegicus), revealed a coverage of German 

fishing grounds of up to 45% when OWFs and no-take zones are considered. Moreover, we 

highlighted other stressors such as potential difficulties for obtaining Nephrops quota due to 

Brexit and the risk for overfishing individual Nephrops populations (Chapter II).  

Another perspective on OWFs is offered in Chapter III, in which we analyzed international 

fishing effort and experimental catches for brown crab in and around OWFs. Our results show 

increased levels of international fishing effort with passive gears in the vicinity of some OWFs, 

suggesting potential benefits for fisheries. Together with findings from the experimental 

catches, an economic break-even analysis demonstrates the feasibility of co-use fishing for 

brown crab with passive gears.  

Foreseeing the reaction of fishers to changes is challenging and introduces a large source of 

uncertainty to fisheries management. Only by knowing the fisher’s key behavioral motivations 

can management be drafted in a sustainable way. Therefore, I combined environmental, 

economic, and cultural information, and applied machine learning techniques to find factors 

that were substantially driving spatio-temporal fishing effort for three German fleets (Chapter 

IV). The results show a high importance of environmental factors for all fleets, while economic 
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and cultural drivers only affected one fleet. This difference highlights the need for considering 

fishers’ heterogeneity in scientific fisheries models and management. 

Based on results and data products of the first four chapters, I developed an agent-based 

model (FISHCODE) simulating German southern North Sea fisheries involving complex 

human-decision making (Chapter V). After testing for model functionality and validation, I 

applied FISHCODE by testing scenarios of raised fuel prices, expanding OWFs and no-take 

zones, and the ban of electric pulse gear (Chapter VI). Results indicate lower profits in all 

scenarios, although fuel prices had by far the strongest effect. Additionally, fishing effort 

becomes displaced towards smaller areas, with the resulting increase in fishing pressure 

potentially having negative effects for marine ecosystems. 

Together with recent political developments such as Brexit, the risk of overfishing, and rising 

fuel prices, spatial competition will be a major challenge for North Sea fisheries. Findings of 

this thesis help to uncover uncertainty about the future state of the fishing sector and identify 

knowledge gaps such as the impact of OWFs on the environment and the need for publicly 

available fisheries data on high spatial resolution. Management should be drafted in a 

participatory process to ensure the profitability of the fishing sector in co-existence with other 

marine spatial actors, i.e. nature conservation. Factoring in the heterogeneity of fishers is key 

for efficient management and marine spatial planning. 
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Zusammenfassung 

 

Die Nordsee ist seit Jahrhunderten ein globaler Hotspot für anthropogene Aktivitäten, wie z.B. 

der Fischerei. Seit jeher haben sich Fischer an fluktuierende Fischbestände, neue 

Fischereibestimmungen und steigende Fischereikosten angepasst. Der Wettbewerb um Raum 

mit Offshore-Windparks (OWPs) und gebietsbezogenen Naturschutzmaßnahmen stellt einen 

relativ neuen Stressfaktor für die Fischerei dar. In dieser Dissertation wende ich quantitative 

Methoden an, um das Ausmaß des Drucks auf die Fischerei in der südlichen Nordsee mit 

Schwerpunkt auf den deutschen Flotten aufzuzeigen. Darüber hinaus präsentiere ich mögliche 

Strategien für eine Milderung negativer Konsequenzen sowie Einblicke in das 

Fischereiverhalten, die für ein effektives Management notwendig sind. 

Die Überlagerung räumlicher Polygone von OWPs und Naturschutzmaßnahmen mit 

Fischereiaufwandsdaten, beleuchtet und quantifiziert den schrumpfenden freien marinen 

Raum. Nach derzeitigen Plänen werden bis 2040 60.000 km2 der Nordsee mit OWPs bedeckt 

sein, was eine fünffache Zunahme des Konfliktpotenzials für die Fischerei bedeutet (Kapitel I). 

Weitere Stressfaktoren werden in einer Studie über die deutsche Kaisergranat-Fischerei 

(Nephrops norvegicus) deutlich. Zum einen erschwert der Brexit die Bedingungen für 

Deutschland Kaisergranat-Quoten zu erlangen und zum anderen besteht das Risiko einer 

Erschöpfung einzelner Kaisergranat-Populationen durch Überfischung (Kapitel II). Darüber 

hinaus könnten durch die Kombination von Fangverbotszonen und geplanten OWPs bis 2040 

45 % der deutschen Fanggebiete für Kaisergranat nicht mehr für die Fischerei zur Verfügung 

stehen. 

Eine andere Perspektive auf OWPs zeigen wir in Kapitel III, in dem meine Ko-Autoren und ich 

internationalen Fischereiaufwand und Versuchsfänge von Taschenkrebsen in und um OWPs 

analysiert haben. Unsere Ergebnisse zeigen einen erhöhten internationalen Fischereiaufwand 

mit passivem Fanggerät in der Nähe einiger OWPs, was auf mögliche Vorteile für die Fischerei 

hindeutet. Zusammen mit den Erkenntnissen aus den Versuchsfängen zeigt eine 

wirtschaftliche Break-Even-Analyse die Durchführbarkeit von Co-Use Strategien für die 

Fischerei mit passivem Fanggerät in OWPs.  
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Die Reaktion von Fischern auf o.g. Veränderungen vorherzusehen ist schwierig und stellt eine 

große Unsicherheitsquelle für das Fischereimanagement dar. Nur wenn die wichtigsten 

Verhaltensmotivationen von Fischern bekannt sind, kann Management nachhaltig gestaltet 

werden. Durch die Kombination von ökologischen, ökonomischen und kulturellen 

Informationen und der Anwendung von maschinellem Lernen, habe ich Faktoren identifiziert, 

die den räumlichen und zeitlichen Fischereiaufwand für drei deutsche Flotten wesentlich 

beeinflussen (Kapitel IV). Die Ergebnisse zeigen, dass Umweltfaktoren bei allen Flotten eine 

große Rolle spielen, während wirtschaftliche und kulturelle Faktoren nur für einer Flotte 

relevant sind. Dieser Unterschied verdeutlicht die Notwendigkeit, die Heterogenität der 

Fischer in wissenschaftlichen Modellen und im Fischereimanagement zu berücksichtigen. 

Auf der Grundlage von Ergebnissen und Datenprodukten der ersten vier Kapitel habe ich ein 

agentenbasiertes Modell (FISHCODE) entwickelt, das die deutsche Fischerei in der südlichen 

Nordsee, unter Betracht von komplexem menschlichen Entscheidungsprozessen, simuliert 

(Kapitel V). Nach dem Test der Modellfunktionalität und der Validierung habe ich FISHCODE 

angewandt, um Szenarien zu erhöhten Treibstoffpreisen, der Ausweitung von OWPs und 

Naturschutzgebieten sowie dem Verbot von elektrischem Impulsfanggerät zu testen (Kapitel 

VI). Die Ergebnisse zeigen geringere Fischereigewinne in allen Szenarien, wobei die 

Treibstoffpreise bei weitem die stärksten Auswirkungen haben. Ein weiteres Ergebnis ist die 

Verlagerung von Fischereiaufwand in kleinere Gebiete, wobei der daraus resultierende höhere 

Fischereidruck negative Auswirkungen auf die Meeresökosysteme haben könnte. 

Zusammen mit den jüngsten politischen Entwicklungen wie dem Brexit, dem Risiko von 

Überfischung und den steigenden Treibstoffpreisen wird der Wettbewerb um verfügbaren 

marinen Raum eine große Herausforderung für die Nordseefischerei darstellen. Die 

Ergebnisse dieser Arbeit tragen dazu bei, die Ungewissheit über den künftigen Zustand des 

Fischereisektors aufzudecken. Des Weiteren zeige ich Wissenslücken auf, wie z.B. die 

Auswirkungen von OWPs auf die Umwelt sowie den Bedarf an öffentlich zugänglichen 

Fischereidaten mit hoher räumlicher Auflösung. Fischereimanagement sollte in einem 

partizipativen Prozess gestaltet werden, um die Rentabilität des Fischereisektors in Koexistenz 

mit anderen marinen Raumakteuren, z. B. dem Naturschutz, zu gewährleisten. Die 

Berücksichtigung der Heterogenität von Fischern ist der Schlüssel zu effektivem Management 

und mariner Raumplanung.
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General Introduction 

 

Industrial fishing occurs on a global scale reaching even remote waters from the tropics to the 

poles (Kroodsma et al., 2018). Fisheries are an important provider for protein and their 

demand will likely increase during the 21st century due to a continuously growing world 

population (FAO, 2022). The fishing sector and its auxiliary industries employ 294,000 people 

in Europe alone, highlighting its socio-economic importance (FAO, 2022), whereas in terms of 

environmental impacts, fisheries have been affiliated with negative effects, reducing the 

abundance of fish populations, and destroying marine habitats (Jennings and Kaiser, 1998). 

Globally, most fish stocks are exploited at their sustainable limits, while 35.4 % are overfished 

(FAO, 2022). In particular, bottom trawling is known for its devastating effects on benthic 

habitats and species communities (Hiddink et al., 2020). 

This thesis focuses mostly on the southern North Sea, a global hotspot for overall fishing 

activity, and specifically for bottom trawling (Amoroso et al., 2018; Halpern et al., 2019, 

2008b). Here, I define the southern North Sea as the extent of fishing grounds used by the 

most important German fleets in the area catching brown shrimp (or common shrimp; 

Crangon crangon), common sole (Solea solea), European plaice (Pleuronectes platessa), and 

Nephrops (or Norway lobster; Nephrops norvegicus; Figure 1A). The following section provides 

important background information on the southern North Sea including physical 

characteristics, fisheries dynamics, as well as fisheries management. The second part of this 

introduction narrows the focus to the performed research by describing the relevance and 

important cornerstones of fisher behavior for management, as well as agent-based modelling. 

The final section outlines the chapters of this thesis and how they address knowledge gaps 

and states overall research objectives.  

1. The southern North Sea 

1.1 Physical characteristics 

The North Sea is located on the European continental shelf and is characterized by different 

habitats shaped by various sediment types, ranging from fine sand to rocky reefs (Bockelmann 

et al., 2018). The Norwegian trench represents the only deep-sea habitat of the North Sea, 

while the rest is relatively shallow with decreasing depth towards the southern part where the 
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deepest point is about 50m (Figure 1B). Vast tidal flats between barrier islands and the coasts 

of the Netherlands, Germany and Denmark form the Wadden Sea. The heavy tidal influence 

and river inputs in the southern North Sea result in yearly mixed water columns (ICES, 2022a). 

These biophysical features shape habitats that determine the occurrence and composition of 

species communities (Kraan et al., 2024; Neumann et al., 2013). For example, flatfish prefer 

sandy bottoms, but also occur in finer sediment (i.e. muddy areas), whereas burrowing 

megafauna such as Nephrops strictly prefers muddy habitat (Gutow et al., 2020; Lauria et al., 

2011). 

 

Figure 1. A: Greater North Sea region with maritime boundaries (blue; i.e. combined 
exclusive economic zone and territorial waters), as well as southern North Sea as defined in 
this thesis (red). B: Bathymetry of the southern North Sea (www.gebco.net). 

1.2 Historical and current fisheries  

North Sea fisheries have undergone many technological transitions during their centuries of 

history, starting with hunting marine mammals and gleaning shellfish in the Wadden Sea 

about 7500 years ago (Lotze, 2007). From medieval to modern times, fishing vessels have 

developed from sailing over steam- to diesel-powered vessels (Döring et al., 2020). This 

technological progress allowed to target fishing grounds that are located further offshore and 

drag heavy bottom-contacting nets across the sea bed. Gear modifications have increased 

catch efficiencies, such as the introduction of beam trawls (TBB; Figure 2) in the 1960s that 

largely replaced otter bottom trawls (OTB) (Rijnsdorp et al., 2008). TBB are efficient at catching 

flatfish buried deeper in the sea floor such as sole, because they are equipped with tickler 

http://www.gebco.net/
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chains digging into the sediment and startle the flatfish. Due to this change in fishing gear and 

increases in engine power and vessel size, the catch efficiency for sole more than doubled in 

12 years (Rijnsdorp et al., 2008). The increasing fishing capacity took its toll on the 

environment, and the collapse of one fish population was often followed by a shift in 

exploitation to another species, e.g. the collapse of the herring stocks in the 1950s was 

followed by heavy exploitation of Atlantic cod (Gadus morhua) (Cushing, 1980). North Sea 

catches peaked in 1970 (4 million tons) and have since been declining due to dwindling fish 

populations down to 2 million tons nowadays (ICES, 2022b). As a consequence, fishing 

regulations were released in the 20th century by individual countries and regional 

management units ranging from fishing quotas to fishing effort restrictions with the aim of 

rebuilding fish stocks (van Hoof et al., 2020). In the early 2000s, TBB began to be replaced by 

electric pulse gear (PUL), first in the Dutch and later also in other fleets targeting the flatfish 

plaice and sole (van Hoof et al., 2020). In comparison to TBBs, PULs have a better catchability 

for the high-value flatfish sole, catch lower amounts of unwanted bycatches, and require less 

fuel due to the reduced drag in the water column (Suuronen et al., 2012). However, PUL are 

controversial because of potential negative effects on benthic communities, and have been 

banned by the EU in 2021 (Kraan et al., 2020; Le Manach et al., 2019).  

 

Figure 2. Fishing vessels 
equipped with beam 
trawls. 

Until today, the North Sea remains a hotspot for bottom trawling with OTB, TBB, and, until its 

ban in 2021, also PUL (Amoroso et al., 2018; ICES, 2022b). The catch composition of these 

gears depends on the area they are active in. In the southern North Sea, OTBs catch a mix of 

crustaceans and fish, e.g. plaice and Edible crab (or brown crab; Cancer pagurus), as well as 

Nephrops in muddy areas, TBBs and PULs target plaice and sole, while TBBs also target brown 

©Sara Doolittle Llanos 
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shrimp in coastal waters (ICES, 2022b). In terms of landed value, the United Kingdom (UK), 

Denmark, the Netherlands, and Germany (in decreasing order) are the most important actors 

(STECF, 2020). The fishing sector in the Greater North Sea region employs almost 8000 full 

time equivalents (STECF, 2020) and is of socio-economic relevance, especially for coastal 

communities where fishery is an important profession (Urquhart et al., 2011).  

1.3 State of German fisheries in the southern North Sea  

The German fisheries in particular face many challenges, such as a lack of successors for fishing 

businesses and overaged vessels lacking the necessary financial capital to invest in new ships 

(Döring et al., 2020). The German North Sea fisheries mostly consists of vessels smaller than 

24m catching brown shrimp, with a few vessels targeting Nephrops, as well as several larger 

vessels catching sole and plaice. Many German fishers land in or export their catches to the 

Netherlands, where the main processing companies for fish and brown shrimp are located 

(STECF, 2020). Brown shrimp is further shipped to Morocco, where shrimps are pooled and 

then reimported (Aviat et al., 2011). Thus, German North Sea fisheries are very specialized and 

dependent on international cooperation, which compromises their resilience to crisis such as 

the COVID-19 pandemic (Goti-Aralucea et al., 2021). The continuing downward trend of 

German fishing capacity (STECF, 2020), reduces the socio-economic relevance of remaining 

fishers, which in turn lowers their gained political attention and power to negotiate with 

retailers (Döring et al., 2020).  

1.4 Anthropogenic impacts on the environment 

Apart from fisheries, the North Sea is also a hotspot for other anthropogenic uses, which can 

have harmful consequences for the environment (Halpern et al., 2019, 2008b). Among others, 

the threats to North Sea ecosystems are: non-indigenous species, pollution including 

eutrophication, overfishing, bottom trawling, man-made marine structures, and climate 

change (Emeis et al., 2015).  

In the southern North Sea, most fish populations are exploited within sustainable boundaries, 

except for some Nephrops populations (ICES, 2022b). However, the large amount of bottom 

trawling poses a threat to benthic ecosystems through habitat destruction and unselective 

catches, with high amounts of bycatches (Hiddink et al., 2020; Reiss et al., 2009). For example, 

Nephrops are caught by a mixed fisheries with OTBs, resulting in high amounts of bycatch, 



General Introduction 

 9  

although new gear features have been proposed to increase selectivity by sorting catches in 

the net (Catchpole and Revill, 2008; Cosgrove et al., 2019).  

Additionally, the North Sea is warming up faster than other areas due to climate change, which 

has consequences for the food web and ecological communities (Dulvy et al., 2008; Lynam et 

al., 2017; Rijnsdorp et al., 2009). During the last century, North Sea cod, plaice, and sole have 

shifted their distribution northwards due to global warming, followed by a shift in the 

respective fisheries (Engelhard et al., 2014, 2011). Concurrently, species usually living in 

warmer waters, e.g. sardines and anchovies, have increased in abundance in their northern 

distribution boundaries and appeared in North Sea fisheries catches (Baudron et al., 2020). 

This change in species occurrences, abundances and distributions may increase the potential 

for conflicts between fisheries and other users of ocean space (Link et al., 2017; Mendenhall 

et al., 2020). Moreover, in combination with intensive fishing pressure, climate change can 

trigger ecological regime shifts from ecological communities dominated by gadoids (e.g. cod) 

and copepods to flatfish (e.g. plaice) and diatoms (Sguotti et al., 2022). These regime shifts 

imply discontinuous and non-linear dynamics, which may hinder the recovery of fish stocks 

despite reducing fishing pressure (Blöcker et al., 2023a).  

However clear the effects of fishing pressure and climate change may be, initiatives towards 

sustainability and renewable energy use are not always straightforward. The effects of 

man-made structures such as offshore wind farms (OWFs) have both positive and negative 

effects on their surrounding environment that differ by taxonomic group and OWF 

development stage, i.e. construction and operation (Galparsoro et al., 2022; Watson et al., 

2024). For examples, the pile driving during OWF construction may displace harbor porpoises, 

and operative OWFs can reduce bird abundances through a collision and displacement, while 

the abundance of fish species may increase (Galparsoro et al., 2022). OWFs monopiles and 

scour protection (sand-filled bags or rocks at the bottom of the monopile) act as artificial reef 

for sessile invertebrates, macrobenthos, and demersal fishes (Li et al., 2023; Stelzenmüller et 

al., 2016; Thatcher et al., 2023). The accumulation of species on this artificial hard substrate 

can increase biomass and abundance of fish and benthic species interesting for fisheries, and 

offer the potential for spill-over effects (Dannheim et al., 2020; Methratta and Dardick, 2019; 

Reubens et al., 2013). Among the attracted species, brown crab and lobster have high 

economic value for fisheries and could therefore be exploited directly in and around OWFs as 

part of a co-use strategy between OWF and fishery (Stelzenmüller et al., 2016). At the same 
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time, artificial hard structures increase the potential for the introduction and spread of marine 

non-indigenous species, which may have severe ecological and economic consequences (De 

Mesel et al., 2015; reviewed by Laeseke et al., 2020). The closely spaced and high number of 

OWF monopiles may act as stepping stones for non-indigenous species with limited dispersal 

radius or habitat range (Molen et al., 2018). 

1.5 Fisheries management  

At first, fisheries were only managed in coastal waters up to 12 nm representing a nation’s 

territorial water. Since the establishment of the United Nations Convention of the Law of the 

Sea (UNCLOS) in 1982, countries were able to claim fishing rights in their exclusive economic 

zones (EEZ) covering waters up to 200 nm offshore (Figure 1B). Shortly after, the EU common 

fisheries policy (CFP) entered into force, regulating marine living resources on an EU scale and 

introduced total allowable catches (TACs) to limit marine resource exploitation to sustainable 

boundaries (EU, 2013). In order to target specific fisheries or vessels with management, EU 

fisheries were grouped into metiers and fleets. Metiers cluster fishing trips based on the 

targeted species assemblage and used gear, while fleets are grouped per year based on 

technical characteristics such as vessel length and predominant gear (Ulrich et al., 2012). Every 

year, the International Council for the Exploration of the Sea (ICES) uses data collected by fleet 

and metier and provides advice for catch limits of individual species to the European 

Commission. Subsequently the Commission suggests catch limits to the European Council, 

which then distributes TACs to EU member states based on fixed percentage (so called relative 

stability) that is rooted in every countries’ historic catch amounts. Fishing quotas can be 

swapped among EU member states at the beginning of every year to optimize the fishing 

opportunities of their fleets. In 2020, the long-established distribution and swapping of fishing 

quotas became challenged by Brexit. Starting in 2021, EU quotas are transferred to the UK in 

a step-wise procedure for fish stocks located in UK waters (EU, 2021). During this adjustment 

period, EU fishers have access to UK waters, but this agreement will be renegotiated in 2026 

(Stewart et al., 2022).  

Several management measures aim to reduce discards in EU fisheries. The plaice box is one of 

them and was established in 1995 to reduce discards of undersized plaice by prohibiting 

fishing activity for vessels equipped with TBB or PUL and engines >221 kw (Beare et al., 2013). 

It covers Dutch, German, and Danish coastal waters (Figure 3). Another EU measure to reduce 
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unwanted bycatch is the landing obligation prohibiting fishers to discard any quota-regulated 

species. However, many exemptions apply for target species in fisheries that would otherwise 

be halted due to quick exhaustion of bycatch quota (so called “choke species”) or for species 

with high post-discard survivability (European Commission, 2020a). Examples for exemptions 

are the two flatfish dab (Limanda limanda) and plaice caught by the North Sea TBB fleet (van 

Hoof et al., 2020).  

 

Figure 3. Southern North Sea with plaice 
box (green). 

1.6 Marine spatial planning 

Marine spatial planning (MSP) has its origins in the planning and spacing of marine protected 

areas (MPAs), and has since become a management approach to mitigate spatial conflicts and 

implement zoning for the use of all marine stakeholders (Frazao Santos et al., 2020; Jay et al., 

2012). As such, MSP comprises a multitude of methods and objectives, but is generally 

determined to enable the co-existence of spatial anthropogenic uses in marine areas, while 

ensuring environmental protection (Stelzenmüller et al., 2021a). 

Area-based marine conservation measures such as MPAs are effective in protecting and 

recovering marine habitats and ecological communities (Davies et al., 2021; Juffe-Bignoli et 

al., 2014; Püts et al., 2023; Sala and Giakoumi, 2018). Global and regional nature conservation 

strategies set targets to protect a certain percentage of marine areas. The Global Biodiversity 

Framework adopted during the COP15 in Montreal, Canada, aims to protect 30% of all marine 

areas until 2030 (UN, 2022). On a European level, the EU Birds and Habitat Directives requires 

member states to designate MPAs in their territorial waters and EEZs, resulting in the 

Nature2000 network. In the greater North Sea, 20 % of the total area is covered by MPAs 

(Werner et al., 2022). The management plans of MPAs are multi-facetted and can be 



1. The southern North Sea 

 12  

composed of multi-use zones that allow for certain human uses, restrictions for specific 

fisheries or gears, and no-take zones prohibiting all fishing activity. Some Natura2000 are still 

lacking management plans, making them effectively “paper parks” (i.e. MPAs that only exist 

on paper), which is a phenomenon that occurs globally (Mazaris et al., 2018; Relano and Pauly, 

2023). In 2023, the EU released an action plan suggesting to tighten management in MPAs and 

phase out all fishing activity with bottom-contacting gears in MPAs (EU, 2023). However, to 

date, the EU action plan has not resulted in any binding legislation.  

Offshore renewable energy plants such as tidal and wave energy sites or OWFs are essential 

for meeting international objectives like the Paris Agreement aiming at reducing greenhouse 

gas emissions by 55 % until 2030 as compared to 1990 (GWEC, 2019). Europe is an important 

player in the transition to green energy, and financially promotes OWF development 

(European commission, 2012). In the North Sea, the first OWF was implemented in 2002, and 

since then OWFs have expanded, surpassing oil & gas infrastructures in 2021 (Martins et al., 

2023; Paolo et al., 2024). Nowadays, European waters contain 52 % of global OWF structures 

and are one of the areas with the fastest OWF development rates  (Paolo et al., 2024). Fishing 

activity is either prohibited in OWFs or does not take place, because of risks to damage cables 

and other infrastructure (Bonsu et al., 2024). Therefore, if placed in traditional fishing grounds, 

OWFs reduce the area available to fishers, displacing their activity (Gimpel et al., 2015; 

Stelzenmüller et al., 2015a). In the Norht Sea, particularly fishing grounds for plaice and sole 

overlap with current and planned OWF sites, which could result in economic losses for the 

flatfish fishery (Berkenhagen et al., 2010; Stelzenmüller et al., 2016). To mitigate the effect of 

OWFs on fisheries, North Sea ripparian states are developing legislation for co-use strategies 

that allow fishing in specific zones or with certain gears. However, these leglislation differ 

across country, e.g. Germany allows the fishing with passive gears such as pots and traps in a 

buffer zone from 150 m to 500 m around OWFs, while the Netherlands established multi-use 

zones for fishers within OWFs (Bonsu et al., 2024). Despite the existing co-use legislation, little 

is known about the feasability of these plans with regard to both profitability and ecological 

conditions, i.e. whether marine resources in OWFs will be sufficient to sustain this fishery. 

In contrast to stakeholder groups with a fixed spatial claim (e.g. OWFs and marine 

conservation through MPAs), fisheries are a free-ranging human activity, which is why there 

are few examples of explicit consideration of fisheries in MSP despite their large spatial 
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footprint (Trouillet et al., 2019). The German marine spatial plan introduced in 2021 poses an 

exception, as it includes a priority area for Nephrops fisheries (www.bsh.de).  

2. Simulating fisheries 

2.1 Fisher behavior matters 

Fisheries are part of dynamic, complex systems that interact with ecological, economic, and 

social factors referred to as socio-ecological systems (Fuller et al., 2017; Partelow, 2018). In 

these systems, fishers play a central role, and therefore should be considered when 

researching fisheries dynamics or developing management (Hilborn, 2007; Kannen, 2014). The 

history of North Sea fisheries shows that change is an all-time companion of fishers who adapt 

to fluctuating fish populations, new fishing regulations, and rising fuel costs (Stelzenmüller et 

al., 2024a; van Hoof et al., 2020). The type and extent of these adaptations are difficult to 

foresee and may result in negative consequences for the ecosystem (Fulton et al., 2011). The 

displacement of fishing activity could have negative ecological effects if the new fishing 

grounds comprise threatened species or sensitive habitats (Dinmore et al., 2003; Liu et al., 

2016; Rijnsdorp et al., 2001). Moreover, fishing closures can provide an incentive for fishers 

to increase their effort resulting in unsustainable levels of exploitation (Gordon, 1954; Sys et 

al., 2017) and mesh size regulations may lead to higher amounts of bycatches (Graham et al., 

2007). Therefore, an essential part of sustainable management should be to anticipate fishers’ 

reaction to changes and new regulations. This requires knowledge on drivers of fishing 

behavior and simulation tools considering fishers’ decision-making to assess the adaptation of 

fishers to future changes. 

2.2 Fisheries and agent-based models 

Agent-based models (ABM) are computational tools for the simulation of heterogeneous 

individuals, i.e. agents, that act according to a set of rules in a digital environment (Bonabeau, 

2002). They have been applied in many different disciplines, e.g. ecology, social science, and 

economy (Bruch and Atwell, 2015; Filatova et al., 2013; Grimm et al., 2006; Haase et al., 2023; 

Huber et al., 2018). Due to their great flexibility and capability to combine quantitative and 

qualitative data, ABMs are also increasingly used to model human decision-making in 

socio-ecological systems (An, 2012; Rounsevell et al., 2012; Schwarz et al., 2020).  

http://www.bsh.de/
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Applications of ABMs in fisheries have simulated individual fishing vessels or skippers with 

distinct technical characteristics (e.g. vessel size, engine power, fish hold capacity), fishing 

gears, or personal preferences (Bailey et al., 2019; Bastardie et al., 2016; Wijermans et al., 

2020). Hence, in comparison to the widely used bioeconomic models for fishing fleets (Blanz, 

2018; Garcia et al., 2017; Salz et al., 2011), ABMs offer the opportunity to consider 

heterogeneity among agents. The suitability of ABMs for fisheries became reflected in the 

increasing number of application in fisheries for more than 20 years (Haase et al., 2023). 

However, most of these ABMs simplify human behavior by assuming rational choice and profit 

maximization (Andrews et al., 2020; Haase et al., 2023; Van Putten et al., 2012; Wijermans et 

al., 2020). Pollnac and Poggie (2008) noted that fishers can have a surprisingly strong 

attachment to their profession despite the many affiliated dangers that come with working 

on vessels and high uncertainties about profits. Therefore, fishers decision-making entails 

more complexities than generating profits, i.e. risk-averse behavior (Holland, 2008), tradition 

or habitual behavior (Stelzenmüller et al., 2024a), and avoiding bycatches of marine mammals 

(Barz et al., 2020). Implementing more realistic human behavior in ABMs is challenging, 

because usually data about the motives of human decisions are rare (Elsawah et al., 2020; 

Lindkvist et al., 2020; Schwarz et al., 2020). Conceptualizing human behavior based on theories 

is a common method and workaround if no empirical data is available (Schlüter et al., 2017; 

Schwarz et al., 2020). Many of these theories suggest behavior beyond profit maximization 

and rational choice, e.g. habitual behavior or descriptive norms (the observed behavior of 

others influences your own behavior) (Schlüter et al., 2017). The integration of theories or 

empirical knowledge on human behavior in fisheries ABMs, was recently termed as the “next 

generation of fishery models” highlighting the need to move beyond the simulation of pure 

profit maximization behavior (Wijermans et al., 2020).  

3. Research gaps and objectives 

In this thesis, I identify the effects and extent of current and future pressures for North Sea 

fisheries focusing mostly (but not exclusively) on German fleets in the southern North Sea. 

Furthermore, I develop an ABM to simulate spatio-temporal fishing dynamics.  

The vast expansion of OWFs and other offshore renewable energy sites will compromise 

fishing opportunities by claiming areas in traditional fishing grounds. Prior the publication of 

Chapter I (Stelzenmüller et al., 2022), no scientific study had quantified the extent of this 
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conflict potential. Therefore, in Chapter I, my co-authors and I integrate several sources of 

fishing effort data and perform a European-wide overlap analysis with present and future 

offshore renewable energy site polygons. As such, it is the only chapter with a geographical 

focus beyond the North Sea. However, results identify the North Sea as a hotspot for conflict 

potential especially between OWFs and bottom trawlers catching flatfish and Nephrops.  

Designated MPAs in the North Sea often lack management plans or consist of a mixture of 

multi-use zones only partially restricting fisheries. However, regional and global nature 

conservation targets aim at an increasing number of no-take zones (i.e. restricting all 

fisheries), which could lead to a reduction of fishing grounds adding to those lost due to OWF 

expansions. Moreover, the balance of swapping quotas and access of the UK EEZ became 

challenged by Brexit, intensifying the uncertainty for fisheries already introduced due to 

spatial fishing restrictions. In Chapter II, my colleagues and I assess these uncertainties on the 

basis of the North Sea Nephrops fishery. The collation of many different data sources revealed 

that a combination of OWF and MPAs may reduce German fishing grounds by 45%, while high 

fishing activity risks local resource depletion, and Brexit worsens Germany’s position to swap 

quotas. 

Chapters I & II contribute to uncover the conflict potential of future spatial fishing restrictions 

and fisheries. Species aggregations around OWF infrastructure could offer the potential for 

co-locating OWF and fisheries and thereby mitigate the economic loss of fisheries. However, 

the knowledge base for the feasibility of these co-use strategies and the ecological conditions 

is thin. In Chapter III, I isolated vessels equipped with pots and traps (a common gear to catch 

brown crab and lobster) from international fishing effort data. Findings show several vessels 

prefering to fish around OWFs, supporting the hypothesis that OWFs could be of benefit for 

fisheries. Moreover, experimental fishing with pots and traps in and around OWFs revealed 

an increased abundance of brown crab. Based on these results, Chapter III provides an 

economic break-even analysis demonstrating the economic feasibility of co-use fisheries. 

Within the coming decades, North Sea fishers will face many challenges possibly leading to a 

transformation of the entire sector (Chapters I & II). Anticipating fishers’ reactions to these 

changes is one the largest sources of uncertainty in fisheries management. Therefore, in 

Chapter IV, my co-authors and I reviewed relevant scientific literature on factors influencing 

demersal fisheries in the North Sea, and performed a boosted regression tree analysis to 
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identify environmental, economic, and cultural drivers for German fishing fleets. Results 

comprise a ranking of drivers influencing fishing effort, as well as their type of effect in specific 

parameter ranges. Our findings differed across fleets, which is why one of the main 

conclusions is to consider heterogeneity of fishers when releasing new fisheries regulations.  

The majority of fisheries ABMs assume simplified human behavior based on a single economic 

objective. Fishers’ behavior is more complex and often based on personal norms (being home 

during weekends), cultural values (fishing as way of life), and social interactions (what are 

other fishers doing). In Chapter V, I present FISHCODE, a spatio-temporal ABM for German 

fleets in the southern North Sea with emphasis on complex human behavior. Data products 

and developed methodologies from Chapter II help to prepare a comprehensive data base 

fundamental to FISHCODE, while insights from Chapter IV support conceptualizing the 

decision-making submodel. A comparison between observed data and model outcomes 

validate FISHCODE’s structural realism and endorse the model as virtual laboratory and its 

application for scenario testing. 

To unravel the effects of future changes on German North Sea fisheries, I created five 

scenarios based on potential spatial fishing restrictions (Chapters I & II), economic 

consequences of recent crises (i.e. rising fuel price), and a change in fishing regulations 

exemplified as the EU ban of PUL gears in 2021. Chapter VI describes these scenarios and 

applies FISHCODE to assess their effect on German fishing fleets in the southern North Sea. 

Model outcomes demonstrate a reduction of profits and fishing effort, a shift of metier 

engagement, as well as a spatial intensification of fishing effort. These findings are useful to 

reduce the uncertainty around future pressures for fisheries and develop MSP integrating the 

requirements of fishers and other stakeholders. 

The above described chapters aim to fulfill the overall research objectives: 

(1) identifying current and future pressures for North Sea fisheries with emphasis on 

spatial fishing restrictions (Chapter I & II) 

(2) exploring co-use as a mitigation strategy for constrained fishing grounds due to 

offshore wind parks (Chapter III), 

(3) identifying drivers of North Sea spatio-temporal fishing dynamics (Chapter IV), and 

(4) constructing an agent-based model (ABM) to evaluate the effect of socio-economic 

scenarios on the German fishing sector (Chapter V & VI). 
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Abstract 

Offshore renewables (OR), such as offshore wind farms, are a key pillar to address increasing 

energy demands and the global transition to a carbon-free power sector. The transition to 

ever more occupied marine spaces, often facilitated by marine spatial planning (MSP), 

increases the conflict potential with free ranging marine sectors such as fisheries. Here, we 

quantified for the first time the direct impact of current and future OR development on 

fisheries across European seas. We defined direct impact as the average annual fishing effort 

(h) overlapping with OR planning sites and applied an ensemble approach by deploying and 

harmonising various fisheries data to optimise spatial coverage for the European seas. The 

North Sea region will remain the centre of OR development for a long time, but a substantial 

increase of conflict potential between these sectors will also occur in other European sea 

basins after 2025. Across all sea basins, fishing fleets deploying bottom contacting gears 

targeting flatfish and crustaceans are and will be affected the most by the already constructed 

and planned OR. Our results provide a solid basis towards an understanding of the socio-

economic effects of OR development on European fisheries. We argue that European MSP 

processes need to adopt common strategies to produce standardised and harmonised socio-

economic data to understand implications of OR on free-ranging marine activities such as 

fisheries. 

Keywords: Adaptive capacity, fishing effort displacement, fishing métiers, spatial overlap, 
offshore renewables, offshore wind farms 
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1. Introduction 

The advancement of offshore renewables (OR), such as offshore wind farms (OWF) or wave 

and tidal energy devices, is a response to increasing energy demands and a key pillar in the 

global transition to a carbon-free power sector (GWEC, 2019). In 2018, the worldwide installed 

capacity of OWF summed up to 23.1 GW with a European contribution of roughly 79%. Europe 

in particular pushes the OR development further to progress towards the global Paris 

Agreement targeting a reduction of greenhouse gas emissions by 55 % by 2030 compared to 

1990 (European commission, 2012; Gimpel, 2015; Leonhard et al., 2013; Lindeboom et al., 

2015; Methratta, 2020; Pezy et al., 2020; Raoux et al., 2017). The global expansion of offshore 

marine structures also known as ocean sprawl is regarded as one of the most extreme man-

made modifications to the marine environment with, as yet, uncharted cumulative 

environmental effects (Bugnot et al., 2021). Aside of its impact onto the marine environment 

(Lindeboom et al., 2015), the OR proliferation will also speed up the race for space in the 

already heavily used coastal and offshore waters (Halpern et al., 2019). The increase of blue 

growth and economic development bears numerous risks including those of loss of livelihoods 

for local fishers, lost access to marine resources, inequitable distribution of economic benefits 

and, social and cultural impacts (Bennett et al., 2021). OR license areas almost always reduce 

access to traditional fishing grounds forcing a subsequent displacement of fishing activities to 

other areas (Gimpel et al., 2015; Stelzenmüller et al., 2015a). The spatial designation of OR is 

often part of integrated spatial management approaches such as marine spatial planning 

(MSP). In contrast to the allocation of OR development areas, traditional free ranging human 

activities such as fisheries, which are strongly linked to spatio-temporal dynamics of fisheries 

resources, are barely considered in planning processes (Janssen et al., 2018; Said and Trouillet, 

2020; Trouillet et al., 2019) 

MSP has become the most widely used place-based management approach aiming to mitigate 

spatial use conflicts at sea, to create legal foundations for maritime investments, and to 

implement an ecosystem-based approach to marine governance (Frazao Santos et al., 2020). 

Hence, global MSP initiatives comprise diverse goals and objectives, but often address the 

growth of marine sectors and the safeguarding of biodiversity loss (Stelzenmüller et al., 2021a; 

Trouillet et al., 2019). Particularly Europe was at the forefront of putting MSP into practice 

(Ehler and Douvere, 2009). Triggered by Blue Growth initiatives, the first spatial plans were 
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implemented in the southern North Sea (Belgium and Germany) in the early 2000s (European 

commission, 2012). 

The socio-ecological effects of MSP, comprising OR development, are progressively being 

debated in the wake of the rapid MSP implementation. In Europe, a strategic environmental 

assessment is the mandatory key instrument to address the wider impact of spatial planning 

(Stelzenmüller et al., 2021a). As yet, little is known on the socio-economic impacts of planning 

and current research focused rather on qualitative analysis of spatial use conflicts among 

sectors, such as OR, shipping and fisheries (Haggett et al., 2020; Schupp et al., 2021). A 

comprehensive understanding of socio-economic impacts of the OR development on fisheries 

requires not only a profound knowledge of “lost” catches of target species due to the 

displacement of fishing activities from OR development areas, but also distinguished data on 

associated costs (e.g. energy, labour, investments, etc.) for the fisheries sector. While the 

current knowledge enables an estimation of spatially resolved revenues, it allows only for a 

limited analysis of displacement effects (Pascual et al., 2013; Stelzenmüller et al., 2011). Tools 

such as bio-economic modelling allow to link total costs of fishing activities with population 

dynamics of the respective resources, hence enabling tailored predictions on future catches 

at the local or regional seas scale (Nielsen et al., 2018). However, the direct use of such models 

to assess the socio-economic impacts of planning is constrained by the parameterisation with 

regard to ecological and socio-economic effects at such fine scale resolutions as OR planning 

sites (Bastardie et al., 2020).  

For the first time, we quantify the spatio-temporal overlap of fishing activities with current 

and future OR locations within European coastal and offshore waters, and provide a first pan-

European review on the implications of present and future OR development on fisheries. We 

assessed spatio-temporal trends in the development of conflict potential between OR and 

fisheries by comparing the present, mid-term and future overlap at various spatial scales. This 

allowed identifying the type of fisheries that will be affected the most by effort displacement. 

Finally, we discuss the capacity of MSP to plan with fisheries and OR, and identify data and 

knowledge needed for a comprehensive assessment of the socio-economic impacts of OR on 

fisheries.  
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2. Methods 

2.1 Resolving spatio-temporal patterns of fishing activities in European seas 

For this study, we distinguished six European seas i.e. the Black Sea, Baltic Sea, North Sea, 

Celtic Sea, Atlantic and Mediterranean (Figure I-1). As a starting point, we used the boundaries 

of the marine sub-regions as they have been defined for the Marine Strategy Framework 

Directive (MSFD) (Jensen et al., 2017). We merged the western and central Mediterranean, 

Ionian and Aegean Sea as well as the Adriatic Sea to one category representing the 

Mediterranean. The Bay of Biscay and the Iberian coast were categorised as Atlantic. Further, 

our definition of the greater North Sea comprised the Kattegat and English Channel. Since no 

OR development takes place in the Black Sea, we excluded this sea basin from the subsequent 

analysis. Interactions of fishing activities and OR sites occur at scales of a few hundred meters. 

Yet, there are no aggregated and standardised data on fishing effort covering all European sea 

basins at such high spatial resolution. To assess the conflict potentials between OR and 

European fisheries, we therefore integrated four fishing effort data sources with varying 

spatial and temporal resolutions (Table I-1, Appendix A).  

Table I-1. Spatial and temporal coverage of data on fisheries activities used to analyse the 
conflict and impact potential of marine energy development 

Data source Type of data Grouping 
variables 

Temporal 
scale 

Spatial scale Resolution 

Global 
Fishing 
Watch (GFW) 

Fishing effort [h] Fishing gear 2012-18 Global Daily;  
0.01° × 
0.01° 

OSPAR Fishing effort of 
mobile bottom 
contacting gears 
[h] 

Fishing 
métier level 
5 (DCF) 

2009-17 OSPAR region Yearly;  
0.05° × 
0.05° 

HELCOM Fishing effort of 
mobile bottom 
contacting gears 
[h] 

Fishing 
métier level 
5 (DCF) 

2009-16 HELCOM region Yearly;  
0.05° × 
0.05° 

Vessel 
monitoring 
system (VMS) 

Fishing effort of 
German vessels 
[h] 

Fishing 
métier level 
5 (DCF) 

2012- 19 German 
exclusive 
economic zone 
(EEZ) of the 
North Sea and 
Baltic Sea 

Pings;  
2 hrs 
frequency 

  



Chapter I – Offshore renewables and fisheries 

 22  

 

Figure I-1. European marine regions considered in this study, consisting of the Baltic Sea, 
North Sea, Celtic Sea, Atlantic and Mediterranean together with the spatial location of all 
535 offshore renewable installations (status August 2020) that have been implemented (or 
constructed) before 2021 (red), until the end of 2025 (blue), and after 2025 (orange) (see 
data sources in Appendix A). 

We extracted publicly available Global Fishing Watch (GFW) data to cover the entire study 

area (accessed 26.05.2020). These data comprise fishing effort by gear group but lack 

information on target assemblages or catch volumes. Further, we derived fishing effort data 

for the OSPAR (the Convention for the Protection of the Marine Environment of the North-

East Atlantic) and HELCOM (Helsinki Commission for the protection of the Baltic Sea) regions, 

which are publicly available (0.05° longitude x 0.05° latitude). These fishing effort data are 

Vessel Monitoring System (VMS)-based and include catches by métier (fishing gear and target 

assemblage) of all bottom-contacting gears. The geographic scope of the OSPAR data 

encompasses the North Sea and Celtic Sea, while HELCOM data cover the Baltic Sea. VMS data 

frequency varies across member states but is often set at a time interval up to two hours from 

fishing vessels > 12 metres and include a number of attributes such as unique vessel ID, date, 

time, geographical position or speed. Finally, as an example of the use of high-resolution data 

to explore the conflict potential, we performed an analysis focussing on the German Exclusive 

Economic Zone (EEZ) of the North Sea. For the fine-scale German VMS data, we deleted 
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duplicates of vessel reference numbers and time stamps and identified points within a three 

kilometres radius of harbours using the pointInHarbour function of the ‘VMS tools’-package 

(Hintzen et al., 2012) for the R programming language (R Core Team, 2019). To distinguish 

between fishing trips and idle harbour time, we removed all points except for the last and first 

point of each harbour period indicating the beginning and end of a fishing trip. For each vessel, 

we calculated time steps and geographical distances between subsequent pings by summing 

up half of the times and distances from the previous to the current, and current to the next 

ping, respectively (Kroodsma et al., 2018). Based on the resulting distances and time steps, we 

calculated the speed in knots (nautical miles per hour) for each ping and removed those above 

25 knots, representing unrealistic speeds and thus erroneous information. We merged each 

fishing trip with the corresponding logbook data containing information about landings, 

revenues, and métier (Letschert et al., 2021). We split the VMS data into groups with regard 

to gear and year and used the activityTacsat function of the VMS tool package (Hintzen et al., 

2012) to classify pings into steaming, hauling, and fishing. We removed all steaming and 

hauling pings, so that the time step values of the remaining pings represented fishing effort. 

To enable a comparison between OSPAR and HELCOM VMS data, and German VMS data, we 

adapted métier names resulting in 14 common fishing métiers (level 5, (Decision)) based on 

the used gear and target assemblage (Table I-2). 

2.2 Exploring the expansion of marine renewables in European seas 

We derived spatial data on wave, tidal and, combined wind and wave energy plants from the 

EMODnet Human Activities portal (accessed 20.07.2020, Appendix A). These data also include 

information about the construction starting and, if applicable, ending date. However, only the 

EMODnet data of pilot sites included the necessary polygon information needed for this study. 

Since data on current and future OWF were not publicly available, we obtained a global data 

set on OWF development, from 4C Offshore Ltd (accessed 16.03.2021, Appendix A). We 

filtered the 4C Offshore data to OWF with available information about the starting date (i.e. 

the date at which the OWF is actively being developed on site) and status of the project. For 

those OWF with a valid status, but without start information, we reconstructed the starting 

year based on OWF of the same status with starting information (Figure I-1, Appendix A).  
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Table I-2. Overview of the métiers distinguished in the subsequent analysis of the 
OSPAR/HELCOM and German EEZ fishing effort data. 

Gear type Target assemblage/species Métier (level 5) 

Beam trawl Crustaceans, mainly common shrimp (Crangon 

crangon) 

TBB_CRU 

Beam trawl Demersal fish TBB_DEF 

Beam trawl Molluscs TBB_MOL 

Danish seine Demersal fish, mainly European plaice 

(Pleuronectes platessa) and Atlantic cod (Gadus 

morhua) 

SDN_DEF 

Dredge Scallops and mussels DRB_MOL 

Midwater otter 

trawl 

Small pelagic fish OTM_SPF 

Otter trawl Crustaceans, mainly Norway lobster (Nephrops 

norvegicus) and common shrimp (Crangon 

crangon) 

OTB_CRU 

Otter trawl Demersal fish OTB_DEF 

Otter trawl Crustaceans, mainly Norway lobster (Nephrops 

norvegicus) and demersal fish 

OTB_MIX_CRU_DE

F 

Otter trawl Small pelagic fish, mainly European sprat 

(Sprattus sprattus) or sandeel (Ammodytes) 

OTB_SPF 

Pair trawl Demersal fish PTB_DEF 

Pelagic pair trawl Small pelagic fish PTM_SPF 

Scottish seine Demersal fisheries, mainly Atlantic cod (Gadus 

morhua), Haddock (Melanogrammus 

aeglefinus) and flatfish species 

SSC_DEF 

Set gillnet Demersal fish GNS_DEF 

 

EMODnet pilot sites and 4C Offshore data sets provided spatial polygons of OR sites and thus 

allowed for a spatial overlap analysis of present and future OR (OWF, wave, tidal and, 

combined wind and wave energy plants) with fishing effort data. Here we did not consider 

additional spatial overlap of fishing effort with associated infrastructure such as cables. We 
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distinguished different periods (referred to as scenarios): (i) ≤ 2020 (“present”), (ii) ≤ 2025 

(“mid-term”), and (iii) > 2025 (“long-term“). Further, we defined present OR as those with a 

starting date (i.e. start of construction) or status matching the temporal coverage of the 

respective fisheries data (Appendix A). Since the temporal coverage differed among the fishing 

effort data sets (Table I-1), the definition of present OR varies depending on the associated 

fishing effort data set. 

2.3 Spatio-temporal overlap analysis on marine renewables and European fisheries 

We conducted a spatial overlap analysis of European fishing activities (h) with present, mid-

term and long-term OR installations by identifying the grid cells of the GFW, OSPAR and 

HELCOM fishing effort data, as well as the VMS pings for the German EEZ intersecting with the 

polygons of OR sites. To represent the conflict potential per OR location, we averaged the 

intersecting annual fishing effort (h). Thereby we considered only the years previous to the 

construction date of the respective OR project. A key obstacle when assessing the spatial 

overlap of fishing activities and areas designated for OR installations is the differing spatial 

resolution of fishing effort data. The examples of the overlap analysis between OR sites and 

the three fishing effort data sets indicated that the spatial overlap between OR and GFW and 

OSPAR/HELCOM fishing effort data are rather conservative and might lead to a general 

overestimation of the actual fishing effort associated with a given OR polygon (Appendix C). 

3. Results 

3.1 European expansion of offshore renewables 

Present OR installations show the greatest spatial expansion in the North Sea and Baltic Sea, 

with the UK having allocated the largest surface area of approx. 1480 km2 to marine energy 

sectors followed by Germany and Denmark (Figure I-2). In the Mediterranean Sea, a single 

OWF currently exists in Italy, several more OWF are planned in Italy and Greece (Figure I-2). 

The existing OR in the Baltic Sea are exclusively OWF clustered near Finland and between 

Sweden, Denmark, and Germany. In the North Sea, OWF are also the most important and 

common OR. Only a few tidal and wave energy installations exist as test and prototypes in 

Belgium, the Netherlands, Denmark, Sweden, Norway, and Scotland. In the Atlantic region, 

most installations target wave energy (Spain, France, UK), whereas tidal energy installations 

occur in France and UK. The majority of the mixed wave/wind energy pilot sites are located in 

Portugal and Spain. In the mid-term, the main OR installations comprise OWF in the North Sea 
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and Baltic Sea, whereby UK defined the largest area for the OR development (~10,000 km2). 

Furthermore, the installation of OWF will advance in the Atlantic region (Spain and Portugal), 

and in the Mediterranean (France, Italy and Greece). All planned OR after 2025 are OWF 

installations. The centre of these developments remains in the North Sea, with fewer new 

installations in the Baltic and Celtic Sea as well as along the French Atlantic coast. Across the 

three planning scenarios, the largest spatial expansion of the sector is planned for UK waters 

followed by Danish, Norwegian, Swedish, Irish and German waters. 

 

Figure I-2. Comparison of the total surface area (km2) designated for offshore renewable 
installations (“OR surface area”) across European seas (top) and countries (bottom) for the 
present (red), mid-term (~ 2025; blue), and long-term (> 2025; orange) development 
scenarios.  

3.2 Impact of offshore renewables on European fisheries 

The spatial coverage of GFW data spanned across all European regions, hence allowing for a 

relative comparison of the total overlapping fishing effort across the European Seas by OR 

development scenario and course gear group (Figure I-3; see also Appendices C, D). Despite 

the uncertainties with regard to the accuracy of the actual spatial overlap at respective OR 

sites (Appendix C), we found the relative highest overlap of total fishing effort with OR sites in 

the North Sea and Celtic Sea (Figure I-3). Our analysis showed a substantial increase of conflict 
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potential between the present state and the OR development from 2026 onwards for all 

European seas (Figure I-3; Appendix D). In the Baltic Sea, after 2025, the conflict potential 

(overlapping fishing effort) will increase 300-fold. For the long-term scenario we calculated for 

the Celtic Sea a 48-fold, for the Atlantic 8-fold and for the North Sea a 5-fold increase of conflict 

potential compared to the present spatial overlap of fishing effort. Across all European seas 

and for all scenarios, trawlers (demersal and pelagic; GFW data) will be affected the most by 

the expansion of OR (Figure I-3).  

 

Figure I-3. Cyclic dendrogram showing the summed fishing effort (hours) being displaced by 
region, OR development scenario (present; sc1 = 2025; sc2 > 2025) and fishing gear type 
based on GFW data (see data sources in Appendix A); bubble sizes are relative to the 
maximum value of 346092 h (produced with RawGraphs; www.rawgraphs.io). 

We mapped the average total fishing effort (log h) together with the location of the here 

considered 535 OR sites for the three different development scenarios (present, mid-term and 

long-term) for the North Sea, Celtic Sea Baltic Sea, and Atlantic, and Mediterranean (Figure 

I-4; A - E). The relative comparison of fishing effort across regions confirms the greatest spatial 

expansion and intensities of fishing activities in the North Sea and Celtic Sea. Hence, the spatial  
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overlap with OR development sites in offshore waters points to the increasing conflict 

between these sectors in those two regions. 

 

Figure I-4. Spatial distribution of the average annual fishing effort (log h) in the A) North Sea 
(2009-2017; OSPAR data), B) Celtic Sea (2009-2017; OSPAR data), C) Baltic Sea (2009-2016; 
HELCOM data), D) Atlantic (2012-2018; GFW data), and D) Mediterranean (2012-2018; GFW 
data) region together with the location and size of the OR development sites for the present 
(red), short-term (blue) and long-term (green) scenarios. 
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The types of fisheries that will be displaced due to the OR development varied greatly across 

the regions and development scenarios (Figure I-5). The use of the OSPAR and HELCOM fishing 

effort data in combination with our standardized métier definition enabled a better insight 

into the types of fisheries being affected in the Baltic Sea (HELCOM), Celtic Sea (OSPAR) and 

North Sea (OSPAR) (Figure I-5 A). In the Baltic Sea, the otter board fleet targeting demersal 

fish will be affected the most (> 80 %; HELCOM data). For instance, for the present state of OR 

development in the Celtic Sea roughly 30 % of the overlapping fishing effort can be associated 

to beam trawlers targeting demersal fish (TBB_DEF) and otter trawls targeting crustaceans 

(OTB_CRU), respectively. In contrast, for the next development phase the largest overlap of 

fishing effort will be mostly (~ 80%) with otter trawls targeting crustaceans (OTB_CRU). For 

the North Sea, such variations are less pronounced and beam trawlers targeting demersal fish 

remain to be the most affected. For the long-term scenario, 10 % of the North Sea fishing 

effort being displaced will be associated to otter boards targeting crustaceans and demersal 

fish. Comparing the type of fisheries to be displaced by the OR development for the Atlantic 

and Mediterranean Sea (GFW data; Figure I-5 B; Appendix D) showed that in the Atlantic 

region (Bay of Biscay and Portuguese coast), trawlers and set gillnets were the most affected 

gear group in terms of total effort for current future OR scenarios. In the Mediterranean Sea, 

the areas with the highest number of OR sites were the Gulf of Lions, the Ionian Sea (Gulf of 

Tarento) and the Aegean Sea for which we calculated a spatial overlap with mainly trawling 

fleets. Gill net and longline fleets will be affected only marginally by future OR expansions. 

Figure I-6 A reveals that the cumulative effect of OR installations across the Baltic Sea, Celtic 

Sea and North Sea will be most pronounced for otter boards targeting demersal fish and 

crustaceans, followed by beam trawlers targeting demersal fish. In the North Sea six fishing 

métiers will face a more or less equal amount of fishing effort displacement by the OR 

expansion. 
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Figure I-5. Relative proportion of the total fishing effort of the main fishing fleets 
overlapping with the areas of the present, mid-term (until 2025), and long-term (> 2025) 
scenarios of offshore renewable installations in the Baltic Sea (HELCOM data), Celtic Sea and 
North Sea (OSPAR data) (top; see Table I-1 for the métier definitions) and Atlantic and 
Mediterranean Sea (bottom; based on GFW data). Numbers below bars indicate regional 
sums of annual mean fishing hours (conflict potentials; kh = 1000 hours) per OR for each 
development scenario.  

The use of the high-resolution VMS and logbook data for the German EEZ of the Baltic Sea and 

North Sea allowed for a detailed assessment of the total hours fished by fishing métier being 

displaced across the OR scenarios (see comparison of scales in Appendix C). In the German 

Baltic Sea EEZ, pair trawls targeting demersal and small pelagic fish are affected by future OR 

expansions (Figure I-6B). The cumulative effect of the OR development in the German EEZ of 

the North Sea will displace substantial fishing effort of at least four different fleets targeting 

demersal resources. While in the entire North Sea the effort displacements were similar 

among development scenarios (Figure I-6A), the high-resolution VMS data revealed that the 

overall fishing effort displacement for German vessels within the German EEZ will be most 

substantial after 2025 (Figure I-6B). 
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Figure I-6. Mean annual effort (log h) by métier affected by the present, mid-term (~ 2025), 
and long-term (> 2025) OR expansion in the Baltic Sea (HECLOM data), Celtic Sea (OSPAR 
data), and North Sea (OSPAR data) (A) and the German EEZs of the North Sea and Baltic Sea 
(VMS data) (B). To enable a better comparison, we added 1 to all values and then took the 
logarithm. 

A relative comparison of fishing effort(h) and revenues (€) across the different data sets is 

shown in Figure I-7. GFW and OSPAR or HELCOM data represent international fishing effort, 

while the VMS data contain only German vessels. While this explains the large variation in 

absolute numbers of fishing effort and revenues, it also reflects the variability in precision of 

the respective overlap analysis due to mismatching spatial resolutions of data layers (see 

Appendix C).  
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Figure I-7. Comparison of the mean annual fishing effort (h) (top) and mean annual revenues 
(€) (bottom) overlapping with present, mid-term (~ 2025), and long term (> 2025) OR 
planning sites in the German EEZs of the North Sea (left panel) and Baltic Sea (right panel) 
calculated with the three different fishing effort data (GFW, OSPAR/HECLOM, VMS). 

4. Discussion 

4.1 Analyzing conflict potential between offshore renewables and European fisheries 

Our study provides for the first time a pan-European assessment of the potential socio-

economic implications of OR development for European fisheries. We have shown that the 

North Sea region will remain the European center of OR development, but a substantial 

increase of conflict potential between this sector and fisheries can be expected in other 

European seas after 2025. Fishing fleets deploying bottom contacting gears targeting flatfish 

and crustaceans will be affected the most by the planned sprawl of OR in European seas. Here 

we applied for the first time an ensemble approach to analyze the exact spatial overlap of past 

European fishing activities with OR development sites. We deployed various fisheries data to 

optimize spatial coverage for the European seas and acknowledged the quantitative and 

qualitative differences between these fisheries data sources (Thoya et al., 2021). Detailed data 
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on fishing activities and OR throughout Europe are not freely available, limiting high-resolution 

studies to areas where we had access to these data (German EEZ).  

For the North Sea, Celtic Sea and Baltic Sea standardized data (OSPAR & HELCOM) on fishing 

activities using bottom-contacting gears were available including also information about 

target assemblages and generated values. Such aggregated data is still missing for other 

European seas. However, the spatial resolution of the OSPAR and HELCOM data is rather 

coarse given that some OR sites are as small as a few km². In contrast, GFW data has a finer 

spatial resolution enabling a sound overlap analysis with OR sites, but it is missing information 

about target assemblages and generated values. In addition, the gear classification of GFW 

data are rather coarse, i.e. there is no differentiation between pelagic and demersal trawls. 

For this reason, we used the standardized OSPAR and HELCOM data for a more detailed 

evaluation of European fishing effort displacements by fishing métier. Our analysis highlighted 

that the usage of VMS pings allowed for the highest spatial accuracy, while low resolutions of 

gridded fishing effort data led to large overlaps with individual OR sites, thereby 

overestimating the spatial intersection between fishing and OR.  

The used data sets for the Atlantic, North Sea, Baltic Sea, and Celtic Sea did not include pelagic 

gears, adding a strong bias to our analysis. Additional sources of uncertainty for such spatial 

computations lie also in the nature of the fisheries data (AIS or VMS based data) with 

respective gaps in spatial and temporal coverages (Russo et al., 2019). For instance, two hours 

ping-intervals of VMS data result in large differences between real and estimated fishing 

tracks, stressing the need for high-resolution data (Katara and Silva, 2017). In addition, the 

lack of effort data for small-vessel fleets (vessels < 12 m length) such as e.g. gill-netters in the 

Baltic Sea or Mediterranean makes an evaluation of OR impacts on these fishing métiers 

particularly cumbersome. Potential cumulative effects of effort displacement could be 

substantial due to the large number of operating vessels, but this remains unknown as long as 

spatial highly resolved effort data for these vessels are not available. Particularly in areas with 

an intensive spatial expansion of OR, e.g. the German EEZ of the North Sea, local fishing effort 

displacements might have further knock-on effects on the modus operandi of the individual 

fishing fleets, hence leading to more fishing effort displacement, which we could not capture 

in our analyses. Accounting for these effects would require considering factors such as 

competition and subsequent local depletions of fishing resources (Hamon et al., 2014). Taken 

together, our ensemble analysis of conflict potential between OR development and European 
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fisheries, using various fisheries data sources, highlights that care must be taken when 

interpreting and communicating absolute numbers of total fishing effort being displaced or 

associated revenues. With our approach we showed, that a sound quantification of conflict 

potential needs to start at the scale of individual planning sites and requires an ensemble 

approach together with a clear communication of the various sources of uncertainty 

(Stelzenmüller et al., 2015b).  

4.2 Ways forward for sustainable marine spatial planning with fisheries 

We illustrated that the progressing expansion of OR in European seas will lead to an increasing 

conflict potential between OR and European fisheries. Such sectoral conflicts should be 

mitigated by MSP since this management approach has the potential to align sectoral plans 

while contributing to ecosystem health (Abramic et al., 2020; Kirkfeldt, 2019; Manea et al., 

2020). As yet, fisheries remain a spatially and legally unrecognized sector in many MSP 

processes (Said and Trouillet, 2020). Reasons for the notorious neglect of this sector are 

manifold and comprise spatial variations of fishing grounds which often are not spatially 

confined (Said and Trouillet, 2020), the lack of participatory planning approaches or political 

preferences of single sectors during the plan development (Aschenbrenner and Winder, 

2019). Recent studies highlight the integrative capacities of MSP through frameworks (Vince 

and Day, 2020), participatory approaches (Quesada-Silva et al., 2019), or specific management 

measures (Reed et al., 2020). Management measures that can enhance the adaptive 

capacities of MSP also comprise the co-location of human activities in a given marine space 

(Jentoft and Knol, 2014; Kyvelou and Ierapetritis, 2019). The terms “co-location”, “co-use” or 

“multi-use” are often used synonymously, but require a careful consideration of the spatial, 

temporal, provisional, and functional dimensions of the connectivity of uses (Schupp et al., 

2019). As to date, most debated co-locations are the ones of OWF and aquaculture systems 

(Buck and Langan, 2017), and OWF and fisheries (Stelzenmüller et al., 2016). Co-location 

solutions with aquaculture would require technical modifications for foundations (Buck et al., 

2004), while co-use with fisheries could only be restricted to passive gear fisheries such as 

pots and traps (Stelzenmüller et al., 2021c). However, sustainable co-use regulations of OR 

and fisheries requires the contemplation of socio-ecological trade-offs (Stelzenmüller et al., 

2021c).  
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Fisher cannot claim a right to fish within a certain spatial location for instance within an OR 

site, but are usually managed by quotas for certain species or by a license system. Therefore, 

the OR development leads to a reduction of the available space for fishing, and fishing effort 

has to be relocated to other areas possibly resulting in increasing costs. From a methodological 

point of view fishing effort relocations due to OR development sites can be analyzed following 

the same methodologies as evaluating fisheries management measures (Malvarosa et al., 

2019). For example, bio-economic models could be utilized to assess the socio-economic 

impacts of areas closed for fisheries (Nielsen et al., 2018; Simons et al., 2014). However, for 

MSP to consider only immediate or direct economic impacts for the fishing sector is cutting 

corners. Fishers are part of coastal communities, catches are directly sold or processed locally, 

hence adding value to the local economy. Banning fishing activities from multiple OR planning 

sites might lead to the necessity of fishers to search for alternative fishing grounds or move to 

another harbour. These are often traditional fishing communities that rely on fishing or 

tourism. Hence, most direct or indirect economic impacts of OR development on local fishing 

communities are barely understood and often not considered by planning authorities. We 

argue that MSP needs to embrace the socio-ecological complexity of fisheries, hence fisheries 

are socio-ecological systems with ecological, economic and social interdependencies 

(Lauerburg et al., 2019). This means that for integrative MSP processes it is key to better 

account for fisheries adaption strategies, which are a result of individual behavior (Schadeberg 

et al., 2021) and choices of fishing operators. Over the past years, agent-based models (ABM) 

have demonstrated to be useful means to understand the socio-ecological implications of 

human behavior (Cabral et al., 2010; Little et al., 2009; Wijermans et al., 2020). Exemplary 

categories and inputs to such models to better understand human behavior and choices 

comprise cultural heritages, traditions and beliefs, local attachment to space, identity of 

fishing communities, or degree of participation in various fisheries (Said and Trouillet, 2020). 

Such detailed socio-cultural knowledge is essential to understand the adaptive capacities of 

the fishing sectors and ultimately to evaluate the planning scenarios in terms of their capacity 

to mitigate socio-economic impacts. Our results point at the risk of unforeseen long-term 

socio-economic impacts for other sectors such as fisheries, depending on the advancement of 

OR and respective MSP regulations. However, common for European MSP processes is the 

need to conduct a strategic environmental assessment (SEA). A SEA is carried out at the 

planning or plan revision stage, as it contains a comparison between the current plan, the 
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newly proposed plan and an alternative scenario (Stelzenmüller et al., 2021a). In theory, SEA 

should address environmental as well as socio-economic impacts of the proposed plan. Yet, 

in-depth socio-economic impacts of a marine spatial plan for spatially dynamic sectors such as 

fisheries are pending in current MSP practice (Stelzenmüller et al., 2021a). Hence, cumulative 

effects of existing and proposed OR development sites for fisheries (Berkenhagen et al., 2010) 

need to be urgently addressed in future SEAs.  

5. Conclusions  

The progressing transition from open seas to occupied spaces will lead to increasing conflict 

potential between stationary and free-ranging marine sectors such as offshore renewables 

and fisheries. Despite data collection and availability being key pillars of marine spatial 

planning, the access to socio-economic data related to fishing fleets and auxiliary businesses 

is still fragmented. Here, we accounted for trade-offs in spatial and temporal coverage of 

available fisheries data by using an ensemble analysis of fishing effort overlapping with 

individual planning sites. Hence, we exemplified that a sound quantification of such conflict 

potential starts at the scale of individual planning sites. The future increasing displacement of 

European fishing activities from offshore renewables planning sites has wider socio-economic 

implications than the immediate loss of fishing opportunities and revenues at those planning 

sites. We did not conduct a comprehensive socio-economic impact assessment; nevertheless, 

we believe that our results provide a solid basis to inform a participatory planning process. 

Marine spatial planning processes need to include fisheries and embrace the socio-ecological 

linkages in fisheries systems. This process will likely challenge the adaptive capacities of 

governance systems and processes. However, we argue that tools and approaches are readily 

available to improve the integrative marine spatial planning processes. These tools comprise 

e.g. participatory approaches or the consideration of co-location measures to mitigate 

economic impacts of fishing effort displacements. Standardised and harmonised socio-

economic data on fisheries, namely spatially resolved data on fishing effort and landings as 

well as more details of affiliated companies, are needed for all European sea basins to foster 

such integrative MSP processes. In addition, more research is required to understand possible 

effects of investments in OR, on the fishing sector, coastal communities and economic 

activities onshore. Such an improved knowledge base would enable the integration of 

economic and socio-cultural data and the assessment of direct and indirect socio-economic 

impacts of planning options, as required legitimately by a strategic environmental assessment. 
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We argue that sustainable integrative planning with fisheries must be build bottom-up with 

knowledge on socio-economic trade-offs of planning options, comprising all existing and 

future spatial usage restrictions.  

Supplementary material 

Supplementary material of this chapter can be found in the end of this thesis. 
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Abstract 

Nephrops (Nephrops norvegicus) is an economically valuable target species in the North Sea. 

Although individual Nephrops populations are scattered, the crustacean is managed regionally 

by the European Union (EU). The spatial competition for fisheries in the North Sea is growing 

especially due to expanding offshore wind farms (OWF) and newly implemented marine 

protected areas (MPA). Moreover, the Brexit affects the availability of EU fishing quotas and 

adds to overall uncertainty EU fishers face. We compare landings and catches to scientifically 

advised quantities and perform an overlap analysis of fishing grounds with current and future 

OWFs and MPAs. Furthermore, we explore the German Nephrops fleet using high-resolution 

spatial fishing effort and catch data. Our results confirm earlier studies showing that Nephrops 

stocks have been fished above scientific advice. Present OWFs and MPAs marginally overlap 

with Nephrops fishing grounds, whereas German fishing grounds are covered up to 45% in 

future scenarios. Co-use strategies with OWFs could mitigate the loss of fishing opportunities. 

Decreased cod quotas due to Brexit and worse stock conditions, lowers Germany’s capability 

to swap Nephrops quotas with the UK. We support the call for a new management strategy of 

individual Nephrops populations and the promotion of selective fishing gears.  

Keywords: German fishery, demersal fishery, resource management, offshore wind parks, 
Brexit, marine spatial planning  
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1. Introduction 

The Norway lobster (Nephrops norvegicus, hereafter referred to as Nephrops) constitutes an 

important pillar of European fisheries generating a value of 107 M€, making it the 2nd most 

valuable landed shellfish species in the North Sea and Eastern Arctic region in 2018 (STECF, 

2020). Since the start of commercial exploitation of Nephrops in the 1950s, the fishery grew 

substantially in the Celtic and North Sea, which are still the main Nephrops catch areas 

(Ungfors et al., 2013). The main fishing nations are the United Kingdom (UK), Denmark, 

Ireland, and the Netherlands (EUMOFA, 2019a). Several other nations, including Germany, 

represent minor actors in the international Nephrops fishery. The German Nephrops fishery 

presents an interesting case study, as it emerged relatively recently. 

In waters of the European Union (EU), Nephrops is managed through the EU Common 

Fisheries Policy, and is one of only two crustacean fisheries in the EU that is subject to output 

controls (quota or catch limits), so called total allowable catches (TAC). Nephrops TACs are set 

annually and based on scientific advice provided by the International Council for the 

Exploration of the Sea (ICES). The EU Council Regulation allocates annual fishing quotas for 

each fishing area to EU member states according to the relative stability, a fixed proportional 

share for each country and fish stock. The relative stability is based on historical catch amounts 

and does not necessarily reflect present catches of EU member states. Therefore, EU member 

states may exchange quotas among each other (quota swaps). Although the Nephrops TAC 

applies on a regional scale, e.g. the entire North Sea, patchy suitable habitats for Nephrops 

(particular silt and clay contents) result in separate populations, which are referred to as 

Functional Units (FUs; Aguzzi and Sardà, 2008; Phillips and Bruce, 2008).  

Despite the high economic value of this fishery several issues emerge that may jeopardise its 

future ecological and economic viability and call for closer examination. First, the mismatch 

between management at a regional (i.e. North Sea) scale and much smaller scale at which 

discrete stocks occur has been criticised for not ensuring sustainable exploitation rates and 

thus risking local depletion (ICES, 2019a; Williams and Carpenter, 2016). In fact, the Nephrops 

stock size has been considered too low in relation to biomass reference points in one FU and 

stock status is unknown for three of the nine North Sea Nephrops populations (ICES, 2020a). 

However, the EU management approach remains regional, although ICES releases annual 

scientific advices including Nephrops catch or landing recommendations for each individual 

FUs. Moreover, most Nephrops are caught by mixed fisheries using non-selective bottom 
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trawls resulting in high amounts of bycatch (Briggs, 1986; Catchpole and Revill, 2008; Cosgrove 

et al., 2019; Evans et al., 1994). In fact, this diverse catch composition complicates the 

classification and distinction of a Nephrops fleet, since information on catch compositions, 

revenues, and vessel characteristics is used to group EU fisheries into so called fishing metiers 

(Ulrich et al., 2012). Despite all these issues concerning the Nephrops fishery, peer-reviewed 

scientific studies with a broad geographical focus, i.e. beyond single Nephrops FUs, are scarce 

(Ungfors et al., 2013). 

The departure of the UK from the EU (Brexit) has been posing considerable uncertainty for EU 

Nephrops fisheries, given that the UK is allocated the largest share of the Nephrops TAC, and 

the main fishing grounds and FUs are located within the UK’s exclusive economic zone (EEZ). 

In December 2020, a post-Brexit agreement was reached, which provided regulations for the 

joint management of over 100 shared fish stocks (European Commission, 2020b). Over a 

period of five and a half years (2021 to 2026), 25% of European fishing rights in UK territorial 

waters will be transferred to the UK fishing fleet. Although this does not affect the North Sea 

Nephrops quota allocation directly, it might influence quotas of species that are either caught 

in a mixed fishery with Nephrops or used to swap quotas with other EU member states. After 

the transition period there will be annual consultations held by the two parties on fishing 

opportunities with a focus on sustainable fishery management (European Commission, 

2020b). Moreover, an agreement was achieved enabling quota swaps between individual EU 

member states and the UK (European Commission, 2021). 

Like most fisheries in the North Sea, the Nephrops fishery competes for space with a large 

number of different stakeholder groups, such as shipping, offshore renewable energies, and 

nature protection (Halpern et al., 2015). The growth of the offshore wind farm (OWF) sector 

in particular is supported by the ambitious EU strategy of reducing greenhouse gas emissions, 

which could lead to an extensive overlap between fishing activities and OWFs (Stelzenmüller 

et al., 2020). Together with the future fisheries management measures of the Natura 2000 

network of marine protected areas (MPAs), implemented under the Habitat and Birds 

Directive (Probst et al., 2021), a loss of spatial fishing opportunities is likely.  

Here we describe the development of the Nephrops fishery in the North Sea since 2000 with 

emphasis on management, conflicts of spatial use, and implications of the Brexit. Our 

approach combines ecological, spatial, fisheries, and management information of the last two 

decades on Nephrops populations, i.e. FUs. We compare real and scientifically advised fishing 
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opportunities for each Nephrops FU and perform a spatial analysis to assess the overlap of 

Nephrops fishing areas with current and future spatial fishing restrictions, such as OWFs and 

MPAs. In addition, we use logbook and spatially resolved effort data of German fisheries, as a 

case study for current and future challenges of the Nephrops fisheries in the German Bight. 

We apply a clustering approach to define German fishing practices distinguished by catch 

compositions. 

2. Material and methods 

2.1 International Nephrops fishing data 

The study area encompasses the North Sea (FAO fishing area 27 subarea IV) and includes nine 

distinct Nephrops populations referred to as functional units (FU) (Figure II-1). We obtained 

Nephrops landings and discards data for each FU from ICES advices for Nephrops (downloaded 

from www.ices.dk). In addition, ICES advice is provided for Nephrops outside of the FUs. 

Landing data were unavailable in ICES advices for FU34 before 2009 and the outside area 

before 2010. For these areas, we obtained Nephrops landings data from the Scientific, 

Technical and Economic Committee for Fisheries (STECF) for the North Sea from 2002 to 2018 

(Gibin and Zanzi, 2020), which are compiled quarterly and by statistical rectangle (1° Longitude 

× 0.5° Latitude), species, and EU member state. We aggregated annual Nephrops landings by 

FU to complement landings from ICES advices. Furthermore, we compiled STECF landings per 

country and FU in the German Bight to identify fishing nations active in FUs relevant for the 

German fleet. STECF data only include landings from EU fleets and therefore excludes Norway, 

which lands considerable amounts of Nephrops in FU32. A comparison of information from 

ICES advices and STECF can be found in Appendix C. 

 

http://www.ices.dk/
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 If discards were available, we calculated 

catches by adding up landings and 

discards. Discard information were absent 

in ICES advices for the FUs 10, 33, and 34 

and lacking for several years in advices of 

the other North Sea FUs. We gathered 

recommended total Nephrops catches 

and landings per FU from ICES advices 

between 2003 and 2021. Subsequently, 

we combined them with international 

Nephrops landings and catches to analyse 

the uptake and overshoot of advised 

fishing opportunities. Whenever 

information on discard was available, we 

compared catches to advised catches and 

in case either discards or catch advises 

were unavailable, we compared landings 

to advised landings.  

Nephrops TACs are jointly set for the 

fishing areas 27 IV (North Sea) and EU (UK 

after Brexit) waters of 27 IIa (Norwegian 

Sea). For this area, we extracted 

Nephrops total allowable catches (TAC) per EU member state from annual Council Regulations 

of the EU (2003-2020). To assess the potential impacts of Brexit on North Sea Nephrops 

fisheries, we subtracted UK quotas from EU TACs and compared the results with landings 

(STECF) of EU member states catching Nephrops, i.e. Belgium, the Netherlands, Denmark, 

France, Germany. This was done for the years 2003 to 2016, as complete STECF landings by 

country for recent years were unavailable due to confidentiality issues.  

2.2 German Nephrops fishery 

To identify and analyse the German Nephrops fishery, we combined two types of vessel-

specific data, i.e. commercial logbooks and vessel positions based on vessel monitoring system 

(VMS). Logbook data are resolved by fishing trip and comprise information about weight and 

 

Figure II-1. Map of the study area (North Sea; 
FAO fishing area 27 IV) featuring the nine 
functional units for Nephrops management, the 
exclusive economic zones (EEZ) of adjacent 
countries, and the distribution of suitable 
(muddy) sediments for Nephrops. 
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composition of catches, revenues, and the statistical ICES rectangle (1° longitude × 0.5° 

latitude) where catches were recorded. VMS data contain geographical positions of vessels, 

which are broadcasted roughly every two hours (so called ‘pings’) by German vessels. Logbook 

data was available from 2000 to 2019, whereas reliable VMS data were available only from 

2012 to 2019. All data-processing steps were done using the R programming language (R Core 

Team, 2019). 

2.2.1 Fishing logbooks 

We preselected vessels that targeted Nephrops within the last 20 years by choosing all vessels 

with a track record of more than 10% annual Nephrops catches in at least one year in the 

logbook data. Moreover, we excluded vessels that primarily fished in the Baltic Sea by 

choosing only those vessels that spent at least 50% of their annual fishing trips in the North 

Sea. Subsequently, we compiled all catch information of these vessels, selected only catch 

records of the 10 most caught species and, per fishing trip, converted total to proportional 

catches. Based on the resulting data set, we created a distance matrix (Euclidean distance) 

using the vegan package for R (Oksanen et al., 2019). We performed hierarchical 

agglomerative clustering using the average linkage method (Legendre and Legendre, 2012) 

and increased the number of clusters until a cluster emerged that mainly caught Nephrops. 

We ended up with seven fishery clusters, which we named after their main target species 

(Appendix A). 

We visually explored the temporal distribution of the resulting fishery clusters and identified 

the year 2006 to be the first with fishing trips in the cluster targeting Nephrops. To analyse 

the development of the emerging German Nephrops fishery, we calculated changes of relative 

fishing activity before and after 2006 for each fishery cluster. First, we calculated the 

proportional fishing activity vessels spent in fishing clusters for both time periods, meaning 

2000 to 2005 and 2006 to 2019, by dividing the number of fishing trips per cluster by the total 

number of fishing trips of the respective vessel. We removed vessels with fishing activity in 

only one time period and clusters with less than 30 trips across the entire study period, which 

made up less than 1% of all data. Second, we calculated the difference of proportional fishing 

activity before and after 2006 per cluster and vessel. Third, we summed up all proportional 

changes in fishing activity for each pair of fishing cluster. Finally, we visualized the shifts from 

one fishery cluster to another as a chord diagram using the circlize package for R (Gu, 2014).  
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2.2.2 Vessel monitoring system (VMS)  

In a following step, we obtained VMS data for previously identified fishery clusters targeting 

Nephrops to analyse their spatial distribution. We removed duplicates and data points in ports 

from the VMS data and identified fishing pings, which are affiliated to slower speeds than 

when the vessel was steaming. We identified fishing pings by applying the activityTacsat 

function from the VMStools package for R (Hintzen et al., 2012). Subsequently, we selected 

only pings affiliated with fishing activity. Through merging logbook with VMS data (Appendix 

B for details), VMS data could be grouped according to the previously identified fishery 

clusters. Then, we generated their utility distribution, that is a function describing the 

probability of occurrence in a spatial area, using the least-square cross validation method with 

the adehabitatHR package for R (Calenge, 2006). We visualized core fishing areas by extracting 

90% contours, referring to the minimum area in which vessels of a respective cluster have a 

90% chance of occurrence. 

2.2.3 Quotas 

We received information on request about German Nephrops quotas (2003 – 2019) from the 

German Federal Office for Agriculture and Food (BLE; www.ble.de). Annual Nephrops quotas 

are assigned to EU member states and may then be swapped among countries. We received 

information on individual quota swaps from the BLE, which enabled us to quantify the amount 

of Nephrops quota Germany received from other EU member states and for what quota 

species it was swapped for.  

2.3 Spatial overlap analysis 

To assess current and future spatial competition of the Nephrops fishery with other human 

uses in the North Sea, we obtained a data set on offshore wind farm (OWF) development from 

4C Offshore Ltd (status March 2021) and marine Natura 2000 sites from the European 

Environmental Agency (status Dec 2020). Like all trawl fisheries, Nephrops trawler activity is 

prohibited in and around OWFs due to the risk of damaging OWF structures and submarine 

cables. We grouped OWFs in the North Sea according to three categories: (a) existing OWFs 

(sites that generate power or were under construction in 2020), (b) planned OWFs (all other 

sites with a construction start date between 2020 and 2033) and (c) potential sites (all sites 

without a construction start date minus those projects that have been cancelled or with failed 

proposals).  
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Furthermore, given that Nephrops FUs are based on statistical rectangles (1° Longitude × 0.5° 

Latitude) and do not represent fine-scale fishing grounds, we determined the suitable habitat 

for Nephrops within FUs using muddy sediment occurrence. We obtained substrate data from 

Emodnet (status Dec 2020) and used the classification ‘mud to sandy mud’ to characterize 

suitable Nephrops habitats. Subsequently, we determined relative spatial overlaps between 

present and future spatial restrictions, i.e. the three OWF groups and Natura 2000 sites, and 

all FUs in the North Sea, Nephrops habitats, and core fishing areas of the German fleet. All 

spatial analyses were done using ArcGIS 10.3.  

3. Results 

3.1 International Nephrops landings 

Total international landings of Nephrops in the North Sea generally decreased from 2003 to 

2018 peaking in 2007 with 24 kt (Appendix C). Across the entire time range, landings were 

highest in FU7 (7.3 kt), FU8 (2.1 kt) and FU6 (2 kt), all located in the UK exclusive economic 

zone (EEZ).  

In only two out of nine North Sea Nephrops FUs, catches or landings have not been exceeding 

the advised amounts in any year (Figure II-2). From the years with available catches or landings 

and advised quantities, catches or landings exceed advised quantities in most years in the FUs 

6 (77%) and 8 (85%). Landings or catches from the FUs 5, 9, 33, 34, and the outside region 

(North Sea area outside of FUs) exceeded advised quantities only after 2011, whereas FU 7 

exceeded advised fishing opportunities only slightly from 2007 to 2009. On average, 

proportional excesses were highest in the outside area (216%) and lowest in FU7 (113%). For 

the years 2019 to 2021, no EU landing or catch data was available at the time we performed 

this analysis, but scientific advices remained on a similar level compared to previous years, 

except for FUs 7 and 8, with the former showing a decrease and the latter an increase. 

A comparison of annual averages of landings and TACs by country (Figure II-3) revealed that 

the Netherlands and Germany have been fishing Nephrops above their quotas and therefore 

acquired additional catch capacities from other EU member states (Figure II-6; Appendix D). 

Germany required the highest additional quota on average (356 t) followed by the 

Netherlands (320 t). The UK, France, and Belgium fished below their quotas and therefore had 

capacities to swap their Nephrops quota with other EU member states. The UK had by far the 

highest average quota swap capacity (3400 t) followed by Belgium (770 t) and France (31 t). 
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Denmark’s average Nephrops landings were only slightly lower than its TAC. Due to 

unavailable international catch and discards data, we compared landings to national quotas. 

This is a conservative comparison, because landings do not include discarded Nephrops at sea.  

 

 

Figure II-2. International Nephrops landings and catches, as well as advised total catches 
(light blue) or landings (dark blue) from ICES per functional unit (FU). Catches are composed 
of landings (greens) and discards (grey). Years for which there were available discard 
information are coloured in dark green. The red arrows above bars indicate years with 
surpassed catch or landings recommendations. 

 

 

Figure II-3. Yearly averages 
(2003-2016) of Nephrops 
landings and total allowable 
catches (TAC) in North Sea per 
country. Displayed are all 
countries with a Nephrops TAC 
in the fishing area 27 IV and IIa. 
Error bars indicate standard 
deviation. 
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3.2 German Nephrops fisheries 

3.2.1 Emergence of the German Nephrops fleet 

We identified 22 vessels that targeted Nephrops in at least one year between 2000 and 2019 

in the North Sea. Our cluster analysis revealed a distinct variation in fishing activities across 

these vessels over the past twenty years. We identified seven fishery clusters, which could be 

characterised by their main target assemblage: (I) plaice, (II) whiting, (III) cod, (IV) sole, (V) 

brown shrimp, (VI) Nephrops & plaice, and (VII) brown crab. Most fishery clusters target 

spatially different areas underlining that they are distinct fishing practices (see Appendix A for 

details). The only clusters catching substantial amounts of Nephrops (among the 10 most 

caught species) were Nephrops & plaice and plaice, the former primarily targeting Nephrops, 

whereas the latter primarily caught plaice and other demersal species with minor Nephrops 

amounts. The temporal composition of fishery clusters per year showed that the Nephrops & 

plaice group was merely present before 2006 and then remained stable with about 100 to 200 

trips per year (Appendix A). The brown shrimp fishery cluster was another fishing practice that 

emerged in 2006 within the defined fleet. The other fishery clusters became less abundant 

over the time period and the whiting and brown crab groups disappeared in most years after 

2012. Moreover, the clusters brown crab and sole were relatively small clusters with less than 

30 trips (< 1% of all trips) and thus removed from the analysis. 

As shown in Figure II-4, German vessels that switched to Nephrops & plaice after 2006 were 

previously engaging in the following fishery clusters (percentages represent proportional 

fishing activity of all vessels in the Nephrops & plaice cluster): plaice (82 %), cod (11%), whiting 

(4%), and brown shrimp (< 1%). Furthermore, a large amount of fishing activity became 

allocated to the brown shrimp cluster, emerging from the plaice, cod, and whiting clusters. 
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Figure II-4. The 
chord diagram 
shows the relative 
shift of fishing 
hours of all German 
vessels that ever 
participated in the 
Nephrops fishery 
(2000-2019). The 
connections 
represent flows 
from before to 
after 2006 between 
source clusters 
(outer wide circle) 
and target clusters 
(inner thin circle). 

3.2.2 Spatial distribution, infrastructure, and quotas  

The German Nephrops fleet targets FU5 and FU33 (Figure II-5), both located in the German 

Bight and, among all FUs, closest to German harbours (Figure II-1). The former is located in 

the EEZs of the Netherlands and UK, whereas the latter is located in the German and Danish 

EEZs. Several other nations are participating in the Nephrops fishery in the German Bight. 

Ranked in terms of landed Nephrops, from highest to lowest these are: the UK, the 

Netherlands, Belgium, Germany, Ireland and France (Figure II-5). Denmark predominantly 

fishes in FU33 and the UK in FU5, which represents the FUs closest to their coastlines. 

Moreover, there is a considerable amount of Nephrops landed from outside of the FUs 

suggesting some mismatch of FUs and catch areas. This also supported by the large areas of 

suitable Nephrops habitat adjacent to the FUs 5 and 33 (Figure II-1). Note that these results 

are based on STECF data excluding non-EU countries, such as Norway. 
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Figure II-5. Annual international Nephrops landings in the German Bight split into catches 
inside and outside of functional units (FU). 

 

Figure II-6. Nephrops total allowable catch (TAC) in the North Sea as percentage per country 
(pre-Brexit), which is also referred to as relative stability (left) and annual averages of 
Nephrops quota (2003-2019) Germany received from other countries (right). 

Based on an annual average, German vessels mainly landed Nephrops in Dutch (450 t) 

followed by German (31 t) and Danish ports (11 t), clearly highlighting the strong dependency 

of the German Nephrops fishery on international infrastructure (Appendix D). 

The UK receives by far the largest share of North Sea Nephrops quota, followed by Belgium, 

Denmark, the Netherlands, France, and Germany (Figure II-6). The German share of the North 

Sea Nephrops TAC is extremely low (0.08%), which resulted in an annual average of just 17 t 

(2003-2020). To increase fishing opportunities, Germany swapped quota with other member 
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states, mainly the UK, followed by Belgium and the Netherlands (Figure II-6). From 2003 to 

2019, Germany performed 190 swaps gaining a total of 9100 t of Nephrops quota (Appendix 

D). With regard to the number of transfers, most species quotas used as exchange currency 

were cod (42), whiting (27), ling (24), anglerfish (21), haddock (17), hake (14), and sole (14). 

Despite the known received quantities of Nephrops quota, the data resolution did not allow 

to quantify the quotas given by Germany.   

3.3 Current and future spatial constraints for the Nephrops fishery  

3.3.1 North Sea 

Currently only a minor fraction of FUs overlaps with OWFs and until 2033, on average, not 

even 1% of FUs will overlap with planned OWFs (Table II-1; Figure II-7a). However, if we 

consider potential OWF areas (those without starting date), we found an overlap of on 

average 8% per FU. An area of similar size (8%) could be closed to fishing under Natura 2000 

regulations. While the majority of FUs face none or little spatial constraints from both OWF 

developments and Natura 2000 (0% to 6% when only suitable mud areas are considered), the 

FUs 5, 9, and 33 may face substantial losses of up to 28% of the fishing area.  

3.3.2 German Nephrops fishery 

There was almost no overlap (1%) of planned OWFs (until 2033) and the two German fishery 

clusters catching Nephrops (plaice and Nephrops & plaice; Table II-1; Figure II-7b). However, 

this is a conservative estimate including only OWFs for which a construction date was set. In 

fact, the overlap of both fishery clusters with potential OWF developmental areas and Natura 

2000 sites was considerably larger. The relative overlap area was 45% for the Nephrops & 

plaice and 31% for the plaice cluster. 
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Figure II-7. (a) The North Sea with Nephrops functional units (FU), designated Natura 2000 
conservation sites (in green), and offshore wind farms (OWF) at different developmental 
stages: existing (black; before 2020), planned (dark blue; 2020–2033), and potential (light 
blue; without starting date); (b) The German Bight with the core fishing areas of the German 
fishery clusters Nephrops & plaice (dashed line) and plaice (solid line) and their overlap with 
different stages of OWF development and Natura 2000 conservation sites. 
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Table II-1. Relative spatial overlap as percentage of functional units (FU) for Nephrops 
management and suitable Nephrops habitat (mud) per FU with Natura 2000 sites and offshore 
wind farms (OWF) at three different developmental stages: existing (before 2020), planned 
(2020 – 2033), and potential (without starting date). The bottom part displays the overlap of 
fishing core areas of German Nephrops fishery clusters with OWF developmental stages and 
Natura 2000 sites. 

 

Mud 
content 

OWF 
existing 

OWF 
exis-
ting 

(mud) 
OWF 

planned 

OWF 
planned 
(mud) 

OWF 
poten-

tial 

OWF 
poten-

tial 
(mud) N2000 

N2000 
(mud) 

N2000 
& all 

OWFs 

N2000 
& all 

OWFs 
(mud) 

FU            

10 12.9 0.0 0.0 0.0 0.0 0.6 0.0 2.4 0.0 3.1 0.0 

32 42.7 0.0 0.0 1.0 2.1 1.3 2.1 0.0 0.0 1.4 2.2 

33 37.6 0.2 0.0 0.0 0.0 30.2 27.5 1.3 0.2 31.8 27.7 

34 20.0 0.0 0.0 0.0 0.0 6.8 0.9 0.0 0.0 6.8 0.9 

5 27.7 2.4 0.0 3.5 0.0 22.0 1.5 39.8 22.1 52.7 23.5 

6 19.0 0.0 0.0 0.0 0.0 0.1 0.2 6.1 2.9 6.3 3.3 

7 49.8 0.0 0.0 0.0 0.0 3.6 1.2 0.7 0.1 4.2 1.3 

8 23.6 3.0 2.0 0.7 0.0 2.7 0.8 9.8 2.7 16.2 5.6 

9 18.5 3.6 0.0 1.9 0.0 6.1 0.0 13.0 27.6 24.8 27.6 

Mean 28.0 1.0 0.2 0.8 0.2 8.2 3.8 8.1 6.2 16.4 10.2 

Nephrops 
& plaice 

- 0 - 1.2 - 22.6 - 21.3 - 45.1 - 

Plaice- - 0 - 0.9 - 17.5 - 13.5 - 30.7 - 

 

4. Discussion 

Our analysis revealed a heterogenous distribution of international Nephrops fishing activities 

in the North Sea. Some FUs were exploited above the advice, yet the overall quota was not 

exceeded. To date, Nephrops functional units (FUs) are not affected by spatial restrictions due 

to other sectoral plans, i.e. offshore wind farms (OWF) or marine protected areas (MPA). 

However, this will change with expanding OWFs and future MPAs being implemented in the 

EU Natura 2000 network. In particular FUs in the German Bight and core fishing areas of the 

German Nephrops fleet could experience spatial constraints of up to 45% due to the expansion 

of OWFs and newly implemented MPAs.  
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4.1 The North Sea Nephrops fishery 

4.1.1 Fisheries management and ecological considerations 

Although the overall total allowable catch (TAC) for Nephrops in the North Sea has not been 

exceeded in the past two decades, several annual landings and catches from individual 

Nephrops populations (FUs) were higher than advised by ICES. Out of the nine FUs in the North 

Sea, Nephrops landings or catches exceeded recommended fishing opportunities in seven FUs 

in at least one year. This is problematic from a marine conservation point of view, not only 

because the fishery threatens the health of the stock itself, but also because Nephrops is 

mainly caught in a mixed fishery with high bycatches using bottom trawls (Catchpole and 

Revill, 2008; Revill et al., 2006; Ungfors et al., 2013). Therefore, the concentration of fishing 

effort of Nephrops trawlers on several FUs might have negative effects for the whole benthic 

ecosystem. Bycatch species which are of an economic value may pose an important additional 

source of income for Nephrops fishers (Bailey et al., 2012). However, the proportion of 

undersized finfish and other non-marketable species is high and the Nephrops fishery has 

been identified as one of the main contributors to European unwanted bycatches (Catchpole 

et al., 2006; Catchpole and Revill, 2008). The reduction of unwanted bycatch could be achieved 

by using alternative fishing gears (Catchpole and Revill, 2008; Cosgrove et al., 2019; Santos, 

2016). One example would be passive gears, such as creels, which have a higher selectivity 

and a lower impact on the sea floor (Hornborg et al., 2017). The usage of more selective trawls 

like “Sepnet” or trawls with selection grids are further examples how unwanted bycatch may 

be reduced (Catchpole and Revill, 2008). The promotion of selective and sustainable gears is 

also stated in the EU common fisheries policy article 17: “[…] member states shall use 

transparent and objective criteria including those of environmental, social and economic 

nature. The criteria to be used may include, inter alia, the impact of fishing on the environment, 

the history of compliance, the contribution to the local economy […]“ (EU, 2013). It further 

states that “[…] member states shall endeavour to provide incentives to fishing vessels 

deploying selective fishing gear […]”. As creels are more selective and may result in higher 

economic return (Hornborg et al., 2017; Leocádio et al., 2012; Williams and Carpenter, 2016), 

EU member states should create incentives to switch from Nephrops trawls to creels. 

However, in highly mixed Nephrops fisheries, which gain value by catching many different 

species, selective gears might be less economically viable.   
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Given that Nephrops is a rather sedentary species with specific habitat requirements (Johnson 

et al., 2013), populations are unable to shift to other areas. A major task in conserving 

Nephrops populations is thus to safeguard their habitats by managing the fisheries on each 

FU individually, rather than the entire North Sea (ICES, 2019a; Williams and Carpenter, 2016).  

Individual fisheries management should be based on sufficient knowledge about stock status 

in each FU. As there is still insufficient scientific information to estimate stock sizes for the FUs 

5, 32, and 34 (ICES, 2020b), further ecological surveys in these FUs would be necessary. 

Climate change may pose another stressor for Nephrops, as ocean acidification has been 

observed to negatively affect Nephrops’ physiology (Hernroth et al., 2012; Johnson et al., 

2013). Moreover, Nephrops is habitat-bound and thus unable to mitigate unfavourable 

conditions by northward shifts of populations, as it has been observed for plaice, cod, and 

seabass (Colman et al., 2008; Engelhard et al., 2011; Neat et al., 2014). 

4.1.2 Spatial competition in the North Sea 

Our spatial analysis suggests that OWFs and Natura 2000 sites overlap only marginally with 

the North Sea Nephrops fisheries, especially if suitable Nephrops habitats rather than FUs are 

considered. Furthermore, the most productive FUs in terms of total landings, all located in UK 

waters, are among the least affected. However, there are vast differences among FUs ranging 

from hardly overlapping with OWFs and Natura 2000 sites to more than half of the area 

covered. This could indeed pose challenges, in particular for those fleets operating in FUs with 

large losses of fishing areas, as bottom trawling is prohibited in OWFs and largely restricted in 

Nature 2000 sites (Probst et al., 2021; Stelzenmüller et al., 2021c). Displacement options for 

the fisheries are limited, due to strong habitat requirements of Nephrops. In addition, OWFs 

may function as an obstacle for fishing vessels if they do not provide navigation corridors, 

potentially increasing time and fuel used by fishers to drive to fishing grounds. Underwater 

cables connecting OWFs to the main grid may further restrict bottom trawl activity if they are 

not burrowed deep enough (Rességuier et al., 2009).  

One opportunity to reduce the impact of OWFs on fisheries is the introduction of co-location 

options and hence enable fishers to continue catching Nephrops in OWFs using passive gears, 

such as creels (Leocádio et al., 2012; Stelzenmüller et al., 2021c). 
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4.2 The German Nephrops fleet – a recent adaptation with an uncertain future  

Our findings show that the German Nephrops fishery emerged in 2006 and originated from 

other fisheries targeting demersal species. The reason for this shift might be an adaptation to 

ecological and economic boundary conditions. Some fishers who originally targeted cod were 

likely forced to switch to another fishery, since cod catches have been declining in the 

southern and central North Sea as a result of a combination of overfishing, climate change, 

and falling recruitment (Beaugrand et al., 2003; Cook et al., 1997; Fock et al., 2014). By the 

end of 2019, there were almost no fishers left targeting cod in the considered fleet. Another 

reason might be low market prices for flatfish in the years before 2006. As a consequence, the 

demersal fishery targeting flatfish had become less profitable, making the option of switching 

to a Nephrops fishery economically more attractive. 

4.2.1 Spatial competition in the German Bight 

Core areas of the German Nephrops fishery will be spatially constrained by Natura 2000 sites. 

Although a ban of most bottom trawling in Natura 2000 sites is likely, fishing restrictions have 

not yet been finalised and therefore the real impact cannot be assessed at this point. When 

considering all potential OWFs and Natura 2000 sites, almost half of the Nephrops core fishing 

area would be covered and therefore likely unavailable for bottom trawling. Although this is 

the extreme scenario in terms of OWF expansion, ambitious national and EU climate targets 

(European Commission, 2020c) support the renewable offshore energy sector in the North 

Sea and indicate that it is indeed realistic.  

4.2.2 The impact of Brexit 

We have shown that the German and Dutch Nephrops fleets are dependent on additional 

Nephrops quotas acquired from other countries and thus might be most affected by the Brexit. 

Although both countries will still be able to swap quotas with the UK, decreased quotas of 

other species may affect their swapping capabilities. Germany used mainly cod quotas in 

exchange for UK Nephrops quotas, however, German North Sea cod TACs have been 

decreasing in the last decades due to the poor status of the southern North Sea cod stock 

(ICES, 2019b). Moreover, the EU-UK trade and cooperation agreement determines a decrease 

of 19% cod TAC for each EU member state from 2020 to 2025 (EU, 2021; European 

Commission, 2020d), meaning that Germany might lack sufficient quota swapping currency to 

sustain its Nephrops fishery. 
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4.2.3 The future of the German Nephrops fishery 

Currently, Nephrops represents a commercially important species in the German fisheries. 

Whether this fishery can be maintained or even expanded depends on several aspects. 

Activities of the German Nephrops fishery almost completely coincided spatially over time 

(Appendix D), underpinning the strong habitat requirements of Nephrops (Johnson et al., 

2013; Lolas and Vafidis, 2021). On the other hand, this highlights the vulnerability of the 

fishery, since, as it is the case for the target species itself, the fishery cannot move to 

alternative fishing grounds. In combination with the newly implemented OWFs and Natura 

2000 sites, this will lead to substantial constraints of the German Nephrops fishery in the next 

few decades. The Brexit poses a more immediate threat for the German Nephrops fishery due 

to reduced Cod quota until 2025 and thus fewer swapping capacities for Nephrops quotas. 

However, the most general and uncertain effect will be due to climate change and affiliated 

changes, i.e. warming North Sea waters and ocean acidification. Moreover, past landings and 

catches from FUs in the German Bight surpassed ICES advices indicating unsustainable fishing 

and risking local depletions, that is despite ICES advices for FUs 5 and 33 recommending a 

decrease in catches since 2013. Therefore, from a conservation perspective, Nephrops 

fisheries in the German Bight should decrease in comparison to previous years, rather than 

expand. 

Overall, our results point to reduced future opportunities for the German fishers targeting 

Nephrops in the German Bight. Therefore, possible adaptations would be either to switch to 

alternative fisheries or market lower catch amounts at a higher price. Switching to more 

selective gears, e.g. creels, might offer the chance to advertise the landed Nephrops as being 

caught more sustainably, thus justifying a higher price. 

Our analysis focused on the evaluation of importance of distinct spatial areas for the German 

Nephrops fishery, hence not providing a measure of uncertainty for various future spatial use 

scenarios. However, our results provide an important baseline for subsequent studies of the 

spatio-temporal dynamics of this fishery and the effects of spatial use restrictions, as well as 

climate change.   
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Conclusions 

Our results point to an exhaustion of the North Sea Nephrops fishing capacities, supporting 

the call for a precautionary and well-defined management for Nephrops, including individual 

regulations for stocks. Further ecological and fisheries research is needed to develop accurate 

stock assessments and explore the consequences of climate change on North Sea Nephrops. 

While the current and future spatial restrictions in most Nephrops fishing grounds in the North 

Sea are marginal overall, those in the German Bight will face a loss of up to almost 45% due to 

OWF expansion and fisheries regulations related to Natura 2000 sites. Co-location of OWF and 

fisheries including a switch to passive and more selective fishing gears could mitigate the loss 

of fishing opportunities and sustain fishers’ livelihoods. Although the Brexit will not influence 

Nephrops quota distribution in the North Sea, cutbacks of other species TACs might reduce 

the swapping capacities of countries to acquire Nephrops quota from the UK. In the case of 

Germany, decreased cod quotas, will lower the ability to obtain Nephrops quota. 

Furthermore, our findings indicate that German fishers switched to Nephrops because of its 

high economic value and the declining availability of other former target species in the 

German Bight.  Overall, in this study we analysed the various influences on international and 

German Nephrops fisheries from different angles. Our study highlights the need for 

cumulative impact assessments to understand historic developments in fisheries and to judge 

on upcoming risks. Only with this knowledge target-oriented mitigation measures may be 

recommended.   
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Abstract 

The spatial expansion of offshore wind farms (OWFs) is key for the transition to a carbon free 

energy sector. In the North Sea, the sprawl of OWFs is regulated by marine spatial planning 

(MSP) and results in an increasing loss of space for other sectors such as fisheries. 

Understanding fisheries benefits of OWF and mitigating the loss of fishing grounds is key for 

co-location solutions in MSP. For the German exclusive economic zone (EEZ) of the North Sea 

we conducted a novel socio-ecological assessment of fisheries benefits which combines 

exploring potential spill-over from an OWF with an experimental brown crab (Cancer pagurus) 

pot fishery and an economic viability analysis of such a fishery. We arrayed a total of 205 

baited pots along transects from an OWF located near the island of Helgoland. After a soaking 

time of 24 h we retrieved the pots and measured the carapace width (mm), weight (g), and 

sex of each individual crab. To conclude on cumulative spill-over potentials from all OWFs in 

the German EEZ and drivers of passive gear fisheries we analysed vessel monitoring system 

(VMS)-data and computed random forest regressions. Local spill-over mechanisms occurred 

up to distances of 300 to 500 m to the nearest turbines and revealed an increasing attraction 

of pot fishing activities to particular OWFs. This corresponds to the observation of constantly 

increasing fishing effort targeting brown crab likely due to both a growing international 

demand and stable resource populations at suitable habitats, including OWFs. Our break-even 

scenarios showed that beam trawlers have the capacities to conduct during summer an 

opportunistic but economically viable pot fishery. We argue that particularly in the North Sea, 

where space becomes limited, integrated assessments of the wider environmental and socio-

economic effects of planning are crucial for a sustainable co-location of OWFs and fisheries. 

Key words: break-even analysis, brown crab, marine spatial planning, socio-ecological 

assessment, spill-over 
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1. Introduction 

The advancement of offshore wind farms (OWFs) is a response to increasing energy demands 

and a key pillar in the global transition to a carbon-free power sector (GWEC, 2019). In a 

European comparison, the North Sea region is designating the largest total surface area (20 

000 km2) to the current and future development of offshore renewables (Stelzenmüller et al., 

2020). Hence, the North Sea ecosystem is exposed to progressing human pressures (Halpern 

et al., 2019), while facing drastic effects of climate change (Holt et al., 2012) on food web 

structure and functioning (Lynam et al., 2017), and the composition of fish communities (Dulvy 

et al., 2008; Engelhard et al., 2014; Frelat et al., 2017). This highlights the urgent need for an 

integrated marine management approach accounting for complex interlinkages and 

feedbacks in coupled human and natural systems (Visbeck, 2018). The spatial expansion of 

offshore renewables increasingly steers a debate regarding local and cumulative 

environmental and socio-economic effects for other human activities. Thus, within a given 

area OWF and fisheries are often mutual exclusive evolving in a reallocation of fishing activities 

to other areas (Stelzenmüller et al., 2015a). Depending on the adaptive capacities of the 

affected fishing fleets, this could result in economic losses or even socio-cultural impacts for 

fishing communities (Stelzenmüller et al., 2020). Marine spatial planning (MSP) is an 

integrated management process that allocates human uses at sea according to planning 

activities (Zaucha and Gee, 2019). MSP should promote Blue Growth while maintaining 

ecosystem health, mitigate spatial use conflicts (Frazao Santos et al., 2020), and create 

synergies between sectors through the promotion of co-location solutions (Jentoft and Knol, 

2014; Kyvelou and Ierapetritis, 2019). The terms “co-location”, “co-use” or “multi-use” are 

often used synonymously, but require a careful consideration of the spatial, temporal, 

provisional, and functional dimensions of the connectivity of uses (Schupp et al., 2019). In the 

North Sea region, national MSP processes foresee divergent measures regarding the co-

location of fisheries and OWFs. While in the UK fishing with bottom contacting gear in OWFs 

is permitted, fishing activities are currently prohibited in OWFs and the respective buffer 

zones in the German exclusive economic zone (EEZ) (Stelzenmüller et al., 2016). The marine 

spatial plan of the German EEZ of the North Sea, implemented in 2009, was one of the first 

legally binding plans regulating primarily the allocation of marine transport, development of 

offshore renewables or aggregate extraction by the means of priority areas. At present, the 

plan is being revised and the evaluation process needed to account for both changing political 
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priorities and progress towards the achievement of planning goals (Stelzenmüller et al., 

2021b). In particular, the fishing sector calls for potential new regulations regarding a co-

location of passive gear fisheries e.g. targeting brown crab (Cancer pagurus) in the proximity 

of OWFs. The revised draft plan comprises adaptations of shipping routes, an increase in 

priority areas for offshore renewables, the adoption of marine conservation areas, and a 

priority area for Norway lobster (Nephrops norvegicus) fisheries (www.bsh.de). Further the 

draft plan mentions the potential for passive gear fisheries within the safety zone up to a 

distance of 300 m to the OWF. Developing measures to mitigate economic losses for fisheries 

remains a key challenge for most MSP processes (Kularathna et al., 2019). 

Empirical knowledge on ecological and socio-economic implications of co-location solutions 

for OWF and fisheries is still sparse. The construction of OWFs comprising activities such as 

piledriving or removal of soft bottom habitats has caused a decrease of abundance of pelagic 

fish by 50 % and effected the behaviour and physiology of fish (Lüdeke, 2015; Methratta, 

2020). Over time the introduction of hard substrates leads to changes in species compositions 

(Stenberg et al., 2015), food web structures and complexity (Mavraki et al., 2020). Fisheries 

benefits of OWFs could result from small and meso-scaled ecological effects such as an 

increase of biomass, abundance and size of fisheries resources around piles and turbine scour 

protections (Dannheim et al., 2020; Methratta and Dardick, 2019; Reubens et al., 2013) and a 

subsequent spill-over into the surrounding waters. While the spill-over of biomass and related 

fisheries benefits have been extensively studied for many marine protected areas (MPA) 

(Edgar et al., 2014; Vandeperre et al., 2011), the spill-over effects in the context of OWFs 

remain largely uncharted. In the southern North Sea, a spill-over of biomass might be expected 

for target species such as European edible crab or brown crab, brown shrimp (Crangon 

crangon), and European lobster (Homarus gammarus) due to enlarged opportunities for 

shelter and increased food availability (Ashley et al., 2014; Krone et al., 2017, 2013). Hence, 

artificial reef structures such as monopiles with a scour protection led to local increases of 

brown crab biomass with an estimated increase of 320 % in the German Bight (Krone et al., 

2017). Passive gear fisheries targeting decapods seem to be most feasible to be combined 

with OWFs (Hooper and Austen, 2014). In the southern North Sea, a growing interest in a 

brown crab pot fishery with distinct and persistent fishing grounds over time has been 

observed (Stelzenmüller et al., 2016). Between 2008 and 2016, overall yearly catches of brown 

shrimp of the EU fleet have increased from about 34 thousand tons to almost 50 thousand 
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tons, with the value of landings increasing even more (STECF, 2018). These figures suggest 

that the demand for brown crab is growing, thus justifying also a closer view on this type of 

fisheries.  

Yet, a quantification of potential fisheries benefits of OWFs due to emerging resources such 

as brown crab is pending. Quantifying fisheries benefits entails both a sound knowledge of 

local ecological processes and functions and an assessment of socio-economic constraints of 

the fishing vessels engaging in such a fishery. 

Taking the German EEZ of the North Sea as an example, we contribute to the urgently needed 

empirical evidence of potential fisheries benefits of OWFs and reflect on sustainable co-

location solutions of OWFs and pot fisheries. Our integrated approach combines for the first 

time an experimental brown crab fishery in the vicinity of an OWF with a supply balance and 

economic viability analysis for fishing vessels targeting brown crab. Further we explored the 

cumulative brown crab spill-over potential by analysing spatio-temporal trends in passive gear 

fisheries in the proximity of OWFs in the German EEZ with the help of vessel monitoring 

system (VMS) data and random forest regression.  

2. Methods 

To answer our research question if fisheries can benefit from man-made structures such as 

OWF and to understand the potential implications for co-locating OWFs and fisheries we 

structured our methodological approach along the following themes: i) empirical evidence of 

brown crab spill-over from OWFs; ii) attraction of international pot fishing vessels to OWFs 

indicating spill-over potential; iii) European supply and demand of brown crab from the North 

Sea; and iv) break-even scenarios for fishing vessels deploying occasionally pots to target 

brown crabs.  

2.1 Experimental brown crab fishery around an offshore wind farm 

Brown crabs are nocturnal animals and opportunistic feeders preying on bivalves, gastropods, 

barnacles, echinoderms, bristle worms, and other crustaceans (Klaoudatos et al., 2013). They 

reproduce in winter with planktonic larvae (1 mm) and live on habitats with coarse sediment, 

mud or sand preferably at depth varying from 6 to 40 m. The size (carapace width) at first 

sexual maturity (around 3 to 5 years of age) differs for males (~110 mm) and females (~127 

mm) and varies regionally (Klaoudatos et al., 2013; Tonk and Rozemeijer, 2019). Regional stock 
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assessments for the southern North Sea revealed stable population sizes in consecutive years 

and regional exploitation rates are lying within recommended boundaries to maintain 

maximum sustainable yields (MSY level proxy is 35 % of virgin spawner per recruit (SpR) 

(CEFAS, 2017). The minimum landing size (MLS) for crabs in the North Sea south of 56°N is 130 

mm (CEFAS, 2017).  

The German EEZ covers a significant surface area that is known for an increased brown crab 

density in the southern North Sea (CEFAS, 2017). Estimates for the Dutch North Sea (which 

borders the German EEZ to the west) indicated a potential of 100 brown crabs per km2 (Tonk 

and Rozemeijer, 2019). The international fishing activities in the German EEZ targeting brown 

crab with baited pots remain of marginal economic relevance and have been persistently 

limited to distinct areas between April and November (Klaoudatos et al., 2013; Stelzenmüller 

et al., 2016). Considering the characteristics of this fishery, we conducted experimental 

fisheries with baited pots targeting brown crabs along transects near the OWF Meerwind 

Süd/Ost. The OWF is in operation since 2015 and is located approximately 20 km off the island 

of Helgoland (Figure III-1). The site encloses 80 turbines (monopiles with scour protection) at 

depths varying between 22 m and 27 m on sandy bottoms (see Figure III-1). In 2019 (June and 

August) we positioned a total number of 205 pots baited with fresh mackerel (Scombrus 

scombrus) along transects at distances of approximately 50 m, 500 m, 1000 m and 1500 m to 

the nearest wind turbine on the eastern border of the wind farm. In total, we arrayed 41 pot 

fleets (five pots per fleet) with a tow length of 30 m between individual pots and 15 kg of 

ground weight at both sides. The actual mid-points of the respective fleet positions are shown 

in Figure III-1. After a soaking time of approximately 24 h we retrieved the pots and measured 

the carapace width (mm), weight (g), and sex of each individual crab. We marked each animal 

with a bio-marker to enable a recognition of recaptures and released it in the direct proximity 

of the sampling stations. Further, we recorded at the 41 stations the water depth (m), sea 

surface temperature, bottom temperature, wind and weather conditions. For the subsequent 

statistical analysis, we standardised for each station the total biomass (kg), total number (N), 

sex ratio (male/female), and total biomass for brown crabs of the size classes < 130 mm and 

≥ 130 mm for a soaking time of 24 h. For each of the 41 pot fleets we calculated size-based 

indices such as the minimum, maximum, and mean carapace width (mm) and its respective 

standard deviation. We computed linear regressions with distance to the nearest wind turbine 
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(m) as explanatory variable to determine significant spatial trends in size, sex ratio and 

biomass.  

 

Figure III-1. Top panel: 
Median grain size 
distribution in the southern 
North Sea together with the 
location and status of 
offshore wind farms within 
the German EEZ and 
adjacent coastal waters 
(4COffshore.com, last 
update 2018). Note that the 
grain size distribution is 
shown in the Wentworth 
scale where the grain 
diameter (d) is calculated as 
log2(d). The greater the 
values the smaller the 
actual grain diameter (e.g. 
sand < 4 > silt) 
(www.coastmap.hzg.de). 
The OWF areas are located 
at depth ranging from 10 to 
50 m; mid panel: water 
depth (m) and OWFs being 
in operation, under 
construction or licensed; 
bottom panel: Location of 
turbines (grey dots) within 
the offshore wind farm 
Meerwind Süd/Ost and 
sampling stations (black 
dots). 
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2.2 Cumulative spill-over potential from offshore wind farms 

We analysed spatio-temporal patterns of international pot fisheries to explore changes of 

patterns in fishing effort in the proximity of OWFs, suggesting a local spill-over mechanism of 

brown crab. Further, we evaluated the cumulative spill-over potential for the currently 

existing OWFs in the German EEZ. For this we compiled international VMS data from 2012 to 

2019 comprising the vessel registration number, vessel position, and speed of fishing vessels 

with lengths greater than 12 m for the German North Sea. We first removed duplicated pings, 

pings with assigned speed values > 25 kn, and harbour pings except the last one using the 

VMStools package (Hintzen et al., 2012) for the software R 3.6.3 for statistical computing (R 

Core Team, 2019). Next, we matched vessel registration numbers of VMS data with the 

European fleet registry and filtered for vessels reporting pots as their primary or secondary 

fishing gear. We adopted the approach by (Kroodsma et al., 2018) to identify continuous 

vessel tracks and exclude fragmented vessel tracks. Hence, we calculated geographical and 

temporal distances for each consecutive VMS ping of the same vessel and summed up half of 

the time from the previous to the current and the current to the following ping, respectively. 

We neglected pings with temporal intervals < 120 min, because it represents the longest 

interval for transmitting VMS signals among included flag nations. Next, we identified 

continuous data segments among vessel data pieces by assigning a new segment number 

when the geographical or temporal distance between consecutive pings was > 50 nm or 24 h. 

We kept only segments with a total number of pings ≥ 4. From the remaining pings assigned 

to fishing segments, which reflected individual fishing trips, we filtered in a last step only pings 

indicating fishing. We separated fishing from steaming pings with the activityTacsat function 

from the VMStools package. Note that we determined peaks for steaming and fishing speeds 

manually by inspecting speed histograms of each vessel and year before running the 

activityTacsat algorithm. To enable analyses of spatio-temporal fishing patterns, we 

calculated for each VMS ping the distance to the nearest boundary of an OWF with the sf 

package (Pebesma, 2018) for R. With the help of Arc Map (10.5.1) we associated the name of 

the nearest OWF, depth (m), and median grain size to each retained VMS ping. This enabled 

us to calculate total hours fished by summing up the time steps for different aggregation 

levels, such as month, year, distance range to the nearest OWF (km), depth range (m), vessel, 

or nearest OWF. 
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In a next step, we selected OWFs to which fishing effort could be associated in four 

successional years and grouped those by the year they went in operation (2012 and 2015). 

This allowed us to explore the spatial patterns and intensity of pot fishing activities in the 

vicinity of those OWFs. To further explore the relationship between the fishing intensity 

(annual total hours fished) by the respective vessels and the explanatory variables (year, 

proximate OWF, distance to turbine, depth and median grain size) we applied random forest 

(RF) regressions (Breiman, 2001) with the R package randomForest (Liaw and Wiener, 2002) 

for fishing activities at distances < 15 km to the nearest OWF. RF is a supervised machine 

learning technique based on regression tree methodology. It predicts a response variable from 

a number of explanatory variables by recursively subdividing a dataset into subgroups (Hastie 

et al., 2009). Partitions are achieved by two means: (1) a random selection of explanatory 

variables to grow each tree and (2) each tree is based on a different random data subset, 

created by bootstrapping. We divided the data in a training subset (70 %; in-bag data) to 

develop the tree and prediction rules, whereas the out-of-bag data (30 %) provided estimates 

of the generalization error. The rank importance of each explanatory variable was measured 

as the change in mean square error estimated by leaving a variable out of the model. We 

further computed partial dependence plots to explore the relationships between individual 

explanatory variables and annual fishing effort.  

2.3 European supply and demand of brown crab from the North Sea  

To gain an overview of the European supply and demand of brown crab from the North Sea 

we calculated supply balances by accounting for the domestic supply (catches + import) and 

the amount of apparent consumption (available raw material of brown crab). Hence, we 

adopted the approach of the European Market Observatory for Fisheries and Aquaculture 

Products and calculated the apparent consumption of brown crab as national catches + import 

– export (t) (EUMOFA, 2019b). For catches we included all brown crabs caught by a country’s 

fleet, independently from the area of landing and we extracted respective catch data as net 

weight (t) from Eurostat (https://ec.europa.eu/eurostat/web/main/data/database; 

fish_ca_main). To balance the data we converted net weights into live weight equivalents 

using the conversion factors provided by EUMOFA (EUMOFA, 2019c). We defined 

international trade as imports and exports (Eurostat, 2016). However, differences in concepts 

and definitions of the countries, as well as dissimilar reference periods due to transport times 

led to asymmetries between data the importer of one country and the exporter of another 
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country. Therefore, we used only data on import to show the interactions between the major 

actors within Europe. Since the international trade of brown crab comprised mainly the UK, 

Ireland, France and Spain, we focused on those countries and we defined the remaining 

countries as “others”. In addition, we considered export data to China. We further simplified 

the trade between the main countries by offsetting when a trade was < 5 t, and when the 

trade volume between major actors and “others” was < 100 t.  

2.4 Economic viability of an occasional brown crab fishery 

An increasing stock of brown crab might provide fishing opportunities also for vessels which 

regularly target on other species. We identified German beam trawlers with a length of about 

24 m targeting mainly brown shrimp as being capable to conduct a brown crab fishery. 

Entering a pot fishery would require only modification of on-board equipment, but no quota 

acquisition. Here we assessed the economic viability of this option based on the assumption 

that a brown crab fishery would take place only at times when a brown shrimp fishery is 

regarded inefficient, thus when the only alternative option would be to stay in the port. To 

assess the specific contribution margin we disregarded fixed costs and considered only fishing 

costs directly linked to a brown crab fishery. We derived the cost structure of German beam 

trawlers (18 and 24 m) targeting brown shrimp from the annual economic report on the EU 

fishing fleet, AER (STECF, 2019a) (Appendix D). In a subsequent step, we modified the cost and 

effort data in case the fleet segment is deploying pots targeting brown crab (Appendix D). 

Further, we anticipated a total investment of 65,000 € for pots, winch, containers and vessel 

modification (pers. comm. Christian Janhsen). The useful life of these assets is set to five years, 

resulting in an annual depreciation of 13,000 €. Variable costs (excluding personnel costs) 

were estimated at 330 € per day. Personnel costs were estimated at 22 % of the revenue (crew 

share). 

Based on these figures, we computed the daily break-even revenue (BER). When assuming 

that neither fixed costs nor opportunity costs apply and interest rates are disregarded due to 

their low level, only variable costs and annual depreciation (DEP) for the investment in 

equipment for crab fishing has to be considered for the break-even analysis. Then the BER is 

the sum of DEP and the variable costs. The sum of depreciation and variable costs (excluding 

personnel costs) was increased by the crew share to account for personnel costs in the break-

even case. 
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Garrett et al. (2015) reported prices of up to 4 € per kg brown crab landed in Spain and France 

with catches of specialized vivier vessels varying between 13 to 14 tons a week (in 2013). 

However, vivier vessels are highly specialized and retrofitted beam trawlers are unlikely to 

achieve comparably high catch rates. The 2018 STECF AER revealed that average prices (2008 

- 2017) for brown crab landings varied significantly between countries (STECF, 2018). The 

prices were highest in Denmark (3.31 €/kg), followed by the UK (1.60 €/kg) and Ireland (1.23 

€/kg). In contrast, German vessels sold only at 0.66 €/kg. Therefore, we calculated break-even 

scenarios for prices ranging from 0.66 to 3 € per kg landed brown crab. 

3. Results 

3.1 Spatial pattern of experimental brown crab catches  

We sampled a total number of 792 brown crabs (males: 655; females: 137) with carapace 

width ranging from 69 to 225 mm and an overall mean width of 152 mm (+/-26.4 mm) 

(Appendix A). The frequency distribution of the respective carapace width (mm) for male and 

female with the corresponding mean width (females: 135 mm (+/- 21.92 mm); males: 156 mm 

(+/- 25.87 mm) is shown in Appendix A. We observed an overall sex ratio of 4.8 in favour of 

males. Out of the 137 females a total number of 39 (29 %) were below the size of first sexual 

maturity (127 mm; (Tonk and Rozemeijer, 2019)). In contrast, only a total number of 22 (3.4 

%) of the 655 males were below the respective size of first sexual maturity (110 mm; (Tonk 

and Rozemeijer, 2019). The frequency distribution indicates a normal distribution of carapace 

width of female, but a slightly skewed distribution for females. In addition, the frequency 

distribution shown in the Appendix A shows that the majority of the caught brown crabs were 

above the MLS of 130 mm. Our experimental set up led to a mean catch per unit effort (cpue) 

of 9 kg·24h-1 (+/- 3 kg·24h-1) at distances between 213 and 2650 m to the wind turbines. The 

prevailing conditions in terms of sampling depth, surface and bottom temperature were 

relatively constant with a mean depth of 23 m and bottom temperatures of approximate 14 

°C in June and 18 °C in August. Overall, we found a significant decrease of catches in biomass, 

numbers, males and individuals ≥ 130 mm with increasing distance to the turbines (Table III-1 

and Figure III-2). Although the trend was statistically not significant (p-value of 0.13, see Table 

III-1), we found the highest cpue of brown crabs < 130 mm up to a distance of 300 m to the 

turbines, pointing to the functioning of turbines with scour protection as potential nursery 

areas of brown crab. Our results revealed clear differences in spatial patterns of female cpues 
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and maximum carapace width between the stations sampled in June and August (Figure III-2). 

Hence, in August cpues of females almost doubled at distances ranging from 600 to 1100 m. 

This was on a par with increases of both minimum width and cpues of brown crabs < 130 mm 

at corresponding distances. Hence, these results indicate a clear shift in carapace width 

fractions of females within only a couple of weeks during summer time. 

 

Table III-1. Results of the linear regression models as intercept, coefficient (b), degrees of 
freedom (df), R square (R2), adjusted R square (R2 adj), value of the F statistic (F), and p-value 
for the different response variables and time periods (June & August = 41 stations; June = 21 
stations) with distance to the nearest turbine (m) as explanatory variable. Significant models 
(p-value < 0.05) are indicted in bold. Note that the sampling positions in August comprised 
only stations with a minimum distance to the nearest turbine > 500 m.  

Response variable Period Intercept b df R2 R2adj F  p-

value 

Cpue (kg·24h-1) June &August 13.16 -0.01 31 0.26 0.24 11.13 0.00 

Cpue (N·24h-1) June &August 18.96 -0.01 31 0.16 0.14 6.09 0.02 

min width (mm) June &August 101.77 0.02 31 0.06 0.03 1.85 0.18 

max width (mm) June &August 215.31 -0.04 31 0.38 0.36 18.75 0.00 

Cpue F (kg·24h-1) June &August 0.83 0.00 31 0.01 -0.03 0.16 0.69 

Cpue M (kg·24h-1) June &August 12.85 -0.01 31 0.41 0.39 21.33 0.00 

Cpue ≥ 130 mm (kg·24h-1) June &August 13.32 -0.01 31 0.39 0.37 20.13 0.00 

Cpue < 130 mm (kg·24h-1) June &August 0.72 0.00 31 0.00 -0.03 0.00 0.96 

Cpue (kg·24h-1) June 12.28 0.00 19 0.11 0.06 2.36 0.14 

Cpue (N·24h-1) June 19.39 -0.01 19 0.19 0.15 4.54 0.05 

min width (mm) June 106.77 0.00 19 0.01 -0.04 0.21 0.65 

max width (mm) June 199.39 0.00 19 0.01 -0.04 0.15 0.70 

Cpue F (kg·24h-1) June 0.78 0.00 19 0.00 -0.05 0.04 0.85 

Cpue M (kg·24h-1) June 12.54 -0.01 19 0.26 0.23 6.84 0.02 

Cpue ≥130 mm (kg·24h-1) June 12.75 -0.01 19 0.25 0.21 6.35 0.02 

Cpue < 130 mm (kg·24h-1) June 1.11 0.00 19 0.11 0.07 2.44 0.13 
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Figure III-2. Results of the non-linear regression of total catch of brown crab standardised 
by 24 h soaking time as biomass (top left), numbers (top right), biomass of females (second 
from top left), biomass of males (second from top right), minimum (second from bottom 
left) and maximum (second from top right) carapace width (mm) sampled at a station, and 
biomass of brown crab with a carapace with < 130 mm (bottom left) and ≥ 130 mm (bottom 
right) as a function of distance to the nearest wind turbine (m; maximum distance ≤ 1500 
m); the dashed line indicates the 500 m buffer zone around the sampled offshore wind farm 
and the shaded area designates the 95 % confidence level. 
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3.2 Cumulative spill-over potential from offshore wind farms 

We identified a total number of 32 993 VMS pings affiliated to pot fishing within the German 

EEZ and adjacent coastal waters (2012 to 2019). From those pings, 91 % were connected to 

UK vessels, 5 % to Irish vessels, 2 % to German vessels, and the remaining 2 % showed an equal 

share of fishing between Polish and Danish vessels. Only six vessels (5 UK vessels, 1 Irish vessel) 

made up for 97 % of the overall detected pot fishing activities. Effort peaked during the 

summer months across all years and increased by 400 % from 2012 to 2019 (Appendix B). 

Comparing the annual fishing effort at various distance classes (< 5 km, 5-10 km, 10-20 km, 

20-30 km, and > 30 km) to the nearest OWF (km) revealed that annual fishing effort increased 

across all distances to the OWF (Figure III-3). Further, over time most effort was allocated at 

distances > 30 km to the nearest OWF, while at distances < 5 km the effort increased from 

2017 onwards to levels which were comparable to other distance classes. Figure III-3 revealed 

that the annual fishing effort was general highest at depths ranging from 30 to 40 m. The 

retained OWFs being in operation since 2012 comprise DanTysk, Global Tech I, Meerwind 

Süd/Ost, Nordsee Ost, Riffgat and Trianel Borkum (Figure III-4, top). The fishing activities 

associated to Dan Tysk and Gobal Tech I took constantly place at distances beyond 30 km 

reflecting rather the increased suitability of the naturally prevailing habitats. Interestingly, the 

fishing effort associated to Meerwind Süd/Ost increased over time and converged towards 

the OWF, where we conducted our experimental brown crab fishery. The same observation 

holds for Nordsee Ost and Riffgat. The OWFs being in operation since 2015 encompassed 

Amrumbank West, Borkum Riffgrund 1, Gode Wind 01 and 02, Nordsee One and Sandbank. 

The observed fishing patterns around Gode Wind 01 and Gode Wind 02 could indicate a 

displaced pot fishery which now benefits from fishing in the closer proximity of an OWF (Figure 

III-4, bottom). One striking observation was that the fishing activities around Borkum Riffgrund 

1 occurred after the OWF has been constructed, indicating a potential fishery benefit through 

spill-over of brown crab.  

Based on the observed patterns of the pot fishing activities in the proximity of the OWF and 

the results of our experimental pot fisheries, we defined four archetypes of spatial patterns 

of pot fishing activities in the vicinity of an OWF (Figure III-5). Figure III-5 shows that a potential 

spill-over effect of brown crab could manifest in increased catches up to a distance of 5 km 

from OWFs (dark green zone). Thus, recurrent pot fishing activities taking place at such 

distances might indicate spill-over effects. On the contrary, we assumed that spill-over effects  
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Figure III-3. Time series of total annual fishing effort (h) per distance to nearest offshore 
wind farm class (< 5 km, 5-10 km, 10-20 km, 20-30 km, > 30 km) and depth range (m).  

 

Figure III-4. Time series of annual mean distance (km) of the total fishing effort (black dots) 
allocated to the respective OWF. The vertical lines indicate the fishing restrictions due to 
the presence of the OWF since 2012 (top) and 2015 (bottom) and the horizontal line 
indicates that at distances > 10 km fisheries benefits due to the spill-over of brown crab is 
not very likely (see Figure III-6). 
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would not manifest at distances greater than 10 km to an OWF. The archetypes distinguish 

cases where e.g. previous pot fisheries have been displaced from an OWF area and recurred 

within a distance of 5 km, hence indicating rather suitable habitats for brown crabs. We 

described also a model where pot fisheries took place in the OWF proximity only after the 

OWF has been constructed, pointing to potential spill-over mechanisms.  

The random forest models of fishing effort around the two groups of OWFs (OWFs in 

operation since 2012 and 2015) explained 24 % (OWF2012) and 19 % (OWF2015) of the 

variance and revealed a rank importance of the variables potentially driving the allocation of 

fishing effort (Appendix C). The rank importance (% IncMSE), representing the increase of the 

mean squared error when a given variable is randomly permuted, showed that the fishing 

effort around the OWF being constructed until 2012 was mainly determined by the 

explanatory variables year, location (associated OWF), and depth. Hence, the allocation of 

fishing effort has not been triggered by the proximity of these OWFs. In contrast, the fishing 

effort around OWFs being in operation since 2015 showed a deviating rank importance with 

median grain size, distance to the OWF, and location (associated OWF) being the most 

important variables. This points to the fact, that fishing effort could have been attracted by 

those respective OWFs due to increased brown crab abundances. 

3.3 European supply balances and economic viability analysis 

Total brown crab catches from the North Sea ranged from 40 000 to 47 100 t between 2010 

and 2017. The supply balance analysis showed that in 2017 brown crab catches of UK, Ireland, 

France and Spain summed up to 43 373 t, whereby the UK alone contributed the largest share 

of 32 410 t (Figure III-6). The UK exported nearly one third of the catches and, considering 

small amounts of imports, the national apparent consumption was 22 326 t. By far, Spain had 

the smallest share of catches (61 t), these are usually by-catches. Due to an import of 3 945 t 

of brown crabs the Spanish apparent consumption was 3 688 t. In contrast, in France the 

apparent consumption was nearly three times higher, based on domestic catches of 4324 t, 

and imports of 7481 t received in equal parts from the UK and Ireland. Export markets to Asia, 

especially to China, Hong Kong, Taiwan and Vietnam are constantly growing. In 2017 the UK 

exported 2722 t and Ireland 909 t brown crab to China.  
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Figure III-5. Four archetypes of potential fishing patterns of passive gear fisheries targeting 
brown crab in the vicinity of an offshore wind farm (OWF). The vertical grey line indicates 
the beginning of fishing restrictions due to the construction of an OWF. The distance of 5 
km to the OWF indicates the potential area (dark green) where a spill-over of brown crabs 
might results in increased catches. The grey dashed line indicates a fishing patterns at 
distances > 10 km which cannot be related to potential fisheries benefits of OWF (grey 
zone).The black line reflects an attraction of fishing effort by an OWF after its 
implementation; the grey line represents recurrent fishing activities after displacement, 
indicating rather a suitable habitat than a potential spill-over mechanism; the black dashed 
line designates attracted fishing effort due to expected fisheries benefits (spill-over); the 
grey dashed lines represent fishing activities which cannot be related to the presence of 
an OWF. 

Figure III-7 illustrates the daily BER and corresponding catch for different price (€·kg-1) 

scenarios for landed brown crab. The variable costs per day of a beam trawler (61 gross 

tonnes) targeting brown crab add up to 330 €·d-1 (61 × 5.4 €·d-1; see Appendix D), excluding 

crew costs. With an annual depreciation of 13 000 € and crew costs as a 22 % share of the 

revenue the estimated crew costs result in 73 €·d-1 ((13.000 € × 0.22) + (330 €·d-1× 0.22)) for 

the break-even case (Appendix D).  

The annual BER is 403 € per day plus 16 667 €. Our break-even scenarios suggest that even in 

the case of high prices (3 € kg-1) and a fishing period of 30 days per year the daily break-even 

catch is about 300 kg. If the price is about 1 € kg-1 and only ten fishing days can be assigned to 

brown crab fishing, then a daily catch of about 2.000 kg is necessary to cover variable costs 

and depreciation on crab fishing investment (Figure III-7). 
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Figure III-6. 
Illustration of relative 
catches and apparent 
consumption of 
brown crab in UK, 
Ireland, Spain and 
France and trade 
between these, 
“others” and to China 
in tonnes live weight 
equivalent. 

 

Figure III-7. Simulated 
daily break-even 
catches for different 
price scenarios for 
brown crab. 
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4. Discussion 

We observed local spill-over mechanisms of brown crab from an OWF in the southern North 

Sea and demonstrated a patchy, but increasing attraction of pot fishing activities to OWFs. At 

the same time, we showed that the international fishing effort targeting brown crab enlarged 

gradually over the past years due to an increasing demand and stable resource populations at 

suitable habitats, including OWFs. Hence, we illustrate that under these conditions brown crab 

fisheries benefit from the rapid expansion of OWFs. The German fishing sector has not yet 

embraced these new fishing opportunities, but would have the capacities to conduct 

economically viable pot fisheries. We highlight that a comprehensive understanding of 

fisheries benefits due to the presence of OWFs requires combing knowledge about ecological 

effects on fisheries resources with socio-economic effects on the fishing fleets. Our study 

provides an urgently needed integrated assessment of socio-economic and ecological 

implications of MSP with offshore renewables and fisheries and sheds light on key 

requirements for an ecosystem-based planning approach.  

4.1 Spill-over and implications for co-locating fisheries and OWF  

The environmental conditions across the experimental fishing sites around an OWF were fairly 

stable, however, they were not directly located on known suitable habitats for brown crabs. 

Therefore, we assume that the observed spatial patterns of enlarged catches and sizes of 

brown crabs closer to the monopiles with a scour protection reflect both the increased 

availability of suitable artificial habitats and a spill-over mechanism. Since we performed our 

sampling during summer time, it is however important to note that the catchability between 

male and female differed since egg carrying females are burying in soft sediments (Tonk and 

Rozemeijer, 2019). In close proximity (~ 300 m) to the foundations our catches of brown crab 

with a carapace width < 130 mm were highest, pointing to the potential functioning scour 

protections as nursery area. This agrees well with existing observations (Krone et al., 2017, 

2013), describing OWFs as nursery areas for brown crab and the importance of OWFs to 

enhance local populations. Our results emphasised also the importance of the increased water 

temperature, hence the timing of sampling. The measured minimum carapace widths at 

distances > 500 m to the turbines increased clearly from June to August, as well as the relative 

biomass of female crabs. In contrast, the maximum carapace widths sampled at such distances 

decreased from June to August. Thus, larger carapace widths could reflect individual growth. 
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In addition, migration and therefore the mobility increases with increasing water 

temperatures which could explain the enhanced catches of females in August (Woll and 

Ålesund, 2006). The decreased catches of larger individuals in August could point to an 

increased fishing mortality. The latter is supported by our analysis showing increased fishing 

effort in the third quarter of a year with August as one of the months of highest pot fishing 

intensities. The observed spatial patterns and trends in catches and sizes are relevant when 

advising MSP processes on how to regulate a sustainable co-location of fisheries and OWF. 

Pot fisheries are well suited for co-location solutions since pots do not disturb the seabed 

(Kopp et al., 2020) and therefore the risk to damage cables or other OWF infrastructure is low. 

Co-location solutions could also comprise temporal regulations where for instance pot 

fisheries is permitted up to 200 - 300 m to the foundations during summer or regulations for 

gear setting to avoid ghost fishing in the case of lost gear. For an OWF this would give planning 

security in the sense that e.g. maintenance involving increased ship traffic could be scheduled 

to minimise collision risk due to increased shipping activities. To keep local brown crab 

populations stable in the long term, fishing activities might be restricted in the OWF buffer 

zone during the first and second quarter of a year, while in July and August fisheries is 

permitted. The implementation of co-location solutions could also address regulations for 

OWF regarding the type foundations and scour protections to maximise the potential 

ecological benefits (Dannheim et al., 2020). The joint engagement of sectors in developing co-

location solutions in MSP is to some extent an analogy to co-designing adaptive management 

and marine conservation measures (Christie et al., 2016).  

4.2 Understanding trends of fishing activities in the vicinity of OWF 

We showed that OWFs, being in operation since 2015, attracted pot fishing activities. These 

might be caused by general increasing brown crab abundance together with the newly 

established local populations as a result of the suitable artificial habitats. On the other hand, 

an increased fishing effort could also be linked to an overall upsurge of demand. The particular 

OWF sites (since 2015) represent rather new habitats for brown crabs since they are not 

located close to the persistent pot fishery hot spots (Stelzenmüller et al., 2016). But these 

OWFs are located in closer proximity to the coast and important fishing ports, hence being 

more attractive fishing grounds from an economic cost-benefit perspective. Based on our 

results we defined archetypes of fishing patterns indicating both new fishing activities and 

recurrent pot fisheries, which has been displaced due to construction activities. Overall, our 
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analysis illustrated cumulative effects of biomass spill-over and confirms rising fishing 

opportunities and fisheries benefits. Still, we demonstrate also that spill-over effects cannot 

be generally assumed for a given OWF. Future studies focussing on cumulative spill-over 

potential of OWFs should put more attention on additional factors, i.e. habitat and foundation 

types, and prevailing fishing effort of both passive and trawled gears. We assessed the 

cumulative spill-over potential with the help of VMS data. Separating fishing from steaming 

pings encompasses a remaining uncertainty with regards to the correct categorisation. 

4.3 Trends of demand and supply for brown crab from the North Sea 

The demand and supply of brown crab from the North Sea showed striking differences in the 

apparent consumption between countries. Results should be treated with care and be used in 

relative terms instead of absolute terms (EUMOFA, 2019c). But, these differences are likewise 

reflected by country specific processing chains of brown crab. Basic and advanced processing 

takes place in UK and Ireland, e.g. white, brown or mixed meat, fresh, frozen or canned and 

produced pates, paste or crab cakes. As opposed to France and Spain, where only little or even 

no substantive processing (e.g. cooked as whole, preparing of claws) is taking place. This 

mirrors apparent differences in the consumption behaviour. In the UK and Ireland processed 

products are being preferred, while in Spain and France fresh and unprocessed, even alive 

crabs are favoured. Hence, in France live crabs are an indicator for quality and freshness of 

crabs (Garrett et al., 2015). In Spain, consuming brown crab is often combined with social 

events or special occasions such as Christmas or weddings. Overall the increasing export to 

China suggests that brown crab remains a profitable fisheries resource. This is also confirmed 

by current research focusing on the optimisation of long-distance transports of living crabs, 

hence allowing those products to enter the Chinese market (Ben-Asher et al., 2020). 

4.4 Economic trade-offs of brown crab fisheries 

A break-even analysis based on assumed catches and revenues allows for a first assessment 

of economic opportunities for pot fisheries. German beam trawlers with a length of about 18 

- 24 m usually targeting brown shrimp could take advantage of brown crab fishing 

opportunities. These vessels almost exclusively target brown shrimp. This fishery is 

characterized by substantially fluctuating catches and prices and, as a consequence, shows 

highly volatile profitability (EUMOFA, 2019c). Our break-even scenarios for German beam 

trawlers indicated that fishing on brown crab can be a promising alternative to staying in the 



Chapter III – Sustainable co-location solutions 

 82  

port in times when brown shrimp fishery is unprofitable. Going one step further and 

combining our results from the experimental pot fishery with the break-even analysis suggests 

that a catch of at least 300 kg·d-1 could be achieved when approx. 150 pots are deployed, 

assuming an average catch of 10 kg per fleet of 5 pots. Such a catch seems feasible and to be 

profitable it would require at least 15 days of fishing. On average in summer the brown shrimp 

fishery is unprofitable since the main fishing seasons is between March and July (Schulte et 

al., 2020). Therefore, German beam trawlers would have the adaptive capacity to target 

brown crab for a limited time in summer to compensate socio-economic losses or even 

generate additional revenues. Comparing roughly the value of the international landings of 

other species from the wider experimental fisheries study area (STECF, 2018; ICES rectangles 

37F7 and 38F7) revealed that brown crab ranked third (~2.6 Mio €) after brown shrimp (~8.2 

Mio €) and sprat (Sprattus sprattus; ~6.4 Mio €). Hence, the value of these brown crab landings 

were almost three times higher than the one of sole (Solea solea). This underlines the local 

potential for this fisheries resource.  

Conclusions 

The development of offshore renewables such as OWF in the North Sea is spurring the conflict 

potential with other sectors and in particular with fisheries. When space becomes limited, it 

is key for MSP to understand adaptive capacities of fishing fleets to offset the increasing loss 

of fishing grounds and accessibility of resources. Expected long term fisheries benefits of OWF 

as well as the fear of further losses of fishing resources due to e.g. climate change, Brexit, or 

further spatial constraints and regulations are the main reasons for the fishing sector to call 

for a more integrated regulation through MSP. For the German EEZ of the North Sea we 

illustrated that a brown crab fishery in the vicinity of OWF as a second pillar could be 

economically viable and could lower the susceptibility to risk by diversifying fishing activities. 

Our integrated assessment approach exemplifies that co-location solutions between these 

sectors should be built on a sound knowledge of ecological processes such as spill-over 

mechanisms as well as socio-economic constraints of respective fishing fleets. We argue that 

co-location solutions should follow the example of a cross-sectoral co-design of management 

options. Our results showed also that spill-over potentials of brown crabs differ according to 

the environmental setting of an OWF, therefore a bottom-up or micro-planning for co-location 

solutions would be most effective to establish sustainable co-location solutions. This could 

also entail measures for future OWFs regarding the design of foundations with scour 
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protection to support e.g. settlement of benthic communities or the decommissioning of 

OWFs. Advising MSP processes on long-term adaptive capacities of fisheries requires more 

future research on the ecological effects of OWF including studies on local and regional shifts 

of food webs. Taken together we conclude that MSP processes with offshore renewables and 

fisheries require integrated and evidence-based assessments of the wider environmental and 

socio-economic effects of the plan and its measures. 

Supplementary material 

Supplementary material of this chapter can be found in the end of this thesis. 
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Abstract 

Worldwide, fisheries face the consequences of climate change and compete with expanding 

human activities at sea, which may trigger unforeseen reactions of fishers. Hence, knowledge 

on drivers of fishing behavior is crucial for management and needs to be integrated in resource 

management policies. In this study, we identify factors influencing fishing activity of North Sea 

demersal fleets. First, we explore drivers of the North Sea demersal fisheries in scientific 

literature. Subsequently, we study the effects of identified drivers on the spatio-temporal 

dynamics of German demersal fisheries using boosted regression trees (BRT), a supervised 

machine learning technique. An exploratory literature review revealed a lack of studies 

incorporating biophysical, economic and socio-cultural fishing drivers in a single quantitative 

analysis. Our BRT analysis contributed to filling this research gap and highlighted the 

importance of biophysical drivers such as temperature, salinity, and bathymetry for fishing 

behavior. Contrary to findings of previous studies, our empirical analysis identified quotas and 

market prices to be irrelevant, except for low brown shrimp prices, which counter-intuitively 

increased fishing effort. Moreover, economic and socio-cultural variables influencing brown 

shrimp fishing effort differed from the other fleets, especially determined by increased effort 

on workdays and reduced effort when fuel prices were high. Our findings provide key 

information for marine spatial planning and supports the integration of fishing fleet behavior 

into policies.  

Key words: boosted regression tree, fishing drivers, fishing behavior, marine spatial planning, 
resource management  
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1. Introduction 

Human use of the oceans has been increasing globally, leaving few untouched areas and 

leading to local competition for space (Halpern et al., 2019, 2015; Kannen, 2014). Fishing is 

the largest human activity in terms of spatial scale and intensity and therefore must be 

considered in marine spatial planning (MSP) (Halpern et al., 2008a; Stelzenmüller et al., 2008, 

2021c, 2022). To enable sustainable management, scientists and policy makers must 

understand fishers’ behavior and integrate it in new management directives (Hilborn, 2007; 

Salas and Gaertner, 2004). Ignorance of the human dimension in fisheries may cause fishers 

to respond unexpectedly to new regulations, which often exacerbates the state of the 

managed resource prior to these regulations (Fulton et al., 2011). Examples of such negative 

outcomes are spatial or temporal closures encouraging a ‘race for fish’ among the fishers 

(Gordon, 1954; Sys et al., 2017), or displacing fishing effort to areas with more vulnerable 

habitats or species (Dinmore et al., 2003; Liu et al., 2016; Rijnsdorp et al., 2001).  

Individual fishing fleets often operate in different ranges of biophysical parameters (Crespo et 

al., 2018; Hintzen et al., 2021; van der Reijden et al., 2018). Knowing the exact parameter 

ranges affecting fleets would promote the development of regulations that not only consider 

the status of fish stocks, but also the behavior of fishers. Such an integration would help policy 

makers to support effective management, but also fishers to reduce their ecological footprint, 

e.g. by avoiding bycatch species (Soykan et al., 2014) or optimizing their fuel consumption 

(Bastardie et al., 2010). Although the concept of perceiving fisheries as a socio-ecological 

system is increasingly embraced (Partelow, 2018), empirical approaches integrating the 

analysis of biophysical, economic, and socio-cultural drivers of fishing are still rare (Andrews 

et al., 2020; Castrejón and Charles, 2020; Rijnsdorp et al., 2008). 

North Sea fishers face many challenges, such as increased competition for space with 

renewable energy development (i.e. offshore wind farms) and marine conservation measures 

like marine protected areas (OECD, 2016; Stelzenmüller et al., 2022). Moreover, climate 

change is likely to alter fishing opportunities spatially (Baudron et al., 2020), adding to the 

potential for conflicts between fisheries and other users of ocean space (Link et al., 2017; 

Mendenhall et al., 2020). Therefore, the North Sea requires proactive MSP that integrates 

fishers’ potential reactions to these changes. 
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In this study, we first conducted an exploratory literature review focusing on factors 

influencing fishing activity in the North Sea. We restricted our search to demersal fisheries, 

which account for the majority of fishing in the North Sea (STECF, 2020). Second, we modeled 

spatio-temporal fishing effort (in hours) of German demersal fisheries in the southern North 

Sea and identified their main drivers using boosted regression trees (BRT).  

2. Methods 

2.1 Exploratory literature review for factors influencing demersal North Sea fishing activity  

We performed an exploratory Web of Science literature review for studies investigating 

drivers of demersal North Sea fisheries (see Appendix A for details). This search retrieved 104 

articles of which we only retained those that focused on the North Sea and specifically 

identified factors influencing demersal fishing activity. In our screening for relevant articles, 

we defined fishing activity as any parameter related to fishing, i.e. fishing effort, catches, 

landings, choices about fishing location, target species and gear, as well as the decision 

whether to go fishing or not. Eventually, we found eight relevant studies that specifically 

analyzed factors influencing demersal North Sea fishing activity. We complemented those 

with additional eight articles that were deemed relevant and did not show during our Web of 

Science search. Of the complementary articles, six were known to the authors or found by 

following references within the original eight relevant studies and two were suggested by one 

anonymous reviewer. From the resulting 16 relevant studies (see Supplementary Material for 

details), we identified factors influencing fishing activity and classified them into biophysical, 

economic, regulations, and socio-cultural. We grouped vessel characteristics to economic 

variables, because they are linked to investments. With our exploratory review, we do not 

claim to have exhausted all available relevant literature, but received a sufficiently large 

sample for this study. 

2.2 Empirical modelling of factors influencing German demersal fleets  

2.2.1 Preparation of fisheries data 

We used several data sets comprising information of spatio-temporal fisheries dynamics and 

vessel characteristics. Commercial fishing logbooks contain information about fishing trips 

including start and end date, used gear, mesh sizes, as well as catch composition and weights. 

Spatial fishing dynamics were inferred from the vessel monitoring system (VMS), which is 
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obligatory for all European fishing vessels larger than 12m. VMS data contain geo-coordinates 

(so-called ‘pings’), timestamps, and vessel speed. Broadcasting frequencies differ among flag 

states and are set to two hours for the German fishing fleet. Finally, we derived vessel 

characteristics, such as length and additional gear information, from the German Fishing 

Vessel Register and the European Fleet Register. 

We selected all vessels that were active in the North Sea area (EU fishing regions 27.4A-C) and 

used fishing gear, mesh size, and catch composition to group them into three fleets, 

representing the major part of the German commercial fisheries in the southern North Sea 

(Appendix B). The three fleets were: (i) the coastal brown shrimp (BS) fleet using smaller 

vessels (median 18m) and beam trawls, targeting exclusively brown shrimp (Crangon 

crangon), and primarily run by family-businesses; (ii) the flatfish (FF) fleet comprising large 

vessels (median 36m), using beam and pulse trawls, mainly targeting plaice (Pleuronectes 

platessa) and sole (Solea solea), and affiliated to larger companies; (iii) and the mixed 

demersal (MDS) fleet composed of medium sized vessels (median 24m), using otter boards, 

mainly targeting plaice and Norway lobster (Nephrops norwegicus; Nephrops hereafter) and 

mostly affiliated to small businesses. 

We obtained VMS data for each fleet for the period 2012-2018 and improved data quality by 

removing duplicates and pings in harbors or on land. Subsequently, we identified continuous 

fishing trips based on spatial and temporal information from the VMS data and merged them 

with data on fishing trips from logbooks (similar to Bastardie et al. (2010b)). We 

complemented missing vessel characteristics with data from the German Fishing Vessel 

Register and the European Fleet Register. Finally, we used the VMS tools package (Hintzen et 

al., 2012) to separate steaming from fishing pings and calculated fishing effort in hours per 

data point. We then aggregated fishing effort per day in a 0.25° Longitude × 0.25° Latitude 

grid. For each fleet, we used monthly frames, consisting of all cells with fishing effort in a 

month, to set the spatial frame for our daily-resolved fishing effort in the respective month. 

Since fishing effort data was available at a daily resolution, each monthly data set contained 

cells without fishing at certain days. To also represent cells where no fishing effort took place 

during a month, we created a 30km buffer around each monthly frame. Adding negative 

samples enabled the model to not only learn which variables are affiliated to fishing effort, 

but also those that are affiliated to no fishing effort. The resulting data sets of the three fleets 

differed with respect to spatial extent, size, and fishing effort intensity (Figure IV-1). With 
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regard to quantities of data points (spatial grid cells at daily resolution), the MDS fleet 

represented the largest data set (n = 114703), followed by the FF (n = 90726) and BS fleet (n 

= 46974). In terms of mean fishing effort per day and grid cell, the order was reversed, as the 

BS fleet had the highest mean (3.67 h), followed by the FF (0.42 h) and MDS (0.35 h) fleets. 

We used the R programming language for all data processing (R Core Team, 2023), of which a 

detailed description can be found in the supplementary material (Appendix C). 

 

Figure IV-1: Spatial extent and density of fishing activity of the three fleets in the study area, 
based on the number of months a fleet was active in a grid cell from 2012 to 2018. 

2.2.2 Explanatory variables 

We gathered publicly available data sets on potential drivers of fisheries, i.e. bottom 

temperature, salinity, bathymetry, sea surface height, mixed layer depth, significant wave 

height, wind speeds, sediment types, resource prices, resource quotas, crude oil price, spatial 

fishing restrictions, weekends, and holidays (see Appendix D for sources). The only regulation 

considered in this study was the plaice box, prohibiting the activity of beam trawlers with 

engine powers above 221kw in coastal waters of the Netherlands, Germany, and Denmark 

(Beare et al., 2013). Explanatory variables were either spatially, temporally, or spatio-

temporally resolved. In case the data presented a spatial component, we clipped them to the 

study area. Most spatial data sets were gridded at a finer resolution and thus adjusted to our 

grid size (0.25° Longitude × 0.25° Latitude) by taking the mean value. Wave height was the 
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only variable with a coarser spatial resolution and thus was disaggregated. In case spatial data 

were in a polygon format, we calculated the percentage coverage of each grid cell with the 

respective polygon. Finally, we cropped temporal data to the study period (2012-2018) and 

adjusted them to a daily resolution.  

Fishing quotas were extracted from monthly fishery reports of the German Federal Office for 

Agriculture and Food (German: BLE). There were several months with missing quotas, which 

we either reconstructed by using linear interpolation or, in case it was the beginning of the 

year, choosing the first available information of the year. The reason for this was that the EU 

distributes annual quotas at the beginning of January, however, the individual quotas for 

German fishers are only distributed earliest in February. In order to enable fishers to start 

their business, the BLE estimates quotas for the previous months of the year. We calculated 

available monthly quotas by subtracting catches from quotas for plaice, sole, and Nephrops. 

The brown shrimp fishery is self-managed by fishers and not restricted by quotas. 

We used fishing effort in hours as response variable and the following explaining variables: (i) 

spatio-temporal features: u- and v-component of wind, wind gusts, wave height, sea floor 

temperature, sea surface height, salinity, and mixed layer depth; (ii) spatial features: distance 

to port, bathymetry, substrate type, and fishing restrictions; and (iii) temporal features: crude 

oil price, resource market prices, available fishing quota, holidays, weekends, and work days. 

The u-component represents wind speeds from the west (positive values) and east (negative 

values), and the v-component from the south (positive values) and north (negative values). 

We included fish prices and quotas only if they were considered important for the respective 

fleet, e.g. for the FF fleet we included prices and quotas for plaice and sole, but not for brown 

shrimp or Nephrops, because they are barely caught by the FF fleet (Appendix B). We included 

the following holidays in our analysis: Easter (Good Friday to Easter Sunday), Ascension Day, 

Pentecost, Christmas & New Year (22nd December to 4th January). For the BS fleet we also 

included Eid al-Fitr, the end of Ramadan and Muslim holiday, since brown shrimps are usually 

peeled in Morocco and then reimported to Europe (Aviat et al., 2011).  

2.2.3 Boosted regression trees 

We identified the importance of fisheries drivers by using boosted regression trees (BRT), a 

supervised machine learning technique that combines the advantages of tree-based models 

with boosting (Figure IV-2; Friedman 2001). We used the xgboost package in R for BRT tuning 
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and implementation (Chen et al., 2019; R Core Team, 2023). Contrary to other BRT 

approaches, the XGboost technique has a more sophisticated boosting algorithm, additional 

tuning parameters, an internal mechanism for imputing missing values, and scalability, i.e. 

parallel computation to reduce run-time (Chen and Guestrin, 2016; see Appendix E for more 

details).  

For each fleet we randomly assigned 30% of the data to a test and 70% to a training data set. 

We tuned the BRTs in an iterative procedure using 10-fold cross validation and root mean 

square error (RMSE) to determine the best combination of tuning parameters in each step. To 

reduce run time and avoid overfitting, we set early stopping to 10 rounds, limited the 

maximum number of trees to 2000, and selected a learning rate between 0.01 and 0.2. 

Subsequently, we tried different combinations of the maximum tree level and the minimum 

leave weight in steps from 2 to 10 and 1 to 5. Next, we tried values for the bag fraction and 

feature sampling between 0.5 and 0.9, respectively. Finally, we increased the number of trees 

to 103 and tuned the learning rate by trying the values 0.01, 0.05, and 0.1. Due to stochastic 

components in the model, i.e. bag fraction and feature sampling, the optimal number of trees 

varied in each model run. Therefore, we ran the model 10 times, recorded the optimal number 

of trees, and, in the final model, set maximum number of trees to the average of these 

recorded values. 

 

Figure IV-2: The empirical work flow of this study starting with the preparation of input data 
and ending with the identified socio-ecological factors influencing fishing effort. 
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We applied the final model with all tuned parameters – and without cross validation – to the 

training data set another 10 times to counteract stochasticity and to perform external model 

validation. We identified the most accurate of the 10 final models and assessed model quality 

by calculating the deviance explained (𝑟2) and four error measures, i.e. mean absolute error 

(MAE) and RMSE, as well as standardized versions of both. We used the caret package in R to 

calculate MAE, RMSE, and 𝑟2 (Kuhn, 2019) and created standardized metrics by dividing them 

through the standard deviation of the response variable (Bennett et al., 2013). Standardized 

metrics have the advantage of being scale- and variance-independent and therefore may be 

used to make cross model comparisons (Li, 2016). 

We determined the relevance of features by using variable importance (VI) rankings, a 

measure based on how often features were selected for performing a split in the BRT models 

(Friedman, 2001). The resulting VI values indicate relative importance and are scaled, so that 

they sum up to 100. To distinguish between relevant and irrelevant fishing drivers, we added 

a random feature to the model consisting of random numbers between 1 and 100, prior to 

constructing the final model (Soykan et al., 2014). We calculated VI scores for all of the 10 final 

models and defined features as relevant, if their minimum VI score was above the maximum 

VI score of the random number. Due to the large number of explanatory variables, we only 

provided results about relevant parameters. To show the importance by variable type, we 

calculated sum and mean VIs for parameter groups: (i) biophysical which may be further split 

into oceanographic and weather (wind speeds and wave height); (ii) economic (resource and 

oil prices, quotas, and distance to port); (iii) socio-cultural (work day, weekend, holidays); and 

(iv) regulations (plaice box). 

We visualized the effect of relevant features on fishing effort through accumulated local 

effects (ALE) plots of the most accurate final model, which perform well even if explanatory 

variables are correlated (Apley and Zhu, 2016). ALE plots show the change of the modelled 

average response variable at a certain interval of the respective explanatory variable. We set 

the number of intervals to 30. In general, reliability of BRT models increases with more 

available data. We hence presented ALEs in the range of the 10- to the 90-percentile of each 

relevant feature. 
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3. Results 

3.1 Drivers identified by the exploratory literature review 

Among the 16 relevant studies, methodological approaches varied between statistical 

modelling (7), the use of random utility models (RUM) or complex simulation approaches (7), 

and stakeholder elicitation methods such as in-depth interviews and surveys (4). Most studies 

included economic factors in their analysis (13), followed by socio-cultural (9), and biophysical 

(8) parameters, as well as regulations (4). While many studies investigated variables from 

more than one sector, only four combined biophysical, economic, and socio-cultural factors. 

Two of these studies used fisher surveys  (Bastardie et al., 2013; Christensen and Raakjær, 

2006), one applied a RUM (Andersen et al., 2012), and one used statistics (Rijnsdorp et al., 

2008). Figure IV-3 shows an overview of the identified factors influencing fishing activity and 

a summarizing table can be found in Appendix A. 

Biophysical parameters influencing fishing activity may be grouped into weather and 

oceanographic variables, the former directly influencing fisher decisions, e.g. high waves 

restrict smaller vessels to go fishing (Bastardie et al., 2013; Christensen and Raakjær, 2006), 

and the latter affecting marine species, which in turn influences fisher behavior (van der 

Reijden et al., 2018). Oceanographic factors comprise bathymetry, bottom temperature, shear 

stress, and sediment compositions (Hintzen et al., 2019; van der Reijden et al., 2018). Most of 

these variables are subject to temporal dynamics causing seasonality in fishing activities in the 

North Sea (Oostenbrugge et al., 2008; Rijnsdorp et al., 2008, 2006). Conventional economic 

factors are linked to revenue and are used to assess the profitability of a fishing trip. Therefore, 

higher fish prices are incentives to go fishing (Bastardie et al., 2013; Christensen and Raakjær, 

2006), whereas higher fuel prices are an incentive to restrict fishing (Poos et al., 2013). Vessel 

characteristics, i.e. engine power or fishing gears, determine the efficiency of fishing vessels 

and state-of-the-art equipment is related to higher catches and landings per unit effort 

(Rijnsdorp et al., 2006; Sys et al., 2016). The decision-making of fishers differs among business 

structures, as owner-operators include more personal matters in their decisions, as opposed 

to larger companies (Schadeberg et al., 2021). Temporal or spatial restrictions trigger a 

displacement of fishing effort (Andersen et al., 2012; Poos and Rijnsdorp, 2007), whereas 

quota restrictions may inhibit an entire fishery (Ulrich et al., 2011). Especially in mixed 

fisheries, such as unselective demersal trawls, quotas may lead to an early fishing stop, if 
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abundant bycatch species are subject to low quotas (Ulrich et al., 2011). This so-called ‘choke 

species’ effect is enhanced by landing obligations, prohibiting the discarding of undersized 

catches (Batsleer et al., 2016). Stakeholder elicitation methods with Danish fishers revealed 

that older skippers are more likely to abide regulations (Christensen and Raakjær, 2006). 

Socio-cultural factors are mostly linked to attributes of the fishers, i.e. age, experience, social 

network, or cultural norms. For this review we defined experience as information from past 

fishing trips used as a baseline for future decisions. Multiple studies revealed that fishers 

prefer previously known fishing locations (Andersen et al., 2012; Bastardie et al., 2013; Hutton 

et al., 2004; Poos and Rijnsdorp, 2007; Tidd et al., 2012). Memories of economic variables also 

influence the location choice, as high previous revenues function as an incentive for visiting 

that same fishing ground (Bastardie et al., 2013; Tidd et al., 2012), whereas high previous costs 

have the opposite effect (Tidd et al., 2012). In addition, information about profitable or 

unprofitable fishing events may also be acquired by information exchange among fishers 

(Christensen and Raakjær, 2006). As opposed to cooperative behavior on land, Poos & 

Rijnsdorp (2007) found that interactions at sea are more competitive and fishers generate less 

value per unit effort in areas with a high abundance of fishing vessels. Finally, low fishing effort 

during the bidweek (Rijnsdorp et al., 2008), a holiday for the Protestantism, and a preference 

for being at home during the weekend (Schadeberg et al., 2021) show that religious 

orientation may influence temporal fishing patterns as well.   
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Figure IV-3: Infographic displaying factors influencing North Sea demersal fishing activity 
based on the exploratory literature review. 

3.2 Drivers identified by the empirical modelling 

We found the best model fit for the brown shrimp (BS) fleet explaining a large part of the 

deviance in the response variable (fishing effort; 𝑟2 = 0.67), followed by the models for fleets 

targeting mixed demersal (MDS; 𝑟2 = 0.21) and flatfishes (FF; 𝑟2 = 0.18). Accordingly, 

standardized RMSE values showed that least erroneous predictions of fishing effort (in hours) 

were made by the BS model (0.58), followed by MDS (0.89) and FF (0.91) models (see Appendix 

F for all model metrics).  

In all three models, spatio-temporal features achieved the highest variable importance (VI) 

scores (Appendix F). In the BS model, spatial features were second and temporal features third 

most important, whereas the order was reversed for the FF and MDS models. Across feature 

types, biophysical parameters achieved the highest VI scores, followed by economic, and 

socio-cultural variables. Only in the BS model economic parameters were, on average, more 

important than biophysical features (Appendix F). Fishing activities were not constrained by 

the plaice box, the only regulation used in the model. 

We identified the highest number of relevant variables for the BS (13) followed by the MDS 

(10), and FF fleet (9) (Figure IV-4). The biophysical variables bathymetry, salinity, and bottom 

temperature were most important, together amounting to 45% (BS), 27% (MDS), and 26% (FF) 
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of total VI. In contrast to the other fleets, BS fishing effort was also strongly influenced by 

distance to port (11%).  

 

Figure IV-4: Variable Importance (VI) scores for relevant explanatory variables computed by 
averaging VI scores of all 10 models with error bars indicating minimum and maximum 
values. The dotted line shows the VI score of the random variable, which was used to 
identify relevant parameters. 

Accumulated local effects (ALE) showed that fishing effort increased with decreasing depth 

for the BS and FF fleet, whereas the opposite trend was observed for the MDS fleet (Figure 

IV-5A). The effects were highest at -3m (BS), -28m (FF), and -47m (MDS), reflecting the 

preferred depths at which the fleets operate. Warmer and less saline waters affected fishing 

effort of all fleets positively. However, the BS model was the only one with positive ALEs below 

11°C and 33 salinity, indicating that this fleet is active in colder and less saline waters 

compared to the other two. Sea surface height was relevant for the BS and MDS fleets with 

fluctuating effects and local maxima around -0.35m for both fleets. 

Weather parameters influenced all fleets similarly, as ALEs decreased with rising values of 

wind gusts, meaning that fleets prefer to fish with less stormy weather (Figure IV-5B). 

Likewise, fishing effort decreased with growing wave heights, except for the FF fleet showing 

a stronger resistance to high waves. The effects of south-north and west-east winds were 
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negative around low wind speeds and increased with stronger winds in either direction. This 

pattern was most pronounced for the MDS and less for the FF fleet, the latter showing a strong 

positive effect at calm south-north winds and therefore a higher preference for windless days. 

Distance to port was the only relevant economic variable for the FF and MDS fleets, whereas 

resource and fuel price were additional relevant parameters in the BS model (Figure IV-4 & 

Figure IV-5C). Positive ALEs of distance to port represented a gradient among fleets starting 

with the BS (20km), and followed by the FF (139km), and MDS fleet (175km). This suggests 

less spatial flexibility for the BS in comparison to the other fleets. Moreover, the ALE of the BS 

model depicted a clear threshold with values being positive and constant above 18km. 

Resource price influenced BS fishing effort positively at lower prices. With regard to crude oil 

price, the distribution of underlying data was skewed towards the extremes, suggesting that 

ALE between $70 and $100 per barrel are unreliable. In ranges with more data, the effect of 

crude oil price on BS fishing effort was greater when fuel was less expensive, indicating that 

BS fishers favor lower fuel prices. 

The only relevant socio-cultural parameter was workdays for the BS fleet, showing that fishers 

prefer to leave the port on workdays as opposed to weekends and holidays (Figure IV-5D).  
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Figure IV-5: Accumulated local effects (ALE) of relevant explanatory variables of the Brown 
Shrimp (BS), Flatfish (FF), and Mixed Demersal (MDS) fleet. Panels are grouped into 
oceanographic (A), weather (B), economic (C), and socio-cultural (D) variables. ALE of 
numeric variables (A-C) are standardized. Dark grey lines represent ALE of the respective 
fleets, light grey lines relevant ALE of other fleets, and rug plots the distribution of intervals 
used to calculate the ALE.  

4. Discussion 

We identified socio-ecological drivers influencing North Sea demersal fishing activity and 

modelled spatio-temporal fishing effort dynamics of German demersal fishing fleets in the 

North Sea using boosted regression trees (BRT). The exploratory literature review revealed 

that studies combining biophysical, economic, socio-cultural and fishing regulation factors in 

one single quantitative analysis are rare. As such, our empirical analysis contributed to filling 

this research gap. Advancing from previous BRT studies analyzing fishing effort (Castrejón and 
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Charles, 2020; Cimino et al., 2019; Crespo et al., 2018; Soykan et al., 2014), our analysis 

considered a higher model resolution (i.e. daily fishing hours per grid cell). Biophysical 

variables were the most relevant for effort dynamics, although their effects varied among 

fleets. Quotas were not relevant for the German demersal North Sea fisheries and market 

prices only for the brown shrimp (BS) fleet, although our exploratory literature review 

revealed both parameters to be important influencing fishing activity. Contrary to the flatfish 

(FF) and mixed demersal (MDS) fleets, the BS fleet generally showed a stronger dependency 

on socio-economic drivers. 

4.1 Biophysical drivers influencing fishing effort 

The observed effects of bathymetry among fleets resemble the habitats of the respective 

fleet’s target species, since brown shrimp is caught in shallow waters (Schulte et al., 2020) 

whereas plaice, sole and Nephrops occur in deeper areas (Hunter et al., 2003; Johnson et al., 

2013; van Hal et al., 2016). Our results hence support earlier findings suggesting that 

biophysical drivers of fishing fleets reflect the ecological niches of their target species (Crespo 

et al., 2018; Hintzen et al., 2021; van der Reijden et al., 2018). Furthermore, we found bottom 

temperature and salinity to be positively and negatively related to fishing effort, respectively. 

Assuming that effort distribution is steered by the dynamics of target species, this result 

contradicts ecological studies reflecting a negative influence of higher temperatures on the 

recruitment and occurrence of plaice (Akimova et al., 2016; Engelhard et al., 2011; Teal et al., 

2012; van Hal et al., 2016) and weak effects of salinity on plaice and sole (Akimova et al., 2016; 

Fonds, 1979; Lauria et al., 2011), Nephrops (Johnson et al., 2013), and brown shrimp 

(Kerambrun et al., 2001). Biophysical variables are subject to seasonal variability (Appendix 

G), which is also reflected in the fleets’ target species. Seasonal catch variations of the main 

target species brown shrimp (Schulte et al., 2020; Temming and Damm, 2002), plaice (Hunter 

et al., 2003), sole (Rijnsdorp et al., 1992), and Nephrops (Redant, 1987), occur due to 

migrations or life cycles and peak in the warmer months from spring to autumn.  

Our results are in line with the assumption that stormy weather limits the operationality of 

vessels (Bastardie et al., 2013; Boonstra and Hentati-Sundberg, 2016; Christensen and 

Raakjær, 2006). Differences in vessels’ seaworthiness can be explained by technical 

dissimilarities, such as vessel sizes (Bastardie et al., 2013; Salas and Gaertner, 2004). In our 
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case, the FF fleet is composed of the largest vessels (Appendix B) and thus resisted higher 

waves as compared to the other two fleets.  

4.2 Economic and socio-cultural drivers influencing fishing effort 

Our findings revealed that economic and socio-cultural drivers differ among fleets, despite 

operating in similar spatial areas and belonging to the same flag state. The only socio-

economic variable influencing both the MDS and FF fleet was distance to port. In contrast, BS 

fishers have a higher dependency on market price dynamics and prefer fishing on workdays. 

An important difference between the BS and the other fleets is that BS fishers usually run 

family-owned businesses operating a single vessel, whereas several vessels in the FF fleet are 

managed by larger companies (STECF, 2020). Boonstra & Hentati-Sundberg (2016) 

demonstrated that Swedish small-scale fishers are motivated by personal norms, such as the 

need to spend time at home and Schadeberg et al. (2021) found that decisions of fishers 

owning small businesses are more influences by personal matters as opposed to those made 

in larger fishing companies. This is in line with our results, as the BS fleet was the only one 

driven by workdays and hence preferred to stay home on weekends and holidays. Moreover, 

BS fishers operate closer to the coast and fishing trips usually last no longer than one day 

(Aviat et al., 2011), whereas the other two fleets operate for several days, limiting their 

flexibility to stay in port during the weekend (Poos et al., 2013).  

Another difference between the BS and the other two fleets is that BS is not subject to any 

quota, despite being the largest fishery in the German Bight (STECF, 2020). Some BS fishers 

follow self-imposed regulations, such as weekend bans to prevent an excess supply and thus 

gain certain control on the resource price (Aviat et al., 2011; Döring et al., 2020). Resource 

price was only relevant for BS fishers and, contrary to previous findings (Bastardie et al., 2013; 

Christensen and Raakjær, 2006; Girardin et al., 2017; STECF, 2020), our results show that 

higher resource prices were affiliated with less fishing effort. One possible explanation could 

be a well-functioning offer and demand dynamic where retailers lower their prices if catches 

increase and vice versa. Another explanation could be that BS fishers reduce their fishing 

effort when the resource price is high – be it due to self-imposed regulations to prevent a glut 

of brown shrimp landings and preserve stable prices or because of achieving personal 

objectives, i.e. generating a certain weekly profit. Moreover, the BS fleet was most dependent 

on nearby ports, perhaps because, contrary to the other two fleets, its target species occurs 
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in coastal areas. On the other hand, distance to port is a proxy for steaming time and thus the 

amount of fuel used per fishing trip, suggesting that the BS fleet is more restricted by fuel 

costs than the other two fleets. This finding is supported by the fact that the BS fleet is the 

only one for which we identified fuel price as a relevant driver.  

Surprisingly, our results revealed that quotas were irrelevant for the German demersal fleets, 

despite low annual German quotas for Nephrops of less than 20t. To enable a Nephrops 

fishery, Germany has swapped Nephrops quotas with other EU member states (STECF, 2020). 

Since the data we used encompasses the amount of available quota after inter-country swaps, 

our results suggest that Germany always found partner countries for quota swaps, so that the 

MDS fleet was able to catch Nephrops without restrictions. However, the consequences of the 

Brexit will lower Germany’s swapping capacities due to reduced cod quota, which was mostly 

used to swap for Nephrops quota from the United Kingdom (Letschert et al., 2021).  

4.3 Implications for management 

Our study supports the call for approaching fisheries as a socio-ecological system in 

management, which has been suggested by many authors (Hare, 2020; Hilborn, 2007; Salas 

and Gaertner, 2004). Furthermore, results on the three German fishing fleets highlight the 

importance of recognizing different biophysical and socio-cultural requirements among fleets 

in fisheries management (Christensen and Raakjær, 2006). This information is key for the 

advancement of integrative management approaches, such as marine spatial planning (MSP), 

and promotes the spatial representation of fishers in management plans (Trouillet et al., 

2019). In this study, the BS fleet was the most distinctive in terms of influencing 

socio-economic factors suggesting a dependency on fuel and resource prices. Because of these 

dependencies, the BS fleet is also the most vulnerable to economic changes, especially since 

it suffered from the COVID-19 pandemic and a general old age of vessels (Goti-Aralucea et al., 

2021). In practice, these factors limit the BS fleet’s ability to switch to alternative fishing 

practices or catch grounds in response to area closures or displacement of its target species 

because of climate change (Pecl et al., 2017).      

Another pressing issue for fisheries is the overlap with other marine industries. Equivalent to 

the massively growing ocean economy expected in the next decade (OECD, 2016), MSP needs 

to adapt and especially focus on underrepresented stakeholder groups, such as small-scale 

fisheries (Flannery et al., 2016). Especially in the North Sea, expanding offshore windfarms will 
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constrain the available space for fishing and force fishers to displace their effort (Letschert et 

al., 2021; Stelzenmüller et al., 2022). However, alternative fishing grounds might not always 

provide the same biophysical conditions and therefore potentially reduce the safety, 

efficiency, or profitability of fishing operations. Examples are stormier or further offshore 

located displacement areas leading to less days when fishing is possible or increased trip 

lengths and fuel costs. As a consequence of longer trips, fishing could become less attractive 

to fishers who prefer to return to the port before the weekend. Furthermore, the reallocation 

of demersal fishing effort could lead to a higher overall benthic disturbance (Stelzenmüller et 

al., 2015). Socio-ecological drivers identified by this study can be used to find alternative 

fishing opportunities and thus aid to reduce the uncertainty linked to reactions following 

changes in the socio-ecological system of fisheries. 

4.4 Methodological considerations 

We acknowledge that our empirical model is static and based on aggregated fleet data. In our 

exploratory literature review, we identified vessel- and fisher-specific variables influencing 

fishing activity, i.e. vessel size, engine power, as well as skipper age and experience. 

Disaggregated and more dynamic models, such as agent-based models, would allow to include 

these variables and enable the analysis of individual fishing behavior and strategies. These 

models allow incorporating differences among individual fishers and combining empirical data 

with social science theories about human-decision making (Müller et al., 2013; Schlüter et al., 

2019; Smajgl et al., 2011; Wijermans et al., 2020).  

The performances of our models measured as deviance explained was similar to previous 

studies using BRTs to analyze fishing effort, even while applying a higher spatial and temporal 

resolution. However, BRTs of fleets with large spatial fishing grounds (FF and MDS) performed 

worse than those of fleets with a smaller spatial flexibility (BS). This is likely because of the 

larger variety in the spatial data. Additional explanatory factors might improve the model 

performance. 

Conclusions 

We identified potential drivers of demersal North Sea fishing fleets and showed that boosted 

regression trees (BRT) are a suitable tool to empirically analyze socio-ecological factors 

influencing fishing effort. Model performances were satisfying, although BRTs for fleets with 

large spatial variety might benefit from including additional explanatory factors. Our results 
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revealed that individual fishing fleets might be influenced by distinct socio-ecological factors, 

even though they operate in similar geographical areas and target similar species 

assemblages. With our fleet-based results we set a possible frame for dynamic and vessel- or 

fisher-based models (i.e. agent-based models), which can be used to combine empirical data 

and human-decision making theories. Especially in the North Sea, fishers will be confronted 

with many socio-ecological changes leading to yet unpredictable adaptations in the coming 

decades. In this context, our study represents a strong contribution helping to unravel fishers’ 

behavior and thereby reducing the uncertainty in fisheries management and integrated 

marine spatial planning.  
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Abstract 

Understanding human decision-making in the context of complex fisheries socio-ecological 

systems remains one of the key challenges for ecosystem-based management. Agent-based 

models (ABM) are increasingly seen as one of the most promising methods to simulate human 

decision-making. In most fishery ABMs, human behavior is highly simplified and reduced to an 

economic motivation, although human behavior is more multi‑facetted. Here, we present 

FISHCODE a spatio-temporal ABM for German fisheries in the southern North Sea. Our 

decision‑making submodel combines different behavioral motivations, i.e. habitual behavior, 

profit maximization, competition, conformism, and planning insecurity. With the help of 

highly resolved information on fishing trips, we parameterized model parameters either 

straight from data or use pattern‑oriented modelling. Model validation showed that 

aggregated model outputs were in realistic ranges when compared to observed data. 

FISHCODE hence represents a tool to assess the consequences of the ever‑growing challenges 

to North Sea fisheries, e.g. expansions of offshore wind farms, gear restrictions, or increasing 

fuel prices. 

Key words: Agent-based modeling, fisheries, human behavior, marine spatial planning, socio-
ecological system 
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1. Introduction 

Agent-based modelling (ABM) is an increasingly valued method to simulate human decision-

making in socio-ecological systems (An, 2012; Rounsevell et al., 2012; Schwarz et al., 2020). 

Growing amounts of available empirical data offer the chance for more complex models and 

increase their structural realism (An et al., 2023; Elsawah et al., 2020). With a higher degree 

of realism, ABMs can be applied for simulation and scenario analysis and may represent virtual 

laboratories, in which the manipulation of model parameters allows estimating effects on real-

world counterpart (Bruch and Atwell, 2015).  

One facet where ABMs often come short is the representation of realistic human behavior. In 

a review of land-use ABMs, (Groeneveld et al., 2017) found that most models lack a theoretical 

foundation for human behavior and among those that used theories, economics was the 

dominant discipline. The same holds true for models of fisher behavior with rational choice 

being the most applied theory (Andrews et al., 2020; Haase et al., 2023; Van Putten et al., 

2012), although a growing amount scientific literature suggests human behavior is more 

multifaceted (Barz et al., 2020; Schlüter et al., 2017; Wijermans et al., 2020). Selecting the 

right theory for human behavior is difficult due to incomplete knowledge (Elsawah et al., 2020; 

Schwarz et al., 2020) and has been identified as one of the main challenges in fisher behavior 

simulations (Lindkvist et al., 2020). One peculiarity among fishers is the often-observed strong 

attachment to their occupation. Despite fishing being hard work, very dangerous, and 

uncertain with regard to profits, fishers still continue their business, because to them it is more 

than a way of generating income (Pollnac and Poggie, 2008; Stelzenmüller et al., 2024a). 

Fishers decision-making can also be heavily influenced by risk-averse behavior especially if the 

fishers’ wealth situation does not allow for experimenting (Holland, 2008). Humans in general 

rather play safe when they are exposed to uncertainty. In fisheries, there are many sources of 

uncertainty introduced by large variabilities in terms of environment, management, and 

market prices (Salas and Gaertner, 2004). New political settings (e.g. Brexit) can destabilize 

long established fisheries management systems, such as EU quota trade and distribution 

(Letschert et al., 2021). While assuming rational behavior with bioeconomic fleet models 

might be effective for modelling industrial fishing fleets on a large scale, they lack the 

necessary details to realistically depict decision-making of smaller case studies and more 

artisanal fisheries. Therefore, models on fisher behavior should consider the influence of 
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uncertainty, risk-avoidance and social factors in addition to the traditionally applied economic 

theories (Van Putten et al., 2012).  

In this study, we present FISHCODE, an empirically based ABM for German fisheries in the 

southern North Sea where planned offshore windfarms (OWF) and marine protected areas 

(MPA) might lead to unforeseen fishing displacement effects (Stelzenmüller et al., 2022). In 

order to achieve long-lasting and sustainable marine management, it is desirable to consider 

fisher’s behavior when drafting new management plans (Fulton et al., 2011; Hilborn, 2007). 

Our study objectives were to develop a model that is able to (I) simulate fisher behavior 

beyond profit maximization and (II) reproduce spatio-temporal fishing dynamics with 

sufficient realism to assess scenarios. We modelled fisher decision-making by applying the 

Consumat approach (Jager et al., 2000; Jager and Janssen, 2012), in which agents choose 

different behavioral strategies based on their satisfaction and uncertainty levels. To achieve 

our objectives, we draw on theories of human behavior and combine these with heuristics 

rooted in quantitative historical data to enable the simulation of spatio-temporal fishing effort 

as an emergent property of individual agent decisions.  

2. Methods 

In our agent-based-model (ABM), termed FISHCODE (FIsheries Simulation with Human 

COmplex DEcision-making), agents technically represent fishing vessels, however, throughout 

this paper, we refer to agents as fishers, because with our decision-making submodel we focus 

on the human behavior of the deciding fisher on board, which we assume to be constant for 

every vessel. To the authors’ state of knowledge, addressed fisheries are composed of male 

fishers, which is why we refer to agents with “he” and “his”.  

While we developed FISHCODE in Netlogo 6.1.1 (Wilensky, 1999), we used the R environment 

for data preparation and analysis of results (R Core Team, 2023), and performed the sensitivity 

analysis, parameterization, and model experiments by using the nlrx package for R (Salecker 

et al., 2019). The full model documentation and validation including an ODD+D protocol can 

be found in Appendix A in shape of a TRACE document to which we will refer throughout this 

study (Ayllón et al., 2021; Grimm et al., 2010, 2006; Müller et al., 2013). 
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2.1 Study system 

The southern North Sea is a shelf sea that has been heavily fished for centuries and belongs 

to the most anthropogenically used areas in the world (Halpern et al., 2019, 2008b) with 

uncertain trajectories for human activities (Stelzenmüller et al., 2024b). The southern North 

Sea is characterized by different habitats shaped by various sediment types (from fine sand to 

rocky reefs), geographical features like trenches and low slopes between the coast and the 

barrier islands forming the Wadden Sea, and human-made spatial elements, i.e. offshore wind 

farms (OWF) and marine protected areas (MPA). The most important German fisheries in the 

study area consist of a near-shore brown shrimp (Crangon crangon) fleet and two fleets of 

demersal trawlers operating further offshore targeting either the flatfish plaice (Pleuronectes 

platessa) and sole (Solea solea) or Norway lobster (also called Nephrops; Nephrops 

norvegicus). The brown shrimp fleet represents the largest German North Sea fishery in both 

economic relevance and vessel number, encompassing more than 200 vessels with an average 

length of 18 m that are predominantly equipped with beam trawls (TBB) and sometimes 

electric pulse gears (PUL). Fishing businesses of this fleet are relatively small and family-

owned. The sole and plaice fleets are composed of several “cutters” with an average length of 

36 m and equipped with TBB or PUL. These vessels are affiliated to large Dutch companies, 

although they are still registered as German-flagged vessels. Fishers targeting plaice and 

Nephrops use vessels with an average length of 24 m and otter bottom trawls (OTB). They are 

owned by medium-sized German companies. For most vessels, plaice represents a lower 

incentive due to the low market prices in comparison to sole and Nephrops. Nonetheless, 

there are some OTB vessels that predominantly target plaice. All gears described above are 

bottom trawls, which are very unselective and result in relatively high bycatches. PUL has been 

introduced in the 2000s as a fuel-saving alternative for TBB due to its light weight and reduced 

seafloor contact, but was banned by the EU in 2021, because of its controversial effect on the 

ecosystem (Kraan et al., 2020; Le Manach et al., 2019). A large portion of the flatfish and 

Nephrops caught by the German fleets are landed in the Netherlands where most of the 

processing industry is located. The majority of German fishers are part of producer 

organizations that manage the distribution of fishing quotas and are organized by region and 

target species assemblage. Plaice, sole, and Nephrops are quota-regulated species, meaning 

fishers’ catches are limited to the acquired quota. In the cases of Nephrops and sole the quotas 
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could actually be a limiting factor, whereas the quota for plaice was never exhausted in the 

previous years.  

2.2 Data processing 

2.2.1 Data sources  

We used a variety of data sources to inform FISHCODE at different stages. Most agent state 

variables were informed by vessel monitoring system (VMS) and logbook data containing 

geographical timestamps broadcasted every two hours (so called pings), landing weight and 

value compositions by species, as well as fishing gear, and landing ports. These were 

complemented by technical vessel details such as engine power and tonnage from the 

European fleet registry, and membership in producer organizations from the German vehicle 

registry. We combined all previously described information to a data base on fishing trip 

resolution to which from hereon we refer to as “trip data base”. We complemented the trip 

data base by calculating landings per unit of effort (LPUE) per species (kg / h), as well as fishing 

and steaming times. We cleaned the trip data base by checking for outliers in several variables, 

e.g. LPUE and trip length (days). Finally, the trip data base comprised 21828 fishing trips from 

216 vessels over seven years (2012-2018). We informed environmental and economic 

variables with data sets from the Scientific, Technical, and Economic Committee for Fisheries 

(STECF), the European Market Observatory for Fisheries and Aquaculture (EUMOFA), and 

Copernicus. Monthly expenses and aspired savings of fishers were directly derived from 

webpages containing statistical information about German citizens. Details on all data 

processing steps can be found in Appendix A including a list of all data sources with links to 

online references (Table V-A3). 

2.2.2 Defining metiers, fleets, and catch grounds  

We grouped fishing trips into metiers, and vessels into fleets. Metier is a term that is used in 

fisheries literature to describe a fishing trip based on species assemblage and technical vessel 

information (e.g. gear or mesh size), whereas vessel characteristics such as size or main fishing 

gear are used to categorize fleets (Ulrich et al., 2012). Thus, a particular vessel is always 

associated to only one fleet, but can engage in fishing trips of different metiers throughout 

the year.  
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For FISHCODE, we defined eight metiers by clustering fishing trips with regard to catch 

compositions representing the major part of the German fisheries in the southern North Sea 

(Appendix A2.1). For simplicity reasons, we did not include net mesh size in our metier 

definitions. In FISHCODE, agents have one default metier, which is directly extracted from the 

trip data base and represents the metier they engaged most during the years before model 

initialization. While the default metier is fixed, agents dynamically choose metiers for every 

fishing trip according to certain state variables, (e.g. available gears and quotas for target 

species) and the current model environment (e.g. weather). Certain vessel features such as 

gear handling or steaming speeds depend on characteristics unique to vessels rather than 

metiers and therefore remain static. We used the fixed default metiers to group vessels into 

fleets (Table V-1). Every metier is linked to its own spatial catch ground with the exception of 

PUL metiers for which we merged catch grounds with the respective TBB metier, e.g. PUL – 

PLE&SOL and TBB – PLE&SOL, the reason being that these two gears can be used 

interchangeably by vessels (Appendix A2.2).  

Table V-1. Default metiers and fleets defined for the agent-based model. Gear abbreviations 
stand for otter bottom trawl (OTB), beam trawl (TBB), and electric pulse trawl (PUL) and 
species for plaice (PLE), sole (SOL), Nephrops (NEP), and common shrimp (CSH). 

Default metier Details Fleet 

OTB - PLE Otter board trawler catching mainly plaice. 

OTB – PLE/NEP OTB – NEP&PLE Otter board trawler catching mainly plaice and 

Nephrops. 

TBB – PLE&SOL Beam trawlers catching mainly plaice. 

TBB/PUL – PLE/SOL 

TBB – SOL&PLE Beam trawlers making most profit from sole. 

PUL – PLE&SOL Pulse trawlers catching mainly plaice 

PUL – SOL&PLE Pulse trawlers making most profit from sole. 

TBB - CSH Beam trawlers catching common shrimp 

TBB/PUL – CSH 

PUL - CSH Pulse trawlers catching common shrimp 
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2.3 Model Description 

2.3.1 Model overview 

Environmental, economic, and social factors play an important role in fisheries socio-

ecological systems (Letschert et al., 2023; Stephenson et al., 2018). Environmental factors and 

habitats determine the occurrence and quantity of fish and other target species while market 

prices dictate their value and fuel, material, and personnel costs need to be paid. These 

dynamics are widely accepted and represent the core of bio-economic fishery models (Blanz, 

2018; Garcia et al., 2017; Salz et al., 2011).  

Humans are complex beings with different ages, educations, and life situations. Since fishers 

are a crucial element when describing fishery dynamics, it is evident that personal choices and 

norms of fishers should be considered in addition to environmental and economic factors 

(Andrews et al., 2020). Work rhythms and fishing trip lengths are affected by personal choices 

such as wanting to be home on the weekend or at the end of every day (Letschert et al., 2023; 

Schadeberg et al., 2021). Technical vessel characteristics are another source of heterogeneity. 

Vessel volume and size define the available space for storing catches (volume) and resisting 

storms (Bastardie et al., 2013; Letschert et al., 2023). Moreover, technical vessel 

characteristics limit fishing choices, because fishing gears have technical requirements, e.g. 

otter bottom trawls (OTB) require winches at the stern to pull nets on board, whereas beam 

trawls (TBB) and electric pulse trawls (PUL) are submerged from port- and starboard. A certain 

type of vessels, so called “eurocutter”, pose an exception, because they were built in a way to 

be able to use both OTB and TBB or PUL gears.  

2.3.2 Agent decision-making 

Before leaving for a fishing trip, agents in FISHCODE have to make three decisions that are 

influenced by exogenous or endogenous factors. Figure V-1 shows all factors directly 

influencing decisions and groups those into environmental, technical & regulation 

(exogenous), and cognitive (endogenous). We defined cognitive variables as those that involve 

the processing by agents.  
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Figure V-1. Infographic showing main agent decisions, factors directly influencing these 
decisions (arrows) grouped into Technical & Regulation, Environmental, and Cognitive factors 
(colors), and how the Consumat approach is embedded in the decision flow. 

What to fish? refers to the decision of choosing a fishing metier. Agents can only engage in 

metiers with species for which they have available quotas and with gears that can be used by 

their vessels. The pool of metiers to choose from depends on the Consumat strategy 

(described below). 

How long? refers to the determination of the trip length and is influenced by personal norms 

affecting the agents’ work rhythms, such as wanting to be home on the weekend or restricting 

the overall trip length. Moreover, storms resulting in high waves limit trip lengths. 

Go fishing? refers to the decision of actually going fishing or staying in port. Personal norms in 

the shape of probabilities for having an inactive week influence this decision and differ by 

season and month. Also, if the vessel needs maintenance, the agent will stay in the port. 

Derived from the decision What to fish?, agents have a pool of possible metiers and make 

forecasts about changes to their satisfactions and uncertainties (described below). If forecasts 

for all metiers yield a potential worsening of their situation, they will stay in the port. 
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The Consumat approach has recently been used to model farmers’ decision on water irrigation 

(van Duinen et al., 2016), weed control in maize agriculture (Huber et al., 2021), and soil 

conservation (Van Oel et al., 2019). To the state of the authors’ knowledge, there has not been 

an application of the Consumat approach in a fishery ABM except for the stylized fisher agents 

in the original publication (Jager et al., 2000).  

Depending on whether agents are satisfied or unsatisfied and certain or uncertain, they decide 

to use one of four actions: (1) repetition, (2) imitation, (3) deliberation, or (4) inquiring (Table 

V-2). Each action involves a different behavioral strategy to perceive the potential options of 

metiers that agents may choose from. Independently of the chosen behavioral strategy, 

agents always have the option of staying in port, which they select if all other metier options 

would worsen the situation of the fisher. Agents evaluate their situation by calculating three 

satisfactions (existence, social, and personal) and two uncertainties (existence and social), 

each of them multiplied with a weighting factor. Formulas for the calculations of satisfaction 

and uncertainty can be found in Appendix A1.2.8. The advantages of using the Consumat are 

threefold on which we will elaborate in the next paragraphs. 

Table V-2. Possible behavioral strategy from the Consumat approach that is chosen depending 
on the agents’ satisfaction and uncertainty and determine the perceived behavioral options, 
i.e. metiers. 

Behavioral 

strategy 

Satisfact-

ion 

Uncer-

tainty 

Perceived options 

Repetition High Low Metier from previous trip as the only option. If it is not 

possible to perform the repeated action (e.g. no quota), the 

agent will switch to deliberation. 

Imitation High High Metiers from previous trip of agent’s own memory and last 

trips of close social network. If there is no possible option 

among the perceived options (e.g. no quota), the agent will 

switch to inquiring. 

Deliberation Low Low All available metiers in FISHCODE including those that have 

not been used by any other agent yet. 

Inquiring Low High Metiers of the last trips from agent’s extended social 

network and all metiers from his own memory.  
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First, the application of multiple satisfactions and uncertainties with different emphases 

allows to combine multiple behavioral theories. The existence satisfaction (ESAT) represents 

an aspect of bounded rational behavior as it reinforces profit maximization within the 

knowledge limitations of agents. It is calculated as the relative share of the savings compared 

to the aspired savings, meaning that as soon as the savings grow above the aspired savings, 

the ESAT does not grow disregarding how much more profit is generated. If savings fall below 

half the negative value of the aspired savings, the agents change their selection process for 

metier options to pure profit maximization. Attachment of German fishers to their occupation 

goes beyond a way of generating income (Stelzenmüller et al., 2024a). This aspect is covered 

by the personal satisfaction (PSAT), which grows the more similar the agent’s previous metier 

choices are. The social satisfaction (SSAT) introduces an aspect of rivalry in the agents’ 

behavior, as it grows, if they earn more than their colleagues. It is formalized as the proportion 

of agents’ trip profits that are above the average profit of their peers at the moment of the 

trip.  

Another factor influencing decision-making is risk and uncertainty. One large source of 

uncertainty lies in the quality and quantity of catches. We represent this planning insecurity 

by the existence uncertainty (EUNC) that grows with profits per trip being lower than 

predicted profits and vice versa. The EUNC also decreases the larger the standard deviation of 

trip profits is representing that agents may get accustomed to varying profits. The second 

uncertainty, the social uncertainty (SUNC), covers the fact that fishers might feel uncertain if 

the majority of their colleagues engage in metiers different from their own. The SUNC 

decreases the more similar used gears and primary target species are of an agent’s memorized 

trips in comparison to his peers. Therefore, the SUNC represents the tendency to conformism.  

A second advantage of the Consumat approach is that by default it includes information 

exchange inherent to having a social network (Table V-2). In fisheries, social networks are 

decisive, because they enable the sharing of information about yields of past fishing trips and 

alternative fishing strategies increasing chances for good catches (Barnes et al., 2017; Wilson, 

1990). Social ties between fishers are more likely to form within homogeneous groups marked 

by target species and landing port (Alexander et al., 2018; Gillis et al., 2021). In our ABM, we 

use the agents’ current ports and their memberships in producer organizations to define their 

closeness and group them into social networks. Within a social network, agents are able to 

exchange information and perceive information of past fishing trips. This enables agents to 
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adapt to fishing metiers used by their peers, given that technical vessel characteristics and 

quota availabilities meet the requirement.  

Finally, the third reason why we chose the Consumat approach is the dynamic selection of 

behavioral strategies that equips agents with the flexibility to adapt their behavior. Agents 

evaluate whether it is worth it to go fishing at every time step, given they are currently in a 

port (Figure V-2). Once decided to leave on a fishing trip, they perceive a pool of options 

consisting of potential metiers they could engage in. The only exception is when they perceive 

a single metier option (repetition). In order to choose one metier, fishers must have some kind 

of selection process and choose the metier that is most appealing either due to economic, 

traditional, or some other values. We utilize the already defined satisfactions and 

uncertainties for this decision process. For every metier in the pool of options, agents predict 

the possible fishing outcomes including new satisfactions and uncertainties. Then, they select 

the metier that promises the highest sum of gain in satisfaction and loss of uncertainty.  

2.4 Agent cycle and simulation of fishing trips 

Every model step represents one day that agents start with perceiving ambient bottom 

temperature and market prices for species and fuel (Figure V-2). Agents perceive these 

variables with an error of up to 10% to simulate their imperfect knowledge (Appendix A1.2.1). 

Then, agents update their state variables, mainly involving satisfactions and uncertainties. If 

they are currently fishing, they continue unless the days already spent fishing equal the 

maximum days for that trip. In the latter case, they return to the port and land their catches. 

If the agents are currently in the port, they try to leave for a fishing trip by first perceiving a 

set of behavioral options representing potential metier choices. The number of metier options 

varies depending on their satisfaction and uncertainty statuses (Table V-2), but always include 

the option of not leaving on a fishing trip and staying in port. Metier options for which the 

agent does not own the right quota or fishing gear are removed from the pool. For each of the 

retained behavioral options, the agents assess the possible trip length, which is limited by 

weather conditions and personal norms such as maximum trip days and wanting to stay home 

on the weekend. Then, for each of the retained options, they predict fishing outcomes 

including the anticipated change in satisfactions and uncertainties (Appendix A1.2.2). The 

predictions are made using variables from past fishing trips of the same metier in the agents’ 

memories. If a fishing trip of the metier doesn’t exist in the agent’s memory, they get 
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information with an error from the memory of peers in their social network. Independent from 

which memory the information originates, the bottom temperatures of all trips in the selected 

memory are compared to the ambient one and the most similar trip is used for predictions. 

Landings, costs, profits, as well as changes in satisfactions and uncertainties are then predicted 

based on the landings per unit effort (LPUE) from the matched trip and the anticipated trip 

days. After predicting the outcomes, agents rank options according to the sum of the gain of 

satisfaction and loss of uncertainty. Starting with the option of the largest sum, agents will try 

to engage in a fishing trip of this option’s metier and remove those with high quantities of 

bycatches potentially surpassing quotas.  

Once an agent found a possible metier option, he chooses the shortest path between his 

starting port and the center patch of his fishing destination, the latter being derived from 

either his own or his peers’ memory. The path is determined by calculating the minimum 

number of steps an agent needs in horizontal, vertical, and diagonal direction to reach its 

destination. The center patch might change depending on the vessel density in the area and 

the number of suitable fishing patches (Appendix A1.2.4). The fishing movements are 

simulated using Lévy flights, a specific version of random walks that has been used to simulate 

the forage movement patterns of marine predators (Sims et al., 2008). Using Lévy flights, 

agents randomly decide for a direction, while the number of steps in that direction is drawn 

from a tailed random distribution simulating fishing movement with some longer straight lines 

(trawling) and several clumped patches (searching). The longer the path from the landing port 

to the fishing ground and the lower the engine power of the agent’s vessel, the longer the 

steaming time. Fishing time is calculated by subtracting the steaming time from the overall 

trip length. Additionally, we added a fixed number of steaming hours per trip day that varies 

depending on the metier based on empirical information from the trip data base (Appendix 

A2.3.8). To model landings for a certain metier, oceanographic variables from the trip data 

base (bottom temperature, bottom salinity, mixed layer depth and bathymetry) associated 

with fishing trips of the same metier and current season are compared to the ambient ones 

using Euclidean distances. The fishing trip with the best match is then used to derive species 

composition and LPUEs for the new trip. LPUEs are adjusted according to the engine powers 

of the matched trip and the current agent. Landings are calculated by multiplying the adjusted 

LPUEs with the fishing time and then multiplied with current market prices to calculate 

revenues (Appendix A1.2.5). Local depletion of resources is simulated by the patch-specific 
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local depletion factor that becomes reduced for every vessel fishing in that patch and recovers 

a certain amount every day (Appendix A1.2.6). Whenever landings are simulated for a certain 

patch, the LPUEs are multiplied with the depletion factor. Fuel costs are directly calculated 

from steaming and fishing times, the latter having a slightly higher fuel consumption due to 

the additional drag of the fishing net. Other costs are derived from the annual STECF report 

and standardized by day at sea to simulate the costs of personnel, repair & maintenance, other 

variable costs per day at sea, while fixed costs are subtracted in daily rates independent of the 

agent’s actions (Appendix A2.4).  

 

Figure V-2. Infographic of the daily cycle each agent passes through in every model step.  

2.5 Sensitivity analysis 

We used a Morris screening to test the sensitivity of model parameters, which performs 

efficiently for large parameter spaces (Morris, 1991). Morris screening is based on the much 

simpler method of changing parameters one at a time (OAT) and involves many OAT 

procedures on different levels. From the results, indicators can be derived per parameter 

informing about the type of effect (i.e. monotonic, non-linear, interaction), as well as their 

strength (Campolongo et al., 2007; Garcia Sanchez et al., 2014). In total, we tested the 

sensitivity of 13 model parameters on eight model outcomes, i.e. catches of different species, 

fishing trip days, number of trips, as well as mean longitudes and latitudes of trips (see Annex 

A6.1 for details).  
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2.6 Model parameterization 

We calibrated parameters that could not be derived from empirical data by using pattern-

oriented modelling (POM), an established method for ABM parametrizations, which compares 

model simulations with varying input parameters to observed real-world patterns (Wiegand 

et al., 2003). In total, we parameterized seven model parameters (Table V-3) using three 

categories of real-world patterns, i.e. spatial distribution of fishing effort, monthly number of 

trip days and monthly catch compositions. Each pattern category was split into sub-patterns: 

the catch composition into species (i.e. plaice, sole, brown shrimp, and Nephrops) and fishing 

effort and trip days into metiers with pulse and beam trawls grouped together (i.e. OTB – PLE, 

OTB – PLE&NEP, TBB/PUL – CSH, TBB/PUL – PLE&SOL, and TBB/PUL – SOL&PLE). With regard 

to the distribution of spatial fishing effort, we wanted to reproduce spatial fishing hotspots. 

Because FISHCODE operates on a high spatial resolution, we used a coarser grid resolution for 

the parameterization (0.5° × 0.5°) and relative fishing effort per grid cell instead of total hours. 

We created a base year scenario using averages of all economic and environmental data sets 

across the entire data range (2012-2018) and the initial agent memory of the year 2015. We 

compared model outputs to monthly averages (in case of trip number and catches) or monthly 

sums (in case of spatial fishing effort) of historical data (2012-2018). For every parameter 

constellation we performed 10 model runs and used averages to counteract the effect of 

stochasticity.   
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Table V-3. Model parameter ranges used for the pattern-oriented modelling (POM) and 
results. CSH = brown shrimp, OTB = Otter bottom trawl (plaice & Nephrops), and SOL & PLE = 
flatfishes (sole and plaice). Bold values represent calibrated values used for the validation.  

Parameter Details Tested values Fleet Results 

Fish 
depletion 

The relative reduction in 
LPUE after a patch was 
fished 

0.965 – 0.995 (0.05 
steps) & 0.999 

All .965|.97|.995 

Fish 
recovery 

The relative share of daily 
LPUE recovery 

1.01 & 1.05 – 1.3 
(0.05 steps) 

All 1.3|1.2|1.05 

    First Final 

Existence 
satisfaction 

Increases the closer current 
savings are to target savings 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .2|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .1|.2|.2|.2 .2 

CSH . 33̅̅̅̅ |.6|.8 .8 

Personal 
satisfaction  

Increases the more uniform 
own fishing actions are 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .2|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .1|.2|.2|.6 .2 

CSH . 33̅̅̅̅ |.2|.1 .1 

Social 
satisfaction 

Increases the more often 
profits of trips are above 
those of peers 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .6|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .8|.6|.6|.2 .6 

CSH . 33̅̅̅̅ |.2|.1 .1 

Existence 
uncertainty 

Decreases the more often 
profit predictions are 
higher than profits 

0.1, 0.3, 0.5, 0.7, 
0.9 

OTB .9|.5|.7|.9 .9 

PLE&SOL .3|.3|.9|.3 .3 

CSH .7|.7|.5 .5 

Social 
uncertainty 

Decreases the more similar 
fishing actions are to those 
of peers 

0.1, 0.3, 0.5, 0.7, 
0.9 

OTB .1|.5|.3|.1 .1 

PLE&SOL .7|.7|.1|.7 .7 

CSH .3|.3|.5 .5 

 

We used a step-wise procedure for the calibration of the seven model parameters to avoid 

extensive computation times due to large parameter spaces. In every step, we compared 

model results to sub-patterns by range-transforming (0 to 1) root mean square errors (RMSE). 

The transformed RMSEs had to fall below a threshold to pass the filter, which varied 

depending on the number of sub-patterns. A parameter constellation passed, if transformed 

RMSEs fell below the threshold in all tested sub-patterns. The number of sub-patterns varied 

in every step depending on the fleet that was parameterized and thus we adjusted the 
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threshold to be more conservative when there were less sub-patterns and vice versa (details 

below).  

First, we calibrated the two global parameters, fish depletion and fish recovery, by matching 

model outcomes of all fleets to nine sub-patterns with a threshold of 0.55. In this first step, 

we set the weightings of satisfactions and uncertainties equal meaning  0. 33̅̅̅̅  and 0.5, 

respectively. Fish depletion and fish recovery influenced the patch-specific depletion 

coefficient and thus primarily affected catches, which is why we compared model outcomes 

to monthly catch compositions and spatial fishing effort. In addition, we removed all 

parameter constellations resulting in an averaged depletion coefficient of all patches <= 0.05 

to avoid unrealistic high degrees of local depletion. Three parameter constellations passed all 

sub-patterns of which we used the median values for the following calibration steps and 

model validations. In the next three steps, we calibrated the five vessel specific weightings for 

the three satisfactions (i.e. existence, personal, and social) and two uncertainties (i.e. 

existence and social) individually for every fleet (CSH, OTB, and PLE&SOL). Depending on the 

fleet the number of sub-patterns varied and accordingly the transformed RMSEs had to fall 

below 0.35 (CSH), 0.4 (PLE&SOL), and 0.55 (OTB). When calibrating one fleet, we set the 

weightings of the other fleets equal. Weightings of satisfactions and uncertainties determined 

the agents’ metier choices, which is why we used the two real-world pattern categories spatial 

fishing effort and monthly trip days. Note, that we only used sub-patterns of relevant metiers 

for each fleet, e.g. when parametrizing the OTB fleet, we used sub-patterns for the metiers 

OTB – PLE and OTB – NEP&PLE. In a final step, we used all constellations of weightings that 

passed the filters in the individual fleet calibrations and parameterized weightings for all fleets 

simultaneously. In this last round we set the threshold to 0.6 which resulted in one final 

parameter constellation (Table V-3). 

2.7 Model verification and validation 

2.7.1 Verification of behavioral drivers 

We tested the functionality of the Consumat approach by setting the respective weightings of 

satisfactions and uncertainties to the extremes (1 and 0) for one vessel. Setting a weighting of 

a satisfaction to one automatically sets weightings of the other satisfactions to zero and 

thereby excludes them entirely. The same holds true for the two uncertainties. In total, we 

tested six parameter constellations comprised of extreme values (weighting = 1) for each of 
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the five weightings of satisfactions and uncertainties and one constellation with equal 

weightings, i.e. 0. 33̅̅̅̅  for satisfactions and 0.5 for uncertainties. The equal values were also 

chosen for the non-tested vessels, as well as for weightings of uncertainties when setting the 

weighting of a satisfaction to 1 and vice versa. We created an artificial testing environment 

consisting of three vessels from each metier and initialized their memory with random fishing 

trips from 2012 to 2015. All exogenous variables, i.e. market prices and environmental factors 

were set to monthly averages equal to the base year scenario. We ran 15 simulations for each 

scenario, averaged across these repetitions, and extracted results for the tested vessel. We 

repeated this exercise once for every metier. 

Each of the satisfactions and uncertainties stands for a specific aspect of human behavior and 

increasing its weighting enhances the respective behavioral aspect and allows analyzing the 

consequences. This enabled us to test whether the behavioral aspects influence the agents in 

the envisioned ways. Satisfactions and uncertainties influence agents’ decisions on two stages. 

The first stage is the Consumat approach in which agents select different strategies to perceive 

a pool of metier options according to their current status of being satisfied or unsatisfied and 

certain or uncertain. Generally, the more successful an agent is in maximizing his satisfactions 

and minimizing his uncertainty, the more often will the agent choose repetition as his 

behavioral strategy leading to similar metier choices and vice versa. If the agent becomes 

unsatisfied or uncertain, he starts to perceive more than one possible metier choice and needs 

to decide which metier to engage into. In this second stage, agents predict fishing outcomes 

and the associated changes in satisfactions and uncertainties for all metier options they would 

technically be able to perform. They then choose the option that promises the highest sum of 

gains of overall satisfaction and loss of overall uncertainty. Therefore, setting the weighting 

for a satisfaction or uncertainty to one, should influence the agents’ decision processes to 

prioritize options that lead to higher satisfactions or lower uncertainties. Here, we describe 

the results for two metiers (OTB – NEP&PLE and PUL – SOL&PLE) in detail while results for the 

others are in the Appendix C. 

2.7.2 Validation of simulation results 

To validate our model, we performed 50 simulations of German southern North Sea fisheries 

using the base year scenario. We then compared the 1.5 inter-quartile range (IQR) of model 

outputs to observed values from 2012 to 2018 on different aggregations involving a temporal 
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or spatial component (per month or grid cell) or not (total, per vessel and per trip). In case of 

the model results, each simulation (n = 50) and in case of the observed every year (n = 7) 

served as data point. Some model outputs were recorded on a trip basis (i.e. trip days, fishing 

time, steaming time), whereas others were resolved on species level (i.e. landing weight and 

revenue). In general, we calculated sums for the aggregation levels with the exception of trip 

length and steaming time per grid cell for which we calculated medians. When comparing 

landing weights and revenues per species, we selected only relevant species for the respective 

metier, e.g. plaice and sole for TBB – PLE&SOL. We considered a simulation output as a good 

fit, if the 1.5 IQRs of the modelled and observed values overlapped and calculated the 

percentage of data points with overlapping intervals. In case outputs were aggregated for the 

entire model run (i.e. as on the total aggregation), this percentage was either 0 or 100, 

meaning the interval either did or did not overlap, whereas it was more varied for all other 

aggregations. 

3. Results 

3.1 Model functionality 

The sensitivity analysis showed that almost all tested model parameters affected model 

outcomes in a complex way, meaning that the effects were non-linear and/or non-monotonic 

(Figure V-A22). The only factor with a less complex and almost monotonic effect on fishing 

trips and CSH catches was probability needing repair, which was expected because it 

represents a probability for vessels to be incapable of fishing for two days after they returned 

from a fishing trip. It affected CSH catches stronger than other catches (Figure V-A23), because 

CSH fishers have the shortest and most fishing trips and therefore have a higher chance for 

vessels needing maintenance. Fish recovery and parameters regulating the number of 

international vessels had a strong effect on catches of all species. Of the weightings (W) for 

satisfactions and uncertainties, personal satisfaction (PSAT) and social satisfaction (SSAT) had 

the strongest impact, followed by social uncertainty (SUNC), existence uncertainty (EUNC), 

and existence satisfactions (ESAT). Economic parameters and those adding stochasticity to 

FISHCODE had the weakest effects.  

To test the functionality of our defined behavioral motivations, we set the weightings (W) of 

satisfactions and uncertainties to the extreme (=1) and assessed whether model outcomes 
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changed according to expectations based on the conceptual design of the behavioral 

submodel (Table V-4).  

Table V-4. Expected effects of increasing a certain weighting of a satisfaction or uncertainty 
to 1. 

Weighting (W) of 
Scenario 

shortcut 
Expected effect 

Existence satisfaction 

(ESAT) 
WESAT=1 Increased savings 

Personal satisfaction 

(PSAT) 
WPSAT=1 Metier continuity (habitual behavior)  

Social satisfaction (SSAT) WSSAT=1 
Increasing savings to earn more than 

peers 

Existence uncertainty 

(EUNC) 
WEUNC=1 

No direct effect, but indirectly by setting 

WSUNC to 0 

Social uncertainty (SUNC) WSUNC=1 Engage in similar metiers than peers 

 

Observing an OTB – NEP&PLE agent, WESAT=1 and WSSAT=1 led to the expected outcome of 

higher savings and a faster increase of the respective satisfactions as in comparison to the 

equal scenario (Figure V-3B&C; Table V-4). Savings were much higher in the WSSAT=1 

scenario, because SSAT was mostly below the 0.5 threshold triggering deliberation as 

Consumat strategy, which increased the agent’s flexibility in metier choices. The low savings 

in the WPSAT=1 scenario clearly demonstrated the priority of choosing the same metier (OTB 

– NEP&PLE) over improving profits (Figure V-3A&B). The only available gear to this agent was 

OTB, because the only metiers in his artificial initial memory were OTB – NEP&PLE and OTB – 

PLE. These constrained metier choices limited the effect of WSUNC=1, which should trigger an 

alignment of an agent’s metiers choices with his peers. In the WEUNC=1 scenario, the agent 

accumulated high savings resulting in a high ESAT. The reasons were twofold, first, WSUNC 

was set to zero in this scenario meaning that the agent had no tendency of choosing similar 

metiers than his peers. Second, the usually lower SUNC was not present, leading occasionally 

to the overall uncertainty being above 0.5, which in turn triggered a more complex consumat 

strategy (imitation; Table V-2) with multiple metier options to choose from. Both reasons 

increased the agent’s flexibility for choosing metiers and therefore resulted in a higher 

economic efficiency.   
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Figure V-3. Outcome of the Consumat testing for one vessel from the OTB – NEP&PLE metier 
for different scenarios, setting weightings for uncertainties and satisfactions to one (panels). 
A shows the daily decision (going/being on a trip or staying in port) as percentage per month. 
B shows the savings per model run (light grey) and their average (black), and C the mean daily 
satisfactions (ESAT, PSAT, SSAT) and uncertainties (EUNC, SUNC) with the dotted line 
displaying the threshold for being satisfied and uncertain. The ribbons in B and C represent 
standard deviations. 

Testing an agent from the PUL–SOL&PLE metier, savings and ESAT grew most consistently 

across model runs in the WESAT=1 scenario (Figure V-4A&B). Except for WPSAT=1, all other 

scenarios led to similar high savings, although the variation across model runs was large with 

some resulting in not going fishing throughout most of the year leading to continuously 

decreasing savings. The reason for that was that most satisfactions and uncertainties require 

either a threshold to be surpassed or choosing a certain metier in order to increase. If the 

metier options available are not predicted to surpass profits from peers (for SSAT) or the right 

metier is not among them (for PSAT and SUNC), the agent will predict no improvements for 

the sum of gain in satisfaction and loss in uncertainty, meaning the agent would stay in the 

port. WPSAT=1 restricted the flexibility of choosing different metiers, because the agent’s only 
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way to increase his overall satisfaction was to choose the same metier (PUL – SOL&PLE) again. 

With having WSUNC above zero, the agent engaged in similar metiers than his peers, i.e. PUL 

– PLE&SOL, and TBB – SOL&PLE. The effect of WEUNC=1 negated that effect, because WSUNC 

is zero in that scenario, meaning that the agent had more consistent metier choices. In some 

occasions, the agent’s satisfaction was below or the uncertainty above 0.5 meaning that the 

agent switched his consumat strategy. This gave the agent more metier options to choose 

from, leading to a more diverse metier engagement (e.g. in November and December of the 

Equal, WSSAT=1, or the WEUNC=1 scenario). 

 

Figure V-4. Outcome of the Consumat testing for one vessel from the PUL – SOL&PLE metier 
for different scenarios, setting weightings for uncertainties and satisfactions to one (panels). 
A shows the daily decision (going/being on a trip or staying in port) as percentage per month. 
B shows the savings per model run (light grey) and their average (black), and C the mean daily 
satisfactions (ESAT, PSAT, SSAT) and uncertainties (EUNC, SUNC) with the dotted line 
displaying the threshold for being satisfied and uncertain. The ribbons in B and C represent 
standard deviations.  
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Setting the weighting of a parameter to one led to maximizing the respective satisfaction, 

confirming our general expectations (Table V-4), although the effects were often blurred due 

to the complexity of the Consumat approach. Increasing a weighting did not only raise the 

incentive for maximizing the respective satisfaction (or reducing the respective uncertainty), 

but also led to choosing a different Consumat strategy. Those strategies offer varying numbers 

of metiers to choose from and therefore determine the agent’s flexibility to engage into 

different metiers (Table V-2). The two exemplary metiers show that increasing flexibility 

positively influenced economic efficiency.  

Metier engagements were mostly influenced for agents with more available choices of 

metiers, such as those catching primarily the flatfish plaice and sole. In FISHCODE, agents 

catching flatfish may choose either electric pulse (PUL) or beam trawls (TBB) and have 

sufficient quotas to switch between catching predominantly plaice (PLE&SOL) or sole 

(SOL&PLE) or even to common shrimp (CSH), which does not require any quota but uses the 

same fishing gears. Therefore, metier choices were most varied with agents engaged in flatfish 

metiers such as PUL – SOL&PLE. In addition, metier choices were most varied when WPSAT 

was high or WSUNC was low.  

3.2 Model realism 

On average, FISHCODE produced outcomes for fishing time, steaming time, and trip length 

that matched their historical counterparts best on the micro pattern of individual trips and 

the macro pattern of total aggregates (comparison of columns in Figure V-5A). The quality 

improved from vessel to monthly and was best for the total aggregation showing that 

simulations of individual agents only marginally reflected the reality of these vessels but 

results on higher aggregations were reliable. In the model, the three trip variables are closely 

interlinked, because fishing time is the difference between trip length and steaming time. On 

single trip level, all variables had an excellent match for all metiers, confirming sensible 

estimations of steaming times and correlation between steaming and fishing time. The good 

match of trip length on trip level was expected, because they are derived from the trip data 

base and are not an emergent property of the simulation, but confirms the code functionality.  

Modeled steaming time for TBB – CSH did corresponded poorly with observed values (Figure 

V-5A), because steaming times per fishing trip were slightly overestimated for TBB metiers 

(Figure V-E3). In case of TBB – CSH this error adds up leading to a mismatch of total aggregated 
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steaming times, because it is also the metier with the most fishing trips. We derived steaming 

speeds from the trip data base per fishing gear resulting in low speeds for the TBB gear in 

comparison to the PUL gear (Appendix A2.3.8). Interestingly, these two gears can 

interchangeably be used by the same vessels and target assemblages and therefore should 

result in similar steaming speeds. Therefore, TBB steaming speeds are likely underestimated 

in our ABM.  

 

Figure V-5. The percentage of data points with overlapping 1.5 times inter-quartile ranges 
(IQR1.5) between modelled and observed non-spatial (A) and spatial (B) variables. Colors and 
numbers correspond to the percentage of overlaps across different aggregations (columns) 
and metiers (rows).  
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With regard to spatial results, matches on coarse were better than on fine grid resolutions, 

meaning that the accuracy of simulated spatial fishing effort was more reliable if aggregated 

to coarse grid cells (Figure V-5B). On average, percentages of matching coarse grid cells were 

in an acceptable range (above 60%), whereas fine grid cells matched about 10% lower. The 

total distribution of fishing time matched slightly better than relative fishing time. This 

validates that in addition to spatial fishing hotspots, FISHCODE simulated fishing effort in a 

reasonable range. The good matching of median steaming time per grid cell validated 

assumptions for calculating steaming times and distances from ports to fishing grounds. Both 

the simulated and observed distribution of spatial fishing effort followed a decreasing trend 

from coast to offshore with hotspots in the offshore areas (Figure V-6A&C). These hotspots 

show a more refined pattern in the observed distribution, because the simulated fine-scale 

fishing movements are the result of random paths (levy flights). A comparison of standard 

deviations shows that these scale with total fishing effort, but were larger in coastal grid cells 

among historical years than they were among model runs (Figure V-6B&D).   
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Figure V-6. The averaged fine (A) and coarse (C) distribution, as well as fine (B) and coarse (D) 
standard deviation of fishing effort across validation model runs (modeled) and seven years 
of data (observed). 

4. Discussion 

With FISHCODE, we developed a tool to simulate spatio-temporal fishing dynamics of three 

German fleets in the southern North Sea. Our model integrates several behavioral theories, 

which are combined by the Consumat approach in one decision-making framework (Jager et 

al., 2000; Jager and Janssen, 2012). In addition, we incorporated numerous partly highly 

resolved empirical data sources to inform technical, spatial, economic and environmental 

variables, and to specify heuristics for additional agent decision-making in the form of 

personal norms, e.g. work rhythm.  
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4.1 Emerging insights and model potential 

FISHCODE presents a “virtual laboratory” for the German southern North Sea fisheries that 

can be used to make assumptions for the real-world system by manipulating model 

parameters. We validated our model by producing outputs in realistic ranges for most spatial 

and non-spatial variables on different aggregations despite its high complexity. Both model 

validation and structural realism are essential for models to be used for policy advice (Bruch 

and Atwell, 2015; Schulze et al., 2017; Will et al., 2021). Therefore, FISHCODE is suitable 

candidate to assess the impact of future changes to North Sea fisheries and could support 

future-oriented marine spatial planning (MSP). Especially, the quickly growing offshore wind 

parks (OWF) and newly implemented marine protected areas (MPAs) in the southern North 

Sea are a large source of uncertainty for fishing communities and will likely lead to a 

displacement of fishing effort (Letschert et al., 2021; Stelzenmüller et al., 2022). Other 

relevant themes for the North Sea which can be researched with FISHCODE are rising fuel 

prices, and new fishing regulations (i.e. banning electric pulse gears).  

We implemented the Consumat, so that weighting factors of satisfactions and uncertainties 

incentivized agents towards the associated behavioral motivation, e.g. a high weighting in the 

personal satisfaction lead to more habitual metier choices. Due to the nature of the Consumat 

approach, changed satisfactions and uncertainties also affected the perceived behavioral 

options, i.e. choices of what to fish. Therefore, links from weighting factors to corresponding 

behavioral motivations are not entirely straightforward, however, we have shown that they 

still represent the envisioned effects. Increasing weightings for habitual behavior (personal 

satisfaction) and conformism (social uncertainty) primarily influenced metier choices leading 

to lower savings, because the agent’s priority was choosing certain metiers rather than 

earning money. Increasing weightings emphasizing on profits (existence satisfaction) and 

competition (social satisfaction) expectedly led to higher savings, which was amplified when 

Consumat strategies were chosen that involved multiple metier choices. These insights 

suggest that flexibility in the agents’ metier choices was an important driver for economic 

efficiency. Other studies have observed this phenomenon with coastal small-scale fishers that 

are described as generalists, i.e. engage in multiple fishing practices (Boonstra and Hentati-

Sundberg, 2016; Salas and Gaertner, 2004).  
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The nature of the Consumat framework enabled agents to choose metiers that they previously 

had not been used and thus FISHCODE could also be applied for testing scenarios of 

introducing new metiers. Some fishers in the North Sea use passive gears such as gillnets to 

catch flatfishes and cod (Gadus morhua) or traps to catch brown crabs (Cancer pagurus) and 

European lobster (Homarus gammarus). We did not include these fishing options in our 

model, because the engagement of German fishers in these fisheries is low. However, with 

expanding OWFs, using passive gears like traps or fishing rods could offer an alternative for 

fishers to continue fishing inside or at least in buffer zones around OWFs (Bonsu et al., 2024; 

Stelzenmüller et al., 2021c). Analyzing these co-location scenarios with our ABM could create 

first insights on their feasibility not only with regard to technical and management 

requirements, but also considering the fishers’ decision-making. 

FISHCODE can also be used to answer more general questions such as testing theories about 

fisher behavior. By pairing the individual satisfactions and uncertainties with weighting 

factors, the Consumat represents a tool to assess the relevance of individual behavioral 

motivations. Our results have shown that manipulating those weighting factors affects the 

agent behavior and can give insight on the effect of prioritizing or neglecting certain 

motivations. Beyond manipulating the Consumat approach, performing a robustness analysis 

by simplifying fisher movements or deactivating social networks would generate insights on 

the importance of these model compartments in producing essential patterns (Grimm and 

Berger, 2016). Identified model compartments with weak impacts could then be simplified to 

reduce parameter uncertainty and computational cost (Ligmann-Zielinska et al., 2014). 

4.2 Model uncertainty and way forward 

The trade-off between model complicatedness and explainable outputs is a known dilemma 

leading to the decision of which system components should be simplified (Allison et al., 2018). 

In this paragraph we discuss uncertainties introduced by unknown values of parameters and 

model structure, suggest potential improvements, and identify shortcomings in available data.  

Empirical information on the reasons for why humans act in a specific way is scarce, making it 

challenging to create empirical ABMs simulating human behavior (Bruch and Atwell, 2015). In 

our case study, we had a lot of information about fishing trips available that allowed us to 

derive rules and heuristics about certain behavioral decisions, e.g. how high the willingness is 

to go fishing during a weekend. However, we lacked information on cognitive behavioral 
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drivers such as maximizing profits, habitual behavior, or competition. Interviews or surveys 

are suitable tools to investigate such questions (Smajgl et al., 2011). Examples from the Danish 

(Christensen and Raakjær, 2006), Swedish (Boonstra and Hentati-Sundberg, 2016), and Dutch 

fisheries (Schadeberg et al., 2021) contributed to framing our behavioral submodel, however, 

there is no such study focusing on the German North Sea fishery. Because fishers from 

different countries may have distinct cultures and habits and are subject to varying regulations 

(i.e. quota distribution), we calibrated our behavioral submodel by using pattern-oriented 

modelling. Additional information on the behavior of German North Sea fishers would greatly 

reduce the model’s uncertainty. 

We could derive many parameters directly from data, which allowed us to restrict our 

calibration to a sensible number of parameters. However, even with large amounts of 

available data on fishing trips, certain parameters introduced uncertainty. A mismatch of 

modelled and observed steaming times of TBB gears signal that more precise information on 

steaming speeds are necessary. Also, information for individual economic situations were 

scarce and only available in aggregated format, which is why we assumed uniform or linear 

interpolated values across agents. Furthermore, we simplified biological processes in 

FISHCODE by including uniform depletion and recovery factors and thus assumed that the 

effect of fishing on biological resources and their recovery is the same across gears, habitats, 

and species, which is an abstraction from real-world dynamics (Rijnsdorp et al., 2022). Our 

sensitivity analysis yielded that both fish recovery and depletion were among the five most 

impactful parameters. Having additional insight into individual economic and local depletion 

dynamics would greatly reduce the uncertainty of our model.  

In the calibration, several parameter constellations passed the filters of the pattern-oriented 

modelling resulting in similar results, which is a phenomenon called equifinality and a common 

challenge for ABMs (An et al., 2023; Williams et al., 2020). This means that calibrated 

parameters do not necessarily reflect real-world behavioral drivers, which is highlighted by 

the weak effects of weighting factors on output variables of the CSH fleet. The reason is that 

the Consumat approach primarily influenced agents’ metier choices, however, CSH fishers 

mainly engage in one metier (TBB – CSH).  

While our human decision-making framework focuses mainly on choosing a metier and 

determining trip lengths, it only marginally addresses location choice. Agents in FISHCODE 
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select catch locations that are either in their own or their peer’s memory without considering 

any characteristics of this trip. Weighting location choice by memories of gained revenues or 

catch amount could enhance the realism of the agents’ decisions as it has been shown that 

fishers prefer to return to catch locations with positive connotations (Bastardie et al., 2013; 

Tidd et al., 2012). Once decided for a catch location, the movements of vessels (or agents) 

during the trip are random and only restricted by the overall catch ground of the respective 

metier. This is the reason for spatial model outputs being about 10% more accurate for coarse 

than for fine spatial resolutions.  

Market prices in FISHCODE were exogenous and based on observed monthly data. In reality, 

prices are dynamic and affected by landings and the availability of biological resources. This is 

especially exemplified for the CSH fishery, as the availability of shrimp varies across years 

leading to strong price fluctuations (Goti-Aralucea et al., 2021). Among German fishers, the 

CSH fleet is the largest and therefore likely has an effect on international market prices, 

however, all other fisheries in FISHCODE represent only fractions of the international North 

Sea fishing effort, likely limiting their effect on price dynamics.  

Conclusion 

ABMs simulating socio-ecological systems progressively incorporate more structural realism 

and their field of application has been expanding from testing theories towards prediction and 

scenario analysis. In FISHCODE, we propagated the use of empirical data and methods from 

model conceptualization to validation, and have shown that this may lead to a good degree of 

realism. Moreover, we included a multi-faceted human behavioral submodel integrating 

motivations beyond economic optimization (e.g. habitual behavior and social networks), as it 

suggested by an increasing amount of literature. Fisheries in the North Sea face a growing 

number of challenges, such as expanding other marine spatial uses (i.e. offshore wind farms), 

climate change, and high fuel costs. To reduce the uncertainty around fishers’ reaction to 

future situations, it is important to incorporate realistic human behavior in models. FISHCODE 

bridges the gap between bio-economic fishery models that often assume profit-maximization 

and stylized fishery ABMs with more complex human behavior. As such, it provides a toolbox 

to test scenarios encompassing (but not limited to) economic changes, additional spatial 

fishing restrictions, new fisheries management such as banning gears or enforcing the landing 

obligation, or introducing alternative fishing practices.   
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Abstract 

The North Sea is a global hotspot for cumulative human impacts including fisheries. The 

expansion of offshore wind farms (OWF) in the coming decades and increasing number of 

nature conservation measures, i.e. no-take zones (NTZ), reduce the space available for fishing 

activity. Moreover, fuel prices have been rising due to recent crisis and the EU banned the 

electric pulse gear (PUL) in 2021, a fuel-saving bottom-contacting gear. These changes pose 

challenges for North Sea fishers and introduce large uncertainties for their future existence. 

Here, we apply FISHCODE, an agent-based model (ABM) for German fisheries in the southern 

North Sea, to test scenarios of these pressures. FISHCODE simulates flatfish (sole and plaice), 

Nephrops, and brown shrimp fisheries on a high spatio-temporal resolution and has emphasis 

on flexible fisher behavior beyond profit maximization and is thus suited to simulate adaption. 

Results revealed a reduction of fishing effort and profits for all scenarios, i.e. more OWFs and 

NTZs, higher fuel prices, and the ban of PUL gears, however, only the extreme fuel scenario 

led to negative profits. Banning of PUL gears triggered a shift in fishing effort towards beam 

trawls, although resulting in lower levels of fishing effort, because beam trawls require more 

fuel than PUL and thus led to higher fishing costs. Spatial scenarios affected mostly flatfish and 

Nephrops fisheries, while brown shrimp fishing effort remained relatively equal. Moreover, 

fishing effort intensified in the remaining open areas, which could have negative effects for 

ecosystems. Our findings suggest that a combination of stressors would have an even stronger 

impact on German fisheries. Overall, we provide insights that are helpful to anticipate fishers’ 

responses to change and therefore can support future-oriented spatial management (MSP). 

Key words: North Sea, fisheries, scenario testing, agent-based modelling, marine spatial 

planning (MSP)  
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1. Introduction 

The North Sea is a hotspot for anthropogenic cumulative impact (Halpern et al., 2019). Many 

different stakeholder groups share the shelf sea for offshore renewable and fossil fuel energy, 

sediment extraction, cargo shipping, conservation, and fishery. To maintain the sustainable 

co-existence of marine actors, riparian states employ marine spatial planning (MSP) involving 

the analyses and allocation of marine activities to zones (Jentoft and Knol, 2014). In the North 

Sea, the number of marine actors and the relatively small available area bear a large potential 

for conflict and thus challenge a balanced MSP (Kannen, 2014). North Sea fishery has been an 

important actor for centuries and nowadays represents an activity with a large spatial 

footprint (Döring et al., 2020; Rijnsdorp et al., 2008).  

In the southern North Sea, fishery is mostly composed of bottom trawling targeting flatfishes 

and crustaceans. The benthic species European plaice (Pleuronectes platessa), sole (Solea 

solea), common shrimp (Crangon crangon), and Norway lobster (Nephrops norvegicus) are 

among the most important caught species in the southern North Sea. Demersal and benthic 

fishers target specific catch locations that are consistent across time and are comparable to 

the habitat preferences of their target species (van der Reijden et al., 2018). Despite this 

dependency, fishery has more spatial flexibility than other marine anthropogenic sectors, e.g. 

sediment extraction, oil rigs, or offshore wind farms (OWF), which is why fishery priority areas 

are underrepresented in marine spatial plans (Trouillet, 2019). Whenever crucial catch 

grounds overlap with other spatial marine uses that imply a closure to fishing, there is an 

opportunity for conflict (Letschert et al., 2021). Especially the vast plans for OWFs in the North 

Sea bear a large potential for conflict as they either prohibit fishing activity or fishers avoid 

OWFs due to security and insurance reasons (Bonsu et al., 2024; Stelzenmüller et al., 2022). 

The other large competitor for marine space is nature conservation. Marine protected areas 

(MPA) in the Greater North Sea have covered  20.2% in 2021 (Werner et al., 2022), while the 

Global Biodiversity Framework adopted during the COP15 in Montreal, Canada aims to protect 

30% of all marine areas until 2030 (UN, 2022). Therefore, additional implementations of MPAs 

and no-take zones (NTZs) in the coming years can be expected to safeguard marine 

biodiversity.  

Apart from spatial restrictions, rising fuel prices represent a serious stressor for fisheries and 

have been decreasing their profitability (Guillen et al., 2023). In times of frequent crisis, the 
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development of fuel-saving fishing gears is important, an example being electric pulse gears 

(PUL) that have a lower drag than fishing with traditional beam trawls (Suuronen et al., 2012). 

The EU banned PUL in 2021, because of the gear’s debated negative effects on the ecosystem 

(Kraan et al., 2020; Le Manach et al., 2019). In the North Sea, PUL has been mainly used by 

fishers targeting sole and plaice and the potential switch back to beam trawls after the PUL 

prohibition has not yet been researched.  

The described changes and stressors will have strong effects on the fishing sector, which are 

challenging to foresee because fishers, as all humans, take decisions based on many different 

factors (Fulton et al., 2011; Hilborn, 2007). Agent-based models (ABM) simulate the behavior 

of agents in a digital environment and are thus a suitable tool to model human 

decision-making (Burgess et al., 2020). Our study objectives are to assess the effects of 

changes in OWF and NTZ coverage, fuel prices, as well as the PUL ban on the spatio-temporal 

dynamics of German fisheries in the southern North Sea. We use FISHCODE, a spatially-explicit 

fishery ABM with emphasis on complex human decision-making (Chapter V). Our results offer 

guidance for future-oriented MSP to ensure a sustainable future co-existence of fishery and 

other marine actors. 

2. Methods 

2.1 Brief description of FISHCODE 

To analyze future scenarios, we used FISHCODE (FIsheries Simulation with Human COmplex 

DEcision-making), a model simulating German fisheries in the southern North Sea with human 

decision-making beyond profit maximization (Chapter V). In FISHCODE, agents represent 

skippers of fishing vessels who make daily decisions about whether, how long, and what to 

fish. After decided, fishing trips are simulated in a spatio-temporal model environment with 

daily time steps and spatial grid resolution of 0.045° × 0.045°. FISHCODE comprises eight 

fishing practices called metiers (Table VI-1). 

FISHCODE uses data of historical fishing trips (2012-2018) to inform model parameters (e.g. 

working rhythms of fishers and maximum trip days), while steaming and fishing times are 

depended on the spatial distance from ports to fishing grounds. Landings are simulated with 

look-up tables of historical landings per unit of effort (LPUE) and vary depending on the 

environmental setting of the chosen spatial fishing ground. Environmental and economic 
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variables are exogenous and updated weekly (environmental) and monthly (economic). Wave 

heights determine whether vessels can leave on a fishing trip or have to stay in port. The 

tolerance towards waves is higher for larger vessels. Personal, maintenance, and fixed costs 

are calculated per fishing trip and based on information from the annual economic report of 

the scientific, technical and economic committee for fisheries (STECF). Fuel use per fishing trip 

is estimated based on the steaming and fishing time, as well as the vessel’s engine power. 

Fisher behavior is simulated by using the Consumat approach (Jager et al., 2000; Jager and 

Janssen, 2012). Agents have three satisfactions and two uncertainties representing the 

following behavioral motivations: habitual behavior, profit-maximization, competition, 

conformism, and planning insecurity.  Depending on their levels of overall satisfaction and 

uncertainty, agents engage in one of four behavioral strategies offering varying numbers of 

metier options to choose from that may involve consulting their social network or not. For 

every possible metier options, agents make predictions about trip outcome and select the 

options with the highest sum of gain in satisfaction and loss of uncertainty. In case all options 

lead to a worsening of their situation, meaning that the before mentioned sum is negative, 

they will not leave for a fishing trip. Details about the model process, integrated data, 

parameterization, and validation of FISHCODE are in Chapter V and its supplementary 

material. 

Table VI-1. Metiers defined for FISHCODE. Gear abbreviations stand for otter bottom trawl 
(OTB), beam trawl (TBB), and electric pulse trawl (PUL) and species for plaice (PLE), sole (SOL), 
Nephrops (NEP), and common shrimp (CSH). 

Default metier Details 

OTB - PLE Otter board trawler catching mainly plaice. 

OTB – NEP&PLE Otter board trawler catching mainly plaice and Nephrops. 

TBB – PLE&SOL Beam trawlers catching mainly plaice. 

TBB – SOL&PLE Beam trawlers making most profit from sole. 

PUL – PLE&SOL Pulse trawlers catching mainly plaice 

PUL – SOL&PLE Pulse trawlers making most profit from sole. 

TBB - CSH Beam trawlers catching common shrimp 

PUL - CSH Pulse trawlers catching common shrimp 
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2.1 Scenario descriptions 

The current setup of FISHCODE only allows for the simulation of one year. Similar to the 

calibration and validation of FISHCODE, we compared model outcomes of a base run with 

scenarios. In the Base-run, spatial fishing restrictions (i.e. OWFs and NTZs) comply with the 

state of December 2018 and environmental and economic variables are set to weekly and 

monthly averages of 2012-2018. 

We tested five different scenarios comprising two expansions of spatial fishing restrictions, 

two increased fuel prices, and one gear restriction (Table VI-2). We retrieved OWF polygons 

from 4COffshore (www.4coffshore.com, accessed April 2022), which are affiliated with 

construction dates or development status. We classified development statuses of OWFs to the 

2030 or 2040 scenario according to Stelzenmüller et al. (2022) and assume fishing vessels 

having transit rights in all scenarios. In the 2030 and 2040 scenarios we added polygons of 

NTZs from marine spatial plans of the German Federal Maritime and Hydrographic Agency 

(German: BSH) and 30% of random grid cells in international designated marine protected 

areas representing about 10% of complete protection of the respective countries’ exclusive 

economic zones (Figure VI-1). 

We extracted monthly fuel prices from EUMOFA (www.eumofa.eu) and increased them to 

300% and 600% for fuel price scenarios. On average between 2012 and 2018 monthly fuel 

prices per liter ranged between 0.45 and 0.48€, in the Fuel-300% between 1.35 and 1.43€ and 

in the Fuel-600% between 2.7 and 2.87€. For reference, monthly fuel prices from 2022 to 2023 

ranged between 0.59 and 1.17€ and therefore our fuel scenarios assume even higher prices 

than those triggered by the Russo-Ukrainian war in the last two years. In PUL-false, we 

simulate the EU ban of the PUL gear in 2021, which occurred after the period of integrated 

observed data used for FISHCODE, i.e. 2012-2018.   

file:///C:/Zeuch/SeaUseTip/..projects_open/Diss/www.4coffshore.com
http://www.eumofa.eu/
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Table VI-2. Summarizing the five scenarios according to changed model parameters: spatial 
settings, fuel price, and gear restrictions. OWF: offshore wind farms; NTZ: no-take zone; PUL: 
electric pulse trawl. 

Scenario name Spatial fishing restrictions Fuel price [%] PUL banned 

Base-run OWF status of 2018 100 No 

OWF2030+NTZ OWF status of 2030 and NTZs 100 No 

OWF2040+NTZ OWF status of 2040 and NTZs 100 No 

Fuel-300% OWF status of 2018, no NTZs 300 No 

Fuel-600% OWF status of 2018, no NTZs 600 No 

PUL-false OWF status of 2018, no NTZs 100 Yes 

 

 

Figure VI-1. Fishing grounds of the three fleets in the model (colored polygons) and fishing 
restrictions in the Base-run (2018) and in two scenarios depicting the potential state of 
offshore wind farms and no-take zones at 2030 and 2040. TBB = beam trawl; PUL = electric 
pulse trawl; OTB = bottom otter trawl; CSH = common shrimp; PLE = plaice; SOL = sole; NEP = 
Nephrops. 

2.2 Experimental design and analysis of results 

Before analyzing scenarios, we identified the sensible number of model runs that was large 

enough to counteract stochasticity, while keeping computational cost low. We produced 50 

model outcomes using the base scenario and calculated the cumulative standard error of 

fishing effort per metier across model for 50 permutations. Upon visual inspection, we 
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decided that 25 is a suitable number of model runs, since additional runs did not substantially 

reduce standard errors (Figure VI-A1).  

We ran the model 25 times for the Base-run and each of the five scenarios and summarized 

outcomes on different aggregations. Although FISHCODE produces results on daily and vessel 

resolution for a wide range of fisheries variables, we focused on the comparisons of total and 

relative change in fishing hours (hours and number of trips), steaming hours, profits, and 

number of fished cells, as well as the relative change in fishing hours per grid cell. To 

differentiate effects on individual metiers, we also compared fishing hours, steaming hours, 

and profits per metier and trip. 

For the scenario of banned PUL, we tracked changes in metier switching behavior by 

quantifying daily agent activities, i.e. how many days an agent was fishing a certain metier or 

stay in the port, and averaged those across model runs. We converted metiers into sources 

and sinks for every agent and calculated flows, representing the change from the Base-run to 

the PUL-false scenario. If an agent had more than one sink (e.g. two metiers that increased in 

fishing days), we divided the fishing days of sources across all sinks. The sum of individual 

agent flows per metier represented the total shift of metier changes. Subsequently, we 

calculated changes as net fishing days (NDF), meaning that if there was a flow from A to B and 

B to A, those were subtracted from each other and the larger flow retained. 

3. Results 

All scenarios reduced the fishing effort and profits of agents (Figure VI-2 and Table VI-A1). 

Relative effects on fishing hours, steaming time, and number of trips were similar in all 

scenarios showing how interlinked these three are (Figure VI-2). The number of fished grid 

cells was almost 25% lower in both the OWF2040+NTZ and the Fuel-600% scenarios, however, 

the reasons differed across the two scenarios. In OWF2040+NTZ many grid cells were 

restricted to fishing also leading to more steaming hours, because distances from ports to 

fishing grounds increased. The reduction of fished cells in Fuel-600 was due to the lower 

number of fishing trips (-72%). This result is also reflected in the mean relative change of 

increased fishing effort per grid cell, which increases in scenarios with more spatial fishing 

restrictions, i.e. OWF2030+NTZ (4.8%) and OWF2030+NTZ (30.9%), but decreases in fuel price 

scenarios, i.e. Fuel-300% (-15.1%) and Fuel-600% (-40.6%) (Figure VI-2). With regard to fishing 

effort (hours and trips), steaming time, and profits, fuel price scenarios had the strongest 
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effect followed by the banning of PUL. PUL-false reduced profits by about 20% despite fishing 

effort levels being similar to Base-run, revealing that the relationship between the two 

variables is not necessarily linear – at least not when output variables are aggregated across 

all metiers (Figure VI-2). A comparison by metier shows fishers switched to TBB equivalents 

when PUL was banned and that PUL gears are more profitable than TBB gears (Figure VI-3). 

Therefore, in PUL-false profits decreased while fishing effort remained almost stable.  

Fuel-300% reduced both fishing hours and profits substantially for all metiers and Fuel-600% 

even resulted in negative profits for all metiers except for those using PUL (Figure VI-3A). The 

same trend could be observed on the profit gained per fishing trip, while the fishing time per 

trip remained the same or even decreased (Figure VI-A2). This indicates that the reduction in 

aggregated fishing effort is the result of less fishing trips, because the incentive for going 

fishing was lower due to the reduced or negative profits. Fuel scenarios lead to higher LPUE 

for plaice of metiers using OTB and TBB-PLE&SOL, as well as for CSH for PUL-CSH and TBB-CSH 

(Figure VI-A3). 

 

Figure VI-2. Relative effect of scenarios in comparison to the Base-run. The six output variables 
(color-coded) represent averaged relative changes across model runs. 
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Potential future spatial fishing restrictions lead to a reduction of fishing effort for all metiers 

except for those catching CSH (Figure VI-3B). This is because the coastal CSH fishing grounds 

are relatively unaffected by planned NTZs and OWFs. Other metiers had longer steaming times 

per fishing trip leaving less time for fishing (Figure VI-A2), because spatial fishing restrictions 

forced agents to target fishing grounds further offshore. For most metiers, OWF2040+NTZ 

reduced fishing effort stronger than OWF2030+NTZ with the exception of the PUL metiers 

catching the flatfishes PLE and SOL. PUL-PLE&SOL fishing effort increased in the 2030 and then 

decreased in the 2040 scenario, while the opposite was observed for PUL-SOL&PLE.  

 

 

Figure VI-3. Total aggregates of profits (A) and fishing hours (B) per metier for Base-run and 
the five scenarios.  

 

In PUL-false fishing effort of PUL metiers was not present, TBB fishing effort increased, and 

OTB metiers remained unaffected (Figure VI-3B). This scenario had no effect on variables 

resolved per fishing trip (Figure VI-A2), but lead to a shift of metier activity. In general, fishing 

effort of PUL metiers shifted to its TBB equivalents, i.e. 83.9 net fishing days (NFD; for a 
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description see methods) from PUL-CSH to TBB-CSH (Figure VI-4). For PUL metiers targeting 

flatfish a large part of the effort became inactive, as fishers more frequently decided to stay 

in the port. From PUL-PLE&SOL 367 NFD became inactive and only 149 NFD shifted TBB 

equivalents. For PUL-SOL&PLE results are similar as 150 NFD became inactive and 101 NFD 

shifted to TBB equivalents.  

 

Figure VI-4. Shift of metier activity from 
the Base-run (left) to the PUL-false 
scenario (right). Sources (left) and sinks 
(right) with less than 10% of the total 
flows were grouped to “Others”. 

 

 

With regard spatial output variables, fuel price scenarios decreased spatial fishing effort in the 

whole study area with regions of strong reduction in the coastal (shrimp) and offshore 

(Nephrops) fishing ground (Figure VI-5). OWF2030+NTZ and OWF2040+NTZ displaced fishing 

effort and led to an intensification of fishing hotspots further offshore. Fishing effort in coastal 

areas remained relatively constant due to few overlaps with fishing restrictions. Pulse-false 

lowered fishing effort in flatfish fishing grounds that are mostly caught by PUL gears, whereas 

coastal catch grounds remained relatively constant and fishing effort in offshore areas 

increased slightly.  
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Figure VI-5. Relative change in spatial fishing effort of the five scenarios in comparison to the 
base run.  

4. Discussion 

4.1 Emergent pressure for North Sea fisheries 

Scenarios of high fuel costs reduced the aggregated profits and fishing effort of all metiers, 

showing that high fuel prices are a systematic stressor for German North Sea fishers. The 

negative relationship of effort and fuel costs has also been observed for EU fleets in the years 

of 2002 to 2008 and most recently due to the increasing energy costs triggered by the 

Russo-Ukrainian war (Cheilari et al., 2013; Guillen et al., 2023). Guillen et al. (2023) identified 

1.03€ per liter as average break-even point for EU fleets, describing the point at which gross 

profits become zero and the fishery unprofitable in the short-term. In our study, we did not 

calculate break-even points, however, profits of fishing trips were still positive when raising 

fuel costs by 300% resulting in higher costs than 1.03€ per liter. There could be several reasons 

for this discrepancy, first, the break-even point of German mixed-demersal North Sea fleets 
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could be higher than the EU average. Second, our profits are naturally higher than gross 

profits, because we did not subtract depreciations (Chapter V). Third, Guillen et al. (2023) 

calculated new profits by increasing fuel costs with higher fuel prices, while all other values 

remain equal, e.g. fuel use and revenues. In FISHCODE, agents adapted to scenarios with 

higher fuel prices by changing their behavior leading to higher LPUE for plaice and common 

shrimps and slightly reduced steaming times for some metiers. This was the result of agents 

reducing the number of fishing trips to catch grounds further offshore or those with lower 

LPUE. Both reducing the steaming time and increasing catchability have been identified by 

previous studies as possible adaptation strategies to high fuel prices (Bastardie et al., 2013; 

Poos et al., 2013). All but PUL metiers became unprofitable when fuel prices were increased 

to 600% and although this represents an extreme scenario, it shows how resilient PUL are in 

comparison to more fuel-intensive gears and indicates a potential strong impact of banning 

PUL gears. Another effect of fuel scenarios was the reduction of averaged fishing effort per 

grid cell by up 40%, which could be a chance for marine conservation efforts.  

Banning PUL in FISHCODE led to the expected shift to equivalent metiers using TBB, however, 

not all agents using PUL switched, but instead reduced their number of fishing trips. This 

shows the limits of the adaptive capacity of agents, because TBB metiers could only partially 

substitute former PUL metiers. The reason could be the lower profitability of TBB metiers or 

the habitual behavioral element introduced by the Consumat approach in FISHCODE. The 

latter incentivized agents to choose the same metier as long as they are satisfied while 

reducing their satisfaction when choosing a new metier (Chapter V). PUL gears have been 

effectively banned in the EU in 2021, which was after the core development of FISHCODE and 

its integrated data (2012-2018). By analyzing recent fishery data from 2022, the model 

outcome of the PUL scenario could be compared to the real-world effect of banning PUL. This 

approach would provide helpful insights into the realism of FISHCODE and its uncertainty 

when simulating scenarios.  

Additional spatial fishing restrictions reduced fishing effort and profits underlining the conflict 

potential among future OWF expansions and fisheries (Letschert et al., 2021; Stelzenmüller et 

al., 2022). In the spatial fishing restrictions scenarios, fishing effort became displaced into the 

remaining open areas where it increased by more than 100% in some hotspots. The 

intensification of fishing effort did not decrease LPUE substantially, despite FISHCODE 

simulating local resource depletion as reduced catchability in patches that were previously 
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fished. This indicates that the reduction of profits in future OWF and NTZ scenarios are 

triggered by longer steaming times rather than local resource depletion. The result is in line 

with Kraan et al. (2024) who found limited impact of bottom trawling on benthic communities,  

however, the authors argue that input data might be biased due to the long history of bottom 

trawling in the North Sea. In contrast, Reiss et al. (2009) detected a disturbance in benthic 

communities due to fishing in areas that were already fished at high intensities. In fact, 

repeated fishing events have been observed to impact catchability and the bathymetry of the 

seabed (Depestele et al., 2016; Rijnsdorp et al., 2022) and an ecosystem-based model found 

reduced fish biomass as a consequence of fishing effort displacement (Püts et al., 2023). The 

direct relationship between fishing activity and catchability is afflicted with some uncertainty. 

The biological assumptions of FISHCODE are strong simplifications that treat the effects of 

fishing on biological resources uniform independent of the used gear and target species. Once 

there is more scientific agreement on the relationship between fishing activity and biological 

resource availability, the biological submodel of FISHCODE should be improved. 

4.2 Towards holistic scenarios 

Our results hint that a combination of stressors might evoke a different outcome than testing 

them individually. PUL gears are most resilient against high fuel prices, which is why a 

combination of banning PUL and increasing fuel prices would have a stronger negative effect 

on overall fishing effort and profits. If all three pressure would be combined, the decrease of 

fishing effort in the PUL and fuel scenarios, could counteract the concentration of fishing effort 

in hotspots as a result of displacement and possibly lower the risk of local negative impacts on 

habitats.  

Shared socio-economic pathways (SSP) combine potential future changes in several storylines 

offering a framework to represent complex scenarios without inflating the parameter space 

(Pinnegar et al., 2021). An operationalization of the SSP framework for EU fisheries suggests 

possible co-use of OWF and fisheries and alternative fishing gears that are less fuel-intensive 

and more selective (Hamon et al., 2021). One promising alternative are passive gears such as 

pots or creels, which avoid high unwanted bycatches (Hornborg et al., 2017) and are currently 

discussed to be permitted in or around OWFs of North Sea riparian states (Bonsu et al., 2024; 

Stelzenmüller et al., 2021c). The behavioral submodel of FISHCODE focuses on metier choice 

and thus is suited to test the effect of introducing new gears and target species. Analyzing 
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these co-use scenarios would create first insights on their feasibility not only with regard to 

technical and management requirements, but also considering the fishers’ decision-making. 

Together with fishing pressure, climate change has been altering species communities in the 

North Sea and north-east Atlantic and thus should be considered when building complex 

future scenarios (Engelhard et al., 2014; Sguotti et al., 2022). Ecological processes are 

simplified in FISHCODE and thus analyzing climate change scenarios poses a challenge. We 

simulated landings by matching environmental variables in the model with look-up tables of 

observed fishing trips rather than having a biological submodel, which saved considerable 

complexity through bypassing mechanisms such as fish stock growth, species interactions, 

environmental impacts on species, and catchability of fishing gears. By deriving landings 

directly from observed data, we assume that the relation between environmental variables 

and catchability remains constant. One solution could be to alter simulated LPUE according to 

winner and loser species of climate change in the southern North Sea.  

Using the  US surfclam fishery as an example, Scheld et al. (2022) have shown, that the 

restriction of vessel traffic in OWF areas can reduce economic benefit of fishers even more. 

We assumed that fishing vessels have transit rights in OFWs in all scenarios reflecting the 

current regulations in the southern North Sea (Bonsu et al., 2024). However, regulations in 

the North Sea are made by several countries and are therefore prone to inconsistencies. Thus, 

varying regulations for transit rights in OWF areas would add to more holistic scenarios.  

The Global Biodiversity Framework’s goal of protecting 30% of all marine areas (UN, 2022) 

became reflected in an EU Action Plan suggesting to phase out all bottom trawling in MPAs by 

2030 to protect the sea floor and ensure the conservation of marine biodiversity (EU, 2023). 

In scenarios of this study, only 5.5% of grid cells (approximately 17900 km²) were closed to 

fishing in no-take zones. To simulate international conservation targets, scenarios would need 

to entail much larger areas designated to no-take zones. 

Conclusion 

All tested scenarios reduced fishing effort and profits, but only extreme fuel price scenarios 

resulted in unprofitable fisheries. These results suggest that the current flexibility of fishers to 

switch metiers and adapt levels of fishing effort and spatial catch grounds is sufficient to cope 

with most stressors individually. However, this level of adaptation might be taxing especially 

for small fishing enterprises and even though the entire fishery remains profitable, every 



Chapter VI – Scenario testing 

 152  

reduction of fishing activity may have eroding effects on port infrastructure and coastal 

communities. Additional spatial fishing restrictions led to an intensification of fishing effort, 

whereas the opposite trend was observed for higher fuel prices. Changed distribution of 

fishing effort should be considered in marine spatial management to achieve ideal outcomes 

for marine conservation. FISHCODE provides a suitable tool to perform scenario analysis and 

gain insight in potential future stressors for southern North Sea fisheries. The question about 

the effect of combined and more realistic future scenarios remains open and should be 

subjected to future research. 

Supplementary material 

Supplementary material of this chapter can be found in the end of this thesis. 
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General Discussion 

 

The findings of this dissertation give insights into the extent of current and potential future 

stressors on the North Sea fisheries, i.e. spatial fishing restrictions, local depletion, Brexit, and 

fuel prices, while also demonstrating a feasible mitigation strategy, i.e. co-locating brown crab 

fishery with passive gears and offshore wind farms (Chapter I-III). My-coauthors and I 

disentangled the effects of a wide array of environmental, economic, and cultural drivers for 

fishery which varied across fleets, highlighting the need to consider differences of fisher 

behavior and vessel technicalities in models and management (Chapter IV). The agent-based 

model (ABM) FISHCODE, is rooted in results of the previous chapters and simulates 

spatio-temporal fishing effort while allowing fishers to decide individually if and what to fish. 

It represents a virtual laboratory for the German southern North Sea fisheries and is capable 

of analyzing consequences for socio-economic and spatial scenarios (Chapter V-VI). The 

following sections discuss the results of this thesis along the four research objectives 

presented in the general introduction, and embed the thesis’ findings in the context of current 

management before drawing conclusions. The research objectives were: 

(1) identifying current and future pressures for North Sea fisheries with emphasis on 

spatial fishing restrictions (discussed in 1.1), 

(2) exploring co-use as a mitigation strategy for constrained fishing grounds due to 

offshore wind parks (discussed in 1.2), 

(3) identifying drivers of North Sea spatio-temporal fishing dynamics (discussed in 2.1), 

and 

(4) constructing an agent-based model (ABM) to evaluate the effect of socio-economic 

scenarios on the German fishing sector (discussed in 2.2 and 2.3).  
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1. The North Sea, high intensity – and high uncertainty 

1.1 Pressures for North Sea fisheries 

In the North Sea, the first offshore wind farm (OWF) entered service in 2002 and, since then, 

the sector has been ever-growing, while the number of fossil energy structures has been 

recently stagnating (Martins et al., 2023). More than 10 years ago, OWFs have been identified 

as an emergent actor in marine spatial planning (MSP) and potential competitor for North Sea 

fisheries (Berkenhagen et al., 2010; Kannen et al., 2008). Chapter I confirms these earlier 

results and is the first study to perform a detailed spatial overlay analysis on a larger scale 

taking into account all offshore renewable energy sites (including wave and tidal energy). 

OWFs constitute by far the majority of present and future offshore renewable sites, which is 

why, from now on, we will exclusively refer to OWFs when describing results of Chapter I. 

Compared to other EU waters, the North Sea is a hotspot for OWF expansions, which will cover 

up to 60,000 km² within the coming decades leading to a 5-fold increase of the overlapping 

area between fishing grounds and OWFs. Our results got confirmed even in a global context, 

as northern Europe scores second (after China) in OWF development rates, with the UK 

leading before Germany (Paolo et al., 2024).  

In Chapter I, we integrated fishing effort data from four different sources with varying quality, 

because highly resolved data from the vessel monitoring system (VMS) for international 

fisheries was only available for the German exclusive economic zone (EEZ). Regional data 

published by OSPAR, HELCOM or global fishing watch comes at the cost of being aggregated 

on higher spatial and temporal levels or fishing gears (ICES, 2019c, 2019d; Kroodsma et al., 

2018). OWF areas are often smaller than spatial units of these publicly available fishing effort 

data, meaning that intersections between OWFs and fishing effort may lead to 

overestimations of overlapping fishing effort (Chapter I). The same issues have been observed 

for studying the impact of MPAs on fisheries (Chollett et al., 2022). Moreover, fishing effort 

aggregated by year negates the detection of potential seasonal patterns (e.g. data for OSPAR 

and HELCOM regions) and gear aggregations can be problematic when they are on a high level 

such as the combination of pelagic and bottom trawls (e.g. global fishing watch data). Publicly 

available fishing effort data across EEZs and on higher spatio-temporal and metier resolution 

would improve impact assessments of spatial fishing restrictions. Finally, knowing the vessels’ 

landing ports would also allow to estimate socio-economic effects on coastal communities. 
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In the North Sea, fishing grounds of beam trawlers catching flatfish (i.e. mostly sole and plaice) 

and otter bottom trawls targeting plaice and Nephrops, will be the most affected by OWF 

developments (Chapter I). If no-take zones in MPAs are added to OWFs, the loss of German 

Nephrops fishing grounds will be up to 45% (Chapter II). These calculations only consider 

fishing grounds important to the German fleet, but Nephrops fishing grounds are also located 

in the UK, Netherlands, and Denmark. Therefore, the picture is likely similar for other North 

Sea fleets, because all these countries are planning large-scale OWF expansions in their EEZs 

(Chapter I).  

Apart from spatial fishing restrictions, Chapter II identified Brexit and overfishing as sources 

of uncertainty. Brexit had promised limited access of EU fishers to UK waters, which would 

increase UK quotas for many fish stocks, e.g. Nephrops, cod, and haddock. So far, reality differs 

from the original plans, as the Trade and Cooperation Agreement between the EU and UK 

regulates only a partial shift of quotas and does not include access limitations at least until 

June 2026 (EU, 2021). The shift of quota availability affects the capability of EU member states 

to swap quotas with the UK and may lead to complications, i.e. Germany’s swaps for Nephrops 

quota (Chapter II). Brexit renegotiations in 2026 are a large source of uncertainty for North 

Sea fishers, because quota availabilities and access to UK waters are again on the table for 

discussion (Stewart et al., 2022). Constrained access to the UK EEZs would lead to an additional 

loss of fishing grounds for vessels targeting flatfish, Nephrops, herring, haddock, and many 

others. In the southern North Sea, fisheries might not be affected directly, but intensification 

of fishing activity is likely due to the displacement of vessels previously fishing in the UK 

increasing the local pressure on marine ecosystems. 

The North Sea is a heavily fished area where bottom trawling has been raking most of the sea 

floor at high intensities for decades (reviewed by Emeis et al., 2015; Rijnsdorp et al., 2008). 

Nephrops in the southern North Sea is fished above the recommended limits most years, due 

to a mismatch of management units between individual population and total allowable 

catches (TAC) that are released for the entire region (Chapter II). Therefore, Nephrops, and 

many other species, would benefit from the combined protection of OWFs and no-take zones 

(Püts et al., 2023). Marine ecosystems have the potential to recover if fishing pressure by 

destructive gears such as bottom trawling or dredging is reduced, even if static gear fisheries 

continues (Davies et al., 2021). Thus, combining passive gear fisheries such as pots or traps 

and OWFs could enable both ecosystem recovery to certain extent and a continued source of 
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livelihood for fishers. Passive gears are also more energy-efficient than bottom trawls 

(Suuronen et al., 2012), although the catch efficiency per used fuel is worse for passive than 

for active gears (Cheilari et al., 2013). This should be considered when making plans for 

sustainable future food production.  

1.2 Will OWFs transform ecosystems and fisheries? 

The hard substrate of wind farm monopiles act as artificial reefs that are first colonized by 

sessile species and later by mobile macrofauna such as brown crab (Chapter III), lobster, and 

cod (Gimpel et al., 2023; Stelzenmüller et al., 2021c; Thatcher et al., 2023). All these species 

have a rather high monetary value and are attractive for fisheries. In fact, there are incidences 

of commercial vessels preferably fishing in the proximity of wind farms with pots and traps 

(Chapter III). Although these results suggest that passive gear fisheries in the proximity of 

OWFs are feasible, fishers need to make investments in order to purchase equipment and 

perform technical modifications on their vessels. The few German vessels with passive gears 

in the North Sea use gillnets for catching cod, and pots and traps for European lobster. 

Experimental catches in the safety buffer of OWFs and economic analyses suggest that 

co-location with passive gears would be feasible for brown shrimp fishers in summer months 

when brown shrimp catches decrease and brown crabs are abundant (Chapter III). Scour 

protections of OWFs serving as a potential habitat for European lobster is a promising 

prospect, because it can be caught in the same fishery as brown crab and achieve a higher 

market price (Thatcher et al., 2023). The occurrence of species around scour protections is a 

result of many factors, e.g. surrounding habitat, OWF age, and scour protection material. With 

more results from experimental and field research, influences of these factors on species 

aggregations could be properly analyzed and subsequently the benefits for fisheries 

simulated.  

Artificial hard substrate does not only attract species interesting for fisheries, but also 

unwanted colonizers such as non-indigenous fouling species (Laeseke et al., 2020). A study in 

Belgian waters found that OWF pillars and foundations act as stepping-stones for 

non-indigenous sessile invertebrates expanding their range from coastal to offshore zones (De 

Mesel et al., 2015). The same effect has been observed for blue mussels (Mytilus spp.) in the 

entire North Sea (Coolen et al., 2020). The impact of invertebrates introduced to a new habitat 

may seem small at first, but once established, non-indigenous marine species are nearly 
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impossible to eradicate and can alter ecosystem functions (reviewed by Laeseke et al., 2020). 

Costs emerging from the consequences of biological invasions are not only paid by the 

ecosystem, but may also cause tremendous economic losses (Williams and Grosholz, 2008). 

This is why simulation studies assessing the connectivity introduced through planned OWFs 

are recommended as standard procedures to foresee and proactively manage the risk of 

marine non-indigenous species (Abramic et al., 2022). For the North Sea, Molen et al. (2018) 

performed a sensitivity study with existing wrecks, oil & gas, and OWF structures. However, 

man-made marine structure will increase with continued use of marine areas, especially due 

to the enormous planned OWF expansions in the coming decades. Therefore, connectivity 

studies should comprise future scenarios of OWFs in order to assess their impact on marine 

non-indigenous species. 

Even though OWFs exclude fisheries due to the legislation or the fear of damaging cables and 

other infrastructure (Bonsu et al., 2024), they are not the same as no-take zones that are 

deliberately designed for nature conservation. Li et al. (2023) performed a statistical analysis 

for long-term effects of OWFs on the surrounding species community and could not find a 

significant effect for the absence of trawling. A review of scientific studies assessing impacts 

of OWFs on ecosystems revealed that more studies found negative than positive effects 

(Galparsoro et al., 2022). Birds were most consistently found to suffer from OWFs, whereas 

the findings about fish are not so clear, as the same numbers of studies found positive and 

negative effects, respectively. Elasmobranchs are possibly affected worse than other fish, 

because their electro-sensory organs can become disturbed by the electromagnetic OWF 

cables and transformers (reviewed by Bray et al., 2016). However, scientific findings are based 

on anecdotal evidence, likely case-specific due to differences in habitats and records of 

anthropogenic use, and biased towards fish and bird species while invertebrates are less 

researched (Galparsoro et al., 2022). More ecological time series need to be available and 

analyzed to achieve clarity about whether OWFs have harmful effects or can benefit nature 

conservation.  

One way or the other, the extent of OWF implementation will lead to a transformation of the 

fishing sector and countries are already preparing legislation for co-use practices (Bonsu et al., 

2024). Insights into the feasibility of co-location as mitigation strategy for lost fishing grounds, 

such as provided by Chapter III, are crucial for designing next steps in research and 

management. However, when it comes to assessing the impact of OWFs on fisheries, there 
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are still many open questions: Can the remaining open areas sustain the current capacity of 

fishing activity? How will fishers react to the many pressures making their future so uncertain? 

To answer these questions, it is important to understand the drivers of fishing behavior (Fulton 

et al., 2011) and use more dynamic approaches such as ABMs to simulate fishing displacement 

(reviewed by Haase et al., 2023). 

2. To fish or not to fish 

2.1 Influencing drivers of fishing effort 

Chapter IV includes a review of scientific literature on factors influencing behavior of demersal 

fishers in the North Sea. While the review shows that factors from the environmental, 

economic, and cultural dimensions, as well as fishing restrictions play a role, there are barely 

any studies combining them in one quantitative analysis. To bridge this gap, we combined data 

from all dimensions and performed boosted regression trees (BRT) to identify which factors 

are driving fishing effort dynamics of three German fleets, i.e. flatfish, mixed-demersal, and 

brown shrimp. Our results indicate that biophysical parameters had the strongest effect on 

brown shrimp and demersal fleets alike, whereas distance to port and fuel price only 

influenced brown shrimp fishing effort. The discrepancies across fleets may be related to 

varying socio-economic settings (e.g. business structure) and environmental parameters in 

fishing grounds. German brown shrimp fishers usually run smaller family-owned businesses, 

whereas fishers targeting flatfish are affiliated to larger international companies.  

Conversely, Chapter IV revealed quotas to be unimportant for fishing behavior even though 

the German Nephrops total allowable catch comprise a fraction of actual catches. This is 

because Germany has been swapping quota with the UK, France, and Belgium to increase 

fishing opportunities for its Nephrops fishery (Chapter II). This reflects a methodological 

limitation of BRTs, since they can only make meaningful statements for historical data ranges 

and are not suited for scenario testing or extrapolation. The same holds true for tested fuel 

prices and environmental factors, which did not include previous political events (i.e. the 

Russo-Ukrainian war) or future changes due to climate change. Fuel price was only relevant 

for one fleet, while other studies identified it as an important factor in shaping fisher behavior 

such as reducing towing speed (Poos et al., 2013) and fishing effort (Cheilari et al., 2013). The 

socio-cultural dimension comprised a single parameter, i.e. differentiating days into workdays, 

weekends or holidays. Other cultural norms such as skipper age and experience can influence 
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fishing behavior, but are more difficult to quantify (Christensen and Raakjær, 2006). 

Behavioral drivers may differ from fisher to fisher due to their varying background, but also 

because of different vessel characteristics, i.e. the vessel size and equipment determine a 

fisher’s capability to visit certain fishing grounds (Stephenson et al., 2018). Other methods 

such as ABMs are suited to test parameter ranges beyond historical ranges and simulate the 

behavior of heterogeneous agents (Bonabeau, 2002).  

2.2 Fishing agents – more than the sum of their profits 

In current times, quantities of data are increasing, rapidly requiring more computational 

power while at the same time enabling more precise analyses. In this thesis, I used not only 

fishing effort data, but also landings, vessels registries, information from federal agencies (e.g. 

quotas), remote-sensed oceanographic and weather data, economic information on fishing 

businesses, and spatial polygons of MPAs and anthropogenic activities such as OWFs. Based 

on all this information, insights into factors driving fishing behavior (Chapter IV), and data 

products of Chapter I & II, I developed an ABM called FISHCODE: FIsheries Simulation with 

Human COmplex DEcision-making. FISHCODE simulates individual decisions of German fishers 

in the southern North Sea about if, what, and how long to fish, and produces output of fishing 

effort and economic variables on temporal (e.g. fishing trip or month) and spatial resolutions 

(Chapter V). Towards the end of the last millennia, scientific studies on fishery behavior grew 

in number (Van Putten et al., 2012) and the same has recently been observed for ABMs 

focusing on fishing behavior (Haase et al., 2023). FISHCODE stands out from other fisher ABMs 

and fleet models, because it takes into account fishers’ behavior beyond profit maximization, 

e.g. habitual behavior and conformism. This is an important property as human behavior has 

been identified as a large source of uncertainty in fisheries management (Fulton et al., 2011). 

Human behavior research has roots in neoclassical economy, but during the last half of the 

20th century became progressively mixed with discipline from psychology, sociology, political 

science, anthropology, and ecology (Constantino et al., 2021). The simulation of human 

behavior based on more than a single economic aim is progressively embraced by the scientific 

community (Constantino et al., 2021; Schlüter et al., 2017; Wijermans et al., 2020). As such, 

FISHCODE is a timely application for simulating humans’ decision in the context of resource 

use and represents a virtual laboratory for testing scenarios in the southern North Sea. 
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Salas and Gaertner (2004) classified fishers’ actions into tactical and strategic, the former 

being short-term, e.g. targeting a specific fishing ground, while the latter aim to achieve 

long-term objectives such as reducing costs per kg caught. Social factors influencing strategic 

decision-making is established in many fisher models (Van Putten et al., 2012), e.g. agents will 

keep fishing even though they do not make profit in the long term, because they simply want 

to be a fisher (Pollnac and Poggie, 2008; Stelzenmüller et al., 2024a). Applying this 

categorization on FISHCODE, the strategic long-term aims of agents are to maximize their 

satisfaction and reduce their uncertainty, which in turn stand for different behavioral 

motivations such as acting habitual or earning more than colleagues (Chapter V). However, 

most simulated decisions in FISHCODE are tactical, i.e. if, what, and how long to fish on a daily 

basis, a feature that is less common across fisher models. This makes FISHCODE especially 

suitable to simulate fishers who switch gears depending on the day or season, and can be used 

to virtually test the acceptance and feasibility of new fishing techniques and target species. 

In Chapter IV, I showed that sensible clustering of fishers into groups is important, because 

they are affected differently by driving factors. In the data preparation for FISHCODE, I 

improved a cluster method developed for Chapter II to group fishing trips into metiers. I also 

define fleet affiliations for every vessel based on the metier used the most across all observed 

fishing trips. In comparison to metiers, fishing fleets are often used to create a temporally 

fixed classification that might involve technical characteristics (Ulrich et al., 2012). The 

grouping on metier and fleet level is useful to differentiate characteristics on fishing trip level 

(e.g. gear or catch composition) from annual parameters (e.g. personnel and fuel costs). At 

the same time, this dualism of vessel affiliation complicates the merging of data such as cost 

structures made publicly available by the Scientific Technological and Economic Committee 

for Fisheries on fleet level (e.g. in STECF, 2019a). The STECF publishes information for fishing 

fleets defined by the main metier and coarse intervals of vessel sizes (i.e. 0m – 12m, 12m - 

24m, 24m - 40m, and >40m). This requires to match STECF data with fishing vessels based on 

a lot of assumptions, such as to linearly interpolate costs by meter of vessel length (Chapter 

V, Annex), which introduces additional uncertainty. The fleet definitions of STECF are long 

established and previous works suggested refining them, which would benefit many models 

and research methodologies (Sulanke, 2020; Sulanke et al., 2022).  

Despite clustering fishing practices based on technical measures (e.g. metiers) being a 

common method, it remains an output criterium and does not describe what the fisher 
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intended to do when planning the fishing trip (Schadeberg et al., 2021). Thus, a grouping based 

on fishing metiers alone can only have restricted significance in determining fishers’ behavior. 

The quality of grouping typologies of fishers can be improved by including additional 

information such as the skipper’s age, their fishing mobility, activity per year, scope of 

investments, and crew size (Christensen and Raakjær, 2006), as well as more qualitative 

characteristic, e.g. the fisher’s culture and attitude towards change (Boonstra and Hentati-

Sundberg, 2016). The decision-making submodel in FISHCODE assumes uniform behavioral 

motivations within fleets and thus could be improved if the clustering would be refined by 

using additional information. For example, Wijermans et al. (2020) presented an ABM in which 

they sorted fisher behaviors into three fishing styles that were identified by combining 

quantitative metier analysis with expert consultation and interviews of fishers (Boonstra and 

Hentati-Sundberg, 2016). In general, fisher interviews or focus groups have been proven 

helpful to gain insights into the motives of fishers, which can then be used to find behavioral 

groups (Barz et al., 2020; Schadeberg et al., 2021). 

2.3 What does the future hold? 

Scenarios of increased fuel prices, spatial fishing restrictions, and a ban of electric pulse gears 

(PUL) indicated decreasing fishing effort and profits for German fishers in the southern North 

Sea (Chapter VI). Overall, scenarios of raised fuel price had the strongest effect in reducing 

fishing effort and profits, while expansion of fishing restrictions led to an intensification of 

fishing activity, exceeding an increase of 100% in several hotspots. Despite banning pulse 

gears forcing agents to switch to alternative gears, a large part of previous PUL effort became 

inactive. These results not only gave important insights into future pressures on and responses 

of the fisheries socio-ecological system, but also confirmed FISHCODE’s applicability for 

scenarios analysis.  

In our analysis, fuel price scenarios had the strongest effect, as an increase of 300% heavily 

reduced both fishing effort (-37%) and profits (-72%). Both effects have also been observed 

on a large scale for the EU fleet in response to increased fuel prices. Comparing EU fleet 

performance before (2002) and after (2008) growing fuel prices of approximately 250%, an 

average vessel spent 40 days less at sea and its profitability was reduced by 33% (Cheilari et 

al., 2013). Thus, the effects on profits in FISHCODE scenarios was more twice as strong, which 

could have several reasons. First, the relationship of fuel prices and profits in FISHCODE are 
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disproportional, because of adaptive fisher behavior. This is supported by the extreme 

FISHCODE scenario increasing fuel price by 600%, which did not lead to a doubling of reduced 

profits in comparison to the 300% scenario (Chapter VI). Second, Cheilari et al. (2013) 

calculated averages across EU fleets also including gears with lower fuel uses. The fleets 

represented in FISHCODE all use bottom trawls, which are among the most fuel-intensive 

gears and might therefore be more impacted than more energy-efficient gears, e.g. pots, 

traps, and gill nets (Suuronen et al., 2012). Another effect of increased fuel prices in the EU 

was that fishers passed on the higher costs to the consumers by raising fish prices, which could 

offset the increased energy costs by certain extent (Cheilari et al., 2013). These market 

dynamics are currently not included in FISHCODE and could add more realism to economic 

scenarios.  

The nature of the Consumat framework in FISHCODE enabled agents to choose metiers that 

they previously had not been used and thus FISHCODE could also be applied for testing 

scenarios of introducing new metiers. Some fishers in the North Sea use passive gears such as 

gillnets to catch flatfishes and cod (Gadus morhua) or traps to catch brown crabs (Cancer 

pagurus) and European lobster (Homarus gammarus). We did not include these fishing 

options in our model, because of the low engagement of German fishers in these gears. 

However, with expanding OWFs, using passive gears like traps or fishing rods could offer an 

alternative for fishers to continue fishing inside or at least in buffer zones around OWFs (Bonsu 

et al., 2024; Stelzenmüller et al., 2021c). Analyzing these co-location scenarios with our ABM 

could create first insights on their feasibility not only with regard to technical and 

management requirements, but also considering the fishers’ decision-making. 

Just like any complex model, the outcomes of FISHCODE are affiliated with uncertainties due 

to its model structure, stochasticity, and assumptions made during the parameterization 

(discussed in Chapter V). The high complexity is one of the shortcomings of ABMs and the 

reason why they are rarely used for policy advice (Will et al., 2021). A possible way to 

circumvent this weakness would be ensemble modelling, meaning to draw conclusions based 

on the output of several similar models, as it has been suggested for fish stock assessments 

(Britten et al., 2021). Using ensembles instead of following a singular model output might 

prevent mistakes that have occurred in fisheries, such as the collapse of the Newfoundland 

cod stocks (Walters and Maguire, 1996). The two ABMs DISPLACE (Bastardie et al., 2016) and 

ViNoS (Lemmen et al., 2023) would be suitable candidates for an ensemble approach since 
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both also simulate fishing effort in the North Sea. However, FISHCODE operates on higher 

spatio-temporal resolution and has stronger focus on decision-making beyond economic 

optimization, which would need to be considered when comparing model outputs. Applying 

FISHCODE to other areas or comparing its outputs to ABMs from other areas is challenging, 

since the North Sea is a very data rich area allowing for the development of complex fisheries 

models.  

3. Management implications  

3.1 The interplay of pressures, management, and adaptation 

North Sea fish stocks are subject to many anthropogenic pressures, such as intense bottom 

trawling and warming waters (Emeis et al., 2015). These stressors affect marine ecosystems, 

leading to regime shifts of entire plankton and fish communities (Möllmann et al., 2021; 

Sguotti et al., 2022). North Atlantic cod (Gadus morhua) has been declining worldwide, 

prominently represented by the collapse of the seemingly endless Newfoundland populations 

in 1992. Cod in the North Sea has been on the losing end of a community-wide regime shift 

for decades, which can be tracked by abrupt changes lastly detected in the early 2000s 

(Blöcker et al., 2023b; Sguotti et al., 2022). The EU responded with a new regulation in 2002 

restricting the days-at-sea for all vessels with mesh sizes >100 mm which were used by vessels 

targeting cod (EU Reg. 2341/2002). The Nephrops fleet was also affected by this new 

regulation, because they had previously moved to mesh sizes >100 mm in order to reduce 

bycatches. No differentiation was made between vessels targeting cod or Nephrops, which 

incentivized Nephrops fishers to move back to smaller nets, enabling them to retain their 

allowed days-at-sea, but also inevitably increased unwanted bycatches (Graham et al., 2007). 

Another side effect of both the decline of cod and its stricter management forced fishers to 

adapt and contributed to the emerging of the German Nephrops fleet in 2006 (Chapter II). 

Two conclusions can be drawn from the above described chain of events: First, management 

units (fleets) are crude definitions that make targeted management difficult. Thus, 

management should use groups of fishers on a finer resolution and consider how a new 

regulation tailored for one fleet will impact the others. This call for management on a finer 

resolution is also supported by results from Chapter II (i.e. defining metiers based on careful 

and detailed clustering) and Chapter IV (i.e. fleets differ in their response to fishing drivers), 

and has been discussed in the previous section (2.2). Second, effects of regime shifts or tipping 
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points in fish stocks go beyond the ecological domain and may materialize as fishers adapting 

to new gears and target species. If management is not issued in a careful way, fishers’ 

adaptions may be harmful for the ecosystem (i.e. switch to smaller mesh sizes increasing 

bycatches) essentially representing a negative feedback loop. 

3.2 One plan to place them all  

Spatial fishing restrictions represent another factor that force fishers to change their behavior, 

i.e. by targeting alternative fishing grounds. This displacement of fishing activity can have 

negative effects, if previously unfished areas or sensitive ecosystems are disturbed (Dinmore 

et al., 2003; Rijnsdorp et al., 2001; Stelzenmüller et al., 2015a). Therefore, future-oriented 

MSP is necessary to avert unwanted effects of growing spatial fishing restrictions, such as the 

potential expansions of OWFs and no-take zones demonstrated in Chapter I & II and the 

intensification of fishing effort resulting from simulated scenarios (Chapter VI). In contrast to 

OWFs, the future placement and regulations of MPAs is less certain. Currently, fishing is 

allowed in many MPAs or only restricted during a specific season or for individual gears, and 

many Natura2000 are still lacking any management regulations (Mazaris et al., 2018). 

However, ambitious global conservation targets such as the Global Biodiversity Framework 

aim to protect 30% of the earth’s surface (UN, 2022). The recent EU Action Plan echoed the 

strive for more marine conservation areas by suggesting (among other objectives) to phase 

out all mobile bottom-contacting fishing activities in MPAs by 2030 (EU, 2023). This would 

have severe effects on the fisheries in the southern North Sea, which, to a large amount, take 

place in MPAs and exclusively use bottom-contacting gears (Figure 1).  
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Figure 1. Fishing grounds of the most important German fleets in the southern North Sea (also 
represented in FISHCODE), as well as planned offshore windfarms (status 2040) and current 
marine protected areas (see Chapter V for data sources). Note, that many marine protected 
areas represent only partial or no restriction to fishing activity, which would change with the 
implementation of the EU action plan. 

Even though the EU action plan did not find much fertile ground among EU member states 

and remains a suggestion until today, the trend of global and regional conservation targets 

has been developing in favor of more area-based measurements. Therefore, it is important 

for scientists to anticipate future no-take zone placements. A combination of several nature 

conservation objectives could be used to develop realistic scenarios. Implementing the EU 

action plan would effectively close off 39% of the German North Sea for fishing activity only 

due to MPAs and thus exceeds the aim of the Global Biodiversity Framework. More precise 

suggestions for no-take zones entailing exactly 30% of the German North EEZ could meet 

nature conservation targets, while still keeping areas open for fishing businesses to survive. 

Moreover, OWFs offer a certain degree of nature protection due to their exclusion of most 

fishing activity. Thus, they could be considered as Other Effective Area-based Conservation 

Measures (OECMs) to achieve nature conservation goals (IUCN, 2018). While even this 

idealized future-oriented MSP might not avoid all conflicts among marine stakeholders, it 

could still lay the foundation for an “as-good-as-possible” scenario.  
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Despite fishery being the most important marine actor historically, it is often not considered 

explicitly in MSP (Trouillet, 2019). One could argue that this is a gain for nature conservation, 

but in some cases important fishing grounds are not even considered for MPA placement, 

because the economic losses would be too great (Chollett et al., 2022). The placement of 

North Sea Natura2000 areas has recently been identified to be deficient in covering core areas 

of most demersal fish species (Probst et al., 2021), hinting that conservation targets have been 

compromised. In fact, the implementation of German Natura2000 sites in the North Sea has 

taken almost 20 years, because of changing governments and political aims in EU member 

states that hindered the process to find a balance between fisheries and nature protection (T. 

Schulze, personal communication, February 12, 2024). A review of the STECF on suggested 

Natura2000 areas in the North Sea concludes: “[…] [spatial] restrictions proposed in the joint 

recommendation apply to areas where the fishing effort is already very low and will have very 

little economic impact.” (STECF, 2019b, p. 135). This leads to the assumption that fisheries are 

actually considered in MSP despite not appearing in the actual marine spatial plan, which 

could potentially undermine area-based conservation efforts, because planned no-take zones 

are shifted to sustain the economic values of fisheries. If fishers would be respected in marine 

spatial plans with explicit fishing priority zones, it would not only ensure their claim to 

essential fishing grounds, but also invalidate the argument “fisheries are not explicitly 

considered in MSP” and therefore give leverage to other stakeholders such as marine 

conservation to place no-take zones in some areas with high fishing effort. Thus, putting 

fisheries zones on the map might benefit both fishers and marine conservation. Furthermore, 

these two actors are not necessary antagonists, as their general core interests are the same: 

protecting the ecosystem for conserving biodiversity and target species populations. Fishers 

might be in favor of multi-use MPAs with limited access of fishing, which might promise larger 

catches with less effort (Jentoft and Knol, 2014). Hence, this argument supports the conclusion 

of other studies that giving more power to fisheries organizations to speak and negotiate 

directly with marine conservation stakeholders could result in more effective solutions 

(Kannen, 2014; van Hoof et al., 2020).  
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4. Conclusion 

In this thesis, I identified important stressors for the North Sea fisheries with special emphasis 

on spatial fishing restrictions, presented a mitigation strategy (i.e. co-use of offshore wind 

farms and fisheries), delved into the factors driving fishing behavior, and created and applied 

an agent-based fishery model for three German North Sea fleets. As such, I met all four 

research objectives stated in the general introduction. 

Quantifying the overlap of offshore wind farms (OWFs) and fishing effort confirmed earlier 

studies anticipating the conflict between these two sectors and identified the North Sea as a 

hotspot OWF development. Along with marine protected areas (MPAs), expanding OWFs will 

spur a race for space in the heavily anthropogenically used North Sea. This will impact the 

fishing sector in general, but especially demersal trawlers catching flatfish and Nephrops. In 

addition, political developments of the recent years have affected North Sea fisheries. Brexit 

has been challenging the status quo of quota distribution and swaps among EU member 

states, while a partial exclusion of EU fishing activity from the UK EEZ could be the outcome 

of renegotiations of Brexit conditions in 2026. The COVID-19 pandemic as well as the 

Russo-Ukrainian war led to increasing fossil fuel prices, which reduced the profitability of 

fishing businesses.  

The agent-based model (ABM) called FISHCODE represents a versatile tool for scenario testing 

and investigating essential drivers of fisher behavior. Model outcomes show a negative impact 

of future fishing restrictions and rising fuel prices on fishing effort and profits. This could be 

exacerbated through the EU ban of the electric pulse gear, which is more energy-efficient than 

conventional beam trawls, but was debated for negative impacts on the ecosystem. 

Moreover, spatial restrictions will reduce spatial fishing opportunities in the southern North 

Sea and could lead to an intensification of fishing effort in remaining open areas by more than 

100% in hotspots. The potential limitation of the UK EEZ due to Brexit could even lead to more 

fishing effort displacement and further local intensification of fishing activity. Already now, 

Nephrops populations are fished above the recommended limit and thus any increase of 

fishing effort will raise the threat of local depletion. The development and application of 

selective and fuel-saving fishing gears and thus important for North Sea fisheries. 

Co-use strategies could mitigate the effect on the fishing sector by offering an alternative 

fishing practice. Fishing with pots and traps for brown crab are a realistic option, because 
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passive gears don’t threaten OWF infrastructure and scour protections may serve as artificial 

habitat for demersal fish and macro-benthos. However, when thinking about upscaling co-use 

strategies, the lower catch efficiency per spent fuel of passive gears should be considered 

especially in the context of an increasing demand of protein and human-induced climate 

change. In general, so far, scientific evidence for the feasibility of co-use fishery is anecdotal 

and there is no consensus about OWFs affecting the surrounding ecosystems. Several 

extensive reviews found positive and negative effects depending on the taxonomic group, 

while it is proven that OWFs increase spreading capabilities of non-indigenous species. Further 

ecological knowledge is required to assess whether OWFs can be considered as additional 

nature protection measure, as well as to what extent they can sustain fisheries. 

Researches deal with many uncertainties when it comes to data resolutions and availability. 

Pan-regional fisheries data on a high resolution would be necessary to precisely asses the 

effect of spatial fishing restrictions, move beyond current boundaries such as EEZs, and 

develop more realistic socio-ecological fisheries models.  

Everything considered, fisheries in the North Sea will face many challenges within the coming 

decades triggered by a ceasing of fishing grounds, increasing fishing costs, political 

developments, as well as partly unknown effects on marine ecosystems as a result of a 

large-scale transformation. This would not be the first time North Sea fishers adapt to a new 

situation. The collapse of cod stocks and the emergence of the German Nephrops fleet pose 

an example for fishers switching to a new target species. However, the upcoming changes 

operate on a larger dimension especially with regard to how marine space is utilized. Careful 

management should be drafted to ensure the profitability of the fishing sector in co-existence 

with other marine spatial actors. Factoring in the heterogeneity of fishers is key for efficient 

regulations and marine spatial planning (MSP). Ideally, management units such as fishing 

fleets or metiers should include socio-economic or cultural variables to account for 

heterogeneous responses of fishers and policy drafts should be developed in a participatory 

approach with all actors. 
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From plate to plug: the impact of offshore renewables on European fisheries and the role of 

marine spatial planning 

Appendix A 

Table I-A1. Meta data of the spatially explicit data used in this study 
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Figure I-A1. Starting years of offshore wind farms (source: 4COffshore) across different wind 
farm statuses. The green dashed line represents the start of the present (<= 2021) and the 
blue dashed line the start of the mid-term (<= 2026) scenario. 
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Table I-A2. Definitions of wind farm statuses (source 4COffshore) and the respective scenario 
where it was included. Note that, if there was a starting date available, the starting date 
instead of the scenario was used to classify the scenario of the respective wind farm. 

Wind farm Status Definition Scenario 

Development Zone This refers to an area or zone that the 
government has identified as being suitable for 
development for offshore wind. Normally 
developers are then invited to submit project 
proposals falling within the area. 

Long-term 

Concept/Early Planning The early stages of a wind farm. At this pre-
application stage tasks are undertaken to 
establish the feasibility and design of the project.   

Long-term 

Consent Application 
Submitted 

The formal application has been officially 
submitted and is awaiting a decision from the 
authorities.  

Mid-term 

Consent Authorised Approval has been granted by the authorities and 
construction can begin assuming the developer 
wishes to invest. 

Mid-term 

Pre Construction The project has reached financial close/made a 
final investment decision and is moving towards 
offshore construction 

Mid-term 

Under Construction The offshore construction is in progress. No 
turbines are yet energised. 

Present 

Partial 
Generation/Under 
Construction 

At least one turbine has been energised and is 
feeding power to the grid. Part of the project is 
still under construction. 

Present 

Fully Commissioned All turbines energised and feeding power to the 
grid. 

Present 

Dormant The planning process for a country is moving 
forward but the wind farm is not explicitly 
include in plans. However, the windfarm has not 
formally been declined by the authorities or 
cancelled by the developer.  

Not 
included 

Failed Proposal The application has been declined by the 
authorities. 

Not 
included 

Cancelled The developer/owner has decided that the 
project is not viable. 

Not 
included 

Decommissioned The project has come to the end of its lifecycle. 
The turbines and foundations are removed. 

Not 
included 

Unknown The project is known to exist but no information 
is yet available as to its current status.  

Not 
included 
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Appendix B 

Choosing between AIS and VMS data 

An important decision prior to identifying interactions between fisheries and current and 

future marine OR is to choose between VMS or AIS data to analyse fleet movements and 

patch-choice detection. Note that the positional accuracy of VMS and AIS are similar (Russo 

et al., 2016). Importantly, neither system is perfect since 36% of the European vessels belong 

to ‘hidden’ length classes, meaning they have an overall length < 12 metres and therefore are 

not mandatorily equipped with AIS or VMS tracking devices (Russo et al., 2019). This leads to 

large regional differences in data coverage, depending on the composition of the fleet, as 

illustrated for Spanish (0% coverage), Italian (3.2% coverage), and Croatian (80% coverage) 

fleets trawling the Mediterranean (Russo et al., 2019). AIS data transmissions can be as 

frequent as a few seconds, allowing fine-scale assessments of fleet movements and patch-

choice (de Souza et al., 2016; Vespe et al., 2016). Contrary to VMS data, global AIS point-data 

can be freely obtained from GFW (Taconet et al., 2019). But, caveats exist as reviewed by 

Taconet and colleagues (2019), such as lack of satellite coverage, not all vessels carrying AIS 

transponders, transponders and data can be altered or switched-off, multi-gear vessels cannot 

be identified or differentiate between their fishing activities (de Souza et al., 2016; Le Guyader 

et al., 2017; Shepperson et al., 2018). This results in, for example, underestimating the 

offshore fishing activities (Russo et al., 2016; Taconet et al., 2019). A direct comparison of 

concurrent AIS and VMS scallop fishing data in the southern UK revealed that AIS data only 

captured 26% of the time spent fishing compared to VMS data (Shepperson et al., 2018). 

Moreover, contrary to VMS data (Hintzen et al., 2012; Lee et al., 2010), for AIS data there is 

no standardised workflow. In practice this means that AIS requires more data handling, 

wrangling, even machine-learning methods to define fishing activities, although some of this 

can be achieved using the R-package VMS tools (Hintzen et al., 2012). 

Appendix C 

One key obstacle when assessing the spatial overlap of fishing activities and areas designated 

for OR installations is the differing spatial resolution. Below, we illustrate two examples (Wind 

264 and Wind 296) of the overlap analysis with OR for the three fishing effort data sets 

differing in spatial resolutions. Fishing effort sources comprised GFW data, OSPAR/HELCOM 

and at the high-resolution German EEZ data. The panels highlight the effects of the variation 
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in spatial scales on the aggregation of fishing effort per planning site. The GFW and 

OSPAR/HELCOM data are rather conservative and might overestimate the actual fishing effort 

related to a respective OR polygon. 

 

 

Figure I-C1. Comparison of total fishing effort estimated from three different data sources 
(GFW, OSPAR/HELCOM; VMS) overlapping with two different example OR sites.   
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Appendix D 

Table I-D1. Total hours fished (GFW data) per gear group or métier overlapping with OR sites 
by regions and OR implementation scenario. 
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Table I-D2. Total hours fished (OSPAR data) per gear group or métier overlapping with OR sites 
by regions and OR implementation scenario. 
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Table I-D3. Total hours fished (HELCOM data) per gear group or métier overlapping with OR 
sites by regions and OR implementation scenario. 

Region Scenario DRB_MOL OTB_DEF OTB_SPF SDN_DEF SSC_DEF Total 

Baltic Sea Present 
 

4965 69 
 

64 5098 
 

~ 2025 66 16068 548 940 4 17625 
 

> 2025 
 

180533 1869 2166 335 184904 

Total 
 

66 201566 2486 3106 404 207626 

 

Table I-D4. Total hours fished (VMS data) per gear group or métier overlapping with OR sites 
by regions and OR implementation scenario. 
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155 607 
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2 7 112 
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5 44 
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10303 9394 57 326 
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3 10315 1088
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57 334 10 8 1430 1062
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845 345
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Supplementary Material – Chapter II 

The uncertain future of the Norway lobster fisheries in the North Sea calls for new 

management strategies 

 

Appendix A – German fishery clusters within the Nephrops fleet 

 

Figure II-A1. Catch composition per fishery cluster. The total aggregated catches per clusters 
are represented in the center of each pie diagram. Note that the clusters with less than 50 
trips, i.e. Whiting, Brown crab, and Sole, were removed.  
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Figure I-A2. Spatial distribution of clustered fishing trips resolved by statistical ICES rectangle. 

 

Figure II-A3. The number of trips per fishery cluster and year for all German vessels that ever 
participated in the Nephrops fishery.   
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Appendix B – Merging VMS and logbook data 

In two steps we sorted VMS pings into fishing trips. First, pings of the same vessel between 

two points of ports were assigned as one fishing trip if the time spent in each harbour 

exceeded 200 minutes. Second, previously assigned fishing trip pings were split, if the time 

step or geographical distance between consecutive points exceeded 11 hours or 200 nautical 

miles. The thresholds used for the first step ensured that short harbour visits, e.g. created by 

passing vessels, were not used for the fishing trip classification, whereas the second step 

revealed undetected harbour stays indicated by temporal or geographical gaps in vessel 

tracks. 

We determined the start and end times for each fishing trip in both logbook and processed 

VMS data. For each vessel, we identified temporal overlaps across logbook and VMS fishing 

trips and matched them whenever they overlapped. We solved multiple assignments of 

logbook trips to a single VMS trip depending on whether they were also assigned to other VMS 

trips or not. If they were, priority was given to the longest overlap and the other were 

removed, whereas, in the other case, all logbook trips remained assigned. The remaining 

unassigned logbook trips were merged with VMS points that were from the same ship, 

previously unassigned to any VMS fishing trip, and in between the starting and ending date of 

the logbook trip. In case there were still unmatched fishing trips we matched them based on 

the closest distance of mean times. Using this approach, we were able to assign on average 

99% of all logbook fishing trips to 87% of the VMS data (Table II-B1). 

Table II-B1. Merged logbook and VMS data as averages of yearly percentage and standard 
deviation (SD) at different steps of the merging procedure. The steps refer to the matching 
based on (I) temporal overlaps, (II) fishing trip start and end time from logbooks, (III) closest 
mean time among logbook and fishing trips. In general, the matching quality decreases with 
each step, and the first two steps are rooted in temporal intersections, whereas the third step 
merges fishing trips without temporal overlap.  

Merging steps Assigned Logbook trips [%] Assigned VMS data [%] 

 mean SD mean SD 

(I)   Temporal overlap 94.3 2.53 88.87 1.05 

(II)  Logbook times 97.0 2.28 88.88 1.05 

(III) Mean time 99.25 0.47 89.08 1.11 
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Appendix C – International Nephrops fishery 

 

Figure II-C1. Comparison and availability of international Nephrops landings and discards from 
sourced from STECF fisheries dependent information and ICES advices for Nephrops. 

 

 

Figure II-C2. Total Nephrops landings of the functional units (FU) located in the North Sea 
between 2003 and 2018 in comparison to the total allowable catch (TAC). Note, that the TAC 
is provided for the EU fishing divisions IV (North Sea) and IIa (Norwegian Sea), but landing 
information are based on STECF data and thus exclude non-EU fleets, such as Norway. 
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Table II-C1. The total allowable catch (TAC) of Nephrops in the North Sea (fishing divisions 4 
and 2a) for all European Union (EU) member states, the United Kingdom (UK), and the EU 
without the UK. 

Year TAC EU TAC UK TAC EU without UK 

2003 16623 14399 2224 

2004 18987 16446 2541 

2005 21350 18492 2858 

2006 26144 24380 1764 

2007 26144 22644 3500 

2008 26144 22644 3500 

2009 24837 21513 3324 

2010 24688 21384 3304 

2011 23454 20315 3139 

2012 21929 18994 2935 

2013 17350 15027 2323 

2014 15499 13424 2075 

2015 17843 15456 2387 

2016 13700 11865 1835 

2017 20034 17353 2681 

2018 24518 21237 3281 

2019 22103 19145 2958 

2020 23002 19924 3078 
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Appendix D – German Nephrops fishery 

 

Figure II-D1. Annual fishing core areas of German fishery clusters catching Nephrops: 
Nephrops & plaice (A) and plaice (B). The gradient represents the different years, starting from 
2012 (grey) to 2019 (dark). Relevant functional units (FU) and the German EEZ are colour-
coded.  

 

 

Figure II-D2. German Nephrops quota and catches per year. 
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Figure II-D3. Nephrops quota given to Germany from the UK, Belgium and the Netherlands 
between 2003 and 2019. The adapted quota includes all swaps as well as Germany’s original 
quota and quota transferred from the previous year (quota revisions). 

 

  

Figure II-D4. Yearly German Nephrops catches landed in German and international ports.  
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Table II-D1. Nephrops quota (in tons) received from the UK, Belgium and the Netherlands 
between 2003 and 2019 

  UK Belgium Netherlands 

2003 3 100 - 

2004 - 60 - 

2005 170 60 - 

2006 170 100 - 

2007 425 200 - 

2008 430 200 - 

2009 480 70 - 

2010 312 70 - 

2011 371 138 20 

2012 760.5 - - 

2013 435 - - 

2014 407 - 12 

2015 385 - 30 

2016 806 - 308 

2017 1085 - - 

2018 746 - - 

2019  634 - 110 

Average [t] 476.2 110.9 95.9 
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Supplementary Material – Chapter III 

Sustainable co-location solutions for offshore wind farms and fisheries need to account for 

socio-ecological trade-offs 

Appendix A 

Table III-A1: Summary statistics of the standardised total brown crab catches as biomass (kg) 
and numbers (Cpue; females = F; males = M;  Carapace width < 130 mm; Carapace width ≥ 130 
mm) from 41 sampling stations comprising the arithmetic mean (mean), standard deviation 
(sd), minimum value (min), maximum value (max), and range of values (max-min).  

Measure mean sd  min max range 

Soaking time (min) 1961 653 1406 2865 1459 

Cupe (kg·24h-1) 8.9 3.0 4.0 16.3 12.3 

Cupe (N·24h-1) 14.5 4.2 7.0 25.0 18.0 

Distance to nearest turbine 

(m) 

918 539 213 2650 2437 

Depth (m) 23.0 0.8 22.0 24.8 2.8 

Surface temperature (C°) 17.1 1.7 14.0 19.0 5.0 

Bottom temperature (C°) 16.4 2.0 14.2 18.8 4.6 

Cupe F (kg·24h-1) 0.9 0.6 0.0 2.9 2.9 

Cupe M (kg·24h-1) 7.9 2.8 3.9 15.1 11.1 

Cupe ≥ 130 mm (kg·24h-1) 8.1 3.0 2.5 15.7 13.2 

Cupe < 130 mm (kg·24h-1) 0.8 0.5 0.0 2.0 2.0 
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Figure III-A1: Frequency distribution of the carapace width (mm) of the sampled female (F, 
black) and male (M, grey) brown crabs, dashed lines indicate the respective mean width (F = 
135 mm, M =156 mm). 

Appendix B 

 

 

 

 

Figure III-B1: Within the German North Sea the temporal pattern of the total hours fished with 
pots (h) showed an increase of fishing effort during the summer month of each year (black 
solid line). Detrending the data with a moving average of 8 years (grey dashed line) confirmed 
the fitted linear increase of fishing effort over time (red line).  
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Appendix C 

Figure III-C1: Calculated rank importance as increased mean square error (%; IncMSE) of the 
explanatory variables determining the allocation of the total annual fishing effort (h) around 
OWFs being in operation since 2012 (dark grey bar) and 2015 (light grey bar), respectively. 
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Appendix D 

Table III-D1: Mean cost and effort data for German beam trawlers (18 - 24 m) targeting brown 
shrimp extracted from (EUMOFA, 2019c), estimated costs for beam trawlers deploying traps. 
We assumed a reduction of 50 % in fuel consumption and energy costs and repair and 
maintenance costs. When targeting brown crab with traps, towing resistance does not apply, 
and the auxiliary engine is not in use. Wear and tear of equipment is considerably lower 
compared to beam trawling. Other costs remain unchanged. All variable costs except for crew 
costs were estimated per GT-fishing day. Crew costs were estimated as share of the revenue. 

 German beam trawler 

18-24 m 

German beam trawler 18-24 m 

using traps 

Assumption 

Energy costs / day ( €) 280.6 140.3  -50% 

Repair and maintenance costs / 

day (€) 

329.4 164.7  -50% 

Other variable costs / day (€) 24.4 24.4 Unchanged 

Sum (energy, repair, other variable 

costs)/day 

634.4 329.4  

Crew share on revenue 22% 22%  Unchanged 

 

Table III-D2: Break even scenarios for different combinations of days of fishing and crab prices.  

Fishing 

days 

Variable 

costs (€) 

Depreciation 

per day (€) 

Break 

even 

revenue 

per day 

(€·d-1) 

Break 

even 

catch 

(kg·d-1) at 

0.66€/kg 

Break 

even 

catch 

(kg·d-1) 

at 1 

€/kg 

Break 

even 

catch 

(kg·d-1) 

at 

1.5€/kg 

Break 

even 

catch 

(kg·d-1) 

at 

2€/kg 

Break 

even 

catch 

(kg·d-1) 

at 

3€/kg 

1 403 13000 16263 24641 16263 10842 8132 5421 

5 2013 2600 3575 5417 3575 2383 1788 1192 

10 4026 1300 1989 3014 1989 1326 995 663 

15 6039 867 1460 2212 1460 973 730 487 

20 8052 650 1196 1812 1196 797 598 399 

25 10065 520 1037 1571 1037 691 519 346 

30 12078 433 932 1412 932 621 466 311 
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Supplementary Material – Chapter IV 

Socio-ecological drivers of demersal fishing activity in the North Sea: the case of three 

German fleets 

 

Appendix A – Exploratory review of drivers of demersal fishing activity in the North Sea 

We performed an exploratory literature review in Web of Science on the 10.05.2021 using the 

following search string: TS = ((fisher* OR fleet) NEAR (*demersal OR benth* OR bottom OR 

beam)) AND TS = (motivation* OR behav* OR driver OR preferenc* OR choice OR strateg* OR 

tactic*) AND TS = ("North Sea") NOT TS = (freshwater OR lake). The first two terms filter for 

articles about demersal fisheries, whereas the third term specifies towards fishing behavior. 

The last two terms select studies focusing on the North Sea and exclude those about 

freshwater systems. This search retrieved 104 articles, which we reviewed for their relevance 

by retaining only those that focused on the North Sea and specifically analyzed factors 

influencing demersal fishing activity. We defined fishing activity as any parameter related to 

fishing, i.e. fishing effort, catches, landings, choices about fishing location, target species and 

gear, as well as the decision whether to go fishing or not. From those 104 articles, eight studies 

met our criteria. All the others did not analyze factors that influenced demersal North Sea 

fishing activity. We complemented those with eight additional articles that did not show 

during our Web of Science search, but met the criteria and were either known to the authors, 

found within references of the relevant articles from the literature review, or suggested by 

one anonymous reviewer.  
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Table IV-A1. Summarized results of the explorative literature search including the criteria that 

qualified the respective study as relevant.  

 Factor Effect on fishing activity Reference 

B
io

p
h

ys
ic

al
 

Weather 

Smaller vessels are sensitive to wind 

and currents 

(Bastardie et al., 2013; 

Christensen and Raakjær, 

2006) 

Different fleet operate in areas with 

different wave heights 

(van der Reijden et al., 

2018) 

Season 

Availability fish stocks influence the 

decision whether to go fishing 

(Christensen and Raakjær, 

2006) 

Varying catchability  (Rijnsdorp et al., 2006) 

Varying fishing effort (Rijnsdorp et al., 2008) 

Varying value per unit effort (Oostenbrugge et al., 2008) 

Oceanography 

Bathymetry, bottom temperature, 

shear stress, and salinity affect the 

distribution of different fishing fleets. 

(van der Reijden et al., 

2018) 

Sediment type 
Different sediments affect the 

distribution of different fishing fleets 

(Hintzen et al., 2019; van 

der Reijden et al., 2018) 

Ec
o

n
o

m
ic

 

Business 

structure 

Decisions in owner-operator business 

are more influence by personal 

matters than in larger companies. 

(Schadeberg et al., 2021) 

Fish price 

 

High prices have positive effect on 

decision to go fishing 

(Bastardie et al., 2013; 

Christensen and Raakjær, 

2006) 

Negative correlation with landing 

weights 

(Rijnsdorp et al., 2008) 

Fuel price 

Rising fuel prices have a negative 

effect on distance to shore, as well as 

vessel speed. 

(Poos et al., 2013) 

Vessel size 
The smaller the more likely to abide 

regulations 

(Christensen and Raakjær, 

2006) 
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Engine power 
Larger engine power lead to an 

increase of catchability 

(Rijnsdorp et al., 2006; Sys 

et al., 2016) 

So
ci

o
-c

u
lt

u
ra

l 

Competition 

The competition with Dutch beam 

trawlers from Mo – Thu leads to 

increased landing rates of sole for the 

Belgian fleet 

(Sys et al., 2016) 

In areas with more vessels, the values 

per unit effort decreased 

(Poos & Rijnsdorp, 2007) 

Experience 

The more time fishers spent at a 

fishing ground, the more likely it is 

that the fisher chooses the same site 

(Andersen et al., 2012; 

Bastardie et al., 2013; 

Hutton et al., 2004; Poos & 

Rijnsdorp, 2007; Tidd et al., 

2012) 

Positive influence of past revenue at 

one fishing site to choose the same 

site  

(Bastardie et al., 2013; Tidd 

et al., 2012) 

Negative influence of past costs at 

one fishing site to choose the same 

site 

(Tidd et al., 2012) 

 

Skipper age 
The older the more likely to abide 

regulations 

(Christensen and Raakjær, 

2006) 

Social 

network 

Fishers with a small geographical 

mobility are more likely to consult 

colleagues 

(Christensen and Raakjær, 

2006) 

Religion & 

Holidays 

Lower fishing effort during a holiday (Rijnsdorp et al., 2008) 

Fishers prefer to be home during 

weekends 

(Schadeberg et al., 2021) 

R
eg

u
la

ti
o

n
s 

Fishing quota 

Lowest quota in a mixed fishery 

determines the maximum fishing 

capacity (choke species) 

(Ulrich et al., 2011) 

Area closure Displacement to other fishing grounds (Poos & Rijnsdorp, 2007) 
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Appendix B – Fishing fleet information 

Table IV-B1. Criteria used to group German fishing vessels into fleets. The catch criteria 
describe percentages relative to the total annual catch of the respective vessel. The gear 
abbreviations refer to otter trawls (OTB), otter twin trawl (OTT), electric pulse trawl (PUL), and 
beam trawl (TBB).  

Fleet 
Relative yearly catch [%] 

Gear 
Mesh size 

[mm] 
Plaice and sole Brown shrimp 

Mixed demersal (MDS) >= 50  OTB & OTT >= 80 

Flatfish (FF) >= 50  TBB & PUL 80 to < 100 
Brown shrimp (BS)  >= 50 TBB 0 to < 80 

 

 

Figure IV-B1. Composition of revenue by species and fleet. Note that y-scales (revenue) differ 
among panels. 

Temporal 

closures 

Influencing the fisher’s location 

choice 

(Andersen et al., 2012) 

Landing 

obligation 

Increased amount of undersized 

catches in a mixed fishery lead to an 

earlier stop of the entire fishery 

(choke species) 

(Batsleer et al., 2016) 
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Figure IV-B2. The number of vessels per fleet (panel) and combination of gear and mesh size 
(color). The gear abbreviations refer to beam trawl (TBB), otter trawls (OTB), electric pulse 
trawl (PUL), and otter twin trawl (OTT).  

 

 

Figure IV-B3. Ranges of vessel sizes per year and fleet. Center bars represent median values. 
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Appendix C – VMS and logbook data processing  

We obtained VMS data for each fleet and year by matching vessel reference numbers and 

deleted duplicates of time stamps and vessels. We identified points within a 3km radius of 

harbors using the pointInHarbour function of the VMS tools package (Hintzen et al., 2012) for 

the R programming language (R Core Team, 2023). We complemented the VMS tools harbor 

data base to capture all port areas in the study area. Subsequently, we removed all harbor 

points except the first and last of each period of consecutive harbor pings per vessel. Following 

a method proposed by Kroodsma et al. (Kroodsma et al., 2018), we calculated time steps and 

geographical distances between pings of each vessel by summing up half of the times and 

distances from the previous to the current, and current to the next ping, respectively. Based 

on the resulting distances and time steps, we calculated the speed in knots (nautical miles per 

hour) for each ping and removed those above 25 knots, representing unrealistic speeds and 

thus erroneous information. In two steps we sorted VMS pings into fishing trips. First, pings of 

the same vessel between two points of ports were assigned as one fishing trip if the time spent 

in each harbor exceeded 200 minutes. Second, previously assigned fishing trip pings were split, 

if the time step or geographical distance between consecutive points exceeded 11 hours or 

200 nautical miles. The thresholds used for the first step ensured that short harbor visits, e.g. 

created by passing vessels, were not used for the fishing trip classification, whereas the second 

step revealed undetected harbor stays indicated by temporal or geographical gaps in vessel 

tracks. 

We determined the start and end times for each fishing trip in both logbook and processed 

VMS data. For each vessel, we identified temporal overlaps across logbook and VMS fishing 

trips and matched them whenever they overlapped. We solved multiple assignments of 

logbook trips to a single VMS trip depending on whether they were also assigned to other VMS 

trips or not. If they were, priority was given to the longest overlap and the other were 

removed, whereas, in the other case, all logbook trips remained assigned. The remaining 

unassigned logbook trips were merged with VMS points that were from the same ship, 

previously unassigned to any VMS fishing trip, and in between the starting and ending date of 

the logbook trip. In case there were still unmatched fishing trips we matched them based on 

the closest distance of mean times (Bastardie et al., 2010b). Using this approach, we were able 

to assign on average 99% of all logbook fishing trips to 87% of the VMS data (Table IV-C1). 
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Table IV-C1. Merged logbook and VMS data as averages of yearly percentage and standard 

deviation (SD) at different steps of the merging procedure. The steps refer to the matching 

based on (I) temporal overlaps, (II) fishing trip start and end time from logbooks, (III) closest 

mean time among logbook and fishing trips. In general, the matching quality decreases with 

each step, and the first two steps are rooted in temporal intersections, whereas the third step 

merges fishing trips without temporal overlap.  

Merging steps Assigned Logbook trips [%] Assigned VMS data [%] 

 mean SD mean SD 

(I)   Temporal overlap 94.3 2.53 88.87 1.05 

(II)  Logbook times 97.0 2.28 88.88 1.05 

(III) Mean time 99.25 0.47 89.08 1.11 

 

Due to the merged fishing trips, we were able to join gear information from the logbooks with 

VMS pings. Missing gear information in logbooks were complemented with the German fishing 

vehicle register and, if also missing in there, with the European fleet registry. We split the VMS 

data into groups with regard to gear and year and used the activityTacsat function of the VMS 

tool package (Hintzen et al., 2012) to classify pings into steaming, hauling, and fishing. We 

removed all steaming and hauling pings, so that the time step values of the remaining pings 

represented fishing effort. 
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Appendix D – data sources 

Table IV- D1. Characteristics and sources of data used for the boosted regression tree analysis. 
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Appendix E – Boosted regression tree details 

Boosted regression tree analysis (BRT) - sometimes called gradient tree boosting - is a 

supervised machine learning technique that combines the advantages of tree-based models 

with boosting. Starting with residuals of the null model, BRT constructs decision trees in an 

iterative process based on the prediction errors of the previous tree (Friedman, 2001). The 

outcome values of each tree, so called leaves, are summed up to form predictions depending 

on the features of the respective data point and thus the path in the tree. BRT will continue 

to construct new trees until there is no further improvement for model predictions or the 

maximum number of trees is reached. Each leave value is multiplied with a learning rate 

typically between 0.2 and 0.01 to shrink the contribution to the model improvement and 

leaving more space for additional trees. The maximum number of leaves in each tree is 

controlled by the maximum tree depth, determining the number of tree levels. For each new 

tree, the model considers a random subset of the data, the bag fraction, which prevents the 

model from overfitting.  

We used the xgboost package in R for BRT tuning and implementation (Chen et al., 2019; R 

Core Team, 2023). In contrast to other common used BRT approaches, the XGboost technique 

has several advantages: it utilizes a more sophisticated boosting algorithm, including several 

additional tuning parameters; it applies an internal mechanism to find good replacements of 

missing values; and it is scalable, meaning that run-time may be reduced by parallel 

computation (Chen and Guestrin, 2016). XGboost finds the ideal data separation by 

considering all possible splits for the initial tree root and then selecting the best tree based on 

an internal ranking. Two tuning parameters regulate the size of trees in XGboost, restricting 

the maximum level of trees (max_depth) and the minimum weight of each new leave 

(min_child_weight). In general, larger trees capture more complex interactions and thus 

max_depth determines to which degree interactions are taken into account. On the other 

hand, setting a threshold to the weight of each new leave (min_child_weight) prevents the 

model from learning very specific cases, i.e. overfitting. Moreover, XGboost uses tree pruning, 

meaning that trees are always formed completely and then pruned backwards by cutting of 

branches if their gain of model prediction improvement is negative. In addition to the bag 

fraction and learning rate, XGboost includes two more mechanisms to avoid overfitting, 

namely feature sampling and regularization. The former means that each new tree selects a 

random subset of features, based on an input value between 0 and 1. Regularization refers to 
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a method of panelizing complexity in a model and hence prevent it from overfitting (Hastie et 

al., 2009). 

Appendix F – Additional BRT results 

 
Figure IV- F1. Learning curves of the three boosted regression tree (BRT) models with iteration 
(tree) on the x-axis and root mean square error (RMSE) on the y-axis. The blue line represents 
the RMSE calculated by internal cross-validation and the red line through a test data set. Lines 
represent mean values and ribbons standard deviation computed by using all 10 models of 
the respective fishery. 

 

Table IV- F1. Final boosted regression tree hyperparameter after tuning the three fleet 
models.  

Fleet 
Learning 
rate 

max_depth 
min_child_
weight 

subsample 
colsample_
bytree 

n_tree 

Brown 
shrimp 

0.05 9 2 0.9 0.9 3048 

Flatfish 0.01 10 4 0.9 0.6 5837 

Mixed-
demersal 

0.05 10 4 0.8 0.7 2181 
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Table IV- F2. Model performance measured for the boosted regression tree models. Reported 
are the deviance explained (𝑟2) and four error measures, i.e. absolute error (MAE) and root 
mean square error (RMSE), as well as their standardized versions (SRMSE and SMAE). 

Fleet r² MAE RMSE SRMSE SMAE 

Brown 
shrimp 

0.6679 7.5462 17.854 0.578 0.2443 

Flatfish 0.1791 0.7213 2.0817 0.9104 0.3155 

Mixed-
demersal 

0.214 0.6172 1.78 0.8904 0.3087 

 

 

Figure IV- F2. Variable importance (VI) of the fleet-specific Boosted Regression Tree (BRT) 
models. Depicted are summed and averaged VI values of all features of the three fleet models 
grouped by their dimension (A), and according to their type (B). SE - Standard error of the 
mean. 
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Appendix G – Model data distribution 

 

Figure IV- G1. Monthly aggregates fishing hours of each fleet (A), and monthly averages of 
numerical explanatory variables (B-G). 
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Figure IV- G2. Spatial parameters used for modelling. In case of temporally dynamic 
parameters, average values per grid cell (0.25° lon × 0.25° lat) are depicted. 
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Supplementary Material – Chapter V 

Simulating Fishery Dynamics by Combining Empirical Data and Behavioral Theory 

 

Model documentation 

for 

FISHCODE ‐ FIsheries Simulation with Human COmplex DEcision‐

making  
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Abbreviations 

Fishing gears / techniques 

DTS – Demersal trawls and seiners 

OTB – Bottom otter trawl 

OTM – Midwater otter trawl 

OTT – Twin bottom otter trawl 

PUL – Pulse bottom trawl 

SDN – Danish Seine (anchored) 

SSC - Danish Seine (without anchor) 

TBB – Beam trawl 

Species 

BLL – Brill (Scophthalmus rhombus) 

CRE – Edible Crab (Cancer pagurus) 

CSH – Common shrimp / brown shrimp (Crangon crangon) 

HER – Hering (Clupea harengus) 

LBE – Lobster (Homarus Gammarus) 

NEP – Norway lobster (Nephrops norvegicus) 

SAN – Sandeels nei (Ammodytidae) 

SOL – Common sole (Solea solea) 

SPR – Sprat (Sprattus sprattus) 

TUR – Turbot (Psetta maxima) 

PLE – European plaice (Pleuronectes platessa) 

POK – Saithe (Pollachius virens)  

Consumat 

ESAT – existence satisfaction 

EUNC – existence uncertainty 

PSAT – personal satisfaction 

SSAT – social satisfaction 

SUNC – social uncertainty 

WESAT – weighting of existence satisfaction 
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WEUNC – weighting of existence uncertainty 

WPSAT – weighting of personal satisfaction 

WSSAT – weighting of social satisfaction 

WSUNC – weighting of social uncertainty 

Other 

ABM – Agent based model 

DAS – days at sea 

EE – Elementary effects 

IQR – Inter quartile range 

LPUE – Catch per unit effort 

MPA – Marine protected area 

OAT – One at a time 

OWF – Offshore windfarm 

POM – Pattern-oriented modelling 

RMSE – root mean squared error 

VL – Vessel length 

VMS – Vessel monitoring system 

VPUE – Value per unit effort 

WOY – week of the year 
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Appendix A - TRACE 

TRAnsparent and Comprehensive model Evaludation (TRACE)  

 

This appendix contains most chapters of the TRACE protocol proposed by Ayllón et al. (2021). 

1. Problem foundation & Model description 

1.1 ODD Protocol 

This section is represented by the ODD + D (Overview, Design concepts, Details, and human 
Decision making) protocol for agent-based-modelling (Grimm et al., 2020, 2010, 2006; Müller 
et al., 2013). 

I)
 O

ve
rv

ie
w

 

I.i Purpose I.i.a What is the 
purpose of the 
study? 

FISHCODE is an agent-based model (ABM) 
simulating the spatio-temporal dynamics of 
German fishers in the southern North Sea by 
applying high temporal and spatial 
resolution and a complex human decision-
making methodology that goes beyond pure 
profit maximization.  

The aim of FISHCODE is to test how different 
scenarios affect the spatio-temporal 
behavior and adaptive capacity of the 
fishers. Scenarios will encompass changes in 
resource availability (e.g. plaice migrates 
further offshore), closed fishing area (e.g. 
more OWFs or MPAs), market prices, and 
quotas (also with regard to Brexit). 

We also aim to provide policy advice by the 
development of management 
recommendations for federal agencies to 
support conservation efforts and a long-
term perspective for a sustainable fisheries 
sector.   

Moreover, the model will assess the 
applicability of the Consumat approach for 
fishers’ behavior beyond rational decision-
making.  

I.i.b For whom is 
the model 
designed? 

Researchers interested in the southern 
North Sea fisheries, adaptive capacity of 
fishers, behavior of fishers, or formalizations 
of human behavioral theories from social 
and psychological sciences. 
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Stakeholders from federal agencies dealing 
with marine topics and the fishing sector. 

I.ii Entities, 
state variables 
and scales 

I.ii.a What kinds 
of entities are in 
the model 

Agents representing fishing vessels 

To the authors’ state of knowledge 
addressed fisheries are composed of male 
fishers, which is why we refer to agents with 
“he” and “his”. We acknowledge that our 
approach integrates the simulation of agents 
as fishing vessels rather than fishers, while 
the decision-making represents the behavior 
of skippers, which we assume to be constant 
for every vessel. 

 

Ports where agents start their fishing trips 
and land catches  

Fishing grounds where agents extract 
resources 

Grid cells (or patches) 

I.ii.b By what 
attributes (i.e. 
state variables 
and parameters) 
are these entities 
characterised? 

Agents: 

Satisfactions (existence, social, and 
personal) 

Uncertainties (existence and social) 

Weightings of satisfactions and uncertainties 

Overall Satisfaction 

Overall Uncertainty 

Status (fishing or in port) 

Social network (peers, extended peers) 

Vessel characteristics (fishing gears, size, 
engine power, fish hold capacity) 

Current landing port  

Affiliation (Fishing organization or 
independent) 

Probability to fish on the weekend 

Probabilities for certain trip length 

Probability for being an active fishing week 
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Memory of past fishing trips (location, costs, 
catch, income, and vessel characteristics) 

Savings (€) 

Daily fixed costs (€) 

Target (aspired) savings (€) 

Perceived temperature 

Perceived market prices (fish & fuel) 

Common main target species 

Common fishing gears 

Available gears  

Fishing licenses (required to fish certain 
species) 

Vessel quota shares 

 

Ports 

Geographic position 

 

Fishing grounds:  

Geographic polygon 

Main target species (e.g. Plaice, Sole, 
Norway lobster, Brown shrimp) 

Affiliated fishing gear 

Weather parameters 

 

Grid cells (patches) 

Number of international fishing vessels 

Number of German fishing vessels 

Affiliation to fishing grounds 

Spatial fishing restrictions (for all vessels) 

Specific spatial fishing restrictions (specific 
for certain types of vessels) 

Passable grid cell (suited for navigation?) 
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Local depletion coefficient 

Oceanographic parameters 

 

I.ii.c What are 
the exogenous 
factors/drivers 
of the model? 

Oceanographic parameters: bottom 
temperature, mixed layer depth, and salinity 
(daily) 

Weather parameters: wave height 

Market price per species (monthly) 

Market price of fuel (monthly) 

Fishing quotas per species (yearly for 
Nephrops; quarterly for sole)  

International fishing effort (weekly) 

 

I.ii.d If 
applicable, how 
is space included 
in the model? 

The spatial model environment is a grid, in 
which agents operate. Each grid cell (patch) 
is affiliated to one or several fishing grounds, 
composed of gear and target species (these 
combinations are called metiers). Weekly 
oceanographic information is implemented 
on patch and weather information on fishing 
ground resolution. 

Agents move along the grid by choosing the 
shortest route between two grid cells, while 
avoiding non-passable cells (e.g. land). 

 

I.ii.e What are 
the temporal and 
spatial 
resolutions and 
extents of the 
model? 

The temporal resolution is daily and the data 
used for the model ranges from 2012 to 
2018. 

The spatial model environment 
encompasses the southern North Sea up to 
1.6°E and 57.4°N at a resolution of 0.045° lon 
× 0.045° lat (ca. 3km × 5km). 

 

I.iii Process 
overview and 
scheduling 

I.iii.a What entity 
does what, and 
in what order? 

Beginning of every year:  

Refresh global plaice, Nephrops and sole 
quotas and aggregated species catches 
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Agents update Nephrops quota 

Beginning of yearly quarter: 

Agents update sole quota 

Beginning of every month:  

Update market prices (species and fuel) 

Agents update lists of common species and 
gears 

Agents forget memory that is older than 12 
months 

Beginning of every week: 

Agents update social network 

Update distribution of international vessels 
(per grid cell) 

Every day: 

Update bottom temperature 

Agents perceive temperature and market 
prices 

Agents update satisfactions and 
uncertainties  

Agents select action (if in port: stay in port or 
go fishing; including the Consumat 
approach) 

Agents act 
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II)
 D

es
ig

n
 C

o
n

ce
p

ts
 

II.i Theoretical 
and Empirical 
Background 

II.i.a Which 
general 
concepts, 
theories or 
hypotheses are 
underlying the 
model’s design 
at the system 
level or at the 
level(s) of the 
submodel(s) 
(apart from the 
decision model)? 
What is the link 
to complexity 
and the purpose 
of the model? 

 

We assume that fishers will abide quota 
limits and fishing restrictions. Moreover, we 
assume that there are no unexplored fishing 
grounds in the study area and, on average, 
fishing fleets target the same spots (Hintzen 
et al., 2019; van der Reijden et al., 2018). 
Therefore, instead of using a biological sub-
model, catch returns at fishing grounds are 
modelled by matching oceanographic 
parameters of the current model 
environment with those of a data base of 
observed fishing trips restricted by season. 
Catch efficiencies are equal within fishing 
grounds, but increase with larger engine 
sizes. 

 

Since the 2000s, the number of German 
vessels targeting sole and plaice decreased 
substantially, whereas some vessels started 
catching Norway lobster and others 
common shrimp. Therefore, agents are able 
to switch among metiers.  

 

Fishers are part of social networks 
comprised of peers that are in the same 
producer organization or land their catch in 
the same port. Information exchange among 
peers is stronger, however while being at sea 
fishers do not cooperate with each other.  

 

In case of spatial fishing closures (e.g. MPAs 
or OWFs) fishers displace their activity to 
other areas. The redistribution of German 
fishing effort and the socio-economic 
consequences are an emergent property of 
FISHCODE International fishing effort in 
closed areas are redistributed to the 
remaining area open to fisheries.  

 

We assume that fishing (i.e. extraction of 
resources and disturbing habitat) has an 
effect on the local abundance of resources. 
Simulated fishing activity (both German and 
international) reduces the LPUE in the 
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affected grid cells by a fixed percentage. 
Every week, we simulated the recovery of 
resources and habitats by the growth of 
LPUE, also by a fixed percentage.  

 

II.i.b On what 
assumptions 
is/are the agents’ 
decision 
model(s) based? 

The decision for metier options is based on 
an established framework called the 
Consumat approach (Jager et al., 2000; Jager 
and Janssen, 2012). The Consumat approach 
is based on agent satisfactions and 
uncertainties that may each represent a 
facet of behavior. As such, it is an ideal 
framework to combine several behavioral 
theories. In our model we integrate aspects 
of habitual behavior, bounded rationality, 
descriptive norms, and income 
optimization (see Satisfactions & 
Uncertainties).  

Depending on the state of satisfaction and 
uncertainty the agents decide to use one of 
four actions: (1) repetition, (2) imitation, (3) 
deliberation, or (4) social comparison / 
inquiring. 

 

Agents have incomplete knowledge of the 
model environment, as they only perceive 
bottom temperature, but not any other 
oceanographic variable. Moreover, they 
perceive bottom temperature and market 
prices with a random error (see Perceived 
values). 

Fishers estimate catches for their perceived 
metier options based on their own memory 
or that of their social peers, as well as on 
current perceived market prices. They 
decide to go fishing if there is one metier 
option with the following criteria: (i) good 
weather enabling a sufficient trip length, (ii) 
right fishing season, (iii) owning necessary 
gear, (iv) owning necessary license for target 
species, (v) growth of the summed value of 
increase in satisfaction and decrease in 
uncertainty, (vi) available quota, (vii) 
available path to go to the fishing ground. 



Appendix A - TRACE 

 218  

Fishers targeting brown shrimp are not 
restricted by quotas, as the fishery is self-
managed. Plaice is technically a quota-
regulated species, but quotas are usually far 
from being exhausted, which is why we did 
not include individual plaice quotas per 
vessel.  

 

II.i.c Why is/are 
certain decision 
model(s) 
chosen? 

The Consumat approach is suited for the 
envisioned model, since one of the aims is to 
model the decision-making of German 
fishers active in the southern North Sea with 
respect to their adaptive capacity and 
alternative business strategies, e.g. 
switching to another metier. The Consumat 
approach provides agents with sufficient 
flexibility by enabling them to choose 
between different metiers according to their 
states of satisfaction and uncertainty.  

The complex socio-ecological system of 
fisheries bears a large extent of uncertainty, 
which is explicitly incorporated by the 
Consumat approach. 

The Consumat approach dictates habitual 
behavior as long as agents are satisfied and 
certain about their actions. This behavior has 
been observed for small-scale fisheries, 
which are often run by family-owned 
businesses.  

 

II.i.d If the 
model/submodel 
(e.g. the decision 
model) is based 
on empirical 
data, where do 
the data come 
from? 

Commercial fishing data are not publicly 
available and have to be requested from the 
German Federal Office for Agriculture and 
Food. However, data may be published on 
aggregated format (spatially or temporally). 
Environmental and economic data are 
publicly available and gathered from various 
data sources (Table V-A3). 

 

II.i.e At which 
level of 
aggregation 

See Table V-A3. 
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were the data 
available? 

 

II.ii Individual 
Decision-
Making 

II.ii.a What are 
the subjects and 
objects of the 
decision-
making? On 
which level of 
aggregation is 
decision-making 
modelled? Are 
multiple levels of 
decision making 
included? 

 

Agents that are currently in ports, decide 
daily whether they go out on a fishing trip or 
not. First, agents perceive metier options 
(combinations of target species and gear) 
and, in a second step, filter for viable options 
with regard to their state variables and the 
current model environment. Third, the agent 
will use an optimization procedure to select 
among the remaining metier options. See 
II.ii.c for details. 

II.ii.b What is the 
basic rationality 
behind agent 
decision-making 
in the model? Do 
agents pursue an 
explicit objective 
or have other 
success criteria? 

 

In general, agents choose actions that 
increase their overall satisfaction and 
decrease their overall uncertainty, which, in 
turn, consist out of three individual 
satisfactions and two uncertainties (see 
Satisfactions & Uncertainties). Moreover, 
agents avoid harsh weather, do not exceed 
global or individual quotas, and have a 
likelihood determining whether they want to 
be home on weekends and every evening.  

Potentially, these decision-making rules 
allow agents to engage in an unprofitable 
fishing option, since satisfactions and 
uncertainties are not purely related to profit. 
However, in case an agents’ savings drop 
below half of the negative value of their 
target savings, they change their decision-
making to pure profit maximization.  

 

II.ii.c How do 
agents make 
their decisions? 

Agents’ decision-making whether to go 
fishing comprises three steps.  

Consumat approach (Perceiving metier 
options): 

Agents are satisfied and certain if their 
overall satisfaction and overall uncertainty 
are above 0.5. Below that value agents are 
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unsatisfied and uncertain. Depending on 
these statuses, they perceive different sets 
of behavioral options. In any case, the option 
of staying in port, is always part of their pool 
of options. 

Repetition – satisfied & certain: Agent 
perceives metier from previous trip as the 
only option. If it is not possible to perform 
the repeated action for certain reasons (e.g. 
no quota or not right season), the agent will 
switch to deliberation. 

Imitation – satisfied & uncertain:  Agent 
perceives the metier from his previous trip 
and the last trips of his close social network. 
If there is no possible action among the 
perceived options (e.g. no quota or not right 
season), the agent will switch to inquiring. 

Deliberation – unsatisfied & certain: Agent 
perceives all available metiers of the model 
including those that have not been used by 
any other agent yet. Deliberation is 
important for the flexibility of the agents, 
because it enables them to discover new 
metiers. 

Inquiring – unsatisfied & uncertain: Agent 
perceives the metier of the last trips from his 
entire social network (close and extended) 
and all metiers from his memory.  

Second, agents determine whether they can 
leave the port or not. They estimate the trip 
length for each of the perceived metier 
options by considering the weather in the 
respective fishing ground, weekends, and 
multi-day trip limitations. The agent filters 
for metiers with trip lengths larger than 0, 
those that are available in the current 
season, and that comply with available 
fishing licenses and gears. Also, agents will 
not consider any options and stay in the port, 
if they want to be back on the weekend, 
engage in a multi-day trip, and it is already 
Thursday. Next, agents predict profits, main 
catch species, and affiliated changes in 
satisfactions and uncertainties. Based on 
these values, they filter for metier options 
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that promise a positive change in the sum of 
the gain of satisfaction and loss of 
uncertainty. Subsequently, the remaining 
options are checked for available quotas of 
their main catch species, a path to the fishing 
ground, and sufficient fishing time. The latter 
refers to the case that the steaming time is 
too long in relation to the trip length.  

If the option of staying in port is the only 
feasible option, the agent will do nothing. If 
there are feasible fishing options, agents 
choose the one with the highest sum of gain 
of satisfaction and loss of uncertainty. 
However, it might be that the option of 
staying in port is the best option even though 
fishing options are feasible. In the special 
case that an agent’s savings are below half of 
the negative value of their target savings, 
they instead prioritize the most profitable 
option. 

 

II.ii.d Do the 
agents adapt 
their behavior to 
changing 
endogenous and 
exogenous state 
variables? And if 
yes, how? 

Yes, agents adapt endogenously by 
interaction with their social network. 
Moreover, agents adapt to exogenous 
variables, such as environmental parameters 
(oceanographic for modelling and predicting 
catches; weather for determining the 
possibility of fishing) and market prices (fish 
and fuel for predicting profits of fishing 
trips).  

II.ii.e Do social 
norms or cultural 
values play a role 
in the decision-
making process? 

The cultural value of preserving tradition is 
represented by the agents’ tendency to act 
habitual. The Consumat approach makes 
them repeating their actions as long as they 
are satisfied and certain. Specifically, the 
personal satisfaction represents the 
motivation to act habitual. 

Social norms are represented by the social 
satisfaction and the social uncertainty. The 
former increases agents’ tendency to earn 
more than their colleagues and the latter to 
engage in similar fishing activities than their 
colleagues. 
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II.ii.f Do spatial 
aspects play a 
role in the 
decision 
process? 

Yes, fishing grounds are spatial polygons that 
may overlap. The further the fishing ground 
is offshore, the longer the steaming time and 
the higher the fuel costs. Also, 
oceanographic and weather parameter are 
different among fishing grounds. Therefore, 
it might happen that fishing ground A cannot 
be headed to due to stormy weather, 
whereas fishing ground B is navigable, 
because of lower waves. 

Ports are also spatial entities and the 
distance between port and fishing ground 
determines steaming times and fuel use.   

In addition, spatial fishing restrictions limit 
fishing space and obstacles prohibit 
navigation and might lead to longer 
steaming times. 

 

II.ii.g Do 
temporal aspects 
play a role in the 
decision 
process? 

Some fishers prefer to go fishing on 
weekdays and avoid weekends or even 
prefer to be home every evening, avoiding 
multi-day trips. 

Furthermore, modelled landings of target 
species depend on oceanographic 
parameters which change daily and are 
characterized by seasonal fluctuations. 

 

II.ii.h To which 
extent and how 
is uncertainty 
included in the 
agents’ decision 
rules? 

See Satisfactions & Uncertainties. 

 II.ii.i To which 
extent and how 
is satisfaction 
included in the 
agents’ decision 
rules? 

See Satisfactions & Uncertainties. 

II.iii Learning II.iii.a Is 
individual 
learning included 

Agents’ decisions are influenced by state 
variables and the current model 
environment, but the rules for decision 
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in the decision 
process? How do 
individuals 
change their 
decision rules 
over time as 
consequence of 
their 
experience? 

making remain the same. Therefore, our 
model includes adaptation, but not learning, 
as defined by Dibble et al. (2006). 

II.iii.b Is 
collective 
learning 
implemented in 
the model? 

No. 

II.iv Individual 
Sensing 

II.iv.a What 
endogenous and 
exogenous state 
variables are 
individuals 
assumed to 
sense and 
consider in their 
decisions? Is the 
sensing process 
erroneous? 

 

The agents’ memory includes fishing trip 
details of the last 12 months (landed value 
and catches, costs, perceived temperature at 
the time of the trip, landing port, starting 
and end date, fishing locatiojn). Agents also 
know their quota shares and foresee the 
exact weather for the time of the planned 
fishing trip.  

Agents don’t have full knowledge about the 
oceanographic parameters, but only know 
their perceived temperature, which varies 
up to 3°C from the real value (see Perceived 
values). Moreover, agents perceive resource 
and fuel prices with an error of up to 5%. 
Perceived temperatures and market prices 
are used to predict landings and profits of 
fishing trips (see Predicting fishing 
outcomes). 

 

II.iv.b What state 
variables of 
which other 
individuals can 
an individual 
perceive? Is the 
sensing process 
erroneous? 

Fishers have good, but not precise 
knowledge of actions of their close social 
network and vague knowledge of actions of 
fishers in their extended social network (see 
Social network). The exact variables they 
know from other agents are: fishing grounds, 
target species, fishing gear, engine power, 
and landing port. Perceived landings, 
revenues, and fuel use are obscured by 5% 
(close network) or 10% (extended network). 

 



Appendix A - TRACE 

 224  

During a fishing trip, agents sense the 
number of other fishing vessels and decide 
whether to search for a site with less vessels.  

 

II.iv.c What is the 
spatial scale of 
sensing? 

The sensing of other fishing vessels during 
fishing trips occurs in a radius around the 
chosen center patch of the fishing trip. The 
radius is larger, the longer trip lasts (see 
Spatial fishing model) 

II.iv.d Are the 
mechanisms by 
which agents 
obtain 
information 
modelled 
explicitly, or are 
individuals 
simply assumed 
to know these 
variables? 

Variables are simply updated.  

II.iv.e Are the 
costs for 
cognition and 
the costs for 
gathering 
information 
explicitly 
included in the 
model? 

No. 

II.v Individual 
Prediction 

II.v.a Which data 
do the agents 
use to predict 
future 
conditions? 

Target species, gear, perceived temperature, 
engine power, perceived resource and fuel 
prices, and past profit of fishing trips (either 
their own or from peers). For a full 
description see Predicting fishing outcomes. 

  

II.v.b What 
internal models 
are agents 
assumed to use 
to estimate 
future conditions 
or consequences 

Agents use their perceived temperature and 
anticipated target metier (target species and 
gear) to find the most similar fishing trip in 
their own or their peers’ memory. The 
landings and fuel use of this trip are then 
multiplied by the perceived market prices to 
predict profits. In case the information is 
derived from other vessels (i.e. peers), the 
catches and fuel use are standardized by the 
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of their 
decisions? 

vessels’ engine powers (see Modelling 
catches). 

 

II.v.c Might 
agents be 
erroneous in the 
prediction 
process, and 
how is it 
implemented? 

Predictions might be erroneous, as agents 
perceive temperature, market prices, and 
information from peers with an error (see 
II.iv.a & II.iv.b). Moreover, when agents 
predict the outcome of an envisioned fishing 
trip, they find the most similar fishing trip 
purely based on temperatures, whereas, in 
the underlying model, also salinity, oxygen, 
and primary production influence trip 
outcomes. 

Moreover, the local depletion of resources in 
grid cells may lead to temporally decreased 
LPUEs. Therefore, it might happen that an 
agent predicts a good outcome for a fishing 
trip, because this time the resources are in a 
worse condition (higher local depletion) than 
in the agent’s memory. 

  

II.vi Interaction II.vi.a Are 
interactions 
among agents 
and entities 
assumed as 
direct or 
indirect? 

Agents do not interact with each other 
directly, but form social networks. Within 
social networks, agents may perceive 
information from each other leading to 
possible imitation of behaviors.  

 

Agents interact with ports as start and end 
points of their fishing trips. Agents using the 
same port are part of the same extended 
social network. In case they would also share 
a common producer organization, they 
would share a close social network. 

 

Agents extract resources from fishing 
grounds and deplete resources in all fished 
patches. Agents indirectly interact with each 
other, as they avoid crowded fishing 
grounds.  
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II.vi.b On what 
do the 
interactions 
depend? 

Agents will choose a fishing ground, which is 
specific to their target species and gear 
(metier). Similarly, landing ports might vary, 
as agents might transfer to another port that 
is closer to their fishing ground.  

 

II.vi.c If the 
interactions 
involve 
communication, 
how are such 
communications 
represented? 

N/A 

II.vi.d If a 
coordination 
network exists, 
how does it 
affect the agent 
behavior? Is the 
structure of the 
network 
imposed or 
emergent? 

The social network is emergent depending 
on the agent’s affiliations (producer 
organization) and current landing ports. The 
current landing port is dynamic and might 
change due to vessel transfers, which is why 
the social network is also dynamic. Both 
variables are used to create a distance 
matrix using the Gower distance, a measure 
suited for categorical variables. A separation 
of fishers into closer and extended networks, 
as well as beyond an agent’s social network 
is done based on the Gower distance 
between two agents (see Social network).  

 

II.vii Collectives I.vii.a Do the 
individuals form 
or belong to 
aggregations 
that affect and 
are affected by 
the individuals? 
Are these 
aggregations 
imposed by the 
modeller or do 
they emerge 
during the 
simulation? 

Agents belong to one of three fleets 
(imposed and static), which are based on 
historic vessel catch compositions and used 
gears (see Fishing metiers & fleets). We 
calibrated model parameters per fleet, 
meaning that agents within fleets share the 
same calibrated values. Although fishers 
might adapt to new behaviors by engaging in 
different metiers - thus changing their catch 
compositions and used gears - the fleet 
affiliations remain static.  

 

In addition, agents are either independent or 
affiliated to a producer organization 
(imposed and static). See also the section 
about Producer organizations. 
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I.vii.b How are 
collectives 
represented? 

Affiliations in producer organizations are 
represented by state variable of the agents. 
Fleets are only important for the calibration 
of the model and not explicitly present. 
Beyond the calibration (fleets) and social 
networks (producer organizations), the 
aggregation in these collectives have no 
effect. 

II.viii 
Heterogeneity 

II.viii.a Are the 
agents 
heterogeneous? 
If yes, which 
state variables 
and/or processes 
differ between 
the agents? 

See  

Table V-A1. 

 II.viii.b Are the 
agents 
heterogeneous 
in their decision-
making? If yes, 
which decision 
models or 
decision objects 
differ between 
the agents? 

Larger vessels may tolerate higher waves 
and have faster steaming speeds, meaning 
that they have more chances to go fishing 
and require less steaming time while 
consuming more fuel (Bastardie et al., 2013). 
All these factors may influence the decision 
of agents either directly (e.g. by being able to 
fish during stormier weather) or indirectly 
(e.g. by memorizing higher costs affiliated to 
a metier).  

Weightings of satisfactions and uncertainties 
are heterogeneous among fleets due to the 
calibration of model parameters by fleet. 
The weightings determine to what extent 
the individual satisfactions and uncertainties 
contribute to the overall satisfaction and 
overall uncertainty. As such, they regulate 
which motivations or behavioral theories 
influence the agents’ decision-making in the 
Consumat framework.  

 

II.ix 
Stochasticity 

II.ix.a What 
processes 
(including 
initialization) are 
modelled by 
assuming they 

Modelled catches are multiplied by a 
random factor, which is larger the greater 
the Euclidean distance between current and 
matched fishing trip (from the trip data base; 
see Modelling catches).  

Perceived variables (see II.iv.a & II.iv.b) 
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are random or 
partly random? 

Probability for fishing on the weekend 

Anticipated fishing trip length 

Probability for an active fishing week 

Probability for vessel maintenance after a 
trip 

Distribution of daily international vessels 

Movement while fishing (see Spatial fishing 
model) 

 

II.x Observation II.x.a What data 
are collected 
from the ABM 
for testing, 
understanding 
and analyzing it, 
and how and 
when are they 
collected? 

Trip related state variables of agents (i.e. trip 
lengths, landings, revenues, fuel use, landing 
ports, spatial centroids, fished patches) 

Daily state variables of agents (i.e. perceived 
values, satisfactions, uncertainties, and 
decision outcome)  

Weekly state variables, i.e. peers and 
extended peers. 

II.x.b What key 
results, outputs 
or characteristics 
of the model are 
emerging from 
the individuals? 
(Emergence) 

 

The information we extract from the model 
provides insights into the fishers’ dynamic 
engagement in different metiers 
(combination of target species and gears), 
spatial fishing effort distribution over time 
(including displacement effects by e.g. OWFs 
and MPAs), and the motivations of the 
decision-making. The output data on fishing 
trip resolution can be used to analyze micro 
patterns or be aggregated to derive 
emerging macro patterns. 

   

III
) 

D
et

ai
ls

 

III.i 
Implementation 
Details 

III.i.a How has 
the model been 
implemented? 

NetLogo 6.1.1 

III.i.b Is the 
model 
accessible, and if 
so where? 

https://www.comses.net/. (Letschert et al., 
2024) 

III.ii 
Initialisation 

III.ii.a What is the 
initial state of 
the model world, 
i.e. at time t = 0 

Global parameters (environmental and 
economic) are filled by using historic data 
sets.  

https://www.comses.net/
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of a simulation 
run? 

 

Memories of agents are filled by using their 
most recent fishing trips before the model 
start date (from the trip data base; see Initial 
memory). 

 

III.ii.b Is the 
initialisation 
always the same, 
or is it allowed to 
vary among 
simulations? 

We created a base year scenario using mean 
values of all economic and environmental 
data sets. We used the base year scenario to 
calibrate and validate the model, as well as 
testing the effect of other scenarios (e.g. 
Future expanse of OWF and MPAs). In the 
base year, agents’ initial memories are the 
state of empirical data from 2015 (trip data 
base). 

 

III.ii.c Are the 
initial values 
chosen 
arbitrarily or 
based on data? 

Initial parameters and state variables are 
chosen based on historical data (trip data 
base). 

III.iii Input Data II.iii.a Does the 
model use input 
from external 
sources such as 
data files or 
other models to 
represent 
processes that 
change over 
time? 

Yes, the model uses time series of 
oceanographic, weather, prices, and quota 
data of past years (Table V-A3). 

III.iv Submodels II.iv.a What, in 
detail, are the 
submodels that 
represent the 
processes listed 
in ‘Process 
overview and 
scheduling’? 

See the Submodels section.  

 

III.iv.b What are 
the model 
parameters, 
their dimensions 

See Table V-A2 and Table V-A3 
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and reference 
values? 

III.iv.c How were 
the submodels 
designed or 
chosen, and how 
were they 
parameterised 
and then tested? 

See the Submodels section. 
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Table V-A1. State variables of agents (fishing vessels) and patches (grid cells). 

  

M
o

d
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d
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o
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State variable 
(Netlogo) 

Description 
A

ge
n

ts
 (

fi
sh

in
g 

ve
ss

e
ls

) 

current_port 
The port in which the agent is currently landing catches. Agents can change 
their initial current port. 

list_ext_peers Vessel reference numbers of the extended social network 

list_peers Vessel reference numbers of the close social network 

list_perc_bottomT Perceived values of current bottom temperature 

list_X (X = memory 
variables) 

Agent’s memory constituted by a number of lists. Some are saved daily (e.g. 
perceived values), whereas others are saved whenever agents go on a fishing 
trip (e.g. catches, profits) 

overall_sat The summed value of the existence, personal, and social satisfactions 

overall_unc The summed value of the existence and social uncertainties 

perc_price_X (X = 
species and fuel) 

Perceived values for species and fuel prices 

quota_quarter_sol 
Individual quarterly quota for Sole (available to vessels with a license for 
sole) 

quota_year_nep 
Individual yearly quota for Nephrops (available to vessels with a license for 
Nephrops) 

X_sat (X = existence, 
personal, and social) 

Individual satisfactions 

X_unc (X = existence 
and social) 

Individual uncertainties 

P
at

ch
es

 

depletion_coeff Coefficient about local depletion reducing LPUEs 

ger_ves_num 
Number of the German fishing vessels that are currently fishing in the 
respective patch 

int_ves_num_daily 
Number of the international vessels that are currently fishing in the 
respective patch 

spat_restr 
Whether the patch is restricts fishing. May change with time as more 
offshore wind parks are constructed. 

NWS_X (X = 
oceanographic 
variable) 

Weekly resolution of the oceanographic variables bottom temperature 
(bottomT), mixed layer depth (MLD), and salinity (SAL). 

elevation Water depth. 
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Table V-A2. Most important global, agent, and patch parameters. 

M
o

d
el

 
d

im
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o

n
 

Parameter name 
(Netlogo) 

Description Reference 
G

lo
b

al
 

LPUE_coefficient 
Relative change in LPUE when converting to another 
engine power group 

Trip data base 

Daily_int_ves_distr_
mean 

Mean value for normal random distribution (sd = 0.25) 
from which randomly drawn values are used to simulate 
the distribution of international vessels 

International 
VMS data 

LPUE_uncertainty_m
ultiplier 

Multiplier affecting the Euclidian distance environmental 
conditions in the model and trip data base during 
modelling new LPUEs. The result is used as maximum error 
rate to obscure LPUEs from the matched trip. 

Expert guess 

fish_depletion 
Relative amount fish resources become depleted in a patch 
after a fishing event 

Model 
calibration 

fish_recovery 
Relative amount of fish resources recovering in every patch 
every day 

Model 
calibration 

inBetween_steam 
Per metier, the number of steaming hours added per trip 
day to simulate the steaming between fishing events in a 
single trip 

Trip data base 

monthly_expanses 
Monthly amount of money spent by agents (subtracted 
from savings in daily rates) 

https://de.stat
ista.com 

perceiving_error 

Maximum error rate to perceive exogeneous 
(environmental and economic) variables, as well as 
information from social networks. For the extended social 
network, the error is doubled. 

Expert guess 

probability_need_re
pair 

The probability of vessels needing a two days repair after a 
fishing trip 

Expert 
knowledge 
from fishery 
observers 

spatial_fishing_expa
nsion 

Per metier, the number of patches (spatial grid cells) 
required per trip day 

Trip data base 
& VMS 

target_savings 
The aspired savings used to calculate the existence 
satisfaction (set to 440 786€). 

(BMEL, 2020) 

vesDens_thresholds 
Per metier, thresholds for the maximum number of vessels 
tolerated in the proximity during fishing 

Trip data base 
& VMS 

A
ge

n
t 

(V
es

se
ls

) 

avail_gears Available gears determining the possible metier options  Initial memory 

chance_trip_length Probabilities for certain trip lengths (0.5 – 8 days) Trip data base 

chance_weekend Probability for extending fishing trips during weekends Trip data base 

chance_weekly 
Monthly probabilities for going fishing during a week of the 
month 

Trip data base 

engine_kw_step The engine power group See Table V-A 

https://de.statista.com/
https://de.statista.com/
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Figure V-A1. Infographic of the daily cycle each agent passes through in every model step.  

 

fish_licence 
Licenses for quota-regulated species (Nephrops and Sole) 
determining possible metier options 

Initial memory 
& endogenous 

fixed_costs 
Daily rate of fixed costs that is subtracted from the agents’ 
savings. 

STECF 

max_catch Maximum transport capacity for catches Trip data base 

max_trip_days Maximum number of trip days Trip data base 

producer_organisati
on 

The producer organization the agent is member of (or 
none) 

See Table V-A3 

swh_thresh 
Wave height threshold restricting fishing activity at stormy 
weather 

Trip data base 

W_X_sat (X = 
existence, personal, 
and social) 

Weights of the three satisfactions (existence, social, and 
personal) adding up to 1 

Model 
calibration 

W_X_unc (X = 
existence and social) 

Weights of the two uncertainties (existence and social) 
adding up to 1 

Model 
calibration 

P
at

ch
 FishGro Affiliation to fishing grounds 

Trip data base 
& VMS 

passable? Whether the patch is passable for navigation See Table V-A3 
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1.2 Submodels 

1.2.1 Perceived values 

In the beginning of each time step, agents perceive values for 
current bottom temperature and prices of species and fuel. 
We assume that fishers have bounded knowledge about the 
environmental and economic system, which is why these 
values might differ from the actual values in the model 
environment. Bottom temperature may vary up to 3°C from 
the real value and species and fuel prices may vary up to 5%. These variations are random 
(floating) within their limits.  

1.2.2 Predicting fishing outcomes 

When agents consider choosing between metier options, they 
make predictions for each of them. Predictions consist of 
profits per trip day, most abundant species in the catch, 
spatial center patch of the fishing activity, and the potential 
change in Consumat variables (sum of gain in overall 
satisfaction and loss of overall uncertainty). The latter depends on several factors, such as the 
potential profit, main caught species, and fishing gear (see Satisfactions & Uncertainties).  

The prediction starts with the agents comparing their perceived bottom temperature with all 
temperatures from trips in their memory and choose the trip with the most similar 
temperature. Catches and trip length of this trip serve as basis to calculate profits per trip day 
by using the agent’s perceived species prices. The species potentially caught are split into 
abundant and bycatch species using bycatch thresholds (see Fishing licenses). Based on the 
predicted variables, the agent also calculates potential changes in four Consumat variables, 
i.e. existence, personal, and social satisfaction, as well as social uncertainty. The existence 
uncertainty is not predicted, because it compares predicted to actual profits and thus cannot 
be calculated during a prediction.  

Agents first try to predict the outcome of a metier option with their own memory and then, if 
the option is not in their memory, use memories of their close social network (peers) and, if 
the option is also not available there, the memory of their extended social network. If agents 
used their peer memory predictions (profits, and catches) will be randomly altered by up to 
5% and, if they use their extended peer memory, up to 10%.  

If the option is unavailable in the agent’s own and social network’s memory, fishers assume 
the profit to be the average of all trips in their memory, and only consider target species as 
abundant, e. g. for TBB – PLE&SOL this would be plaice and sole. In this case predicted 
Consumat variables will be equal to the current ones.  

1.2.3 Transfer to a new port 

After choosing a perceived option, fishers check, whether it is 
worth to transfer their vessel to a new port before starting 
the trip. The new port must be part of the past fishing trip, 
agents used to predict their fishing outcome, which might be 
rooted in their own memory or the memory of their social 
network (see Predicting fishing outcomes). In case the new port is closer to the fishing ground 

Corresponding code files:  

➢ perceive_and_SocNet.n

ls 

Corresponding code files:  

➢ behavioral_options.nls 

Corresponding code files:  

➢ fishing.nls 
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than their current port, agents perform the transfer. This will delay their fishing trip for the 
time it takes them to steam from the old to the new port.  

Predictions of fishing outcomes are only made by using trips of the same metier. Therefore, 
the ports an agent might transfer to are not arbitrary, but restricted to ports used by agents 
engaged in the same metier. Apart from affecting the distance and steaming times to fishing 
grounds, this change in ports also affects their social network (see section social network). 

1.2.4 Spatial fishing model 

The spatial environment of the model is a grid with a 
resolution of 0.045° longitude × 0.045° latitude. When agents 
go fishing they will choose the shortest path between their 
starting port and their target fishing patch, the latter being 
derived from either their own or peers’ memories (see 
Predicting fishing outcomes). The path is determined by calculating the minimum number of 
steps an agent needs in horizontal, vertical, and diagonal direction to reach its destination. 
The number steps are then multiplied with the average distance in the study area for one step 
in the vertical (5.009 km), horizontal (2.914 km), and diagonal (5.796 km) direction. The center 
patch, might change depending on the vessel density in the area and the number of suitable 
fishing patches. First, the spatial scale required for the fishing trip is determined as the number 
of necessary fishing patches, which are increasing with the trip length (see Fished patches). 
The agent perceives all patches around the center patch in a radius, which is increasing with 
more necessary fishing patches. Patches in this radius are restricted to those, which meet the 
requirement for fishing, meaning that they are part of the specific metier fishing ground and 
do not violate any spatial restrictions (e.g. OWFs or MPAs). Then, agents will perceive the 
vessel density being the average value of vessel numbers (international and German) in 
patches suitable for fishing. In case the vessel density in the suitable patches exceeds the 
tolerance threshold or the number of suitable patches is below the required amount, the 
agent will move to another center patch, which is randomly selected from the suitable 
patches. Agents may repeat this search routine a maximum of 20 times, however, their 
steaming distance increases by 9 km (roughly two grid cells) for each search trial and thus with 
each search trial they lose fishing time and spend more fuel. Therefore, the more vessels are 
present and the lower their vessel tolerance threshold is, the shorter is the time left for fishing.  

Once the agent found a suitable overall fishing area, the exact fishing path is simulated using 
Lévy flights, a specific version of random walks, in which agents randomly decide for a 
direction, as well as the number of cells moving in this direction. Among many other 
applications, this method is also used to simulate the forage movement patterns of marine 
predators (Sims et al., 2008). The number of cells moving in one direction (𝐷) is a result of a 
random distribution, which is heavily tailed towards a minimum of 1, 

𝐷 = 𝑟−0.5 
(Eq.  
1) 

where 𝑟 is a random floating-point number between 0 and 1. In case the agent would enter a 
grid cell that doesn’t meet the requirements for fishing, they choose a new random direction. 
Agents are allowed to enter a grid cell twice during Lévy flights, if there is no other possible 
direction. Since this may results in less unique fished patches than the required amount, if the 
shortage is five or larger, the fishing time is reduced relatively to the shortage of fished unique 
patches.  

Corresponding code files:  

➢ fishing.nls 
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Using Lévy flights, the simulated tracks resemble fishing movement with some longer straight 
lines and several clumped patches. We visually compared modelled and observed fishing 
tracks of gears included in FISHCODE (Figure V-A2). Note that we do not claim to model 
matching tracks, but simply aim to simulate similar patterns.  

 

Figure V-A2. Observed (green) and modelled (blue) fsishing tracks as consecutive grid cells 
using Lévy flights. The four panels correspond to different types of gears: bottom otter boards 
(OTB), shrimp beam and pulse trawls (CSH), and flatfish beam and pulse trawls (PLE & SOL).  

1.2.5 Modelling landings 

We model catches per fishing trip by using landings per unit 
effort (LPUEs) and landing compositions of the most similar 
fishing trip in the trip data base. To find the closest fishing 
trip, we match ambient oceanographic variables (bottom 
temperature, bottom salinity, mixed layer depth and 
bathymetry) of the patches that shall be fished with values from trips in the trip data base 
with the metier that shall be fished and the current season in the model. We find the best 
match by selecting the smallest Euclidean distance to the current model variables. 
Subsequently, we calculate the LPUE (kg / day) of the matched trip and adjust them according 
to the engine power groups by. For every engine power step difference, we increased or 
decreased LPUEs by 13% (see section Relative changes of LPUEs). In addition, local resource 
exhaustion influenced catches, meaning that patches that recently became fished extensively, 
yield less resources (lower LPUEs). We simulated the local resource exhaustion by multiplying 
LPUEs of all species with the depletion coefficient (see Local depletion for details). We also 
included some stochasticity in the determining LPUEs by obscuring them with an error of up 
to half of the Euclidean distance. Finally, we multiplied the LPUEs of each species with the 
fishing time of the respective fishing trip to simulate catches for every caught species. In case 
the newly calculated catches exceed the agent’s fish hold capacity, we subtract catches in 
steps corresponding to 1 hour until aggregated trip catches are below the fish hold capacity 
and adjust the trip duration and trip end date.  

We calculate revenues by multiplying the weight of all caught species with their current prices 
(see Market prices). Fishing costs in the model are comprised of fuel costs, as well as a number 
of other variable and fixed costs. We calculate fuel costs based on the agent’s activity profile 

Corresponding code files:  

➢ fishing.nls 
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during a trip (i.e. steaming and fishing), whereas all other variable costs are based on the pure 
trip length (see Fishing costs). Finally, we subtract costs from revenues to calculate profits per 
fishing trip. 

1.2.6 Local depletion 

We simulated the local exhaustion of fished resources by 
proportionally lowering the LPUEs for all species in a patch 
for every time a vessel fished in that patch. Every patch has a 
depletion coefficient (𝐷𝐶) which is multiplied with the 
fish_depletion parameter (𝐹𝑖𝑠ℎ𝐷) for every time a patch 
became fished (𝑛). 

𝐷𝐶𝑝𝑎𝑡𝑐ℎ = 𝐷𝐶𝑝𝑎𝑡𝑐ℎ  × 𝐹𝑖𝑠ℎ𝐷
𝑛 

(Eq.  
2) 

When modelling catches for a fishing trip, the LPUEs for all species are then multiplied with 
the average of all depletion coefficients of patches that are fished during the trip. At the end 
of every day, we simulated the recovery of fish resources by multiplying the depletion 
coefficient with the fish_recovery parameter (𝐹𝑖𝑠ℎ𝑅).  

𝐷𝐶𝑝𝑎𝑡𝑐ℎ = 𝐷𝐶𝑝𝑎𝑡𝑐ℎ  × 𝐹𝑖𝑠ℎ𝑅 
(Eq.  
3) 

We parameterized both fish_depletion and fish_recovery resulting in 0.995 and 1.05 
respectively (6. Model output verification).  

1.2.7 Social network 

Social networks are important for fishers, because they 
enable the sharing of information about yield of past fishing 
trips and alternative fishing strategies, which increases their 
chance for good catches (Barnes et al., 2017; Wilson, 1990). 
Social ties between fishers are more likely to form within 
homogeneous groups with regard to target species and 
landing port (Alexander et al., 2018; Gillis et al., 2021). In FISHCODE, we used the fisher state 
variables current port (dynamic) and producer organization (static) to define their close and 
extended social network. To quantify the similarity among agents, we create a matrix with 
current port and producer organization for each agent and apply the Gower distance, which 
is suited for categorical variables (Gower, 1971). We group fishers’ peers in two categories, 
the extended social network (Gower distance of less than 0.5) and the close social networks 
(Gower distance of less than 0.25). Since the current port of agent may change (see Transfer 
to a new port), the social network may also change and is therefore updated every week. 

1.2.8 Satisfactions & Uncertainties 

The existence satisfaction grows, the closer the agents’ 
savings are to their aspired savings and therefore represents 
an aspect of bounded rational behavior. It is represented as 
the relative share of the savings compared to the target 
savings. If values are below 0, they are set to 0 and if values 
are above 1 they are set to 1. This ensures that only the downside risk is considered, meaning 
that as soon savings grow above the target savings the existence satisfaction does not grow 

Corresponding code files:  

➢ Main file 

➢ fishing.nls 

Corresponding code files:  

➢ Perceive_and_SocNet.

nls 

Corresponding code files:  

➢ consumat.nls 
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disregarding from how much more profit is generated. Vice versa negative profits result in 0 
existence satisfaction disregarding from how negative profits are. However, if savings are 
below target savings, the agents change their selection process of metier options to profit 
maximization.  

𝑆𝑒 = 

{
 

 
1 𝑖𝑓 Savings >  𝑇𝑎𝑟𝑔𝑒𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠

𝑆𝑎𝑣𝑖𝑛𝑔𝑠

𝑇𝑎𝑟𝑔𝑒𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
0 𝑖𝑓 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 < 0 

  
(Eq.  
4) 

The social satisfaction grows if the agents earn more than their colleagues and therefore 
represent a descriptive norm. It is formalized as the proportion of agents’ trip profits that are 
above the average profit of their peers at the moment of the trip. If the agent has no peers, 
𝑆𝑠 is removed and the weightings of the other satisfaction are equally increased so that they 
sum up to 1. 

𝑆𝑠 = 
𝐹𝑇𝐻𝑖𝑔ℎ𝑒𝑟

𝐹𝑇
 

(Eq.  
5) 

• 𝐹𝑇𝐻𝑖𝑔ℎ𝑒𝑟 = Number of fishing trips with profits higher than mean profits of peers 

• 𝐹𝑇 = Number of Fishing trips 

The personal satisfaction grows if the agent performs similar actions, representing the 
habitual aspect of the agents’ decision-making. It is formalized as the proportion of chosen 
options from the agents’ memories with the main target species and fishing gears being part 
of the common target species and gear lists. These lists represent the target species and gears 
of an agent’s memory with a frequency of at least 20% and new entries are added monthly.  

𝑆𝑝 =
1

2
 × 

𝐹𝑇𝐶𝑜𝑚𝑆𝑝𝑒𝑐

𝐹𝑇
 + 

1

2
 ×  

𝐹𝑇𝐶𝑜𝑚𝐺𝑒𝑎𝑟
𝐹𝑇

 
(Eq.  
6) 

• 𝐹𝑇𝐶𝑜𝑚𝑆𝑝𝑒𝑐 = Number of fishing trips with primary species part of the common species 

list 

• 𝐹𝑇𝐶𝑜𝑚𝐺𝑒𝑎𝑟 = Number of fishing trips with gear part of the common gear list 

 

The existence uncertainty expresses a planning insecurity with regard to profits. It grows the 
lower realized profits are in comparison to predicted profits per trip, as well as the smaller the 
standard deviation across all profits in the memory. The larger the standard deviation, the 
smaller the existence uncertainty, because fishers are more used to fluctuating profits. In case 
the profits are higher than the prediction, the existence uncertainty for that specific trip is set 
to 0, meaning that only downside-risks are evaluated. 

𝑈𝑒 = 

{
 
 

 
 

1 𝑖𝑓 𝑃𝑟𝑒𝑑𝐷𝑎𝑦𝑖 <  𝑃𝑟𝑜𝑓𝐷𝑎𝑦𝑖

1

𝐹𝑇
× ∑(𝑃𝑟𝑒𝑑𝐷𝑎𝑦𝑖 −  𝑃𝑟𝑜𝑓𝐷𝑎𝑦𝑖) / 𝑃𝑟𝑜𝑓𝑆𝐷)

𝐹𝑇

𝑖=1

0 𝑖𝑓 (𝑃𝑟𝑒𝑑𝐷𝑎𝑦𝑖 −  𝑃𝑟𝑜𝑓𝐷𝑎𝑦𝑖) >  𝑃𝑟𝑜𝑓𝑆𝐷 

 

 

(Eq.  
7) 
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• 𝑃𝑟𝑜𝑓𝐷𝑎𝑦𝑖 = Profits per trip day at trip 𝑖 

• 𝑃𝑟𝑒𝑑𝐷𝑎𝑦𝑖 = Predicted profits per trip day at trip 𝑖 

• 𝑃𝑟𝑜𝑓𝑆𝐷 = Standard deviation of profits in memory 

 

The social uncertainty (𝑈𝑠) decreases, the more similar used gears and primary target species 
are of an agent’s memorized trips in comparison to his peers. Therefore, the social uncertainty 
represents the tendency to conformism and a descriptive norm. 𝑈𝑠 is formalized as the 
portion of trip characteristics (used gears and primary target species) in an agent’s memory 
that does not match trip characteristics of his peers’ memories. While making the 
comparisons, past trip characteristics are matched with characteristics of the social network 
of that time. Since the behavior of peers and even the social network itself may change, so 
might the used gears and primary target species of an agent’s social network. If the agent has 
no peers, 𝑈𝑠 is removed and the weighting of 𝑈𝑒 is set to 1.  

𝑈𝑠 = 
1

2
×
𝐶𝑔𝑒𝑎𝑟𝑠

𝑁
 +
1

2
×
𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑁
 

(Eq.  
8) 

• 𝑁= Number of trips in memory 

• 𝐶𝑔𝑒𝑎𝑟𝑠 = Used gears that differ from those used by peers 

• 𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = Primary target species that differ from those caught by peers 

 

Satisfactions and uncertainties are multiplied with their individual weightings and then 

summed to the overall satisfaction (𝑆) and overall uncertainty (𝑈) 

𝑆 = 𝑊𝑆𝑒 × 𝑆𝑒 + 𝑊𝑆𝑠 × 𝑆𝑠 + 𝑊𝑆𝑝 × 𝑆𝑝 (Eq.  9) 

𝑈 = 𝑊𝑈𝑒 × 𝑈𝑒 + 𝑊𝑈𝑠 × 𝑈𝑠 
(Eq.  
10) 

• 𝑊𝑆𝑒 = Existence satisfaction weight  

• 𝑊𝑆𝑠 = Social satisfaction weight  

• 𝑊𝑆𝑝 = Personal satisfaction weight  

• 𝑊𝑈𝑒 = Existence uncertainty weight  

• 𝑊𝑈𝑠 = Social uncertainty weight   
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2. Data evaluation 

Table V-A3. Characteristics and sources of used data sets.  

Data set Application in 
model 

Range & 
Resolution 

Variables Source 

Trip data 
base 

Modelling landing 
composition, 
LPUE, and catch 
location per trip.  

 

Predicting catches, 
fuel costs, and 
profits.  

- 2012-2019 
- Fishing trip 

Landing weights & 
values (per 
species), used gear, 
start and landing 
port 

Fishing 
logbooks1 

fishing location, 
trip duration, time 
spent fishing and 
steaming 

Vessel 
monitoring 
system (VMS)1  

metier Cluster 
approach² 

Engine power and 
tonnage 

European fleet 
register³ 

Producer 
organization 

 

German 
Fishing Vessel 
Register1 

Fishing 
quotas 

Restricts the total 
catch of a species 

- 2009-2021 
- Yearly 

German fishing 
quotas 

Monthly quota 
reports of the 
Federal Office 
for Agriculture 
and Food4 

Resource 
prices 

Calculation and 
prediction of trip 
revenues 

- 2012 – 
2019 

- Monthly 
mean € / 
kg 

Prices for 
commercially 
important species 

Fishing 
logbooks1  

Fuel price 
Calculation and 
prediction of trip 
revenues 

- 2002-2020 
- Daily mean 

value 

Marine gasoil 
prices in German 
ports 

EUMOFA5 
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Environmen
tal data 

Modelling catches 
by matching the 
closest fishing trip 
using model 
environmental 
data and those 
from the trip data 
base  

- 1995-2018 
- Daily 

means 
- 0.111° lon x 

0.067° lat 

Bottom 
temperature, 
mixed layer depth, 
and bottom 
salinity.  

Copernicus:   

NORTHWESTS
HELF_REANAL
YSIS_ 
PHY_004_0096 

Weather 
data 

Restricting the 
ability of vessels to 
go out for fishing 

- 1979 to 
present 

- 0.5°lon × 
0.5° lat 

Significant wave 
height [m] 

Copernicus: 
ERA5 (HRES)7 

Internationa
l fishing 
effort 

Determining 
whether vessel is 
searching for 
another catch 
location 

- 2012-2019 
- 0.045° lon 

× 0.045° lat 
- Weekly 

number of 
internation
al fishing 
vessels 

Occurrence of 
international 
vessels 

VMS1 

Fishing costs 

Used to calculate 
costs and profits 
per fishing trip. 

- Per fishing 
metier and 
vessel 
length class 

Cost structure per 
fleet segment and 
day at sea 

STECF8 

Offshore 
wind parks 

Scenarios about 
spatial fishing 
restricitons 

- Past and 
future 
OWFs 

- Worldwide 

Spatial polygons of 
OWFs, start date, 
status 

4COffshore1, 9 

Natura2000 
areas 

Scenarios about 
spatial fishing 
restricitons 

- Dedicated 
Natura200
0 sites 

- North Sea 

- Spatial 
polygons 

Emodnet10 

1 Not publicly accessible 
² Created by this study 
³https://webgate.ec.europa.eu/fleet-
europa/index_en;jsessionid=SZ3jDx6RabslAikFHIcPUhXdkiAH7OdGk_WKCtRzkVHLyQsvW4CF
!-2104109509 
4 https://www.ble.de/DE/Themen/Fischerei/Fischwirtschaft/fischwirtschaft_node.html 
5 https://www.eumofa.eu/macroeconomic 
6 https://marine.copernicus.eu/ 
7 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-
means?tab=overview 
8 https://stecf.jrc.ec.europa.eu/data-dissemination 
9 https://www.4coffshore.com/ 
10 https://emodnet.ec.europa.eu/en 
 

https://webgate.ec.europa.eu/fleet-europa/index_en;jsessionid=SZ3jDx6RabslAikFHIcPUhXdkiAH7OdGk_WKCtRzkVHLyQsvW4CF!-2104109509
https://webgate.ec.europa.eu/fleet-europa/index_en;jsessionid=SZ3jDx6RabslAikFHIcPUhXdkiAH7OdGk_WKCtRzkVHLyQsvW4CF!-2104109509
https://webgate.ec.europa.eu/fleet-europa/index_en;jsessionid=SZ3jDx6RabslAikFHIcPUhXdkiAH7OdGk_WKCtRzkVHLyQsvW4CF!-2104109509
https://www.ble.de/DE/Themen/Fischerei/Fischwirtschaft/fischwirtschaft_node.html
https://www.eumofa.eu/macroeconomic
https://marine.copernicus.eu/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://stecf.jrc.ec.europa.eu/data-dissemination
https://www.4coffshore.com/
https://emodnet.ec.europa.eu/en
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2.1 Fishing metiers & fleets 

Our aim was to classify fishing trips into distinct fishing practices (i.e. metiers) based on gear 
and landing composition information. FISHCODE metiers represent the fundamental pool of 
options agents can engage with when going fishing, although restricted by their state variables 
and the current model environment.  

We merged logbook and VMS data from the years 2012 - 2019 according to Letschert et al. 
(2021) and selected fishing trips occurring in the North Sea (ICES fishing area 4). We excluded 
fishing trips with dredges (< 0.01%), gears flagged as miscellaneous (0.08%), and those 
targeting blue mussels (1.7%) representing vessels that transport blue mussels from 
aquaculture facilities (STECF, 2020). Per gear, we identified the 10 most caught species and 
removed all others. Per fishing trip, we converted total to relative catches proportional to the 
overall weight caught during the respective fishing trip. Based on the resulting proportional 
catches, we created a distance matrix applying the Euclidean distance using the vegan package  
for the R statistical software (Oksanen et al., 2019; R Core Team, 2023). Then, we clustered 
similar fishing trips by using the partitioning clustering method CLARA (Clustering LaRge 
Applications), implemented in the cluster package for R (Maechler et al., 2019), which is suited 
for large data sets (Kaufman and Rousseeuw, 2009). The CLARA algorithm is based on the 
portioning around medoids (PAM) technique, meaning that it defines clusters based on their 
medoids, which is more resilient towards outliers than methods using means of clusters, such 
as k-means (Gupta and Panda, 2018). CLARA is effective for large applications, because it 
forms clusters based on a sample data sets and then allocates remaining data points to the 
nearest clusters. The number of clusters needs to be defined a priori for CLARA. Based on the 
number of described German fisheries in the southern North Sea, we decided that 15 is a 
sufficiently conservative number of clusters to capture all different fishing practices (STECF, 
2020). Therefore, for each gear, we defined 15 initial clusters and then merged clusters of the 
same gear if they had similar landing compositions, spatial distributions, used mesh sizes, and 
seasonal activities. We termed the resulting groups metiers, a term that is used in literature 
to describe a fishing practice based on target assemblage and technical vessel information on 
trip resolution (Ulrich et al., 2012). We removed the three metiers OTB – POK, SSC – COD & 
mixed demersal, and OTM – HER metiers from our data set, since the first two take place in 
the Norwegian trench and the last in front of the northern UK and thus outside of our study 
area, the southern North Sea. Furthermore, we removed the metiers with less than 10 trips 
(GN – COD, GN – SOL, OTM – PLE, and OTB – SPR) and those with less than three participating 
vessels (FPO – CRE&LBE, OTM – SAN, OTT – NEP&PLE, OTT – PLE, SDN – PLE, GNS – SOL, and 
GNS – COD). We compiled information on fishing trips from the resulting eight metiers (Table 
V-A4), which, from here on, we refer to as trip data base. 

The created metiers differ in used gears and targeted species, however, some vessels might 
exercise multiple metiers, because they switch between gears and target species. Because 
certain vessel features, such as gear handling or steaming speeds, mainly depend on 
characteristics unique to vessels or gears and not to metiers, we also merged metiers into 
fleets (Table V-A4).  
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Table V-A4. Metiers and fleets defined for the agent-based model. 

Metier Details Fleet 

OTB - PLE Otter board trawler catching mainly 
plaice. 

OTB – PLE/NEP 
OTB – NEP&PLE Otter board trawler catching mainly 

plaice and Nephrops. 

TBB – PLE&SOL Beam trawlers catching mainly 
plaice. 

TBB/PUL – PLE/SOL 

TBB – SOL&PLE Beam trawlers making most profit 
from sole. 

PUL – PLE&SOL Pulse trawlers catching mainly plaice 

PUL – SOL&PLE Pulse trawlers making most profit 
from sole. 

TBB - CSH Beam trawlers catching common 
shrimp 

TBB/PUL – CSH 
PUL - CSH Pulse trawlers catching common 

shrimp 

 

2.2 Fishing locations 

We selected fishing pings (geographic vessel positions sent regularly via VMS) of previously 
defined metiers and removed fishing trips with only one ping. German fishing vessels 
broadcast their position every two hours leading to large gaps in their spatial tracks. To enable 
a more accurate representation of spatial fishing grounds, we linearly interpolated fishing 
pings in two steps. First, we split pings of each fishing trip into segments whenever the spatial 
distance was larger than 30 nm or the time difference was larger than 4 hours between two 
consecutive pings. This prevented false interpolation between two hauling events in one trip. 
Second, we linearly interpolated pings, so that the time difference between each ping was no 
larger than 20 min. We gridded fishing pings of each metier to a resolution of 0.045° longitude 
× 0.045° latitude (approximately 15 km² per cell at 54° latitude north) and aggregated catches 
per cell and day. We calculated mean values per grid cell and omitted all data points with 
catches lower than the 10th percentile to represent core fishing grounds of metiers spatially 
(Figure V-A3). Finally, we removed grids cells by hand for falsely identified fishing pings 
representing steaming lines from harbours to catch grounds. 
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Figure V-A3. Fishing grounds of metiers derived from VMS data and used as spatial extend for 
simulated spatial fishing behaviour in FISHCODE. 

2.3 Variables derived from trip data base 

Our trip data base combines information on fishing trips, i.e. catches, revenues, start and 
landing ports, departing and landing dates, used gear, and centroids of fishing trips, with 
vessel characteristics, such as engine power and vessels lengths. It is a product of commercial 
logbook data and spatial vessel monitoring system’s (VMS) data and an encompassing source 
of information, which we used frequently to obtain parameters for FISHCODE.  

2.3.1 Validating trip data base 

We identified and removed erroneous entries by filtering for unrealistic values by using 
percentile filters (2.5th to 97.5th percentile), which is a common method for outlier detection. 
We applied percentile filters to trip durations, relative fishing times, LPUEs, and VPUEs. In 
addition, we removed trips with a length shorter than 3 hours, a relative fishing time of less 
than 0.3 or more than 0.9, and a LPUE of more than 400 kg / h. Finally, we selected only 
metiers with sufficient data by removing those with less than 10 trips and less than 3 vessels. 
Figure V-A4 shows the number of trips per metier in the trip data base, as well as the relative 
amount of removed trips per metier. Detailed graphs for each percentile filter can found in 
Appendix B.  
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Figure V-A4. Bars show the percentage of removed trips per metier and per filter (color 
coded). The numbers on top of the bars show the total number of trips before applying any 
filters.  

2.3.2 Fish hold capacity  

We calculated fish hold capacities of vessels, meaning their maximum fish transport capacity, 
in several steps. First, we selected all vessels with more or equal than 100 trips from the trip 
to create a solid fundament for the next steps. Second, we aggregated catches of all species 
per fishing trip and derived the maximum amount of catch per vessel. Third, we calculated the 
fish hold efficiency by dividing aggregated trip catches by vessel tonnages. Most vessels have 
a fish hold efficiency of around 0.1, meaning that 10% of their tonnage may be used as storage 
for catches. We used the 75th percentile of vessels’ fish hold efficiencies (0.134; Figure V-A5) 
to calculate fish hold capacities by multiplying it with vessel tonnages. We decided for the 75th 
percentile, since the fish hold capacity should represent the maximum amount vessels may 
transport, given that not all vessel might fish until their storages are full. We did not choose 
the maximum vessel fish hold efficiency, to remove outliers.  
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Figure V-A5. Fish hold 
efficiencies calculated for 
the maximum catch per 
vessels (max perc), the 
99th percentiles of catches 
per vessel (99th 
percentile), as wells as per 
each fishing trip. 

 

2.3.3 Engine power groups 

Engine powers of vessels in the trip data base are ranging from 110 to 2030 kW. Most vessels’ 
engine powers are concentrated in the lower end of the distribution and sparsely distributed 
across the whole range. We sorted vessels into five categories of engine power: 0 - 221, 222 - 
499, 500 - 999, 1000 - 1499, larger or equal to 1500 (all in kW). We decided to restrain the first 
group to a maximum of 221kw, because the plaice box, a large coastal fishing closure, 
prohibits vessels with larger engine powers than 221kw and certain gears to fish (Beare et al., 
2013). Thus, many vessels try to stay below this threshold to be able to fish within the plaice 
box. 

2.3.4 Trip durations and active weeks 

Trip duration is limited by technical constraints, such as the vessel size, as well as personal 
norms, such as the willingness to go out on the weekend. We extracted information about 
fishing trip durations from the trip data base.  

We derived the 90th percentile of all trip length per vessel from the trip data base to represent 
the vessel’s maximum trip duration (Figure V-A6).  

Fishers might plan their fishing trips depending on their motivation to be home in the evening 
or on the weekend (Letschert et al., 2023; Schadeberg et al., 2021). To get an estimate about 
these motivations, we extracted the relative number of trips per vessel that intersect with 
weekend days (Saturday and Sunday). Additionally, we extracted proportions of trips per 
vessels longer than time periods ranging from 0.5 to 7.5 in steps of 0.5 (Figure V-A7). In 
FISHCODE, we used these relative numbers as probabilities to determine how long the agents’ 
fishing trips last and whether they are active on the weekend. For example, if a vessel spent 
20% of its trips intersecting with weekends and 60% of its trips were longer than two days, 
then the probability that this vessel will go out at weekends would be 20% and the probability 
that trips can be longer than two day would be 60%.  
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Figure V-A6. The distribution of maximum trip days per vessel derived from the trip data base 
as the 90th percentile of trip lengths per vessel. 

 

 

Figure V-A7. The probabilities agents undertaking fishing trips of certain lengths and on the 
weekend.   
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In the model we included several reasons for agents to stay in port instead of leaving for a 
fishing trip, such as high waves, ship maintenance, and exacerbating satisfactions and/or 
uncertainties. Additional reasons for not going fishing might be vacation or pursuing side 
businesses like restaurants or hotels. To include these reasons in our model, we used the trip 
data base and determined probabilities of vessels to be inactive during an entire week. We 
calculated monthly averages and used these as probabilities in the model for agents to have 
an active or inactive fishing week (Figure V-A8).  

 

 

Figure V-A8. The probabilities agents undertaking fishing trips of certain lengths and on the 
weekend.  

2.3.5 Relative changes of LPUEs 

In the Modelling catches submodel, we calculate the LPUE (kg / day) of the matched trip and 
standardize them according to the engine power group. To achieve this standardization, we 
beforehand determined the relative increase or decrease of LPUE per engine power step for 
each metier. First, we grouped the trip data base into categories by metier, engine power 
group, and caught species and removed categories with less than 50 data points. Second, for 
each category, we calculate means of LPUEs and determined the relative change in average 
LPUE from every of the four engine power groups to another. In case the engine step was just 
from one engine power group to the next higher, we simply divided the LPUE of the higher 
engine group by the LPUE of the smaller. In case the step was from the 1st to 3rd or 4th engine 
group (or from the 2nd to 4th), we standardized the relative change by the number of steps 
using the following formula, 
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𝐿∆= ((𝐿𝑖 − 𝐿𝑖+𝑛) / 𝑛 + 𝐿𝑖) / 𝐿𝑖 
(Eq.  
11) 

where 𝐶∆ is the relative change in LPUE, 𝐶𝑖 the LPUE at step 𝑖, and 𝑛 the number of steps. 
Then, we formed median across all values (1.13) and used to standardize catches from vessels 
with different engine size groups (see Modelling catches). 

2.3.6 Producer organization & current landing port 

Producer organization is a fixed agent state variable derived from real world data. We 
obtained information on the memberships in fishing organization from the German Fishing 
Vessel Register. To determine initiative current landing ports per vessel, we used the most 
abundant landing ports, which is part of the electronic logbook data. In FISHCODE, current 
landing port is a dynamic state variable, as fishers might switch to another landing port, if the 
new port is closer to their fishing ground. However, they cannot choose arbitrary among ports, 
as decisions are limited to ports used for equal metiers by colleagues. Both, the German 
Fishing Vessel Register and logbook data are not publicly available, since they contain 
commercially sensitive information of fishers.  

2.3.7 Market prices 

We used all available logbook data to calculate monthly prices for species by dividing gained 
euros by catch amounts (Figure V-A9). Since not all species are caught every month, we linear 
interpolated prices for missing months. We obtained fuel prices from a publicly available data 
set of marine gasoil prices in German ports (www.eumofa.eu; Figure V-A10) 

 

 

Figure V-A9. Resource prices of the most important caught species. The upper graph displays 
the mean and standard variation of prices per month of the year, whereas the lower graph 
shows prices for each month across the whole temporal range of the trip data base. 

http://www.eumofa.eu/


Appendix A - TRACE 

 250  

 

Figure V-A10. Monthly marine gasoil prices. 

 

2.3.8 Steaming speed and time 

We derived steaming speeds from the trip data base by calculating mean steaming speeds per 
fishing trip, gear and engine power group. First, we calculated distances travelled by fishing 
trip like we would in FISHCODE (see Spatial fishing model) rather than taking the steaming 
distances from the trip data base. Although the steaming distance from the trip data base is 
more precise since it is directly calculated from VMS positions, the newly calculated distances 
were a better choice, because any bias introduced will be the same for these distances and 
those in FISHCODE. We removed trips with speeds lower than 3 km/h assuming that they refer 
to fishing or inactive times rather than steaming. We determined steaming speeds by using 
mean values per fishing gear and engine power group (Figure V-A11). 

Only in one out of the three fishing gears (PUL), there were examples of fishing trips from 
every engine power group. However, in FISHCODE, agents should theoretically be able to 
choose any metier, if vessel characteristics allow it. Therefore, we needed steaming speed 
values for all combinations of engine powers and fishing gears. For missing values, we linearly 
interpolated steaming speeds within fishing gears.  
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Figure V-A11. Histograms of steaming speeds per fishing gear and engine power group. 

Table V-A5. Steaming speed values in knots (nautical miles/h) used in FISHCODE. Underlined 
values are determined from mean values within fishing gear and engine power groups. Non-
underlined numbers are linearly interpolated. 

Gear 0 to 221 kw 222 to 499 kw 500 to 999 kw 1000 to 1499 kw 

OTB 9.24 9.99 9.74 9.99  

TBB 6.97 7.87 9.1 9.58 

PUL 12.09 12.37 12.98 13.1 

 

If embarked on a multi-day trip, a fisher likely does not stay at one location throughout the 
trip, but changes fishing spots to increase their yield (Rijnsdorp et al., 2011). We model this by 
increasing the steaming time by a fixed number of hours per trip day, meaning that the fishing 
time decreases by the same amount. We extracted these fixed steaming hours from the trip 
data base for each metier. Following the methods of Letschert et al. (2021), we determined 
steaming and fishing times for each fishing trip based on speed values of geo-located pings of 
fishing vessels derived from the vessel monitoring system (VMS). This enabled us to 
differentiate between the steaming intervals in the beginning and end of fishing trips, 
representing navigation from and towards the port, and all other steaming times. We summed 
up all other steaming times and standardized them by trip days. Per metier, we then used a 
percentile filter (2.5th and 97.25th) to remove outliers and determined input values for 
FISHCODE by calculating medians (Figure V-A12). 
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Figure V-A12. Boxplot of steaming times in between fishing events per fishing trip and metier. 
Trip numbers (after applied percentile filters) are indicated above each box and black 
horizontal lines represent medians.  

2.3.9 Initial memory 

The initial memory (memory at the point of model initiation) is based on the trip data base 
limited to the year before the model start. The minimum number of trips among all considered 
vessels, i.e. those that should be part of the model, decides for the number of trips among all 
vessels, since the model requires an equal length of values among agents. The minimum 
number of trips for the initial memory per vessel is 10. If a vessel has less trips than 10 in the 
year previous, to the model start it is not added to model. 

2.3.10 Available gears 

In general, all gears that the agent has ever used are available to this agent. During model 
initiation, the agents’ memories are filled with information from the trip data base. Thus, the 
initial available gears, depend on the decision, which trips will be added to the initial memory.    

2.3.11 Fishing licenses and individual (vessel) quotas 

Quota-managed species in t FISHCODE are plaice, sole and Norway lobster, which are 
distributed to vessels with the fitting license. Turbot and brill are valuable species that are 
only managed by a bycatch quota, meaning that a targeted fishery is not allowed, but fishers 
are allowed to catch them as bycatch, as long as the national quota is not surpassed. Agents 
own licenses for all species that they targeted in their initial memory. Agents gain individual 
quota for a species in the beginning of a year, if they have the necessary license. The amount 
of quota is equal for every agent owning the fitting license and calculated by dividing 90% of 
the national quota by the number of agents owning a license. We only use 90%, because in 
reality the BLE keeps a certain buffer of quotas to cover bycatches in other fisheries. Sole poses 
an exception, since it is managed quarterly and thus individual quota for sole is set every three 
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months by dividing 90% of the national quota by four and then by the number of fishers 
owning a license. 

Agents can only engage in a metier, if they own the necessary license and still have quota 
available. For example, if they want to engage in the fishing metier OTB – PLE they need to 
own a license and available quota for plaice (PLE). Moreover, during the predictions of a 
metier option outcome, the most abundant species are determined. If any quota-regulated 
species surpasses a catch share of 10% it cannot be registered under bycatch quota anymore, 
meaning that the fisher needs the specific license and available individual quota to pursue this 
metier option.  

2.3.12 Fished patches 

We used linear interpolation to calculate the number of fished patches (grid cells) a vessel 
visits during a fishing trip for each metier. Slopes are based on linear models derived from the 
trip data base (Figure V-A13). In general, the number of patches is increasing with time a vessel 
spent fishing during a trip.  

 

Figure V-A13. The number of fished patches (grid cells) depending on the fishing time length 
per metier. Based on the trip data base. 

2.3.13 Vessel resistance to harsh weather 

In general, larger vessels are more tolerant to harsh weather conditions such as strong winds 
and high waves. We used the trip data base to derive thresholds of significant wave heights 
(SWH) determining when a vessel can go fishing and when not. First, we combined fishing trips 
with a tempo-spatial data set of wave heights (SWH) and extracted the 97.5th SWH percentiles 
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per vessel representing extreme weather conditions. Second, we visually inspected a scatter 
plot of the 97.5th SWH percentiles and identified three vessel length groups characterized by 
subsequent steep slopes (Figure V-A14A). Since overestimated SWH thresholds would have 
strong effects on the ABM, we determined SWH thresholds by deriving the upper value of the 
1.5 inter quartile range (IQR), a common method to remove outliers (Figure V-A14B).  

 

Figure V-A14. A displays a scatter plot of 97.5th quantiles of significant wave height (SWH) 
values per vessel with blue dashed lines signaling vessel length categories determined by 
subsequent steep slopes. B shows boxplots of 97.5th SWH quantiles per vessel length category 
with upper 1.5 × inter quartile ranges (IQR) in red.  

2.3.14 Tolerance to vessel densities  

The threshold of fishing vessels to tolerate a certain density of vessels around them might 
depend on personal norms and characteristics of fishing gears and locations. Examples for 
personal norms are fishers who don’t care if other vessels are around, whereas others might 
be very sensitive, because they want to protect their secret fishing location. Gear and fishing 
location effects might comprise various spacings fishing gears require, as well as temporal 
exhaustions of resources after previous fishing activities in a specific location. Since we 
assume that there are no new fishing grounds to explore and no secret locations to protect, 
we excluding personal norms and based vessel density thresholds on metiers rather than 
individual agents.  

We derived thresholds for vessel densities from the trip data base. For each fishing trip, we 
determined the number of required grid cells (or patches) by using the same approach as in 
FISHCODE (see section on Fished patches). Equivalent to the spatial submodel in the ABM, we 
chose the required number of fished patches randomly distributed around the center of each 
fishing trip (see section on Spatial fishing model). From all the selected patches we extracted 
the average of other active fishing vessels (German and international) per cell and day. Finally, 
we derived vessel density thresholds for each metier by using the upper boundary of the 1.5  
× IQR interval (Figure V-A15). For those with zero values of IQR intervals, we used the next 
higher value from the other metiers. 



Supplementary Material – Chapter V 

 255  

 

Figure V-A15. Boxplot of tolerated vessel densities during fishing trips by metier with 1.5 × 
inter quartile ranges (IQR) in red. 

2.4 Fishing costs 

We used information from the annual economic report of the Scientific, Technical, and 
Economic Committee for Fisheries (STECF) to model fishing costs except for fuel consumption 
which was calculated based on steaming and fishing times per trip. STECF information is 
available per year and fleet, the latter defined by fishing techniques (i.e. groups of fishing 
gears) and length classes. The STECF provides a wealth of economic variables, of which we will 
only mention the ones we used for our work (see https://stecf.jrc.ec.europa.eu/dd/fleet for 
all variables). All economic variables provided by the STECF are standardized for inflation by 
using the consumer price index of the year 2015 as a baseline. We extracted the following 
variables: personnel costs, repair & maintenance costs, other variable costs, other non-variable 
costs, mean vessel length, and days at sea (DAS). We restricted variables to the years 2008-
2018, fishing techniques demersal trawlers and seiners (DTS), and beam trawlers (TBB), and 
the length classes to 12-18, 18-24, and 24-40 (all in m). Per year and fleet, we standardized all 
variable costs by dividing them through the DAS and created linear models by using mean 
lengths as explanatory and standardized costs as response variable (Figure V-A16A). Note that 
there was one data point per year resulting in 22 to 33 data points per length class and cost 
variable. Fixed costs (other non-variable costs) were not standardized by DAS and averaged 
across gears since they do not scale with effort or depend what gear is used gears. In the 
model, agents pay fixed costs every day depending on vessel size (Figure V-A16B).  

https://stecf.jrc.ec.europa.eu/dd/fleet
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Figure V-A16. Yearly fishing costs per day at sea for each fishing technique present in 
FISHCODE. Blue lines represent linear models, ribbons 95% confidence intervals, and colors of 
points vessel length (VL) intervals in meters. A = variable costs; B = fixed costs. DTS: demersal 
trawlers and seiners, TBB: beam trawlers. 

We calculated fuel costs per fishing trip based on vessels’ engine power (kW), applying a 
formula developed by Bastardie et al. (2013),  

𝐶 = (3.976 + 0.236 × 𝑘𝑊) × 𝐴 
(Eq.  
12) 

resulting in a proxy for fuel consumption per hour (𝐶). 𝐴 is a coefficient differentiating vessel 
activities, which is largest for when the vessel is fishing (1), smaller for steaming times (0.8), 
and smallest for inactive times (0.1). Inactive times were defined as those with speeds below 
1 km/h. Pulse trawls are lighter than equivalent trawl gears, i.e. beam trawls, and have less 
contact with the sea floor resulting in a reduced fuel consumption of around 50% during 
trawling (Turenhout et al., 2016). Therefore, we changed 𝐴 to 0.5 during fishing activity of 
pulse trawlers.  

2.5 International fishing effort 

Fishing effort in the North Sea is characterized by temporal variations induced by seasonal 
fisheries. To depict this distribution, we modeled weekly international vessel numbers per grid 
cell. We used available VMS data for the whole model area (North Sea) from 2015-2018 to 
derive weekly sums of international vessel occurrences per grid cell (0.045 lon × 0.045 lat). 
Subsequently, we calculated mean values per week of the year (WOY) for each cell and means 
and standard deviations for the whole area (entire grid). Then, we computed relative mean 
values per grid cell standardized by the mean area values during the respective WOY.  

In FISHCODE, we update international vessel occurrences every week in two steps. First, we 
simulated the overall number of international vessel occurrences for the whole area. To do 
this, we create a standard distribution using the mean value and standard deviation of 
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international vessel occurrences of the respective WOY and drawing one random number 
from it. Second, we read a raster file containing relative international vessel occurrences per 
grid cell for the respective WOY. Finally, we multiply relative grid cell values with the simulated 
overall value from step one.  

In reality, some vessels might leave very early in the morning or they stayed overnight at sea, 
meaning that they are present before other vessels arrive, while others might leave the port 
later. For FISHCODE, this means that the distribution of international vessels should not always 
be at maximum, since the German fishers might be there before international vessels arrive. 
To simulate this variation in FISHCODE, we multiply international vessel numbers per grid cell 
with a number drawn from a random distribution (mean = 0.5, sd = 0.25) every day. This 
variation simulates that at some days international vessels are present before German vessels 
act and on other days they are already present.    

2.6 Parameterization 

We calibrated parameters that could not be derived from empirical data by using pattern-
oriented modelling (POM), an established method for ABM parametrizations, which compares 
model simulations with varying input parameters to observed real-world patterns (Wiegand 
et al., 2004, 2003). In total, we parameterized seven model parameters (Table V-A6) using 
three categories of real-world patterns, i.e. spatial distribution of fishing effort, monthly 
number of trip days and monthly catch compositions. Each pattern category was split into sub-
patterns: the catch composition into species (i.e. plaice, sole, brown shrimp, and Nephrops) 
and fishing effort and trip days into metiers with pulse and beam trawls grouped together (i.e. 
OTB – PLE, OTB – PLE&NEP, TBB/PUL – CSH, TBB/PUL – PLE&SOL, and TBB/PUL – SOL&PLE). 
With regard to the distribution of spatial fishing effort, we wanted to reproduce spatial fishing 
hotspots. Because the model operates on a high spatial resolution, we used a coarser grid 
resolution for the parameterization (0.5° × 0.5°) and relative fishing effort per grid cell instead 
of total hours. We created a base year scenario using averages of all economic and 
environmental data sets across the entire data range (2012-2018) and the initial agent 
memory of the year 2015. We compared model outputs to monthly averages (in case of trip 
number and catches) or monthly sums (in case of spatial fishing effort) of historical data (2012-
2018). For every parameter constellation we performed 10 model runs and used averages to 
counteract the effect of stochasticity.  

We used a step-wise procedure for the calibration of the seven model parameters to avoid 
extensive computation times due to large parameter spaces. In every step, we compared 
model results to sub-patterns by range-transforming (0 to 1) root mean square errors (RMSE). 
The transformed RMSEs had to fall below a threshold to pass the filter, which varied 
depending on the number of sub-patterns. A parameter constellation passed, if transformed 
RMSEs fell below the threshold in all tested sub-patterns. The number of sub-patterns varied 
in every step depending on the fleet that was parameterized and thus we adjusted the 
threshold to be more conservative when there were less sub-patterns and vice versa (details 
below).  

First, we calibrated the two global parameters fish depletion and fish recovery by matching 
model outcomes of all fleets to nine sub-patterns with a threshold of 0.55. In this first step, 
we set the weightings of satisfactions and uncertainties equal meaning 0. 33̅̅̅̅  and 0.5, 
respectively. Fish depletion and fish recovery influenced the patch-specific depletion 
coefficient and thus primarily affected catches, which is why we compared model outcomes 
to monthly catch compositions and spatial fishing effort. In addition, we removed all 
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parameter constellations resulting in an averaged depletion coefficient of all patches <= 0.05 
to avoid unrealistic high degrees of local depletion. Three parameter constellations passed all 
sub-patterns of which we used the median values for the following calibration steps and 
model validations. In the next three steps, we calibrated the five vessel specific weightings for 
the three satisfactions (i.e. existence, personal, and social) and two uncertainties (i.e. 
existence and social) individually for every fleet (CSH, OTB, and PLE&SOL). Depending on the 
fleet the number of sub-patterns varied and accordingly the transformed RMSEs had to fall 
below 0.35 (CSH), 0.4 (PLE&SOL), and 0.55 (OTB). When calibrating one fleet, we set the 
weightings of the other fleets equal. Weightings of satisfactions and uncertainties determined 
the agents’ metier choices, which is why we used the two real-world pattern categories spatial 
fishing effort and monthly trip days. Note, that we only used sub-patterns of relevant metiers 
for each fleet, e.g. when parametrizing the OTB fleet, we used sub-patterns for the metiers 
OTB – PLE and OTB – NEP&PLE. In a final step, we used all constellations of weightings that 
passed the filters in the individual fleet calibrations and parameterized weightings for all fleets 
simultaneously. In this last round we set the threshold to 0.6 which resulted in one final 
parameter constellation (Table V-A6). Results of the final round can be found in Appendix D. 

Table V-A6. Model parameter ranges used for the pattern-oriented modelling (POM) and 
results. CSH = brown shrimp, OTB = Otter bottom trawl (plaice & Nephrops), and SOL & PLE = 
flatfishes (sole and plaice). Bold values represent calibrated values used for the validation.  

Parameter Details Tested values Fleet Results 

Fish 
depletion 

The relative reduction in 
LPUE after a patch was 
fished 

0.965 – 0.995 (0.05 
steps) & 0.999 

All .965|.97|.995 

Fish 
recovery 

The relative share of daily 
LPUE recovery 

1.01 & 1.05 – 1.3 
(0.05 steps) 

All 1.3|1.2|1.05 

    First Final 

Existence 
satisfaction 

Increases the closer current 
savings are to target savings 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .2|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .1|.2|.2|.2 .2 

CSH . 33̅̅̅̅ |.6|.8 .8 

Personal 
satisfaction  

Increases the more uniform 
own fishing actions are 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .2|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .1|.2|.2|.6 .2 

CSH . 33̅̅̅̅ |.2|.1 .1 

Social 
satisfaction 

Increases the more often 
profits of trips are above 
those of peers 

0.1, 0.2, 0. 33̅̅̅̅ , 0.6, 
0.8 

OTB .6|. 33̅̅̅̅ |. 33̅̅̅̅ |. 33̅̅̅̅  . 33̅̅̅̅  

PLE&SOL .8|.6|.6|.2 .6 

CSH . 33̅̅̅̅ |.2|.1 .1 

Existence 
uncertainty 

Decreases the more often 
profit predictions are 
higher than profits 

0.1, 0.3, 0.5, 0.7, 
0.9 

OTB .9|.5|.7|.9 .9 

PLE&SOL .3|.3|.9|.3 .3 

CSH .7|.7|.5 .5 

OTB .1|.5|.3|.1 .1 
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Social 
uncertainty 

Decreases the more similar 
fishing actions are to those 
of peers 

0.1, 0.3, 0.5, 0.7, 
0.9 

PLE&SOL .7|.7|.1|.7 .7 

CSH .3|.3|.5 .5 

 

 

 

Figure V-A17. Parameterized weightings of satisfactions (Sat.), uncertainties (Unc.) after the 
final step of the pattern-oriented modeling for the three fleets: CSH = common (brown) 
shrimp, OTB = Otter bottom trawl (plaice & Nephrops), and SOL & PLE = flatfishes (sole and 
plaice). 

3. Conceptual model evaluation 

3.1 Description of the study system 

FISHCODE is set in the southern North Sea, a shelf sea that is heavily fished since centuries 
and belongs to the most anthropogenically used areas in the world (Halpern et al., 2015, 
2008b). The southern North Sea is characterized by different habitats shaped by various 
sediment types (from fine sand to rocky reefs), geographical settings, such as trenches and 
low slopes between the coast and the barrier islands forming the Wadden Sea, and human-
made spatial settings, i.e. offshore wind farms (OWFs) and fishing restrictions. German 
fisheries in the study area consist of the near-shore Brown Shrimp fleet and offshore demersal 
trawlers targeting either flatfishes (plaice and sole) or Nephrops. The Brown Shrimp fleet 
represents the largest German North Sea fishery in both economic relevance and vessel 
number, encompassing more than 200 vessels equipped with beam trawls. The flatfish and 
plaice offshore fleet is composed by about several medium sized “cutters”. For most vessels, 
plaice represents a lower incentive, because of the low market prices in comparison to sole 
and Nephrops. Nonetheless, there are some vessels that predominantly target plaice. All 
fisheries previously described use bottom trawls, which are very unselective and result in high 
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bycatches. Fishing businesses are either small and mostly ran by families, or belong to large 
Dutch companies, although they are still registered as German-flagged vessels. Moreover, a 
large portion of the German catches are landed in the Netherlands where most of the 
processing industry is located. Most fishers are part of fishing organizations, which are 
organized by region and main target species.  

3.2 Model assumptions 

Due to the intense fishing activity in the southern North Sea, we assume that there are no 
unexplored fishing locations, meaning fishers do not need to invest time in exploring new 
catch grounds. In our model, this is reflected by a simplistic resource extraction sub-model. 
Both extensions of overall catch grounds and specific fishing locations are based on seven 
years of observed fishing effort. Similarly, the modelled catch amounts depend on 
standardized values of observed fishing trips of the same metier, which makes a biological 
submodel for fish stocks redundant.  

Fishers are in contact with colleagues while being on land and in the port facilitating 
information exchange. Social ties are formed by geographical and institutional closeness, in 
our model, represented by social networks based on equal landing ports and/or being 
member of the same producer organization.  

Human decision-making processes are complex and often involve motivations beyond pure 
profit maximization (Burgess et al., 2020; Groeneveld et al., 2017; van Duinen et al., 2016). 
Therefore, the individual decision-making of agents is the most complex part of FISHCODE 
involving economic motivations, habitual behavior, and social comparison. The Consumat 
approach allows the combination of different behavioral theories, making it is well-suited to 
model the decision-making of fishers in our study system (Jager et al., 2000; Jager and Janssen, 
2012). Filatova et al. (2016) conclude that certain complexity in ABMs is required, so that the 
model can be restructured by its endogenous dynamics. In our model this necessary 
complexity is provided by the Consumat approach enabling agents to engage in different 
behavior strategies of varying complexity. Along with the heterogeneity of the agent’s state 
variables, this ensures that agents can adapt to new situations, such as changing market prices 
or altered resource availabilities.  

Especially small-scale and family-owned fishing businesses are often marked by habitual 
behavior, meaning that they want to continue fishing for the sake of fishing. For many fishing 
is a way of life rather than a profession (unpublished data from interviews with fishers), which 
is represented by the personal satisfaction of the Consumat approach. Being in contact with 
colleagues also facilitates rivalry for having the best catch, which is covered by the social 
satisfaction. Finally, fishers still need to survive from what they catch, which is why we 
included the existence satisfaction in the Consumat approach. Despite years of fishing 
experience, catches remain only partly predictable and together with new environmental 
settings due to climate change and policy reforms they impose high uncertainties for fishers. 
Fishers might feel uncertain if the majority of their colleagues engages in other fishing types. 
The social uncertainty increases, the more the past metiér choices of an agent differ from 
those of its colleagues. The existence uncertainty is related to the unpredictability of profits 
and increases if an agent’s predictions for fishing trip revenues differs from what the agent 
earned after the trip. A detailed description of the Consumat approach can be found in the 
ODD+D protocol (1. Problem foundation & 2. Model description). 
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4. Implementation verification 

4.1 Verification of behavioral drivers 

We tested the functionality of the Consumat approach by setting the respective weightings of 
satisfactions and uncertainties to the extremes (1 and 0) for one vessel. Setting a weighting of 
a satisfaction to one automatically sets weightings of the other satisfactions to zero and 
thereby excludes them entirely. The same holds true for the two uncertainties. In total, we 
tested six parameter constellations comprised of extreme values (weighting = 1) for each of 
the five weightings of satisfactions and uncertainties and one constellation with equal 

weightings, i.e. 0. 3 for satisfactions and 0.5 for uncertainties. The equal values were also 
chosen for the non-tested vessels, as well as for weightings of uncertainties when setting the 
weighting of a satisfaction to 1 and vice versa. We created an artificial testing environment 
consisting of three vessels from each metier and initialized their memory with random fishing 
trips from 2012 to 2015. All exogenous variables, i.e. market prices and environmental factors 
were set to monthly averages equal to the base year scenario. We ran 15 simulations for each 
scenario, averaged across these repetitions, and extracted results for the tested vessel. We 
repeated this exercise once for every metier. 

Each of the satisfactions and uncertainties stands for a specific aspect of human behavior and 
increasing its weighting, enhances the respective behavioral aspect and allows analyzing the 
consequences. This enabled us to test whether the behavioral aspects influence the agents in 
the envisioned ways. Satisfactions and uncertainty influence agents’ decisions on two stages. 
The first stage is the Consumat approach in which agents select different strategies to perceive 
a pool of metier options according to their current status of being satisfied or unsatisfied and 
certain or uncertain. Generally, the more successful an agent is in maximizing his satisfactions 
and minimizing his uncertainty, the more often will the agent choose repetition as his 
behavioral strategy leading to similar metier choices and vice versa. If the agent becomes 
unsatisfied or uncertain, he starts to perceive more than one possible metier choice and needs 
to decide which metier to engage into. In this second stage, agents predict fishing outcomes 
and the affiliated changes in satisfactions and uncertainties for all metier options they would 
technically be able to perform. They then choose the option that promises the highest sum of 
gains of overall satisfaction and loss of overall uncertainty. Therefore, setting the weighting 
for a satisfaction or uncertainty to one, should influence the agents’ decision processes to 
prioritize options that lead to higher satisfactions or lower uncertainties. Here, we describe 
the results for two metiers (OTB – NEP&PLE and PUL – SOL&PLE) in detail while results for the 
others are in the Appendix C. Table V-A7 summarizes the expected effects of setting the 
weighting of certain satisfaction or uncertainty to one.  
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Table V-A7. Expected effects of increasing a certain weighting of a satisfaction or uncertainty 
to 1. 

Weighting (W) of 
Scenario 
shortcut 

Expected effect 

Existence satisfaction 
(ESAT) 

WESAT=1 Increased savings 

Personal satisfaction 
(PSAT) 

WPSAT=1 Metier continuity (habitual behavior)  

Social satisfaction (SSAT) WSSAT=1 
Increasing savings to earn more than 
peers 

Existence uncertainty 
(EUNC) 

WEUNC=1 
No direct effect, but indirectly by setting 
WSUNC to 0 

Social uncertainty (SUNC) WSUNC=1 Engage in similar metiers than peers 

 

To test the functionality of our defined behavioral motivations, we experimented with setting 
the weightings of satisfactions and uncertainties to the extremes while observing one agent 
of a specific default metier. Observing an OTB – NEP&PLE agent, high WESAT and WSSAT led 
to the expected outcome of higher savings and a faster increase of the respective satisfactions 
as in comparison to the equal scenario (Figure V-A18B&C). Savings were much higher in the 
WSSAT scenario, because SSAT was mostly below the 0.5 threshold triggering deliberation as 
Consumat strategy, which increased the agent’s flexibility in metier choices. The low savings 
in the WPSAT scenario clearly demonstrated the priority of choosing the same metier (OTB – 
NEP&PLE) over improving profit (Figure V-A18A&B). The only available gear to this agent was 
OTB, because the only metiers in his artificial initial memory were OTB – NEP&PLE and OTB – 
PLE. A high WSUNC triggers the alignment of an agent’s metiers choices with his peers, 
however, this effect was limited, because of the constrained metier choices. This might differ 
when agents’ initial memories are based on real-world trip histories, because some OTB 
fishers do occasionally switch to flatfishes giving them more options to choose from. In the 
WEUNC scenario, the agent accumulated high savings resulting in a high ESAT. The reasons 
were twofold, first, WSUNC was set to zero in this scenario meaning that the agent had no 
tendency of choosing similar metiers than his peers. Second, the usually lower SUNC was not 
present leading occasionally to the overall uncertainty being above 0.5, which in turn triggered 
a more complex consumat strategy (imitation) with multiple metier options to choose from. 
Both reasons increased flexibility in the agent’s metier choices and therefore resulted in a 
higher economic efficiency.   
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Figure V-A18. Outcome of the consumat testing for one vessel from the OTB – NEP&PLE 
metier for different scenarios (panels). A shows the daily decision (going/being on a trip or 
staying in port) as percentage per month. B shows the savings per model run (light grey) and 
their mean (black), and C the mean daily satisfactions and uncertainties with the dotted line 
displaying the threshold for being satisfied and uncertain. The ribbons in B and C represent 
standard deviations. 

Testing an agent from the PUL – SOL&PLE metier, savings and ESAT grew most consistently 
across model runs in the WESAT scenario (Figure V-A19A&B). Except for setting WPSAT to one, 
all other scenarios led to similar high savings, although the variation across model runs was 
large with some resulting in not going fishing throughout most of the year leading to 
continuously decreasing savings. The reason for that was that most satisfactions and 
uncertainties require either a threshold to be surpassed or choosing a certain metier in order 
to increase. If the metier options available are not predicted to surpass profits from peers (for 
SSAT) or the right metier is not among them (for PSAT and SUNC), the agent will predict no 
improvements for the sum of gain in satisfaction and loss in uncertainty, meaning the agent 
would stay in the port. Setting WPSAT to one restricted the flexibility of choosing different 
metiers, because the agent’s only way to increase his overall satisfaction was to choose the 
same metier (PUL – SOL&PLE) again. With having WSUNC above zero, the agent engaged in 
similar metiers than his peers, i.e. PUL – PLE&SOL, and TBB – SOL&PLE. The effect of setting 
the WEUNC to one negated that effect, because WSUNC is zero in that scenario, meaning that 
the agent had more consistent metier choices. In some occasions, the agent’s satisfaction was 
below or the uncertainty above 0.5 meaning that the agent switched his consumat strategy. 
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This gave the agent more metier options to choose from leading to a more diverse metier 
engagement (e.g. in November and December of the Equal, WSSAT, or the WEUNC scenario). 

Figure V-A19. Outcome of the consumat testing for one vessel from the PUL – SOL&PLE metier 
for different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 

Generally, setting the weighting of a parameter to one led to maximizing the respective 
satisfaction confirming our general expectations (Table V-A7), although the effects were often 
blurred due to the complexity of the Consumat approach. Increasing a weighting did not only 
raise the incentive for maximizing the respective satisfaction (or reducing the respective 
uncertainty), but also led to the choice of different Consumat strategy. Those strategies offer 
varying numbers of metiers to choose from and therefore determine the agent’s flexibility to 
engage into different. The effect of varying flexibility had a strong influence on economic 
efficiency.  

Metier engagements were mostly influenced for agents with more available choices of 
metiers, such as those catching primarily the flatfish plaice and sole. In our model agents 
catching flatfish may choose either electric pulse (PUL) or beam trawls (TBB) and have 
sufficient quotas to switch between catching predominantly plaice (PLE&SOL) or sole 
(SOL&PLE) or even to common shrimp (CSH), which does not require any quota but uses the 
same fishing gears. Therefore, metier choices were most varied with agents engaged in flatfish 
metiers such as PUL – SOL&PLE. In addition, metier choices were most varied when WPSAT 
was high or WSUNC was low. 

5. Model output verification 

To validate our model, we performed 50 simulations of German southern North Sea fisheries 
using the base year scenario (see Parameterization). We then compared the 1.5 inter-quartile 
range (IQR) of model outputs on different aggregations, i.e. total, monthly, per vessel, per trip 
(x-axes in Figure V-A20A) and per grid cells (x-axes in Figure V-A20B), to observed values from 
2012 to 2018. In case of the model results, each simulation (n = 50) and in case of the observed 
every year (n = 7) served as sample point. Some model outputs were recorded on a trip basis 
(i.e. Trip days, Fishing time, Steaming time in Figure V-A20A), whereas others were resolved 
on species level (i.e. Landing weight and Revenue in Figure V-A20B). In general, we calculated 
sums for the aggregation levels with the exception of Trip length and Steaming time per grid 
cell for which we calculated medians. When comparing landing weights and revenues per 
species, we selected only relevant species for the respective metier, e.g. plaice and sole for 
TBB – PLE&SOL. We considered a simulation output as a good fit, if the 1.5 IQRs of the 
modelled and observed values overlapped and calculated the percentage of data points with 
overlapping intervals. In case outputs were aggregated for the entire model run (i.e. as on the 
total aggregation), this percentage was either 0 or 100, meaning the interval either overlapped 
or it didn’t, whereas it was more varied for all other aggregations. 

On average, our model produced outcomes for fishing time, steaming time, and trip length 
that matched their historical counterparts best on the micro pattern of individual trips and 
the macro pattern of total aggregates (Figure V-A20A). The quality improved from vessel to 
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monthly and was best for the total aggregation showing that simulations of individual agents 
reflected only marginally the reality of these vessels but results on higher aggregations were 
reliable. In the model, the three trip variables are closely interlinked, because fishing time is 
the difference between trip length and steaming time. On single trip level, all variables had an 
excellent match for all metiers, confirming sensible estimations of steaming times and 
correlation between steaming and fishing time. The good match of trip length on trip level 
was expected, because they are derived from the trip data base and are not an emergent 
property of the simulation, but confirms the code functionality.  

Modeled steaming time for TBB – CSH did not match well with observed values (Figure V-
A20A), because steaming times per fishing trip were slightly overestimated for TBB metiers 
(Figure V-E3). In case of TBB – CSH this error adds up leading to a mismatch of total aggregated 
steaming times, because it is also the metier with the most fishing trips. We derived steaming 
speeds from the trip data base per fishing gear resulting in low speeds for the TBB gear in 
comparison to the PUL gear (Steaming speed and time). Interestingly these two gears can 
interchangeably be used by the same vessels and target assemblages and therefore should 
result in similar steaming speeds. Therefore, TBB steaming speeds are likely underestimated 
in FISHCODE.  
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Figure V-A20. The percentage of data points with overlapping 1.5 times inter-quartile ranges 
(IQR1.5) between modelled and observed non-spatial (A) and spatial (B) variables. Colors and 
numbers correspond to the percentage of overlaps across different aggregations (columns) 
and metiers (rows).  

With regard to spatial results, matches on coarse were better than on fine grid resolutions, 
meaning that the precision of simulated spatial fishing effort was more reliable if aggregated 
to coarse grid cells (Figure V-A20B). On average, percentages of matching coarse grid cells 
were in an acceptable range (above 60%), whereas fine grid cells matched about 10% worse. 
The total distribution of fishing time matched slightly better than the relative distribution of 
fishing effort, despite the fact that we used the latter for the model parameterization. This 
validates that in addition to spatial fishing hotspots, the model simulated fishing effort in a 
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reasonable range. The good matching of median steaming time per grid cell validated 
assumptions for calculating steaming times and distances from ports to fishing grounds. Both 
the simulated and observed distribution of spatial fishing effort followed a decreasing trend 
from coast to offshore with some hotspots in the offshore areas (Figure V-A21A&C). These 
hotspots show a more refined pattern in the observed distribution, because the simulated 
fine-scale movements per fishing trips are the result of random paths (levy flights). A 
comparison of standard deviations (SD) shows that SDs scale with total fishing effort, but were 
larger in coastal grid cells among historical years than they were among model runs (Figure V-
A21B&D).  

Addition graphs for of validation can be found in Appendix E. 

 

 

Figure V-A21. The averaged fine (A) and course (C) distribution, as well as fine (B) and course 
(D) standard deviation of fishing effort across validation model runs (modeled) and seven 
years of data (observed).  
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6. Sensitivity Analysis 

6.1 Morris screening 

To test the sensitivity of model parameters we used a Morris screening, which is an efficient 
way to test the sensitivity of large parameter spaces (Morris, 1991). Morris screening is based 
on the much simpler method of changing parameters one at a time (OAT) and involves many 
OAT procedures on different levels. For each tested parameter, the number of starting points, 
the total levels of changing each parameter and the number of levels changed (called grid 
jump) need to be defined. From the results, elementary effects (EE) can be calculated for each 
change and subsequently the parameters 𝜎 and 𝜇∗ derived, the former informing about the 
type of effect of the tested parameter and the latter about the strength of its influence 
(Campolongo et al., 2007). Furthermore, the ratio of 𝜎 and 𝜇∗ informs about whether 
parameter effects were almost linear (< 0.1), monotinic (< 0.5), almost monotonic (< 1) and 
non-linear and/or non-monotonic or interactions with other parameters (> 1) (Garcia Sanchez 
et al., 2014). In total, we tested the sensitivity of 13 model parameters on eight model 
outcomes (Figure V-A22). We set the starting points to 30, the levels to 11, and the grid jump 
value to five. We simulated the base year (see Parameterization) and included two vessels per 
metier. In order to test sensitivity on landing compositions, fishing effort, and spatial 
dynamics, we recorded the accumulated landings of plaice, sole, Nephrops, and common 
shrimp, the number of trip days, the total number of trips, as well as the mean longitudes and 
latitudes of fishing trips at the end of each simulation. All analyses were made in R with the 
nlrx package (R Core Team, 2023; Salecker et al., 2019). 

The sensitivity analysis showed that almost all tested model parameters affected model 
outcomes in a complex way, meaning that the effects were non-linear and/or non-monotonic 
(Figure V-A22). The only factor with a less complex and almost monotonic effect on fishing 
trips and CSH catches was probability needing repair, which was expected because it 
represents a probability for vessels to be incapable of fishing for two days after an they 
returned from a fishing trip. It affected CSH catches stronger than other catches (Figure V-
A23), because CSH fishers have the shortest and most fishing trips and therefore have a higher 
chance for vessels needing maintenance. The parameter fish recovery and international vessel 
multiplicator had a strong effect on catches of all species, the first regulating the recovery of 
marine resources and the latter the number of international fishing vessels. Of the weightings 
(W) for satisfactions and uncertainties, personal satisfaction (PSAT) and social satisfaction 
(SSAT) had the strongest impact, followed by social uncertainty (SUNC), existence uncertainty 
(EUNC), and existence satisfactions (ESAT). Economic parameters, i.e. aspired savings and 
monthly expanses, and those adding stochasticity to the model, i.e. perceiving error and CPUE 
uncertainty, had the weakest effects.  
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Figure V-A22. Results of the morris screening  showing the type of effect from model 
parameters on groups of model outcomes. Panels represent groups of the model outcomes 
used to test sensitivies. Error bars represent minimum and maximum values in the respective 
group. Red dashed lines represent areas for almost linear (< 0.1), monotinic (< 0.5), almost 
monotonic (< 1) and non-linear and/or non-monotonic or interactions with other parameters 
(> 1) (Garcia Sanchez et al., 2014). 
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Figure V-A23. Results of the morris screening. Colors refer to the model parameters and 
panels the to the model outcomes. Y-axis show the absolute mean effect of a model 
parameter, while the x-axis shows the type effect.  
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Appendix B - Details trip data base 

Details on Percentile Filters Applied to the Trip Data Base  

 

 

 

Figure V-B1. Fishing trip durations per metier. Red dotted lines show the 1st and 99th 
percentiles. Trips outside of this interval were considered erroneous and removed. 
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Figure V-B2. Relative shares of fishing time per trip and per metier. The red dotted line 
represents threshold (0.2), below which we removed fishing trips from the trip data base. 
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Figure V-B3. Catches per unit effort (LPUE; tons per trip day) per metiér of the 10 most 
abundant species caught species. Data points outside of the blue bars were removed either 
because of the 2.5th to the 97.5th percentile filters or being above 400 kg/h (red dashed lines). 
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Figure V-B4. Values per unit effort (VPUE; 1000€ per trip day) per metier of the most abundant 
caught species. Data points outside of the blue bars were removed because of the 2.5th to the 
97.5th  percentile filters. 
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Appendix C – Details verification of behavioral drivers 

Additional Implementation Verification Results  

 

 

Figure V-C1. Outcome of the Consumat testing for one vessel from the OTB – PLE metier for 
different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 
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Figure V-C2. Outcome of the Consumat testing for one vessel from the PUL – PLE&SOL metier 
for different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 
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Figure V-C3. Outcome of the Consumat testing for one vessel from the TBB – CSH metier for 
different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 
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Figure V-C4. Outcome of the Consumat testing for one vessel from the TBB – PLE&SOL metier 
for different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 
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Figure V-C5. Outcome of the Consumat testing for one vessel from the TBB – SOL&PLE metier 
for different scenarios (panels). A shows the daily decision (going/being on a trip or staying in 
port) as percentage per month. B shows the savings per model run (light grey) and their mean 
(black), and C the mean daily satisfactions and uncertainties with the dotted line displaying 
the threshold for being satisfied and uncertain. The ribbons in B and C represent standard 
deviations. 
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Appendix D – Details POM 

Pattern-Oriented Modelling Results  

 

 

Figure V-D1. Outcome from the final step of the pattern-oriented modelling comparing 
modelled monthly trip days (blue) to observed ones (dashed black) per metier. Both lines 
represent monthly means across model runs (n = 10) and observed years (n = 7). 

 

Figure V-D2. Outcome from the final step of the pattern-oriented modelling comparing 
modelled catches (blue) to observed ones (dashed black) per metier. Both lines represent 
monthly means across model runs (n = 10) and observed years (n = 7). 
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Figure V-D3. Outcome from the final step of the pattern-oriented modelling comparing 
modelled and observed relative fishing effort for the PUL/TBB – SOL&PLE metier group. Values 
per patch represent monthly means across model runs (n = 10) and observed years (n = 7). 

 

 

 

Figure V-D4. Outcome from the final step of the pattern-oriented modelling comparing 
modelled and observed relative fishing effort for the PUL/TBB – PLE&SOL metier group. Values 
per patch represent monthly means across model runs (n = 10) and observed years (n = 7). 
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Figure V-D5. Outcome from the final step of the pattern-oriented modelling comparing 
modelled and observed relative fishing effort for the OTB – NEP&PLE metier. Values per patch 
represent monthly means across model runs (n = 10) and observed years (n = 7). 

 

 

 

Figure V-D6. Outcome from the final step of the pattern-oriented modelling comparing 
modelled and observed relative fishing effort for the OTB – PLE metier. Values per patch 
represent monthly means across model runs (n = 10) and observed years (n = 7). 
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Figure V-D7. Outcome from the final step of the pattern-oriented modelling comparing 
modelled and observed relative fishing effort for the PUL/TBB metier group. Values per patch 
represent monthly means across model runs (n = 10) and observed years (n = 7). 

  



Appendix E – Details output verification 

 284  

Appendix E – Details output verification 

Additional Validation Plots  

 

 

Figure V-E1. The percentage of data points with overlapping 1.5 times inter-quartile ranges 
(IQR1.5) between modelled and observed non-spatial variables resolved by metier and 
species. Colors and numbers correspond to the percentage of overlaps across different 
aggregations (columns), and metiers and species (rows). 
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Figure V-E2. The percentage of data points with overlapping 1.5 times inter-quartile ranges 
(IQR1.5) between modelled and observed spatial variables resolved by metier and species. 
Colors and numbers correspond to the percentage of overlaps across different aggregations 
(columns), and metiers and species (rows). 
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Figure V-E3. Steaming time per trip. Boxplots represent both distributions across trips and 
sample points (modelled n = 50 model runs; observed n = 7 observed years) 
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Figure V-E4. Landing composition per trip, species, and metier (panels). Boxplots represent 
both distributions across trips and sample points (modelled n = 50 model runs; observed n = 
7 observed years) 
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Figure V-E5. Fishing time per model run, species, and metier. Boxplots represent distribution 
across sample points (modelled n = 50 model runs; observed n = 7 observed years) 
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Figure V-E6. Fishing time per model run, species, metier, and month. Ribbons represent 
standard deviations and lines means across model runs (green) and observed years (blue). 
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Figure V-E7. Fishing time per model run and month. Thin lines represent individual model runs 
(green) and observed years (blue), thick lines averages, and ribbons standard deviations.
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Supplementary Material – Chapter VI 

Testing the waters: explorative scenarios indicate lower fishing activity and profits for the 

North Sea 

Appendix A 

 

 

Figure VI-A1. Cumulative standard error across 50 model runs (on x-axis). Grey lines represent 

permutations of the order of model runs and the black line the average across all 

permutations.   
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Table VI-A1. Total changes in fishing hours, steaming hours, number of trips, profits, and 
fished cells of every scenario in comparison to Base-run. Numbers represent averages across 
all model runs. 

 OWF2030+NTZ OWF2040+NTZ PUL-false Fuel-300% Fuel-600% 

Fishing hours       

10³ h - 2.2 - 3.1 - 9.9 - 114.4 - 219.9 

% - 0.7 - 1 - 3.2 - 37.1 - 71.4 

Steaming hours      

10³ h - 0.2 + 1.1 - 1.7 - 26.8 - 50.2 

% - 0.3 + 1.6 - 2.4 - 38.1 - 71.3 

Number of trips      

# - 46 - 55.9 - 80.2 - 4055.1 - 7523 

% - 0.4 - 0.5 - 0.8 - 38.9 - 72.1 

Profits       

Mill € - 0.5 - 1.5 - 5.9 - 21.1 - 33.5 

% - 1.8 - 5.1 - 20.3 - 72 - 114.6 

Fished cells (average size: 14.56 km²)    

# - 1061.1 - 2010.4 - 1276.6 - 327.6 - 1821.7 

% - 13 - 24.6 - 15.6 - 4 - 22.3 
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Figure VI-A2. Model outcomes per fishing trip and metier for the base run and the five 
scenarios (color coded). A = profits per trip; B = fishing hours per trip; C = steaming hours per 
trip.  
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Figure VI-A3. Simulated landings per unit of effort (LPUE) per metier averaged across fishing 
trips and for the most relevant species, i.e. plaice (PLE), sole (SOL), Nephrops (NEP), and 
common shrimp (CSH). 
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