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Vorsitzende/r der Prüfungskommission: Prof. Dr. Dieter Horns

Datum der Disputation: 16.10.2024

Vorsitzender des
Fach-Promotionsausschusses PHYSIK: Prof. Dr. Markus Drescher

Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang J. Parak

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter



i

Summary

Double parton scattering (DPS) is a mechanism in which two hard parton-level
processes take place in a single hadron-hadron collision. This can yield important
contributions to search processes at the LHC, a prominent channel being like-sign lepton
pair production via the production of two W bosons of equal charge in a double Drell-
Yan process.

The factorization theorems allow to write the DPDs cross-section in terms of
perturbatively computable hard scattering part, and non-perturbative objects called
double parton distributions (DPDs), which contain a lot of new information about
hadron structure at the quantum level, such as correlations between partons in
polarization, color, and momentum.

In this thesis, we describe transverse-momentum dependence in the process of
production of two W bosons in proton-proton collision via double parton scattering.
This requires so-called transverse momentum-dependent double parton distributions
(DTMDs). In the first part of the work, we express DTMDs in the transverse-position
space, Fourier conjugate to the transverse momenta, and discuss their structure and
evolution equations – the renormalization group- and rapidity evolution (Collins-Soper)
equation.

After that, we identify the regions, where perturbative methods can be used to
connect DTMDs to simpler objects, such as collinear double parton distributions
(DPDFs) and single parton distributions (PDFs). These are called the “large-y”, and
“short-distance” regions, and are described in the later part of the work. We describe
the initial conditions for DPDs in both regions and the corresponding form of the
Collins-Soper equation. We analyze the position-space dependence of DTMDs in both
approximations and their corresponding uncertainties due to the perturbative matching
to either DPDFs or PDFs.

Later, we discuss the non-perturbative input required in the computation and
present a scheme needed to i) extrapolate the perturbatively computed approximation of
DPDs to non-perturbative distances, and ii) interpolate between the two approximations
valid in different subregions of the phase space. In the final part, we compute
the contribution to the differential cross-section of the considered process in each
region independently, identify the most important contributions, and discuss their
uncertainties due to the modeling of DTMDs and the rapidity evolution kernels. Finally,
we combine all of the contributions and discuss the final results for the differential cross-
sections.
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Zusammenfassung

Die Doppel-Parton Streuung (Double parton scattering, DPS) ist ein Mechanismus,
bei dem zwei harte Parton-Prozesse in einer einzelnen Hadron-Hadron-Kollision
stattfinden. Dies kann wichtige Beiträge zu Suchprozessen am LHC liefern, Ein
prominentes Beispiel ist die Produktion von Leptonenpaaren durch die Erzeugung von
zwei W -Bosonen mit gleicher Ladung im Doppel Drell-Yan-Prozess.

Die Faktorisierungssätze (Factorization theorems) erlauben es, den Wirkungs-
querschnitt der DPS durch einen perturbativ berechenbaren harten Streuteil und
nicht-perturbative Objekte, sogenannte Doppelpartonverteilungen (Double Parton
Distribution, DPDs), beschreiben. Diese enthalten viele neue Informationen über die
Struktur von Hadronen auf Quantenebene, wie zum Beispiel Korrelationen zwischen
Partonen in Polarisation, Farbe und Impuls.

In dieser Arbeit beschreiben wir die transversale Impulsabhängigkeit bei der
Erzeugung von zweiW -Bosonen in Proton-Proton-Kollisionen durch DPS. Dies erfordert
sogenannte transversale impulsabhängige Doppelpartonverteilungen (transverse momen-
tum dependent double parton distributions, DTMDs). Im ersten Teil der Arbeit
drücken wir die DTMDs im Ortsraum aus, der Fourier-konjugiert zu den transversalen
Impulsen ist, und diskutieren deren Struktur und Skalen Evolution, einschließlich der
Renormierungsgruppen- und Collins-Soper-Gleichung.

Anschließend identifizieren wir die Bereiche, in denen perturbative Methoden
verwendet werden können, um DTMDs durch einfacheren Objekten, wie Kollinearen
Doppelpartonverteilungen (DPDFs) und Partonverteilungen (PDFs), zu beschreiben.
Diese werden als die “large-y” und “short-distance” Bereiche bezeichnet und im
späteren Teil der Arbeit beschrieben. Wir beschreiben die Anfangsbedingungen für
DPDs in beiden Bereichen und die entsprechende Form der Collins-Soper-Gleichung.
Wir analysieren die Abhängigkeit der DTMDs im Ortsraum in beiden “large-y” und
“short-distance” Näherungen und deren entsprechende Unsicherheiten aufgrund der
perturbativen Matching an entweder DPDFs oder PDFs.

Später diskutieren wir den nicht-perturbativen Input, der für die Berechnung
erforderlich ist, und präsentieren ein Schema, das notwendig ist, um i) die perturbativ
berechnete Näherung von DPDs auf nicht-perturbative Distanzen zu extrapolieren, und
ii) zwischen den beiden Näherungen zu interpolieren, die in verschiedenen Teilbereichen
des Phasenraums gültig sind. Im letzten Teil berechnen wir den Beitrag zum
differentiellen Wirkungsquerschnitt des betrachteten Prozesses in beiden “large-y” und
“short-distance” Bereichen. Wir identifizieren die wichtigsten Beiträge und diskutieren
deren Unsicherheiten aufgrund der Modellierung der DTMDs und der Collins-Soper-
Kerne. Schließlich fassen wir alle Beiträge zusammen und diskutieren die Endergebnisse
für die differentiellen Wirkungsquerschnitte.
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Chapter 1

Introduction

Deep inelastic scattering experiments [2], explained by Feynman in the so-called
parton model [3], followed by a more formal description in the language of the
collinear factorization formalism allowed to study of hadrons at the level of their
elementary constituents, now identified with quarks and gluons. Later works allowed
for an all-order QCD description of parton distributions with the help of factorization
theorems and introduced more general objects such as transverse momentum-dependent
parton distributions (TMDs) as well as off-forward parton distributions (GPDs), which
enable more detailed study of internal structure of nucleons [4–11]. Already in the
80’s it was realized that in the appropriate kinematics the multiparton processes
may also be significant [12–18]. In the last years, the theoretical description of
multiparton scattering has been further developed, and a factorization theorem for
a Drell-Yan production of color-neutral states in double-parton scattering has been
established, [19–25]. The study of double-parton distributions is worthwhile for two
main reasons. First, they encode information about the structure of hadrons which
is inaccessible with the help of ordinary single-parton distributions, such as the
correlation between the partons (color, polarization, energy). Moreover, they may
be important in future precision measurements at high energies, in which accounting
for contributions stemming from multiparton interactions might be crucial to minimize
theoretical uncertainties. Already multiple studies of the contribution from double-
parton scattering to various processes have been performed, for example in multijet-
[26–30], and dijtet-processes [31–33], J/ψ production [34–38], four-lepton production
[39,40], BSM searches [41–44], or the like-sign W boson pair production [45–48], which
is the main topic of this work.

The production of like-sign W pair in proton-proton collision has been studied
intensively for many years [49–57]. It is of particular interest, since in this process
the single-parton scattering (SPS) process is suppressed by two orders in strong or
weak coupling with respect to the DPS channel. Moreover, the diagrammatic analysis
shows that the SPS channel involves ≥ 2 jets, as opposed to the DPS, which can occur
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without jets. Finally, it is expected that at the corresponding kinematics, the DPS will
be enhanced compared to the SPS process since at high energies, partons carrying a
small fraction of the proton’s energy are probed – in that region, the densities of partons
become large so that multiple parton processes are more likely to occur. Indeed, in one
of the recent works on this process [48], the CMS Collaboration reported the observation
of the double parton scattering with 6σ confidence level.

In the following part, we give a brief introduction to the theory of double-parton
scattering. In Section 2.1 we present the power-counting argument to explain in what
kind of observables the DPS process has that same power behavior as single parton
scattering (SPS). Furthermore, we argue that in the case of like-sign W boson pair
production, the DPS contribution acquires additional enhancement compared to SPS.
Next, we give the formal definition of double-parton distributions, and discuss the
factorization formalism and the evolution equations in Section 2.3. We present the
cross-section formula and outline the problem of the double-counting between SPS
and DPS in Section 2.4. In Section 2.5 we discuss the most important aspects in the
numerical computation.

In the next chapters we show the regions of the phase-space where one can improve
the description of transverse momentum-dependent double-parton distributions (DT-
MDs) with the help of perturbative methods. In Chapter 3 we focus on the case where
one can apply the operator product expansion in order to relate DTMDs to the collinear
double-parton distributions (DPDFs). In Chapter 4 we examine the regime where all
of the relevant distances are perturbatively small. In both cases we identify the region
of validity for each approximation, present the evolution equations, and discuss the
extrapolation of double-parton distributions.

In Chapter 5 we present the individual contributions to the differential cross-section
of W pair production from the two discussed approximations. We show how these are
combined to form the total result and outline the approach used to estimate prediction
uncertainties, assessing the relative significance of different error sources.

Finally, in Chapter 6, we summarize the work and present the conclusions.



Chapter 2

Double Parton Scattering

2.1 Power-counting for double parton scattering

The starting point of the analysis should be the following question: since in the single
parton case, the factorization formalism depends on neglecting the terms suppressed by
the powers of the hard scale, then is the expected scaling behavior of the double parton
scattering process smaller or larger than those neglected terms?

The analysis at the level of simple power-counting suggests that in the case
of transverse momentum-dependent observables the DPS process can indeed give
contributions that are not negligible compared with SPS. In the following part, we
recapitulate the results obtained in Section 2.4 in [22]. For a process involving the
production of two states characterized by hard scales collectively denoted Q, and
transverse momenta q1,2, the single-parton transverse momentum-dependent differential
cross section can be written as

dσSPS

dxdx̄
∏

i=1,2 d
2qi

= σ̂

∫
d2k

∫
d2k̄ δ(2)

(
q1 + q2 − k− k̄

)
f(x,k)f̄(x̄, k̄) , (2.1)

where the hard-scattering cross-section σ̂ scales like Q−4, and transverse momentum-
dependent single parton distributions (TMDs) f, f̄ scale like Λ−2 each, where Λ is the
scale of non-perturbative interactions. The integration over transverse momenta of the
partons d2k d2k̄ with two-dimensional delta distributions gives scaling a factor of Λ2.
In total, one obtains scaling behavior

dσSPS

dxdx̄
∏

i=1,2 d
2qi

∼ 1

Q4Λ2
. (2.2)

x (x̄) is the longitudinal momentum fraction of the active parton in the right-moving
(left-moving) hadron.

4



Power-counting for double parton scattering 5

In the case of double-parton scattering, one can write

dσDPS∏
i=1,2 dxidx̄id

2qi

=

σ̂1σ̂2

( ∏
j=1,2

∫
d2kj

∫
d2k̄j δ

(2)
(
qj − kj − k̄j

)) ∫
d2y F (xi,ki,y)F̄ (x̄i, k̄i,y) . (2.3)

Double-parton distributions (DPDs), denoted as F and F̄ , scale like Λ−2. Integration
over the transverse distance between partons 1 and 2, denoted as y, gives scaling Λ2,
and each hard scattering cross-section σ̂1,2 scales like Q−2. In total

dσDPS∏
i=1,2 dxidx̄id

2qi

∼ 1

Q4Λ2
, (2.4)

which is the same power behavior as the SPS. The formal definition of the DPDs will
be given in Section 2.3. However, when integrating over the transverse momenta one
has the following phase-space bounds:

|q1 + q2| ∼ Λ , |q1,2| ≳ Q for SPS, (2.5)

|q1,2| ∼ Λ for DPS . (2.6)

In double-parton scattering, each transverse momentum qi is the sum of the parton
momenta, hence it is bound by the soft scales. However, for SPS the sum of the
transverse momenta of the active partons is q1 +q2, so only this combination is bound
in the latter case, while the individual momentum can be as large as the hard scale. It
implies that integration over the transverse momenta gives a different power behavior
in these two cases: ∫

d2q1 d
2q1 → Q2Λ2 for SPS, (2.7)∫

d2q1 d
2q1 → Λ4 for DPS. (2.8)

This means that the cross sections integrated over transverse momenta have different
scaling behavior:

dσSPS

dxdx̄
∼ 1

Q2
,

dσDPS∏
i=1,2 dxidx̄i

∼ Λ2

Q4
. (2.9)

It implies that the double-parton scattering should be best visible in observables that
depend on the transverse momentum of the produced states. In the following part of
this work, we will study a single class of such processes.
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2.2 Like-sign W boson pair production

In the previous part it was argued that for observables differential with respect to
transverse momenta of produced particles, the DPS channel has the same power-law
scaling as SPS. However, one still can expect that in many cases the SPS dominates
over the multiparton scattering, so the experimental observation of the double parton
scattering will still be a difficult task. Here we will discuss an example of a process,
in which the double parton scattering acquires an additional advantage over the single
parton case, and which will serve as an important motivation for the presented study.

Let us consider a process of production of two like-signW bosons in a proton-proton
collision:

pp −→ W±W± +X . (2.10)

X denotes unobserved hadronic states that are summed over. W bosons decay into
leptons and neutrinos. Examples of the leading-order diagrams for single- and double-
parton scattering channels at the parton level for this process are shown in Fig. 2.1.

Figure 2.1: Single- and double Drell-Yan production of W±W± pair.

Remarkably, the SPS channel is suppressed in coupling by α2
S, and involves two

parton lines that cross the cut, which means the emission of at least 2 jets in this
channel. Therefore, by considering the processes with ≤ 1 jets one can study the
double-parton scattering.

2.3 Double-parton distributions

In this Section, we give a brief overview of the theory of double-parton scattering,
introduce the operator definitions of double-parton distributions depending on the
parton polarizations and color representations. We recall the most important points in
the derivation of factorization theorems for DPS, and show the evolution equation of
DPDs.

Parton distributions are commonly studied using the lightcone coordinates, sometimes
referred to as the Sudakov frame, cf. Appendix B of [10], in which the four-vectors are
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x̄1

x1

x̄2

x2

Figure 2.2: Leading-order graph representing the W boson pair production via double
parton scattering (DPS).

decomposed using two light-cone coordinates

v± =
1√
2

(
v0 ± v3

)
, (2.11)

and the transverse components v. In this setting, the momentum of a right-moving
proton is approximated by

pµ = (p+, 0,0) , (2.12)

where we neglect the transverse momentum p, and the proton mass.

2.3.1 Tree-level analysis

Before giving the all-orders definition of double-parton distributions, let us explain
how they appear at the lowest order of perturbation theory, and describe briefly each
component that appears at higher orders. The leading-order diagram for the process of
W boson pair via the double parton scattering (DPS) is presented in Fig. 2.2. Instead of
using parton distributions in the transverse momentum space as in Eq. (2.3), it is more
convenient to express the differential cross-section in terms of DPDs in the transverse
position space:

dσDPS∏
i=1,2 dxidx̄id

2qi

=
∑

a1,a2,b1,b2

Ha1b1Ha2b2

∫
d2z1
(2π)2

e−iq1z1

∫
d2z2
(2π)2

e−iq2z2

∫
d2y F r1r2

a1a2

(
xi, zi,y

)
F̄

r1r2
b1b2

(
x̄i, zi,y,

)
. (2.13)

H is the perturbatively computed hard part. ai, bi denotes parton species (at LO only
quarks). ri denotes a pair of color indices:

ri = ri, r
′
i . (2.14)
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Double parton distributions are denoted as F . Both the hard partH, and F carry spinor
indices, which are summed over – this is done using the usual Fierz decomposition, and
for simplicity, we suppress the spinor indices in the presented formula. At leading-order,
quark DTMDs F are given by the matrix elements:

F r1r2
a1a2

(
xi,y, zi

)
= 2p+

∫
dy−

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

⟨p|
(
q̄a1,r1(y − z1/2)qa1,r′1(y + z1/2)

)(
q̄a2,r2(−z2/2)qa2,r′2(z2/2)

)
|p⟩
∣∣∣
y+=z+1 =z+2 =0

.

(2.15)

As noted in various works [22, 54, 58], there exist also so-called ‘interference’ DPDs,
which describe the interference in fermion number and quark flavor. They are expected
to be negligible at small x, as explained in Section 2.5 in [22], and will not be considered
in this work. Using the Fierz decomposition one obtains parton distributions for definite
parton polarizations:

Γq =
1

2
γ+ unpolarized,

Γ∆q =
1

2
γ+γ5 longitudinally polarized,

Γj
δq =

1

2
iσ+jγ5 transversally polarized,

(2.16)

for quarks. For antiquarks one has Γ∆q̄ = −Γ∆q; for two remaining polarizations the
matrices are identical.

2.3.2 All-order description

At higher orders, apart from the perturbative corrections to the hard parton scattering,
one has two kinds of interactions that do not introduce power-suppression:

� Longitudinally polarized gluons with momenta collinear to the incoming/outgoing
partons connecting the collinear and the hard part.

� Soft gluons connecting the collinear parts.

The most general form of a leading-power diagram representing the process of
production of 2 bosons via DPS is presented in Fig. 2.3. The factorization theorem
states that the effects of collinear and soft gluons decouple, and are independent of the
hard part. Let us shortly recall, how the factorization is established.
Let Q denote the hard scale, and Λ is the typical scale of non-perturbative interactions.
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S
H1

H2 H2

H1

Figure 2.3: General leading-power graph representing the double-parton scattering.
Each parton, represented by straight red and blue lines, enters the corresponding hard
part Hi. An arbitrary number of collinear, longitudinally polarized gluons may connect
the hadronic part (green blob) with the hard parts. Moreover, both hadronic parts
can exchange an arbitrary number of soft gluons. Definitions of the collinear and soft
momenta are given in Eq. (2.17).

Using the lightcone coordinates vµ = (v+, v−,v) we define

• All components of orderQ =⇒ hard momenta.

• (Q,Λ2/Q,Λ) =⇒ collinear, right-moving.

• (Λ2/Q,Q,Λ) =⇒ collinear, left-moving.

• Components of order Λ or Λ2/Q. =⇒ soft.

(2.17)

The insertion of collinear longitudinally polarized gluons into the hard parts leads to
quark fields in the definition of DPDs being multiplied by the Wilson lines. Take a
fixed hard diagram H without the insertion of collinear gluons. Consider all of the
attachments of n collinear, longitudinally polarized gluons to such a diagram.
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Figure 2.4: Graphical representation of the application of Slavnov-Taylor identities to
decouple the collinear gluons from the inside of the hard part represented by a gray
circle.

Using Slavnov-Taylor identities one can show that the sum over all attachments
of the collinear gluons to the hard part gives the original hard part H with gluons
attached to the quark line before it enters H, as shown schematically in Fig. 2.4.
Using the Grammer-Yennie approximation one applies the following replacements for
the coupling and quark propagators:

− igtaγµ −→ −gtavµ , (2.18)

i

γ · k + i0
−→ i

v · k + i0
, (2.19)

This allows to resum the effects of the soft- and collinear gluons into so-called Wilson
lines, which in the case of gluons attached to the quark lines, are given by

W
(
b, v
)
= P exp

[
igta

∫ 0

−∞
ds v · Aa(b+ sv)

]
. (2.20)

P denotes the standard path-ordering, so that fields Aa(b+ sv) with larger values of s
stand further to the right in the expanded exponential. We take different vectors vL, vR
for right- and left-moving hadrons:

v−L ≫ v+L > 0 , v+R ≫ v−R > 0 . (2.21)

Rapidity of the vector is defined as

Y =
1

2
log
∣∣∣v+
v−

∣∣∣ (2.22)

It turns out that for transverse-momentum dependent factorization one cannot take
vanishing +/− components for vectors vL/R making them lightlike, since infinite
rapidites would lead to ill-defined objects at the intermediate steps of the computation.
In the later part, we will discuss how to apply the appropriate subtractions and express
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the observables in terms of quantities that are well-defined in the limit of infinite
rapidities. For right/left-moving hadron one takes vL/R such that the corresponding
rapidity YL/R:

YL ≪ 0 , YR ≫ 0 . (2.23)

The effects of the soft gluon exchanged between the hadrons, shown in Fig. 2.3 in orange,
can be expressed in terms of the soft factor S multiplying double parton distributions,
which is shown in the same way as in the case of collinear gluons, that is by using
Slavnov-Taylor identities and the Grammer-Yennie approximation one proves that the
effect of the exchange of the soft gluons is expressed in terms of the so-called soft factor
multiplying DPDs in the cross-section formula. In the so-called Glauber region, where
the gluon momenta (k+, k−,k) are such that

|k| ∼ Λ≫ |k+|, |k−| ∼ Λ2/Q , (2.24)

one can see that in this region the Grammer-Yennie approximation breaks down. The
crucial point in the proof of factorization is to show that in this region the gluons do
not contribute at the leading power, as was shown in the case of the production of
color-less states in [23].

The soft factor is defined as a vacuum expectation value of a product of Wilson
lines. For processes involving two quarks, it is given by[

Sqq

]
r1r′1,r2r

′
2,r3r

′
3,r4r

′
4
(zi,y; vL, vR)

= ⟨0|
[
OS,q(y, z1; vL, vR)

]
r1r′1,r3r

′
3

[
OS,q(0, z2; vL, vR)

]
r2r′2,r4r

′
4
|0⟩ . (2.25)

where[
OS,q(y, z; vL, vR)

]
r1r′1,r3r

′
3

=
[
W (y + 1

2
z; vL)W

†(y + 1
2
z; vR)

]
r1r3

[
W (y − 1

2
z; vL)W

†(y − 1
2
z; vR)

]
r′1r

′
3
. (2.26)

For antiquarks instead of quarks, one replaces the corresponding Wij with W †
ji. Soft

factors for processes involving gluons, as well as the symmetry properties of S can be
found for example in Section 3.2 in [56].

Subtraction of soft gluons

The collinear gluons, represented by red and blue lines in Fig. 2.3, are resummed into
the Wilson lines multiplying the parton fields appearing in the definitions of parton
distributions. As will be discussed shortly, since the Wilson lines include also the
gluons with soft momenta, relevant to the soft factor, a consistent definition requires
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subtraction of these soft gluons from the matrix elements of parton fields and Wilson
lines. For now, let us focus on the unsubtracted DPDs, defined as

F r1r2
us,a1a2

(
xi, zi,y; vL) = 2p+(x1p)

−n1(x2p)
−n2

∫
dy−

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

⟨p| Or1
a1

(
y, z1; vL)Or2

a2

(
0, z2; vL) |p⟩ , (2.27)

where ni = 1 if parton ‘ai’ is a gluon, and 0 otherwise. For parton ‘a’ being quark, the
operator O is defined by

Or
a(y, z; vL) = q̄s′

(
y − 1

2
z
)
W †

s′r′

(
y − 1

2
z; vL

)
ΓaWrs

(
y + 1

2
z; vL

)
qs
(
y + 1

2
z
)
. (2.28)

For antiquarks one exchanges the position arguments y+ 1
2
z and y− 1

2
z, multiplies by

−1, and uses spin projection matrices for antiquarks, as discussed below of Eq. (2.16).
Summation over color indices s, s′ is assumed. Definitions for the gluon DPDs can be
found in Section 3.1 in [56].

Since the Wilson lines appearing in the definitions above include all collinear gluon
momenta, they lead to a double-counting with the soft gluons – the quark DPDs with
the soft gluons subtracted are given by

Fsub = S−1Fus , (2.29)

so that in the differential cross-section one has the following product of the unsubtracted
DPDs and soft factors:

F T
us(vR)S

−1
qq (vL, vR)Sqq(vL, vR)S

−1
qq (vL, vR)Fus(vL) . (2.30)

The transposition in the first term pertains to the color indices. Lorentz invariance
implies that the soft factors depend on the vectors vL, vR only via the difference of
rapidities YL − YR:

S(vL, vR) = S(YR − YL) . (2.31)

According to Section 3.2 in [56], one postulates the existence of a nonsingular matrix
s(Y ) in color space such that

� It fulfills the equation

∂

∂Y
s(Y ) = s(Y )K , K = K†, K is Y -independent , (2.32)

� One can write the soft factor S as:

S(Y ) = s(Y − Y0)s†(Y0) , for Y ≫ 1 and arbitrary Y0 . (2.33)
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r1 r2 r′1r′2

Figure 2.5: Color indices of DPDs. Projecting on definite representations in the t-
channel one contracts indices ri with their conjugate partners r′i on the right side of the
cut. In the s-channel, one contracts indices (r1, r2) and (r′1, r

′
2) on each side of the cut.

Using the second property, one can write the product of soft factors in Eq. (2.30) as

S−1
qq (vL, vR)Sqq(vL, vR)S

−1
qq (vL, vR) = s† −1(YR − YC)s−1(YC − YL)

for YL ≪ YC ≪ YR . (2.34)

There exists a theoretical support for existence of s, see [24], however, a general proof
does not exist. That allows to define DPDs as the limits of |YL/R| → ∞:

Fa1a2(YC) = lim
YL→−∞

s−1
a1a2

(YC − YL)Fus,a1a2(YL) ,

F̄b1b2(YC) = lim
YR→∞

s−1
b1b2

(YR − YC)F̄us,b1b2(YR) . (2.35)

2.3.3 Projecting on definite color representation

In the remaining part of the work we shall work with DTMDs in a definite color
representation. Notice that for DPD with free indices F r1r′1r2r

′
2 one can either project

with respect to the pairs (r1r
′
1), (r2, r2), or (r1, r2), (r

′
1, r

′
2), see Fig. 2.5. The first

decomposition, referred to as the ”t-channel” allows to decouple color channels under
RGE evolutions, and therefore will be used in this work. The decomposition in the
”t-channel” is

3⊗ 3̄ = 1⊕ 8 quark-antiquark ,

8⊗ 8 = 1⊕ A⊕ S ⊕ 10⊕ 1̄0⊕ 27 gluon-gluon .
(2.36)

In the second decomposition, called the ”s-channel”, one couples the color indices on
the left- and right-side of the cut, (r1, r2), (r

′
1, r

′
2) respectively. Before renormalization,

the collinear DPDs (DPDFs) in this representation can be interpreted as probability
densities [58]. The application of this representation will become apparent in Section
3.3, and a more detailed description is provided in App. A. Let us denote the color
representation of parton i by Ri. DTMDs decomposed in the t-channel are given by

R1R2Fa1a2 = εa1(R1)εa2(R2)
1

Na1Na2

1√
m(R1)

P
s1s2
R1R2

F s1s2
a1a2

, (2.37)
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where

Nq = Nq̄ =
√
N , Ng =

√
N2 − 1 , (2.38)

εai =

{
i if Ri = A ,

1 otherwise
. (2.39)

N = 3 is the number of colors, and m(R) is the multiplicity of R. We notice that
non-vanishing terms must have m(R1) = m(R2). The color projectors P

s1s2
R1R2

are given
in App. A.
One can also project the operators defining DPDs on the definite representation:

ROr
a = εa(R)Na P

rs
R Os

a . (2.40)

In the later part, it will useful to define the operators integrated over the distances:

ROa(x, z,y; vL) = 2p+
(
xp+

)−n
∫
dz−

2π

∫
dy−eixz

−p+ROa(y, z; vL) . (2.41)

Unsubtracted DTMDs are then given by

2πδ(p+ − p′+) 2p+ R1R2Fus,a1a2

(
zi, zi,y; vL)

= ⟨p′| R1Oa1(x1, z1,y; vL)
R2Oa2(x2, z2,0; vL) |p⟩

∣∣∣
|p|=|p′|=0

. (2.42)

The corresponding collinear DPDF is obtained by setting zi to 0.

2.3.4 Evolution equations of DTMDs

After discussion of the soft gluon subtraction, which led to the definition of DTMDs in
the limit of lightlike vectors vL/R appearing in the Wilson lines, we are ready to present
the evolution equation of DTMDs.

In the case of the rapidity dependence, it will be more convenient to introduce the
rapidity parameter ζ for the left- and ζ̄ for the right-moving hadron:

ζ = 2(p+)2 e−2YC , ζ̄ = 2(p̄−)2 e2YC . (2.43)

Notice that the product of these two rapidity parameters is equal to the center-of-mass-
system energy squared

ζζ̄ = 4
(
p+p̄−

)2
= s2 . (2.44)

From Eq. (2.32) we get that

d

dYC
Fa1a2(xi, zi,y;µi, YC) = −Ka1a2(zi,y;µi)Fa1a2(xi, zi,y;µi, YC)(YC) , (2.45)
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where the kernel Ka1a2 depends on the type of partons ai, but not on quark (antiquark)
flavor. Using the relation d/dYC = −2d/d log ζ, we get the rapidity evolution equation
of DTMD:

d

d log ζ
Fa1a2(ζ) =

1

2
Ka1a2Fa1a2(ζ) . (2.46)

The Collins-Soper kernel Ka1a2 obeys the RGE equation

d

d log µi

Ka1a2(zi,y;µ1, µ2) = −γK,ai(µi) I . (2.47)

I is a unit matrix in color space, and the cusp-anomalous dimension γK,a(µi) is rapidity-
independent.
Projecting on definite representations, we can rewrite Eq. (2.46) as:

d

d log ζ
R1R2Fa1a2 =

1

2

∑
R′

1R
′
2

R1R2,R̄′
1R̄

′
2Ka1a2

R′
1R

′
2Fa1a2 , (2.48)

The solution of Eq. (2.48) is

R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
=
∑
R′

1R
′
2

R1R2,R̄′
1R̄

′
2

[
exp

(
1
2
Ka1a2

(
zi,y;µi) log

ζ

ζ0

)]
× R′

1R
′
2Fa1a2

(
xi, zi,y;µi, ζ0

)
,

(2.49)

where R1R2,R̄′
1R̄

′
2

[
exp(...)

]
is the exponentiated matrix.

Subtracted DTMDs are renormalized multiplicatively:

Fa1a2

(
µ1, µ2, YC

)
= ZF,a1(µ1, YC , x1p

+)ZF,a2(µ2, YC , x2p
+)FB,a1a2(YC) , (2.50)

where renormalization constants ZF are independent of the polarization and color
representation, but they are different for quarks and gluons. They are given in Section
3.4 in [56]. The renormalization group equation of DTMDs reads

d

d log µi

R1R2Fa1a2

(
xi, zi,y;µ1, µ2, ζ

)
= γF (µi, x

2
i ζ)

R1R2Fa1a2

(
xi, zi,y;µ1, µ2, ζ

)
, (2.51)

where the anomalous dimension γF does not depend on the color representation or
parton polarization. It is given by

γF,ai(µi, x
2
i ζ) = γai(µi)− γK,ai(µi) log

xi
√
ζ

µi

. (2.52)

The kernel γK,a is defined in Eq. (2.47), and

γai(µi) = γF,ai(µi, µ
2
i ) . (2.53)
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The solution of the RGE reads

R1R2Fa1a2

(
xi, zi,y;µ1, µ2, ζ

)
= exp

(
Sq

(
µ01, µ1, x1

√
ζ
))
× R1R2Fa1a2

(
xi, zi,y;µ01, µ2, ζ

)
, (2.54)

where

exp
(
Sa1

(
µ01, µ1, x1

√
ζ
))

= exp

(∫ µ1

µ01

dµ

µ

(
γa1(µ)− γK,a1 log

x1
√
ζ

µ

))
, (2.55)

analogously for the second scale µ2. The exponential in Eq. (2.54) is often called the
Sudakov factor.

2.3.5 The case of collinear double parton distributions

This work deals mostly with transverse-momentum dependence, but for completeness
let us also briefly discuss the evolution of collinear double parton distributions (DPDFs).

Also in that case one needs to subtract the double-counted soft gluons, as this was
done previously for transverse momentum-dependent DPDs, but here the corresponding
soft factor turns out to be diagonal in color representation after projecting on the t-
channel, see Section 2.3.3. This allows for a simpler definition of the matrix s:

RRs(Y ) =
√

RRS(2Y ) , (2.56)

which leads to the following definition of subtracted DPDFs:

R1R2F coll.
a1a2

(YC) = lim
YL→−∞

RRs−1(YC − YL)F coll.
us,a1a2

(YL) . (2.57)

The resulting rapidity evolution equation reads

d

d log ζ
R1R2F coll.

a1a2
(xi,y;µ1, µ2, ζ) =

1

2
R1J(µ1, µ2, ζ)F

coll.
a1a2

(xi,y;µ1, µ2, ζ) . (2.58)

The kernel RJ depends only on the dimension of the representation, hence we write
it only with a single color representation index R. The RGE of the rapidity evolution
kernel reads

d

d log µi

RJ(µ1, µ2) = −RγJ(µi) . (2.59)

To all orders, one has
1J = 0 . (2.60)

The solution of the Collins-Soper equation in this case has a simple form:

R1R2F coll.
a1a2

(xi,y;µ1, µ2, ζ) = exp
(

1
2

R1J(y;µi) log
ζ

ζ0

)
× R1R2F coll.

a1a2
(xi,y;µ1, µ2, ζ0) .

(2.61)
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Just as in the case of PDFs, the collinear double-parton distributions are not
renormalized multiplicatively, but by a convolution:

d

d log µ1

R1R2Fa1a2(xi,y;µi, ζ)

= 2
∑
b1,R′

1

R1R̄′
1Pa1b1(x

′
1, µ1, x

2
1ζ)

⊗
x1

R′
1R2Fb1a2(xi,y;µi, ζ) . (2.62)

The color-singlet sector shares the DGLAP kernels with the single parton distributions
[22, 56]. The corresponding kernels have been computed up to N3LO [59–61], and
partial N4LO correction are available [62–65]. On the other hand, the DGLAP kernels
for the color-nonsinglet channels only recently have been computed to NLO [66], and
the DGLAP evolution in these channels was extensively studied in [67].

2.3.6 Modelling of the Collins-Soper kernel

The rapidity evolution kernel RJ relevant in the evolution of DPDFs depends on the
transverse distance y, and in general, is a non-perturbative quantity. It will be modeled
in the same way as Collins-Soper kernels for single parton TMDs, according to the
method developed by Collins, Soper, and Sterman [68]. In this approach, one introduces
a distance-dependent function with the following properties:

b∗(b) ≈ |b| b perturbatively small ,

b∗(b)→ bmax as b→∞ .
(2.63)

In the TMD literature, it is often called the *-prescription. It will be further discussed
in Section 3.2. At small distances, one can compute the perturbative expansion of the
kernel, denoted as RJpt. At arbitrary y one uses the following decomposition:

RJ(y;µi) = RJpt(y∗;µi) + gJ(y) , (2.64)

where gJ(y) is a non-perturbative, scale-independent function. This approach has been
discussed in [56], and applied in the numerical study in [67].

All of the other rapidity evolution kernels depending on only one tranvserse distance
relevant to this work will be modeled in the same way. The extrapolation of the
DTMD kernel R1R2,R3R4Ka1a2 , which depends on 3 transverse distances (z1, z2,y), is
more complicated, and will be discussed in Chapter 4.

2.4 Differential cross-section and double-counting

After introducing the formal definition of double parton distributions, and the
discussion of their scale dependence and color decomposition, let us recapitulate the
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y + 1
2z1

1
2z2 y − 1

2z1− 1
2z2

Figure 2.6: Transverse positions of partons on both sides of the cut.

general form of the cross-section formulas, and discuss the problem of double-counting
between DPS and SPS.

For DTMDs in the transverse-position space, the distance between two partons on
the left/right side of the cut is given by

y± = y ± 1

2
(z1 − z2) , (2.65)

see Fig. 2.6. In the region where one of the distances becomes comparably small as the
inverse of the hard scale Q−1, the process should no longer be described as DPS, but
rather an SPS/DPS interference, where the partons characterized by the small distance
originate from the perturbative splitting of a single parton. Both distances y± ≲ Q−1

correspond to a single-parton scattering process.
Therefore, integration over the whole transverse-position space as in Eq. (2.13)

introduces a double-counting of DPS, SPS, and interference terms. This is avoided
using the Diehl-Gaunt-Schönwald scheme [69]. In that approach, one introduces the
short-distance cut-offs Φ(y±) on transverse distances y± in the integrals defining DPS,
and a single cut-off on either y+ (y−) for the SPS/DPS (DPS/SPS) interference term.
The total SPS+DPS cross-section is then given by:

σ = σDPS +
[
σDPD/SPS − σDPS,y−→0 + σSPS/DPS − σDPS,y+→0

]
+
[
σSPS − σDPD/SPS,y+→0 − σSPD/DPS,y−→0 + σDPS,y±→0

]
. (2.66)

The subscript ‘y± → 0’ denotes taking the limit of the vanishing relevant distance.
Ideally, the dependence on the short-distance cut-off Φ(y±) should be a subleading
effect after including the subtractions. The inclusion of the subtractions, as well as the
DPS/SPS interference, is beyond the scope of this work, and we will focus only on the
DPS part. As will be shown in the following part of the work, for like-sign W pair
production this is the only non-vanishing term at the considered order of perturbative
QCD.
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For transverse-momentum dependent observables we have

dσDPS∏
i=1,2 dxidx̄id

2qi

=
1

C

∑
a1,a2,b1,b2

∑
R1,R2

σ̂a1b1(Q1, µ1) σ̂a2b2(Q2, µ2)

×
∫

d2z1
(2π)2

e−iq1z1

∫
d2z2
(2π)2

e−iq2z2

∫
d2y Φ(y+)Φ(y−)

× R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
R1R2F̄b1b2

(
xi, zi,y;µi, ζ̄

)
. (2.67)

The constant C is equal to 2 if the produced particles are identical, and 1 otherwise.
The hard scattering cross-sections are connected to the functions Hab in Eq. (2.13) by
the relation

σ̂ab =
Hab

NaNb

. (2.68)

The rapidity parameters of the incoming hadrons are such that ζζ̄ = s2, and the RGE
scales µi are taken equal to the hard scales Qi – in this case the mass of W boson. The
typical momenta fractions of the active partons are given by

x ∼ Q√
s
. (2.69)

For Q =MW = 80.377 GeV, and
√
s = 13 TeV, x is about 6× 10−3.

2.5 Numerical set-up

In this section, we briefly describe the software used to obtain the results presented in
the next Chapters. We describe the ChiliPDF framework, which provides us with the
models and evolution of DPDFs and PDFs, and on which we developed the code needed
to model and evolve the transverse momentum-dependent double parton densities, and
compute physical observables.

In 2.5.2 we give an overview of the algorithm for the computation of integrals
involving Bessel functions, which we have developed to compute the double Fourier
transforms appearing in the cross-section formula discussed in the previous part.

2.5.1 ChiliPDF

The code developed to compute DTMDs and the differential cross-section of W pair
production is a part of a C++ library ChiliPDF [70], which already implements the
evolution of PDFs and collinear double parton distributions (DPDFs) [67, 71]. It is
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based on expansion of parton densities and their evolution kernels using Chebyshev
polynomials [72], allowing to discretize the evolution equations.

Single parton distributions (PDFs) used to construct DPDF and DTMD models
used in this work are imported from LHAPDF [73].

2.5.2 Levin’s integration method for Bessel transforms

As indicated in Eq. (2.67), the transverse momentum-dependent differential cross-
section of double-parton scattering involves a double two-dimensional Fourier transform.
As will be shown in the later parts, performing the angular integration in d2zi integrals
allows to rewrite it as a double Hankel transform, also called a Bessel integral:∫ ∞

0

dz Jµ(qz) f(z) , (2.70)

where Jν is a Bessel function of order ν. The precise and time-efficient computation
of the Bessel integrals is a serious issue already at the level of single-parton TMD
[74–76], where only a single integral is involved. Commonly used are quadrature
methods [74–78], which, however, suffer from the necessity of taking the grid points
in transverse-position space depending on the value of transverse momentum, while
re-computing of DTMDs in the position space for each new pair of transverse momenta
(q1, q2) would be extremely costly. There exist methods using grids with fixed points
based on discrete Hankel transform [79,80], but we found them inefficient for the relevant
class of transformed functions.

For this reason, we developed a method of computation of the Bessel integrals which
allows to use the fixed grids in the position space in a wide range of q, and leads to
typically a much faster convergence of the result with an increasing number of grid
points. In the original version of the method presented in the work by D. Levin [81],
one considers the integral∫ zb

za

[
f̃1(z)Jν(qz) + f̃2(z)Jν+1(qz)

]
dz , (2.71)

with functions f̃1,2 which do not oscillate rapidly. First, express (2.71) as a product of
two vectors: ∫ zb

za

ω̃ · f̃ dz , (2.72)

where

ω̃(z, q) =

[
Jν
(
qz
)

Jν+1

(
qz
)] , f̃(z) =

[
f̃1(z)

f̃2(z)

]
. (2.73)

The vector ω̃ has the following property:

d

dz
ω̃ = AT ω̃, (2.74)
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where A is a (z, q)-dependent matrix, which does not exhibit oscillatory behavior. Using
integration by part, it can be shown that if one finds the solution of differential equation( d

dz
+ A

)
h̃ = f̃ , (2.75)

then the original integral is given by the boundary terms∫ zb

za

ω̃ · f̃ dz =
(
ω̃ · h̃

)
(zb)−

(
ω̃ · h̃

)
(za) . (2.76)

By discretizing the differential equation (2.75) on Chebyshev grid, one can construct
its approximate solution using the Chebyshev spectral method. In our work [1], we
modified the original method to allow for precise integration on interval [0,∞] by
appropriately rescaling the vectors ω̃, f̃ and h̃. Details are provided in Section 2 of
the cited work. The algorithm was implemented in ChiliPDF , and in a publicly
available C++ library BestLime [82].

Precision studies of the optimized Levin’s method, discussed in Section 5 in [1] were
our basic guidelines for the choice of interpolation grids used in the computation of
double Bessel integrals, essential in evaluating the results presented in Chapter 5.



Chapter 3

DTMDs in the large y region

3.1 Small z expansion

For perturbatively small |zi| ≪ Λ−1, and y such that |y| ≫ |zi|, one can express the
transverse position-dependent parton distributions (DTMDs) F (z1, z2,y) in terms of
collinear double-parton distribution (DPDFs), denoted as F coll.(y), using the operator
product expansion, in a similar way to the case of single-parton distributions. This
procedure, widely used in TMD physics, is commonly called “matching” [56,68,83–88].

The short-distance expansion of operators defining the unsubtracted DTMDs in a
definite color representation, see Eq. (2.41), has the following form:

ROa

(
x, z,y

)
=
∑
b

∑
R′

RR′
Cus,ab(x

′, z) ⊗
x

R′
Ob

(
x′,0,y

)
. (3.1)

The symbol ⊗
x denotes the convolution product defined as

C(x′) ⊗
x f(x

′) =

∫ 1

x

dx′

x′
C(x′) f

( x
x′

)
. (3.2)

Operators ROb

(
x′,0,y

)
define collinear double parton distributions. It should be noted

that the matching kernels RR′
C do not mix between color multiplicities, and kernels

with R ̸= R′ are non-zero only for matching between quarks in octet representation,
and gluons in either symmetric- or antisymmetric octet representation, that is R,R′ ∈
{8, S, A}.

The expansion of the soft factors given in Eq. (2.25), projected on definite color
representations, has a multiplicative form:

R1R2,R′
1R

′
2Sa1a2(zi,y)

= R1R2CS,a1(z1)
R1R2CS,a2(z2)

R1R2,R1R2Sa1a2(zi = 0,y) δR1R2,R′
1R

′
2
. (3.3)
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This shows that in the large-y approximation the soft factor also does not mix between
color representations – using the results of Section 2.3.5 for color-diagonal soft factor,
one can write the matrix R1R2,R′

1R
′
2sa1a2 in Eq. (2.33), in a simple form:

R1R2,R′
1R

′
2sa1a2

(
zi,y;µi, Y

)
=
√

R1R2CS,a1(z1; 2Y )
√

R1R2CS,a2(z2; 2Y ) R1R2,R1R2sa1a2
(
y;µi, Y

)
δR1R2,R′

1R
′
2
.

(3.4)

The color-diagonal matrix s(zi = 0,y) appears in the soft gluons subtraction for
collinear DPDFs as discussed in Section 2.3.5.

Using Eqs. (3.1), (3.4), and definitions of DPDs in Section 2.3 one finds that
the subtracted DTMDs can be written in terms of collinear DPDFs convolved with
subtracted matching kernels:

R1R2Fa1a2

(
xi, zi,y;YC

)
=
∑
b1b2

∑
R′

1,R
′
2

R1R̄′
1Ca1b1

(
x′1, z1;YC)

⊗
x1

R2R̄′
2Ca2b2

(
x′2, z2;YC

) ⊗
x2

R′
1R

′
2F coll.

b1b2

(
x′i,y;YC

)
, (3.5)

where subtracted matching kernels are defined according to

R1R2Cab

(
x, z;µ, YC

)
= lim

YL→−∞

R1R2Cus,ab

(
x, z;µ, YL

)√
R1R2CS,a(z;µ, 2YC − 2YL)

(3.6)

for the right-moving hadron. Recall from Eq. (2.57) that the subtracted collinear DPDF
is defined as a limit

R1R2F coll.
a1a2

(
xi,y;YC

)
= lim

YL→−∞
R1R2,R1R2sa1a2

(
y;µi, YC − YL

)
R1R2F coll.

us,a1a2

(
xi,y;YL

)
.

(3.7)

Switching from the variable YC to ζ, where we recall

ζ = 2(p+)2e−2YC , (3.8)

we obtain
R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
=
∑
b1b2

∑
R′

1,R
′
2

R1R̄′
1Ca1b1

(
x′1, z1;µ1, x

2
1ζ
) ⊗

x1

R2R̄′
2Ca2b2

(
x′2, z2;µ2, x

2
2ζ
) ⊗

x2

R′
1R

′
2F coll.

b1b2

(
x′i,y;µi, ζ

)
. (3.9)
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Notice that the rapidity parameter enters the matching kernels for parton i (= 1, 2) only
in combinations x2i ζ, which is because in a perturbative computation of the kernel the
result depends on the momentum of a single parton, rather than the whole hadron. The
exact form of the matching kernels is given in App. C, and the details of the matching
procedure will be discussed in a later part.

Finally, using the formula for the subtracted kernels in Eq. (3.6), one obtains the
Collins-Soper equation for the matching kernels:

d

d log
√
ζ

R1R2Cab

(
x, z;µ, ζ

)
= R1Ka(z;µ) . (3.10)

For the color-singlet channel, the kernel 1Ka is identical with the rapidity evolution
kernel of single TMDs [56]. The rapidity evolution equation (3.10) will be used to
resum logarithms of x2i ζ/µ

2 in the matching formula in Section 3.4.

Finally, the rapidity evolution equation of DTMDs obtained via perturbative
matching reads

d

d log
√
ζ
R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
=
(
R1J(y;µi) +

R1Ka1(z1;µ1) +
R2Ka2(z2;µ2)

)
R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
. (3.11)

Comparing with the general form of the Collins-Soper kernel for DTMDs in Eq. (2.48),
one sees that in the large-y limit it becomes diagonal in color representations, and the
solution of the rapidity equation in this case does not involve matrix exponentiation,
cf. Eq. (2.49).

3.2 Intermediate scales

It turns out that the computation of double parton distributions via perturbative
matching poses a multiscale problem – in the computation of observables one needs
DTMDs at the scales of order of MW ≈ 80 GeV, whereas the natural choice of scales,
at which one performs the matching is given by transverse distances zi, which are
perturbatively small, but typically much larger than M−1

W . Moreover, the scale at
which one models the collinear parton distributions should depend only on the scale
relevant to that distribution – that is |y|−1. In this Section, we discuss our choice of
distance-dependent scales, and the evolution of the parton densities at intermediate
steps of the computation.
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Matching scales

The pair of the matching scales in Formula (3.9), which will be denoted as (µ01, µ02),
is given by the distances zi, so that

µ0i ∝ |zi|−1 . (3.12)

The standard choice is

µ0i =
b0
|zi|

, b0 = 2e−γE ≈ 1.123 , (3.13)

where γE is the Euler-Mascheroni constant. This choice makes the one-loop corrections
to the TMD Collins-Soper kernel vanish.

Since the transverse momentum-dependent cross-section is expressed in terms of a
double Fourier transform of (z1, z2)-dependent product of DTMDs, one may expect that
the most relevant region of the phase space is characterized by the distance |zi| of size
of the inverse of the transverse momenta qi of the produced W bosons: |zi| ∼ |qi|−1.
To smoothly extrapolate to a region where either the perturbative calculation no longer
makes sense (large z), or where the inverse of |z| approaches the hard scale, we will
apply the “*-prescription” to the transverse distances, as it is commonly done in TMD
literature [68, 76, 86–88, 90]. It means that the perturbatively matched DTMD at the
initial scales will be computed at regularized distances given by

b∗(z) ≡ z∗ = z

(
1 +

(
zmin/|z|

)4
1 +

(
|z|/zmax

)4)1/4

, (3.14)

where we choose

zmax =
b0
µmin

, µmin = 2 GeV, and zmin =
b0
MW

. (3.15)

To have some indication of in which region the described *-prescription significantly
modifies the transverse distances, it can be checked that the relative difference between
|b∗(z)| and |z| is smaller than 5% for 0.021 GeV−1 < |z| < 0.38 GeV−1. The powers
in the definition are taken such that for perturbatively small, but also larger than the
inverse of the hard scale distances z: Q−1 ≪ |z| ≪ Λ−1, its regularized value differs from
the unregularized ones by terms of 4-th power in |z|/bmax, bmin/|z|, allowing to achieve
a smooth interpolation outside of the region of validity of the discussed approximation.
A similar approach has been used by the MAP collaboration [87], while *-prescriptions
considered in other works, e.g. [86,88], are such that the difference between |z∗| and |z|
is suppressed only by terms O

(
z2/b2max

)
, and z∗ is not regularized from below.

Finally, our choice of the matching scales is given by

µ0i =
b0
|z∗i |

, (3.16)



26 DTMDs in the large y region

This definition ensures that the matching scale used in the perturbative computation
is much larger than the QCD scale, and does not exceed the hard scale. The latter
ensures that one does not evolve DPDFs to scales larger than MW in the region of
very small zi, which is computationally costly, and gives a negligible contribution to
the overall result. Moreover, the UV regularization avoids possible singularities of the
Collins-Soper kernels when approaching the limit |z| → 0, as will be discussed in detail
in Section 4.2.

Effects of quark masses

The number of active flavors nf at the level of hard scattering is set by the hard scale
– for W boson production it is Q = MW ≈ 80.377 GeV, so that in the considered
kinematics one has DTMDs with nf = 5 active quarks treated as massless. On the
other hand, the initial scale of DPDFs, denoted as µy, is typically much smaller (but
no smaller than 2GeV), and the matching scales µ0i are of order |qT |, so that neither of
these scales is necessarily much larger than all of the active quark masses. We approach
this problem in a similar way to that presented in [91], that is, after initializing the
DPDF at a given number of active flavors, we either match to a higher number of
flavors during the scale evolution, or match DPDF to DTMDs with different nf using
mass-dependent kernels.

For simplicity, let us assume that there is a single massive quark of mass m.
Depending on the hierarchy between m and the remaining scales, one needs a different
approach to including the quark mass effects in the computation. There are 4 possible
configurations of the scales:

(a) Q ≫ |qT | ∼ m,

(b) Q ≫ |qT | ≫ m,

(c) Q ∼ m ≫ |qT |,

(d) Q ≫ m ≫ |qT |.

In the discussion of the scales hierarchy in the following part, we identify the matching
scales µ0i with the corresponding transverse momenta |qT |, thus focusing on the
dominant region in the transverse position space. Instead of that, one can replace
|qT | with b0/|z∗i | in the considerations below, and pick the cases (a)-(d) depending on
the value of |zi|. This approach, although more detailed, introduces two important
drawbacks:

� Switching between the cases (a)-(d) would introduce a discontinuity in highly
oscillatory zi integrands, which can lead to artifacts in the numerical computation.
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� Changing the number of active flavors (nf,1, nf,2) in DPDF depending on (z1, z2),
one needs to consider 4 different settings:

(nl, nl), (nl + 1, nl), (nl, nl + 1), (n1 + 1, nl + 1).

This would require computing DPDFs initially at nl active flavors, and then
evolving them from the region of the largest distances to the smallest, corresponding
to scales at which there are nl+1 active flavors. To achieve this, one would need to
initialize two independent DPDF class instances, one for which one first passes the
quark mass threshold for quark 1, matching (nl, nl) → (nl + 1, nl) active flavors;
and one instance where the matching is first performed for parton 2. Such an
approach is possible to implement in our current framework, but it will be shown
later that this is not necessary for the relevant scales.

It will be argued later that for the process considered in this work, based on the
considered range of qT values, it is justified to assume the scales hierarchy (a) for
all zi. For this reason, we keep the treatment of the quark masses independent of
transverse positions.

Case (d) is of little interest in this process since this would imply

|qT | ≪ mb ≈ 4.18 GeV,

breaking the assumption of large transverse momenta. Cases (c) and (d) could be
considered in the context of production of states with larger invariant mass, for example,
a hypothetical heavy Z ′ boson or a two-boson state, where m would be the mass of the
top quark.

For the W pair production process, the case (b) can be realized in a rather small
region of the phase space, since it is questionable, whether one can treat any scale
between mb and MW as much larger than the lower one, and much smaller than the
upper one simultaneously – perhaps this can be justified for |qT | close to the upper
limit of the considered transverse momenta, which in this work we take equal to 20
GeV. However, we find that it is also reasonable to classify such scales as mb ∼ |qT |,
hence in our numerical studies, we assume the case (a).

First, we will discuss the case (a) in detail. For completeness, we will also describe
how to include the effect of quark masses in cases (b) and (c). By Fnf

we denote parton
distributions F with nf active quarks. Let nl denote the number of light quarks (in
our case nl = 4). The collinear DPD is initialized at y-dependent scale µy∗ , and then
evolved to the matching scales µ0i ∼ |qT,i| ∼ mb. Since the mass of the charm quark is

mc ≈ 1.27 GeV , (3.17)
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and the initial scales of DPDFs are no smaller than

µmin =
b0
bmin

= 2 GeV , (3.18)

so that DPDFs are initialized at nf = 4 light flavors at scale µy∗ , and evolved with the
corresponding DGLAP kernels to the matching scales. In the next step, one performs
the matching of DPDFs with nl active quarks onto DTMD with nl + 1 active quarks,
using the mass-dependent matching kernels for the bottom quark. Those are given
in Appendix C. Finally, one evolves DTMD with nf = 5 massless quarks to the hard
scales.

In the case (b), for |qT | ≫ m, one performs the threshold matching to DPDFnl+1 before
DPDF-DTMD matching if m≫ µy∗ , and then evolves DTMDnl+1 to the final scales. If
m ∼ µy∗ , the DPDF is already initialized at nf + 1 active quarks, and the mass effects
are included only in the splitting formula for DPDFs.
In case c), for Q ∼ m, one computes both DPDF and DTMD with nl active flavors, and
the quark mass dependence enters only via virtual corrections to the hard cross-section.

A schematic representation of the described procedure, in particular the scale
evolution, matching between different number of flavors, and DPDF-DTMD matching
in cases (a)-(c) is shown in Fig. 3.1.

Initial scales for DPDFs

For completeness, let us discuss the initial scales at which the model of collinear double
parton distributions is formulated. Since the only relevant scale in the problem is y,
we take

µ0,y =
b0
|y∗| . (3.19)

The UV-regularization of the scale is, in this case, irrelevant, since one anyway imposes
the cut-off |y| ≥M−1

W in the computation of differential cross-section. The choice of the
initial rapidity scale is less obvious and has been the object of discussion, see Erratum
I.2 in [56]. In the perturbation theory, higher-order corrections may depend on rapidity
via logarithms of the following products of ζ and the remaining scales:(

xi
√
ζ0
)
|y| , i = 1, 2 .

Assuming that the correction involving x1
√
ζ0 and x2

√
ζ0 are the same, one can minimize

the part linear in the logarithms by taking

ζ0 =
ξ0(y)

x1x2
. (3.20)

where the scale ξ0 depends only on the distance, and not on xi, and is given by

ξ0(y) = µ2
0,y . (3.21)
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a) Q≫ |qT | ∼ m

Q

|qT |

µy∗

nl

nl + 1

DTMD(nl + 1)

DPDF(nl)

b) Q≫ |qT | ≫ m

Q

|qT |

m

µy∗

nl

nl + 1

nl + 1
DTMD(nl + 1)

DPDF(nl + 1)

c) Q ∼ m≫ |qT |

Q

|qT |

µy∗

nl

nl

DTMD(nl)

DPDF(nl)

Figure 3.1: Representation of the evolution and matching of parton distributions
between the intermediate scales for different hierarchies between Q,m, µ0. Matching
between DPDF and DTMD is represented by a double purple line. The corresponding
number of active flavors (both partons) is indicated in parenthesis. Matching to collinear
DPD with a higher number of active flavors is denoted by a short blue line. Next to the
arrows representing the scale evolution, shown is the number of active parton flavors of
a given DPD.
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To avoid a potential confusion, we emphasize that in the whole work we use the notation
where the rapidity is denoted by the letter ζ, and may depend on longitudinal momenta
fractions xi, while the scale ξ is the x-independent part, as given in Eq. (3.20). The
exact form of DPDFs at the initial scales will be presented in Section 3.3.

3.3 Initial conditions for collinear DPDs

We use the DPD model described in [69, 92]. Double-parton distributions are
decomposed into the “intrinsic” and “splitting” part, according to

R1R2Fa1a2

(
xi,y;µ0, ζ0) =

R1R2Fa1a2,int

(
xi,y;µ0, ζ0) +

R1R2Fa1a2,spl

(
xi,y;µ0, ζ0) . (3.22)

There is also a ‘twist-three’ part, obtained from a matrix element of a twist-3 operator
[22,56,69]. However, the arguments presented at the end of Section 2 in [69] show that
this is a subleading term, since the helicity of a single quark-antiquark pair (chiral odd)
cannot be compensated by gluon helicity, and therefore such contribution to DPDFs
does not obtain the contribution from mixing with gluons, which is the main source of
enhancement at small x.

In the next part, we present the construction of both splitting and intrinsic parts.

3.3.1 Intrinsic part

The “intrinsic” part can be thought of as the contribution from the hadron’s wave
function. It will be approximated as a convolution of two impact parameter-dependent
PDFs multiplied by some further factors that will be discussed later:

R1R2Fa1a2,int

(
xi,y;µ0

)
= n(a1a2) ra1a2(R1R2) ρa1a2(x1, x2)

∫
d2b fa1(x1,b;µ0)fa2(x2,b+ y;µ0) .

(3.23)

The impact-parameter dependence of PDFs is taken as

fa(x1,b;µ0) =
1

4ha
fa(x1;µ0) e

− b2

4ha . (3.24)

The convolution simply produces another Gaussian factor:∫
d2b fa1(x1,b;µ0)fa2(x2,b+ y;µ0)

=
1

4π(ha1 + ha2)
fa1(x1;µ0)fa2(x2;µ0) exp

[
− y2

4(ha1 + ha2)

]
. (3.25)
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In the later part we will denote

ha1 + ha2 = ha1a2 . (3.26)

The parameters ha are taken from [69], and are equal to

ha =

{
2.33 GeV−2 for a = g

3.493 GeV−2 otherwise
. (3.27)

Flavor number effects
To account for the fact that there are two up-quarks and one down-quark in the proton,
we use the number factor n(a1a2) defined as

n(a1a2) =


0 if (a1, a2) = (d−, d−)
1
2

if (a1, a2) = (u−, u−)

1 otherwise

. (3.28)

The ‘minus’ combinations for quark of flavor q are defined as a difference of quark and
antiquark distributions:

q− = q − q̄ . (3.29)

To implement the presented number effects, the discussed DPD model is first formulated
in the valence-sea basis, and later transformed to the parton basis.

Color non-singlet representations
The color factor ra1a2(R1R2) is taken equal 1 for the singlet representations (R1R2) =
(1, 1). In the case of the non-singlet representation, we take such values that saturate
the positivity bounds for DPDs [58]. As discussed in Section 2.3.3, we project the
color indices on definite SU(3) representations in the t-channel. Projecting onto the s-
channel one obtains distributions that mix representations under the evolution, but can
be treated as probability densities at the lowest order. Using the matrices describing
the transition from the s-channel to t-channel basis, one can find the maximal values of
the non-singlet distributions that yield semi-positive distributions in the s-channel (in
fact, one positive, and the rest equal to zero). The resulting values of ra1a2(R1R2) are
given in App. A.3.

Parton momenta
The condition

x1 + x2 ≤ 1 (3.30)

is enforced by multiplying the distributions by a factor

ρa1a2(x1, x2) =

{
(1−x1−x2)2

(1−x1)2(1−x2)2
x1 + x2 ≤ 1

0 x1 + x2 > 1
. (3.31)
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The factor (1 − x1)2(1 − x2)2 in the denominator is introduced to fulfill the sum rules
for DPDs more accurately in the singlet sector [93].

Parton polarization
When specifying polarization, we shall use labels

� a for unpolarized,

� ∆a for longitudinally polarized,

� δja for transversely polarized in direction j.

Parton ‘a’ can be either quark, antiquark, or gluon. In this work we consider parton
distributions only for combinations of a and ∆a, since the transversely polarized partons
do not contribute to the production of W boson pairs, see Section 2 in [53]. DPDs with
only one parton longitudinally polarized are pseudoscalars – since one cannot construct
a pseudoscalar using only a single vector y, it follows that

F coll.
a∆b = F coll.

∆ab = 0 for all a, b . (3.32)

In the case of DPDFs with both partons longitudinally polarized, a seemingly natural
choice would be to construct it using a product of two polarized PDFs. One should
however not take such an analogy too far, since the longitudinally polarized PDFs
describe the correlation in polarization between parton and hadron, while longitudinally
polarized DPDs describe the polarization correlations between two partons, see Section
4.3.1 in [22] and [94]. To account for longitudinal PDFs, instead of taking a polarized
PDF fit, we take them equal to their unpolarized counter-parts at the initial scale of
the fit, equal to 1GeV [95], and evolve them to the scale µy using DGLAP for polarized
PDFs. The identical approach was used in [67]. As will be shown later in Section 3.7,
due to the evolution effects even so-constructed longitudinally polarized DTMDs are
much smaller than the unpolarized ones.

Finally, the intrinsic part is given by

R1R2Fa1a2,int

(
xi,y;µ0, ζ0

)
= n(a1a2) ra1a2(R1R2) ρa1a2(x1, x2)

× fa1(x1;µ0)fa2(x2;µ0)
1

4πha1a2
exp

[
− y2

4ha1a2

]
. (3.33)

3.3.2 Splitting part

The splitting part stems from a perturbative splitting of a single parton a0 into a parton
pair (a1, a2), as shown schematically in Fig. 3.3.2. The integration region where a1 and
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a2 are nearly collinear with the parent parton a0 describes double-parton scattering,
whereas the region of the large transverse momenta corresponds to loop corrections
to single-parton scattering. In this context, by ‘large’ momenta we understand those
comparable with the hard scale Q, not determined by comparison with the fixed scale
Λ.

a1 a2 a1a2

a0 a0

Figure 3.2: Splitting of a0 into a1+a2. If the partons a1 and a2 are nearly collinear with
a0, then the considered hard process is described as double-parton scattering, and the
perturbative splitting inside the box is treated as the splitting contribution to DPD.

The splitting part of DPDF is given by

R1R2Fa1a2,spl

(
xi,y;µ0, ζ0

)
= R1R2Fa1a2,spl,pt

(
xi,y;µ0, ζ0

)
exp

[
− y2

4ha1a2

]
, (3.34)

where Fa1a2,spl,pt is the result obtained using the perturbation theory [22]:

R1R2Fa1a2,spl,pt

(
xi,y;µ0, ζ0

)
=

1

πy2
αs(µ0)

2π

∑
a0

R1R2Pa0→a1a2

( x1
x1 + x2

)fa0(x1 + x2;µ0)

x1 + x2
. (3.35)

The splitting kernels R1R2Pa0→a1a2 are given in Appendix D. The Gaussian falloff factor
is taken the same as in the intrinsic part. Finally, we emphasize that while we use the
splitting scale µ0 dependent on the regularized distance y∗, in the denominator in the
splitting formula we have the unregularized y2 rather than (y∗)2.

In this work, we use only the LO splitting formula for DPDFs. The reason behind
this is that in the analysis of like-signW pair production the contribution from this part
turns out to be much smaller than the intrinsic part, while in the case of the opposite-
sign W production, the splitting formula for PDF-DTMD splitting is known only at
the leading accuracy, so that a full next-to-leading order analysis is not yet accessible
for this channel. The NLO splitting formula in the collinear case, PDF→DPDF has
been recently computed [97,98].
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3.4 Matching at perturbatively small z

As described in Section 3.1, to compute parton distributions at arbitrary scales and
distances, one first computes their fully perturbative form at regularized, perturbatively
small distances, and then extrapolates to larger distances at fixed scales. It is important
to emphasize that in order to have a consistent extrapolation form, one needs to specify
the rapidity scale at which the extrapolation is performed. We decide to extrapolate
the DTMDs at the y-dependent initial rapidity of DPDFs defined in Eqs. (3.20)-(3.21).

Let us recall the matching formula for subtracted DTMDs:

R1R2Fa1a2

(
xi, zi,y;µ0i, ξ0/(x1x2)

)
=
∑
b1b2

∑
R′

1,R
′
2

R1R̄′
1Ca1b1

(
x′1, z1;µ01, x1ξ0/x2

) ⊗
x1

R2R̄′
2Ca2b2

(
x′2, z2;µ02, x2ξ0/x1

) ⊗
x2

R′
1R

′
2F coll.

b1b2

(
x′i,y;µ0i, ξ0/(x1x2)

)
.

(3.36)

R1R2 denotes the color representation, the matching kernels RR̄′
Cab are given in

App. C. The mass-dependent kernels were obtained based on analogous results for
TMD matching kernels [96]. Collinear double parton distributions are denoted as
F coll.. Notice that, since the matching kernel must depend on the kinematics of a
given parton, and not on that of a hadron, the rapidity parameter in the kernel is
xiξ0/xj = x2i

(
ξ0/xixj

)
.

As discussed in Section 3.2, the initial value of DPDF for momenta fractions (x′1, x
′
2) is

computed at x′-dependent rapidity scale:

ζ0,DPDF =
ξ0(y)

x′1x
′
2

, (3.37)

The label ‘DPDF’ is used to distinguish the rapidity scale at which the collinear parton
density is initially modeled from the rapidity scale at which the matching is computed.
Such choice is expected to minimize the higher-order logarithmic corrections at fixed
scales and momenta fractions. To obtain DPDFs at rapidity ξ0/(x1x2), we use the
solution of the Collins-Soper equation in Eq. (2.58), and obtain:

R′
1R

′
2F coll.

b1b2

(
x′i,y;µ0i, ξ0/(x1x2)

)
= exp

(1
2
R′

1J(y;µ01, µ02) log
x′1x

′
2

x1x2

)
R′

1R
′
2F coll.

b1b2

(
x′i,y;µ0i, ξ0/(x

′
1x

′
2)
)
. (3.38)

The value of the kernel RJ depends only on the dimension of the representation R –
since the matching formula does not mix the dimensions of the representation, one can
use R1 instead of R′

1 in the formula above.
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The matching kernels depend on rapidity multiplied by the momenta fractions
xiξ0/xj. To minimize the effects of logarithmic higher order corrections, we first
compute the kernel in fixed-order perturbation theory at rapidity equal to µ2

0i, and
then evolve them using the Collins-Soper equation for the kernels, which is given in
Eq. (3.10). The resummed formula for the kernel reads

R1R̄′
1Ca1b1

(
x′1, z1;µ01, x1ξ0/x2

)
= exp

(
R1Kpt

a1
(z1;µ01) log

√
x1ξ0/x2
µ01

)
× R1R̄′

1Ca1b1

(
x′1, z1;µ01, µ

2
01

)
, (3.39)

and analogously for the kernel in variable x2. The label ′pt′ is used to denote that
the z-dependent Collins-Soper kernels here are computed in perturbation theory, and
there is no model-dependent nonperturbative input involved, cf. the discussion of the
modeling of rapidity evolution kernels in Section 2.3.6.

Finally, the perturbative matching formula is given by:

R1R2F pt
a1a2

(
xi, zi,y;µ0i, ξ0/(x1x2)

)
= exp

(
R1Kpt

a1
(z1;µ01) log

√
x1ξ0/x2
µ01

+ R2Kpt
a2
(z2;µ02) log

√
x2ξ0/x1
µ02

)
×
∑
b1b2

∑
R′

1,R
′
2

R1R̄′
1Ca1b1

(
x′1, z1;µ01, µ

2
01

) ⊗
x1

R2R̄′
2Ca2b2

(
x′2, z2;µ02, µ

2
02

) ⊗
x2

R′
1R

′
2F coll.

b1b2

(
x′i,y;µ0i, ξ0/(x

′
1x

′
2)
)
× exp

(
1

2
R1J(y;µ0i) log

x′1x
′
2

x1x2

)
.

(3.40)

It should be emphasized that while the z-dependent Collins-Soper kernels K are taken
in a purely perturbative form here, this is not the case for the kernel J(y;µ0i), since
one assumes |y| ≳ Λ−1, the full large-distance form of the kernel J is used from the
beginning.

3.5 Extrapolation to large z

In analogy to TMD studies [68, 83–88] one models DTMDs at arbitrary zi by first
computing their perturbatively expanded form at regularized distances z∗i , and then
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extrapolating at fixed rapidity scale ζ0 = ξ0(y)/(x1x2):

R1R2F
(
xi, zi,y;µi, ζ0

)
= R1R2F pt

(
xi, z

∗
i ,y;µi; ζ0

)
FNP

(
xi, zi,y

)
. (3.41)

Recall that the superscript ′pt′ denotes the perturbatively computed quantity.
FNP

(
xi, zi,y

)
is a non-perturbative prefactor, which in general may depend on all

transverse distances, momenta fractions, and parton species. Since the collinear DPDF
used in the matching formula is assumed to be given for all distances, the argument y
in Eq. (3.41) is not regularized. However, one can still allow for y-dependence in the
factor FNP.
In the next step, DPDs are evolved to arbitrary scales using the Collins-Soper kernels
at large distances. We obtain:

R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
= exp

(
1

2

(
R1Ka1(z1;µ1) +

R2Ka2(z2;µ2) +
R1J(y;µi)

)
log

ζ

ζ0

)
× R1R2F pt

a1a2

(
xi, z

∗
i ,y;µi; ζ0

)
FNP

(
xi, zi,y

)
. (3.42)

Let us see, what would happen if one decided to extrapolate DTMDs using Eq. (3.41),
at a different initial rapidity scale ζ ′0. Recall from Section 2.3.6 that the Collins-Soper
kernels RKa are decomposed as

RKa(z;µ) = RKpt
a (z∗;µ) + RgK,a(z) , (3.43)

where Rga is the non-perturbative part. As noted previously, perturbatively matched
DTMDs in Eq. (3.4) are computed with RgK,a = 0. Demanding that DTMDs obtained
using a new pair of the initial rapidity scale ζ ′0 and a nonperturbative factor F ′

NP applied
to Eqs. (3.41)-(3.42) have the same value as the ones for the unprimed version, one finds

F ′
NP(zi,y) = FNP(zi,y) exp

(
1

2

(
R1gK,a1(z1) +

R2gK,a2(z2)
)
log

ζ0
ζ ′0

)
. (3.44)

It implies that one must carefully specify the rapidity scale at which the extrapolation
to large distances is applied, in order to avoid mixing between the factor FNP and
extrapolation of the rapidity evolution kernels.

Therefore, the interpolation of double-parton distributions in our approach consists of
the following steps:

1. Compute the perturbatively matched DTMD at regularized distances z∗i given in
Eq. (3.15). The initial scales (µ0i, ζ0) are given in Section 3.2.



Perturbative orders 37

2. Extrapolate to large zi at the initial scales from the previous point according to

R1R2Fa1a2

(
xi, zi,y;µ0i, ξ0/(x1x2)

)
= R1R2F pt

a1a2

(
xi, z

∗
i ,y;µ0i, ξ0/(x1x2)

)
FNP

(
xi, zi,y

)
. (3.45)

The choice of FNP will be discussed in the later part of this work.

3. Finally, evolve DTMDs to the final scales using the full Collins-Soper kernels. We
emphasize that the parton distributions at regularized distance in Eq. (3.45) are
computed using purely perturbative kernels K, and the full kernels that involve
the non-perturbative part are used only to evolve them from the initial rapidity
ξ0/(x1x2) to the final one.

Finally, after using the solutions of RGE and Collins-Soper equations discussed in
Section 2.3.4, we obtain DTMDs in the large-y approximation at arbitrary scales:

R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
= exp

(∫ µ1

µ01

dµ

µ

(
γa1(µ)− γK,a1 log

x1
√
ζ

µ

)
+
(
1→ 2

))
× exp

(
1

2

(
R1J(y;µ0i) +

R1K(z1;µ01) +
R2K(z2;µ02)

)
log

√
x1x2ζ

ξ0

)
× FNP

(
xi, zi,y

)
R1R2F pt

a1a2

(
xi, z

∗
i ,y;µ0i, ξ0/(x1x2)

)
, (3.46)

.

with F pt given in Eq. (3.4). The anomalous dimensions γa, γK,a are given in App. B.
Notice that for the typical scales in the problem

√
x1x2ζ ∼ Q, so that the logarithm

in the exponential in the third line of Eq. (3.5) is positive and large for small value of
ξ0, associated with large distance y. That, and the fact that the kernel RJ in the octet
sector is positive, leads to strong suppression of the color-nonsinglet DPDs. Notice that
this holds for both DTMDs and DPDFs, since the kernel RJ appears in the evolution
equations for both DPDF and DTMD in large-y approximation.

3.6 Perturbative orders

Let us discuss the perturbative orders of the components used in the presented work.
The choice is consistent with the DPDF study performed in [67], which in turn uses
the conventions in line with [99,100].
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We start the discussion with the terms relevant to the resummation of large
logarithms. The Collins-Soper kernels RKa,

RJ , and non-cusp anomalous dimension
γa (a = q, g) appear in resummation of single logarithms, while the cusp anomalous
dimensions γK , γJ resum double logarithms. According to the conventions discussed
in [99, 100], the perturbative order of the kernels and γa should be therefore taken one
smaller than the one of γK , γJ . Therefore, at N

kLL order corresponds to cusp anomalous
dimensions computed at NkLO, and the kernels at one order lower. At LL the kernels
and non-cusp anomalous dimensions γa are taken equal to 0, cf. Section 4.3 in [67].

In the next step, we consider the fixed-order expressions for the matching kernels
Ĉ, and the hard cross sections σ̂, as well as the DGLAP kernels denoted as P̂ – all of
these components are taken at the same order: for a fixed-log accuracy NkLL for k ≥ 1
we take it at Nk−1LO, and at LL we take it at LO. Primed accuracy NkLL′ implies that
P̂ , Ĉ, σ̂ are taken at one order higher than in unprimed case, that is at NkLO. The
perturbative order of the QCD β function expanded in powers of αS should match the
orders of the DGLAP kernels. For this reason, when referring to this set of quantities,
we will refer to the ‘order of DGLAP kernels’.

The perturbative expansion of the QCD beta function β(αS) appears in the integrals
involving cusp anomalous dimensions [101]∫

dµ

µ
γK/J(µ) =

∫ αS(µ1)

αS(µ0)

dα

β(α)
γK/J ,∫

dµ

µ
γK/J(µ) log

µ

µ0

=

∫ αS(µ1)

αS(µ0)

dα

β(α)
γK/J

∫ αS(µ)

αS(µ0)

dα′

β(α′)
. (3.47)

For consistency, the function β(α) in (3.47) should be expanded at the same order as
γK/J . On the other hand, it was previously stated that the β-function of αS used in
the expansion of the fixed-order part should match the order of the DGLAP kernels.
This leads to a discrepancy between the two consistency requirements for the order of
the QCD β-function used in the computation. We make a compromise by taking it at
different orders when applying it to different objects – in the perturbative expressions
for the kernels and hard cross-sections, we shall refer to the order of αS. On the other
hand, when specifying the order of expansion of β(α) in Eq. (3.47), we will talk about
the order of β, see Table 3.1. The same conventions have been applied in the previous
work [67].

The perturbative order of the PDF fits used to model double parton distributions
is chosen to be consistent with the DGLAP kernels order. We use the parametrizations
of the MSHT [95] – at NLO we use the results for αS(MZ) = 0.118. At LO we use the
fits for αS(MZ) = 0.130.
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Finally, let us comment on the handling of the αS expansion at the level of the
computation of differential cross section. Since both the parton distributions F at the
matching scale, and the hard scattering cross-sections σ̂ are expanded in the strong
coupling:

σ̂ =
∑
n=0

αn
S σ̂

(n) , (3.48)

F =
∑
n=0

αn
S F

(n) , (3.49)

the product FF̄ σ̂1σ̂2 is expanded as

FF̄ σ̂1σ̂2 =
∑

i,j,n,m

αi+j+n+m
S σ̂

(i)
1 σ̂

(j)
2 F (n)F̄ (m) , (3.50)

where the superscript (n) denotes the n-th term in the perturbative expansion in αS of
a parton distribution or the hard factor. It should be noted that αS in the matching
expansion, and in the hard part are taken at different scales µ0i, Qj, but nonetheless
are treated the same. To keep the fixed order in the αS-expansion, we shall truncate
this sum for powers i+ j+n+m larger than the considered perturbative order. Notice
that already at NLO the expansion of DTMD in Eq. (3.49) contains α2

S terms from the
product of two matching kernels computed at αS – in the described scheme these terms
are dropped at αS order.

Accuracy J,K γa P̂ , Ĉ, σ̂, αS γJ/K , β PDF set

LL — — LO LO LO
NLL LO LO LO NLO LO
NLL’ LO LO NLO NLO NLO
NNLL NLO NLO NLO NNLO NLO

Table 3.1: Perturbative orders at different accuracies.

3.7 Position-dependent DTMDs and the error estimation

The main goal of this Section is to study the most significant features of transverse
position-dependent double-parton distributions obtained via perturbative matching to
the collinear DPDFs in the kinematics relevant in the process of production of W pairs
at √

s = 13 TeV.

The hard scales are chosen as

µi =MW = 80.377 GeV,

√
ζζ̄ = s . (3.51)
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We consider two values of the momenta fractions:

(x1, x2) = (x0, x0), and (x0e
Y , x0e

−Y ) , Y = 3 , (3.52)

where x0 corresponding to production of W at central rapidity is given by

x0 =
MW√
s
≈ 6.18× 10−3 , (3.53)

so that
(x0e

Y , x0e
−Y ) ≈ (0.124, 3.1× 10−4) . (3.54)

The following analysis of DTMDs in the large-y region allows to address some important
questions before the next part:

� In the case of intrinsic DPDFs, singlet distributions for longitudinally polarized
partons are constructed by first saturating the positivity bounds of PDFs by
taking the polarized distributions equal to their unpolarized counterparts at 1
GeV, and then evolving them with the single parton DGLAP to the initial scale
of DPDFs µy∗ . The color-nonsinglet sector of the intrinsic part is derived from
the color-singlet double parton distributions by saturating the positivity bounds
of DPDFs at the initial scale of µy∗ . Do these distributions become enhanced by
the effects of evolution and matching, so that in the relevant region of the phase
space they dominate over the unpolarized color-singlet distributions, introducing
a significant model dependence?

� It is expected that the relevant regions should be given by

|zi| ∼ |qi|−1 ∼ O(10) GeV, |y| ≫ |zi| . (3.55)

These assumptions would be challenged if in the described region DTMDs were
strongly suppressed.

� For small zi the relevant matching scales should be relatively large, which allows
us to expect a rather quick convergence of the perturbative matching, given in
powers of αS(µ0i). This needs, however, to be explicitly checked.

Since the result depends on the intermediate matching scales µ0i by terms of order αn
S

higher than the currently known perturbative accuracy, we estimate the uncertainties
due to the perturbative matching by varying the matching scales according to

µ0(z;κ) =
κb0
|z∗| +

(
1− κ) µmin , (3.56)

where µmin = 2 GeV, and
κ ∈

{
0.5, 0.75, 1, 1.5, 2} . (3.57)
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The variation of the scales is constructed in such a way that at small distances,
corresponding to large values of µ0, a fixed parameter implies a scale approximately
scaled by κ. On the other hand, at large distances, all of the κ-dependent matching
scales saturate at µmin = 2 GeV. Instead of taking only 3 extreme values of κ, we also
consider the intermediate ones: 0.75, 1.5, since we observe that in some cases the value
of the DTMD at the central scale is very close to one of the upper/lower estimates,
effectively leading to an underestimation of the errors.

We will present uncertainty estimates obtained this way at 3 different accuracies,
and verify that including the higher-order corrections indeed reduces the error bands
obtained by this procedure. A comparison of the width of the error bands with the
actual difference between different accuracies also provides guidance, on how accurate
such an estimation is.

In Figs. 3.3-3.8 we present DTMDs as functions of z2 = |z2| for the following values
of transverse distances:

|z2| ∈ [10−2 GeV−1, 0.5 GeV−1] , |z1| = 0.1 GeV−1 , |y| = 1 GeV−1 . (3.58)

Parton distributions were computed on a discrete grid in z2 with 16 points and
interpolated. For better interpolation precision, instead of taking a linear grid in z2, we
used the variable transformation

u = log z2 . (3.59)

The grids in xi for color-singlet and color-nonsinglet representations are the same as in
Eq. (C.2) in [67], that is:[

10−5, 5× 10−3, 0.5, 1
]
(16,16,24)

for color singlet,[
10−5, 3× 10−4, 10−2, 0.5, 1

]
(16,16,24,24)

for color-nonsinglet.

The results are presented for small z, so that the uncertainty due to the
parametrization of the non-perturbative part of the Collins-Soper kernel is not analyzed
at this stage. It should be noted that the non-perturbative part of the Collins-Soper
kernel is not taken equal to zero in this analysis, since it significantly affects the y-
dependence of color non-singlet DTMDs. Therefore, here we will use our default choice
of the kernel, which is defined in Eq. (5.53). Further discussion of the considered models
for the Collins-Soper kernel will be given in Section 5.2.2.

Double parton distributions in the large-y approximation and their corresponding
error bands are presented at 3 accuracies: NLL (green), NLL’ (orange), and NNLL
(blue). Since in the color-singlet sector the NLL’ and NNLL results in all cases were
found to be close to each other, and the error estimation for NLL’ is typically of the
same size, we show the results at the intermediate accuracy only in Fig. 3.3, and omit
them in the remaining plots for the color-singlet sector in Figs. 3.4-3.6.

One can readily observe that the uncertainty estimation becomes smaller at higher
accuracies. Interestingly, in many cases, the error estimates at NLL are several
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times smaller than the actual difference between the two subsequent accuracies. To
understand it, we recall that it was found that the result obtained using the extreme
choices of µ0 often are very close in value, see the discussion before Eq. (3.57). Therefore,
we suspect that in some cases the DTMDs as a function of the parameter κ have a local
minimum for κ ∈ [0.5, 2] – despite the variation of the result being formally of one
order in αS higher than the perturbative expansion, we have no guarantee that the
factor multiplying the higher power of αS is not small. Whether this is a numerical
coincidence at NLL, or the problem persists at higher accuracies would require the
computation of higher-order corrections. The difference between NLL and NLL’ is
much more visible, than between NLL’ and NNLL, which should not be surprising,
given the change of the order of DGLAP, matching orders, and PDF fits between the
first two accuracies.

Results presented here show that the longitudinally polarized DTMDs at the
considered scales are several times smaller than their unpolarized counterparts, except
the splitting form of DPDFs of quark and antiquark of identical flavor, see Fig. 3.5,
where the distributions are of a similar size, but have opposite signs – this can be
explained by the relative change of sign in the massless splitting formula of gluon
into a quark-antiquark pair for unpolarized versus longitudinally polarized quarks, see
Eq. (3.35), and the splitting kernels in Eq. (D.2). Since, as pointed out in the previous
part, the considered model for intrinsic double parton distributions for longitudinally
polarized partons is such that it saturates the positivity bounds at a scale equal to 1
GeV, one may expect the contributions from the polarized DTMDs to be even smaller
in reality.

We observe no significant difference between the error bands and shapes of DTMDs
at symmetric and asymmetric values of xi, other than a shift of the maximum towards
larger values of zi in the latter case. On the other hand, the absolute values of DTMDs
of non-valence partons strongly diminish if the corresponding xi becomes large, which
is to be expected from the behavior of single-parton distributions. Analogously, when
x1 + x2 becomes large, also the splitting part of non-valence quarks gets smaller, due
to the diminishing value of the parent single gluon density.

It is seen that singlet quark DTMDs diminish at larger z, while the nonsinglet
distributions in some cases either vanish very slowly or even become enhanced, as in
the case of the (∆u,∆u) splitting part given in lower-right panel of Fig. 3.8. In general,
we see that this effect is strong for longitudinally polarized quarks in both intrinsic and
splitting parts and for unpolarized, charge-conjugate qq̄ pairs in the splitting part. To
understand it, let us first explain, why in most cases the matched DTMDs diminish
with larger zi. The matching consists of two evolution steps – DGLAP evolution from
µy to the matching scales µ0i, and then multiplicative DTMD evolution to the final
scales. Typically, DGLAP evolution enhances DPDs more strongly than the evolution
of DTMDs, so that a lower intermediate scale µ0i corresponding to larger zi results in a
smaller value of DTMD. However, as found in [67], color-nonsinglet and longitudinally
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polarized DPDFs evolve more slowly with DGLAP, resulting in the observed behavior.
We also point out that based on Fig. G.1 in App. G, we see that the qualitative behavior
of DTMDs may also change between the intrinsic and splitting form, meaning that also
the initial conditions of the DGLAP evolution matter. We do not expect this effect
to have a strong impact on the phenomenological results, since DTMDs exhibiting the
described behavior tend to be small compared to the ones that diminish at large (but
still perturbative) z, and for this reason we did not pursue a further analysis of this
behavior.

We observe that the color-nonsinglet distributions are strongly suppressed at larger
y due to the Collins-Soper kernel J at large distances, which is consistent with results
presented in [67]. The y-dependence of DPDs is studied in more detail in the next part.

We verified that the discussed properties of DTMDs hold also at |y| = 0.5 GeV−1,
where the rapidity evolution suppression of color-nonsinglet distributions is not yet
that strong. This was checked on the same range in |z2| as in Eq. (3.58), including |z2|
points which approach the value of |y| – this is beyond the region where the discussed
approximation is valid, however, it still may be used when extrapolating to large zi.
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Figure 3.3: z2-dependent color-singlet DTMDs for unpolarized (left) and longitudinally
polarized (right) quarks (u, u) at fixed y = 1 GeV−1 and z1 = 0.1 GeV−1 for intrinsic
(upper) and splitting (lower) DPDF part at (x1, x2) ≈ (6.18× 10−3, 6.18× 10−3).
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Figure 3.4: The same as in Fig. 3.3, but for (x1, x2) ≈ (0.124, 3.1× 10−4).
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Figure 3.5: z2-dependent color-singlet DTMDs for unpolarized (left) and longitudinally
polarized (right) quarks (u, ū) at fixed y = 1 GeV−1 and z1 = 0.1 GeV−1 for intrinsic
(upper) and splitting (lower) DPDF part at (x1, x2) ≈ (6.18× 10−3, 6.18× 10−3).
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Figure 3.6: The same as in Fig. 3.5, but for (x1, x2) ≈ (0.124, 3.1× 10−4).



46 DTMDs in the large y region

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.000

0.025

0.050

0.075

0.100

0.125

0.150
-x

1x
288

F
[1

0
3

Ge
V2 ]

(u, u), color-nonsinglet, unpolarized, intrinsic part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.0

0.1

0.2

0.3

0.4

0.5

-x
1x

288
F

[1
0

4
Ge

V2 ]

(u, u), color-nonsinglet, longit. polarized, intrinsic part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.000

0.025

0.050

0.075

0.100

-x
1x

288
F

[1
0

4
Ge

V2 ]

(u, u), color-nonsinglet, unpolarized, splitting part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.0

0.1

0.2

0.3

-x
1x

288
F

[1
0

5
Ge

V2 ]

(u, u), color-nonsinglet, longit. polarized, splitting part

NLL
NLL'
N2LL

Figure 3.7: z2-dependent color-nonsinglet DTMDs for unpolarized (left) and
longitudinally polarized (right) quarks (u, u) at fixed y = 1GeV−1 and z1 = 0.1 GeV−1

for intrinsic (upper) and splitting (lower) DPDF part at (x1, x2) ≈ (6.18× 10−3, 6.18×
10−3).

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.0

0.1

0.2

0.3

-x
1x

288
F

[1
0

3
Ge

V2 ]

(u, u), color-nonsinglet, unpolarized, intrinsic part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.000

0.025

0.050

0.075

0.100

0.125

-x
1x

288
F

[1
0

3
Ge

V2 ]

(u, u), color-nonsinglet, longit. polarized, intrinsic part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.0

0.1

0.2

0.3

0.4

0.5

-x
1x

288
F

[1
0

4
Ge

V2 ]

(u, u), color-nonsinglet, unpolarized, splitting part

NLL
NLL'
N2LL

0.01 0.05 0.1 0.2 0.5
z2 [GeV 1]

0.00

0.05

0.10

-x
1x

288
F

[1
0

6
Ge

V2 ]

(u, u), color-nonsinglet, longit. polarized, splitting part

NLL
NLL'
N2LL

Figure 3.8: The same as in Fig. 3.7, but for (x1, x2) ≈ (0.124, 3.1× 10−4).



Position-dependent DTMDs and the error estimation 47

For completeness, let us present the comparison between y-dependence of singlet and
non-singlet parton distributions in Figs. 3.9 and 3.10 for

|z1| = |z2| = 0.1 GeV−1 , (3.60)

for the same kinematics as in the previous part, at equal values of x1, x2, and
for unpolarized distributions. The qualitative behavior of DPDs is analogous for
asymmetric momenta fractions and longitudinal polarizations. For clarity of presentation,
these are plotted on a logarithmic scale in y = |y|, and multiplied by the measure
factor1 y. It is clearly seen that the singlet intrinsic part contributes mostly for non-
perturbatively large y. In the case of the splitting color-singlet contribution one observes
that in the case parton pairs which are not generated by the leading-order PDF-DPDF
splitting, but rather by the further DGLAP evolution, the regions of large- and small-
y give comparable contributions. In the case of qq̄ pairs produced directly by gluon
splitting, the short-y region is the dominant one due to the 1/y2 splitting factor. The
color non-singlet parton distributions are mostly contained in the region of |y| < bmax

due to strong effects of rapidity evolution, as discussed at the end of Section 3.5.
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Figure 3.9: DTMD multiplied by y for parton pair (u, u) at fixed (z1, z2).

1Since
∫
y dy F F̄ =

∫
d(log y)(yF )(yF̄ ), we find such scaling on the logarithmic grid to give the

best visual assessment of the relative size of the contribution to the cross-section from different regions
in y.
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Figure 3.10: The same as in Figure 3.9, but for quarks (u, ū).



Chapter 4

DTMDs at small transverse
distances

In this part, we discuss the description of double parton distributions in the region
where all transverse distances are perturbatively small |y|, |z1|, |z2| ≪ Λ−1. In Section
4.1 we present the decomposition of DTMDs at short distances as introduced in [69]. In
Section 4.1.1 we describe the coordinate system used in the computation. We discuss
the choice of the matching scales in Section 4.1.2, and in Section 4.2 we discuss the
short-distance expansion of the Collins-Soper kernel. Numerical results together with
the discussion of the scale choice and comparison with parton distributions obtained in
the previous chapter are presented in Section 4.3. Finally, in Section 4.3.1 we address
the problem of extrapolating DTMDs to large and small (≲ Q−1) transverse distances,
which will become crucial in the computation of cross-sections.

4.1 Short-distance expansion

According to [69], Section 3.3, transverse momentum-dependent DPDs in position space
at small transverse distances can be expanded in 3 terms:

R1R2F = R1R2Fspl. +
R1R2Ftw.3 +

R1R2Fintr. , (4.1)

constructed using matrix elements of twist-two, twist-three and twist-four operators
respectively, just as in the case of the collinear distributions discussed in Section 3.3.

The first term described the perturbative splitting of a single parton a0 into a pair
a1, a2 – the leading-order graph for two quark distributions is presented in Fig. 4.1. The
LO formulas for the splitting kernels can be found in Section 7.4 of [56]. For a detailed
derivation see Section 5.2 in [22]. The new result of this work is a computation of the
mass-dependent splitting formula for gluon to quarks splitting for the configurations of
polarizations relevant to this work. Here we present the results for both massless- and

49
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y + 1
2z1

1
2z2 y − 1

2z1− 1
2z2

Figure 4.1: Leading-order contribution to the splitting part of DTMD. Shown are the
transverse positions of the considered partons. The rectangular box indicates that
the splitting is collinear and thus the presented graph contributes to double parton
distribution.

mass-dependent cases. The mass-dependent splitting formula is derived by including
the masses in quark propagators in the derivation presented in Section 5.2.2 in [22].

The splitting contribution for massless quarks reads:

R1R2Fa1a2,spl =
yl
+y

l′
−

y2
+y

2
−

αS(µ)

2π2
R1R2T ll′

g→a1a2

( x1
x1 + x2

)fg(x1 + x2;µ)

x1 + x2
, (4.2)

where

y± = y ± 1

2
(z1 − z2) , (4.3)

and the indices l, l′ pertain to the tranvserse components: l, l′ ∈ {1, 2}. Indices a1, a2
encode both the flavor of the pairs (a1 and a2 are charge-conjugate) and polarizations
of each quark independently. fg is the gluon PDF.

The quark splitting kernels for the scalar distributions are given by

11T ll′

g→qq̄(u) = −11T ll′

g→∆q∆q̄(u) = TF
(
u2 + ū2

)
δll

′
, u =

x1
x1 + x2

. (4.4)

∆ denotes the longitudinal polarization of the parton. Since the hadron is assumed
unpolarized, there is no splitting of longitudinally polarized PDFs into DTMDs.
Contrary to the collinear case, there are also non-vanishing pseudoscalar distributions
with one parton unpolarized and the other longitudinally polarized:

11T ll′

g→∆qq̄(u) = −11T ll′

g→q∆q̄(u) = −iTF (u− ū)εll
′
. (4.5)

εll
′
is the transverse antisymmetric tensor. We take ε12 = +1, so that

yi
+y

j
−ε

ij = y+y− sin∠(y+,y−) . (4.6)
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The color-octet part is obtained simply by multiplication by a color factor:

88T ll′

g→qq̄(u) = −88T ll′

g→∆q∆q̄(u) = −
1√

N2 − 1
11T ll′

g→qq̄(u),

88T ll′

g→∆qq̄(u) = −88T ll′

g→q∆q̄(u) = −
1√

N2 − 1
11T ll′

g→∆qq̄(u) . (4.7)

To write the mass-dependent splitting formula, let us define

Kn(M,y+,y−) =
(
|y+|M

)
Kn

(
|y+|M

)
×
(
|y−|M

)
Kn

(
|y−|M

)
, for n = 0, 1 . (4.8)

Kn is the modified Bessel function of the second kind. With this notation, in the
mass-dependent case we obtain

R1R2Fa1a2,spl =
αS(µ)

2π2

fa0(x1 + x2;µ)

x1 + x2

yl
+y

l′
−

y2
+y

2
−

×
[
R1R2T ll′

g→a1a2

( x1
x1 + x2

)
K1(M,y+,y−) + δll

′
c(R1R2)K0(M,y+,y−)

]
(4.9)

for scalar distributions (that is: a1a2 = QQ̄, ∆Q∆Q̄, where Q is the massive quark),
with the color factors:

c(11) = 1 , c(88) = − 1√
N2 − 1

, (4.10)

and

R1R2Fa1a2,spl =
αS(µ)

2π2

fa0(x1 + x2;µ)

x1 + x2

yl
+y

l′
−

y2
+y

2
−

R1R2T ll′

g→a1a2

( x1
x1 + x2

)
K1(M,y+,y−)

(4.11)

for pseudoscalars Q∆Q̄, ∆QQ̄ (in this case the splitting kernels are simply multiplied
my a mass-dependent factor).

As will be apparent from the flavor structure of DPDs in the cross-section formula
given in Section 5.1.2, at the lowest order in αS the short-distance splitting part does
not contribute to the production of like-sign W bosons. The relevant terms appear at
order α2

S, and are presented in Fig. 4.2. The argument for neglecting the twist-three
part given in the case of collinear double parton distributions in Section 3.3 does not
hold in the transverse momentum-dependent case, since orbital momentum can balance
the parton helicities [69]. However, as seen from the graphs given in Fig. 4.3, and the
flavor structure of the cross-section given in Section 5.1.2, in the considered order the
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Figure 4.2: The lowest order (α2
S) splitting contribution to DTMDs contributing to the

production of a like-sign W pair.
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Figure 4.3: Contribution to DTMD from the perturbative splitting of twist-three TMDs.

twist-three part does not contribute to the production of like-sign W pair, just like
the splitting part. It should be included in the full analysis of the opposite-sign W
production, especially in the context of DPS/SPS subtraction, which is beyond the
scope of this work. It will be only briefly introduced for completeness since it appears
later in the context of subtractions between DPS and SPS. The relevant graphs are
shown in Fig. 4.3. Based on the same reasoning as in the splitting part discussed
before, at small transverse momenta the graphs in Fig. 4.3 are treated as contributions
to double parton scattering, and are used in the subtraction formula presented in [69],
and described briefly in Section 2.4. This is however beyond the scope of this work,
and will not be considered in the presented analysis.

The last term, called the intrinsic part involves terms with no perturbative splitting
and can be written

R1R2Fa1a2,int. =
R1R2Ga1a2(xi;µ0) +O(α1

S) , (4.12)

where R1R2Ga1a2 is a quasipartonic collinear twist-four distribution, and the higher-order
corrections are given in terms of a convolution of G with perturbative splitting kernels,
obtained from corrections presented in Fig. 4.4. These kernels are currently unknown,
and in our analysis, we are limited to the leading-order approximation. At the leading
order, the short-distance intrinsic part is obtained by taking the limit of vanishing
transverse distances in the matrix element defining double parton distributions, cf.
Section 2.3. The limit should be taken before renormalization, therefore at higher
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u1 u2 u4u3

x1 x2 x2 x1

Figure 4.4: NLO corrections to twist-4 DTMDs. xi and ui denote the longitudinal
momenta fractions.

pQCD orders the limit of vanishing distances of (4.12) is different than the y → 0 limit
of the collinear intrinsic part.

As in the previous part, we consider DTMDs with nf = 5 active quarks, and we
take the mass-dependent splitting formula for the bottom quark.

4.1.1 Choice of coordinates

The natural distances appearing in the splitting formulas in Section 4.1 are y±, so one
may find it useful to perform the computation taking as the coordinates the lengths
y+,y+, a sum z+ = 1

2
(z1+z2), and the angles between these vectors. As will be discussed

in App. F, this would introduce serious complications in the numerical computation of
the differential cross section, due to appearance of a triple Hankel transform in the
formula. DPS is most naturally described in terms of individual momenta qi of the
produced bosons, since both hard scattering processes are independent. The description
in terms of momenta combinations q± = 1

2
(q1 + q2) is explained in App. F. For this

reason, we will use the distances y, z1, z2 just like in the large-y part. It remains to fix
the angular coordinates. The first will describe the angle between z1 and z2:

φz ≡ ∠(z1, z2) =⇒ z1 · z2 = |z1| |z2| cosφz . (4.13)

It allows to compute the length of the relevant combinations of z1, z2:

z± =
1

2

(
z1 ± z2

)
, (4.14)

z2± =
1

4

(
z21 + z22 ± 2|z1| |z2| cosφz

)
. (4.15)
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Figure 4.5: Transverse distances describing DTMDs and the corresponding angular
coordinates.

Due to rotation invariance of the cross-section formula in Eq. (2.67), see also Eq. (5.90),
there remains only one angle to be fixed. We found that the cut-off on distances |y±|
is conveniently enforced if one takes as the last coordinate the angle between z− and y:

φy ≡ ∠(z−,y) =⇒ y · z− = |y| |z−| cosφy . (4.16)

In the special case where |z1−z2| = 0, we set the coordinate system in such a way that
the angle between the vector êx and the vectors z1 = z2 (identical in that case) equals
π, and we define the angle φy with respect to êx as

φy = ∠(êx,y) if z− = 0 . (4.17)

The total information about interpartonic distances is therefore encoded by 5 variables:(
|y|, |z1|, |z2|, φz, φy

)
. The use coordinates are described in Fig. 4.5. As discussed in

Section 4.2, the short-distance Collins-Soper kernel depends also on the combinations
of y and z+ given by

v± = y ± z+ . (4.18)

The length of z± is easily obtained using the given coordinates. The angle between z+
and y is given by

∠(z+,y) =

∠(z−,y)− arccos
z21−z22

4|z+| |z−| ∠(z1, z2) ∈ [0, π]

∠(z−,y) + arccos
z21−z22

4|z+| |z−| − 2π ∠(z1, z2) ∈ (π, 2π)
; (4.19)

It can be obtained by computing ∠(z−, z+) = ∠(z−,y)− ∠(z+,y) using the relation

z+ · z− = |z+| |z−| cos∠(z+, z−) =
1

4

(
z21 − z22

)
, (4.20)

∠(z−, z+) =

arccos
z21−z22

4|z+| |z−| ∠(z1, z2) ∈ [0, π]

2π − arccos
z21−z22

4|z+| |z−| ∠(z1, z2) ∈ (π, 2π)
. (4.21)



Collins-Soper kernel at small transverse distances 55

4.1.2 Matching scales

The initial conditions for short-distance DTMDs are formulated at a single factorization
scale µ0, contrary to the large-y case, where we used different scales for each parton. The
question of the natural choice of the scale in this case is more involved than in Chapter 3,
since here one has three two-dimensional transverse vectors forming numerous distance
combinations, which enter the perturbative corrections. Since the short-distance region
is constructed for the case |y| ∼ |zi|, we will fix the initial scales depending only on the
distances z1, z2. Our choice is

µ0 =
b0

1
2

(
|z∗1|+ |z∗2|

) , ξ0 = µ2
0 . (4.22)

This choice guarantees that the matching scales are of order |qT | in the most relevant
regions, while also allowing for a smooth extrapolation to larger distances. Moreover,
we found that it allows for better consistency between the two DTMD approximations
in the region where the “large-y” and “short-distance” approximations overlap. This
will be discussed in more detail in Section 5.2.1.

The uncertainty due to the scale variation will be estimated by modifying the scale µ0

with the parameter κ, analogously to Eq. (3.56):

µ0,κ = κ
b0

1
2

(
|z∗1|+ |z∗2|

) + (1− κ) µmin . (4.23)

4.2 Collins-Soper kernel at small transverse distances

As noted in Section 2.3.6, when all transverse distances are small, the Collins-Soper
kernel of DTMDs can be computed using perturbation theory. Contrary to the collinear
case, the soft factor defined in Section 2.3.2 is non-diagonal in color representations,
and therefore the rapidity evolution kernels form a matrix in the color representation
space.

In this work we focus on two quark DPDs. The short-distance Collins-Soper kernel for
two gluon, and quark+gluon DPDs can be found in Section 7.2 in [56].
The two quark kernel represented as a matrix has entries corresponding to

R1R2,R3R4M =


[
R1R1 = R3R4 = 11

] [
R1R2 = 11, R3R4 = 88

]
[
R1R2 = 88, R3R4 = 11

] [
R1R1 = R3R4 = 88

]
 .

(4.24)
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The short-distance Collins-Soper kernel for a two-quark1 DTMD can be written as
a sum of a color-diagonal term, which consists of standard TMD rapidity evolution
kernels, and a non-diagonal part Mqq, which is scale-independent:

R1R2,R3R4Kqq

(
zi,y;µ

)
=
[
1Kq(zi;µ) +

1Kq(z2;µ)
]
δR1R2,R3R4 +

R1R2,R3R4Mqq(zi,y) ,
(4.25)

where

R1R2,R3R4Mqq(zi,y) =

 0
√
N2−1
2N

Kd

√
N2−1
2N

Kd −N
2
Ky − 1

N
Kd

 . (4.26)

We recall that N = 3 denotes the number of colors. The kernels Ky, Kd up to α2
S

can be written with the help of quark TMD Collins-Soper kernels 1Kq. Define the
‘color-stripped’ kernels K0 as

1Kq(b;µ) = CF × K0(b;µ) , (4.27)

where CF = N2−1
2N

= 4
3
. Using K0, we can write the discussed terms as

Kd = K0

(
v+;µ

)
+K0

(
v−;µ

)
−K0

(
y+;µ

)
−K0

(
y−;µ

)
, (4.28)

Ky = K0(z1;µ) +K0(z2;µ)−K0

(
v+;µ

)
−K0

(
v−;µ

)
. (4.29)

This relation between the single-parton TMD Collins-Soper kernel, and DTMD rapidity
evolution kernel, holding up to α2

S [102], will be crucial in our construction of Collins-
Soper kernels extrapolated to large distances, as described later in Section 5.2.2.
The exponentiated non-diagonal part is

exp
[
LMqq

]
=

1

d+ − d−

 d+e
Ld− − d−eLd+

√
N2−1
2N

Kd

(
eLd+ − eLd−

)
√
N2−1
2N

Kd

(
eLd+ − eLd−

)
d+e

Ld+ − d−eLd−

 , (4.30)

where

d± =
1

N

[
− N2

2
Ky −Kd ±

√(N2

2
Ky +Kd

)2
+
(
N2 − 1

)
K2

d

]
. (4.31)

The parameter L in the exponential corresponds to 1
2
log ζ

ζ0
, so that, with our choice of

the scales, it is always larger or equal to 0. Moreover, let us notice that d+ is always
positive, and d− is negative, which is relevant in the discussion of the behavior of the
exponentiated kernels at vanishing transverse distances.

1By ‘two-quark’ we mean all configurations of quarks and antiquarks.



Collins-Soper kernel at small transverse distances 57

Vanishing transverse distances

The fixed-order perturbative expression of the color-stripped Collins-Soper kernel
defined in Eq. (4.27), reads

K0(b;µ) = log
b2µ2

b20
. (4.32)

The constant b0 is given in Eq. (3.13). When one of the transverse distance arguments
b in Eqs. (4.28)-(4.29) vanishes, then the value of d+ given in Eq. (4.31) diverges like
a power of log |b|−1, so that the exponential eLd+ has a power-law divergence, possibly
non-integrable, since the parameter

L = log
Q1Q2

ζ0

may become sufficiently large to make the integrals divergent2. It arises from the
resummation of the perturbative corrections in the region of transverse distances
corresponding to large momentum scales where the factorization formalism is no longer
motivated, and therefore should not be considered a physical effect. The problem is
partially cured by resumming each term K0(b;µ) independently, according to

K0(b;µ) = K0(b;µb)−
∫ µ

µb

dµ′

µ′ γK,0(µ
′) . (4.33)

The ‘color-stripped’ anomalous dimension is obtained from the γK,q of the quark TMD
kernel:

γK,0 =
1

CF

γK,q . (4.34)

Computing the Collins-Soper kernels in Eq. (4.28)-(4.29) at scales associated with the
distance b, and then evolving it to some common scale µ using the RGE of the kernel
one obtains

Kres.
d = Kpt

0 (v+;µv+) +Kpt
0 (v−;µv−)−Kpt

0 (y+;µy+)−Kpt
0 (y−;µy−)

+

∫ µv+

µy+

dµ′

µ′ γK,0(µ
′) +

∫ µv−

µy−

dµ′

µ′ γK,0(µ
′) , (4.35)

Kres.
y = Kpt

0 (z1;µz1) +Kpt
0 (z2;µz2)−Kpt

0 (v+;µv+)−Kpt
0 (v−;µv−)

+

∫ µz1

µv+

dµ′

µ′ γK,0(µ
′) +

∫ µz2

µv−

dµ′

µ′ γK,0(µ
′) . (4.36)

2Notice that the exponentials eLd− vanish in the considered limit.
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The dependence on the auxiliary scale µ vanished, as it should. The index ′pt′ denotes
the kernel computed at fixed order in perturbation theory. Notice that at LO the
Collins-Soper kernel vanishes at the canonical scale. If one of the transverse distances
vanishes, then the resummed kernels in Eq. (4.33) diverge like a double logarithm – the
result at LO reads

Kpt
0

(
b, µ0

)
= − 4

β0
log

αS(µb)

αS(µ0)
≈ 4

β0
log
( β0
4π

log
µ2

Λ2
QCD

)
, (4.37)

where we used the LO running of the strong coupling constant,
and β0 = 11/3 CA − 2/3 nf . Depending on which of the relevant distances vanish, the
exponentiated kernel exhibits different behavior – let us take for example the singularity
at |v+| → 0. In that case, the term Ky is free of singularities, while Kd behaves like

Kd ∼
4

β0
log
( β0
4π

log
b20

v2
+Λ

2
QCD

)
. (4.38)

Since d± → ±∞, and L > 0, the exponentials eLd+ become the divergent terms, and
the exponentiated kernel diverges like

∼
(
log

b20
Λ2

QCDv
2
+

) 4N
β0

L
. (4.39)

On a 2-dimensional zi or y plane, the contribution to the integrals from the region
where any of the considered transverse distances is of order Q−1 is formally suppressed
by Q−2, however, the enhancement from the logarithmic divergence may lead to the
contribution being rather large. For the initial rapidity parameter ξ0 = (10 GeV)2,
hard scales equal to the W mass, and nf = 5 active flavors, the exponent in Eq. (4.39)
is about

4N

β0
L ≈ 6.5 . (4.40)

To estimate if the small measure of the discussed region is enough to suppress the
logarithmic behavior, let us integrate∫ Q−1

0

d2b
(
log

1

b2Λ2

)δ
=

π

Λ2
Γ
(
δ + 1, log

Q2

Λ2

)
≈ π

Q2

(
log

Q2

Λ2

)δ
. (4.41)

Γ(δ + 1, z) is the upper incomplete gamma function. The integral can be simply
computed by substitution t = log

(
1/(Λ2b2)

)
. For a high power of the logarithm,

the considered contribution may be significant. However, as pointed out before, for
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distances of sizes comparable with Q−1 the use of the Collins-Soper resummed formula,
even with RGE-improved kernels, is not justified. Therefore, we are free to regularize
the rapidity evolution kernels so that the discussed regions do not get strongly enhanced
by rapidity evolution. To achieve it, for the distance arguments of the Collins-Soper
kernels we shall take distances regularized from below:

b∗
UV = b

(
1 +

(
bmin/|b|

)4)−1/4

, (4.42)

which do not modify the value of the distances as |b| ≫ Q−1, but guarantee that the
lengths do not get smaller than bmin, and allow to avoid the problematic behavior of
the integrands in the later analysis.
Finally, the regularized kernels Kreg. present in Eq. (4.25) are computed as

Kreg. = Kres.
∣∣∣
b→b∗UV

, (4.43)

where b denotes all of the transverse lengths in the arguments, and the resummed form
of Kres. is given in Eq. (4.33).

In Fig. 4.6 we present 3 different components of the exponentiated full Collins-Soper
kernel (4.25):

R1R2,R3R4

[
exp

(
Kqq(zi,y)L

)]
= exp

[(
1Kq(z1;µ) +

1Kq(z2;µ)
)
L
]

× R1R2,R3R4

[
exp

(
Mqq(zi,y)L

)]
. (4.44)

The indices correspond to (R1R2, R3R4) ∈
{
(11, 11), (88, 88), (11, 88)

}
, and the results

are presented as functions of y = |y|. The transverse positions are defined by:

∠(y, z−) = 0 , ∠(z1, z2) ∈ {0, 0.5π, π} ,

|z1| =
1

2
|z2| = 0.2 GeV−1, |y| ∈ [0.01 GeV−1, 0.2 GeV−1] . (4.45)

The two off-diagonal elements of the matrix are equal. The renormalization and rapidity
scales µ0, ξ0 are taken according to Eq. (4.22). Presented are the results for 2 values of
the UV cut-off:

bmin,1 =
b0
MW

, bmin,2 =
b0

10MW

, (4.46)

so that we can illustrate the effects of short-distance regularization. The values of
φy, φz are chosen such that on the plots there are visible both |y−| = 0 and |v±| = 0
singularities. Notice that for most of the angular configurations, all of the relevant
transverse distances are far from zero, and the UV regularization has no effect.

For the considered value of the short-distance cut-off bmin,1 = b0/MW , let us focus
on the variation of the values of exponentiated kernels near the singular points, say, the
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region where the results for the 2 different regularizations visibly differ. We observe that
it is comparable with the difference between the values of the exponentiated kernels for
fixed |y| away from the singular point at different φz – for example compare how the
results differ at |y| = 0 (where all y±,v±, z1,2 are perturbative but much larger than
Q−1), depending on the value of the angle between z1 and z2. Therefore, we conclude
that even at the relatively small cut-off value bmin,1, the regularization removes the
pathological short-distance behavior to a sufficient extent, and therefore this value will
be adapted as the short-distance regulator.
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Figure 4.6: Three different components of exp
[
KL

]
as functions of y = |y|. In the

plots on the right, shown are the exponentiated kernels for the standard choice of the
parameter bmin. In the plots on the left, solid lines correspond to the previous settings,
while the dashed lines are the results for bmin = b0/(10MW ), illustrating the effect of
the short-distance regularization of the Collins-Soper kernels. Notice that for φz = 0
and π, where y, z+, z− are collinear for φy = 0, visible are peaks as |y| → |z−| and
|y| → |z+|, where either |y−| or |v±| approaches 0.
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4.3 Numerical results

As discussed in Section 4.1, we limit our analysis to NLL accuracy, taking the kernels
and anomalous dimensions orders according to Table 3.1. Plots of DTMDs in the short
distance approximation as a function of y = |y| for different angular configurations, cf.
Fig. 4.5, are presented in Figs. 4.7-4.14. We show the short-distance approximation of
double parton distributions with their error estimation bands obtained via variation of
the scales µ0, ξ0 according to Eq. (4.23). As previously, the considered values of the
parameters defining the scale variation is κ ∈ {0.5, 0.75, 1, 1.5, 2}. It should be noted
that the variation of the initial scales studied here is not equivalent to the variation of
the matching scale analyzed in Chapter 3, despite the overall similarity. This issue will
be discussed in more detail when combining both results in Section 5.6, in the context
of estimation of the total uncertainty.

DTMDs in this part are presented for equal lengths of z1 and z2. To illustrate
the change of sign of the splitting part due to the factor T ll′yj

+y
j′

−, in App. G.1 we
provide complementary plots for |z1| = 0.1 GeV−1, |z2| = 0.5GeV−1. The intrinsic part
depends on the angular coordinates only via short-distance rapidity evolution kernel,
as described in Section 4.2. As seen in the plots below, for a small value of φy (= 0.1π)
the φz-dependence can be visible, however, away from φy close to 0 or π, the variation
of the intrinsic part with the angle between z1, z2 becomes much weaker. On the other
hand, since φz determines the value of |z−|, and hence the position of the y± → 0
points, the dependence of the splitting part on this angle is much stronger, as seen in
Figs. 4.7, 4.8, and in App. G.1 . As will be shown in Section 5.4, the dependence of the
product of DTMDs on φz will introduce correlations between angles of the momenta
q1,q2 in the cross-section. In Section 5.5.2 we show that the angular dependence turns
out to be strong in channels involving DTMD splitting.

We observe in Figs. 4.7-4.8 and 4.11-4.13 that DTMDs in both approximations agree
reasonably well at large y, where validity regions of both approximations overlap. The
“large-y” DTMDs (at NLL, for the nominal matching scales) are shown using dashed
black lines for y > 0.25 GeV−1. Similarly to the previous Chapter, we see that in the
case of the intrinsic part, longitudinally polarized DTMDs are much smaller than the
unpolarized counterparts. At small y there is no suppression of the color-nonsinglet
part, however, whereas the singlet part tends to vary less rapidly with growing y, the
nonsinglet part becomes strongly suppressed in that region. The angular dependence
is more pronounced in the case of the splitting contributions due to the y±-dependent
prefactors in the splitting formula. For massless quarks one can observe the change of
sign of the splitting part of scalar distributions as y crosses the value |z−| due to the
change sign of the scalar product y+ · y+ – the example is given in Figs. G.6 and G.7
in Appendix G.1. In the case of massive quarks the position of zero crossing is changed
due to the presence of mass-dependent terms – the corresponding plots are shown in
Figs. G.2 and G.3 in the Appendix G. Moreover, for massive quark pair bb̄ we observe
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a rapid vanishing of the splitting contribution.
There is a strong suppression of the pseudoscalar part due to the prefactor in the

splitting formula (4.5), which is antisymmetric with respect to interchange x1 and x2
– in the region of asymmetric xi where that prefactor can be far from zero, the total
longitudinal momenta of the parent gluons in DTMDs of both left- and righ-moving
quarks become large, so that the splitting term is small. Moreover, at fixed z1, z2 the
function vanishes more rapidly with larger y due to the prefactor yj

+y
j′

−ε
jj′ .
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Figure 4.7: Unpolarized splitting part of the short-distance DTMDs at different ϕz (red,
green, blue lines) versus their counterparts in the large-y form at NLL (dotted black
line). On the left given is the result for ϕy = 0.1π, and on the right: for ϕy = 1

2
π.

Presented are distributions in the color-singlet representation.
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Figure 4.8: The same as in Fig. 4.7, but for color-nonsinglet representation.
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Figure 4.11: Unpolarized intrinsic part of the short-distance DTMDs at different ϕz

(red, green, blue lines) versus their counterparts in the large-y form at NLL (dotted
black line). Presented are distributions in the color-singlet representation. On the left
given is the result for ϕy = 0.1, and on the right: for ϕy =

1
2
π.
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Figure 4.12: The same as in Fig. 4.11, but for color-nonsinglet representation.
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Figure 4.13: The same as in Fig. 4.11, but for both quarks longitudinally polarized.
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Figure 4.14: The same as in Fig. 4.13, but for color-nonsinglet representation.

4.3.1 Extrapolation to large z

Formulating the short-distance approximation we assume

Q−1 ≪ |zi|, |y| ∼ |qT |−1 ≪ Λ−1, (4.47)

however, the product of parton distributions needs to be extrapolated to

|zi| ∈ (0,∞), |y| ∈ (0, ymax]. (4.48)

ymax is the maximal value of |y|, for which one includes the short-distance part in the
interpolation scheme, which will be described in Section 5.2.1. With our choice, it is
given by

ymax =
3

4
b0 GeV−1 ≈ 0.84 GeV−1. (4.49)

For |y| > ymax double parton distributions are described only in terms of the large-y
approximation, independently on the values of |zi|.

The short-distance approximation needs to be extrapolated to the region of large
zi, as we want to have continuous integrands in zi-space. The extrapolation scheme in
which we would replace

y→ y∗, zi → z∗i (4.50)

does not work here, since one can possibly encounter a situation where∣∣y∗ ± 1
2
(z∗1 ± z∗2)

∣∣ ≈ 0 for 1
2
|z1 ± z2| ≫ |y| . (4.51)

In such a situation one would encounter a spurious singularity |y±|, |v±| → 0 in the
Collins-Soper kernel, see the discussion in Section 4.2. For this reason, instead of the
regularization like in Eq. (4.50), we replace all of the distances in the perturbative part
of the rapidity evolution kernel by their *-regularized value:

b→ b∗ , b ∈ {y±, v±, z1,2} , (4.52)
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where b∗ is given in Eq. (3.14). This is similar to what is done in the UV-regularization
of the Collins-Soper kernels in Eq. (4.43), but it should be noted that there the short-
distance regularization is applied to both the perturbative and nonperturbative parts
of the kernel.

The extrapolated DTMDs will take the following form

R1R2Fab

(
y, zi, xi;µ0({z∗i }), ξ0/(x1x2)

)
= R1R2Fmodel

ab

(
y, zi, xi;µ0({z∗i }), ξ0/(x1x2)

)
FNP(xi, zi,y) , (4.53)

with the factor FNP taken the same as in the large-y part, cf. Eq. (3.45). As described
in Section 5.2.3, in the actual computation we take the function FNP depending only on
distances z1, z2, but not on the momenta fractions or y. The absence of y-dependence
in the fall-off factor in Eq. (4.53) implies that DTMDs formulated in the short-distance
part do not vanish at large y as quickly as those in the large-y model, where the large-
distance behavior is also controlled at the level of DPDFs. However, as will be discussed
in Section 5.2.1, Eq. (4.49), the short-distance part does not need to be regularized at
large y, as it is considered for y smaller than some upper bound ymax not too far from
the perturbative region.



Chapter 5

Differential cross-section of W pair
production

After the analysis of DTMDs in the large-y and short-distance approximations in
Chapters 3 and 4, we are ready to present the results concerning a specific process,
namely the production of two W bosons decaying into leptons in the double Drell-Yan
(DDY) process, schematically:

p(p) + p(p̄) −→ W±(q1)W
±(q2) +X −→ l1ν1 + l2ν2 +X , (5.1)

where li and νi are the lepton (antilepton) and the corresponding antineutrino (neutrino)
into which a given boson W− (W+) decays. Momenta of the particles are indicated
in parentheses. We will be particularly interested in the case of like-sign W pairs
production, which was studied in several previous works [51–57], and is believed to be
a promising channel for the study of double parton scattering.

The mass of W , its decay width ΓW , weak mixing angle θW , and the CKM matrix
elements are taken according to [103]:

MW = 80.377 GeV, ΓW = 2.089 GeV , sin2 θW = 0.23121 . (5.2)

The absolute values of the CKM matrix elements are taken as:
0.97373 0.2243 0.00382

0.221 0.975 0.0408

0.0086 0.0415 1.014

 (5.3)

We use only the leading-order expression in weak interactions, and the fine-structure
constant at W mass scale is taken as:

α(MW ) =
1

128
. (5.4)

68
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Figure 5.1: From the left: 2v2, 1v1 and 1v2 contributions to double parton scattering.

As described in the previous part, we decompose each DTMD into the intrinsic
and splitting part, so in a product of two DTMDs one can distinguish 3 kinds of
contributions, denoted ‘nvm’ (read “n versus m”):

� 2v2 – product of two intrinsic parts,

� 1v1 – product of two splitting parts,

� 2v1(+1v2) for the mixed terms.

The corresponding ‘nvm’ terms are presented schematically in Fig. 5.1.

5.1 Differential cross-section of the Double Drell-

Yan process

In this section, we describe the formula for the differential cross section ofW bosons pair
production via double parton scattering. In Section 5.1.1 we introduce the reference
frame in which the angular variables of the product, leptons are defined. In Section
5.1.2 we give the formula for the fully differential cross cross-section, and describe,
how it is integrated with respect to different variables. Section 5.2 deals with the
non-perturbative input in the discussed model.

After that, in Section 5.3 we present the quantitative analysis of the contribution
of the large-y part, and in Section 5.4 – the short-distance region. In Section 5.6 we
combine both contributions, and discuss the final results.

5.1.1 Reference frames

The reference frames are defined according to Section 2.2 of [53], which uses the Collins-
Soper frame [11]. We start from the center-of-mass system of the colliding protons. Let
Z be the axis pointing in the direction of the collision. The corresponding vector can
be expressed as

Zµ =
1√
2p · p̄

(
p− p̄

)µ
. (5.5)
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The remaining axes X and Y can be chosen arbitrarily.
A significant simplification of the cross-section formula can be achieved if one

expresses the hard part using momenta in the center-of-mass frames of the produced
boson, which will be presented now. In the rest frame of the produced boson Wi, the
vector Zi is defined by

Zµ
i =

1

2

√
Q2

i + q2i

[ pµ

p · qi
− p̄µ

p̄ · qi

]µ
, (5.6)

and Xi is obtained by transforming the vector X according to

Xµ
i =

1√
1 +

(
X · qi

)2
/Q2

i

[
Xµ − X · qi

Q2
i

qµi

]
. (5.7)

Notice that replacing Xi with the vector X results in corrections of order q2
i /Q

2
i , which

in the considered regime is a subleading term. Polar and azimuthal angles θi and ϕi of
the momentum of lepton li in the rest frame of the decaying boson Wi are defined with
respect to Zi and Xi as shown in Fig. 5.2. For the antilepton, one defines those angles
with respect to minus its momentum, as indicated by the dashed line in the figure.

p
p̄

lepton plane

θi

ϕi

li

l̄i

Zi

Xi

Figure 5.2: Definitions of the lepton’s decay angles in the rest frame of the corresponding
W boson. Red arrows represent the momenta of the incoming protons. The Zi axis
is the collision axis, and it bisects the angle between the spatial components of the
protons’ momenta p and −p̄. The axis Xi is defined with respect to some fixed spatial
direction, and in general, the protons’ momenta are not contained in the XiZi plane.
The polar angle θi is defined with respect to the Zi axis, and the azimuthal angle ϕi

with respect to Xi. In the case of antilepton production, the angles are defined using
minus its momentum, as represented in the picture.

5.1.2 Differential cross-section formula

The fully differential cross section of W pairs production via Drell-Yan depends on
momenta fractions x1,2, x̄1,2 of the active partons, transverse momenta of produced
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bosons q1,2, and the decay angles of the leptons discussed in Section 5.1.1. The
differential cross-section is written as

dσDPS∏
i dxidx̄idqidΩi

=
1

C

∑
a1,...,4

∑
R1R2=11,88

dσ̂a1a3
dΩ1

dσ̂a2a4
dΩ2∫

d2z1
(2π)2

e−iz1q1

∫
d2z2
(2π)2

e−iz2q2

∫
d2y R1R2Fa1a2

R1R2F̄a3a4 ,

(5.8)

where dΩi = d(cos θi) dϕi.
The partonic cross-section can be decomposed into 2 parts, as explained in Section 3.2
in [54]:

dσ̂a1a2
dΩ

=
(
1 + cos2(θ)

)
Ka1a2(Q) + 2 cos(θ)K ′

a1a2
(Q) . (5.9)

Using the relations betweenK andK ′ for all of the considered polarizations, as discussed
in [53,54], one obtains a significant simplification of Formula (5.8):

dσDPS∏
i=1,2 dxidx̄id

2qidΩi

=
1

C

∑
RR=11,88

∑
q1,...,q4

Kq1q̄3(Q1)Kq2q̄4(Q2)

∫
d2z1
(2π)2

∫
d2z1
(2π)2

e−iz1q1−iz2q2

∫
d2y

×
{
(1 + cos θ1)

2 (1 + cos θ2)
2

×
(
Fq1q2 + F∆q1∆q2 − Fq1∆q2 − F∆q1q2

)(
F̄q̄3q̄4 + F̄∆q̄3∆q̄4 − F̄q̄3∆q̄4 − F̄∆q̄3q̄4

)
+ (1 + cos θ1)

2 (1− cos θ2)
2

×
(
Fq1q̄4 − F∆q1∆q̄4 + Fq1∆q̄4 − F∆q1q̄4

)(
F̄q̄3q2 − F̄∆q̄3∆q2 + F̄q̄3∆q2 − F̄∆q̄3q2

)
+ (1− cos θ1)

2 (1 + cos θ2)
2

×
(
Fq̄3q2 − F∆q̄3∆q2 − Fq̄3∆q2 + F∆q̄3q2

)(
F̄q1q̄4 − F̄∆q1∆q̄4 − F̄q1∆q̄4 + F̄∆q1q̄4

)
+ (1− cos θ1)

2 (1− cos θ2)
2

×
(
Fq̄3q̄4 + F∆q̄3∆q̄4 + Fq̄3∆q̄4 + F∆q̄3q̄4

)(
F̄q1q2 + F̄∆q1∆q2 + F̄q1∆q2 + F̄∆q1q2

)}
,

(5.10)

where we omit the color labels in DTMDs. q1, ..., q4 are active quark flavors. The hard
scattering factors Ka1a2 are given in App. E. Depending on the signs of cos θ1,2, we



72 Differential cross-section of W pair production

group the Eq. (5.90) into 4 parts:

dσ∏
i=1,2 dxidx̄id

2qidΩi

=

∫
d2z1
(2π)2

∫
d2z1
(2π)2

e−iz1q1−iz2q2

∫
d2y∑

σ1,2=±1

(
1 + σ1 cos θ1

)2(
1 + σ2 cos θ2

)2
wσ1σ2

(
z1, z2,y

)
.

(5.11)

The functions wσ1σ2 are defined as

wσ1σ2

(
z1, z2,y

)
=

1

C

∑
RR=11,88

∑
q1,...,q4

Kq1q̄3(Q1)Kq2q̄4(Q2) × DTMD product . (5.12)

The DTMD product for a fixed σ1σ2 pair can be read off from Eq. (5.10). Dependence
on arguments other than the distances zi,y in parenthesis is omitted. The integration
over d2y for the large-y part is straightforward. For the short-distance part more care is
needed because of the short-distance cut-offs – it is discussed in more detail in Section
5.4.1.
In the following part we will denote the length of a given transverse vector b using b
instead of |b|. Let us define functions Wσ1σ2 as

• for large-y:

Wσ1σ2(z1, z2) =
z1z2
(2π)2

∫
d2y wσ1σ2

(
z1, z2,y

)
Φ2(y) Σδ

(
y,max(z1, z2)

)
,

• for short-distance:

Wσ1σ2(z1, z2) =
z1z2
(2π)2

∫
d2y wσ1σ2

(
z1, z2,y

)
Φ(y+)Φ(y−)

(
1− Σδ

(
y,max(z1, z2)

))
.

(5.13)
Σδ is used to interpolate between the two regimes. Φ(y),Φ(y±) are the short-distance
cut-off functions used in the DGS subtraction scheme [69]. In this work, we take

Φ(y) = θ
(
|y| − ycut

)
, (5.14)

where θ(x) is a step function. The cut-off ycut is taken equal to bmin = b0/MW in the
large-y part. In the short-distance part it is varied, as will be described in Section 5.4.

The computation of oscillatory integrals over d2zi is performed by expressing them
in terms of Hankel transforms. For the integrals in the large-y region there is no angular
dependence in Wσ1σ2 , and one can perform the angular integrals in d2zi analytically,
and obtains

(5.11)
∣∣∣
large-y

=

∫ ∞

0

dz1

∫ ∞

0

dz2 J0(q1z1) J0(q2z2)∑
σ1,2=±1

(
1 + σ1 cos θ1

)2(
1 + σ2 cos θ2

)2
Wσ1σ2(z1, z2) . (5.15)
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On the other hand, in the short-distance region, one finds a non-trivial angular
dependence of the Wσ1σ2 term, as already was indicated by results for short-distance
DTMD in Section 4.3.

Due to rotation invariance, Wσ1σ2 depend only on the angle between z1 and z2.
Defining the polar angles ϕzi of the vectors zi on the transverse plane with respect to
some fixed axis we can write

Wσ1σ2(z1, z2) = Wσ1σ2

(
|z1|, |z2|, ϕz1 − ϕz2 ≡ φz

)
. (5.16)

As will be shown in Section 5.4.1, W±± is an even function of the angle φz, hence one
can expand

Wσ1σ2

(
|z1|, |z2|, φz

)
=
∑
n=0

cos(nφz)Wσ1σ2,n(z1, z2) . (5.17)

Using the relation ∫ 2π

0

dφz e
−iqz cosφz cos(nφz) = 2π(−i)n Jn(qz) , (5.18)

we obtain the expansion in the following form

(5.11)
∣∣∣
short-dist.

=
∞∑
n=0

cos
(
n(ϕq1 − ϕq2)

)
(−1)n

∫ ∞

0

dz1

∫ ∞

0

dz2 Jn(q1z1) Jn(q2z2)

×
∑

σ1,2=±1

(
1 + σ1 cos θ1

)2(
1 + σ2 cos θ2

)2
Wσ1σ2,n(z1, z2) . (5.19)

As will be shown in Section 5.5.2, the expansion (5.19) converges slowly with higher
Fourier modes, at least for opposite-sign W production. While the presented formula
might not be the most efficient way of determining the total angular dependence of
the cross-section, it allows us to compute the first Fourier modes with respect to the
angle between q1,q2. In particular, the 0-th mode allows us to make a comparison in
size with the large-y contribution, and analyze the effects of interpolation described in
Section 5.2.1.

The double Bessel integrals (called also double Hankel transform) as presented in
Eqs. (5.15) and (5.19) are computed using the modified Levin’s method described in
Section 2.5.2.

Switching variables from (x, x̄) to (Y,Q).
While the cross-section is conveniently computed using partons’ momenta fractions
xi, x̄i, the phenomenological analysis is easier performed in terms of the rapidity of a
produced boson, denoted Yi, and its momentum Qi. These variables are related by

Q2
i = xix̄is , (5.20)

xi =
Qi√
s
eYi , x̄i =

Qi√
s
e−Yi . (5.21)
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The Jacobian of the variable transformation is

∂(xi, x̄i)

∂(Qi, Yi)
=

2xix̄i
Qi

, (5.22)

so that

dσ∏
i=1,2 dQidYi

=
4x1x̄1x2x̄2
Q1Q2

dσ∏
i=1,2 dxidx̄i

∣∣∣
xi,x̄ given by (5.21)

. (5.23)

Integration over dQi

The hard scattering cross-section depends on Qi via the propagator

∝ 1(
Q2

i −M2
W

)2
+M2

WΓ2
W

. (5.24)

Using the narrow-width approximation, one takes

1

(Q2 −M2
W )2 − Γ2

WM
2
W

≈ π

2

1

ΓWM2
W

δ(Q−MW ) , (5.25)

so that

σ ≈
(π
2
ΓW

)2
× dσ

dQ1dQ2

∣∣∣
Q1=Q2=MW

. (5.26)

Integration over dΩi

There is no dependence on the leptonic polar angle, so the integration simply produces
a factor of 2π.
The integration over d cos θi gives the same result for all combination of signs of cos θi
as given in Formula (5.10), since∫ 1

−1

d cos θ
(
1± cos θ

)2
=

8

3
. (5.27)

Hence, the cross-section integrated over leptonic angles reads

dσ∏
i dQidYid2qi

=
(16π

3

)2 ∞∑
n=0

cos
(
n(ϕq1 − ϕq2)

)
(−1)n

×
∫ ∞

0

dz1

∫ ∞

0

dz2 Jn(q1z1) Jn(q2z2)
∑

σ1,2=±1

Wσ1σ2,n(z1, z2) .

(5.28)
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Integration over d2qi

Since in the region of |q| ∼ Q the TMD-factorization breaks, one cannot integrate
to arbitrarily large transverse momenta. Instead, we will consider the cross section
integrated up to some maximal value qmax ≥ |qi|. Integration over the angular
coordinates of q1,2 leads to the vanishing of the higher Fourier modes n ≥ 1 in Eq. (5.19),
so we need to consider only the integrals involving Bessel functions J0. Applying the
relation ∫

d2q J0(qz) =
2π

z
q J1(qz) , (5.29)

to either Eq. (5.15) or (5.19) we obtain

dσ

dq1dY1dY2

∣∣∣
q2≤qmax

=
4x1x2x̄1x̄2
Q1Q2

(16π
3

)2(
2π)2

(π
2
ΓW

)2
× qmax

∫
dz1 J0(q1z1)

∫
dz2 J1(qmaxz2)

∑
σ1,2=±1

1

z2
Wσ1σ2,0(z1, z2) , (5.30)

dσ

dY1dY2

∣∣∣
q1,q2≤qmax

=
4x1x2x̄1x̄2
Q1Q2

(16π
3

)2(
2π)2

(π
2
ΓW

)2
× q2max

∫
dz1 J1(qmaxz1)

∫
dz2 J1(qmaxz2)

∑
σ1,2=±1

1

z1z2
Wσ1σ2,0(z1, z2) , (5.31)

where we recall that qi = |qi|.

5.2 Non-perturbative input

Before proceeding, let us discuss the nonperturbative input that needs to be independently
modeled. This will not include the parametrization of the collinear double parton
distributions – we assume them to be given at the initial scales, and the uncertainties
due to DPDF modeling, other than from the Collins-Soper kernel, are not included in
this work.

5.2.1 Interpolating between two DTMD approximations

Approximations of DTMDs presented in Chapters 3 and 4 are valid in two regions:

� Perturbative DPDF-DTMD matching for |y| ≫ |zi|, |zi| ≪ Λ−1,

� Short-distance expansion for |y| ∼ |zi| ≪ Λ−1.
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There arise two natural questions:

1. There exists an overlap region, where all distances are perturbatively small, but
|y| is still much larger than |zi| – in this case, both approximations described in
Chapters 3 and 4 are valid. How to interpolate in that case?

2. In both regions it is assumed that zi is perturbatively small. How to extrapolate
to larger distances, and in particular, how to combine the extrapolated large-y
and short-distance terms?

Our interpolation scheme will be constructed using two variables: y = |y|, and the
largest value of the pair |z1|, |z2|, denoted as

z = max
(
|z1|, |z2|

)
. (5.32)

Let us describe the construction of the interpolation scheme on the y× z plane used in
this work. This will be done in 3 steps – first, we will discuss the case when at least one
of the discussed expressions for DTMD can be treated as not extrapolated. Then, we
consider the case where z is still perturbative, but the assumptions necessary for both
approximations break. Finally, we extend the interpolation scheme to the remainder of
the phase space.

Non-extrapolated approximation
First, we will establish in which regions the considered approximations may be regarded
as valid and not requiring extrapolation. The obvious bound for both large-y and short-
distance approximations is

z ≤ bmax , (5.33)

where

bmax =
1

2
b0 GeV−1 ≈ 0.56 GeV−1 . (5.34)

Let us choose a parameter δ such that

0 < δ <
1

2
. (5.35)

We shall use the large-y approximation, whenever

δ y ≥ z , (5.36)

even for nonperturbatively large z – in that case we extrapolate DTMDs according to
Section 3.5.

In the computation of the short-distance term, one encounters distance combinations
y±,v± defined in Section 4.1.1, which should be no larger than bmax for the perturbative
expansion to be valid. It is easy to check that if

y +
1

2
z > bmax =⇒ z > 2

(
bmax − y

)
, (5.37)
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z

y

Figure 5.3: Partition of the y×z plane in the region – first step. Green color corresponds
to the short-distance approximation, blue to the large-y, and in the yellow triangle one
interpolates between the two formulas.

then for any value of the angle φz, defined in Eqs. (4.13), there exist such values of φy,
see Eq. (4.16), that at least one of the distances y±,v± becomes larger than bmax. To
see this, notice that if at least one of z1, z2 is larger than z, then the length of one of the
combinations z± must be at least as large as z/2, which follows from triangle inequality
|z+|+ |z−| ≥ |z1,2|. Then, by taking y parallel to z+ or z− one gets the required result.
For this reason, the necessary condition for the short-distance expansion to be valid is

z ≤ bmax and z ≤ 2
(
bmax − y

)
. (5.38)

Notice that this is a necessary, but not sufficient condition – even if Eq. (5.38) is
fulfilled, there still may exist such angular configurations that some of the discussed
distances become large. However, including such a situation in the interpolation scheme
would require constructing an interpolating function depending on all components of
z1, z2,y, which would greatly complicate the computation.

Inside of the region of such (y, z) that fulfill Eq. (5.38), we will use only the short-
distance approximation of DTMDs, if

z ≤ 1

2
y . (5.39)

For the intermediate y in this region, which is too small to use the large-y approximation
only, that is

δy < z <
1

2
y , (5.40)

we will interpolate between the two DTMD forms. In Fig. 5.3 we present the division
of the y × z plane defined so far.
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z

y

Figure 5.4: Partition of the y × z plane in the region – second step. The lighter blue
color indicates that in the corresponding region one uses the large-y form of DTMD,
despite the fact that δ y ≤ z, that is outside of the primary region of the validity of the
approximation.

Perturbative z
In the next step, we consider the region of perturbative z ≤ bmax, where the assumptions
of both of the described approximations of DTMD are not valid, so that neither
Eq. (5.36) or (5.38) applies. We continue the construction of the interpolating function
by defining the boundaries of the regions, where only one DTMD form is used – for
reference see Fig. 5.4. It is straightforward for the short-distance region (in green),
defined already in the previous step by Eq. (5.38). On the other hand, limiting the
large-y region to δy > z up to z ≤ bmax would require using the extrapolated short-
distance form for y as large as 1

δ
bmax > 1GeV−1. To avoid this, we will construct the

interpolation region in such a way that for

y ≥ 3

2
bmax =

3

4
b0 ≈ 0.84 GeV−1 (5.41)

we use only the large-y approximation, possibly extrapolated in zi. The “large-y”
condition δy > z in Eq. (5.36) was applied in the region defined by Eq. (5.38), where
also the short-distance approximation is valid. For (z, y) outside of the perturbative
region, we relax this condition by applying the “large-y” approximation for(

y − 2bmax

2 + δ

)(
1− 2bmaxδ

2 + δ

)
≥
(
z − 2δbmax

2 + δ

)(3
2
− 2bmax

2 + δ

)
, (5.42)

if Eq. (5.38) is not fulfilled and z < bmax. It is chosen in such way, that for z = bmax

one uses only the large-y form of DTMDs already at y ≥ 3
2
bmax. The resulting shape of

the interpolation region constructed so far is presented in Fig. 5.4.



Non-perturbative input 79

z

y

Figure 5.5: Interpolation between the short-distance and large-y approximations of
DTMDs used in the computation of differential cross-section of W pairs production.
Green (blue) colors correspond to the regions when we use exclusively the short-distance
(large-y) form of DTMDs. Lighter colors are used to indicate that in some regions
the approximations are no longer strictly valid, and one needs to extrapolate in zi.
In the yellow region we interpolate between the two (possibly extrapolated) DTMD
approximations.

The remaining part
Finally, to extend the discussed interpolation scheme to larger values of z, we take the
following division of the phase space:

if max(z1, z2) ≥ bmax :


large-y for y ≥ 3

2
bmax

short-distance for y ≤ 1
2
bmax

interpolate for 1
2
bmax < y < 3

2
bmax

. (5.43)

The resulting phase space is represented in Fig. 5.5.

Interpolating function
As seen in Fig. 5.5, for a fixed value of z there exist a pair of limiting values yL(z),
yR(z) that on the right of yR one uses only the large-y model, while for y < yL only
the short-distance part. Let us define the interpolating function Σδ (depending on a
parameter δ) according to

Σδ(y, z) =


1 y ≥ yR(z) ,

0 y ≤ yL(z) ,

ρ
(

y−yL
yR−yL

)
yL < y < yR .

(5.44)

The profile function ρ(x) should be such that ρ(x) = 0 for x = 0, and ρ(x) = 1 for
x = 1. Additionally, we require that the first and second derivatives vanish at the
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Figure 5.6: Function interpolating between the large-y and short-distance
approximation of DTMD on the y× z plane for the parameter δ ∈

{
3
12
, 4

12
, 5

12

}
. In the

region on the right of the white line (in blue), one uses only the large-y approximation,
while on the left of the black line (green region) – only the short-distance DTMD form.

endpoints. Our choice is

ρ(u) = sin2
(π
2
sin2

(
πx/2

))
. (5.45)

Let us notice that at fixed z the interpolating function is equal to 1
2
at y = 1

2
(yL + yR),

that is for y exactly in the middle of yL and yR. The cut-off functions Σδ on the y × z
plane for the values of δ considered in this analysis, which are

δ ∈
{ 3

12
,

4

12
,

5

12

}
, (5.46)

are shown in Fig. 5.6.
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5.2.2 Collins-Soper kernel at large distances

In this work, we consider a collection of Collins-Soper kernels: RKa,
RJ for |y| ≫ |zi|,

and R1R2R′
1R

′
2Kq(zi,y) for short distances, which govern the rapidity evolution of both

DTMDs and DPDFs, as described in Sections 2.3.4 and 2.3.5. The experimental data is
available only for the singlet quark kernel 1Kq [86–88,104], and recently the extraction
of the kernel from the lattice data also have been analyzed [105–107].

We build the Ansatz for all of the kernels based on two remarkable properties of
perturbative QCD, which hold up to O(α2

S) [108,109].

� The large-y kernels can be written using the ‘color-stripped’ kernel K0, defined
by the relation:

Kpt
0

(
b;µ

)
=

1

CF

1Kpt
q

(
b;µ

)
, (5.47)

as:

8Kpt
q

(
b;µ

)
= − 1

2N
Kpt

0

(
b;µ

)
,

RKpt
g

(
b;µ

)
= cg(R)K

pt
0

(
b;µ

)
,

cg(A) = cg(S) =
N

2
, cg(10) = 0, cg(27) = −1 ,

8Jpt
(
b;µ1, µ2

)
=
N

2

(
Kpt

0

(
b;µ1

)
+Kpt

0

(
b;µ2

))
,

RJpt
(
b;µ1, µ2

)
= cJ(R)

8Jpt
(
b;µ1, µ2

)
,

cJ(8) =
N

2
, cJ(10) = 3, cJ(27) = 4 . (5.48)

This is often referred to as Casimir scaling [108,109].

� The soft-factor, which has been computed perturbatively at small transverse
distances up to NNLO, up to order α2

S depends solely on terms obtained from
a gluon exchanged independently between pairs of Wilson lines [102], as in
Fig. 5.7. Exchanges involving 3 Wilson lines cancel between graphs with different
orientation of the Wilson lines, e.g. diagrams (a) and (b) in Fig. 5.7. At α3

S a new
type of correction appears due to graphs connecting 4 Wilson lines (quadruple
terms), see Fig. 5.7, graph (c).

Hence, the short-distance DTMD Collins-Soper kernel can be written up to
α2
S using the kernels K0(b;µ) depending on a single interparton distance as in
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(a) (b)

(c)

Figure 5.7: Feynman graphs relevant for the short-distance Collins-Soper kernel for
DPDs. For simplicity, we do not draw the cut line in the middle. (a) and (b) cancel
due to opposite signs. (c) is the example of a lowest-order contribution that cannot be
described in terms of the kernels K0 defined in (5.47).

Eqs. (5.49)-(5.50).

Kpt
qq

(
zi,y;µ

)
= CF

(
1Kpt(z1;µ) +

1Kpt(z2;µ)
)(1 0

0 1

)
+

(
0

√
N2−1
2N

Kd√
N2−1
2N

Kd −N
2
Ky − 1

N
Kd

)
,

(5.49)

where we recall from Section 4.2 that

Kpt
d = Kpt

0 (v+;µ) +Kpt
0 (v−;µ)−Kpt

0 (y+;µ)−Kpt
0 (y−;µ) ,

Kpt
y = Kpt

0 (z1;µ) +Kpt
0 (z2;µ)−Kpt

0 (v+;µ)−Kpt
0 (v−;µ) . (5.50)

Promoting the relations (5.48)-(5.49) to the full large-distance kernels (removing the
index ‘pt’), one reduces the problem of extrapolating all of the kernels to just a single
kernel.

The Ansatz for the singlet quark Collins-Soper kernel used to construct the remaining
ones using the discussed relations is given by

1Kq(b;µ) =
1Kpt

q (b∗;µ) + g(b) , (5.51)
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where g(b) is the nonperturbative part. The perturbative part at regularized distance
b∗ and arbitrary scale µ is obtained by first computing the fixed-order perturbative
expression at the b∗-dependent scale µb∗ , and then evolving to the scale µ using the
RGE equation of the Collins-Soper kernel:

1Kpt
q (b∗;µ) = 1Kpt

q (b∗;µb∗)−
∫ µ

µb∗

dµ′

µ′
1γK,q(µ

′) . (5.52)

The Collins-Soper kernels and their anomalous dimensions are given in App. B.

The results of the fits of g(b), together with the formulas for the *-prescription used in
the cited works are summarized below:

DPT24 g(b) = −1.89

2
f

(
0.094

1.89
GeV2 b2 +

0.007

1.89
GeV4 b4

)
b∗(b) = b0 f

(
x+ x3/2 + 3x5/8

)
, x = |b|/b0 ,

where f(x) = x/
√
1 + x2 .

(5.53)

ART23 g(b) = −
(
0.074 + 0.116 log

|b∗|
1.496 GeV−1

)
bb∗

b∗(b) =
b√

1 +
(
b/1.496 GeV−1

)2 , (5.54)

MAP22 g(b) = −0.031 b2

b∗(b) =
b√

1 +
(
b/1 GeV−1

)2 , (5.55)

SV19 g(b) = −0.085 bb∗

b∗(b) =
b√

1 +
(
b/1.93 GeV−1

)2 , (5.56)

for reference see [86–89].

Let us recall that the ∗-prescription used in this work is given by

b∗(b) = b

(
1−

(
bmin/|b|

)4
1−

(
|b|/bmax

)4)1/4

,

bmin =
b0

80.377 GeV
, bmin =

1

2
b0 GeV−1 . (5.57)
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Therefore, to use the Ansatz for the Collins-Soper kernel consistent with the ones
used in the cited works, we need to use function g(b) modified to account for the
different values of regularized distances computed using the *-prescription defined in
the considered model b∗

model, and the one used in this work, denoted as b∗:

g(b) = gmodel(b) + 1Kpt
(
b∗
model;µb∗

)
− 1Kpt

(
b∗;µb∗

)
. (5.58)

As discussed in Section 4.2, the perturbative part of the Collins-Soper kernel has a
singularity at vanishing transverse distances. Since *-prescriptions used in the other
works do not include the short-distance regularization, cf. Eqs. (5.53)-(5.56), using a
*-prescription that is not regularized at small distances in Eq. (5.58) would introduce
the logarithmic singularities in g(b). To avoid it, for all distances b we replace the full
Collins-Soper kernels K(b) with the kernels computed at distances regularized at small
values according to Eq. (4.42):

K
(
b∗
UV;µ

)
= Kpt

(
(b∗

UV)
∗;µ
)
+ g(b∗

UV) . (5.59)

We recall that b∗
UV(b) saturates at some minimal distance bmin as |b| → 0, and

approaches b if the distance is large. Notice that the distance argument of Kpt is
regularized twice – once only at short-distances using Eq. (4.42), and once using the
*-prescription in Eq. (5.57).

Plots of kernels 1Kq

(
b;µ = 2 GeV

)
for the considered models are shown in Fig. 5.8.
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Figure 5.8: Collins-Soper kernel 1Kq obtained using the considered models.
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5.2.3 Extrapolation to large zi

In TMD literature, one extrapolates single parton densities according to

fTMD

(
x, z;µ, ζ

)
= exp

(
K(z;µ) log

√
ζ√
ζ0

)
fpt
TMD

(
x, z∗;µ, ζ0

)
× f tmd

NP (|z|, x) . (5.60)

fpt
TMD denotes the TMD obtained by perturbative matching to a PDF. Assuming
DTMDs as a product of ordinary TMDs multiplied by some y-dependent function,
in analogy to the DPDF product model, as described in Section 3.3, one would get the
prefactor for double parton distributions FNP in the form

FNP(zi, xi) = f tmd
NP (|z1|, x1)× f tmd

NP (|z2|, x2) . (5.61)

In this analysis, we consider the simplest form of the nonperturbative prefactors that
does not depend on the momenta fractions or the parton flavors:

FNP(zi; r) = exp
(
− 1

2
(rλ)2

(
z21 + z22

))
, (5.62)

with fixed value of λ, and parameter r = O(1) used to estimate how much the shape of
the falloff actually affects the phenomenological predictions in the considered process.
Therefore, the product of DTMDs appearing in the computation of the cross-section
formula at large zi will behave like

FF̄
∣∣∣
large zi

∼ FNP(zi; r)
2 = exp

(
− (rλ)2 ×

(
z21 + z22

))
. (5.63)

To have some guidance from the results of TMD fits, we will compare the behavior of
Eq. (5.63) with large-z asymptotics that one would get using the product Ansatz of
Eq. (5.61), which is

FF̄
∣∣∣
large zi, (5.61)

∼
[
f tmd
NP (|z1|, x1)f tmd

NP (|z1|, x̄1)
]
×
[
f tmd
NP (|z2|, x2)f tmd

NP (|z2|, x̄2)
]
.

(5.64)

Therefore, to make a connection between the simple Gaussian prefactor used in this
analysis with the TMD product form, we need to compare

exp
(
− (rλ)2 z2

)
vs f tmd

NP (z, x)f tmd
NP (z, x̄) . (5.65)

Let us take the rapidity-dependent momenta fractions corresponding to the
production of W pairs at

√
s = 13 TeV:

x =
MW

13 TeV
eY , x̄ =

MW

13 TeV
e−Y , where

MW

13 TeV
≈ 6.2× 10−3 . (5.66)
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Figure 5.9: Comparison of falloff functions from different TMD models and the family
of falloffs defined in Eq. (5.62).

Y is the value of the rapidity of the produced boson. In Fig. 5.9 there is shown a family
of functions exp

(
− (rλ)2 z2

)
for

λ2 = 0.4 , r ∈ [0.5, 2] , (5.67)

compared against a product of nonperturbative TMD factors f tmd
NP (z, x)f tmd

NP (z, x̄) for
different models [86–88] at different values of rapidity Y . Notice that taking Y with
the opposite sign one obtains the same product of f tmd

NP (z, x)f tmd
NP (z, x̄). In the case of

ART23 model, f tmd
NP is presented for sea quarks. For up and down quark in this model,

the falloff gets closer to the one of SV19.

Large-z behavior of octet quark DTMDs

Scaling of the color-octet quark Collins-Soper kernel in (5.48) together with the
postulated large-distance behavior of the kernels derived from the results for the kernel
1Kq(z) implies that at large z the kernel 8Kq(z) becomes large and positive – in upper-
left panel of Fig. 5.10 presented are the resulting values of the kernel for different models.
This means that the rapidity evolution enhances the product of two octet double quark
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distributions in the cross section by a factor of

exp
(
8Kq(z, µ01) log

Q1Q2

ξ0

)
. (5.68)

This enhancement is visible even at perturbatively small z. Since our model of
extrapolation of the Collins-Soper kernel (based on Casimir scaling) is consistent with
this behavior, we do not modify the function g in this channel, and allow for large values
of the rapidity evolution factor (5.68), since the parton distributions eventually become
suppressed by the non-perturbative factor fNP, so that the sign of rapidity evolution
kernels does not make DPDs grow at very large distances. It is verified in Fig. (5.10),
where the values of the z-dependent octet quark Collins-Soper kernel, as well as the
products

exp
(
8Kq(z;µz∗) log

Q1Q2

ξ0

)
× exp

(
− (rλ)2z2

)
, (5.69)

are presented for Q1 = Q2 = MW , and ξ0 = µ2
min. = 4 GeV2. The choice of a minimal

value of ξ0 corresponds to y →∞, and maximizes the effects of rapidity evolution.

5.3 Large-y region

Recalling the results of Section 5.1.2, we have

dσDPS∏
i=1,2 dxidx̄id

2qidΩi

=

∫ ∞

0

z1
2π
dz1

∫ ∞

0

z2
2π
dz2 J0(q1z1) J0(q2z2)∑

σ1,2=±1

(
1 + σ1 cos θ1

)2(
1 + σ2 cos θ2

)2
Wσ1σ2(z1, z2) , (5.70)

where Wσ1σ2 is given in Eq. (5.13). The evolution of quark DTMDs does not depend
on polarizations. The product of two DTMDs in a definite color representation at the
final scales is given by

RRF
(
xi, zi,y;µi, ζ

)
RRF̄

(
x̄i, zi,y;µi, ζ̄

)
= exp

(
Sq

(
µ01, µ1, x1

√
ζ
)
+ Sq

(
µ01, µ1, x̄1

√
ζ
)

+ Sq

(
µ02, µ2, x2

√
ζ
)
+ Sq

(
µ02, µ2, x̄2

√
ζ
))

× exp

(
1

2

(
R1J(y;µ0i) +

R1Kq(z1;µ01) +
R2Kq(z2;µ02)

)(
log

x1x2ζ

ξ0
+ log

x̄1x̄2ζ̄

ξ0

))
× RRF pt

(
xi, z

∗
i ,y;µ0i, ξ0/(x1x2)

)
RRF̄ pt

(
x̄i, z

∗
i ,y;µi, ζ̄/(x̄1x̄2)

)
F 2
NP(z1, z2) .

(5.71)
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Figure 5.10: Upper-left: values of the kernel 8Kq(z;µz∗) for the considered models of
the Collins-Soper kernel. Upper-right: rapidity evolution exponential times the z-falloff
for the default choice of the falloff parameter r = 1, see Eq. (5.62). Lower: the same
product, but for minimal (r = 0.5) and maximal (r = 2) values of the falloff parameter.
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The exponentials in the second and third line are the Sudakov factors obtained by RGE
evolving the partons distributions from µ0i to the final scales. The factors from left-
and right- moving hadrons can be conveniently combined:

exp
(
Sq

(
µ01, µ1, x1

√
ζ
))
× exp

(
Sq

(
µ01, µ1, x̄1

√
ζ̄
))

= exp

(∫ µ1

µ01

dµ

µ

(
γq(µ)− γK,q log

x1
√
ζ

µ

)
+

∫ µ1

µ01

dµ

µ

(
γq(µ)− γK,q log

x̄1
√
ζ̄

µ

))
= exp

(
2

∫ µ1

µ01

dµ

µ

(
γq(µ)− γK,q log

Q1

µ

))
= exp

(
2 Sq

(
µ01, µ1, Q1

))
, (5.72)

and analogously for the second scale. To get this result one uses√
ζζ̄ = s, and xix̄is = Q2

i .

The logarithms in the rapidity evolution part (3rd line in (5.71)) can be combined into

1

2
log

x1x2ζ

ξ0
+

1

2
log

x̄1x̄2ζ̄

ξ0
= log

Q1Q2

ξ0
. (5.73)

Finally, one obtains the simplified form of a product of right- and left-moving hadron
DTMDs:

RRF
(
xi, z

∗
i ,y;µ0i, ξ0/(x1x2)

)
RRF

(
x̄i, z

∗
i ,y;µ0i, ξ0/(x̄1x̄2)

)
= RRF pt

(
xi, zi,y;µ0i, ξ0/(x1x2)

)
RRF pt

(
x̄i, zi,y;µ0i, ξ0/(x̄1x̄2)

)
× F 2

NP(z1, z2)

× exp
(
2Sa1

(
µ01, µ1, Q1

))
× exp

(
2Sa1

(
µ02, µ2, Q2

))
× exp

([
R1Ka1(z1;µ01) +

R2Ka2(z2;µ02) +
R1J(y;µ0i)

]
log

Q1Q2

ξ0

)
. (5.74)

Integration grids for |y|
In this part we describe grids in transverse position used in the integration. The settings
are taken based on the previous studies of DPDFs using ChiliPDF [71].
The grid in y = |y| is split into 2 subgrids:

1. Lower grid with limits [ b0
MW

,
1

2
b0 GeV−1 = bmin

]
. (5.75)
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The variable transformation on this subgrid is

u(y) = −y−0.2 . (5.76)

The number of grid points depends on the color representation. We take 16 points
for color singlet, and 24 points for color non-singlet. The motivation for taking
the larger number of gridpoints in the color non-singlet case is the fact, that due
to rapidity evolution effects, the first subgrid yields the dominant contribution
to the non-singlet sector of the final results, as can be already seen from DTMD
y-dependence plots in Figs. 3.9-3.10.

2. The upper subgrid with the limits[1
2
b0 GeV−1,∞

]
. (5.77)

The variable transformation is

u = − exp
(
−
(
m2 · y2 +m · y

)
/4
)
, m =

√
1

4hgg
GeV = 0.232 GeV . (5.78)

We take 16 points on this subgrid. The grid parameter is taken such that it assures
high integration precision for functions with Gaussian falloff ∝ exp

(
−y2/(4hgg)

)
,

see Eq. (3.27). The same settings were used in already existing studies [67].

Integration grids for |z1|, |z2|
The grids in z1,2 = |z1,2| are chosen such that one can precisely compute the Bessel
transform for a wide range of transverse momenta q, at least 0 < q ≤ 20 GeV. Based
on the analysis done in [1], for an integrand with the Gaussian large-z behavior:

W (z) ∼ exp
(
− (rλ)2 z2

)
, (5.79)

a relative accuracy better than 10−4 for q up to 100GeV is expected if one takes a grid
with variable transformation:

u = − exp
(
−mz/4

)
, (5.80)

with the grid parameter m such that

rλ

m
∈ [2, 8] . (5.81)

Since we are going to consider a family of functions FNP, for which the integrand (5.74)
behaves like in (5.79) with

λ =
√
0.4 GeV ≈ 0.634 GeV, r ∈ [0.5, 2] , (5.82)
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we find that the grid transformation that leads to precise computation of the required
Bessel transforms is given by

u = − exp
(
−
√
0.4 GeV × z

)
. (5.83)

This choice ensures that the relation (5.81) is fulfilled for all of the considered choices
of the function FNP. We recall that z is in units of GeV−1.
Results of [1] show also that a better accuracy is obtained when splitting the integration
grid into 2 subgrids – an appropriate choice was found to be[

0, 0.1 GeV−1, ∞
]
, (5.84)

with 24 points on the first, and 32 points on the second subgrid.

Finally, we summarize the default settings for the non-perturbative input, and the
procedure of estimation of the related model uncertainties.

� DPDF model – as described in Section 3.3. We treat the collinear double parton
distributions as given, and do not modify them in a way other than by changing
the non-perturbative part of the kernel RJ . In particular, this means that while
we vary the function FNP(z), the y-dependent prefactors given in Section 3.3 are
fixed in the whole analysis.

� Switching between the large-y and short-distance forms of DTMDs in the zi × y
space is described in Section 5.2.1, with the interpolating function controlled by
the parameter δ, see Eq. (5.6). Our default choice is δ = 4

12
.

� Collins-Soper kernels – our default choice is DPT24, given in Eq. (5.53), cf. [89].
To estimate the uncertainties due to the non-perturbative part of the kernels, we
repeat the computation for the remaining models given in (5.54)-(5.56).

� Matching kernels – to estimate the impact of higher-order QCD corrections to
the matching kernels, we vary the matching scales µ0i(zi) according to Eq. (3.56).
Contrary to the scale variation in the case of DTMD studies, we take only 3 values
of κ:

κ ∈ {0.5, 1, 2} , (5.85)

omitting the intermediate values κ = 0.75, 1.5. The central value κ = 1 is the
default setting.

� Large-z behavior – we consider a family of the large-distance factors FNP(z1, z2)
as

FNP(z1, z2) = exp
(
− 1

2
(rλ)2 (z21 + z22)

)
, (5.86)

with λ =
√
0.4 GeV, and r ∈ [0.5, 2]. The default choice is r = 1.
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5.3.1 Differential cross section – perturbative uncertainty at
different orders

First, let us compare the differential cross-sections at NLL and NNLL accuracies for
default settings. The objective of this exercise is to investigate, how the higher-order
corrections change the result, compare the variations with the uncertainty estimates
obtained by the matching-scale variation, and verify if the error estimates become
smaller at higher pQCD orders.
In Figs. 5.11 and 5.12 we present the partially integrated differential cross-section

dσDPS

dq1dY1dY2

∣∣∣
q2≤ 20 GeV

. (5.87)

In this work, we performed a detailed study of the q-dependent differential cross-section
for 5 pairs of W bosons rapidities:

(Y1, Y2) ∈
{
(0, 0), (1.5, 0), (0, 3), (3, 3), (3,−3)

}
. (5.88)

In Figs. 5.11 and 5.12 shown are results for (Y1, Y2) = (0, 0) and (3, 3). All of the results
are collected in App. G.2. The qualitative behavior of those points is consistent with
those presented in the main part of the work. The rapidity-dependence in a wider range
will be studied in Section 5.6.4.

We limit our plots to q1 ∈ [5 GeV, 20GeV]. For smaller transverse momenta
the assumption of the small z1 giving the dominant contribution to the differential
cross section is no longer justified, while for larger q1 we can no longer say that
q1 ≪ Q = MW . The result is integrated over the second transverse momentum up to
20 GeV, and includes the region of q1 ∈ [0, 5 GeV), however, as seen from Eq. (5.30),
the corresponding integral is also expressible as a Hankel transform dominated by
short distances, and hence including the region of small momenta should not spoil
the assumption of dominant small distances.

We observe that in most cases at NNLL we obtain results larger compared with
NLL, the only exception being the opposite-sign W production at large rapidities.
The relative difference between NLL and NNLL is large, typically from about 50% to
over 100%. The virtual 1-loop QCD corrections to the hard-scattering factors Kab are
positive and of size about 10% of the LO expression, so the largest enhancement of the
result is due to an increase of DTMDs at higher order. The uncertainty estimation is
visibly reduced at higher order for larger transverse momenta. For momenta close to 5
GeV the absolute value of the error estimate is comparable at both orders, although the
relative error is reduced due to the enhancement of the overall result. We observe that
the NLL error bands in most cases do not overlap with the NNLL result – as discussed
in the case of DTMDs, this is probably due to a local minimum of some double-parton
distributions as functions of the matching scale µ0i. A similar effect was reported in
the study of W boson production in single-parton scattering [111].
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Figure 5.11: Large-y region, color-singlet sector contribution to the differential cross-
section of production of two W bosons scattering into a pair of leptons l1, l2. The label
‘total’ refers to the sum over all ”n vs m” terms. Considered are two values of rapididies
of the bosons: (Y1, Y2) = (0, 0) (left), and (Y1, Y2) = (3, 3) (right). Presented are the
results and the estimation of the error due to the perturbative matching at NLL (green)
and NNLL (blue) accuracy.
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Figure 5.12: Large-y region, color-nonsinglet sector contribution to the differential
cross-section of production of two W bosons scattering into a pair of leptons l1, l2. The
label ‘total’ refers to the sum over all ”n vs m” terms. We point out that the units
here are zbarn (= 10−3 abarn). Considered are two values of rapididies of the bosons:
(Y1, Y2) = (0, 0) (left), and (Y1, Y2) = (3, 3) (right). Presented are the results and the
estimation of the error due to the perturbative matching at NLL (green) and NNLL
(blue) accuracy.
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5.3.2 Combined uncertainties at NNLL

The results of Section 5.3.1 imply that the higher-order pQCD corrections yield a
significant modification of the differential cross-section of the considered process, in
some cases the corrections are as large as the NLL result. A variation of the matching
scales µ0i provides a working estimate of the higher-order corrections. As discussed
in Section 5.2, the unknown pQCD terms are not the only source of the error, due
to model input such as the non-perturbative part of the Collins-Soper kernels, large-
z behavior of parton distributions, and the interpolation between the two considered
approximations for transverse distance-dependent DPDs. In this part, we will assess the
size of the corresponding uncertainties and their relative significance independently for
each boson channel, and each ‘n vs m’ DPD combination. We recall that the uncertainty
due to DPDF modeling, and as follows, the uncertainty due to the unknown behavior
of double parton distributions at large y is not included in the estimates.

The procedure for the estimation of the uncertainties is as follows. We consider 4
independent parameters: the parameter κ in Eq. (3.56) which rescales the matching
scales µ0i, model of the Collins-Soper kernel in Section 5.2.2, parameter r in Eq. (5.86)
which governs the large-z falloff of DTMDs, and the parameter δ in Eq. (5.44) defining
the interpolation between the large-y and short-distance DTMD approximation.

The ‘default’ choice of these parameters is given by

κ = 1, DPT24, r = 1, δ =
3

12
. (5.89)

All of the possible variations of these parameters are summarized in Section 5.2. At
each step of the procedure, we allow for a variation of the first n = 1, 2, 3, 4 parameters,
thus obtaining the combined uncertainties:

� n = 1, CS kernel, r, δ fixed – pQCD uncertainty, denoted ‘µ0’

� n = 2, r and δ fixed – (pQCD + CS kernel) uncertainty, denoted ‘δK + µ0’.

� n = 3, δ fixed – (pQCD + CS kernel + FNP) uncertainty, denoted ‘r + δK + µ0’.

� n = 4, vary all parameters – the total uncertainty, denoted ‘Σyz + δK + µ0’.

It is necessary to emphasize that the variation of δ gives the uncertainty due to the
interpolation only when one combines the large-y and short-distance contributions.
However, we keep this variation also in the analysis of this part, for two reasons:

� It allows to already estimate the size of the contribution of the interpolation region
to the final result.

� Since at the currently accessible accuracy of the PDF→DTMD splitting formula,
the parton distributions describing production of like-sign W bosons are zero,
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the 2v1 + 1v2 and 1v1 contribution from the short-distance region of W±W±

production vanishes. Hence, the δ variation for this channel already provides the
interpolation uncertainty at the considered pQCD accuracy.

Plots of the partially integrated differential cross section of W pair production are
collected in Figs 5.13-5.14, cf. Eq. (5.87), defined as in Section 5.1.2. The black line
represents the prediction obtained using the default settings and bands of different
colors represent the accumulated uncertainties due to variation of the parameters.

For the opposite-sign W pair production, the maximum of the 1v1 color-singlet
part is strongly shifted towards the larger momenta compared to the 2v2 and 2v1+1v2
channels, while the maximum of the 1v1 color-nonsinglet terms is not even reached
at q2 ≤ 20 GeV. It should be noted, however, that in the discussed plots shown is
not the total contribution to the given ‘n vs m’ channels, but only the large-y part,
which excludes zi of similar size of y. As seen in the plots of y-dependent DTMDs in
Section 3.7, the splitting part of DPDs contributing to the 1v1 channel gets the largest
contribution at |y| < 1

2
b0 GeV−1. It implies that for smaller momenta, where larger

values zi are more relevant to the cross-section, the most important region of the phase
space corresponds to the short-distance rather than large-y region, and thus does not
contribute to the presented part of the total result. As already seen in the previous
part, there is little difference between the differential cross-section of production of
likesign pairs W+W+ and W−W−, also at the level of individual DPD channels, so in
this part we present the combined cross-section of production of like-sign leptons either
with positive or negative sign.

After discussing the general properties of the presented results, let us describe the
sources of uncertainties and their relative importance.

In the color-singlet channel, the most significant source of uncertainty remains the
one due to higher-order corrections. For the 2v1 and 1v1 channels the variation of the
result due to a change of the interpolation becomes important, and is the strongest
pronounced for opposite-sign W production via the 1v1 channel.

In the color-nonsinglet case, the variation due to the µ0 choice turns out to be
smaller than due to variation of δ and the Collins-Soper kernel. It is remarkable that
in the color-nonsinglet 1v1 channel of opposite-sign W production, the variation due
to the variation of the interpolation function is of order of 100% of the result, which
implies that the short-distance contribution in the corresponding channel is significant.

It is clearly seen that the uncertainty due to Collins-Soper kernel is strongly
asymmetric – the lower estimate due to the model is almost not visible on the plots,
unlike the upper estimate. We checked that this upper boundary corresponds to the
ART23 model, which is a kind of an outlier within the considered models, as gives a
visibly larger kernel even at relatively small distances, see Fig. 5.8.

Another important feature is the weak dependence of the result on the value of
the parameter r in FNP defined in Eq. (5.62) (green band). This implies that for any
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considered model of large-z behavior of DTMDs discussed in Section 5.2.3 and shown
in Fig. 5.9, one obtains consistent results.

For color non-singlet distributions the corresponding error bands are not even visible
on the plots, which can be explained by the shape of the interpolating function. Observe
that at large values of z, which are affected by the change of r, one integrates over dy
from a rather large lower limit = 1

4
b0 GeV−1, see the interpolation functions in Section

5.2.1. Since DTMDs at large y in the color-octet case are suppressed due to rapidity
evolution effects, as discussed in Section 3.7, the large-y octet part is also more strongly
suppressed at large z.
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Figure 5.13: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (0, 0), scattering into a pair of
leptons.
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Figure 5.14: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapidities (Y1, Y2) = (0, 0), scattering into a
pair of leptons.

5.4 Short-distance region

Results for short-distance DTMDs presented in Section 4.3 clearly show that the
function wσ1σ2 , defined in Eq. (5.11), which is the basic building block of the cross-
section given in Eq. (5.19), exhibits a non-trivial dependence on the angular variables
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φy, φz defined in Section 4.1.1. Recalling the results of Section 5.1.2, we obtained the
short-distance contribution in the following form:

dσ∏
i=1,2 dxidx̄id

2qidΩi

=

∫
d2z1
(2π)2

∫
d2z1
(2π)2

e−iz1q1−iz2q2

∫
d2y

∑
σ1,2=±1

(1 + σ1 cos θ1)
2(1 + σ2 cos θ2)

2 wσ1σ2 ,

(5.90)

where wσ1σ2 is a product of DTMDs weighted by hard cross-sections:

wσ1σ2 =
1

C

∑
RR=11,88

∑
q1,...,q4

Kq1q̄3(Q1)Kq2q̄4(Q2)(FF̄ )q1,...,q̄4,σ1σ2

×
(
1− Σδ

(
y,max(z1, z2)

))
θ(y+ − ycut)θ(y+ − ycut) .

(5.91)

1 − Σδ

(
y,max(z1, z2)

)
is the function used to interpolate between short-distance and

large-y approximations, as described in Section 5.2.1. Notice that Σ approaches 1 as
y becomes sufficiently larger than max(z1, z2) or y > ymax, hence the short-distance
part is multiplied by the combination (1 − Σ). The step function θ(y± − ycut) is the
short-distance cut-off – because of the 1/y2

± singularity in the 1v1 contribution, the
integral over all transverse distances is infinite. In theory, if one includes all of the
double-counting subtraction terms, as described in Section 2.4, the dependence of the
total result on the value of parameter ycut should be a subleading effect as long as it
is taken of order Q−1 – this analysis is at this moment beyond the scope of this thesis.
According to the discussion in Section 4.1, including the subtraction terms requires
modeling and study of evolution equations of twist-3 DPDs, as well as the inclusion of
the DPS/SPS interference [69].

The term (FF̄ ) denotes the product of double parton distributions correponding to
a given combination of signs of cos θi in Eq. (5.90). Contrary to the previous study
in the large-y regime, the pseudoscalar DTMDs enter the cross-section in the splitting
part, see Eq. (4.5). As we will argue in Section 5.4.1, due to the angular dependence of
the corresponding terms, the cross-terms Fqq̄×Fqq̄ vanish, and only the product of two
pseudoscalar distributions survives after the integration over angular variables dφz, dφy.
Therefore, the splitting pseudoscalar DTMDs enter the differential cross-section only
in the 1v1 term, and effectively the products of DTMD in Eq. (5.91) can be replaced
by (

Fq1q2F∆q1∆q2 − Fq1∆q2 − F∆q1q2

)
×
(
F̄q̄3q̄4 + F̄∆q̄3∆q̄4 − F̄q̄3∆q̄4 − F̄∆q̄3q̄4

)
→

(
Fq1q2 + F∆q1∆q2

)(
F̄q̄3q̄4 + F̄∆q̄3∆q̄4

)
+
(
Fq1∆q2 + F∆q1q2

)(
F̄q̄3∆q̄4 + F̄∆q̄3q̄4

)
,
(5.92)
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in the (FF̄ )q1,...,q̄4,++ term, and analogously in the remaining ones. The color
representation indices have been suppressed for simplicity.

Let us show, how the product of DTMDs entering the cross-section formula is
factorized into the model-dependent and perturbative parts. Using the solutions of
the short-distance Collins-Soper equation, and the RGEs we get

R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
= exp

(
Sq

(
µ0, µ1, x1

√
ζ
)
+ Sq

(
µ0, µ2, x2

√
ζ
))

× exp
(1
2

(
1Kq(z1;µ0) + 1Kq(z2;µ0)

)
log

ζ

ζ0

)
×
∑
R′

1R
′
2

R1R2,R̄′
1R̄

′
2

[
exp

(1
2

(
Mqq(zi,y;µi) log

ζ

ζ0

)]
R′

1R
′
2Fmodel

a1a2

(
xi, zi,y;µ0, ζ0

)
.

(5.93)

Finally, combining the evolution exponents from both right- and left-moving hadrons
we arrive at the final form of the product:

∑
R1R2

R1R2F R1R2F̄ =

=
∑

R1R2,R̄3R̄4

R1R2,R3R4

[
exp

((
Mqq(zi,y;µi) log

Q1Q2

ξ0

)]
R1R2Fmodel

(
xi, zi,y;µ0i, ξ0/(x1x2)

)
R3R4Fmodel

(
x̄i, zi,y;µ0i, ξ0/(x̄1x̄2)

)
× exp

(
2Sq

(
µ0, µ1, Q1

))
× exp

(
2Sq

(
µ0, µ2, Q2

))
× exp

((
1Kq(z1;µ0) +

1Kq(z2;µ0)
)
log

Q1Q2

ξ0

)
. (5.94)

The RGE exponentials, and the diagonal part of the exponentiated Collins-Soper kernel
have been organized just like in the analogous case of large-y given in Eq. (5.74).
The new feature in this case is the mixing between different color representations
R1R2 = 11, 88 of DTMDs formulated at the initial scales due to the representations
mixing under rapidity evolution. As clearly visible in Fig. 4.6, the non-diagonal tem
of the evolution matrix for two-quark distributions is non-negligible. This obstructs
the splitting of the differential cross-section into the color-singlet and color-nonsinglet
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contributions, as this was done previously. For this reason, when combining the
contributions to the cross-section we shall not make the distinction between different
color channels, and simply consider the version summed over singlets and octets. On
the other hand, to assess the importance of the color-nonsinglet channels, in Section
5.5.4 we will compare two cross-sections – one computed using the settings outlined
here, and another for pure color-singlet initial conditions, that is 88F

∣∣
ξ0/(x1x2)

= 0.

5.4.1 Numerical integration

We find that the computation of integrals defining the Double Drell Yan (DDY) cross-
section is much more involved than in the case of the large-y approximation, due to
two additional angular integrals, and problems related to the short-distance splitting
singularities.

In this part, we describe the numerical procedure which we developed in order to
compute the DDY observables, outline the settings in the numerical integration, and
discuss the overall precision. The order of integration is the following:

1. Compute the integral over dφy. If the difference |y|−|z−| is smaller than the small
distance cutoff ycut, then for some values of the angle φy one has y± = |y±| < ycut,
so that appropriate integration limits must be applied. They will be defined in
Eq. (5.102).

2. Compute the integral over dy. Since the condition y± ≥ ycut is enforced in the
previous integral, no new cut-offs are needed in this case. However, we find that
the first derivative of the integrand is discontinuous at

y = |z−| ± ycut , (5.95)

and the overall integrand becomes steep near these points, hence splitting into
subgrids is used.

3. Compute the Fourier modes in φz of the result obtained according to Eq. (5.17).

4. Compute the double Bessel integral with Jn for the n-th Fourier mode from point
3.

All of these steps will now be discussed in detail in the subsequent parts.

φy integration

We have developed the described integration method specifically for the integrands with
singularities y−2

± , and such behavior will be of the main interest in the following analysis.
However, we found the also the integrals with a y−1

± singularity (present in the 2v1+1v2
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terms), as well as the 2v2 contribution can be precisely studied with the described grid
transformation, albeit with fewer grid points and some grid transformation parameters
modified.

Recall that φy is defined as the angle between z− and y, as presented in Fig. 5.15. A
special case when |z−| = 0 is treated differently, by defining φy with respect to x-axis.

y

z−

φy

Figure 5.15: A sketch of the considered coordinates

Some simplifications may be obtained by considering the symmetries of the product
of DTMDs, regardless of whether it is the intrinsic/splitting part. Consider:

y −→ −y . (5.96)

As seen from the definitions of the distances, this transformation is equivalent to the
following substitutions in DTMDs and the evolution kernels:

y± → −y∓ , v± → −v∓ . (5.97)

The Collins-Soper kernel depends only on the absolute sizes of these distances, and is
symmetric with respect to interchanging

y+ ←→ y− and v+ ←→ v− .

The scale choice and the intrinsic part are not affected at all by this change. Finally, the
prefactor in the splitting part of scalar DTMDs remains the same, while the prefactor
in the pseudoscalar splitting part changes the sign

yl
+y

l′

−ϵ
ll′ → (−y−)

l(−y+)
l′ϵll

′
= −yl

+y
l′

−ϵ
ll′ . (5.98)

This has two important implications:

� Since for φy → φy + π the pseudoscalar splitting part changes sign, and all of the
other terms remain unchanged, then the cross products of the pseudoscalar and
scalar parton distributions vanish in the cross-section.

� The discussed symmetry allows to integrate only on the upper halfplane, that is

φy ∈ [0, π] . (5.99)
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Now we describe, how the cut-off condition

|y ± z−| ≥ ycut (5.100)

is implemented at the level of angular integration. Let us fix the vector z−. On the
y-plane, the regions affected by the cut-off are two circles, possibly overlapping, as
shown in Figs. 5.16 and 5.17.

φcut

π − φcut

y2

y1

y− < ycuty+ < ycut

Figure 5.16: Cut-off regions (shaded circles) in the y-plane for fixed z−. Shown are the
angles corresponding to the cut-off in the upper half-plane. Axis ‘y1’ is parallel to z−.
The distance between the centers of the shaded circles is equal to 2|z−|.

Figure 5.17: The cut-off region in the special case |z−| < ycut, in which two circles
overlap. The formula for φcut remains the same, but there exists a minimal length ymin,
for which the integrand does not vanish for all φy. This case will be studied in more
detail when discussing integration over dy.

It is obvious that the length of y+ or y− can get smaller than ycut only if∣∣ |y| − |z−| ∣∣ < ycut , (5.101)

which we shall assume now. Using the cosine theorem we obtain that for φy ∈ [0, π]:

|y−| < ycut ⇐⇒ φy ∈ [0, φcut) ,

|y+| < ycut ⇐⇒ φy ∈ (π − φcut, π] ,

where φcut = acos
(y2 + z2− − y2cut

2yz−

)
. (5.102)
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We observe that for φcut ≥ π/2 the angular cut-off excludes all of the values of φy, thus
making the integral vanish. This special case is treated in the context of y-integration,
see the case (d) in Fig. 5.18. In the following considerations in this part, we will assume
φcut < π/2.

Let us investigate, how the integrand changes at fixed y = |y| – to that end, focus
only on the most important term, namely the splitting prefactor 1/(y2

−y
2
+). As φy = π/2

it has its minimum, which is equal to

1

y2
+

1

y2
−

∣∣∣
φy=π/2

≈ 1

4y4
, (5.103)

where we use y−|z−| ∼ ycut and neglect the terms of order ycut. Now, as φy approaches
one of the cut-off values, one has

1

y2
+

1

y2
−

∣∣∣
φy=π/2

≈ 1

4y2
1

y2cut
. (5.104)

It is clearly seen that the ratio between the largest and smallest value of the φy-integrand
is of order (y/ycut)

2. For typical sizes of z1, z2 – and from what it follows – the typical
size of |y| in the region of |y| ≈ |zi|, the ratio is ≳ 50, while for the maximal considered
values of |y| the ratio approaches 103.

In order to obtain good numerical accuracy, we apply the variable transformation,
which will minimize the variation of the integrand on the considered domain. Since
initialization of a new grid for each set of the interval limits [φcut, π − φcut] would be
extremely time-consuming, especially when applied to the first of 5 integrals, we first
use the linear transformation

[φcut, π − φcut] ∋ φy 7→ t =
φy − π/2
π/2− φcut

∈ [−1, 1] , (5.105)

so that each angular integral is performed on [−1, 1] interval. Then, we apply a variable
transformation u(t) such that the corresponding Jacobian turns the integrand into a
function that can be well-approximated with polynomials. We take:

u(t) = log
t+ t0
t0 − t

, t0 = 1 + ϵφ. (5.106)

The Jacobian is

∂t

∂u
=

(t+ t0)(t0 − t)
2t0

, lim
t→±1

∂t

∂u
= ϵφ

2 + ϵφ/2

1 + ϵφ
. (5.107)

With the appropriately chosen value of ϵφ we obtain a well-behaved integrand, which
after the transformations reads:∫ π−φcut

φcut

dφy w(φy)

=
(
π/2− φcut)

∫ u(1)

u(−1)

du
(t+ t0)(t0 − t)

2t0
w
(
φy(u)

)
. (5.108)
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To conclude this part, we shall present the grid settings used in this work. To avoid
under probing the intermediate angles, we split the grid in t into 2 subintervals: [−1, 0]
and [0, 1] with equal number of the gridpoints on each subgrid. Depending on the DPD
channel ‘n versus m’, we take different numbers of gridpoints, and the transformation
parameter:

[−1, 0, 1](24,24) , ϵφ = 10−2 for 1v1 ,

[−1, 0, 1](16,16) , ϵφ = 0.05 for 2v1 + 1v2 ,

[−1, 0, 1](12,12) , ϵφ = 1 for 2v2 .

(5.109)

[a, b, c](n1,n2) means that on the subgrid [a, b] there are n1 points, and n2 points on [b, c].
For the final remarks, let us comment on the possibility of using different grids

depending on y – as seen in Eqs. (5.103)-(5.104), the variation of the integrand depends
strongly on the absolute length of y, so that using the variable transformation in
Eq. (5.106) we will not get a well-behaved integrand for arbitrarily large distances.
Fortunately, we consider only y < ymax, but even on this limited range it is tempting to
use a couple of parameters ϵφ (and, as it follows, a couple of new grids in t(φy)), each
for a given range of y – hopefully this would lead to improvement of the integration
accuracy. However, we found using only a single grid to provide satisfactory integration
precision with the current settings.

|y| integration
Due to the short-distance cut-off being employed for y = |y| ∈

(
|z−|−ycut , |z−|+ycut

)
,

one observes a discontinuity in the first derivative of the y-integrand at those two points.
This motivates us to split the integration domain into 3 subintervals:

[0, |z−| − ycut] ∪ (|z−| − ycut, |z−|+ ycut] ∪ (|z−|+ ycut, ymax] . (5.110)

A special care is required where |z−| < ycut. As already indicated in Fig. 5.17, in such
case there exists a minimal length y0, for which the integral over φy does not vanish
due to the cut-off:

y0 =
√
y2cut − z2− . (5.111)

In that case, the subinterval limits are taken as

(y0, |z−|+ ycut] ∪ (|z−|+ ycut, ymax] . (5.112)

If one of the upper subinterval limits in Eq. (5.110) becomes larger than ymax, then we
simply replace it with the upper y limit, and drop the next subintervals1.

In the following, to have a systematic description of the subgrid structure, we will
take the naming convention:

1To avoid uncontrolled behavior, our implementation includes also the situation, when |z−|+ycut >
ymax in the case of Eq. (5.112). However, such configuration cannot happen unless ycut >

1
2ymax.
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� The first grid:

y ∈
[
0, min(|z−| − ycut, ymax)

]
for |z−| > ycut . (5.113)

If |z−| is smaller than the cut-off, then the first subgrid is not used. If the upper
interval limit turns to be equal ymax, then the second and third intervals are
reduced to zero and not used.

� The second subgrid:

y ∈
[
|z−| − ycut, min(|z−|+ ycut, ymax)

]
for |z−| > ycut ,

y ∈
[
y0, |z−|+ ycut

]
for |z−| < ycut .

(5.114)

As in the previous case, if the upper limit reaches ymax, the third subinterval is
not needed.

� The third grid:

y ∈
[
|z−|+ ycut, ymax)

]
for |z−|+ ycut < ymax . (5.115)

The possible subgrid structures are sketched in Fig. 5.18. Notice that in the 1v1 term
there is a strong minimum at y = |z−| – this is because the prefactor in the scalar
splitting part y+ · y− = y2 − z2− becomes zero for equal lenghts.

On the edges of the considered subintervals one may again expect a strong variation
of the integrand. Once again, in order to avoid constructing a new grid for any new
values of the interval limits, we use a linear transformation

[y1, y2] ∋ y 7→ t =
2t− (y1 + y2)

y2 − y1
∈ [−1, 1] . (5.116)

We found that also in this case the variable transformation given in Eq. (5.106) leads
to good integration precision, if the transformation parameters are correctly adjusted.

Each transformed subgrid in t(y) has the limits [−1, 1] with ni points n = 1, 2, 3. For all
subgrids we use the same form of the variable transformation ui(t), but with a different
parameter t0i:

ui(t) = log
t+ t0i
t0i − t

, t0i = 1 + ϵi , i = 1, 2, 3 . (5.117)

The settings depending on the DPD channel are summarized in Table 5.1.

DPD
channel

n1 ϵ1 n2 ϵ2 n3 ϵ3

1v1 24 0.1 12 0.1 24 0.2
2v1+1v2 16 0.1 12 0.1 16 0.8
2v2 16 1.0 12 1.0 16 1.0

Table 5.1: Settings for three subsequent subgrids in variable t(y) defined in Eq. (5.116)
for each DPD channel.
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y

z− − ycut

z− + ycut

(a)

y

z− + ycut

ymax

(b)

y

ymax

(c)

y

y0

(d)

Figure 5.18: Sketch of the configurations of the interval limits of y-integrals, before
multiplication by the interpolating factor 1 − Σ. The figure does not indicate the
relative sizes of the integrand in different cases, and should be taken only for qualitative
discussion. The red, blue, and green colors correspond to the first, second, and third
grid in Eqs. (5.113)-(5.115) respectively. The case (a) is the most most relevant one,
cases (b) and (c) occur for larger values of |z−|, where the |z−| ± ycut > ymax. Finally,
(d) occurs if z− < ycut, see Fig. 5.17.

φz integration

The variable φz enters the Fourier exponential in the cross-section formula (5.11). A
numerical integration of a total φz-dependent product of wσ1σ2 and eiqizi would lead to
integrals over the distances dzi involving a highly oscillatory function, whose analytic
form we do not know, greatly complicating the numerical analysis.

Instead, we choose to expand the intermediate integral Wσ1σ2(z1, z2) defined in
Eq. (5.13) in its Fourier modes using the angle φz. Recall from Section 4.1.1 that
φz is defined as the angle between the vectors z1 and z2. It can be shown that the
considered function is symmetric with respect to the change of sign of φz. To see this
let us consider, how the product of DTMDs integrated over the angular variable of y
changes under φz → −φz. Instead of integrating over dφy (angle between z− and y),
one can use ϕ′

y = ∠(z1,y), which is simply a shift of the integration variable. Without
loss of generality let z1 be along the first axis, z1 = (|z1|, 0). Changing the angles
φz → −φz and ϕ′

y → −ϕ′
y, changes the sign of the second coordinate of the remaning
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z1

z2

y

z1

z2

y

Figure 5.19: On the left: vectors z1, z2,y before (left) and after (right) changing the
sign of the angles φz and ϕ′

y.

vectors and all of their combinations, see Fig. 5.19, which does not modify the scalar
product, but changes the sign of εijaibj = a1b2 − a2b1, which appears in the splitting
formula in Eq. (4.5). Therefore, one obtains the same scalar DTMDs, and pseudoscalar
DTMDs with changed sign. The change of sign of ϕ′

y does not change the result of
the full integral over the angle. Since it was shown that mixed products of scalar and
pseudoscalar DPDs vanish after integration, the non-vanishing part of the integral is
the same after the transformation, and Wσ1σ2(z1, z2) is symmetric under the change of
sign of φz.
Hence, the expansion takes a simple form

Wσ1σ2(z1, z2) =
∞∑
n=0

cos(nφz)Wσ1σ2,n(z1, z2) , (5.118)

where zi = |zi|. Recalling Eq. (5.19), we write:

dσDPS∏
i=1,2 dxidx̄id

2qidΩi

∣∣∣
short dist.

=
∞∑
n=0

cos
(
n(ϕq1 − ϕq2)

)
(−1)n

∫ ∞

0

dz1

∫ ∞

0

dz2

× Jn(q1z1) Jn(q2z2)
∑

σ1,2=±1

(
1 + σ1 cos θ1

)2(
1 + σ2 cos θ2

)2
Wσ1σ2,n(z1, z2) .

(5.119)

At each pair of z1, z2 the Fourier coefficients are computed numerically according to

Wn =


1
π

∫ π

0
dφz W (z1, z2, φz), n = 0

2
π

∫ π

0
dφz W (z1, z2, φz) cos(nφz), n ≥ 1

. (5.120)

The ′σ1σ
′
2 indices have been suppressed for simplicity. We found that in the 1v1 part

the dependence of the integrand on the angle φz becomes steep at φz → 0, especially for
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|z1| ≈ |z2|. This is because for vanishing φz the length of z− is minimized so that also
the distance between the points |y±| → 0 on the y-plane gets smaller, cf. Fig. 5.16. This
results in the corresponding singularities getting enhanced, see Fig. 5.16. To improve
the precision of the integration over dφz, we apply the variable transformation

u 7→ log
(
φz + ϵφz

)
. (5.121)

Since the integration limits are fixed, as opposed to the previous integrals, no scaling
is applied beforehand. The settings of the integration grids for each DPD channel are:

[0, 2π](24) , ϵφz = 0.05 for 1v1 ,

[0, 2π](16) , ϵφz = 0.05 for 2v1 + 1v2 ,

[0, 2π](12) , ϵφz = 1.0 for 2v2 .

(5.122)

In our analysis, we focus mostly on the lowest term n = 0, however, in Section 5.5.2 we
study the higher modes.

Integration over z1, z2

Using the results of the previous part, we expressed the n-th Fourier mode in the angle
between q1 and q2 as a double integral weighted by Bessel functions Jn(qizi). For any
n ≥ 0 we compute these integrals using the optimized Levin’s method [1]. In that work
we found that dividing the integration grid into 2 subgrids leads to a good integration
accuracy, while improving the computation time, therefore for the Bessel integrals in
the short-distance region for the 2v1+1v2 and 2v2 channels we use the subinterval
structure [

0, 0.1 GeV−1, ∞
]
(16,24)

. (5.123)

The subinterval limits are the same as for the integrals in the large-y part described in
Section 5.3, but here we take fewer points due to the larger computational cost of each
(z1, z2) point. The resulting integration precision for the 2v1+1v2 channel is presented
in Fig. 5.30. Since the 2v2 contribution is over 2 orders of magnitude smaller than the
latter, and the corresponding integrands are better behaved, we do not perform the
precision study in that case.

It turns out, however, that the integrals for the 1v1 channel are much more
challenging, and the described zi-grids give the relative error estimate of order ∼ 10%
– to have better control over the numerics, in that specific channel we use denser grids
with 4 subgrids: [

0, 0.1 GeV−1, 0.5 GeV−1, 1 GeV−1, ∞
]
(24,24,24,12)

. (5.124)

For all grids the variable transformation is identical with the one in Eq. (5.80).
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5.5 Short-distance contribution to the cross-section

After describing the model for short-distance DTMDs, and the numerical methods, we
present the contribution of the relevant region to the differential cross section of W
pair production. Due to the lack of NLO kernels for the short-distance DTMD model,
see Section 4.1, the results presented here are computed at NLL. For the corresponding
perturbative orders of various perturbative ingredients, see Table 3.1.

Contrary to the large-y part, there is no clear distinction between the color-singlet
and color-nonsinglet contributions, hence in most cases, only the combined contribution
will be presented.

The cut-off dependence is discussed for the 1v1 and 2v1+1v2 channels. We show
that the unsubtracted 1v1 term dominates the opposite-signW production, and exhibits
a large cut-off dependence, so that the subtraction of DPS/SPS double counting is
necessary to make the predictions for this channel. In the case of the 2v1+1v2
contribution, the integrands in the transverse position space diverge like y−1

± , which
is however an integrable singularity in a 2-dimensional space. Because of that, the
2v1+1v2 part exhibits a much weaker cut-off dependence than the 1v1 channel, however,
the corresponding variation with the value of ycut is still relevant for quantitative studies.
The central choice of the cut-off ycut for channels involving the splitting part will be

ycut =
2b0
MW

for 1v1 or 2v1+1v2 . (5.125)

For these ’n vs m’ contributions we consider also ycut = b0/MW , and ycut = 4b0/MW .

The 2v2 contribution has no singularities at y± = 0, but since in that case the region
of y± ≲ M−1

W gives a suppressed contribution, in that term, we use the smallest value
of the cut-off ycut = b0/MW , so that the same integration routines can be used.

As in Section 5.3, we will present the differential cross-section partially integrated
over the second transverse momentum q2 up to 20 GeV. In Section 5.5.1 we present
q1-dependence as it was done for the large-y part in Section 5.3. In Section 5.5.2
we discuss the dependence of the result on the angle between the momenta q1,q2,
emerging from the correlations between z1 and z2 at DTMD level. We show that the
angular dependence in the 1v1 and 2v1+1v2 channels is strong, and the expansion of
Eq. (5.28) converges rather slowly. However, one still can extract the corresponding
Fourier modes. The estimation of the integration precision of the most challenging
terms, 1v1 and 2v1+1v2 is presented in Section 5.5.3. In Section 5.5.4 we compare the
relative sizes of the color-singlet and nonsinglet parts in the 2v2 and 2v1+1v2 channels,
for a specific rapidity scale, at which one separates the color channels (cf. the discussion
in Section 4.2). The individual contribution of different color representations in the 1v1
channel is not studied, because of the large cut-off dependence of this contribution
without the subtraction term.
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5.5.1 q1-dependence

We present the same error analysis as described in Section 5.2, with the only difference
that for the short-distance part we keep a fixed model of the Collins-Soper kernel, as
in Eq. (5.53). The short-distance 2v2 contribution to the differential cross section of
like-sign lepton pair production is presented in Fig. 5.20. At the considered order in
perturbation theory is the only short-distance contribution to this channel. We present
the results for two values of rapidities: the central one (0, 0), and large symmetric values
(3, 3). We find that for other considered rapidities, as well as in the case of opposite-sign
lepton production the results look similar, and bring no new insight.

In Fig. 5.21 given is the 2v1+1v2 contribution for opposite-sign leptons for the same
rapidites as in the previous case. We observe that also in this case the shapes of the
differential cross sections do not differ much between different rapidities, but there is
much stronger suppression at larger values of (Y1, Y2). At large and asymmetric rapidites
(3,−3) the result is about 300 times smaller than for the (Y1, Y2) = (0, 0). The same
observations apply to the case of the smaller cut-off ycut = b0/MW . The comparison
between the results at different cut-offs for a larger number of rapidity pairs is shown
in App. G.4.

In Figs. 5.22-5.23 we show the contribution for the opposite-sign lepton pair
production from the 1v1 channel. We take 3 values of the cut-off:

ycut =
b0
MW

,
2b0
MW

,
4b0
MW

. (5.126)

By comparing the results for subsequent values of the cut-off we can estimate how large
is the value of the DPS/SPS subtraction term. Since this channel turns out to be more
important, and the rapidity-dependence is more pronounced than in the remaining
channels, we show the results for

(Y1, Y2) = (0, 0), (1.5, 0), (3, 0), (3, 3).

The result for strongly asymmetric rapidities (3,−3) is not shown, since is turns out to
be of order 10−2 zbarn/GeV = 10−5 abarn/GeV.

We notice that for large Y the 1v1 part of the differential cross section for symmetric
rapidities (Y, Y ) is larger than for asymmetric ones (Y,−Y ), since it is proportional to
a product of two gluon PDFs at momenta fractions (x1+x2) (righ-moving hadron) and
(x̄1 + x̄2) (left-moving):

x1 + x2 = 2x0e
Y , and x̄1 + x̄2 = 2x0e

−Y for (Y, Y ) ,

x1 + x2 = x0(e
Y + e−Y ), and x̄1 + x̄2 = x0(e

Y + e−Y ) for (Y,−Y ) .
(5.127)

In the first case, the parent gluon with small longitudinal momentum gets the
enhancement at small x. On the other hand, in the second case, the momentum
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fractions of both gluons are relatively large, and the corresponding PDF product is
suppressed. For Y = 3, there is one gluon with x ≈ 0.25, and other with x̄ ≈ 6.2×10−4

for symmetric rapidities, and two gluons with x = x̄ ≈ 0.12 for asymmetric rapidities.
We observe that in some 1v1 plots, e.g. (Y1, Y2) = (1.5, 0) and (3, 0) for the smallest

cut-off, visible are some oscillations of the results in the q1-space. As indicated by
the precision study in Section 5.5.3, this is most likely due to numerical errors of
the integrations. Notice that oscillations vanish at larger ycut, where the integration
precision is better.
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Figure 5.20: Like-sign leptons production, short-distance 2v2 contribution. On
the left: central rapidities (0, 0), on the right: large rapidities (3, 3). Notice
that the result is given in the units of zbarn/GeV.
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Figure 5.21: Opposite-sign leptons production, short-distance 2v1
contribution. On the left: central rapidities (0, 0), on the right: large rapidities
(3, 3). The result is presented in the units of abarn/GeV.
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Figure 5.22: Upper part: ycut = b0/MW , middle: ycut = 2b0/MW , lower part: ycut =
4b0/MW .
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Figure 5.23: Upper part: ycut = b0/MW , middle: ycut = 2b0/MW , lower part: ycut =
4b0/MW .

5.5.2 Dependence on the angle ∠(q1,q2)

As discussed in Chapter 4, the angular correlations between the distances z1 and z2
at the level of DTMDs lead to nontrivial angular dependence of the differential cross-
section on the angle ϕq between the transverse momenta q1,2 of the producedW bosons.
As described in Section 5.1, Eq. (5.19), the short-distance part of the differential cross-
section can be expanded as a series in cos(nϕq) for integer n ≥ 0, where ϕq is the angle
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between the momenta of W bosons:

ϕq = ∠(q1,q2) . (5.128)

The differential cross-section can be expanded as:

dσ

dϕq

∏
i=1,2 dqidYi

=
∞∑

nq=0

dσ(nq)∏
i=1,2 dqidYi

(−1)nq cos
(
nqϕq

)
. (5.129)

As it turns out, for the 1v1 and 2v1+1v2 channel without subtractions, the expansion
converges slowly so that the full description of the angular dependence is a difficult task.
A better choice of integration variables would be y, z+, z−, since the enhancement of
the integrand occurs at small z−. However, this would lead to expressing the differential
cross-section in terms of combinations of the transverse momenta:

q± =
1

2

(
q1 ± q2

)
, (5.130)

see App. F. Such form would make the comparison with the large-y part more difficult,
therefore we do not change the integration variables in this work. However, we want to
note that the integration algorithm presented in Section 5.4.1 can be straightforwardly
adapted to integrate over (φy, |y|, |z+|, |z−|), and the angle between z+, z−. In Figs. 5.24
and 5.25 we show the first 6 Fourier modes defined in Eq. (5.129) for the 1v1 and
2v1+1v2 channels, obtained using the central value of the cut-off ycut = 2b0/MW . We
see that the convergence with higher modes nq is slow, making it difficult to provide
the angular dependence in terms of momenta q1,q2.

(Y1, Y2) = (0, 0), q1 ∈ [5 GeV, 20GeV] , q2 = 10 GeV, 15 GeV . (5.131)
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Figure 5.24: First 6 Fourier modes of the 1v1 part of the differential cross section of
production of opposite-sign W pair decaying into l+1 l

−
2 leptons, see Eq. (5.129).
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Figure 5.25: First 6 Fourier modes of the 2v1+1v2 part of the differential cross section
of production of opposite-sign W pair decaying into l+1 l

−
2 leptons, see Eq. (5.129).

Because of a large number of the Fourier modes, plots in Figs. 5.24-5.25 were
obtained using grids with a doubled number of points in φz integrals, see Eq. (5.109),
and zi-grids with the same limits as in Eqs. (5.124)-(5.123), but with (24, 24, 24, 24)
points for 1v1, and (24, 32) points for 2v1+1v2.

To obtain the estimation of the model uncertainties in this channel, we perform
the analogous analysis as for the angle-integrated case. For nq = 1, 2 we compute the
corresponding Fourier modes, and integrate the result in momentum q2 up to 20 GeV:∫ 20 GeV

0

q2 dq2

∫ 2π

0

cos
(
nqϕq

) dσ

dϕq

∏
i=1,2 dqidYi

. (5.132)

We apply the same uncertainty analysis as in Section 5.5.1. This provides a
straightforward comparison of the impact of different model uncertainties at the
considered Fourier modes.

In Fig. 5.26 we show the Fourier modes of 1v1 term for 3 considered values of the
short-distance cut-off at central rapidity. As in the previous case, we observe a strong
cut-off dependence of the result, cf. Figs. 5.22-5.23. In Fig. 5.27 we compare the same
Fourier modes in the case of 2v1+1v2 channel for ycut = b0/MW and ycut = 2b0/MW .
Contrary to the 1v1 case, the cut-off dependence in this channel is much weaker but
still visible. In both cases, the dominant contribution to the uncertainty estimate is due
to the matching scale variation. However, the interpolation dependence seems weaker
than in the angle-integrated cases, which should not be surprising, as in the limit y ≫ zi
the dependence of DTMDs on the angle φz vanishes. The presented behavior holds also
for other studied pairs of rapidities (Y1, Y2).

Let us notice that in the 2v2 channel we find the considered Fourier modes to be of
order 10−1 zbarn/GeV, which is completely negligible compared to the total large-y +
short-distance contribution. We observe strong oscillations due to the Bessel transform,
therefore our only claim in that channel is that the angular dependence in the discussed
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channel, and – what follows – the angular dependence at NNLL like-sign W pairs
production is a suppressed effect. This might be modified after including higher-order
PDF-DTMD splitting.
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Figure 5.26: First (left) and second (right) Fourier mode of 1v1 contribution to the
differential cross section. Presented are the results for 3 different cut-off values: ycut =
b0/MW (top), ycut = 2b0/MW (middle), and ycut = 4b0/MW (bottom).
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Figure 5.27: First (top) and second (bottom) Fourier mode of 2v1+1v2 contribution to
the differential cross-section. Left: the result at the cut-off value ycut = b0/MW , and
on the right: for ycut = 2b0/MW . Solid black lines indicate the result for the default
settings at a fixed cut-off. The dashed black line on the left (equal to the solid line on
the right) is the result for a larger cut-off, added to show more clearly the difference
between the results at different cut-offs.

5.5.3 Precision estimation for numerical integration

In this part, we discuss the integration precision of the results presented in the previous
section. We show that the integration errors of 1v1 and 2v1+1v2 contributions, which
tend to be especially difficult in numerical integration due to the 1/y±-singularities,
the numerical errors are sufficiently small, and should not affect the results concerning
the sizes of the results at different cut-offs, or the relative sizes of our estimates for the
model uncertainties.

First, we estimate the integration error by doubling the number of gridpoints in the
integrals over d2y and dφz and computing the relative difference between such a result
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and the one obtained using the nominal grids described in Section 5.5.3: Eq. (5.109),
Table 5.1, and Eq. (5.122).

Since the computation of the 1v1 term is already quite expensive due to many
points in the zi-grids, for this test, we compute the 1v1 terms (both with standard and
enhanced precision in d2ydφz) using smaller grids in zi, namely:[

0, 0.1 GeV−1, ∞
]
(32,24)

for z1,
[
0, 0.1 GeV−1, ∞

]
(32,26)

for z2 . (5.133)

The zi-grids used to test the precision of the 2v1+1v2 term are identical to the nominal
ones in Eq. (5.123).

To estimate the precision of the Hankel transforms, we use denser grids in z1, z2:

{32, 32, 32, 16} points for 1v1 ,

{24, 32} points for 2v1 + 1v2 ,
(5.134)

and compare with results obtained with the grid settings in Eqs. (5.123)-(5.124). As
shown in Section 5 of [1], the precision of the Bessel integrals computed using the
method described therein grows rapidly with the number of gridpoints, and based on
that we expect the described upgrade of the grids to give a sufficiently good estimate.

In Fig. 5.28 we show the error estimates for the results for the 1v1 channel presented
in Section 5.5.1 for 3 different values of the cut-off parameter ycut. The precision for the
first two Fourier moments of the 1v1 term, defined in Eq. (5.132) and shown in Section
5.5.2, is shown in Fig. 5.29, in this case only for ycut = 2b0/MW .

We find that the error estimates for d2ydφz integrals are indeed small – in most
cases about 10−3, with a single exception at the smallest cut-off value, on the upper-left
plot in Fig. 5.28, and lower-right plot of Fig. 5.29. A comment should be made on the
peak of the error estimate for nF = 2 at (Y1, Y2) = (3, 0) – we found that for the zi grid
settings given in Eq. (5.133) there is a zero-crossing in the result, which leads to large
relative errors.

The precision of the Bessel integrals is worse by about one order of magnitude and
goes up to around 10% for the most problematic rapidity pair, see the (Y1, Y2) = (3, 0)
results. At larger cut-off values the precision improves, and the error estimate drops
below 1%.

Finally, in Fig. 5.30 we present the precision estimates for the 2v1+1v2 part, for a
single value of the cut-off ycut = b0/MW , which is the most challenging cut-off value
in this channel. For the angle-integrated cross-section the precision deteriorates at
larger values of q1, but for q1 ≲ 12 GeV remains at around 1% level. For the Fourier
modes nq = 1, 2 the precision estimate is at the level of a few %. Based on our
experience with the 1v1 part, modification of grids in zi, as well as optimization of the
variable transformation parameters of Section 5.4.1 would improve the errors, however,
given a rather small contribution of this term, we decided that the current precision is
satisfactory.
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Figure 5.28: Integration precision, cross section integrated over the angular part of q1,2.
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Figure 5.29: Integration precision of the 1v1 part, first and second moment of ϕq.
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Figure 5.30: Integration precision of the 2v1+1v2 term. Top: angle-integrated results.
Middle and bottom: first and second moment in ϕq.

5.5.4 Color-singlet vs color-nonsinglet part

The distinction between different color channels in the short-distance region is not clear
due to color-representation mixing under the rapidity evolution, see Section 4.2. Trying
to define a contribution from a given color representation, as it was done in the large-y
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case, one runs into a problem of the mixing between singlet and octet terms in the
product of evolved DTMDs.

However, to gain some insight into the dependence of the total result on the color-
nonsinglet part, we will make the distinction at the initial scales, where one formulates
the Ansatz for DTMDs – in this way, we will assess the model dependence of our
nonperturbative model for parton distributions in the color-nonsinglet channels. As seen
from Eq. (5.4), the product of DTMDs in the cross-section contains 4 combinations of
parton distributions at initial scales: 11F 11F̄ , 11F 88F̄ , 88F 11 F̄ , 88F 88F̄ . For simplicity,
we compute only the 11, 11 part and the total result, and compare their relative sizes.
The individual contributions for the 2v2 term are given in Fig. 5.31, and for 2v1+1v2
in Fig. 5.32. The qualitative behavior for all combinations of leptons l1, l2 charges is
the same, hence we present only the result for the production of like-sign lepton pairs.

It is clearly seen that the color-singlet part dominates over the remainder term. The
error bands correspond to the combined uncertainties due to the initial scale variation,
FNP parametrization, and the interpolation function.
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Figure 5.31: Comparison of the contribution of different color channels to the short-
distance 2v2 part for the production of like-sign lepton pair. Left: central rapidities,
right: (Y1, Y2) = (3, 0). The ‘remainder’ is the difference between the total result and
the singlet part. On all of the plots, the value of 0 is indicated with a black line.
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Figure 5.32: Comparison of the contribution of different color channels to the short-
distance 2v1+2v1 part for production of opposite-sign lepton pair. Left: central
rapidities, right: (Y1, Y2) = (3, 0).

5.6 Total cross-section

In Sections 5.3 and 5.4 we have studied the individual contributions to the differential
cross-section ofW boson pair production via double-parton scattering in both “large-y”
and “short-distance” regions. We discussed the theoretical aspects of the computation,
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such as the choice of the intermediate scales, the rapidity evolution, in particular, the
treatment of the corresponding short-distance singularities, as well as the numerical
part of the computation. We compared the relative sizes of contributions from all DPD
channels ‘n vs m’, for partons in the color-singlet and color-nonsinglet representations.

In this Section we combine the previously obtained results, allowing us to present
a discussion of the size of the predictions and the error estimation for the considered
process. It should be noted that the large-y part is computed at NNLL, and the short-
distance part at NLL accuracy, see Table 3.1.

5.6.1 Combining the short-distance and large-y terms

Both large-y and short-distance terms require the non-perturbative input. In the
previous part, we estimated the uncertainty of individual terms by varying these
parameters and finding the resulting minimal and maximal value at each point. A
similar approach will be applied to the sum of both contributions, but two points should
be addressed beforehand. First, as stated in Section 5.4, in the short-distance part, we
consider only a single parametrization of the Collins-Soper kernel given in Eq. (5.53).
However, we combine it with the large-y term with different choices of δK, since that
contribution, by construction, is more sensitive to the rapidity evolution kernel.

Secondly, care is needed for the choice of the matching scales. Although the choice
of the DTMD-DPDF matching scales (µ01, µ02), and the short-distance matching scale
µ0 look very similar, they should not be regarded as equivalent, hence we combine the
large-y and short-distance scales using the 7-point variation for the matching scales in
both terms. Recall from Eq. (3.56) and (4.23) that the choice of the matching scales
is parametrized by a single parameter denoted as κ, meaning that for a perturbatively
small distance b the corresponding scale is

µ0

(
b, κ

)
≈ κ× b0

|b∗| , (5.135)

the “≈” is used since we omit the constant term that ensures that at large distances
the matching scale approaches the same value independently on κ. For each term
we consider κ ∈ {1, 2, 1

2
} – using the 7-point rule means that while we consider

combinations of the large-y and short-distance terms with different respective values of
κ, we disregard the combinations with extreme values on the parameter.

To formalize, for possible choices of the matching scales parametrized by κ1, κ2,
the nonperturbative part of the Collins-Soper kernel δK, see Eqs. (5.56)-(5.53), the
parameter r describing the large-z behavior of DTMDs, and the interpolating function
Σyz, we consider the combinations:

σlarge-y
(
κ1, δK, r,Σyz

)
+ σshort-dist

(
κ2,DPT24, r,Σyz

)
,

such that (κ1, κ2) ̸=
(
2, 1

2

)
or
(
1
2
, 2
)
. (5.136)
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The combined results in the 2v1+1v2 channel for opposite-sign W production are
presented in Fig. 5.33. Recall that the corresponding contribution to opposite-sign
W production only has the large-y part at the considered accuracy. In Fig. 5.34
we show the combined 1v1 large-y term plus the short-distance one with the largest
considered cut-off ycut = 4b0/MW . In this channel, we see significant cancellations of
the interpolation uncertainties at smaller rapidities – for large and asymmetric values
of (Y1, Y2) the splitting short-distance part is strongly suppressed compared with the
large-y part. We see that also for smaller values of the cut-off, however, in that case the
short-distance splitting part completely dominates the result, and hence one cannot see
the cancellations on a plot. In Fig. 5.35 we provide the comparison of the interpolation
uncertainties for two extreme values of the cut-off, and show that in both cases they
are almost identical (as it should be, since the cut-off does not affect the interpolation
region), and the cancellation works independently of the cut-off value.

Since for the 2v2 channel, the large-y part is 2 orders of magnitude larger than the
short-distance part for all boson channels, we do not show the individual and combined
plots with the error band for that part.
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Figure 5.33: Combined large-y and short-distance contributions to the 2v1+1v2 channel
at different rapidities.
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Figure 5.34: Combined large-y and short-distance contributions to the 1v1 channel at
different rapidities for the largest value of the cut-off ycut = 4b0/MW .
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Figure 5.35: Interpolation uncertainty bands at remaining nonperturbative settings
fixed (κ = 1, DPT24, r = 1) for individual and combined contributions in 1v1 channel.
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5.6.2 Opposite-sign W production – summary

Let us summarize our results concerning the production of opposite-sign W boson pair
in double-parton scattering. Due to the lack of subtraction terms, we cannot present
the full result, but the analysis performed in this work allows us to describe which DPD
channels and regions of the phase space should give the most significant contributions.

In the large-y region, all 3 kinds of ‘nvm’ terms give contributions of comparable size.
We see that the color-singlet contribution strongly dominates over the color-nonsinglet
part in the large-y part. In the color-nonsinglet sector, the 1v1 term visibly dominates
over the remaining channels.

In the short-distance region, we observe a large cut-off dependence of the unsubtracted
1v1 term. As noted in the summary Section of [69], the variation of this term with the
cut-off value ycut can be used to estimate the size of higher-order corrections to the
corresponding SPS process. In Figs. 5.36-5.37 we present the comparison of the 1v1
short-distance contribution at 3 different values of ycut versus the sum of the large-y
+ short-distance contributions at the largest considered values of the cut-off (that is:
4b0/MW for 1v1, and 2b0/MW for 2v1+1v2). This allows us to compare the sizes of
the DPS terms with the perturbative corrections to SPS. We observe that for central
(0, 0), and large but symmetric (3, 3) rapidities the difference between 1v1 contributions
at different cut-offs dominates over the estimate for the DPS contribution, so that in
that region the perturbative corrections to the SPS should be more important than the
contribution of double-parton scattering. For (Y1, Y2) = (1.5, 0) we observe that both
values become comparable in size, while for (Y1, Y2) = (3, 0) the 1v1 short-distance
terms are smaller than the large-y contribution, signaling that for the corresponding
kinematics the DPS corrections may become more important than the higher-order SPS
corrections. For large and asymmetric rapidities (Y1, Y2) = (3,−3) the large-y part is
104 larger than the short-distance 1v1, see the bottom plot in Fig. 5.36.

To better understand the rapidity dependence, recall the discussion from Section
5.5.1. The momenta fractions xL/R of parent gluons of left/right hadron in the 1v1
channel are

xL = x0
(
eY1 + eY2

)
, xR = x0

(
e−Y1 + e−Y2

)
. (5.137)

For large absolute values of Y1, Y2, the size of xL/R is determined by the largest
exponents. Without loss of generality assume Y1 > 0. If the rapidities are such that
Y1 ≈ Y2, the momentum fraction xL is enhanced by a factor of ∼ eY1 , and xR is reduced
by ∼ e−Y1 . The corresponding decrease of the gluon density fg(xL) is then compensated
by the enhancement of f̄g(xR), as long as xR and xL are in the region where fg has an
approximate power-law behavior. If Y1 ≫ Y2 > 0, then xR is reduced only by ∼ e−Y2 ,
and the compensation in the product of two gluon PDFs is incomplete, resulting in an
overall smaller result. For negative Y2, both PDFs are strongly suppressed, hence the
strong diminishing at (Y1, Y2) = (3,−3).
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Figure 5.36: On the left: total (large-y + short-distance) contribution to DPS
(in purple), and the (total - 1v1 at short-distance) part (orange). Right: the 1v1
short-distance term at 3 different values of the cut-off. Bands on all plots represent
the total uncertainties of the corresponding terms. Presented rapidities: (Y1, Y2) =
(0, 0), (3, 3), (3,−3). Notice that the 1v1 short-distance term for (3,−3) is in units of
zbarn/GeV, and is O(10−4) times smaller than the corresponding large-y contribution.
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Figure 5.37: The same as in Fig. 5.36, but for rapidities (Y1, Y2) = (1.5, 0) and (3, 0).

5.6.3 Total transverse momentum-dependent cross-section of
like-sign W production

In the remaining part of this work we focus on the production of like-sign W boson
pairs. Results presented in the previous Sections show that the large-y color-singlet
contribution completely dominates the cross-section of this process. That part is
dominated by the 2v2 contribution, however, the 2v1+1v2 and 1v1 terms contribute
about 20% of the total result. We found that the remaining terms (large-y color-octet
and short-distance part) contribute at the level ≲1% of the total. In Fig. 5.38 we
present the differential cross-section integrated over the transverse momentum q2 up
to 20 GeV for different values of the rapidities. We find that the general properties
of the (q1, Y1, Y2)-dependent cross-section, such as its shape in q1 or the relative sizes
of uncertainties remain the same for both W+W+ and W−W− channels, as well for
all considered rapidity values. However, we see that the differential cross section of
production of negative-sign W pair production diminishes faster at larger rapidities
than in the positive-sign W case. To understand this, we note that at larger rapidities
one combines partons with small and (relatively) large longitudinal momenta – for two
protons colliding, only the sea quarks, suppressed at large xi, can produce W−W−

pairs. On the other hand, in the process of W+W+, one can have active valence up
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quarks, whose densities decrease less fast at larger momenta fractions.
Combining the short-distance and large-y allows us to provide a full discussion of

the estimation of uncertainties, as now we have a complete interpolation error. It needs
to be emphasized, however, that this is still not the total uncertainty of the prediction,
and in this work, we are focused solely on the description of the transverse momentum
dependence. Owing to the approximations presented in Chapters 3 and 4, we can
separate it from the modeling of the collinear DPDs, which we consider to be given.
Owing to the implementation of DTMDs in ChiliPDF, one can reproduce the predictions
for other models of the collinear DPDs, allowing to include the corresponding error
estimates in the studies.

The largest contribution to the uncertainty is due to the matching uncertainty,
estimated by the variation of the matching scale. The uncertainty due to the Collins-
Soper kernel (in orange) is visible only at small momenta, corresponding to larger
transverse distances. It is strongly asymmetric, since the largest outlier within the
considered kernels, ART23 [88], see Eq. (5.54), is visibly larger than the remaining fit
results, see Fig. 5.8. The error estimation due to the unknown large-distance falloff,
estimated as described in Section 5.2.3, extends to larger momenta, but also diminishes
at larger values.

5.6.4 Rapidity dependence of cross sections partially integrated
over transverse momenta

Finally, we discuss the rapidity dependence of the differential cross-section partially
integrated over the transverse momenta:

dσDPS

dY1

∣∣∣
|q1|,|q2|≤qmax

, qmax ∈
{
10 GeV, 15 GeV, 20 GeV

}
. (5.138)

Since it was shown that the short-distance and color-nonsinglet contributions are much
smaller than the total result, to obtain these results we use only the color-singlet large-
y contribution. We compare them with the collinear limit obtained by replacing the
DTMDs in Eq. (5.90) by collinear DPDFs, and removing the

∫
d2zi/(2π)

2 and the
associated Fourier exponentials. We emphasize that such a formula does not give the
total collinear double Drell-Yan cross-section at NLO (which in this work has been
implemented only at LO 2), since the NLO corrections to the hard cross-sections in the
collinear limit differ from those used in transverse-momentum dependent cross-sections
– compare Appendix E here and Section 9 in [110]. This exercise is used to assess how
fast the Fourier transforms in Eq. (5.90) integrated over the momenta approach the
zi → 0 of the integrand, rather than to provide a full comparison with the full NLO
collinear cross-section.

2To compute the required Mellin convolutions of the hard scattering kernels with collinear parton
distributions would require significant additional numerical work.
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Figure 5.38: Total (large-y color singlet + color octet + short-distance) cross-section
differential over transverse momentum q1.
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The ratio between the partially integrated cross-section and the collinear limit
remains approximately constant for |Y1| ≤ 4, however, a small enhancement of the
partially integrated ones at larger Y is visible. The differential cross-section integrated
up to 10 GeV constitutes roughly 15% of the collinear limit value; up to 15 GeV about
30%, and around 45% for qmax = 20 GeV. In order to assess how realistic the model
of collinear double parton distributions used in this work is, we also present a fully
integrated collinear cross-section computed using LO hard scattering cross-section, and
DPDFs modeled with NLO PDFs. The cross-sections integrated over Y1,2 ∈ [−5, 5] and
over |q1,2| < qmax for all DPD channels are given in Tables 5.2 and 5.3. It is clearly
seen that the splitting part contributes more at large transverse momenta, what one
can attribute to the short-distance enhancement of that part.

We conclude that the phase-space region that can be described using the presented
formalism, that is transverse momenta perturbatively large, but still much smaller than
the hard scale MW , has a significant size. The plots of the described ratios are given
in App. G.5. The region of transverse momenta |qi| ∼ Q cannot be treated within
the transverse momentum-dependent factorization – it requires a computation in a
fixed-order perturbative expansion, which is not analyzed in this work.
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Figure 5.39: Differential cross section partially integrated over the transverse momenta
vs the collinear limit for l+1 l

+
2 .
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qT,max 2v2 2v1+1v2 1v1 total

10 GeV 0.164+0.039
−0.023 fb 0.032+0.012

−0.007 fb 0.0066+0.0034
−0.0020 fb 0.203+0.055

−0.032 fb

15 GeV 0.305+0.055
−0.029 fb 0.071+0.018

−0.011 fb 0.018+0.007
−0.005 fb 0.394+0.080

−0.045 fb

20 GeV 0.426+0.054
−0.029 fb 0.112+0.021

−0.014 fb 0.034+0.011
−0.008 fb 0.572+0.086

−0.051 fb

Table 5.2: Partially integrated cross sections of W+W+ production for different DPD
channels.

The total differential cross section (with LO hard scattering part) obtained using the
considered DPDF model presented in Section 3.3 is

σl+l+,coll.
DPS ≈ 1.08 fb . (5.139)
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Figure 5.40: Differential cross section partially integrated over the transverse momenta
vs the collinear limit for l−1 l

−
2 .

qT,max 2v2 2v1+1v2 1v1 total

10 GeV 0.095+0.024
−0.013 fb 0.019+0.007

−0.004 fb 0.0038+0.0019
−0.0012 fb 0.117+0.033

−0.018 fb

15 GeV 0.179+0.030
−0.017 fb 0.042+0.011

−0.006 fb 0.011+0.004
−0.003 fb 0.232+0.045

−0.026 fb

20 GeV 0.252+0.032
−0.017 fb 0.067+0.013

−0.009 fb 0.020+0.006
−0.005 fb 0.339+0.051

−0.031 fb

Table 5.3: Partially integrated cross sections of W−W− production for different DPD
channels.

The total cross-section (with LO hard scattering part) for production of a fixed l−l−

pair:

σl−l−,coll.
DPS ≈ 0.64 fb . (5.140)

Adding the total cross sections for both l+1 l
+
2 and l−1 l

−
2 , and including all combinations of

the produced leptons: e, µ, τ (treating all generation the same), we get the cross-section
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of production of two like-sign W bosons decaying into a lepton pair equal to

σtotal
(
W±W± → leptons

)
≈ 10.3 fb . (5.141)

Comparing this with the CMS results [48], which give σtotal = 80.7 ± 11.2 fb, we see
that the predictions obtained using the considered DPDF model are about a factor of
8 smaller. They were obtained using NLO PDFs in the DPDFs model, and LO hard
scattering cross-section. The NLO corrections to the hard part in the collinear cross-
section are not likely to account for this discrepancy, as suggested by the size of the
relevant corrections in a single Drell-Yan process [111]. According to results presented
in Section 6 in [111], see Figs. 10 and 13, the NLO corrections are of the size of 45%
of the LO result at central rapidity and about 25% at larger rapidities. In the case of
the double Drell-Yan, this would correspond to about 50-90% enhancement at higher
order (since the hard factor is squared there). A more recent work [112] predicts an
even smaller difference between LO and NLO, see Section 3 there. We were not able
to pinpoint the source of the difference in results between the two works. We note that
our predictions are also smaller than the ones of the previous works on DPS [50,52].

To discuss this difference, let us recall that in the simplest model of double-
parton scattering, the product of two DPDFs integrated over the transverse plane is
approximated by a product of the corresponding PDF divided by a constant σeff, called
the effective cross-section:∫

d2y Fa1a2(xi,y)F̄b1b2(x̄i;0) =
1

σeff

(
fa1(x1)fa2(x2)fb1(x̄1)fb2(x̄2)

)
. (5.142)

The DPDF model considered in this work takes a more complicated y-dependence of
DPDs, and one cannot assign to them a scale- and process-independent σeff. However,
if the DPDF model was initialized at the hard scales of the process so that there
was no DGLAP evolution of DPDs, it would be possible to assign the effective cross-
section parameter to the 2v2 intrinsic color-singlet part. According to the definition in
Eqs. (3.27) and (3.33), the corresponding effective cross-section would be

σeff = 8πhqq ≈ 68.5 mb , (5.143)

while the studies, e.g. [50, 52], assumed σeff = 14.5 mb, and the value extracted by the
CMS experiment is σeff = 12.2+2.9

−2.2 mb.
We notice that the model of DPDFs in this thesis was not motivated by the results

concerning generalized parton distributions, see Section 4.1 in [113], rather than the
double-parton scattering measurement. As the results show, the parameters in the
model should be adjusted. The code implemented in ChiliPDF is independent of the
model of the collinear parton distributions, which are provided as an input argument –
for this reason the study of transverse momentum-dependent double-parton scattering
for different DPDF models will be a straightforward task, which we leave for future
work.



Chapter 6

Conclusions

In this work we presented a detailed study of transverse momentum-dependent double-
parton distributions (DTMDs), and the corresponding differential cross sections of W
boson pair decaying into lepton pairs.

We distinguished two regions of the phase space, where DTMDs can be described
using approximate methods. The first one, called the “large-y” region, corresponds
to the distance between parton pairs much larger than the difference of the parton
transverse positions on both sides of the cut. In that case one can apply the operator
product expansion to operators defining DTMDs, obtaining the matching relation
between the collinear parton distribution and the transverse position-dependent DPDs.
In the “short-distance” region, where all distances are perturbatively small, we combine
the intrinsic part of DTMDs with the part obtained from perturbative splitting of
a single parton into two (PDF-DTMD splitting). In both cases we studied, how to
extrapolate perturbatively obtained DPDs to large distances.

We studied DPDs obtained using both approximations, and used them to obtain
the differential cross section of the process of W pair production. We developed an
interpolation method allowing to combine both DTMD approximations in a consistent
way. We identified the necessary nonperturbative input, and the corresponding sources
of theoretical uncertainties.

After that preparation, we computed the differential cross section of the pp̄ →
W±(→ l±1 ν1)W

±(→ l±2 ν2)+X process. Since the considered double parton distributions
are decomposed into 2 terms, intrinsic and splitting part, and there are different color
representations involved, we studied each resulting contribution independently. We
identified the terms that give the most important contributions, and analyzed the size of
the corresponding model uncertainties. We found that it is the error due to perturbative
matching that contributes the most to the overal error estimate.

Because of the absence of components necessary to remove double counting between
double- and single parton scattering in the splitting part at small distances, we are not
able to provide the total result for the differential cross section of opposite-sign W
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bosons production. The obtained results show that if rapidities Y1, Y2 of the produced
boson have similar values Y1 ≈ Y2, the splitting short-distance part should dominate
the result. If the rapidities are larger and not symmetric, the large-y part gives a
larger contribution than the short-distance terms. The variation of the ‘1v1’ short-
distance contribution with the short distance cut-off imposed in the integration allows
to estimate the size of higher order pQCD corrections to the corresponding SPS process
– our results suggest that for large and asymmetric rapidities the DPS contribution
should be of similar size, or even dominate over higher order corrections to the SPS.

In the case of like-sign W pair, we are able to provide a full description of DPS
at NNLL accuracy. The SPS process is initiated by Feynman graphs suppressed by
the second power in coupling compared with the DPS, and does not contribute at the
considered order. We found that the result is completely dominated by the large-y
color-singlet part. Integrating the cross section differential with respect to transverse
momenta of the produced W bosons we find that the momenta, which are large enough
to be considered perturbative, but also much smaller than the hard scale, contribute
to about 40% of the total cross section. The comparison with the experimental results
concerning like-sign W boson pair production [48] shows that the considered DPDF
model leads to underestimated cross sections, which suggests that the parameters of
the model need to be adjusted. Further studies of transverse momentum dependence
in the considered class of processes utilizing a larger variety of DPDF models will be a
subject of future research.



Appendix A

Color algebra

A.1 Projecting on definite color representations

Useful definitions can be found in
A. J. Macfarlane, A. Sudbery, P. H. Weisz, On Gell-Mann’s λ-Matrices, d- and f -
Tensors, Octets, and Parametrizations of SU(3), Commun. Math. Phys. 11 (1968) 77.

Recall that DPDs in definite color representations are obtained using projection
matrices PR1R2 :

R1R2Fa1a2 = εa1(R1)εa2(R2)
1

Na1Na2

1√
m(R1)

P
s1s2
R1R2

F s1s2
a1a2

, (A.1)

where si are the color indices. In general, any color matrix can be decomposed according
to

M s1s2 =
∑
R1R2

1

m(R1)
P

s1s2
R1R2

(
P

r1r2
R1R2

M r1r2
)
. (A.2)

Let us use indices i for fundamental representations, and a, b, c in the adjoint
representation. Depending on the parton type, we have the following projection
matrices:

• quark-quark – fundamental representation of SU(3):

P
i1i′1,i2i

′
2

11 =
1

N
δi1i′1δi2i′2 , (A.3)

P
i1i′1,i2i

′
2

88 =
1

N
tai1i′1t

a
i2i′2

, (A.4)
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• gluon-gluon – adjoint representation:

P
a1a′1,a2a

′
2

11 =
1

N2 − 1
δa1a′1δa2a′2 , (A.5)

P
a1a′1,a2a

′
2

AA =
1

N
fa1a′1b1fa2a′2b1 , (A.6)

P
a1a′1,a2a

′
2

SS =
N

N2 − 4
da1a

′
1b1da2a

′
2b1 , (A.7)

P
a1a′1,a2a

′
2

AS =
1√

N2 − 4
fa1a′1b1da2a

′
2b1 , (A.8)

P
a1a′1,a2a

′
2

SA =
1√

N2 − 4
da1a

′
1b1fa2a′2b1 , (A.9)

P
a1a′1,a2a

′
2

10 1̄0
=

1

4

(
δa1a2δa′1a′2 − δa1a′2δa′1a2

)
− 1

2
P

a1a′1,a2a
′
2

AA − i

4

(
da1a2b1fa′1a

′
2b1 + fa1a2b1da

′
1a

′
2b1
)
,

(A.10)

P
a1a′1,a2a

′
2

10 1̄0
=

1

4

(
δa1a2δa′1a′2 − δa1a′2δa′1a2

)
− 1

2
P

a1a′1,a2a
′
2

AA +
i

4

(
da1a2b1fa′1a

′
2b1 + fa1a2b1da

′
1a

′
2b1
)
,

(A.11)

P
a1a′1,a2a

′
2

27 27 =
1

2

(
δa1a2δa′1a′2 − δa1a′2δa′1a2

)
− P a1a′1,a2a

′
2

SS − P a1a′1,a2a
′
2

11 . (A.12)

• quark-gluon and gluon-quark – mixed fundamental and adjoint representations:

P ii′,aa′

11 = P aa′,ii′

11 =
1√

N(N2 − 1)
δii′δaa′ , (A.13)

P ii′,aa′

8A = P aa′,ii′

A8 =

√
2

N
tbii′f

aa′b , (A.14)

P ii′,aa′

8S = P aa′,ii′

S8 =

√
2

N
tbii′d

aa′b . (A.15)

A.2 Color representations in t-channel and s-channel

Due to simpler evolution, in this work we were using the color representations in the
t-channel. As described in [58], before renormalization the DPDFs in the s-channel
admits an interpretation as probability densities, and can be used to obtain positivity
bounds in color space. Let us denote DPDFs in color representation R̃1R̃2 in s-channel
as:

F R̃1R̃2
a1a2

, (A.16)

For qq̄ the definite color representations in the s-channel are (R̃1, R̃2) ∈
{
(1, 1) , (8, 8)

}
,

for qq distributions: (R̃1, R̃2) ∈
{
(3̄, 3̄), (6, 6)

}
, and for qg: R̃1R̃2 ∈

{
(3, 3), (6, 6), (15, 15)

}
.
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Definite representations for gg distributions are in the s-channel the same as in the t-
channel.

There is a linear relation between DPDs in t-channel and s-channel:

R1R2Fa1a2 = Ka1a2
ts F R̃1R̃2

a1a2
(A.17)

The matrices Ka1a2
ts read:

Kqq
ts = K q̄q̄

ts = 3

(
1 2

−
√
2
√
2

)
, (A.18)

Kqq̄
ts = K q̄q

ts =

(
1 8

2
√
2 −2

√
2

)
, (A.19)

Kqg
ts = Kgq

ts = 3

 1 2 5√
5
2

−
√
10

√
5
2

−3/
√
2 −

√
2 5/

√
2

 , (A.20)

K q̄g
ts = Kgq̄

ts = 3

 1 2 5√
5
2
−
√
10

√
5
2

3/
√
2
√
2 −5/

√
2

 , (A.21)

Kgg
ts =



1 8 8 10 10 27 0 0

2
√
2 −24

√
2

5
8
√
2 −8

√
2 54

√
2

5
0 0

−2
√
2 −8

√
2 −8

√
2 0 0 18

√
2 0 0

0 0 0 4
√
10 −4

√
10 0 0 16

√
2

0 0 0 4
√
10 −4

√
10 0 0 −16

√
2√

10 −16
√

2
5

0 2
√
10 2

√
10 −9

√
2
5

0 0

0 0 0 0 0 0 16
√
2 0

3
√
3 24

√
3

5
−8
√
3 −2

√
3 −2

√
3 21

√
3

5
0 0


(A.22)

A.3 Color nonsinglet intrinsic DPDFs

According to the model of intrinsic DPDFs in Eq. (3.33), the relation between color-
singlet and color-nonsinglet collinear DPDs is:

R1R2Fa1a2 = ra1a2(R1R2)
11Fa1a2 . (A.23)

Factors r(R1R2) are obtained by saturating the positivity bounds for DPDFs in definite
color representation in the s-channel, that is: assuming that for each flavor pair a1, a2,
only one F R̃1R̃2

a1a2
is non-zero, see Eq. (A.16).
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In the considered model the non-vanishing color representations in the s-channel are
taken as:

� (qq̄), (q̄q) : (8, 8) ,

� (qq), (q̄g) : (3̄, 3) ,

� (q̄q̄), (qg) : (3, 3̄) ,

� (g, g) (A,A) .

The resulting color factors are:

rqq(88) = rq̄q̄(88) = −
√
2 , (A.24)

rqq̄(88) = rq̄q(88) = −
1

2
√
2
, (A.25)

rqg(8S) = rq̄g(8S) = rgq(S8) = rgq̄(8S) =
√

5/2 , (A.26)

rqg(8A) = rq̄g(8A) = rgq(A8) = rgq̄(8A) = −3/
√
2 , (A.27)

rgg(SS) =
√
2 , rgg(AA) = −

√
2 :, (A.28)

rgg(SA) = rgg(AS) = rgg(10 1̄0) = rgg(1̄0 10) = 0 , (A.29)

rgg(27 27) = −
√
3 . (A.30)

For reference see Section 3.2 in [67].



Appendix B

Two-loop Collins-Soper kernels and
anomalous dimensions

Collins-Soper kernels relevant in the evolution of DPDFs and DTMDs in the large-y
approximation up to α2

S can be written using a single kernel:

K0

(
b;µ

)
=

1

CF

1Kq

(
b;µ

)
, (B.1)

so that

8Kq

(
b;µ

)
= − 1

2N
K0

(
b;µ

)
,

RKg

(
b;µ

)
= cg(R)K0

(
b;µ

)
,

cg(A) = cg(S) =
N

2
, cg(10) = 0, cg(27) = −1 ,

8J
(
b;µ1, µ2

)
=
N

2

(
K0

(
b;µ1

)
+K0

(
b;µ2

))
,

RJ
(
b;µ1, µ2

)
= cJ(R)

8J
(
b;µ1, µ2

)
,

cJ(8) =
N

2
, cJ(10) = 3, cJ(27) = 4 . (B.2)

Defining

aS =
αS

4π
, L(b, µ) = log

b2µ2

b0
, (B.3)

and using Eqs. (4.10)-(4.11) in [102], we can write

K0

(
b;µ

)
= − 4aSL(b, µ)

− 2a2S

(
β0L

2(b, µ) + 2Γ2L(b, µ) + CA

(404
27
− 14ζ3

)
− 56

27
nf

)
, (B.4)
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where Γ2 = CA

(
67
9
− π2

3

)
− 10

9
nf , β0 =

11
3
CA − 2

3
nf , and ζ3 is the value of the Riemann

zeta function at 3, not to be confused with the rapidity parameter ζ.

Kernel 1Kq is equal to the TMD quark Collins-Soper kernel. Its RGE reads:

d

d log µ
1Kq(b;µ) = −γK,q(µ) . (B.5)

We have

γK,q = 8CF aS + a2s 8CFΓ2 . (B.6)

The anomalous dimension of the gluon kernel γK,g is obtained from the linear relation
between 1Kq and

8Kg.

The RGE of transverse position-dependent DPDs reads:

d

d log µ1

R1R2Fa1a2

(
xi, zi,y;µi, ζ

)
= γF,a1(µ, x

2
1ζ) Fa1a2

(
xi, zi,y;µi, ζ

)
, (B.7)

where

γF,a1(µ, x
2
1ζ) = γa1(µ)− γK, a1 log

x1
√
ζ

µ
, (B.8)

analogously for the scale µ2. The kernels γK,a are defined above, and the non-cusp
anomalous dimensions are:

γq = 6CF as

+ 4a2s

[
C2

F

(3
4
− π2 + 12ζ3

)
+ CFCA

(961
108

+
11

12
π2 − 13ζ3

)
− CFnf

(65
54

+
1

6
π2
)]

,

(B.9)

γg = 2β0 as

+ 4a2s

[
C2

A

(346
27
− 11

36
π2 − ζ3

)
+ CAnf

(
− 64

27
+

1

18
π2
)
− CFnf

]
. (B.10)



Appendix C

Matching kernels

Taken from [56], Sections 7.3.4 - 7.3.5.

At the rapidity scale x2ζ = µ2, the color-singlet matching kernels in the parton basis
are given by

Cqq = C∆q∆q = δ(1− y) + aS CF

[
2y + 2SLδ(y)− L

( 4

y+
+ 2(y − 2)

)]
, (C.1)

Cqg = aS TF

[
4y(1− y)− L× 2

(
(1− y)2 + y2

)]
, (C.2)

C∆q∆g = aS TF

[
4y − L× 2

(
(1− y)2 − y2

)]
, (C.3)

Cgq = aS CF

[
2(1− y)− L× 2

1 + y2

1− y
]
, (C.4)

C∆g∆q = aS CF

[
− 4y − L× 2

1− y2
1− y

]
, (C.5)

Cgg = δ(1− y) + aS CA

[
2SLδ(y)− L× 4

( 1

y+
− 1 +

y
(
1 + (1− y)2

)
1− y

)]
, (C.6)

C∆g∆g = δ(1− y) + aS CA

[
2SLδ(y)− 8y − L× 4

( 1

y+
− 1 + 2y

)]
, (C.7)

where y = 1− x′, and L, SL are defined as

L = log
µ2z2

b20
, SL = −1

2
L2 − π2

12
. (C.8)
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1
y+

= 1
(1−x′)+

denotes the plus-distribution.

A plus-distribution of a function f(x′) is defined by:∫ 1

x

dx′
[
f(x′)

]
+
g(x′) =

∫ 1

x

dx′f(x′)
(
g(x′)− g(1)

)
− g(1)

∫ x

0

dx′ f(x′) , (C.9)

for any smooth test function g(x), x ∈ [0, 1].

There is a simple scaling for different color representations:

R1R2Cab = δabδ(1− y) + cab(R1R2)Cab, (C.10)

where the representation-dependent factors are:

cqq(11) = 1, cqq(88) = −
1

N2 − 1
,

cqg(8A) = cgq(8A) =

√
N2

2(N2 − 1)
, cqg(8S) = cgq(8S) = −

√
N2 − 4

2(N2 − 1)
,

cq̄q̄ = cqq, cq̄g(8S) = cqg(8S), cq̄g(8A) = −cqg(8A) . (C.11)

At the order α1
S, each kernel can be expressed using terms proportional to at most 3

different kinematics-dependent factors:

Cab = aS

[
C1

ab + L× CL
ab + SL × CSL

ab

]
. (C.12)

C.1 Massive quarks

As discussed in Section 3.2, we consider matching of collinear DPDFs with nf = 4
active flavors onto DTMDs with nf = 5. Therefore, one needs to account for the effects
of the bottom quark mass in the relevant matching kernels. They can be obtained using
the results for single parton TMDs [96].

Using terms C1, CL, CS defined in decomposition (C.12), we write the matching kernel
for a massive quark Q:

11CQg = c1Q C
1
qg + cLQ C

L
qg , (C.13)

11C∆Q∆g = c1Q C
1
∆qg + cLQ C

L
∆qg . (C.14)

At the considered perturbative order, the massive quarks mix only with gluons. The
coefficients cQg are

c1Q = (|z|mQ)K1(|z|mQ), cLQ = 2K0(|z|mQ) , (C.15)

where mQ is the quark mass, and Ki are modified Bessel functions of the second kind.



Appendix D

DPD splitting kernels

Presented formulas are taken from [56].

DTMD-PDF matching formula reads:

R1R2Fa1a2,spl.(xi, zi,y;µ) =
yl
+y

l′
−

y2
+y

2
−

αS(µ)

2π2
R1R2Ta0→a1a2

( x1
x1 + x2

)fa0(x1 + x2;µ)

x1 + x2
, (D.1)

where y± = y + 1
2
(z1 − z2). Let us denote u = x1/(x1 + x2) and ū = 1 − u. The

leading-order splitting kernels used in this work are:

11T ll′

g→qq̄ = −11T ll′

g→∆q∆q̄ = TF
(
u2 + ū2

)
δll

′
, (D.2)

11T ll′

g→∆qq̄ = −11T ll′

g→q∆q̄ = −iTF
(
u− ū

)
ϵll

′
, (D.3)

11T ll′

q→gq = CF
1 + ū2

u
δll

′
, (D.4)

11T ll′

q→∆g∆q = CF

(
1 + ū

)
δll

′
, (D.5)

11T ll′

g→gg = 2CA

(u
ū
+
ū

u
+ uū

)
, (D.6)

11T ll′

g→gg = 2CA

(u
ū
+
ū

u
+ uū

)
, (D.7)

11T ll′

g→∆g∆g = 2CA

(
2− uū

)
δll

′
. (D.8)

The result for color-nonsinglet channels is obtained by multiplication by color factor:

R1R2Ta0→a1a2 = ca0→a1a2(R1R2)
11Ta0→a1a2 . (D.9)

We have:

cg→qq̄(88) = −
1√

N2 − 1
, (D.10)
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cq→gq(A8) = −cq→gq̄(A8) = −
N√
2
, cq→gq(S8) = cq→gq̄(S8) =

√
N2 − 4

2
, (D.11)

cg→gg(SS) = −cg→gg(AA) =

√
N2 − 1

2
, cg→gg(AS) = cg→gg(SA) = 0 , (D.12)

cg→gg(27 27) = −
√
3 , cg→gg(10 1̄0) = cg→gg(1̄0 10) = 0 . (D.13)

At LO the matching between DPDFs and PDFs is obtained by taking zi = 0, which
effectively means replacing y± → y in Eq. (D.1).
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Hard scattering factors

For reference see Section 7.1 in [56], and Appendix A.1 in [53].

The factor Kq1q̄2 used in Section 5.1, including 1-loop QCD corrections reads

Kq1q̄2(Q) =

(
1 +

αS

2π
CF

[
− log2

Q2

µ2
+ 3 log

Q2

µ2
− 8 +

7π2

6

])
× K

(0)
q1q̄2(Q) , (E.1)

where the LO part is:

K
(0)
q1q̄2(Q) =

α

4N

|Vq1q2|2(
2 sin θW

)4 Q2(
Q2 −M2

W

)2
+M2

WΓ2
W

,

q1 up-type, q2 down-type . (E.2)

α is the fine structure constant, N = 3 is the number of colors, Vq1q2 denotes the CKM
matrix element, θW is the weak mixing angle.
One has the analogous Ka1a2 factor in the case of W− production, only with q1 of
down-type and q1 up-type.
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Appendix F

Alternative integration variables in
the short-distance part

The integrals defining the transverse-position dependent differential cross-section have
the form: ∫

d2y

∫
d2z1

∫
d2z2 e

−i(q1z1+q2z2) w(z1, z2,y) . (F.1)

One can instead use the variables

z± =
1

2

(
z1 ± z2

)
, q1z1 + q2z2 = z+(q1 + q2) + z−(q1 − q2) , (F.2)

so that the integrand is

e−i(z+q++z−q−) w(z1, z2,y) , q± = q1 ± q2 . (F.3)

Recall from Section 5.4.1 that the short-distance splitting part integrated over d2y is
enhanced at small values of |z−|, due to small separation between the singularities at
|y±z−| → 0 on the y-plane. In (z1, z2) variables it corresponds to specific configurations
of these two vectors, while in variables (z−, z+) it is simply controlled by a single variable
z− = |z−|. However, to make a close comparison with the large-y part, we continued to
use (y, z1, z2) also in the short-distance region.

It is tempting to further simplify the problem of singularities at y± → 0, by using the
variables y+,y−, z+ in the integration. Using y+ − y− = 2z−, we would get a Fourier
factor involving all 3 vectors:

ei(q1z1+q2z2) = ei
(
z+q+ +

1
2
y+q− − 1

2
y−q−

)
. (F.4)

Expressing the resulting integral in terms of Bessel integrals would require expanding
the integral in terms of discrete double Fourier transform with respect to 2 angles, and
the obtained double series involves a triple Hankel transform, which makes this form
rather difficult for numerical computation.
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Appendix G

Complementary plots
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Figure G.1: Example of color-nonsinglet DTMD, for which the initial conditions
(intrinsic vs splitting DPDF form) change the qualitative behavior at large z2 = |z2|.
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G.1 DTMDs in short-ditance approximation
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Figure G.2: Absolute value of the unpolarized splitting part of bb̄ distribution at
|z1| = |z2| = 0.1 GeV−1. Solid lines correspond to the region where the distribution is
positive, and dashed lines indicate negative value. Compated to the results for a pair
uū presented in Fig. 4.7 one observes much faster vanishing of the splitting part of a
massive quark pair compared to the massless case.
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Figure G.3: The same as in Fig. G.2, but for color-nonsinglet representation.
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Figure G.4: The same as in Fig. G.2, but for non-symmetric values of |zi|: |z1| =
0.1 GeV−1, |z2| = 0.5 GeV−1.
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Figure G.5: The same as in Fig. G.4, but for color-nonsinglet representation.
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Figure G.6: The same as in Fig. 4.7, but for non-symmetric values of |zi|: |z1| =
0.1 GeV−1, |z2| = 0.5 GeV−1.



DTMDs in short-ditance approximation 159

0.1 0.2 0.3 0.4 0.5
y [GeV 1]

10 6

10 5

10 4

10 3

10 2

x 1
x 2

|88
F|

[G
eV

2 ]

(u, u), color-nonsinglet, unpolarized, splitting part,  y =  0.1 

z =  0
z =  0.5 
z =  

0.1 0.2 0.3 0.4 0.5
y [GeV 1]

10 6

10 5

10 4

10 3

10 2

x 1
x 2

|88
F|

[G
eV

2 ]

(u, u), color-nonsinglet, unpolarized, splitting part,  y =  0.5 

z =  0
z =  0.5 
z =  

Figure G.7: The same as in Fig. G.6, but for color-nonsinglet representation.
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G.2 NLL vs NNLL results the large-y part
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Figure G.8: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons scattering into a pair of leptons. Considered are two
values of rapididies of the bosons: (Y1, Y2) = (1.5, 0) (left), and (Y1, Y2) = (3, 0)
(right). Presented are the results and the estimation of the error due to the perturbative
matching at NLL (green) and NNLL (blue) accuracy.
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Figure G.9: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons scattering into a pair of leptons. Considered are
two values of rapididies of the bosons: (Y1, Y2) = (1.5, 0) (left), and (Y1, Y2) = (3, 0)
(right). Presented are the results and the estimation of the error due to the perturbative
matching at NLL (green) and NNLL (blue) accuracy.
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Figure G.10: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons scattering into a pair of leptons. Considered are two
values of rapididies of the bosons: (Y1, Y2) = (3, 3) (left), and (Y1, Y2) = (3,−3)
(right). Presented are the results and the estimation of the error due to the perturbative
matching at NLL (green) and NNLL (blue) accuracy.
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Figure G.11: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons scattering into a pair of leptons. Considered are
two values of rapididies of the bosons: (Y1, Y2) = (3, 3) (left), and (Y1, Y2) = (3,−3)
(right). Presented are the results and the estimation of the error due to the perturbative
matching at NLL (green) and NNLL (blue) accuracy.
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G.3 Combined uncertainties at large-y
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Figure G.12: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (0, 0), scattering into a pair of
leptons.
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Figure G.13: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapididies (Y1, Y2) = (0, 0), scattering into a
pair of leptons.
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Figure G.14: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (1.5, 0), scattering into a pair of
leptons.
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Figure G.15: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapididies (Y1, Y2) = (1.5, 0), scattering into
a pair of leptons.
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Figure G.16: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (3, 0), scattering into a pair of
leptons.
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Figure G.17: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapididies (Y1, Y2) = (3, 0), scattering into a
pair of leptons.
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Figure G.18: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (3,−3), scattering into a pair of
leptons.
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Figure G.19: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapididies (Y1, Y2) = (3,−3), scattering into
a pair of leptons.
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Figure G.20: Large-y region, singlet sector contribution to the differential cross-section
of production of two W bosons of rapididies (Y1, Y2) = (3, 3), scattering into a pair of
leptons.
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Figure G.21: Large-y region, nonsinglet sector contribution to the differential cross-
section of production of two W bosons of rapididies (Y1, Y2) = (3, 3), scattering into a
pair of leptons.
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G.4 2v1+1v2 short-distance result at different cut-

offs
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Figure G.22: Comparison of 2v1+1v2 short-distance contributions at cut-offs b0/MW

and 2b0/MW for rapidities (Y1, Y2) = (0, 0), (1.5, 0), (3, 0).
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Figure G.23: Comparison of 2v1+1v2 short-distance contributions at cut-offs b0/MW

and 2b0/MW for rapidities (Y1, Y2) = (3, 3), (3,−3).
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G.5 Ratios for partially integrated cross-sections
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Figure G.24: Ratio of the differential cross section partially integrated over tranvserse
momenta of the producedW up to |qi| ≤ qmax to the result in the collinear limit. Result
for a pair of W+

1 W
+
2 decaying into l+1 l

+
2 .
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Figure G.25: Ratio of the differential cross section partially integrated over tranvserse
momenta of the producedW up to |qi| ≤ qmax to the result in the collinear limit. Result
for a pair of W−

1 W
−
2 decaying into l−1 l

−
2 .
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distributions, SciPost Phys. 7, 017 (2019), [1902.08019]
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