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A B S T R A C T

Globally, coastal regions face the persistent threat of flooding, which ranks among
the most common, deadly, and costly natural disasters. In low-lying coastal areas,
floods can emerge from several drivers like waves, tides, storm surges, strong
precipitation, and high river discharge. The simultaneous occurrence of two or
more flood drivers can lead to compound flooding, which amplifies the destructive
power of the floods beyond what the events could normally cause separately.
Although compound flood events pose a significant threat to the coastal area
and its inhabitants, they are not well researched. Very little is known about the
causes of these events, their frequency, and the overall damage they can cause.
While many studies on compound flood events focus on smaller local regions,
there is a notable gap in research at a broader scale for northern and central
Europe. Improving our understanding of these compound flood events could
greatly benefit coastal protection by providing better risk assessment. The urgency
of researching the development of compound flood events is heightened by global
warming and the resulting impact on coastal protection infrastructure. In this thesis,
I therefore investigate if there are meteorological drivers for compound flood events
in northern and central Europe, how the frequency of these events changes under
climate change, and how changes to discharge, storm surges, and sea level rise
contribute to it.

I begin by examining the simultaneous occurrence of extreme discharge and high
storm surges in the North and Baltic Sea catchments in northern and central Europe.
To test for dependency between the drivers I use a Monte Carlo-based approach.
This is the first time this method has been used in a continental scale study, whereas
previous studies have used copulas, which introduce a considerable amount of
uncertainty. I show that the west-facing coasts have historically experienced a higher
number of compound flood events than expected by chance alone, suggesting the
existence of a common meteorological driver favouring concurrent extremes.

Following up on these findings, I demonstrate that the vast majority of these
compound flood events on the west-facing coasts of the North and Baltic Sea
occur during a particular weather pattern. I present a new neural network that
automatically classifies this weather pattern, which is then used as a proxy for
compound flood events. The neural network achieves a higher accuracy than the
two pre-existing studies on the classification of this weather pattern. By analysing
several global climate models and climate scenarios, I find that the models project
a higher frequency of this specific weather pattern in winter, indicating a higher
likelihood of compound flood events towards the end of the current century.

Finally, I analyse the data from two global climate models in greater detail to
better understand what additional factors contribute to changes in the number
of compound flood events under climate change. I demonstrate that the rising
sea level is the primary factor for future increases in the number of compound
flood events, but that the influence of discharge changes should not be neglected.
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Furthermore, I show that there will be a strong increase in compound flood events,
even if global warming is kept in line with the Paris Agreement.

Overall, in this thesis I highlight the link between large-scale weather patterns
and compound flood events for the North and Baltic Seas, and highlight the higher
frequency of compound flood events towards the end of the current century, caused
by anthropogenic climate change. The results of this thesis do not only contribute
to a better scientific understanding of compound flood events in northern and
central Europe, but are also important to inform decision-makers about them so
that these events are taken into account when planning future coastal protection
measures under climate change.



I N H A LT S A N G A B E

Weltweit sind Küstenregionen immer wieder von Hochwasserereignissen bedroht,
die zu den häufigsten, tödlichsten und kostenträchtigsten Naturkatastrophen zäh-
len. In niedrig gelegenen Küstengebieten können Hochwasser durch verschiedene
Ursachen wie Wellen, Gezeiten, Sturmfluten, starke Niederschläge und hohe Fluss-
abflüsse ausgelöst werden. Das gleichzeitige Auftreten von zwei oder mehr Hoch-
wasserursachen kann zu einem kombinierten Hochwasserereignis führen, das die
zerstörerische Kraft des Hochwassers über das hinaus verstärkt, was die Ereignisse
normalerweise einzeln verursachen. Obwohl kombinierte Hochwasserereignisse
eine erhebliche Bedrohung für das Küstengebiet und seine Bewohner darstellen,
sind sie nicht gut erforscht. Es ist nur sehr wenig über die Ursachen dieser Ereignis-
se, ihre Häufigkeit, und die Gesamtschäden, die sie verursachen können, bekannt.
Während sich viele Studien auf kleinere lokale Regionen konzentrieren, gibt es auf
größerer Ebene eine beachtliche Forschungslücke für das nördliche und mittlere
Europa. Ein besseres Verständnis dieser kombinierten Hochwasserereignisse kann
dem Küstenschutz durch eine bessere Risikobewertung zugute kommen. Die Dring-
lichkeit der Erforschung der Entwicklung von kombinierten Hochwasserereignissen
wird durch die globale Erwärmung und die daraus resultierenden Auswirkungen
auf die Küstenschutzinfrastruktur noch verstärkt. In dieser Arbeit untersuche ich
daher, ob es meteorologische Ursachen für kombinierte Hochwasserereignisse im
nördlichen und zentralen Europa gibt, wie sich die Häufigkeit dieser Ereignisse
im Zuge des Klimawandels verändert und wie Änderungen des Abflusses, der
Sturmfluten sowie des Meeresspiegelanstiegs dazu beitragen.

Ich beginne mit der Untersuchung des gleichzeitigen Auftretens von extremen
Abflussmengen und hohen Sturmfluten in den Einzugsgebieten der Nord- und
Ostsee im nördlichen und zentralen Europa. Um die Abhängigkeit zwischen den
Treibern zu testen, verwende ich einen Monte-Carlo basierten Ansatz. Dies ist das
erste Mal, dass diese Methode in einer kontinentalen Studie verwendet wurde,
während in früheren Studien Copulas verwendet wurden, die eine erhebliche Unsi-
cherheit mit sich bringen. Ich zeige, dass an den westlichen Küsten in der Vergan-
genheit mehr kombinierte Hochwasserereignisse aufgetreten sind, als rein zufällig
zu erwarten wären, was auf die Existenz eines gemeinsamen meteorologischen
Auslösers hindeutet, der das gleichzeitige Auftreten von Extremen begünstigt.

Im Anschluss an diese Ergebnisse belege ich, dass die überwiegende Mehrheit
dieser kombinierten Hochwasserereignisse an den Westküsten der Nord- und
Ostsee während eines bestimmten Wettermusters auftritt. Ich stelle ein neues neu-
ronales Netz vor, das dieses Wettermuster automatisch klassifiziert, welches dann
als Proxy für kombinierte Hochwasserereignisse verwendet wird. Das neuronale
Netz erreicht eine höhere Genauigkeit als die beiden bereits existierenden Studien
zur Klassifizierung dieses Wettermusters. Durch die Analyse mehrerer globaler
Klimamodelle und Klimaszenarien stelle ich fest, dass die Modelle eine höhere
Häufigkeit dieses spezifischen Wettermusters im Winter vorhersagen, was auf eine
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höhere Wahrscheinlichkeit von kombinierten Hochwasserereignissen zum Ende
des aktuellen Jahrhunderts hinweist.

Schließlich analysiere ich die Daten zweier globaler Klimamodelle genauer, um
besser zu verstehen, welche zusätzlichen Faktoren zu den Veränderungen in der
Anzahl der kombinierten Hochwasserereignisse unter dem Klimawandel beitragen.
Ich demonstriere, dass der Anstieg des Meeresspiegels der wichtigste Faktor für
den künftigen Anstieg der Anzahl der kombinierten Hochwasserereignisse ist,
dass aber auch der Einfluss von Abflussänderungen nicht vernachlässigt werden
darf. Darüber hinaus verdeutliche ich, dass es zu einer starken Zunahme von
Hochwasserereignissen kommen wird, selbst wenn die globale Erwärmung im
Einklang mit dem Pariser Abkommen steht.

Insgesamt zeige ich in dieser Arbeit den Zusammenhang zwischen großräumi-
gen Wettermustern und kombinierten Hochwasserereignissen für die Nord- und
Ostsee auf und verdeutliche die höhere Häufigkeit kombinierter Hochwasserer-
eignisse gegen Ende des laufenden Jahrhunderts, die durch den anthropogenen
Klimawandel verursacht wird. Die Ergebnisse dieser Arbeit tragen nicht nur zu
einem besseren wissenschaftlichen Verständnis von kombinierten Hochwasserer-
eignissen im nördlichen und zentralen Europa bei, sondern sind auch wichtig,
um Entscheidungsträger über sie zu informieren, damit diese Ereignisse bei der
Planung zukünftiger Küstenschutzmaßnahmen unter Klimawandel berücksichtigt
werden.
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1
I N T R O D U C T I O N

As one of the most frequent, costly, and deadly natural disasters worldwide, floods
pose a major threat to people living in coastal areas of the North and Baltic Seas.
The European climate risk assessment (European Environment Agency, 2024)
reported that during the past 30 years almost 5.5 million people were affected
by floods in Europe, causing nearly 3000 deaths and more than e 170 billion in
damages. With many major economic centres in the coastal areas of northern and
central Europe, there is a lot of vital infrastructure that can be severely affected
by floods, including access to drinking water, digital communication, energy, and
transportation (Pant et al., 2018). Flooded roads, for example, prevent emergency
services like ambulance and firefighters from accessing the area (Arrighi et al.,
2019) while a power outage complicates the communication and coordination of
rescue operations in the flooded areas.

In low-lying coastal areas, there are several drivers of different origins that can
cause coastal flooding (Wolf, 2009). If the soil is saturated due to high volumes of
precipitation it leads to the resulting excess water flowing over the land surface
(pluvial). In addition, heavy rainfall or snowmelt can cause the river discharge
to surpass the capacity of the river channel and flood the adjacent area (fluvial).
Furthermore, additional drivers of oceanographic origin can contribute to flooding.
These include astronomical tides, waves, and storm surges in which strong winds
rise the sea level (Hendry, 2021). The intricate interplay of spatial and temporal
dynamics between these drivers leads to a diverse range of flood events affecting
the coastal areas (Couasnon, 2023).

The simultaneous occurrence of two or more of these drivers, so-called compound
flood events, can cause them to amplify each other and pose a much greater threat
than the individual drivers would under normal circumstances (de Ruiter et al.,
2020). At present, there are only definitions for compound events in general,
which can be caused by other drivers such as extreme heat and drought. However,
these definitions also apply to compound flood events. One often used definition
comes from the Intergovernmental Panel on Climate Change (Seneviratne et al.,
2012): ‘(1) two or more extreme events occurring simultaneously or successively, (2)
combinations of extreme events with underlying conditions that amplify the impact
of the events, or (3) combinations of events that are not themselves extremes but
lead to an extreme event or impact when combined. The contributing events can
be of similar (clustered multiple events) or different type(s)’. A more generalised
definition was proposed by Zscheischler et al. (2018) who defined them as ‘the
combination of multiple drivers and/or hazards that contributes to societal or
environmental risk’, which recent studies started to adopt. Compound events were
formerly part of the umbrella term ‘multi-hazard’, which included all kinds of
different hazards, whereas nowadays the term ‘compound events’ is mostly used
for weather and climate related hazards (Tilloy et al., 2019).
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Compound flood events are not as well understood as the individual drivers that
can cause them (Hendry, 2021). Although compound flood events have been known
about for many years, they are still often neglected in risk assessment, leading
to an underestimation of potential risks (Kruczkiewicz et al., 2022). Most flood
risk reduction strategies focus on reducing the impact of a single driver, leaving
them vulnerable to compound flooding caused by the interaction of multiple
drivers (Ward et al., 2020). An example of this is the compound flood event that
hit Lymington in southern England in 1999. Lymington had been flooded ten
years earlier in 1989, when a storm surge breached the flood defences. The water
inundated the railway as well as several electricity substations (Davison et al.,
1993). As a result of the flood, the city improved its coastal defences and added
a tidal gate for the Lymington River. The tidal gate was opened during low tide,
releasing the water from the river, while being closed during high tide to prevent
the sea water from pushing inland. However, in December 1999 a heavy storm
raised the coastal water levels and prevented the river drainage for an extended
period (Ruocco et al., 2011). This, combined with heavy rainfall in the area, caused
flooding in the river upstream (see Fig. 1.1), leading to water depth of over 1 m in
parts of the town (O’Connell, 2000). As a result of this compound flood event, £3.5

Figure 1.1: Official document by the British Environment Agency detailing the flooding of
Lymington in December 1999 due to a compound event. Source: Tim Kermode,
Environment Agency. The presentation containing this image can be found in
Appendix A. Licence: Contains public sector information licensed under the
Open Government Licence v3.0.

million were spent in 2007 to install flood gates, raise road levels, and add sheet
piling between the river and the railway line to reduce the risk of future flooding
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(Jolliffe, 2007). This example highlights the need of taking compound flood events
into account for proper risk assessment.

Due to their importance and dangers, compound floods have attracted increasing
interest from the scientific community over the past decade and have been declared
a Grand Challenge by the World Climate Research Programme (Zhang et al., 2014).
Studies have been conducted at a wide range of scales and locations. Couasnon et al.
(2020) found hotspots for compound flood events caused by discharge and storm
surge in several regions, including Vietnam, Madagascar, and Taiwan. Eilander
et al. (2020) utilised a river routing model to assess the impact of storm surges
on riverine flood hazard in deltas on a global scale. They found that in nearly
20% of the more than 3,000 rivers they studied, compound flood events were the
dominant cause for flooding. On a smaller scale, there have been local studies
such as Ai et al. (2018) for the coastal province of Jiangsu in China, Khatun et al.
(2022) for the Upper Mahanadi River basin in India, and Kupfer et al. (2022) for
the Breede Estuary in South Africa. In addition, there have been many studies
of hurricanes and typhoons. The simultaneous occurrence of extreme winds and
excessive rainfall caused by these tropical cyclones often leads to compound flood
events. Examples include Cyclone Sidr in Bangladesh in 2007 (Ikeuchi et al., 2017),
Hurricane Harvey in the United States in 2017 (Huang et al., 2021), and Typhoon
Usagi in Vietnam in 2018 (Rodrigues do Amaral et al., 2023). The focus is often on
a better understanding of the flood processes to improve forecasts as well as aiding
disaster planning and mitigation efforts. These studies mostly focus on Asia and
the United States, as tropical cyclones do not affect Europe.

It is nearly impossible to directly compare different studies on compound flood
events, as they analyse different regions and use different data, methods, time
periods, variables, and more. For example, Dykstra & Dzwonkowski (2021) used
observed precipitation and discharge data from 1930-2019, while Khanal et al.
(2019a) worked with modelled storm surge and discharge data for 1950-2000. Local
studies in Europe have been conducted, for example, by De Bruijn et al. (2014) for
the Rhine estuary in the Netherlands, Banfi & De Michele (2022) for Lake Como
in Italy, and Olbert et al. (2023) for Cork City in Ireland. Furthermore, there is
no established standard for what is considered ‘extreme’ in the first place. Some
studies utilise block-maxima, such as Galiatsatou et al. (2016), where they most
of the time use the annual maximum, while others, such as Ben Daoued et al.
(2020), use the peak-over-threshold approach, often applying percentiles to set
the threshold. The general consensus of most studies is that the co-occurrence of
multiple flood drivers is crucial for a robust risk assessment due to their destructive
nature and neglecting it could be fatal. Furthermore, several studies, like e.g. Bray
& McCuen (2014), have reported dependencies between flood drivers, suggesting
that they may occur more frequently than expected by chance alone.

Very few studies have investigated compound flood events in Europe on a
continental scale. Examples include Paprotny et al. (2020), who showed that hy-
drodynamic models are capable of identifying real-world compound flood events,
while Ganguli & Merz (2019) found contrasting patterns in the severity of com-
pound flood events depending on the latitude of the gauge. Bevacqua et al. (2019)
investigated compound flood events caused by discharge and precipitation in
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Europe but focused mostly on changes under climate change and not dependen-
cies in the present. Although Europe is included in global studies such as those
conducted by Lai et al. (2021) and Ridder et al. (2020), they are often limited by
their resolution and do not examine each individual region in more detail, as their
domain is the entire planet.

One downside of many studies is their reliance on joint probability distribution
models, so-called copulas, and tail dependence, which investigates if extremes are
correlated (Hao et al., 2018). Both methods are affected by the limited availability of
data, which introduces significant uncertainty (Serinaldi, 2013). Especially the usage
of tail dependence has been criticised, with Serinaldi et al. (2015) calling the results
‘highly questionable and should be carefully reconsidered’. These problems can be
avoided by utilising, for example, a Monte Carlo-based approach, as previously
done by Poschlod et al. (2020) for rain-on-snow events in Norway. This method
shuffles two data sets to make them temporal independent. The resulting ‘new’
data sets are then examined for the number of compound extreme events. This
process is repeated thousands of times to allow us to assess the likelihood of the
number of compound events occurring in the original datasets also occurring in
the time-independent version. This provides us with information about whether
there might be a dependency between the drivers. A more detailed explanation of
the method is given in Chapter 2.2.

So far, no study has investigated possible driver dependencies for Europe without
the use of copulas, despite the large amount of uncertainty they introduce. If it can
be shown that compound flood events in northern and central Europe occur more
frequently than by pure chance, it indicates a common meteorological driver, which
could then be used in further steps to deepen our understanding of compound
flood events. Furthermore, it can be investigated if spatial patterns emerge which
show regions that are exposed to a higher risk of compound flood events. By using
the aforementioned Monte Carlo-based approach, I aim to answer the first research
question:

1. Do compound flood events in northern and central Europe occur randomly?

The next question I will address in this dissertation is related to changes in
the frequency of compound flood events under anthropogenic climate change.
Climate change is probably the greatest challenge humanity has ever faced. Many
countries are experiencing an increase in compound heat and drought events,
while the number of extreme precipitation events is increasing at the same time
(AghaKouchak et al., 2020). Climate change naturally poses a challenge to coastal
protection and the marine ecosystem. Coastal zones are particularly vulnerable to
sea level rise and storm activity (Wong et al., 2014). The United Nations Office for
Disaster Risk Reduction (2020) reports that the number of major flood events has
more than doubled in the last 20 years (2000-2020) when compared to 1980-2000.
This is becoming an even more pressing issue as Europe’s population living in
low-lying coastal areas, i.e. near the coast and less than 10 m above sea level, is
expected to increase from 50 million in 2000 to 56 million in 2060 (Neumann et al.,
2015). It is therefore important to adapt coastal protection strategies, for example
by raising dikes and levees or building designated flood shelters (Kreibich et al.,
2015).
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The increased risk to human life comes on top of the high economic costs of
this hazard under anthropogenic climate change. Without additional investment in
coastal adaptation, the estimated annual damage of e1.25 billion is projected to
increase dramatically by the end of the current century, ranging from e93 billion
up to e961 billion (Vousdoukas et al., 2018a). A recent study by Cortés Arbués et al.
(2024) reported that some coastal regions could lose 10-21% of their gross domestic
product (GDP) as a result of rising sea level, causing more damage and an eventual
relocation of investments away from the coast further inland. Vousdoukas et al.
(2020b) found that elevating dykes in an economically efficient way for a third of
Europe’s coastline could mitigate at least 83% of the flood damage. Despite these
results, McEvoy et al. (2021) noted that some European countries are planning their
coastal protection for only 20 cm of sea level rise, while others follow adaptive
strategies for up to 2 m.

For future-proof coastal protection, it is essential to consider compound flood
events (Leonard et al., 2014). The overall number of studies that have investigated
changes in the frequency and intensity of compound flood events in Europe under
climate change is limited. On a global scale, Bevacqua et al. (2020) and Ridder
et al. (2022) have investigated compound flood events under climate change, but
not in greater detail for Europe. On a smaller local scale, there are, for example,
studies by Sayol & Marcos (2018) for the Ebro Delta (Spain), Del-Rosal-Salido
et al. (2021) for the Guadalete estuary (Spain), Visser-Quinn et al. (2019) for Great
Britain, and Čepienė et al. (2022) for the city of Klaipėda in Lithuania. All studies
project an increase in the number of compound flood events and point out the
importance of proper adaptation. Bevacqua et al. (2019) and Ganguli et al. (2020)
are the only studies that have analysed changes in compound flood events on
a continental scale for Europe. These studies considered different time frames,
different drivers, and came to rather different conclusions. Ganguli et al. (2020)
looked at changes for 2040-2069 and reported a lower risk of compound flood
events in the projected scenario due to a lower dependence between storm surges
and river discharge extremes, but an increase in compound flood events at ∼30% of
the sites when taking sea level rise into account. Bevacqua et al. (2019), on the other
hand, considered precipitation and sea level for the period of 2070-2099, where
they projected a strong increase in compound flood events due to the warmer
atmosphere allowing storms to carry more moisture, in addition to sea level rise.

Some studies have investigated whether there is a relationship between specific
weather patterns and the occurrence of compound flood events for current climate.
For example, Hendry et al. (2019) found that the compound events on the west
coast of Great Britain have a different meteorological background than those on the
east coast. Moreover, Ridder et al. (2018) showed that atmospheric rivers, which are
associated with high near-surface winds and heavy precipitation, play an important
role in compound flood events along the Dutch coast. Similarly, Camus et al. (2022)
examined weather patterns that contribute to compound flood events along the
North Atlantic coastlines. They found that the coastal hotspots for these compound
events align with the main storm tracks along the North Atlantic Ocean.

If it is possible to establish a connection between the occurrence of compound
flood events and large-scale weather patterns, they could serve as a proxy for
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future changes in the frequency of these events. This would allow the analysis of
global climate model ensembles without the need for an additional downscaling
step, which is often required for climate change impact assessments to simulate,
for example, discharge, and tide-surge. The weather patterns on the other hand
can be inferred directly from the global climate model data, as a result saving
time, computational resources, and manpower. One of the most widely used
weather classification systems in Europe is the Großwetterlagen catalogue of Hess
& Brezowsky (1969). It is based on observational data and dates back to 1881 while
being updated to this day by the German Weather Service (DWD). The advantage
of this classification system is that these circulation types can be associated with
consistent and typical local weather conditions (Wapler & James, 2015), in contrast
to arbitrary clusters of weather data. However, its application to climate model
data is hampered by the fact that the classification is entirely subjective. So far, two
studies have worked on an automatic objective approach. James (2007) proposed a
method based on composite plots where each day is classified based on its highest
correlation. With the widespread use of neural networks in the last decade, they
have also become part of meteorological tasks. Convolutional neural networks
are particularly effective at finding patterns in images or recognising objects. This
allows them to classify weather patterns because, at a basic level, classifying
weather patterns is identical to other image classification tasks, such as determining
whether an image depicts an aeroplane or a dog. Convolutional neural networks
are made up of different building blocks, using layers of convolutions, pooling
operations, and fully connected layers (Yamashita et al., 2018). A convolutional
neural network that had previously been used by Liu et al. (2016) for the detection
of extreme weather was adapted by Mittermeier et al. (2022) for the classification
of Großwetterlagen. Although their convolutional neural network improved the
classification skills over the previous work by James (2007), it is far from perfect.

To date, there has been no analysis of changes in the frequency of Großwetter-
lagen for an ensemble of different global climate models. Only Mittermeier et al.
(2022) analysed a single-model initial-condition large ensemble for a single climate
change scenario. They found statistically significant changes in the frequency of
about two thirds of the Großwetterlagen. However, it is unclear whether other
climate change scenarios and global climate models show similar changes. In partic-
ular, an ensemble of global climate models and different climate change scenarios
could reduce the uncertainty of the results.

With this in mind, it outlines a methodology to improve our understanding:
First, establish a link between the occurrence of compound flood events in Europe
and Großwetterlagen. Second, develop my own convolutional neural network with
improved classification capabilities. Third, apply the convolutional neural network
to several global climate models and climate change scenarios from the Coupled
Model Intercomparison Project Phase 6 (CMIP6). Fourth, analyse the resulting
classification for changes in frequency, which in turn could imply changes in the
frequency of compound flood events. With this procedure I aim to answer the
question:

2. Are there Großwetterlagen that favour the development of compound flood
events and how is their frequency changing due to climate change?
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The utilisation of Großwetterlagen as a proxy in a global climate model ensemble
may be able to provide insight into future changes in the frequency of weather
patterns that benefit the occurrence of compound flood events, but it cannot paint
the whole picture required for coastal protection. While it may provide insight
into some of the drivers, it does not take sea level rise into account as it is not
related to Großwetterlagen. It is important to have a good understanding of how
the different drivers contributing to compound flooding will change in the future
to provide the best protection. As mentioned above, the only two studies conducted
at the European scale operate at different timescales, use copulas, and come to
contradictory results. This results in a glaring knowledge gap in our understanding
of future changes in compound flood events in Europe. For this reason, I investigate
changes to sea level rise, discharge, and storm surge levels in two regional climate
models in greater detail to answer the third question:

3. What influence will different factors have on the frequency of compound
flood events in the future?

The objective of this dissertation is to contribute to a better understanding of
compound flood events in northern and central Europe for the past and future,
guided by the previously posed research questions. It contains three independent
scientific chapters (Chapters 2 to 4), each of which constitutes a complete publication
in its own right. As a result, some brief repetitions are inevitable, but useful for
readers interested only in a particular chapter. In addition, each chapter contains a
short summary of its content at the beginning.

In Chapter 2, I aim to answer the first research question by investigating whether
compound flood events caused by discharge and storm surges occur more fre-
quently than by pure chance in northern and central Europe. For this, I utilise an
approach based on Monte Carlo simulations. It is shown that rivers on west-facing
coastlines tend to exhibit more compound flood events than expected by random
chance alone. With this pointing towards a common driver, I confirm that the
majority of these events are caused by the Großwetterlage Cyclonic Westerly. In
addition, I demonstrate that rivers with larger catchments tend to have a lower
number of compound flood events compared to smaller river catchments.

Motivated by these findings, Chapter 3 aims to improve the automatic classi-
fication of Großwetterlagen and answer the second part of the second research
question. For this, I develop a neural network that outperforms previous studies.
I also test several additional variables to investigate whether they improve the
classification capabilities of the network. The network is then utilised to analyse
changes to Cyclonic Westerly under climate change at the end of the current century
for 31 different global climate models from the Coupled Model Intercomparison
Project Phase 6. The results show that the number of days with Cyclonic Westerly
increases during the winter half-year but decreases during the summer season. The
higher frequency of Cyclonic Westerly during the main season of compound flood
events indicates that the conditions for such events are more likely to be met under
climate change.

To further investigate how different factors influence the frequency of compound
flood events under climate change, I analyse downscaled data sets from two global
climate models in Chapter 4. To answer the third research question, I then look at
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the concurrent appearance of discharge and storm surges for 2070-2099 in northern
and central Europe, taking sea level rise into account. The results show that there
will be a massive increase in the frequency of compound flood events for the
majority of locations. The primary source for this increase comes from the ongoing
sea level rise, but the changes in discharge cannot be neglected.

In Chapter 5, I summarise the results of all three research questions and give
final remarks on compound flood events and their future changes under anthropo-
genic climate change. The chapter concludes with the implications of the findings
presented in this dissertation and an outlook on future research ideas.

In addition, Appendix A contains official documents related to the flooding of
Lymington in 1999 for preservation purposes.



2
C O M P O U N D F L O O D E V E N T S : A N A LY S I N G T H E J O I N T
O C C U R R E N C E O F E X T R E M E R I V E R D I S C H A R G E E V E N T S A N D
S T O R M S U R G E S I N N O RT H E R N A N D C E N T R A L E U R O P E

chapter summary

The simultaneous occurrence of extreme events gained more and more attention
from scientific research in the last couple of years. Compared to the occurrence
of single extreme events, co-occurring or compound extremes may substantially
increase risks. To adequately address such risks, improving our understanding
of compound flood events in Europe is necessary and requires reliable estimates
of their probability of occurrence together with potential future changes. In this
study compound flood events in northern and central Europe were studied using a
Monte Carlo-based approach that avoids the use of copulas. Second, we investigate
if the number of observed compound extreme events is within the expected range
of two standard deviations of randomly occurring compound events. This includes
variations of several parameters to test the stability of the identified patterns. Finally,
we analyse if the observed compound extreme events had a common large-scale
meteorological driver. The results of our investigation show that rivers along the
west-facing coasts of Europe experienced a higher amount of compound flood
events than expected by pure chance. In these regions, the vast majority of the
observed compound flood events seem to be related to the Großwetterlage Cyclonic
Westerly.

2.1 introduction

Coastal flooding is one of the most frequent, expensive, and fatal natural disasters.
In the US alone, it dealt $199 billion in flood damages from 1988 to 2017 according
to Davenport et al. (2021). For Europe, Vousdoukas et al. (2018a) projected an
increase in annual costs caused by coastal floods of up to $1 trillion in 2100 for
Representative Concentration Pathway 8.5 (RCP8.5). Furthermore, more than 600

million people live in coastal areas that are less than 10 m above sea level and less
than 100 kilometres from the shore (McGranahan et al., 2007). Drivers for floods
are storm surges, waves, tides, precipitation, and high river discharge (Paprotny
et al., 2020). The area of the river in which two or more of these drivers influence
the water level are called transition zones (Bilskie & Hagen, 2018). Additionally,
floods can also be the result of failures of critical infrastructure like hydropower
dams or flood defences (ECHO, 2021).

The IPCC special report on Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation (SREX) defined compound events as ‘(1) two or
more extreme events occurring simultaneously or successively, (2) combinations of
extreme events with underlying conditions that amplify the impact of the events,

9
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or (3) combinations of events that are not themselves extremes but lead to an
extreme event or impact when combined. The contributing events can be of similar
(clustered multiple events) or different type(s)’ (Seneviratne et al., 2012). A more
general definition was proposed by Leonard et al. (2014), who defined it as ‘an
extreme impact that depends on multiple statistically dependent variables or events’.
This study focuses on compound flood events that occur when large runoff from,
for example, heavy precipitation, leading to extreme river discharge, is combined
with high sea level (storm surge). Because it is not possible to take local properties
like topography into account, we will denote these ‘potential compound flood
events’ as ‘compound flood events’ in the following text for the sake of readability.

The occurrence of extreme discharge and storm surge events either simultan-
eously or in close succession can lead to severe damage, which greatly exceeds the
damage those events would cause separately (de Ruiter et al., 2020; Xu et al., 2022).
Several studies conducted over previous years have shown the importance and
catastrophic nature of compound flood events for various locations. One example
is the flooding of Jacksonville (Florida) where the surge caused by the strong winds
of Hurricane Irma stalled the fluvial discharge (Juarez et al., 2022). Considering
data from 1901-2014 and gauges from northwestern Europe Ganguli & Merz (2019)
found opposing trends in the magnitude of compound flood events depending
on the latitude of the gauge. They reported increases at midlatitudes (47

◦ N to
60

◦ N) and decreases for gauges at high latitude (>60
◦ N). Svensson & Jones (2002)

analysed the dependence of high sea surge, river flow, and precipitation in the UK.
They found a higher number of compound flood events on the western coast than
on the eastern coast, while Paprotny et al. (2020) demonstrated that hydrodynamic
models are capable of identifying real-world compound flood events in northwest-
ern Europe. Many studies found that the assumption of independence between
drivers leads to an underestimation of the occurrence rate of compound events.

In addition to the large-scale studies mentioned above, a large number of studies
exist that focus on smaller regions. Examples are the studies of van den Hurk
et al. (2015) and Santos et al. (2021b), which both analysed a near flood event in
the Netherlands in January 2012, which was caused by a combination of extreme
weather conditions. Additionally, there have been studies modelling compound
flood events in rivers on a local scale such as for the Zengwen River basin in Taiwan
by Chen & Liu (2014), the Shoalhaven River in Australia by Kumbier et al. (2018),
and the Min River in China by Lian et al. (2013).

A direct comparison between different studies is hampered by the use of differ-
ent approaches, data, analysis periods, and other factors. There are currently no
established standards for detecting extreme events. For example, the thresholds
for extreme events were calculated by utilising the return period (Bevacqua et al.,
2019), utilising a certain number of events per year (Ganguli et al., 2020; Hendry
et al., 2019), or utilising a percentile approach (Paprotny et al., 2018b). Other studies
chose block maxima to detect extreme events (Engeland et al., 2004). The exact
parameters are chosen nearly arbitrarily by the authors, with the only common
goal being a low number of events so that they can be declared as ‘extreme’. Non-
etheless, there have been some studies that investigated the sensitivity of their
results. Zheng et al. (2014) compared three classes of statistical methods and found
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that the point process method overestimated the dependence of extremes while the
conditional method underestimated it. In a similar vein, Jane et al. (2022) assessed
that their estimates of the potential for compound events were highly sensitive to
the statistical model setup. Basically, all studies found a correlation between drivers
to a certain extent.

The influence of climate change on the frequency of compound flood events in
Europe has been investigated by different studies. The increasing sea level due to
climate change and higher occurrence of strong precipitation pose an increasing
threat to important economic centres around the world and the people living there
(De Sherbinin et al., 2007). Feyen et al. (2020) projected that in the event of a high-
emissions scenario, the damages caused by floods would represent a considerable
proportion of some countries’ national gross domestic product (GDP) at the end of
the century. Studies that investigated the effect of climate change on compound
flood events focused on various regions of interest, for example, Bevacqua et al.
(2019) on all of Europe, Poschlod et al. (2020) on Norway, Bermúdez et al. (2021) on
the rivers Mandeo and Mendo in Spain, and Ganguli et al. (2020) on northwestern
Europe. Bevacqua et al. (2019, 2020) reported a strong increase in the occurrence
rate of compound flooding events for the future, especially for northern Europe,
mainly due to the stronger precipitation as the result of a warmer atmosphere
carrying more moisture. Contrarily, Ganguli et al. (2020) reported a lower risk of
compound flooding due to a lower dependence between surges and river discharge
peaks.

Many studies utilised multivariate extreme value theory and copulas to describe
the data distribution of two or more time series and investigate the dependence
between extreme events (Hao et al., 2018). In climate research, the amount of
available data points is often very small, with many studies operating at merely
30 extreme events. This can cause large uncertainties when trying to evaluate
the tail dependence of the distribution (Joe, 2014; Serinaldi, 2013). An alternative
approach is based on Monte Carlo simulations where the dependence between
joint extremes is studied by randomly rearranging one of the time series. Given
our small sample size, in the following we used such an approach to avoid the
uncertainties associated with the use of copulas in small samples.

In the present study, we analyse compound flood events by focusing on the
question of whether they occur more often than by pure coincidence. Utilising
several available large-scale data sets allowed us to conduct this analysis for
northern and central Europe, instead of focusing on a single river. Furthermore,
we wanted to investigate if spatial patterns occur and if they are caused by one
common meteorological driver. To achieve this, we implemented a simple statistical
method that avoids the application of copulas. For this, we randomised our data
sets in a bootstrap process and investigated the number of compound extreme
events in them, which resulted in a probability distribution in case of independence.
Rivers with a number of observed compound extreme events outside of the 95.4%
confidence interval of two standard deviations might have a common large-scale
driver. Similar studies have so far only been carried out by van den Hurk et al. (2015)
for the Lauwersmeer in the Netherlands and by Poschlod et al. (2020) for Norway
(in this case covering rain-on-snow events). To our knowledge, this will be the first
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recent publication investigating compound flooding in northern Europe without
the use of copulas. For this, we utilised discharge and sea level data sets that were
simulated based on reanalysis and hindcast data. Moreover, we investigated the
robustness of the spatial patterns in our results by modifying various parameters of
our method, like the thresholds for determining extreme events. Additionally, we
investigated potential correlations between a river’s catchment size and the number
of compound flood events that occur. Finally, we examined possible drivers that
could cause the occurrence of compound flood events.

2.2 methods

The first step in determining extreme events is to define which events are considered
to be extreme. There are ways to use automatic threshold approaches for detecting
extreme events, like goodness-of-fit p-value (Solari et al., 2017) or the characteristics
of extrapolated significant wave heights (Liang et al., 2019), but they struggle due
to the diverse characteristics in the time series of drivers that cause coastal floods
(Camus et al., 2021). River-specific thresholds are only feasible for case studies that
can take the local properties, like flood protection or elevation of the surrounding
area, into account. Therefore a more general approach is needed that is applicable
to all rivers. As described in Chapter 2.1, there is so far no standardised method
that is generally used. Quite the contrary, every study uses its own modus operandi,
each having individual reasoning for their choice.

One option is utilising block maxima for extreme event detection (Gumbel, 1958),
which provides a well-spaced distribution of extreme events, e.g. one event per
year, meaning one annual maximum event. However, it can miss out on events with
high values, in case several events happen in the same year (Santos et al., 2021a),
while also labelling lower values as extreme in years without any major events.

We, therefore, chose the peaks-over-threshold (Pickands III, 1975) method to
select extreme events by using percentiles, like in the works of Ridder et al. (2018),
Ward et al. (2018), Fang et al. (2021), Lai et al. (2021), and Brunner & Slater
(2022). While using the peaks-over-threshold method, it is important to ensure the
independence of the events. It has to be prevented that, for example, a single day
that slightly drops under the thresholds creates two separate events (Harley, 2017).
A critical element in the analysis is the definition of a de-clustering window such
that subsequent events can be considered independent. A frequently used window
size is based, for example, on the typical duration of storms in the area (e.g. Camus
et al. (2021) and Harley (2017)). Here, we chose a de-clustering time of three days as
used in other studies spanning larger domains (e.g., Bevacqua et al. (2019), Haigh
et al. (2016) and Ward et al. (2018)).

Extreme events should be rare by definition, regardless of the river size, therefore
only occurring scarcely throughout the year. This especially prevents the accidental
analysis of events that are normally not considered extreme. On the other hand,
the choice of our threshold needed to take the limited data availability into account.
Hence, we were forced to choose our thresholds low enough to ensure that enough
points were available for robust statistical analysis. The number of extreme dis-
charge events can vary strongly depending on the river itself. Large rivers like the
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Elbe show the tendency of having very long extreme events that can last for several
weeks, therefore resulting in a lower number of independent extreme events for
a specified quantile threshold. Smaller rivers, however, have usually rather short
extreme events, and consequently a larger number of independent extremes for the
same quantile threshold. While this specific approach might result in nominally
different numbers of extreme events for each river, it ensures that for each river the
same amount of data points exceed the threshold. Sea level also exhibits variations
in event duration, albeit to a lesser extent. For the discharge of rivers we chose the
90

th percentile Q90 and for the sea level the 99
th percentile S99.

To test the influence of the extreme event definition on possible patterns, we ad-
ditionally implemented an automatic threshold tuning that modifies the percentiles
and the subsequent thresholds in such a way that they result in an average of two
extreme events per year. This was done to test in Chapter 2.4.2 if our results remain
stable under much stricter definitions of extreme events. Moreover, the threshold
tuning results in an average return period of 0.5 years for extreme discharge and
sea level events since the return period can be defined as

RP =
L
E

(2.1)

where RP denotes the return period, L the duration of the data set in years, and E
the number of extreme events.

Another factor we had to take into account is the so-called lag, which characterises
the temporal delay between variables reacting to the same meteorological event.
Such lag can occur for example, if a storm approaches a coast it generates increased
sea level due to stronger winds, before travelling inland where it causes higher
amounts of discharge due to precipitation. Most studies, e.g. Hendry et al. (2019),
tested a variety of ranges like ± five days, while Ganguli et al. (2020) calculated
the delay based on the catchment size of the river.

There is a valid argument made by Ward et al. (2018) that the delay can put
high stress on the flood protection systems if the initial flood water cannot retreat
fast enough before the discharge occurs. Due to the large area of our study, it is
impossible to quantify the potential consequences of ongoing floods on the coastal
protection system for each river. Hence, we decided to focus on joint occurrences
of extreme events without any additional lag. Despite that, we tested our results in
Chapter 2.4.2 for a lag of 3 days to investigate potential influences on our results. In
our case, we used the lag as a temporal search radius around the discharge extreme
event rather than a shift of the time series itself.

To identify rivers that show a higher number of compound flood events than
expected by pure chance, we utilised a Monte Carlo approach. Other studies in
the past also utilised data permutation; see, for example, Svensson & Jones (2002),
Zheng et al. (2013), and Nasr et al. (2021). Rivers with this behaviour might indicate
a common large-scale driver that causes extreme discharge and sea level at the
same time. For example, Hendry et al. (2019) found that the compound events on
the west coast of Great Britain have a different meteorological background than
those on the east coast. A randomisation method was used to disrupt possible
correlations between the data sets and see how the number of compound flood
events changes in the case of independent data. First, we limited the time frame
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of the data sets to the late fall and entire winter season, as storm surges mostly
occur in the winter season in northern Europe; see, for example, (Liu et al., 2022b).
For the winter season, we used a time frame from December to February, such as
also done by Robins et al. (2021). At the same time, most discharge events are also
limited to the winter and early spring seasons. Neglecting this seasonality would
naturally lead to false-positive dependencies since seasonal events would be spread
throughout the entire year instead of being mostly limited to their own season.
As a result, we would see a much lower number of compound flood events in the
non-randomised data, therefore suggesting a false dependence (Couasnon et al.,
2020).

Afterwards, we determined the number of compound flood events by counting
the joint occurrence of extreme events in the discharge and sea level data. To deal
with the differing duration of discharge events, we counted the occurrence of
multiple separate sea level extreme events during the same discharge event as
separate compound flood events.

After determining the number of compound flood events in the original data
sets, we prepared the randomisation of the sea level data. For this, we made sure
that events were not split up by grouping data points of the same event together
before the shuffling process. This was done to not artificially increase the number
of extreme events by separating events that consist of more than a single data point.
Every data point that was not an extreme event was put into its own group as
the only member. The shuffling process of the groups with NumPy (Harris et al.,
2020) assigned every group a weight based on the number of data points inside
each group. After the shuffling process, the groups were disbanded and formed a
randomised data set based on the new order. Afterwards, we performed the de-
clustering process again to ensure that extreme event data points in close proximity
were counted as a single event. Then we calculated the number of compound flood
events for the combination of discharge data and randomised sea level data. This
bootstrap process was repeated 10,000 times for each river, giving a probability
distribution for each of them. The resulting probability distribution was used to
determine if the initially observed number of compound flood events is within the
95.4% confidence interval of two standard deviations (2σ).

To test the robustness of our results in Chapter 2.4.2, we also created an additional
randomisation approach by randomly shuffling the order of the winter months
throughout the sea level data. This method was easier to implement than the one
used for the main analysis. For further testing, we utilised different combinations of
data sets to investigate their influence on our results. Finally, we used two different
time frames to see if climate change or the choice of time period have an influence
on possible spatial patterns.

The domains of all catchments, regions, and seas that we mention by name for
various reasons in this study can be seen in Fig. 2.1.

2.3 data

In order to study compound flood events, spatial and temporal consistent long
time series of daily river runoff (discharge) and sea level near the coast are required.
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Figure 2.1: This figure contains the catchments, regions, and seas that are mentioned by
name throughout the study. The first five entries in the colourbar contain
maritime zones with highlighted catchment areas of rivers that discharge into
them. The last five entries show the catchment area of five rivers on the German-
Danish western coast.

On the one hand, observed discharges are usually not available at the respective
river mouths, but they are often measured at stations further inland. In addition,
periods of available daily data vary considerably between the rivers, even over the
considered region that has a rather good data coverage.

Consequently, we chose several model-generated data sets that provide daily
data also for sea level over a time period of at least 20 years and cover northern
Europe. For our analysis, we utilised several model-based data sets which varied
in forcing, regions and time frames. This was done to enable robustness tests of
our analysis under a diverse set of conditions. The simulated discharges are solely
caused by the atmospheric forcing and the hydrological processes over land. The
influence of the sea level on discharge in the estuaries of the rivers is not considered
so that this influence (e.g., Moftakhari et al. (2019)) does not cause problems in the
determination of river floods. These data sets were generated by using observations
and reanalysis data as forcing and they are described below. A short overview of
their usage in this paper is given in Table 2.1.

2.3.1 River Runoff

We utilised two daily river runoff data sets that are based on consistent long-term
reconstructions by the global hydrology model HydroPy (Stacke & Hagemann,
2021) and the hydrological discharge (HD) model (Hagemann et al., 2020). The
river runoff was simulated at 5′ spatial resolution covering the entire European
catchment region. The HD model v. 5.0 (Hagemann & Ho-Hagemann, 2021) was
set up over the European domain covering the land areas between -11

◦ W to 69
◦ E
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Data set name Usage Variable
Period of

available data

HD5-ERA5

Main analysis
Robustness against different parameter settings

Robustness against different model-based data sets
discharge 1979-2018

HD5-EOBS
Time robustness

Robustness against different model-based data sets
discharge 1950-2019

TRIM-REA6

Main analysis
Robustness against different parameter settings

Robustness against different model-based data sets
sea level 1995-2018

ECOSMO-coastDat3
Time robustness

Robustness against different model-based data sets
sea level 1948-2019

ECOSMO-REA6 Robustness against different model-based data sets sea level 1995-2015

Table 2.1: Data set names and their usage in this publication.

and 27
◦ N to 72

◦ N at a spatial resolution of 5′ (ca. 8-9 km). Both data sets were
published as Hagemann & Stacke (2021) and utilised in Hagemann & Stacke (2023).

2.3.1.1 HD5-ERA5

ERA5 is the fifth generation of atmospheric reanalysis (Hersbach et al., 2020) pro-
duced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It
provides hourly data on many atmospheric, land-surface, and sea-state parameters
at about 31 km resolution. HydroPy was driven by daily ERA5 forcing data from
1979-2018 to generate daily fields of surface and subsurface runoff at the ERA5

resolution. Here, the Penman-Monteith equation was applied to calculate a refer-
ence evapotranspiration following Allen et al. (1998). Then, surface and sub-surface
runoff were interpolated to the HD model grid and used by the HD model to
simulate daily discharges.

2.3.1.2 HD5-EOBS

The E-OBS data set (Cornes et al., 2018) comprises several daily gridded surface
variables at 0.1◦ and 0.25

◦ resolution over Europe covering the area 25
◦ N-71.5◦ N ×

25
◦ W-45

◦ E. The data set has been derived from station data collated by the ECA&D
(European Climate Assessment & Dataset) initiative (Klein Tank et al., 2002; Klok &
Klein Tank, 2009). Using E-OBS v. 22, HydroPy was driven by daily temperature and
precipitation at 0.1◦ resolution from 1950-2019. The potential evapotranspiration
(PET) was calculated following the approach proposed by Thornthwaite (1948),
including an average day length at a given location. As for HD5-ERA5, the forcing
data of surface and sub-surface runoff simulated by HydroPy were first interpolated
to the HD model grid and then used to simulate daily discharges.

Investigations by Rivoire et al. (2021) found precipitation data from ERA5 to be
of higher quality than from E-OBS. As a result, we primarily focused on HD5-ERA5

due to its higher quality compared to HD5-EOBS, as analysed in Hagemann &
Stacke (2023).
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2.3.2 Sea level

2.3.2.1 TRIM-REA6

COSMO-REA6 is the high-resolution regional re-analysis of the German Weather
Service (DWD; Bollmeyer et al. (2015)). COSMO-REA6 data were used to force the
ocean model TRIM (Tidal, Residual, and Intertidal Mudflat Model) for the period
1995-2018. The 2D version of TRIM-NP (Kapitza, 2008) is a nested hydrostatic
shelf sea model with spatial resolutions increasing from 12.8 km × 12.8 km in the
North Atlantic to 1.6 km × 1.6 km in the German Bight. Ten-metre-height wind
components and sea level pressure were used as atmospheric forcing fields. At the
lateral boundaries, the astronomical tides from the FES2004 atlas (Lyard et al., 2006)
were used. We chose this data set for the main analysis of our work due to the
larger region it covers.

2.3.2.2 ECOSMO-coastDat3

The coastDat3 data set is a regional climate reconstruction for the entire European
continent, including the Baltic Sea, the North Sea, and parts of the Atlantic (Petrik
& Geyer, 2021). The simulation was conducted with the regional climate model
COSMO-CLM (CCLM; Rockel et al. (2008)). CoastDat3 covers the period 1948-2019

with a horizontal grid size of 0.11
◦ in rotated coordinates, and the National Centers

for Environmental Prediction-National Center for Atmospheric Research (NCEP-
NCAR) global reanalysis (Kalnay et al., 1996) was used as forcing and for the
application of spectral nudging (von Storch et al., 2000). CoastDat3 data were used
to force the physical part of the marine ECOSystem MOdel (ECOSMO) (Daewel
& Schrum, 2013; Schrum & Backhaus, 1999) for the period 1948-2019 (BSH, 2022).
ECOSMO was applied at a spatial resolution of 0.033

◦ longitude and 0.02
◦ latitude,

and its domain covers an area from 48.20333
◦ N to 65.90333

◦ N and 4.034667
◦ W to

30.120333
◦ E. The riverine freshwater inflow was taken from a Mesoscale Hydrologic

Model streamflow simulation over Europe at 1/16
◦ resolution (Rakovec & Kumar,

2022).

2.3.2.3 ECOSMO-REA6

For this data set, the ECOSMO model was forced with COSMO-REA6 data and
covers the period from 1995-2015. The initial state was based on a simulation using
coastDat2 (Geyer, 2014) forcing from 1990 to 1995. The configuration was otherwise
identical to ECOSMO-coastDat3 (Chapter 2.3.2.2). While the HD model domain
covers the entirety of Europe, the ocean model domains of TRIM and ECOSMO
cover only parts of northern Europe. Therefore, our analysis includes a different
number of rivers depending on which ocean model was used to generate the sea
level data, i.e. either 181 for TRIM-based data or 126 for ECOSMO-based data.
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2.3.3 Großwetterlagen

Großwetterlagen (GWL) are large-scale weather patterns that form over Europe.
Hess & Brezowsky (1969) classified them into 29 different regimes and six circu-
lation types. These weather regimes can persist from a few days up to several
weeks in extreme cases. We used a catalogue with this classification system, which
started back in 1881 and is managed by the DWD. James (2007) stated that there
is a strong correlation between the Großwetterlagen and the resulting weather in
various regions.

2.4 results

2.4.1 Regional distribution of compound flood events

Fig. 2.2 shows the distribution of compound flood events for the TRIM-REA6 and
HD5-ERA5 data over northern Europe. A total of 26% of the rivers along the coasts

Figure 2.2: Number of compound flood events over a period of 24 years for northern
Europe based on HD5-ERA5 and TRIM-REA6 data. Circle size indicates the
catchment size of the corresponding river. The number of discharge and sea
level extreme events was limited to two events per year on average.

had eight or more compound flood events during the time period 1995-2018. The
regions with the highest number of compound flood events are Ireland and the
southeastern Baltic Sea. Furthermore, the west coast of the Baltic states also shows
a large amount of compound flood events. The east- and south-facing coasts of
the Bothnian Bay and Bothnian Sea in the Baltic Sea, as well as Skagerrak, show
the lowest frequencies of compound flood events. Similarly, the east coast of Great
Britain exhibits a low number of compound flood events, in contrast to the west
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coast. In general, it can be seen that west-facing coasts have a larger number of
compound flood events.

Utilising our randomisation method (see Chapter 2.2) yielded Fig. 2.3, which
shows if the amount of observed compound flood events for each river is within
the 2σ interval produced by the randomised data sets. We see that the number of
compound flood events is outside of the 2σ interval for the majority of rivers along
the westward-facing coasts, while the opposite is true for the French west coast.

Figure 2.3: Evaluation of compound flood events for rivers in northern Europe using HD5-
ERA5 and TRIM-REA6 data from 1995-2018. The colour indicates if the amount
of compound flood events is within (grey), above (red) or below (blue) the
expected 2σ interval. Results are obtained for the winter season with a lag of
zero days (see Chapter 2.2).

2.4.2 Robustness of the east-west pattern

To ensure that the pattern seen in Fig. 2.3 is not the result of sampling effect, para-
meter, or data choice, we tested different data sets, time periods, and parameters
to see whether or not the pattern remains robust. Some images for these tests are
in Chapter 2.A for the sake of readability, and they are discussed in the following
subsections.

2.4.2.1 Utilisation of various data sets

For the first robustness tests we analysed the combination of ECOSMO-REA6

with HD5-ERA5 (Fig. 2.8), ECOSMO-coastDat3 with HD5-ERA5 (Fig. 2.4a), and
ECOSMO-coastDat3 with HD5-EOBS (Fig. 2.9). The overall pattern indicating that
western coasts have the tendency of showing more events than expected by pure
chance remains stable throughout these different data set combinations.
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Figure 2.4: Robustness testing. As in Fig. 2.3 but with different setups. a) Utilised ECOSMO-
coastDat3 and HD5-ERA5 data b) ECOSMO-coastDat3 and HD5-EOBS from
1960 to 1989 c) ECOSMO-coastDat3 and HD5-EOBS data from 1990 to 2019 d)
TRIM-REA6 and HD5-ERA5 with increased lag from zero to three days.

2.4.2.2 Validation for different time periods

Next, we split the ECOSMO-coastDat3 and HD5-EOBS data into two 30-year
periods, from 1960 to 1989 (Fig. 2.4b) and from 1990 to 2019 (Fig. 2.4c). The pattern
of west-facing coasts having a higher number of compound flood events than
expected by random sampling is persistent throughout different time periods, even
though it is somewhat more pronounced in the more recent one.

Lastly, we added more months to the analysis by adding the month of November
(Fig. 2.11) and finally expanding the time period to last from October to March of
the following year (Fig. 2.12). This resulted in a slightly higher number of rivers
being outside of the 2σ interval.

2.4.2.3 Changes to parameters and randomisation

As a first test, we changed the lag from zero to three days which is shown in
Fig. 2.4d. This resulted in a slightly higher number of river catchments within the
expected interval. Furthermore, we also tested the second randomisation method
described in Chapter 2.2 in order to interrupt possible dependencies. For this,
we randomised the order in which the years appear in our sea level data sets.
The biggest difference with this simpler randomisation approach was that two
additional rivers on the British east coast are below the 2σ deviation.

Additionally, we compared the influence of two different thresholding meth-
ods on the results, namely self-tuning thresholds (Fig. 2.3) and plain percentiles
(Fig. 2.10), both described in Chapter 2.2. Both methods lead to nearly identical
results.
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2.4.3 A common meteorological driver for compound flood events

To see if the regions with a higher-than-expected number of compound flood events
have a common large-scale meteorological driver we analysed the meteorological
situation during these events. The coordinates of those regions are available in
Table 2.2.

Region Coordinates

West coast of the Baltic states 54.52–59.00
◦ N × 20.00–24.80

◦ E

West coast of Great Britain 50.79–55.99
◦ N × 04.85–02.50

◦ W

German-Danish west coast 53.81–56.46
◦ N × 08.02–09.12

◦ E

West-facing coast in the Bothnian Sea 61.12–62.46
◦ N × 21.18–21.80

◦ E

West coast of Ireland 52.48–54.72
◦ N × 09.30–07.90

◦ W

West-facing coast of Sweden 55.37–59.37
◦ N × 10.90–13.20

◦ E

Table 2.2: Regions and their corresponding coordinates sorted in alphabetical order. They
are used for the analysis in Chapter 2.4.3. These regions are also utilised in the
visualisation of the results in Fig. 2.6.

For our analysis, we focused first on the German-Danish west coast. This coast
contains the five rivers Storå, Ribe Å, Bongsieler Kanal, Eider, and Oste. Our goal
was to scrutinise whether large-scale compound flood events in these rivers have
a specific Großwetterlage as their common meteorological driver. For this, we
decided to examine which Großwetterlage is present when at least four of the five
rivers have a compound flood event simultaneously. This requirement resulted in
16 separate compound flood events based on ECOSMO-coastDat3 + HD5-ERA5

and ECOSMO-coastDat3 + HD5-EOBS data. 15 of these events appeared during
the Großwetterlage Cyclonic Westerly (Fig. 2.5), with only one appearing during
Cyclonic North-Westerly (Fig. 2.6a).

The Großwetterlage Cyclonic Westerly is associated with strong westerly winds
and higher-than-normal precipitation (Gerstengarbe et al., 1999) that can cause
storm surges and river floods, respectively, which in combination can lead to com-
pound flood events. Also, our analysis showed that at least 75% of the compound
flood events for each river along the German-Danish west coast happened during
this specific Großwetterlage. This made it the predominant Großwetterlage during
compound flood events in this area. Similar results were found for the Swedish
west coast in Kattegat and Skagerrak. There, all seven events that involved at
least four rivers appeared during the Großwetterlage Cyclonic Westerly, based on
ECOSMO-coastDat3 and HD5-ERA5 data (Fig. 2.6b).

In the west-facing coast of the Bothnian Sea, Cyclonic Westerly remained the
predominant Großwetterlage. About two-thirds of the events occurred during Cyc-
lonic Westerly and one-third during Anticyclonic Westerly (Fig. 2.6c). In the coastal
area of the Baltic states, we observed again a distribution of roughly two-thirds of
the events appearing during Cyclonic Westerly and one-third during Anticyclonic
Westerly (Fig. 2.6d). Anticyclonic Westerly is known to lead to precipitation in the
area of the Baltic countries (Jaagus et al., 2010), which in combination with the
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Figure 2.5: Map of the daily mean atmospheric pressure over Europe on 8th of December
2011. The characteristic low-pressure centre of the Großwetterlage Cyclonic
Westerly is located north of Scotland (Hersbach et al., 2020).

southeastern wind direction are responsible for around a third of the compound
flood events in the Baltic and west-facing Finnish area, due to the orientation of
their coastline. For the west-facing coast of Great Britain, we found that half of the
compound flood events happen during Cyclonic Westerly, a quarter of the events
during Cyclonic South-Westerly and the remaining during other Großwetterlagen
(Fig. 2.6e). Unlike the other cases, we did not observe any predominant Großwet-
terlage for compound events in Ireland, with Cyclonic Westerly accounting for
less than half of the observed Großwetterlagen during compound flood events
(Fig. 2.6f).

Furthermore, we investigated possible correlations between the duration of a
Großwetterlage and the occurrence of compound flood events. We found that
compound flood events can occur during short Großwetterlagen that only last 3

days, which is by definition the minimum duration, as well as Großwetterlagen
that remain over several weeks. Therefore, we did not find any direct correlation.
Additionally, we did not observe any specific sequence of Großwetterlagen that
leads to an increased risk of compound flood events. Finally, the kind of Großwet-
terlage, which follows or precedes the Großwetterlage that causes a compound
flood event, seems to be random.

2.4.4 Correlation between the number of compound flood events and catchment size

We analysed if there is any connection between the catchment size and the frequency
of compound flood events. For this, we plotted the number of compound flood
events against the size of the catchment area of each river (Fig. 2.7). The catchment
size of each river was obtained from the HD model grid. The analysis was done
separately for rivers based on their orientation along the coasts. Furthermore, the
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Figure 2.6: Distribution of Großwetterlagen that occurred during compound flood events
in Europe. The following regions were analysed: a) German-Danish west coast,
b) West-facing coast of Sweden, c) West-facing coast in the Bothnian Sea, d)
West coast of the Baltic states, e) West coast of Great Britain, and f) West coast
of Ireland. Coordinates of those regions are given in Table 2.2.

rivers were coloured red if the number of compound flood events is above the 2σ

interval of randomised sea level data, blue if below the interval, and grey otherwise,
as in Fig. 2.3. It can be seen that there is a clear correlation between the cardinal
direction of the estuary and the number of compound flood events either being
inside or outside of the 2σ interval. The west-facing coasts (Fig. 2.7a) were mostly
above the 2σ interval and showed generally a higher number of compound flood
events. Contrarily, the east-facing coasts (Fig. 2.7b) exhibited a lower amount of
compound flood events and are mostly within the expected margin. Additionally,
it can be seen that the number of compound flood events declined with increasing
catchment area, regardless of cardinal direction.

2.5 discussion & conclusions

In the present study, we conducted a coherent spatial analysis on the dependence
of storm surges and discharge extreme events as drivers of compound flood
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Figure 2.7: Number of extreme events for northern and central Europe over a period of
24 years plotted over the river’s corresponding catchment area for HD5-ERA5

and TRIM-REA6 data using percentiles. The colour displays if the amount of
observed compound flood events is within the expected 2σ deviation. Contains
only rivers that are either on the a) western or b) east-facing coasts.

events over northern Europe. For this analysis, we introduced a method to analyse
compound events by randomising one of the data sets to generate independent
data. To our knowledge, this is the first study on compound flood events over all
of Europe that does not utilise copulas. As mentioned in the introduction, copulas
add unknown amounts of uncertainty to the analysis. Our method on the other
hand, is easy to implement and the uncertainty is given by the standard deviation.
One limitation of this method is that it cannot quantify the dependence between
discharge and sea level.

Using different data sets of daily discharge and sea level, we detected a distinct
pattern of westward-facing coasts having a higher number of compound flood
events than expected by chance (Fig. 2.3, Fig. 2.7). These coasts were located in
the European storm-track corridor comprising the British Isles, northern Germany,
Denmark, and southern Sweden (Feser et al., 2015). Due to the mostly prevailing
western winds, the rivers on the eastern coasts showed a lower number of com-
pound flood events, which are usually within the expected range of two standard
deviations. This finding is consistent with the results of Paprotny et al. (2018a),
who noted a strong dependency in their rank correlation for west-facing coasts
in northern Europe. Khanal et al. (2019b) and Kew et al. (2013) likewise reported
that the most extreme events in the Rhine delta are connected to westerly winds.
Similarly, Svensson & Jones (2004) reported a strong dependence between discharge
and storm surge events for western Great Britain. We identified the Großwetter-
lage Cyclonic Westerly as the common meteorological driver for the occurrence of
large-scale compound flood events in North and Baltic Sea regions.

In parts of the Baltic and west-facing Finnish coasts, the Großwetterlage Anticyc-
lonic Westerly additionally contributed to the generation of compound flood events
(about one-third). For Ireland, a distinct Großwetterlage could not be identified
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as a driver of compound flood events. We speculate that this might be because it
offers a wide angle of attack for storm surges.

Additionally, we were able to demonstrate that the detected spatial distribution
remains stable for various sources of uncertainty. Our results proved to be robust
against the utilisation of different forcing data for the simulation of discharge and
sea level data, parameter settings, and randomisation approaches. Furthermore,
the pattern remained relatively stable despite the ongoing climate change since
the 1960s. There was a certain amount of variation in the pattern, which can be
attributed to randomness and the different setups. Due to the limited number of
compound flood events, even small variations to their definition, like changes in
the allowed lag, have a minor influence on the results. In all cases, the pattern was
present, even though it was sometimes more or less pronounced.

In addition, we demonstrated that regardless of the estuary orientation, the
number of compound flood events declined on average with increasing catchment
size. The reason for this might be that rivers with smaller catchment areas are
capable of reacting faster to precipitation that appears during the storm events,
which also causes the storm surges. There is some variation in the distribution, as
expected by the design of the test, which resulted in around 4.6% of the data points
being labelled incorrectly.

Our analysis here is associated with some caveats that have to be considered.
We note that the utilisation of the 2σ interval in our analysis comprises some
amount of uncertainty. As a result, it can be expected that five to nine rivers will
be incorrectly labelled, based on the size of the data set. Another problem for our
analysis was the very short time frame that was accessible with the TRIM-REA6 and
ECOSMO-REA6 data of 24 and 21 years respectively. Furthermore, it is possible
that the model-based data sets contain systematic errors. Despite the detected
pattern being robust, it is possible that the absolute number of compound flood
events may deviate from the actual number. Furthermore, the de-clustering time of
4 days might be too short for some of the longest rivers that may contain very long
extreme events. The lack of a parametric model impedes the possibility of deriving
engineering quantities such as design events used to assess the level of protection
afforded by flood defence structures.

Future work can further examine these findings by using ensembles from climate
models that cover longer time frames, e.g. 50 years or more. This could enable
generating a distribution for the number of compound flood events, based on
the compound flood events detected in the individual ensemble members. As a
result, it would become possible to calculate how many compound flood events to
expect on average in each river. This reduces the influence of randomness by not
having to rely on the compound flood event number detected in a single data set.
One potential drawback is the reliance on the capabilities of numerical models to
adequately generate those compound extreme events correctly. Additionally, future
studies could focus on locations in close spatial proximity along the west-facing
coasts for which long time series of daily sea level and discharge data are available.
They could also attempt to quantify the lag for each catchment individually, which
is currently troubling for large rivers since their lag depends on the location of
the precipitation. Another interesting question, which needs further investigation,
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is why the vast majority of compound flood events on the west coasts happen
during Cyclonic Westerly, while not every one of these Großwetterlagen results in
compound flood events. Understanding what makes them different might offer
opportunities to identify them early and set contingency plans into motion. While
this study has shown the dependence between catchment size and the overall
number of compound flood events, there are more characteristics that can be
considered. These include, for example, the total elevation change in the catchment
area and the baseflow index, which describes the ratio of baseflow to the total
streamflow volume (Longobardi & Villani, 2023).

In order to support future risk assessments, it will be important to analyse how
compound events will change under different climate scenarios and sea level rises
(Zscheischler et al., 2018). First, the frequency change of general flood events with
respect to the current standards for extreme events might change especially with
increasing sea levels. Second, it will be interesting to analyse if our observed pattern
caused by the Großwetterlage remains similar or if we will see changes to it due to,
for example, changes in the occurrence rate of this specific Großwetterlage. This
is important since it is well known that there have been frequency changes in the
past as reported by Grabau (1987) and Dietz (2019). Hoy et al. (2013) found that
the frequency of Cyclonic Westerly was declining during the first half of the last
century, before strongly rising between 1970 and 2000. This leads to the question
of how the frequency of compound flood events might change for all of Europe,
which is vital for regional coastal adaptation. Third, the vast majority of compound
flood events are currently centred around the winter season. It is important for our
general understanding to investigate if the seasonal distribution itself will change,
maybe with more events in summer, or if the distribution stays the same with
different numbers.
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2.a appendix : images for parameter changes

Figure 2.8: HD5-ERA5 as in Fig. 2.3 but with ECOSMO-REA6 for the sea level data.

Figure 2.9: As in Fig. 2.3 but with ECOSMO-coastDat3 and HD5-EOBS data.
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Figure 2.10: TRIM-REA6 and HD5-ERA5 as in Fig. 2.3 but utilising normal percentile
instead of the adaptive thresholds.

Figure 2.11: TRIM-REA6 and HD5-ERA5 as in Fig. 2.3 but for the months of November to
February.
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Figure 2.12: TRIM-REA6 and HD5-ERA5 as in Fig. 2.3 but for the months of October to
March.

Figure 2.13: TRIM-REA6 and HD5-ERA5 as in Fig. 2.3 but swapping the years for random-
isation instead of the method described in Chapter 2.2.
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AU T O M AT E D C L A S S I F I C AT I O N O F AT M O S P H E R I C
C I R C U L AT I O N T Y P E S F O R C O M P O U N D F L O O D R I S K
A S S E S S M E N T: C M I P 6 M O D E L A N A LY S I S U T I L I S I N G A D E E P
L E A R N I N G E N S E M B L E

chapter summary

The simultaneous occurrence of high river discharges and storm surges represent a
substantial hazard for many low-lying coastal areas. Potential future changes in the
frequency or intensity of such compound flood events is therefore of utmost import-
ance. To assess such changes large and consistent ensembles with storm surge and
hydrological models are needed that are hardly available. Often the occurrence of
compound flood events is linked to the presence of certain atmospheric circulation
types. Future changes in the frequency of such patterns can be directly inferred
from available climate simulations. A frequently used classification of atmospheric
circulation types are the so-called ‘Großwetterlagen’ by Hess and Brezowsky. Here
possible future changes in the occurrence of these ‘Großwetterlagen’ were analysed
using data from 31 realisations of CMIP6 climate simulations for the emission
scenarios SSP1-2.6, SSP3-7.0, and SSP5-8.5. As the classification is subjective, a deep
learning ensemble for the automatic classification was developed and applied. In
winter, a higher frequency of the atmospheric pattern Cyclonic Westerly towards
2100 could be inferred as a robust result among all models and scenarios. As
this circulation type is potentially associated with compound flooding in some
parts of the European coasts, this points towards potentially increasing risks from
compound flooding in the future.

3.1 introduction

With floods being globally among the most common, expensive, and lethal natural
disasters (Hu et al., 2018; Jonkman, 2005), they pose a great threat to the people
living in coastal areas (Santiago-Collazo et al., 2019). Coastal flooding can be
caused by various factors, including tides, storm surges, waves, precipitation, and
river discharge (Wolf, 2009). The simultaneous or successive occurrence of two
or more extreme flood drivers, like extreme river discharge and extreme storm
surges (Bennett et al., 2023), can potentially be much more devastating than their
individual effects would be under normal circumstances (Clarke et al., 2021). They
pose an even bigger threat to people living in coastal areas (Santiago-Collazo et al.,
2019), which also contain many big economic centres (Wahl et al., 2015). Notable
examples of such events are the flash flood 1967 in Lisbon, Portugal (Trigo et al.,
2016) and the 1999 flood in Lymington, United Kingdom (Ruocco et al., 2011).
These so called ‘compound flood events’ have attracted increased attention from
the scientific community in recent years, due to their destructive nature. Sadegh
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et al. (2018) concluded that neglecting the interaction of flood drivers could result
in a severe underestimation of the flood risk, which can severely affect critical
infrastructures (Khanam et al., 2021).

The North Sea is one of the world’s most industrialised seas with a population
of approximately 61.5 million inhabitants living along the coast (Interreg North
Sea Programme, 2021). Compound flood events, therefore, pose a big threat to the
low-lying coastal areas. Research on compound flood events in northern and central
Europe has been carried out on various scales. Khanal et al. (2019a) investigated
the co-occurrence of storm surge and fluvial floods for the Rhine catchment and
the Dutch coastal area, while Camus et al. (2022) linked specific weather types
to compound flooding in estuaries along the North Atlantic coastlines. Studies
conducted on the influence of anthropogenic climate change project a significant
increase in the number of compound flood events in Europe (Heinrich et al. (2023b);
Chapter 4). Bevacqua et al. (2019) attributed this increase to the warmer atmosphere
carrying more moisture, in addition to sea level rise. The ensemble size for the
analysis of those future changes is usually limited by the time required for the
simulations of the necessary data.

Several studies established connections between weather patterns and the occur-
rence of compound flood events. Hendry et al. (2019) found a higher frequency of
compound events on the western coast of the United Kingdom compared to the
eastern coast. They concluded that this phenomenon is due to the fact that storms
that generate high skew surges and high river discharge share common features
on the western coastline, but not on the opposite shore. Likewise, I demonstrated
in Chapter 2 that the west-facing coasts in northern and central Europe show a
higher probability for compound flood events than expected by pure chance. By
utilising the Großwetterlagen classification, which consist of 29 circulation types,
they identified Cyclonic Westerly as the common driver for the vast majority of
these events. This weather pattern is characterised by strong westerly winds and
rainfall. The Großwetterlagen classification has been utilised by many studies and
is likely the most widely used set of circulation patterns over Europe. Bouwer et al.
(2006) found a strong correlation between the frequency of Cyclonic Westerly and
river discharge in winter for many stations north of the Alps. Similarly, Hoy et al.
(2014) found precipitation increase during the winter half-year in northern Europe
for 1981-2010 to be correlated to increased wet westerly air mass inflow. Future
changes of such weather patterns may be derived directly from global climate
projections and therefore do not require an additional downsampling step that is
often required for climate change impact studies. Our study aims to assess whether
there is a systematic change in the frequency of patterns driving such compound
flood events.

The classification system of Großwetterlagen was first introduced by Hess &
Brezowsky (1969) to describe large-scale weather systems over Europe. There are a
total of 29 different circulation types listed in Table 3.1. One potential downside
of this classification system is its subjective nature, which introduces an element
of human error and makes it challenging to apply to large amounts of simulated
data. Moreover, it is worth noting that each circulation pattern must persist for a
minimum of three days, which has to be taken into account for the classification.
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Index Acronym Original German definition Translated English definition

1 WA Westlage, antizyklonal Anticyclonic Westerly

2 WZ Westlage, zyklonal Cyclonic Westerly

3 WS Südliche Westlage South-Shifted Westerly

4 WW Winkelförmige Westlage Maritime Westerly (Block E. Europe)

5 SWA Südwestlage, antizyklonal Anticyclonic South-Westerly

6 SWZ Südwestlage, zyklonal Cyclonic South-Westerly

7 NWA Nordwestlage, antizyklonal Anticyclonic North-Westerly

8 NWZ Nordwestlage, zyklonal Cyclonic North-Westerly

9 HM Hoch Mitteleuropa High over Central Europe

10 BM Hochdruckbrücke (Rücken) Mitteleuropa Zonal Ridge across Central Europe

11 TM Tief Mitteleuropa Low (Cut-Off) over Central Europe

12 NA Nordlage, antizyklonal Anticyclonic Northerly

13 NZ Nordlage, zyklonal Cyclonic Northerly

14 HNA Hoch Nordmeer-Island, antizyklonal Icelandic High, Ridge C. Europe

15 HNZ Hoch Nordmeer-Island, zyklonal Icelandic High, Trough C. Europe

16 HB Hoch Britische Inseln High over the British Isles

17 TRM Trog Mitteleuropa Trough over Central Europe

18 NEA Nordostlage, antizyklonal Anticyclonic North-Easterly

19 NEZ Nordostlage, zyklonal Cyclonic North-Easterly

20 HFA Hoch Fennoskandien, antizyklonal Scandinavian High, Ridge C. Europe

21 HFZ Hoch Fennoskandien, zyklonal Scandinavian High, Trough C. Europe

22 HNFA Hoch Nordmeer-Fennoskandien, antizykl. High Scandinavia-Iceland, Ridge C. Europe

23 HNFZ Hoch Nordmeer-Fennoskandien, zyklonal High Scandinavia-Iceland, Trough C. Europe

24 SEA Südostlage, antizyklonal Anticyclonic South-Easterly

25 SEZ Südostlage, zyklonal Cyclonic South-Easterly

26 SA Südlage, antizyklonal Anticyclonic Southerly

27 SZ Südlage, zyklonal Cyclonic Southerly

28 TB Tief Britische Inseln Low over the British Isles

29 TRW Trog Westeuropa Trough over Western Europe

Table 3.1: Table with acronyms, original, and translated names of the 29 Großwetterlagen
according to James (2007). The acronyms are based on the German names.
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The advantages of the classification system are (i) a very long classification cata-
logue that begins in 1881 and is continuously updated, as well as (ii) the fact that
those circulation types can be associated with consistent and typical local weather
conditions (Wapler & James, 2015). The length of the classification catalogue is par-
ticularly useful when focusing on data-driven classification methods as it provides
a large amount of labelled data points.

Two studies have previously focused on the automatic classification of Großwet-
terlagen, namely James (2007) and Mittermeier et al. (2022). James (2007) proposed
an objective classification based on composite plots, whereby a circulation type
was assigned to each day based on the composite with the highest correlation after
temporal smoothing. In James (2006), they used this method to analyse ensemble
runs of the global climate model HadGeM1 (Martin et al., 2006), but found no
significant changes to the circulation pattern under climate change. In recent years,
convolutional neural networks have made significant improvements in image classi-
fication (Liu et al., 2022a), with potential for weather pattern classification. Luferov
& Fedotova (2020) employed convolutional neural networks to categorise 5 circula-
tion patterns in the northern hemisphere, Chattopadhyay et al. (2020) re-identified
clustered weather patterns, and Ham et al. (2019) highlighted their effectiveness for
multi-year ENSO forecasting. Liu et al. (2016) utilised a deep convolutional neural
network to detect extreme weathers, such as tropical cyclones, in climate datasets.
Mittermeier et al. (2022) subsequently modified this neural network architecture
and used it for the classification of Großwetterlagen, achieving higher accuracy
than the composite method by James (2007). They used their trained neural net-
works ensemble to analyse future changes in a single-model initial-condition large
ensemble of the global climate model EC-Earth3 under the Shared Socio-Economic
Pathways (Riahi et al., 2017) 3-7.0 scenario.

Mittermeier et al. (2022) demonstrated the enhanced capabilities of neural net-
works in classifying Großwetterlagen. However, the occurrence rate of Cyclonic
Westerly was strongly underestimated by their networks. Our goal is to improve
upon their work by training neural networks with better capabilities for detecting
Cyclonic Westerly. To achieve this, we introduce a new neural network architecture.
This will enable us to assess future changes to this weather pattern caused by
climate change. The training data and procedures were selected to be as similar
as possible to those used by Mittermeier et al. (2022) to ensure the best possible
comparability.

In this study we focus on the detection of Cyclonic Westerly, which is associated
with compound flood events in northern and central Europe, and its future changes
due to anthropogenic climate change. First, we present a novel convolutional
neural network structure for the classification of Großwetterlagen and evaluate the
classification results on a reference period. Moreover, we examine the influence of
additional parameters on the precision of the network. We then assess the impact of
internal variability on the findings using the Max Planck Institute Grand Ensemble
(MPI-GE). To analyse possible future changes in the frequency of Cyclonic Westerly,
we utilise 31 global climate models from the Coupled Model Intercomparison
Project Phase 6 (CMIP6). For each model, we consider the three scenarios: SSP1-2.6
(low emission), SSP3-7.0 (medium emission), and SSP5-8.5 (high emission). We
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use a range of different global climate models to minimise bias and uncertainty
resulting from the use of a single model. A comparison of model quality during
the reference period is included.

3.2 data

In this section, we first discuss the data used to train our neural network for the
classification of Cyclonic Westerly. This is followed by an overview of the CMIP6

data used for the analysis of future changes under climate change.

3.2.1 Training data

The training data for our neural network, was chosen to be as close as possible to
the one used in Mittermeier et al. (2022) to allow a direct comparison of the results.
To train our convolutional neural network, we utilised the daily geopotential height
of the 500 hPa surface and daily mean sea level pressure provided by the ERA-20C
reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF,
2014). The data set contains an atmospheric reanalysis of the 20th century for
1900-2010. As input data domain we selected the area 30

◦ N to 75
◦ N and -65

◦ W
to 45

◦ E, which encompasses large parts of the North Atlantic and Europe (Fig. 3.1)
and is also utilised for the subjective classification (Hess & Brezowsky, 1969).

Figure 3.1: The black rectangle contains the domain used in this study for the analysis of
Großwetterlagen. The area covered is 30

◦ N to 75
◦ N and -65

◦ W to 45
◦ E.

The input data were then interpolated to a spatial grid of about1 2.8◦ × 2.8◦.
Next, each data variable was standardised using Z-Scores. In this standardisation
method, each data point is scaled by

x′ =
(x − µ)

σ
(3.1)

1 The spatial resolution of 5
◦ given in Mittermeier et al. (2022) is an error in the text, according to

personal communication with the authors (2023).
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where µ denotes the mean and σ the standard deviation of the variable. The purpose
of this standardisation was to adjust the values of geopotential height and mean
sea level pressure to a common scale, which enhances network performance and
training stability (Huang et al., 2023). The labels used for the classification of the 29

circulation types are based on the Großwetterlagen catalogue by Hess & Brezowsky
(1969) which is continuously updated to this day by the German Weather Service
(DWD). This catalogue contains daily subjective classifications, dating back to
1881, derived from observational data of geopotential height and mean sea level
pressure. Days marked as ‘undefined’ in the catalogue were discarded for training
purposes since the neural network cannot learn from them. To ensure maximum
comparability, we limited the training of the network to 1900-1980, as done in
Mittermeier et al. (2022) because of ‘implausible sudden discontinuity of the labels
of the catalogue’ afterwards (Mittermeier et al., 2022).

3.2.2 CMIP6 Global Climate Model data

Data from a set of 31 global climate models from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) were used to analyse changes in the frequency of
the Großwetterlage Cyclonic Westerly. An overview over those models is given in
Table 3.2.

For the selected models, daily data of geopotential height and sea level pressure
had to be available. Furthermore, it was required that the data for the historical
run, as well as the future scenarios SSP1-2.6, SSP3-7.0, and SSP5-8.5, originate from
the same ensemble member. We utilised all models for which data were available
via the CMIP6 data search portal of the Earth System Grid Federation (ESGF) at
the end of September 2023 and that fulfilled the aforementioned requirements.
Additionally, we used the AWI-CM-1-1-MR data files that were stored on the servers
of the German Climate Computing Centre (DKRZ). We chose 1961 to 1990 as the
historical reference period because it has been retained as a standard reference
period for long-term climate change assessments by the World Meteorological
Organization (WMO)2. For assessing future changes, we utilised the 30-year period
2071-2100 when available, otherwise the closest period was used that was available
for all three future scenarios of a model (see Table 3.2 for further details). We
conducted a check on all data sets to ensure that they do not contain missing
values or any unreasonably large or small numbers. Afterwards, the data sets were
interpolated onto the same grid as the training data to create a consistent input
for the neural network. Finally, we standardised the ensemble data using Z-Scores,
similar to the training data (see Chapter 3.2.1).

Furthermore, we utilised daily data from the CMIP6 version of the Max Planck
Institute Grand Ensemble (Olonscheck et al., 2023) to examine the contribution of
internal variability to the results. MPI-GE CMIP6 is a single-model initial-condition
large ensemble of MPI-ESM1.2-LR that consists of 30 realisations for the historical
period and five emission scenarios each.

2 https://community.wmo.int/en/wmo-climatological-normals

https://community.wmo.int/en/wmo-climatological-normals
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Index Model name Variant Years Institution ID Reference

G0 ACCESS-CM2 r1i1p1f1 2071-2100 CSIRO-ARCCSS Bi et al. (2020)

G1 ACCESS-ESM1-5 r10i1p1f1 2071-2100 CSIRO Ziehn et al. (2020)

G2 AWI-CM-1-1-MR r1i1p1f1 2071-2100 AWI Tebaldi et al. (2021)

G3 BCC-CSM2-MR r1i1p1f1 2071-2100 BCC Wu et al. (2019)

G4 CanESM5 r10i1p1f1 2071-2100 CCCma Swart et al. (2019)

G5 CESM2 r1i1p1f1 2071-2100 NCAR Danabasoglu et al. (2020)

G6 CESM2-WACCM r1i1p1f1 2071-2100 NCAR Gettelman et al. (2019)

G7 CMCC-CM2-SR5 r1i1p1f1 2071-2100 CMCC Cherchi et al. (2019)

G8 CMCC-ESM2 r1i1p1f1 2071-2100 CMCC Cherchi et al. (2019)

G9 CNRM-CM6-1 r1i1p1f2 2071-2100 CNRM-CERFACS Voldoire et al. (2019)

G10 CNRM-CM6-1-HR r1i1p1f2 2071-2100 CNRM-CERFACS Voldoire et al. (2019)

G11 CNRM-ESM2-1 r1i1p1ff 2071-2100 CNRM-CERFACS Séférian et al. (2019)

G12 EC-Earth3 r1i1p1f1 2071-2100 EC-Earth-Consortium Döscher et al. (2022)

G13 EC-Earth3-Veg r4i1p1f1 2071-2100 EC-Earth-Consortium Döscher et al. (2022)

G14 EC-Earth3-Veg-LR r1i1p1f1 2071-2100 EC-Earth-Consortium Döscher et al. (2022)

G15 FGOALS-g3 r1i1p1f1 2071-2100 CAS Li et al. (2020)

G16 IITM-ESM r1i1p1f1 2069-2098 CCCR-IITM Swapna et al. (2015)

G17 INM-CM4-8 r1i1p1f1 2071-2100 INM Volodin et al. (2018)

G18 INM-CM5-0 r1i1p1f1 2071-2100 INM Volodin et al. (2018)

G19 IPSL-CM6A-LR r1i1p1f1 2071-2100 IPSL Boucher et al. (2020)

G20 KACE-1-0-G r1i1p1f1 2071-2100 NIMS-KMA Lee et al. (2020a)

G21 MIROC-ES2H r1i1p4f2 2071-2100 MIROC Kawamiya et al. (2020)

G22 MIROC-ES2L r1i1p1f2 2071-2100 MIROC Hajima et al. (2020)

G23 MIROC6 r3i1p1f1 2071-2100 MIROC Tatebe et al. (2019)

G24 MPI-ESM1-2-HR r1i1p1f1 2071-2100 MPI-M Müller et al. (2018)

G25 MPI-ESM1-2-LR r4i1p1f1 2071-2100 MPI-M Mauritsen et al. (2019)

G26 MRI-ESM2-0 r4i1p1f1 2071-2100 MRI Yukimoto et al. (2019)

G27 NorESM2-LM r1i1p1f1 2071-2100 NCC Seland et al. (2020)

G28 NorESM2-MM r1i1p1f1 2071-2100 NCC Seland et al. (2020)

G29 TaiESM1 r1i1p1f1 2071-2100 AS-RCEC Lee et al. (2020b)

G30 UKESM1-0-LL r8i1p1f2 2071-2100 MOHC Tang et al. (2019)

Table 3.2: Overview over the 31 CMIP6 global climate models that were used in this study.
References were based on those given in the data files, or if unavailable, the
reference most commonly used by other articles was included.



38 classification of atmospheric circulation types

3.3 methods : network structure and training process

The training of the networks was conducted on an NVIDIA Tesla V100-PCIE-16GB
GPU. The architecture of our Convolutional Neural Meteorology Network (CNMN)
is following the structure of well-known networks like Alexnet (Krizhevsky et
al., 2017) and VGG16 (Simonyan & Zisserman, 2014). CNMN utilises two input
channels for the geopotential height and sea level pressure data. Our network
consists of 4 blocks, each with a single convolution layer with a ReLU activation,
followed by max pooling, with the last one additionally containing a global average
pooling layer (Islam et al., 2021; Lin et al., 2013) (see Fig. 3.2). One additional detail

32
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WZ
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WW

...

TRW

Convolution layer Pooling layer Adaptive average pooling Linear layer

Figure 3.2: Visualisation of the neural network architecture employed in this study. The
number underneath the convolution layers indicates the number of channels.
The acronyms on the right hand side are those belonging to the 29 Großwetter-
lagen (see Table 3.1).

is that the convolutional layers use an asymmetrical kernel of size 3 × 7 instead
of a square kernel to take the larger latitude dimension of the input data into
account. The global average pooling layer collapses the input signal to size 1×1×C
(C=number of channels) which greatly reduces the size of the following connected
layer. This reduced network size helps to mitigate overfitting (Li et al., 2022). The
connected layer then ends in 29 output nodes, one for each Großwetterlage.

Our training process used the Adam optimiser introduced in Kingma & Ba (2014)
and cross entropy as the loss function. We set up training for a maximum of 1000

epochs, with an early stop after 100 epochs without improvement and a batch size
of 2048. Additionally, we used Gaussian noise for data augmentation to artificially
increase the amount of available training data and reduce overfitting. To better
assess the performance of CNMN we used k-fold cross-validation, as in Mittermeier
et al. (2022). In this method the data sets are split into an inner fold containing 70

years and the outer fold containing 10 years. The inner fold is utilised for training
and tuning the learning rate of our neural network, while the evaluation of the
neural network is performed on the outer fold. This procedure is then repeated
several times for different splits of the data (see Fig. 3.3) to obtain reliable metrics
for our neural network CNMN.
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…

1st iteration

2nd iteration

8th iteration

Test fold Training fold

Figure 3.3: Visual representation of the nested cross-validation training process. The data
set is split into eight chunks. One of them is the ‘test fold’ which is not used for
training but for the evaluation of the network’s performance. In each iteration, a
different chunk is used as the test fold. This method results in eight evaluations
on independent data.

The Großwetterlagen classification scheme requires all constellations to last for
at least three days, which we have to take into account in a post processing step
after CNMN predicted all labels. To start, we look at the first/last three elements
(Fig. 3.4a). The third element of the trio will be assigned a new label, if the other
two share the same label. Subsequently, the algorithm looks for elements in the
predicted label classification that share the same neighbours, with the element in the
middle getting changed (Fig. 3.4b). Lastly, elements with two different surrounding
labels will be assigned the label of whichever neighbouring label has the highest
probability as determined by CNMN (Fig. 3.4c). This procedure is repeated one
more time to ensure the consistency with the 3-day rule.

To evaluate the performance of our neural network, we assess both the macro F1

score (Equation 3.5) and overall accuracy. The macro F1 score comprises precision
(Equation 3.2) and recall (Equation 3.3) and is chosen to take the imbalance of the
data classes into account (Jiang et al., 2020). Precision measures the ratio of correct
positive identifications. For class i, precision is defined as

Pi =
TPi

TPi + FPi
(3.2)

where TP are true positives and FP false positives. The recall metric determines the
proportion of actual positives that have been accurately identified and is calculated
via

Ri =
TPi

TPi + FNi
(3.3)

where FN denotes false negatives. Finally, the F1 score of class i is

Fi = 2
PiRi

Pi + Ri
(3.4)
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Figure 3.4: Visualisation of the algorithm used to apply the 3-day consistency rule of the
Großwetterlagen classification to the data. The large numbers in each box is the
index of the Großwetterlage predicted by CNMN for that day. The percentage
is the probability for the classification. All values in this figure are exemplary. a)
Treatment of the first/last elements of the data in case two labels are identical, b)
for the same labels around the current element, and c) for different neighbouring
labels.

which then results in the macro F1 score as the arithmetic mean of all classes.

F1 =
2
n

n

∑
i=1

PiRi

Pi + Ri
(3.5)

We trained an ensemble of 50 networks in order to minimise the variability of the
network performance caused by the random initialisation of the network weights
at the beginning of the training process.

3.4 results

3.4.1 Network evaluation

The performance of our neural network ensemble is evaluated by comparing
their predictions to the actual daily Großwetterlagen in the catalogue, which is
based on observational data. This evaluation is conducted on the eight outer test
folds, which are independent of the training process. To increase the robustness of
our evaluation, we use five different networks for each outer fold to account for
the variance caused by random initialisation. Table 3.3 presents the performance
comparison of our neural network CNMN with those of Mittermeier et al. (2022)
and James (2007).

Our results show an increase in the macro F1 score by almost 2.2% and an
accuracy increase of over 7% compared to the previous best results. Our deep
ensemble of convolutional neural networks outperforms the deep ensemble of
Mittermeier et al. (2022) in 22 out of the 29 Großwetterlagen and the composite
method of James (2007) in 20 out of 29 Großwetterlagen. When compared to
both methods, they offer the best performance metrics for more than half of the
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Index Acronym
CNMN

F1 score [%]

Mittermeier

F1 score [%]

James

F1 score [%]

1 WA 39.58 44.60 40.32

2 WZ 63.12 47.08 52.69

3 WS 46.72 45.39 35.10

4 WW 40.82 37.70 30.11

5 SWA 29.78 35.36 36.90

6 SWZ 33.50 30.86 39.78

7 NWA 37.42 38.88 33.76

8 NWZ 40.33 37.07 43.57

9 HM 59.07 51.24 43.24

10 BM 51.73 47.29 38.05

11 TM 39.12 37.23 37.08

12 NA 17.00 24.85 15.96

13 NZ 46.22 44.32 41.55

14 HNA 54.63 45.57 45.82

15 HNZ 28.98 27.11 37.02

16 HB 52.72 50.99 44.94

17 TRM 29.96 27.86 39.58

18 NEA 43.19 41.44 30.02

19 NEZ 36.31 33.12 27.27

20 HFA 51.50 45.32 41.13

21 HFZ 24.13 24.81 32.89

22 HNFA 33.44 33.35 43.48

23 HNFZ 36.13 34.02 33.06

24 SEA 34.72 38.09 27.24

25 SEZ 36.20 37.93 31.10

26 SA 42.81 39.84 34.04

27 SZ 43.49 38.19 26.67

28 TB 47.30 42.11 38.00

29 TRW 33.96 29.34 37.85

Mean macro F1 score [%] 40.48 38.30 36.49

Accuracy [%] 48.33 41.10 39.51

Table 3.3: Table with the results of our neural network ensemble, the ones of Mittermeier
et al. (2022) and James (2007). The F1 score for James (2007) is based on their
results (Table 2 in the corresponding publication) for classification of ERA40 data
from September 1957 to August 2002. The calculations were done without days
that were labelled ‘undefined’.
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weather constellations. In particular Cyclonic Westerly, which is the focus of this
study, exhibits significant improvements compared to the classification in previous
studies, with increases of +16.04% and +10.4%, respectively. Interestingly, the
composite method of James (2007) shows a clear advantage for HNFA and TRM
when compared to both neural network approaches, even though it is outclassed
in many other Großwetterlagen.

3.4.2 Additional trials with modified inputs

In addition to the inputs used to evaluate our neural networks, we attempted vari-
ous modifications to improve their performance. These attempts are summarised in
Table 3.4. The original Großwetterlagen classification by Hess & Brezowsky is based

Method Mean macro F1 score [%] Accuracy [%]

Original CNMN network 40.48 48.33

Increased resolution 38.55 47.59

Time 40.59 48.18

Wind u- and v-component 39.63 47.36

Divergence 40.25 48.06

Vorticity (relative) 40.29 48.30

Total column rain water 40.00 47.92

ResNet-18 31.84 42.10

Table 3.4: Additional metrics for modified spatial resolution, additional variables and
different architecture in ResNet-18.

on mean sea level pressure and the geopotential height of 500 hPa. We investigated
whether additional input variables could potentially enhance the classification of
CNMN by providing more information. For this, we added an extra input channel
to CNMN, resulting in three input channels. The additional variables we tested,
divergence and vorticity, originate from the same ERA20C reanalysis data set and
were interpolated and normalised like the data used for evaluation. However, the
evaluation of the networks with additional variables did not result in improved
performance metrics, but rather faster overfitting. Similarly, we provided the neural
networks with additional information in the form of time. The time was encoded
using trigonometric functions, as described by Deng et al. (2019),

td =

{
cos

(
2πd

y

)
, sin

(
2πd

y

)}
(3.6)

where d represents the current day of the year and y is the total number of days
in the given year. This information is encoded into two parameters, as using only
one trigonometric function would result in the same representation for two days
each year. The encoded time was inserted into the linear layer at the end of the
network (see Fig. 3.2 for the architecture). In another attempt, we used the original
spatial resolution of 1.125

◦ × 1.1214
◦ from the ERA20C dataset. CNMN can handle
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data from data sets with higher resolution because the global average pooling layer
reshapes them to size 1×1 before they enter the linear layer.

Finally, we tested the ResNet-18 architecture (He et al., 2016) for the classific-
ation of Großwetterlagen. The ResNet (Residual Neural Network) architectures
are widely used convolutional neural networks, having gained popularity after
winning the ImageNet 2015 competition. We utilised it because image classification
and classification of weather patterns are basically the same on a fundamental
level. Despite training the smallest standard network, ResNet-18 performed poorly
compared to our CNMN architecture due to very fast overfitting.

3.4.3 MPI-GE

First, we compare the number of days classified as Cyclonic Westerly in the his-
torical period for the MPI-GE ensemble members to those found in the ERA20C
data set for 1961-1990 (Fig. 3.5). The analysis indicates that all MPI-GE ensemble

Figure 3.5: Number of days classified as Cyclonic Westerly over the 30 year historical
period (1961-1990) for the 30 ensemble members of MPI-GE in percentage of
the number classified in ERA20C for the same time period. The percentages
were calculated for each of the 50 neural networks separately. Outliers that fall
outside the whiskers of the boxplots are excluded from the visualisation.

members differ in the number of Cyclonic Westerly days by approximately +23%
on average over the 30-year period. The uncertainty introduced by the random ini-
tialisation of the 50 neural networks accounts for only 16% of the total uncertainty,
while the internal climate variability of 30 MPI-GE ensemble members has a much
greater impact. These calculations are based on the differences in variability for one
network and all MPI-GE ensemble members, as well as the variability observed for
50 neural networks and the same MPI-GE ensemble member.

For analysis of changes in the future (2071-2100), we divided the year into two
seasons: summer and winter. The summer season runs from 16th April to 15th
October, while the winter season runs from 16th October to 15th April. Fig. 3.6
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reveals that both seasons show different trends under climate change. During

Figure 3.6: Changes to the number of annual CW days in MPI-GE for the three future
climate change scenarios SSP1-2.6, SSP3-7.0, and SSP5-8.5 for the far future
(2071-2100) when compared to their historical reference period (1961-1990). The
left hand side is the winter half-year (16th October to 15th April) while the
right side is the summer half-year (16th April to 15th October). Outliers that
fall outside the whiskers of the boxplots are excluded from the visualisation.

winter seasons, there is a growing number of ensemble members projecting an
increase in semi-annual Cyclonic Westerly days for stronger emission scenarios. For
SSP1-2.6, 20 out of 30 members project an increase in Cyclonic Westerly days, which
rises to 28 members for SSP5-8.5. On average, the number of CW days increases by
2.01 days (SSP1-2.6), to 4.07 days (SSP3-7.0), and lastly, up to 5.70 days (SSP5-8.5)
per winter season.

The summer half-year shows no clear trend, with a slight majority of the members
favouring a minor decrease of CW days. For SSP1-2.6, half of the members project
an increase of days with Cyclonic Westerly in the summer season, while the other
half shows a decrease, resulting in an average change of +0.2 days throughout the
ensemble. For both SSP3-7.0 and SSP5-8.5, the ensemble members are similarly split,
with roughly half the members in favour of each type of change. This results in
an average close to zero, with a difference of -0.5 days under the strongest climate
change scenario, SSP5-8.5. There is noticeable variability between the members,
even within the same model, for both future changes and the historical time period.
The standard deviation for the historical reference period over all 1500 data points
(30 ensemble members and 50 neural networks) for each of the three scenarios is
around 4.5 days.

3.4.4 CMIP6 models

When comparing the number of days classified as Cyclonic Westerly in the 31

CMIP6 models to ERA20C reanalysis data for the historical reference period, a
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significant variation is evident among the models (Fig. 3.7). Most models show

Figure 3.7: Number of days classified as Cyclonic Westerly over the 30 year historical period
(1961-1990) for the 31 CMIP6 models (see Table 3.2 for the corresponding names)
in percentage of the number classified in ERA20C for the same time period.
The percentages were calculated for each of the 50 neural networks separately.
Outliers that fall outside the whiskers of the boxplots are excluded from the
visualisation.

a higher number of Cyclonic Westerly days, with NorESM2-LM (G27) showing
the largest divergence of approximately 70%. Many other models overestimate the
number of Cyclonic Westerly days by around 20-40%. Nearly a third of the models
underestimate the number of Cyclonic Westerly days, but usually within a 20%
difference of the historical numbers from ERA20C data. EC-Earth3-Veg-LR (G14),
INM-CM5-0 (G17), and KACE-1-0-G (G20) are the three models that closely match
the historical values for ERA20C.

The 31 CMIP6 models show clear trends under climate change in the future
(2071-2100, Fig. 3.8). Like in Chapter 3.4.3, the year is divided into two halves:
the winter half-year (16th October to 15th April) and the summer half-year (16th
April to 15th October). The 31 CMIP6 models project an increase in the number
of semi-annual Cyclonic Westerly days during the winter half-year. Two-thirds of
the CMIP6 members project an increase under scenario SSP1-2.6, with an overall
average change of 1.93 additional days of Cyclonic Westerly per year for the winter
seasons. This trend increases under SSP3-7.0 and culminates in SSP5-8.5, where
all but one model project an increase. The mean over all models increases to 8.31

additional Cyclonic Westerly days during the winter season in SSP5-8.5. Most
models, such as EC-Earth3-Veg, show a steady increase for stronger emission
scenarios. However, there are some exceptions, such as ACCESS-CM2, which shows
a decline in Cyclonic Westerly days for SSP3-7.0 before rising again in SSP5-8.5.
Similarly to MPI-GE, an increasing number of models project the same trend with a
stronger climate change signal, but the numbers projected by the individual models
do not necessarily increase significantly. Some models project changes roughly



46 classification of atmospheric circulation types

Figure 3.8: Changes to the number of annual CW days in the 31 CMIP6 models (see
Table 3.2 for the corresponding names) for the three future climate change
scenarios SSP1-2.6, SSP3-7.0, and SSP5-8.5 for the far future (2071-2100) when
compared to the historical reference period (1961-1990). The left hand side is the
winter half-year (16th October to 15th April) while the right side is the summer
half-year (16th April to 15th October). Outliers that fall outside the whiskers of
the boxplots are excluded from the visualisation.

within the same range throughout all three scenarios, while others increase with
higher scenarios.

In the summer half year the models overall tend to project a decrease in Cyclonic
Westerly days, but not all models point in the same direction. For the summer half
year the mean over all model projections is -3.5 days for SSP1-2.6 and decreases
further in the following scenarios to -5.02 days under SSP3-7.0 and -6.60 days under
SSP5-8.5. For all three scenarios more than 60% of the models project a decrease.
There are some models like EC-Earth3-Veg-LR that continuously project a slight
increase, while most others don’t.

3.5 discussion

Comparing the performance of our CNMN network architecture with the results
of James (2007) and Mittermeier et al. (2022) showed an improvement in the
classification for the majority of weather systems. While the performance is only
slightly better for some Großwetterlagen, it was especially enhanced for Cyclonic
Westerly. The improved classification skills by CNMN can be mostly attributed to
the new network architecture, because we aimed to closely replicate the training
conditions described in (Mittermeier et al., 2022) to enable a direct comparison.

Our convolutional neural network is deeper and features 912K trainable para-
meter, which is larger than the networks in the previous study, which had 144K.
State-of-the-art networks have significantly improved in classification skill over the
last decade, partly due to the increased depth and size of the networks. However,
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it is important to note that simply increasing the size of the architecture does
not lead to better results in our case. As demonstrated, the larger Resnet-18 with
11.2M trainable parameter performs worse than our smaller CNMN network due
to faster overfitting. Despite the extreme similarities between image classification
and the classification of weather pattern, it is worth noting that the amount of
available training data and the size of the utilised architecture in this study are
significantly smaller than those used in state of the art image classification. For
comparison: CoCa (Yu et al., 2022), a network with 2100M trainable parameters,
achieved the third best performance (as of February 2024) on the ImageNet data set
(Russakovsky et al., 2015), which consists of 14,197,122 annotated images; a much
larger amount when compared to our 29,585 days of Großwetterlagen. We currently
lack the necessary training data to prevent overfitting on deeper and wider net-
works (Liu et al., 2016), even when utilising techniques like data augmentation to
increase the amount of available training data. Many common data augmentation
techniques, such as mirroring or rotating the input data cannot be applied in our
study as the location of, e.g. pressure systems, matters for the correct classification.
This makes it important to strike a balance between larger networks and faster
overfitting.

Our attempts to overcome the size limitation of the neural network by utilising
additional variables from the ERA20C data set did not lead to better results. The
neural networks seem to be unable to acquire additional information that would
assist in the classification of weather patterns. Instead, overfitting occurs at a faster
rate due to the additional parameters introduced with the additional input channels.
Even if the additional variables had improved accuracy, fewer CMIP6 models would
have been available for this study due to the absence of the required variables
in some of the CMIP6 model data provided on the ESGF portal. Similarly, it was
found that the networks perform well when trained on the coarse resolution data
(about 2.8◦ × 2.8◦, see Chapter 3.2.1) but training on the higher resolution data did
not lead to an improved performance. This is caused by the large-scale character
of the Großwetterlagen do not require fine details for their classification. Another
advantage of coarse resolution is that it requires less training time, and the output
resolution of the CMIP6 models is less of a concern. The reason for the worse
performance of higher resolution data is that the network architecture settings,
such as kernel size, were selected based on the coarse resolution. Although the
inclusion of time improved the F1-score of the network, it resulted in a lower overall
accuracy due to Cyclonic Westerly being classified less accurately. Similarly, using
time as an input variable for the channels instead of adding it in the linear layer did
not improve the overall classification of Cyclonic Westerly. For this study, we chose
not to include time as an input due to its unknown impact on the classification in
future scenarios.

The analysis of the MPI Grand Ensemble revealed noticeable variability even
among members of the same ensemble. It is therefore important to point out
that our comparison between the frequency of Cyclonic Westerly in the ERA20C
reanalysis data and the historical CMIP6 runs (Fig. 3.7) should not be seen as a
direct measure of the models’ ability to represent weather systems accurately. This
is because we may have randomly selected an ensemble member that performs
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better or worse than the average ensemble member of a certain model, in case there
was more than one run available. However, it is evident that some models more
closely match the reanalysis data than others. Due to the data augmentation used
during the training it is unlikely that potential biases in the global climate model
data for the mean sea level pressure and geopotential height significantly influence
the detection of Cyclonic Westerly by CNMN. Similarly, we did not sort the models
based on how closely they match the reanalysis data, because a good representation
of the past does not necessarily mean a good representation of the future.

Although there are variations in the accuracy of the historical representation,
the CMIP6 models and the ensemble members of MPI-GE exhibit clear trends for
the winter season. We found that the models project an increase in the number
of annual Cyclonic Westerly days. This trend becomes more pronounced for the
scenarios with a stronger climate change. If it is assumed that the internal variability
of MPI-GE is similar to the other CMIP6 members, it can be concluded that the
overall change signal is larger than the internal variability. These results are based
on a wide range of the most recent global climate models, increasing the robustness
of this signal.

A higher frequency of Cyclonic Westerly, known for strong winds and precipit-
ation, suggests a higher chance for compound flood events in the future. Winter
is already the primary season for those events in northern Europe, since this is
where storm surges mostly occur (Liu et al., 2022b). Compound events can also
occur on a small scale and may pose problems for inland drainage, potentially
leading to inland flooding behind the dykes in severe cases. One example of this
issue can be seen at the Leysiel tidal gate in northern Germany. A tidal gate is a
closeable water passage in a dyke. Depending on the tide, it is normally closed
when the water level is higher on the sea side, whereas it is opened when the
water level is lower on the sea side. Strong winds that generate high waves and
sea level may hinder the opening of the tidal gates for multiple tide cycles and
cause an increase in the inland water level due to precipitation. The majority of
the ten highest inland water levels over the past 22 years occurred during the
Großwetterlage Cyclonic Westerly (Table 3.5). An increase in Cyclonic Westerly, in
addition to sea level rise, would therefore pose an even bigger challenge for inland
drainage. The two previous studies on future changes to Großwetterlagen found
no such changes. James (2006), using their composite method, attributed this to
the internal variability of the HadGEM1 which they had used for their analysis.
However, we have overcome this limitation with 31 global climate models. Another
important factor are the significant advancements that global climate models have
made since their work was published. Mittermeier et al. (2022) reported no median
change in the number of Cyclonic Westerly days during winter under SSP3-7.0 for
a single-model initial-condition large ensemble, whereas our work assessed a larger
variety of models.

Other studies utilised different weather pattern classification methods to investig-
ate changes to atmospheric circulation. Huguenin et al. (2020) used a classification
that is based on Großwetterlagen, which created 10 circulation types. Analysing
19 CMIP5 models they found no frequency changes in winter for their circulation
types. Hansen et al. (2023), utilising Simulated Annealing and Diversified Random-
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Date T-3 T-2 T-1 T

2002-02-23 NWZ NWZ NWZ NWZ

2002-10-28 CW CW CW CW

2003-12-15 CW CW CW CW

2004-02-01 TRM TRM CW CW

2007-01-12 CW CW CW CW

2007-01-19 WA CW CW CW

2007-12-08 CW CW CW TRM

2011-12-09 CW CW CW CW

2012-01-04 CW CW CW CW

2015-11-19 CW CW CW CW

Table 3.5: Dates of the ten highest observed inland water levels in Leysiel, Germany during
the past 22 years and observed Großwetterlagen at the same day (T) and the x
days before (T-x). See Table 3.1 for the acronyms.

ization to group sea level pressure fields into 10 circulation types, also did not find
any significant increase in westerly flow circulation types for the winter. On the
other hand, several studies have reported an increase in westerly circulation types,
which is consistent with our findings. For example, Hoy et al. (2014) found that
westerly inflow has increased in the recent past, leading to higher precipitation in
northern Europe. Similarly, Cahynová & Huth (2016) categorised daily sea-level
pressure fields over Europe for 1961-2000 into 24 circulation types and reported
an increasing frequency of westerly types. Rohrer et al. (2017) analysed climate
projections for the Alpine region and found a decrease in winter easterlies and an
increase in westerlies until the end of the current century. Demuzere et al. (2009)
also reported similar changes in Europe under climate change, using the Lamb
weather types for the ECHAM5-MPI/OM climate model. Stryhal & Huth (2019)
conducted a study on 25 CMIP5 global climate models over the British Isles and
central Europe. They found an increase in westerlies, but noted that the strength
depends on the classification used.

For the summer season, a contrary trend has been noted with the majority of
models projecting a decrease in Cyclonic Westerly days. This signal is even stronger
for scenarios with higher greenhouse gas emission. While the overall mean of the
CMIP6 models shifts, some models project little to no change or even an increase
under SSP5-8.5. This is in contrast to the winter season where almost all global
climate models project a shift in the same direction. These results are consistent with
the findings of Otero et al. (2018). They employed Jenkinson-Collison classification,
which is based on mean sea level pressure to analyse ten CMIP5 global climate
models. They discovered a decrease in westerlies during the summer months
under SSP8-5.8 for 2081-2100. Herrera-Lormendez et al. (2023) followed up on
this research with an analysis of 21 CMIP6 models and found a decrease in the
frequency of westerlies in the summer months.
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Several studies, e.g. Osman et al. (2021), suggest that climate change may cause a
poleward shift of the North Atlantic jet in the future. It is uncertain how the neural
network classification would respond to large-scale changes in weather systems, as
model data from future scenarios may become too dissimilar to the reanalysis data
on which the neural networks were trained. We therefore investigated whether
the days identified by the networks as Cyclonic Westerly had the same synoptic
patterns in both historical and future data. To do this, we created composites of the
days classified as Cyclonic Westerly by the networks for each CMIP6 model and
their corresponding historical and future scenarios (Fig. 3.9). We then calculated

Figure 3.9: The figure displays composites of mean sea level pressure for days with Cyclonic
Westerly in a) the historical data and b) the SSP5-8.5 scenario in EC-Earth3-Veg-
LR as an example.

the Pearson correlation coefficient between the historical composites and those of
the future scenarios. A Pearson correlation coefficient of 0.999 was obtained for all
CMIP6 model-scenario combinations, showing that the networks still detect the
same weather patterns under climate change. Although there are no spatial shifts,
there is an increase in the geopotential height values in the composites of days
with Cyclonic Westerlies. Those findings are in line with the increase under climate
change in 500 hPa geopotential height reported by Ozturk et al. (2022).

The results of this study naturally come with some caveats. Although our net-
work’s accuracy and F1-score have improved compared to previous work, they
are not flawless. Additionally, the CNN’s overall accuracy is inherently limited
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by the subjective human influence on the classification in the Großwetterlagen
catalogue and the 3-day rule. When comparing the historical reference period
of the global climate models to the ERA20C reanalysis data, it became apparent
that some models have difficulties with correctly representing the frequency of
Cyclonic Westerly. As demonstrated, there is a certain amount of variation among
the ensemble members of MPI-GE. Unfortunately, many global climate models
provide only one or a limited number of ensemble members with the required
three scenarios and variables, making it impossible to assess the variation among
them.

There are several interesting directions that future research can take to improve
on the results presented in this study. One possibility to improve the classification
is the construction of deeper architectures, that are at the same time less prone
to overfitting. In addition to data augmentation, there are other techniques such
as gradient penalties, semi-supervised pre-training, channel shuffle, and many
others that are used to reduce overfitting during training, but were beyond the
scope of the current study. Another option is to consider the temporal aspect of
the data which has so far not been utilised. Currently, classification is based on the
daily mean of a single day, but with ERA20C’s 3-hourly data, it could be classified
similar to a video, which is simply a sequence of images. While there are networks
available for classifying video clips, they may be too large and prone to overfitting.
It is important to note that, for a study similar to ours, collecting the necessary
CMIP6 data on a sub-daily scale may be difficult as they are not readily available
for most global climate models. One alternative approach could involve taking into
account the surrounding days during the classification process for the 3-day rule.

3.6 conclusion

Previous studies have demonstrated that Großwetterlagen can serve as a proxy for
extreme or compound events (see Chapter 2). In this study, we utilised a convolu-
tional architecture that improved the automatic classification of Großwetterlagen
over Europe. This trained network was then utilised to analyse future changes
under three climate change scenarios in 31 CMIP6 models and the Max Planck
Institute Grand Ensemble. This is one of the first studies to conduct weather pattern
classification for Europe for a large CMIP6 ensemble. Our analysis showed that
there is a certain internal variability among the ensemble members of MPI-GE
caused by the different initialisations, with some members deviating from the
general trend of more Cyclonic Westerly days in winter. Although the CMIP6

models are the latest generation of global climate models, only a few match closely
the frequency of Cyclonic Westerly for the historical reanalysis data of ERA20C.
Despite this, the models clearly showed a rise in Cyclonic Westerly days during the
winter season, but a decline in the summer.

Projected changes in Cyclonic Westerly days are in line with the general consensus
of hotter and dryer summers, while the winter will become wetter. The strength
of the change increases under stronger climate change scenarios; from almost no
signal under SSP1-2.6 to a very strong signal under RCP5-8.5. As winter is already
the primary season for compound flood events, an increase in Cyclonic Westerlies
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in the future suggests a potentially higher number of such events. These changes,
combined with sea level rise, will pose significant challenges for coastal protection
in the future.
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C H A N G E S I N C O M P O U N D F L O O D E V E N T F R E Q U E N C Y I N
N O RT H E R N A N D C E N T R A L E U R O P E U N D E R C L I M AT E
C H A N G E

chapter summary

The simultaneous occurrence of increased river discharge and high coastal water
levels may cause compound flooding. Compound flood events can potentially cause
greater damage than the separate occurrence of the underlying extreme events,
making them essential for risk assessment. Even though a general increase in the
frequency and/or severity of compound flood events is assumed due to climate
change, there have been very few studies conducted for larger regions of Europe.
Our work, therefore, focuses on the high-resolution analysis of changes in extreme
events of coastal water levels, river discharge, and their concurrent appearance at
the end of this century in northern and central Europe (2070-2099). For this, we
analyse downscaled data sets from two global climate models (GCMs) for the two
emissions scenarios RCP2.6 and RCP8.5. First, we compare the historical runs of
the downscaled GCMs to historical reconstruction data to investigate if they deliver
comparable results for northern and central Europe. Then we study changes in
the intensity of extreme events, their number, and the duration of extreme event
seasons under climate change. Our analysis shows increases in compound flood
events over the whole European domain, mostly due to the rising mean sea level.
In some areas, the number of compound flood event days increases by a factor
of eight at the end of the current century. This increase is concomitant with an
increase in the annual compound flood event season duration. Furthermore, the
sea level rise associated with a global warming of 2 K will result in double the
amounts of compound flood event days for nearly every European river estuary
considered.

4.1 introduction

Floods are worldwide the most common natural disaster (Douben, 2006). Drivers
for coastal floods are usually a combination of tides, waves, precipitation, storm
surges, and strong river discharge (Zscheischler et al., 2020). They pose a big threat
to some of the most important economic centres in Europe and the 50 million
people living in the low-elevation coastal zone (Neumann et al., 2015). The damage
caused by floods is potentially even higher when two driver of floods, like strong
river discharge and high coastal water levels, occur at the same time or in close
succession (Seneviratne et al., 2012). Leonard et al. (2014) defined compound flood
events as an ‘extreme impact that depends on multiple statistically dependent
variables or events’. There has been a number of studies conducted for compound
flood events in the past, like Hendry et al. (2019) or Zscheischler & Seneviratne
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(2017), which found that neglecting the dependence of drivers results in a large
underestimation of coastal flood risks. Due to their severe nature, compound flood
events are becoming more and more relevant for risk assessment and scientific
research.

Due to the large damage that can be caused, it is essential to understand how
compound floods will change in the future because of anthropogenic climate
change (Zscheischler et al., 2018). To better analyse different climate futures, the
fifth Assessment Report (Pachauri et al., 2014) of the Intergovernmental Panel on
Climate Change (IPCC) introduced four Representative Concentration Pathways
(RCP) scenarios. These pathways represent different possible climate futures based
on different developments of factors such as greenhouse gas and aerosol concen-
trations, or land use (Moss et al., 2010). Recently, the RCP scenarios have been
extended by the Shared Socioeconomic Pathways scenarios, which have been used
for the climate simulations in the AR6 report (IPCC, 2023). However, due to the
availability of required data at high spatial resolution, the present study utilises
data from RCP2.6 and RCP8.5 scenarios for assessing future climate change. RCP2.6
assumes a reduction in carbon dioxide emission starting from 2020 and negative
emission at the end of the century and is therefore often referred to as the ‘peak’
scenario (Van Dingenen et al., 2018). This scenario is in line with the goal of the
Paris Agreement, which aims to limit the global mean temperature rise to ‘well
below 2

◦C’ (United Nations, 2015). It requires a massive reduction in the emission
of other greenhouse gases like methane (Van Vuuren et al., 2011a). RCP8.5 on the
other hand projects a rise in greenhouse emissions throughout the century and is
generally seen as a worst-case scenario (Hausfather & Peters, 2020). Both scenarios
are accompanied by a rise in mean sea level which will pose a major threat along
the coastlines (Vousdoukas et al., 2018b).

The potential changes in coastal flood damage due to sea level rise were invest-
igated by various studies. Vousdoukas et al. (2020a) estimate up to e 239 billion
annual costs from damage caused by coastal flooding towards the end of the cen-
tury in Europe for RCP8.5 if no countermeasures are taken. The damages caused by
coastal floods will therefore represent a noticeable share of some countries’ national
gross domestic product (GDP) at the end of the century in case of a high-emissions
scenario like RCP8.5 (Feyen et al., 2020). Despite those findings, a recent study by
McEvoy et al. (2021) revealed that still not all European countries plan for sea level
rise and therefore do not improve their flood protection accordingly.

There are several studies that investigated future changes to compound flood
events in Europe. Most of them were local, while a few addressed the problem
from a global perspective. These comprise, for example, the studies by Bermúdez
et al. (2021) for the rivers Mandeo and Mendo in Spain, Harrison et al. (2022) for
the estuaries Humber and Dyfi in the United Kingdom, Kew et al. (2013) for the
Rhine delta, Klerk et al. (2015) for the Rhine-Meuse delta, Pasquier et al. (2019) for
the Broadland River in England, and Poschlod et al. (2020) for Norway. While a
European perspective is to some extent inherent in global studies, like in Bevacqua
et al. (2020), Ridder et al. (2022), and Couasnon et al. (2020), they lack regional
details due to coarse resolution. To the authors’ knowledge, the studies of Bevacqua
et al. (2019) and Ganguli et al. (2020) are the only ones that analyse future changes
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to compound flood events in Europe on a continental scale. Bevacqua et al. (2019)
carried out their analysis for the period of 2070-2099 and considered precipitation
and sea level under emission scenario RCP8.5. They projected a strong increase
of compound flood events, due to the warmer atmosphere allowing storms to
carry more moisture, in addition to sea level rise. Ganguli et al. (2020) studied
changes under RCP8.5 using high-resolution dynamically downscaled regional
climate model simulations available at a EURO-CORDEX domain for the time
period 2040-2069. Their analysis focused on discharge and sea level extremes in
northwestern Europe. For the majority of locations, they reported a lower risk
of compound flood events in the projected scenario due to a lower dependence
between storm surges and river discharge extremes, which they attributed to a
potential poleward shift of the North Atlantic jet. Furthermore, they noted that
considering the projected SLR suggests an increase in compound flood potential
across low elevated lands, i.e., ∼30% of sites. Both studies were conducted for
different decades of the current century and focused on different drivers. Their
results can therefore hardly be directly compared. However, those studies did not
provide a detailed analysis on changes in different scenarios. Our work aims to
contribute further to this scientific discussion by adding detailed analysis of the
scenarios RCP2.6 and RCP8.5 to it.

For the analysis of the dependence of the factors driving compound flood events
tail correlation coefficient methods or copulas are often utilised (Xu et al., 2023).
They are used to evaluate the complex dependence structures and describe the
bivariate joint distribution (Couasnon et al., 2020). For robust estimates, large data
sets are needed (Serinaldi, 2013; Serinaldi et al., 2015) which are often unavailable.
For this reason we use a Monte Carlo-based approach that is less dependent
on sample size (see Chapter 2.2) to study the dependence between drivers of
compound flood events.

In the present study, we focus on a detailed analysis of changes in compound
flood events in Europe towards the end of the current century (2070-2099). Us-
ing high-resolution coastal water levels, discharge data, and regional sea level
projections from the Sixth Assessment Report (AR6) of the IPCC, we provide an
assessment of future changes in compound flooding across northern and central
Europe. The assessment is made for the high-emission scenario RCP8.5 and the
low-emission scenario RCP2.6 to account for different climate futures. Especially
for RCP2.6 very little scientific analysis in terms of compound flood analysis has
been done, with most studies focusing on the more extreme high-emission scenario
RCP8.5. First, we compare the historical runs of the dynamically downscaled global
climate models to reconstruction data in order to evaluate their skill in representing
compound flood events. We used their output to simulate discharge and coastal wa-
ter levels. Afterwards, we examine how different aspects of extreme events change
for the two emission scenarios which includes sea level rise caused by global
warming. This is combined with an analysis on how much future developments in
coastal water levels and discharge contribute to those changes. Furthermore, we
analyse changes in the extreme event seasonality, i.e., the number of months in
which extreme events can occur. Additionally, we investigate if future scenarios
show differences in the intensity of extreme events. Finally, we look into potential
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changes in correlations between discharge and coastal water levels extremes. This
enables us to examine if the underlying mechanisms that might cause compound
flood events may change in the future.

4.2 data

Spatial and temporal consistent long time series of daily river runoff (discharge)
and coastal water levels are required to study compound flood events. These
were derived from existing climate change scenario simulations at a sufficiently
high spatial resolution. We selected two data sets from the COordinated Regional
climate Downscaling Experiment (CORDEX; Giorgi et al. (2009)), i.e. from its
EURO-CORDEX initiative1 that provides regional climate projections for Europe
at 12.5 km (0.11

◦) resolution (Jacob et al., 2014). These two data sets comprise
regional climate model (RCM) simulations (Chapter 4.2.1) that were dynamically
downscaled from simulations of two different global climate models (GCMs). The
simulations cover a historical period (1950-2005) and two different future climate
scenarios each that range until the end of the 21st century (2006-2099) without
any gaps. The RCM simulations were then used to generate the necessary data for
the analysis of compound flood events. For one thing, time series of daily river
runoff were simulated with the Hydrological Discharge model (Chapter 4.2.2). For
another, tide-surge levels were generated with the Tidal Residual and Intertidal
Mudflat model (Chapter 4.2.3). A flowchart of the modelling framework can be
seen in Fig. 4.1. Note that the choice of the EURO-CORDEX simulations was largely
constrained by the data requirements of the coastal water levels simulations. In
addition, we utilised long-term reconstructions of river runoff and coastal water
levels (Chapter 4.2.4) to evaluate the simulated compound flood events during the
historical period.

In our study we consider and analyse data from central and northern Europe.
Our analysis region is shown in Fig. 4.2 in which the names of all seas, regions
and river catchments that are used in the study are introduced. Figures used in
the remainder of this study show only the largest rivers to avoid visual clutter. All
together there are 181 river mouths shown by circles, regardless of the rivers being
displayed in the following figures.

4.2.1 EURO-CORDEX data

In order to generate high-resolution water level data, hourly data of near-
surface (10 m height) wind components and sea level pressure are required
(see Chapter 4.2.3). At the time of the study, only two data sets from the EURO-
CORDEX archive were available to us that fulfilled this requirement. Both data sets
comprise historical simulations from 1950-2005, and two scenarios following the
Representative Concentration Pathways RCP 2.6 and 8.5 (Van Vuuren et al., 2011b),
which span from 2005 until the end of the 21st century. The historical simulations
are not based on reanalysis and can be only compared in a statistical sense.

1 https://www.euro-cordex.net/

https://www.euro-cordex.net/
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Figure 4.1: Flowchart of the modelling framework for the REMO-MPI and REMO-Had
data.

Figure 4.2: This image displays the seas, catchments, and regions that are mentioned by
name in this study. The first two entries in the colourbar are catchment areas of
rivers that discharge into the Bothnian Bay and Bothnian Sea. The last entry is
the catchment area of the river Elbe.
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We used two available atmospheric data sets, REMO-MPI and REMO-Had (see
below), originating from two different GCMs that were dynamically downscaled
to the EURO-CORDEX 0.11

◦ domain with two different versions of the RCM
REMO (Jacob et al., 2007). REMO is a three-dimensional, hydrostatic, atmospheric
circulation model within a limited area, which is hosted at the Climate Service
Center Germany (GERICS). The forcing data from the global simulations are
prescribed at the lateral boundaries of the European domain with an exponential
decrease towards the centre of the model domain. The main direct influence of
the boundary data lies in the eight outer grid boxes using a relaxation scheme
according to Davies (1976). Both REMO versions used 27 hybrid sigma-pressure
levels, which follow the surface orography in the lower levels but are independent
from it at higher atmospheric model levels.

4.2.1.1 REMO - MPI

In REMO-MPI, the global climate simulations were conducted with MPI-ESM, the
Earth System Model (ESM) of the Max Planck Institute for Meteorology (Giorgetta
et al., 2013). The MPI-ESM consists of coupled general circulation models for the
atmosphere and the ocean, and their subsystem models for land and vegetation
and for the marine biogeochemistry, respectively. For the atmosphere, the LR
configuration was used with a T63 (∼1.9◦) horizontal resolution and 47 hybrid
sigma-pressure levels, while the ocean utilised a bipolar grid with 1.5◦ resolution
(near the equator) and 40 z-levels. The two RCP scenario simulations cover actual
years for the period 2005-2099. The MPI-ESM simulations were downscaled with
REMO2009 (Jacob et al., 2012).

4.2.1.2 REMO - Had

REMO-Had has utilised global climate simulations that were conducted with
HadGEM2-ES, the ESM of the UK Met Office Hadley Centre (Jones et al., 2011).
HadGEM2-ES is a coupled atmosphere-ocean GCM that also represents interactive
land and ocean carbon cycles as well as dynamic vegetation. It was setup with an
atmospheric resolution of N96 (1.875

◦ × 1.25
◦) and 38 vertical levels and an ocean

resolution of 1
◦ (increasing to 1/3

◦ at the equator) and 40 vertical levels. HadGEM2-
ES simulations are run with 30-day months and the two RCP scenario simulations
cover the period 2005-2099. The HadGEM2-ES simulations were downscaled with
REMO2015 (Remedio et al., 2019).

4.2.2 River Runoff - HD model

River runoff was simulated with the hydrological discharge (HD) model (Hagemann
et al., 2020) covering the entire European catchment region. The HD model v. 5.0
(Hagemann & Ho-Hagemann, 2021) was set up over the European domain covering
the land areas between -11

◦ W to 69
◦ E and 27

◦ N to 72
◦ N with a spatial grid

resolution of 5
′ (ca. 8-9 km). The HD model separates the lateral water flow into the

three flow processes of overland flow, baseflow, and riverflow. Overland flow and
baseflow represent the fast and slow lateral flow processes within a grid box, while
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riverflow represents the lateral flow between grid boxes. The HD model requires
gridded fields of surface and subsurface runoff (drainage) as input for overland
flow and baseflow, respectively, with a temporal resolution of one day or higher.
These input fields of surface runoff and drainage were taken from the REMO
simulations and interpolated to the HD model grid to simulate daily discharges.

4.2.3 Coastal Water Levels

Coastal water levels are the result of an interplay of different factors that are
considered in different ways. Strong onshore winds that push water masses towards
the coast cause a rise of the sea surface that is commonly referred to as a storm
surge. When storm surges coincide and interact with high tides the resulting water
level is often referred to as storm-tide level. When mean sea level rises, this will
further increase storm tide levels. In the following, we refer to storm tide levels
including the effects of mean sea level rise as coastal water levels.

Daily tide-surge levels were obtained from tide-surge simulations with the Tidal
Residual and Intertidal Mudflat Model (TRIM). In particular, a 2D version of TRIM-
NP (Kapitza, 2008) was used which is a nested hydrostatic shelf sea model with
spatial resolutions increasing from 12.8 km × 12.8 km in the North Atlantic to
1.6 km × 1.6 km in the German Bight. Zonal and meridional wind components
at 10 m height and sea level pressure from the REMO-MPI and REMO-Had
simulations were used as hourly atmospheric forcing fields to derive tide-surge
levels in the German Bight. To include tides, data from the FES2004 atlas (Lyard
et al., 2006) were used at the lateral boundaries.

4.2.4 Long-term reconstructions

In order to evaluate compound flood events during the historical period (see
Chapter 4.4.1), we utilised two long-term reconstructions for discharge and three
tide-surge data sets. The two daily discharge data sets are based on consistent
long-term reconstructions by the global hydrology model HydroPy (Stacke &
Hagemann, 2021) and the hydrological discharge (HD) model (Hagemann et al.,
2020). To generate these data sets, both models were forced with the ERA5 reanalysis
(Hersbach et al., 2020) of the European Centre for Medium-range Weather Forecasts
(ECMWF) for the time period 1979–2018 and E-OBS data (Cornes et al., 2018) for
1950–2019. Both discharge data sets cover the same European domain as described
in Chapter 4.2.2. The data sets were published as Hagemann & Stacke (2021), and
their generation and evaluation is described in Hagemann & Stacke (2023).

The three tide-surge reconstructions were generated by two different shelf sea
models. In the first two reconstructions, the TRIM model was forced with the
high-resolution regional re-analysis COSMO-REA6 of the German Weather Service
(DWD) for the period 1995-2018 (Bollmeyer et al., 2015). In the second and third re-
construction, COSMO-REA6 data and data from the regional climate reconstruction
coastDat3 (Petrik & Geyer, 2021) were used to force the physical part of the marine
ECOSystem MOdel (ECOSMO) (Daewel & Schrum, 2013; Schrum & Backhaus,
1999) for the period of 1948–2019 (BSH, 2022).
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Further information on the models, reconstructions and their evaluation are
available for the HD5-ERA5 and HD5-E-OBS data in Hagemann & Stacke (2023),
for ECOSMO-coastDat3 in BSH (2022), as well as for TRIM in Gaslikova et al. (2013)
and Weisse et al. (2015).

4.2.5 Mean Sea Level Rise

While changing tide-surge levels are primarily a result of changing wind climato-
logy, changes in total coastal water levels are a result of both, changing tide-surge
levels and rising mean sea levels. While changes in tide-surge levels can be obtained
from the described model simulations, rising mean sea levels remain unaccounted
for. In a first approximation, both effects may be added linearly (Howard et al.,
2010; Sterl et al., 2009) although some errors will be introduced in shallow waters
caused by the modification of tide-surges through rising mean sea level (Arns et al.,
2015). Non-linear effects are typically in the order of a few centimetres for sea
level rises up to 5 m (Howard et al., 2010) which can still be considered small com-
pared to uncertainties from other neglected effects such as changing bathymetry
(Benninghoff & Winter, 2019).

While for tide-surge and discharge simulations we used atmospheric forcing for
the two RCP scenarios of IPCC AR5, we were unaware of regionalized sea level
projections for those scenarios. We, therefore, used 50

th percentiles of corresponding
regionalized projections from the IPCC AR6 (Fox-Kemper et al., 2021; Garner et al.,
2021; Kopp et al., 2023) for the Shared Socioeconomic Pathways (SSP) scenarios
SSP1-2.6 and SSP5-8.5 (see Fig. 4.3). The SSP scenarios approximately correspond

Figure 4.3: Projected relative sea level rise by 2099 in Europe for the 50
th percentile a)

SSP1-2.6 and b) SSP5-8.5 based on medium confidence scenario (Garner et al.,
2021).

to the RCP scenarios with the same label (Meinshausen et al., 2020). Given that
the ranges of projections by 2100 are in the order of several decimetres, the error
introduced by this approach is probably small. Relative regional sea level was
used so that vertical land movements are accounted for. The latter is particularly
important in the Baltic Sea where ongoing glacial isostatic adjustment (GIA) is
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large (Weisse et al., 2021). The region around the Gulf of Bothnia experiences a
relative sea level fall, contrary to the rest of Europe. To obtain estimates of total
coastal water levels the 50

th percentiles derived from these projections were linearly
added to the corresponding tide-surges obtained from the model simulations.

4.3 methods

4.3.1 Compound flood events

There are several ways to identify extreme events, with no standardised method
being used in published research. The goal is always to manage the trade-off
between finding a low number of extremes because they are rare per definition,
while at the same time having enough data points for statistical analysis. Two
commonly used methods are block maxima (for example, in Moftakhari et al.
(2017)) and Peaks over Threshold (POT) (for example, in Fang et al. (2021)), both
having their upsides and downsides which were discussed in studies like Jaruskova
& Hanek (2006) or Ward et al. (2018). Here, we chose Peaks over Threshold and
followed a percentile-based approach for each river individually since we otherwise
might miss out on events if, for example, two extreme events occur in one year. For
both the water level and discharge data sets, we started at the 90

th percentile. We
then continued to raise the percentile in small incremental steps until the resulting
thresholds for each river yielded on average two extreme events per year. This
was done for the historical runs, with the same thresholds being used for future
scenarios unless stated otherwise. To ensure that extreme events identified that way
are independent of each other we additionally applied a de-clustering algorithm
that guaranteed that different extreme events are separated by at least three days.
Due to the scale of the study domain it is not feasible to employ a site specific
de-clustering time for each individual river. Therefore, we chose a time that was
used by previous large scale studies like Ward et al. (2018) and Bevacqua et al.
(2019). In other words, all events that are less than four days apart from each other
are considered to belong to the same extreme event. An event was counted as a
compound event when an extreme discharge and extreme coastal water level event
occurred on the same day. Some studies use temporal delay (lag) to account for the
delays between variables reacting to an event. Ganguli & Merz (2019) calculated the
lag based on the catchment area, but for long rivers like the Elbe the actual delay
heavily depends on the location of the occurring precipitation. We did not utilise
lag so that we only detect events where the variables are extreme at the same time.

4.3.2 Dependence between drivers

We utilised a Monte Carlo-based approach to identify those rivers in which com-
pound flood occurred more frequently than expected for uncorrelated drivers.
Compound flood events in rivers that show a higher number of compound flood
events than expected by chance might have a common driver. For this analysis,
we limited the data sets to the winter seasons, since this is where storm surges
mostly occur in northern Europe (Liu et al., 2022b). To remove possible correlations
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between the data sets we shuffled the tide-surge data. This creates a data set where
discharge and tide-surge data are independent. Afterwards, we counted the num-
ber of compound flood events for the combination of discharge and randomised
coastal water level data to see how it changed compared to a data set with possible
dependence between extreme events. The process was repeated 10,000 times to
create a probability distribution for uncorrelated events for each river. This allowed
us to assess whether or not the observed distribution is outside the 95.4% range
(2σ) of the distributions for independent drivers which provides an indication
for correlated drivers. A more detailed analysis, including the reasoning for our
choices, is given in Chapter 2.2.

4.3.3 Seasonality in compound flooding

We calculated the duration of each season in order to analyse changes in the
seasonality of compound flood events. The duration of a season was defined as
the shortest time period that contains at least 90% of the compound flood event
days, similar to the definition by Bevacqua et al. (2020). For this, we first counted
the number of compound flood event days per month in the time period of the
data set, e.g., the number of days that occur each March throughout the entire
time period that we analysed. We accumulated the number of days instead of the
number of compound flood events to take into account that the length of compound
flood events might change in the future, so simply counting the number might
underestimate the differences. Furthermore, this approach takes into consideration
that a compound flood event might start at the end of a month and continue into
the next month. Then we used the NumPy sliding window view function (Harris
et al., 2020) to find the shortest combination of months that contained at least 90%
of the accumulated compound flood event days. If there was a month without
compound flood event days in a season, it was counted as part of it for the sake of
continuity.

4.3.4 Extreme event intensity

The intensity of extreme discharge events was defined as the average amount of
discharge during an extreme event. This means that the intensity is based on the
total discharge during this event. These calculations were also done for coastal
water levels, where the intensity is the total water height during the extreme event.

4.3.5 Contributions to changes of future compound flood event frequency

To disentangle the contributions of the different drivers to future changes in com-
pound flood event frequency, we set up different data set combinations (Table 4.1).
As shown in Chapter 4.4.4, tide-surges do not show any significant changes under
RCP2.6 and RCP8.5 scenarios, as long as sea level rise is neglected. For the analysis
it was important to not distort correlations between extreme events of discharge and
coastal water levels because this would influence the number of compound flood
event days (Chapter 2). To have a reference, we calculated the number of compound
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Purpose CFEs based on

Reference period historical discharge and tide-surge
CFE changes caused by

changes in discharge
future discharge and tide-surge,

but without sea level rise
CFE changes caused by changes

to coastal water level
historical discharge and tide-surge

with sea level rise 2070-2099

Table 4.1: Purpose of data sets to analyse the contribution of discharge and sea level rise to
future compound flood event frequency.

flood event days in both REMO data sets for the historical time period 1976-2005. To
test the contribution of discharge to frequency changes in future compound flood
events, we used discharge and tide-surge from the future time period 2070-2099

since the historical and future tide-surge levels are nearly identical. Afterwards, we
evaluated the contribution of sea level rise by adding it to the tide-surge levels of
the historical data sets. This again preserves possible correlations.

4.4 results

In the following sections we first evaluate the historical runs of our data sets, then
investigate the changes of the separate drivers before proceeding to look into future
changes to compound flood events.

4.4.1 Evaluation of historical runs

Fig. 4.4 shows a comparison between the historical runs of the REMO downscaled
global climate models and the reconstruction data HD5-ERA5+TRIM-REA6 for
the number of compound flood events over a time period of 24 years. Generally,
the REMO data sets show a similar number of compound flood events. Only
for the northern coast of Norway and occasionally rivers near the Baltic States a
systematic overestimation is obtained. Using the Monte Carlo-based approach (see
Chapter 4.3.2), we estimated which rivers show a larger number of compounds
than could be expected from uncorrelated drivers. The reconstruction data set of
HD5-ERA5+TRIM-REA6 shows a larger number of rivers along the western-facing
coasts having a higher number of compound flood events than could be expected
by random coincidence of uncorrelated extremes (Fig. 4.4a,b). A comparable pattern
could also be identified in the REMO data sets, even though it is less pronounced
(Fig. 4.4d,f). A comparison of the REMO data sets with HD5-E-OBS+ECOSMO-
coastDat3 and HD5-ERA5+ECOSMO-coastDat3 over a time period of 30 years
shows again a slight overestimation like the TRIM-based data sets (Fig. 4.5). No
information is available on potential deviations in Norway and parts of western
Europe like Ireland, because ECOSMO-coastDat3 covers a smaller domain. As in
the reconstruction data sets, the compound flood events in the REMO data sets are
mostly limited to the period of November to March.
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Figure 4.4: Number of compound flood events (left) and dependence/independence
between drivers (right) in the HD5-ERA5+TRIM-REA6 reconstruction (top),
the REMO-Had (middle) and the REMO-MPI (bottom) historical runs. Colours
indicate the number of compound events over 24 years and whether or not this
number is within (grey), above (red) or below (blue) the expected 2σ interval
derived from randomised Monte Carlo simulations. The size of the circles indic-
ates the catchment area.

4.4.2 Future changes in discharge

We investigated changes in the frequency and intensity of discharge extreme events
for the two scenarios. Discharge intensity increases for most catchments in Ireland
and Great Britain under the RCP 2.6 scenario while it decreases for most of the
rivers discharging into the Baltic Sea (Fig. 4.6a,c). Similar changes can be observed
for the number of extreme discharge days (Fig. 4.7a,c). Slight disagreements arise
between the data sets for central Europe. REMO-MPI projects a decrease in intensity
at the western coast of the Bothnian Bay, Great Britain, and the north-facing coasts
of France, Germany, and Poland, while REMO-Had projects an increase under
RCP2.6 for those regions. For the regions with disagreement, the projected changes
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Figure 4.5: Number of compound flood event days over 30 years compared between a) HD5-
EOBS20+ECOSMO-coastDat3, b) HD5-ERA5+ECOSMO-coastDat3, c) REMO-
Had, and d) REMO-MPI.

Figure 4.6: Changes in discharge intensity towards the end of the century (2070-2099)
relative to the historical reference period (1976-2005). a) REMO-Had RCP2.6, b)
REMO-Had RCP8.5, c) REMO-MPI RCP2.6, d) REMO-MPI RCP8.5.
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Figure 4.7: Changes in the total number of days with extreme discharge towards the end of
the century (2070-2099) relative to the historical reference period (1976-2005). a)
REMO-Had RCP2.6, b) REMO-Had RCP8.5, c) REMO-MPI RCP2.6, d) REMO-
MPI RCP8.5. The percentages are calculated as changes to the number of days
with extreme discharge in the historical period.

are rather minor. Despite that, REMO-Had and REMO-MPI mostly agree in their
assessment that the northern coasts of Poland and Germany will have a lower
number of extreme event days.

The REMO data sets show a stronger agreement for intensity and number of
extreme days changes under RCP8.5, with most of Europe experiencing an increase
for both parameters (Fig. 4.6b+d and Fig. 4.7b+d). A lower intensity is anticipated by
both REMO data sets only for northern Spain and the Bothnian Bay. The number of
days with extreme discharge increases throughout all of Europe, with the exception
of northern Spain. As in RCP 2.6, the REMO data sets disagree for the northern
Norwegian coast and the western coast in the Bothnian Sea. The increases and
decreases of both variables are much stronger than under RCP2.6.

4.4.3 Future changes in coastal water levels

The tide-surge component of the total coastal water level shows no significant
change in both RCP scenarios; that is if sea level rise is neglected. Fig. 4.8 exemplifies
this for the coastal water levels at the Elbe river mouth. Both tide-surge data sets
show very similar distributions in the histogram. The same behaviour can be seen
for all other rivers. As a result, the intensity and number of the extreme tide-surge
events does stays similar.
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Figure 4.8: Histogram containing hourly tide-surge level values for a) REMO-Had and
b) REMO-MPI as calculated by the TRIM model at the Elbe river mouth. The
histogram is based on 100 bins with sea level rise being neglected. The historical
time period is 1976-2005, while future scenarios RCP2.6 and RCP8.5 cover the
years 2070-2099.

4.4.4 Future changes in compound flood events

The number of compound flood event days at the end of the century shows large
local differences (Fig. 4.9). While nearly all of Europe experiences an increase in
the number of compound flood events in RCP2.6 and RCP8.5, this is not the case
for the Bothnian Bay and Bothnian Sea. There we see mostly similar amounts of
compound flood event days under RCP2.6 at the end of the current century, with
some rivers even indicating a decrease. The reason for this is that this regions
already has a low number of compound flood event days in the historical reference
period and in the RCP scenarios, discharge slightly increases while the sea level
lowers at the same time. For RCP8.5, the increase of compound flood event days for
this region is weaker compared to the rest of Europe. This is because the sea level
is similar to the historical one, while there is an increase in discharge event days.

The mean duration of the compound flood event season in all rivers elongates in
both REMO data sets for the future scenarios (Table 4.2). For RCP2.6, REMO-Had

REMO-Had REMO-MPI

historical 3.51 months 3.94 months

RCP2.6 4.38 months 4.29 months

RCP8.5 5.17 months 5.09 months

Table 4.2: Average compound flood event season duration calculated over all rivers that are
considered in this study. The historical reference period is 1976-2005, while the
future scenarios are for the years 2070-2099.
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Figure 4.9: Number of compound flood event days in Europe over a period of 30 years
on a logarithmic scale. The historical reference period covers 1976-2005, while
the future scenarios cover 2070-2099. The left column shows the REMO-Had
scenarios a) historic, b) RCP2.6, and c) RCP8.5. In the same way, the right
column shows REMO-MPI for d) historical scenario, e) RCP2.6, and f) RCP8.5.

and REMO-MPI project an increase of around 0.8 and 0.3 months respectively.
For RCP8.5 the compound flood event season is even longer by around 1.6 and
1.1 months in comparison to the historical reference period. This increase can be
attributed to the rising sea level extending the duration of the storm surge season
and therefore creating a bigger overlap with the discharge season.

In the historical period (Fig. 4.10) western-facing coasts have a higher chance
of showing more compound flood events than expected by chance. If the chosen
thresholds are adapted to the future scenarios (see Chapter 4.3.1), a similar pattern
can be inferred. If thresholds are not adapted to future changes, however, nearly all
rivers will have a number of compound flood events that is above the expected 2σ
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Figure 4.10: Comparison of dependence/independence between drivers for rivers in north-
ern Europe for the historical reference period (1976-2005) and the end of the
century (2070-2099), with each using thresholds that were newly calculated
for the corresponding time period. The colour of the circles displays if the
amount of compound flood events is within (grey), above (red) or below (blue)
the expected 2σ interval derived from randomised Monte Carlo simulations.
Left column contains REMO-Had data and the right one REMO-MPI. The
rows contain historical reference (top), RCP2.6 scenario (middle), and RCP8.5
scenario (bottom).

value of the historical reference period. The only exception to this are the rivers in
the Bothnian Bay and Bothnian Sea.

How much future changes in discharge and sea level rise contribute to changes
in the number of compound flood event days, can be seen for RCP2.6 in Fig. 4.11

and for RCP8.5 in Fig. 4.12. It shows that sea level rise is the main contributor to
the observed changes in compound flood events. Nevertheless, future changes in
discharge will add to those changes, tide-surge share in it is negligible.
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Figure 4.11: Contribution of discharge and sea level rise to changes in the total number of
compound flood event days under RCP2.6. The left column contains changes
for REMO-Had, right column for REMO-MPI. The top row contains the number
of compound flood events of the historical runs. The middle row utilised
discharge and tide-surge level (without sea level rise) of the time period
2070-2099 to calculate the compound flood events. The bottom row used the
discharge and total coastal water level (tide-surge plus mean sea level) from
the historical time period but added the sea level rise that corresponds to
2070-2099. An explanation for those choices is given in Chapter 4.3.5.

4.5 discussion

Comparing the historical runs of the REMO data sets with the reconstruction data
(Chapter 4.4.1) showed a very similar behaviour. Both REMO data sets show a
number of compound flood events that is similar to those of the reconstruction data
sets, even if the compound flood events for northern Norway are overestimated.
Furthermore, there is a certain amount of variability due to the events being
infrequent and the analysis time period being comparably small. For both REMO
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Figure 4.12: Contribution of discharge and sea level rise to changes in the total number of
compound flood event days under RCP8.5. The left column contains changes
for REMO-Had, right column for REMO-MPI. The top row contains the number
of compound flood events of the historical runs. The middle row utilised
discharge and coastal water level (without sea level rise) of the time period
2070-2099 to calculate the compound flood events. The bottom row used the
discharge and total coastal water level (tide-surge plus mean sea level) from
the historical time period but added the sea level rise that corresponds to
2070-2099. An explanation for those choices is given in Chapter 4.3.5.

data sets the majority of compound flood events happen in the winter months.
Also, the 2σ maps (Fig. 4.4), which show if a river has more compound flood events
than expected by chance, show a similar pattern, with the western-facing coasts
tending to be above the 2σ range. The deviations we observe are potentially caused
by slightly different storm trajectories in the REMO data sets and natural climate
variability which does not allow a one to one comparison since they are not based
on reanalysis.
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If sea level rise is neglected, we do not see changes in the coastal water levels.
There are studies that project an increase in cyclone number and mean wind
speed (e.g. Zappa et al. (2013)) as well as a poleward shift of the storm tracks
(e.g. Kjellström et al. (2018)). However, those results are sensitive to the chosen
forcing and the choice of the global climate model (Feser et al., 2015; Ozturk et al.,
2022). Gonzalez et al. (2019) concluded that those projections should be viewed
with some caution. Discharge on the other hand shows a change in the number
of extreme event days and intensity. These changes in discharge are caused by
an increase in global temperature. Higher temperature results in the atmosphere
carrying more moisture, which eventually leads to more extreme precipitation
events in most parts of northern Europe in winter (Pfahl et al., 2017). Furthermore,
due to warmer winters, the snow melt will start sooner (Blöschl et al., 2017), leading
to a seasonality shift in many regions like Scandinavia. Hattermann et al. (2015)
found that a combination of those factors would lead to an increase in winter
discharge for almost all large German rivers. This makes it important to have
proper discharge data available that take snow melt into account like in the current
study, instead of only precipitation. The period of strong discharge events will
begin earlier in winter and therefore lasts for an extended period in comparison to
the historical time frame. This, combined with more precipitation events leads to
changes in the number of extreme event days. The increased annual precipitation
(Rajczak & Schär, 2017) will result in a generally higher discharge level in Europe
(Thober et al., 2018). An exception to this is northern Spain where we see a reduction
in intensity and extreme discharge days due to less precipitation. While the signals
are very clear in the REMO data sets for RCP8.5, this is not the case for RCP2.6.
Like in Di Sante et al. (2021), clear changes to discharge can be seen for Scandinavia
and the Baltic States, but not for most of central and western Europe. The decrease
in extreme discharge event days under RCP2.6 might be caused by the warmer
temperature leading to less snowmelt-generated discharge. Overall, our results
match the generally expected future discharge changes.

Due to sea level rise and increased discharge, we expect a strong increase in
compound flood events towards the end of the century in both scenarios. The
changes are significant for both RCP scenarios, but much stronger in RCP8.5. Our
analysis reveals that sea level rise will be the main contributor to those changes for
most of Europe (see Fig. 4.11 and Fig. 4.12). However, even if sea level rise is ignored,
the changes in discharge under RCP8.5 are large enough to cause major shifts in
compound flood event frequency. Despite that, it is essential to take into account,
that changes in discharge event frequency and intensity will have impacts on a local
scale. The developments of sea level rise and discharge will furthermore cause an
increase in the compound flood event season duration which is projected to extend
up to 5 months under RCP8.5 at the end of the current century. Furthermore, we see
that by adapting the thresholds to future scenarios, the pattern in Fig. 4.10 remains
similar, indicating that the generating mechanism for most compound flood events
stays the same. If those thresholds are not adapted and stay on the historical level,
nearly all rivers show more events than in the past. Our results, therefore, align
with the work of Bevacqua et al. (2019) who projected a rise in compound flood
events towards the end of the century. Our results do not find any indication of a
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widespread lower risk of compound flood events over Central Europe as described
by Ganguli et al. (2020). One reason for the difference in results might be that their
study investigated the middle of the century (2040-2069), while the climate change
signals increases in magnitude throughout the century. It also must be noted that
our approach to classify compound flood events is different to the one used by
Ganguli et al. (2020). The present study utilises a Peaks over Threshold approach,
while the former uses annual maxima high coastal water levels and high river
discharge within ± 7-days of occurrence of the high coastal water level.

As discussed, sea level rise is the dominant factor responsible for future changes
in compound flood events. To assess how sea level rise may affect the number of
compound events for different global warming levels, we added the corresponding
sea level rise to the historical tide-surge data sets and left the discharge unchanged.
As shown in Fig. 4.3, the Bothnian Bay and Bothnian Sea do not experience sea
level rise and will therefore not be explicitly named every time in the following as
an exception to the general trends. A sea level rise associated with a 1.5 K global
warming already rises the number of compound flood event days strongly. Here,
SSP1-2.6 (Fig. 4.13) and SSP5-8.5 (Fig. 4.14a) will double the amount of compound
flood event days for southern England, eastern coast of Great Britain, Ireland, and
the Western Baltic. Nearly all European rivers will experience an increase of 50%

Figure 4.13: Number of compound flood event days over 30 years if the sea level rise,
which is associated with a specific level of global warming in SSP1-2.6, had
occurred in the historical time period (1976-2005). a) shows those changes for
REMO-Had and b) for REMO-MPI. The global average temperature increase is
1.5 K. The point at which the temperature increase is reached can be seen in
Table 4.3.

Scenario 1.5 K 2.0 K 3.0 K 4.0 K

SSP1-2.6 2032

SSP5-8.5 2028 2042 2064 2084

Table 4.3: This table displays the years in which the mean of the projections for scenarios
SSP1-2.6 and SSP5-8.5 will reach a certain global warming according to the Sixth
Assessment Report of the IPCC (Masson-Delmotte et al., 2021).

or more, with the exception of northern Norway. With global temperature rise
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Figure 4.14: Number of compound flood event days over 30 years if the sea level rise, which
is associated with a specific level of global warming in SSP5-8.5, had occurred
in the historical time period (1976-2005). This image shows REMO-MPI. The
similar figure for REMO-Had looks very similar (Fig. 4.15). The temperature
increase is 1.5 K in a), 2 K in b), 3 K in c) and 4 K in d). The point at which the
temperature increase is reached can be seen in Table 4.3.

crossing a warming of 2 K all of Europe would experience twice the number of
compound flood events compared to the historical reference period (Fig. 4.14b),
except for northern Norway and the northwestern German coast. In a similar
fashion, a 3 K temperature increase would triple the numbers of compound flood
event days (Fig. 4.14c) and 4 K would raise it by a factor of 5 (Fig. 4.14d). This
demonstrates, that even if the global warming will be limited to 2 K or less, the
resulting sea level rise will impose a massively increased risk on the European
countries.

It should also be taken into account that the number of annual compound flood
events underlies natural variability. This can be seen in the variations of the 5 year
average (Fig. 4.16).

A clear separation between RCP2.6 and RCP8.5 starts to emerge around the
2060s for both REMO data sets. The climate signal strength and amount of changes
depend on the forcing and the time period, with most changes happening in the
second half of the century. Nevertheless, a generally rising trend can be seen for
the entire time period.

A large-scale study like this comes with inevitable caveats. Only data sets from
two downscaled different global models were available due to the required high
temporal resolution for the TRIM simulation. Due to not having an ensemble of



4.5 discussion 75

Figure 4.15: Number of compound flood event days over 30 years if the sea level rise, which
is associated with a specific level of global warming in SSP5-8.5, had occurred
in the historical time period (1976-2005). This image shows REMO-Had. The
temperature increase is 1.5 K in a), 2 K in b), 3 K in c) and 4 K in d). The point
at which the temperature increase is reached can be seen in Table 4.3.

Figure 4.16: Sum of annual compound flood event days over a 5 year moving average
for all rivers combined in the study area from 2006 to 2099. The calculation
of compound flood events includes local changes to the coastal water levels
caused by sea level rise.
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available data sets we yielded uncertain changes in the discharge under RCP2.6
for parts of Europe. This goes hand in hand with compound flood events being
a phenomenon that underlies large variability as seen in Fig. 4.16. Therefore,
even 30-year time frames have a certain amount of variability, especially with the
ongoing influence of climate change. Furthermore, the evaluation of the model
performance showed that the general patterns can be represented, but differences
exist nonetheless due to limitations in the modelling frameworks. Additionally, the
uncertain absolute amount of sea level rise, as well as the linear superposition of
tides with sea level rise, adds a noticeable uncertainty to the question of how strong
the changes in future extreme events will be since it is the predominant factor. Note
that due to the large scale of the domain of our study, it was not possible to take
local factors like flood protection and topography into account.

4.6 conclusion

In the present study, we conducted an analysis of future changes in compound flood
events over northern and central Europe and the contributing factors to it without
the use of copulas. We have demonstrated that the number of compound flood
events will strongly increase in the future, regardless of the scenario. Furthermore,
we analysed future changes in discharge and coastal water levels. To the authors’
knowledge, this is the first study that investigates these changes without the use of
copulas in Europe. It is important to point out that this study should be seen as a
general trend analysis for future scenarios and not as an actual prediction that can
be used for precise flood risk assessment. Scenario RCP2.6 shows a less extreme
increase in compound flood events compared to RCP8.5. The main contributor to
those changes is sea level rise, while changes in river discharge are less severe but
are not negligible. The sea level rise will lead to a strong increase in compound
flood events, even when the global warming is limited in line with the Paris
Agreement. The magnitude of those changes increases towards the end of the
current century. In general, REMO-Had and REMO-MPI show strong agreement
for RCP8.5, but less for RCP2.6. Additionally, we see in a future with adjusted
thresholds that west-facing coasts experiencing a higher number of flood events
than expected by pure chance, just like in the historical reference period. This
implies that the strongest compound flood events in future scenarios will still be
caused by a common driver like a specific weather constellation. Future work can
further examine climate change under RCP2.6 and RCP8.5 by utilising an ensemble
of global climate models. This, paired with a better understanding of sea level rise
on a local level, will be important to lower the uncertainty in changes to future
compound flood events, which is essential for accurate risk assessment.
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Since I started my Ph.D. in April 2021, there have been several devastating floods
in Europe. In July 2021, a flood in Germany, Belgium, and the Netherlands caused
more than 180 fatalities and an estimated damage of e 32 billion (Mohr et al., 2023).
In August 2023, a flash flood in Slovenia caused damage equivalent to 15% of the
national GDP (Bezak et al., 2023). These events show that flooding is far from a
solved problem. In addition, my hometown in Lower Saxony was threatened by
high discharge of the river Hase during the Christmas flood of 2023. The flooding
was caused by heavy rainfall on already saturated ground. Throughout the month
of December, westerly winds prevailed, with the Großwetterlage Cyclonic Westerly
occurring during the Christmas days until the end of the year. All of this felt
even more personal because of the research I had done for this dissertation on
Großwetterlagen and floods. Although these floods were neither coastal floods
nor compound flood events, they highlight the amount of work that still needs to
be done for better forecasting, protection, and general understanding of floods. I
have endeavoured to answer the research questions posed in Chapter 1 in order to
contribute to these goals by providing a better understanding of compound flood
events in Europe and their future changes. A summary of the answers is given in
the following Chapter 5.1, while Chapter 5.2 provides concluding remarks on the
implications of my findings and an outlook on future research possibilities.

5.1 summary of my results

1. Do compound flood events in northern and central Europe occur randomly?

To address the initial research inquiry, I performed a comprehensive spatial ana-
lysis examining the dependence of storm surge and discharge extremes as drivers
for compound flood events in the North and Baltic Sea catchments across northern
and central Europe. This was one of the first studies to investigate compound
flood events on a continental scale for Europe, and the very first to do so without
the usage of copulas, which otherwise introduce large uncertainties due to the
small number of data points. Using a Monte Carlo-based approach, I analysed
a total of 181 rivers across northern and central Europe, using HD5-ERA5 data
for the discharge and TRIM-REA6 data for sea level. My analysis was focused
on the winter and early spring season, as this is the main season for compound
flood events in this region. I was able to show that the west-facing coasts tend
to experience a higher number of compound floods than expected randomly by
chance alone, suggesting the existence of a common meteorological driver. I also
demonstrated the robustness of the results by reproducing the same pattern with
different data sets, changes in parameter settings, and variations in the randomisa-
tion approach. In addition, I showed that the pattern remains stable, despite the
ongoing climate change since the 1960s. Finally, I showed that rivers with larger
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catchment areas tend to show less compound flood events. This finding can be
explained by the fact that in larger catchments it takes longer for precipitation to
increase the river discharge significantly, and therefore the storm surge often ends
earlier. These findings are further detailed and discussed in Chapter 2. Uncertainty
in the results arises from the use of the 2σ interval and the comparatively short
time period of available data. Although the results have been shown to be robust,
they could certainly benefit from longer periods of available data. Furthermore, the
number of reported compound flood events should be treated with some caution,
as the thresholding method cannot account for local topography or flood protection
measures. Furthermore, the river discharge patterns can vary strongly between
rivers. A river with a single large discharge event in spring due to snowmelt may
have a different number of extreme discharge events than a river with several short
events due to precipitation. This type of problem can only be addressed by a local
study for each river individually.

2. Are there Großwetterlagen that favour the development of compound flood
events and how is their frequency changing due to climate change?

With previous results suggesting the existence of a common meteorological
driver that causes many of the compound flood events in the North and Baltic Sea
catchments, I examined the events identified in Chapter 2. I found that the majority
of these events occurred during the Großwetterlage Cyclonic Westerly. This weather
system is characterised by strong westerly winds and high precipitation, creating
therefore optimal conditions for high storm surges and extreme discharge, which
explains the high number of compound flood events on western-facing coasts. This
connection enabled me to use Cyclonic Westerly as a proxy for compound flood
events northern and central Europe. To better understand how this Großwetterlage
changes under anthropogenic climate change and the implications for changes
in the frequency of compound flood events, I analysed 31 CMIP6 global climate
models and the MPI Grand Ensemble for three different climate scenarios. The
Großwetterlagen classification has the advantage that, due to its large-scale nature, it
can operate directly on global climate model data and does not require an additional
downsampling step for higher resolution. In order to overcome the hurdle that
Großwetterlagen are a subjective classification, I developed the Convolutional
Neural Meteorological Network (CNMN) in Chapter 3. This neural network was
able to outperform the two already existing studies on the automatic classification
of Großwetterlagen. My analysis showed that, towards the end of the current
century (2071-2100), the CMIP6 models project an increase in the frequency of
Cyclonic Westerly during the winter half year. On the contrary, the frequency of
Cyclonic Westerly decreases during the summer season in the majority of global
climate models. The strength of change increases with a stronger climate change
signal. This trend indicated by the global climate models implies an increase in the
frequency of the weather pattern that are conducive to the occurrence of compound
flood events, and thus an increased likelihood of these events under climate change.
The neural network ensemble used in this study have been made available to
other researchers to provide an easy way to automatically classify Großwetterlagen
(Heinrich, 2024). However, uncertainty arises from the classification skills of the
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neural networks. Although they have the best performance of any method currently
available, there is certainly room for improvement. The problems are caused by the
requirement that all Großwetterlagen must last at least three days (see Chapter 3.3),
the lack of temporal awareness of the neural networks, and the transition between
different Großwetterlagen where the exact classification is somewhat ambiguous.
Moreover, as the entire classification catalogue is subjective, there is no guarantee
that the people responsible for it are always correct in their classification. However,
visual comparisons have shown that the days identified by CNMN as Cyclonic
Westerly match the pattern of human classification. Therefore, it is unlikely that
improved classification will change the results of this study in any meaningful way,
but there is no absolute certainty. I have demonstrated several attempts to improve
the classification (see Chapter 3.4.2), for example by adding additional variables, but
to no avail. More sophisticated methods to avoid overfitting might allow for larger
and deeper networks that could take into account the temporal aspect of the data.
Additionally, there are deep learning libraries such as PyTorchVideo (Fan et al., 2021)
focused on video understanding that could be used in combination with hourly
rather than daily data to improve classification. An alternative approach would be
to develop a bespoke objective classification that characterises the meteorological
conditions that give rise to compound flood events, once they are better understood.

3. What influence will different factors have on the frequency of compound
flood events in the future?

To answer the final research question, I examined in Chapter 4 two climate
simulations from the global climate models MPI-ESM and HadGEM2-ES that
had been downscaled by the regional climate model REMO. For both climate
simulations I analysed the emission scenarios RCP2.6 (low emission) and RCP8.5
(high emission), looking at changes to coastal water level, discharge and sea level
rise. First, I verified that the models are able to reconstruct the west coast facing
pattern previously shown in Chapter 2 for the historical reference period. I then
showed that storm surge levels do not change significantly under climate change
and therefore do not contribute to changes in the frequency of compound flood
events. In contrast, I found a strong increase in the number of days with extreme
discharge and an increase in the duration as well as intensity of these events under
RCP8.5 due to global warming leading to more moisture in the atmosphere. Those
changes for discharge are less pronounced under RCP2.6 due to the weaker climate
change signal. Furthermore, I demonstrated an increase in the number of compound
flood events caused by sea level rise for almost all of Europe, even when discharge
and coastal water level remain at historical level. Separate analysis has shown
that the sea level rise is the dominant contributing factor, but discharge changes
have to be taken into account as well. As a result of those changes, the period
during which compound flood events occur throughout the year will become
longer and compound flood events last longer. Overall, my analysis showed a
drastic increase in the number of compound events, accelerating in the second
half the current century. Finally, I found that the models project a doubling in the
number of compound flood event days, even if global warming level is limited
according to the Paris Agreement. The largest source of uncertainty in this study
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is the projected sea level rise. For example, the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (Fox-Kemper et al., 2021) projects
a likely range of 0.63 m to 1.01 m for the global mean sea level rise until 2100

under SSP5-8.5. This uncertainty can only be lowered by improved modelling of
sea level rise and a better understanding of the relevant processes. As explained
in the answer to the first research question, uncertainty stems naturally from the
chosen definition of extremes and the impossibility of taking local properties into
account for such a large-scale study. Furthermore, our analysis on future changes
to discharge under RCP2.6 could be improved by analysing a wider range of
models, because the two models available to us at that time showed opposite
changes in some regions. However, even this uncertainty cannot disguise the fact
that the number of compound flood events will increase significantly as a result of
anthropogenic climate change.

5.2 concluding remarks and outlook

Much work has been done on flood risk assessment and management in Europe
over the last two decades, following the so-called ‘Floods Directive’ (2007/60/EC,
2007) of the European Parliament and the Council of the European Union. Com-
pound flood events are one aspect that needs to be taken into account in coastal
and flood protection for proper risk assessment and adequate protection of citizens.
They become even more important with the projected increase in the frequency of
compound flood events due to global warming, as shown in this dissertation.

My research has shown that the Großwetterlage Cyclonic Westerly is a meteor-
ological driver of compound flood events in northern and central Europe. This
allowed me to analyse future changes in compound flood events in two different
ways, namely changes in the frequency of Cyclonic Westerly as well as changes in
the different components of compound flood events. The analysis of these changes
showed that the number of compound flood events will increase significantly in
the future due to anthropogenic climate change. This increase is the result of two
different contributing factors. First, sea level rise and increases in the intensity and
duration of discharge events will cause more compound flood events by the end of
the century. Second, the frequency of weather patterns conducive to the occurrence
of compound flood events is increasing, leading to more opportunities for them to
occur. All of this emphasises the need for coastal protection that can withstand the
more frequent and stronger compound flood events that are going to occur in the
future.

The methods presented in this dissertation are flexible and can easily be applied
to different types of compound events and other regions. The Monte Carlo approach
for testing dependence was, for example, used for rain-on-snow events in Norway
(Poschlod et al., 2020). Moreover, there are currently plans to apply this method for
the analysis of compound flood events in Vietnam. Similarly, studies focusing on,
for example, the simultaneous occurrence of heat and drought events can use this
method to test for dependence and also to examine large-scale weather patterns
to better understand these events. However, the neural networks that I have made
available to other researchers for the automatic classification of Großwetterlagen
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(Heinrich, 2024) can only be used for Europe. This is for one because the neural
networks were trained on data of a specific domain (see Fig. 3.1) and for another
because Großwetterlagen are only defined for Europe specifically. However, the idea
of identifying synoptic circulation patterns that favour the occurrence of compound
events can be applied to other parts of the world and the neural networks trained
on corresponding data. Neural networks can then be used to automatically identify
these weather patterns if an objective classification is not possible. Finally, the idea
of analysing how different elements of compound events will change in the future
due to climate change, and how these changes contribute to the overall frequency
of compound events, can be carried out without being restricted to a specific region.
For example, it could be analysed how the frequency and duration of droughts
and heatwaves change and how each of those changes contributes to the future
occurrence rate of compound heat and drought events in Australia.

The findings presented in this dissertation have implications not only for coastal
protection, but also for inland water drainage. An example of this is the tidal
gate Leysiel at the North Sea coast of Lower Saxony in Germany, which was
briefly mentioned in Chapter 3. It is opened at low tide to drain the water stored
inland, and closed at high tide to prevent the inflow of seawater. There, most of
the high inland water levels, caused by high precipitation and high sea levels,
occurred during Cyclonic Westerly. An increase in the frequency of Cyclonic
Westerly, as projected by the CMIP6 global climate models, could therefore lead
to more situations where the tidal gate is blocked for an extended period while
precipitation occurs, which in worst case can lead to inland flooding. An example
for this already happening in the recent past is a near-flood event in January 2012,
where high water levels in the North Sea resulted in excess water that could not be
discharged for several consecutive tidal periods. van den Hurk et al. (2015) provided
a detailed report for the same event for Lauwersmeer in the Netherlands. Inland
drainage will additionally become even more challenging in the future as sea level
rise creates a higher baseline for external sea levels (Bormann et al., 2023). However,
compound flood events are still often neglected in the planning stages of future
coastal protection and inland drainage. For example, Weisse et al. (2024) recently
reported that the local water boards in the region of Western East Frisia (Germany),
which includes Leysiel, are aware of the dangers of compound flood events, but do
not currently take them into account when planning coastal protection measures.
As with any natural hazard, coastal protection should be proactive rather than
reactive to avoid financial damage and the loss of lives. However, coastal protection
is not the only aspect of proper risk assessment. Similarly, emergency plans need
to take compound flood events into account. A road that is normally used for
evacuation during a storm surge might be inundated if high river discharge occurs
at the same time. This dissertation highlights the importance of compound flood
events and will hopefully contribute to a better understanding of these events,
demonstrate the urgency of adaptation, and raise awareness of future changes.

Local studies will be needed to develop bespoke protection measures, as they
can take local topography and existing protection measures into account, all things
that cannot be done in large-scale studies. They can aim to answer site-specific
questions like ‘What is extreme for this location?’ and ‘Do these extremes cause
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problems?’. These questions will be answered very differently for a city on a hill
than for a city that needs to be protected from being flooded by regular sea levels;
an example of the latter is more than a quarter of the Netherlands. The need for
adaptation goes hand in hand with the analysis of existing protection measures like
dykes, polders, and diversion canals. In addition, the decision making processes in
case of emergency and the time needed to make these decisions can be analysed.
Although several local studies exist to date, they all use different time frames, data
sets, threshold methods, and statistics. It is therefore difficult to compare them
or combine their results to see the bigger picture. Even if there were a massive
project to carry out a plethora of local studies using identical time frames, data
sets, and statistics for analysis, it would still suffer from the specific definition
of ‘extreme’ for each site. However, perhaps someone will eventually develop a
unifying method and definition that is universally applicable. Nevertheless, large-
scale studies such as those presented in this dissertation will remain important for
policies and strategies at the national level. Furthermore, they can aid in developing
a better understanding for compound flood events on a large scale, as demonstrated
in this dissertation.

Although compound floods have attracted a great deal of research interest
over the last decade, many questions remain unanswered. In general, it would
be great to see more studies investigating a wider range of scenarios instead of
only RCP8.5/SSP5-8.5, which shows the strongest climate change signal. While
humanity is currently doing a poor job of reducing greenhouse gas emissions, it is
not a given that the worst-case scenario will happen, and it is important to have
a good understanding of what might happen in other scenarios. One of the main
questions arising from my dissertation is: Why do only some Cyclonic Westerly
situations cause compound floods, but not all? It was shown in Chapter 2 that these
events do not depend on the duration of Cyclonic Westerly or on a specific sequence
of other Großwetterlagen. Therefore, further factors, like soil saturation caused by
previous precipitation events or an increase of snowmelt due to rain, need to be
taken into account to better understand why only some Cyclonic Westerlies are
causing compound flood events. A better understanding of the exact circumstances
that lead to Cyclonic Westerly causing compound flood events can be used to
improve the prediction of compound flood events, which in turn can be used for
early warnings in case of a strong event and provide additional preparation time for
protective measures. An already existing tool that follows a similar thought process
is the ‘Coastal Decider’ developed by Neal et al. (2018) for the Flood Forecasting
Centre in the United Kingdom. Their tool utilises 30 predefined weather patterns
with associated likelihoods of coastal flood in the United Kingdom. It analyses
medium- to long-range forecast data to support early warnings. So far, no tool like
this exists for compound flood events, but their work makes a compelling argument
to further analyse weather patterns for flood forecast in order to potentially include
compound flood events in the future.

Most studies, including those presented in this dissertation, analyse compound
flood events where two or more drivers are extreme at the same time. However,
the factors contributing to compound flood events do not have to be extreme to
amplify each other and have a strong effect in combination. An example of this
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is the tidal gate Leysiel. There, the majority of high inland water levels were a
combination of ‘above average’ rainfall and sea level (Fig. 5.1). The aforementioned
near-flood event in January 2012 is the only instance where one driver was at an
extreme high during periods of high inland water levels. Preliminary analysis of

Figure 5.1: Highest measured values of sea level, precipitation and inland water level at
the tidal gate Leysiel for 2002-2021. In pink are the ten highest sea level days,
in blue the twenty highest inland water level days, and in blue the ten highest
precipitation days. Each dot marks a separate day. The two markers highlighted
belong to the near-flood event in January 2012 but are from two different days.

these events suggests that they do not occur on a single day, but are the result of
precipitation on previous days, followed by high sea level in combination with even
more precipitation. Further work is needed to better understand and predict these
events.

As with many scientific topics, the analysis of compound flood events would
benefit greatly from more data points. Insufficient observational data can lead to
significant uncertainties in characterising the interactions between flood drivers.
Consequently, risk assessments based on observations alone may underestimate
the occurrence and interdependence of flood drivers in compound flood events.
Observational data of multiple drivers are usually not available over long periods,
although rapidly improving climate models could help to alleviate this problem.
Nevertheless, it is often preferable to have observational data because the rami-
fications on the real world are a known quantity in hindsight. In particular, the
calculation of additional variables such as the resulting inland water levels requires
further computational and human resources.

Another very intriguing topic is the utilisation of machine learning for the
analysis of compound flood events. As machine learning tools become faster and
more accurate, there will be many applications for them in the future, for example
rapid flood prediction to improve forecasting. An example for this is the recent
network introduced by Google researchers for the prediction of extreme riverine
events in ungauged watersheds (Nearing et al., 2024). While training a neural
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network on events that occur infrequently in data sets is challenging, there are an
increasing number of networks, such as ClimateNet (Prabhat et al., 2021), that are
emerging for climate extremes research. In addition, many new techniques have
been developed in recent years, such as semi-supervised pre-training, which could
help to mitigate overfitting caused by the relatively small number of data points
available for the classification of Großwetterlagen.

In addition to the research that needs to be done on the scientific side, there is
the need to inform decision-makers and policymakers so that compound flood
events are taken into account in the planning of future coastal protection. Only
cooperation between scientists, politicians and local decision-makers can bring
about the necessary changes. All those are aspects of the project ‘Wasser an den
Küsten Ostfrieslands’ (WAKOS), which my studies are part of. The aim of this
project is to inform local stakeholders in the region of East Frisia about the projected
changes due to climate change, and at the same time to gain an understanding of
the information they need, their own assessment of the situation based on their
experience, and the underlying decision-making structure. I therefore hope that the
insights gained in my studies will prove useful in this knowledge transfer process.
Weisse et al. (2024) provided a detailed report on the findings in the first phase of
this project.

Overall, my dissertation provides new insights into the emerging topic of com-
pound flood events in northern and central Europe and their future changes under
climate change.



A
P R E S E RVAT I O N O F I N F O R M AT I O N O N T H E F L O O D I N G O F
LY M I N G T O N I N 1 9 9 9

information

The flooding of Lymington in 1999 is often highlighted in literature as an example
of compound flood events, but a lot of information has been lost to time. While
doing my research for this dissertation, I requested the final report on this particular
event, titled ‘Final Report of Flood event 24th December to 26th December 1999’
(O’Connell, 2000), from the Environment Agency under the Freedom of Information
Act 2000 and the Environmental Information Regulations 2004.

Another piece of information is the presentation ‘Integrating Wetland Res-
toration and Flood Risk Management’ by Tim Kermode who worked at that
time for the Environment Agency as Area Flood Risk Manager of the Hamp-
shire and Isle of Wight (IOW) Area. The presentation was given on 13th June
2006 as part of the LIFE3 Technical Conference titled ‘Wetland Restoration at
a Catchment Scale’. This presentation is furthermore the source of Fig. 1.1 in
Chapter 1. The original pdf file was available at www.newforestlife.org.uk/

life3/PDFs/TimKermodeEA.pdf, but the website was shut down in 2019. It is un-
clear whether the presentation was still available at that time. Fortunately, it was
archived by the Wayback Machine of the Internet Archive foundation in 2009 un-
der https://web.archive.org/web/20091211162712/http://www.newforestlife.

org.uk/life3/PDFs/TimKermodeEA.pdf. It was last accessed by me on: 28.05.2024.
The map used in the presentation by Tim Kermode, and therefore also in Fig. 1.1,

originates from a report titled ‘Flooding at Lymington, Hampshire - Pre-feasibility
Study - Volume 1, Factual Report’. The report was produced by Halcrow Water
on behalf of the Environment Agency and published in May 2000. According to
the Environment Agency, a physical copy of this report still exists within their
paper storage archives. A scan of the official document provided to me by the
Environment Agency is shown in Fig. A.1.

The sections concerning the flooding of Lymington in the presentation and scans
of the original documents are included in my dissertation to preserve them with
permission of the Environment Agency.

Licence: Contains public sector information licensed under the Open Government
Licence v3.0. © Environment Agency copyright and/or database right 2024. All
rights reserved.
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Figure A.1: Original document on the flooding of Lymington in December 1999, scanned
and provided by the Environment Agency. Source: Flooding at Lymington,
Hampshire - Pre-feasibility Study - Volume 1, Factual Report. Produced by
Halcrow Water and published in May 2000. Contains public sector information
licensed under the Open Government Licence v3.0.
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What is the Problem?

• All significant Forest Rivers flow through towns 
and villages before reaching the sea

• Most rivers are “tide-locked”

• Flooding 1999 Lymington, Keyhaven, 
Brockenhurst, Beaulieu, Marchwood Hythe
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Executive summary 
 
Over the Christmas period 1999 the area experienced intense rainfall and 
exceptionally high surge Spring Tides causing a number of locations to flood.  In total 
145 properties are known to have flooded in 17 locations.  Many more properties 
experienced external flooding i.e. garages, gardens and sheds, which caused damage 
to vehicles and household goods.  In additional a rail link was disrupted as well as 
numerous roads becoming dangerous and impassable. 
 
The majority of the flooding was caused by the rivers’ peak flows coinciding with the 
rising tide in their estuary’s and preventing the normal outflow into the sea.  However, 
there were also some instances of separate tidal and fluvial flooding incidents.  The 
speed and intensity of the peak run off was enhanced because all the area’s 
catchments were fully saturated. 
 
The Area Incident Room was opened at various times over the holiday period to co-
ordinate the operational response as well as liasing with the public and partner 
authorities.  Agency staff were deployed across the area to monitor and undertake 
operations as required.   
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Introduction 
 
This report has been written as a resource for the Environment Agency. The report 
covers the flooding events of December 1999, giving particular detail to the 
meteorological conditions at the time, descriptions of all the individual flood events 
and plans of the flooded properties. The report has been broken down into two key 
areas, Hampshire and the Isle of Wight. These areas are then divided down into 
smaller locations where the flood events occurred.  
 
Shortly after each flood event, effected residents were asked to complete a sheet 
detailing the effects of the flood on their property. It was this information that was 
used to compile the plans of the flooded properties. 

 
 
 

Meteorological Conditions 
 
Approximately 40 to 60mm of rain fell in two distinct periods during 23rd & 24th 
December across the county. A further 14 to 20mm of rain was recorded during 26th 
December in two bands.  

An unusually high High Water occurred on the night of 24th December at about 
midnight of nearly 2.85m Above Ordnance Datum (AOD) at Southampton compared 
with a predicted tide of 2.61m AOD, ie a surge of +0.24m. The highest recorded HW 
since 26th November 1924 occurred at about 13:15 on 26th December of 2.90m AOD, 
compared to a predicted tide of 1.96m AOD, i.e. a surge of +0.94m.  Storm Tide 
Warning Service’s surge prediction was a tide of 2.63m AOD, i.e. actual tide level 
was nearly 300mm on top of that forecast. (STWS reported that the ports where they have 
gauges verified their forecast as being very accurate.   Southampton is not a calibration port 
& is not currently modelled accurately due to the unusual tidal patterns.)  

The atmospheric pressure declined from 1015mb on the morning of the 23rd 
December to a low of 978mb on the evening of the 24th December. During 25th 
December the pressure then rose again to 994mb around midday falling to a low of 
977mb around midnight. These low pressure systems added significant surges on the 
tides and contributed to the high rain falls. The surge at Lymington was about 900mm 
on the midnight tide of 24th December.  Cowes and Ryde experienced a surge of 
500mm on 24th whilst on 26th the surge was recorded at 770mm.  At Southampton the 
26th surge was 940mm. Refer to appendices one for raw data. 
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1.2.2 Lymington  
 
• Rainfall at Brockenhurst between 22nd and 24th December was 60.40mm, 

however, the majority fell in two bands on 24th of 18.2mm (am) and 26.0mm 
(pm), total 44.2mm on the day. See below. 

 
Date Time  Length of period  Rainfall within period       Return period 
 
24-12-99 01:24-06:09 4hrs 45mins  18.2mm   1 year 
24-12-99 12:39-19:54 7hr 15mins  26.0mm   <1 year 
24-12-99 01:24-19:54 18hrs 30mins  44mm   3.5 years 

 
• The predicted tide was 1.09m (AOD); the actual recorded level was 1.99m AOD.  

High Water was at midnight and the second high water, (300mm lower), occurred 
approximately 2 hours later with ebb tide starting 3 hours after HW.  This 
coincided with the rising river level although the peak river flow occurred after the 
second HW, Brockenhurst weir gauge peaked at about 2:15am, 25th Dec.  (The 
Toll Bridge river gauge was not operational, however, the tidal gauge was 
working.) 

• Flooding occurred due to the river overtopping upstream of the Toll Bridge on the 
Lymington side and flowing on to the railway.  Water flowed towards the town 
along the railway until reaching a low point at the level crossing.  Floodwater then 
found its way in to low points in the adjacent area, as a result Bridge Street, 
Waterloo Road and Webbs Chicken Factory were affected.  It is estimated up to 
25 houses and 4 commercial properties had water inside their properties.  Depth of 
water seems to have been over 1m in places. 

• The high tide prevented the floodwaters from the New Forest from discharging 
out to sea which effectively tide locked the fluvial flow in the reed bed area.  EA 
staff confirmed that both gates were fully open around 1:30 to 2:00am (time of 
opening has not been recorded). Sewer surcharging was also evident and, due to 
the exceptionally high tide, contributed to the flooding. 

• The new tidal defences prevented major flooding from the high surge tide.  Bath 
Road, King’s Saltern Rd and around into Quay Road/Street would otherwise have 
flooded in addition to Bridge Street and Waterloo Road. 

• The high tide was the same level as in 1989 when the old defences were breached 
with widespread flooding of more than 50 homes and 10 commercial properties.  
The new defences therefore worked well in preventing more flooding. 

• If the Toll Gates had not been constructed, the high tide was at a level that it 
would have still backed up the high river flow and is likely to have caused similar 
flooding upstream of the Toll Bridge.  The new tidal gates, constructed about 4 
years ago, at the Toll Bridge will have allowed more water out of the river than 
the older gates. 

• EA Direct Workforce assisted the Fire Brigade and New Forest District Council 
staff by redeploying sandbags originally intended for the tidal defences to the 
affected area. 
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• The Agency’s consultant has modelled the river upstream of the Toll Bridge and is 
investigating the flooding mechanism. Currently the return period for the event is 
estimated at 1 in 50 years as a combined fluvial and tidal event with a river flow 
return period of 1 in 20 years.  An assessment of costs and benefits to justify 
raising any low points is also being made.  Early indications are that the cost of 
works to provide a 1 in 200 year standard is +£170k giving possible benefits of 
£350k. Currently these figures would yield a high enough MAFF priority score to 
meet their funding threshold.  However, these figures are subject to uncertainty 
and the resulting MAFF score may not meet their funding threshold in practice. 

• For further information refer to consultant report  ‘Flooding at Lymington’ 
(Halcrow Water) May 2000. 
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Summary of Warnings Issued 
 
• Lower Test and Blackwater had Red warning. 
• River Lymington, upper & lower fluvial Wallington and Monks Brook had Amber 

warnings. 
• All Tidal areas had Amber warnings. 
• Yellow warnings were also issued in advance of the above in some cases. 
• River and Tidal Warnings issued during the 24th as situation developed. 
• Further Tidal warnings issued for 26th, Amber for Hayling Island and all others 

Yellow. 
 
 

Conclusions 
 

A combination of very heavy rainfall and high tides increased by the low pressure that 
passed over the south between the 23rd and the 26th resulted in extensive flooding 
throughout the south.  
The majority of the flooding was caused by the rivers’ peak flows coinciding with 
these rising tide in their estuary’s and preventing the normal outflow into the sea.  
However, there were also some instances of separate tidal and fluvial flooding 
incidents.  The speed and intensity of the peak run off was enhanced because all the 
area’s catchments were fully saturated. 
In all 10 significant flood events occurred in Hampshire with a further 7 on the Isle of 
Wight. Based on property damage, the worst effected areas were Monkton Mead, 
Ryde on the Isle of Wight, Totton near Southampton and Lymington. All these areas 
had in excess of 30 properties damaged. In total across all 17 areas 289 properties 
were effected. The ratio between flooding inside and outside of these properties is 
approximately 1:1. So for every property flooded on the outside one would be flooded 
on the inside.  
It should be noted that not every household effected by the flooding completed an 
information sheet, hence these figures are based solely on the data collected. 
In additional a rail link was disrupted as well as numerous roads becoming dangerous 
and impassable. 
The Area Incident Room was opened at various times over the holiday period to co-
ordinate the operational response as well as liasing with the public and partner 
authorities.  Agency staff were deployed across the area to monitor and undertake 
operations as required.   
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