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Abstract

This work concerns adaptive kernel-based approximation methods. We create a toolbox for
adapting kernels to underlying problems, focusing on the interpolation of multivariate scat-
tered data with an emphasis on anisotropies. By developing five nonstandard classes of flexible
kernels – transformation, summation, and product kernels, as well as the anisotropic versions
of the latter two orthogonal summation, and tensor product kernels – significant limitations
of traditional radially symmetric kernels are addressed. These classes, some entirely new and
others building on existing structures, provide the flexibility to select and combine kernels
tailored to specific problems. Thus, they extend the variety of interpolation methods.

The theoretical analysis conducted on each kernel class’s native space not only expands
the understanding of native spaces in general but also enlightens underlying (name-giving)
structures and their associated benefits. We investigate the interpolation method for each
kernel, including impacts on accuracy and stability.

Numerical tests confirm the theoretical findings and show which kernel class is suitable
for specific problem adaptations: We propose transformation or tensor product kernels for
adapting to the point set; transformation kernels for adapting to the domain; and summation,
transformation, or orthogonal summation kernels for adapting to the target function.

Zusammenfassung

Diese Arbeit befasst sich mit adaptiven, kernbasierten Approximationsmethoden. Wir ent-
wickeln Werkzeuge um Kerne an das zugrunde liegende Problem anzupassen. Dabei fokussie-
ren wir uns auf die Interpolation von mehrdimensionalen verstreuten Daten, mit besonderem
Augenmerk auf Anisotropien. Durch die Entwicklung von fünf flexieblen Kernklassen – Trans-
formationskerne, Summationskerne und Produktkerne sowie die anisotropen Versionen der
letzten beiden, orthogonale Summationskerne und Tensorproduktkerne – werden wesentliche
Einschränkungen traditioneller radial symmetrischer Kerne adressiert. Diese Klassen, teils
völlig neu und teils auf bestehenden Strukturen bauend, bieten die Möglichkeit, Kerne anhand
ihrer Eigenschaften und des zugrunde liegenden Problems auszuwählen oder zu kombinieren.
Sie erweitern damit die Vielfalt und Anpassungsfähigkeit der Interpolationsmethoden.

Die theoretische Analyse der nativen Räume, die für jede Kernklasse durchgeführt wird, er-
weitert nicht nur das Verständnis von nativen Räumen im Allgemeinen, sondern deckt auch die
zugrunde liegenden (namensgebenden) Strukturen und deren damit verbundenen Vorteile auf.
Wir untersuchen die Interpolationsmethode für jeden Kern und betrachten die Auswirkungen
auf Genauigkeit und Stabilität.

Numerische Tests bestätigen die theoretischen Ergebnisse und zeigen, welche Kernklassen
für eine bestimmte Anpassung geeignet sind: Wir empfehlen Transformations- oder Tensorpro-
duktkerne zur Anpassung an die Punktmenge; Transformationskerne zur Anpassung an den
Definitionsbereich; sowie Summations-, Transformations- oder orthogonale Summationskerne
zur Anpassung an die Zielfunktion.
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Preliminaries





Chapter 1

Introduction

Imagine a growing child. Each year on their birthday, the parents measure the child
and carve a corresponding notch into the doorframe. But how tall was the child at
five and a half years old? What happened during the intervals between the notches on
the doorframe? Answering these ‘in-between’ questions is known as interpolation, from
the Latin inter meaning ‘between’. The process of interpolation can become signifi-
cantly more complex than our simple growth example. For instance, determining the
positions of celestial bodies on ephemerides, which Babylonian astronomers achieved
around 300 B.C. through interpolation, marking the beginning of the history of inter-
polation. While our example considers one-dimensional units of time (year) and height
(meter), ephemerides involve a three-dimensional astronomic coordinate system. Today,
more than ever, we should shift our focus from the celestial bodies back to our Earth.
The reconstruction of functions is indispensable in climate research. Multidimensional
spatial vectors of measurement stations are associated with data such as temperature,
salinity, and humidity. We aim to reconstruct the underlying functions to determine
the values of interest at any location on Earth and not just at the locations of the mea-
suring stations. As the title indicates, this work is concerned with such multivariate
reconstructions. Specifically, we focus on kernel-based interpolations, which approxi-
mate functions with a linear combination of basis functions generated by kernels. These
methods offer the advantage of approximating functions using samples taken from an
unorganized set of multidimensional points, known as scattered data fitting, and form
the foundation for techniques used to handle noisy data.

Currently, most kernels considered assign a radial influence area to a sample, mean-
ing the influence of the sample is uniform in all directions. Such radial kernels, includ-
ing Gaussians, (inverse) multiquadrics, and polyharmonic splines, have been proven
to be powerful tools in various applications of multivariate scattered data approxi-
mation. However, no method is perfect. Kernel-based approximation methods also
have their challenges. For example, trade-offs must be made concerning computational
cost and storage versus accuracy, and stability versus accuracy, as discussed, e.g., in
G.E. Fasshauer’s work [Fas07].

Moreover, the radial nature of these kernels is a limitation for some applications.
Many materials exhibit anisotropic properties that cannot be captured by radial kernels.
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For instance, wood has different mechanical properties along the grain, across the grain,
and tangential to the growth rings, affecting its strength, stiffness, and thermal expan-
sion. Similarly, sedimentary rocks show anisotropies in permeability that affect the flow
of groundwater through rock layers, further illustrating the need for more flexible kernel
functions. Additionally, fluid flows, whether in medical or climate research contexts,
often exhibit anisotropies due to varying conditions and forces acting in different direc-
tions. In medical research, blood flow through arteries can show anisotropic behavior
because of the complex interactions between blood cells and the vessel walls, as well
as variations in vessel diameter and curvature. In climate research, ocean currents and
atmospheric flows exhibit anisotropic characteristics due to the Earth’s rotation, tem-
perature gradients, and varying wind or water pressures in different directions. These
anisotropic properties affect measurements such as flow velocity, direction, and pres-
sure distribution. Understanding the anisotropic nature of ocean currents is crucial for
accurate climate modeling and predicting the transport of heat and nutrients in marine
environments.

Therefore, novel adaptive kernel methods are required. To identify possible adjust-
ments of the interpolation method, we take a closer look at the interpolant itself.

As mentioned, the interpolant s of a real-valued function f on Ω Ď Rd, d P N,
consists of a linear combination of basis functions. In kernel-based interpolation, these
basis functions are derived from bivariate kernels K : Ω ˆ Ω ÝÑ R evaluated at the
points tx1, . . . , xNu “ X Ă Ω. Thus,

spxq :“
N
ÿ

i“1

ciKpxi, xq for all x P Ω,

where c “ pc1, . . . , cNqT P RN is chosen such that s equals f on X, i.e.,

spxjq “

N
ÿ

i“1

ciKpxi, xjq “ fpxjq for j “ 1, . . . , N.

Hence, the interpolant s depends on three factors: firstly, the target function f evaluated
at the points of X, secondly, the point set X, and thirdly, the kernel K. To improve
the interpolation method, we can align these three factors. The target function f is
immutable, and aside from any known properties, it is generally unknown.

The point set X can be freely chosen in some applications, such as sensor placements
in environmental monitoring, or it can be so large that significant time and storage
benefits are achieved by considering only a subset. These settings enable a suitable
selection of the point set X. Since the late 1990s, so-called greedy methods have been
developed for this purpose. Initially, the f -greedy algorithm [SW00] was developed. It
selects the point set in regard to the target function f , resulting in many points being
placed where significant changes in f occur. However, closely placed points lead to
poor stability, prompting the development of a selection algorithm focused on stability,
the P -greedy algorithm [DMSW05], and various combinations of both, as discussed in
[WSH23] and the references therein. The selection of points in X depends on the choice
of the kernel K for each of these greedy algorithms, providing a first reason to examine
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kernels. Moreover, in many situations, the point set X is predetermined and cannot be
altered – for example, when sensor locations are fixed or when dealing with historical
measurements. This underscores the need to investigate kernels, the third and final
factor in adapting interpolants, where the option of employing greedy methods and
their associated improvements remains at our disposal.

The theory on kernels dates back to the mid-20th century. J. Mercer’s theorem has
been known since 1909 [Mer09]. Building on earlier work by E.H. Moore [Moo39] and
others, N. Aronszajn [Aro50] developed the theory of reproducing kernel Hilbert spaces
in the 1940s. N. Aronszajn’s article provides a thorough overview of the early history
and the first applications of kernels. Comprehensive theoretical discussions on positive
(semi)-definite kernels and their properties regarding scattered data interpolation can
be found in the works of M. Buhmann [Buh03], H. Wendland [Wen05], and A. Iske
[Isk18]. Up until now, kernels are adapted to the underlying problem in two ways:
Firstly, the kernel’s differentiability is inherited by the interpolant, so knowledge about
the differentiability of the function f should influence the choice of the kernel. Sec-
ondly, shape parameters of radial kernels have been used to tailor the kernel to specific
problems, e.g. in [KC92], [LF05], [MVHÖ23].

With this work, we aim to expand the toolbox for adapting kernels to underlying
problems and provide a corresponding theoretical analysis. Our goal is to overcome
the limitations of traditional radial kernels and offer accurate and flexible methods for
multivariate scattered data approximation, with a focus on anisotropies.

Anisotropic Kernels

Orthogonal Summation Kernels Tensor Product Kernels

Summation Kernels Product Kernels

Transformation Kernels

Figure 1.1: Schematic relation of summation, product, transformation, orthogonal
summation, and tensor product kernels.

To this end, we construct novel kernels, analyze their structure, and examine their
utility for anisotropic problems. We consider the product and summation of kernels that
remain radial if their components are radial and focus on anisotropic kernels. These
include transformation kernels as well as orthogonal summation kernels and tensor
product kernels. Fig. 1.1 schematically depicts relations between these kernels.
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Below, we summarize the main contributions of this thesis. A more detailed presen-
tation of the contributions and benefits, as well as a distinction from previously known
results of earlier papers regarding each kernel, can be found in the corresponding intro-
ductions.

Investigation on Approaches for Combining or Adapting Kernels

• Summation Kernels – Chapter 3: The summation of kernels provides insights
into reproducing kernel Hilbert spaces and their norms, which we further
develop.

• Product Kernels – Chapter 4: We place the product of kernels within a
broader picture.

• Transformation Kernels – Chapter 5: We extend the principle of shape pa-
rameters to general transformations.

• Orthogonal Summation Kernels – Chapter 6: We present a novel kernel,
where the summation of component kernels acting on low-dimensional spaces
build a kernel acting on the high-dimensional Cartesian product of the com-
ponent spaces. This allows a flexible adaptation of the component kernels
to properties of the corresponding low-dimensional space.

• Tensor Product Kernels – Chapter 7: While these kernels are used in statis-
tics, we provide an investigation with regard to kernel-based interpolation.
A tensor product kernel on a high-dimensional space equals the product of
various component kernels acting on low-dimensional spaces. This allows a
flexible adaptation of a component kernel to properties of the corresponding
low-dimensional space.

Examination of the Native Spaces’ Structure

• Summation Kernels – Section 3.2: We further develop the structure analysis
of summation kernels’ native spaces by connecting N. Aronszajn’s findings to
Sobolev spaces (Section 3.2.2), examining intersections of native spaces (Sec-
tion 3.2.3), linking Mercer’s Theorem to summation kernels (Section 3.2.4),
and classifying kernels into equivalence classes (Remark 3.21).

• Transformation Kernels – Section 5.2: We provide a relation between the
transformation kernel’s native space and the one corresponding to its initial
kernel (Theorem 5.6).

• Orthogonal Summation Kernels – Section 6.2: We prove the native space
to be structured as an orthogonal sum, providing the name of the kernel
(Theorem 6.7).

• Tensor Product Kernels – Section 7.2: We present an alternative proof for
the tensor structure of its native space, which lends the kernel its name
(Section 7.2.2).
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Analysis of Interpolation Methods

• Summation Kernels – Section 3.3: We provide a thorough analysis of the
summation kernel’s interpolation method, finding that interpolations using
a kernel from a larger equivalence class result in inferior approximations
(Section 3.3.1), and that a summation kernel exhibits the stability of its
most stable component (Section 3.3.2). This yields a trade-off principle for
kernels, which is schematically visualized in Remark 3.42.

• Transformation Kernels – Section 5.3: We provide a thorough analysis of
accuracy and stability, and deduce conditions under which a special trans-
formation kernel outperforms its initial kernel (Section 5.3.1 and 5.3.2).

• Orthogonal Summation Kernels – Section 6.3: We investigate the DC-strictly
positive definiteness of the kernel, examine the conditions under which im-
proved accuracy can be expected (Section 6.3.1), and find that the stability
of the orthogonal summation kernel aligns with that of its most stable com-
ponent (Section 6.3.2).

• Tensor Product Kernels – Section 7.3: We provide a thorough analysis of the
kernel’s positive definiteness by introducing the concept of grid-like struc-
tured data sets (resulting in Theorem 7.25), and analyze the interpolation
process on these sets (Section 7.3.1). Furthermore, we develop statements
regarding stability (Section 7.3.3).

Implementation and Evaluation

• Summation Kernels – Section 3.4: We demonstrate the effect of a kernel’s
equivalence class on the interpolation method.

• Transformation Kernels – Section 5.4: We demonstrate how accuracy or
stability can be improved without significantly affecting the other by using
transformation kernels adapted to the target (Section 5.4.1) and adapted to
the domain and point set (Section 5.4.2).

• Orthogonal Summation Kernels – Section 6.4: We demonstrate the out-
standing performance of orthogonal summation kernels in anisotropic sum
structures.

• Tensor Product Kernels – Section 7.4: We demonstrate how to improve accu-
racy while maintaining controllable stability by using tensor product kernels
(Section 7.4.1), and how these kernels enable a speedup of the interpolation
process in grid like settings (Section 7.4.2).

In total, we investigate five novel classes of more flexible kernels. Some of these classes
are entirely new inventions, while others already existed. For summation kernels and
tensor product kernels, the existing structural analysis of the native spaces is developed
further. In the case of transformation kernels and orthogonal summation kernels, the
analysis is entirely new. Although some of these kernels have been applied occasionally
in the past, a comprehensive investigation of all of them, with a focus on interpolation
methods, was lacking. We provide this comprehensive examination, with a particular
emphasis on accuracy and stability.



9

The thesis is divided into four parts. The Preliminaries (Part I) set the stage
for the detailed exploration and contributions that follow. In Chapter 2, we provide
foundational theoretical principles of kernel-based interpolation.

Part II investigates Combinations of Kernels, which are not necessarily anisotropic.
This includes summation kernels (Chapter 3) and product kernels (Chapter 4).

Part III delves into constructions that lead to Anisotropic Kernels, encompassing
transformation kernels (Chapter 5), orthogonal summation kernels (Chapter 6), and
tensor product kernels (Chapter 7). We explore how general principles apply to these
specific types of kernels, examine their unique characteristics and how they can be
exploited for interpolation purposes.

The Final Remarks (Part IV) include a summary of the thesis, discusses broader
implications of the research, and outlines potential directions for future work (Conclu-
sion and Outlook). Additionally, reference materials are provided here.

Each of the Chapters 3 – 7, which deal with a specific nonstandard kernel, follow a
consistent structure: starting with a clear definition and basic properties (first section),
followed by a detailed analysis of the native spaces (second section), and culminating in
their application for kernel-based interpolation (third section). The theoretical results
are complemented by supportive numerical tests (fourth section), which validate and
illustrate the practical implications of our findings. A detailed outline of each chapter
can be found in the respective introduction.







Chapter 2

Kernel-Based Interpolation

This chapter provides fundamentals on kernel-based interpolation methods. We closely
follow the structure of Chapter 2 and 3 in Kristof Albrecht’s thesis [Alb24]. For a
comprehensive and extensive treatment, we recommend the works of H. Wendland
[Wen05], and A. Iske [Isk18].

Section 2.1 motivates using positive definite kernels for scattered data interpolations.
In Section 2.2, we explore the properties of positive definiteness, translation-invariance,
and radial symmetry of kernels. An examination of native spaces is conducted in Sec-
tion 2.3, starting with reproducing kernel Hilbert spaces (Section 2.3.1), progressing
through their construction (Section 2.3.2), and their structure and properties (Sec-
tion 2.3.3). Additionally, we introduce the Sobolev space as a special native space in
(Section 2.3.4). Understanding native spaces enables precise statements regarding the
interpolation method, which is the focus of Section 2.4. Here, we emphasize accuracy
(Section 2.4.1) and numerical stability (Section 2.4.2), culminating in a discussion on
the trade-off principle between these two aspects (Section 2.4.3).

2.1 Essentials

We aim at finding a function s : Ω ÝÑ R, Ω Ď Rd, that satisfies the interpolation
condition

spxiq “ fi for i “ 1, . . . , N (2.1)

for N P N, arbitrarily given interpolation points X “ tx1, . . . , xNu Ď Ω, and arbitrary
function values f1, . . . , fN P R. Such a function is called an interpolant of the target
function f on the point set X. Here, we demand Ω to contain inner points, as this
is the case for most applications. Still, theoretically, it is possible to interpolate on a
finite set Ω. The interpolant s is commonly restricted to the span of predetermined
basis functions B “ tb1, . . . , bNu Ă tf : Ω ÝÑ Ru, so that it is given by the linear
combination

s “

N
ÿ

i“1

ci bi,

where the coefficient vector c “ pc1, . . . , cNqT P RN solves the linear system
`

bipxjq
˘N

i,j“1
c “ fX for fX “ pf1, . . . , fNq

T
P RN . (2.2)
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Definition 2.1. The evaluation matrix of basis functions B “ tb1, . . . , bNu on a point
set X “ tx1, . . . , xMu is called Vandermonde matrix

VB,X “
`

bpxq
˘

xPX
bPB

“

¨

˚

˝

b1px1q . . . bNpx1q
...

. . .
...

b1pxMq . . . bNpxMq

˛

‹

‚

P RMˆN .

A unique coefficient vector c P RN for the interpolant s is guaranteed if the Van-
dermonde matrix VB,X is regular. This in turn is the case if the basis B spans a Haar
space. See [Haa10] and [Wen05, Definition 2.1] for a detailed discussion.

Definition 2.2. Let Ω Ď Rd contain at least N points and V Ď CpΩq be an
N -dimensional subspace of continuous functions on Ω. V is called a Haar space of
dimension N on Ω if for arbitrary pairwise distinct point sets tx1, . . . , xNu Ď Ω and
arbitrary function values f1, . . . , fN there exists exactly one function s P V fulfilling the
interpolation condition (2.1).

We see that V is an N -dimensional Haar space if and only if for any pairwise distinct
point set tx1, . . . , xNu Ď Ω and any basis tb1, . . . , bNu of V it is

det
`

bipxjq
˘N

i,j“1
‰ 0. (2.3)

In the case where Ω Ď Rd, d ě 2, contains an interior point, the following counterex-
ample for the existence of a Haar space can be constructed.

Example 2.3. As Ω Ď Rd, d ě 2, contains an interior point, there exists x0 P Ω
and δ ą 0 so that Bpx0, δq Ď Ω. It is possible to find a pairwise distinct point set
X “ tx1, . . . , xNu Ă Bpx0, δq for every N P N. Let N ě 2. Since d ě 2 we can move x1
and x2 along the continuous curves x1ptq, x2ptq in Ω, where t P r0, 1s, such that the curves
have no intersection with X except for x1 “ x1p0q “ x2p1q and x2 “ x2p0q “ x1p1q. If
V “ spantbi : i “ 1, . . . , Nu is a Haar space, the function

Dptq “ det
´

bi
`

xjptq
˘

¯N

i,j“1

is continuous on r0, 1s and never equal to zero. However, as the first two rows switch
between t “ 0 and t “ 1, it is Dp0q “ ´Dp1q. By the intermediate value theorem, there
exist a time t0 P r0, 1s where Dpt0q “ 0. Hence, the Vandermonde matrix for the point
set tx1pt0q, x2pt0qu Y X is not regular. This contradicts (2.3) and V cannot be a Haar
space.

This results in the Mairhuber-Curtis theorem proven by J.C. Mairhuber and P.C. Cur-
tis Jr in the 1950s (cf. [CJ59], [Mai56], [Wen05, Theorem 2.3]).

Theorem 2.4 (Mairhuber-Curtis). Let Ω Ď Rd, d ě 2, contain an interior point, then
there exists no Haar space on Ω of dimension N ě 2.
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Still, a unique interpolation is possible if we restrict the point set X to be a grid
(cf. [Wen05, Lemma 2.8]). In this thesis, however, we are interested in a more general
interpolation scheme and focus on scattered point sets X “ tx1, . . . , xNu. Hence, we
need another approach and make each basis function bi depend on one point xi P X for
i “ 1, . . . , N . This gives rise to the concept of bivariate functions

K : Ω ˆ Ω ÝÑ R, Ω Ď Rd,

acting on the Cartesian product Ω ˆ Ω, which we call kernels acting on Ω.

Definition 2.5. The Cartesian product of two sets Ω1 and Ω2 is defined by

Ω1 ˆ Ω2 :“
␣

px, yq : x P Ω1, y P Ω2

(

.

This definition can be extended to the Cartesian product of finitely many sets Ωℓ for
ℓ “ 1, . . . ,M , i.e.,

M
ą

ℓ“1

Ωℓ :“
␣

px1, . . . , xMq : xℓ P Ωℓ for ℓ “ 1, . . . ,M
(

.

We define the kernel basis functions

bi :“ Kpxi, ¨q : Ω ÝÑ R for i “ 1, . . . , N and

BK,X :“ tb1, . . . , bNu.
(2.4)

The Vandermonde matrix VBK,X ,X of the kernel basis in (2.4) evaluated on the point
set X “ tx1, . . . , xNu is given by

AK,X :“
´

K
`

xi, xj
˘

¯N

i,j“1
P RNˆN . (2.5)

This matrix is called the interpolation matrix of the kernel K regarding X and the
linear system (2.2) turns into

AK,X c “ fX . (2.6)

To find a unique solution c P RN and hence a unique interpolant

sf,K,X :“
N
ÿ

i“1

ciKpxi, ¨q, (2.7)

lying in the interpolation space

SK,X :“ span
␣

Kpx, ¨q : x P X
(

, (2.8)

the interpolation matrix AK,X needs to be regular for any pairwise distinct point sets
X Ă Ω. If the context is clear, we occasionally omit parts of the subscripts of the
interpolant sf,K,X in (2.7) for simplicity. We want to exclude the possibility of Exam-
ple 2.3. Therefore, we demand det

`

AK,X

˘

‰ 0 for any pairwise distinct point set X.
This certainly includes all subsets of X.
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Definition 2.6. Let r P t1, . . . , Nu and A P RNˆN be a quadratic matrix. A principal
submatrix Ar P RN´rˆN´r of A is given by deleting r times the same row and column
of A.

By Sylvester’s criterion a symmetric matrix is positive definite if and only if all its
principal minors (determinants of principal submatrices) are positive, see [HJ91, The-
orem 7.2.5]. Hence, we demand the interpolation matrix to be positive definite.

Let us summarize and conclude this discourse. For a kernel K, that induces positive
definite interpolation matrices AK,X for arbitrary pairwise distinct data sets X, the
interpolant s P SK,X of the form (2.7) is unique. These kernels are the primary focus
of this thesis, and the subsequent sections provide fundamentals of the corresponding
research.

2.2 Positive Semi-Definite Kernels

In Section 2.1 we saw that a positive definite interpolation matrix leads to a unique
interpolant. Here, we state the definition of positive (semi-)definite kernels, fulfilling
this requirement, and have a look into some basic properties. Furthermore, we introduce
the eminent cases of translation-invariant and radial kernels in order to state Bochner’s
and Schoenberg’s characterization for positive definiteness. Each characterization is
equipped with one supporting example of a positive definite kernel.

Definition 2.7. A bivariate function K : Ω ˆ Ω ÝÑ R, Ω Ď Rd, is called pos-
itive semi-definite kernel on Ω if for any arbitrary set of pairwise distinct centers
X “ tx1, . . . , xNu Ă Ω, N P N, the interpolation matrix AK,X is positive semi-definite,
i.e.,

cTAK,Xc “

N
ÿ

j“1

N
ÿ

k“1

cjck Kpxj, xkq ě 0 for all c “ pc1, . . . , cNq
T

P RN . (2.9)

We say the kernel is positive definite on Ω, if AK,X is positive definite, i.e., (2.9) is
strictly positive for all c P RNzt0u.

We can directly deduce the following properties.

Lemma 2.8. Let K be a positive semi-definite kernel on Ω Ď Rd then

(i) Kpx, xq ě 0 and Kpx, xq ą 0 if K is positive definite for all x P Ω.

(ii) the kernel aK is positive semi-definite for all a ě 0, and aK is positive definite
for all a ą 0 if K was positive definite.

In the following chapters, we will solely work with symmetric positive (semi-) definite
kernels, i.e.,

Kpx, yq “ Kpy, xq for all x, y P Ω.

This is because these kernels are closely related to reproducing kernel Hilbert spaces,
which we consider in Section 2.3.
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Lemma 2.9. Let K be a symmetric positive semi-definite kernel on Ω Ď Rd then

(i) the estimate Kpx, yq2 ď Kpx, xqKpy, yq holds for all x, y P Ω.

(ii) K is bounded on Ω ˆ Ω if and only if K is bounded on the diagonal

tpx, xq : x P Ωu Ă Ω ˆ Ω.

(iii) K vanishes if and only if K equals zero on the diagonal.

Proof. Let X “ tx, yu Ă Ω. As AK,X is positive semi-definite, it is

0 ď det
`

AK,X

˘

“ Kpx, xqKpy, yq ´ Kpx, yq
2 for all x, y P Ω,

which yields piq. The second statement is a direct consequence of piq, and property piiiq
immediately follows from piiq. ■

Given Section 2.1, investigating positive semi-definite kernels may seem superfluous
since we cannot guarantee a unique solution to the interpolation problem without any
further steps. In Section 2.3, however, it turns out that symmetric positive semi-definite
kernels are reproducing kernels of Hilbert spaces, which in turn include the set of all
possible interpolants. The analysis of these so-called native spaces provides insights into
the interpolants’ properties such as structure and approximation quality. Lemma 2.10
below, shows that the pairwise distinctiveness of X is not a necessary condition for
the positive semi-definiteness of AK,X . This fundamental observation is important in
Chapter 7 and Chapter 6, where anisotropic product and summation kernels are studied.

Lemma 2.10. Let XN “ tx1 . . . , xNu Ď Ω be a pairwise distinct point set and K a pos-
itive semi-definite kernel on Ω. Furthermore, let x1 “ xN`1 and XN`1 “ XN Y txN`1u.
Then the interpolation matrix AK,XN`1

is positive semi-definite.

Proof. We can write the interpolation matrix as a block matrix

AK,XN`1
“

ˆ

AK,XN
AK,XN

e1
eT1 AK,XN

KpxN`1, xN`1q

˙

,

where e1 denotes the first unit vector. Let c1 P RN , cN`1 P R be arbitrarily chosen and

c “
`

c1, cN`1

˘

P RN`1.

Then

cT AK,XN`1
c “ c1T AK,XN

c1
` pcN`1e1q

T AK,XN
c1

`c1T AK,XN
cN`1e1 ` c2N`1KpxN`1, xN`1q

“
`

c1
` cN`1e1

˘T
AK,XN

`

c1
` cN`1e1

˘

ě 0,

since c2N`1KpxN`1, xN`1q “ c2N`1Kpx1, x1q “ pcN`1e1q
T AK,XN

pcN`1e1q. ■
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Remark 2.11. The above lemma implies two findings:

1. For the matrix AK,X to be positive definite, it is necessary for X to be pair-
wise distinct. This is because with cN`1 ‰ 0 and c1 “ ´cN`1e1 the vector
c “ pc1, cN`1q ‰ 0 but cT AK,XN`1

c “ 0.

2. Lemma 2.10 can quickly be generalized to the assertion: If K is a positive semi-
definite kernel on Ω and X Ď Ω is an arbitrary finite set of data points, the
interpolation matrix AK,X is positive semi-definite.

Next, we introduce two subclasses of kernels. For each of them, a characterization
regarding their positive definiteness is presented. This, in turn, helps in finding specific
examples of positive definite kernels.

A translation is a mapping Tξ : Rd ÝÑ Rd given by x ÞÝÑ ξ ´ x for a fixed value
ξ P Rd. If K is invariant regarding all translations Tξ it is in particular invariant
regarding Tx. We obtain

Kpx, yq “ KpTxpxq, Txpyqq “ Kpx ´ x, x ´ yq “ Kp0, x ´ yq for all x, y P Rd.

Hence, K can be viewed as a function acting on one variable only, i.e.,

Φpxq :“ Kp0, xq for all x P Rd.

Remark 2.12. For every translation-invariant kernel K : Rd ˆ Rd ÝÑ R there exists a
univariate function Φ : Rd ÝÑ R such that

Kpx, yq “ Φpx ´ yq for all x, y P Rd.

We call Φ a positive (semi-)definite function if the corresponding kernel K is positive
(semi-)definite.

The subsequent statements directly follow from Remark 2.12, Lemma 2.8, and
Lemma 2.9.

Lemma 2.13. Let K be a positive semi-definite translation-invariant kernel on Ω Ď Rd

with univariate function Φ. Then 0 ď Φp0q and

Kpx ´ z, y ´ zq “ Kpx, yq for all x, y, z P Ω.

If K is also symmetric, then

(i) Φ is an even function, i.e., Φp´xq “ Φpxq for all x P Ω.

(ii) Φ is bounded, i.e., |Φpxq| ď Φp0q for all x P Ω.

(iii) Φp0q “ 0 if and only if Φ ” 0.
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We introduce a second, even smaller, yet important subclass of kernels. This is the
class of kernels K that are invariant under translations and rotations, i.e., they satisfy

Kpx, yq “ K
`

Tξpxq, Tξpyq
˘

and Kpx, yq “ KpAx,Ayq for all x, y P Rd,

all translations Tξ and all rotation matrices A. For every ξ P Rd there exist a rotation
matrix Aξ P Rdˆd such that Aξξ “∥ξ∥2 e1, where e1 denotes the first unit vector. This
yields

Kpx, yq “ K
`

Apx´yqx,Apx´yqy
˘

“ Φ
`

Apx´yqx ´ Apx´yqy
˘

“ Φ
`

Apx´yqpx ´ yq
˘

“ Φ
`

∥x ´ y∥2 e1
˘

for all x, y P Ω.

This enables us to describe the kernel K using a function ϕ acting on a single dimension

ϕp∥x ´ y∥2q :“ Φ
`

∥x ´ y∥2 e1
˘

“ Kpx, yq for all x, y P Ω.

Remark 2.14. For a translation and rotation invariant kernel K : Rd ˆ Rd ÝÑ R there
exists a one-dimensional radial basis function (RBF) ϕ : r0,8q ÝÑ R such that

Kpx, yq “ ϕp∥x ´ y∥2q for all x, y P Ω.

We call ϕ positive (semi-)definite if the corresponding kernel function K is positive
(semi-)definite. Note, that these kernels are as well referred to as radially symmetric or
simply radial kernels.

Let us focus on the question under which circumstances a bi-variate kernel is positive
(semi-)definite. To do so, we state Bochner’s characterization for translation-invariant
kernels first and thereafter Schoenberg’s characterization for radial kernels. Further-
more, these characterizations are provided with one example of a positive definite kernel
each.

Already in the 1930s, S. Bochner linked the positive definiteness of translation-
invariant kernels to a non-negative Fourier transform (cf. [Boc32], [Boc33]). Here,
we state the L1-version of Bochner’s characterization, also presented in [Isk18, Theo-
rem 8.7].

Theorem 2.15 (Bochner). Let Φ P CpRdq X L1pRdq be an even function. Then Φ

is positive definite on Rd if and only if its Fourier transform pΦ is non-negative and
non-vanishing.

Example 2.16 (Askey). The radial characteristic kernel of R. Askey (cf. [Ask73]), also
called truncated power function, is given by the RBF ϕℓ : r0,8q ÝÑ R, where

ϕℓprq “ p1 ´ rqℓ
`

“

#

p1 ´ rqℓ for r ď 1,

0 else.

By Bochner’s characterization this yields a positive definite kernel on Rd provided that
ℓ P N satisfies ℓ ě td{2u ` 1. For a detailed proof we refer to [Wen05, Theorem 6.20].
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In 1938, I.J. Schoenberg established a relation between positive semi-definite ra-
dial kernels and completely monotone functions (cf. [Sch38], [Wen05, Definition 7.4,
Theorem 7.14]).

Definition 2.17. A function φ is called completely monotone on r0,8q if it satisfies
φ P Cpr0,8qq X C8p0,8q and

p´1q
ℓ φpℓq

prq ě 0 for all ℓ P N0, r ą 0,

where φpℓq denotes the ℓth derivative of φ.

Theorem 2.18 (Schoenberg). A RBF ϕ : r0,8q ÝÑ R is positive definite on every Rd

if and only if ϕp
?

¨q is completely monotone on r0,8q and not constant.

Example 2.19 (Gaussian). The Gaussian kernel, visualized in Fig. 2.1, is given by

Kpx, yq “ e´α∥x´y∥22 , α ą 0.

Obviously this is a radial kernel with the RBF ϕprq “ e´α r2 . Since

ϕp
?
rq “ e´α r

“: φprq P Cpr0,8qq X C8
p0,8q

and

p´1q
ℓ φpℓq

prq “ p´1q
ℓ
p´αq

ℓ e´α r
ě 0 for all r ą 0,

the requirements of Schoenberg’s characterization hold. This implies positive definite-
ness of the Gaussian on every Rd.

2.3 Native Spaces

With regard to the interpolation problem discussed in Section 2.1, it is crucial to de-
termine which target function f can be approximated arbitrarily well by which kernel.
It is immediately apparent that this is the case if f lies in the union of all possible
interpolation spaces SK,X for X Ď Ω,

SK,Ω :“ spantKpx, ¨q : x P Ωu “
ď

XĎΩ

SK,X , (2.10)

or its closure. This section is concerned with the construction of the so-called native
space of K. First, in Section 2.3.1, we introduce the general concept of reproducing
kernel Hilbert spaces and draw the connection to symmetric positive definite kernels
and their native spaces in Section 2.3.2. We go into the structure and properties of
native spaces in Section 2.3.3 and finish in Section 2.3.4 with a special native space, the
Sobolev space.
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2.3.1 Reproducing Kernel Hilbert Spaces

This section addresses the general concept of reproducing kernel Hilbert spaces. We
start with its definition, as given in [Aro50, p. 343], and deduce significant properties
in Theorem 2.21. These are used to prove uniqueness results in Theorem 2.22.

Definition 2.20. The Hilbert space
`

H, x¨, ¨y
˘

of functions f : Ω ÝÑ R is called a repro-
ducing kernel Hilbert space (RKHS) if there exists a reproducing kernelK : Ω ˆ Ω ÝÑ R
that satisfies

(i) Kpx, ¨q P H for all x P Ω and

(ii) the reproducing property, i.e., fpxq “ xf,Kpx, ¨qy for all f P H and all x P Ω.

Let us state some basic properties of reproducing kernels, see [Wen05, Theorem 10.3
and 10.4] or [Aro50, p. 344].

Theorem 2.21. Let
`

H, x¨, ¨y
˘

be a RKHS with reproducing kernel K : Ω ˆ Ω ÝÑ R.
Then

(i) K is symmetric and positive semi-definite.

(ii) the set SK,Ω lies dense in H.

(iii) the sequence pfnqnPN Ď H converges pointwise to f P H if pfnqnPN converges
normwise to f .

Proof.

(i) The symmetry of K follows from the symmetry of the inner product and the
reproducing property of K,

Kpx, yq “
@

Kpx, ¨q, Kpy, ¨q
D

“
@

Kpy, ¨q, Kpx, ¨q
D

“ Kpy, xq for all x, y P Ω.

Let X “ tx1, . . . , xNu Ď Ω and c “ pc1, . . . , cNqT P RN then

cT AK,X c “

N
ÿ

i“1

N
ÿ

j“1

cicj Kpxi, xjq “

N
ÿ

i“1

N
ÿ

j“1

cicj
@

Kpxi, ¨q, Kpxj, ¨q
D

“

C

N
ÿ

i“1

ci Kpxi, ¨q,
N
ÿ

j“1

cj Kpxj, ¨q

G

“

∥∥∥∥∥∥
N
ÿ

i“1

ci Kpxi, ¨q

∥∥∥∥∥∥
2

ě 0.

(ii) By Definition 2.20 (i) and the fact that H as a Hilbert space is linear, we obtain
SK,Ω Ă H. Since H is complete, SK,Ω is a closed and linear subset of H. From
functional analysis (cf. [Mus14, Theorem 4.6]), we know that in this case, H can
be orthogonally decomposed into

H “ SK,Ω ‘ SK,Ω
K
,

where ‘K’ denotes the orthogonal complement. Let f P SK,Ω
K

be arbitrarily
chosen, then

fpxq “ xf,Kpx, ¨qy “ 0 for all x P Ω,

by the reproducing property and the fact that Kpx, ¨q P SK,Ω. This implies

SK,Ω
K

“ t0u and henceforth SK,Ω “ H.
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(iii) Let the sequence pfnqnPN Ď H converge normwise to f P H, i.e.,

∥fn ´ f∥ ÝÑ 0 for n Ñ 8.

This implies

|fnpxq ´ fpxq| “

ˇ

ˇ

ˇ

@

fn ´ f,Kpx, ¨q
D

ˇ

ˇ

ˇ
ď∥fn ´ f∥ ∥Kpx, ¨q∥ ÝÑ 0

for all x P Ω and n Ñ 8.

■

The following theorem proves that every reproducing kernel has a unique RKHS
and that every RKHS is has a unique reproducing kernel. For a detailed discussion, see
[Wen05, Theorem 10.11] and [Aro50, p. 343].

Theorem 2.22. The following uniqueness properties hold.

(i) Let K be the reproducing kernel for
`

H1, x¨, ¨y1
˘

and
`

H2, x¨, ¨y2
˘

, then H1 “ H2

and x¨, ¨y1 “ x¨, ¨y2.

(ii) Let K1 and K2 be reproducing kernels of
`

H, x¨, ¨y
˘

then K1 ” K2.

Proof.

(i) It is

xKpx, ¨q, Kp¨, yqy1 “ Kpx, yq “ xKpx, ¨q, Kp¨, yqy2 for all x, y P Ω,

so that the inner products coincide on SK,Ω. Furthermore, SK,Ω Ă H1, H2 lies
dense in both spaces, by Theorem 2.21 piiq. Since norms coincide on SK,Ω, a
sequence pfnqnPN Ă SK,Ω is a Cauchy sequence in

`

H1, x¨, ¨y1
˘

if and only if it is a
Cauchy sequence in

`

H2, x¨, ¨y2
˘

. Then there exist functions f P H1, g P H2 with

∥fn ´ f∥1 , ∥fn ´ g∥2 ÝÑ 0 for n Ñ 8.

Using Theorem 2.21 piiiq, we conclude

fpxq “ lim
nÑ8

fnpxq “ gpxq for all x P Ω.

This yields H1 “ H2. Moreover, we obtain

∥f∥1 “ lim
nÑ8

∥fn∥1 “ lim
nÑ8

∥fn∥2 “∥f∥2 for all f P H1 “ H2.

The polarization identity implies equality of the inner products.

(ii) By the assumption and the reproducing property of K1 and K2 it is

∥K1px, ¨q ´ K2px, ¨q∥2

“
@

pK1 ´ K2qpx, ¨q, pK1 ´ K2qpx, ¨q
D

“
@

pK1 ´ K2qpx, ¨q, K1px, ¨q
D

´
@

pK1 ´ K2qpx, ¨q, K1px, ¨q
D

“ pK1 ´ K2qpx, xq ´ pK1 ´ K2qpx, xq

“ 0 for all x P Ω.

This implies K1px, ¨q “ K2px, ¨q for all x P Ω and hence K1 ” K2.

■
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2.3.2 Native Space Construction

The preceding analysis establishes a one-to-one relations between symmetric positive
semi-definite kernels and RKHSs. Every reproducing kernel is symmetric and positive
semi-definite by Theorem 2.21. This prompts the question of whether every symmetric
and positive semi-definite kernel reproduces a RKHS. Indeed, it can. To demonstrate
this, we follow the approach outlined in [Wen05, Chapter 10.2].

Let K be a symmetric and positive semi-definite kernel on Ω Ď Rd. We equip the
space of linear combinations

SK,Ω “ spantKp¨, xq : x P Ωu,

introduced in (2.10), with the bilinear form

xf, gyK :“
N
ÿ

i“1

M
ÿ

j“1

cidj Kpxi, yjq, (2.11)

where f, g P SK,Ω are of the form

f “

N
ÿ

i“1

ci Kpxi, ¨q and g “

M
ÿ

j“1

dj Kpyj, ¨q. (2.12)

Obviously, the reproducing property holds on SK,Ω, i.e.,

fpxq “

N
ÿ

i“1

ci Kpxi, xq “ xf,Kpx, ¨qyK .

Lemma 2.23. The mapping x¨, ¨yK : SK,ΩˆSK,Ω ÝÑ R defined in (2.11) is well-defined,
bilinear, symmetric and positive definite.

Proof. In addition to (2.12) let f, g P SK,Ω have the representations

f “

Ñ
ÿ

i“1

c̃i Kpx̃i, ¨q and g “

M̃
ÿ

j“1

d̃j Kpỹj, ¨q

then

xf, gyK “

N
ÿ

i“1

M
ÿ

j“1

cidj Kpxi, yjq “

N
ÿ

i“1

ci gpxiq

“

N
ÿ

i“1

M̃
ÿ

j“1

cid̃j Kpỹj, xiq “

M̃
ÿ

j“1

d̃j fpỹjq “

Ñ
ÿ

i“1

M̃
ÿ

j“1

c̃id̃j Kpx̃i, ỹjq.

Hence, the mapping x¨, ¨yK is well-defined. Clearly it is bilinear, and its symmetry is
given by the symmetry of K. The property of definiteness is due to the reproducing
property and the Cauchy-Schwartz inequality, which is valid as x¨, ¨yK is bilinear. Let
f P SK,Ω and xf, fyK “ 0. Then

ˇ

ˇfpxq
ˇ

ˇ

2
“
ˇ

ˇxf,Kpx, ¨qyK
ˇ

ˇ

2
ď xf, fyK Kpx, xq “ 0 for all x P Ω.

This implies f ” 0 on Ω. ■
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We deduce that for any symmetric and positive definite kernel K, the set SK,Ω,
equipped with the norm∥¨∥2K “ x¨, ¨yK , is a pre-Hilbert space. Furthermore, every met-
ric space can be completed by [Mus14, Theorem 4.6]. Consequently, we denote the
completion of the pre-Hilbert space SK,Ω as the Hilbert space

HK,Ω :“
␣

normwise limits of a Cauchy sequence psnqnPN Ă SK,Ω
(

equipped with the inner product

xf, gyK :“ lim
nÑ8

xsn, tnyK ,

where psnqnPN, ptnqnPN Ă SK,Ω are Cauchy sequences that converge normwise to f and
g in HK,Ω. However, the elements of the completion are abstract elements, and we need
to interpret them as functions. To do so, we define

fpxq :“ lim
nÑ8

snpxq “ lim
nÑ8

xsn, Kpx, ¨qyK “ xf,Kpx, ¨qyK for all f P HK,Ω, x P Ω.

In fact, any Cauchy sequence in SK,Ω that converges pointwise to zero also converges
to zero in the norm sense, see [BTA11, Theorem 2]. Hence, we are able to characterize
the native space HK,Ω of a symmetric and positive semi-definite kernel K as done in
Theorem 2.24 below. The existence of native spaces dates back to N. Aronszajn who
based his thoughts on E.H. Moores results. For more information and detailed proofs
we refer to [BTA11, Chapter 3] or [Wen05, Chapter 10].

Theorem 2.24 (Moore-Aronszajn). Let K be a symmetric and positive semi-definite
kernel on Ω Ď Rd. Then

HK,Ω “
␣

f is the pointwise limit of a Chauchy sequence psnqnPN Ă SK,Ω
(

equipped with the inner product

xf, gyK :“ lim
nÑ8

xsn, tnyK ,

where psnqnPN, ptnqnPN Ă SK,Ω are Cauchy sequences that converge pointwise to f and
g in HK,Ω, is a reproducing kernel Hilbert space with reproducing kernel K. The pre-
Hilbert space SK,Ω lies dense in HK,Ω.

The reproducing kernel Hilbert space pHK,Ω, x¨, ¨yKq is called native space of K.

We note, that the Moore-Aronszajn theorem, together with Theorem 2.21 and Theo-
rem 2.22, establishes a one-to-one relation between symmetric and positive semi-definite
kernels K and reproducing kernel Hilbert spaces

`

H, x¨, ¨y
˘

. In the following, we use
the notation

`

HK,Ω, x¨, ¨yK
˘

for a reproducing kernel Hilbert space with symmetric and
positive semi-definite reproducing kernel K on Ω. When it is clear which space is be-
ing referred to, we omit Ω in the subscript for simplicity. Conversely, if we wish to
emphasize the domain, we use x¨, ¨yK,Ω.
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2.3.3 Structure and Properties of Native Spaces

In the context of the interpolation problem described in Section 2.1, certain properties
of the target function f , such as continuity or differentiability, may be known. To
ensure that these properties are preserved in the interpolant, it is crucial to understand
which properties functions in a reproducing kernel Hilbert space (RKHS) inherit from
its reproducing kernel. This section, drawing on [SC08, Chapter 4], examines how the
kernel K influences the properties of HK,Ω. Additionally, we explore issues related to
the separability and dimensions of native spaces, as well as uniqueness.

Definition 2.25. Let Ω Ď Rd. A kernel K on Ω is

(i) bounded if ∥K∥
8
:“ max

xPΩ

a

Kpx, xq ă 8.

(ii) separately continuous if Kpx, ¨q is continuous for all x P Ω.

(iii) m-times continuously differentiable for m ě 0 if Bα,αK : Ω ˆ Ω ÝÑ R exists and
is continuous for all multi-indices α P Nd

0 with |α| ď m, where

B
α,α :“ B

α1
1 . . . Bαd

d B
α1
d`1 . . . B

αd
2d for a multi-index α P Nd

0.

Equipped with these definitions, we state [SC08, Theorem 4.23, 4.28, 4.33, and
Corollary 4.36] and [BTA11, Corollary 4] in the following theorem. For the correspond-
ing proofs we refer to the given sources.

Theorem 2.26. Let K on Ω Ď Rd be the reproducing kernel of
`

HK,Ω, x¨, ¨yK
˘

. Then
the following statements hold.

(i) K is bounded if and only if every f P HK,Ω is bounded.

(ii) K is bounded and separately continuous if and only if every f P HK,Ω is bounded
and continuous.

(iii) If K is continuous, HK,Ω is separable.

(iv) If K is continuous and bounded,

Kpx, yq “

8
ÿ

i“1

eipxqeipyq for all x, y P Ω,

where peiqiPN is any orthonormal system in pHK,Ω, x¨, ¨yKq.

(v) If Ω is an open set and K is m-times continuously differentiable for m ě 0, it is
HK,Ω Ă Cm and

|B
α fpxq| ď∥f∥K

`

B
α,αKpx, xq

˘1{2
for all f P HK,Ω, x P Ω

and for every α P Nd
0 with |α| ď m.
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Let us take a closer look at separable native spaces. While, more general results
can be found in [OS17], the following focuses on exploring the dimensions of HK,Ω here.
This focus is due to the fact that separable Hilbert spaces of identical dimensions share
equivalent structural properties. Although the concepts of the power function and the
trade-off principle are discussed in detail in Section 2.4, we introduce them here in
order to show Theorem 2.28. We adopt the definition of the power function provided
by [SH17] in this context.

Definition 2.27. Let K be a positive semi-definite kernel on Ω and X Ă Ω a finite set
of data points. The power function PK,X is given by

PK,Xpxq :“ }Kp¨, xq ´ sKp¨,xq,K,X}K for all x P Ω,

where sKp¨,xq,X denotes the orthogonal projection of Kp¨, xq onto SK,X .

The power function PK,Xpxq equals zero if and only if the function Kpx, ¨q lies in
SK,X . In other words, the power function is positive if and only if Kpx, ¨q is linearly
independent of the set of functions tKpy, ¨quyPX . Section 2.4, concerned with the trade-
off principle, provides a lower bound for the power function while simultaneously offering
an upper bound for the minimal eigenvalue λmin

`

AK,X

˘

of AK,X , i.e.,

λmin

`

AK,X

˘

ď min
1ďiďN

P 2
K,Xztxiu

pxiq for all X “ tx1, . . . , xNu.

For a continuous positive definite kernel K and an arbitrary pairwise distinct point set
X Ă Ω, the interpolation matrixAK,X is positive definite. Hence, its minimal eigenvalue
λmin

`

AK,X

˘

is positive. In the case where Ω Ă Rd is finite, we have HK,Ω “ SK,Ω.
Furthermore, we see that tKpy, ¨quyPΩ is linearly independent, since

0 ă λmin

`

AK,Ω

˘

ď PK,Ωztxupxq for everyx P Ω.

Showing that in this case dimHK,Ω “ |Ω|.
Let Ω Ă Rd contain inner points or be infinitely countable. Then for every finitely

pairwise distinct point set X Ă Ω we can find x0 P ΩzX. Using the same arguments
as above, Kpx0, ¨q is linearly independent of tKpy, ¨quyPX . Hence, the dimension of
HK,Ω must be infinite and because of Theorem 2.26 (iii) there is a countable basis. We
summarize the above analysis in the following theorem.

Theorem 2.28. Let K1, K2 be continuous, symmetric and positive definite kernels on
Ω Ď Rd, then their native spaces are isometric isomorph to another, i.e.,

HK1,Ω » HK2,Ω.

Proof. The above analysis shows

dimHK1,Ω “ dimHK2,Ω.

Two separable Hilbert spaces H1 and H2 are isometric isomorph if they have the same
dimension, see [Wer18, Satz V.4.12]. Theorem 2.26 (iii) proves the assumption. ■
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The following lemma demonstrates that multiplying a kernel by a positive constant
reproduces the same set of functions as the original kernel, and the corresponding
norms are identical up to the positive constant. Referring to the uniqueness results in
Theorem 2.22, this lemma underscores that the uniqueness of the reproducing kernel
pertains to the Hilbert space pH, x¨, ¨yq – which includes both the space H and its inner
product – rather than the space H alone. This topic will be addressed in Section 3.2,
where we analyze the native spaces of summation kernels.

Lemma 2.29. Let a ą 0 and K be a symmetric positive semi-definite kernel on Ω then
HaK,Ω “ HK,Ω and the corresponding norms satisfy the relation a∥¨∥aK “∥¨∥K.
Proof. First we note that aK is still a symmetric and positive semi-definite kernel by
Lemma 2.8. Hence, it is reasonable to look at its native space. We see that f P SK,Ω if
and only if

f “

N
ÿ

i“1

ci Kpxi, ¨q “

N
ÿ

i“1

ci
a
aKpxi, ¨q P SaK,Ω

and the following relation of the norm holds

∥f∥K “

N
ÿ

i“1

N
ÿ

j“1

cicj Kpxi, xjq “ a
N
ÿ

i“1

N
ÿ

j“1

ci
a

cj
a
aKpxi, xjq “ a∥f∥aK .

As the norms ∥¨∥K and ∥¨∥aK are equivalent, the completions HK and HaK of the set
SK,Ω for the respective norms coincide, see [Hac12, Remark 4.2]. Let f P HK,Ω be the
normwise limit of psnqnPN Ă SK,Ω. Then

∥f∥K “ lim
nÑ8

∥sn∥K “ lim
nÑ8

a∥sn∥aK “ a∥f∥aK .

■

2.3.4 Sobolev Spaces

We dedicate this section to an eminent native space, the Sobolev space. Theorem 2.30
shows that native spaces of translation-invariant kernels K can be characterized in
terms of Fourier transforms, as do Sobolev spaces, see Theorem 2.32. We deduce a
reproducing kernel of Sobolev spaces, the Matérn kernel (Ex. 2.33), and introduce an-
other compactly supported kernel, the Wendland kernel (Theorem 2.34). Both kernels
reproduce Sobolev spaces with equivalent norms.

For the proof of the subsequent theorem we refer to [Wen05, Theorem 10.12].

Theorem 2.30. Let K be a symmetric positive semi-definite and translation-invariant
kernel on Rd regarding the univariate function Φ P CpRdq X L1pRdq. Then

HK,Rd “

"

f P L2
pRd

q X CpRd
q : pf

N

a

pΦ P L2
pRd

q

*

is its associated native space. The space is a Hilbert space equipped with inner product

pf, gqH
K,Rd

“ p2πq
´d{2

ˆ

pf{

a

pΦ, pg{

a

pΦ

˙

L2pRdq

“ p2πq
´d{2

ż

Rd

pfpωq pgpωq

pΦpωq
dω.
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Let us recall some basics of Sobolev spaces. These spaces were originally defined
to classify weak solutions of partial differential equations. They consist of equivalence
classes of functions whose weak derivatives up to a certain degree lie in a certain Lp

space (cf. [McL00, Chapter 3]). Here, we restrict p “ 2.

Definition 2.31. Let Dα denote the weak derivative for a muli-index α P Nd. The
space

Wm
pRd

q :“
!

f P L2
pRd

q : Dαf P L2
pRd

q for all |α| ď m
)

equipped with the inner product

xf, gyWmpRdq
:“

¨

˝

ÿ

|α|ďm

xDαf,DαgyL2pRdq

˛

‚

1
2

is called Sobolev space of order m P N.

These spaces can be generalized tom P Rą0, as discussed, for example, in [DNPV12].
Furthermore, they are Hilbert spaces and equivalent to the so called fractional Sobolev
spaces, as m P R is allowed, or Bessel potential spaces (cf. [McL00, Theorem 3.18]).

Theorem 2.32. For m ą d{2, the Sobolev space WmpRdq is given by the following set
of functions

Wm
pRd

q “

"

f P L2
pRd

q : pfp¨q

´

1 `∥¨∥22
¯m{2

P L2
pRd

q

*

Furthermore, the norm induced by

xf, gyWm :“ p2πq
´d{2

ż

Rd

pfpωqpgpωq

´

1 `∥ω∥22
¯m

dω (2.13)

is equivalent to ∥¨∥WmpRdq
.

Note, that Sobolev spaces WmpRdq are spaces of equivalence classes, due to the
integral representations. Still, each class contains a Cm representer (cf. [Eva10, Chap-
ter 5.2.1]). Here, we interpret Wm Ă Cm. Moreover, we can view the non-negative and
non-vanishing weight function in (2.13) as a Fourier transform of a function Φ, i.e.,

pΦ “

´

1 `∥¨∥22
¯´m

.

By Bochner’s theorem, the function Φ is positive definite on Rd, and it is possible to
derive its explicit form up to a constant factor

Φpxq “
∥x∥m´d{2

2 Km´d{2p∥x∥2q
2m´1Γpmq

for m ą d{2,

where Kν denotes the modified Bessel function second kind of order ν (cf. [Fas07, Chap-
ter 4.4]). Hence, the kernel given by Kpx, yq “ Φpx ´ yq for x, y P Rd is the reproducing
kernel ofWmpRdq and∥¨∥K is equivalent to∥¨∥WmpRdq

because of Lemma 2.29. This gives

rise to the Matérn kernels, first introduced in [Mat86], and often used in statistics.



28 Chapter 2. Kernel-Based Interpolation

Example 2.33. The Matérn kernels, also called Sobolev splines because of their con-
nection to Sobolev spaces, are radial kernels given by the RBFs

ψ d`1
2

´mprq “
rm´d{2Km´d{2prq

2m´1Γpmq
for m ą d{2,

where Kν denotes the Bessel function of the second kind of order ν. The corresponding
radial kernel Kℓpx, yq “ ψℓp∥x ´ y∥2q is positive definite on Rd for d ă 2m. We list
representatives of the Matérn RBFs in Tab. 2.1 and visualize them in Fig. 2.1.

Using Lemma 2.29 and the analysis above we deduce that the native space corre-
sponding to the RBF ψℓ is given by the Sobolev space W pd`1q{2`ℓpRdq with equivalent
norms. Furthermore, we observe, that the functions ψℓ do not depend on the dimension
d. With Schoenberg’s characterization, ψℓ is positive definite on every Rd. Additionally,
we have ψℓp∥¨∥q “ Φℓ P C2ℓ. This implies Kℓpx, ¨q “ Φℓpx ´ ¨q P Cℓ for all x P Rd, and
Theorem 2.26 yields HK,Rd Ă CℓpRdq for every dimension d P N. The differentiability
of kernels gains on importance in Section 2.4.1. There, high differentiability is found to
be associated with good approximations.

Definition Native space Differentiability of ψℓp∥¨∥q

ψ0prq “ e´r W
d`1
2 C0

ψ1prq “ p1 ` rq e´r W
d`3
2 C2

ψ2prq “ p3 ` 3r ` r2q e´r W
d`5
2 C4

Table 2.1: Representatives of the Matérn RBFs up to a dimension dependent scaling
factor

We introduce another family of positive definite kernels reproducing to Sobolev
spaces, called the Wendland kernels. The following is based on Chapter 9 of H. Wend-
land’s book [Wen05].

A kernel that satisfies

Kpx, yq “ 0 if ∥x ´ y∥2 ě R

for some R ą 0 is called locally supported. Such kernels are beneficial in interpolation
theory since their interpolation matrices AK,X are sparse. For now, we focus on ra-
dial positive definite kernels K with one-dimensional function ϕ. Hence, K is locally
supported if and only if there exist R ą 0 such that ϕprq “ 0 for all r ě R. Using
a general formulation of Bochner’s theorem it is possible to show that a continuous,
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univariate and compactly supported function Φ cannot be positive definite on every
Rd, see [Wen05, Corollary 9.3]. We point out, that the characteristic kernels and the
Matérn kernels, introduced in Ex. 2.16 and Ex. 2.33 respectively, align with this result.
The Matérn kernels are positive definite for every dimension and have global support,
whereas the characteristic kernels ϕℓ are locally supported, and their positive definite-
ness is restricted to Rd, with ℓ ě td{2u ` 1. This provides reason for working with fixed
dimensions. H. Wendland constructed piece-wise polynomial functions with compact
support using the radial approach

ϕprq “

#

pprq 0 ď r ď 1,

0 r ą 1,
(2.14)

where p denotes a one-dimensional polynomial. Note, that the truncated power function
already is a first example. We state [Wen05, Theorem 9.13] and [Wen05, Theorem 10.35]
without proof, and refer to the same reference for a precise definition of the polynomials
pd,k.

0 0.5 1 1.5

0

1

2

3
e´2r2

ψ0

ψ2

ϕ1,0

ϕ1,2

ϕ3,0

ϕ3,2

Figure 2.1: Visualization of the RBFs given in Ex. 2.19: Gaussian with α “ 2
(black), Tab. 2.1: Matérn’s ψℓ (blue), and Tab. 2.2: Wendland’s ϕ1,ℓ (green) and
ϕ3,ℓ (red) for ℓ “ 0, 2.



30 Chapter 2. Kernel-Based Interpolation

Theorem 2.34. The RBFs ϕd,k of the form

ϕd,kprq “

#

pd,kprq 0 ď r ď 1,

0 r ą 1,

with a one-dimensional polynomial pd,k of degree td{2u ` 3k ` 1 are

(i) positive definite on Rd.

(ii) Their symmetric extensions lie in C2kpRq.

(iii) They are of minimal degree for given space dimension d.

(iv) If ϕ is another function of the form (2.14) and with C2kpRq extension, it is
ϕ “ c ϕd,k for a constant c ą 0.

These RBFs give rise to the Wendland kernels.

Theorem 2.35. Let ϕd,k be a Wendland function and d ě 3 if k “ 0. Then

Hϕd,kpRd
q “ W pd`1q{2`k

pRd
q

with equivalent norms.

We explicitly state Wendland’s RBFs used later in this thesis in Tab. 2.2 and vi-
sualize them in Fig. 2.1. Note, that ϕ1,0 equals the truncated power function out of
Ex. 2.16 for l “ 1.

C0, k “ 0 C4, k “ 2

d “ 1 ϕ1,0prq “ p1 ´ rq
`

ϕ1,2prq “ p1 ´ rq5
`

p8r2 ` 5r ` 1q

d ď 3 ϕ3,0prq “ p1 ´ rq2
`

ϕ3,2prq “ p1 ´ rq6
`

p35r2 ` 18r ` 3q

Table 2.2: Wendland’s radial basis functions

Remark 2.36. We conclude this section with a brief remark on the omnipresent Gaussian
kernel (Ex. 2.19). Since it is C8, its native space is very small. Indeed, G.E. Fasshauer
and Q. Ye showed in [FY11] that its native space is contained in every Wm X C8

b ,
m P N, where C8

b denotes all bounded C8 functions. For a detailed analysis of the
Gaussian kernels’ native space, we refer to [SC08, Chapter 4.4]. There, among other
findings, it is demonstrated in Corollary 4.44 that for an Ω with a non-empty interior,
the only constant function in the Gaussian’s native space is the zero function.
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2.4 Interpolation

This section states results on the numerical stability (Section 2.4.2) and accuracy (Sec-
tion 2.4.1) of the interpolation method introduced in Section 2.1.

In Section 2.4.1 we have to assume that the target function f lies in the native space.
In fact, results on the interpolant without prior knowledge on the space of the target
function are few. It is still possible to show, that the chosen interpolant has minimal
norm under all functions s P HKpΩq interpolating the data fX . We state [Wen05,
Theorem 13.2].

Theorem 2.37. Let K be a symmetric positive definite kernel on Ω and X Ă Ω be a
finite and pairwise distinct point set. Furthermore, let the function values f1, . . . , fN P R
on X be given. Then∥∥sf,K∥∥K “ min

␣

∥s∥K : s P HKpΩq fulfilling the interpolation condition (2.1)
(

2.4.1 Approximation Error

This section is concerned with the approximation error between the target function
f P HK,Ω and its interpolant sf,K,X P SK,X of (2.7). We take a look at the error
measured in the native space norm and state an upper bound for the pointwise error
depending on the power function (Theorem 2.40). It turns out that the power function
can be bounded in terms of the fill distance (Theorem 2.43). This section finishes with
a result regarding the convergence of this interpolation method (Theorem 2.45).

We display an orthogonal decomposition of a native space as done in [Isk18, Corol-
lary 8.28] and [Wen05, Lemma 10.24f.]). As the interpolation space SK,X is a closed
linear subspace of the Hilbert space HK,Ω, there exist an orthogonal complement of
SK,X in HK,Ω by [Mus14, Theorem 10.12]. This orthogonal complement turns out to
be the set of functions which are zero on X.

Theorem 2.38. Let K be a symmetric and positive definite kernel on Ω and HK,Ω its
native space. For any finite and pairwise distinct point set X Ă Ω, the space HK,Ω can
be orthogonally decomposed as

HK,Ω “ SK,X ‘
␣

f P HK,Ω : fX “ 0
(

.

For a target function f P HK,Ω and its unique interpolant sf,K,X P SK,X on X it is

∥f∥2K “
∥∥sf,K,X∥∥2

K
`
∥∥f ´ sf,K,X

∥∥2

K
.

With this theorem we immediately conclude that the interpolant sf,K,X is the best
approximation to a target function f P HK,Ω from the interpolation space SK,X , as the
interpolant sf,K,X is the orthogonal projection of f onto SK,X .

Lemma 2.39. Let the setting of Theorem 2.38 hold. Then∥∥f ´ sf,K,X
∥∥
K

ď∥f ´ s∥K for all s P SK,X .

Furthermore, it is ∥∥f ´ sf,K,X
∥∥
K

ď∥f∥K .



32 Chapter 2. Kernel-Based Interpolation

The above provides information about the error in the native space norm. As
established in Section 2.3, this norm is closely related to the pointwise error due to the
reproducing property. We leverage this relationship to derive a pointwise error bound.
We interpret Kpx, ¨q as a function on Ω and use its interpolant/orthogonal projection
sKpx,¨q,K,X onto SK,X . Let the interpolants of f and Kpx, ¨q be given by

sf,K,X “

N
ÿ

i“1

ciKpxi, ¨q and sKpx,¨q,K,X “

N
ÿ

i“1

diKpxi, ¨q.

We compute

sf,K,Xpxq “

N
ÿ

i“1

ciKpxi, xq “

N
ÿ

i“1

N
ÿ

j“1

cidjKpxi, xjq “

N
ÿ

j“1

djfpxjq

“

N
ÿ

j“1

dj
@

f, Kpxj, ¨q
D

K
“

@

f, sKpx,¨q,K,X

D

K
for all x P Ω.

Together with the Cauchy-Schwartz inequality, this implies the following error bound
ˇ

ˇfpxq ´ sf,K,Xpxq
ˇ

ˇ “

ˇ

ˇ

ˇ

@

f, Kpx, ¨q ´ sKpx,¨q,K,X

D

K

ˇ

ˇ

ˇ

ď ∥f∥K
∥∥Kpx, ¨q ´ sKpx,¨q,K,X

∥∥
K

for all x P Ω.

We note that the right factor is independent of the target function f and corresponds to
the power function PK,X of Definition 2.27. The above is summarized in the following
result, which is also discussed in various literature, such as [Wen05, Theorem 11.4].

Theorem 2.40. In the setting of Theorem 2.38 the pointwise error can be bounded by

|fpxq ´ sf,K,Xpxq| ď PK,Xpxq ∥f∥K for all x P Ω.

This reveals two adjusting tools to improve the pointwise error. The power func-
tion on the one hand side, depending on the kernel K and the point set X, and the
native space norm of the target function on the other. Regarding the analysis of na-
tive space norms we refer to Section 3.2 and concentrate on the power function, for now.

The power function PK,Xpxq measures the minimal distance between the function
Kpx, ¨q and the interpolation space SK,X in the native space norm. We directly see that
PK,Xpxq “ 0 if and only if x P X. One gets the idea, the further away x from X, the
larger PK,Xpxq. To illustrate this, let X “ tx1, . . . , xNu and K satisfy

ˇ

ˇKpx, yq ´ Kpx, zq
ˇ

ˇ ď L{2 ∥y ´ z∥2 for all x, y, z P Ω (2.15)

and a constant L ą 0. This is for example satisfied by a C1 RBF. Then

PK,Xpxq “ min
sPSK,X

∥Kpx, ¨q ´ s∥K

ď min
1ďiďN

∥Kpx, ¨q ´ Kpxi, ¨q∥K
ď L min

1ďiďN
∥x ´ xi∥2 for all x P Ω.

This justifies the definition of the fill distance as the radius of the largest ball in Ω that
contains no element of X, as done in [Wen05, Definition 1.4].
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Definition 2.41. The fill distance of a finite set of points X “ tx1, . . . , xNu Ď Ω for a
bounded domain Ω is defined as

hX,Ω :“ sup
xPΩ

min
1ďiďN

∥x ´ xi∥2 .

In the definition, we restrict Ω to a bounded domain. Naturally, we could extend
the concept of fill distance to non-bounded domains as well. However, in such cases,
we would have hX,Ω “ 8, rendering it impractical since our goal is to find an upper
bound.

Even though most standard kernels satisfy the Lipschitz condition (2.15), this is not
necessarily the case for the nonstandard kernels introduced in the upcoming sections.
Still, it is possible to bound the power function from above in dependence of the fill
distance. To do so, we introduce the interior cone condition on Ω, as presented in
[Wen05, Definition 3.6].

Definition 2.42. The set Ω Ď Rd fulfills the interior cone condition (ICC) if there
exist an angle θ P p0, π{2q and a radius r ą 0 such that for every x P Ω a unit vector
ξpxq exists such that the cone

Cpx, ξpxq, θ, rq :“ tx ` λy : y P Rd , ∥y∥2 “ 1 , yT ξpxq ě cos θ , λ P r0, rsu (2.16)

is contained in Ω.

We present the general result of [Wen05, Theorem 3.14 and Theorem 11.9] for bound-
ing the power function in terms of the fill distance.

Theorem 2.43. Let K be a translation-invariant kernel with univariate function
Φ P CpRdq, and Ω Ă Rd be a bounded set satisfying an ICC for an angle θ P p0, π{2q

and a radius r ą 0. For a finite pairwise distinct point set X Ă Ω satisfying hX,Ω ď h0,
the power function can be bounded by

P 2
K,Xpx̃q ď c1 sup

xPBp0, 2c2hX,Ωq

|Φpxq ´ ppxq|, for all x̃ P Ω, (2.17)

where p is an arbitrary polynomial from πmpRdq, m P N and

c1 “ 9, c2 “
16 p1 ` sin θq

2 m2

3 sin2 θ
, h0 “

r

c2
.

Remark 2.44. The right hand side of (2.17) can be bounded by a function FΦ,Ω depend-
ing on (the smoothness of) Φ and the interior cone condition of Ω, and acting on the
fill distance hX,Ω. Hence, for every translation-invariant kernel with univariate func-
tion Φ P CpRdq and bounded set Ω Ă Rd satisfying an ICC, there exist an increasing
function FΦ,Ω : R` ÝÑ R`, so that

P 2
K,Xpxq ď FΦ,ΩphX,Ωq.
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ϕprq F phq

Gaussian, Ex. 2.19 e´α r2 , α ą 0 e´c | log h|

h , c ą 0

Matérn, Tab. 2.1 ψℓprq, 2m “ d ` 2ℓ ` 1 h2m´d

Wendland, Tab. 2.2 ϕd,kprq h2k`1

Table 2.3: Upper bounds on the power function P 2
K,X in terms of the fill distance

hX,Ω

We provide upper bounds on P 2
K,X , presented as functions F on the fill distance

hX,Ω in Tab. 2.3. See [Wen05, Chapter 11], [Fas07, Chapter 15.1], and [Sch95] for the
corresponding proofs. In Fig. 2.2 (right), it is visible that an increase of smoothness of
the Wendland and Matérn kernels improves the bound.

We complete this section with a general statement regarding the convergence of
the proposed interpolation method. A sequence of interpolants psnqnPN converges to
the target function f P HK,Ω if the corresponding point sets pXnqnPN fill up the whole
domain Ω, see [Isk18, Theorem 8.37].

Theorem 2.45. Let K be a continuous symmetric positive definite kernel on a bounded
set Ω Ă Rd and pXnqnPN a sequence of finite pairwise distinct point sets in Ω such that

hXn,Ω Œ 0 for n Ñ 8.

For a target function f P HK,Ω and its unique interpolants
`

sf,Xn

˘

nPN it is

∥∥f ´ sf,Xn

∥∥
K

ÝÑ 0 for n Ñ 8.

2.4.2 Numerical Stability

We are looking into the numerical stability of the interpolation problem stated in Sec-
tion 2.1. A system is called stable, if an error on the input data does not affect the
result too much. The condition number, which is a measure of stability, gives reason to
examine the maximal and minimal eigenvalue of AK,X . In Theorem 2.48 we present a
lower bound for the minimal eigenvalue and apply the theorem to our example kernels.
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Condition Number Let us for now consider a general linear system

Ax “ b (2.18)

for a matrix A P RNˆM and a second system with an error ∆b in b

Apx ` ∆xq “ b ` ∆b,

where ∆x describes the resulting error in x. Let σmax and σmin be the largest and
smallest singular values of A. We immediately see, that

∥b∥2 ď σmax∥x∥2 and ∥∆b∥2 ě σmin∥∆x∥2 ,

as Ap∆xq “ ∆b by linearity. Let σmin ‰ 0, then

∥∆x∥2
∥x∥2

ď
σmax

σmin

∥∆b∥2
∥b∥2

,

where the quantity ∥∆b∥2{∥b∥2 denotes the relative change in the right-hand side of
(2.18) and ∥∆x∥2{∥x∥2 is the resulting relative change in the solution. We see, that a
change in the right-hand side of (2.18) can cause a change in the solution σmax{σmin

times as large. This relative error factor is called the condition number of A.

Definition 2.46. Let A P RNˆM , then its spectral condition number for inversion is
given by

cond2 pAq :“
σmax pAq

σmin pAq
,

where σmax pAq and σmin pAq denote the highest and smallest singular value of A. The
problem of (2.18) is referred to as ill-conditioned if the condition number is high and
hence a small error in the input data causes a big change in the solution, and well-
conditioned if not.

Let us return to the interpolation problem. As we use symmetric and positive
definite kernels K, the interpolation matrix AK,X is symmetric and positive definite for
every finite pairwise distinct point set X. Hence, the singular values of AK,X are equal
to its eigenvalues and its condition number is given by

cond2

`

AK,X

˘

“
λmax

`

AK,X

˘

λmin

`

AK,X

˘ ,

where λmax

`

AK,X

˘

and λmin

`

AK,X

˘

denote the largest and smallest eigenvalue ofAK,X .
This gives a first reason to study minimal and maximal eigenvalues of interpolation
matrices.
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Maximal Eigenvalue To find an upper bound on the maximal eigenvalue of the
interpolation matrix, we apply Gershgorin’s circle theorem onto the interpolation matrix
AK,X . It implies that for every index j “ 1, . . . , N , the following inequality holds

|λmax ´ Kpxj, xjq| ď

N
ÿ

i“1, i‰j

Kpxi, xjq.

Hence,

λmax ď N ∥Kp¨, ¨q∥L8pXˆXq

and if K was translation-invariant it is

λmax ď N Φp0q

by Lemma 2.13. Even though N can grow very fast for high dimensions, numerical
tests show that the maximum eigenvalue causes no problems.

Minimal Eigenvalue Let tx1, . . . , xNu “ X Ď Ω be a finite pairwise distinct point
set and the kernel K be continuous, symmetric and positive definite. For the vector
c “ p1,´1, 0, . . . , 0qT P RN it is

?
2λminpAK,Xq “ λminpAK,Xq∥c∥22

ď cTAK,Xc

“ c21
`

Kpx1, x1q ` Kpx2, x2q
˘

´ 2c21Kpx1, x2q

“ Kpx1, x1q ` Kpx2, x2q ´ 2Kpx1, x2q.

If x2 ÝÑ x1, then Kpx1, x2q, Kpx2, x2q ÝÑ Kpx1, x1q since K is continuous and the
right-hand side tends to zero. This shows that if X contains points that lie close
together the minimal eigenvalue is small. We introduce the separation distance, as
done in [Wen05, Definition 4.6], to measure the minimal distance between points in X.

Definition 2.47. The separation distance of a finite point set X “ tx1, . . . , xNu is
defined by

qX :“
1

2
min
i‰j

∥∥xi ´ xj
∥∥
2
.

We note, that the separation distance qX can be seen as the maximal radius r ą 0
such that all balls Brpxiq for i “ 1, . . . , N are disjoint.

Next, we state the general result of [Sch95, Theorem 3.1], which provides a lower
bound on the minimal eigenvalue of AK,X in dependence of the separation distance.
Thereafter, in Tab. 2.4, we present bounds for the introduced specific positive definite
kernels.
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Theorem 2.48. Let K be a translation-invariant kernel with univariate function Φ
such that Φ possesses a positive Fourier transform pΦ P CpRdzt0uq. With the function

φpMq :“ inf
∥ω∥2ď2M

pΦpωq

a lower bound on λminpAK,Xq is given by

λminpAK,Xq ě
φpMq

2 Γpd{2 ` 1q

ˆ

M

23{2

˙d

for any M ą 0 satisfying

M ě
12

qX

˜

π Γ2pd{2 ` 1q

9

¸1{pd`1q

.

Remark 2.49. We see that for every K satisfying the requirements of Theorem 2.48,
there is a monotonously increasing function GΦ, depending on the separation distance
qX , that bounds the minimal eigenvalue of the interpolation matrix AK,X from below.
This function GΦ is, up to a constant depending on the dimension, listed in Tab. 2.4 for
our example kernels, and visualized in Fig. 2.2 (left). For proofs, we refer to [Wen05,
Corollary 12.4 and 12.8] and [Sch95, Section 3].

ϕprq Gpqq

Gaussian, Ex. 2.19 e´α r2 , α ą 0 p2αq´d{2 e
´ 40.71 d2

α q2 q´d

Matérn, Tab. 2.1 ψℓprq, 2m “ d ` 2ℓ ` 1 q2m´d

Wendland, Tab. 2.2 ϕd,kprq q2k`1

Table 2.4: Lower bounds on λmin in terms of the separation distance qX

In Fig. 2.2 (left), we observe that the function G for the Gaussian, with α “ 2, is
vanishingly small. Hence, we can expect the interpolation problem to be ill-conditioned.
With regards to the Matérn and Wendland kernel, we see that increasing smoothness
deteriorates the bound.

2.4.3 Trade-Off Principle

Let us condense the main statements out of Section 2.4.2 and Section 2.4.1:

1. The bigger the smallest eigenvalue of the interpolation matrix, the more stable
the interpolation method.

2. The smaller the power function, the better the approximation error.
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Figure 2.2: Left: Visualization of the functionGpqXq given in Remark 2.49 providing
a lower bound on λmin of AK,X . Right: Visualization of the function F phΩ,Xq given
in Remark 2.44 providing an upper bound of P 2

K,X . G and F are presented for the
Gaussian with α “ 2 (black, Ex. 2.19), Matérn’s ψℓ (blue, Tab. 2.1), and Wendland’s
ϕd,ℓ (red, Tab. 2.2) for ℓ “ 0, 2.

We presented a lower bound for the smallest eigenvalue regarding our example kernels
in terms of the function G depending on the separation distance qX , and an upper
bound on the squared power function in terms of a function F depending on the fill
distance hΩ,X . For the Matérn and Wendland kernels the functions G and F coincide
(up to an X-independent constant), see Fig. 2.2. In case of qX ď hΩ,X we have to decide
between good stability and small approximation error, as we cannot combine it.

This is not only the case for Matérn and Wendland kernels. We derive a relation
between the smallest eigenvalue and the power function in a more general setting. Let
K be a symmetric and positive definite kernel on Ω Ď Rd and tx1, . . . , xNu “ X Ă Ω
be a pairwise distinct point set. Furthermore, let w.l.o.g. the minimum of the power
function be taken at x1, i.e.,

P 2
K,Xztx1upx1q “ min

1ďiďN
P 2
K,Xztxiu

pxiq.

Let the interpolant sKpx1,¨q,K,Xztx1u have the form

sKpx1,¨q,K,Xztx1u “

N
ÿ

i“2

ci Kpxi, ¨q

for c “ p´1, c2, . . . , cNqT P RN . Then

min
1ďiďN

P 2
K,Xztxiu

pxiq “ P 2
K,Xztx1upx1q “

∥∥sKpx1,¨q,Xztx1u ´ Kpx1, ¨q
∥∥2

“

∥∥∥∥∥∥
N
ÿ

i“1

ci Kpxi, ¨q

∥∥∥∥∥∥
2

ě ∥c∥22 λminpAK,Xq ě λminpAK,Xq.
(2.19)
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This inequality, together with the statements 1 and 2, demonstrates that it is impos-
sible to achieve both arbitrary high accuracy and good stability simultaneously. This
dilemma is referred to as the trade-off principle (cf. [Wen05, Chapter 12.1]) or Sch-
aback’s uncertainty relation (cf. [Sch95]). We address this issue with the approach of
problem-adapted non-standard kernels.







Part II

Combinations of Kernels





Chapter 3

Summation Kernels

Understanding orthogonal decompositions and subsets of Hilbert spaces is crucial for
several reasons. These decompositions provide a foundational framework for analyzing
functions and operators within a Hilbert space. They enable a clearer understanding
of the geometric and algebraic properties of these spaces, which is essential for various
applications in functional analysis and numerical methods. Moreover, the study of
subsets within Hilbert spaces often leads to significant insights into the structure and
behavior of functions.

The theory of reproducing kernel Hilbert spaces (RKHS) has been extensively devel-
oped with the work [Aro50] from N. Aronszajn in 1950. His contribution to orthogonal
decompositions and subsets of RKHSs, as well as on sums and differences of correspond-
ing reproducing kernels laid the groundwork for understanding the nature of RKHS and
their norms. While examining summation kernels, N. Aronszajn established an order
on the space of reproducing kernels. This order elucidates the subset and norm rela-
tionships within RKHS, forming a basis for further research such as [Ylv62], [Sch64],
and [Dri73]. However, none of these studies explores summation kernels in the context
of interpolation, a gap that this chapter aims to address.

In the following, we build on N. Aronszajn’s foundational work and extend the
theory of summation kernels by focusing on their application in interpolation. The
main contributions are:

• Connecting Aronszajn’s Findings to Sobolev Spaces: In Section 3.4, we establish
a connection between N. Aronszajn’s results and Sobolev spaces. This helps in
understanding the relationship between Matérn and Wendland kernels (Corol-
lary 3.24 and Corollary 3.18), which are frequently used.

• Examination of Native Space Intersections: We investigate the intersection of two
native spaces (Section 3.2.3).

• Linking Mercer’s Theorem to Summation Kernels: In Section 3.2.4, we draw a
connection between Mercer’s theorem and countably infinite summation kernels,
offering a deeper theoretical understanding of these kernels.
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• Influence of Kernel Equivalence Classes on Interpolants: We explore how the
equivalence class of a kernel affects the resulting interpolant, which is crucial for
practical interpolations (Section 3.3) and find a trade-off for kernels schematically
visualized in Remark 3.42.

• Detailed Analysis of Interpolation with Summation Kernel: We explore the ap-
proximation error (Section 3.3.1 ) and numerical stability (Section 3.3.2) of in-
terpolation using a summation kernel, providing both theoretical analysis and
numerical results (Section 3.4).

By addressing these topics, this chapter not only fills a significant gap in the existing
literature but also provides a comprehensive framework for understanding and using
summation kernels in interpolation problems.

This chapter is structured as follows. We define summation kernels and state initial
findings in Section 3.1. Section 3.2 explores the native spaces of summation kernels,
extending results of [Aro50]. We provide fundamentals of summing up spaces in Sec-
tion 3.2.1. As the topic of summation kernels is closely related to the topic of subsets
of native spaces, we devote Section 3.2.2 to this. In Section 3.2.3, we show that the
intersection of two native spaces is a RKHS and compare norms. Section 3.2.4 links
countable summation kernels to Mercer’s theorem, demonstrating a decomposition into
orthogonal RKHSs. Section 3.3 examines interpolation with summation kernels, em-
phasizing error minimization (Section 3.3.1) and stability (Section 3.3.2). In Section 3.4,
we provide supporting results for the theoretical analysis.

3.1 Definition and Basic Properties

In the following, we provide a precise definition of summation kernels, visualized in
Fig. 3.1, and state basic findings regarding positive definiteness (Theorem 3.2),
translation-invariance and radial symmetry (Lemma 3.3).
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Figure 3.1: Top view of two two-dimensional component kernels resulting from
the Wendland RBFs ϕ3,0 (left) and ϕ3,3 (middle), and the corresponding two-
dimensional summation kernel (right). The black line visualizes supports.



46 Chapter 3. Summation Kernels

From now on, we solely consider functions and function spaces on the domain
Ω Ď Rd. Hence, we shorten the notation for native spaces HK,Ω to HK equipped with
the inner product x¨, ¨yK and the corresponding norm ∥¨∥K defined in Section 2.3.2.

Definition 3.1. Let Kℓ : Ω ˆ Ω ÝÑ R for ℓ “ 1, . . . ,M , then

K : Ω ˆ Ω ÝÑ R,
Kpx, yq “

řM
ℓ“1Kℓpx, yq for x, y P Ω

is called a summation kernel.

Section 2.3 gives reason to work with positive (semi-)definite kernels to ensure the
existence of a native space and unique solutions to the interpolation problem given in
Section 2.1. The observation that the interpolation matrix of the summation kernel K
equals the sum of the components’ interpolation matrices, i.e.,

AK,X “

M
ÿ

ℓ“1

AKℓ,X , (3.1)

facilitates the subsequent statement regarding positive (semi-)definiteness.

Theorem 3.2. The summation kernel K : Ω ˆ Ω ÝÑ R of positive semi-definite
component kernels Kℓ : Ω ˆ Ω ÝÑ R for ℓ “ 1, . . . ,M , is again positive semi-definite.
If at least one component kernel Kℓ is positive definite, so is the summation kernel K.

Proof. Let X Ă Ω a finite and pairwise distinct set of data points. Since (3.1) holds
and each component kernel is positive semi-definite, it is

cTAK,X c “

M
ÿ

ℓ“1

cTAKℓ,X c ě 0 for all c P R|X|.

■

We note that the set of positive semi-definite kernels equipped with the sum can
be viewed as a commutative semigroup, with Kpx, yq “ 0 for all x, y as the neutral
element.

Lemma 3.3. Let Kℓ be kernels on Ω for ℓ “ 1, . . . ,M and K be their summation
kernel.

(i) If Kℓ is translation-invariant with uni-variate function Φℓ for ℓ “ 1, . . . ,M ,
their summation kernel K is translation-invariant with the uni-variate function
Φ “

řM
ℓ“1Φℓ.

(ii) If Kℓ is radial with RBF ϕℓ for ℓ “ 1, . . . ,M , their summation kernel K is a
radial kernel with RBF ϕ “

řM
ℓ“1 ϕℓ.

Proof. The subsequent equations provide the required statements:

piq Kpx, yq “
řM
ℓ“1Kℓpx, yq “

řM
ℓ“1Φℓpx ´ yq

piiq Kpx, yq “
řM
ℓ“1Kℓpx, yq “

řM
ℓ“1 ϕℓp∥x ´ y∥2q.

■
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3.2 Native Spaces

Subsequently, we study the native space of summation kernels. In Section 3.2.1 we first
develop an understanding of the sum of sets in general. With foundational concepts
of summing up spaces at hand, we examine the native spaces structure of summation
kernels. A particular focus is placed on orthonormal sums.

As the topic of summation kernels is closely related to the topic of subsets of native
spaces, we devote Section 3.2.2 to this. Here, we draw a connection to Sobolev spaces,
elucidating the relationship between Matérn and Wendland kernels. Additionally, we
establish the order ‘À’ on the space of native spaces (and equivalently on the space of
symmetric positive definite kernels), as this order provides insights into the relationship
between component kernels and summation kernels.

In Section 3.2.3, we explore a particular subspace: the intersection of two native
spaces. We show that the intersection is also an RKHS and derive results to compare
native space norms of a function f within the intersection.

Moreover, we establish a link between countable summation kernels and the famous
Mercer theorem out of [Mer09] in Section 3.2.4. We briefly analyze infinitely countable
summation kernels, demonstrating that the decomposition of a kernel promoted by
Mercer’s theorem can be viewed as a countable summation kernel. Indeed, the native
space of a reproducing kernel is decomposed into infinitely countable orthogonal RKHSs
via Mercer’s theorem.

3.2.1 Fundamental Concepts

In order to settle on consistent definitions and develop an understanding of set combi-
nations in general, we provide basic definitions of the Minkowski sum (Definition 3.4)
and the orthogonal direct sum (Definition 3.7), first. Equipped with these foundational
concepts we examine the native spaces structure of a summation kernel in Theorem 3.9,
based on [Aro50]. Since we are solely working with kernels acting on Ω, we omit Ω in the
subscript of native spaces and its inner products. It turns out that trivial intersections,
i.e.,

HK1 X HK2 “ t0u, (3.2)

of the components’ native spaces are of special interest as in this case they form an
orthogonal decomposition of the summation kernels native space. We emphasize the
benefits of orthogonal sums and derive six equivalence statements of (3.2) in Theo-
rem 3.12.

We begin with the fundamental concept of the Minkowski sum.

Definition 3.4. Let Aℓ Ď V for ℓ “ 1, . . . ,M be subsets of a vector space V then

A :“
M
ÿ

ℓ“1

Aℓ “

$

&

%

M
ÿ

ℓ“1

aℓ : aℓ P Aℓ for all ℓ “ 1, . . . ,M

,

.

-

Ď V

is called the Minkowski sum of tAℓu
M
ℓ“1.
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In Definition 3.4 a unique decomposition of an element in A into elements of Aℓ for
ℓ “ 1, . . . ,M is not ensured. To gain a unique decomposition, the subspaces Aℓ need
to be complemented (cf. [UA22]).

Definition 3.5. Let Aℓ for ℓ “ 1, . . . ,M be complemented subspaces of a vector space
V , i.e.,

Am X

M
ÿ

ℓ“1,ℓ‰m

Aℓ “ t0u for all m “ 1, . . . ,M.

Then, the internal direct sum A of tAℓu
M
ℓ“1 is given by

A :“
M
à

ℓ“1

Aℓ “

$

&

%

M
ÿ

ℓ“1

aℓ : aℓ P Aℓ for all ℓ “ 1, . . . ,M

,

.

-

.

Lemma 3.6. Let A be the internal direct sum of the vector spaces Aℓ for ℓ “ 1, . . . ,M .
Then, every element a P A has a unique representation

a “

M
ÿ

ℓ“1

aℓ,

where aℓ P Aℓ for all ℓ “ 1, . . . ,M .

Proof. Let a P A have the representations
řM
ℓ“1 aℓ and

řM
ℓ“1 a

1
ℓ, where aℓ, a

1
ℓ P Aℓ for

ℓ “ 1, . . . ,M . Then,

am ´ a1
m “

M
ÿ

ℓ“1,ℓ‰m

a1
ℓ ´

M
ÿ

ℓ“1,ℓ‰m

aℓ P Am X

M
ÿ

ℓ“1,ℓ‰m

Aℓ “ t0u for all m “ 1, . . . ,M.

This implies am “ a1
m for all m “ 1, . . . ,M , thereby ensuring the uniqueness of the

representation of a.
■

Native spaces of positive semi-definite kernels are Hilbert spaces, as demonstrated
in Section 2.3. Hence, we shift our focus to the special case of spaces with an inner
product. Here, the internal direct sum can be characterized in the following way.

Definition 3.7. Let Hℓ for ℓ “ 1, . . . ,M be pairwise orthogonal subspaces of a Hilbert
space with inner product x¨, ¨yH . In other words, from ℓ ‰ m follows Hℓ K Hm, i.e.,

xfℓ, fmyH “ 0 for all fℓ P Hℓ, fm P Hm.

Then, the orthogonal direct sum H of Hℓ for ℓ “ 1, . . . ,M is given by

H :“
M
à

ℓ“1

Hℓ “

$

&

%

M
ÿ

ℓ“1

fℓ : fℓ P Hℓ for all ℓ “ 1, . . . ,M

,

.

-
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equipped with the inner product

xf, gyH “

M
ÿ

ℓ“1

xfℓ, gℓyHℓ
, (3.3)

where f “
řM
ℓ“1 fℓ, g “

řM
ℓ“1 gℓ with fℓ, gℓ P Hℓ for all ℓ “ 1, . . . ,M .

Remark 3.8. In the context of Definition 3.7, it can be demonstrated that the require-
ment for Hℓ to be pairwise orthogonal is equivalent to requiring that Hℓ are comple-
mented.

Having gained an understanding of summing sets with differing structures, we redi-
rect our focus to summation kernels and their corresponding native spaces. N. Aron-
szajn analyzed such spaces as early as the 1950s. Subsequently, we repeat [Aro50,
Part I, §6] and extend the statement by taking more than two component kernels into
account.

Theorem 3.9. Let Kℓ be positive semi-definite kernels on Ω for ℓ “ 1, . . . ,M and
K “

řM
ℓ“1Kℓ their summation kernel. Then, the native space HK of the summation

kernel equals the Minkowski sum of its components’ native spaces, i.e.,

HK “

M
ÿ

ℓ“1

HKℓ
“

$

&

%

M
ÿ

ℓ“1

fℓ : fℓ P HKℓ
for ℓ “ 1, . . . ,M

,

.

-

.

The native space HK is equipped with the norm

∥f∥2K “ min

$

&

%

M
ÿ

ℓ“1

∥fℓ∥2Kℓ

,

.

-

, (3.4)

where the minimum is taken over all decompositions f “
řM
ℓ“1 fℓ with fℓ P HKℓ

for
ℓ “ 1, . . . ,M .

Additionally, if the spaces HKℓ
for ℓ “ 1, . . . ,M are complemented, the Hilbert space

HK equals the orthogonal direct sum, i.e.,

HK “

M
à

ℓ“1

HKℓ
,

and

xf, gyK “

M
ÿ

ℓ“1

xfℓ, gℓyKℓ
,

where f “
řM
ℓ“1 fℓ and g “

řM
ℓ“1 gℓ, with fℓ, gℓ P HKℓ

for ℓ “ 1, . . . ,M , denote the
unique decomposition of f and g.



50 Chapter 3. Summation Kernels

Proof. The proof is carried out trough induction on M .

M “ 2: The base case is divided into tree steps. We introduce the outer sum H of HK1

andHK2 , and provide an isomorphism between a special subset of H and the Minkowski
sum HK1 ` HK2 in (i). The second step (ii) shows that the summation kernel K is the
reproducing kernel of HK1 ` HK2 . At last, step (iii) provides the norm statement.

(i) We define H as the Hilbert space of the outer sum regarding HK1 and HK2 , i.e.,

H :“ HK1 ˆ HK2 “ tpf1, f2q : fi P HKℓ
for ℓ “ 1, 2u,

where the inner product is given by

@

pf1, f2q, pg1, g2q
D

H
“ xf1, g1yK1

` xf2, g2yK2
and (3.5)

pf1 ` g1, f2 ` g2q “ pf1, f2q ` pg1, g2q for fℓ, gℓ P HKℓ
, ℓ “ 1, 2. (3.6)

Let H0 :“ HK1 X HK2 be the intersection of both component’s native spaces,
which is reduced to t0u in the additional assumption, then

H0 :“
␣

pf,´fq : f P H0

(

Ď H.

Let us additionally define a mapping φ onto the Minkowski sum HK1 ` HK2

φ : H ÝÑ HK1 ` HK2 , pf1, f2q ÞÝÑ f1 ` f2 “ f.

As the equation (3.6) holds, the mapping φ is linear. On the one hand, it follows
that H0 “ kerφ and hence it is a closed subspace of H. Then the space H can be
written as the orthogonal direct sum H “ H0 ‘ HK

0 , where H
K
0 Ď H denotes the

orthogonal complement of H0 in H. On the other hand, we get that φ restricted
to HK

0 is a bijective mapping. We denote

φ´1
pfq “ pf 1

1, f
1
2q P HK

0 for f P HK1 ` HK2 , (3.7)

and define the inner product on HK1 ` HK2 by

xf, gyHK1
`HK2

:“
@

pf 1
1, f

1
2q, pg1

1, g
1
2q
D

H
“
@

f 1
1, g

1
1

D

K1
`
@

f 1
2, g

1
2

D

K2
(3.8)

for f, g P HK1 ` HK2 , where the last equation is due to (3.5). This makes φ
restricted to HK

0 an isometric isomorphism.

With the additional assumption HK1 X HK2 “ t0u, it is H “ HK
0 . This makes φ

an isomorphism between H and HK1 ` HK2 . Therefore, (3.8) yields

xf, gyHK1
`HK2

“ xf1, g1yK1
` xf2, g2yK2

.
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(ii) We show that the summation kernel, Kpx, yq “ K1px, yq`K2px, yq for all x, y P Ω,
is the reproducing kernel of HK1 ` HK2 . Clearly it is

Kpx, ¨q “ K1px, ¨q ` K2px, ¨q P HK1 ` HK2 for all x P Ω.

We denote φ´1pKpx, ¨qq “
`

κ1px, ¨q, κ2px, ¨q
˘

P HK
0 . Since

K1px, ¨q ` K2px, ¨q “ Kpx, ¨q “ κ1px, ¨q ` κ2px, ¨q,

it follows
K1px, ¨q ´ κ1px, ¨q “ ´

`

K2px, ¨q ´ κ2px, ¨q
˘

and therefore
`

K1px, ¨q ´ κ1px, ¨q, K2px, ¨q ´ κ2px, ¨q
˘

P H0.

Let f P HK1 ` HK2 then the above yields

fpxq
(3.7)
“ f 1

1pxq ` f 1
2pxq

“
@

f 1
1, K1px, ¨q

D

K1
`
@

f 1
2, K2px, ¨q

D

K2

(3.5)
“

@

pf 1
1, f

1
2q, pK1px, ¨q, K2px, ¨qq

D

H

“
@

pf 1
1, f

1
2q, pκ1px, ¨q, κ2px, ¨qq

D

H

`
@

pf 1
1, f

1
2q, pK1px, ¨q ´ κ1px, ¨q, K2px, ¨q ´ κ2px, ¨qq

D

H

(3.8)
“

@

f,Kpx, ¨q
D

HK1
`HK2

,

since pf 1
1, f

1
2q P HK

0 and pK1px, ¨q ´ κ1px, ¨q, K2px, ¨q ´ κ2px, ¨qq P H0. As a conse-
quence, K is the reproducing kernel of HK1 `HK2 . By Theorem 2.22, the Hilbert
space HK1 `HK2 equals the native space HK and the inner products are the same,
i.e.,

x¨, ¨yK “ x¨, ¨yHK1
`HK2

.

Taking the additional assumption into account, we obtain HK “ HK1 ‘ HK2 by
Remark 3.8.

(iii) We intend a characterization of the norm∥¨∥HK
in HK without using the auxiliary

space H. Let f “ f1 ` f2 P HK1 ` HK2 , then

∥f1∥2K1
`∥f2∥2K2

“ xf1, f1yK1
` xf2, f2yK2

(3.5)
“

@

pf1, f2q, pf1, f2q
D

H

“
@

pf 1
1, f

1
2q, pf

1
1, f

1
2q
D

H

`
@

pf1 ´ f 1
1, f2 ´ f 1

2q, pf1 ´ f 1
1, f2 ´ f 1

2q
D

H

(3.8)
“ ∥f∥2K `

∥∥f1 ´ f 1
1 ` f2 ´ f 1

2

∥∥2

K
.

This shows
∥f∥2K “ min

!

∥f1∥2K1
`∥f2∥2K2

)

,

where the minimum is taken over all decompositions f “ f1 ` f2, where fℓ P HKℓ

for ℓ “ 1, 2.
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M Ñ M ` 1: Let K̃ “
řM
ℓ“1Kℓ and K “

řM`1
ℓ“1 Kℓ. Due to the induction hypothesis,

it is

HK̃ “

M
ÿ

ℓ“1

HKℓ
and

∥∥∥f̃∥∥∥2

K̃
“ min

$

&

%

M
ÿ

ℓ“1

∥fℓ∥2Kℓ

,

.

-

, (3.9)

where the minimum is taken over all decompositions f̃ “
řM
ℓ“1 fℓ P HK̃ , so that fℓ P HKℓ

for ℓ “ 1, . . . ,M . Analogue arguments as in (i) and (ii) provide

HK “ HK̃ ` HKM`1
“

M`1
ÿ

ℓ“1

HKℓ

and ∥f∥2K “ min

"∥∥∥f̃∥∥∥2

K̃
`∥fM`1∥2KM`1

*

for all f P HK , where the minimum is taken

over all representations f “ f̃ ` fM`1, where f̃ P HK̃ and fM`1 P HKM`1
. In fact, this

equals

∥f∥K “ min

$

&

%

M`1
ÿ

ℓ“1

∥fℓ∥Kℓ

,

.

-

,

where the minimum is taken over all decompositions f “
řM`1
ℓ“1 fℓ P f P HK , so that

fℓ P HKℓ
for ℓ “ 1, . . . ,M ` 1 by the induction hypothesis (3.9).

If the set of spaces tHKℓ
u
M`1
ℓ“1 is complemented, then in particular tHKℓ

uMℓ“1 is comple-
mented as well. By the induction hypothesis, it is

HK̃ “

M
à

ℓ“1

HKℓ
and

A

f̃ , g̃
E

K̃
“

M
ÿ

ℓ“1

xfℓ, gℓyKℓ
,

where f̃ “
řM
ℓ“1 fℓ, g̃ “

řM
ℓ“1 gℓ P HK̃ , with fℓ, gℓ P HKℓ

for ℓ “ 1, . . . ,M , denote the

unique decomposition of f̃ and g̃. As
řM
ℓ“1HKℓ

XHKM`1
“ t0u holds by the assumption,

analogue arguments as in (i) provide

HK “ HK̃ ‘ HKM`1
“

M`1
à

ℓ“1

HKℓ

and

xf, gyK “

A

f̃ , g̃
E

K̃
` xfM`1, gM`1yKM`1

“

M`1
ÿ

ℓ“1

xfℓ, gℓyKℓ
,

where unique representations of f and g are given by f “ f̃ ` fM`1 “
řM`1
ℓ“1 fℓ and

g “ g̃`gM`1 “
řM`1
ℓ“1 gℓ P HK , with f̃ , g̃ P HK̃ and fℓ, gℓ P HKℓ

for ℓ “ 1, . . . ,M`1. ■
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Each component kernel Kℓ of a summation kernel K can be connected to a mapping
from HK onto HKℓ

, see [Aro50, Part I, §7, Theorem IV].

Theorem 3.10. Let K be the reproducing kernel of HK, such that K can be decomposed
into symmetric and positive semi-definite kernels K1 and K2, i.e.,

K “ K1 ` K2.

Then, this decomposition corresponds to a decomposition of the identity operator
I : HK ÝÑ HK into positive operators L1 and L2

I “ L1 ` L2,

where
Lℓfpxq “

@

f,Kℓpx, ¨q
D

K
for ℓ “ 1, 2. (3.10)

Furthermore, it is ImpL
1{2
ℓ q “ HKℓ

with the norm
∥∥∥L1{2

ℓ f
∥∥∥
Kℓ

“∥f∥K for all f P HKℓ
for

ℓ “ 1, 2. The norm is well-defined since L
1{2
ℓ establishes a one-to-one correspondence

between the quotient space HKz kerpLℓq and HKℓ
for ℓ “ 1, 2.

Conversely, to each decomposition I “ L1 ` L2 of the identity operator in two positive

operators, it is ImpL
1{2
ℓ q “ HKℓ

with the norm
∥∥∥L1{2

ℓ f
∥∥∥
Kℓ

“∥f∥K for all f P HKℓ
, where

Kℓ “ LℓK for ℓ “ 1, 2. Furthermore, K “ K1 ` K2 holds.

Remark 3.11. In the setting of Theorem 3.10 it is HKℓ
Ď HK , by Theorem 3.9. We

directly deduce, that

HK “ HKℓ
‘ kerpLℓq for ℓ “ 1, 2.

Hence, HK is an orthogonal sum of HK1 and HK2 if and only if the following relations
hold

kerpL1q “ HK2 ðñ HK “ HK1 ‘ HK2 ðñ kerpL2q “ HK1 .

By the definition of the linear operator in (3.10), this is the case if and only if for
k, ℓ P t1, 2u with ℓ ‰ k,

xf,Kℓpx, ¨qyK “ 0 for all f P HKk
.

This in turn holds true if and only if

xf,Kℓpx, ¨qyK “ xf,Kℓpx, ¨qyKℓ
for all f P HKℓ

and ℓ “ 1, 2

by the proof of Theorem 3.9.

Complemented native spaces are advantageous as they provide a unique decompo-
sition, and hence a straightforward formula for the inner product of the summation
kernel’s Hilbert space, as demonstrated in Theorem 3.9. Characterizations for com-
plemented native spaces are extracted from the theory above and cumulated in the
subsequent theorem.
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Theorem 3.12. Let K be the summation kernel of the component kernels K1 and K2

which are symmetric positive semi-definite on Ω Ď Rd. Then, the following statements
are equivalent:

(i)
@

K1px, ¨q, K2py, ¨q
D

K
“ 0 for all x, y P Ω.

(ii) HK1 X HK2 “ t0u.

(iii) HK “ HK1 ‘ HK2.

(iv) Every f P HK can be uniquely decomposed into f “ f1 ` f2, where fℓ P HKℓ
for

ℓ “ 1, 2 and

xf, gyK “ xf1, g1yK1 ` xf2, g2yK2 ,

with f “ f1 ` f2 and g “ g1 ` g2.

(v) xKℓpx, ¨q, fyK “ xKℓpx, ¨q, fyKℓ
for all f P HKℓ

and all x P Ω, ℓ “ 1, 2.

(vi) There is a decomposition I “ L1 ` L2 of the identity operator in two positive
operators L1 and L2, that satisfy kerpLℓq “ HKk

for k, ℓ P t1, 2u with ℓ ‰ k.

Proof.

piq ñ piiq As the inner product is linear, we quickly see xf1, f2yK “ 0 for all fℓ P SKℓ,Ω,
ℓ “ 1, 2. This can be extended to all fl P HKℓ

, ℓ “ 1, 2, by the definition of the native
space. Then HK1 K HK2 and (ii) follows by Remark 3.8.
piiq ñ piiiq See Theorem 3.9.
piiiq ñ piiq For subspaces U,W of a vector space V , U ` W is an internal direct sum
if and only if U X W “ t0u, see [Axl15, Theorem 1.45].
piiiq ñ pivq See Definition 3.7 and Remark 3.8.
pivq ñ piq The unique decomposition of K1px, ¨q and pK2qpy, ¨q consists of the kernels
themselves and the zero function in the respective spaces. This yields

xK1px, ¨q, K2py, ¨qyK “ xK1px, ¨q, 0yK1 ` x0, K2py, ¨qyK2 “ 0.

pivq ñ pvq For any f P HK1 Ď HK its unique decomposition is given by f`0 “ f P HK .
Let f P HK1 , then

@

K1px, ¨q, f
D

K
“
@

K1px, ¨q, f
D

K1
` x0, 0yK2

.

pvq ñ piiiq See Remark 3.11.
piiiq ô pviq See the second statement of Theorem 3.10 and Remark 3.11. ■

Remark 3.13. The above statements can be generalized to arbitrary, but finite sums
using induction.
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3.2.2 Subsets

The relation between summation kernels and the concept of subsets of RKHS is signif-
icant. We introduce results of [Aro50] (Theorem 3.16 and 3.17) and establish the order
‘À’ (Definition 3.19) on the space of native spaces (and equivalently on the space of
symmetric positive definite kernels). This order provides insights into the relationship
between component kernels and their summation kernels (Theorem 3.25). Furthermore,
we draw a link to Sobolev spaces in this section, and illuminate the relation between
the Matérn and Wendland kernels in Corollary 3.18 and Corollary 3.24 as they are both
reproducing to Sobolev spaces.

We begin this section with a definition from [Aro50, Part I, §7].

Definition 3.14. LetK1 andK2 be symmetric positive semi-definite kernels. IfK2´K1

is a symmetric positive semi-definite kernel, we denote

K1 ! K2.

With this definition at hand, we deduce the following statements.

Lemma 3.15. Let K1 and K2 be symmetric positive semi-definite kernels.

(i) K1 ! K2 if and only if the inequality

0 ď

N
ÿ

i“1

N
ÿ

j“1

cicjK1pxi, xjq ď

N
ÿ

i“1

N
ÿ

j“1

cicjK2pxi, xjq (3.11)

holds for any finite pairwise distinct data set tx1, . . . , xNu “ X Ď Ω and c P RN .

(ii) The relation ‘!’ partially orders the set of symmetric positive semi-definite ker-
nels.

(iii) Let K1 ! K2, then aK1 ! K2 for every 0 ď a ď 1 and K1 ! bK2 for every b ě 1.

Proof. The first statement piq follows directly from Definition 2.7 and Definition 3.14.
We check the requirements for a partial order to show piiq.

1. Reflexivity: K ! K holds, as K ´ K “ 0 is symmetric positive semi-definite.

2. Antisymmetry: Let K1 ! K2 and K2 ! K1. With X “ txu, c “ 1 and (3.11) we
deduce

K1px, xq ď K2px, xq (and ě).

Hence, K1px, xq “ K2px, xq for every x P Ω. With X “ tx, yu, c “ p1, 1qT and
(3.11) it is

K1px, xq ` 2K1px, yq ` K1py, yq ď K2px, xq ` 2K2px, yq ` K2py, yq (and ě).

We reduce this inequality to K1px, yq ď K2px, yq (and ě) as K1px, xq “ K2px, xq

for all x P Ω. Which proves K1px, yq “ K2px, yq for all x, y P Ω.
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3. Transitivity: Let K1 ! K2 and K2 ! K3. By (3.11) it is

0 ď

N
ÿ

i“1

N
ÿ

j“1

cicjK1pxk, xlq ď

N
ÿ

i“1

N
ÿ

j“1

cicjK2pxk, xlq ď

N
ÿ

i“1

N
ÿ

j“1

cicjK3pxk, xlq.

This proves K1 ! K3.

To show the third result piiiq we use (3.11) to gain aK1 ! K2 and K1 ! bK2 for
0 ď a ď 1 and b ě 1. The transitivity of ‘!’ yields the desired result. ■

The relation ‘!’ between to kernels provides information about the relation between
the corresponding RKHSs. We state [Aro50, Part I, §7 Theorem I].

Theorem 3.16. Let K1 and K2 be reproducing kernels of the spaces HK1 and HK2 and
let K1 ! K2. Then HK1 Ď HK2 and ∥f∥K1

ě∥f∥K2
for every f P HK1.

In Lemma 2.29 we saw, that kernels which only differ by a constant factor reproduce
the same set of functions. However, this relation is not sufficient. The Wendland and
Matérn kernels, introduced in Section 2.3.4, are both reproducing kernels of Sobolev
spaces with equivalent norms. To be more precise, the kernels corresponding to the
RBFs ψℓ (Matérn kernel, Tab. 2.1) and ϕd,ℓ (Wendland kernel, Tab. 2.2) are both

reproducing kernels of the Sobolev space W
d`1
2

`ℓpRdq and their native spaces have
equivalent norms. But, as the Wendland kernel has compact support and the Matérn
kernel does not, they cannot be multiplicands of one another. Nevertheless, we deduce
a relation between the two kernels in Corollary 3.24. To do so, we need [Aro50, Part I,
§7, Theorem II] stated below.

Theorem 3.17. Let the Hilbert space H with the norm∥¨∥ be a subset of HK2, such that
∥f∥ ě ∥f∥K2

for every f P H. Then, H possesses a reproducing kernel K1 satisfying
K1 ! K2.

With Theorem 3.17, we can deduce a relation between the Matérn kernels corre-
sponding to ψ0 and ψ1. Since the norms ∥¨∥ψℓ

and ∥¨∥
W

d`1
2 `ℓ are equivalent for ℓ P N0,

there exist positive constants a, c and C, so that the equations

∥¨∥cψℓ
“

1

c
∥¨∥ψℓ

ď∥¨∥
W

d`1
2 `ℓ ď a∥¨∥

W
d`1
2 `m ď

a

C
∥¨∥ψm

“∥¨∥C
a
ψm

and
HC

a
ψm

“ Hψm “ W
d`1
2

`m
Ď W

d`1
2

`ℓ
“ Hψℓ

“ Hcψℓ

hold for all ℓ,m P N0 with ℓ ď m. Applying Theorem 3.17 on the special case of the
Matérn kernels ψℓ results in the following relation, and holds by analogue arguments
for Wendland kernels ϕℓ,d as well.

Corollary 3.18. For all ℓ,m P N0 with ℓ ď m there exists a constant C ą 0, so that
the Matérn kernels satisfy ψℓ ! Cψm.
For all d P N and ℓ,m P N0 with ℓ ď m there exists a constant C ą 0, so that the
Wendland kernels satisfy ϕℓ,d ! Cϕm,d.
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To simplify notations, we introduce a relation on the set of Hilbert spaces, dating
back to [Sch64, Chapter 7], as well as a relation on the set of reproducing kernels.

Definition 3.19. Let H1 and H2 be Hilbert spaces. If H1 Ď H2 and c ∥f∥1 ě∥f∥2 for
a constant c ą 0 and all f P H1, we denote

H1 À H2.

Let K1 and K2 be symmetric positive semi-definite kernels. If cK2 ´ K1 is a positive
semi-definite kernel for a constant c ą 0, we denote

K1 À K2.

The relation ‘À’ is reflexive and transitive for both, the set of Hilbert spaces and
the set of reproducing kernels. Hence, it defines a preorder on both sets. We derive
equivalence statements of these preorders, by summarizing results of [Aro50], [Ylv62]
and [Dri73].

Theorem 3.20. Let the kernels K1 and K2 be reproducing kernels to the Hilbert spaces
pH1, ∥¨∥1q and pH2, ∥¨∥2q respectively. Then, the following statements are equivalent:

(i) H1 À H2.

(ii) K1 À K2.

(iii) Let
´

řNpnq

i“1 cipnqK2p¨, xipnqq

¯

nPN
be a Cauchy sequence in H2, then

´

řNpnq

i“1 cipnqK1p¨, xipnqq

¯

nPN
is a Cauchy sequence in H1.

(iv) There is a bounded linear operator L : H2 ÝÑ H1 such that LK2px, ¨q “ K1px, ¨q
for every x.

Proof. The equivalence of piq and piiq is a direct consequence of Theorem 3.16 and
Theorem 3.17, and can be found in [Aro50, Part I, §13, Corollary IV2]. The equivalence
of piiiq can be shown using Theorem 3.9 and the reproducing property. For details,
we refer to [Ylv62, Theorem 2.4]. The connection to pivq was first drawn in [Dri73,
Theorem 1]. This result can be established by applying Theorem 3.10. ■

Remark 3.21. Every preorder gives rise to a reflexive, symmetric and transitive equiv-
alence relation. We define the equivalence relation ‘„’ on Hilbert spaces by

H1 „ H2 if and only if H1 À H2 and H2 À H1.

In particular, the equivalence relation ‘„’ holds for the RKHSsHK1 andHK2 if and only
if their corresponding reproducing kernels K1 and K2 fulfill the equivalence relation ‘„’
defined by

K1 „ K2 if and only if K1 À K2 and K2 À K1.

This is a direct consequence of Theorem 3.20.
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Equipped with these definitions we deduce the following equivalence statements
from Theorem 3.20.

Lemma 3.22. Let the kernels K1 and K2 be reproducing to the Hilbert spaces pH1, ∥¨∥1q
and pH2, ∥¨∥2q, respectively. Then, the following statements are equivalent:

(i) H1 „ H2

(ii) K1 „ K2

(iii)
´

řNpnq

i“1 cipnqK1p¨, xipnqq

¯

nPN
is a Cauchy sequence in pH1, ∥¨∥1q if and only if

´

řNpnq

i“1 cipnqK2p¨, xipnqq

¯

nPN
is a Cauchy sequence in pH2, ∥¨∥2q.

Remark 3.23. We want to emphasize the finding of [Aro50, Corollary IV1, §13] relying on
the above equivalent statements piq and piiq. If two kernels K1 and K2 are reproducing
to the same set of functions HK1 “ HK2 , their corresponding native space norms are
equivalent, i.e., there exists constants c, C ą 0 so that c∥¨∥K1

ď∥¨∥K2
ď C∥¨∥K1

.

This remark, applied to the Wendland and Matérn kernel ϕd,ℓ and ψℓ, gives the
following.

Corollary 3.24. For d P N, m P N0 and d ě 3 if ℓ “ 0 it is ϕd,ℓ „ ψℓ.

Proof. The kernels corresponding to the radial functions ϕd,ℓ and ψℓ reproduce the

same Sobolev space W
d`1
2

`ℓpRdq, where d P N, ℓ P N0 and d ě 3 if ℓ “ 0, with norms
equivalent to the Sobolev space norm. Hence, the norms ∥¨∥ϕd,ℓ and ∥¨∥ψℓ

induced by
the kernel functions are equivalent as well. Lemma 3.22 yields the statement. ■

The classification of reproducing kernels into equivalence classes is important for
assessing whether adding kernels to a summation kernel is reasonable.

Theorem 3.25. Let K1 and K2 be reproducing kernels and K “ K1 ` K2 their sum-
mation kernel. Then the following statements hold true:

(i) K1 À K and K2 À K.

(ii) From K1 À K2 follows K „ K2.

(iii) From K1 „ K2 follows K „ K1 „ K2.

Proof. The first finding piq is given by Theorem 3.9 and Definition 3.14. Let K1 À K2

then C K2 ´ K1 is a symmetric positive semi-definite kernel for a constant C ą 0.
Adding and subtracting K2 gives that pC ` 1qK2 ´ pK1 ` K2q “ pC ` 1qK2 ´ K is a
symmetric positive semi definite kernel. This yields

K “ K1 ` K2 ! pC ` 1qK2

and henceK À K2. Together withK2 À K of piq, this impliesK „ K2 and piiq is shown.
If additionally K2 À K1 is given, as in piiiq, analogue arguments show K „ K1. ■
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It is worth mentioning that the equivalence class of a kernel is invariant under the
summation with a kernel of a smaller class. Consequently, the summation of kernels
that do not stand in the ‘À’ relation is of particular interest. Because, in that case the
summation kernel belongs to a third larger equivalence class and is hence reproducing
to a strict superset of every component kernels’ native space.

3.2.3 Intersections

Next, we study the intersection of two native spaces. In Theorem 3.26 we show that
the intersection is again a RKHS and examine the relation of its so-called intersection
kernel to the initial ‘superior’ reproducing kernels. In Theorem 3.27 we provide norm
estimates for functions lying in the intersection.

Theorem 3.26. Let K and K 1 be symmetric positive semi-definite kernels. Then, there
exists a unique symmetric positive semi-definite kernel κ1, called intersection kernel,
such that

Hκ1 “ HK X HK1 (3.12)

and
xf, gyκ1 “ xf, gyK ` xf, gyK1 (3.13)

holds for all f, g P Hκ1. Additionally,

(i) κ1 ! K and κ1 ! K 1.

(ii) The intersection is trivial HK X HK1 “ t0u if and only if the intersection kernel
κ1 ” 0.

(iii) There exist positive semi-definite kernels κ2 and κ1
2 such that

K “ κ1 ` κ2 and K 1
“ κ1 ` κ1

2, (3.14)

and
Hκ2 X Hκ1

2
“ t0u. (3.15)

(iv) From K À K 1 follows κ1 „ K.

(v) From K „ K 1 follows κ1 „ K „ K 1.

Proof. The intersection equipped with the inner product xf, gy :“ xf, gyK ` xf, gyK1

and norm ∥f∥2 “ xf, fy forms a Hilbert space. Furthermore, HK X HK1 is a subset of
HK and HK1 . Since ∥f∥ ě ∥f∥K and ∥f∥ ě ∥f∥K1 for every function f P HK X HK1 ,
the requirements of Theorem 3.17 are satisfied. Applying it on HK and HK1 gives the
existence of two reproducing kernels for

`

HK X HK1 , ∥¨∥
˘

. By Theorem 2.22, they must
be equal and will be denoted here as κ1. Hence, (3.12) holds since

xf, gyκ1 “ xf, gy “ xf, gyK ` xf, gyK1 .
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(i) follows directly from the above construction and Theorem 3.17.

(ii) The statement follows from (3.12). Either the right-hand side equals t0u, hence
t0u “ Hκ1 and κ1 ” 0 follows, or κ1 ” 0 holds and therefore

t0u “ Hκ1 “ HK X HK1 .

(iii) Because of piq, the kernels κ2 :“ K´κ1 and κ
1
2 :“ K 1 ´κ1 are symmetric positive

semi-definite. If Hκ2 X Hκ1
2

‰ t0u then κ1 was no intersection kernel as its native
space did not cover the whole intersection HK X HK1 .

(iv) Since K À K 1 we have HK Ď HK1 , by Remark 3.21. This implies the intersection
space to be Hκ1 “ HK and by the construction of κ1 it is∥¨∥κ1 ě∥¨∥K which gives
the relation Hκ1 „ HK and hence κ1 „ K.

(v) is a direct consequence of pivq.

■

We remark that the intersection kernel κ1 of K and K 1 belongs to third and smaller
equivalence class of kernels if the initial kernels K and K 1 are not ordered by the ‘À’
relation. Examining Theorem 3.26 and its proof, we observe that ∥f∥κ1 ě ∥f∥K and
∥f∥κ1 ě∥f∥K1 for all f P Hκ1 . We aim at developing a relation between∥f∥K and∥f∥K1 .
Note that the orthogonality requirements of the upcoming theorem can be replaced by
any of the equivalent statements of Theorem 3.12.

Theorem 3.27. Let K and K 1 be symmetric positive semi-definite kernels on Ω and
κ1 their intersection kernel, so that

K “ κ1 ` κ2 and K 1
“ κ1 ` κ1

2,

with positive semi-definite kernels κ2, κ
1
2.

(i) From HK “ Hκ1 ‘ Hκ2 follows ∥f∥K ě∥f∥K1 for all f P Hκ1 .

(ii) Let piq and additionally HK1 “ Hκ1 ‘ Hκ1
2
hold. Then, ∥f∥K “ ∥f∥K1 for all

f P Hκ1.

Proof. By Theorem 3.9 it is ∥f∥K “∥f∥κ1 for all f P Hκ1 and from the same theorem
we deduce ∥f∥κ1 ě ∥f∥K1 for all f P Hκ1 . This yields the first statement. The second
follows by the additional assumption ∥f∥K1 “∥f∥κ1 for all f P Hκ1 holds.

■

3.2.4 Infinite Sums and Mercer’s Theorem

In this section, we establish a link between the famous Mercer theorem and summation
kernels. To do so, we begin by examining infinitely countable orthogonal decompo-
sitions of native spaces in Theorem 3.28, finding that the corresponding reproducing
kernel can be expressed as an infinitely countable sum of kernels. We then present the
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main result of J. Mercer from [Mer09] in Theorem 3.30, which promotes the infinitely
countable decomposition of a kernel. Finally, Lemma 3.34 demonstrates that this kernel
decomposition corresponds to an orthogonal decomposition of the kernel’s native space.

N. Aronszajn demonstrates that if a RKHS with reproducing kernel K can be de-
composed into complemented subspaces, then there exist reproducing kernels K1 and
K2 for those subspaces so thatK “ K1`K2 (cf. [Aro50, Part I, §12] and Theorem 3.10).
Subsequently, this statement is extended to countable infinite sums.

Theorem 3.28. Let K be bounded symmetric positive semi-definite on Ω, Hℓ subspaces
of HK, and

HK “

8
à

ℓ“1

Hℓ “

#

8
ÿ

ℓ“1

fℓ : fℓ P Hℓ for ℓ P N

+

.

Then there exist symmetric positive semi-definite kernels Kℓ for ℓ P N, so that

Kpx, yq “

8
ÿ

ℓ“1

Kℓpx, yq and
`

Hℓ, x¨, ¨yK
˘

“
`

HKℓ
, x¨, ¨yKℓ

˘

Furthermore,
ř8

ℓ“1K
2
ℓ px, yq ă 8 for all x, y P Ω.

Proof. Let f “
ř8

ℓ“1 fℓ, g “
ř8

ℓ“1 gℓ be the unique representations of f, g P HK with
fℓ, gℓ P Hℓ for ℓ P N. Then,

xf, gyK “

C

8
ÿ

ℓ“1

fℓ,
8
ÿ

ℓ“1

gℓ

G

K

“

8
ÿ

ℓ“1

xfℓ, gℓyK ,

by the orthogonality assumption. This implies convergence

8
ÿ

ℓ“1

∥fℓ∥2K “∥f∥2K ă 8. (3.16)

Let x P Ω be arbitrarily chosen and kxℓ P Hℓ for ℓ P N be the unique functions representig
Kpx, ¨q P HK , so that

Kpx, ¨q “

8
ÿ

ℓ“1

kxℓ . (3.17)

It follows that

fℓpxq “ xfℓ, Kpx, ¨qyK “ xfℓ, k
x
ℓ yK `

8
ÿ

m“1,m‰ℓ

x0, kxmyK “ xfℓ, k
x
ℓ yK for all fℓ P Hℓ.

We define Kℓpx, ¨q :“ kxℓ for all x P Ω and ℓ P N. Hence, Kℓ is the reproducing kernel of
the Hilbert space pHℓ, x¨, ¨yKq. By the uniqueness properties of reproducing kernels of
Theorem 2.22, it is pHℓ, x¨, ¨yKq “ pHKℓ

, x¨, ¨yKℓ
q. Consequently, (3.16) and (3.17) turn

into

∥f∥2K “

8
ÿ

ℓ“1

∥fℓ∥2Kℓ
and Kpx, yq “

8
ÿ

ℓ“1

Kℓpx, yq.
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This finding and the Cauchy-Schwarz inequality yield

8
ÿ

ℓ“1

K2
ℓ px, yq “

8
ÿ

ℓ“1

|xKℓpx, ¨q, Kℓpy, ¨qyKℓ
|
2

ď

8
ÿ

ℓ“1

∥Kℓpx, ¨q∥2Kℓ
∥Kℓpy, ¨q∥2Kℓ

ď

8
ÿ

ℓ“1

∥Kℓpx, ¨q∥2Kℓ

8
ÿ

ℓ“1

∥Kℓpy, ¨q∥2Kℓ

“ ∥Kpx, ¨q∥K∥Kpy, ¨q∥K
“ Kpx, xqKpy, yq ă 8 for all x, y P Ω.

■

We obtain a formula for the component kernels in the case of separable native spaces,
see [BTA11, Theorem 14].

Lemma 3.29. Let HK be a separable native space with countable orthonormal basis
teℓuℓPN and bounded reproducing kernel K, then there exist an orthogonal decomposition
so that

HK “

8
à

ℓ“1

HKℓ
,

where Kℓpx, yq “ eℓpxqeℓpyq for a countable orthonormal basis teℓuℓPN of HK. Further-
more,

Kpx, yq “

8
ÿ

ℓ“1

Kℓpx, yq “

8
ÿ

ℓ“1

eℓpxqeℓpyq and

8
ÿ

ℓ“1

e2ℓpxqe2ℓpyq ă 8 for all x, y P Ω.

Proof. As HK is a separable Hilbert space it has a countable orthonormal basis teℓuℓPN.

Let ℓ P N, then the subset spanteℓu
K

Ă HK , equipped with the same inner product

x¨, ¨yK , forms a Hilbert space. By Theorem 3.17, spanteℓu
K

is a reproducing kernel
Hilbert space, and we denote its reproducing kernel with Kℓ. Hence,

HK “

8
à

ℓ“1

spanteℓu
K

“

8
à

ℓ“1

HKℓ

and as f “
ř8

ℓ“1xf, eℓyKeℓ with absolute convergence (basic functional analysis) for all
f P HK it is

xf, gyK “

C

8
ÿ

ℓ“1

xf, eℓyKeℓ, g

G

K

“

8
ÿ

ℓ“1

xfℓ, gyK “

8
ÿ

ℓ“1

8
ÿ

m“1

xfℓ, gmyK “

8
ÿ

ℓ“1

xfℓ, gℓyK ,

where fℓ “ xf, eℓyKeℓ and gℓ “ xg, eℓyKeℓ P HKℓ
for all ℓ P N and the last equation

holds because of the orthogonality.
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Furthermore, it is

Kℓpx, yq “
@

Kℓpx, ¨qK , eℓ
D

K
eℓpyq “ eℓpxqeℓpyq,

where the first equality holds by Definition 2.20 as Kℓpx, ¨q P spanteℓu
K
, and basic

properties of orthonormal bases in Hilbert spaces. The second equality is due to the
fact that the kernel Kℓ is reproducing regarding the inner product x¨, ¨yK . Together
with Theorem 3.28, this implies the last required statement. ■

The lemma above directs our attention to Mercer’s Theorem first published by
J. Mercer in 1909 (cf. [Mer09]). We state the version of [Wen05, p. 154f]. Let T denote
the compact Hilbert-Schmidt integral operator

T fpxq “

ż

Ω

Kpx, yqfpyqdy, (3.18)

that maps L2pΩq continuously to HK,Ω, if K was a symmetric positive semi-definite
kernel on the compact set Ω.

Theorem 3.30 (Mercer’s Theorem). Let K be a continuous symmetric positive semi-
definite kernel on the compact set Ω. Then

Kpx, yq “

8
ÿ

ℓ“1

λℓ eℓpxqeℓpyq, (3.19)

where λℓ ě 0 are the eigenvalues of the continuous eigenfunctions eℓ regarding T and
the set of functions teℓu

8
ℓ“1 forms an orthonormal basis of L2pΩq. The convergence is

absolute and uniform.

So far, we have shown that an infinite orthogonal decomposition of a RKHS corre-
spond to a kernel, which is the infinite sum of the corresponding component reproducing
kernels. Now, we ask whether from an infinite kernel representation, as Mercer’s theo-
rem suggests, it follows that the associated RKHS can be decomposed into an infinite
orthogonal sum of RKHSs. To answer this, we need Lemma 3.31 stating that the in-
finite sum of positive semi-definite kernels remains positive semi-definite. Then, it is
possible to deduce Theorem 3.32 as the infinite version of Theorem 3.9. At the end of
this section, we analyze the orthogonality of the component native spaces corresponding
to the representation of Mercer’s theorem.

Lemma 3.31. Let Kℓ be positive semi-definite kernels on Ω for ℓ P N such that
Kpx, yq “

ř8

ℓ“1Kℓpx, yq convergences absolutely for all x, y P Ω. Then the kernel K
is positive semi-definite.
Additionally, if at least one Kℓ is positive definite, the kernel K positive definite.

Proof. Let X “ tx1, . . . , xNu Ă Ω be a pairwise distinct point set. The positive semi-
definiteness requirement yields

N
ÿ

i,j“1

cicjKℓpxi, xjq ě 0 for all c “ pc1, . . . , cNq
T

P RN and ℓ “ 1, . . . ,M.
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Because of the absolute convergence, we can interchange the sums to obtain

0 ď

8
ÿ

ℓ“1

N
ÿ

i,j“1

cicjKℓpxi, xjq “

N
ÿ

i,j“1

cicj

8
ÿ

ℓ“1

Kℓpxi, xjq “

N
ÿ

i,j“1

cicjKpxi, xjq ă 8.

The additional statement directly follows from the findings above, as ‘ď’ can be replaced
by ‘ă’. ■

Now that we understand the circumstances under which countable summation ker-
nels are positive semi-definite, we can turn our attention to the structure of their native
spaces. Next we show, that the native space of a countable summation kernel is given
by the countable sum of its components’ native spaces. This is the same result as The-
orem 3.9 states, but now for a countably infinite many component kernels. The proof
is similar to the one in the finite setting. Therefore, we solely focus on the differing
details in the proof given below.

Theorem 3.32. Let Kℓ be symmetric positive semi-definite kernels on Ω for ℓ P N,
such that Kpx, yq “

ř8

ℓ“1Kℓpx, yq convergences absolutely for all x, y P Ω. Then

HK “

#

ÿ

ℓPN

fℓ : fℓ P HKℓ
for ℓ P N and

ÿ

ℓPN

∥fℓ∥2Kℓ
ă 8

+

and the norm is given by

∥f∥2K “ min

#

ÿ

ℓPN

∥fℓ∥2Kℓ

+

,

where the minimum is taken over all decomposition
ř

ℓPN fℓ of f P HK, with fℓ P HKℓ

for ℓ P N.

Additionally, let KI :“
ř

ℓPI Kℓ for an index set I Ă N and

HKI
X HKNzI

“ t0u for all index sets I Ă N.

Then

HK “

#

f “
ÿ

ℓPN

fℓ : fℓ P HKℓ
for ℓ P N and

ÿ

ℓPN

∥fℓ∥2Kℓ
ă 8

+

,

so that the representation
ř

ℓPN fℓ of f P HK is uniquely determined, and the inner
product is given by

xf, gyK “
ÿ

ℓPN

xfℓ, gℓyKℓ
,

where
ř

ℓPN fℓ and
ř

ℓPN gℓ are the unique representations of f and g P HK.

Proof. Just as in the proof of Theorem 3.9 that considers the final case, we divide the
proof into three steps.
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(i) We define the set of series

H :“

#

pfℓqℓPN : fℓ P HKℓ
and

ÿ

ℓPN

∥fℓ∥2Kℓ
ă 8

+

.

Equipped with the inner product

xpfℓqℓPN, pgℓqℓPNyH :“
8
ÿ

ℓ“1

xfℓ, gℓyKℓ
,

H forms a Hilbert space. Furthermore, we define the mapping φ

φ : H ÝÑ G :“

#

ÿ

ℓPN

fℓ : fℓ P HKℓ
for ℓ P N and

ÿ

ℓPN

∥fℓ∥2Kℓ
ă 8

+

,

pfℓqℓPN ÞÝÑ
ÿ

ℓPN

fℓ.

The kernel space kerpφq consists of the series pfℓqℓPN such that
ř

ℓPN fℓ “ 0. This
is the case, if and only if there exists an index set I Ď N so that

ÿ

ℓPI

fℓ “ ´
ÿ

ℓPNzI

fℓ.

We denote kerφ “ H0 Ď H, then H0‘HK
0 “ H where HK

0 denotes the orthogonal
complement of H0 in H. With this φ |HK

0
is bijective and we denote

φ´1
pfq “ pf 1

ℓqℓPN P HK
0 .

We equip the sum G with the inner product

xf, gyG :“ xpf 1
ℓqℓPN, pg

1
ℓqℓPNyH “

8
ÿ

ℓ“1

xf 1
ℓ, g

1
ℓyKℓ

,

which makes φ |HK
0
an isomorphism between HK

0 and G.

(ii) Since
ř

ℓPNKℓ “ K converges absolutely and Kℓpx, xq “ ∥Kℓpx, ¨q∥2Kℓ
for ℓ P N,

we deduce K P G. Furthermore, we denote φ´1pKpx, ¨qq “ pκℓqℓPN P HK
0 . Then

8
ÿ

ℓ“1

Kℓpx, ¨q “

8
ÿ

ℓ“1

κℓpx, ¨q

and since

K1px, ¨q ´ κ1px, ¨q “ ´

˜

8
ÿ

ℓ“2

Kℓpx, ¨q ´ κℓpx, ¨q

¸

,

we deduce pKℓ ´ κℓqℓPN P H0. Analogously to the proof of Theorem 3.9 we obtain
that

fpxq “ xf,Kpx, ¨qyG for all f P G.

This makes K the reproducing kernel of G equipped with the inner product
x¨, ¨yK “ x¨, ¨yG.
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(iii) Again an analogue computation as in the proof of Theorem 3.9 yields

ÿ

ℓPN

∥fℓ∥2Kℓ
“∥f∥2K `

∥∥∥∥∥ÿ
ℓPN

pfℓ ´ f 1
ℓq

∥∥∥∥∥
2

K

.

Therefore, the required relation of the norms hold.

Taking the additional assumption into account, we obtain

kerφ “

$

&

%

pfℓqℓPN :
ÿ

ℓPI

fℓ “ ´
ÿ

ℓPNzI

fℓ

,

.

-

“ t0u Ă H,

as
ř

ℓPI fℓ “ ´
ř

ℓPNzI fℓ P HKI
X HKNzI

“ t0u. Then, H “ HK
0 and therefore the

required statements hold true. ■

Let us return to the representation of K given in Mercer’s theorem (Theorem 3.30).
In order to apply Theorem 3.32, positive semi-definiteness of the component kernels
Kℓpx, yq :“ λℓeℓpxqeℓpyq is required for every ℓ P N.

Lemma 3.33. Let ψ : Ω ÝÑ R be a function on Ω Ď Rd. Then, the composition
Kpx, yq “ ψpxqψpyq is a positive semi-definite kernel on Ω.

Proof. Let tx1, . . . , xNu “ X be a set of points. The interpolation matrix AK,X is the

dyadic product of
`

ψpx1q, . . . , ψpxNq
˘

P RN and itself with entries
`

ψpxiqψpxjq
˘N

i,j“1
.

Therefore, we can deduce positive semi-definiteness as

N
ÿ

i,j“1

cicjKpxi, xjq “

N
ÿ

i,j“1

cicjψpxiqψpxjq “

∥∥∥`ciψpxiq
˘N

i“1

∥∥∥2

2
ě 0 for all c P RN .

■

Consequently, Mercer’s theorem provides an orthogonal decomposition of the initial
kernel’s native space, as proven below.

Lemma 3.34. Let K be a continuous symmetric positive semi-definite kernel on a
compact set Ω and

Kpx, yq “

8
ÿ

ℓ“1

λℓeℓpxqeℓpyq

its representation given in Theorem 3.30. If we denote Kℓpx, yq “ λℓeℓpxqeℓpyq, then

HK “

#

f “
ÿ

ℓPN

fℓ : fℓ P HKℓ
for ℓ P N and

ÿ

ℓPN

∥fℓ∥2Kℓ
ă 8

+

,

so that the representation
ř

ℓPN fℓ of f P HK is uniquely determined, and the inner
product is given by

xf, gyK “
ÿ

ℓPN

xfℓ, gℓyKℓ
,

where
ř

ℓPN fℓ and
ř

ℓPN gℓ are the unique representations of f and g P HK.
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Proof. We deduce that the components Kℓpx, yq “ λℓeℓpxqeℓpyq given by Mercer’s theo-
rem are positive semi-definite kernels on Ω for ℓ P N. This is due to λℓ ě 0, Lemma 2.8,
and Lemma 3.33. It enables us to apply Theorem 3.32 and hence decompose the native
space HK of K “

ř

ℓPNKℓ into the infinite sum of HKℓ
for ℓ P N.

Let us now consider the additional orthogonality requirement of Theorem 3.32. The
question is whether

HKI
X HKNzI

“ t0u for all index sets I Ă N,

where KI :“
ř

ℓPI Kℓ. We recall the definition of a native space for a given kernel K
provided in Theorem 2.24:

HK “
␣

f is the pointwise limit of a Chauchy sequence psnqNPN Ă SK
(

.

In our special situation, it is

SKI
“ span

␣

KIpx, ¨q : x P Ω
(

“ span

#

ÿ

ℓPI

λℓeℓpxqeℓp¨q : x P Ω

+

Ă span teℓ : ℓ P Iu .

From pointwise convergence follows L2 convergence, and we obtain

HKI
Ă span teℓ : ℓ P Iu

L2

for all intex sets I Ă N.

We conclude,

HKI
X HKNzI

Ă span teℓ : ℓ P Iu
L2

X span
␣

eℓ : ℓ P NzI
(L2

“ t0u,

where the last equation holds by the fact that the set of functions teℓuℓPN forms an
orthonormal basis of L2pΩq.

■

3.3 Interpolation

In the following, we offer a theoretical examination of interpolation using summation
kernels. At this juncture, we emphasize that the summation kernel can be viewed
as a conventional positive definite kernel (maybe even translation-invariant or radially
symmetric), allowing the application of the results from Section 2.4.

Initially, we investigate the relationship between the interpolants corresponding to
component kernels and the one corresponding to their summation kernel. We dis-
cover that, in terms of approximation error minimization, it is most advantageous to
interpolate with a kernel whose native space is just large enough to encompass the
target function, as discussed in Section 3.3.1. All interpolants associated with kernels
that reproduce a larger native space result in inferior approximations. Additionally,
Section 3.3.2 is dedicated to the numerical stability of the interpolation process with
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summation kernels. We find that the summation kernel exhibits the same level of
stability as its most stable component kernel in Theorem 3.40. The analyses in both
chapters lead to a trade-off principle between error and stability, which is summarized
in Remark 3.42. A smaller kernel yields a better approximation but possesses poorer
stability, whereas a larger kernel improves numerical stability at the expense of approx-
imation quality.

From now on we assume the component kernels to be positive definite so that the
summation kernel K is also positive definite by Theorem 3.2. Hence, it can uniquely
be interpolated as done in Section 2.1. In this section, we omit the subscript X in the
notation of the interpolant.

Let the function values fX P RN be known for a pairwise distinct point set
X “ tx1, . . . , xNu Ď Ω. Furthermore, let K “ K1 ` K2 be the summation kernel of
positive definite components K1 and K2, then the linear system

fX “ AK,Xc “ AK1,Xc ` AK2,Xc

has to be solved for c “ pc1, . . . , cNq P RN to derive the interpolant

sf,K “

N
ÿ

i“1

ciKpxi, ¨q “

N
ÿ

i“1

ciK1pxi, ¨q `

N
ÿ

i“1

ciK2pxi, ¨q,

where the right-hand side is a decomposition of sf,K P HK into

s1 :“
N
ÿ

i“1

ciK1pxi, ¨q P HK1 and s2 :“
N
ÿ

i“1

ciK2pxi, ¨q P HK2 .

In the following we are focusing on the case where the target function f lies in HK

and the kernels K1 and K2 correspond to complemented native spaces. This implies
that the target function can uniquely be decomposed into f1 P HK1 and f2 P HK2 so that
f “ f1 ` f2, by Theorem 3.9. In general however, the decomposition of the interpolant
sf,K P HK does not correspond to the interpolants sf1,K1 P HK1 and sf2,K2 P HK2 of f1
and f2, i.e.,

sf,K ‰ sf1,K1 ` sf2,K2 . (3.20)

Put differently, the equation

AK1,Xa ` AK2,Xa “ AK,Xa “ fX “ f1X ` f2X “ AK1,Xb ` AK2,Xc (3.21)

holds for possibly different coefficient vectors a, b and c. An example is given below.

Example 3.35. Let K1 and K2 be positive definite kernels, corresponding to comple-
mented native spaces. Furthermore, let the target function f “ K1px0, ¨q P HK and
K “ K1 `K2 be the summation kernel of K1 and K2. Additionally, let the data point
set be given by X “ tx0u. Then the interpolant corresponding to the function values
fX and kernel K is given by

sf,K “
K1px0, x0q

Kpx0, x0q
Kpx0, ¨q.
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As f “ K1px0, ¨q we can deduce that the unique decomposition f1 ` f2 of f , where
fℓ P HKℓ

for ℓ “ 1, 2, is given by f1 “ K1px0, ¨q P HK1 and f2 “ 0 P HK2 . Hence,

sf1,K1 “ K1px0, ¨q and sf2,K2 “ 0

are the uniquely defined interpolants in HK1 and HK2 . Consequently, the coefficient

vectors a, b and c of (3.21) are given by a “
K1px0,x0q

Kpx0,x0q
, b “ 1 and c “ 0. This results in

(3.20), i.e.,

sf,K “
K1px0, x0q

Kpx0, x0q
Kpx0, ¨q ‰ K1px0, ¨q “ sf1,K1 ` sf2,K2 .

Nevertheless, we can derive the following two relations between the interpolant
regarding the summation kernel and the one corresponding to its components.

Lemma 3.36. Let K1, K be symmetric positive definite kernels on Ω Ď Rd, such that
K1 ! K. Furthermore, let X Ď Ω be a set of pairwise distinct data points and fX
corresponding function values. Then,∥∥sf,K∥∥K ď

∥∥sf,K1

∥∥
K1
.

Proof. Since sf,K has minimal HK-norm of all functions of HK that interpolate fX by
Theorem 2.37, the interpolant sf,K1 lies in HK1 Ď HK , and it interpolates the function
values fX as well, the first inequality of∥∥sf,K∥∥K ď

∥∥sf,K1

∥∥
K

ď
∥∥sf,K1

∥∥
K1

holds. The second is given by Theorem 3.16. ■

Lemma 3.37. Let K1, K2 be symmetric positive definite kernels on Ω, K “ K1 ` K2

their summation kernel and f1 ` f2 “ f P HK the target function, where fℓ P HKℓ
for

ℓ “ 1, 2. Then ∥∥sf,K∥∥2

K
ď
∥∥sf1,K1

∥∥2

K1
`
∥∥sf2,K2

∥∥2

K2
.

Proof. The sum of the interpolants of sfℓ,Kℓ
P HKℓ

for ℓ “ 1, 2 is a function in HK by
Theorem 3.9, and fulfills the interpolation condition for f as

`

sf1,K1 ` sf2,K2

˘

|X “ sf1,K1 |X ` sf2,K2 |X “ f1|X ` f2|X “ f |X .

Since sf,K has minimal norm of all functions in HK that satisfy the interpolation con-
dition by Theorem 2.37, it is∥∥sf,K∥∥2

K
ď
∥∥sf1,K1 ` sf2,K2

∥∥2

K
“ min

!∥∥s1∥∥2

K1
`
∥∥s2∥∥2

K2

)

ď
∥∥sf1,K1

∥∥2

K1
`
∥∥sf2,K2

∥∥2

K2
,

where the minimum is taken over all representations s1 ` s2, with sℓ P HKℓ
for ℓ “ 1, 2,

so that sf1,K1 ` sf2,K2 “ s1 ` s2, see Theorem 3.9. ■
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3.3.1 Approximation Error

In Section 2.4.1, we observed that it is advantageous for error estimations if the target
function is contained within the native space associated with the kernel used for inter-
polation. However, it is not sensible, in terms of approximation error, to excessively
expand the kernel used for interpolation solely to ensure that the target function is
included in the corresponding native space. Theorem 3.38 and the following analysis
demonstrates this point. Additionally, we derive an upper bound on the summation
kernel’s power function in Lemma 3.39.

Example 3.35 given in the above section, hints at a better approximation error if
the target function f can be decomposed into f1 and f2 and the interpolation is done
separately and summed up at the end. In fact, we demonstrate in Theorem 3.38 that a
component-wise interpolation leads to a smaller error. Additionally, the theorem shows
that an interpolation carried out with a kernel whose native space just contains the
target function, but not more, provides the best approximation.

Theorem 3.38. Let K1 and K2 be complemented positive definite component kernels
and K “ K1 ` K2 their summation kernel. Let f P HK be given by the unique decom-
position f “ f1 ` f2, where fℓ P HKℓ

for ℓ “ 1, 2. Then,∥∥f1 ´ sf1,K1

∥∥2

K
`
∥∥f2 ´ sf2,K2

∥∥2

K
“
∥∥f1 ´ sf1,K1

∥∥2

K1
`
∥∥f2 ´ sf2,K2

∥∥2

K2
ď
∥∥f ´ sf,K

∥∥2

K
.

Proof. As sf,K “
ř

ciKpxi, ¨q P HK , its unique decomposition is given by

ÿ

ciK1pxi, ¨q `
ÿ

ciK2pxi, ¨q,

where
ř

ciKℓpxi, ¨q P HKℓ
for ℓ “ 1, 2. We compute∥∥f1 ´ sf1,K1

∥∥2

K
`
∥∥f2 ´ sf2,K2

∥∥2

K
“

∥∥f1 ´ sf1,K1

∥∥2

K1
`
∥∥f2 ´ sf2,K2

∥∥2

K2

ď

∥∥∥f1 ´
ÿ

ciK1pxi, ¨q
∥∥∥2

K1

`

∥∥∥f2 ´
ÿ

ciK2pxi, ¨q
∥∥∥2

K2

“

∥∥∥f1 ` f2 ´
ÿ

ciKpxi, ¨q
∥∥∥2

K

“
∥∥f ´ sf,K

∥∥2

K
,

where the fist inequality holds since the component kernels are complemented. The
second inequality holds as sfℓ,Kℓ

is the orthogonal projection of fℓ onto SKℓ,X by
Lemma 2.39, and

ř

ciKℓpxi, ¨q P SKℓ,X for ℓ “ 1, 2. The third equality holds by Theo-
rem 3.9. ■

The theorem states, that it is disadvantageous to interpolate in the large space HK

if the target function f is known to belong to the subspace HK1 . In this case, the unique
decomposition of f is given by f1 “ f P HK1 and f2 “ 0 P HK2 . Theorem 3.38 implies∥∥f ´ sf,K1

∥∥
K

“
∥∥f ´ sf,K1

∥∥
K1

ď
∥∥f ´ sf,K

∥∥
K
.
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This shows, the error can be expected to be smaller when interpolation is carried out
with K1 instead of K. Even more, Theorem 3.38 and the characterization of the power
function, given in Definition 2.27, imply

PK1,Xpxq
2

` PK2,Xpxq
2

“
∥∥K1p¨, xq ´ sK1px,¨q,K1

∥∥2

K1
`
∥∥K2p¨, xq ´ sK2px,¨q,K2

∥∥2

K2

ď
∥∥Kp¨, xq ´ sKpx,¨q,K

∥∥2

K

“PK,Xpxq
2.

Let a sequence of point sets tXnunPN be such that PK,Xn

nÑ8
ÝÑ 0, then PK1,Xnpxq2 ÝÑ 0

and PK2,Xnpxq2 ÝÑ 0. This hits at a faster convergence in smaller spaces, which is
well-known in the case of Sobolev spaces but not in the general setting presented here.

Lemma 3.39. Let Kℓ be translation-invariant kernels on a bounded set Ω Ď Rd satis-
fying an ICC, with univariate functions Φℓ P CpRdq for ℓ “ 1, . . . ,M . Let K be their
summation kernel on Ω and X Ă Ω be a finite pairwise distinct point set satisfying
hX,Ω ď h0. Then,

P 2
K,Xpxq ď FΦ,ΩphX,Ωq “

M
ÿ

ℓ“1

FΦℓ,ΩphX,Ωq for all x P Ω,

where the functions FΦ,Ω and FΦℓ,Ω come from Remark 2.44.

Proof. By Lemma 3.3, the summation Kernel K is translation-invariant with univariate
function Φ “

řM
ℓ“1Φℓ. We apply Theorem 2.43 and Remark 2.44, to obtain

P 2
K,Xpx̃q ď FΦ,ΩphX,Ωq “ c1 sup

xPBp0, 2c2hX,Ωq

|Φpxq ´ ppxq| for all x̃ P Ω,

where p is an arbitrary polynomial from πmpRdq. We split the right-hand side, so that
the following equation holds

P 2
K,Xpx̃q ď

M
ÿ

ℓ“1

c1 sup
xPBp0, 2c2hX,Ωq

|Φℓpxq ´ pℓpxq| for all x̃ P Ω,

where pℓ are arbitrary polynomials from πmpRdq and p “
řM
ℓ“1 pℓ. Since the constants

h0, c1 and c2 only depend on the ICC of Ω and not on the kernel, the bound of the
power function of the component kernels Kℓ is given by

FΦℓ,ΩphX,Ωq “ c1 sup
xPBp0, 2c2hX,Ωq

|Φℓpxq ´ pℓpxq| for all ℓ “ 1, . . . ,M,

where pℓ is an arbitrary polynomial from πmpRdq. Combining the two preceding equa-
tions, results in the required bound. ■
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3.3.2 Numerical Stability

The stability of an interpolation problem is mirrored by the condition number of the
interpolation matrix, as demonstrated in Section 2.4.2. Therefore, we study the small-
est and largest eigenvalues of sums of symmetric matrices to establish a bound on the
condition number corresponding to a summation kernel.

Theorem 3.40. Let Kℓ be positive definite kernels on Ω for ℓ “ 1, . . . ,M , K be their
summation kernel and X Ă Ω a pairwise distinct point set. Then

λmin

`

AK,X

˘

ě max
ℓPt1,...,Mu

!

λmin

`

AKℓ,X

˘

)

(3.22)

and

cond2pAK,Xq ď

M max
lPt1,...,Mu

␣

λmaxpAKℓ,Xq
(

max
ℓPt1,...,Mu

␣

λminpAKℓ,Xq
( .

Additionally, let ℓ0 P t1, . . . ,Mu satisfy

λmin

´

AKℓ0
,X

¯

“ max
ℓPt1,...,Mu

!

λmin

`

AKℓ,X

˘

)

and Kℓ0 be a translation-invariant kernel with univariate function Φℓ0 such that
xΦℓ0 P CpRdzt0uq. Then

λmin

`

AK,X

˘

ě GΦℓ0
pqXq,

where the function GΦℓ0
comes from Remark 2.49.

Proof. Let c P R|X|. As AK,X “
řM
ℓ“1AKℓ,X , we compute

@

c,AK,Xc
D

“

M
ÿ

ℓ“1

@

c,AKℓ,Xc
D

ě

M
ÿ

ℓ“1

λmin

`

AKℓ,X

˘

∥c∥2 .

Because the matrix AKℓ,X is positive definite for all ℓ “ 1, . . . ,M , we can deduce (3.22)
as a lower bound on the minimal eigenvalue

λmin

`

AK,X

˘

ě

M
ÿ

ℓ“1

λmin

`

AKℓ,X

˘

ě max
ℓPt1,...,Mu

!

λmin

`

AKℓ,X

˘

)

.

To obtain an upper bound on the maximal eigenvalue λmax

`

AK,X

˘

, we compute

@

c,AK,Xc
D

“

M
ÿ

ℓ“1

@

c,AKℓ,Xc
D

ď

M
ÿ

ℓ“1

λmax

`

AKℓ,X

˘

∥c∥2 .

This implies

λmax

`

AK,X

˘

ď

M
ÿ

ℓ“1

λmax

`

AKℓ,X

˘

ď M max
ℓPt1,...,Mu

tλmax

`

AKℓ,X

˘

u. (3.23)
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The equations (3.22) and (3.23) yield

cond2pAK,Xq “
λmaxpAK,Xq

λminpAK,Xq
ď

M max
ℓPt1,...,Mu

␣

λmaxpAKℓ,Xq
(

max
ℓPt1,...,Mu

␣

λminpAKℓ,Xq
( .

Let us consider the additional statement. As the component kernel Kℓ0 satisfies the
requirements out of Theorem 2.48, there exist, by Remark 2.49, a function GΦℓ0

, so that

λminpAKℓ0
,Xq ě GΦℓ0

pqXq. With equation (3.22) and the fact that AK,X “
řM
ℓ“1AKℓ,X ,

it is
λminpAK,Xq ě max

ℓPt1,...,Mu

␣

λminpAKℓ,Xq
(

“ λmin

´

AKℓ0
,X

¯

ě GΦℓ0
pqXq.

■

Numerical tests indicate that the maximum eigenvalue does not pose problems.
Rather, it is the minimal eigenvalue that causes issues. The above theorem asserts
that the stability of a summation kernel aligns with that of its most stable component
kernel. Numerical examples in Section 3.4 confirm this finding.

The subsequent theorem demonstrates that the interpolation method, employing a
kernel with a larger native space, is expected to exhibit greater stability compared to
interpolation with a kernel reproducing to a smaller space.

Theorem 3.41. Let K1 À K, then there exist a constant c ą 0 such that

λminpAK1,Xq ď cλminpAK,Xq

for every finite and pairwise distinct point set X.

Proof. Since K1 À K, there is a constant c ą 0 so that cK ´ K1 is a symmetric
positive semi-definite kernel. Hence, cK is the summation kernel of K1 and cK ´ K1.
Theorem 3.40 yields

cλminpAK,Xq “ λminpcAK,Xq “ λminpAcK,Xq

ěmax
␣

λminpAK1,Xq, λminpAcK´K1,Xq
(

ě λminpAK1,Xq.

■

The preceding theorem hints at another trade-off principle between numerical sta-
bility and approximation error, additionally to the one discussed in Section 2.4.3. For
the best numerical stability, the above Theorem 3.41 suggests to use a kernel reproduc-
ing a large native space, whereas the analysis below Theorem 3.38 emphasizes a better
approximation quality using a small kernel. This trade-off is simplified in Remark 3.42
below.

Remark 3.42. If K1 À K2 and the target function lies in HK1 , then

K1 K2

Stability bad good

Approximation good bad
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3.4 Numerical Tests

This section aims to numerically underline the theoretical results from the previous
sections. Theorem 3.25 shows, if the kernels K1 and K2 satisfy the relation K2 À K1,
their summation kernel K lies in one equivalence class with K1. As a consequence, the
native spaces HK1 and HK encompass the same space, equipped with equivalent norms.
The subsequent provides an example of how the equivalence class of a kernel affects the
interpolation method.

Here, we use

• the Wendland kernel K1 with RBF ϕ3,0,

• the Wendland kernel K2 with RBF ϕ3,3, and

• the summation kernel K of K1 and K2

for interpolation, where ϕd,k is defined in Theorem 2.34. The three kernels K1, K2

and K are visualized in Fig. 3.1. By Corollary 3.18, the kernels K1 and K2 satisfy
K2 À K1. This implies K „ K1, by Theorem 3.25. We expect similar behavior from
the interpolants and interpolation matrices of these two kernels. To determine this, we
perform the interpolation on

• the domain Ω “ r0, 1s2 and

• the developing point sets Xn consisting of 2n, n “ 6, . . . , 11, random points in Ω,
satisfying Xm Ď Xn for m ď n.
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Figure 3.2: Top view of the target functions ffranke (left) and fkink (right), and the
scattered point set X7 in Ω (middle).
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In this setting, we compare two target functions

1. a C8 target function. We have chosen the well-known Franke function

ffrankepx, yq :“ 0.75 exp

˜

´
p9x ´ 2q2 ` p9y ´ 2q2

4

¸

` 0.75 exp

˜

´
p9x ` 1q2

49
´

p9y ` 1q2

10

¸

` 0.5 exp

˜

´
p9x ´ 7q2 ` p9y ´ 3q2

4

¸

´ 0.2 exp
`

´p9x ´ 4q
2

´ p9y ´ 7q
2
˘

,

(3.24)

which was first used by R. Franke in [Fra79] and is visualized in Fig. 3.2 (left).
Since then, it has been widely used for the analysis of reconstruction methods
(cf. [Fra82], [Mül09], [BLRS15])

2. a C0 target function. Here, we chose the function

fkinkpx, yq :“ ffrankepx, yq ` 3∥x ´ 0.5∥

that exhibits a kink along x “ 0.5, visualized in Fig. 3.2 (right).

We test with two target functions to illustrate the independence of the results on the
underlying target. The target functions ffranke and fkink together with the interpolation
point set X7 are visualized in Fig. 3.2.

In Fig. 3.3 (left) and (right), we observe the interpolant of the summation kernel K
to behave as the interpolant of K1 regarding the approximation error development for
both target functions ffranke and fkink. Furthermore, the numerical condition number
regarding K develops with the same rate as the one of K1, see Fig. 3.3 (middle). This
can be explained with (3.22) of Theorem 3.40.

Fig. 3.3 (left) and (middle) support the trade-off principal of Remark 3.42. As
the target function ffranke lies in the small space C8, a smaller error is achieved using
the kernel K2 that spans the smaller native space HK2 (compared to HK1 and HK),
while still containing C8. Whereas the condition number corresponding to K2 is poor
compared to the one of K1 and K. However, Fig. 3.3 (right) exemplifies, that the
approximation error cannot be improved using the kernel K2 corresponding to a small
native space HK2 , if the target function fkink P C0 is not contained in that native space.
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Figure 3.3: Comparison of the component kernels Kj for j “ 1, 2, and their summa-
tion kernel K regarding the condition number of the interpolation matrix (middle)
and the mean squared error corresponding to the target functions ffranke (left) and
fkink (right) on developing point sets Xn for n “ 6, . . . , 11.

We summarize two core statements:

1. The summation kernel of two kernels, whose native spaces are subspaces of an-
other, behaves like the kernel of the larger native space.

2. The trade-off principle of kernels: Provided, the target function lies in the native
space of a kernel K, this kernel yields better approximation, but worse stability
compared to a kernel whose native space is containing the one of K.





Chapter 4

Product Kernels

To the best of our knowledge, explicit investigations into product kernels have been
sparse. The foundational work [Aro50] by N. Aronszajn, frequently cited in this thesis
already, stands as a notable exception. Typically, the fact that the product of two
positive (semi-)definite kernels results in a kernel that is again positive (semi-)definite
is mentioned only briefly, see for example [Wen05, Theorem 6.2] or [SC08, Lemma 4.6].
This cursory treatment in research is not without reason. Product kernels are a special
case of tensor product kernels and inherit the underlying structure of these more general
kernels. We devote Chapter 7 to the detailed exploration of these interesting kernels.

Despite this, we introduce product kernels here for completeness and to align with
the structure of this thesis. Specifically, we

• connect the interpolation matrix of a product kernel with the Hadamard product.

• analyze the interpolation method using product kernels.

By doing so, we provide the groundwork for discovering possible previously unexplored
advantages of product kernels.

This chapter is organized as follows: In Section 4.1, we provide a precise definition
of the product kernel and derive its basic properties. In the subsequent sections on
native space (Section 4.2) and interpolation (Section 4.3), we demonstrate that we are
essentially dealing with a restriction of tensor product kernels.

4.1 Definition and Basic Properties

This section provides a precise definition of the product kernel, and states basics findings
regarding positive definiteness, translation-invariance, and radial symmetry.

Definition 4.1. Let Kℓ : Ω ˆ Ω ÝÑ R, ℓ “ 1, . . . ,M , then

K : Ω ˆ Ω ÝÑ R,

Kpx, yq “
M
ś

ℓ“1

Kℓpx, yq for x, y P Ω

is called a product kernel.
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A product kernel with two component kernels is visualized in Fig. 4.1.
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Figure 4.1: Top view of two two-dimensional component kernels resulting from
the Wendland RBFs ϕ3,0 (left) and ϕ3,3 (middle), and the corresponding two-
dimensional product kernel (right). The black line visualizes supports.

Let us consider the interpolation matrix of a product kernel. To do so, let
X “ tx1, ..., xNu Ă Ω be a set of points and K a product kernel with components Kℓ

for ℓ “ 1, . . . ,M . Then, the entries of the interpolation matrix AK,X can be written as

`

AK,X

˘

j,k
“ Kpxj, xkq “

M
ź

ℓ“1

Kℓpxj, xkq “

M
ź

ℓ“1

`

AKℓ,X

˘

j,k
.

This representation leads us to the Hadamard product, also called Schur product, see
[HJ91, Definition 5.0.1].

Definition 4.2. Let A,B P Rmˆn be two matrices of the same size. The Hadamard
product A d B of A and B is given by

pA d Bqj,k “ pAqj,k ¨ pBqj,k,

where j “ 1, . . . ,m and k “ 1, . . . , n.

With this definition at hand, the interpolation matrix AK,X of a product kernel K
equals the Hadamard product of the interpolation matrices AKℓ,X corresponding to its
components Kℓ, i.e.,

AK,X “

M
ä

ℓ“1

AKℓ,X . (4.1)

This representation implies the following result, that can also be found in [Aro50].

Theorem 4.3. Let Kℓ be kernels on Ω for ℓ “ 1, . . . ,M .

(i) If Kℓ is positive semi-definite for all ℓ “ 1, . . . ,M , their product kernel K is
positive semi-definite.

(ii) If Kℓ is positive definite for all ℓ “ 1, . . . ,M , their product kernel K is positive
definite.
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We shortly remark that Theorem 4.3 piiq relies on the Schur product theorem, and
refer to [HJ91, Chapter 5.2] for details and proofs.

We note, that the set of positive semi-definite kernels equipped with the product
can be viewed as a commutative semigroup. Here, the neutral element is given by the
constant kernel Kpx, yq “ 1 for all x, y. The set of mˆn matrices with nonzero entries,
however, form a commutative group under the Hadamard product. We cannot deduce
the same structure for kernels, as the inverse of the Hadamard product regarding a
positive semi-definite matrix is not proven to be positive semi-definite again. We refer
to [Rea99] for more information.

We close this section with considering translation-invariance and radial symmetry
of product kernels.

Lemma 4.4. Let Kℓ be kernels on Ω for ℓ “ 1, . . . ,M .

(i) If Kℓ are translation-invariant kernels with uni-variate functions Φℓ for
ℓ “ 1, . . . ,M , their product kernel K is translation invariant with the uni-variate
function Φ “

śM
ℓ“1Φℓ.

(ii) If Kℓ are radially symmetric kernels with RBF ϕℓ for ℓ “ 1, . . . ,M , their product
kernel K is a radial kernel with RBF ϕ “

śM
ℓ“1 ϕℓ.

Proof. The subsequent equations prove the required statements:

(i) Kpx, yq “
śM

ℓ“1Kℓpx, yq “
śM

ℓ“1Φℓpx ´ yq for all x, y P Ω.

(ii) Kpx, yq “
śM

ℓ“1Kℓpx, yq “
śM

ℓ“1 ϕℓp∥x ´ y∥2q for all x, y P Ω.

■

4.2 Native Spaces

As we consider functions and kernels on the domain Ω Ď Rd only, we omit the notation
Ω in native spaces and norm notations for simplicity.

In this section, we acknowledge the contributions of N. Aronszajn, who was the first
to study RKHSs of product kernels with two component kernels K1 and K2 in [Aro50,
Part 1, §8]. To do so, he constructed the space

HK1 bHK2
:“

$

&

%

f 1
px1, x2q “

N
ÿ

i“1

f i1px1qf
i
2px2q : f iℓ P HKℓ,Ω, ℓ “ 1, 2 and j “ 1, . . . , N

,

.

-

of functions on the Cartesian product Ω ˆ Ω with the inner product

@

f 1, g1
D

HK1
bHK2

“

N
ÿ

i“1

M
ÿ

j“1

A

f i1, g
j
1

E

K1

A

f i2, g
j
2

E

K2

,



4.3 Interpolation 81

where M is the number of terms in the representation of g1. He needed to demonstrate
the completeness of HK1 b HK2 elaborately, to gain that HK1 b HK2 possesses the re-
producing kernel K1px1, y1qK2px2, y2q. In [Aro50, Part 1, §8, Theorem II], he concluded
that the RKHS of a product kernel is given by the restriction of HK1 b HK2 to the
diagonal D “ tpx, xq : x P Ωu Ă Ω ˆ Ω. We state this result.

Theorem 4.5. Let K be the product kernel of K1 and K2. Then K is the reproducing
kernel of

HK “
␣

f |D : f P HK1 b HK2

(

,

where D “ tpx, xq : x P Ωu Ă Ω ˆ Ω. For any f P HK,

∥f∥K “ min∥g∥HK1
bHK2

,

where the minimum is taken over all g P HK1 b HK2 such that g|D “ f .

Today, we recognize the space HK1 bHK2 as a Hilbert tensor product. We elaborate
on this specific tensor product in Section 7.2, highlight N. Aronszajn’s results in this
context, and describe the relationship between it and tensor product kernels. Indeed,
the product kernel can be considered a special case of the tensor product kernel.

4.3 Interpolation

In this subsection, we briefly examine the native space norm of an interpolant corre-
sponding to a product kernel and provide specific bounds on the minimal eigenvalue and
condition number. This analysis further demonstrates that the product kernel should
be understood as a restriction of the tensor product kernels. Therefore, we occasionally
reference concepts from the forthcoming Chapter 7 in this section. Nevertheless, we
want to emphasize at this point that the product kernel can be considered as a ‘normal’
positive definite (translation-invariant or radially symmetric) kernel, and thus, results
from Section 2.4 can be applied.

Lemma 4.6. Let K be the product kernel of positive definite component kernels Kℓ on
Ω for ℓ “ 1, . . . ,M and X Ă Ω a pairwise distinct point set. Then, for any function
values fX , there exists a unique interpolant sf,K P SK,X .

Additionally, if the target function has the form f “
śM

ℓ“1 fℓ, it is∥∥sf,K∥∥K,Ω ď

M
ź

l“1

∥∥sfℓ,Kℓ

∥∥
Kℓ,Ω

.

Proof. The first part is a direct consequence of Theorem 4.3. Regarding the second
part, the interpolants sfℓ,Kℓ

are uniquely defined. Furthermore,

fpxiq “

M
ź

ℓ“1

fℓpxiq “

M
ź

ℓ“1

sfℓ,X,Kℓ
pxiq, for all xi P X.

Consequently,
śM

ℓ“1 sfℓ,Kℓ
satisfies the interpolation condition and lies in HK,Ω by The-

orem 4.5. The optimality statement given in Theorem 2.38 implies the required. ■
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We proceed with deriving stability estimates for the product kernel. Even though
these estimates are quite poor, we include them here for the sake of completeness.
The eigenvalues of principal submatrices (Definition 2.6) of hermitian matrices can be
estimated by the Cauchy interlacing theorem, see [HJ91, Corollary 3.1.3].

Lemma 4.7. Suppose A P RNˆN is a hermitian matrix with eigenvalues of increasing
order λ1pAq, . . . , λNpAq. Let Ar P RN´rˆN´r denote a principal submatrix of A obtained
by deleting a total of r rows and columns from A. Then

λminpAq “ λ1pAq ď λminpArq ď λr`1pAq

and

λN´rpAq ď λmaxpArq ď λNpAq “ λmaxpAq.

The above relations enable us to bound the minimal eigenvalue of the product
kernel’s interpolation matrix and its numerical condition number. To achieve this, we
exploit the fact that the Hadamard product (Definition 4.2) of two matrices is a principal
submatrix of the Kronecker product (Definition 7.13) of these matrices. At this point,
we want to anticipate, as already done in Section 4.2 for the native space, that we
are leveraging the overarching structure of tensor product kernels of Chapter 7, whose
interpolation matrices can be expressed as Kronecker products. The inherent structure
of tensor product kernels allows to derive stronger results. We state a weakened form
of Theorem 7.27 here.

Theorem 4.8. Let K be a product kernel with positive definite component kernels Kℓ

on Ω for ℓ “ 1, . . . ,M and X Ď Ω a pairwise distinct data set. Then

λmin

`

AK,X

˘

ě

M
ź

ℓ“1

λmin

`

AKℓ,X

˘

and

cond2

`

AK,X

˘

ď

M
ź

ℓ“1

cond2

`

AKℓ,X

˘

.

Additionally, let Kℓ be translation-invariant with a univariate function Φℓ satisfying
xΦℓ P CpRdzt0uq for ℓ “ 1, . . . ,M , then

λmin

`

AK,X

˘

ě

M
ź

ℓ“1

GΦℓ
pqXq,

where the functions GΦℓ
come from Remark 2.49.

Proof. We recall (4.1) to see that the interpolation matrix of the product kernel K is
given by the Hadamard product

AK,X “

M
ä

ℓ“1

AKℓ,X .
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The fact that the Hadamard product
ÄM

ℓ“1AKℓ,X P RNˆN is a principal submatrix

of the Kronecker product
ÂM

ℓ“1AKℓ,X P RMNˆMN combined with Lemma 4.7 and
Lemma 7.14 pivq implies

M
ź

ℓ“1

λmin

`

AKℓ,X

˘

“ λmin

˜

M
â

ℓ“1

AKℓ,X

¸

ď λmin

`

AK,X

˘

,

which provides the lower bound of λmin

`

AK,X

˘

. Furthermore,

λmax

`

AK,X

˘

ď λmax

˜

M
â

ℓ“1

AKℓ,X

¸

“

M
ź

ℓ“1

λmax

`

AKℓ,X

˘

.

Regarding the numerical condition number we deduce

cond2

`

AK,X

˘

“
λmax

`

AK,X

˘

λmin

`

AK,X

˘ ď

M
ś

ℓ“1

λmax

`

AKℓ,X

˘

M
ś

ℓ“1

λmin
`

AKℓ,X

˘

“

M
ź

ℓ“1

cond2

`

AKℓ,X

˘

.

For the additional statement, we recall Theorem 2.48 and Remark 2.49 to obtain the
existence of a function GΦℓ

so that

λminpAKℓ,Xq ě GΦℓ
pqXq for every ℓ “ 1, . . . ,M.

This combined with the lower bound on the minimal eigenvalue of AK,X yields the
required result. ■







Part III

Anisotropic Kernels





Chapter 5

Transformation Kernels

In the realm of kernel-based interpolations, the concept of shape parameters holds
pivotal significance, serving as a cornerstone in refining interpolation techniques. Here,
kernels on Rd are scaled by a shape parameter α ą 0 resulting in a new kernel

Kαpx, yq “ Kpαx, αyq.

The choice of the parameter α is a critical issue as it affects the concentration of
the basis functions around the respective interpolation point. While a small parameter
increases the condition number of the interpolation matrix ([Fas07, Chapter 16.2]), a
large parameter turns the basis functions into sharp peaks, that approximate functions
badly, if interpolation points are widely scattered. Due to this significant impact of the
parameter α on the interpolation process, numerous optimization and search strategies
have been investigated for its fine-tuning over the last 30 years, see e.g. [KC92], [LF05],
[MVHÖ23] and the references therein. A review of different techniques can be found in
[FM15, Chapter 14].

Building upon this groundwork, a notable progression emerges with the advent of
anisotropic kernels. Here, a diagonal matrix D combined with a rotation matrix U
comes into play, building the kernel

KDUpx, yq “ KpDUx,DUyq.

These kernels, named after their directional sensitivity, mark a significant departure
from their isotropic versions, the kernels with shape parameter, where
D “ diag pα, . . . , αq and U “ Id. They offer a tailored approach to interpolation
that aligns with the inherent anisotropy present either within the distribution of inter-
polation points or the underlying target function. The research of [CLMM06], [AD14]
and [LMZ`24] presents methodologies for attaining a problem-adapted diagonal ma-
trix. It is demonstrated that for anisotropic datasets or target functions exhibiting
anisotropic behavior, anisotropic kernels can be used to improve the numerical stability
and accuracy of the interpolant (cf. [BDL10]). In the context of radial basis functions,
this introduces an alternative metric distinct from the Euclidean norm. Specifically, we
define the norm as }x}B “ xTBx, where B is a symmetric positive definite matrix given
by B “ UTD2U .
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Moreover, the recent research of [WMP24] has transcended traditional paradigms
by transforming the full-rank matrix DU associated with anisotropic kernels into a
low-rank matrix. The suggested approach facilitates a seamless transition from higher-
dimensional spaces to lower-dimensional ones, offering a novel approach for dimen-
sionality reduction without compromising interpolation quality. This is particularly
effective, when the target function inherits anisotropic behavior, that is different di-
rections are unequally relevant. The authors present a way of finding such a low-rank
matrix to transform the kernel by using machine learning methods. Such innovative
methodologies challenge conventional notions and highlight the inherent flexibility and
adaptability embedded within kernel-based interpolation frameworks.

Furthermore, the exploration of variably-scaled kernels, as exemplified in [BLRS15],
introduces yet another dimension to the discourse on transforming kernels. Departing
from the confines of conventional matrix representations, variably-scaled kernels offer
an alternative, further expanding the repertoire of tools available for crafting bespoke
interpolation strategies tailored to specific problems.

We combine these diverse approaches under the umbrella term of ‘transformation
kernels’. These are kernels given by the composition of a kernel K and a transformation
T , i.e.

Ω
T

ÝÑ T pΩq
K

ÝÑ R

resulting in the transformation kernel

KT px, yq :“ KpTx, Tyq.

While preceding research has laid a solid groundwork, a comprehensive and nuanced
analysis of the overarching transformation kernel remains absent. Thus, the following
study intends to bridge this gap, where the main contributions are:

• Examination of Transformation Kernels Native Space: We investigate the trans-
formation kernels native space in Theorem 5.6. This gains importance in Chap-
ter 6 and Chapter 7, where anisotropic versions of product and summation kernels
are considered.

• Detailed Analysis of Interpolation with Transformation Kernel: We systematically
explore the interpolation conducted with a transformation kernel in Section 5.3,
where we reveal underlying principles governing transformation kernels and shed
light on their potential applications improving approximation error and/or nu-
merical stability.

By providing a structured framework, we aim at a comprehensive understanding, and
by that a suitable usage of transformation kernels in interpolation methods. We thereby
contribute to the ongoing discourse on kernel-based interpolations and pave the ground
for future advancements in the field, such as the upcoming anisotropic kernels presented
in Chapter 6 and Chapter 7.
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The subsequent is structured as follows: First, we offer a definition of transforma-
tion kernels, along with a presentation of basic findings (Section 5.1). Following this,
we delve into an exploration of the native space of transformation kernels (Section 5.2),
shedding light on the intricate relationship between these spaces and those of the un-
derlying initial kernels. Subsequently, we turn our attention to the interpolation using
transformation kernels, with a particular focus on approximation error and numerical
stability (Section 5.3). Finally, we present numerical examples of an adaptation to
interpolation points and target function, demonstrating the efficacy of transformation
kernels in improving approximation error and/or numerical stability (Section 5.4).

5.1 Definition and Basic Properties

In the following, we present a precise definition of transformation kernels, derive re-
quirements for positive (semi-)definiteness and translation-invariance, and allocate the
final part of this section to the special case of radial kernels in conjunction with a linear
transformation.

Definition 5.1. Let T : Ω ÝÑ T pΩq Ď Rd and K : T pΩq ˆ T pΩq ÝÑ R. Then

KT : Ω ˆ Ω ÝÑ R,
KT px, yq :“ KpTx, Tyq for x, y P Ω

is called a transformation kernel with transformation T .

The interpolation matrix AKT ,X of the transformation kernel KT equals the inter-
polation matrix AK,T pXq of the initial kernel K evaluated at the transformed point set
T pXq, i.e.,

AKT ,X “
`

KT pxi, xjq
˘

i,j
“

´

K
`

T pxiq, T pxjq
˘

¯

i,j
“ AK,T pXq. (5.1)

This yields the subsequent characterizations of positive (semi-)definite transformation
kernels.

Theorem 5.2. Let T : Ω ÝÑ T pΩq and K be a kernel acting on T pΩq.

(i) KT is positive semi-definite on Ω if and only if K is positive semi-definite on
T pΩq.

(ii) KT is positive definite on Ω if and only if K is positive definite on T pΩq and T
is injective.

Proof. The first statement piq is a direct consequence of (5.1). In piiq, the injectivity
of T ensures that T pXq is pairwise distinct if and only if X is pairwise distinct. Then,
the equality of (5.1) yields the required statement. ■

In Remark 2.12, we introduced the important set of translation-invariant kernels.
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Lemma 5.3. Let T : Rd ÝÑ T pΩq and K be a kernel acting on T pΩq.

(i) If the transformation T is translation-invariant, the transformation kernel KT is
translation-invariant.

(ii) If the transformation T is linear and the kernel K is translation-invariant, the
transformation kernel KT is translation-invariant. The corresponding univariate
functions Φ and ΦT satisfy the relation ΦT “ Φ ˝ T .

Proof. The first statement piq holds as

KT px ´ ξ, y ´ ξq “ K
`

T px ´ ξq, T py ´ ξq
˘

“ K
`

T pxq, T pyq
˘

“ KT px, yq for all x, y, ξ P Rd.

To show the second statement piiq, we compute

KT px ´ ξ, y ´ ξq “ K
`

T px ´ ξq, T py ´ ξq
˘

“ K
`

T pxq ´ T pξq, T pyq ´ T pξq
˘

“ K
`

T pxq, T pyq
˘

“ KT px, yq for all x, y, ξ P Rd.

Furthermore,

ΦT px ´ yq “ KT px, yq “ K
`

T pxq, T pyq
˘

“ Φ
`

T pxq ´ T pyq
˘

“ Φ ˝ T px ´ yq for all x, y P Rd.

■

The subsequent is concerned with an even smaller subset of kernels, namely radially
symmetric kernels. As pointed out in Remark 2.14, such kernels K are build by a radial
basis function (RBF) ϕ : R` ÝÑ R, i.e.,

Kpx, yq “ ϕp∥x ´ y∥2q for all x, y P Ω.

Lemma 5.4. Let the transformation T be linear and radially symmetric, i.e.,
T pxq “ T p∥x∥2 e1q for all x P Ω, and the kernel K be translation-invariant with univari-
ate function Φ. Then, the transformation kernel KT is a radial kernel with the RBF
ϕT given by ϕT p∥¨∥2q “ Φ ˝ T .

Proof. The statement holds as

KT px, yq “ K
`

T pxq, T pyq
˘

“ Φ
`

T∥x ´ y∥2 e1
˘

:“ ϕT p∥x ´ y∥2q for all x, y P Ω.

■
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Figure 5.1: Top view of the two-dimensional kernel resulting from the Wendland
RBF ϕ3,0 (left) and a transformed version of it (right). The transformation is
given by the full-rank stretching and rotation matrix A1. The black line visualizes
supports.

The following aligns with ideas of [CLMM06]. Let K be a radially symmetric kernel
on T pΩq with RBF ϕ. Applying a transformation T on K yields

KT px, yq “ KpTx, Tyq “ ϕp∥Tx ´ Ty∥2q for all x, y P Ω.

For now, we assume the transformation T : Ω ÝÑ T pΩq to be linear and to have the
matrix representation A, i.e.,

T pxq “ Ax, for all x P Ω.

Furthermore, we demand the matrix B :“ ATA to be positive definite. Consequently,
the mapping

x ÞÝÑ
?
xTBx “:∥x∥B

defines a norm on Ω, here denoted as ∥¨∥B, and KT is given by

KT px, yq “ ϕ
`

∥Tx ´ Ty∥2
˘

“ ϕ
`

∥Apx ´ yq∥2
˘

“ ϕ
´

a

px ´ yqT ATA px ´ yq

¯

“ ϕ
`

∥x ´ y∥B
˘

.

The unit spheres SBi
“ tx : ∥x∥Bi

“ 1u of the norms ∥¨∥Bi
for i “ 1, 2, 3 build by the

matrices

B1 “ AT1A1, A1 “

ˆ

2 0
0 0.5

˙ˆ

cospπ{7q ´ sinpπ{7q

sinpπ{7q cospπ{7q

˙

,

B2 “ AT2A2, A2 “

ˆ

0.5 0
0 0.5

˙

, and

B3 “ AT3A3, A3 “

ˆ

2 0
0 2

˙

and the Euclidean norm are visualized in Fig. 5.2. Additionally, Fig. 5.1 shows the
impact of the transformation A1 on a kernel.
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Figure 5.2: Comparison of the Euclidean unit sphere S2 (thick line), SB1 (thin line)
corresponding to the volume preserving transformation A1, SB2 (dash dotted line)
corresponding to the enlarging transformation A2, and SB3 (dotted line) correspond-
ing to the squeezing transformation A3.

To sum this up, if K is a radially symmetric kernel that can be represented by the
RBF ϕ applied to the Euclidean norm, its (linear) transformation kernel

KT px, yq “ ϕp∥x ´ y∥Bq

can be represented by the same RBF ϕ after a different norm. Every symmetric positive
semi definite matrix B can be factorized as B “ ATA, where A has full rank, e.g.,
by Cholesky decomposition. Applying Theorem 5.2, which provides positive (semi-)
definiteness of the transformation kernel KT if the initial kernel K was positive (semi-)
definite, yields the subsequent statement.

Theorem 5.5. Let K be a radially symmetric positive (semi-)definite kernel with RBF
ϕ, then

ϕp∥x ´ y∥q

defines a positive (semi-)definite kernel for any norm∥¨∥ induced by a symmetric positive
definite matrix.

We observe that the positive (semi-)definiteness of a RBF is not depending on the
Euclidean norm. However, Theorem 5.5 does not hold for any norm in Rd. For example,
[Kol92] demonstrates that the interpolation matrix of the Gaussian RBF (Ex. 2.19) with
α “ 1 acting on the ∥¨∥q-norm is not positive semi-definite for q ą 2 and more than
two interpolation points, i.e., |X| ě 3. For further details, we refer to [Kol09] and the
references therein.
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5.2 Native Spaces

Several works have previously investigated the native spaces of certain transformation
kernels. In [BDL10], native spaces of transformation kernels are examined under the
assumption that the initial kernel is translation-invariant and the transformation can
be represented by a matrix. The authors demonstrate that the transformation kernel’s
native spaces can be characterized using the Fourier transform, aligned to the finding of
Theorem 2.30. In [BLRS15, Theorem 2] isometric isometry between the initial kernel’s
RKHS and the RKHS of its variably scaled version, a specific transformation kernel, is
shown. In [SC08, Prop. 4.37] the same result is stated for the transformation x ÞÝÑ cx,
where c ą 0.

We, however, provide a result covering all kinds of transformations by minimizing
requirements and generalizing results. Roughly speaking, the proceeding theorem states
that transforming the kernel has the same effect on the RKHS as transforming the input
space.

Theorem 5.6. Let T : Ω ÝÑ T pΩq and the kernel K be positive semi-definite on T pΩq.
Then,

HKT ,Ω “ HK,T pΩq ˝ T :“
␣

f ˝ T : f P HK,T pΩq

(

(5.2)

and

xf ˝ T, g ˝ T yKT ,Ω
“ xf, gyK,T pΩq

for all f, g P HK,T pΩq.

The mapping

T : HK,T pΩq ÝÑ HKT ,Ω, f ÞÝÑ f ˝ T

is an isometric isomorphism.

Proof. By Theorem 5.2 and Section 2.3, KT is positive semi-definite and its native space
HKT ,Ω exists. We consider the dense subspaces SK,T pΩq and SKT ,Ω first. Let f P SK,T pΩq

have the form

f “

N
ÿ

i“1

αi Kp¨, yiq (5.3)

for ty1, . . . , yNu Ă T pΩq. For every y P T pΩq there exists (possibly more than one) x P Ω
such that T pxq “ y. Let tx1, . . . , xNu Ă Ω be such that T pxiq “ yi for i “ 1, . . . , N .
Then,

f ˝ T pxq “

N
ÿ

i“1

αi KpT pxq, yiq

“

N
ÿ

i“1

αi K
`

T pxq, T pxiq
˘

“

N
ÿ

i“1

αi KT px, xiq P SKT ,Ω for all x P Ω.
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This implies the relation SK,T pΩq ˝ T Ď SKT ,Ω. The opposite relation follows by the
same equation. Let tx̃1, . . . , x̃Nu Ă Ω be another point set satisfying T px̃iq “ yi for
i “ 1, . . . , N , then

N
ÿ

i“1

αi KT p¨, xiq “ f ˝ T “

N
ÿ

i“1

αi KT p¨, x̃iq.

Consequently, the mapping T is well-defined on the dense subset SKT ,Ω.
In order to show isometric isomorphy of T , we examine bijectivity, linearity and

isometry. In fact, T is bijective with the inverse mapping

T ´1 : SKT ,Ω ÝÑ SK,T pΩq, f ÞÝÑ f ˝ T´1,

since
T pT ´1

pfqq “ T pf ˝ T´1
q “ f ˝ T´1

˝ T “ f.

We emphasize

f ˝ T´1
pyq “

N
ÿ

i“1

αi KT

`

T´1
pyq, xi

˘

“

N
ÿ

i“1

αi K
`

y, T pxiq
˘

“

N
ÿ

i“1

αi K py, yiq P SK,T pΩq,

where T´1pyq denotes the pre-image of y and may consist of more than one element
and f P SKT ,Ω has the form f “

řN
i“1 αi KT p¨, xiq. Furthermore, T is linear as

T paf ` gq “ a pf ˝ T q ` g ˝ T “
`

aT pfq ` T pgq
˘

for all f, g P SK,T pΩq.

Regarding isometry, let f, g P SK,T pΩq, where f is defined as in (5.3) and

g “
řM
j“1 βjKp¨, ỹjq for tỹ1, . . . , ỹNu Ă T pΩq, then

xf ˝ T, g ˝ T yKT ,Ω
“

C

N
ÿ

i“1

αi KT p¨, xiq ,
M
ÿ

j“1

βj KT

`

¨, x̃j
˘

G

KT ,Ω

“

N
ÿ

i“1

M
ÿ

j“1

αiβj KT pxi, x̃jq

“

N
ÿ

i“1

M
ÿ

j“1

αiβj K
`

T pxiq, T px̃jq
˘

“

C

N
ÿ

i“1

αi Kp¨, yiq,
M
ÿ

j“1

βj Kp¨, ỹjq

G

K,T pΩq

“ xf, gyK,T pΩq

(5.4)

Consequently, ∥T pfq∥KT ,Ω
“∥f ˝ T∥KT ,Ω

“∥f∥K,T pΩq
for all f P SK,T pΩq.

To generalize the results to native spaces, we extend the mapping T to HK,T pΩq by

T pfqpxq :“ lim
nÑ8

T pfnqpxq “ lim
nÑ8

pfn ˝ T qpxq “ f ˝ T pxq,

where f P HK,T pΩq is the pointwise limit of the Cauchy sequence tfnunPN Ă SK,T pΩq.
Because of (5.4), pfn ˝ T qnPN is a Cauchy sequence in SKT ,Ω and by Theorem 2.24 it is
f ˝ T P HKT ,Ω. With this definition at hand, the required statements follow. ■



96 Chapter 5. Transformation Kernels

We recall Theorem 2.28 to emphasize the common occurrence of isometric isomor-
phic native spaces HK1,Ω and HK,Ω. Such relation arises for any continuous kernels K1

and K acting on a domain Ω Ď Rd. However, the distinctive aspect of the aforemen-
tioned theorem lies in the equality (5.2). This knowledge is valuable for the examination
of the anisotropic kernels considered in Chapter 6 and Chapter 7.

We conclude with an observation that will be needed later in Section 6.2.

Lemma 5.7. Let K 1 and K be positive semi-definite kernels on Ω and T pΩq, respec-
tively, and T : Ω ÝÑ T pΩq, such that

HK1,Ω Ď HKT ,Ω.

Then there exist a kernel κ1 on T pΩq, so that K 1px, yq “ κ1
T px, yq for all x, y P Ω.

Proof. For all f P HK1,Ω Ď HKT ,Ω “ HK,T pΩq ˝ T there exist a function g P HK,T pΩq so
that f “ g ˝ T . This is also the case for K 1px, ¨q P HK1,Ω for all x P Ω. The symmetry
of K 1 yields that there exist a kernel κ1 on T pΩq, so that

K 1
px, yq “ κ1

pT pxq, T pyqq “ κ1
T px, yq for all x, y P Ω.

■

5.3 Interpolation

This section is concerned with the interpolation method out of Section 2.1 using trans-
formation kernels. We apply results of Chapter 2, regarding the approximation error
(Section 5.3.1) and numerical stability (Section 5.3.2), to the transformation kernel.
Additionally, we deduce conditions under which the results for the transformation ker-
nel improve compared to its initial kernel.

In the following the interpolants sf,K,X are defined as in (2.7). We generalize the
result from [BLRS15] of variably scaled kernels to more general transformations in (5.5)
and extend it.

Lemma 5.8. Let T : Ω ÝÑ T pΩq be injective and K a positive definite kernel on
T pΩq. Furthermore, let X “ tx1, . . . , xNu Ă Ω be a pairwise distinct point set and
pf ˝ T qX “ fT pXq P RN be function values for a function f acting on T pΩq. Then,

sf˝T,KT ,X “ sf,K,T pXq ˝ T (5.5)

and ∥∥sf,K,T pXq

∥∥
K,T pΩq

“
∥∥sf˝T,KT ,X

∥∥
KT ,Ω

.

Let additionally f P HK,T pΩq, then∥∥f ´ sf,K,T pXq

∥∥
K,T pΩq

“
∥∥f ˝ T ´ sf˝T,KT ,X

∥∥
KT ,Ω

.
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Proof. By Theorem 5.2 and Section 2.1 there exist unique interpolants sf˝T,KT ,X P SKT ,X

and sf,K,T pXq P SK,T pXq. Because of (5.1), the following relation holds

AKT ,X c “ AK,T pXq c “ fT pXq “ pf ˝ T qX ,

for a unique c P RN . This shows, in order to fulfill the interpolation condition, the coef-
ficients of sf˝T,KT ,X and sf,K,T pXq have to equal c “ pc1, . . . , cNqT P RN . Consequently,

sf˝T,KT ,X “

N
ÿ

i“1

ciKT p¨, xiq “

N
ÿ

i“1

ciKpT ¨, T pxiqq “ sf,K,T pXq ˝ T.

The two norm equalities follow directly from Theorem 5.6. ■

5.3.1 Approximation Error

The paper [BDL10] and [WMP24] provide error bounds for transformations that can
be represented as matrices. We, however, intend to minimize the requirements on the
transformation T .

In line with the standard case, the approximation error between the target function
f and interpolant sf,KT ,X can be bounded by the power function multiplied with the
norm of the target function (Lemma 5.9). We describe the transformation kernel’s power
function PKT ,X by the power function PK,T pXq of the initial kernel K (Lemma 5.10) to
find an upper bound for PKT ,X depending on the fill distance hT pXq,T pΩq in Theorem 5.11.
Subsequently, we compare the bounds on PKT ,X and PK,X .

Lemma 5.9. Let T : Ω ÝÑ T pΩq be injective and K a positive definite kernel on T pΩq,
X Ă Ω a finite pairwise distinct point set, and f P HKT ,Ω. Then

|fpxq ´ sf,KT ,Xpxq| ď PKT ,Xpxq∥f∥KT ,Ω
for all f P HKT ,Ω.

Proof. Theorem 5.2 assures positive definiteness of the transformation kernel KT . The
required bound directly follows from Theorem 2.40. ■

Our focus shifts to an exploration of the power function associated with the trans-
formation kernel. Let Ω Ă Rd be a bounded set satisfying an ICC (Definition 2.42) for
an angle θ P p0, π{2q and a radius r ą 0. If KT is a translation-invariant kernel with
univariate function ΦT P CpRdq and X Ă Ω a finite pairwise distinct point set satisfying
hX,Ω ď h0, we can apply Theorem 2.43 and Remark 2.44 on the transformation kernel
to obtain the following bound on the power function

P 2
KT ,X

px̃q ď c1 sup
xPBp0, 2c2hX,Ωq

|ΦT pxq ´ ppxq| “ FΦT ,ΩphX,Ωq, for all x̃ P Ω,

where p is an arbitrary polynomial from πmpRdq, m P N, and h0, c1 and c2 come from
Theorem 2.43.
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However, the requirement for KT to be translation-invariant imposes constraints
that can be omitted.

Lemma 5.10. Let T : Ω ÝÑ T pΩq be injective and K be a positive definite kernel on
T pΩq, then

P 2
KT ,X

“ P 2
K,T pXq ˝ T.

Proof. Definition 2.27 and Lemma 5.8 yield

P 2
KT ,X

pxq “
∥∥KT p¨, xq ´ sKT p¨,xq,KT ,X

∥∥
KT ,Ω

“

∥∥∥∥K `

¨, T pxq
˘

˝ T ´ sKp¨,T pxqq,K,T pXq
˝ T

∥∥∥∥
KT ,Ω

.

With the inner product statement out of Theorem 5.6, we obtain

P 2
KT ,X

pxq “

∥∥∥∥K `

¨, T pxq
˘

´ sKp¨,T pxqq,K,T pXq

∥∥∥∥
K,T pΩq

“ P 2
K,T pXq ˝ T pxq.

■

We bound the power function PKT ,X in dependence of the fill distance hT pXq,T pΩq.

Theorem 5.11. Let T : Ω ÝÑ T pΩq such that T pΩq Ď Rd is bounded and satisfies
an ICC. Furthermore, let K be a positive definite translation-invariant kernel on T pΩq,
with a univariate function Φ P CpRdq, T pΩq fulfill an ICC, and X Ă Ω be a finite set
such that T pXq is pairwise distinct satisfying hT pXq,T pΩq ď h0. Then,

P 2
KT ,X

pxq ď FΦ,T pΩqphT pXq,T pΩqq (5.6)

where FΦ,T pΩq comes from Remark 2.44.

Proof. Since Φ P CpRdq is positive definite on T pΩq, T pΩq is a bounded set satisfying
an ICC, T pXq is pairwise distinct and hT pXq,T pΩq ď h0 holds, we are in the position to
apply Theorem 2.43 on P 2

K,T pXq
. Together with Remark 2.44, this yields the bound

P 2
K,T pXqpT pxqq ď FΦ,T pΩqphT pXq,T pΩqq

The relation P 2
KT ,X

pxq “ P 2
K,T pXq

pTxq for all x P Ω of Lemma 5.10 finishes the proof. ■

We seek to understand the criteria for selecting the transformation T to decrease
the expected error. From Theorem 2.43 and Theorem 5.11 we collect the upper bounds

P 2
K,Xpx̃q ď FΦ,ΩphX,Ωq and

P 2
KT ,X

px̃q ď FΦ,T pΩqphT pXq,T pΩqq for all x̃ P Ω.
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Even though the function F is increasing we cannot directly expect a better approx-
imation, when using a transformation satisfying hT pXq,T pΩq ď hX,Ω, since the function
F does as well depend on the angle and radius of the ICC of T pΩq and Ω respectively.
Upon closer examination of Theorem 2.43 and Theorem 5.11, it is

P 2
K,Xpx̃q ď 9 sup

xPBp0, 2chX,Ωq

|Φpxq ´ ppxq| “ FΦ,ΩphX,Ωq and

P 2
KT ,X

px̃q ď 9 sup
xPBp0, 2cT hT pXq,T pΩqq

|Φpxq ´ ppxq| “ FΦ,T pΩqphT pXq,T pΩqq for all x̃ P Ω.

The bounds hold for constants c and cT depending on the angles θ and θT P p0, π{2q given
by the ICC of Ω and T pΩq and fill distances satisfying hX,Ω ď r{c and hT pXq,T pΩq ď rT {cT ,
where r and rT ą 0 are the radii defined by the ICC of Ω and T pΩq. In order to obtain
a smaller error bound for the transformation kernel, we need

cThT pXq,T pΩq ď chX,Ω, while hX,Ω ď
r

c
“ h0 and hT pXq,T pΩq ď

rT
cT

“ hT,0. (5.7)

Example 5.12. Let Ω “ r0, 0.5s ˆ r0, 2s Ă R2 then it satisfies an ICC with angle
θ “ π{2 and radius r “ 0.5. Let the transformation T be given by the matrix

T pxq “

ˆ

2 0
0 0.5

˙

x,

then T pΩq “ r0, 1s2 P R2 satisfying an ICC with angle θT “ π{2 and radius rT “ 1.
With the formulas of Theorem 2.43, we compute

c “ cT “
64

3
m2

„ 21.3m2,

h0 “
3

128
m2

„ 0.023m2 and

hT,0 “
3

64
m2

„ 0.047m2,

where m P N is determined by the choice of the polynomial. In the setting visualized in
Fig. 5.3, we have hT pXq,T pΩq ď hX,Ω. Therefore, the requirements of (5.7) are satisfied
if hT pXq,T pΩq ď h0, and the bound on the transformed power function PKT ,Ω is smaller
than the bound of the initial kernel’s power function PK,Ω.

At this juncture, it is important to note two key points. Firstly, the requirements
outlined in (5.7) solely guarantee an enhanced bound of the power function, without
directly addressing the actual approximation error. Secondly, the power function con-
stitutes just one component of the error bound, see Lemma 5.9. The additional factor
is given by the native spaces norm of the target function. For a comparison between
∥f∥KT ,Ω

and∥f∥K,Ω, we refer to Section 3.2, where we examined native spaces associated
with summation kernels.
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Ω

T

T pΩq

Figure 5.3: Visualization of the transformation given in Ex. 5.12, together with the
fill distances (black line), which is defined as the radius of the largest hole (violet
circle) in the data set (black dots).

In Section 5.1 we discussed transformations T having a matrix representation A,
such that B :“ ATA is a symmetric positive definite matrix. In this setting, the fill
distance hT pXq,T pΩq is given by the fill distance of X and Ω measured in the norm ∥¨∥B
instead of the Euclidean norm, i.e.,

hT pXq,T pΩq “ sup
xPΩ

min
1ďiďN

∥T pxq ´ T pxiq∥2

“ sup
xPΩ

min
1ďiďN

∥Apx ´ xiq∥2

“ sup
xPΩ

min
1ďiďN

px ´ xiq
TBpx ´ xiq

“ sup
xPΩ

min
1ďiďN

∥x ´ xi∥B .

Since λminpAq∥x∥2 ď∥Ax∥2 ď λmaxpAq∥x∥2, the above calculation gives

λmin pAqhX,Ω ď hT pXq,T pΩq ď λmax pAqhX,Ω,

see [CLMM06, Theorem 2]. Theorem 3.2 of [WMP24] concludes further that in the
special case of a transformed Matérn kernel, where the transformation is given by a
full-rank matrix, the error evolves at the same rate when examining the fill distance.
It shows that the error can be bounded by the same function F of Remark 2.44, as its
initial kernel up to a non-data-point-dependent constant factor.
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5.3.2 Numerical Stability

This section is devoted to examining whether and how the stability of the interpolation
process changes when employing a transformation kernel compared to its initial ver-
sion. Given that Section 2.4.2 emphasizes the importance of investigating the minimal
eigenvalue of the interpolation matrix for insights, we adapt Theorem 2.48 to the case
of transformation kernels.

Theorem 5.13. Let T : Ω ÝÑ T pΩq and K be translation-invariant kernel on T pΩq

and its univariate function Φ be such that Φ possesses a positive Fourier transform
pΦ P CpRdzt0uq. Then

λminpAKT ,Xq ě GΦpqT pXqq,

where GΦ comes from Remark 2.49.

Proof. Since Φ satisfies the requirements of Theorem 2.48 there exists the function GΦ

of Remark 2.49, such that λminpAK,T pXqq ě GΦpqT pXqq holds. Since AKT ,X “ AK,T pXq

by (5.1), we obtain the required results. ■

The aforementioned theorem proves that the function GΦ serves as a lower bound for
both the smallest eigenvalue of the interpolation matrixAK,X and its transformed coun-
terpart AKT ,X . In Tab. 2.4, the function GΦ is provided for specific example kernels.
However, to attain the corresponding bound, it is essential to evaluate the increasing
function GΦ at the separation distance qX in the standard case, while for the trans-
formed scenario GΦ is assessed at the separation distance of the transformed point set
qT pXq. Consequently, for enhanced stability, it is advisable to employ a transformation
T that enlarges the separation distance of X, ensuring that

qT pXq ě qX .

Again, we refer to Ex. 5.12 to illustrate a setting where the aforementioned relation
of separation distances holds true. A visualization is provided in Fig. 5.4. We consider
the scenario of Section 5.1, where the transformation T is defined by a matrix A such
that B :“ ATA is positive definite. Here, the separation distance qT pXq, as defined in
Definition 2.47, aligns with the separation distance of X, though measured by the norm
}x}B rather than the Euclidean norm, i.e.,

qT pXq “
1

2
min
i‰j

∥∥T pxiq ´ T pxjq
∥∥
2

“
1

2
min
i‰j

∥∥Apxi ´ xjq
∥∥
2

“
1

2
min
i‰j

pxi ´ xjq
TBpxi ´ xjq

“
1

2
min
i‰j

∥∥xi ´ xj
∥∥
B
.
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Ω

T

T pΩq

Figure 5.4: Visualization of the transformation given in Ex. 5.12, together with the
separation distances (black line), which is defined to be the largest possible radius
for two balls (violet circles) centered at different points (black dots) to be essentially
disjoint.

Remark 5.14. We can expect improved stability using the transformation kernel if
qX ď qT pXq. Since the above calculation yields

λmin pAq qX ď qT pXq ď λmax pAq qX ,

see [CLMM06, Theorem 2], a better bound on the minimal eigenvalue of the interpola-
tion matrix AKT ,X in comparison to AK,X is gained if λminpAq ě 1.

5.4 Numerical Tests

In the following sections, we examine two scenarios where interpolation with transfor-
mation kernels improves results. Firstly, in Section 5.4.1, we consider an anisotropic
target function. Secondly, in Section 5.4.2, we explore a setting, where closely spaced
points occur in one direction, while in the other direction, the points are widely spaced
apart. Such a distribution of points can be observed in line measurements, for example.

We have already conducted comparisons of differing kernels K1 and K2 in Chap-
ter 3. The focus of this section lies on transformation kernels, aiming to illustrate how
these kernels alter their behavior under different transformations. Hence, we compare
the kernels with their respective transformations and present two kernels, solely to un-
derscore that the change in behavior is not depending upon the selected kernel but the
chosen transformation.
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5.4.1 Adaptation to Target Function

In this example, we consider an elongated region Ω such as an ideal tube, a blood
vessel, or a river. These structures have a distinct geometry, characterized by a much
greater length compared to their width. We assume that the target function we are
working with also exhibits anisotropic behavior. Anisotropic behavior means that the
function changes at different rates in different directions. Specifically, in this context,
the function changes more slowly in the longitudinal direction (along the length of Ω,
here represented as top-bottom) than in the transverse direction (across the width of
Ω, here represented as right-left). This kind of anisotropic behavior can be observed
in scientific and engineering fields. For instance, in fluid dynamics, the flow properties
of a fluid within a narrow and elongated channel, like a pipe or blood vessel, typically
vary more gradually along the length of the channel than across its width. In a river,
the flow speed and other characteristics may change slowly as you move downstream
(longitudinally) but can vary significantly across the river’s width (transversely).
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Ω
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0.8

1

Figure 5.5: Top view of the target function faniso-t, and the scattered point set X7

on Ω.

We consider the setting visualized in Fig. 5.5, in particular:

• The set Ω “ Ω1 ˆ Ω2, where Ω1 “ r0, 0.5s and Ω2 “ r0, 2s.

• The point sets Xn, that consist of |Xn| “ 2n randomly chosen points in Ω
for n “ 6, . . . , 11, so that Xn Ă Xm for n ă m. This results in the sizes
64, 128, 256, 512, 1024 and 2048.

• The target function

faniso-t :“ ffranke ˝

ˆ

0.5 0
0 2

˙

,

which is given by a stretched version of the Franke function defined in (3.24).
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For this setting, we compare the following kernels:

• The initial kernels K1 and K2, which are given by Wendland’s RBFs ϕ3,0 and ϕ3,3

(Tab. 2.2).

• The transformation kernels K1,T and K2,T . These kernels are transformation
kernels of the corresponding initial kernels K1 and K2 with the transformation

T : R2
ÝÑ R2, x ÞÝÑ

ˆ

2 0
0 0.5

˙

x.

• The transformation kernels K1,Θ and K2,Θ. These kernels are transformation
kernels of the corresponding initial kernels K1 and K2 with the transformation

Θ : R2
ÝÑ R2, x ÞÝÑ

ˆ

4 0
0 1

˙

x.
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Figure 5.6: Top view of two-dimensional kernels and their support (black line). The
initial kernel K1 (left) and its transformed version K1,T (middle) and K1,Θ (left).

The transformation kernels used are exemplarily represented for K1 in Fig. 5.6.
Looking at Fig. 5.7 (left), the transformation kernels K1,T and K2,T exhibit stability
comparable to that of the initial kernels K1 and K2, yet their error is significantly
improved, see Fig. 5.7 (right). Although we have chosen the optimal transformation T ,
any transformations that narrow the kernel along the Ω1 direction and elongate it along
the Ω2 direction contribute to improved interpolations, provided they do not excessively
downsize the kernel. Thus, there is no necessity to find the ideal transformation for
improving the results.

The transformation Θ exemplifies the impact of scaling the transformation T by
the factor 2, i.e., 2T “ Θ. It is noted that the condition number improves by a
constant factor with using the transformation kernels K1,Θ and K2,Θ compared to its
initial versions K1 and K2, see Fig. 5.7 (left). Such enhancement can be explained
by Remark 5.14. Nonetheless, the comparison of mean squared errors for these kernel
yields inconclusive results, see Fig. 5.7 (right). The threshold for downsizing, mentioned
before, has been reached here.



5.4 Numerical Tests 105

26 27 28 29 210 211

103

105

107

109

1011

1013

1015

size of Xn

co
n
d
it
io
n
n
u
m
b
er

K1

K1,T

K1,Θ

K2

K2,T

K2,Θ

26 27 28 29 210 211

10´8

10´7

10´6

10´5

10´4

size of Xn

m
ea
n
sq
u
ar
ed

er
ro
r

K1

K1,T

K1,Θ

K2

K2,T

K2,Θ

Figure 5.7: Comparison of the initial kernels Kj, their transformed versions Kj,T

and Kj,Θ for j “ 1, 2 regarding their condition number (left) and mean squared
error (right).

We conclude that transformation kernels offer a convenient approach to enhance
results in an anisotropic setting. A transformation kernel is able to improve stability
or approximation quality without significantly affecting the other. Hence, they serve
as means to counteract the trade-off principle out of Section 2.4.3. The choice of
transformation depends on the desired effect. Given an initial kernel with poor stability
it is advisable to choose a stability improving transformation and vice versa for the
approximation error.

5.4.2 Adaptation to Domain and Point Sets

Subsequently, we examine a similar scenario as Ex. 5.12, whose fill distance and sepa-
ration distance is depicted in Fig. 5.3 and Fig. 5.4, respectively.

To conduct the interpolation and error analysis, it is essential to define three key
components: the domain, the interpolation points, and the target function. In this
example, we consider the setting visualized in Fig. 5.8, in particular:

• The domain Ω “ Ω1 ˆ Ω2, where Ω1 “ r0, 0.5s and Ω2 “ r0, 2s.

• The point sets

Xn “ X1
n ˆ X2

Ă Ω, where X1
n “

"

0.5i

2n
: i “ 0, 1, . . . , 2n

*

Ă Ω1

and X2
“

"

2i

9
: i “ 0, 1, . . . , 9

*

Ă Ω2

We use the point sets Xn for n “ 3, . . . , 8. This results in the amounts of points
|Xn| “ p2n ` 1q ¨ 10 for n “ 3, . . . , 8, namely 90, 170, 330, 650, 1290 and 2570.
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• The isotropic non-differentiable target function

fkink-tpx
1, x2q :“ 4

∥∥∥∥∥cos
ˆ

π

12

˙

x1 ´ sin

ˆ

π

12

˙

x2

∥∥∥∥∥
2

` sin

¨

˝2π

˜

sin

ˆ

π

12

˙

x1 ` cos

ˆ

π

12

˙

x2

¸

˛

‚.

For this setting, we compare the following kernels:

• The standard kernels K1 and K2, which are given by Wendland’s RBFs ϕ3,0 and
ϕ3,3 (Tab. 2.2).

• The domain-adapted kernels K1,T and K2,T . These kernels are transformation
kernels of the corresponding initial kernels K1 and K2 with the transformation

T : R2
ÝÑ R2, x ÞÝÑ

ˆ

2 0
0 0.5

˙

x.

Here, the components of the matrix were chosen to transform the set Ω into a
square.

• The point-adapted kernels K1,Tflex and K2,Tflex . The point-adapted kernels are
again transformation kernels, but adapted to the developing point sets
Xn “ X1

n ˆ X2. We use a flexible transformation defined in the following manner

Tflex : R2
ÝÑ R2, x ÞÝÑ

¨

˝

q
X1

n
`qX2

q
X1

n

0

0
q
X1

n
`qX2

qX2

˛

‚x,

where qX denotes the separation distance of X. This transforms the point sets
Xn in such a manner that the distances between the points of TflexpXnq coincide
in each direction. Here, qX1

n
“ 1

2n`1
and qX2 “ 2{9 “ 0.2. Consequently, the

matrix that defines Tflex is given by

˜

1 ` 2n`1`2
9

0
0 9

2n`1`2
` 1

¸

. (5.8)

The distance between the points of the transformed point set TflexpXnq along the
Ω1 direction aligns with the distance along the Ω2 direction for every n “ 3, . . . , 8.

The transformation kernels used are exemplarily represented for K1 in Fig. 5.6
(K1 and K1,T ) and Fig. 5.9 (K1,Tflex). The results regarding approximation error and
numerical stability, visualized in Fig. 5.10, underline the analysis conducted in the
preceding sections, namely Section 5.3.1 and Section 5.3.2.
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Figure 5.8: Top view of the target function fkink-t of Section 5.4.2, and the point set
X4 on Ω.

In Fig. 5.10 (left), we see that the transformed versions K1,T and K2,T exhibit a
smaller numerical condition number but still have similar behavior to their initial ker-
nels; the condition number increases at the same rate. This phenomenon arises from
the transformation’s lack of adaptation to the point set. As the separation distance of
Xn decreases, the separation distance qT pXnq decreases at the same rate. Upon examin-
ing the numerical condition number of the point-adapted kernels K1,Tflex and K2,Tflex , a
significant improvement is observed, as the condition number remains nearly constant.
The flexible transformation effectively counteracts the rapidly decreasing separation
distance. At this juncture we recall our findings from Remark 5.14, which assures bet-
ter stability if the smallest eigenvalue of the matrix in defining the transformation is
greater or equal to 1. This criterion is met by the matrix (5.8) defining Tflex, as it
primarily elongates the domain Ω along the Ω1 direction.
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Figure 5.9: Top view of K1,Tflex adapted to X3 (left) and X8 (right), and its support
(black line).
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Figure 5.10: Comparison of the initial kernels Kj, their transformed versions Kj,T

adapted to the domain Ω, and the kernels Kj,Tflex , which are flexibly adapted to the
point sets Xn for j “ 1, 2 and n “ 3, . . . , 8 regarding the condition number (left)
and mean squared error (right).

With regard to the approximation error in Fig. 5.10 (right), we observe a significant
reduction in mean squared error for the domain-adapted kernels K1,T and K2,T . This
can be explained by the decrease in fill distance, as depicted in Fig. 5.3. For the
point-adapted kernel K1,Tflex , the approximation rate remains unchanged compared to
its initial kernel K1. We attribute this to the fact, that the matrix of (5.8) does not
compress the set Ω in the Ω2 direction. Consequently, the fill distance hXn,Ω remains
approximately the same as hTflexpXnq,TflexpΩq. This behavior could also be observed for
K2 if its high condition number did not impair the interpolation. We must emphasize
here that the target is not C1pΩq. Consequently, based on the results of the preceding
Chapter 3, the kernel K2 should exhibit an error comparable to that of K1. However,
the two transformations depicted not only improve the error compared to their initial
kernel K2 but even surpass K1 in terms of error reduction. We resume the following:

1. The domain-adapted kernel enhances the approximation quality significantly, while
changing the condition number by a factor independent of the interpolation point
set. This is particularly advantageous when the initial condition number is so
poor that it undermines the interpolation result, as observed for K2.

2. The flexible transformation should be employed to improve the stability while
demanding that the approximation quality remains comparable to that of the
initial kernel.

Hence, transformation kernels improve results effectively when the transformation is
customized to fit the circumstances and requirements of the application.
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Orthogonal Summation Kernels

Orthogonal Summation Kernels

Summation Kernels

Transformation Kernels

Figure 6.1: Schematic relation between summation, transformation, and orthogonal
summation kernels.

The approach of orthogonal summation kernels aims to expand the variety of ker-
nels available for interpolation problems. This method provides additional means of
tailoring kernels to the underlying interpolation problem. The distinctive feature of
these kernels, as well as the anisotropic tensor product kernels discussed in the subse-
quent Chapter 7, is their operation on the Cartesian product of subdomains, allowing
different component kernels for each subdomain. This is particularly interesting be-
cause it is possible to impose different properties in different directions, thus adapting
the kernel to the anisotropic structure of the target function or the interpolation points.

Currently, there is limited literature on this topic. In fact, [GM16] investigates
positive semi-definite kernels operating on Cartesian products, introducing the term
‘distinct component (DC)-strictly positive definite’. However, the focus in that work is
on isotropic kernels, which we deliberately choose not to consider.
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As far as we know, no one has yet explored an anisotropic sum of kernels. This is the
focus of our investigation in this chapter. We combine the standard summation kernels
of Chapter 3 with the transformation kernels of Chapter 5, as visualized in Fig. 6.1, to
obtain an orthogonal summation kernel K on Ω,

Kpx, yq “
ÿ

Kℓ,pℓpx, yq “
ÿ

Kℓppℓpxq, pℓpyqq,

where each component kernel Kℓ is defined on Ωℓ, Ω is given by the Cartesian product
of all Ωℓ, and pℓ denotes the projection form Ω to Ωℓ which can be viewed as a transfor-
mation. We call this kernel an orthogonal summation kernel, hinting at its underlying
algebraic structure. The native space of such a kernel equals the orthogonal sum of
its components’ native spaces, see Theorem 6.7. Orthogonal summation kernels hold
promise for good approximation of certain target functions. For instance, [WMP24]
examines transformation kernels that reduce dimensionality. It is theoretically and
numerically demonstrated that with such a dimension-reducing transformation and a
target function that is invariant with respect to a subdomain Ω2, i.e.,

fpxq “ f1pp1pxqq ` f2pp2pxqq with f2 ” 0,

the convergence rate of the error improves. Indeed, we can consider such a dimension-
reducing transformation kernel KT as an orthogonal summation kernel:

KT px, yq “ K1pp1pxq, p1pyqq “ K1pp1pxq, p1pyqq ` K2pp2pxq, p2pyqq,

where K2 ” 0 and K1 is a kernel operating on Ω1, the subdomain of Ω where the target
function varies. Thus, a detailed examination of orthogonal summation kernels is also
warranted in terms of error improvement.

This chapter builds on the previous sections and explores the theoretical foundations
and practical benefits of orthogonal summation kernels in detail. The key contributions
of our work are:

• Examination of the Orthogonal Summation Kernels’ Native Space: We describe
the native space as an orthogonal sum of the component kernels’ native spaces in
Theorem 6.7.

• Detailed Analysis of Interpolation with Orthogonal Summation Kernels: We pro-
vide a thorough analysis of interpolation using orthogonal summation kernels,
focusing on positive definiteness, approximation error (Section 6.3.1), and numer-
ical stability (Section 6.3.2).

• Outstanding Performance in Anisotropic Sum Structures: We demonstrate the
superior performance of interpolation with orthogonal summation kernels when
the target function has an anisotropic sum structure (Section 6.4), supporting the
results of Theorem 6.13 and Theorem 6.11.

We hope that this detailed analysis of orthogonal summation kernels paves the way for
further research in this promising area.
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This chapter is structured in the following way: In Section 6.1, we provide the
definition of orthogonal summation kernels and address the issue of positive definiteness
for kernels operating on a Cartesian product. We examine the native space of orthogonal
summation kernels in Section 6.2, recognizing that the standard summation case can
be considered a special case of the orthogonal summation kernel. The requirements for
achieving a positive definite interpolation matrix and the interpolation with orthogonal
summation kernels in general is discussed in Section 6.3, focusing on approximation
error and numerical stability. Finally, in Section 6.4, we investigate the performance of
orthogonal summation kernels using two different target functions.

6.1 Definition and Basic Properties

Subsequently, we provide a precise definition of the orthogonal summation kernel, visu-
alized in Fig. 6.2, and draw the connection to transformation and summation kernels,
that are discussed in Chapter 3 and Chapter 5. Furthermore, in Ex. 6.2, we illustrate
why an orthogonal summation kernel with positive definite components is not automat-
ically positive definite and close this section by briefly addressing translation-invariance
of orthogonal summation kernels.
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Figure 6.2: Visualization of two Wendland RBFs ϕ1,0 and ϕ1,2 (left), and their cor-
responding two-dimensional orthogonal summation kernel (right) with its support
(black line). The green and purple bar emphasize that ϕ1,0 acts in x-direction and
ϕ1,2 in y-direction.

Definition 6.1. Let Kℓ be positive semi-definite kernels on Ωℓ Ď Rdℓ for ℓ “ 1, . . . ,M ,
and Ω “

ŚM
ℓ“1Ωℓ Ď Rd the Cartesian product of Ωℓ, where d “

řM
ℓ“1 dℓ. Then

K : Ω ˆ Ω ÝÑ R,
Kpx, yq “

řM
ℓ“1Kℓ

`

pℓpxq, pℓpyq
˘

for x, y P Ω

is called an orthogonal summation kernel, where pℓ : Ω ÝÑ Ωℓ denotes the projection
from Ω onto Ωℓ for all ℓ “ 1, . . . ,M .
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The Definition 5.1 of transformation kernels gives the notation

K
`

pℓpxq, pℓpyq
˘

“ Kpℓpx, yq

for all kernels K and all projections pℓ, ℓ “ 1, . . . ,M . Hence, the orthogonal summation
kernel can be viewed as a summation kernel of transformation kernels, i.e.,

Kpx, yq “

M
ÿ

ℓ“1

Kℓ

`

pℓpxq, pℓpyq
˘

“

M
ÿ

ℓ“1

Kℓ,pℓpx, yq, (6.1)

where the transformation is given by a projection. Let X Ď Ω “
ŚM

ℓ“1 be a finite and
pairwise distinct point set and pℓpXq its projection onto Ωℓ for all ℓ “ 1, . . . ,M . By
(3.1) and (5.1), the orthogonal summation kernel’s interpolation matrix AK,X is given
by the sum of the components’ interpolation matrices, i.e.

AK,X “

M
ÿ

ℓ“1

AKℓ,pℓ
,X “

M
ÿ

ℓ“1

AKℓ,pℓpXq. (6.2)

We cannot deduce that the projections pℓpXq Ă Ωℓ of an arbitrary pairwise distinct
point set X Ă Ω are also pairwise distinct, as Fig. 6.3 visualizes. Henceforth, we cannot
conclude positive definiteness for the orthogonal summation kernel K from positive
definite component kernels Kℓ. The following Ex. 6.2 provides a setting where the
orthogonal summation kernel of positive definite component kernels is not positive
definite.

Ω1

Ω2

z1 z2

z3 z4y2

y1

x1 x2

p1

p2

Figure 6.3: Visualization of the point set X “ tz1, z2, z3, z4u P Ω1 ˆ Ω2, and their
projections p1 and p2 onto Ω1 and Ω2 respectively.
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Example 6.2. Let K1 and K2 be symmetric and positive definite kernels on Ω1 and Ω2

respectively, and K be their orthogonal summation kernel on Ω “ Ω1ˆΩ2. We consider
the point set X “ tz1, z2, z3, z4u visualized in Fig. 6.3. By (6.2) and Theorem 3.2 the
orthogonal summation kernel’s interpolation matrix is positive definite if at least one
of its component matrices AK1,p1pXq or AK2,p2pXq are positive definite. However, in this
example the projected point sets p1pXq “ tx1, x2, x1, x2u and p2pXq “ ty1, y1, y2, y2u

are not pairwise distinct. Therefore, the interpolation matrices AK1,p1pXq and AK2,p2pXq

are not positive definite by Remark 2.11.

Lemma 2.10 shows that the weaker requirement of K being positive semi-definite,
does not depend on the point set X being pairwise distinct. This finding provides pos-
itive semi-definiteness of the interpolation matrices AK,pℓpXq for all X Ă Ω and positive
semi-definite kernels K. As sums of positive semi-definite matrices are again positive
semi-definite, we can conclude positive semi-definiteness of the orthogonal summation
kernel K. We return to the question of positive definiteness in Section 6.3.

Lemma 6.3. If Kℓ are positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M , their
corresponding orthogonal summation kernel K is positive semi-definite on Ω “

ŚM
ℓ“1Ωℓ.

Proof. Let X P Ω be a finite point set and pℓpXq its projection onto Ωℓ, then

cT AK,X c “

M
ÿ

ℓ“1

cT AKℓ,pℓpXq c ě 0.

■

Lemma 6.4. If Kℓ are translation-invariant kernels with uni-variate functions Φℓ on
Ωℓ for ℓ “ 1, . . . ,M , their orthogonal summation kernel K is translation-invariant with
the uni-variate function Φ :“

řM
ℓ“1Φℓ ˝ pℓ.

Proof. Note, that the projection pℓ is linear for all ℓ “ 1, . . . ,M , and use Lemma 5.3 piiq
to obtain

Kpx, yq “

M
ÿ

ℓ“1

Kℓ,pℓpx, yq “

M
ÿ

ℓ“1

pΦℓ ˝ pℓq px ´ yq.

■

6.2 Native Spaces

In this section we examine the orthogonal summation kernel’s native space, combining
results regarding the transformation kernel’s native space (Section 5.2) with findings
regarding the summation kernel’s native space (Section 3.2.1). Our analysis culminates
in Theorem 6.7, which states that the native space can orthogonally be decomposed
into the component’s native spaces, satisfying the name ‘orthogonal summation kernel’.
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Since the orthogonal summation kernel K is a summation kernel of the transforma-
tion kernels Kℓ,pℓ for ℓ “ 1, . . . ,M , see (6.1), we can use Theorem 3.9 to deduce

HK,Ω “

M
ÿ

ℓ“1

HKℓ,pℓ
,Ω “

$

&

%

M
ÿ

ℓ“1

fℓ : fℓ P HKℓ,pℓ
,Ω

,

.

-

, (6.3)

equipped with the norm

∥f∥2K,Ω “ min

$

&

%

M
ÿ

ℓ“1

∥fℓ∥2Kℓ,pℓ
,Ω

,

.

-

, (6.4)

where the minimum is taken over all decompositions f “
řM
ℓ“1 fℓ with fℓ P HKℓ,pℓ

,Ω for
ℓ “ 1, . . . ,M .

As the projections pℓ are surjective, we can find x P Ω “
ŚM

ℓ“1Ωℓ for every x
ℓ P Ωℓ

so that pℓpxq “ xℓ. This shows that a function f P HKpℓ
,Ω exists for every f̃ P HK,Ωℓ

so that fpxq “ f̃ ˝ pℓpxq “ f̃pxℓq for all ℓ “ 1, . . . ,M and x P Ω, and all reproducing
kernels K. Even if the domain of f is larger, the function f P HKpℓ

,Ω itself does not
‘see’ anything outside Ωℓ. We refer to Theorem 5.6 for more details and apply it on
each HKℓ,pℓ

,Ω to obtain

HK,Ω “

M
ÿ

ℓ“1

HKℓ,pℓ
,Ω “

M
ÿ

ℓ“1

HKℓ,Ωℓ
˝ pℓ

and

∥f∥2K,Ω “ min

$

&

%

M
ÿ

ℓ“1

∥fℓ∥2Kℓ,Ωℓ

,

.

-

,

from (6.3) and (6.4), where the minimum is taken over all decompositions
f “

řM
ℓ“1 fℓ ˝ pℓ with fℓ P HKℓ,Ωℓ

for ℓ “ 1, . . . ,M .

Theorem 6.5. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M . Further-
more, let HKℓ,Ωℓ

only contain the zero function as constant function for all ℓ “ 1, . . . ,M .
Then

HK,Ω “

M
à

ℓ“1

HKℓ,Ωℓ
˝ pℓ,

where the inner product is given by

xf, gyHK,Ω
“

M
ÿ

ℓ“1

xfℓ, gℓyHKℓ,Ωℓ
,

where f “
řM
ℓ“1 fℓ ˝ pℓ, g “

řM
ℓ“1 gℓ ˝ pℓ, with fℓ, gℓ P HKℓ,Ωℓ

for ℓ “ 1, . . . ,M , are the
unique decompositions of f, g P HK,Ω.
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Proof. Theorem 3.9 implies, that the representation of a function of the space HK,Ω is
unique if and only if the component native spaces HKℓ,pℓ

, Ω are complemented (Defini-
tion 3.5). To analyze this, let

f P HKm,pm ,Ω X

M
ÿ

ℓ“1,ℓ‰m

HKℓ,pℓ
,Ω for m P t1, . . . ,Mu (6.5)

then f can be represented in two ways

gm ˝ pmpxq “ fpxq “

M
ÿ

ℓ“1,ℓ‰m

gℓ ˝ pℓpxq for all x P Ω and m P t1, . . . ,Mu, (6.6)

where gℓ P HKℓ,Ωℓ
for all ℓ “ 1, . . . ,M . For two arbitrary values x, y in Ω that only

differ in the m-th component, i.e., x´y “ pmpxq´pmpyq, the representation of f on the
right-hand side of (6.6) does not change. Therefore, gm ˝ pm is a constant function on
Ω, which implies that gm P HKm,Ωm is constant function on Ωm. Since the only constant
function of HKm,Ωm is the zero function for all m “ 1, . . . ,M , it is 0 ” gm ˝ pm “ f .
As m P t1, . . . ,Mu was chosen arbitrarily, the additional assumption of Theorem 3.9 is
satisfied, which finishes the proof. ■

Remark 6.6. We want to state two examples of native spaces, that only contain the
zero function as constant function.

1. For a translation-invariant kernel K on the whole space Rd, it is HK,Rd Ă L2pRdq,
by Theorem 2.30, and L2pRdq only contains the zero function as a constant func-
tion. Consequently, HK,Rd only contains the zero function as a constant function.

2. Remark 2.36 and the reference therein state that the only constant function of the
Gaussian’s native space, for a set Ω with non-empty interior, is the zero function.

In the following, we explain how the kernel derives its name. If the native spaces of
all component kernels contain only the zero function as a constant function, no further
demonstration is needed, and we refer to Theorem 6.5. Therefore, we focus on the case
where at least one component kernel has a native space that contains nonzero constant
functions. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M and

K “

M
ÿ

ℓ“1

Kℓ,pℓ

their orthogonal summation kernel on Ω “
ŚM

ℓ“1Ωℓ. Without loss of generality, we as-
sume HKM,pM

,Ω to contain nonzero constant functions. Furthermore, letm P t2, . . . ,Mu

and

K̃m “

M
ÿ

ℓ“m

Kℓ,pℓ

on Ω̃m “
ŚM

ℓ“mΩℓ be the orthogonal summation kernel of Kℓ for ℓ “ m, . . . ,M and p̃m
denote the projection from Ω onto Ω̃m.
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1. Step: If HK1,p1 ,Ω
only contains the zero function as constant function, no further

action is needed. In this case, we directly obtain (6.8) with k1 “ K1 and continue with
the second step.

Otherwise, we proceed as follows. From the above analysis, we deduce that the
intersection HK1,p1 ,Ω

X HK̃2,p̃2
,Ω equals the set of constant functions on Ω. Hence, the

corresponding intersection kernel is a constant positive semi-definite kernel. Let

c1px, yq “ c1 for all x, y

denote the intersection kernel for a constant c1 P R. Furthermore, Theorem 3.26 pro-
vides the existence of positive semi-definite kernels κ1 and κ2 on Ω so that

K1,p1 “ c1 ` κ1, K̃2,p̃2 “ c1 ` κ2 and Hκ1,Ω X Hκ2,Ω “ t0u. (6.7)

Without loss of generality, we deduce that Hκ1,Ω contains only the zero function as a
constant function. We can make this conclusion because if both of the native spaces
Hκ1,Ω and Hκ2,Ω contain a nonzero constant function, then each must contain the entire
set of constant functions on Ω, as they are vector spaces. This would contradict their
trivial intersection. With this understanding, we obtain the following equation

HK1,p1 ,Ω
“ Hc1,Ω ‘ Hκ1,p1 ,Ω

.

Since Hκ1,Ω Ă HK1,p1 ,Ω
“ HK1,Ω1 ˝ p1, the native space of κ1 contains only functions

depending on Ω1. By Lemma 5.7, there exists a kernel k1 on Ω1 so that κ1 “ k1,p1 . This
finding, the representation of K1,p1 in (6.7), and the definition of K yield

K “ K1,p1 ` K̃2,p̃2 “ c1 ` k1,p1 ` K̃2,p̃2 .

Because of (6.7), the relation c1 À K̃2,p̃2 is satisfied and Theorem 3.25 implies

K „ k1,p1 ` K̃2,p̃2 .

Since Hκ1,Ω “ Hk1,p1 ,Ω
only contains the zero function as constant function the in-

tersection Hk1,p1 ,Ω
X HK̃2,p̃2

,Ω is trivial. Consequently, Theorem 3.9 and Lemma 3.22

provide
HK,Ω „ Hk1,p1 ,Ω

‘ HK̃2,p̃2
,Ω. (6.8)

2. Step: We repeat the first step for K2,p2 and K̃3,p̃3 to obtain

HK̃2,p̃2
,Ω „ Hk2,p2 ,Ω

‘ HK̃3,p̃3
,Ω, (6.9)

where Hk2,p2 ,Ω
only contains the zero function as constant function and k2,p2 is given by

the orthogonal decomposition K2,p2 “ c2 `k2,p2 for a constant kernel c2 that is possibly
zero. The equation (6.9) applied on (6.8) yields

HK,Ω „ Hk1,p1 ,Ω
‘ Hk2,p2 ,Ω

‘ HK̃3,p̃3
,Ω.

3. Step: We repeat the above two steps until KM´1,pM´1
and K̃M,p̃M “ KM,pM to obtain

the following result.
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Theorem 6.7. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K
their orthogonal summation kernel on Ω “

ŚM
ℓ“1Ωℓ. Then the orthogonal summation

kernel’s native spaces satisfies

HK,Ω „

M
à

ℓ“1

Hkℓ,pℓ ,Ω
,

where kℓ,pℓ either equals the component Kℓ,pℓ or is given by the orthogonal decomposition
Kℓ,pℓ “ cℓ ` kℓ,pℓ for a constant kernel cℓ for every ℓ “ 1, . . . ,M .

In summary, this demonstrates that every function f P HK,Ω has a unique repre-

sentation f “
řM
ℓ“1 fℓ ˝ pℓ, where fℓ P Hkℓ,Ωℓ

and the kernel kℓ equals the component
Kℓ of K, up to a constant (possibly zero) addend for all ℓ “ 1, . . . ,M . With the con-
struction of the kernels kℓ as outlined above, we decompose the function f so that its
constant part is not distributed across multiple components fℓ, but appears solely in
the last component fM . Furthermore, from Theorem 6.7, we obtain that the norm of
the orthogonal summation kernel’s native space ∥f∥K,Ω is equivalent to

řM
ℓ“1∥fℓ∥kℓ,Ωℓ

,
and

∥fℓ∥kℓ,Ωℓ
“∥fℓ∥Kℓ,Ωℓ

for all fℓ P Hkℓ,Ωℓ
,

because of the fact that the decomposition Kℓ,pℓ “ cℓ ` kℓ,pℓ is orthogonal and Theo-

rem 3.12. Thus, we conclude that ∥f∥K,Ω is equivalent to
řM
ℓ“1∥fℓ∥Kℓ,Ωℓ

.

Even though this is a slight abuse of notation, it justifies the name of the kernel.
Particularly because kernels belonging to the same equivalence class have similar char-
acteristics with respect to interpolation, as shown in Chapter 3. In the following, we
assume that the native space of the orthogonal summation kernel is the orthogonal sum
of the native spaces of its components.

At the end of this section, we want to emphasize that not only does the orthogonal
summation case follow from the standard summation case, but there is also a reciprocal
relationship between them, schematically visualized in Fig. 6.1. The summation kernel
can be considered as a special case of the orthogonal summation kernel. If Ωℓ “ Ω
for every ℓ, the summation kernel K̃px, yq “

ř

ℓKℓpx, yq equals the restriction of the
orthogonal summation kernel Kpx, yq to the diagonal set tpx, . . . , xq : x P Ωu Ă

Ś

ℓΩ,
i.e.,

K
`

px, . . . , xq, py, . . . , yq
˘

“
ÿ

ℓ

Kℓ

`

pℓpx, . . . , xq, pℓpy, . . . , yq
˘

“
ÿ

ℓ

Kℓpx, yq “ K̃px, yq for all x, y P Ω.

In view of the native space, we loose orthogonality by taking the restriction, resulting in
the findings of Theorem 3.9. For more details on the restriction of reproducing kernels
we refer to [Aro50, Part 1, §5] and [Wen05, Chapter 10.7].
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6.3 Interpolation

Here, we examine the interpolation using orthogonal summation kernels. First, we dis-
cuss the conditions under which the interpolation matrix AK,X is positive definite. We
then examine the approximation error in Section 6.3.1 and the numerical stability in
Section 6.3.2.

We aim for a positive definite interpolation matrixAK,X , as described in Section 2.1.
In Ex. 6.2, we observed that in regard to the orthogonal summation kernel, it is not
sufficient to demand positive definiteness of the component kernels alone. This leads
us to the concept of DC-strictly positive definite kernels, which was introduced by
J.C. Guella and V.A. Menegatto in [GM16].

Definition 6.8. Let K be a kernel on the Cartesian product
ŚM

ℓ“1Ωℓ. The kernel K is
called DC-strictly positive definite (distinct component) if its interpolation matrix AK,X

is positive definite for every point set X Ă
ŚM

ℓ“1Ωℓ with pairwise distinct projections
pℓpXq Ă Ωℓ for ℓ “ 1, . . . ,M , where pℓ denotes the projection from Ω to Ωℓ.

We directly observe that an orthogonal summation kernel with positive definite com-
ponents is DC-strictly positive definite. In the following, we minimize the requirements
for a positive definite interpolation matrix, noting that positive definiteness of at least
one component kernel Kℓ and a corresponding pairwise distinct projection pℓpXq of X
is sufficient.

Lemma 6.9. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K
their orthogonal summation kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X Ă Ω be a finite

point set. If there exist an index ℓ0 P t1, . . . ,Mu satisfying that

1. the projection pℓ0pXq of X onto Ωℓ0 is pairwise distinct and

2. Kℓ0 is a positive definite kernel on Ωℓ0,

then the interpolation matrix AK,X regarding the orthogonal summation kernel K is
positive definite.

Proof. By the assumptions 1. and 2., we have cTAKℓ0
,pℓ0 pXqc ą 0. This yields

cTAK,Xc “ cTAKℓ0
,pℓ0 pXqc `

M
ÿ

ℓ“1,ℓ‰ℓ0

cTAKℓ,pℓpXqc ą 0.

■

Next, we state the anisotropic version of Lemma 3.37.

Lemma 6.10. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K their
orthogonal summation kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X Ă Ω be a finite point

set, such that its projections pℓpXq onto Ωℓ are pairwise distinct for all ℓ “ 1, . . . ,M .
Let the target function f P HK,Ω have the unique representation f “

řM
ℓ“1 fℓ ˝ pℓ for

fℓ P HKℓ,Ωℓ
. Then, ∥∥sf,K,X∥∥2

K,Ω
ď

M
ÿ

ℓ“1

∥∥sfℓ,Kℓ,pℓpXq

∥∥2

Kℓ,Ωℓ
.
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Proof. For the proof, we view the orthogonal summation kernel K as the summation
kernel of the transformation kernel Kℓ,pℓ acting on Ω, see (6.1). We apply Lemma 3.37
to obtain ∥∥sf,K,X∥∥2

K,Ω
ď

M
ÿ

ℓ“1

∥∥∥sfℓ˝pℓ,Kℓ,pℓ
,X

∥∥∥2

Kℓ,pℓ
,Ω
.

By Lemma 5.8, the right-hand side can be written as

∥∥sf,K,X∥∥2

K,Ω
ď

M
ÿ

ℓ“1

∥∥sfℓ,Kℓ,pℓpXq

∥∥2

Kℓ,pℓpΩq
.

■

6.3.1 Approximation Error

This section is concerned with the approximation error when using orthogonal sum-
mation kernels. We state the anisotropic version of Theorem 3.38 in Theorem 6.11,
which demonstrates that an improved error can be expected by performing interpola-
tion component-wise first and then summing the results in a second step. For further
insights, see the numerical example in Section 6.4. Additionally, we outline the rela-
tion between the power function of an orthogonal summation kernel and that of its
components, and we consider translation-invariant component kernels in Lemma 6.12.

Theorem 6.11. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K their
orthogonal summation kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X Ă Ω be a finite point

set, such that its projections pℓpXq onto Ωℓ are pairwise distinct for all ℓ “ 1, . . . ,M ,
and let the target function f P HK,Ω have the unique representation f “

řM
ℓ“1 fℓ ˝ pℓ,

with fℓ P HKℓ,Ωℓ
for ℓ “ 1, . . . ,M . Then,

M
ÿ

ℓ“1

∥∥fℓ ´ sfℓ,Kℓ,pℓpXq

∥∥2

Kℓ,Ωℓ
ď
∥∥f ´ sf,K,X

∥∥2

K,Ω
.

Proof. Because of (6.1) and Lemma 5.8, it is

M
ÿ

ℓ“1

∥∥fℓ ´ sfℓ,Kℓ,pℓpXq

∥∥2

Kℓ,Ωℓ
“

M
ÿ

ℓ“1

∥∥∥fℓ ˝ pℓ ´ sfℓ˝pℓ,Kℓ,pℓ
,X

∥∥∥2

Kℓ,pℓ
,Ω
.

Since the component native spaces HKℓ,pℓ
,Ω are complemented, we are in the position

to apply Theorem 3.38 on the right-hand side, to obtain

M
ÿ

ℓ“1

∥∥fℓ ´ sfℓ,Kℓ,pℓpXq

∥∥2

Kℓ,Ωℓ
ď
∥∥f ´ sf,K,X

∥∥2

K,Ω
.

■

The above combined with Definition 2.27 of the power function yields

M
ÿ

ℓ“1

P 2
Kℓ,pℓpXq ď P 2

K,X .
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Lemma 6.12. Let Kℓ be positive definite translation-invariant kernels on Ωℓ with uni-
variate functions Φℓ for ℓ “ 1, . . . ,M . Furthermore, let Ωℓ fulfill an ICC and pℓpXq be
pairwise distinct and satisfy hpℓpXq,Ωℓ

ď hℓ,0 for ℓ “ 1, . . . ,M . If K is the orthogonal
summation kernel of Kℓ for ℓ “ 1, . . . ,M , its power function can be bounded by

P 2
K,Xpxq ď

M
ÿ

ℓ“1

FΦℓ,pℓ
ΩphpℓpXq,Ωℓ

q for all x P Ω “

M
ą

ℓ“1

Ωℓ,

where the functions FΦℓ,pℓ
Ω come from Remark 2.44.

Proof. The statement is a direct consequence of (6.1) and Lemma 3.39. ■

6.3.2 Numerical Stability

Subsequently, we present the anisotropic version of Theorem 3.40, which demonstrates
that the numerical stability of an orthogonal summation kernel aligns with that of its
most stable component kernel. For a numerical example, see Section 6.4.

Theorem 6.13. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M , K be their
orthogonal summation kernel on Ω “

ŚM
ℓ“1Ωℓ, and X Ă Ω be a point set such that its

projections pℓpXq Ă Ωℓ are pairwise distinct. Then the following statements hold.

(i)

λmin

`

AK,X

˘

ě max
ℓPt1,...,Mu

!

λmin

`

AKℓ,pℓpXq

˘

)

(ii)

cond2pAK,Xq ď

M max
ℓPt1,...,Mu

␣

λmaxpAKℓ,pℓpXqq
(

max
ℓPt1,...,Mu

␣

λminpAKℓ,pℓpXqq
( .

(iii) Let ℓ0 P t1, . . . ,Mu satisfy

λmin

´

AKℓ0
,pℓpXq

¯

“ max
ℓPt1,...,Mu

!

λmin

`

AKℓ,pℓpXq

˘

)

and Kℓ0 be a translation-invariant kernel on Ωℓ0 with univariate function Φℓ0 such

that xΦℓ0 P CpRdℓ0zt0uq. Then

λmin

`

AK,X

˘

ě GΦℓ0
pqpℓpXqq,

where the function GΦℓ0
comes from Remark 2.49.

(iv) Let K be translation-invariant and its univariate functions Φ satisfy
pΦ P CpRdℓzt0uq. Then

λminpAK,Xq ě GΦ

ˆ

min
ℓ

tqpℓpXqu

˙

,

where the functions GΦ comes from Remark 2.49.
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Proof. For the statements piq ´ piiiq, we view the orthogonal summation kernel as a
summation kernel of transformation kernels, see (6.1). We combine the results of Theo-
rem 3.40 on summation kernels with those from Theorem 5.13 and (5.1) on transforma-
tion kernels. For statement pivq, we use the fact that the function GΦ is monotonously
increasing and

q2X “
1

4
min
i‰j

∥∥xi ´ xj
∥∥2

2

“
1

4
min
i‰j

M
ÿ

ℓ“1

∥∥pℓpxi ´ xjq
∥∥2

2

ě
1

4
min
i‰j

min
ℓ

∥∥pℓpxi ´ xjq
∥∥2

2

“ min
ℓ
q2pℓpXq.

■

6.4 Numerical Tests

In the following, we present numerical examples that support the theoretical results
discussed in the preceding sections. We compare interpolation using orthogonal sum-
mation kernels with interpolation using radially symmetric kernels. Our findings demon-
strate that an orthogonal summation kernel, when adapted to a target function with an
anisotropic sum structure, yields outstanding results in terms of both approximation
error and numerical stability.

For the numerical tests, we consider

• the domain Ω “ Ω1 ˆ Ω2, with Ωℓ “ r0, 1s, ℓ “ 1, 2 and

• the developing point setsXn, consisting of 2
n random points in Ω for n “ 4, . . . , 10,

and satisfying Xm Ď Xn for m ď n. Additionally, the projections pℓpXnq are
pairwise distinct for all ℓ “ 1, 2 and n “ 4, . . . , 10.

To emphasize the benefits and challenges of using an orthogonal summation kernel, we
reconstruct the following two target functions, which are visualized in Fig. 6.4 along
with the point set X7:

1. the C8 target function ffranke defined in (3.24) and visualized in Fig. 6.4 (left).

2. the C0 target function

faniso-spx
1, x2q :“ f1px

1
q ` f2px

2
q “ 3

∥∥x1 ´ 0.5
∥∥ ` sinp2πx2q (6.10)

for px1, x2q P Ω, with anisotropic sum structure, visualized in Fig. 6.4 (right).
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Figure 6.4: Top view of the target functions ffranke (left) and faniso-s (right), and the
scattered point set X7 in Ω (middle).

We compare the performance of

• the two-dimensional Wendland kernel K1 with RBF ϕ3,0 and

• the two-dimensional Wendland kernel K2 with RBF ϕ3,3 with

• the two-dimensional orthogonal summation kernel

K
`

px1, x2q, py1, y2q
˘

“ κ1px
1, y1q ` κ2px

2, y2q for px1, x2q, py1, y2q P Ω,

visualized in Fig. 6.5, of the one-dimensional Wendland kernels κ1 and κ2 corre-
sponding to ϕ1,0 and ϕ1,3.

When reconstructing the target faniso-s, we add another approach to gain an interpolant
to our comparison, namely

• the anisotropic summation of interpolants (ASI). Here, we use the projections
pℓpXnq and the function values fℓ,pℓpXnq of the one-dimensional functions fℓ on
pℓpXnq for ℓ “ 1, 2. The interpolation is carried out separately with κ1 on Ω1

and κ2 on Ω2 first, and summed up afterwards. This procedure results in the
interpolant

spxq “ spx1, x2q “ sf1,κ1,p1pXqpx
1
q ` sf2,κ2,p2pXqpx

2
q for all x “ px1, x2q P Ω.

We remark that, we need more precise information to perform this approach,
as two function values, f1px1q and f2px

2q are needed for one interpolation point
x “ px1, x2q P Ω.

Note, that we chose κ1 to be a non-differentiable kernel mirroring f1 of (6.10) and κ2
to be C3 capturing the smoothens of f2 of (6.10).
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Figure 6.5: Visualization of two Wendland RBFs ϕ1,0 and ϕ1,3 (left), and their cor-
responding two-dimensional orthogonal summation kernel (right) with its support
(black line). The green and purple bar emphasize that ϕ1,0 acts in x-direction and
ϕ1,3 in y-direction.
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Figure 6.6: Comparison of the kernels Kj, j “ 1, 2, and their orthogonal summation
kernel K regarding the condition number (middle) and the mean squared error
corresponding to the target function ffranke (left) and faniso-s (right) on developing
point sets Xn for n “ 4, . . . , 10.
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Let us devote our attention to the interpolation with faniso-s, first. In Fig. 6.6 (right),
we observe that the two summation approaches (K and ASI) are able to improve the
approximation by two digits, compared to the radial approaches (K1 and K2). For the
ASI approach this supports Theorem 6.11. Furthermore, we see that the interpolant
corresponding to the orthogonal summation kernel K approximates the target func-
tion just as fine as the ASI approach, even though the latter requires more detailed
information. This finding favors the orthogonal summation kernel.

In view of the numerical condition number in Fig. 6.6 (middle), we see that the one
of the orthogonal summation kernel K rises with the same rate as its most stable com-
ponent kernel κ1, supporting the first statement of Theorem 6.13. These observations
reflect well on the interpolation with the orthogonal summation kernel K.

However, looking at Fig. 6.6 (left), the interpolation of the Franke function chal-
lenges the orthogonal summation kernel. The error is significantly worse than the one
corresponding to the radial symmetric approaches K1 and K2. Furthermore, it hardly
improves with the amount of interpolation points increasing.

For more details, we visualize the absolute error

|interpolantpxq ´ fpxq| for x P r0, 1s
2

for the interpolants of the Franke function ffranke corresponding to the point set X7

and the interpolation kernels K1, K2 and the orthogonal summation kernel K in Fig-
ure 6.7. The plotted error supports the result of Fig. 6.6 (left) as the radially symmetric
approaches (left and middle of Figure 6.7) perform much better than the orthogonal
summation kernel K (right). The bad error and its top-bottom-line structure, is due
to the shape of K, particularly its unbounded support, see Fig. 6.5.

Looking at the absolute error between the corresponding interpolants and the tar-
get function faniso-s with anisotropic sum structure in Fig. 6.8, the superiority of the
summation approaches (K and ASI) is salient, as already observed in Fig. 6.6 (right).
We see that the worst error in the summation cases does not occur at the biggest hole
of the data, as it is the case for the radial approaches (Fig. 6.8 – top row), but along
the kink (Fig. 6.8 – bottom row).

In summary, it can be said that the orthogonal summation kernel K outperforms
radial approaches (K1 and K2) when it comes to target functions with an anisotropic
sum structure and known properties of each target summand, allowing the adaptation
of the generic kernels. In this case, the approximation error rate is significantly im-
proved, and the numerical condition number grows with a rate depending on the most
stable component kernel. Furthermore, it can be observed that even though the ASI ap-
proach does contain more detailed information, it does not improve the approximation
compared to the interpolant corresponding to the orthogonal summation kernel.

We recommend the use of orthogonal summation kernels for targets with an aniso-
tropic summation structure.
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Figure 6.7: Absolute error between the target function ffranke and the interpolants
regarding the point set X7 corresponding to K1 (left), K2 (middle) and the orthog-
onal summation kernel K (right).
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Tensor Product Kernels

Tensor Product Kernels

Product Kernels

Transformation Kernels

Figure 7.1: Schematic relation between product, transformation, and tensor product
kernels.

In this section we naturally combine the advantages of interpolation methods by
exploiting an underlying structure of the interpolation kernel. As an initial approach
to tackle the lack of adaptive anisotropic kernels, transformation kernels are considered
in Chapter 5. In particular, it is discussed in Section 5.1 that anisotropic kernels can
be constructed by replacing the standard Euclidean norm with an anisotropic norm

}x}
2
A :“ xTAx for x P Rd,

in the argument of a fixed radial kernel function, where A P Rdˆd is a symmetric positive
definite matrix. For a standard Gaussian kernel and a positive definite diagonal matrix
A “ diagpα1, ..., αdq, this construction yields the kernel

e´}x}2A “ e´xTAx
“

d
ź

ℓ“1

e´αℓx
2
ℓ for x “ px1, ..., xdq

T
P Rd,

see [Fas11]. Hence, this anisotropic version of the standard Gaussian kernel is given by
a product of d kernels acting on one dimension, and each of them is equipped with its
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own shape parameter αℓ ą 0 for ℓ “ 1, . . . , d. This observation gives reason to study
kernels that are products of positive definite component kernels defined on different
lower-dimensional spaces. These kernels are referred to as tensor product kernels. The
main intention of this approach is to further improve the flexibility of kernel-based re-
construction methods, as the initial domain can be split into several subdomains and
each of them can be equipped with an individual kernel tailored to the application.

In [Saa11], it is demonstrated that tensor product kernels hold another advantage.
Many real-world applications are structured as a grid. Climate data sets serve as an
example, as they record measurements of variables such as ocean surface temperatures
and CO2 concentrations across a grid of locations spanning the Earth’s surface. The
specific example of [RBP`06] involves sea surface temperature data organized as a grid
of geographical locations over discretized time-series observations. Hence, the entire
dataset can be viewed as a three-dimensional Cartesian grid. When interpolation is
conducted on a gridded point set, the interpolation matrix of the tensor product kernel
can be expressed as the Kronecker product of its component’s interpolation matrices.
Y. Saatci, showed in [Saa11] that this speeds up the Gaussian process in applications
where the number of interpolation points approaches millions, while the quantity of
data points within a subdomain remains comparatively modest.

It turns out that tensor product kernels exhibit tensor product structure, satis-
fying the name. A significant part of this finding draws from the work [Aro50] of
N. Aronszajn, who demonstrated that the native space of product kernels aligns with
restrictions of the tensor product of the corresponding component native spaces with
a well-defined inner product (Theorem 4.5). Presently, this type of tensor product is
known as the Hilbert tensor product, as discussed in [KR83]. It enables us to present
the result of J. Neveu in [Nev71] with this term: The Hilbert tensor product of the
component kernel’s native spaces is given by the native space of the corresponding ten-
sor product kernel. Unlike the standard tensor product, the Hilbert tensor product of
Hilbert spaces results in a Hilbert space. Moreover, the inner product of tensors is given
by the multiplication of the inner products of the component spaces. This amounts to
the fact that the product kernel of Chapter 4 can be seen as a special case of the tensor
product kernel, schematically visualized in Fig. 7.1.

Our work [AEI23b], conducted in collaboration with K. Albrecht, extends existing
research by providing a more detailed exploration of tensor product kernels and empha-
sizing their computational advantages over standard kernels. Our main contributions
to this field are:

• Elucidating the Structure of Native Spaces: We provide an alternative proof for
the structure of the tensor product kernel’s native space in Section 7.2.2, drawing
a connection from Neveu’s work to Hilbert tensor spaces. This connection paves
the ground for further insights, such as the tensor construction of the Newton
basis of (7.6).

• Detailed Analysis of Interpolation with Tensor Product Kernels: We conduct a
thorough examination of interpolation using tensor product kernels in Section 7.3,
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including an analysis of convergence (Theorem 7.23) and stability (Section 7.3.3).
This analysis provides valuable insights into the performance and robustness of
tensor product kernel employing reconstruction methods.

• Proof of Positive Definiteness: We present a rigorous proof regarding the posi-
tive definiteness of tensor product kernels, depending on the concept of grid-like
structured point sets (Definition 7.12). To the best of our knowledge, this proof
is the first of its kind and shows that the tensor product kernel of positive definite
component kernels remains positive definite (Theorem 7.25).

These contributions collectively advance the theoretical understanding and practical
applications of tensor product kernels in reconstruction methods.

This chapter proceeds as follows. Section 7.1 introduces tensor product kernels as
a special type of positive semi-definite kernels, providing a comprehensive overview of
their properties and characteristics. We delve into theoretical fundamentals and char-
acterize native spaces of tensor product kernels in Section 7.2, drawing from seminal
works in the field. Section 7.3 is concerned with the interpolation method using ten-
sor product kernels. We first emphasize the computational advantages inherent in the
tensor product structure, particularly when the interpolation point set is grid-like struc-
tured (Section 7.3.1). Furthermore, we discuss the efficient computation of orthonormal
bases, such as the Newton basis, and its impact on convergence rates. We explore the
question of positive definiteness of tensor product kernels in Section 7.3.2. Using the
concepts of grid-like structure and Kronecker product, we demonstrate how tensor prod-
uct kernels inherit the positive definiteness of their component kernels. Additionally,
we examine the numerical stability of these kernels in Section 7.3.3, which is crucial
for practical applications. Numerical examples are presented in Section 7.4 to under-
score the efficiency of computing the Newton basis and the adaptive nature of tensor
product kernels. These examples offer valuable insights into the potential performance
enhancements achievable with tensor product kernels.

7.1 Definition and Basic Properties

This section provides a detailed definition of tensor product kernels. We present a way
of viewing these kernels as a product kernel of transformation kernels and state first
basic findings regarding positive semi-definiteness and translation-invariance.

Definition 7.1. Let Kℓ be positive semi-definite kernels on Ωℓ Ď Rdℓ for ℓ “ 1, . . . ,M ,
and Ω “

ŚM
ℓ“1Ωℓ Ď Rd, where d “

řM
ℓ“1 dℓ. Then

K : Ω ˆ Ω ÝÑ R,

Kpx, yq :“
M
ś

ℓ“1

Kℓppℓpxq, pℓpyqq for x, y P Ω

is called a tensor product kernel, where pℓ : Ω ÝÑ Ωℓ denotes the projection from Ω
onto Ωℓ for all ℓ “ 1, . . . ,M .
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Figure 7.2: Visualization of two normalized Wendland RBFs ϕ1,0 and ϕ1,3 (left), and
their corresponding two-dimensional tensor product kernel (right) with its support
(black line). The green and purple bar emphasize that ϕ1,0 acts in x-direction and
ϕ1,3 in y-direction.

Figure 7.2 visualizes the anisotropy and construction of a two-dimensional tensor
product kernel. As done for the orthogonal summation kernel (Chapter 6), we can
write any kernel K acting on a projection pℓ as a transformation kernel Kpℓ , where the
transformation is given by projection pℓ. This satisfies the schematic relation visualized
in Fig. 7.1, i.e.

Kppℓpxq, pℓpyqq “ Kpℓpx, yq for ℓ “ 1, . . . ,M.

Hence, the tensor product kernel can be viewed as a product kernel with transformation
kernels as components

Kpx, yq “

M
ź

ℓ“1

Kℓppℓpxq, pℓpyqq “

M
ź

ℓ“1

Kℓpℓpx, yq. (7.1)

This approach helps to state some basic properties. Given a point set X Ă Rd and a
tensor product kernel K with components Kℓ for ℓ “ 1, . . . ,M , the interpolation matrix
AK,X can be written as the Hadamard product

AK,X “

M
ä

ℓ“1

AKℓpℓ
,X “

M
ä

ℓ“1

AKℓ,pℓpXq.

This is a direct consequence of the interpolation matrix representation of product kernels
(4.1) and transformation kernels (5.1). We can proceed as done for the product kernel.
The Schur product theorem provides positive semi-definiteness of the product kernels
(Theorem 4.3) as well as the tensor product kernels.

Theorem 7.2. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, . . . ,M . Then,
the tensor product kernel K is positive semi-definite on Ω “

ŚM
ℓ“1Ωℓ.
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It cannot be guaranteed that the projections pℓpXq Ă Rdℓ of a given finite pair-
wise distinct point set X Ă Rd, where d “

řM
d“1 dℓ, are pairwise distinct for every

ℓ “ 1, . . . ,M . A simple counterexample is given by a grid in Rd, visualized in Fig. 6.3.
Hence, the interpolation matrix AKℓ,pℓpXq of a positive definite component Kℓ, is not
necessarily positive definite. Consequently, the Hadamard product cannot provide pos-
itive definiteness for a tensor product kernel with positive definite components, even
though the Hermitian of positive definite matrices is positive definite again by the Schur
product theorem. This problem is solved by a workaround using a special type of data
sets in Section 7.3.2.

However, we can use Bochner’s theorem when restricting the component kernels
to be translation-invariant. This characterization draws a link between translation-
invariant kernels and non-negative Fourier transforms. Subsequently, we state an ex-
tension of [Wen05, Proposition 6.25] that provides a positive definite tensor product
kernel for positive definite translation-invariant components.

Theorem 7.3. Let Kℓ be positive definite kernels on Rdℓ of the form

Kℓpxℓ, yℓq “ Φℓpxℓ ´ yℓq for xℓ, yℓ P Rdℓ ,

for every ℓ “ 1, . . . ,M , where Φℓ P L1pRdℓq X CpRdℓq. Then the corresponding tensor
product kernel K is positive definite on Rd, with d “

řM
ℓ“1 dℓ.

We close this section with the statement, that translation-invariant component ker-
nels provide a translation-invariant tensor product kernel.

Lemma 7.4. If Kℓ are translation-invariant kernels with uni-variate functions Φℓ on
Ωℓ for ℓ “ 1, . . . ,M , their tensor product kernel K is translation-invariant with the
uni-variate function Φ “

śM
ℓ“1Φℓ ˝ pℓ.

Proof. We note that the projection pℓ is linear for all ℓ “ 1, . . . ,M , and use Lemma 5.3 piiq
to obtain

Kpx, yq “

M
ź

ℓ“1

Kℓ,pℓpx, yq “

M
ź

ℓ“1

Φℓ ˝ pℓpx ´ yq.

■

7.2 Native Spaces

From now on, we assume the components Kℓ to be positive semi-definite kernels for
ℓ “ 1, ...,M , so that their tensor product kernel K is positive semi-definite according to
Theorem 7.2. In Section 2.3, we demonstrated that any symmetric positive semi-definite
kernel generates a reproducing kernel Hilbert space (RKHS) HK,Ω of functions, called
native space. As the tensor product kernel K is composed of the different component
kernels, we aim to derive a similar relation between the associated native spaces. To do
so, we introduce the Hilbert tensor product in Section 7.2.1 and show that the tensor
product kernel’s native space is such a product in Section 7.2.2.
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7.2.1 Hilbert Tensor Product

We introduce and elucidate the Hilbert tensor product here to find that the native
space of the tensor product kernel is such in the subsequent Section 7.2.2. This section
builds upon the foundations presented in [KR83] and [Hac12], to which we refer for
more detailed information.

In general, a tensor product is a mapping that shares the same structure as the
algebraic tensor product ‘ba’, which is defined by a quotient vector space and therefore
consists of equivalence classes. For a formal definition, we refer to [Hac12, Chapter 3.2],
and characterize it as done in [Hac12, Proposition 3.12].

Definition 7.5. Let V,W and U be vector spaces over R. The mapping

b : V ˆ W ÝÑ U

is a tensor product and U a tensor space (i.e., it is isomorphic to V ba W ), if the
following properties hold:

1. Span property: U “ V b W “ spantv b w : v P V, w P W u

2. Bilinearity:

pavq b w “ v b aw “ apv b wq for a P R, v P V, w P W

pv1
` v2

q b w “ v1
b w ` v2

b w for v1, v2
P V, w P W

v b pw1
` w2

q “ v b w1
` v b w2 for v P V, w1, w2

P W

v b 0 “ 0 “ 0 b w for v P V, w P W

3. Linearly independent vectors tviui Ă V and twjuj Ă W lead to linearly indepen-
dent vectors tvi b wjui,j Ă U .

De facto, we use the same symbol ‘b’ for two different purposes here. First, in ten-
sor space notation, the symbol connects vector spaces, and second, it combines vectors
v and w of the respective vector spaces V and W into the quantity v b w. This is
analogous to the summation ‘`’ of vectors and vector spaces from Definition 3.4.

In order to obtain a RKHS as a tensor product, there are two important points to
note with respect to Definition 7.5. First, the tensor space V ba W is not complete
for infinite-dimensional vector spaces V and W . Second, the mapping ba initially
maps to the abstract elements of equivalence classes, which need to be converted into
actual functions in the RKHS setting. Regarding completion, [Hac12] introduces the
topological tensor product b∥¨∥, which satisfies the relation

V b∥¨∥ W “ V baW
∥¨∥
,

for Banach spaces V andW . The steps of completion and conversion were accomplished
by J. Neveu, who identified the native space’s structure of tensor product kernels in
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[Nev71, Chapter VI]. Today, this structure is known as Hilbert tensor product.

In the following, we introduce the concept of Hilbert tensor products and the closely
related Hilbert-Schmidt mapping, which we know maps to a (complete) Hilbert space.
Thus, we can skip the step of completion and still obtain J. Neveu’s result in Theo-
rem 7.10. First, we fix definitions and notations as in [KR83, Chapter 2].

Definition 7.6. Let H1, ...,HM , Z be real Hilbert spaces and

φ :
M
ą

ℓ“1

Hℓ ÝÑ Z

be a function on the Cartesian product of H1, ...,HM .

(i) The function φ is called a bounded multilinear mapping if it is linear in each of
its variables (while the other variables remain fixed), and there exists a constant
c P R` such that

}φpx1, ..., xMq}Z ď c ¨

M
ź

ℓ“1

}xℓ}Hℓ

holds for any px1, ..., xMq P
ŚM

ℓ“1Hℓ.

(ii) We call φ a weak Hilbert-Schmidt mapping if it is a bounded multilinear mapping
and there exists a constant d P R` such that the estimate

ÿ

b1PB1

. . .
ÿ

bMPBM

|xφpb1, ..., bMq, zyZ |
2

ď d2}z}
2
Z

holds for any orthonormal bases B1 Ă H1, ..., BM Ă HM and z P Z.

The following theorem is a slight modification of [KR83, Theorem 2.6.4], which
details the main properties of Hilbert tensor products. In contrast to the standard
tensor product, the Hilbert tensor product of Hilbert spaces is again a Hilbert space.
This is a crucial detail, as kernel-based approximation theory mainly works with RKHSs.

Theorem 7.7. Let H1, ...,HM be real Hilbert spaces. Then there exists a tuple pH, φq

of a Hilbert space H and a multilinear mapping

φ :
M
ą

ℓ“1

Hℓ ÝÑ H

satisfying

xφpx1, ..., xMq, φpy1, ..., yMqyH “

M
ź

ℓ“1

xxℓ, yℓyHℓ

for any px1, ..., xMq, py1, ..., yMq P
ŚM

ℓ“1Hℓ. Additionally,

H0 “ span
␣

φpx1, ..., xMq : px1, ..., xMq P H1 ˆ ... ˆ HM

(

is a dense subset of H.
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Furthermore,

a) Let B1 Ă H1, ..., BM Ă HM be orthonormal bases. Then

B “
␣

φpb1, ..., bMq : pb1, ..., bMq P B1 ˆ ... ˆ BM

(

is a orthonormal basis of H.

The following uniqueness statements hold:

b) The map φ is a weak Hilbert-Schmidt mapping and satisfies the universal property:
If Z is another Hilbert space and ψ :

ŚM
ℓ“1Hℓ ÝÑ Z is a weak Hilbert-Schmidt

mapping, there is a unique bounded linear map T : H ÝÑ Z such that ψ “ T ˝φ.

c) Let H̃ be a Hilbert space and φ̃ :
ŚM

ℓ“1Hℓ ÝÑ H̃ be a weak Hilbert-Schmidt
mapping that satisfy the universal property from part b). Then, there exists an
isometric isomorphism U : H ÝÑ H̃ with U ˝ φ “ φ̃. Hence, pH̃, φ̃q satisfies the
above properties of pH, φq.

d) If pH̃, φ̃q satisfies the above properties of pH, φq, there exists an isometric isomor-
phism U : H ÝÑ H̃ with U ˝ φ “ φ̃.

Note that φ, being the identity, does not satisfy the required properties, as it is no
multilinear mapping, but only a linear one. Consequently, the Cartesian product ‘

Ś

’
is not a tensor product.

Finally, we can provide a precise definition of the Hilbert tensor product.

Definition 7.8. Let H1, ...,HM be Hilbert spaces and the tuple pH, φq be given by
Theorem 7.7. Then pH, φq is called the Hilbert tensor product of H1, ...,HM , denoted
by

M
â

ℓ“1

Hℓ :“ span

"

M
b
ℓ“1
xℓ : xℓ P Hℓ for ℓ “ 1, . . . ,M

*

“ pH, φq,

where

M
b
ℓ“1
xℓ “ x1 b ... b xM :“ φpx1, ..., xMq for px1, ..., xMq P

M
ą

ℓ“1

Hℓ

Shortly, we write H “
M
Â

ℓ“1

Hℓ.

Note, that due to Theorem 7.7 c) and d) the Hilbert tensor product is, up to
isometric isomorphy, uniquely characterized.
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7.2.2 Native Space as Hilbert Tensor Product

We identify the native space HK,Ω of a tensor product kernel K with components Kℓ

as the Hilbert tensor product of its components’ native spaces HKℓ,Ωℓ
in the following.

To do so, we define a mapping φ from the Cartesian product of the components’ native
spaces to the tensor product kernel’s native space and show that the tuple pHK,Ω, φq

satisfies the properties of Theorem 7.7. This means that, unlike J. Neveu’s approach,
we directly assume that φ maps onto a set of functions, thereby allowing us to omit the
conversion step. Note that the underlying algebraic structure of the kernel justifies its
designation as ‘tensor product kernel’.

Theorem 7.9. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, ...,M , and K
be the corresponding tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ. Then the mapping

φ :
M
ą

ℓ“1

HKℓ,Ωℓ
ÝÑ HK,Ω,

pf1, ..., fMq ÞÝÑ

M
ź

ℓ“1

fℓ ˝ pℓ

(7.2)

is well-defined, multilinear, and satisfies the equation

@

φpf1, ..., fMq, φpg1, ..., gMq
D

K,Ω
“

M
ź

ℓ“1

xfℓ, gℓyKℓ,Ωℓ
(7.3)

for all pf1, ..., fMq, pg1, ..., gMq P
ŚM

ℓ“1HKℓ,Ωℓ
. Moreover, it is

SK,Ω Ă span
␣

φpf1, ..., fMq : fℓ P HKℓ,Ωℓ
for all ℓ “ 1, ...,M

(

. (7.4)

Proof. The proof is carried out via induction on M .
M “ 2: We divide the initial step into three parts. In (i), we show (7.2) and (7.3) for
the pre Hilbert spaces SK,Ω. In the second part (ii), we extend the results to HK,Ω, and
in (iii), we conclude the initial step by by proving (7.4).

(i) Let f1 P SK1,Ω1 and f2 P SK2,Ω2 be given by

f1 “

N1
ÿ

i“1

aiK1p¨, yiq, f2 “

N2
ÿ

j“1

bjK2p¨, zjq

with ty1, ..., yN1u Ă Ω1, tz1, ..., zN2u Ă Ω2. Applying φ on pf1, f2q leads to

φpf1, f2q “ pf1 ˝ p1q ¨ pf2 ˝ p2q

“

N1
ÿ

i“1

N2
ÿ

j“1

aibjK1

`

p1p¨q, yi
˘

K2

`

p2p¨q, zj
˘

“

N1
ÿ

i“1

N2
ÿ

j“1

aibjK1

`

p1p¨q, p1pxi,jq
˘

K2

`

p2p¨q, p2pxi,jq
˘

“

N1
ÿ

i“1

N2
ÿ

j“1

aibjKp¨, xi,jq P SK,Ω Ď HK,Ω,
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where K denotes the tensor product kernel of K1 and K2 and xi,j “ pyi, zjq is an
element of Ω1 ˆ Ω2 “ Ω. As a consequence, φ is well-defined on the dense subsets.
Clearly, the mapping is multilinear as well. Given the additional elements

g1 “

M1
ÿ

k“1

ckK1p¨, ỹkq P SK1,Ω1 , g2 “

M2
ÿ

ℓ“1

dℓK2p¨, z̃ℓq P SK2,Ω2

with tỹ1, ..., ỹM1u Ă Ω1, tz̃1, ..., z̃M2u Ă Ω2, the computation

@

φpf1, f2q, φpg1, g2q
D

K,Ω
“

C

N1
ÿ

i“1

N2
ÿ

j“1

aibj K1

`

p1p¨q, yi
˘

K2

`

p2p¨q, zj
˘

,

M1
ÿ

k“1

M2
ÿ

ℓ“1

ckdℓ K1

`

p1p¨q, ỹk
˘

K2

`

p2p¨q, z̃ℓ
˘

G

K,Ω

“

N1
ÿ

i“1

N2
ÿ

j“1

M1
ÿ

k“1

M2
ÿ

ℓ“1

aibj ckdℓ K1pyi, ỹkqK2pzj, z̃ℓq

“

N1
ÿ

j“1

M1
ÿ

k“1

aick K1pyi, ỹkq ¨

N2
ÿ

j“1

M2
ÿ

ℓ“1

bjdℓ K2pzj, z̃ℓq

“ xf1, g1yK1,Ω1
¨ xf2, g2yK2,Ω2

yields (7.3) using Theorem 5.6 for the last equation.

(ii) For all f1 P HK1,Ω1 , f2 P HK2,Ω2 , there exist a normwise convergent sequences
`

s1n
˘

nPN Ă SK1,Ω1 and
`

s2n
˘

nPN Ă SK2,Ω2 with

lim
nÑ8

s1n “ f1 lim
nÑ8

s2n “ f2.

Due to part (i), we can state the estimate∥∥φps1m, s
2
mq ´ φps1n, s

2
nq
∥∥
K,Ω

“
∥∥ps1m ˝ p1q ¨ ps2m ˝ p2q ´ ps1n ˝ p1q ¨ ps2n ˝ p2q

∥∥
K,Ω

ď
∥∥ps1m ´ s1nq ˝ p1

∥∥
K1,p1 ,Ω

¨
∥∥s2m ˝ p2

∥∥
K2,p2 ,Ω

`
∥∥s1n ˝ p1

∥∥
K1,p1 ,Ω

¨
∥∥ps2m ´ s2nq ˝ p2

∥∥
K2,p2 ,Ω

“
∥∥s1m ´ s1n

∥∥
K1,Ω1

¨
∥∥s2m∥∥K2,Ω2

`
∥∥s1n∥∥K1,Ω1

¨
∥∥s2m ´ s2n

∥∥
K2,Ω2

for all n,m P N. Hence, the sequence
`

φps1n, s
2
nq
˘

nPN is a Cauchy sequence in HK,Ω

and therefore approaches a normwise limit in HK,Ω, here denoted with g, i.e.,

g “ lim
nÑ8

φps1n, s
2
nq.

Since norm convergence implies pointwise convergence in RKHSs, see Theorem 2.21,
we obtain

gpxq “ lim
nÑ8

s1npyq ¨ s2npzq for all x “ py, zq P Ω,
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where the right-hand side can be written as

lim
nÑ8

s1npyq ¨ s2npzq “ lim
nÑ8

s1npyq ¨ lim
nÑ8

s2npzq “ f1pyq ¨ f2pzq for all x “ py, zq P Ω,

by applying the same argument with respect to the norm convergence in the
spaces HK1,Ω1 and HK2,Ω2 . Consequently,

φpf1, f2q P HK,Ω for all f1 P HK1,Ω1 , f2 P HK2,Ω2 ,

showing that φ is a well-defined function. Since taking the limit is a linear oper-
ator, φ maintains multilinear, when extending its domain from SK1,Ω1 ˆSK2,Ω2 to
HK1,Ω1 ˆ HK2,Ω2 .

Given additional elements g1 P HK1,Ω1 and g2 P HK2,Ω1 , we can approximate them
with convergent sequences

`

s̃1n
˘

nPN Ă SK1,Ω1 and
`

s̃2n
˘

nPN Ă SK2,Ω2 as well. The
continuity of inner products and part (i) results in (7.3), as

@

φpf1, f2q, φpg1, g2q
D

K,Ω
“ lim

nÑ8

@

φps1n, s
2
nq, φps̃1n, s̃

2
nq
D

K,Ω

“ lim
nÑ8

xs1n, s̃
1
nyK1,Ω1 ¨ xs2n, s̃

2
nyK2,Ω2

“ xf1, g1yK1 ¨ xf2, g2yK2 .

(iii) Let x “ py, zq P Ω1 ˆ Ω2 “ Ω, then

Kp¨, xq “ K1

`

p1p¨q, y
˘

K2

`

p2p¨q, z
˘

“ φ
`

K1p¨, yq, K2p¨, zq
˘

.

With this we obtain the relation (7.4), since

SK,Ω “ span
␣

Kp¨, xq : x P Ω
(

“ span
!

φ
`

K1p¨, yq, K2p¨, zq
˘

: y P Ω1, z P Ω2

)

Ă span
␣

φpf1, ..., fMq : fℓ P HKℓ,Ωℓ
for all ℓ “ 1, ...,M

(

.

M Ñ M ` 1: Let Ω̃ “
ŚM

ℓ“1Ωℓ and K̃ the tensor product kernel of Kℓ for ℓ “ 1, . . . ,M .
Due to the induction basis and hypothesis, the mappings

φ̃ :
M
ą

ℓ“1

HKℓ,Ωℓ
ÝÑ HK̃,Ω̃, pf1, ..., fMq ÞÝÑ

M
ź

ℓ“1

fℓ ˝ pℓ

and

φ̄ : HK̃,Ω̃ ˆ HKM`1,ΩM`1
ÝÑ HK,Ω,

´

f̃ , fM`1

¯

ÞÝÑ pf̃ ˝ p̃q ¨ pfM`1 ˝ pM`1q,

where p̃ defines the projection from Ω̃ ˆ ΩM`1 to Ω̃, are well-defined and satisfy (7.3)
and (7.4) on their respective domains. Since

M`1
ź

ℓ“1

fℓ ˝ pℓ “ φ̄
`

φ̃pf1, ..., fMq, fM`1

˘
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holds for all pf1, ..., fM`1q P
ŚM`1

ℓ“1 HKℓ,Ωℓ
, the mapping

φ :
M`1
ą

ℓ“1

HKℓ,Ωℓ
ÝÑ HK,Ω, pf1, ..., fM`1q ÞÝÑ

M`1
ź

ℓ“1

fℓ ˝ pℓ

is well-defined and multilinear. In order to show (7.3), let

f “ pf1, ..., fM`1q, g “ pg1, ..., gM`1q P

M`1
ą

ℓ“1

HKℓ,Ωℓ
.

Then we obtain
@

φpfq, φpgq
D

K,Ω
“

A

φ̄
`

φ̃pf1, ..., fMq, fM`1

˘

, φ̄
`

φ̃pg1, ..., gMq, gM`1

˘

E

K,Ω

“
@

φ̃pf1, ..., fMq, φ̃pg1, ..., gMq
D

K̃,Ω̃
¨ xfM`1, gM`1yKM`1,ΩM`1

“

M
ź

ℓ“1

xfℓ, gℓyKℓ,Ωℓ
¨ xfM`1, gM`1yKM`1,ΩM`1

“

M`1
ź

ℓ“1

xfℓ, gℓyKℓ,Ωℓ
.

A similar argument as in the case M “ 2 (iii) validates (7.4). ■

The next theorem concludes the above analysis by identifying the tensor product
kernel’s native space HK,Ω as the Hilbert tensor product of its components’ native
spaces HKℓ,Ωℓ

.

Theorem 7.10. Let Kℓ be positive semi-definite kernels on Ωℓ for ℓ “ 1, ...,M and K
their corresponding tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ. Then

HK,Ω “

M
â

ℓ“1

HKℓ,Ωℓ
,

where

f1 b ¨ ¨ ¨ b fM “

M
ź

ℓ“1

fℓ ˝ pℓ for all fℓ P HKℓ,Ωℓ
, ℓ “ 1, . . . ,M.

Proof. By Theorem 7.2 and Section 2.3.2 there exist the native space HK,Ω of the kernel
K. Consider the mapping φ of (7.2) in Theorem 7.9. Since φ satisfies (7.3) and (7.4)
and SK,Ω is a dense subset of HK,Ω, the tuple pHK,Ω, φq satisfies all properties from
Theorem 7.7. Definition 7.8 finishes the proof. ■

Let us approach the matter from a different perspective, not starting from the
tensor product kernel, but rather from the tensor product of the native spaces. To do
so, let pH,bq be a Hilbert tensor product of the native spaces HKℓ,Ωℓ

, defined as in
Theorem 7.7. Then the tensor of the reproducing kernels Kℓ lies in H, i.e.,

M
â

ℓ“1

Kℓp¨, xℓq P H for all xℓ P Ωℓ, ℓ “ 1, . . . ,M.
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Furthermore, for an element f P H0, lying in the dense subset H0 Ă H, of the form

f “

N
ÿ

i“1

αi
M
â

ℓ“1

f iℓ , where f iℓ P HKℓ,Ωℓ
for i “ 1, . . . , N and ℓ “ 1, . . . ,M,

it holds that
C

f,
M
â

ℓ“1

Kℓp¨, xℓq

G

H

“

N
ÿ

i“1

αi

C

M
â

ℓ“1

f iℓ ,
M
â

ℓ“1

Kℓp¨, xℓq

G

H

“

N
ÿ

i“1

αi

M
ź

ℓ“1

A

f iℓ , Kℓp¨, xℓq
E

HKℓ,Ωℓ

“

N
ÿ

i“1

αi

M
ź

ℓ“1

f iℓpxℓq,

where the right hand side is a function on
ŚM

ℓ“1Ωℓ. Consequently, if

M
â

ℓ“1

fℓ “

M
ź

ℓ“1

fℓ ˝ pℓ,

the spaceH is a RKHS with the tensor product kernel as its reproducing kernel. Thanks
to the uniqueness of reproducing kernels of Theorem 2.22, the tensor product kernel
is the unique reproducing kernel corresponding to this mapping. We summarize the
above analysis in the following lemma.

Lemma 7.11. Let pH,bq be a Hilbert tensor product of the native spaces HKℓ,Ωℓ
, i.e.,

H “

M
â

ℓ“1

HKℓ,Ωℓ
.

Then pH,bq “ pHK,Ω, ∥¨∥Kq if and only if

M
â

ℓ“1

fℓ “

M
ź

ℓ“1

fℓ ˝ pℓ, where fℓ P HKℓ,Ωℓ
for ℓ “ 1, . . . ,M.

7.3 Interpolation

For interpolation with tensor product kernels, we first examine two important concepts:
point sets of grid-like structure and the Kronecker product. In Section 7.3.1, we combine
these two concepts to demonstrate that unique interpolation with the tensor product
kernel on grid-like structured data sets is feasible (Corollary 7.16). Furthermore, we
delve into the convergence of the reconstruction method resulting in Theorem 7.23 as
well as the construction of orthonormal Newton basis given by (7.6).

Despite the practical advantages of interpolation on grid-like point sets, it remains
to be determined whether a tensor product kernel is positive definite, that is, whether
the interpolation matrix is positive definite for all pairwise distinct data sets (not only
of grid-like structure). We affirm this in Section 7.3.2, Theorem 7.25, and subsequently
address the numerical stability of the interpolation method with tensor product kernel
for both scattered and grid-like point sets in Section 7.3.3.
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Definition 7.12. If a point set X Ă Rd can be written as a Cartesian product

X “ X1
ˆ ... ˆ XM

“

M
ą

ℓ“1

Xℓ

of finite pairwise distinct sets Xℓ Ă Rdℓ , where ℓ “ 1, ...,M and d “
řM
ℓ“1 dℓ, we say

that it has grid-like structure.

Definition 7.13. The Kronecker product

A b B

of two matrices A “ pai,jq1ďiďm, 1ďjďn P Rmˆn and B “ pai,jq1ďiďp, 1ďjďq P Rpˆq is
defined as the block matrix

A b B “

¨

˚

˝

a1,1B ¨ ¨ ¨ a1,nB
...

. . .
...

am,1B ¨ ¨ ¨ am,nB

˛

‹

‚

P Rmpˆnq.

The entries of A b B are given by

pA b Bqj,k “ arj{ps,rk{qs ¨ bpj´1q mod p`1, pk´1q mod q`1

for 1 ď j ď mp and 1 ď k ď nq, where r¨s denotes the ceiling function and ‘mod’ is the
remainder after division.

The Kronecker product is an algebraic tensor product of matrices (cf. [Hac12, Chap-
ter 1.1.2]). Thus, not surprisingly, this product aligns closely with the tensor product
kernel. We state some basic properties of the Kronecker product, which will be needed
throughout this section. For proofs, we refer to [HJ91, Chapter 4.2].

Lemma 7.14. The following statements hold:

(i) Let α P R, A P Rmˆn, B P Rpˆq, C P Rnˆk and D P Rqˆr, then

pαAq b B “ A b pαBq

pA b Bq
T

“ AT b BT

pABq b pC Dq “ pA b Cq pB b Dq.

(ii) Let A P Rnˆn and B P Rmˆm be regular matrices, then pAbBq´1 “ A´1 bB´1.

(iii) For positive (semi-)definite square matrices A P Rnˆn and B P Rmˆm, the corre-
sponding Kronecker product A b B is positive (semi-)definite.

(iv) For square matrices A P Rnˆn and B P Rmˆm, every eigenvalue λpAbBq of AbB
arises as a product of eigenvalues λpAq, λpBq of A,B respectively, i.e.,

λpA b Bq “ λpAqλpBq.

This directly implies

λmaxpA b Bq “ λmaxpAqλmaxpBq and λminpA b Bq “ λminpAqλminpBq.

Subsequently, we apply these properties to a product of arbitrary but finitely many
matrices. This is valid, as the aforementioned statements can be extended by induction.



142 Chapter 7. Tensor Product Kernels

7.3.1 Interpolation on Grid-Like Point Sets

The following combines the concept of grid-like structured point sets with that of the
Kronecker product. Specifically, the interpolation matrix AK,X corresponding to the
tensor product kernel K and grid-like data X can be expressed as a Kronecker product.
While [Saa11] identified this relationship, they did not provide a rigorous proof. Here,
we present a formal one.

Theorem 7.15. Let Kℓ be positive semi-definite kernels on Ωℓ and X
ℓ Ă Ωℓ be finite

and pairwise distinct point sets for ℓ “ 1, ...,M . Moreover, let K be the corresponding
tensor product kernel and X “

ŚM
ℓ“1X

ℓ. Then there exists an ordering of X, such that
the corresponding interpolation matrix AK,X can be written as

AK,X “

M
â

ℓ“1

AKℓ,Xℓ .

Proof. The proof is carried out via induction on M .
M “ 2: Let X1 “ tx11, ..., x

1
N1

u Ă Ω1 and X2 “ tx21, ..., x
2
N2

u Ă Ω2 be pairwise distinct
point sets, and N “ N1N2. For k P t1, ..., Nu, we set

xk “ px1rk{N2s, x
2
pk´1q mod N2`1q.

This leads to an ordering X “ X1 ˆ X2 “ txk : k “ 1, ..., Nu, which results in

`

AK,X

˘

j,k
“ K

ˆ

´

x1rj{N2s, x
2
pj´1q mod N2`1

¯

,
´

x1rk{N2s, x
2
pk´1q mod N2`1

¯

˙

“ K1
´

x1rj{N2s, x
1
rk{N2s

¯

¨ K2
´

x2pj´1q mod N2`1, x
2
pk´1q mod N2`1

¯

“
`

AK1,X1

˘

rj{N2s, rk{N2s
¨
`

AK2,X2

˘

pj´1q mod N2`1, pk´1q mod N2`1

for any j, k P t1, . . . , Nu. Hence, the equation AK,X “ AK1,X1 b AK2,X2 holds.

M Ñ M ` 1: Let Kℓ be positive semi-definite kernels on Ωℓ and Xℓ Ă Ωℓ be finite

and pairwise distinct point sets for ℓ “ 1, ...,M ` 1. Furthermore, let X̃ “
ŚM

ℓ“1X
ℓ,

Nℓ “ |Xℓ| for ℓ “ 1, ...,M , and Ñ “
śM

ℓ“1Nℓ. We denote by K̃ the tensor product
kernel corresponding to Kℓ for ℓ “ 1, . . . ,M . Due to the induction hypothesis, there is
an ordering X̃ “ tx̃ℓ : ℓ “ 1, ..., Ñu so that the equation

AK̃,X̃ “

M
â

ℓ“1

AKℓ,Xℓ

holds. As in the initial case, we can order X “ X̃ ˆ XM`1 to get

AK,X “ AK̃,X̃ b AKM`1,XM`1 ,

where K is the tensor product kernel corresponding to Kℓ for ℓ “ 1, . . . ,M ` 1. In
total, we conclude

AK,X “

M`1
â

ℓ“1

AKℓ,Xℓ .

■
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Combining the Theorem 7.15 with Lemma 7.14 (iii), yields positive definiteness of
the interpolation matrix AK,X in the setting of grid-like structured point sets X.

Corollary 7.16. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M , and K
their corresponding tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X Ă Ω be

grid-like structured. Then the interpolation matrix AK,X of the tensor product kernel
K is positive definite.

Remark 7.17. Despite the considerable benefits due to interpolation on grid-like struc-
tured point sets, this assumption simultaneously imposes constraints. Naturally, not all
applications feature interpolation point sets of grid-like structure, and even when they
do, data may frequently be missing due to water, governmental boundaries, missing pix-
els, and the like. Particularly in the latter scenario, it becomes imperative to preserve
the structural advantages while relaxing the grid assumption. For more information
and a detailed process to do so, we refer to [WGNC14].

Now that we provided unique interpolation on grid-like point sets, we turn our atten-
tion to interpolation with tensor product kernels in this setting. The upcoming theorem
demonstrates that the tensor of the individual component interpolants coincides with
the interpolant of the tensor product kernel. Consequently, there are two methods of
achieving the same interpolant in a grid-like setting. However, if we decide upon com-
puting the component interpolants sfℓ,Kℓ,Xℓ initially and subsequently multiply them,
we require knowledge of the functions fℓ on X

ℓ. Such detailed information about the
problem is unlikely to be available. In contrast, the tensor product kernel does not
need this level of detail, but only requires the function values of the target function fX ,
thereby yielding the same interpolant.

Theorem 7.18. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M , and K their
tensor product kernel acting on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let the target function be

of the tensor form f “
śM

ℓ“1 fℓ ˝ pℓ with fℓ acting on Ωℓ and pℓ being the projection

from Ω to Ωℓ for ℓ “ 1, . . . ,M , and X “
ŚM

ℓ“1X
ℓ be of grid-like structure. Then,

sf,K,X “

M
ź

ℓ“1

sfℓ,Kℓ,Xℓ ˝ pℓ.

Proof. The function
M
ś

ℓ“1

sfℓ,Kℓ,Xℓ ˝pℓ lies in SK,X by the proof of Theorem 7.9. Moreover,

it satisfies the interpolation condition, as

fpxnq “

M
ź

ℓ“1

fℓ ˝ pℓpxnq “

M
ź

ℓ“1

fℓpx
ℓ
nq “

M
ź

ℓ“1

sfℓ,Kℓ,Xℓpxℓnq “

M
ź

ℓ“1

sfℓ,Kℓ,Xℓ ˝ pℓpxnq,

for all xn “ px1n, . . . , x
M
n q P

ŚM
ℓ“1X

ℓ “ X. Section 2.1 combined with Corollary 7.16
provides the uniqueness of an interpolant in SK,X . This finishes the proof. ■
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Newton Basis In [MS09], the orthonormal Newton basis of SK,X was introduced to
improve stability and efficiency of kernel-based reconstruction methods. The construc-
tion of this orthonormal basis relies on the Cholesky decomposition of the interpolation
matrix AK,X and is rather costly compared to the standard basis Kp¨, xiq. But, the
property of a tensor product kernel to write its interpolation matrix as a Kronecker
product, does notably decrease the computational expenses associated with computing
the Newton basis, as shown in the numerical tests of Section 7.4.2.

We start by introducing and constructing the Newton basis. For details and proofs
we refer to [MS09].

Definition 7.19. The set of functions N “ tn1, . . . , nNu acting on Ω regarding the
point set tx1, . . . , xNu “ X Ă Ω and the kernel K, defined by

nipxjq “ 0 for 0 ď j ă i ď N

nipxiq “ 1 for 0 ď i ď N

and the requirement

ni P SK,X,i :“ span
␣

Kp¨, x1q, . . . , Kp¨, xiq
(

for 0 ď i ď N,

is called the Newton basis of SK,X .

Theorem 7.20. Let K be a positive definite kernel on Ω and tx1, . . . , xNu “ X Ă Ω be
a pairwise distinct point set. Furthermore, let AK,X “ LLT be the Cholesky decompo-
sition of the interpolation matrix AK,X , where L is a lower triangular matrix, and let
pLT q´1 “

`

uij
˘

1ďi,jďN
denote the upper triangular inverse of LT . Then the functions

ni “

i
ÿ

j“1

uij Kp¨, xjq i “ 1, ..., N

form an orthonormal Newton basis of SK,X .

In matrix notation, Theorem 7.20 provides

VN ,X “ AK,X

´

LT
¯´1

“ L, (7.5)

where VN ,X denotes the Vandermonde matrix (Definition 2.1) of the Newton basis N
evaluated at the point set X. We observe that the Vandermonde matrix of a Newton
basis must be a lower triangular matrix with diagonal entries equal to one.

Below, we outline how we can leverage a tensor structure for computing the Newton
basis. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K their tensor
product kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X “

ŚM
ℓ“1X

ℓ have grid-like struc-
ture, with Xℓ Ă Ωℓ. We combine the individual Newton bases of the component spaces
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SKℓ,Xℓ to compute the Newton basis of SK,X . Due to the grid-like structure of the point
set X, we can write the approximation space SK,X as the Hilbert tensor product

SK,X “

M
â

ℓ“1

SKℓ,Xℓ ,

where

M
b
ℓ“1

fℓ “

M
ź

ℓ“1

fℓ ˝ pℓ for all fℓ P SKℓ,Xℓ , ℓ “ 1, . . . ,M.

Let Nℓ denote the Newton basis of SKℓ,Xℓ , then Theorem 7.7 a) in combination with
Theorem 7.10 provides that

N :“

"

M
b
ℓ“1

nℓ : pn1, ..., nMq P N1 ˆ ... ˆ NM

*

(7.6)

is an orthonormal basis of SK,X . The Vandermonde matrix VN ,X of N on X can be
computed by the Kronecker product of the component Vandermonde matrices VNℓ,Xℓ ,
resulting in

VN ,X “

M
â

ℓ“1

VNℓ,Xℓ “

M
â

ℓ“1

Lℓ “

M
â

ℓ“1

´

AKℓ,Xℓ pLTℓ q
´1
¯

(7.7)

by (7.5). To show that the above representation of VN ,X is the Choleski factor L of
AK,X , we state the subsequent lemma.

Lemma 7.21. Let K be a tensor product kernel of positive definite components Kℓ act-
ing on Ωℓ and X “

ŚM
ℓ“1X

ℓ have grid-like structure, with Xℓ Ă Ωℓ and Ω “
ŚM

ℓ“1Ωℓ.
Additionally, let

AKℓ,Xℓ “ Lℓ L
T
ℓ for ℓ “ 1, ...,M

be the Cholesky factorizations of the component interpolation matrices AKℓ,Xℓ and X
be ordered such that

AK,X “

M
â

ℓ“1

AKℓ,Xℓ .

The Cholesky factor L of AK,X is then given by the Kronecker product

L “

M
â

ℓ“1

Lℓ and
´

LT
¯´1

“

M
â

ℓ“1

´

LTℓ

¯´1

.

Proof. The statements directly follow from the properties of the Kronecker product
provided in Lemma 7.14 piq and the fact that the Kronecker product of lower triangular
matrices is also a lower triangular matrix. ■
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We apply Lemma 7.14 piq and Lemma 7.21 on (7.7) to obtain

VN ,X “

M
â

ℓ“1

AKℓ,Xℓ

M
â

ℓ“1

pLTℓ q
´1

“ AK,X

´

LT
¯´1

“ L,

showing that N is the Newton basis of SK,X . This provides us with two distinct ap-
proaches for computing the Newton basis N of SK,X . Fist, the common way proposed
in Theorem 7.20 and second the tensor structure exploiting way of combining the com-
ponent Newton basis Nℓ to N by (7.6).

Convergence We focus on the power function introduced in Definition 2.27, i.e.,

PK,Xpxq “ }Kp¨, xq ´ sKp¨,xq,K,X}K for all x P Ω.

Hence, the power functions of the component kernels can be written as

PKℓ,Xℓpxq “ }Kℓp¨, xq ´ sKℓp¨,xq,Kℓ,Xℓ}Kℓ
for x P Ωℓ, ℓ “ 1, ...,M.

We note that nℓpxq “ PKℓ,Xℓpxq for x P Ωℓ holds by [PS11]. In order to prove conver-
gence, we state a representation of the tensor product kernel’s power function.

Lemma 7.22. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K be
their tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ and X “ X1 ˆ ...ˆXM Ă Ω be a grid-like

point set. Then its power function can be written as

PK,Xpxq
2

“ Kpx, xq ´

M
ź

ℓ“1

´

Kℓ

`

pℓpxq, pℓpxq
˘

´ PKℓ,Xℓ

`

pℓpxq
˘2
¯

for all x P Ω,

where pℓ denotes the projection form Ω to Ωℓ for all ℓ “ 1, ...,M .

Proof. Let N denote the Newton basis of SK,X and Nℓ denote the component Newton
bases of SKℓ,Xℓ for ℓ “ 1, ...,M . Due to the orthonormality, we have

PK,Xpxq
2

“ Kpx, xq ´
ÿ

nPN
npxq

2 and

PKℓ,Xℓ

`

pℓpxq
˘2

“ Kℓ

`

pℓpxq, pℓpxq
˘

´
ÿ

nℓPNℓ

nℓ
`

pℓpxq
˘2

for all x P Ω and ℓ “ 1, ...,M . Combining these results with (7.6), we obtain

PK,Xpxq
2

“ Kpx, xq ´
ÿ

nPN
npxq

2

“ Kpx, xq ´
ÿ

n1PN
. . .

ÿ

nMPNM

M
ź

ℓ“1

nℓ
`

pℓpxq
˘2

“ Kpx, xq ´

M
ź

ℓ“1

¨

˝

ÿ

nℓPNℓ

nℓ
`

pℓpxq
˘2

˛

‚

“ Kpx, xq ´

M
ź

ℓ“1

´

Kℓ

`

pℓpxq, pℓpxq
˘

´ PKℓ,Xℓ

`

pℓpxq
˘2
¯

for all x P Ω.

■
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With the previous results, we can show that the interpolation method converges if
the power functions of the component kernels decay to zero.

Theorem 7.23. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K
be their tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ. If pXnqnPN is a sequence of grid-like

subsets in Ω, i.e.,

Xn “ X1
n ˆ ... ˆ XM

n where Xℓ
n Ă Ωℓ for ℓ “ 1, ...,M,

that satisfies the condition

PKℓ,Xℓ
n

`

pℓpxq
˘ nÑ8

ÝÝÝÑ 0 for x P Ω, ℓ “ 1, ...,M, (7.8)

then the interpolant converges∥∥f ´ sf,K,Xn

∥∥
K

nÑ8
ÝÝÝÑ 0 for all f P HK,Ω.

Proof. Let the targe function be given by the linear combination

f “

N
ÿ

i“1

ciKp¨, yiq P SK,Ω.

Due to the linearity of the interpolation operator, we obtain∥∥f ´ sf,K,Xn

∥∥
K

ď

N
ÿ

i“1

|ci|
∥∥Kp¨, yiq ´ sKp¨,yiq,K,Xn

∥∥
K

“

N
ÿ

i“1

|ci| PK,Xnpyiq.

The power function’s representation of Lemma 7.22 then implies

∥∥f ´ sf,K,Xn

∥∥
K

ď

N
ÿ

i“1

|ci|

¨

˝Kpyi, yiq ´

M
ź

ℓ“1

´

Kℓ

`

pℓpyiq, pℓpyiq
˘

´ PKℓ,Xℓ
n

`

pℓpyiq
˘2
¯

˛

‚.

The right-hand side converges to zero for n ÝÑ 8 by (7.8) and the definition of K.
This proves the desired result for all functions f P SK,Ω. Since SK,Ω is dense in HK,Ω,
the convergence extends from target functions in SK,Ω to target functions in HK,Ω. ■

Remark 7.24. Let pXnqn be a sequence of grid like structured point sets, which satisfies

PKℓ,Xℓ
n
pxjq

nÑ8
ÝÑ 0 for all ℓ “ 1, . . . ,M, l ‰ j and

Xj
“ Xj

n for all n P N.

Then

PK,Xnpxq
2 nÑ8

ÝÑ PKj ,Xj

`

pjpxq
˘2

ź

j‰i

Kj

`

pjpxq, pjpxq
˘

.

This shows that the convergence of every but one of the components’ power functions
PKj ,X

j
n
ppjpxqq is not only sufficient but also necessary for the convergence of the power

function PK,Xnpxq. We remark that the power function can be bounded by the fill
distance hXn,Ω by Theorem 2.43, and conclude that we cannot expect the error to
converge to zero in a setting, where phXj

n,Ωj
qnPN does not converge to 0.

For a detailed discussion on the relationship between the power function and con-
vergence, we refer to [AI24].
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7.3.2 Positive Definiteness

Recall from Section 7.2 that the Hadamard product is not suitable to show positive
definiteness of a tensor product kernel with positive definite components. De facto, these
kernels are positive definite. We demonstrate this in Theorem 7.25, and hence generalize
Theorem 7.3, by omitting the assumption of the kernel’s translation-invariance. To this
end, we use the concepts of grid-like structure and Kronecker product, which have
already led to intriguing insights on structure and efficiency earlier in this chapter.

Theorem 7.25. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M . Then their
corresponding tensor product kernel K is positive definite on Ω “

ŚM
ℓ“1Ωℓ.

Proof. Let X “ tx1, . . . , xnu Ă Ω be a finite and pairwise distinct point set. Let Y ℓ be
the projection of X onto Ωℓ, such that any point that occurs multiple times in pℓpXq

appears only once in Y ℓ. These sets give rise to a grid-like point set

Y “

M
ą

ℓ“1

Y ℓ,

such that X Ď Y and Y ℓ Ă Ωℓ is pairwise distinct for all ℓ “ 1, . . . ,M . See Fig. 7.3
for a visualization. Due to Corollary 7.16, the interpolation matrix AK,Y is positive
definite. Since AK,X is a submatrix of AK,Y , it is positive definite as well. ■

This is a crucial result, as we are now able to use tensor product kernels for multi-
variate scattered data reconstruction methods. From previous results, we can further
conclude the following norm relation.
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Figure 7.3: Visualization of a scattered point set (left) and the corresponding grid-
like structured superset (right).
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Lemma 7.26. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M , K be their
tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ, and X Ă Ω be pairwise distinct. Furthermore,

let the target function be of the tensor form

f “

M
ź

ℓ“1

fℓ ˝ pℓ

with fℓ acting on Ωℓ and pℓ being the projection from Ω to Ωℓ. Let X Ă Ω have
pairwise distinct projections pℓpXq Ă Ωℓ and the function values fℓpℓpXq be known for
all ℓ “ 1, . . . ,M .

Then, ∥∥sf,K,X∥∥K,Ω ď

M
ź

ℓ“1

∥∥sfℓ,Kℓ,pℓpXq

∥∥
Kℓ,Ωℓ

.

Proof. Let us view the tensor product kernel K as the product kernel of transformed
component kernels as in (7.1), i.e.,

Kpx, yq “

M
ź

ℓ“1

Kℓpℓpx, yq for allx, y P Ω.

Applying Lemma 4.6 of the product kernel’s chapter yields

∥∥sf,K,X∥∥K,Ω ď

M
ź

ℓ“1

∥∥∥sfℓ˝pℓ,Kℓpℓ
,X

∥∥∥
Kℓpℓ

,Ω
.

By Theorem 5.6 and Lemma 5.8 of the transformation kernel’s chapter, we further
deduce ∥∥sf,K,X∥∥K,Ω ď

M
ź

ℓ“1

∥∥sfℓ,Kℓ,pℓpXq

∥∥
Kℓ,Ωℓ

.

■

7.3.3 Numerical Stability

The main indicator for the stability of kernel-based reconstruction methods is the spec-
tral condition number of the interpolation matrix AK,X , which is given by

cond2pAK,Xq “
λmaxpAK,Xq

λminpAK,Xq
,

where λmaxpAK,Xq and λminpAK,Xq denote the largest and smallest (positive) eigenvalue
of AK,X , see Section 2.4.2.

In accordance with the previous sections, we will demonstrate that the condition
number corresponding to the tensor product kernel can be bounded by the product
of the condition numbers of its components. The following results are based on the
product property of the eigenvalues of the Kronecker product of Lemma 7.14 pivq.
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Theorem 7.27. Let Kℓ be positive definite kernels on Ωℓ for ℓ “ 1, . . . ,M and K
be their tensor product kernel on Ω “

ŚM
ℓ“1Ωℓ. Furthermore, let X Ă

ŚM
ℓ“1Ωℓ be a

pairwise distinct point set and Y 1 ˆ ¨ ¨ ¨ ˆ Y M “ Y P
ŚM

ℓ“1Ωℓ its grid-like structured
superset. Then, the following statements hold:

(i)

cond2pAK,Y q “

M
ź

ℓ“1

cond2pAKℓ,Y ℓq.

(ii)
cond2pAK,Xq ď cond2pAK,Y q.

(iii)

λminpAK,Xq ě

M
ź

ℓ“1

λminpAKℓ,Y ℓq.

(iv) Let Kℓ be translation-invariant kernels and their univariate functions Φℓ satisfy
xΦℓ P CpRdℓzt0uq. Then,

λminpAK,Xq ě

M
ź

ℓ“1

GΦℓ
pqY ℓq,

where the functions GΦℓ
come from Remark 2.49.

(v) Let K be a translation-invariant kernel and its univariate functions Φ satisfy
pΦ P CpRdℓzt0uq. Then

λminpAK,Xq ě λminpAK,Y q ě GΦ

ˆ

min
ℓ

tqY ℓu

˙

,

where the functions GΦ comes from Remark 2.49.

Proof. According to Lemma 7.14 pivq and Theorem 7.15, the spectrum λpAK,Y q ofAK,Y

can be written as

λpAK,Y q “

#

M
ź

ℓ“1

λℓ : λℓ P λpAKℓ,Y ℓq for ℓ “ 1, ...,M

+

. (7.9)

This directly implies piq, since

cond2pAK,Y q “
λmaxpAK,Y q

λminpAK,Y q
“

M
ś

ℓ“1

λmaxpAKℓ,Y ℓq

M
ś

ℓ“1

λminpAKℓ,Y ℓq

“

M
ź

ℓ“1

cond2pAKℓ,Y ℓq.

We combine Cauchy’s interlacing theorem, given in Lemma 4.7, with the fact that AK,X

is a principal submatrix of AK,Y to get

λminpAK,Y q ď λminpAK,Xq and λmaxpAK,Xq ď λmaxpAK,Y q. (7.10)
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The statement of piiq follows, as

cond2pAK,Xq “
λmaxpAK,Xq

λminpAK,Xq
ď
λmaxpAK,Y q

λminpAK,Y q
“ cond2pAK,Y q.

A combination of (7.9) and (7.10) implies piiiq. The statement pivq follows by piiiq and
the additional assumption, as

λminpAK,Xq “ λminpAΦ,Xq ě

M
ź

ℓ“1

λminpAΦℓ,Y ℓq ě

M
ź

ℓ“1

GℓpqY ℓq.

The first inequality of pvq is a consequence of (7.10). By the assumptions and Theo-
rem 2.48, it is

λminpAK,Y q ě GpqY q ě G

ˆ

min
ℓ

tqY ℓu

˙

.

■

We immediately conclude that, for the sake of stability, the component kernels Kℓ

should be chosen, such that they generate sufficiently small condition numbers on the
corresponding data sets. A supporting numerical result is provided in Section 7.4.1.

For the kernels used in this thesis, estimates on the eigenvalues of their interpolation
matrices can be found in Section 2.4.2. These can be combined with Theorem 7.27 pivq

to derive condition number estimates for tensor product kernels.

7.4 Numerical Tests

In the following, we discuss how a tensor product kernel can be adapted to the un-
derlying problem and the advantages of its use for interpolation problems. First, in
Section 7.4.1, we provide an example of how adapting the tensor product kernel to
the point set can improve stability and error. Then, in Section 7.4.2, we demonstrate
how and when its tensor structure can be used to accelerate the computation of the
interpolant depending on the Newton basis.

7.4.1 Error vs. Stability

The following numerical example illustrates how the tensor product kernel can be used
to achieve a stable approximation method with high accuracy. We use the setting
described in Section 5.4.2, specifically the domain Ω “ Ω1 ˆ Ω2 “ r0, 0.5s ˆ r0, 2s,
the point sets Xn “ X1

n ˆ X2 for n “ 2, . . . , 8, where X1
n is given by 2n ` 1 equally

distributed points in Ω1 and X2 stays unchanged for developing n, and the target
function fkink-t (defined in Section 5.4.2 and visualized in Fig. 5.8). Recall that the kink
of this target makes it a difficult function to approximate for most standard kernels.
This choice is intentional to demonstrate the enhancement of problem-adapted kernel
methods, such as the transformation kernel and the tensor product kernel, even with
such a problematic target function. For other, smoother target functions, we can expect
similar improvements. Since we are working within the same setting as in Section 5.4.2,
we subsequently incorporate the results obtained there.
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From previous results, we know that the Wendland kernel of the RBF ϕd,0 exhibits
good stability but poor error performance, whereas the Wendland kernel of ϕd,3 has
the opposite characteristics. Additionally, we understand that closely spaced points
lead to poor numerical condition number but good approximation error, while widely
spaced points result in the opposite properties for the interpolant. This analysis leads
us to the following choice of the tensor product kernels components in the setting of
Section 5.4.2.

1. In the Ω1-direction, with closely spaced points X1
n, we use the Wendland kernel

κ1 of the RBF ϕ1,0. Due to the proximity of the points in X1
n, we can expect

a reasonably small error, while the choice of the kernel should maintain a low
condition number despite the narrow point spacing.

2. In the Ω2-direction, with comparatively wide spaced points X2, we use the Wend-
land kernel κ2 of the RBF ϕ1,3. This choice is intended to control the error despite
wide point spacing of X2, while the condition number should not rise excessively
due to the points distance.

In the following, we compare the tensor product kernel K with its components κ1
and κ2, which we convert into two-dimensional kernels for comparison purposes, namely
K1 and K2 resulting from the Wendland RBFs ϕ3,0 and ϕ3,3. We want to emphasize the
possibility to combine previous adaptation methods. To this end, we apply the trans-
formations T (domain adapted) and Tflex (point set adapted) developed in Section 5.4.2
to the tensor product kernel K and include these transformed tensor product kernels
KT and KTflex to our comparison. Fig. 7.4 visualizes the different kernels.

First, we look at the relationship between K and the comparison kernels K1 and K2.
In regard to the spectral condition number visualized in Fig. 7.5 (left), we can observe
the following. As expected from Theorem 7.27, the curve for K runs parallel to that of
K1. Specifically, this theorem provides cond2pAK,Xq “ cond2pAK1,X1q cond2pAK2,X2q.
The fact that cond2pAK2,X2q remains constant as X2 does not alter, explains the nu-
merical result.

In Fig. 7.5 (right), we see that the tensor product kernel K yields a better approx-
imation than the comparison kernels K1 and K2. This is also due to the fact that the
poor condition number of K2 adversely affects its corresponding error. Additionally, it
is observed that the error for all other kernels stabilizes for X1

n, n ě 5. This confirms
the expectation from Remark 7.24, which states that the interpolant does not converge
to the target function if a component of the grid-like sets Xn has a fill distance that
does not approach zero, which is the case for X2 in this example.

Let us now turn to the transformed kernels. As expected from Section 5.4.2, the
transformations T and Tflex have the same effect on the tensor product kernel K as on
K1 and K2 (cf. Fig. 5.10). The transformation T improves the error while the condi-
tion number shifts upwards by a factor, and Tflex improves the condition number while
maintaining comparable approximation quality.
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We summarize the following observations:

1. A tensor product kernel improves the error while maintaining a controllable con-
dition number.

2. The combinations of anisotropic kernels presented in this thesis, namely the trans-
formation and tensor product kernels, yield the best results in this example. The
condition number of KT grows only as fast as that of K1, and its approxima-
tion error even drops below the one of K. Meanwhile, KTflex keeps the condition
number nearly constant while achieving an error comparable to K.

The tensor product kernel significantly enhances interpolation methods in a grid-like
setting. If further improvement is desired and more effort can be invested, a combination
of transformation and tensor product kernels serves as the final touch for improved
performance.

7.4.2 Efficiency in Time

In the following, we demonstrate that interpolation methods leveraging the tensor struc-
ture of the underlying problem are more efficient, meaning that the time needed to
compute an interpolant on the underlying domain can be reduced.

The setup is as follows:

• The dimension d and domain Ω “ r0, 1sd “
Śd

l“1r0, 1s.

• The point sets

Xd
n “

d
ą

ℓ“1

Xn Ă Ω, where Xn “

"

i

2n
: i “ 0, 1, . . . , 2n

*

Ă r0, 1s,

resulting in the sizes |Xn| “ 2n ` 1 and |Xd
n| “ p2n ` 1qd.

• The kernel K acting on Ω is the tensor product kernel of d times κ, where κ is
the kernel of the Wendland RBF ϕ1,0, given in Theorem 2.34, acting on r0, 1s.

• The target function has no effect on the results, as execution times do not vary
for different function values fXd

n
.

In this setting we compare four interpolation methods, two regular methods (standard
and newton) and its corresponding tensor structure exploiting methods (std.tensor
and new.tensor):

• standard:

1. compute interpolation matrix AK,Xd
n

2. solve AK,Xd
n
c “ fXd

n
for c

3. compute the interpolant on an Ω-grid by VB
K,Xd

n
,Ω-grid c.
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• std.tensor: exploiting the tensor structure of AK,Xd
n
(Theorem 7.15)

1. compute components interpolation matrices Aκ,Xn

2. compute interpolation matrix AK,Xd
n

“
Âd

ℓ“1Aκ,Xn

3. solve AK,Xd
n
c “ fXd

n
for c

4. evaluate the interpolant on an Ω-grid by
´

Âd
ℓ“1 VBκ,Xn ,r0,1s-grid

¯

c

• newton:

1. compute Choleski factor L of AK,Xd
n

2. solve Lc “ fXd
n
for c

3. compute interpolant on an Ω-grid by VN ,Ω-grid c

• new.tensor: exploiting tensor structure of the Newton basis N of K (Sec-
tion 7.3.1)

1. compute component Choleski factors Lℓ of Aκ,Xn and compute the Choleski

factor L “
Âd

ℓ“1 Lℓ of AK,Xd
n

2. compute Vandermonde matrix VN ,Ω-grid “

´

Âd
ℓ“1 Vκ,r0,1s-grid

¯ ´

Âd
ℓ“1pLTℓ q´1

¯

3. solve Lc “ fXd
n
for c

4. evaluate interpolant on an Ω-grid by VN ,Ω-grid c

At this point, we would like to note that significant time savings are achieved when,
as in our example, there are multiple directions where points and kernels are identical.
In our example, Xℓ “ Xn for all ℓ “ 1, . . . , d, regardless of ℓ, and the kernel used is the
same for every direction, namely κ. This means that we need to compute the interpo-
lation matrix Aκ,Xn or the Cholesky factor Lℓ only once, rather than multiple times.
However, this comparison does not address the flexibility of tensor product kernels and
is therefore not discussed here.

To demonstrate the efficiency of the proposed tensor methods in Section 7.3.1, we
analyze the execution time as the number of data points and the dimensionality in-
crease. Since execution times can vary significantly, particularly for shorter durations,
we run each method ten times, and take the average execution time.

In Fig. 7.6 (left), we present execution times for the developing point sets X2
n, with

n “ 1, . . . , 6, in a two-dimensional setting, d “ 2, resulting in the sizes

␣

|X2
n|
(

n
“
␣

|Xn|
2
(

n
“ t9, 25, 81, 289, 1089, 4225u.

We observe that the newton and standard method can be accelerated to new.tensor

and std.tensor.



156 Chapter 7. Tensor Product Kernels

21̀ 1 22̀ 1 23̀ 1 24̀ 1 25̀ 1 26̀ 1

60´2

60´1

600

size of Xn

ex
ec
u
ti
on

ti
m
e
(s
)

standard
std.tensor
newton
new.tensor

1 2 3 4

60´2

60´1

600

dimension d

ex
ec
u
ti
on

ti
m
e
(s
)

standard
std.tensor
newton
new.tensor

Figure 7.6: Comparison of the interpolation methods standard and newton, and
their tensor structure exploiting versions std.tensor and new.tensor regarding
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sets Xn for dimension d “ 2 (left), and increasing dimensions d for the component
point set X2 (right).

In Fig. 7.6 (right), we consider execution times for increasing dimensions and X2.
Namely, we consider the sets Xd

2 “
Śd

l“1X2 for dimensions d “ 1, 2, 3, 4, with sizes
5, 25, 125, 625. For d “ 1, i.e., X1

2, the approaches standard and newton do not differ
from the corresponding tensor structure exploiting methods. However, as we examine
higher dimensions, the std.tensor and new.tensor methods prove to be more efficient
compared to the original standard and newton methods.

We conclude that tensor product kernels enable a speedup of interpolation methods
in grid-like settings.





Part IV

Final Remarks



Conclusion and Outlook

This thesis set out to enhance the toolbox for adapting kernels to underlying prob-
lems, focusing on the interpolation of multivariate scattered data with an emphasis on
anisotropies. By developing five novel classes of flexible kernels – summation, prod-
uct, transformation, orthogonal summation, and tensor product kernels – we address
significant limitations of traditional radial kernels. These classes, some entirely new
and others building on existing structures, provide the capability to select and combine
kernels tailored to the underlying problem, thereby extending the variety of interpo-
lation methods. Our theoretical analysis expands the understanding of native spaces
and their impact on the corresponding interpolation method. Key contributions in-
clude connecting N. Aronszajn’s results to Sobolev spaces and J. Mercer’s Theorem to
infinite sums of kernels, as well as exploring kernel equivalence classes. Furthermore,
we provide a structural analysis of the native spaces corresponding to each of the five
novel kernel classes, as well as an examination of their impacts on interpolation accu-
racy and stability. Numerical tests confirm our theoretical findings and identify which
classes of kernels are suitable for specific problem adaptations, resulting in the following
suggestions:

• For an adaptation to the point set X, we recommend using transformation kernels
or tensor product kernels.

• For an adaptation to the domain Ω, we recommend using transformation kernels.

• For an adaptation to the properties of the target function f , we recommend using
summation kernels, transformation kernels, or orthogonal summation kernels.

As shown in Section 7.4.1, it is possible to combine different classes of kernels, extending
the variety of interpolation methods even further. Fig. 7.7 demonstrates this extensive
variety.

The results and methodologies presented in this thesis open several avenues for
future research. The flexibility and adaptability of these kernels make them suitable
for integration into other kernel methods beyond interpolation. Techniques such as
Hermite-Birkhoff interpolation, kernel regression, and support vector machines could
benefit from the enhanced performance and tailored adaptations offered by the devel-
oped kernels. Another exciting prospect is the exploration of greedy methods in com-
bination with our developed kernels. Greedy algorithms, which iteratively select the
most promising candidate for an additional interpolation point, could further improve
the efficiency and effectiveness of our interpolation methods. Investigating the interplay



between greedy methods and the proposed kernel classes could yield valuable insights
and performance gains. Moreover, the anisotropic behavior of the presented kernel
classes makes them promising for real-world applications. For instance, in geospatial
data analysis or medical imaging, where data is often scattered and of anisotropic na-
ture, these kernels can significantly enhance accuracy and stability.

In summary, this thesis has laid a robust foundation for the continued evolution of
kernel-based methods, offering both theoretical advancements and practical tools for
future research and application.
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[OS17] Owhadi, H. ; Scovel, C.: Separability of reproducing kernel spaces. In:
Proceedings of the American Mathematical Society 145 (2017)

[PS11] Pazouki, M. ; Schaback, R.: Bases for kernel-based spaces. In: Journal
of Computational and Applied Mathematics 236 (2011)

[RBP`06] Rayner, N. A. ; Brohan, P. ; Parker, D. E. ; Folland, C. K. ;
Kennedy, J. J. ; Vanicek, M. ; Ansell, T. J. ; Tett, S. F. B.: Im-
proved analyses of changes and uncertainties in sea surface temperature
measured in situ since the mid-nineteenth century: The HadSST2 dataset.
In: Journal of Climate 19 (2006)

[Rea99] Reams, R.: Hadamard inverses, square roots and products of almost
semidefinite matrices. In: Linear Algebra and its Applications 288 (1999)
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Mathématique 13 (1964)

[Sch95] Schaback, R.: Error estimates and condition numbers for radial ba-
sis function interpolation. In: Advances in Computational Mathematics 3
(1995)



[SH17] Santin, G. ; Haasdonk, B.: Convergence rate of the data-independent
P-greedy algorithm in kernel-based approximation. In: Dolomites Research
Notes on Approximation 10 (2017)

[SW00] Schaback, R. ; Wendland, H.: Adaptive greedy techniques for approx-
imate solution of large RBF systems. In: Numerical Algorithms 24 (2000)

[UA22] Unser, M. ; Aziznejad, S.: Convex optimization in sums of Banach
spaces. In: Applied and Computational Harmonic Analysis 56 (2022)

[Wen05] Wendland, H.: Scattered data approximation. Cambridge University
Press, 2005

[Wer18] Werner, D.: Funktionalanalysis. Springer Spektrum, 2018

[WGNC14] Wilson, A. G. ; Gilboa, E. ; Nehorai, A. ; Cunningham, J. P.: Fast
kernel learning for multidimensional pattern extrapolation. In: Advances
in Neural Information Processing Systems 27 (2014)

[WMP24] Wenzel, T. ; Marchetti, F. ; Perracchione, E.: Data-driven kernel
designs for optimized greedy schemes: A machine learning perspective. In:
SIAM Journal on Scientific Computing 46 (2024)

[WSH23] Wenzel, T. ; Santin, G. ; Haasdonk, B.: Analysis of target data-
dependent greedy kernel algorithms: Convergence rates for f -, f ¨ P and
f{P -greedy. In: Constructive Approximation 57 (2023)

[Ylv62] Ylvisaker, N. D.: On linear estimation for regression problems on time
series. In: The Annals of Mathematical Statistics 33 (1962)


	I Preliminaries
	Introduction
	Kernel-Based Interpolation
	Essentials
	Positive Semi-Definite Kernels
	Native Spaces
	Reproducing Kernel Hilbert Spaces
	Native Space Construction
	Structure and Properties of Native Spaces
	Sobolev Spaces

	Interpolation
	Approximation Error
	Numerical Stability
	Trade-Off Principle



	II Combinations of Kernels
	Summation Kernels
	Definition and Basic Properties
	Native Spaces
	Fundamental Concepts
	Subsets
	Intersections
	Infinite Sums and Mercer's Theorem

	Interpolation
	Approximation Error
	Numerical Stability

	Numerical Tests

	Product Kernels
	Definition and Basic Properties
	Native Spaces
	Interpolation


	III Anisotropic Kernels
	Transformation Kernels
	Definition and Basic Properties
	Native Spaces
	Interpolation
	Approximation Error
	Numerical Stability

	Numerical Tests
	Adaptation to Target Function
	Adaptation to Domain and Point Sets


	Orthogonal Summation Kernels
	Definition and Basic Properties
	Native Spaces
	Interpolation
	Approximation Error
	Numerical Stability

	Numerical Tests

	Tensor Product Kernels
	Definition and Basic Properties
	Native Spaces
	Hilbert Tensor Product
	Native Space as Hilbert Tensor Product

	Interpolation
	Interpolation on Grid-Like Point Sets
	Positive Definiteness
	Numerical Stability

	Numerical Tests
	Error vs. Stability
	Efficiency in Time



	IV Final Remarks
	Conclusion and Outlook
	List of Figures
	List of Symbols
	References


