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Abstract

In plant science, the detailed examination of meiosis progression is ham-
pered by the labour-intensive process of manual image analysis. Our research
presents a novel, deep learning-based automation pipeline that significantly
streamlines the quantification of meiotic timelines through the analysis of
live-imaging videos. This innovative approach employs segmentation models
to stabilize video frames, refines localization techniques to precisely identify
individual meiocytes, and adopts a restricted space motion-inspired track-
ing methodology that effectively reduces computation time and improves
tracking accuracy. Crucially, our framework distinguishes itself by generat-
ing Z-normalized staging pathways, enabling the construction of a piece-wise
timeline of meiotic progression. This is achieved through a meticulously cu-
rated landmarking scheme, which our results confirm aligns with established
meiosis timelines in both wild-type and heat-shocked Arabidopsis thaliana.

Our study ventures beyond the diploid paradigm, extending the application
of our high-throughput pipeline to tetraploid variants. The analyses dis-
close that while tetraploids exhibit comparable meiosis-I timelines to their
diploid counterparts, a pronounced prolongation characterizes their meiosis-
II stages. Furthermore, the systematic examination of tcx5;6 mutants and
ATM gene insertions in tetraploids provides a quantitative view of the tem-
poral dynamics in meiotic progression, highlighting the potential for chro-
mosomal behaviour and genetic regulation to modulate meiotic efficiency.

By integrating a convolutional neural network (CNN) based methodology
with our modular pipeline, we deliver a transformative tool for meiosis anal-
ysis. Our work is not only restricted to timeline analysis, but the modular
approach shows ability in different segmentation tasks from basics like pollen
counting to more structured like DNA double-strand break and BiFC quan-
tization.
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1

Chapter 1

Introduction

Meiosis, an intricate cell division process, involves two sequential chromosomal segregation,
namely meiosis I and meiosis II, following a single round of DNA replication, resulting in
a halving of the DNA content. This reduction is crucial for sexually reproducing organisms
as it maintains the genome size from generation to generation, ultimately facilitating diploid
restoration post-gamete fusion. Additionally, meiosis plays a vital role in generating genetic di-
versity. During early prophase I, homologous chromosomes undergo reciprocal DNA exchanges
via crossing-over, forming novel genetic alleles. Furthermore, the random separation of homol-
ogous chromosome pairs at the end of meiosis-I generates diverse yet complete chromosome
sets in daughter cells.

Prusicki et al. have previously pioneered a live cell imaging system using a confocal microscope
to observe the dynamic characteristics of meiosis [3]. This robust approach facilitated the in vivo
examination of floral meiosis over its entire course. It provided images from deep tissue layers
to describe the progression of meiosis using a novel landmarking system. The landmark system
relies on determining five cellular features (parameters): cell shape (CS), intracellular nucleus
position (NP), nucleolus position (NoP) within the nucleus, chromatin (RC) condensation level,
and the pattern of the microtubule (MT) cytoskeleton; see Fig. 2.4. By applying this approach
to the model plant wild-type A.thaliana, our group was able to identify clearly defined states
of meiosis characterized by specific parameter configurations, enabling both qualitative and
quantitative analysis of the meiotic process.

1.1 Task description

Identification of the landmarks required manual tracking of meiocytes within microscopy videos
and staging of the meiocytes, i.e., manual annotation of video frames. Such manual analysis
is highly time-consuming and error-prone due to variability between and within observers.
Motivated by the author’s work and the promising capabilities of current deep learning systems
in computer vision, the present work aimed to automate the analysis, significantly reducing
the related effort and accelerating the research process.

The automation confronts several challenges due to the nature of the meiosis-related data, es-
pecially the movement of anthers containing the meiocytes, variation in contrast of videos and
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Figure 1.1: Overview of the modular aMP framework
The input is the confocal live imaging video V to be analyzed. Within the video, anther

regions containing meiocytes are segmented and anther motion is compensated, resulting in
motion-compensated video V′) and corresponding anther masks M′. Within the individual
frames t = 0, . . . ,T , the meiocytes are localized (CV′

t
: set of meiocytes in frame V′

t) and
tracked over time (TV′

t
). The meiocytes are finally classified according to their meiosis state.

The resulting state information SV′
t

of the video (and similar videos of the underlying imaging
experiment) is used to derive frequently occurring states, meiosis landmarks Al=0,...,L, that

characterize the meiosis landscape.

video frames, occlusion effects, and classification ambiguity. Additionally, meiocyte morpholog-
ical changes can occur gradually or abruptly, depending upon the frequency of live imaging.
These challenges require the development of sophisticated algorithms and models for the indi-
vidual sub-tasks. Here, we propose a modular pipeline for the automated analysis of meiotic
progression (aMP-kit), using convolutional neural networks (CNNs) as the primary computa-
tional tool.

The pipeline and its blocks are sketched in Fig. 1.1 and detailed in chapter 3 & 4. The main
modules are:

1. a segmentation block that segments the anther regions relevant for subsequent meio-
cyte localization and compensates for anther movements between frames,

2. a localization block that identifies the meiocytes within the anthers,
3. a tracking block that tracks the meiocytes over time,
4. a classification block that classifies the state of the meiocytes according to the five

cellular features identified by Prusicki et al. and the corresponding feature expressions
and

5. an evaluation block that identifies meiosis landmark states based on the classification
states for the data collective considered.

1.2 Outline of the project thesis

The thesis has been divided into three major parts - introduction to the A. thaliana as a model
plant, meiotic cell division and the data characteristics; tracking of meiocytes through image
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stabilization and object localization, staging of meiocytes and subsequently; and finally, the
evaluation processes required to study different cellular dynamics.

Chapter 2 will discuss about the confocal live-imaging meiosis dataset. We will discuss the
biological prior knowledge derived from the dataset and how they are incorporated into pipeline
automation. Furthermore, we will discuss the preprocessing and augmentation techniques used
to enhance the dataset’s quality and diversity. We will also describe the additional datasets
used to check the automated pipeline’s sanity.

Chapter 3 will focus on the methods and the algorithm developed for each of the blocks of the
modular pipeline. We will introduce focal stabilization, meiocyte tracking through localization,
meiocyte staging, and timeline generation. We will discuss the concept of convolutional neural
networks, feature extraction and block-specific post-extraction processes. We will also describe
the principles applied to evaluate each block. We will also enlist the involved (hyper)parameters
and other important implementation details.

Chapter 4 will guide you through the network-optimized results and corresponding evaluation.
We will discuss the relevance of the biological outcomes obtained from the automated single-cell
analysis of meiosis progression. We will discuss how the insights from the study contribute to a
better understanding of meiotic processes in A. thaliana and potentially other related species.
Additionally, we will explore the broader applications of the analytical pipeline beyond meiosis
research. This will include discussing other areas of biological research where the automated
single-cell analysis approach can be adapted and its potential to extend to various use cases.
The chapter will highlight the significance of the findings and their implications for advancing
biological studies.

Chapter 5 delves into the versatile applications of our framework beyond its current scope,
highlighting its adaptability to various segmentation tasks within analytical plant science. This
section underscores the significance of automating critical processes such as foci quantification,
biomolecular fluorescence complementation (BiFC) analysis, and pollen counting. These exam-
ples serve to illustrate the promising avenues for future research, focusing on the development
of an inclusive analytical framework. This envisioned framework aims to integrate Large Lan-
guage Models and Generative AI within the realm of computer vision, thereby expanding the
frontiers of plant science research through enhanced computational techniques
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Chapter 2

Live cell imaging dataset of
Arabidopsis thaliana

This chapter explores the foundational elements necessary to analyse meiotic progression in
Arabidopsis thaliana. Central to this pursuit is the comprehensive understanding and prepa-
ration of the datasets utilized in our study. These datasets, derived from meticulous live cell
imaging, serve as the bedrock upon which our computational models will be built and tested.

Data quality and preparation are as critical as the analytical methods in biological research,
particularly in studying complex processes like meiosis. Thus, we begin by detailing the acquir-
ing and preparing the Arabidopsis thaliana datasets. This includes thoroughly discussing the
preprocessing steps to ensure that the data is accurate and representative of the biological phe-
nomena under study and formatted appropriately for subsequent analysis using state-of-the-art
AI techniques.

We then delve into the strategies employed for data augmentation, a crucial step in enhancing
the robustness and efficacy of the machine learning models we intend to develop. Data aug-
mentation simulates a broader range of conditions and variations the models might encounter,
enriching the training process and enhancing model generalizability.

Furthermore, we address the strategies for splitting the data into training, validation, and
testing sets. This segmentation is vital for unbiased model training and rigorous performance
evaluation. It ensures that the models are tested against data not encountered during training,
providing a realistic assessment of their predictive capabilities.

Finally, this chapter sets the stage for applying AI and machine learning methodologies. The
transition from raw, preprocessed data to the utilization of sophisticated computational models
marks a significant phase in our research. Here, we begin to transform the rich datasets into
meaningful scientific insights, leveraging the power of AI to unravel the complexities of meiotic
progression in various strains of Arabidopsis thaliana, laying the foundation for the AI-driven
exploration central to achieving our research objectives.
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2.1 Arabidopsis thaliana: an overview

Arabidopsis thaliana, commonly called thale cress, is a small flowering plant that has become
a model organism in plant genetics and molecular biology [4]. Originating from Eurasia, this
plant’s significance in research parallels that of the fruit fly and other model organisms in zo-
ological studies. Its small genome was fully sequenced in 2000, marking a significant milestone
in plant biology and positioning it as a prime candidate for genetic studies [5]. The short 6-8
weeks life cycle allows for rapid generational studies, an advantageous trait for genetic and
developmental biology research [6]. Arabidopsis’s amenability to genetic manipulation further
enhances its value in the research community, allowing for extensive studies into gene function
and regulation [7]. Its status as a model organism is bolstered by the wide range of genetic
and molecular tools available, including extensive mutant collections and genomic databases,
making it an invaluable resource for understanding broader biological processes in plants [8].
Arabidopsis thaliana has been prominently featured in seminal scientific literature, playing
a central role in the progression of our comprehension of plant genetics and molecular biol-
ogy. Meyerowitz et al. (1989) laid the groundwork for establishing Arabidopsis as a model
organism by providing detailed insights into its genetic and developmental attributes. Follow-
ing the complete sequencing of the Arabidopsis genome, this genomic blueprint has served as
a pivotal resource, extensively employed by researchers to decipher intricate gene networks
and regulatory pathways. The study conducted by Alonso et al. (2003) serves as an exemplary
demonstration of Arabidopsis’ utility in functional genomics, highlighting the potency of genetic
modification for the precise dissection of gene function and interactions. Moreover, Sessions et
al. (2002) demonstrated the significance of extensive mutant collections, enabling researchers
to scrutinize specific gene functions with meticulous precision, thereby making substantial con-
tributions to the broader understanding of plant biology. These landmark contributions affirm
Arabidopsis thaliana’s standing as a preeminent model organism, validating its indispensable
role in advancing biological research.

Specific to the context of this thesis, Arabidopsis thaliana’s suitability for live cell imaging, par-
ticularly in studying meiosis, is noteworthy. The plant’s clear cellular structures and relatively
simple developmental processes provide an excellent framework for observing meiotic events in
real-time. This is particularly relevant in exploring the genetic and phenotypic variations in
tetraploid variants and ATM gene-inserted tetraploid variants of Arabidopsis thaliana, which
are central to this study.

2.2 Significance of Arabidopsis in studying meiosis progression
timeline

Building upon the foundational role of Arabidopsis thaliana in plant genetics, its application
extends to studying the temporal course of meiotic progression, particularly in various mutants.
Meiotic progression analysis involves studying the stages of meiosis, a cell division mechanism
essential for sexual reproduction. Understanding the mechanisms governing genetic diversity
generation and perpetuation is crucial, and Arabidopsis thaliana’s genetic adaptability and
extensive research resources make it an ideal candidate for such analyses. The prototypical
Arabidopsis serves as a reference model for standard meiotic processes. At the same time,
tetraploid Arabidopsis, with its duplicated chromosomal set, offers insights into meiotic mech-
anisms under polyploid conditions, vital for understanding species evolution and plant breed-
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ing methodologies. Mutant strains like atm(ATAXIA TELANGIECTASIA MUTATED) and
tam (TARDY ASYNCHRONOUS MEIOSIS) show alteration for the meiotic progression time
course, shedding light on the genetic controls of meiosis. The tcx mutant (Tesmin/TSO1-like
CXC) provides a unique perspective on chromosomal dynamics during meiosis, particularly in
synapsis and recombination events. These variants enrich our understanding of meiotic vari-
ability and genetic regulation in Arabidopsis thaliana, demonstrating its versatility as a model
organism.

Significant advances have been made in understanding the meiotic progression timeline in
wild-type Arabidopsis thaliana. Armstrong (2013) provided a comprehensive analysis of mei-
otic progression, offering critical insights into various stages of meiosis [9]. Yang et al. (2013)
pioneered techniques for visualising meiotic proteins, which are vital for studying meiotic pro-
cesses at the molecular level [10]. Chen and Retzel (2013) contributed by analyzing the meiotic
transcriptome, shedding light on genetic regulation during meiosis [11]. Armstrong (2013) also
employed cytogenetic analysis to understand chromosome behaviour during meiosis further [12].
Investigation by Liu and Qu (2008) and Mercier and Grelon (2008) explored the role of cell
cycle mutants and gene discovery in meiosis over the past decade, respectively, enhancing our
understanding of the genetic control and evolution of meiosis in Arabidopsis [1, 13].

Studies on meiotic progression in Arabidopsis thaliana have provided extensive insights into
this fundamental biological process. Sanchez-Moran et al. (2008) and Jones et al. (2003) ex-
plored chromosome synapsis and recombination, integrating cytological and molecular ap-
proaches [14, 15]. De Muyt et al. (2009) identified new early meiotic recombination functions
through a high-throughput genetic screen [16]. Naranjo and Corredor (2008) delved into nuclear
architecture and chromosome dynamics in meiosis [17], while Osman et al. (2011) discussed
the pathways to meiotic recombination [18]. Complementing these findings, live cell imaging
research by Armstrong revealed distinct cellular states or landmarks in meiosis, offering a dy-
namic view of the process [9]. This dynamic view of the meiotic process complements previous
research findings and adds a temporal dimension to our understanding. Combining traditional
cytological and molecular approaches with cutting-edge live cell imaging techniques forms a
holistic approach, allowing for a nuanced exploration of the factors influencing meiotic progres-
sion in Arabidopsis thaliana.

Prusicki et al. [3] focus on establishing a live cell imaging setup to observe male meiocytes
in Arabidopsis. This method allows for the visualization of microtubules and a meiotic co-
hesin subunit, enabling the study of five cellular parameters: cell shape, microtubule array,
nucleus position, nucleolus position, and chromatin condensation. The study identified 11 dis-
tinct cellular states or landmarks that are not randomly associated but represent convergence
points during meiotic progression. This approach was used to analyze a mutant in the meiotic
A-type cyclin TARDY ASYNCHRONOUS MEIOSIS (TAM), revealing both qualitative and
quantitative changes in these meiotic landmarks, including the formation of ectopic spindle- or
phragmoplast-like structures not attached to chromosomes.

Recent studies on tetraploids in Arabidopsis thaliana have significantly contributed to our
comprehension of plant polyploidy. Yu et al. (2009) demonstrated the high stability of neo-
tetraploid lines in Arabidopsis over consecutive generations, emphasizing the robustness of
tetraploid genomes [19]. Pecinka et al. (2011) found that polyploidization in Arabidopsis in-
creases meiotic recombination frequency, which is a crucial factor for genetic diversity [20]. Liu
et al. (2017) discussed the rapid genomic changes associated with autopolyploidy in Arabidopsis,
highlighting the dynamic nature of polyploid genomes [21]. Jørgensen et al. (2011) explored
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gene flow in Central European Arabidopsis, including interploidal gene flow, which is vital
for understanding the evolutionary dynamics of polyploids [22]. del Pozo and Ramirez-Parra
(2015) provided an overview of whole genome duplications in plants, with a focus on Ara-
bidopsis, elucidating the mechanisms and consequences of polyploidy [23]. Finally, Novikova et
al. (2018) correlated the origin of polyploid Arabidopsis species to recent glaciation periods,
offering insights into the evolutionary history of these plants [24].

In Arabidopsis thaliana, The ATM gene has been a focus of various studies, revealing its crucial
roles in response to environmental stresses and in maintaining genomic stability. Culligan et
al. (2006) showed that ATM and ATR play distinct and additive roles in the plant’s response
to ionizing radiation. Their research highlighted that ATM is essential for upregulating many
genes in response to gamma-irradiation [25]. Sakamoto et al. (2009) further elucidated the role of
ATM in the DNA damage response, specifically in a UVB-hypersensitive mutant of Arabidopsis,
thereby underlining the importance of ATM in environmental stress responses [26]. Vespa et al.
(2005) discussed the distinct contributions of ATM and ATR in chromosome end protection and
telomeric DNA maintenance, indicating the multifaceted role of ATM in genomic integrity [27].
More recently, Zhao et al. (2023) demonstrated that the ATM-mediated double-strand break
repair is vital for maintaining meiotic genome stability, especially under high-temperature
stress, thus shedding light on the role of ATM in meiotic recombination and genome stability
under stressful conditions [28]. This comprehensive exploration of ATM’s functions enriches
the contextual framework for understanding its significance in Arabidopsis thaliana’s intricate
regulatory networks.

Additionally, the molecular insights into meiotic recombination mechanisms in Arabidopsis
thaliana are further enriched by including MLH3 in the investigation. MLH3 is part of the
DNA mismatch repair system and is crucial in meiotic recombination. In Arabidopsis and
other species, MLH3 promotes crossover events during meiosis, essential for exchanging genetic
material between homologous chromosomes and generating genetic diversity. In mlh3 mutants,
the process of crossover formation during meiosis is typically impaired. This can lead to reduced
fertility or sterility due to the production of gametes with aberrant chromosomal numbers or
structures. Utilizing mlh3 mutants in genetic studies provides a valuable avenue for unravelling
the mechanisms governing crossover formation and delving into the genetic regulation of meiotic
recombination, contributing to a deeper understanding of plant reproductive processes.

Lastly, integrating the analysis of the meiotic progression of tcx5;6 mutants adds another layer
of complexity to understanding meiotic regulation in Arabidopsis thaliana. Tesmin/TSO1-like
CXC domain-containing protein 5 (TCX5) and TCX6 is part of the plant DREAM complex,
a well-conserved transcriptional complex among eukaryotes that coordinates the expression of
cell cycle genes. tcx5;6 double mutants show defects in pairing, synapsis and crossover forma-
tion, ultimately resulting in unbalanced chromosome segregation in Arabidopsis male meio-
cytes (unpublished data, Hasibe Tuncay). Analysis of meiotic progression in tcx5;6 mutants
will provide a better understanding of the dynamics leading to these meiotic defects.

The examination of various Arabidopsis mutants, including tetraploid and ATM gene-inserted
variants, aligns closely with the primary aim of this thesis: to employ advanced AI techniques
and live cell imaging for a detailed analysis of meiosis. Each aspect of Arabidopsis research
discussed here provides foundational knowledge that underpins our methodological approach
and analysis. This comprehensive exploration of Arabidopsis in meiotic studies enriches our
understanding of plant genetics and sets the stage for our subsequent investigations. By apply-
ing cutting-edge live-imaging techniques, we seek to further elucidate the nuances of meiotic
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Figure 2.1: Stages of Meiosis in Plant Cells [1]
This figure depicts the sequential stages of meiosis, starting from the early prophase I through
to the formation of spores. Each cell illustrates the chromosomal configurations and nuclear
changes characteristic of the respective phase: A) Leptotene, B) Zygotene, C) Pachytene, D)
Diplotene, E) Diakinesis, F) Metaphase I, G) Anaphase I, H) Telophase I, I) Prophase II, J)

Metaphase II, K) Anaphase II, L) Telophase II, and finally M) the resulting spores. The
diagram serves as a visual guide to the complex process of meiotic cell division in plants.

progression in Arabidopsis, particularly in its tetraploid variants and ATM gene-inserted lines.
These insights will be pivotal in enhancing our application of AI tools for analyzing these com-
plex biological processes. Reflecting on the imaging techniques utilized in these studies, we note
the progression from traditional cytological methods to more advanced live cell imaging. This
evolution mirrors our methodological journey in this thesis, where we harness state-of-the-art
imaging analysis to the dynamic process of meiosis in Arabidopsis thaliana.

2.3 Meiosis in male meiocytes

Building on the established role of Arabidopsis thaliana as a key player in genetic research,
we now focus on the intricate process of meiosis in this model organism. Understanding the
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detailed stages of meiosis in Arabidopsis is crucial for our study, as it provides a foundational
basis for our advanced imaging and AI-based analyses. As we delve into each phase of meiosis
in Arabidopsis, it’s important to consider how this detailed biological understanding informs
and enhances our AI-driven approach. The precise identification of meiotic stages is pivotal
in interpreting the live cell imaging data, especially when analyzing the more complex genetic
structures found in tetraploid and ATM gene-inserted variants.

Meiosis is a fundamental biological process for producing haploid gametes from diploid cells.
This process is critical for sexual reproduction in eukaryotes and contributes to genetic diversity
[29]. In Arabidopsis thaliana, a model organism for plant genetics, meiosis has been extensively
studied due to the simplicity and accessibility of the genetic tools available [30].

Male meiosis in Arabidopsis has been a particular research focus. Recent studies have developed
methods for isolating male meiocytes, enabling detailed molecular and cytogenetic analyses of
meiotic chromosomes [29]. Techniques such as spreading and fluorescence in situ hybridization
have been employed to study both male and female meiocyte chromosomes in Arabidopsis,
providing valuable insights into the cytogenetical aspects of meiosis [30]. Rapid methods for
visualizing male meiotic chromosomes have also been developed, facilitating quicker and more
efficient studies in this area [31].

In Arabidopsis, meiosis initiates within the floral meristem’s reproductive cells, specifically
within the anthers for male meiocytes and the ovules for female meiocytes. The process begins
with the replication of chromosomes during the interphase stage, setting the stage for the
subsequent division phases.

• Prophase I: Prophase I is the most complex and longest phase of meiosis, encompass-
ing several sub-stages where crucial events of chromosome pairing, recombination, and
synapses occur. In Arabidopsis thaliana, as in other organisms, Prophase I is subdivided
into the following stages:

1. Leptotene: This initial stage is marked by the beginning of chromosomal conden-
sation. Chromosomes start to become visible under the light microscope as slender
filaments. The process of homologous chromosome searching commences, setting the
stage for synapsis. In Arabidopsis, the leptotene stage is identifiable by the initiation
of programmed double-strand break formation, the first step of recombination and
the beginning of the bouquet stage, where telomeres attach to the nuclear envelope,
facilitating the homologous search.

2. Zygotene: During zygotene, homologous chromosomes continue to condense and
begin to align with each other. This alignment is followed by synapses formation,
facilitated by forming a protein complex called the synaptonemal complex. In Ara-
bidopsis, the synaptonemal complex progressively forms between homologs, initi-
ating at recombination sites and extending along their lengths to ensure accurate
chromosomal pairing.

3. Pachytene: The pachytene stage is characterized by the full synapsis of homologous
chromosomes. The chromosomes are fully condensed and paired along their entire
length, with the synaptonemal complex stabilizing the pairing. Double strand breaks
are repaired as non-crossovers or cross-overs, where non-sister chromatids exchange
genetic material, forming chiasmata visible as X-shaped structures under a micro-
scope. This genetic exchange is a crucial source of genetic diversity in Arabidopsis
thaliana.
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4. Diplotene: In diplotene, the synaptonemal complex disassembles, and homologous
chromosomes begin to separate slightly. However, the homologous chromosomes re-
main attached at chiasmata at the crossover sites. During this stage, chromosomes
start to desynapse, and the chiasmata are more clearly visible.

5. Diakinesis: The final stage of Prophase I is diakinesis. Chromosomes are at their
maximum condensation level, making them highly visible under the microscope.
Chiasmata move toward the ends of the chromosomes in a process called "terminal-
ization." The nuclear membrane begins to break down, and the meiotic spindle forms
in preparation for metaphase I. Arabidopsis thaliana cells exhibit precise chiasma
distribution, crucial for adequately segregating homologous chromosomes during the
following meiotic division.

• Metaphase I: Homologous chromosomes align at the metaphase plate with the spin-
dle apparatus firmly attaching to their kinetochores. In Arabidopsis, this alignment is
crucial for the equal segregation of chromosomes, which is tightly regulated to prevent
aneuploidy.

• Anaphase I: During anaphase I, homologous chromosomes are pulled apart to opposite
poles of the cell. Arabidopsis meiocytes exhibit the reductional division where homologs,
rather than sister chromatids, are segregated - a defining feature of meiosis.

• Telophase I and Cytokinesis: Telophase I sees the decondensation of chromosomes and
the reformation of the nuclear membrane, often simultaneously followed by cytokinesis,
which divides the cell into two.

• Meiosis II: After the first meiotic division, meiosis II begins without another round
of chromosomal replication. It follows a similar phase progression as mitosis, leading to
the segregation of sister chromatids during anaphase II and eventually resulting in four
genetically distinct haploid cells after telophase II.

This comprehensive understanding of male meiosis in Arabidopsis thaliana allows us to bet-
ter analyze our live cell imaging datasets. The intricate details of each meiotic stage will be
instrumental in guiding our AI algorithms, allowing us to decipher the dynamic processes oc-
curring within these cells accurately. This depth of knowledge is particularly valuable as we
explore the nuances of meiotic progression in our targeted Arabidopsis variants. The specific
characteristics of meiosis in Arabidopsis, such as the visible chiasmata in diplotene or the
detailed chromosomal alignment in metaphase, present both challenges and opportunities for
our imaging techniques. These stages offer critical checkpoints for our AI models to identify
and analyze, enhancing the precision of our study. Particular attention will be paid to stages
like pachytene and metaphase I, where key genetic exchanges and alignments occur, pivotal in
genetic diversity and stability in our Arabidopsis variants.

2.4 Confocal live-cell imaging microscopy

Live cell imaging using confocal microscopy provides invaluable insights into the dynamic bio-
logical processes within Arabidopsis thaliana. This method, central to our exploration of meiotic
stages, utilizes fluorescent markers to deliver precise, high-resolution observations of cellular
activity. The resultant images are not merely visual captures but critical data for subsequent
AI analysis.
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Figure 2.2: Anatomical overview of plant reproductive structures during meio-
sis [2]

The illustration provides a comprehensive view of the plant’s reproductive anatomy,
showcasing the key structures involved in both male and female meiosis. Starting with an

overview of the plant, it details the inflorescence and zooms on the flower buds at the meiotic
stage. The diagrams depict the internal organization of anthers and ovules, highlighting the
locations of meiocytes within the pollen sacs and ovules, respectively. Further, it presents a

cross-sectional view of the anther, showing the layered structure and the positioning of
meiocytes, which is critical for understanding the meiotic process in plants.

The precision of confocal microscopy is critical to our study. It achieves detailed visualization by
filtering out non-essential light, allowing for focused illumination of specific proteins tagged with
GFP or RFP. The parameters of this technique, such as excitation and emission wavelengths,
pinhole size, and scan speed, are carefully adjusted to optimize image quality for each specimen.

Our research uses confocal microscopy to examine Arabidopsis’s cellular architecture and dy-
namics. It is especially crucial for observing the behaviour of chromosomes during meiosis,
which unfolds within the plant’s anthers and ovules. The accompanying image illustrates the
various structures of Arabidopsis where meiosis occurs, including the anther and ovule, which
house the male and female meiocytes, respectively. These structures are critical for our imaging
work, as they are the sites where the complex process of meiosis can be observed.

Fig. 2.2 depicts the distinct components of Arabidopsis, such as the inflorescence, the location of
male and female meiosis within the flower structure, and a cross-section of an anther where the
meiocytes are located. Understanding the spatial arrangement of these structures is essential for
setting up our imaging protocols and interpreting the resulting images. Our confocal microscopy
approach is meticulously adapted for prolonged observation to maintain cellular integrity. Time-
lapse imaging captures the progression of meiosis over time, while dual-colour fluorescence
allows us to simultaneously track multiple cellular components, providing a comprehensive
view of the cellular events.

The confocal microscopy setup for studying live cell dynamics in Arabidopsis thaliana is de-
picted in Fig. 2.3, which details the meticulous preparation and imaging process. In panel A,
we see the schematic of a water immersion objective setup, where a thin layer of water and
a 2% agarose gel is used to mount the specimen in Arabidopsis culture medium (ACM), en-
suring optimal imaging conditions. Panel B displays the preparation of the flower buds, with
a close-up view of a bud positioned for imaging and a detailed view of a meiocyte within
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Figure 2.3: Live Cell Imaging Setup and Sample Preparation for Arabidopsis
thaliana [3]

Panel A illustrates the setup for live cell imaging using a water immersion objective to
capture detailed images of the meiocytes within an anther. The schematic shows the anther

immersed in agarose gel with Arabidopsis Culture Medium (ACM) to stabilize it during
imaging. Panel B displays various stages of flower bud preparation, where 1 indicates a

collection of buds ready for imaging, and 2 shows a close-up of a single bud prepared on the
imaging slide. Panel C provides a detailed illustration of the cellular components within an
anther during live imaging. Panel D demonstrates the growth progression of Arabidopsis
thaliana over several days (Day 0 to Day 7), showcasing the developmental changes in the

buds and anthers under observation.

it, demonstrating the clarity with which cellular structures can be visualized. An annotated
illustration of a bud in panel C delineates various floral parts, clarifying the context of the
observed cellular structures. Finally, panel D provides a time-lapse series showing the growth
of buds over a week, illustrating the developmental changes captured by our imaging protocol.
These visuals guide the imaging process and feed critical data into our AI models, providing
the detailed information necessary for an in-depth analysis of meiotic progression.

This imaging technique generates the detailed visual data that fuels our AI algorithms, enabling
them to decipher the complex patterns of meiosis. Through these high-resolution images, we
gain a deeper understanding of the genetic processes in Arabidopsis thaliana, facilitating a
more thorough analysis of plant biology.
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Figure 2.4: State indicative parameters (sip)
Cellular features and feature expressions used to characterize (i.e., to classify) the meiocyte
states. MT: microtubule cytoskeleton; NP: nucleus position; CS: cell shape; RC: chromatin

condensation level; NoP: nucleolus position. The double representation of the penultimate RC
and NoP states indicates the state stagnation until the end of the meiosis cycle.

2.5 Defining meiosis phases as state vectors

Transitioning from observing the biological stages to computational analysis, we adopt a quan-
titative approach by defining meiosis phases as state vectors. This method captures the dynamic
cellular changes during meiosis more effectively than traditional fixed-sample analysis. Live cell
imaging provides a dataset rich in cellular detail, ideal for computational modelling. Meiotic
phases are no longer identified solely by static chromosome configurations but by a series of
state vectors representing dynamic cellular conditions.

Traditional phase identification relies on fixed material, observing chromosomal configurations
to define stages such as pachytene by fully synapsed chromosomes. However, live cell imaging
as applied to Arabidopsis thaliana using the KINGBIRD reporter line offers a real-time view of
meiosis, where meiocytes are characterized by cell shape, microtubule array, nucleus position,
nucleolus position, and chromatin condensation. This live imaging technique, as reported by
Prusicki et al. (2019) [3], provides a dynamic representation of cellular states, integrating
various cellular components and processes, enabling the differentiation of meiotic states based
on several parameters, including cell shape, microtubule array, nucleus and nucleolus positions,
and chromatin condensation. The resulting states are not merely static representations but
dynamic, integrating the intricate interactions of various cellular processes. This approach
provides a refined and detailed view of meiotic phases, particularly cell transitions.

The live imaging data, characterized by distinct cellular parameters, provides a rich dataset for
computational modelling. By defining meiotic phases as state vectors, we create a structured
framework that AI algorithms can directly interpret. This framework not only captures static
chromosome configurations but also the dynamic changes in the cellular environment, which
are critical for understanding the process of meiosis.

In meiosis, the progression from one phase to another is marked by distinct changes in chro-
matin structure, chromosome dynamics, and overall cellular organization. These phases are
traditionally determined by observing fixed material and chromosome spreads, where each
phase is primarily defined based on chromosome configurations. For example, pachytene, one
of the sub-phases of prophase I, is defined by the presence of fully synapsed chromosomes.
However, this traditional method of defining meiosis phases has limitations, particularly in
capturing the dynamic nature of the process.
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This innovative approach allows for the distinct visualization of five key parameters: cell shape,
MT array, nucleus position, nucleolus position, and chromosome configurations. The method
leverages tubulin to visualize cell shape and MT array, and REC8 reveals chromosome con-
figurations. This analysis identifies multiple states for each parameter, characterized by their
specific order and transitions. For instance, cell shape progresses through several distinct forms,
culminating in a tetrad of triangular cells. The MT array, showing the most varied states,
transitions from a homogeneous distribution to complex structures like half-moon, full-moon,
pre-spindle formations, and phragmoplast-like structures during meiotic divisions. Nucleus and
nucleolus positions shift in a coordinated manner, indicating changes in the nuclear structure
and size, while the nucleolus visibility is linked with REC8 accumulation. Finally, REC8 local-
ization tracks chromatin conformation, aligning with previous immunolocalization studies, and
highlights critical meiotic events like chromosome pairing, REC8 removal, and chromosome
condensation.

These parameters do not change in isolation but are interconnected, forming a complex matrix
that defines meiotic progression. For instance, specific MT arrays, like the full-moon structure,
are never found in cells with a rectangular shape, indicating a specific sequence of cellular
transformations. This interconnected progression provides a comprehensive view of meiocytes’
dynamic and complex changes during meiosis.

Each meiotic datapoint subsequently is encoded as a state vector that includes cell shape,
microtubule array, nucleus position, nucleolus position, and chromatin condensation, reflecting
the multifaceted nature of the cellular state during meiosis. This encoding is crucial for applying
machine learning techniques, which can identify patterns and transitions in these state vectors,
predicting the progression of meiosis with high accuracy. Integrating visual classification with
fluorescent markers allows for precisely delineating meiotic states. These classified states, inter-
preted through the dual perspectives of tubulin (RFP) for microtubular structures and REC8
(GFP) for chromosomal dynamics, provide a multidimensional view of meiotic progression. It’s
this detailed, quantitative description that AI models leverage to learn and predict cellular
behaviours during meiosis.

The states of the meiocytes are characterized by visual classification according to the cellular
features illustrated in Fig. 2.4. The classified staging furthermore was based on two protein
fluorescent markers, tubulin (RFP) and REC8 (GFP); see [3] for details. The RFP marker was
used to annotate the microtubular (MT) and the dependent states - the cell shape (CS) and the
nucleus position (NP) state. The GFP marker was analyzed to characterize the chromosomal
dynamics, i.e., to classify the represented meiocyte according to its RC state and the dependent
nucleolus position (NoP) state. Based on the visual assessment of the state for the five features,
the overall state of meiocyte k at any timepoint t ∈ [0, . . . ,T ] with T as the final time of
progression is represented by the state-indicative vector (siv).

sivk,t = [CSc, NPn, NoPo, RCr,MTm] , (2.1)

and, as indicated in Fig. 1, c ∈ [1, . . . , 4], n ∈ [1, . . . , 7], o ∈ [1, . . . , 4], r ∈ [1, . . . , 7], and
m ∈ [1, . . . , 11].

By transforming the visual complexity of meiosis into quantifiable vectors, we lay the ground-
work for AI to unravel the patterns of meiotic progression. This quantitative approach does
not simplify the biological process but enriches our computational models with the depth and
nuance necessary for sophisticated analysis. Ultimately, this confluence of biology and AI opens
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new avenues for understanding Arabidopsis thaliana and eukaryotes’ cell division fundamentals.

2.6 Live-imaging Dataset

The automated pipeline for analyzing meiosis in Arabidopsis thaliana leverages an in-house live-
imaging dataset, which is crucial for transitioning from theoretical and biological exploration
to computational modelling. This dataset forms the empirical foundation of our AI-driven
analysis, providing the necessary diversity to train, validate, and test the robustness of our
computational models. Table 2.1 provides an overview of the datasets utilized, highlighting the
range of conditions and genetic backgrounds.

The Wild-type dataset-I is central to the thesis, used extensively to train and validate our AI
pipeline. In parallel, Wild-type dataset II is vital in evaluating the pipeline’s adaptability and
generalizability to new, unseen data. The tetraploid and ATM mutant datasets expand the
analysis scope, enabling us to examine temporal variations in the meiosis timeline and assess
the concordance with established studies in the field. These datasets allow for the applica-
tion of complex AI algorithms to detect and interpret the intricate cellular events of meiosis,
transitioning from static chromosome configurations to dynamic state vectors.

In the following subsection, we detail the primary datasets used to develop the pipeline, while
evaluation datasets will be introduced progressively as the thesis narrative unfolds. Dataset-III,
captured by a separate imager yet under similar conditions as Dataset-I and -II, provides an
additional layer for evaluating the meiotic timeline. The tetraploid dataset allows for examining
meiosis temporal variation, and the tetraploid-aTM mutant is studied in the context of these
variations.

2.6.1 Wild-type MP dataset

The diploid dataset imaged by Maria Prusicki (MP), featuring annotated wild-type samples,
captures images through live-imaging confocal microscopy, steering the selection of parame-
ters crucial for creating an analytical apparatus enhanced by machine learning. This dataset
is based on the data introduced by Prusicki et al. [3], which describes the data acquisition
process. A total of 35 live cell videos of anther samples were selected to capture the entire
meiosis progression, recorded at a frequency that allows for the detailed observation of cellular
dynamics.

The anthers in these videos were segmented using threshold-based methods after Gaussian
smoothing, refined by median filtering to reduce segmentation artefacts. Within these anthers,
169 anchored meiocytes were manually tracked over time, resulting in 10,671 data points rep-
resenting the position of cells at various time points during meiosis. These data points form the
basis for model development, training, and performance evaluation of the different analytical
modules in the aMP kit.



2.7 Biological priors 17

2.6.2 Wild-type JDJB dataset

The diploid dataset imaged by Joke de Jaeger Braet (JDJB) consists of 12 videos with 1,923
frames, serving as an independent test set for the aMP pipeline. Captured using the same
imaging protocol and conditions as wild type diploid MP dataset, it provides a control for
assessing the framework evaluation for meiosis timeline. This dataset was published by Jaeger-
Braet et al. [32] and, like Dataset-I, was not used for model development but as a test set to
evaluate the pipeline’s efficacy. The dataset is not used in individual model performance owing
to its manual approach only with microtubule array dynamics.

2.6.3 Tetraploid dataset

The tetraploid dataset, featuring Arabidopsis thaliana with four sets of chromosomes, provides a
comparative perspective on meiotic progression. The tetraploid-aTM dataset, with a mutation
in the ATM gene, offers insights into the impact of genetic variations on meiosis. Including
these datasets underscores the model’s capacity to handle variations and contributes to an
intricate understanding of meiotic timelines for the diploid variants at normal temperatures.

Dataset-type Imager Videos Frames
Wild-type diploid MP 35 2081

Tetraploid(wild type) MP 24 2373
Tetraploid(atm) MvdH & JdJB 6 1928
Wild-type diploid JdJB 12 1923

Wild-type control HT 11 1071

TCX HT 15 2437

Table 2.1: Overview of Arabidopsis thaliana Imaging Datasets:
This table summarizes the different datasets used in the study, detailing the types of

*Arabidopsis thaliana* variants, the imager responsible for each dataset, and the quantity of
videos and frames within each dataset. The datasets include various wild-type and mutant

lines, as well as control and heat-treated samples, providing a comprehensive range for robust
AI model training and validation.

2.7 Biological priors

The annotated Wild-type Dataset-I underpins the machine learning apparatus, with visual
representations detailed in Fig. 2.4, Fig. 2.5, and Fig. 2.6. A deep understanding of the biological
priors that govern this process is essential to develop an AI model that accurately represents
the complexity of meiosis. This section outlines these priors, which are critical in guiding the
parameterization of our convolutional neural network (CNN) models for the aMP pipeline.
These priors inform the selection of AI model parameters and ensure that the model’s outputs
are biologically meaningful.

• Anther position and orientation: Anthers, the floral structures containing the meio-
cytes, are our first region of interest. The distribution of the abscissa (x1, x2) in Fig. 2.5,
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Figure 2.5: Dataset property
The generic properties of the meiocyte in the dataset are described in the diagram. For

instance, we can intuitively follow that the cells are divided into 2 anthers from the abscissa
plot in the first 2 diagonals. In contrast, the ordinates provided the information that the

meiocytes are always centred concerning the video frames.

indicates 2 prominent peaks, ensuring the training dataset consists of 2 anthers in vertical
positions. We counter-prove the same, pointing to the distribution of ordinates (y1, y2),
which is approximately flat. The information ensures an upper boundary of the detected
anthers in an image, excluding false detection. The restricted orientation further influ-
ences image augmentation to include other orientations.

• Meiocyte position and size variation: Meiocytes, the principal region of interest for
our project, provide us with some crucial information and can be found along the diagonal
of Fig. 2.5. The abscissa and the ordinates of the bounding box coordinates containing
meiocytes show they are present in both the anthers. The bounding box width, height,
area and aspect ratio provide different size variations of the meiocyte normalized to the
image frame size. The information utilized in setting the aspect ratio and the scales of
the meiocyte dimensions facilitates network optimization and filters outliers.

• Data imbalance: The distribution of meiocyte data points in the training dataset is
left-skewed (Fig. 2.6), with more samples concentrated towards early meiotic stages. The
skewed distribution results from a fixed sampling rate used during live cell imaging,
which does not align with the inherently variable pace of meiosis progression - slow during
prophase-I, extremely short-lived nuclear envelope breakdown (NEB) and fast progression
through meiosis-II. Moreover, the manual labelling process inherently involves some clas-
sification ambiguity, denoted as the class 00 for each parameter, as annotators encounter
challenging cases that defy precise categorization. The data imbalance is alleviated with
a weighting factor introduced for each class, and each parameter is appended with the
ambiguous class to negate the force staging of a data point.
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box area aspect ratio width height
count 11412
mean 0.005271 0.974959 0.068627 0.072517
std 0.00351 0.199422 0.018045 0.022848
min 0.000996 0.395062 0.029297 0.02832
25% 0.003437 0.83871 0.057617 0.058594
50% 0.004463 0.963415 0.06543 0.067383
75% 0.005751 1.098765 0.075195 0.080078
max 0.03712 2.396552 0.18125 0.232

Table 2.2: Statistical Analysis of Meiocyte Bounding Box Dimensions
This table comprehensively summarises the bounding box dimensions encompassing

meiocytes in the dataset. It includes statistical metrics such as count, mean, standard
deviation, minimum, 25th percentile, median (50th percentile), 75th percentile, and maximum
for box area, aspect ratio, width, and height. These metrics offer insights into meiocytes’ size
variability and shape characteristics, vital for precise image analysis and AI model training.

Figure 2.6: Parametric meiotic states
This figure presents the five manually labelled parametric states of meiocytes, with state ’00’

indicating instances where classification is ambiguous due to indistinct meiocyte
characteristics. Variability in these ambiguous classifications arises from the

non-characteristic visualization of meiocytes at specific time points. Additionally, there is a
notable class imbalance across the labels, attributed to the fixed time intervals used during

video acquisition, which do not align with the variable rates of meiosis progression.
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2.7.1 Image priors

Understanding the image characteristics is key to fine-tuning the AI model. These priors in-
clude:

• The concept of Anchor Cell: Live imaging of meiosis necessitates the acquisition
of multiple z-stacks, which are sequences of images captured at various focal depths,
thus assembling a three-dimensional perspective. This method, however, is subject to the
occlusion challenge, wherein adjacent structures or cells may partially or fully conceal
aspects of the meiocytes. When processing this data into a 2D format, a critical prepro-
cessing step involves the selection of a single z-stack for each temporal frame. Given the
dynamic growth of the flower, there is an inherent shift in the anther’s position, imply-
ing that consecutive frames might not showcase identical z-stacks. The choice of which
z-stack to select hinges on identifying and tracking a set of cells that maintain visual con-
sistency throughout the time series. These precisely tracked cells, selected by the user,
are designated anchor cells within the scope of a given live-imaging video. The anchor
cells provide the persistent visibility of a meiocyte, forming the upper limit of frames to
accurately ascertain when a cell has exited the field of view (fov).

• Anther movement: Despite anther immobilizing on a Petri dish during imaging, it often
displays significant movement. It falls upon the imaging user to ensure the sample remains
within the focal plane of the microscope’s field of view. The manual adjustments made by
the user and the intrinsic motility of the live anther can result in monotonic and erratic
shifts in the sample’s positioning. Recognizing these movements is crucial, substantiating
the implementation of frame stabilization techniques. Such corrective measures enhance
cell tracking accuracy and minimize the confounding effects of sample displacement during
live-imaging sessions.

• Variability in sample illumination: The illumination intensity during sample imaging
is intrinsically linked to the emission characteristics of the fluorescent marker used and
the duration for which the sample is exposed to imaging. Specifically, there is an inverse
relationship between image intensity and imaging duration. This critical understanding
underscores the necessity for adaptive image equalization and contrast stretching tech-
niques. By integrating these adjustments, we can effectively calibrate the image augmen-
tation parameters, thereby standardizing the image intensity across varying conditions
and duration of sample imaging. This ensures that variations in fluorescence intensity due
to prolonged exposure times are accounted for, maintaining the integrity and consistency
of the imaging data.

These biological and image priors are foundational for creating a machine learning-enhanced
analytical apparatus. As we transition to developing and applying AI models, these priors
ensure that our computational framework is deeply rooted in the biological reality of meiosis
in Arabidopsis thaliana.

2.8 Data preprocessing

The preprocessing of training samples for the automated Meiosis Progression (aMP) framework
is methodically carried out in two primary stages to condition the input data for optimal
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performance:

• Conversion from Multidimensional to Two-Dimensional Imaging: Confocal mi-
croscopy provides raw footage of the anthers at varying focal depths, crucial for the de-
tailed visualization of meiocytes, as necessitated by the biological intricacies previously
outlined. The initial step in preprocessing involves manually selecting the most repre-
sentative z-stack at each temporal point. This curated selection process transforms the
multidimensional stack into a coherent two-dimensional image sequence, ensuring that
subsequent analyses are based on the most pertinent spatial information.

• Streamlined Automated Preprocessing: The next phase of preprocessing employs
automated techniques tailored to refine the imaging data:

– Frame Resizing: To unify data dimensions and alleviate computational demands,
video frames are resized to a standard resolution of 512 × 512 pixels. This scal-
ing process incorporates anti-aliasing techniques to filter out high-frequency noise
while preserving the integrity of critical image features. Aspect ratio preservation is
ensured by padding the shorter dimension before resizing, maintaining the proper
morphology of cellular structures.

– Contrast Enhancement: The resized images often suffer from low contrast, which
can mask essential details. By executing histogram equalization on the value channel
of the images converted to HSV (Hue, Saturation, Value) format, we significantly
boost contrast levels. This step is pivotal in normalizing fluorescence intensity vari-
ations and enhancing cellular feature visibility. The images are consequently trans-
formed back to the RGB image.

– Gray-scaling of RGB Images: As part of streamlining the image data, the RGB
images are converted into gray-scale. This process, crucial in image preprocessing,
involves transforming the original three-channel RGB representation (red, green, and
blue) into a single-channel grey-scale format. The grey-scale conversion retains essen-
tial structural details while making the data easier and more efficient for algorithmic
processing, particularly as the fluorophores’ coloured annotation is user-specific. To
use pre-trained ’imagenet’ weights on the grey-scaled image in training our machine
learning network, we replicated the grey-scaled image in 3 channels mimicking an
RGB image.

– Normalization: The final step in the automated preprocessing sequence involves
normalizing the histogram-equalized images. We apply min-max scaling; we ad-
just pixel values to fall within a [0, 1] range. This normalization is crucial for the
consistent treatment of data by CNNs, ensuring that the input features are on a
comparable scale for effective pattern recognition and learning.

By applying these data preprocessing steps, we aim to optimize the quality and usability of the
microscopic video data for the subsequent analysis. The processed data is now ready for the
automation of meiosis progression analysis using CNNs, enabling accurate and efficient study
of this critical biological process in Arabidopsis thaliana.
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2.9 Data augmentation

We incorporate a strategic data augmentation protocol to bolster the robustness of the auto-
mated Meiosis Progression (aMP) pipeline and ensure the convolutional neural network (CNN)
models generalize well across varied meiotic imagery. This process increases the volume of train-
ing data and introduces a diversity of samples that better represent the range of variability
encountered in live imaging of Arabidopsis thaliana meiosis. The augmentation techniques are
carefully selected following the biological and imaging constraints previously detailed. The
employed augmentation techniques are as follows:

• Rotational Augmentation: Considering the radial symmetry of anthers, we apply
random rotations to the images. Each frame is rotated by a degree sampled from a
uniform distribution within a specified range, ensuring that the CNN learns to recognize
meiocytes irrespective of their orientation.

• Translational Shifts: Images are translated horizontally and vertically to simulate the
natural movement of anthers and account for slight positional displacements. This shift
respects the bounds of anther movement observed in the original video sequences to
maintain biological integrity.

• Scaling: Random scaling of images imitates variations in the z-plane focus, reflecting the
differences in meiocyte size due to focal plane adjustments during the imaging process.
This scaling is constrained to a range that preserves cellular structures and does not
introduce unrealistic proportions.

• Shearing: A modest degree of shearing compensates for the potential distortion during
the manual adjustment of the anther in the focal plane. This adjustment is subtle to
ensure that the cellular morphology remains biologically plausible.

• Intensity Variations: Fluctuations in fluorescence intensity due to prolonged imaging
times are replicated by adjusting the brightness and contrast of images. This alteration
mirrors the inverse proportionality of image intensity to imaging time and the subsequent
compensatory preprocessing steps.

• Elastic Deformation: Elastic deformations are applied to the images to mimic the
biological variability of cell shape and size. This technique introduces a realistic and
biologically informed variation, enhancing the model’s ability to discern meiocytes under
less-than-ideal imaging conditions.

• Flip Augmentation: Horizontal and vertical flips represent the natural orientation vari-
ability within the anther. This also helps CNN not to be biased towards any specific
orientation of meiotic cells.

Each augmentation technique is implemented carefully considering the biological and image
priors mentioned above, ensuring the augmented data remains true to the possible physical
realities of meiosis in Arabidopsis thaliana and is tabulated in Table. 2.3. Moreover, the magni-
tude of each transformation is controlled to prevent the introduction of artefacts or biologically
implausible features that could mislead the learning process. We significantly enhance the
model’s exposure to possible imaging scenarios by augmenting our dataset through these var-
ied transformations. This diversity is crucial for developing a resilient and accurate CNN model
capable of performing high-fidelity meiosis progression analysis.
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Augmentation Technique Magnitude/Range
Rotational Augmentation 0◦ to 45◦

Translational Shifts Up to 10% of the minimum image dimension
Scaling 0.8x to 1.2x

Shearing Up to 5◦

Intensity Variations Brightness variation by ±20%

Elastic Deformation Up to 5% deformation
Flip Augmentation Horizontal and Vertical flips

Table 2.3: Summary of image augmentation techniques and their magnitudes
This table enumerates the various image augmentation techniques applied to the dataset and
their corresponding magnitude or range. It includes rotational augmentation, translational
shifts, scaling, shearing, intensity variations, elastic deformation, and flip augmentation.

These augmentations are critical for ensuring the AI models are exposed to various imaging
scenarios, enhancing their ability to generalize and accurately analyze meiotic progression in

Arabidopsis thaliana.

2.10 Data split strategy

With the preprocessing and data augmentation stages meticulously executed, our dataset is
now optimally conditioned for the next phase of our thesis. These steps are crucial in bridging
the gap between the biological nuances of meiosis and the computational models that aim to
analyze and interpret these intricate processes.

2.10.1 Label stratification

Label stratification is a pivotal machine learning technique, mainly supervised learning. It
ensures that each class within a dataset is proportionally represented across various subsets,
such as training, validation, and test sets. This approach is essential in handling datasets where
class distribution might be imbalanced, preventing any class from being underrepresented or
overlooked during the model training and evaluation phases.

Stratification works by maintaining a balanced class distribution, thereby aiding in developing
models that generalize well across all classes and avoid biases towards majority classes. This
method is crucial in simple classification tasks and plays a significant role in complex scenar-
ios like multi-class and multi-label classifications, where the relationships between classes are
intricate.

Proper data splitting techniques, including stratification, are necessary for training classifi-
cation networks. Representative sampling is crucial to ensure the training set mirrors the
real-world scenario the model will encounter post-deployment. Additionally, it’s imperative
to prevent data leakage between the training and test sets to achieve realistic performance
estimations. Uniform application of preprocessing steps across all data subsets is essential to
maintain consistency and avoid biases. Ensuring sufficient sizes for validation and test sets is
vital for practical model tuning and accurate performance evaluation. Moreover, data randomi-
sation is crucial in eliminating any inherent biases in the dataset.
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Description Count Meiocyte datapoints Frames Anther datapoints
Unique flower videos 19 11412 2081 3623
Train Set 13 9582 1575 2804
Validation Set 3 1255 165 278
Test Set 3 575 341 541

Table 2.4: Distribution of Arabidopsis thaliana Flower Videos and Data Points
Across Training, Validation, and Test Sets

This table presents the allocation of unique flower videos and associated meiocyte and anther
datapoints among the training, validation, and test sets. The division demonstrates label
stratification, ensuring a balanced representation of data across all subsets to facilitate

effective training and evaluation of the AI models.

2.10.2 Test-train-validation split

In preparation for developing and evaluating our CNN-based deep learning models, dataset I
was partitioned into distinct subsets for training, validation, and testing, allocating a 70% −
15%−15% split ratio. The label stratification strategy ensured the videos’ exclusivity (eliminating
the overlap in train-validation-test samples) in training the supervised training networks - for
classification, segmentation, and object localization tasks. Table. 2.4 shows the dataset used in
training the aMP pipeline.

The systematic preprocessing, data augmentation, and strategic dataset division play a cru-
cial role in the subsequent analysis phases of this research. These preparatory steps have been
meticulously executed to transform the complex biological phenomenon of meiosis in Arabidop-
sis thaliana into a dataset suitable for computational analysis. This transformation is pivotal
for ensuring that the AI models can accurately interpret the dynamic nature of meiotic pro-
gression. The datasets, prepared with precise preprocessing and data augmentation, are crucial
for capturing the intricate details of meiotic progression. As we advance, the emphasis shifts to
the technical application of image processing methods and AI models designed to compute the
meiosis timeline across different Arabidopsis thaliana variants. The forthcoming sections are
dedicated to an in-depth examination of the algorithms and computational techniques utilized
for dataset analysis to extract significant insights into the meiosis process. This transition signi-
fies a critical juncture where raw data is converted into scientific insights, harnessing advanced
AI and machine learning methodologies. These methodologies are integral to our understanding
of the varied meiotic timelines in different Arabidopsis strains, addressing the core objectives
of our research.
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Chapter 3

The aMP pipeline

Single-cell analysis is pivotal for studying individual cells, as it allows for observing cellular
heterogeneity and understanding unique cellular characteristics within a population. Such de-
tailed observation is particularly significant for the analysis of meiosis progression in Arabidop-
sis thaliana. It enables examining each meiocyte’s progression through meiosis, an inherently
dynamic and individualized process where slight variations in progression and behaviour are
expected.

Building on the preprocessed and augmented datasets of Arabidopsis thaliana meiocytes from
the preceding chapter, we apply single-cell analysis to elucidate the progression of meiosis.
Advanced imaging techniques, like live-cell imaging and fluorescence microscopy, are integrated
with neural network-based computational methods to enable frame stabilization, precise cell
localization, effective tracking, and accurate classification.

This chapter transitions into a methodological exposition, detailing the neural network archi-
tectures and computational strategies employed for dataset analysis. Emphasizing the granular
examination of meiotic progression, we aim to extract meaningful insights into the variations
of meiotic stages among different cells and to analyze the genetic and molecular bases of these
processes at the single-cell level. This comprehensive analysis is instrumental in understanding
the complexities of meiotic progression, which is essential for grasping plant fertility’s nuances
and genetic diversity’s generation.

Hence, this chapter marks a significant shift from data preparation to applying sophisticated
computational models. Here, we outline the methodologies that transform raw data into sci-
entific insights, underpinning our objective of computing and comparing the meiosis timeline
across different Arabidopsis thaliana variants. The methods outlined here are chosen for their
efficacy in enhancing analysis and enabling comparative evaluations, the key to our goal of
delineating the genetic mechanisms that underlie meiotic variability.

3.1 Deep learning in single-cell analysis

Deep learning techniques have become integral in advancing the field of single-cell analysis,
with specific methods being applied for varied purposes. These techniques have been tailored
to address the unique challenges posed by single-cell data.
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For instance, convolutional neural networks (CNNs) are predominantly used for image-based
analyses, as discussed by [33]. These networks excel in processing visual data, making them
ideal for tasks like cell segmentation and image classification in cellular microscopy. CNNs have
shown remarkable success in extracting meaningful features from intricate biological images,
aiding in the quantitative representation of cell characteristics.

Autoencoders and variational autoencoders, highlighted in the studies by [34] and [35], are
employed for feature selection and data imputation tasks. These methods effectively reduce
dimensionality and identify significant features from the high-dimensional data typical in single-
cell studies, thereby denoising the data and imputing missing values, common issues in single-
cell datasets.

Generative adversarial networks (GANs) and supervised deep learning models, as surveyed
by [35], are used for data augmentation and classification tasks. GANs, in particular, have
been instrumental in generating synthetic data for training purposes, thereby addressing the
challenge of limited sample sizes in single-cell experiments.

As explored by [36], multimodal deep learning approaches integrate various forms of data
in single-cell studies, such as genomics, transcriptomics, and proteomics. These techniques
are crucial in multi-omics data integration, enabling a more comprehensive understanding of
cellular mechanisms.

The advantages of using deep learning methods in single-cell analysis are manifold. They offer
superior performance in handling complex and high-dimensional single-cell data, provide im-
proved feature extraction and classification accuracy, and enable the integration of diverse data
types. However, there are also notable drawbacks. Deep learning models often require exten-
sive computational resources and large datasets for training. They can be prone to overfitting,
especially when dealing with limited sample sizes. Additionally, many deep learning models,
particularly the more complex architectures, act as ’black boxes’, offering limited interpretabil-
ity of their internal workings and decision-making processes.

Deep learning techniques have significantly contributed to advancements in single-cell analysis,
each method bringing its strengths to various aspects of the analytical pipeline.

3.2 Our approach

This section delves into the intricacies of the Automated Meiosis Progression (aMP) toolkit,
designed explicitly for tracing the intricate microtubular and chromosomal dynamics during
the meiosis of Arabidopsis thaliana. This discussion extends from the general overview of the
aMP toolkit provided earlier, focusing on the rationale behind our methodological choices and
the architecture of our deep learning models.

The aMP toolkit is structured into modules addressing distinct live-cell imaging data analysis
aspects. From preprocessing confocal microscopy images to the detailed interpretation of mei-
otic stages, we employ state-of-the-art machine learning algorithms and deep learning models,
ensuring precision and reliability in our analyses.

Building upon the preprocessing groundwork laid out in the previous chapter, which enhances
and normalizes image quality for better analytical accuracy, the heart of our methodology
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revolves around developing sophisticated neural network models. These models are designed
explicitly for meiocyte segmentation, localization, and classification tasks. The choice of seg-
mentation mainly, was driven by the need to stabilize anthers and accurately delineate cellular
structures, a critical step for reliable downstream analysis. Similarly, object localization-based
tracking was selected for its effectiveness in precisely mapping the dynamic movements and
transformations of meiocytes throughout meiosis, providing a clearer understanding of cellular
interactions and processes.

Classification is treated as a distinct block in our pipeline due to its pivotal role in identify-
ing and categorizing different stages of meiosis, which is fundamental for understanding the
progression of these cellular events. By separating these tasks, we ensure dedicated focus and
specialized processing for each aspect of the cellular dynamics, leading to a dynamic use of the
constituent block of the pipeline, singular or combination of blocks.

A key feature of our methodology is adopting a unified backbone across all neural network
models. This decision was made to leverage a common architecture’s synergistic learning po-
tential and computational efficiency. Such a unified approach not only streamlines the training
process but also ensures consistency in feature extraction and interpretation across different
stages of analysis, thereby enhancing the overall robustness and coherence of the toolkit.

This method chapter outlines a detailed and comprehensive blueprint of the aMP toolkit. It
serves as both a guide for practitioners in the field of computational biology and a transparent
exposition of our research methodology for the broader scientific community. This section
bridges the conceptual overview provided earlier with specific technical details, underscoring
the rationale behind our methodological choices and the architecture of our neural network
models.

3.2.1 Rationale behind the selection of supervised learning models

In developing the Automated Meiosis Progression (aMP) toolkit, prioritising supervised learn-
ing models over generative models was a significant methodological decision. This choice was
guided by several considerations specific to the nature of the data and the objectives of our
study.

Supervised learning models are particularly well-suited for tasks where labelled data is available,
and the primary goal is to make predictions or classifications based on this data. In the context
of the aMP toolkit, we have access to sufficient labelled data about different stages of meiosis
in Arabidopsis thaliana. This rich dataset enables the supervised models to learn effectively
from the labelled examples, making them ideal for accurately classifying the various stages
of meiosis and identifying key cellular features. The direct feedback mechanism inherent in
supervised learning, where the model’s predictions are continuously compared against actual
labels, ensures high precision in classification tasks, which is crucial for the detailed and nuanced
analysis required in our study.

On the other hand, generative models, which excel in unsupervised environments where the
discovery of underlying patterns and data generation is required, were considered less suitable
for our objectives. The primary aim of the aMP toolkit is not to generate new data or explore
uncharted patterns without prior labels but to analyze and track known biological phenomena
with high precision. Moreover, the complexity and computational intensity of generative models
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and their tendency for less interpretable results were seen as potential drawbacks in the context
of our specific analytical goals.

Furthermore, using supervised models in the aMP toolkit aligns well with the need for reliable
and reproducible results in biological research. The clear and structured learning process of
supervised models, governed by labelled data, ensures that they learn exactly what they are
intended to learn, reducing the chances of ambiguous or misleading outcomes.

In conclusion, the choice to use supervised models in the aMP toolkit was driven by their
compatibility with the nature of our data, the precision required for our analysis, and the
overarching goal of delivering transparent, interpretable, and reliable results in the study of
meiosis in Arabidopsis thaliana. This decision underscores our commitment to employing the
most appropriate and practical tools for scientific inquiry.

3.3 Neural network backbone

In deep learning, especially within computer vision, the concept of a "backbone network" plays
a pivotal role. These backbone networks are pre-trained convolutional neural networks (CNNs)
that are the foundational architecture for various complex tasks. The essence of these networks
lies in their capability to extract hierarchical features from input images, where initial layers
capture essential elements like edges and textures, and deeper layers discern more intricate
patterns. This hierarchical feature extraction is crucial for various applications, from image
classification to more advanced tasks like object detection and segmentation.

Backbone networks are mainly instrumental in the practice of transfer learning. This technique
involves transferring knowledge gained from one task commonly, a task with an extensive and
diverse dataset, such as ImageNet, to a different but related task. Such an approach is especially
beneficial when the target task has limited data availability. By leveraging pre-trained models,
backbone networks provide a robust starting point, significantly enhancing performance on the
new task.

Prominent examples of backbone architectures include VGG, ResNet, Inception, and Efficient-
Net, each characterized by unique features such as network depth, width, and layer types. These
characteristics directly influence the network’s performance and computational efficiency. More-
over, these networks offer varying trade-offs between accuracy and computational efficiency,
with architectures like MobileNets emphasizing efficiency. In contrast, others like ResNets are
designed for deeper and more accurate feature extraction. For meiocyte images, these features
are the cell’s geometry, microtubular structures, the structure of chromosomes, positional fea-
tures and other underlying characteristics to delineate different stages of meiosis.

Additionally, backbone networks can be fine-tuned or adapted for specific tasks by modifying
the architecture, particularly the final layers, or by altering the training process to focus on
features more relevant to the specific application.

In essence, backbone networks in deep learning are cornerstone architectures that underpin the
feature extraction process in numerous vision-related tasks. Their use of pre-trained models
and adaptability make them invaluable in achieving high performance in a broad spectrum of
complex visual recognition scenarios, forming the core of the automated Meiosis Progression
(aMP) toolkit. In our work, we use EfficientNet as our common backbone CNN architecture.
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Figure 3.1: Model scaling of EfficientNet family.
a) baseline network, b-d) conventional scaling, e) uniform compound scaling method used in

efficientnet with a fixed ratio

3.3.1 Advantages of EfficientNet over other backbone architectures

The introduction of EfficientNet has marked a significant advancement in convolutional neu-
ral network (CNN) architectures, addressing key limitations inherent in previous models. In
comparison to its predecessors like VGG [37], ResNet [38], Inception [39], MobileNet [40],
DenseNet [41], SqueezeNet [42], Xception [43], and YOLO [44], EfficientNet [45] demonstrates
several notable advantages.

Firstly, EfficientNet presents a systematic and principled approach to scaling up CNNs, con-
trasting with the more heuristic methods used in earlier architectures. While architectures like
VGG and ResNet primarily focus on increasing the depth of the networks, and Inception in-
troduces a complex combination of convolutions, EfficientNet provides a balanced scaling of
all dimensions - depth, width, and resolution (Fig. 3.1. This uniform scaling results in a more
efficient and effective network capacity and performance increase.

Secondly, EfficientNet achieves superior accuracy and efficiency, shown in Fig. 3.2. It outper-
forms other models like MobileNet and DenseNet, which are designed for efficiency, by achieving
higher accuracy with a comparable number of parameters. Moreover, compared to SqueezeNet
and Xception, which also emphasize parameter efficiency, EfficientNet provides a better trade-
off between accuracy and model size.

Furthermore, EfficientDet (built on EfficientNet backbone) effectively overcomes the limitations
of model scaling inherent in the YOLO architecture, primarily designed for object detection
tasks. While YOLO excels in speed, EfficientNet offers a more versatile architecture that main-
tains high efficiency without compromising accuracy for various image recognition tasks.

The architectural innovation of EfficientNet lies in its compound scaling method, which simul-
taneously scales network width, depth, and resolution with a set of fixed scaling coefficients.
This approach contrasts with the depth-focused scaling in ResNet or the width and resolution
scaling in Inception and Xception, providing a more structured and effective way to improve
network performance.
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Figure 3.2: Comparative accuracy of EfficientNet on Imagenet classification
task.

In summary, EfficientNet represents a significant leap forward in the design of CNN architec-
tures. Its balanced and principled approach to scaling has set new benchmarks in efficiency
and accuracy, outperforming its predecessors and offering a versatile solution for a wide range
of applications in computer vision.

3.3.2 EfficientNet and ensembling strategy

The EfficientNet architecture comes in several variations, named B0 through B7, each offering
a different level of complexity and capacity. The B0 is the baseline network (Fig. 3.3, and each
subsequent version, B1 to B7, represents a progressively more complex model that is larger
and theoretically more accurate, given more computational resources. One of the distinctive
features of EfficientNet is the use of the Swish activation function, which is defined as:

Swish(x) = x · sigmoid(βx), (3.1)

where x is the input to the activation function, and β is a parameter that is either learned or
set as a constant. This function has been shown to improve the performance of deep neural
networks by serving as a smoother alternative to the widely used ReLU activation function.

Another key component of EfficientNet is the MBConv layer, an improved version of the in-
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Figure 3.3: EfficientNet B0 backbone.

verted residual structure initially introduced in MobileNetV2. The MBConv layer incorporates
lightweight depthwise convolutions to filter features as a form of efficient spatial processing,
followed by pointwise convolutions to combine features. The following sequence of operations
can mathematically represent the M:

1. Expansion: A 1 × 1 convolution that expands the input feature map before depthwise
convolution.

2. Depthwise Convolution: A 3 × 3 or larger depthwise separable convolution that acts on
each input channel independently.

3. Squeeze and Excitation: An optional block that adaptively recalibrates channel-wise fea-
ture responses by explicitly modelling channel interdependencies.

4. Projection: A 1×1 convolution that projects the feature map back to a lower-dimensional
space.

5. Skip Connection: An identity connection that is added to the output of the projection
layer if the dimensions of the input and output are the same.

Integrating Swish activation and MBConv layers allows efficient combined scaling in Efficient-
Net, balancing network width, depth, and resolution, leading to better performance than arbi-
trarily scaling up these factors.

We used 2 more variations - B1 and B2, alongside the baseline B0 model for ensembling
learning. The limitation on the availability of computational hardware underlines the limited
choice of 3 sub-models. Ensembling is a machine-learning technique that combines multiple
models to improve overall performance. The idea is that by combining the predictions from
several models, you can capitalize on their strengths and mitigate their weaknesses, forming a
comprehensive feature representation and being robust to noise, leading to better generalization
and robustness against overfitting.

When it comes to EfficientNet models ensembling B0, B1, and B2 involves using each of these
architectures to predict the same input data independently and then aggregating their predic-
tions to form a final output. B0, B1, and B2 are variants of the EfficientNet architecture that
differ in depth, width, and resolution, with B0 being the smallest and B2 being larger and more
complex. In practice, the predictions from EfficientNet B0, B1, and B2 can be combined using
various methods in the different modules of our aMP toolkit.
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3.3.3 Backbone feature extractor as plug and play

Exchanging the backbone network within a deep learning toolkit, such as the automated Meiosis
Progression (aMP) system, entails replacing the existing feature extraction architecture with
an alternative one.

The impetus for such an exchange could stem from several factors, including advancements in
neural network designs that offer better performance, the evolving complexity of the dataset, or
changes in computational resource availability. For example, one might replace an EfficientNet-
B0 backbone with a more advanced EfficientNet variant or a completely different architecture
like Vision Transformer to achieve more nuanced feature detection and faster processing times
or to fit within a tighter computational budget.

Implementing this change requires careful selection of the new architecture, ensuring it aligns
with the specific needs of the meiotic image analysis. Once selected, the new backbone is
integrated into the toolkit, often necessitating adjustments in the layers that interface with the
rest of the network to accommodate different input or output dimensions. The new backbone
may be initialized with weights from a model pre-trained on a relevant dataset to leverage
transfer learning for enhanced feature extraction.

The updated model then undergoes retraining, fine-tuning the entire network to tailor the new
backbone’s capabilities to the specific requirements of meiosis image analysis. Rigorous valida-
tion ensures the new architecture maintains or improves the model’s performance. This flexible
approach to backbone exchange ensures that the aMP toolkit remains adaptable, scalable, and
up-to-date with the latest developments in deep learning, thereby maintaining its efficacy in
analysing meiotic progression.

3.4 aMP modules

3.4.1 The segmentation module

The segmentation module is the next critical step within the automated Meiosis Progression
(aMP) pipeline as we progress from the foundational data preparation elucidated in the previous
chapter. This module is pivotal in stabilizing the focal plane across the series of live-cell imaging
frames of Arabidopsis thaliana. Ensuring a stable focal plane is imperative for consistent and
clear visualization of the meiocytes, which is fundamental for their precise localization and
tracking throughout the dynamic stages of meiosis. The following sections will delve into the
robust methodologies and approaches that underpin the segmentation module, detailing their
contribution to maintaining the stability of the focal plane and enhancing the accuracy of the
meiosis timeline analysis.

3.4.1.1 Existing method of analysis

A continuous and systematic methodology is employed to segment anthers using ImageJ/FIJI
to ensure accurate and reproducible results. The process begins with pre-processing, where the
raw high-resolution images are converted to grayscale to simplify the segmentation process. Fol-
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lowing this, a thresholding technique is applied; this can be done through automated algorithms
available in ImageJ/FIJI, such as Otsu’s method, which calculates an intensity threshold that
separates anthers from the background. The binary image resulting from this threshold acts
as a preliminary mask, distinguishing the regions of interest (anthers) from the surrounding
tissue.

After thresholding, the ’Create Mask’ feature solidifies this distinction, producing a mask where
the anthers are highlighted. With the binary mask in place, the ’Analyze Particles’ function
quantifies features of the segmented anthers, allowing for the exclusion of artefacts based on
size or shape criteria. This refinement step is essential, particularly when dealing with clusters
of anthers or overlapping structures.

The refined binary masks are managed using the ROI Manager, a versatile tool in ImageJ/FIJI
that facilitates the editing, measurement, and tracking of multiple-segmented regions across
a series of images. To further improve the mask’s fidelity, binary operations such as ’Dilate’,
’Erode’, and ’Close’ can be performed, which adjust the mask’s boundaries to reflect the anther’s
shape more accurately.

In some cases, combining multiple masks becomes necessary to segment anthers with varying
characteristics within the same image. Logical operators like AND and OR are available in Im-
ageJ/FIJI to merge these masks into a comprehensive representation of the regions of interest.
Once the final mask is prepared, it is applied to the original or a stack of images to analyze
the anthers exclusively. This masking strategy culminates in the visualization phase, where the
mask is overlaid on the original image to verify the segmentation’s precision.

3.4.1.2 U2-Net for anther segmentation

The U2-Net architecture, introduced by [46], represents a significant advancement in image
segmentation, especially in salient object detection. When compared to its U-Net-based pre-
decessors and variants such as the original U-Net [47], V-Net [48], Attention U-Net [49], and
U-Net++ [50], U2-Net exhibits several unique advantages.

While revolutionary in biomedical image segmentation, the seminal U-Net architecture pri-
marily focuses on medical applications and lacks the complexity required for natural image
segmentation [47]. Its extensions, like 3D U-Net and V-Net, enhance its capability in three-
dimensional data but remain focused on medical imaging [51] [48]. With its attention-guided
mechanism, Attention U-Net improves performance in certain image areas but may not con-
sistently excel in salient object detection across diverse scenarios [49]. U-Net++, despite its
sophisticated structure, U-Net++ does not fundamentally alter the approach to feature extrac-
tion [50].

In contrast, U2-Net employs a nested U-structure, enabling the extraction of detailed, hier-
archical features at multiple scales [46]. This design is particularly effective for salient object
detection in complex scenes, where traditional U-Net architectures might falter due to their
more uniform feature extraction approach. U2-Net’s architecture is optimized for salient object
detection, offering an enhanced ability to discern object boundaries and contextual nuances
essential in natural images.

Therefore, while U-Net and its derivatives have significantly contributed to image segmenta-
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tion, U2-Net’s distinct nested architecture and focus on salient object detection provide clear
advantages for applications in natural image processing, where precise object delineation and
complex feature representation are crucial.

3.4.1.3 Training strategy

Arabidopsis thaliana, a model organism in plant biology, features a complex flower structure,
including anthers, which are pivotal for studying plant reproduction. An anther typically con-
tains four microsporangia, where male gametophytes develop. Adjacent to these gametophytes
lies the tapetum, a nourishing tissue essential for pollen development. In microscopic imaging
of these anthers, capturing multiple anthers within a single frame is common, necessitating the
precise distinction of individual anther structures. This is particularly crucial when focusing on
the tapetum and meiocyte regions, where salient features must be accurately segmented from
the complex floral background.

Given the intricate structural details of Arabidopsis thaliana anthers and the requirement to
preserve spatial information, especially in cases where two anthers are located in one frame, the
choice of U2-Net [46] for saliency detection is highly justified. U2-Net, with its unique capability
to detect and segment salient objects in complex images, is ideal for focusing exclusively on
the tapetum and meiocyte regions. Its nested U-structure captures the features necessary for
differentiating these critical areas from the surrounding floral tissue.

For the training of U2-Net, we employed the Adam optimizer [52] for its efficacy in han-
dling sparse gradients, which is common in segmenting high-resolution floral images. The Focal
Tversky loss function [53] was utilized to address the class imbalance typically present in these
images, where the regions of interest (tapetum and meiocytes) occupy a relatively small portion
of the frame. This loss function ensures a heightened focus on these smaller yet crucial regions.

The Continuous Dice coefficient, first introduced in [48], was selected as the accuracy metric,
which offered a refined approach for evaluating segmentation models, which is advantageous
over the traditional Dice coefficient in several aspects. The standard Dice coefficient is defined
as

DSC =
2× |X ∩ Y |
|X|+ |Y |

(3.2)

where X and Y represent the binary prediction and ground truth segmentation, respectively,
assesses the model’s performance in a binary manner. However, the Continuous Dice coefficient,
often formulated as

CDSC =
2×

∑
i pigi∑

i pi +
∑

i gi
(3.3)

where pi and gi denote the predicted probability and ground truth for each pixel i, incorpo-
rates the probabilistic nature of pixel classification. This continuous formulation leads to a
heightened sensitivity to subtle variations in segmentation, making it particularly useful for
models where precision is key. It offers smoother gradients, conducive to the gradient-based
optimization methods prevalent in deep learning. This smoothness facilitates more stable and
effective training of neural networks, evident in improved convergence behaviours. Moreover,
the Continuous Dice coefficient’s nuanced evaluation metric is more aligned with soft segmen-
tation tasks, common in medical imaging, where boundaries are not strictly defined. Its ability
to distinguish between varying levels of prediction certainty adds depth to the performance
assessment, a feature absent in the standard Dice coefficient.
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An exponential learning rate decay is implemented to adjust the learning rate during training.
This approach gradually reduces the learning rate, allowing the optimizer to make smaller, more
precise updates to the model weights as training progresses. Such a strategy helps stabilise the
training process in its later stages, leading to better convergence.

We implement an early stopping mechanism to prevent overfitting and ensure efficient training.
Training is terminated based on the validation loss value - if the validation loss does not
improve for a pre-defined number of epochs, the training process is stopped. This criterion
ensures that the model training ceases when it begins to overfit, thereby preserving the model’s
generalizability.

3.4.1.4 Anther segmentation

Given a preprocessed video denoted as V with its constituent frames represented by Vt=0,...,T ,
the segmentation block’s primary objectives are twofold. Firstly, it aims to delineate an ap-
propriate mask Mt=0,...,T that encapsulates the anther area pertinent for localizing meiocytes.
Secondly, it seeks to rectify any positional shifts of the anther across the video sequence, thus
facilitating the subsequent tracking of meiocytes. Anther masking facilitates focused analysis
on areas of interest, excluding irrelevant background information.

3.4.1.5 Anther Motion Compensation

After segmentation, we address the anther’s motion using the segmented masks Mt=0,...,T . To
stabilize the anther’s position across frames, we compute the centroid C(Mt) for each frame
and estimate the displacement vector ∆Ct relative to the first frame:

∆Ct = C(Mt)− C(M0) (3.4)

To compensate for the anther’s motion, we define a transformation τ that combines both
translational and rotational adjustments. Specifically, τ is a composite of translation T⃗t and
rotation Rt based on ∆Ct.

Figure 3.4: Structure of the segmentation module.
Within the input video Vt=0,...,T , the anther regions that are relevant to meiocyte localization
are segmented. Based on the segmented areas Mt=0,...,T , the anther motion is estimated and

compensated, resulting in motion-compensated videos V′
t=0,...,T and M′

t=0,...,T .
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For frame t, the translational transformation T⃗t and the rotational transformation Rt are
defined as follows:

T⃗t =

1 0 ∆xt
0 1 ∆yt
0 0 1

 (3.5)

Rt =

cos(θt) − sin(θt) 0
sin(θt) cos(θt) 0

0 0 1

 (3.6)

where ∆xt and ∆yt are the x and y components of ∆Ct, and θt is the angle of rotation.

The composite transformation τt applied to each frame is the product of T⃗t and Rt:

τt = T⃗t ·Rt (3.7)

The inverse transformation τ−1
t is then applied to each frame and its corresponding mask to

stabilize the anther’s motion:

V′
t = τ−1

t (Vt) (3.8)

M′
t = τ−1

t (Mt) (3.9)

This results in a stabilized sequence of images V′
t=0,...,T and masks M′

t=0,...,T , where the anther
maintains a consistent position and orientation relative to the first frame.

3.4.2 Quantitative evaluation of motion stabilization

Displacement Calculation: We calculate the displacement of anthers in each frame after
applying the inverse transformation τ−1. The displacement Dt for frame t is computed as the
Euclidean distance between the transformed centroid position and the original centroid position
in the first frame:

Dt =
√
(∆x′t)

2 + (∆y′t)
2 (3.10)

where ∆x′t and ∆y′t are the x and y components of the centroid displacement after applying
τ−1
t .

Assessment of Stabilization Effectiveness: The stabilization effectiveness is determined by
comparing the displacements before and after applying the motion compensation. We calculate
the average and standard deviation of Dt across all frames and categorize the results into
different classes based on the extent of stabilization achieved.

Additional Evaluation Metrics: To further assess the stabilization process, we employ tra-
ditional image segmentation metrics:

• Intersection over Union (IoU): Measures the overlap between the segmented anther re-
gions in the stabilized and the first frames.

• Precision: Evaluates the accuracy of the segmented anther regions in the stabilized
frames.
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• Recall: Assesses the completeness of the anther region segmentation in the stabilized
frames.

• F1 Score: Provides a balance between precision and recall, offering a single metric that
encapsulates both aspects.

The combined use of displacement analysis and traditional metrics like IoU, Precision, Recall,
and F1 Score offers a comprehensive evaluation of the stabilization process. This multifaceted
approach ensures the reliability and accuracy of the stabilization, crucial for the subsequent
analysis of meiotic progression in Arabidopsis thaliana.

Having established a robust framework for segmenting and stabilizing anther regions, our
pipeline now transitions to the critical task of meiocyte localization. Anthers’ segmentation and
motion compensation provide a stabilized and refined context, crucial for the precise detection
and localization of meiocytes, ensuring that the localization module operates on high-fidelity
data, where the meiotic cells are preserved and made distinctly identifiable. Within this refined
visual landscape, established through advanced segmentation techniques, our meiocyte local-
ization module leverages the power of EfficientDet models to pinpoint the positions of these
key cellular entities accurately. This continuity from segmentation to localization is not just a
sequential progression but a testament to our pipeline’s integrated and modular approach in
dissecting the complex phenomenon of meiosis in Arabidopsis thaliana.

3.4.3 The meiocyte localization module

The accurate localization of meiocytes within the stabilized video frames V′
t=0,...,T is a critical

precursor to effective tracking. This process is facilitated by a single-shot detection framework
that leverages the motion-compensated frames as input.

3.4.3.1 Advantages of object localization over-segmentation in cell imaging

Object localization is over-segmentation for locating cells in image frames due to several key
advantages. Primarily, it is computationally more efficient, as segmentation necessitates pixel-
level classification, which is resource-intensive, especially for high-resolution images. In contrast,
object localization, which typically involves identifying bounding boxes or key points, is less
computationally demanding. Furthermore, the annotation and training process for object lo-
calization is generally simpler and faster than the detailed, pixel-wise annotations required for
segmentation. This simplicity translates to quicker model training and less manual labour in
preparing datasets.

Another significant advantage of object localization lies in its sufficiency for specific analytical
goals. The precise boundary details provided by segmentation are often unnecessary for cell
counting or identifying specific cell types. Object localization provides adequate information
by pinpointing the location and quantity of cells, which suffices for our further analyses. This
method is also advantageous in scenarios with overlapping or clustered cells, where segmen-
tation algorithms might struggle to delineate individual cells accurately. Object localization
models, focusing on identifying central points or bounding boxes, are less affected by such
overlapping structures.
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Moreover, the speed of object localization models is particularly beneficial for real-time anal-
ysis, such as in live cell imaging. This rapid processing capability is essential in dynamic
environments where cell behaviours continuously evolve. Lastly, object localization models are
adaptable to various magnifications and imaging conditions, maintaining their accuracy even
when the scale of the image changes. This versatility makes them ideal for a wide range of
cell imaging scenarios, where detailed boundary delineation is not critical and computational
efficiency or speed is a priority.

3.4.3.2 Choice of EfficientDet

EfficientDet [54] stands out amongst object localization networks for its distinctive features and
performance, especially when compared to networks like YOLO [44], SSD [55], RCNN [56],
Faster RCNN [57], and CenterNet [58]. One of the critical advantages of EfficientDet is its
efficient scaling of model complexity, which is achieved through a compound scaling method.
This method uniformly scales the network’s depth, width, and resolution, a feature not present
in networks like YOLO or SSD, which tend to scale these dimensions heuristically.

Moreover, EfficientDet introduces the Bidirectional Feature Pyramid Network (BiFPN), which
allows easy and fast multi-scale feature fusion, enhancing feature learning capabilities. This
aspect of EfficientDet is particularly advantageous over networks like RCNN and its variants,
where feature pyramid networks are either absent or unidirectional. The BiFPN enables more
effective feature-level interactions than traditional FPNs used in Faster RCNN, leading to
improved performance in object detection tasks.

EfficientDet also exhibits better parameter efficiency and higher accuracy than the YOLO
series, which, although known for their speed, do not scale as efficiently in terms of model size
and accuracy. In contrast to SSD, EfficientDet achieves a better trade-off between speed and
accuracy. Due to its more advanced feature fusion strategy, the network outperforms SSD in
detecting objects at multiple scales.

The architecture of EfficientDet, particularly with the inclusion of BiFPN, demonstrates supe-
rior performance in handling objects of various sizes, a common challenge in object detection
tasks. This is a significant improvement over CenterNet, which, while efficient in detecting
objects as key points, might not capture scale variations as effectively as EfficientDet.

EfficientDet’s balanced scaling approach, combined with the innovative BiFPN and its ability
to handle multi-scale feature fusion more effectively than other networks, underlines our work’s
choice of neural network.

3.4.3.3 Training methodology

In our study, we implemented the training of EfficientDet models D0, D1, and D2, each with
varying levels of complexity and capacity, tailored to specific object detection needs. The train-
ing process was carefully designed, incorporating advanced optimization techniques and loss
functions to enhance the models’ performance and accuracy.

Anchor scales and ratios play a pivotal role in object detection models by defining a set of
reference boxes, or "anchors," which the model uses to predict the presence and location of
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objects. The scales determine the size of these anchors, while the ratios define their aspect.
For meiocyte detection, where the cells may vary in size due to different stages of development
or varying imaging conditions, selecting appropriate scales is essential to ensure the model
can detect smaller and larger cells. Similarly, the aspect ratios of the anchors must align with
the typical shapes of meiocytes, which can be elongated or circular, depending on the specific
developmental stage. The anchor scales and ratios were chosen in our methodology based on
the specifics provided in the predefined dataset description section, ensuring that the models
are well-attuned to the characteristics of the target objects.

The Adam optimizer [52] was selected for its efficiency and effectiveness in handling sparse
gradients, a common scenario in object detection tasks. For the loss functions, we employed
the Focal Tversky loss [53] for objectness score optimization and the adaptive smooth L1 loss
for bounding box regression. The Smooth L1 loss offers several advantages over the traditional
L1 loss, particularly in handling outliers and gradient stability. Mathematically, the L1 loss is
defined as:

L1(x) = |x|, (3.11)

where x is the difference between the predicted value and the ground truth. While straightfor-
ward, L1 loss is sensitive to outliers as it linearly increases with the error, leading to potentially
unstable gradients during training.

In contrast, the Smooth L1 loss is formulated as follows:

SmoothL1(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(3.12)

This hybrid loss function behaves like an L1 loss for more significant errors (when |x| >= 1)
but transitions to a squared (L2) loss for more minor errors, reducing the impact of outliers on
the training process. The quadratic region near zero helps mitigate the instability in gradients,
especially for minor errors, by avoiding the abrupt change in gradient values that L1 loss
exhibits. This makes the Smooth L1 loss particularly suitable for regression problems in deep
learning, as it combines the robustness of L1 loss with the stability of L2 loss, leading to more
effective and stable training [59]. In object detection tasks, where bounding box regression
is critical, the Smooth L1 loss ensures that the model is less sensitive to inaccuracies in box
coordinates, providing a balance between precision and robustness against noisy data.

The mean Average Precision (mAP) was utilized as the accuracy metric, providing a compre-
hensive measure of the model’s precision and recall across different object classes and scales.
This metric is particularly relevant in object detection,

Mean Average Precision (mAP) [60] evaluates object detection models’ performance. The metric
effectively encapsulates precision and recall, two critical aspects of object detection where
the goal is to identify meiocytes and precisely localize them correctly. Precision measures the
accuracy of the detections (the proportion of true positives among all detected objects), while
recall assesses the model’s ability to detect all relevant objects in the image.

Mathematically, Average Precision (AP) for a single class is calculated as the area under the
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Figure 3.5: Structure of the meiocyte localization module.
Meiocyte candidates are identified using an ensemble of EfficientDet networks. The localized
meiocyte candidates are double-checked according to their position, which should be within

the anther regions identified in the segmentation module.

precision-recall curve, generated by plotting precision values against recall values at different
thresholds. The mean Average Precision (mAP) is then the mean of APs calculated for all
classes:

mAP =
1

T

T∑
t=1

APIoUt (3.13)

where T is the total number of IoU thresholds considered, and APIoUt is the AP calculated
at the t-th IoU threshold. In the COCO evaluation, a common practice is to average the APs
calculated at different IoU thresholds ranging from 0.5 to 0.95 at an interval of 0.05.

3.4.3.4 Inferring the meiocyte locations

The pipeline initiates with the input of confocal microscopic images Vt=0,...,T , spanning from
the initial time point t = 0 to the final time point t = T . For detecting meiocytes, we utilize
a series of EfficientDet models, D0, D1, and D2, each providing a unique depth of complexity
and scale adaptation, ensuring robust detection across various meiocyte sizes and morphological
features.

Non-Maximum suppression technique

Non-maximum Suppression (NMS) is an essential ensembling technique in object detection,
employed to refine the outputs of multiple EfficientDet model predicting the potential meiocyte
locations, outputting a set of bounding boxes B along with associated confidence scores P

The process begins with an object filtering stage where proposed bounding boxes with confi-
dence scores falling below a predefined threshold, CT , are discarded. This step reduces the set
of potential bounding boxes to B′′, and the corresponding confidence scores to P ′′, streamlining
the subsequent ensembling process.

NMS then proceeds to ensemble the detections by examining the filtered bounding boxes.
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Figure 3.6: Structure of the non-maximum suppression block.
The bounding boxes and the corresponding confidence scores are passed through object

filtering to filter out boxes with low confidence; after that, the remaining boxes are filtered
out with a high overlap ratio to generate the resulting selection of bounding boxes.

Starting with the box, bi, that has the highest confidence score, NMS suppresses all other
bounding boxes, bj , that significantly overlap with bi, as determined by the Intersection over
Union (IoU) metric. A bounding box bj is suppressed if its IoU with bi exceeds a threshold Nt,
thus ensuring that the single most confident bounding box represents each detected meiocyte.

The outcome of applying NMS is a set of filtered proposal boxes, B′, constituting the final, non-
redundant detections. These boxes are then utilized to localize the meiocytes within the images
accurately. Through NMS, the process effectively combines the outputs of different detection
models, mitigating the issue of multiple detections for the same object and thus significantly
enhancing the accuracy and reliability of the meiocyte detection process.

The NMS process can be formulated as follows:

1. Aggregation: Aggregate all bounding boxes and their confidence scores from the three
networks into a combined set:

B = BD0 ∪BD1 ∪BD2

P = PD0 ∪ PD1 ∪ PD2

2. Filtering by Confidence Threshold: Discard bounding boxes with confidence scores
below a predefined threshold Ct:

B′ = {b ∈ B | pb > Ct}

P ′ = {pb | b ∈ B′, pb > Ct}

3. Applying Non-Maximum Suppression: For each bounding box bi in B′:

• Compute the Intersection over Union (IoU) with all other boxes bj in B′:

IoU(bi, bj) =
area(bi ∩ bj)

area(bi ∪ bj)

• If IoU(bi, bj) exceeds a threshold Nt, and pbi ≥ pbj , suppress bj by removing it from
B′.

4. Final Output: The remaining bounding boxes in B′ after applying NMS represent the
localized meiocytes.
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This NMS process effectively combines the predictions from the three networks. It refines them
to produce a non-redundant set of bounding boxes, improving the accuracy and reliability of
the meiocyte localization process.

3.4.3.5 Point-in-Polygon test and sorting with Anther Orientation

After the meiocyte locations are identified through object detection models, the next steps
involve verifying these locations within the anther regions and sorting them based on anther
orientation. The Point-in-Polygon (PiP) test ensures that each localized meiocyte lies within
the predefined anther region. Given a set of bounding boxes B′ from the object detection
models, each box b ∈ B′ is checked to see if its centroid C(b) lies within the anther mask M′

t

obtained from the segmentation module. Mathematically, the PiP test for a bounding box b in
frame t is defined as:

PiP(C(b),M′
t) =

{
1, if C(b) is inside M′

t

0, otherwise

Before sorting the bounding boxes, the predominant orientation of the anthers in the images
is assessed. This is determined by analyzing the spatial distribution of anther regions across
multiple frames.

Depending on the determined anther orientation, the meiocyte bounding boxes are sorted
either in a top-down or left-right manner. Let orientation represent the predominant anther
orientation, either ’vertical’ or ’horizontal’. The sorted bounding boxes SortedBoxest for frame
t are then:

SortedBoxest = Sort(B′
t, orientation) (3.14)

, where each contour extracted from the mask can be approximated by a bounding rectangle.
The orientation of this rectangle gives us the orientation of the contour. The bounding rectangle
is defined by its width w, height h, and the angle θ it makes with the horizontal axis. For a
given contour C, the bounding rectangle is calculated as follows:

w(C) = Width of the bounding rectangle of C, (3.15)
h(C) = Height of the bounding rectangle of C, (3.16)
θ(C) = Angle of the bounding rectangle of C with the horizontal axis. (3.17)

and, the orientation of the contour is determined based on the aspect ratio of the bounding
rectangle and the angle θ. The contour is considered:

Orientation(C) =

{
‘horizontal’, if w(C) > h(C) and (|θ(C)| ≤ 45◦ or |θ(C)| > 135◦),

‘vertical’, if h(C) > w(C) and (45◦ < |θ(C)| ≤ 135◦).

(3.18)

Finally, the combined process of PiP testing and sorting is implemented for each frame t as
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follows:

B′′
t = {b ∈ B′

t |PiP(C(b),M′
t) = 1}, (3.19)

SortedBoxest = Sort(B′′
t , orientation). (3.20)

The localization module of our pipeline exports a systematic arrangement of meiocyte bound-
ing boxes CVt=0,...,T

, each accurately positioned within the segmented anther regions across
time-lapse sequences. This process involves verifying the centroid of each bounding box against
the anther polygon, ensuring the meiocytes are localized within the relevant biological struc-
tures. By employing the advanced detection capabilities of EfficientDet models and application-
specific refinement steps, the module effectively catalogues meiocytes, represented by bounding
boxes and the corresponding cropped image segments Ct for each video frame V′

t, t ∈ [0, . . . ,T ].
This output is pivotal for subsequent biological analyses and tracking the dynamic progression
of meiosis in Arabidopsis thaliana. Notably, the count of localized meiocytes may vary across
frames, reflecting the inherent biological variability in meiotic progression.

3.4.4 The meiocyte tracking module

Building on the accurate localization of meiocytes achieved in the previous module, our focus
now shifts to the tracking module. This module aims to meticulously follow these cells through
their dynamic developmental stages within the stabilized video sequence V′. The challenge here
lies in the morphological changes meiocytes undergo during meiosis in Arabidopsis thaliana.
Our methodology, detailed in this section, is dedicated to maintaining a consistent identity of
meiocytes across successive frames. It is crucial for capturing their morphological transforma-
tions and understanding their progression through meiosis. Furthermore, the tracking module
is intricately linked to observing and analyzing meiotic stages. By monitoring the trajectory
of each meiocyte, we can map out key developmental milestones and identify any deviations
from typical meiotic progression.

3.4.4.1 Previous methods to track cells

In a cell tracking challenge [61], which focused on cell segmentation, a fundamental step in cell
tracking that delineates cell boundaries or regions within images and, the segmentation and
tracking task, integrates segmentation with subsequent linking steps, crucial for tracking cells
over time. This category includes several methods:

• Segmentation → Linking (SegLnk), where cells are first segmented and linked across
frames.

• Segmentation Linking (Seg&Lnk), conducts segmentation and linking simultane-
ously, providing a more integrated approach.

• Detection → Segmentation → Linking (DetSegLnk), involves initial detection of
cellular objects, followed by segmentation and then linking, offering a comprehensive
three-step approach to cell tracking.

• Detection → Linking → Segmentation (DetLnkSeg), reverses the order of the last
two steps, proposing an alternative workflow.
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Segmentation Techniques involve thresholding (S1), region growing (S2), machine learning
(S3), and energy minimization (S4), each offering a unique mechanism for accurately
delineating cells in images.

Linking Techniques are crucial for tracking cells across sequences and include label prop-
agation (L1), nearest neighbour (L2), graph-based optimization (L3), contour evolution
(L4), and machine learning (L5). These techniques are pivotal in establishing continuity
and tracking the trajectory of cells over time.

Other elements included in the techniques but not classified under Detection, Segmentation, or
Linking are Intensity, Boundary, Spatial statistics, Spatiotemporal statistics, Distance, Over-
lap, Motion analysis, Shortest path, Minimum cost flow, Probability, Multiple hypothesis, De-
cision tree, U-Net variant, R-CNN variant, HRNet variant, Siamese tracker, and Graph neural
network.

3.4.4.2 Affirming our design choices

This section delves into the approach adopted in our study for tracking cellular dynamics, con-
trasting it with the conventional methods delineated in the extant literature. This juxtaposition
elucidates the advanced nature and potential efficacy of the methodology proposed.

Enhanced detection through EfficientDet

Conventional detection techniques referenced in the literature include thresholding (D1), peak
localization (D2), and broad machine learning strategies (D3). While foundational, these meth-
ods lack specificity in complex cellular environments. In stark contrast, our study integrates
the EfficientDet model for detection. Renowned for its computational efficiency and accuracy,
EfficientDet represents a significant advancement over generic techniques, promising enhanced
precision and reliability in cell detection as elaborated in 3.4.3.2. In tackling the tracking of
meiocytes, we encountered challenges related to the volume of data and the dynamic nature of
meiotic cells. Our chosen methodologies and computational strategies effectively address these
issues, ensuring accurate and reliable tracking even in complex scenarios.

Novel linking mechanism

Traditional linking techniques, ranging from label propagation to machine learning-based ap-
proaches, are effective in general applications but may fall short in meiocyte tracking from
live-cell imaging, owing to its structural dynamics. Our research introduces a novel linking
mechanism comprising a covariance distance matrix, a search space-restricted overlap mea-
sure, and template matching. This methodological triad offers several advantages:

• The covariance distance matrix provides an understanding of spatial relationships
between cells.

• The restricted overlap measure enhances precision in tracking, particularly in cases
of overlapping or closely situated cells.
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Figure 3.7: Structure of the meiocyte tracking module.
Meiocyte candidates from each frame are associated in a 2-window, single hop process by
restricting the search space and after that averaging over 2-measure: NCC-based template

matching and IoU-based overlap ratio

• Template matching ensures continuity in tracking, identifying cells across sequences
based on shape and positional consistency.

In tandem with EfficientDet-based ensembled detection, this advanced linking strategy consti-
tutes a comprehensive algorithmic pipeline for cell tracking as it minimises cell switching while
tracking in a crowded environment.

3.4.4.3 Biological constraints in tracking

Temporal consistency and identification

Each meiocyte’s presence is validated across sequential frames, accounting for newly identified
cells and those that may have become occluded or moved out of the FOV.

Movement constraints

The empirical movement constraint ensures that meiocytes are tracked within a biologically
plausible search space, typically set to no more than 1.5 times the radius of their bounding
box, as observed in the localized image data.

3.4.4.4 Meiocyte tracking dynamics

Temporal consistency and identification

Tracking entails maintaining a continuous record of all meiocytes identified within V ′. For a
given frame t, meiocytes CVt are compared with CVt−1 to determine whether they represent
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new instances or are continuations of previously tracked cells. This comparison accounts for
the fact that not all meiocytes from CVt−1 are guaranteed to be present in CVt , due to potential
occlusion or movement out of the field of view (FOV).

Movement constraints

To facilitate efficient and reliable tracking, the search space for meiocytes is confined based on
empirical data. Within the motion-compensated videos V ′, meiocytes are presumed to move no
more than 1.5 times the radius of their circle fitted to the bounding box from the localization
stage, and movement across anthers is not considered.

3.4.4.5 Tracking methodology

Given a sequence of localized meiocytes in motion-compensated video frames V′, the tracking
module aims to follow the trajectory of meiocytes through time. For each frame t, the module
identifies meiocytes CVt and tracks these across the frames, considering the appearance of new
meiocytes and the loss of existing ones due to occlusion or departure from the field of view
(FOV).

Tracking meiocytes in motion-compensated video frames involves a combination of template
matching, overlap analysis, and a Restricted Search Space (RSS) application:

Restricted search space through data association

To further refine the tracking process, the spatial association of meiocytes between consecutive
frames t − 1 and t is constrained within the Restricted Search Space (RSS). This is achieved
by setting a distance threshold ϵ, based on the anticipated meiocyte movement. The Euclidean
distance dt,t−1 between meiocyte detections in these frames is computed as:

dt,t−1 = ∥pO(CVt)− pO(CVt−1)∥ (3.21)

where pO(·) denotes the function that calculates the centroid of a meiocyte’s bounding box,
and ∥ · ∥ denotes the Euclidean distance. The RSS criterion ensures that only spatially feasible
associations between meiocytes across frames are valid.

Template matching

In the template matching step, each meiocyte in the current frame CVt is compared with
meiocytes in the previous frame CVt−1 using Normalized Cross-Correlation (NCC). The NCC
score, NCCi,j , is calculated for meiocyte i in the current frame and meiocyte j in the previous
frame. The NCC score quantifies the similarity between the two meiocytes:

NCCi,j =

{
f1(Ci

Vt
,Cj

Vt−1
), if di,jt,t−1 ≤ ϵ

0, otherwise
(3.22)
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, where di,jt,t−1 = |pO(Ci
Vt)−pO(Cj

Vt−1
)| and ϵ = 1.5× r(Ci

Vt
), r being the function calculating

the radius of the fitted circle to the bounding box. This step is crucial for identifying potential
correspondences based on appearance.

Overlap analysis

After template matching, the Intersection over Union (IoU) method assesses the spatial overlap
between corresponding meiocytes. The IoU, IoUi,j , evaluates how much the detected meiocyte
regions in consecutive frames overlap:

IoUi,j = f2(Ci
Vt
,Cj

Vt−1
) (3.23)

IoUi,j =

{
f2(Ci

Vt
,Cj

Vt−1
), if di,jt,t−1 ≤ ϵ

0, otherwise
(3.24)

This analysis is essential for ensuring the meiocytes being compared occupy the same spatial
region.

Combining template matching and overlap analysis

Finally, the tracking decision is made by combining template matching and overlap analysis
results. The meiocyte j∗ in the previous frame that maximizes a weighted sum of the NCC and
IoU scores with meiocyte i in the current frame is selected for tracking:

j∗ = argmax
j

(α · NCCi,j + β · IoUi,j) (3.25)

where α and β are the weighting factors. This combined approach ensures robust tracking by
considering both appearance and spatial congruence. Equal weighting factors are considered
α = β = 0.5 for combining NCC and IoU results.

Tracking update criteria

Meiocytes are tracked by updating their positions or introducing new meiocytes when no match
is found. If a meiocyte from CVt−1 is not found in CVt , it is marked as ’invisible’. Hence,
the update rule for meiocyte tracking incorporates three key criteria: cell association found,
cell association not found, and the emergence of new meiocytes. This rule is mathematically
articulated as follows:

• Cell Association Found: If a meiocyte in CVt is associated with a meiocyte in CVt−1 ,
the track is updated to include this association.

• Cell Association Not Found: If no association is found for a meiocyte in CVt−1 , the
meiocyte is marked as ’lost’ or ’occluded’.
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• New Meiocytes Emerged: If a meiocyte in CVt has no association in CVt−1 , it is added
as a new track.

The mathematical representation of the tracking update rule can be defined as:

T i
Vt

=


Cj∗

Vt−1
, if NCCi,j∗ > 0.5 and IoUi,j∗ > 0.45,

Ci
Vt−1

, if i is unassociated and NCCi,j∗ ≤ 0.5 and IoUi,j∗ ≤ 0.45,

T i
Vt−1

, if i becomes invisible (no association found).
(3.26)

3.4.4.6 Tracking evaluation

The tracking evaluation is done by two widely used metrics in multiple object tracking [62]:
MOTA (Multiple Object Tracking Accuracy) and MOTP (Multiple Object Tracking Precision).
These metrics are crucial in evaluating the performance of multiple object-tracking algorithms
in video processing and computer vision.

MOTA(Multiple Object Tracking Accuracy) evaluates the overall tracking accuracy, accounting
for three types of errors:

• False Positives (FP): Detections not associated with ground-truth objects.

• False Negatives (FN): Ground-truth objects that were undetected.

• Identity Switches (IDSW): Instances where a tracked trajectory changes its matched
ground-truth identity.

The formula for MOTA is given by:

MOTA = 1− FP + FN + IDSW
Total Ground Truth Objects

(3.27)

A higher MOTA score indicates better tracking performance. The score can range up to 1 (or
100%), and can also be negative if the number of errors exceeds the number of ground truth
objects.

MOTP (Multiple Object Tracking Precision) measures the precision of object localization. It
calculates the average distance between objects’ predicted and ground-truth positions. The
formula for MOTP is:

MOTP =

∑
t,i dt,i∑
t ct

(3.28)

, where:

• dt,i is the distance between the object’s predicted and ground truth position i at time t.

• ct is the number of correctly matched pairs at time t.

A lower MOTP value indicates higher precision in tracking, as the predicted positions are closer
to the ground truth.
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MOTA and MOTP are essential for evaluating different performance aspects of a tracking
system. MOTA focuses on the ability to keep consistent tracks of objects, while MOTP assesses
the spatial precision of the tracking. The use of MOTA and MOTP as our evaluation metrics is
specifically chosen for their ability to accurately reflect the performance of our tracking system
in a biological context. These metrics help us assess not just the accuracy of tracking, but also
the precision in capturing the nuanced movements and changes of meiocytes.

3.4.4.7 Tracking output

The output of the tracking module is a set TVt for each frame t, detailing the tracked meiocytes,
their updated positions, new identifications, and visibility statuses. This creates a comprehen-
sive temporal profile of meiocyte dynamics within the video sequence. The tracking module
generates an updated collection, TV′

t
, for each frame t. This collection captures the tracked

meiocytes, detailing their trajectories and current visibility within the video. Such meticulous
tracking is crucial for the downstream components of the aMP pipeline, as it ensures precise
monitoring of meiocyte activity over time. The data provided by this module is essential for
thoroughly examining meiocyte progression and their developmental stages across the video
sequence.

3.4.5 The meiocyte classification module

The classification module within the aMP pipeline is designed to assign a state indicative
vector, denoted as sivt, to each tracked meiocyte in TVt . As elaborated in the dataset descrip-
tion, this involves categorizing the cropped and tracked meiocyte image regions according to
a set of five interrelated labels: Cell Shape (CS), Nucleus position (NP), Nucleolus position
(NoP), Microtubule Array (MT), and Chromosome (RC) dynamics. The operational flow of
this classification module is illustrated in Fig. 3.8.

3.4.5.1 Multi-class and multi-label classification: a literature review

Multi-class and multi-label classification has emerged as a significant area in machine learning,
addressing complex problems where each instance may be associated with multiple labels.
Unlike traditional classification tasks where each instance is linked to a single label, multi-label
classification (MLC) deals with instances that can simultaneously belong to many classes [63].

The importance of MLC is underscored by its wide applicability in diverse fields such as text
categorization, image and video classification, and bioinformatics [64]. Bioinformatics, for ex-
ample, is used for predicting gene functions where each gene may be associated with multiple
functions. In multimedia processing, an image might be tagged with multiple labels like ’beach’,
’sunset’, and ’vacation’ [65].

Madjarov et al. (2012) made a crucial contribution to the field by conducting an extensive exper-
imental comparison of MLC methods. They evaluated 26 methods across 42 benchmark datasets
using 20 evaluation measures, providing a comprehensive understanding of the strengths and
weaknesses of various approaches [66].
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MLC methodologies can be broadly categorized into problem transformation and algorithm
adaptation [67]. Problem transformation methods like Label Powerset (LP) and Pruned Sets
(PSt) transform the multi-label problem into single-label datasets, which are then addressed
using conventional classifiers. Algorithm adaptation methods, on the other hand, modify exist-
ing algorithms to handle multiple labels directly, as seen in approaches like Classifier Chains
and AdaBoost for MLC [68,69].

Classifier Chains (CC), a novel approach, demonstrates the ability to exploit correlations among
labels, a critical aspect often overlooked in traditional methods [68]. In CC, classifiers are linked
in a chain, with each classifier dealing with the binary relevance problem for a single label and
including the predictions of all previous classifiers in the chain as features.

The process flow in MLC typically involves the following stages: data preprocessing, feature
selection, classifier training, and evaluation. Effective feature selection is crucial for handling
the high dimensionality in MLC problems. The evaluation of MLC methods requires specialized
metrics, such as Hamming loss, precision, recall, and F1 score, as these methods must account
for the accuracy of predicting multiple labels simultaneously [63].

Studying multi-class and multi-label classification is vital for advancing machine learning ap-
plications in complex real-world scenarios. The continuous development of new methods and
comparative studies enhances our understanding and capability to handle multi-label datasets
effectively. As this field evolves, it is imperative to consider both the predictive performance
and computational efficiency of these methods, particularly in large-scale data.

3.4.5.2 Rationale for employing average ensembles in multi-class and multi-label
classification

Building upon the previously established EfficientNet backbone, our approach to multi-class
and multi-label classification leverages the concept of average ensembles of different classi-
fier networks. Average ensembles combine the predictive power of multiple models, reducing
variance and improving generalization. This approach aligns with the findings of Madjarov et
al. (2012), who underscore the significance of ensemble methods in enhancing classification
performance across diverse datasets [66].

The choice to use average ensembles is further strengthened by our use of the EfficientNet
backbone. EfficientNet, known for its balance between accuracy and computational efficiency,
provides a robust feature extraction base for our classifiers. By averaging the outputs of various
classifiers built upon this backbone, we can exploit the complementary strengths of different
learning algorithms, a strategy echoed in the works of Read et al. (2011) regarding Classifier
Chains and AdaBoost [68,69].

Multi-label classification inherently involves complex label dependencies and varying degrees
of label imbalance. By integrating predictions from multiple models, average ensembles offer
a nuanced approach to capturing these dependencies. This method resonates with the algo-
rithm adaptation strategies discussed by Zhou and Zhang (2006), whose goal is to directly
accommodate the multi-label nature of the problem [67].

In line with the principles outlined by Zhang and Zhou (2014), our ensemble approach aims
to enhance predictive performance while addressing the challenges of multi-label classification,
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such as high dimensionality and the need for specialized evaluation metrics [63]. By averaging
classifiers’ outputs, we aim to balance precision and recall, which is crucial in multi-label
settings.

Average ensembling on softmax probabilities

Let’s assume we have N models, and each model i provides a softmax output vector p(i) =[
p
(i)
1 , p

(i)
2 , . . . , p

(i)
C

]
for a given input, where C is the number of classes. The softmax output

for each class j in model i is denoted by p
(i)
j , which is the predicted probability of the input

belonging to class j.

The average ensemble softmax output pens is calculated as the average of the softmax outputs
of all models for each class:

pens = [p̄1, p̄2, . . . , p̄C ] (3.29)

where p̄j =
1

N

N∑
i=1

p
(i)
j (3.30)

In this approach, the average ensemble softmax output, pens, is a vector where each element
p̄j represents the averaged probability of the input belonging to class j across all models.
This method effectively pools the predictions from each model, where each model has an
equal contribution to the final decision. It helps reduce the prediction variance, as individual
model biases or errors are likely to be averaged out, potentially leading to more robust and
generalizable results.

By averaging across models, we can leverage the strengths of different models while mitigating
the weaknesses of individual ones. This is particularly useful in scenarios where different models
capture different aspects of the data or have varying degrees of sensitivity to certain features
or classes. The average ensemble method is straightforward yet powerful, especially when the
constituent models are diverse and complementary.

3.4.5.3 Training methodology

In this study, we trained an ensemble of EfficientNet B0, B1, and B2 models, leveraging their
complementary strengths to address the multi-class and multi-label classification task. The
choice of EfficientNet models, known for their scalability and efficiency, aligns with our objective
to balance computational resources and model performance.

The training of these models employed the Adam optimizer [52]. For the loss function, we
utilized categorical cross-entropy, modified to incorporate inter-class and inter-label weightage.
Given the dataset’s inherent class imbalance, where certain meiotic states appear more fre-
quently, the loss function considers both the label and class frequency information, allowing
the model to pay more attention to less frequent but significant classes, enhancing the model’s
sensitivity to minority classes. The mathematical representation of the loss function is given
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Figure 3.8: Structure of the classification module.
The tracked meiocytes are classified in an ensembled-averaged method, which is

post-processed and automatically corrected and flagged by a knowledge graph test to provide
the parametric states of meiocyte.

as:

Total loss =
[CS,NP,NoP,MT,RC]∑

sip

wsip · sipWCC (3.31)

sipWCC = − 1

N

N∑
i=1

C∑
j=1

wj · yij · log(pij), (3.32)

where N is the total number of samples, C is the number of classes, yij is the binary indicator
(0 or 1) if class label j is the correct classification for sample i, pij is the predicted probability
of sample i belonging to class j, and wj is the weight assigned to class j. The term sipWCC
represents the weighted categorical cross-entropy for a specific label sip, and wsip is the weight
reflecting the relative importance of each label sip in the overall loss function.

We used categorical accuracy as the metric for model performance evaluation. This metric is a
standard choice in multi-class classification scenarios and directly measures how often the model
predicts the correct label [70]. We employed an exponential learning rate decay to refine our
training process further. This strategy helps converge to the optimal solution more efficiently
by gradually reducing the learning rate, thus preventing oscillations near the global minimum.

3.4.5.4 Inference pipeline

Our meiocyte classification system employs an inference pipeline that integrates a robust clas-
sification module with a knowledge graph test to categorize cells into five critical parameters:
cell shape, nucleus position, nucleolus position, chromatin, and microtubule array. The pipeline
functions as follows:
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Upon receiving input tensor Tv0,...,T , which comprises the visual data for a given meiocyte over
time T , the system directs the input through an ensemble of EfficientNet models—specifically,
EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2. Each model is tasked with extracting
features and predicting the state vectors S′

p0, S′
p1, and S′

p2, respectively, for each parameter.
These vectors represent the initial predictions for the five parameters of interest.

The classification module then applies the function f(·), defined as:

f(·) = argmax

(
1

3

2∑
i=0

S′
pi

)

This function calculates the argmax over the averaged predictions from the ensemble, yielding
a consensus prediction S′

v0,...,T
for each parameter across all time points.

Subsequently, the knowledge graph test is initiated using the function g(·), which incorporates
domain-specific knowledge through a codified graph G to test the initial predictions. This pro-
cess ensures that the final predictions Sv0,...,T are not only based on the ensemble’s outputs but
are also refined through biological constraints and relationships defined within the knowledge
graph.

The output of the knowledge graph test is then used to derive the final predictions Sv0,...,T ,
which are classified into their respective classes for each of the five parameters. Any states
flagged as inconsistent or highly improbable given the biological context are highlighted as
"Flagged states," prompting further investigation or manual review.

Integrating deep learning with domain-specific knowledge, this inference pipeline provides a
priory-based approach to meiocyte classification. It demonstrates the power of machine learning
when combined with expert knowledge, leading to a more accurate and contextually relevant
classification system for complex biological data.

Introducing the knowledge graph

The primary biological query of our study centres on the classification of meiotic stages and
associated cellular parameters. Given the dynamic nature of meiosis, it is crucial that the clas-
sification block not only identifies the stages but also corroborates them against the expected
biological progression. To this end, a post-processing step has been implemented that employs
a knowledge graph, essentially an adjacency matrix, reflecting the theoretical underpinnings of
meiotic processes.

This knowledge graph is constructed to encapsulate two fundamental phenomena of meiosis:
the monotonic progression of meiotic stages and the intricate interdependencies among various
cellular parameters, such as cell shape, chromatin structure, nucleus position, nucleolus posi-
tion and microtubular array. The monotonic nature of the stages of meiosis ensures that the
progression follows a predefined sequence that does not revert. Meanwhile, the interdependen-
cies among cellular parameters are informed by the tight regulation of meiotic processes, where
changes in one aspect often correlate with transformations in others.

Within our post-processing framework, the knowledge graph serves a dual purpose. First, it
acts as a biological filter, ensuring that the classification outcomes are consistent with the
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Figure 3.9: Excerpt from Knowledge graph:
The meiosis knowledge graph represents the interdependence nature of the 5 cellular

parameters shown in Fig 2.4. The knowledge graph is 2-layered: 1. the progressive directional
intra-parametric path representing the monotonic state increment, along with the option of

staying in the same state, 2. the bidirectional inter-parametric dependence of the cell
parameters.

linear progression of meiotic stages. Any deviations from this progression, potentially due to
experimental artefacts such as shifts in the z-stack plane attributed to the flower’s growth or the
translocation of nuclei during the second division of meiosis—are rigorously scrutinized. Second,
the graph assists in auto-correction classifications, leveraging the interconnections between
cellular parameters to adjust or flag results that fall outside expected patterns.

Classifications that appear incongruent with the established progression, as interpreted by
the knowledge graph, are subjected to adjustment algorithms or marked as ambiguous. This
marking is contingent on a defined threshold that quantifies the classification confidence relative
to the biological expectations set by the graph. By integrating this threshold-based system, we
impose a rigorous standard that upholds biological validity while accommodating the inherent
variability of biological systems.

Given the classifier’s output for a meiocyte image as the state vector

S′
i,k = [S′

CS, S
′
NP, S

′
NoP, S

′
MT, S

′
RC]i,

where each S′
i represents the predicted class for the respective parameter (cell shape, nucleus

position, nucleolus position, microtubule array, and reticulate chromatin), and the knowledge
graph’s adjacency matrix A, which captures the expected transitions and interdependencies
between different meiotic stages and cellular parameters, the post-processing steps can be
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described as follows:

1. Validation against knowledge graph: Each transition in the predicted sequence is
validated against A to ensure biological plausibility:

L1(S′
i, S

′
i+1) =

∑
k

|S′
ik − S′

i+1,k| (3.33)

where k iterates over all the parameters within the state vector.

The threshold δ = 1 is a predefined value that represents the maximum allowable dif-
ference between two valid consecutive states which conserves the monotonic meiosis pro-
gression. The validation against the adjacency matrix A and the L1 norm is incorporated
into the validation function:

Valid(S′
i, S

′
i+1) =

{
true if AS′

i,S
′
i+1

= 1 and − δ ≤ L1(S′
i, S

′
i+1) ≤ δ,

false otherwise.
(3.34)

2. Auto-Correction: For any sequence where Valid(S′
i, S

′
i+1) is false, an auto-correction

is attempted by finding a more probable state given the previous classifications and the
knowledge graph:

S′
i+1 = argmax

j
AS′

i,j
. (3.35)

This step replaces the less probable state with a more probable one according to A.

3. Ambiguity Handling: If AS′
i,S

′
i+1

is below a certain confidence level but no better
alternative is found, the state is marked as ambiguous:

S′′
i =

{
S′
i if AS′

i,S
′
i+1

≥ δ,

ambiguous otherwise.
(3.36)

Here, S′′
i ∈ S′′ represents the adjusted state vector after post-processing.

4. Final State Vector: The final state vector S′′ is then compiled, which contains original
predictions, corrected predictions, or ambiguities that require further investigation.

In conclusion, the classification module is a central element of the aMP pipeline, exploiting
the capabilities of EfficientNet models through an ensemble approach to accurately categorize
meiocyte states. The integration of a knowledge graph with the classification process ensures
that predictions are not solely based on image data but are also informed by biological context,
resulting in a refined list of state indicative vectors S′′t . These vectors correspond to the list
of meiocytes Ct, offering a classification that synergizes immediate image-based evidence with
the broader biological narrative of meiotic progression.

The forthcoming evaluation section is tasked with thoroughly analysing this module’s perfor-
mance. It will provide a critical assessment of the classifications’ precision and recall, affirming
the robustness of our approach or highlighting opportunities for enhancement. Thus, the evalu-
ation will substantiate the classification module’s contribution to our understanding of meiotic
events, as reflected in the state indicative vectors S′′t , which encapsulate the complex interplay
between observed cellular features and the expected biological sequence of meiosis.
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Figure 3.10: Structure of the evaluation module.
The vectored meiocytes undergo a state aggregation to determine their unique states and

occurrence count. A biologically inspired threshold is applied for the state score to find the
neighbours of uniquely determined states and thereby find local maxima (landmark) are

identified.

3.5 The evaluation module

Following the detailed classification of meiocytes, the evaluation module plays a pivotal role
in quantitatively analyzing meiotic progression. Utilizing the state-indicative vectors obtained
from the classification module, this component systematically identifies key landmark states
and computes their transitions. This process effectively elucidates the nuanced timeline of
meiosis in Arabidopsis thaliana, integral to understanding the cellular dynamics of this crucial
biological process.

Evaluating meiotic progression is a pivotal component in understanding the cellular division
intricacies. The aMP pipeline introduces an evaluation module, as depicted in Figure 3.10,
designed to identify meiotic landmark states within the dataset. Landmark states are defined
by their prevalence in the dataset, based on the state indicative vectors (siv) representation of
the meiocytes.

The meiotic landmark system is employed to quantify and analyze the stages of meiosis by
identifying distinct structural and morphological ’landmarks’ that occur during this process.
This system is particularly useful in live cell imaging studies, which aid in the detailed obser-
vation and timing of meiotic events. The landmark system involves identifying key stages or
’landmarks’ in meiosis. These landmarks are specific, observable changes in the structure and
organization of cells and chromosomes at different stages of meiosis. By tracking these land-
marks, scientists can achieve a high temporal resolution in their study of meiosis. This means
they can determine how long each stage of meiosis lasts and identify any deviations from the
normal process, particularly in mutant or genetically altered specimens. The landmark system
is particularly useful in analyzing meiotic mutants. By comparing the occurrence and timing
of these landmarks in mutant cells to those in normal cells, we can identify how certain genetic
changes affect the progression of meiosis. Understanding when and how these landmarks occur
provides scientists with insights into regulating meiosis, including the mechanisms that con-
trol chromosome pairing, recombination, and segregation-critical processes for ensuring genetic
diversity and stability.
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3.5.1 Mathematical framework for landmark estimation

The evaluation of meiotic progression in the aMP pipeline starts with annotating unique state
indicative vectors (SIVs) from the classification output, delineating a distinct set of states within
the dataset. Each unique SIV undergoes a computational analysis to establish its relationship
with other states.

siv = Unique{siv1, siv2, . . . , sivn} (3.37)

The process begins with the calculation of distances between unique SIV pairs. This is achieved
by summing the absolute differences, analogous to Eq. 3.33 in each of their constituent param-
eters, resulting in a matrix that captures the dissimilarities between every possible pair of
states.

params = CS, NP, NoP, MT, RC (3.38)

L(sivk, sivj) =
∑

params

|sivkparams − sivjparams | (3.39)

Next, neighbouring states for each SIV are identified. A neighbouring state varies minimally
(by a distance of no more than one unit) from the reference SIV in only one component.
This adjacency criterion is crucial for understanding the transition potential between different
meiotic states.

nsk = {sivj | − δ ≤ L(sivk, sivj) ≤ δ}, (3.40)

where the lone constraint δ = 1 is set, similar to Eq. 3.33.

To evaluate the prominence of each unique state in the dataset, the mean and standard de-
viation of occurrences for all its neighbouring states are calculated. This statistical analysis
provides insight into each state’s relative frequency and variance within the context of its
immediate neighbours.

µsivk =
1

Nk

Nk∑
j=1

cnskj (3.41)

σsivk =

√√√√ 1

Nk − 1

Nk∑
j=1

(cnskj − µsivk)
2 (3.42)

Zsivk =
csivk − µsivk

σsivk
, (3.43)

the critical step in the landmark determination process is the computation of Z-scores for each
unique state. These scores are derived by comparing the frequency of a unique state csivk with
the average frequency of its neighbouring states µsivk , normalized by the standard deviation
σsivk . A unique state with a Z-score ≥ δ signifies a landmark state Al, indicating a higher
prevalence compared to its neighbours and marking it as a significant point in the meiotic
progression, which can be formulated as:

Al = sivk|Zsivk
≥δ (3.44)

The final part of the evaluation involves the construction of the meiotic timeline. This is
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Figure 3.11: Landmark points and the transition pathway

achieved by mapping the transitions between these landmark states and calculating the time
intervals for progression from one landmark to another. This temporal analysis provides a
detailed overview of the meiotic stages, capturing the dynamic nature of cellular development
during meiosis. A ’transition’ represents the movement from one landmark state to the next,
signifying a definitive progression in meiosis. The ’time of progression’ refers to the duration
needed for a meiocyte to transition to the beginning of the next landmark state. For each
pair of landmarks Ll = (Al−1, Al] (Fig. 3.11), the transition-time Tl is computed for each live
imaging video as follows:

Tl = tAl|SV
(3.45)

tAl|SV
=
[
cal∪Al

× Ts|V
]
Al−2∈SV

, (3.46)

where Ts is the sampling time for video V, al represents the transition states within (Al−1, Al),
and Al are the identified landmarks. The meiotic timeline is constructed as a piece-wise rep-
resentation between landmarks to encompass the genetic diversity and overlapping nature
present in the videos. This methodology considers the variability in the start and end times of
the imaging sessions.

3.6 (Hyper)parameter choices in aMP-kit modules

In the aMP pipeline, various modules necessitate distinct neural network models and hyper-
parameter configurations. For instance, the segmentation module integrates U2-Net and Effi-
cientNet architectures, utilizing Focal Tversky loss and an Adam optimizer with a learning rate
initially set at 1e− 4. The module also employs early stopping, adjusting batch sizes based on
computational capacity.

The stabilization module applies a translation-only motion model, with a restricted search
range tailored to the expected anther movement. It employs a custom centroid tracking-based
optimization algorithm. In contrast, the localization module leverages single-shot detectors
using EfficientDet backbones (D0, D1, D2), with Smooth L1 loss for bounding box accuracy
and focal loss for objectness. Its optimizer, Adam, is set with a learning rate of 1e − 3, and
non-maximum suppression is applied with an IoU threshold of 0.5.

Tracking is facilitated through Normalized Cross-Correlation and Intersection over Union, with
a movement constraint set at 1.5 times the meiocyte’s bounding box radius. The classification
module utilises the EfficientNet backbones (B0, B1, B2) with fully connected heads. The loss
function is a weighted cross-entropy to account for class imbalances, and the models are trained
using Adam with a learning rate beginning at 1e-4. An averaging ensemble strategy is applied,
and performance is evaluated based on class-balanced accuracy and F1 score.

Time progression analysis involves identifying landmark states using frequency and Z-score
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calculations of state-indicative vectors. This process measures the intervals between landmark
states, which is crucial for understanding the timeline of meiotic progression.

These hyperparameters are tuned by grid search, each optimized for the specific task within
the pipeline, be it segmentation, stabilization, localization, tracking, classification, or time
progression analysis. The iterative refinement of these parameters, tabulate in Table. 3.1, val-
idated through testing, underscores the pipeline’s capacity to analyze meiosis progression in
Arabidopsis thaliana effectively.

Module Parameter Value/Range

Segmentation

Loss function Focal Tversky loss
Optimizer Adam with decay

Learning rate 1e-4 with decay
Batch size 8
Epochs Early stopping

Stabilization Motion model Rotation and Translation

Localization

Loss function Smooth L1, Focal loss
Optimizer Adam with decay

Learning rate 1e-3 with decay
Batch size 8

NMS threshold IoU@0.5
Tracking Distance threshold 1.5× bbox radius

Classification

Loss function Weighted cross-entropy
Optimizer Adam with decay

Learning rate 1e-4 with adjustment
Batch size 8

Ensemble strategy Averaging ensemble
Validation metrics Accuracy, F1 score

Time progression Landmark algorithm Frequency, Z-score

Table 3.1: (Hyper)parameter choices in aMP-kit modules

3.7 Implementation Details

Implementing the aMP pipeline leveraged the TensorFlow framework for its robust support
in deep learning capabilities. A dual hardware setup provided the computational backbone
of this implementation. The central processing unit (CPU), an Intel Core i5 8600K with a
base frequency of 3.6GHz and 32GB RAM, ensured efficient data handling and preprocessing.
Complementing this, the graphics processing unit (GPU), an NVIDIA RTX 2080Ti equipped
with 11GB of memory, offered the computational power necessary to train deep learning models.
This combination of CPU and GPU provided an optimal balance between processing speed and
memory capacity, essential for handling the computationally intensive tasks involved in image-
based analysis within the aMP pipeline.

This chapter has detailed the methodology employed in the Automated Meiosis Progression
(aMP) pipeline, explaining the intricate processes and tools used in analyzing meiosis progres-
sion in Arabidopsis thaliana. The next chapter will present the results obtained using these
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methods. It will offer insights into the efficacy of the pipeline in extracting and analyzing crucial
data and evaluate how these findings contribute to our understanding of meiotic progression.
This chapter aims to bridge the theoretical approaches outlined in Chapter 3 with practical,
data-driven results, showcasing the real-world application and impact of the aMP pipeline.



61

Chapter 4

Framework evaluation

In this chapter, we critically evaluate the components of our framework to demonstrate its
effectiveness in analyzing meiocytes through the stages of meiosis, ultimately facilitating the
creation of a comprehensive timeline analysis. Our evaluation methodically addresses each key
phase of the framework, starting with the segmentation of anthers to ensure stability, followed
by the precise localization of meiocytes across video frames, and concluding with the tracking
and staging of these cells throughout their developmental journey.

The timeline evaluation is systematically divided into three distinct sections. Initially, we focus
on the significance of our approach in accurately grouping and staging meiotic events, providing
a foundation for subsequent analyses. This is complemented by a detailed comparison with
existing studies in the field, highlighting the association our framework offers with previously
published results. Finally, applying our methodology to tetraploids underlines the framework’s
utility in revealing the meiosis timeline of tetraploids compared to diploids.

4.1 Results of anther segmentation and stabilization

The U2-Net deep learning architecture was employed for segmenting anthers from high-resolution
plant images. Our results demonstrate significant success in this task, as evidenced by the
achieved dice score (an accuracy measure in segmentation tasks) in the test set of 88.9%. This
accuracy level indicates the model’s robustness in distinguishing anthers from the complex
background and the tapetum structures. Precision, a measure of the model’s ability to cor-
rectly identify positive anther instances, was recorded at an impressive 87.9% for the test set.
The recall rate, indicating the model’s capacity to identify all relevant anther instances, stood
at 91.1% in the test set. The F1 score, which balances precision and recall, was calculated
to be 88.9% for the test set, reflecting the model’s overall efficiency in anther segmentation.
Furthermore, the Intersection over Union (IoU) for the test set was notably high at 80.8%,
showcasing the model’s precise delineation of anther boundaries.

Continuing from the results presented earlier, the similarity between the Dice Coefficient and
the F1 Score is worth discussing. Both metrics focus on the balance between precision and recall,
which is crucial for evaluating accuracy in binary segmentation tasks. The Dice Coefficient and
the F1 Score essentially convey the same information. In our results, the Dice Coefficient
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Figure 4.1: Receiver operating characteristics of the anther segmentation

for the test set stood at 88.9%, and the F1 Score was also 88.9%, reinforcing their conceptual
similarity and practical interchangeability in binary classification tasks like image segmentation.
This similarity underlines the consistency and reliability of the metrics used in evaluating our
U2-Net architecture’s performance in segmenting anthers and is tabulated in Table 4.1.

The ROC curves in Fig. 4.1 further substantiate the efficacy of the U2-Net architecture in
segmenting anthers from high-resolution plant images. The test set yielded an AUC of 0.94,
indicating a high true positive rate with a relatively low false positive rate across various
thresholds, a testament to the model’s accuracy. Remarkably, the validation set presented an
even higher AUC of 0.96, demonstrating exceptional model reliability during the tuning phase.
These AUC values indicate the model’s robust discriminating power in distinguishing anther
pixels from background textures. Such high AUC values and the previously discussed Dice
Coefficient and F1 Score confirm the model’s precision in segmenting anthers with minimal
error, reinforcing confidence in the model’s performance metrics.

Visual representations of these results further corroborate the quantitative findings. Sample
segmentation outputs are presented in Fig. 4.2, which showcases images selected from diverse

Metric Validation Set Test Set
IoU 0.8897 0.8075
Dice Coefficient 0.9399 0.8890
Precision 0.9371 0.8798
Recall 0.9486 0.9108
F1 Score 0.9399 0.8890

Table 4.1: Evaluation Metrics for Validation and Test Sets.
Quantitative evaluation was based on the Dice coefficient to quantify the overlap of the

ground truth segmentation masks and the segmentation results of the segmentation network
(value range of the Dice coefficient: [0,1]; 1: perfect overlap). For the validation videos of the

Arabidopsis thaliana dataset 1, i.e. the videos used for hyperparameter optimization, the
mean Dice coefficient was 93.9%. For the testing videos of dataset 1, it was 88.9%
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Figure 4.2: Comparative anther segmentation analysis on live imaging dataset.
The left column presents the original images of anthers; the centre column shows the

corresponding ground truth masks and the right column displays the predicted segmentation
masks. The images are selected to demonstrate the model’s performance across various

challenging conditions, highlighting its capabilities and occasional limitations in segmenting
anthers with varying degrees of contrast, orientation and structural overlap with other floral

elements.

scenarios within our test dataset. These representations illustrate the model’s adeptness in
accurately delineating anthers across various conditions, such as different lighting, orientations,
and instances where anthers overlap with other floral structures. Notably, the segmentation
maps demonstrate a minimal occurrence of false positives, emphasizing the model’s precision
in boundary delineation - a testament to the high Dice Coefficients and F1 Scores previously
discussed.

Despite the overall high performance, our analysis also identified certain limitations. Specif-
ically, there were occasional challenges in segmenting anthers in cases of significant overlap
with surrounding flora, leading to minor under-segmentation artefacts. Similarly, in some im-
ages where the contrast between the anthers and the background was exceptionally low, the
model exhibited tendencies toward slight over-segmentation. These instances, however, were
relatively infrequent and did not substantially detract from the model’s overall efficacy, as re-
flected in the high IoU scores and the robust AUC values indicated by the ROC curves for
both the validation and test sets. When combined with the quantitative metrics, the visual
insights affirm the model’s effectiveness and highlight areas for future optimization to enhance
its segmentation performance further.

In a comparative analysis with existing segmentation methodologies with FIJI/ImageJ, em-
ploying different case-specific thresholding and edge-detection algorithms, the U2-Net model
demonstrated highly superior time efficiency and accuracy. This was particularly evident in its
handling of complex and varied backgrounds, offering a more nuanced and precise segmenta-
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tion. Table. 4.2 briefly summarises the speed of our segmentation operation compared to Fiji,
where the speed of operation varies with user based on the pre-processing steps required to
perform and setting the threshold parameters specific to the acquired images.

Metric FIJI Our method
speed User dependent 10.15 fps

Table 4.2: Quantitative comparison

4.1.1 Anther stabilization through affine transformation

Further to the segmentation results, we addressed the crucial aspect of anther stabilization,
which relied on the segmented anther masks generated by the U2-Net model. This stabilization
technique aimed to correct positional variances of anthers across sequential image frames,
ensuring consistent orientation and positioning for in-depth analysis. The data from the Train,
Validation, and Test datasets clearly illustrate the significant impact of the stabilization process
on both average displacement and standard deviation. A notable reduction in the mean values
of ’Stabilized Avg Displacement’ and ’Stabilized Std Deviation’ compared to the original values
across all datasets indicates the effectiveness of the stabilization technique. This reduction is
crucial as it suggests a successful minimization of variations and movements within the data,
a primary objective of stabilization processes.

Dataset-Specific Observations

In the Train Dataset, the range of original average displacements and standard deviations
signals a diverse set of characteristics within the training data. Post-stabilization, although
there is a noticeable reduction in these values, high maximum values hint at outliers or instances
where stabilization is less effective. The Validation Dataset shows higher mean values in both
original and stabilized displacements than the Train Dataset, suggesting that it might contain
more challenging data for stabilization. This is reinforced by the high maximum values in both
original and stabilized data, indicating the presence of extreme cases that are less responsive to
stabilization. The Test Dataset, with the lowest variability in the original data, demonstrates
the effectiveness of stabilization. However, the closeness of mean values for stabilized and
original data suggests a different data characteristic or stabilization behaviour than the other
datasets.

Effectiveness and Limitations of Stabilization

The effectiveness of the stabilization process across all datasets is evident (Table. 4.3), yet the
high maximum values in the stabilized data, particularly in the Train and Validation datasets,
point to scenarios where stabilization is less effective. These cases could be attributed to specific
data conditions or characteristics resistant to the stabilization technique applied. Understand-
ing these limitations is crucial for further refining the stabilization process.

The stabilization process, as applied to the training, validation, and Test datasets, predomi-
nantly showcases a significant improvement in stability. This is evidenced by the high number
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Statistic Dataset Orig. Avg Disp. Stab. Avg Disp. Orig. Std Dev. Stab. Std Dev.
Count Train 47 47 47 47

Val 9 9 9 9
Test 12 12 12 12

Mean Train 28.32 8.90 42.69 8.97
Val 46.41 15.21 64.90 25.28
Test 10.45 8.91 15.60 16.43

Std Dev Train 63.23 33.85 96.65 25.97
Val 47.99 34.52 56.85 51.34
Test 9.31 26.17 20.80 41.25

Min Train 1.29 0.23 1.01 0.05
Val 2.27 0.16 1.66 0.13
Test 2.54 0.15 1.60 0.11

Max Train 344.06 198.02 506.31 113.76
Val 146.06 103.00 136.21 137.65
Test 33.61 91.35 59.08 136.52

Table 4.3: Comparative Analysis of Stabilization Metrics Across Train, Vali-
dation, and Test Datasets

This table summarises key statistics, including the count, mean, standard deviation,
minimum, and maximum values for original and stabilized average displacements and

standard deviations. It effectively illustrates the variations and effectiveness of the
stabilization process across different datasets.

of instances classified under ’Highly Significant Stability’ across all datasets. Specifically, the
Train dataset exhibits the highest number of such instances (42), followed by the Test (10) and
Validation (8) datasets. This consistency in results indicates the general effectiveness of the
stabilization technique in reducing the average displacement significantly, a key goal in many
data processing and analysis tasks.

Notably, no instances in any of the datasets fall into the ’Equal Stability’ category. This absence
suggests that the stabilization process consistently alters the displacement values, indicating
that the process is not neutral. In other words, the stabilization technique consistently improves
or degrades the stability without maintaining the original state.

Moreover, there are a few instances where the stabilization results in ’Higher Post-Stabilization’
displacement. Specifically, the Train dataset has 9 instances, whereas the Validation and Test
datasets have 1 and 2 instances, respectively. While these numbers are relatively low compared
to the instances of significant stability improvement, they are crucial for understanding the
limitations of the current stabilization method. These instances might indicate specific scenar-
ios or data characteristics where the stabilization process is less effective or counterproductive.
However, the standard deviations for these differences are relatively high, indicating variabil-
ity in the stabilization’s effectiveness across different conditions. This variability is attributed
to variations in image quality, which results in under-segmentation and, therefore, shifts the
centroid of the mask contours.

Qualitatively, the stabilized images exhibited marked improvements in the uniformity of an-
ther positioning. In time-lapse sequences, post-stabilization images showed anthers consistently
positioned at the frame’s centre, contrasting starkly with the pre-stabilization images. These
results are visually depicted in Fig. 4.3, illustrating the before-and-after scenarios of anther
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Figure 4.3: Motion compensation of anthers.
The above figure shows two aspects. 1. tracking the anthers by the generated masks, 2.

stabilising anther movement by an affine transformation. In one extreme case, the anthers
exhibit considerable movement over time. Moreover, the gradual plant growth will result in a
monotonic shift of the anther sample over time and require human intervention to re-position
the plant so it does not leave the imaging focal plane. The monotonic movement over time

until ≈ 800 frames and a manual reset after that.

stabilization.

While the stabilization model performed effectively in most cases, it exhibited limitations in
scenarios involving rapid or extensive anther movements between frames. In such cases, the
translation-only model was inadequate to correct the anther position, resulting in minor dis-
crepancies. However, these were relatively rare occurrences involving motion beyond typical in
our dataset.

Compared to more complex stabilization techniques, such as affine or elastic transformation
models, our translation-only model offered a more computationally efficient solution with suffi-
cient accuracy for most standard applications. The model’s simplicity allowed for faster process-
ing times, averaging ≈ 300 fps, which is particularly advantageous for high-throughput image
analysis.

4.1.2 Conclusions and future directions

Integrating the U2-Net model for anther segmentation and a translation-only model for anther
stabilization represents a significant advancement in high-throughput image analysis within
plant biology. While the approach demonstrated substantial effectiveness and efficiency, ar-

Category Train Validation Test
Highly Significant Stability 42 8 10
Equal Stability 0 0 0
Higher Post-Stabilization 9 1 2

Table 4.4: Categorized Displacement Variations Across Train, Validation, and
Test Datasets.

The table illustrates the effectiveness of the stabilization process, highlighting the
predominant occurrence of significant stability improvements and instances of increased

displacement post-stabilization.
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Description Videos Frames Anther datapoints
Wild-type control 11 1071 2058
TCX 15 2437 4857
Control(21◦) 30 5111 9803
Heat treated(30◦) 43 5739 10,706
Heat treated(34◦) 5 770 1540
Tetraploid(wild type) 24 2373 4375
Tetraploid(atm) 3 540 720

Table 4.5: Summary of unseen dataset composition for anther segmentation
analysis.

The table categorizes the data into experimental groups, including control and treatment
conditions. It details the number of videos and frames analyzed for each group and the total

count of anther datapoints extracted from the frames. This stratification ensures a
comprehensive representation across different experimental conditions

eas for further refinement have been identified. These include enhancing the model’s ability
to handle complex anther movements and improving segmentation accuracy in low-contrast
scenarios.

Our methodology effectively reduced the positional variance of anthers through rotational and
translational adjustment and has been crucial in ensuring consistent anther positioning and
orientation. This has been particularly beneficial for accurate morphological analysis in time-
lapse studies. However, the challenges faced in scenarios with rapid or extensive morphological
changes highlight the need for more advanced techniques.

As the next step in our research, image registration offers a solution to align images with
high precision, facilitating detailed temporal analysis of anther development under varying
conditions. This technique’s integration would enable precise images overlaying across different
times and conditions, enhancing our capability to track and analyze morphological changes,
where the implementation of StyleGAN3 presents an exciting avenue. By utilizing StyleGAN3’s
capabilities in generating realistic images, we can generate a continuum of anther morphologies,
thus enabling a deeper understanding of phenotypic variations under different conditions.

4.2 Results of Object Localization in Meiocyte Detection

In our study, we utilized EfficientDet models (D0, D1, D2) and their ensemble for the localiza-
tion of meiocytes in high-resolution biological images. The ensemble approach’s performance
is particularly noteworthy in the test dataset, as detailed in Table 4.6. The ensemble model
achieved a precision of 0.7732, indicating a high degree of accuracy in identifying meiocyte
instances correctly. The recall rate for the ensemble model in the test set is 0.7853, a crucial
metric in biological image analysis. This high recall rate ensures that the model effectively
detects the majority of relevant meiocytes, a critical factor in avoiding missing key biological
data. Moreover, the ensemble model exhibits a balanced performance in the test set, with an
F1 score of 0.7779. This score is essential for evaluating the model’s effectiveness in balancing
precision and minimizing false negatives. Such a balanced approach is vital in our field, where
detecting as many meiocytes as possible without compromising detection accuracy is crucial.
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Metric Validation Set Test Set
D0 D1 D2 Ensembled D0 D1 D2 Ensembled

Precision 0.9659 0.9750 0.9767 0.9626 0.7903 0.7784 0.7867 0.7732
Recall 0.7685 0.9106 0.9135 0.9233 0.7641 0.7665 0.7757 0.7853
F1 Score 0.8473 0.9385 0.9432 0.9409 0.7758 0.7710 0.7779 0.7779
IoU overlap 0.7518 0.7845 0.7849 0.7755 0.8326 0.8097 0.8234 0.8214

Table 4.6: Object Detection Performance Metrics
Metrics calculated with an IoU Threshold of 0.5 for the EfficientDet models (D0, D1, and D2)

and the Ensembled model on both validation and test sets. The table includes precision,
recall, F1 score and IoU overlap metrics.

Additionally, the Intersection over Union (IoU) score for the ensemble model in the test set
is 0.8214. This high IoU score indicates that the model’s localized bounding boxes are closely
aligned with the actual boundaries of the meiocytes, which is vital for accurate morphological
analysis and quantification. The ensemble performance across these key metrics - precision,
recall, F1 score, and IoU - is comprehensively presented in Table 4.6. This table provides an
in-depth analysis of the ensemble’s capabilities and highlights its efficiency in handling the
complexities inherent in biological image analysis.

Fig. 4.4 shows meiocyte localization across different frames. Each frame in the image highlights
specific properties of meiocyte localization, such as the position and number of meiocytes within
each frame. The visualization likely demonstrates the accuracy and efficiency of the object
detection models in identifying and localizing meiocytes in various conditions. The differences
in the frames may illustrate variations in meiocyte density, distribution, or other frame-specific
attributes, providing a comprehensive view of the model’s performance across diverse scenarios.

The visualization of meiocyte localization across different frames corroborates the statistical
results from the ensemble of EfficientDet models, demonstrating their significant implications
in our field. The visual consistency in meiocyte detection aligns with the high precision rate
of the model, confirming that the identified meiocytes are true positives - a critical aspect
for avoiding data misinterpretation and ensuring reliability in analyses. The comprehensive
detection capability, evident in the high recall rate, minimizes the risk of omitting vital bio-
logical information. The F1 and IoU scores, observable through the accurate and consistent
localization across frames, further reinforce the model’s overall efficiency.

4.2.1 COCO Evaluation

In our study, the application of the COCO (Common Objects in Context) evaluation frame-
work was critical for assessing the performance of object localization models, particularly the
EfficientDet models (D0, D1, D2) and their ensemble, in localizing meiocytes in high-resolution
biological images. The COCO framework, recognized for its comprehensive and rigorous eval-
uation metrics, provides an essential benchmark for evaluating these models. The results, pre-
sented in Table 4.7, encompass various metrics such as Average Precision (AP) and Average
Recall (AR), offering a detailed analysis of model performance.

The AP values for the ensemble model in the test set, particularly at the AP @0.50 threshold,
reached 0.968, indicating high precision in the model’s positive predictions. This high AP
@0.50 demonstrates the model’s exceptional accuracy in detecting meiocytes with a 50% IoU
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Figure 4.4: Meiocyte localization in anthers.
Meiocyte localization in six distinct frames (a-f), demonstrating the EfficientDet ensemble
model’s consistent detection across varying densities and imaging conditions, validated by

precision and recall rates, F1, and IoU scores.

threshold. Furthermore, the ensemble model’s AP @0.75 in the test set is 0.754, suggesting a
reliable performance even at a more stringent IoU threshold.

Average Recall (AR) metrics further elucidate the model’s capabilities. For instance, in the test
set, the ensemble model’s AR @0.50 : 0.95 is 0.037, and its AR @0.50 is 0.333. These values
indicate the model’s effectiveness in detecting relevant instances across various IoU thresholds.
Notably, the AR @0.75 for the ensemble model in the test set, which stands at 0.678, reveals
its proficiency in detecting meiocytes with higher overlap accuracy.

The COCO evaluation framework’s significance extends to providing a standardized bench-
mark against industry standards, thereby lending reliability and credibility to our results. This
standardization is indispensable for objective model comparison within the machine learning
and biological research communities. Moreover, the detailed analysis of AP and AR across
different thresholds and object sizes is invaluable for understanding each model’s performance
in detecting objects of varying scales. The differentiation in performance metrics across small,
medium, and large object sizes, as shown in the table, is particularly insightful. For instance,
the AP-Large and AR-Large scores for the ensemble model in the test set are 0.758 and 0.793,
respectively, highlighting its adeptness in detecting larger meiocytes with high precision and
recall.

Utilizing the COCO evaluation method is integral for benchmarking against established stan-
dards and identifying specific strengths and weaknesses of each model. This is critical for
targeted improvements and optimizations in future iterations of the models. The detailed quan-
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tification provided by the COCO metrics enables a robust comparison of models, particularly
highlighting the advantages of the ensemble approach in our study. The ensemble model con-
sistently shows higher AP and AR scores across various thresholds and object sizes in the test
set. This underscores its superior performance in accurately detecting and localizing meiocytes
under diverse conditions.

Metric Validation Set Test Set
D0 D1 D2 Ensemble D0 D1 D2 Ensemble

AP @0.50:0.95 0.335 0.477 0.465 0.470 0.627 0.576 0.543 0.625
AP @0.50 0.703 0.856 0.887 0.873 0.940 0.947 0.951 0.968
AP @0.75 0.253 0.481 0.521 0.455 0.775 0.667 0.623 0.754
AP-Small 0.000 0.000 0.000 0.000 -1.00 -1.00 -1.00 -1.000
AP-Medium 0.318 0.457 0.467 0.451 0.621 0.570 0.534 0.620
AP-Large 0.669 0.730 0.738 0.741 0.744 0.719 0.679 0.758
AR @0.50:0.95 0.395 0.535 0.613 0.535 0.678 0.633 0.589 0.678
AR @0.50 0.213 0.243 0.283 0.239 0.339 0.313 0.278 0.333
AR @0.75 0.033 0.035 0.039 0.033 0.037 0.035 0.039 0.037
AR-Small 0.000 0.000 0.000 0.000 -1.00 -1.00 -1.00 -1.00
AR-Medium 0.378 0.523 0.529 0.520 0.674 0.629 0.589 0.673
AR-Large 0.715 0.769 0.788 0.788 0.785 0.751 0.726 0.793

Table 4.7: COCO Evaluation Results
Validation and Test Sets for EfficientDet0, EfficientDet1, EfficientDet2, and the Ensembled
Model. AP: Average Precision, AR: Average Recall. ’Small’, ’Medium’, and ’Large’ refer to

the area of detected objects.

4.2.2 Ensemble approach and non-maximum suppression

Furthermore, in our study, an ensemble approach was utilized to leverage the collective strengths
of the EfficientDet models (D0, D1, D2). This methodology significantly enhanced the detec-
tion accuracy of meiocytes within the densely structured anthers. A key component in this
enhancement was the application of non-maximum suppression (NMS). NMS played a critical
role in minimizing redundant bounding boxes, thereby improving the precision of meiocyte
identification.

The effectiveness of this approach is evident when examining the number of detections across
both the validation and test sets, as detailed in Table 4.8. For instance, in the validation set, the
ensemble method resulted in 3125 detections, compared to 2493, 2298, and 2457 detections for
EffDet0, EffDet1, and EffDet2, respectively. In the test set, the ensemble approach led to 9041
detections, demonstrating a higher detection count than any individual model (EffDet0: 8585,
EffDet1: 8779, EffDet2: 8876). This increase in detections by the ensemble method indicates
its improved capability in identifying meiocytes.

Several post-processing steps were integrated to refine the localization results further. Detec-
tions outside the U2-Net segmentation masks were excluded to maintain focus on relevant
anther regions. A size-based exclusion criterion was employed, where detections exceeding a
predetermined threshold were discarded. This criterion, informed by our understanding of meio-
cyte dimensions, was instrumental in eliminating detections that were unlikely to be actual
meiocytes.
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Meiocyte detection

Before NMS After NMS Sorted with orientation

Figure 4.5: Comparative visualization of object detection on a single frame.
The left image illustrates the preliminary detection phase with multiple bounding boxes per

cell, indicating a high number of potential detections before applying Non-Maximum
Suppression (NMS). After applying NMS, the right image displays the post-processing

results, showcasing fewer bounding boxes, each corresponding to distinct cell localizations.
This highlights NMS’s effectiveness in refining the object detection output by eliminating
redundant boxes and clarifying the visualization of individual cells. Timestamped at 00:00,

the images capture the precise moment of analysis in the detection sequence.

Validation Set Test Set
D0 D1 D2 Ensembled D0 D1 D2 Ensembled

Count 2493 2298 2457 3125 8585 8779 8876 9041

Table 4.8: Validation and Test Set Counts

Another of our approaches was the sorting and numbering of localized meiocytes based on
their spatial positioning within each anther as shown in Fig. 4.6. This methodology enabled
the tracking of individual meiocytes across different developmental stages. The practical utility
of this technique is demonstrated in Fig. 4.5, where meiocytes within anthers are effectively
numbered. This process facilitates detailed biological analysis and underscores the precision
and utility of our ensemble approach in localizing and tracking meiocytes.

4.2.3 Limitations and future work

The localization section, underpinned by the data detailed in Table 4.9, has showcased the
ensemble model’s capability to process extensive datasets comprising various experimental
groups, including control and treatment conditions. The model effectively analyzed thousands
of frames and localized many meiocytes, demonstrating robustness and scalability.

Integrating a cell wall marker will refine the segmentation-localization merge, enhancing the
model’s accuracy in complex imaging scenarios. The potential shift towards models like YoLoV8
for real-time analysis, with our ensemble method currently operational at ≈ 12 frames per
second, a promising indicator for future real-time applications. This groundwork paves the way
for the seamless adoption of advanced deep learning architectures, ensuring readiness for the



72 Chapter 4. Framework evaluation

EffDet0 EffDet1 EffDet0 + EffDet1

b

a

Figure 4.6: Ensembled approach - a comparison of EffDet models with ensem-
bling.

Sequential frames(a-b) depicting meiocyte localization using an ensemble of EfficientDet
models. Each frame, labelled with time stamps at 00:20 and 03:35, shows the precision of
bounding box placement over the meiocytes, illustrating the effectiveness of ensembling

multiple network outputs.

Description Videos Frames Anther count Localized datapoint
Wild-type control 11 1071 2058 20409
TCX 15 2437 4857 49776
Control(21◦) 30 5111 9803 83997
Heat treated(30◦) 43 5739 10,706 60385
Heat treated(34◦) 5 770 1540 6955
Tetraploid(wild type) 24 2373 4375 44847
Tetraploid(atm) 6 540 720 18112

Table 4.9: Summary of unseen dataset composition for anther and meiocyte
localization analysis.

The table categorizes the data into experimental groups, including control and treatment
conditions. It details the number of videos, frames analyzed for each group, the total count of

anther datapoints and localized meiocytes extracted from the frames. This stratification
ensures a comprehensive representation across different experimental conditions and

localization analysis.

increasing demand for speed without compromising precision in biological image analysis.
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4.3 Meiocyte tracking in stabilized anthers

Building on the foundation of successful anther segmentation, stabilization, and meiocyte lo-
calization, we transitioned to the critical task of meiocyte tracking. Our tracking methodology,
described in preceding chapters, involved novel linking algorithms designed to monitor and
record the temporal progression of individual meiocytes through the stages of development.

4.3.1 Tracking accuracy and performance metrics

In our evaluation of the tracking system, we critically analyzed its performance using a compre-
hensive set of metrics, as summarized in Table. 4.10. The Multiple Object Tracking Accuracy
(MOTA) and Multiple Object Tracking Precision (MOTP) were utilized alongside the Con-
tinuity Rate and Fragmentation Rate to provide a multidimensional assessment. The MOTA
value of 0.89 for the training dataset indicates high accuracy in maintaining object identities
due to missed tracks, false positives, or identity switches. The MOTP value of 0.87, reflecting
the precision of object localization, corroborates this observation of high performance. The
Continuity Rate is 0.9286, suggesting a strong ability of the system to track objects once they
are detected consistently. However, the discrepancy between this rate and the MOTA implies
that while tracking is consistent, it might occasionally start late (missing the initial frames) or
involve some false positives. The Fragmentation Rate of 0.0 in the training set reinforces the
system’s strength in maintaining continuous tracking once an object is detected without losing
it in subsequent frames.

In contrast, the validation and test datasets show perfect Continuity Rates and zero Fragmen-
tation Rates, indicating no loss of tracked objects once identified. However, the MOTA values
for these sets, 0.85 for validation and 0.87 for testing, again highlight inaccuracies due to initial
misses or false positives. The higher MOTP values in these datasets (0.95 for validation and
0.98 for testing) suggest greater object localisation precision than the training set. This dis-
crepancy across the datasets might be attributed to variances in the complexity of the scenes
or the object densities, challenging the system differently in terms of initial object detection
and identity maintenance.

Overall, these above results demonstrate the system’s robustness in tracking continuity and
precision in localization. However, they also highlight areas for improvement in initial object
detection and reducing false positives, particularly in more complex scenarios like the high
density of meiocyte in RSS (Restricted Search Space), contributing highly to object switching.

Dataset MOTA MOTP Continuity Rate Fragmentation Rate
Train 0.89 0.87 0.9286 0.0
Validation 0.85 0.95 1.0 0.0
Test 0.87 0.98 1.0 0.0

Table 4.10: Tracking metrics
Average MOTA, MOTP, Continuity Rate, and Fragmentation Rate values for Train,

Validation, and Test datasets.
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Figure 4.7: Tracking heatmap

Figure 4.8: Tracking trajectories

4.3.2 Visualization of tracking results

The tracking visualizations for the ’Train’, ’Val’, and ’Test’ datasets manifest distinct spa-
tial and temporal patterns directly relevant to the previously discussed tracking metrics. The
heatmaps in Fig. 4.7 correlate with the quantitative findings from the MOTA and MOTP scores,
with the training dataset heatmap showing concentrated areas of high detection frequency. This
aligns with the relatively lower MOTA score for the training set, potentially indicating local-
ized instances of tracking inaccuracies or a greater complexity in the training environment that
challenges the algorithm.

In contrast, the validation and test dataset heatmaps exhibit a more dispersed frequency dis-
tribution, aligning with the higher MOTA scores and suggesting a more uniform tracking
accuracy across these datasets. The sparsity of high-intensity areas, particularly in the vali-
dation heatmap, reflects an environment with fewer tracking challenges or a more consistent
application of the tracking algorithm.

The trajectory plots in Fig. 4.8 further substantiate these findings. In the training set, the dense
convergence of trajectories could signify a range of meiocyte behaviours or an assortment of
tracking scenarios, which could account for the observed variations in MOTA and MOTP scores.
The less cluttered trajectories in the validation and test plots suggest a more straightforward
tracking scenario, which could be a factor in the improved tracking precision denoted by the
MOTP scores.

These visualizations depict the tracking algorithm’s performance across different datasets. The
heatmaps and trajectory plots serve as visual confirmations of the tracking continuity and frag-
mentation rates, with perfect continuity and zero fragmentation in the validation and test sets,
suggesting a highly consistent tracking performance. Collectively, these visual representations
provide a comprehensive overview of the tracking performance, offering both a macro and micro
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Description Videos Frames Anthers Datapoint Meiocytes
Wild-type control 11 1071 2058 20409 308
TCX 15 2437 4857 49776 420
Control(21◦) 30 5111 9803 83997 373
Heat treated(30◦) 43 5739 10,706 60385 734
Heat treated(34◦) 5 770 1540 6955 117
Tetraploid(wild type) 24 2373 4375 44847 1774
Tetraploid(atm) 6 540 720 18112 155

Table 4.11: Dataset composition for meiocyte tracking analysis.
The table categorizes the data into experimental groups, including control and treatment
conditions. It details the number of videos, frames analyzed for each group, and the total

count of other localized and tracked meiocytes extracted from the frames. This stratification
ensures a comprehensive representation across different experimental conditions and

localization analysis.

perspective that supports the algorithm’s robustness as indicated by the tracking metrics.

4.3.3 Biological implications and future work

The tracking results provide valuable insights into the dynamics of meiocyte development
during meiosis. The data is encapsulated in Table. 4.11 provides a quantitative backdrop for
successfully tracking meiocytes across diverse experimental conditions.

Moreover, while effective, the present work’s focus on two-dimensional tracking hints at the next
evolutionary step in our tracking methodology: the exploration of three-dimensional stacked
imaging. Adopting advanced generative models such as StyleGAN3, as hinted at in the seg-
mentation section, will be pivotal. Such a development would address the challenges of cell
switching in densely located cell populations, thereby enhancing the granularity and continu-
ity of our tracking endeavours. This refinement is anticipated to bridge the gap between the
high-throughput analysis showcased here and the nuanced complexities of biological systems,
ensuring that the model remains at the forefront of innovation in meiocyte tracking technology.

4.4 Meiocyte classification in stabilized anthers

4.4.1 Overview of meiocyte classification results

Following the successful tracking of meiocytes, our study progressed to the critical phase of
meiocyte classification. As detailed in earlier chapters, the classification methodology was de-
signed to categorize meiocytes into distinct developmental stages based on morphological char-
acteristics.
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Parametric States Validation Set Test Set 1
Accuracy F1 Score Accuracy F1 Score

Cell Shape 0.894 0.8979 0.9070 0.8977
Nucleus Position 0.895 0.8970 0.8864 0.8828
Nucleolus Position 0.9071 0.9070 0.8875 0.9023
Microtubular Array 0.835 0.8344 0.7916 0.8404
Chromatin (REC8) 0.8615 0.8558 0.8704 0.8515

Table 4.12: Performance metrics of classification network
Weighted categorical accuracy and F1 score for each parametric state

4.4.2 Classification accuracy and performance metrics

The critical evaluation of our classification model’s performance centres on its accuracy and F1
score metrics, as tabulated for various parametric states. These metrics are pivotal in correctly
assessing the model’s ability to classify meiocytes into distinct developmental stages.

Cell Shape: The classification model’s performance is quantitatively assessed using a confusion
matrix(Fig. 4.9) and categorical accuracy scores(Table 4.12). In the confusion matrix, CS00
exhibits an accuracy of 76.4%, indicating model refinement and reduced ambiguity. This stage
represents a critical juncture where the model differentiates between overlapping features of
adjacent classes.

During the early prophase stage (CS01), the model’s accuracy is lower, with an 89.0% cor-
rect classification rate, suggesting difficulties in capturing the onset of morphological changes.
As the model progresses to CS02, covering stages from pachytene to meiosis II, accuracy im-
proves to 87.8%, but misclassifications persist in transition states, highlighting the challenge
of distinguishing subtle intra-state variations.

Figure 4.9: Confusion matrix for cell shape parameter
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Figure 4.10: Confusion matrix for nucleus position parameter

The pre-tetrad stage (CS03) shows a notable increase in model accuracy to 90.6%, indicating
enhanced performance in recognizing distinct cell shapes. However, the presence of misclas-
sifications, although fewer, emphasizes the potential for further refinement. The tetrad stage
(CS04) stands out with 100% classification accuracy, showcasing the model’s strength in de-
tecting pronounced morphological transformations at this conclusive stage.

Nucleus Position: The classification of nucleus position (NP) is critical to understanding the
stages of meiosis, and the confusion matrix provides a quantitative measure of our model’s per-
formance in this domain. Beginning with the ambiguous state NP00, our model demonstrates
an accuracy rate of 76.5%, indicating strongly distinguishing confusing states. This ambiguity
mirrors that seen in the cell shape classification, where early differentiation is paramount.

Progressing to NP01 and NP02, which depict early prophase and the transition to pachytene,
the model exhibits improved accuracy, with positive rates of 89.7%and 87.6%, respectively.
These stages are critical as they mark the commencement of visible morphological changes. The
transition from NP02 to NP03, representing the diplotene to diakinesis state, shows the model’s
accuracy at 87.8%, reflecting its capability to discern the distinct chromosomal configurations
characteristic of these stages.

As we move to NP04, indicative of the metaphase to anaphase transition where the nucleus is
not visible, the model’s performance aligns with the categorical accuracy and F1 score, with
a high correct classification rate of 93.7%. This stage’s clarity regarding nuclear absence may
contribute to the model’s higher accuracy.

For NP05, corresponding to telophase, where two nuclei are distinctly visible, the model
achieves a classification rate of 88.2%, suggesting a strong ability to recognize the dual-
nuclei structure that defines this stage. Similarly, NP06, which covers the second metaphase to
anaphase transition with the nucleus again invisible, the model continues to perform well with
a classification rate of 92.9%.

Our model excels at the tetrad stage, NP07, with an accuracy of 94%, showcasing its strength
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Figure 4.11: Confusion matrix for microtubular array parameter

in identifying the culmination of meiotic processes. This high accuracy rate for the tetrad stage
suggests the model is particularly adept at identifying the complex structural configurations
present at this stage.

Microtubular Array: The microtubular (MT) array classification, integral to charting meiosis
progression, reflects the complex interplay of cellular structures during meiotic phases. The
provided image, though not directly accessible, likely showcases the transition of microtubule
configurations from MT01 through MT11, representing distinct meiotic stages.

MT01 and MT02, indicative of the S/G2 phase through to zygotene, show increased model
precision. The model identifies the S/G2 phase with an accuracy of 76.4% for MT01, improving
to 81.4% for MT02. This improvement aligns with the visual progression in the image, where
distinct microtubular formations become more apparent.

The model achieves an accuracy of 87.8% for MT03, corresponding to the pachytene stage,
distinguished by specific chromosomal alignments and microtubule organization. The diplotene
and diakinesis phase (MT04) presents a classification accuracy of 82.6%, where the confusion
matrix indicates occasional misclassifications with adjacent stages.

The stages from MT05 through MT07, depicting nuclear envelope breakdown and transition
to telophase I and interkinesis, show varying classification accuracy, from 72.3% for MT05 to
76.9% for MT07. These stages, characterized by significant cellular reorganization, are where
the model’s predictive capability is tested, as highlighted by the confusion matrix.

For the later stages, MT08 to MT10, covering meiosis II, the model’s classification accuracy
reaches its zenith, with an impressive 93.3% for MT10, indicative of its adeptness at identify-
ing the later stages of meiosis II. The tetrad stage, MT11, is classified with 93.3% accuracy,
underscoring the model’s efficiency in recognizing the culmination of meiosis as tetrads are
formed.

Nucleolus Position: The classification of nucleolus position (NoP) throughout meiosis offers



4.4 Meiocyte classification in stabilized anthers 79

Figure 4.12: Confusion matrix for nucleolus position parameter

the least complicated stages of cellular development. The confusion matrix for NoP classification
details the model’s ability to track the nucleolus through its dynamic changes.

For NoP01, where the nucleolus is absent during the S/G2 phase, the confusion matrix indicates
a strong model performance with a high correct classification rate of 82.8%. However, there is
some confusion with later stages, possibly due to variations in nuclear visibility that the model
misinterprets.

The early leptotene stage, NoP02, characterized by a central nucleolus, is accurately classified
with 89.4%, as the distinctive central positioning provides a clear signal for the model to detect.
However, 6 misclassifications with NoP01 suggest that when the nucleolus begins to appear, it
may be occasionally confused with its absence.

NoP03, marking the nucleolus’s movement to the side of the nucleus visible until pachytene,
presents a classification accuracy of 90.3%. This stage’s classification is relatively reliable,
reflected in the F1 score of 90.70%, indicating a strong balance between precision and recall.

The final stage, NoP04, where the nucleolus is no longer visible for the rest of meiosis pro-
gression, shows an exceptionally high accuracy of 95.6%. This suggests that the model adeptly
identifies the absence of the nucleolus, a significant morphological marker.

Chromatin (REC8): The classification of chromatin dynamics, as marked by REC8 protein
localization, traces the intricate process of meiotic division, with the confusion matrix offering
quantitative insights into the model’s classification accuracy across stages. Starting from the
ambiguous state RC00, the model distinguishes this phase with an accuracy of 83%

As the meiotic division progresses, the model’s ability to differentiate between stages becomes
evident. For instance, in the S/G2 phase represented by RC01 and the early leptotene stage
denoted as RC02, the model achieves accuracy rates of 89.4% and 90.3%, respectively. This
suggests a high level of model precision in capturing the initial chromosomal dynamics marked
by the REC8 localization.



80 Chapter 4. Framework evaluation

Figure 4.13: Confusion matrix for chromatin parameter

Moving into the zygotene stages encapsulated by RC03, the model maintains a high accuracy
of 87.8%, indicative of its capability to track the continuity of REC8 localization patterns. For
the pachytene stage, RC04, the model’s accuracy is 82.6%, signifying a reliable recognition of
the unique chromosomal configurations.

RC05, unique to the diplotene diakinesis of prophase 1, exhibits an accuracy of 93.7%, reflect-
ing the model’s adeptness at identifying the distinct separation of homologous chromosomes.
The transition to RC06, signifying the entry into metaphase-1 and visible until the onset of
anaphase-1, shows the model’s accuracy at 88.2%, demonstrating its efficiency in discerning
the metaphase alignment of chromosomes.

Finally, RC07, where chromatin is not visible for the remainder of meiosis, is accurately classi-
fied with an impressive rate of 94%, underscoring the model’s effectiveness in recognizing the
completion of chromosomal segregation.

4.4.3 Biological implication and future direction

Implementing automated classification within the aMP framework has achieved a dual ad-
vantage: it has significantly accelerated the analysis process and eliminated the subjectivity
inherent in human-based evaluation. This two-pronged enhancement is pivotal for accurately
staging meiotic progression and facilitates the simultaneous assessment of interdependent mei-
otic stages. Such analysis is critical for identifying anomalies or potentially novel states that
may emerge in mutant phenotypes or across different plant models.

Moreover, the classification system establishes an essential foundation for generating artificial
cell variation models. By employing techniques such as transfer learning and variational autoen-
coders, we can simulate the appearance of cells under a spectrum of biological conditions. This
capability is transformative, offering predictive insights into cell morphology and behaviour
before the execution of actual imaging tasks. The long-term impact of this advancement is
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profound, promising substantial strides in our ability to forecast cellular dynamics based on
underlying biological parameters.

4.5 Evaluation of meiosis landmarks

The landmark and meiosis timeline evaluation dissects the analysis into three distinct seg-
ments, each addressing a crucial aspect of meiotic progression in Arabidopsis thaliana. Firstly,
we scrutinize the impact of regrouping parametric states on the resolution of meiotic land-
marks, a process that refines the delineation of critical meiotic transitions. Secondly, we draw
correlations with previously published results to anchor our findings within the established
body of knowledge and validate the robustness of our approach. The third segment is dedi-
cated to achieving the core objective of this project: analysing the meiosis progression timeline
in tetraploid genotypes, a domain previously unexplored due to the inherent complexities pre-
sented by polyploidy. Finally, we extend our analytical framework to include the tcx5;6 mutants,
broadening our investigation to encompass genetic variations that may offer new insights into
the meiotic mechanisms of this model organism.

4.5.1 Effect of regrouping parametric states

The evaluation of meiosis progression landmarks is predicated on the analysis of thresholded
z-normalized scores, approached in a piece-wise manner to delineate the transition times be-
tween successive meiotic landmarks, as described by Eq. 3.44. In contrast to the methodology
reported by Prusicki et al. [3], which utilized ungrouped states for the calculation of landmarks,
our project introduces a grouping paradigm as illustrated in Fig. 2.4. This initial exploration
investigates the implications of this regrouping on the identification of meiotic states and the
associated landmark scores defined by Eq. 3.43, offering a comparative analysis with the original
findings, as depicted in Table 4.13.

Prusicki et al. [3] derived meiotic landmarks from ungrouped parametric state labels, high-
lighting the direct influence of these parametric classes on normalized scores and the definition
of landmarks. The reclassification into grouped parametric classes, as evidenced in Table 4.13,
elucidates a diminished resolution in prophase I, with the original landmarks A0,...,12 being con-
densed into A′

0,...,9. Specifically, this regrouping results in the amalgamation of stages, leading
to the loss of distinct stages for late leptotene, zygotene, and pachytene in prophase. At the
same time, the characterization of meiosis-II states remains intact.

The regrouping effectively merges the distinct stages of late leptotene (A2), zygotene (A3 and
A4), and pachytene (A5 and A6), as these stages no longer exhibit individual z-scores in the
regrouped analysis. For instance, the early leptotene stage originally marked with a z-score
of 3.388 (A1) is adjusted to 2.98 in the regrouped analysis (A′

1), indicating a subtle shift
in the scoring methodology. Conversely, stages such as diplotene to diakinesis (A7 to A′

4),
metaphase-I to anaphase-I (A8 to A′

5), and telophase-I to interkinesis (A9 to A′
6) demonstrate

a more pronounced alteration in z-scores, reflecting the regrouping’s impact on the resolution
of meiotic phase transitions. The preservation of meiosis-II states (A10 to A′

7 and A11 to A′
8)

underscores the selective nature of the regrouping effect, with the tetrad state (A12 to A′
9)

remaining unaltered, thus maintaining its critical role in the meiotic timeline.
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Landmark Z-score Z-score
regrouped

Landmark
regrouped

State property

A0 −0.18 −0.18 A′
0 S/G2 phase

A1 3.388 2.98 A′
1 Early leptotene

A2 1.14 − − Late leptotene
A3 1.34 3.42 A′

2 Zygotene
A4 3.20 − − Zygotene
A5 3.02 2.92 A′

3 Pachytene
A6 1.11 − − Pachytene
A7 2.76 2.40 A′

4 Diplotene to Diakinesis
A8 2.45 1.97 A′

5 Metaphase-I to Anaphase-I
A9 2.63 2.02 A′

6 Telophase-I to Interkinesis
A10 2.37 2.21 A′

7 Meiosis-II
A11 2.23 2.23 A′

8 Meiosis-II
A12 −0.45 −0.45 A′

9 Tetrad state

Table 4.13: Effect of parametric grouping on landmark states and Z-scores
The original landmarks [3] from the dataset-1 and their corresponding scores when analysed
using regrouped classes lose the minute resolution in prophase-I, where A2,3, A4,5 and A6,7

are combined to reduce the original number of landmarks by 3.

The refined analysis presented in this project delineates the consequences of regrouping para-
metric states on the resolution and identification of meiotic landmarks. By comparing these
newly grouped landmarks against the original framework established by Prusicki et al. [3],
this study underscores the refinement of parametric regrouping on the automated analysis of
meiosis progression, offering a comprehensive overview of the methodological shifts and their
implications for automated staging of meiocytes in meiosis landscape.

4.5.2 Analyzing meiosis progression across wild type dataset at 21◦C

The aMP framework was applied to evaluate meiosis in a distinct wild type Arabidopsis thaliana
control dataset, grown at 21◦C by a different investigator, to ensure an unbiased analysis. This
dataset, referenced as [32], was analyzed to calculate normalized z-scores, facilitating a com-
parative analysis with the primary dataset cultivated under similar conditions. A critical part
of this analysis involved the comparison of the meiosis progression timelines. The aMP frame-
work’s capability to match and sometimes surpass manual analysis benchmarks was evaluated,
particularly focusing on microtubular array dynamics that evolve throughout meiosis.

Comparing the progression timelines with the outcomes reported in [32], we adopted an offset
measure to assess staged progression. This method involves disregarding data points where
landmarks are only partially observable. Specifically, if landmark Li signifies the progression
from state Ai−1 to Ai, it’s mandatory that Ai−2 and Ai+1 is observed; otherwise, the piecewise
timeline for that meiocyte isn’t computed. Interestingly, the published analysis excludes the L1

and L9 transition entirely (Fig. 4.15), highlighting the importance of offset analysis in providing
a more comprehensive understanding of meiosis progression.

The comparative analysis of the two datasets maintained at 21◦C—designated as WT 21◦C(MP)
for the analysis conducted via the Automated Meiosis Progression (aMP) framework and WT
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Figure 4.14: Regrouped landmark states and their appearance
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Landmark states WT 21◦C(MP) WT 21◦C(JDJB) State property
A′

0 −0.18 0.54 S/G2 phase
A′

1 2.98 3.24 Early Leptotene
A′

2 3.42 3.85 Early Zygotene
A′

3 2.92 3.42 Early Pachytene
A′

4 2.40 2.99 Diplotene to Diakinesis
A′

5 1.97 2.25 Metaphase-I to Anaphase-I
A′

6 2.02 1.95 Telophase-I to Interkinesis
A′

7 2.21 2.59 Meiosis-II
A′

8 2.23 2.54 Meiosis-II
A′

9 −0.45 0.26 Tetrad state

Table 4.14: Landmark score comparison between 2 wildtype A.thaliana dataset
at 21◦C

Figure 4.15: Sanity check for automated timeline progression.
Automated timeline analysis of dataset-II compared with the manual analysis provided in [32]

shows semblance in the piece-wise meiosis progression timeline.

21◦C(JDJB) for the dataset evaluated in [32]—illuminates essential insights into the tempo-
ral dynamics of meiosis. Variations in z-scores across the spectrum of meiotic phases, from
S/G2 to the tetrad state, highlight subtle yet significant differences that underscore a dataset-
specific calibration of landmark identification while affirming the landmarks’ inherent stability.
This observation evidences the aMP framework’s enhanced sensitivity and precision in charting
the meiosis timeline, underscoring the critical importance of accurately defining the prophase
timeline for an exhaustive understanding of meiosis progression.

For instance, the early leptotene stage, originally marked with a z-score of 2.98 for WT
21◦C(MP), compared to 3.24 for WT 21◦C(JDJB), underscores a slight calibration in landmark
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identification between datasets. This trend of re-calibration is observed across various stages,
including early zygotene and early pachytene, with corresponding adjustments in z-scores high-
lighting the framework’s analytical consistency in featuring the exact stages in different con-
structed datasets.

Furthermore, the evaluation showcases a close approximation between automated and manual
analysis timings for the progression through meiotic landmarks, as depicted in Table 4.15.
Despite the automated approach introducing an offset for partially observed data points, the
timelines closely align with manual estimates, underscoring the aMP framework’s effectiveness.
Such an alignment validates the automated approach and illustrates its potential to facilitate
a generalized, user-adjustable framework for analyzing meiosis progression.

This detailed comparative analysis emphasizes the robustness and adaptability of the aMP
framework in analyzing meiotic progression under varying conditions. By aligning closely with
manually analyzed data while offering flexibility in data interpretation, a framework is a valu-
able tool for researchers studying meiosis in Arabidopsis thaliana and its potential variation
based on the ploidy-ness of plants and particular gene insertion to check the difference in
prophase-I timeline variation. The evaluation is restricted to the control dataset and did not
include the heat shock experiments due to the lack of meiosis-II data points; also, we are using
12 original videos to analyse the result owing to its previously reported result, which is efficient
for benchmarking.

4.5.3 Tetraploid timeline for meiosis progression

The comparative analysis of meiotic progression timelines between wild-type diploid (2N) and
tetraploid (4N) Arabidopsis thaliana is illustrated in Figure 4.16 and Table 4.16. This analysis
provides crucial quantitative insights into the temporal dynamics of meiosis across different
ploidy levels.

In tetraploids, the onset of the S/G2 phase (A′
0) is characterized by a z-score of 1.39, starkly

contrasting to the wild-type’s -0.18. This suggests a protracted commencement or an extension
of this phase. Such an extension may indicate a complex adaptive mechanism responding to
the increased chromosomal content, necessitating a recalibration of cell cycle checkpoints to
ensure genomic stability before meiotic entry.

Proceeding through the meiotic timeline, early leptotene (A′
1) and early zygotene (A′

2) stages
in tetraploids manifest lower z-scores (1.80 and 3.64, respectively) relative to their diploid
counterparts. This downshift in z-scores could reflect a decelerated progression, possibly due to

Landmark Automated mean
time

Automated mean
time (offset)

Manual mean time

L2 + L3 765 791 845
L4 246 398 360
L5 33 50 47
L6 53 50 52
L7 35 48 46
L8 125 201 219

Table 4.15: Mean Time(m) in meiosis transition states
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Figure 4.16: Comparing tetraploids to the wild type A.thaliana variants

the augmented chromosomal interactions requiring meticulous homologous pairing and synapsis
orchestration. This process is inherently more complex in tetraploids.

Notably, from diplotene to diakinesis (A′
4) onwards, the z-score convergence with the diploid

wild-type at 2.99 implies that once tetraploids surpass the initial meiotic complexities, their
subsequent progression is remarkably synchronous with that of the diploid. However, a subtle
diminution in the z-score for the final meiosis-II phase (A′

8) from 2.23 in the diploid to 2.08 in
the tetraploid suggests a slightly accelerated resolution of meiosis.

The extended early meiotic stages observed in tetraploid A. thaliana suggests a recombination
landscape that differs from diploids, with implications for genetic diversity. In tetraploids,

Landmark states WT (MP) WT (JDJB) TP (MP) State property
A′

0 −0.18 0.54 1.39 S/G2 phase
A′

1 2.98 3.24 1.80 Early Leptotene
A′

2 2.99 3.85 3.64 Early Zygotene
A′

3 2.92 3.42 3.55 Early Pachytene
A′

4 2.40 2.99 2.99 Diplotene to Diakinesis
A′

5 1.97 2.25 2.46 Metaphase-I to Anaphase-I
A′

6 2.02 1.95 2.01 Telophase-I to Interkinesis
A′

7 2.21 2.59 2.43 Meiosis-II
A′

8 2.23 2.54 2.08 Meiosis-II
A′

9 −0.45 0.26 −0.14 Tetrad state

Table 4.16: The comparison of landmark states’ Z-score between the 2 wild-
type and tetraploid dataset.
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the protracted duration of phases such as early leptotene and zygotene may facilitate a more
thorough recombination process, enhancing genetic variability. Differences in meiotic timing
between diploid and tetraploid A. thaliana reveal the impact of ploidy on meiotic control and
cellular function. This ploidy-specific modulation of meiosis is likely an evolutionary strategy
for handling complex chromosome segregation challenges inherent to polyploidy.

ATM gene insertion effects on pachytene checkpoint in tetraploid A. thaliana

The ATM (Ataxia-telangiectasia mutated) gene is known to play a crucial role in the pachytene
checkpoint during meiosis by assessing homologous recombination and DNA double-strand
break (DSB) repair. In tetraploid Arabidopsis thaliana, the absence or mutation of the ATM
gene (atm-4N) is posited to weaken these checkpoint mechanisms, as ATM’s function as a
protein kinase activated in response to DSBs is diminished or absent. This reduction in ATM
activity is particularly impacted in tetraploids, where the increased chromosomal number in-
tensifies the challenges of chromosomal pairing and segregation.

Without a functional ATM, the pachytene checkpoint’s scrutiny is hypothesized to be less
stringent, leading to a reduced arrest at this stage, potentially resulting in incomplete DSB
repair and inaccurate synapsis. This abbreviated arrest would manifest in the meiosis time-
line as a shortened leptotene to pachytene stages (L1-L3) duration, as shown in Figure 4.17.
These stages, particularly pachytene, would exhibit a decreased duration in atm-4N tetraploids,
reflecting the reduced ATM kinase activity and its diminished role in DSB surveillance and
repair.

Figure 4.17: Comparing tetraploids to its atm-gene insertion A.thaliana vari-
ants
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In the post-pachytene stages (L4-L9), atm-4N tetraploids display heterogeneity in meiotic du-
ration, with some phases potentially progressing faster than in wild-type tetraploids. This
variability suggests that the weakened ATM-mediated pachytene checkpoint may allow cells
to advance through the later stages of meiosis at an accelerated rate, even in unresolved DNA
double-strand breaks (DSBs).

The dataset also indicates increased inter-stage temporal variability in atm-4N plants, implying
less uniform progression through meiosis post-pachytene. This variability reflects the impaired
role of the ATM gene in enforcing stringent DSB repair standards, leading to a more variable
and potentially error-prone meiotic process. Consequently, the mutation of the ATM gene in
tetraploid A. thaliana weakens the pachytene checkpoint, shortening the duration of early
meiotic stages and allowing faster progression despite incomplete DSB repair.

4.5.4 Comparative Analysis of tcx5;6 Mutants and Wild-Type Diploid A.
thaliana

After characterizing the ATM gene effects in tetraploid A. thaliana with the Automated Meiosis
Progression (aMP) framework, we now expand this method to explore tcx5;6 mutants. The
aMP framework’s precise analysis of meiotic stages showcases its utility for wider applications,
encompassing the evaluation of genetic variants in diploid species.

The tcx5;6 mutants in diploid Arabidopsis thaliana represent a unique opportunity to examine
the genetic control of meiotic progression, particularly about the TCX5 and TCX6 genes,
which are believed to play roles in chromatin organization and gene expression during meiosis.
Mutations in these genes may disrupt the tightly regulated sequence of meiotic events, resulting
in altered timing and progression through meiotic landmarks.

In the context of the tcx5;6 diploid mutants, we anticipate deviations from the wild-type
meiotic timeline due to potential disruptions in chromosomal behaviour and checkpoint control
mechanisms. These disruptions are likely to manifest as variations in the duration of meiotic
stages, detectable through a comparative temporal analysis with wild-type diploids grown under
standard conditions.

The box plot presented in Figure 4.18 illustrates the variation in the duration of meiotic
transitions between tcx5;6 mutants and wild-type controls. We expect any perturbations in
chromatin structure and gene regulation due to the tcx mutations could result in an extended or
abbreviated duration of specific meiotic stages. For example, an extended leptotene or zygotene
phase may indicate challenges in chromosomal synapsis, while an abbreviated pachytene stage
could suggest premature progression without the completion of necessary recombination events.

Compared to the control, the data from the tcx5;6 mutants is expected to show increased vari-
ability in meiotic duration across different stages. This would reflect the mutants’ compromised
ability to regulate the progression of meiosis, which is typically tightly controlled in wild-type
plants. Furthermore, we may observe a general trend of extended meiotic stages as the mutants
grapple with potential deficiencies in chromosomal pairing and segregation.
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4.5.5 Conclusion

In conclusion, our evaluation confirms that the Automated Meiosis Progression (aMP) frame-
work represents a significant advancement in plant science, particularly in the automated anal-
ysis of live-cell imaging for meiosis progression. Through applying deep learning techniques
and innovative tracking methodologies, we have successfully automated the classification and
staging of meiocytes in video sequences to stage and form the piecewise timeline of meiosis
progression, overcoming the traditional bottleneck of manual image analysis.

The effectiveness of the aMP framework was demonstrated through the analysis of wild-type
and tetraploid Arabidopsis thaliana, highlighting its capacity to adapt to and reveal the nuances
of meiotic progression across different ploidy levels. In tetraploids, the aMP framework detected
an extended duration in meiosis-II stages compared to the wild-type, providing new insights
into the meiotic behaviour of polyploid plants. Additionally, the framework’s extension to

Figure 4.18: Comparing tcx mutant to the wild type A.thaliana variants
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analyze tcx5;6 mutants showcases its versatility and potential for broader applications in plant
genetics.

Our research has automated a critical aspect of plant developmental biology and set the stage
for further investigations into the genetic and environmental factors that govern meiosis. The
aMP framework is a powerful tool for plant science analytics, offering a sophisticated means
to study the complexity of meiosis with greater accuracy and efficiency, also creating potential
analytical fields for transferring our modular framework, detailed in the next chapter.
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Chapter 5

Modularity of amp Pipeline

In this chapter, we delve into the multifaceted applications of the aMP toolkit, a modular sys-
tem designed for diverse challenges in plant biology. Originally developed for meiosis analysis,
this toolkit’s versatility extends to tasks such as pollen counting, root length measurement,
and foci quantification during DNA double-strand breaks in prophase-I of meiosis. Initially
proposed for anther stabilization, the segmentation block demonstrates remarkable adaptabil-
ity in these applications. The aMP toolkit’s modular design is a testament to its plug-and-play
capability, allowing for potential enhancements with more specialized feature extractors beyond
the EfficientNet family. This is particularly advantageous for complex tasks like BiFC analysis,
where accurate chloroplast localization in plant tissue is critical.

Embracing a modular approach aligns with the growing trend of foundational model method-
ologies, exemplified by systems like Segment Anything from Meta. However, due to hardware
limitations, our focus has been on convolutional neural networks rather than next-generation
transformers, leading to the development of a unique in-house bioinformatics foundational
model. Our approach involves dividing specific tasks, creating variations of the original mod-
ules with different models for distinct applications, and ultimately synthesizing a comprehensive
model for semantic segmentation across all modules.

We address four key issues in plant biology, starting with each application’s objective and
specific post-processing requirements.

Firstly, quantifying foci for estimating DNA double-strand breaks (DSBs) during prophase-1
meiosis is pivotal. As detailed in Chapter 2, meiosis halves the nuclear DNA content and facili-
tates genetic diversity through homologous chromosome recombination. Meiotic recombination
starts with DSBs, catalyzed by SPO11, with subsequent processing by the MRE11-RAD50-
NBS1 complex. This results in two recombination products: crossovers and non-crossovers.
Our study focuses on the number of DSBs in the absence of ZmSDS1 and ZmSDS2 proteins,
using Zea mays for immunolocalization assays to detect RAD51 foci.

Secondly, the toolkit addresses a crucial aspect of BiFC (Bimolecular Fluorescence Comple-
mentation) analysis: the co-localization challenge. The goal here is to detect and quantify
protein-protein interactions within living cells accurately. This is achieved through the YFC
(Yellow Fluorescent Protein) channel, a primary indicator of these interactions. In BiFC, the
interaction of proteins is inferred from the proximity-induced fluorescence of YFP (Yellow Fluo-
rescent Protein) fragments, each attached to a protein of interest. When these proteins interact,
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the YFP fragments merge to emit a distinct fluorescence signal. This fluorescence, observed
in the YFC channel, is the key to identifying interacting proteins. Additionally, mCherry, a
red fluorescent protein, is a transformation control. The presence of mCherry fluorescence con-
firms the successful transformation of cells and aids in selecting the appropriate cells for BiFC
analysis. By focusing on cells exhibiting YFP and mCherry signals, the toolkit enhances the
reliability and accuracy of detecting and quantifying protein-protein interactions.

Thirdly, the toolkit tackles the significant task of automated pollen counting, a method piv-
otal for analyzing pollen viability under various environmental and genetic conditions. The
primary objective in this aspect of the toolkit is to enhance the accuracy and efficiency of
pollen viability assessment, a process traditionally hampered by manual and labour-intensive
methods. The toolkit employs advanced image analysis techniques in automated pollen count-
ing to identify and quantify individual pollen grains from microscopic images. This process
addresses the segmentation challenge, where the system distinguishes each pollen grain amidst
complex backgrounds, such as other cellular material or the slide surface. The goal is to provide
a high-throughput, objective, and consistent approach to counting pollen, essential for studies
involving large datasets. This automated process is especially crucial when assessing pollen
viability in response to different temperature conditions or following genetic modifications like
gene insertion. The toolkit allows for the rapid analysis of many samples, offering significant
improvements over manual counting in terms of speed and reduction of human error.

5.1 DNA double-strand breaks (DSBs)

Building upon the modular and versatile capabilities of the aMP toolkit, as introduced earlier,
we delve into the specific area of DNA double-strand breaks (DSBs) quantification. This module
of the toolkit is developed in response to existing methodologies where foci, particularly RAD51
foci in meiosis, are predominantly quantified using various multipurpose software like Image
tool 3.0 [71], softWoRx [72], and ImageJ-FIJI [73, 74], or in some cases, are assumed to have
been counted manually [75–78]. Other software mentioned in these studies includes ZEN2012
and Photoshop 7.0. A gap identified in these approaches is the lack of explicit parameters used
for quantifying RAD51 foci, leading to the formulation of three important questions:

• What is the size of a focus?

• How bright (intensity) should a focus be compared to the background?

• How are foci distributed over chromosomes, or rather, what is the co-localization overlap
percentage of foci on chromosomes?

Our approach, aligned with the toolkit’s objective of providing advanced, user-friendly solu-
tions, aims to develop an automated, parameter-free method for RAD51 foci quantification in
the maize inbred line A188. We implemented this through a 3-stage process: first, construct-
ing an automated ground truth basis of RAD51 foci in wild-type A188 maize meiocytes using
biological prior information; second, benchmarking this process against existing parameterized
methods; and finally, employing a convolutional neural network-based segmentation algorithm
to eliminate reliance on manually set parameters. This part of the study is crucial, as it con-
tributes to our understanding of the variation in area, intensity, and overlap ratio of foci. It also
initiates the development of a standardized definition for RAD51 foci quantification, enhancing
the toolkit’s applicability in advanced plant biological research.
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Figure 5.1: Parametric detection of RAD51 foci
Illustration of parametric detection of RAD51 foci through boundary conditions, with
weak-and-blind segmentation for process validation. The right column shows manual

segmentation contours, and white dots represent automated foci detection. The left image
demonstrates clear foci contours alongside automated detections.

5.1.1 Dataset description

In our focus on DNA double-strand breaks (DSBs) quantification, as detailed in the previous
section, we utilized a specific dataset to develop and train our quantification model. This model
aims to estimate the foci on chromosomes within maize nuclei, a critical task in understanding
meiotic processes.

Our dataset comprises 39 confocal microscopic images of wild-type A188 maize meiocyte nuclei.
These images are 2D-stacked and feature two channels, each with dimensions of 896×470 pixels
and a depth of 16 bits. The images showcase RAD51-stained foci co-localized with DAPI-stained
chromosomes, exhibiting varying intensities, essential for accurately assessing foci distribution
and density.

Additionally, for inference and comparative analysis, the dataset includes immunolocalization
images of both wild-type A188 and the sds1 sds2-2 mutant meiocytes. These images are crucial
for examining the localization of several proteins pivotal for meiotic recombination, such as
HEI10, ZYP1, and MLH3. The comparative analysis is structured to focus on two forms:

• Foci, including proteins like RAD51, SDS1-RFP, HEI10, and MLH3.
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Parameter Name Lower Bound Upper Bound
Intensity of the Focus Global mean of RAD51 stacks
Diameter of the Focus 1µm

Diameter of the Nucleus Segmented max project of DAPI channel 22µm

Occurrence of Foci 2 consecutive stacks

Table 5.1: Basis for Quantifying Foci in a Nucleus

• Chromosome axis, highlighted by proteins such as ASY1 and ZYP1.

The confocal microscopic images used for network training were acquired using an LSM880
microscope, with samples immersed in oil and magnified 63x. The effective Numerical Aperture
(NA) for these images is 1.4, with a stack focus technique applied. The images are defined with
pixel sizes of ∆z = 381 nm, ∆y = 50 nm, and ∆x = 50 nm in each respective direction.
The channels are distinctly coloured to aid in identification: the DAPI-stained chromosomes
are defined in magenta (FF00FF) with an excitation wavelength of 450nm, while the foci are
represented in green (00FF00), having an excitation wavelength of 548 nm.

5.1.2 Parametric Detection of Foci on Chromosome

In this subsection, we elaborate on the parametric model developed to automate the detection of
foci, specifically RAD51-stained double-strand breaks, co-localized with chromosomes in maize
meiocyte nuclei. Our methodology, linked to the broader framework of the toolkit, focuses
on defining precise boundary conditions based on pre-formulated queries and the inherent
characteristics of the maize meiocyte nucleus.

Considering the average diameter of the maize meiocyte nucleus at ≈ 20µm [79], we set a con-
strained region of interest for locating foci, given their emergence from meiotic recombination.
The lack of studies addressing foci diameter led us to adopt the human chromosomal cross-
sectional diameter during prophase of 1µm [80] as our lower boundary condition. Furthermore,
the intensity of foci, generally higher than other image elements, necessitated setting a lower
intensity threshold based on the global mean of the combined z-stacks of the cellular image.
The RAD51 foci identified are then correlated with DAPI-stained chromosomes to determine
the number of foci and clusters, thereby quantifying double-strand break formation. These clus-
ters form the basis for human intervention justification on the images’ maximum projection,
enabling weak segmentation of foci for serializing the machine learning dataset.

We employed a channel-agnostic methodology in the automated process for generating data
on double-strand breaks. This involved processing RAD51-stained foci and DAPI-stained chro-
mosome (chx) stacks through an image conversion block. During preprocessing the training
dataset, we applied a maximum projection technique to the region of interest (ROI) in the
2D-stacked images. We transformed the original 16-bit images, with dimensions of 489 × 407
pixels and two channels, into 8-bit RGB images.

The chromosomes, highlighted by DAPI staining, were then processed through a Gaussian-
adaptive thresholding technique applied to each stack individually. This approach was opti-
mized with a window size of 21 pixels to delineate the nuclear boundary accurately. Following
this, a median filter with a window size of 11 pixels was employed to remove background



5.1 DNA double-strand breaks (DSBs) 95

Figure 5.2: Foci detection process flow
The aMP segmentation module used in segmenting DAPI-stained chromosome and

RAD51-stained foci illustrates the inference flow for quantifying double-strand breaks based
on three major criteria: overlap percentage, size, and intensity variation.

speckles and noise. This filtration step was crucial in defining the nuclear boundary, effectively
differentiating the background from the foreground. To facilitate the subtraction of the back-
ground, we adopted a principle based on ’one standard deviation below the mean’, denoted as
Z = −1, which can be mathematically represented as:

Z =
datapoint − mean
standard deviation

(5.1)

After applying maximum projection and performing background subtraction on a stack-wise
basis, the next step in our process involves analyzing the chromosome stack. This stack is
processed to determine the global threshold required for extracting the region of interest (ROI)
from the RAD51-stained image stacks. To efficiently identify the local maxima, which signify
potential foci locations, we employed a kernel size of 20×20 pixels. This size was selected to align
with the lower bound estimate of chromosome diameter, approximately 1µm. Additionally, a
hop size of 20 pixels was utilized to navigate through the image, a strategic choice to minimize
computational time.

Once the potential foci points were identified, they were subjected to clustering analysis using
the Voor-Hees algorithm. This algorithm was chosen for its effectiveness in grouping data points
based on the Euclidean metric, a decision that further contributed to reducing the overall timing
complexity of the process. The clusters formed through this algorithm are considered as the
estimated foci. This estimation is crucial as it quantifies double-strand breaks in the nuclei.
Using this methodical approach, we efficiently and accurately identified and quantified the foci,
thereby providing valuable insights into the occurrence and characteristics of double-strand
breaks.

5.1.3 Preparation of the Ground Truth

In the process of developing a ground truth dataset for training our machine learning system
in foci quantification, we implemented a two-step procedure on the maximum projections of
A188 maize nuclei images:

• The first step involved segmenting the most evident foci. This segmentation was based
directly on the visual characteristics of the foci, due to the absence of a pre-established
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statistical definition for foci dimensions and intensities.

• The second step entailed overlaying these manually segmented foci with those our auto-
mated detection system identified. This step was critical to verify the effectiveness of our
automated method.

The ground truth dataset was prepared with input from immuno-experts who identified foci
regions without using automated positional indicators. Their segmentation focused on regions
where RAD51 staining was noticeably different from the background. This manual segmentation
process was essential for ensuring the accuracy of the automated system.

We then compared the manual segmentation results with the outcomes of the automated foci
quantification process. This comparison was essential to validate the automated system’s ac-
curacy and refine the training dataset by eliminating images with poor quality, such as those
with smeared backgrounds or inadequate immuno-staining in the cytoplasm.

Moreover, this detailed approach allowed us to gather data on foci size and number variations
under different conditions, including in mutant samples and with varying immuno-staining
methods. This information is crucial for the reliable training of a machine-learning model that
can accurately quantify foci in maize meiocytes.

Figure 5.3: Localized foci visualization on maximum projected images.

Maximum Average Minimum
Foci Count 359 209 133
Overlap w.r.t. Clusters 43% 18% 3%
Overlap w.r.t. Mask 50% 30% 7%

Table 5.2: Comparison of Parametric Foci Generation with Manual Segmen-
tation
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Figure 5.4: Quantifying localized foci across different immunostainings on
maximum projected images.

5.1.4 Enhancements in Foci and Chromosome Segmentation

The configuration of the segmentation network aligns with the aMP segmentation module,
depicted in Fig.5.2. It involves modifying the post-processing steps to include assessments of
Intersection over Union (IoU), area, and intensity variation, enhancing the accuracy of the
segmentation.

To precisely evaluate the overlap of foci with chromosomes, we implemented distinct training
processes for chromosome and foci segmentation. This methodological distinction was crucial for
accurate overlap assessment and effectively filtering out images unsuitable for reliable double-
strand break quantification analysis.

Building upon the ground truth data established in the previous subsection, we enhanced
our segmentation approach to refine the analysis of RAD51-stained double-strand breaks in
maize nucleus images. This advancement involved two major steps: firstly, the integration of
a deep learning-based segmentation network, and secondly, the implementation of a manual
verification process to validate the automated findings.

Our parametric method for counting RAD51 foci yielded an average of approximately 209 foci
per maize nucleus, aligning with previous findings in the zygotene phase. However, the lack
of clarity in previous studies regarding the exact methods of foci counting (either based on
maximum projection or individual stack analysis) limited our ability to draw firm conclusions.
To address this, we manually segmented foci without considering chromosome position and
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compared these with automated detections, achieving a maximum overlap of 50% and an
average of around 30%.

To further validate our approach, we applied a multiplicative-attention-based, deep neural
network for segmentation, focusing on intensity differences and respecting nuclear boundaries.
This network was trained on maximum projection images and tested on individual stacks, as
illustrated in Fig.,5.3 and Fig.,5.4.

Our tests on different A188 maize nucleus images, detailed in the bottom row of Fig.,5.6,
revealed variations in segmented region size, mean intensity, and area-based outliers. These
findings highlight the need for a comprehensive foci detection threshold, which can assist in
filtering out non-contributory image slices.

The deep-learning-based approach proved more effective in standardizing foci quantification
than traditional parametric methods. We could quantify double-strand break formation with
higher accuracy by employing a boundary condition based on the chromosomal diameter. This
methodology, tested on a diverse range of immunostained samples, demonstrates its robustness
and versatility, making it a valuable tool in analysing double-strand breaks in plant biology.

5.2 BiFC Analysis

Following our exploration of DNA double-strand break (DSB) segmentation and co-localization
processes, we expanded our focus to BiFC (Bimolecular Fluorescence Complementation) anal-
ysis. This extension leverages the insights gained from the previous section, particularly in
signal ratio analysis between YFP (Yellow Fluorescent Protein) and mCherry signals in To-
bacco leaf. BiFC is the technique to evaluate molecular interactions. In the BiFC experiment,
we use the non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein. Each

Figure 5.5: Visualization of localized double-strand breaks for various im-
munostainings.
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Figure 5.6: Network validation for foci quantification
The top row shows examples of test images with reference labels and the network prediction.
We can observe the benefit of Unet-2D-based network estimation as the network learns about
the intensity variation to the surroundings. The bottom row shows the variation of foci and

its overlap with chromosomes and the intensity variation.

of the fragmented non-fluorescent proteins is tagged with proteins of interest. These fragmented
fluorescent proteins complement and generate fluorescence if these two proteins interact. We
can validate the interaction based on the fluorescent intensity.

We identified potentially interacting molecules with our target protein, JASON. JASON is
the important protein for proper chromosome segregation during meiosis II [81, 82]. It has
already been reported that JASON has a function of generating organelle bands, which plays
a role in preventing the fusing of two spindles in meiosis II [83]. Since the potential interacting
proteins with JASON are membrane proteins localized on the chloroplast, we must evaluate the
BiFC signal on the chloroplast membrane. The primary objective of our BiFC analysis was to
segment chloroplasts, marked with mCherry and auto-fluorescence, and to segment the YFP
channel. Crucially, chloroplast regions of interest (ROIs) not overlapping with YFP signals
were discarded. This approach aligns with the earlier method of segmenting foci, where the
objective was to co-localize specific signals within the cellular structure.
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Our methodology was as follows:

• Cell Selection: We first identified cells exhibiting the mCherry signal, indicating suc-
cessful transient transformation, qualifying them for subsequent BiFC (YFP) signal eval-
uation.

• Chloroplast Segmentation: Chloroplasts were identified predominantly by their auto-
fluorescence. Only cells with a clear mCherry signal underwent chloroplast segmentation
to ensure transformation efficiency.

• BiFC (YFP) and mCherry Ratio Measurement: We then measured the YFP inten-
sity specifically on the chloroplast membranes. Concurrently, we quantified the mCherry
signal to establish the YFP/mCherry ratio, providing an index of protein-protein inter-
action strength.

We adopted a channel-wise approach for ground truth generation, similar to the FOCI mask
creation. YFP channel ground truths were generated analogous to chromosome mask gen-
eration. We introduced adjustments in image preprocessing, such as contrast enhancement
and dilation, which significantly improved segmentation detection, with a dice score reaching
approximately 0.73. The application of dilation was identified as a critical hyperparameter,
particularly for smaller ROI in segmentation challenges. The dilation window was varied based
on ROI statistics in the ground truth data.

Our dataset for BiFC analysis comprised 76 images, each with 2 channels of dimensions 1024×
1024 pixels and a depth of 8-bit gray-scale. This dataset included both positive and negative
control samples for various protein-protein interactions. The inference dataset (see Table. 5.3)
encompassed various samples representing different protein-protein interactions relative to the
control samples.

5.2.1 BiFC segmentation results and post-processing analysis

The segmentation module (Fig. 5.7), similar to that used in foci quantification, integrated a
post-processing block tailored for BiFC analysis. Network predictions, illustrated in (Fig. 5.8),

Figure 5.7: aMP segmentation module for BiFC segmentation.
The process begins with input fluorescence channels (YFP and mCherry) undergoing

segmentation via a U2-Net-based architecture. Initial segmentation masks for each channel
are then co-localized to identify overlapping regions. Post-processing refines these co-localized

masks to output quantifiable metrics such as the intensity ratio (IR) and area of the YFP
signal, critical for analyzing protein-protein interactions in BiFC assays.
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Sample ID Protein 1 Protein 2
S01 JAS-cYFP nYFP-TOC132
S03 JAS-cYFP nYFP-TOC120
S05 JAS-cYFP nYFP-TOC33
S06 JAS-cYFP nYFP-TOC34
S10 JAS-cYFP JAS-nYFP
S12 JAS-cYFP PS1-nYFP
S13 cYFP-TOC33 PS1-nYFP
S16 cYFP-TOC33 nYFP-PS1
S14 cYFP-TOC132 PS1-nYFP
S17 cYFP-TOC132 nYFP-PS1
S15 JAS-cYFP nYFP-PS1
S18 cYFP-JAS nYFP-JAS
S19 JAS-cYFP nYFP-JAS
S20 JAS1-130aa-cYFP nYFP-TOC33
S21 JAS131-250aa-cYFP nYFP-TOC33
S22 JAS251-365aa-cYFP nYFP-TOC33
S23 JAS365-480aa-cYFP nYFP-TOC33
S25 cYFP-JAS131-250aa nYFP-JAS
S26 cYFP-JAS251-365aa nYFP-JAS
S27 cYFP-JAS366-480aa nYFP-JAS

Table 5.3: BiFC inference dataset
Detailed tested protein-protein interactions

revealed an enhanced detection of the chloroplast region due to the network’s multiplicative
attention mechanism. This enhancement suggests an advanced feature extraction capacity that
could benefit from an expanded dataset in future studies.

Post-processing techniques like dilation and contrast enhancement were pivotal in accurately
localizing smaller regions of interest and mitigating noise artefacts from image preprocessing,
resulting in clearer segmentation outputs. Our primary objective was to compute the ratio of
YFP to mCherry signal intensities within the co-localized chloroplast mask, facilitating the
quantification of protein-protein interactions. The intensity ratio (IR) is calculated using the
following equation:

¯IR =
I(YFP channel)

I(mCherry channel)
(5.2)

This ratio quantitatively measures interaction strength within the BiFC assay framework. An-
alytical results depicted in Fig. 5.9 demonstrated that in the negative control samples, where no
interaction between JASON and the cytochrome b5 family of proteins (localized to the outer
membrane of the chloroplast) was expected, no YFP signal was detected despite the presence of
the mCherry signal. Conversely, positive controls involving known interacting proteins TOC34
and TOC132, as well as TOC34 and TOC120, exhibited strong YFP signals both in the cy-
tosol and on the chloroplast membrane, with a significantly higher YFP/mCherry ratio than
the negative control, validating the effectiveness of our BiFC analysis and experimental setup.

Subsequent experiments with our samples revealed a discernible interaction between TOC33
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and JASON, indicated by a higher YFP/mCherry ratio. However, no interaction was detected
with other combinations involving JASON. Further testing for dimerization suggested that N-
terminally tagged JASON molecules could interact with each other, hinting at JASON’s role
in facilitating organelle clustering during meiosis.

Figure 5.8: Comparative visualization of segmentation in BiFC analysis.
The left column displays contrast-enhanced dilated original microscopy images of tissues

undergoing protein-protein interactions. The middle column shows the corresponding ground
truth mask highlighting co-localised chloroplast, and the right column presents the

post-processed segmentation prediction, where co-localized regions of interest have been
isolated for quantitative analysis.

Figure 5.9: BiFC inference.
1. Jason interacts with TOC33 in BiFC assays; 2. Jason can dimerize, 3. PS1 doesn’t interact

with JASON nor TOCs in BiFC assays, 4. The part of its 131-250aa mainly derives JAS
dimerization
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5.3 Pollen counting

The segmentation module of our toolkit has been further refined to address the task of pollen
counting. This process focuses predominantly on the post-processing stage, where the primary
goal is to accurately isolate and enumerate pollen grains while effectively distinguishing them
from debris and other non-target elements commonly present in scan images. The enhancements
in the pollen segmentation module mirror the strategies employed in anther segmentation,
focusing on identifying and segmenting pollen grains. The key contributions to this enhanced
segmentation process are twofold:

1. The introduction of random noise and extraneous elements into the training images,
simulating various background scenarios. This augmentation enhances the model’s ro-
bustness, enabling it to isolate pollen grains reliably across diverse and unpredictable
background conditions that represent real-world scenarios. Mathematically, this can be
represented by augmenting the original image Fpollen with a noise function η, such that
the augmented image Fpollen aug is given by:

Fpollen aug = Fpollen + η(α, β) (5.3)

where η is a function introducing noise or random elements with parameters α and β
controlling the type and intensity of the augmentation.

2. The watershed algorithm [84], is used for the accurate counting and separation of overlap-
ping pollen grains. This algorithm conceptualizes the pixel values of a generated mask as
a topographical landscape, wherein the ’flooding’ of basins is initiated from local minima
within the mask image, also known as markers. As the process progresses, the basins ex-
pand until they converge on the watershed lines - boundaries between regions associated
with different markers. The mathematical formulation of the watershed transformation
is given by:

M′
watershed = Watershed(M,Mmarkers), (5.4)

where M denotes the initial segmentation mask, and Mmarkers represents the set of markers
that guide the segmentation process by defining the starting points of the ’flooding’
basins.

Post application of the watershed algorithm, the radius r of each segmented pollen grain
is derived from its area A. Assuming the grains are approximately circular, the radius
can be calculated using the area of a circle A = πr2, hence the radius is determined by
the equation:

Figure 5.10: aMP segmentation module for pollen count.
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Figure 5.11: Pollen segmentation with post-processed results.

r =

√
A

π
, (5.5)

, where A is the area of a pollen grain extracted from the segmented mask M′
watershed.

This radius computation facilitates the analysis of the size distribution of pollen within
a given sample, providing valuable insights for botanical research.

Our pollen dataset comprises 94 images of Arabidopsis thaliana (Col-0) sourced from four
distinct plants, which include samples from three flowers each and three separate branches.
Each image in the dataset has a resolution of 2584 × 1936 pixels. The inference dataset is
curated from a range of heat shock experiments that span from five to nine days, providing a
diverse set of conditions for analysis.

Ground truth annotations were meticulously generated following the methodology established
for FOCI mask creation, with manual intervention employed to remove extraneous material
such as dirt and other non-pollen tissue elements. During preprocessing, we have specifically
introduced a random background to the images, a step that significantly contributes to the
robustness of the network. This preprocessing simulates variable staining conditions and po-
tential foreign contamination, commonplace in real-world scenarios. The effectiveness of this
augmentation is quantitatively demonstrated by the network’s performance, achieving a dice
score of approximately 95%. This high level of accuracy underscores the network’s capability to
segment pollen effectively, validating its potential utility in experimental contexts characterized
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by staining variability and contaminant presence.

5.3.1 Segmented pollen and quantification

Fig. 5.11 shows a set of microscopy images and their corresponding segmentation analyses are
presented, showcasing the effectiveness of watershed post-processing in distinguishing and enu-
merating individual pollen grains. The first and third columns display the original microscopy
images of the pollen samples. These images capture the pollen grains amidst various back-
ground elements, including potential debris and artefacts inherent to the sample or the imag-
ing process. The second and fourth column provides a clearer visualization of the segmentation
against the original image backdrop, confirming the accuracy of the segmentation and the ap-
propriateness of the identified regions for further morphological analysis. Each segmented and
colour-highlighted pollen grain is accompanied by a numerical identifier, which corresponds
to measurements of the grain’s radius, denoted in pixels or micrometres, depending on the
calibration of the imaging system.

The successful segmentation and radius estimation (Fig.5.12) of each pollen grain underscore
the robustness of the watershed post-processing technique in resolving complex overlapping
structures. These results are instrumental for further quantitative analyses, such as assessing
pollen viability and morphological characterization of pollen.

Figure 5.12: Control sample at 21◦C

Control sample histograms representing the baseline pollen count distribution for standard
’Col0’ genotype pollen grains, critical for comparative pollen viability studies with different

duration heat-shock treatment.
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5.4 Conclusion

The aMP framework is designed to handle a variety of segmentation tasks with remarkable
ease adeptly. This framework has rapidly established itself as a pivotal baseline, paving the
way towards developing a foundational model tailored for plant physiological analysis. Its pri-
mary strength lies in its efficiency, particularly when augmented with application-specific post-
processing plugins, which significantly enhance its versatility and applicability across different
scenarios.

Looking forward, the aMP framework exhibits tremendous potential for integration with large
language models (LLMs). Such an amalgamation could revolutionize the computational analysis
landscape by streamlining processes and expanding the breadth of application variations it
can accommodate. The envisioned synergy between the aMP framework and LLMs opens up
exciting avenues for research and application, promising to elevate plant physiological analytics
to unprecedented levels of precision and efficiency. As we continue to refine and expand upon
this framework, we anticipate contributing a robust tool that will significantly advance the field,
offering researchers and practitioners a sophisticated yet user-friendly analytical instrument
capable of tackling the complex challenges inherent in plant physiology.
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Chapter 6

Discussion and Future Work

In exploring meiotic cell division dynamics within Arabidopsis thaliana, our study has estab-
lished a foundation for an advanced automated imaging system. This system not only addresses
the analytical challenges of today but also paves the way for future innovations in the field by
integrating automated microscopy, cell signalling analysis, and detailed examination of key
cellular structures has created a robust framework for further investigation.

Our automated microscopy module significantly advances toward real-time, precise observa-
tion of meiotic processes. This technology streamlines the imaging process by targeting specific
meiotic stages and introduces the possibility of developing real-time analytical tools. The ca-
pability to operate in real-time opens avenues for implementing generative AI applications
that can adapt and respond to the dynamic changes observed during meiosis, enhancing the
system’s utility and efficiency.

Understanding the synchrony in division progression among meiocytes is crucial for unravelling
the mechanisms of meiosis. The system’s ability to capture and analyze division events in
detail provides a solid foundation for deeper exploration into the signalling pathways that
regulate this process. Future efforts will aim to dissect the complex cell signalling networks,
ensuring the coordinated progression of meiocytes through meiotic stages, offering insights
into the regulation of meiosis and potential points of intervention for research and therapeutic
applications.

The precision with which our system identifies and analyzes structures-from nuclear envelope
breakdown (NEB) to anaphase onset and the alignment of kinetochores with microtubules,
demonstrates its capability to uncover subtle yet critical information. These insights are instru-
mental in understanding the physical and molecular dynamics during chromosome segregation.
Future assessments will leverage the system’s high-resolution imaging and analysis capabilities
to delve deeper into these phenomena, uncovering new dimensions of meiotic cell division.

Moreover, the adaptability of our framework is evidenced by its current modification for an-
alyzing maize meiosis progression. This extension demonstrates the system’s versatility and
highlights its potential applicability across a wide range of species and genetic contexts.

A promising avenue for future exploration is the development of deep learning (DL)–generated
3D structures from 2D stacked images using Generative Adversarial Networks (GANs) and
interpolation techniques. This approach aims to revolutionize our understanding of cellular
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architecture and dynamics by providing a comprehensive, three-dimensional view of meiotic
cells, thereby overcoming the limitations of traditional two-dimensional imaging.

In conclusion, our study introduces an automated system for detailed analysis of meiotic pro-
gression and lays the groundwork for developing generative AI applications in this domain.
The continued refinement and expansion of this system, its application to diverse species and
the exploration of advanced DL techniques significantly advance our understanding of meiosis
progression in different phases.
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Appendix A

Supplementary results

A.1 Pollen diameter for heat shock experiments

Figure A.1: Network evaluation on test images.
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Figure A.2: 6 days heat exposure (DAHS)
Pollen count viability histograms for ’cdka1++’ genotype pollen grains at 6 days heat

exposure (DAHS).

Figure A.3: 7 days heat exposure (DAHS)
Pollen count viability histograms for ’osd1-3++’ genotype pollen grains at 7 days heat

exposure (DAHS).
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Figure A.4: 8 days heat exposure (DAHS)
Histograms contrasting the pollen viability intensity distributions among various genotypes at

8 days heat exposure (DAHS).

Figure A.5: 9 days heat exposure (DAHS)
Boxplot distribution of pollen grain sizes measured in microns for multiple genotypes at 9

days heat exposure (DAHS), emphasizing the genotype-specific size variations observable in
mutant versus ’Col0’ strains.
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List of Abbreviations

A
ATM Ataxia-telangiectasia mutated
AI Artificial Intelligence

B
BiFC Bimolecular Fluorescence Complementation

C
CS Cell shape
CNN Convolutional Neural Network

D
DNA Deoxyribonucleic acid
DAHS Days After Heat Shock
DL Deep Learning

E
EB Entwicklung Biologie

F
FP False Positives
FN False Negatives
FC Fully Connected

G
GFP Green Fluorescence Protein
GT Ground Truth

H
HTE Hasibe Tuncay Elbasi
HT Hasibe Tuncay
HET Hasibe Elbasi Tuncay

I
IoU Intersection over Union
IDSW Identity Switches
IPM Institut für Pflanzenwissenschaften und Mikrobiologie
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J
JDJB Joke de Jaeger Braet

K
KINGBIRG Kleisin IN Green microtuBules In ReD

M
mAP Mean average precision
MT Microtubular array
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
MP Maria Prusicki
MvdH Max van der Heide

N
NP Nucleus position
NoP Nucleolus position
NCC Normalized Cross-Correlation

R
RC Chromatin expressed with REC8 marker
REC8 Meiotic Recombination Protein 8
RFP Red Fluorescence Protein
RSS Restricted Search Space

T
T Tapetum
TP tetraploid
TCX Tesmin/TSO1-like CXC

U
UHH Universität Hamburg

W
WT Wild-type

Y
YH Yuki Hamamura
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List of Software and Platform

Name Version URL Comment
Tensorflow 2.13 https://www.tensorflow.org/ Machine learning library
Python 3.11 https://www.python.org/ Supported version
HuggingFace - https://huggingface.co/spaces/arcan3 Deployed system
Git - https://gitlab.rrz.uni-hamburg.de Version control

Table A.2: Used Software and Platform.
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