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Abstract

X-ray free-electron lasers (XFELs) offer unique opportunities for unraveling ultra-
fast dynamics in matter and for imaging biomolecules with almost atomic resolu-
tion. For these attractive applications of XFELs, deepening our understanding of
the interaction of high-intensity X rays with individual atoms is essential. In a
single intense X-ray pulse, atoms are highly ionized by multiple sequences of one-
photon ionization events and accompanying decay processes. These X-ray multipho-
ton ionization dynamics are commonly simulated by a rate-equation approach for
electronic configurations. However, the configuration-based rate-equation approach
does not include individual quantum states and, thereby, is unsuitable for studying
the electron-cloud alignment of the produced atomic ions. It has been well-known
that atomic photoionization can align an electron cloud, initially being perfectly
spherically symmetric. But it is not clear how the alignment of the electron cloud
evolves during X-ray multiphoton ionization dynamics. However, such a study re-
quires a computationally expensive description of individual quantum states and
quantum-state-resolved atomic transitions and includes solving rate equations in a
generally extremely large space of states. In this thesis, I present a comprehensive
framework for quantum-state-resolved calculations of X-ray multiphoton ionization
dynamics of atoms and apply machine learning for handling the high computational
cost.

To this end, a quantum-state-resolved electronic-structure framework for isolated
atoms and atomic ions is introduced in the first part of the thesis. This framework
uses first-order many-body perturbation theory, which improves accuracy of tran-
sition energies. In addition, I employ quantum-state-resolved electronic-structure
calculations to study how much the electron cloud of argon ions can be aligned
through a single X-ray-induced atomic transition. A nonnegligible degree of align-
ment is observed.

Combining the quantum-state-resolved electronic-structure framework with a
Monte Carlo rate-equation method in a follow-up study enables me to calculate
quantum-state-resolved X-ray multiphoton ionization dynamics. Results for neon



atoms demonstrate that state-resolved calculations provide similar charge-state dis-
tributions, but more precise information about resonant excitations and electron
and photon spectra than the common configuration-based calculations. Moreover,
calculated time-resolved spectra of electrons and photons present detailed insight
into ultrafast dynamics of state-resolved X-ray multiphoton ionization. However,
performing such state-resolved calculations for atoms much heavier than neon is
very costly due to extremely time-consuming state-resolved calculations of a very
large number of atomic transition parameters.

Because of this limitation, I next present a strategy that embeds machine-
learning models for predicting atomic transition parameters into the state-resolved
calculation of X-ray multiphoton ionization dynamics. As potential machine-learning
models, I discuss feedforward neural networks and random forest regressors, which
exhibit a similarly acceptable, but limited accuracy. In addition, fully calculated and
machine-learning-based charge-state distributions and electron and photon spectra
are compared for argon atoms. The comparison demonstrates that the machine-
learning strategy works in principle and that the performance, in terms of charge-
state distributions and electron and photon spectra, is good.

Lastly, I apply the state-resolved X-ray multiphoton ionization dynamics calcu-
lations to explore the possibility to align the electron cloud of argon ions through
a linearly polarized XFEL pulse. The induced X-ray multiphoton ionization dy-
namics generate ions in a wide range of charge states with nonzero orbital- and
spin-angular momentum. While the electron-cloud alignment is suppressed with pro-
gressing ionization dynamics when averaging over all individual quantum states, the
simulations clearly demonstrate nonnegligible electron-cloud alignment for orbital-
angular-momentum- and charge-resolved states.

Overall, this thesis contributes to a deeper understanding of the interaction of
XFEL pulses with atoms by providing more accurate state-resolved information,
complemented by insight into electron-cloud alignment dynamics. It also estab-
lishes a first step toward computationally efficient calculations of X-ray multiphoton
ionization dynamics for easily examining a variety of atoms and XFEL beam pa-
rameters in the future.



Zusammenfassung

Freie-Elektronen-Röntgenlaser (XFELs) bieten einzigartige Möglichkeiten, ultra-
schnelle Dynamiken in Materie zu entschlüsseln und Biomoleküle mit nahezu atoma-
rer Auflösung abzubilden. Für diese attraktiven Anwendungen von XFELs ist ein
vertieftes Verständnis von der Wechselwirkung hochintensiver Röntgenstrahlung mit
individuellen Atomen essenziell. In einem einzelnen intensiven Röntgenlaserpuls
entstehen stark ionisierte Atome durch mehrere Sequenzen von Photonionisatio-
nen und begleitender Zerfallsprozesse. Diese röntgeninduzierten Vielphotonenion-
isierungsdynamiken werden gewöhnlich mit einem Ratengleichungsansatz für Elek-
tronenkonfigurationen simuliert. Jedoch berücksichtigt der konfigurationsbasierte
Ratengleichungsansatz keine individuellen Quantenzustände und ist somit zur Studie
der Elektronenhüllenausrichtung der produzierten atomaren Ionen ungeeignet. Es
ist bekannt, dass durch atomare Photoionisation eine anfänglich perfekt sphärisch
symmetrische Elektronenhülle ausgerichtet werden kann. Allerdings ist unklar, wie
sich die Ausrichtung der Elektronenhülle während der röntgeninduzierten Vielphoto-
nenionisierungsdynamiken entwickelt. Jedoch bedarf eine solche Studie eine rechen-
intensive Beschreibung einzelner Quantenzustände sowie quantenzustandsaufgelös-
ter atomarer Übergänge und erfordert die Lösung von Ratengleichungen in einem
im Allgemeinen extrem großen Zustandsraum. In dieser Arbeit präsentiere ich aus-
führliche quantenzustandsaufgelöste Berechnungen der röntgeninduzierten Vielpho-
tonenionisierungsdynamiken von Atomen und wende maschinelles Lernen zur Be-
wältigung des hohen Rechenaufwands an.

Dafür wird im ersten Teil der Arbeit ein Framework zur quantenzustandsaufge-
lösten Elektronenstrukturberechnung von isolierten Atomen und atomaren Ionen
eingeführt. Dieses Framework verwendet erste Ordnung Vielteilchenstörungstheo-
rie, wodurch die Genauigkeit der Übergangsenergien verbessert wird. Des Weiteren
wende ich die quantenzustandsaufgelösten Elektronenstrukturberechnungen an, um
zu untersuchen, wie stark die Elektronenhülle von Argonionen durch einen einzigen
röntgeninduzierten Prozess ausgerichtet werden kann. Ein nicht zu vernachlässigen-
der Grad an Ausrichtung wird beobachtet.



Die quantenzustandsaufgelösten Elektronenstrukturberechnungen kombiniere ich
in einer Folgestudie mit einer Monte Carlo Ratengleichungsmethode, was quanten-
zustandsaufgelöste Berechnungen von röntgeninduzierten Vielphotonenionisierungs-
dynamiken ermöglicht. Ergebnisse für Neonatome zeigen, dass die zustandsaufgelös-
ten Berechnungen ähnliche Ladungszustandsverteilungen aber präzisere Informati-
onen über resonante Anregungen sowie Elektronen- und Photonenspektren liefern als
die gewöhnlichen konfigurationsbasierten Berechnungen. Zudem bieten zeitaufgelös-
te Berechnungen von Elektronen- und Photonenspektren detaillierte Einblicke in
die ultraschnelle Dynamik der zustandsaufgelösten Vielphotonenionisation. Jedoch
sind solche zustandsaufgelösten Berechnungen für wesentlich schwere Atome als
Neon sehr aufwendig, extrem zeitaufwändiger zustandsaufgelöster Berechnungen
einer riesigen Anzahl an atomaren Übergangsparameten wegen.

Aufgrund dieser Einschränkung bringe ich als nächstes eine Strategie vor, welche
Modelle des maschinellen Lernens zur Vorhersage atomarer Übergangsparameter in
die zustandsaufgelöste Berechnung der röntgeninduzierten Vielphotonenionisierungs-
dynamiken einbettet. Als mögliche Modelle diskutiere ich Neuronale Netze und
Random-Forest-Regressoren, welche eine ähnlich akzeptable aber begrenzte Genau-
igkeit aufweisen. Weiterhin werden vollständig berechnete und auf maschinellem
Lernen basierte Ladungszustandsverteilungen sowie Elektronen- und Photonenspek-
tren für Argonatome verglichen. Der Vergleich zeigt, dass die Strategie des maschi-
nellen Lernens prinzipiell funktioniert und dass die Leistung bezüglich Ladungszu-
standsverteilungen sowie Elektronen- und Photonenspektren gut ist.

Abschließend wende ich die zustandsaufgelösten Berechnungen der Vielphoto-
nenionisierungsdynamiken an, um zu untersuchen, inwieweit die Elektronenhülle
von Argonionen durch einen linear polarisierten XFEL-Puls ausgerichtet wird. Die
induzierten Vielphotonenionisierungsdynamiken produzieren Ionen in verschieden-
sten Ladungszuständen mit von Null verschiedenen Bahn- und Spindrehimpuls.
Während bei einer Mittelung über alle einzelnen Quantenzustände die Elektronen-
hüllenausrichtung mit fortschreitender Ionisierungsdynamik gehemmt wird, zeigen
die Simulationen eindeutig eine nicht zu vernachlässigende Elektronenhüllenausrich-
tung für Zustände, die nach Bahndrehimpuls und Ladung aufgelöst sind.

Insgesamt trägt diese Arbeit zu einem tieferen Verständnis von der Wechsel-
wirkung von XFEL-Pulsen mit Atomen bei, indem sie genauere quantenzustands-
aufgelöste Informationen liefert, die durch Einblicke in die Ausrichtungsdynamik
der Elektronenhüllen ergänzt werden. Sie stellt auch einen ersten Schritt zu effizien-
ten Berechnungen der Vielphotonenionisierungsdynamiken dar, um zukünftig eine
Vielzahl von Atomen und XFEL-Strahlparametern besser untersuchen zu können.
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Chapter 1

Introduction

X-ray free-electron lasers (XFELs) [1–5], developed during the past two decades,
offer highly attractive and exciting opportunities for determining the structure and
dynamics of matter on atomic length and time scales [6–10]. But they also confront
scientists with new challenges. XFELs provide ultraintense (∼ 1012 photons per
pulse) and ultrashort (∼ 10 femtoseconds) X-ray pulses [9, 11] with a peak bright-
ness that is much larger than for synchrotrons. This enormous peak brightness
enables to unravel the three-dimensional structure of complex biomolecules with al-
most atomic resolution [6, 7, 12–17] using serial femtosecond crystallography [14, 15]
and single-particle imaging [12, 13] experiments. These experiments employ micro-
and nanocrystals and eventually individual single molecules and, therefore, make it
possible to study biomolecules that cannot be crystallized. However, the inevitably
high intensity of X-ray photons unavoidably damages the electronic structure of the
investigated molecule and, as a consequence, the molecule undergoes structural dis-
integration. This radiation damage [18–23] clearly limits the attractive applications
of XFELs. Electronic-structure damage predominantly results from the interaction
of X rays with the individual atoms of the molecules [20].

Therefore, deepening our understanding of the interaction of high-intensity X
rays with atoms is crucial. When an atom is exposed to an intense X-ray pulse, it ab-
sorbs more than one X-ray photon via sequences of one-photon ionization events tak-
ing mostly place in inner shells [24, 25]. Accompanying decay processes via Auger-
Meitner decay and/or X-ray fluorescence [24, 26] refill the produced inner-shell holes
and, thus, enable further inner-shell photoionization. As a result of these so-called
X-ray multiphoton ionization dynamics [24], the atom becomes very highly ionized
within a single X-ray pulse [25–30]. This is indeed a serious electronic-structure
modification. X-ray multiphoton ionization dynamics are commonly simulated by
solving a coupled set of rate equations [25, 31, 32] describing the time-dependent
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Chapter 1. Introduction

populations of the electronic configurations visited during the X-ray multiphoton
ionization dynamics. This configuration-based rate-equation approach has already
been widely used and successfully applied for interpreting and designing many XFEL
experiments [25, 27–47]. Its first validation was for neon atoms [25, 31], studied in
the first experiments at the Linac Coherent Light Source (LCLS) in California,
United States of America [1, 48]. Follow-up studies for neon have demonstrated the
importance of including shake-off effects [34, 49], direct nonsequential two-photon
ionization in excited neon ions [34, 50], and resonant photoabsorption transitions
at certain X-ray photon energies [35]. Furthermore, X-ray multiphoton ionization
dynamics in heavier atoms [26–30, 33] and molecules [36–39, 51] have been explored
and also for other atoms than neon relevant resonant photoabsorption transitions
have been found [27, 28, 40–44]. Frustrated absorption [39], also called intensity-
induced X-ray transparency [25], is yet another interesting and investigated phe-
nomenon [25, 39, 41]. It considers the suppression of X-ray multiphoton ionization
dynamics by shorter X-ray pulse durations due to hollow-atom formation and reduc-
tion of decay processes [24]. Typically, the studies on X-ray multiphoton ionization
dynamics measure the ions produced by the X-ray pulse [25–30, 34, 35, 40–42, 49] as
well as electron spectra [26, 41, 51, 52] and photon spectra [26, 28, 49, 51]. However,
studying the electron-cloud alignment of the produced ions can deliver complemen-
tary information.

Photoionization generally induces an alignment of the electron cloud of the pro-
duced ions with nonzero orbital-angular momentum [53–60] due to different ioniza-
tion probabilities for different orbital-angular-momentum projection states. This
alignment manifests itself in a spatial reshaping of the electron cloud [61] even if
initially the electron cloud is perfectly spherically symmetric for closed-shell atoms.
Comparably strong alignments have been encountered in strong-field ionized [62, 63]
and resonantly excited [64] atoms. Recently, a nonnegligible alignment has the-
oretically been demonstrated for krypton ions up to Kr3+ produced by extreme
ultraviolet (XUV) pulses [65]. This study focused on single ionization events and
did not include previous ionization sequences. For sequential double and triple
ionizations driven by XUV pulses, photoelectron angular distributions have been
investigated [66–70]. Photoelectrons already display a fundamental anisotropy in
their angular distribution when being emitted from an unaligned atom [71–73]. But
when they are emitted from an aligned ion, this fundamental anisotropy is modi-
fied [66]. As a consequence of electron-cloud alignment, also emitted Auger-Meitner
electrons and fluorescence photons are anisotropically distributed [60, 74–78]. Flu-
orescence photons are also polarized [74, 79, 80]. On the one hand, anisotropies in
the angular distribution of emitted electrons and photons make electron-cloud align-
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ment experimentally accessible [56–58, 78, 80]. On the other hand, angle-resolved
spectroscopy experiments [67, 69, 81, 82] may profit from theoretical knowledge of
electron-cloud alignment and the resulting anisotropies in the angular distribution
of emitted electrons and photons. However, it is not clear how the electron-cloud
alignment evolves during X-ray multiphoton ionization dynamics and how it will be
measurable in XFEL experiments.

Addressing these questions requires to consider individual quantum states during
the X-ray multiphoton ionization dynamics, which are not captured by the com-
mon configuration-based rate-equation approach. Therefore, a state-resolved rate-
equation approach is necessary, whose basis is a quantum-state-resolved description
of atomic ions and X-ray-induced atomic transitions. A state-resolved rate-equation
approach is not only crucial for exploring electron-cloud alignment, but also interest-
ing for investigating how ion, electron, and photon spectra profit from a more pre-
cise state-resolved description. To solve rate equations that describe time-dependent
quantum state populations, it is necessary to include all possible electronic quan-
tum states that may be formed by removing zero, one, or more electrons from the
ground state of the neutral atom. The corresponding number of involved quantum
states goes far beyond the number of involved electronic configurations, which is
already very large for heavy atoms [40]. Consequently, apart from very light atoms
like neon, solving state-resolved rate equations in an extremely large space of states
will be unavoidable. A way to efficiently perform huge-sized rate-equation calcu-
lations is the Monte Carlo rate-equation method [26, 29], applied for heavy atoms
in the configuration-based approach. However, even with such a Monte Carlo rate-
equation method, computationally expensive, first-principle calculations of a huge
number of state-resolved atomic transition parameters are necessary in the state-
resolved rate-equation approach. This limits its potential applications to light atoms
and to XFEL beam parameter scans with only a very few selected scanning points.

Therefore, it is natural to ask whether this critical challenge of high computa-
tional effort might be addressed by applying a suitable machine-learning strategy.
Dating back to the 1950s [83, 84], machine learning, deep learning included, has
recently become really popular. It is nowadays applied in almost all areas of mod-
ern life [84, 85] ranging from private media usage [86–89] to industry [90–93] and
healthcare [94–99]. Its increasing popularity mainly results from the development
of very powerful computers and from the massive amount of data, now being avail-
able. Machine learning efficiently processes large amounts of data by recognizing
useful patterns in the data and by applying the learned patterns to tasks like pre-
diction [83, 84], classification [83, 84], image and speech recognition [100–103], and
natural language processing [104, 105]. With that, machine learning is also well-
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Chapter 1. Introduction

suited for supporting natural science in various ways [106–108]. The prototype ex-
ample is the application to protein structure predictions with atomic accuracy [109].
Other important applications of machine learning include the prediction of X-ray
absorption spectra [110–113], the identification of phase transitions in condensed
matter [114], the characterization and calibration of laser pulses [115–118], as well
as its use in electronic-structure theory [119–124], just to name a few (for more see,
e.g., Refs. [106, 107] and references therein). One high-impact role that machine
learning has been playing in electronic-structure theory so far is in speeding up
the construction of potential energy surfaces [125–128]. A recent review about the
progress of machine learning in the context of potential energy surfaces can be found
in Ref. [129]. Furthermore, an interesting approach is to reduce the high computa-
tional effort in configuration interaction calculations by preselecting only the most
important configurations via machine-learning models [130, 131]. However, machine
learning has not been applied yet for handling extremely large numbers of atomic
transition parameters, required in huge-sized rate-equation calculations.

To sum up, the most important questions that have arisen are:

• Is it possible to develop a state-resolved rate-equation approach for describing
X-ray multiphoton ionization dynamics, and in which way does it extend our
current understanding?

• Can machine learning help to make the state-resolved rate-equation calcula-
tions computationally efficient?

• How is the electron cloud of atoms aligned through an ultraintense and ultra-
fast X-ray pulse generated by XFELs?

In this thesis, I address these questions by extending the ab initio electronic-
structure and ionization dynamics toolkit xatom [20, 132]. xatom simulates X-
ray multiphoton ionization dynamics of atoms based on the configuration-based
rate-equation approach. The underlying electronic-structure calculations are per-
formed using the Hartree-Fock-Slater approximation [133], being one of the sim-
plest and most efficient first-principle electronic-structure methods. There are,
of course, more accurate but computationally more expensive electronic-structure
methods [134, 135]. However, computational efficiency is crucial for xatom because
even the number of electronic configurations involved in the configuration-based
rate-equation approach is extremely large for heavy atoms [40]. In my prior mas-
ter thesis [136], xatom has already been extended by a quantum-state-resolved
electronic-structure framework, which is based on first-order many-body perturba-
tion theory and which improves the accuracy of transition energies.

6



Thesis outline

In this cumulative dissertation, I theoretically study state-resolved X-ray multipho-
ton ionization dynamics of atoms based on a developed state-resolved Monte Carlo
rate-equation implementation in xatom. The theoretical concepts used in this thesis
are reviewed in Chapter 2. My scientific contributions are the topic of Chapter 3.
In particular, Sec. 3.1 introduces the quantum-state-resolved electronic-structure
framework. It delivers the basis for the state-resolved Monte Carlo rate-equation
implementation, presented in Sec. 3.2. I consider how the high computational cost
of this state-resolved Monte Carlo rate-equation implementation can be tackled by
a machine-learning strategy in Sec. 3.3, while I apply it to explore electron-cloud
alignment dynamics during an intense linearly polarized X-ray pulse in Sec. 3.4. The
thesis finishes with a conclusion and future perspectives in Chapter 4.
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Chapter 2

Theoretical Framework

This chapter provides a general introduction to the theoretical framework into which
this thesis is embedded. The theories on which each individual scientific contribution
is essentially based are discussed in separate sections according to the order of the
scientific publications in Chapter 3.

2.1 Electronic-structure calculations

To simulate X-ray multiphoton ionization dynamics, a suitable electronic-structure
framework is necessary for efficiently describing atoms, atomic ions, and X-ray-
induced transitions between them. This section outlines the theory of electronic-
structure calculations based on more detailed discussions in Refs. [136–138]. Through-
out this and the following sections, atomic units, i.e., m = |e| = h̄ = 1 and c = 1/α

are employed, where α is the fine-structure constant.

2.1.1 The Hamiltonian and its solutions

The fundamental Hamiltonian The problem to solve is that of N nonrelativis-
tically treated electrons in an isolated atom or ion of nuclear charge Z. According
to the Born-Oppenheimer approximation [139, 140] the nucleus is assumed to be at
rest (position zero) and the focus is on the electrons only. They are described by
the following electronic Hamiltonian [140]

Ĥmatter =
N∑

i=1

{
−1

2
∇2

i −
Z

|xi|

}
+

1

2

N∑

i,j
i ̸=j

1

|xi − xj|
(2.1)

9



Chapter 2. Theoretical Framework

with xi being the position vector of an electron in the atom or ion. Ĥmatter contains a
kinetic energy term, an attractive electron-nucleus interaction term, and a repulsive
electron-electron interaction term for each electron. Due to the latter term, finding
exact solutions to Ĥmatter is impossible (when N > 1).

For this reason, a common approach is to decompose Ĥmatter into a mean-field
Hamiltonian ĤMF and a residual electron-electron interaction V̂res via

Ĥmatter = ĤMF + V̂res. (2.2)

ĤMF approximates the electron-electron interaction term by a mean-field potential
V̂MF, which individually acts on the electrons (i.e.,

∑
i only). Each electron can be

thought of as being in an effective potential formed by the nucleus and all other
electrons. The part of the full electron-electron interaction that is not captured by
V̂MF is contained in V̂res. In this way, the problem is reduced to finding solutions to
ĤMF only. A suitable mean-field Hamiltonian has a good balance between minimum
computational effort to solve the equations and maximum possible impact of the
electron-electron interaction.

The Hartree-Fock-Slater Hamiltonian A very simple but efficient choice for
ĤMF is the Hartree-Fock-Slater (HFS) Hamiltonian ĤHFS [133]. It is given by

ĤHFS =
N∑

i=1

{
−1

2
∇2

i + V̂HFS(xi)

}
, (2.3a)

with

V̂HFS(xi) = − Z

|xi|
+

∫
d3xj

ρ(xj)

|xi − xj|
− 3

2

[
3

π
ρ(xi)

] 1
3

, (2.3b)

where ρ(x) is the local electron density.

The one-electron solutions of ĤHFS are the so-called spin orbitals φq with spin-
orbital energies εq. They solve the effective one-electron HFS equation

[
−1

2
∇2 + V̂HFS(x)

]
φq(x) = εqφq(x). (2.4)

For bound spin orbitals (εq < 0), the spin-orbital index q consists of a set of four
quantum numbers: the principal quantum number nq, the orbital-angular momen-
tum lq, and the orbital- and spin-angular-momentum projections mlq and msq . For
unbound spin orbitals (εq ≥ 0), nq is replaced by the spin-orbital energy εq. In this
way, φq decomposes into a radial part, an angular part given by a spherical harmonic
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2.1. Electronic-structure calculations

Y
mlq

lq
, and a spin part, such that

φq(x) =
uξq ,lq(r)

r
Y

mlq

lq
(θ, ϕ)

(
δmsq ,

1
2

δmsq ,− 1
2

)
, (2.5)

with ξq = nq for εq < 0 and ξq = εq for εq ≥ 0. As a consequence of the decomposition
of φq, the problem of solving N effective one-electron HFS equations [Eq. (2.4)]
reduces to radial HFS equations for the subshells occupied in the atom or ion. For
each subshell, characterized by n and l quantum numbers, a bound radial orbital un,l

needs to be calculated via a radial HFS equation. The orbital energy εnl is shared
by all φq that belong to the subshell nl. When eventually desired, some unbound
radial orbitals uε,l for certain electron energies ε ≥ 0 are calculated via radial HFS
equations as well.

Note that the electron density is given by ρ(x) =
∑N

q=1 φ
†
q(x)φq(x) and, thus,

V̂HFS [Eq. (2.3b)] depends already on its solutions φq. Therefore, the radial HFS
equations have to be solved in a self-consistent way. Consequently, each atomic
species and each electronic configuration has its own radial orbitals and orbital en-
ergies, which need to be recalculated when considering a new atomic species or elec-
tronic configuration. (For more detail about numerically solving the self-consistent
HFS equations, the reader is referred to Refs. [20, 132]).

The antisymmetrized product of the one-electron solutions build up the N -
electron solutions of ĤHFS [141]. These so-called electronic Fock states |Φα⟩ are
expressed as

|Φα⟩ =
∞∏

q=1

|nα
q ⟩. (2.6)

Here, nα
q is the occupation of the spin orbital φq in the Fock state with index α.

It is restricted to nα
q ∈ {0, 1} due to the Pauli exclusion principle and its sum is

restricted by
∑∞

q=1 n
α
q = N . The energy of a Fock state is determined by

Eα =
∑

n,l

Nnlεnl (2.7)

with the subshell nl being occupied by Nnl electrons. (When unbound spin orbitals
with energy ε are involved, they are added as well with Nnl = 1 and εnl = ε.)

Beyond the Hartree-Fock-Slater Hamiltonian The HFS approximation can
be improved through first-order many-body perturbation theory [140, 142]. The
basis for perturbation theory is the decomposition of Ĥmatter in Eq. (2.2). In this
way, ĤHFS is the unperturbed Hamiltonian, the Fock states |Φα⟩—the N -electron
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solutions of ĤHFS—are the unperturbed zeroth-order states, and V̂res is the pertur-
bation. Because the Fock states belonging to the same electronic configuration share
the same energy [Eq. (2.7)], degenerate first-order many-body perturbation theory
is employed. The objective of degenerate perturbation theory is the creation of the
matrix representation

〈
Φα

∣∣∣Ĥmatter

∣∣∣Φβ

〉
in the degenerate subspace of Fock states

belonging to the electronic configuration of interest. Diagonalizing the resulting ma-
trix yields improved first-order-corrected energies and linear combinations of Fock
states, which generally provide a better description of the electronic states.

2.1.2 X-ray-induced atomic transitions

Having at hand electronic states for atoms and ions, we discuss the transitions
induced in an atom or ion by interaction with X rays. The nucleus is too heavy
to noticeably interact with X rays and, as before, the focus is on the electrons
only [138]. Before describing the interaction between X rays and electrons, let us
ask why this interaction is of interest at all. There are two main reasons for probing
atoms or generally matter with X rays: (i) Their photon energy ranges from a few
hundred electron volt (eV) for soft X rays to several kilo electron volt (keV) for hard
X rays [138]. Because K(1s)-shell binding energies range from 24.6 eV for helium
(Z = 2) to 34.6 keV for xenon (Z = 54) [143], a single X-ray photon can ionize an
inner-shell electron for most atoms. As a consequence of inner-shell photoionization,
more complex ionization dynamics in atoms, including ultrafast decay processes, can
be probed with X rays than with less energetical photons, which can ionize only outer
valence shells. (ii) The photon energy Eph in keV is related to a wavelength λph in
ångstrom (Å) via [144]

λph[Å] =
12.4

Eph[keV]
. (2.8)

Due to the inverse proportionality, the large X-ray photon energies result in very
short wavelengths of just a few Å. Therefore, X rays principally permit imaging of
objects with almost or even atomic resolution. With that said, let us now describe
the interaction between X rays and electrons and the resulting X-ray-induced atomic
transitions in a more detailed fashion.

Photon-electron interaction Hamiltonian When neglecting relativistic effects,
photons (more general than X rays) and electrons are coupled by the following in-
teraction Hamiltonian [138]

Ĥint = α
∑

p,q

ĉ†pĉq

〈
φp

∣∣∣∣Â(x) ·
∇
ı

∣∣∣∣φq

〉
+

α2

2

∑

p,q

ĉ†pĉq
〈
φp

∣∣∣Â2(x)
∣∣∣φq

〉
, (2.9a)

12



2.1. Electronic-structure calculations

(b)
e-
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e-

Figure 2.1: Diagrams of X-ray-induced atomic transitions considered in the present
thesis. (a) Photoionization, (b) resonant photoabsorption, (c) fluorescence, and (d)
Auger-Meitner decay.

with the vector-potential operator

Â(x) =

√
2π

V α2

∑

k,λ

1√
ωk

{
âk,λϵk,λe

ık·x + â†k,λϵ
∗
k,λe

−ık·x
}
. (2.9b)

Here, V is the quantization volume of the photon field. Note that Ĥint [Eq. (2.9a)]
and Â(x) [Eq. (2.9b)] are written in the formalism of second quantization with re-
spect to both photons and electrons because it is one of the simplest formalisms for
describing X-ray-induced transitions. To this end, we introduce creation and anni-
hilation operators, ĉ†p and ĉq, for the electrons, associated with the spin orbitals φp

and φq, respectively. Because electrons are fermions, ĉ†p and ĉq are anticommutating
operators [138, 141, 145, 146]. Similarly, for the photons, we introduce creation and
annihilation operators, â†k,λ and âk,λ. They are associated with a photon in the pho-
ton mode characterized by a wave vector k, a polarization vector ϵk,λ (λ = 1, 2), and
an energy ωk = |k|

α
(in atomic units). But because photons are bosons, â†k,λ and âk,λ

are commutating operators [138, 146, 147]. (For a deeper insight into the formalism
of second quantization, the reader is referred to Refs. [137, 138, 141, 145, 147, 148].)
It should be pointed out that only one part of Ĥint [Eq. (2.9a)] and Â(x) [Eq. (2.9b)]
is actively involved in an X-ray-induced atomic transition. The specific part involved
depends on the X-ray-induced transition under consideration.

Four X-ray-induced atomic transitions are of special importance for the present
thesis. These X-ray-induced atomic transitions are depicted in Fig. 2.1 and briefly
discussed in the following.

Photoionization Photoionization [Fig. 2.1(a)] describes the process in which an
atom or ion absorbs a single X-ray photon, while it ejects one of its bound elec-
tron into the continuum [24, 136, 138, 149]. The atom or ion becomes (further)
ionized. This process is driven by the Â · ∇

ı
term of Ĥint [Eq. (2.9a)], describing a
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one-photon and one-electron process and involves the âk,λ term of Â(x) [Eq. (2.9b)],
corresponding to photon annihilation. Because the energy is conserved during pho-
toionization, the energy of the ejected photoelectron is ε = ωkin +EN

i −EN−1
f , which

has to be > 0 for a continuum state. Here, ωkin is the energy of the absorbed X-ray
photon. EN

i and EN−1
f are the energies of the initial (index i) and final (index f)

electronic states of N and N − 1 electrons, respectively. For a transition between
two specific initial and final states, the threshold energy EN−1

f − EN
i determines

the minimum energy ωkin that is necessary for this photoionization transition to be
energetically allowed [138]. If the X-ray photon energy is sufficiently large to ionize
inner-shell electrons, inner-shell photoionization is, generally, much more likely than
valence-shell photoionization [20, 24].

Resonant photoabsorption When ωkin is smaller than the threshold energy,
resonant photoabsorption [Fig. 2.1(b)] can take place. Resonant photoabsorption
is similar to photoionization. But an electron is transferred into an energetically
higher-lying orbital in a partially occupied or empty subshell instead of the con-
tinuum. Therefore, it stays bound (ε < 0). Owing to the energy conservation,
only a very few selected transitions are possible at all for a given sharp ωkin . This
strong restriction is, generally, softened by considering an energy distribution around
ωkin [40].

Fluorescence Photoionization and resonant photoabsorption generate ions in ex-
cited electronic states of high energy. As a consequence, these ions partly relax by
giving off their excess energy through spontaneous emission of a photon of energy
ωF [24, 136, 138, 150]. The photon emission is accompanied by the refilling of a
hole by an electron from an energetically higher-lying orbital. This process is called
fluorescence [Fig. 2.1(c)]. For inner-shell holes, ωF = EN

i − EN
f , generally, lies in

the X-ray photon energy region (more than a few hundred eV). In this case, the
process is also called X-ray fluorescence. Likewise to photoionization, fluorescence
is driven by the Â · ∇

ı
term of Ĥint [Eq. (2.9a)]. But because a photon is created not

annihilated, the â†k,λ term of Â(x) [Eq. (2.9b)] is involved.

Auger-Meitner decay Especially for atoms with low nuclear charge Z, like neon
(Z = 10) or argon (Z = 18), the relaxation is dominated by Auger-Meitner de-
cay [24, 136, 138, 150]. In Auger-Meitner decay [Fig. 2.1(d)], the ion relaxes via
emission of an electron of energy ε = EN

i −EN−1
f > 0 into the continuum, while an-

other bound electron refills a hole in an energetically lower-lying orbital. In contrast
to the previous X-ray-induced transitions, Auger-Meitner decay is purely electronic,
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2.1. Electronic-structure calculations

without any photon being directly involved. Therefore, the photon-electron inter-
action Hamiltonian [Eq. (2.9a)] cannot serve as Ĥint. Instead, the electron-electron
Coulomb interaction mediates the Auger-Meitner decay and, thus, in the mean-field
approximation (Sec. 2.1.1), it is Ĥint = V̂res [136, 138].

Other X-ray-induced atomic transitions There are, of course, further pos-
sible X-ray-induced atomic transitions [24, 132]. Photoionization also occurs via
direct nonsequential multiphoton ionization [34, 50], where several X-ray photons
are simultaneously absorbed. This process involves artificial intermediate electronic
states that cannot be resonantly populated. However, for X rays, direct nonsequen-
tial multiphoton ionization is clearly a very weak process compared to one-photon
ionization. To first order in Ĥint, elastic and inelastic X-ray scattering [138, 151–153]
is mediated by the Â2 term of Ĥint [Eq. (2.9a)]. Whereas elastic X-ray scattering
only affects the X-ray photons, but leaves the bound electrons unaffected, bound
electrons can be excited by inelastic X-ray scattering. But scattering probabilities
are more than one order of magnitude smaller than photoionization probabilities
for photon energies ≤ 10 keV [154]. Furthermore, photons may not only be sponta-
neously emitted by fluorescence, but are also generated by stimulated emission [24].
Stimulated emission leads to coherent effects like Rabi flopping [155–160], which
are, however, minor effects for a stochastic ensemble of X-ray pulses based on the
self-amplified spontaneous emission principle [155–157]. Note that in an atomic gas,
stimulated emission can be driven by X-ray fluorescence photons emitted from ions
produced first by an X-ray pulse. When the X-ray pulse propagates through an elon-
gated atomic gas and produces more atoms in excited states, stimulated emission
is exponentially amplified. This amplification of stimulated emission results in an
atomic X-ray lasers [161, 162], but is beyond the scope of this work, which focuses
on isolated atoms. Moreover, double photoionization and double Auger-Meitner de-
cay via shake-off and knockout mechanisms [163–165] lead to the emission of several
electrons and are known to be nonnegligible processes [34, 49, 62, 165]. But de-
scribing these higher-order many-body processes requires a higher-level description
of electronic states, including electron-electron correlation effects. None of these
further X-ray-induced atomic transitions is included in the present thesis. For the
sake of computational efficiency of the generally cumbersome X-ray multiphoton
ionization dynamics calculations (Sec. 2.2), the focus is only on the most relevant
and easy to calculate X-ray-induced atomic transitions, which are given in Fig. 2.1.

Transition rate Next, we consider the probability PI→F that an atom or ion
initially in state |I⟩ undergoes a specific X-ray-induced atomic transition into a
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final state |F ⟩. To calculate PI→F for a transition, time-dependent perturbation
theory [138] is applied using

Ĥ = Ĥmatter + Ĥph + Ĥint. (2.10)

Here, Ĥmatter is the approximated electronic Hamiltonian (Sec. 2.1.1) and Ĥph =∑
k,λ ωkâ

†
k,λâk,λ is the photonic Hamiltonian (ignoring the zero point energy). To-

gether they form the unperturbed Hamiltonian Ĥ0 = Ĥmatter + Ĥph, whereas the
underlying interaction Hamiltonian Ĥint is the perturbation. Although the X-ray-
induced interaction is actually not a small perturbation for high-intensity X rays [24],
this assumption sufficiently and efficiently describes X-ray-induced atomic transition
for X-ray multiphoton ionization dynamics (Sec. 2.2).

The initial state |I⟩ = |ΨN
i ⟩|N in

ph⟩ consists of the N -electron state |ΨN
i ⟩ and the

pure photonic state |N in
ph⟩. |ΨN

i ⟩ is an eigenstate of the approximated Ĥmatter with
energy EN

i , e.g., an electronic Fock state or an improved state (Sec. 2.1.1)—but
its exact specification does not matter here. |N in

ph⟩ describes the incoming photon
state with N in

ph photons in the mode with kin and ϵkin,λin and is an eigenstate of Ĥph

with energy Ein
ph = N in

phωkin . Consequently, |I⟩ is an eigenstate of Ĥ0 with energy
EI = EN

i + Ein
ph.

Initially in |I⟩, the state |Ψ(t)⟩int evolves in time due to the X-ray-induced inter-
action. In the interaction picture [166], employed here, the time evolution is solely
caused by Ĥint. This means that the time factor e−ıĤ0t is eliminated. Thus, |Ψ(t)⟩int

evolves according to the following equation of motion [138, 166]

ı
∂

∂t
|Ψ(t)⟩int = eıĤ0tĤinte

−ϵ|t|e−ıĤ0t|Ψ(t)⟩int, (2.11)

with ϵ > 0 ensuring that ∂
∂t
|Ψ(t)⟩int = 0 for t → ±∞. Integrating Eq. (2.11) from

−∞ to some final time tf and inserting the initial condition lim
t→−∞

|Ψ(t)⟩int = |I⟩
yields the recursive formula

|Ψ(tf )⟩int = |I⟩ − ı

∫ tf

−∞
dteıĤ0tĤinte

−ϵ|t|e−ıĤ0t|I⟩

−
∫ tf

−∞
dt

∫ t

−∞
dt′eıĤ0tĤinte

−ϵ|t|e−ıĤ0teıĤ0t′Ĥinte
−ϵ|t′|e−ıĤ0t′|I⟩

+ · · · ,

(2.12)

where · · · refers to terms with three and more time integrals.

To obtain the transition probability PI→F for reaching a final state |F ⟩ in the
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end of the interaction, tf is set to ∞ [141], so that

PI→F = |⟨F |Ψ(tf → ∞)⟩int|2. (2.13)

Note that the final state |F ⟩ with energy EF is defined similar to |I⟩, and so are
the subsequently introduced intermediate states |M⟩ with energies EM . Employing
Eq. (2.12), assumming orthonormality of states, inserting 1 =

∑
M |M⟩⟨M |, and

utilizing the definition of the delta distribution, PI→F is expressed by the recursive
formula

PI→F =
∣∣∣2πδ(EF − EI)

{〈
F
∣∣∣Ĥint

∣∣∣ I
〉

+
∑

M

1

EI − EM + ıϵ

〈
F
∣∣∣Ĥint

∣∣∣M
〉〈

M
∣∣∣Ĥint

∣∣∣ I
〉

+
∑

M,M ′,···
· · ·
}∣∣∣

2

.

(2.14)

Here, · · · refers to terms summing over two and more intermediate states |M⟩. Note
that |δ(x)|2 = δ(x) dt

2π
[138] for some time interval dt. Thus, the transition rate (the

transition probability per unit time) is given by

ΓI→F = 2πδ(EF − EI)
{∣∣∣
〈
F
∣∣∣Ĥint

∣∣∣ I
〉

+
∑

M

1

EI − EM + ıϵ

〈
F
∣∣∣Ĥint

∣∣∣M
〉〈

M
∣∣∣Ĥint

∣∣∣ I
〉

+
∑

M,M ′,···
· · ·
∣∣∣
2}

.

(2.15)

In first-order time-dependent perturbation theory, this simplifies to

ΓI→F = 2πδ(EF − EI)
∣∣∣
〈
F
∣∣∣Ĥint

∣∣∣ I
〉∣∣∣

2

. (2.16)

The delta distribution guarantees the energy conservation during the X-ray-induced
atomic transition. It can be eliminated by integrating over the continuum of final
energy states.

Cross section For photoionization and photoabsorption, the transition rate ΓI→F

depends on the number of incoming photons. In these cases, it is, therefore, useful
to employ a quantity independent of the number of incoming photons. A convenient

17



Chapter 2. Theoretical Framework

quantity, closely related to ΓI→F , is the cross section

σI→F =
ΓI→F

Jph
, (2.17)

where Jph is the photon flux (the number of photons per unit time and unit area) [138].

Having at hand the formulae of Eqs. (2.15) and (2.17), we can describe all basic
X-ray-induced atomic transitions discussed above. For an X-ray-induced atomic
transition of interest, just the corresponding interaction Hamiltonian Ĥint and the
electronic states |ΨN⟩ need to be specified and the corresponding transition rate
ΓI→F can be calculated following Eqs. (2.15), (2.16), or (2.17). Because this is
straightforward and corresponding calculations are performed in Refs. [136, 138],
detailed calculations are not shown here.

2.1.3 Conclusion and outlook

In this section, the HFS approximation for describing the electronic structure of
atoms and atomic ions has been briefly sketched. For an atom or atomic ion in
a specific electronic configuration, radial HFS calculations deliver a bound radial
orbital un,l with energy εn,l for each involved subshell nl and eventually unbound
radial orbitals uε,l with energies ε when desired. The HFS approximation is sen-
sible when very simple and efficient electronic-structure calculations are required.
This is the case when simulating X-ray multiphoton ionization dynamics, which
include large numbers of different electronic configurations and, hence, individual
HFS calculations (see Sec. 2.2). The basic X-ray-induced atomic transitions criti-
cal for X-ray multiphoton ionization dynamics (see Sec. 2.2) have also been briefly
discussed. General formulae for calculating transition rates and cross sections have
been presented, which allow us to obtain transition rates and cross sections for all
basic X-ray-induced atomic transitions.

However, the simple HFS-based electronic-structure calculations [20, 49] are lim-
ited in the following way. They focus on electronic configurations, so that more
detailed electronic quantum states are not accessible. Moreover, they only pro-
vide zeroth-order energies and averaged subshell cross sections and transition rates.
But individual quantum-state-resolved cross sections and transition rates are neces-
sary for studying electron-cloud alignment. Therefore, first-order many-body per-
turbation theory is applied to improve the HFS-based electronic-structure calcula-
tions. Improved quantum-state-resolved electronic-structure calculations, including
the calculation of individual quantum-state-resolved cross sections and transition
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rates, have been performed in a prior master thesis of the author [136] and are also
the subject of Sec. 3.1.
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Figure 2.2: X-ray multiphoton ionization dynamics. For neon (Ne), the first few
possible sequences of inner-shell photoionization (P), Auger-Meitner decay (AM),
and X-ray fluorescence (F) are depicted. For simplicity, valence-shell photoioniza-
tion, which is unlikely, and Auger-Meitner decay involving the 2s-shell are neglected.

2.2 X-ray multiphoton ionization dynamics

When an atom is exposed to an X-ray pulse, it may absorb an X-ray photon predom-
inantly via one-photon ionization of the inner shell. Inner-shell photoionization is
accompanied by one or multiple decay processes via Auger-Meitner decay and/or X-
ray fluorescence, refilling inner-shell holes. For an intense X-ray pulse, the extremely
large number of X-ray photons enables the sequential absorption of multiple X-ray
photons, which competes with the accompanying decay processes (Fig. 2.2). As a
consequence of the sequences of one-photon ionization events accompanied by Auger-
Meitner decay and X-ray fluorescence, high atomic charge states are formed within
a single X-ray pulse. These atomic ionization dynamics driven by high-intensity X
rays are called X-ray multiphoton ionization dynamics [24]. Note that at specific
X-ray photon energies also resonant photoabsorption of some intermediate ions no-
tably contribute to the X-ray multiphoton ionization dynamics (see Refs. [25, 35]
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for studies on neon).
To quantify what is an intense X-ray pulse, the X-ray fluence F (the number

of incoming X-ray photons per X-ray pulse and unit area) is a useful quantity [24].
Next to the total photoionization cross section σ, the probability that an atom
undergoes one-photon ionization depends on F . An atom is ionized with almost
unit probability at the saturation fluence [24]

Fsat =
1

σ
. (2.18)

For F > Fsat, the probability that the produced ions undergo further one-photon
ionization within the same X-ray pulse is very large. This is the X-ray multipho-
ton ionization dynamics regime. To give an example, for argon at an X-ray photon
energy of 5 keV, it is σ ≈ 2.8 × 10−2 Mb (Megabarn) (calculated with the imple-
mentation presented in Sec. 3.1). This corresponds to Fsat ≈ 3× 1011 photons/µm2.
X-ray fluences in the order of 1011–1012 photons/µm2 are routinely achieved by X-ray
free-electron lasers [1, 2, 4, 11]. As a consequence, X-ray multiphoton ionization dy-
namics have attracted attention with the recent advent of X-ray free-electron lasers
around the world [1–5]. In this section, a method for simulating X-ray multiphoton
ionization dynamics is presented.

2.2.1 Rate-equation approach

X-ray multiphoton ionization dynamics can be simulated by a rate-equation ap-
proach [20, 24, 31, 32]. The rate-equation approach described in this section excludes
resonant photoabsorption, which can, however, be easily included. Moreover, we
only consider the states of the bound electrons in the ions formed during X-ray mul-
tiphoton ionization dynamics. In particular, we are interested in the time-resolved
population probability PI(t) of the bound-electron states I formed. However, the
unbound photoelectrons and Auger-Meitner electrons are immediately neglected af-
ter emission. With that also their interaction with each other and with the bound
electrons is neglected. Without the restriction to bound electrons, simulating X-ray
multiphoton ionization dynamics would be extremely challenging [24].

Configuration-based approach A common approach is to define the states I

by the electronic configurations 1sN1s2sN2s2pN2p3sN3s3pN3p · · · . Here, Nj ≤ 4lj +2 is
the occupation number of the jth subshell with orbital-angular momentum lj. This
approach is the focus of this section, but rate equations work fairly similarly for
other definitions of I. The configuration-based rate-equation approach is illustrated
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→: Photoionization
→: Auger-Meitner decay
→: Fluorescence
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Figure 2.3: Configuration-based rate-equation approach at the example of neon.
Nodes represent all possible electronic configurations 1sN1s2sN2s2pN2p , labeled by
N1sN2sN2p, that may be formed by removing zero, one, or two electrons from neu-
tral neon (226). Electronic configurations are connected by X-ray-induced atomic
transitions via either photonionization (red arrows), Auger-Meitner decay (cyan ar-
rows), or fluorescence (blue arrows). For simplicity, electronic configurations with
more than two removed electrons are not shown. A complete graph is presented in
Ref. [49].

for neon (ground state electronic configuration 1s22s22p6) in Fig. 2.3. For a given
atomic species, we construct all possible electronic configurations I that may be
formed by removing zero, one, two, or up to Nmax electrons from the neutral ground
state electronic configuration of Z electrons. Nmax ≤ Z is the maximum number of
electrons that can be ionized via sequences of one-photon ionization events, including
eventually resonant photoabsorption, at a given X-ray photon energy. For each
involved electronic configuration I, individual HFS calculations have to be performed
(Sec. 2.1.1). Based on them, all possible subshell photoionization and eventually
resonant photoabsorption cross sections σI→I′ as well as subshell transition rates
ΓAM
I→I′ for Auger-Meitner decay and ΓF

I→I′ for fluoresecence are calculated (Sec. 2.1.2).
The calculated cross sections and transition rates among all electronic configurations
involved (arrows in Fig. 2.3) serve as input parameters to the rate equations.

Rate equations Before the X-ray pulse, the atom is in the neutral ground state
electronic configuration I0, so that PI0 = 1. During the X-ray pulse, the atom
undergoes one-photon ionization into a singly ionized electronic configuration I1 with
transition rate ΓI0→I1 = σI0→I1Jph(t) [Eq. (2.17)]. The time evolution is completely
mediated by the photon flux Jph(t), describing the temporal X-ray pulse shape.
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Hence, the time evolution of PI0(t) is described by the rate equation

dPI0(t)

dt
= −

∑

I1

σI0→I1Jph(t)PI0(t), (2.19)

where the sum is over all possible I1 (arrows pointing away from I0, i.e., 226, in
Fig. 2.3). The time evolution of the population probability PI1(t) of a produced
singly ionized electronic configuration I1 is described by the rate equation

dPI1(t)

dt
= σI0→I1Jph(t)PI0(t)−




∑

I2

[σI1→I2Jph(t) + ΓAM
I1→I2

] +
∑

I′1 ̸=I1

ΓF
I1→I′1



PI1(t).

(2.20)
On the one hand, the population of I1 grows (positive sign) due to the ionization of
the neutral atom (arrows pointing toward I1 in Fig. 2.3). On the other hand, it dwin-
dles (negative sign) due to a subsequent ionization or decay process (arrows pointing
away from I1 in Fig. 2.3). It results either in a doubly ionized electronic configura-
tion I2 or in another singly ionized electronic configuration I ′1 for fluorescence. In
the same manner, we proceed for all higher ionized electronic configurations. Gen-
eralization of Eq. (2.20) yields the following rate equation for describing the time
evolution of the population probability PI(t) of an electronic configuration I

dPI(t)

dt
=
∑

I′ ̸=I

[ΓI′→IPI′(t)− ΓI→I′PI(t)] . (2.21)

Setting up a rate equation via Eq. (2.21) for each electronic configuration I involved
in the X-ray multiphoton ionization dynamics results in a set of coupled, first-order
differential equations, which can be numerically solved [20].

Number of coupled rate equations The number of coupled rate equations to
be solved is equal to the number of electronic configurations I involved in the X-
ray multiphoton ionization dynamics. Note that each subshell j can be occupied
by Nj = 0, . . . , Nmax

j electrons, where Nmax
j ≤ 4lj + 2 is the occupation number of

the neutral ground state electronic configuration. Hence, the number of all possible
electronic configurations involved is evaluated by [40]

Nconfig =
∏

j

(Nmax
j + 1). (2.22)

Here, the product is over all subshells j being accessible via sequences of one-photon
ionization events at a given X-ray photon energy. No resonant photoabsorption
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Figure 2.4: Monte Carlo method for indirectly solving the rate equations by stochas-
tically sampling possible ionization trajectories. Three different Monte Carlo tra-
jectories are visualized by dashed arrows. For more details see Fig. 2.3.

is assumed to be available. For the case that all subshells are accessible, Nconfig

as a function of the nuclear charge Z is shown in Sec. 3.2. For example, for neon
(1s22s22p6), it is Nconfig = 32×7 = 63, for argon (1s22s22p63s23p6), it is Nconfig = 33×
72 = 1323, whereas for xenon (1s22s22p63s23p63d104s24p64d105s25p6), it is Nconfig =

35 × 74 × 112 = 70596603. As can be seen by this example, for heavy atoms, the
number of electronic configurations involved and, thus, the number of coupled rate
equations to be solved is impracticably large. The number of X-ray-induced atomic
processes among the electronic configurations that have to be considered is even
much larger than the number of electronic configurations involved (≈ 5 times larger
for neon [49] and ≈ 40 times larger for xenon [26]). Moreover, the number of rate
equations explodes when resonant photoabsorption transitions are included [40, 43].

2.2.2 Monte Carlo on-the-fly rate-equation method

Solving huge-sized rate equations directly is a tough task. To this end, huge-sized
rate equations are more efficiently solved via a Monte Carlo on-the-fly rate-equation
method [26, 29]. In the Monte Carlo method, the population probabilities PI(t) are
obtained by stochastically sampling possible Monte Carlo trajectories, as sketched in
Fig. 2.4. A Monte Carlo trajectory corresponds to a specific time-resolved ionization
pathway, i.e., sequence of repeated one-photon ionization events, Auger-Meitner
decays, and fluorescence, that an initially neutral atom may undergo in time during
the X-ray multiphoton ionization dynamics. The Monte Carlo trajectory ends in a
final electronic configuration when no further processes are possible because either
the X-ray pulse is over and all decays are completed or all accessible electrons are
ionized. Note that, generally, a huge number of different Monte Carlo trajectories is
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possible and that different Monte Carlo trajectories may visit the same intermediate
electronic configuration or may end in the same final electronic configuration. The
probability of propagating in time along a certain ionization pathway depends on
the underlying transition probabilities from electronic configurations I to I ′ at time
t. It is given by

PI→I′(t) =




σI→I′Jph(t)∆t for photoionization and photoabsorption,

ΓI→I′∆t for Auger-Meitner decay and fluorescence.
(2.23)

Here, ∆t is the time step utilized in the simulation for the time propagation, i.e.,
t → t+∆t (for more details, see Ref. [26] and Sec. 3.2).

The required cross sections σI→I′ and transition rates ΓI→I′ are calculated on-
the-fly [29]. When an electronic configuration I is visited during a Monte Carlo
trajectory, σI→I′ and ΓI→I′ are calculated for all possible X-ray-induced atomic
transitions from the given I to all reachable I ′ (i.e., all arrows pointing away from
node I in Fig. 2.4). For Monte Carlo trajectories sampled sequentially in time, it
is useful to store the calculated σI→I′ and ΓI→I′ . Then, they can be directly reused
for following Monte Carlo trajectories. In this way, only those σI→I′ and ΓI→I′ are
calculated that are really needed in the Monte Carlo sampling. Therefore, when
only a part of all electronic configurations is visited, the on-the-fly method is more
efficient than the precalculation of all possible σI→I′ and ΓI→I′ [26] as performed in
the direct rate-equation approach (Sec. 2.2.1).

After running a sufficiently large number of Monte Carlo trajectories, PI(t) is
approximated by the average over all sampled Monte Carlo trajectories. Each Monte
Carlo trajectory visits a certain I at time t with either unit or zero probability.
It should be stressed here, that keeping track of a very large number of all I is
impractical. Accordingly, an alternative way is to directly consider more processed
quantities like charge-state distributions or electron and photon spectra during the
Monte Carlo sampling [26].

In contrast to the direct rate-equation approach (Sec. 2.2.1), the Monte Carlo
rate-equation method involves some statistical uncertainty caused by the finite num-
ber of samples of Monte Carlo trajectories. The estimated statistical error ϵ for
population probabilities P of e.g., electronic configurations I or charge states q is
obtained via [167]

ϵ =

√
P (1− P )

Ntraj − 1
. (2.24)

It depends on the inverse of Ntraj, the number of Monte Carlo trajectories sampled.
Therefore, the desired level of accuracy determines what value for Ntraj is referred
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Figure 2.5: State-resolved Monte Carlo rate-equation method. Nodes represent
individual quantum states, defined by an electronic configuration N1sN2sN2p and
additional quantum numbers LSML. For more details on the figure and on the
individual quantum states, see Figs. 2.3 and 2.4 and Secs. 3.1 and 3.2, respectively.

to as sufficiently large. For instance, for a statistical error in the order of 0.01 (1%),
around 1000 Monte Carlo trajectories are required, whereas a statistical error in
the order of 0.001 (0.1%) corresponds to around 100000 Monte Carlo trajectories.
Note that statistical errors for quantities other than population probabilities like
spectra or alignment parameters cannot be simply estimated by Eq. (2.24). Instead,
other methods like bootstrapping [167] have to be applied. The Monte Carlo on-
the-fly rate-equation method is most efficient in the cases where Ntraj, required for
the desired level of accuracy, is much smaller than the total number of all possible
Monte Carlo trajectories and, consequently, only a fraction of all PI(t) is involved
in the calculations.

2.2.3 Conclusion and outlook

In this section, the configuration-based rate-equation approach for simulating X-ray
multiphoton ionization dynamics has been presented. The set of coupled rate equa-
tions is solved either directly or via a more efficient Monte Carlo on-the-fly method
when the number of rate equations is very huge. The presented rate-equation ap-
proach does not include higher-order many-body processes like double photoioniza-
tion and double Auger-Meitner decay [163–165]. But these processes nonnegligibly
affect the charge-state distribution of the ions produced by the X-ray multiphoton
ionization dynamics [34, 49]. Taking this into account, the configuration-based rate-
equation approach has already been widely and successfully applied for describing
X-ray multiphoton ionization dynamics and for interpreting and designing X-ray
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free-electron laser experiments [25–35, 40–45, 49].
However, the configuration-based approach cannot capture individual quantum

states. Considering individual quantum states would provide complementary infor-
mation about the X-ray multiphoton ionization dynamics, electron-cloud alignment
dynamics included. To this end, in Sec. 3.2 a state-resolved Monte Carlo on-the-
fly rate-equation method is developed. The fundamental idea of the state-resolved
approach is illustrated in Fig. 2.5. It is quite similar to the configuration-based
approach. But individual quantum states, as defined in Sec. 3.1, are used for the
bound-electron states I instead of the electronic configurations. As can be seen
from comparing Fig. 2.5 and Fig. 2.4, the use of individual quantum states incredi-
bly increases the number of coupled rate equations to be solved. For example, the
number of coupled rate equations in the configuration-based approach is 1323 for
argon (Sec. 2.2.1), whereas it is 262144 in the state-resolved approach (Sec. 3.2).
Consequently, solving state-resolved rate equations for most atoms is even challeng-
ing with the Monte Carlo on-the-fly method. Addressing this challenge by applying
a machine-learning strategy is the objective of Sec. 3.3.
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2.3 Machine learning and neural networks

This section introduces the concepts of machine learning with a focus on neural
networks. Its content is mainly based on Refs. [83, 168].

The key idea of machine learning is that a computer algorithm learns its own
knowledge by recognizing patters in a given set of data and that its learning per-
formance improves with experience by increasing time and/or amount of data [169].
The learned knowledge is then used to predict properties of never-seen data with
a certain accuracy. But machine learning does not provide entirely certain rules in
contrast to conventional physical equations based on well-known assumptions. A
famous form of machine learning is deep learning [83]. Deep learning is concerned
with computer algorithms that learn better suited and high-level representations
of the given data by hierarchically building more abstract representations out of
simpler ones.

To build a machine-learning model for predicting properties of interest, com-
monly the following parts are combined:

• a dataset and

• a machine-learning algorithm, including

• a training procedure based on a loss function and

• a regularization.

Potential machine-learning algorithms are supported vector machines [170, 171], ker-
nel machines [172, 173], decision trees [174], and feedforward neural networks [175,
176]—the quintessential example of deep learning. Using feedforward neural net-
works as an example, the parts of the machine-learning model are described in what
follows.

2.3.1 A dataset

Features and labels A dataset D consists of a set of ND samples. The samples
are drawn ideally randomly and independently from the data distribution being
of interest for the machine-learning problem at hand. Each sample (index i =

1, . . . , ND) is represented by a vector x(i), characterizing the sample by a set of
features x

(i)
µ . To each feature vector x(i) corresponds a label vector y(i), consisting

of the variable(s) that should be predicted. In a supervised regression problem,
this implies that the machine-learning algorithm is supposed to learn the mapping
function f : x → y between features and label(s). But also unsupervised (no y)
and/or classification problems are typical in machine learning [83, 177].
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Training, validation, and test set The dataset D is divided into a large training
set (commonly ≈ 80% of D) and smaller validation and test sets. On the training
set, the machine-learning algorithm is run to learn the mapping function f from
the training data. The validation set is employed for evaluating and optimizing the
performance of the resulting machine-learning model. According to its performance
on the validation data, the machine-learning algorithm is adapted and retrained
several times until the performance is sufficient. Finally, the test set serves as the
ultimate judge of the performance of the final machine-learning model. The size of
the training set has an important impact on the performance of the machine-learning
algorithm and model. On the one hand, training on a larger set generally results in
better predictions on new data not in the training set. On the other hand, training
on a smaller set is clearly more computationally efficient.

Data preparation Even though neural networks are supposed to learn suitable
representations out of the raw features, some kind of data preparation is usually
still crucial. Most important is the normalization of features and label(s), widely
performed via Z-score normalization [178]

z̃(i)µ =
z
(i)
µ − z̄µ
∆zµ

. (2.25)

Here, z(i)µ is the µth feature or label of the ith sample and z̃
(i)
µ is its normalized value.

Furthermore, z̄µ and ∆zµ are the mean and standard deviation, respectively, of the
µth feature or label with respect to the training set of NTr samples. Hence, it is

z̄µ =
1

NTr

NTr∑

i=1

z(i)µ and ∆2
zµ =

1

NTr

NTr∑

i=1

(
z(i)µ − z̄µ

)2
. (2.26)

Consequently, the normalized features and label(s) form a distribution with zero
mean and unit standard deviation. Scaling features is generally helpful to obtain
features that are all equally important during training (unless a very important or
unimportant feature should be emphasized). Z-score normalization is particularly
beneficial to accelerate the training procedure. Elements of the neural network like
activation functions or weight initialization (see Secs. 2.3.2 and 2.3.3) are developed
for such a normalized distribution. Therefore, providing directly normalized data
to the neural network avoids that an appropriate scaling and shifting has to be
learned in a first step. However, if a label yµ covers several orders of magnitude, a
logarithmic scaling, ỹ(i)µ = log10

(
y
(i)
µ

)
, is also well suited. In this way, all samples

are treated equally during training despite different label orders.
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Figure 2.6: Pearson’s correlation matrix. The underlying dataset is explained in
Sec. 3.3.

Correlation matrix The relationship between two features or feature and label
(generalized variables zµ and zλ) is measured by the covariance

Cov(zµ, zλ) =
1

ND

ND∑

i=1

[(
z(i)µ − z̄µ

)(
z
(i)
λ − z̄λ

)]
. (2.27)

Note that D can also be only the training set or any other subset of interest. Nor-
malizing the covariance by the standard derivations ∆zµ and ∆zλ for both variables
yields Pearson’s correlation matrix [179]

C(zµ, zλ) =
Cov(zµ, zλ)
∆zµ∆zλ

. (2.28)

For Z-score normalization on D, correlation and covariance are exactly equal.

Figure 2.6 presents an example of a Pearson’s correlation matrix for the machine-
learning problem discussed in Sec. 3.3. As can be seen, a correlation matrix is always
symmetric with unit diagonal elements. Two variables zµ and zλ are perfectly pos-
itively or negatively correlated when C(zµ, zλ) = 1 or C(zµ, zλ) = −1, respectively,
and are uncorrelated when C(zµ, zλ) = 0. Two correlated features are dependent in
the way that when one feature changes, the other feature changes simultaneously
either in the same (C > 0) or opposite (C < 0) direction. Training is more efficient
for uncorrelated features [178] because the optimization of a weight can be per-
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Figure 2.7: Fully connected feedforward neural network with two features xµ as
input, two hidden layers (j = 1, 2) each with three units hj

λ, and a single output
ypred. Units of neighboring layers are connected by weights wj

λµ and each unit is
activated by a bias bjλ.

formed independently of other weights (see Sec. 2.3.3 for optimization). Moreover,
the correlation between feature and label determines how important this individual
feature is for the prediction. However, this does not necessarily imply that a fea-
ture that is weakly correlated with the label is negligible. Nonetheless, the weaker
features and label are correlated the tougher is the machine-learning task. In the
present example, just using the few strongly correlated features for predicting the
E label is clearly not sufficient. But as discussed in Sec. 3.3, predicting the E label
is much simpler than predicting the cs/r label, which is much less correlated with
the features.

2.3.2 Neural network

Neural networks [83, 175, 176] are the central tool of deep learning. An example
of a very small fully connected feedforward neural network is sketched in Fig. 2.7.
It consists of units (also called neurons or nodes) that are organized in layers. The
input to the neural network is a given feature vector x taken from the dataset of
interest (i.e., training, validation, or test set or real-world data). The output layer
returns a prediction ypred for the label vector y. In between there are NL hidden
layers, whose units are not directly determined by the training data and whose

32



2.3. Machine learning and neural networks

task is to transform x into higher-level representations hj (j = 1, . . . , NL) [180].
The connection of neighboring layers is represented by a set of weight matrices
{W j}j=1,...,NL+1 and a set of bias vectors {bj}j=1,...,NL+1 determines how easily each
unit is activated1. Because each unit is connected to all units in the neighboring
layers, the neural network is called fully connected.

Accordingly, the prediction ypred is obtained via a chain of different functions
f(x, {W j}, {bj}) = f out(fNL(fNL−1(. . . f 1(x,W 1, b1)))). Based on the input x,
the unit h1

λ of the first hidden layer is calculated via

h1
λ = f 1(x,W 1, b1)λ = σ

(
b1λ +

∑

µ

w1
λµxµ

)
. (2.29)

Here, xµ, w1
λµ, and b1λ are the elements of x, W 1, and b1, respectively. Eq. (2.29)

is a simple linear transformation on top of which a nonlinear activation function σ

is applied. Using the units hj−1
µ of the previous layer calculated in a previous step,

the unit hj
λ of the jth layer is calculated in a very similar way

hj
λ = f j(hj−1,W j, bj)λ = σ

(
bjλ +

∑

µ

wj
λµh

j−1
µ

)
. (2.30)

In this way, the calculation propagates through the layers until the final output ypred

with

ypred
λ = f out(hNL ,W out, bout)λ = σ

(
bout
λ +

∑

µ

wout
λµ h

NL
µ

)
(2.31)

is reached. For the output layer, whether to apply a nonlinear activation function σ

or just a linear transformation depends on the specific output type. As can be seen,
each layer is effectively learning a new and more complex representation of the input
x. Because information flows through the neural network from input x to output
ypred without any connection between nonneighboring layers, the neural network is
called feedforward.

When designing a neural network for a specific machine-learning problem, many
decisions have to be made. The ideal design decisions depend on the machine-
learning problem and, as a consequence, have to be found via experimentation and
some “rules of thumb” [83]. The most crucial design decisions together with widely-
used recommendations are presented in Fig. 2.8. First, the neural network architec-
ture has to be selected, i.e., above all, the number of hidden layers and of units per
layer. The total number of units determines the number of trainable parameters (all

1The (NL + 1)th layer is the output layer, also labeled by out.
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Figure 2.9: Training procedure. Based on the training data, the parameters of the
machine-learning (ML) model are updated by iteratively minimizing the average
loss. The outcome is a machine-learning model with learned parameters, resulting
in a small average loss and, thus, a good function approximation.

wi
λµ and biλ,) and, therefore, affects the capacity of the neural network. An increased

capacity (more units) increases the neural network’s ability to fit a wide variety of
functions, however, at the expense of reduced computational efficiency. A deeper
neural network (more hidden layers) is known to reduce the number of trainable
parameters required [181]. There are also other network architectures, based on the
fully connected feedforward neural network. Most common are the recurrent neu-
ral network [83, 182], which includes feedback connections, and the convolutional
neural network [83, 175, 183], which is not fully connected. Second, a nonlinear
activation function σ is required for the hidden layers (Fig. 2.8). Nowadays, recti-
fied linear units (ReLU) or variants thereof [175, 184] are recommended, whereas
sigmoid or hyperbolic tangent (tanh) chosen before the advent of ReLU can still
also perform reasonably well [185]. (The remaining parts of Fig. 2.8 are discussed
in the following.)

2.3.3 Training procedure

The goal of training a machine-learning model is to find a suitable set of model
parameters (i.e., {W j} and {bj} for the neural network) that results in a good
function approximation [i.e., f(x, {W j}, {bj})] and, thus, a good performance of
the machine-learning model. The training procedure is illustrated in Fig. 2.9. Start-
ing from a machine-learning model with randomly initialized model parameters,
predictions y

(i)
pred for the feature vectors x(i) in the training set are made. Based on

these predictions y
(i)
pred and the corresponding labels y(i), the average loss over the

training set is calculated. It is commonly very large at the start. Because only the
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finite training set is considered instead of the whole underlying data distribution,
the average loss is also called empirical risk. Note that if the whole underlying data
distribution had been known, it would not have been a machine-learning problem.
To minimize the empirical risk, the model parameters are simultaneously updated
based on an optimization algorithm. The machine-learning model with the updated
model parameters predicts new (hopefully improved) yi

pred. The update procedure
is repeated until the desired number of training iterations is over or a stopping crite-
rion is met (see early stopping in Sec. 2.3.4). The resulting machine-learning model
with the learning model parameters can then be evaluated on the validation and/or
test set and applied on the real-world data of interest. Let us now describe the most
important parts of the training procedure in more detail.

Parameter initialization The training procedure starts with the initialization
of the model parameters. A good initialization is important because it often leads
to faster convergence and avoids getting stuck at points in parameter space with
comparably large losses. For neural networks, the initial biases bjλ are commonly
set to zero, whereas the initial weights wj

λµ are randomly selected from a uniform
or Gaussian distribution. The scale of this distribution is known to clearly affect
the training. As a consequence, several parameter initializers with different scales
have been proposed. Most important are the Glorot initializer [186] and the He
initializer [187] useful for tanh and ReLU activation functions, respectively.

Loss function An important quantity for the training procedure is the average
loss, determined by a loss function. For a regression problem, a common choice for
the loss function (Fig. 2.8) is the mean squared error (MSE) [175]. Assuming only
a single label (i.e., y(i) = y(i)), MSE on a dataset D with size ND is defined as

LMSE =
1

ND

ND∑

i=1

(
y(i) − y

(i)
pred

)2
. (2.32)

Here, y
(i)
pred is the prediction made for the ith feature vector in D. During the

training procedure, D is indeed the training set, whereas it is the validation or
test set during the subsequent evaluation. MSE considers the squared Euclidean
distance between label and prediction. Therefore, MSE only works well when labels
cover a similar range. When they cover several orders of magnitude, training is only
performed on very large labels, whereas small labels are completely overlooked. To
avoid this, either a suitable label scaling (Sec. 2.3.1) or another loss function are
required. In this case, an alternative but less common loss function is the mean
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squared logarithmic error (MSLE)

LMSLE =
1

ND

ND∑

i=1

(
log10

[
y(i) + ϵ

]
− log10

[
y
(i)
pred + ϵ

])2
. (2.33)

To guarantee numerical stability, a small, tunable constant ϵ is added. MSLE mea-
sures by how many orders of magnitude label and prediction differ and, thus, is
able to treat small and large label values alike. However, this is at the expense of a
lost preference for predicting larger label values more accurately. For classification
problems, the cross-entropy [175] is another widely-used loss function. But this work
focuses on regression.

Optimization algorithm (for an overview, see Fig. 2.8) The standard first-order
optimization algorithm to update the model parameters of a neural network is
stochastic gradient descent (SGD) [188]. The SGD algorithm iteratively adapts
a model parameter Θ (an wj

λµ or bjλ) by moving it in the direction of the negative
gradient ĝΘ of the loss function L with respect to that model parameter. The update
rule is

Θ → Θ− ϵĝΘ with ĝΘ = ∇ΘL. (2.34)

Here, ϵ > 0 is the learning rate (default ϵ = 0.01). The learning rate ϵ determines
the size of each update step and is tuned to a given machine-learning problem. On
the one hand, a too small ϵ requires a lot of update steps and, thus, slows down
the training procedure. Moreover, the training procedure may get stuck in a local
minimum in parameter space with comparably large losses. On the other hand, a
too large ϵ very likely overshoots a minimum, which leads to heavy oscillations in
the loss curve (i.e., the sequence of the losses at each update step).

So far, this is the same as gradient descent. The difference and the reason why
it is called stochastic is the following. In each update step, the loss L is calculated
only on a random subset of training data (minibatch) instead of the whole training
set [83, 189]. For pure stochasticity, the subset consists only of a single sample.
But utilizing a single new sample in each update step is quite noisy and requires a
lot of update steps to consider each training sample at least once during training.
Therefore often minibatches with several samples are employed. Smaller minibatch
sizes introduce more stochasticity to the training procedure, which may serve as a
regularization (see Sec. 2.3.4).

Optimization via SGD can be accelerated by adding a momentum term [83, 190].
The momentum term does not only include the gradient calculated at the current
update step but also previously calculated gradients. Their contribution is reduced
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the more a previously calculated gradient lies in the past with respect to the current
update step and is controlled by a tunable parameter α. The update rule is

Θ → Θ+ v with v → αv − ϵĝΘ. (2.35)

In SGD, the learning rate ϵ is tuned for all model parameters, i.e., all wj
λµ and

bjλ, alike. However, optimization can be improved by individually adapting learning
rates for different model parameters. Effective approaches for adaptive learning rates
are RMSProp [191] and Adam [192]. The latter combines the adaptive learning rates
(i.e., RMSProp) with momentum and is known to be fairly robust to the choice of
the required tunable parameters.

Back-propagation For neural networks, the gradients ĝΘ required in every up-
date step [Eq. (2.34)] are obtained via back-propagation [178, 182] (for a visualiza-
tion, see Ref. [193]). Back-propagation is preceded by a forward propagation through
the neural network with current model parameters—from input x over hidden lay-
ers hj from j = 1 to NL to the output ypred [Eqs. (2.29)–(2.31)]. The final step
in the forward propagation is the calculation of the loss L between ypred and label
y. Starting from the loss L, back-propagation passes through the neural network in
the opposite direction—from output ypred over hidden layers hj from j = NL to 1
to the input x. During back-propagation, gradients are gradually calculated via the
chain rule for derivatives for all units hj

λ, all weights wj
λµ, and all biases bjλ. More

specifically, the units of the jth hidden layer are calculated based on results for the
(j + 1)th layer via

∂L

∂hj
λ

=
∑

µ

wj+1
µλ

∂L

∂h̃j+1
µ

. (2.36)

Here, wj+1
µλ is the currently given weight between the jth and (j + 1)th layers and

∂L

∂h̃j+1
µ

=
∂hj+1

µ

∂h̃j+1
µ

∂L

∂hj+1
µ

with hj+1
µ = σ(h̃j+1

µ ) (2.37)

is already known from the preceding back-propagation step on the (j + 1)th layer.
For the NLth layer, being the first one in back-propagation, it is

∂L

∂h̃j+1
µ

=
∂L

∂ỹpred
µ

=
∂ypred

µ

∂ỹpred
µ

∂L

∂ypred
µ

with ypred
µ = σout(ỹ

pred
µ ). (2.38)
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Figure 2.10: Under- and overfitting. Training loss (dotted blue line) and test loss
(solid orange line) are shown as a function of the model capacity, here determined by
the number of training iterations. The given example is obtained for an unregulated
neural network designed for predicting fluorescence rates in Sec. 3.3. Units are
omitted for simplicity.

Using the result of Eqs. (2.36) and (2.37), gradients for the weights between the
(j − 1)th and jth layers are calculated via

∂L

∂wj
λµ

= hj−1
µ

∂L

∂h̃j
λ

. (2.39)

The units hj−1
µ are well-known from the forward propagation. For the first layer,

being the last one in back-propagation, it is hj−1
µ = xµ. Similarly, gradients for the

biases of the jth layer are given by

∂L

∂bjλ
=

∂L

∂h̃j
λ

. (2.40)

In each update step, forward and backward propagation are carried out as described
above for all samples in the minibatch of training data. Having at hand the averaged
gradients with respect to all weights and biases, the model parameters can now be
updated via the chosen optimization algorithm.

2.3.4 Regularization

The primary goal of machine learning is to achieve both small training and test
losses—not small training losses alone. The critical quantity here is the model
capacity, i.e., the ability of the machine-learning algorithm to fit a wide variety of
functions [83]. Additionally, the number of training iterations has a similar impact
on the losses and is included in the model capacity for simplicity. With more learning
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steps, the machine-learning algorithm has a higher chance of learning a good fit of
the model parameters. The effect of the model capacity on training and test (or
equivalently validation) losses is visualized in Fig. 2.10. The training loss gradually
decreases with higher model capacity, whereas the test loss exhibits an asymmetric
U-shaped curve. On the one hand, with a too low model capacity, a machine-
learning algorithm is unable to learn an accurate description of the training data.
As a consequence, both training and test losses are unsuitably large (underfitting).
On the other hand, the higher the model capacity, the better the training data are
fitted until they are interpolated. In this case, the machine-learning model is adapted
to specific and spurious properties of the training data only. Therefore, a too high
model capacity results in a large test loss and a large gap between training and test
losses (overfitting). The optimal model capacity—leading to a small training loss
and a small gap between training and test losses simultaneously—is, however, hard
to find.

For this reason, often an actually too high model capacity, resulting in overfitting,
is employed and overfitting is prevented by adding a regularization to the machine-
learning algorithm. The purpose of regularization is to modify the machine-learning
algorithm in such a way that the test loss is reduced but not necessarily the training
loss [83]. Different kinds of regularization are common for neural networks (see e.g.,
Ref. [83] and also Fig. 2.8).

Parameter norm penalty A very common regularization strategy is to add pa-
rameter norm penalties Ω(W j) for the weights to the loss L. Then, the modified
loss, written with an explicit dependence on the model parameters, reads

L̃({W j}, {bj}) = L({W j}, {bj}) +
∑

j

λjΩ(W
j). (2.41)

Here, λj ≥ 0 is a tunable parameter determining the strength of the regularization for
the jth hidden layer. Minimizing the modified loss L̃ leads to a preference of simpler
models. Most important parameter norm penalties are L2 and L1 regularizations
with Ω(W j) = 1

2

∑
µ ||wj

µ||22 and Ω(W j) =
∑

µ ||wj
µ||1, respectively. Here, wj

µ is
the µth column of W j. The L2 regularization aims to drive unimportant weights
to near zero (but not exactly zero), whereas it barely affects important weights. In
contrast, the L1 regularization encourages unimportant weights to become exactly
zero and, thus, results in sparse models.

Early stopping A very simple regularization strategy is early stopping, which
handels overfitting due to a too large number of training iterations. Using early
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stopping, both training and validation losses are monitored during the training pro-
cedure. When the validation loss has not been improved over a certain number of
training iterations, the training stops and the model parameters of the update step
that has the smallest validation loss are returned.

Dropout A very powerful regularization strategy is dropout [194]. During each
update step, nonoutput units along with their connections to other units are dropped
out of the neural network with probability 1 − p. p is a tunable parameter with
0 < p ≤ 1 and is specified individually for each layer. In this way, in each update
step a different sparse neural network is trained. But it shares the model parameters
with all other sparse neural networks. When training is over, it is averaged over all
sparse neural networks by using the full neural network without dropout but with
each model parameter being scaled by p. Therefore, dropout is an inexpensive
approximation to model averaging, which is a widely-known, well-working strategy
for reducing overfitting.

Modern interpolation hypothesis A very modern strategy is to barely or not
at all add a regularization to the machine-learning algorithm. The model capacity is
instead increased further. This is the “modern” interpolation hypothesis [195]. The
idea is that going beyond the point of interpolation results in a test loss that de-
creases again ideally even beyond the loss at optimal model capacity (double-descent
test loss curve). However, reaching this “modern” interpolation region requires to
perfectly interpolate training data by using a very high model capacity, a huge num-
ber of training iterations included. Concomitantly, this yields a comparably large
training time and effort.

2.3.5 Random forest regressor: An alternative

machine-learning algorithm

Random forest regressors [180, 196] are a decision-tree-based ensemble method and
a powerful alternative to neural networks. An individual decision tree is generally
weak because it often performs poor on never-seen data. However, a random for-
est regressor achieves its power from averaging over hundreds of different decision
trees [177]. Apart from model averaging, a random forest regressor is basically
based on the same machine-learning parts as previously described for neural net-
works though indeed each part looks a bit different.
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Figure 2.11: (a) An individual decision tree. This example uses five features xµ [i.e.,
x = (x1, x2, x3, x4, x5)

T ] and a single output ypred, indicated by the path followed
to reach the corresponding output node. A possible path through the decision tree
is indicated by the dotted cyan lines. (b) A random forest regressor is built of N
decision trees. Note that all decision trees are made up for this occasion, just in
case you should wonder about its meaning.
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Dataset Normally, no normalization of features is required because the random
forest regressor is not distance-based. Nonetheless, scaling of the labels, especially
when they cover a wide range, can be useful due to use of a distance-based loss
function.

Decision tree and random forest regressor An example of a decision tree [180]
is given in Fig. 2.11(a). It consists of hierarchically-ordered nodes, which each
represents a feature xµ of the feature vector x. The nodes are connected by branches,
which each corresponds to a condition (or decision) for a feature commonly based on
relation operators. At the end of each branch is an output node, which returns the
prediction ypred for the label y of interest. A prediction for an input x(i) of interest
is made via a decision tree by propagating through the decision tree following those
branches whose conditions x(i) fulfills [i.e., blue dotted path in Fig. 2.11(a) for
x(i) = (2.2, 6.1, 3.4, 5.6, 3.0)T ]. The prediction ypred is finally obtained from the
output node reached in this way.

A random forest regressor, shown in 2.11(b), is build of N different decision trees
(commonly N = 100–500). Its output is the average over all predictions ypred made
by the individual decision trees.

Training procedure During the training procedure, the individual decision trees
are created by hierarchically separating the training data into subsets as follows. For
a decision tree, the most important feature xµ is selected using the training data.
Based on a condition (i.e., a threshold value) for this feature, the training data are
separated into two subsets, one with those fulfilling the condition (>) and the other
with those not fulfilling it (≤). The most important feature and the best splitting
condition are controlled by a loss function and the aim of minimizing this loss as well
as some form of regularization. On the subsets, it is proceeded in the same manner
by separating the subsets into smaller subsets based on a splitting condition for a
selected feature. This procedure stops at an output node when either the subsets are
sufficiently small or the maximum number of branches is reached. The prediction
ypred of an output node is determined by the average over the labels of all training
data in the final subset for this output node.

Regularization Without any regularization, the individual decision trees in a
random forest would look fairly similar and would be very prone to overfitting.
Accordingly, also for the random forest regressor some form of regularization is
necessary. Possible regularization strategies [196, 197] are to use a limited maximum
number of branches, to consider only a randomly selected subset of features at each
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split, or to train each individual decision tree only on a minibatch (random subset
of training data). Moreover, also a larger number of individual decision trees in a
random forest can help to reduce overfitting [198].

2.3.6 Conclusion and outlook

In this section, the basic concepts of machine learning have been explained. But
machine learning is a much broader and actively investigated field with a lot more
topics not captured in this introduction (for more details, see e.g., Ref. [83]). One of
the most central and popular machine-learning algorithms is neural networks, which
have been the focus of this section. However, random forest regressors, also briefly
discussed here, are a powerful alternative. Whether neural networks, random forest
regressors, or any other machine-learning algorithm are the most successful choice
depends on the specific machine-learning problem at hand. It is a widely-known
statement—the no free lunch theorem [83, 199, 200]—that there is no universally best
machine-learning algorithm. Therefore, a machine-learning algorithm, including
its special architecture, training procedure, and regularization strategy, has to be
selected individually via experimentation and some “rules of thumb” for the specific
machine-learning problem at hand.

In Sec. 3.3, the specific machine-learning problem of predicting X-ray-induced
atomic transition parameters is investigated. Both neural networks and random for-
est regressors are employed as machine-learning algorithms and their performances
are compared for this specific problem.
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2.4 Electron-cloud alignment

Electron clouds of atomic ions produced by photoionization are generally aligned
when their orbital-angular momentum is nonzero. This is due to different ioniza-
tion probabilities for different orbital-angular-momentum projection states. The
electron-cloud alignment is also called orbital alignment (Sec. 3.1; ionization of a
specific subshell) or ion alignment (Sec. 3.4; average over ions in different energy
levels). In this section, electron-cloud alignment is generally discussed using the
alignment parameter derived from the density matrix formalism, the spatial shape
of the electron cloud of the aligned ions, and the angular distribution of subsequently
emitted Auger-Meitner electrons.

2.4.1 Density matrix and state multipoles

Let us consider an ensemble of ions being in various orbital-angular-momentum
projection states |LML⟩ with projection quantum number ML = −L, . . . , L. The
orbital-angular momentum L is fixed and all ions belong to the same energy level.
Thus, apart from ML, all state features are shared and neglected in the follow-
ing discussion except L. The states |LML⟩ form an orthonormalized basis set, i.e,
⟨LM ′

L|LML⟩ = δM ′
L,ML

. Moreover, ions with different ML can be regarded as having
different shapes and/or orientations of their electron clouds in space [61] (see also
Sec. 2.4.4).

Density matrix and operator The ensemble of ions is represented by a (2L +

1)× (2L+ 1) density matrix ρ [53, 61, 166, 201] with elements ⟨LM ′
L |ρ̂|LML⟩ and

density operator
ρ̂ =

∑

M ′
L,ML

⟨LM ′
L |ρ̂|LML⟩ |LM ′

L⟩⟨LML|. (2.42)

The off-diagonal elements of ρ describe the coherence between the states with dif-
ferent ML. For an incoherent superposition of states, ρ is diagonal in {|LML⟩}
representation. Then, it is

⟨LM ′
L |ρ̂|LML⟩ = δM ′

L,ML
PML

, (2.43)

with PML
being the probability that an ion in the ensemble is in a state with pro-

jection quantum number ML. The corresponding density operator is given by

ρ̂ =
∑

ML

PML
|LML⟩⟨LML|. (2.44)
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Normalized probabilities, i.e.,
∑

ML
PML

= 1, correspond to a normalization of ρ̂ by
its trace, i.e., tr(ρ̂) = 1.

The density operator ρ̂ is an important quantity because having at hand ρ̂ per-
mits the calculation of the expectation value of any operator Ô of interest via

⟨Ô⟩ = tr(ρ̂Ô)

tr(ρ̂)
. (2.45)

State multipoles and irreducible spherical tensor operators Alternatively
to density matrix and operator, the ensemble of ions is equivalently-well described in
terms of state multipoles, also known as statistical tensors, and irreducible spherical
tensor operators. The introduction of state multipoles is motivated by the expec-
tation values of the orbital-angular-momentum operators ⟨L̂Q⟩ (Q = 0,±1), which
are proportional to first rank state multipoles [61]. Next to advantages regarding
symmetry considerations [61], orientation and alignment parameters can be directly
derived from the state multipoles. State multipoles for a definite L are defined
as [61, 201, 202]

⟨T (L)†KQ⟩ =
∑

M ′
L,ML

(−1)L−M ′
L ⟨LM ′

L |ρ̂|LML⟩C(L,L,K;ML,−M ′
L, Q), (2.46)

with C(·) denoting a Clebsch-Gordan coefficient [203, 204]. ⟨T (L)†KQ⟩ is a tensor of
rank K with 0 ≤ K ≤ 2L and component Q with |Q| ≤ K. The conditions for K

and Q are determined by the triangular conditions for the Clebsch-Gordan coeffi-
cient. Consequently, only ⟨T (L)†00⟩ exists for L = 0. Note that for the incoherent
superposition of states [Eq. (2.43)], the state multipoles for Q ̸= 0 vanish and those
for Q = 0 simplify to

⟨T (L)†K0⟩ =
∑

ML

(−1)L−MLPML
C(L,L,K;ML,−ML, 0). (2.47)

In addition to the state multipoles, irreducible spherical tensor operators T̂ (L)KQ

are introduced so that the state multipoles are expectation values of T̂ (L)†KQ. Thus,
it follows from ⟨T (L)†KQ⟩ = tr(ρ̂T̂ (L)†KQ) [Eq. (2.45)] that [53, 201]

T̂ (L)KQ =
∑

M ′
L,ML

(−1)L−M ′
LC(L,L,K;ML,−M ′

L, Q)|LM ′
L⟩⟨LML|. (2.48)

The T̂ (L)KQ are orthonormal, i.e., tr(T̂ (L)†KQT̂ (L)K′Q′) = δK,K′δQ,Q′ , and behave
under rotation like spherical harmonics [201]. In this way, the density operator
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ρ̂ is decomposed in terms of T̂ (L)KQ with expansion coefficients ⟨T (L)†KQ⟩ and
reads [53, 201]

ρ̂ =
∑

K,Q

⟨T (L)†KQ⟩T̂ (L)KQ. (2.49)

This relation is derived from inverting the definition of ⟨T (L)†KQ⟩ [Eq. (2.46)], insert-
ing the obtained equation for ⟨LM ′

L |ρ̂|LML⟩ in terms of ⟨T (L)†KQ⟩ into the equation
for ρ̂ [Eq. (2.42)], and identifying the residual terms with T̂ (L)KQ [Eq. (2.48)].
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2.4.2 Orientation and alignment parameters

Orientation parameter Important state multipoles are those of first rank be-
cause they constitute the orientation vector [61]. For the incoherent superposition
of states (with L > 0) [Eq. (2.47)], the orientation vector has only a single nonzero
component

⟨T (L)†10⟩ =
∑

ML

(−1)L−MLPML
C(L,L, 1;ML,−ML, 0). (2.50)

Employing Racah’s second form given by Eq. (16) in Ref. [203], the Clebsch-Gordan
coefficient is calculated as follows

C(L,L, 1;ML,−ML, 0) =

√
3(2L− 1)!

(2L+ 2)!

×
∑

z

(−1)z(L+ML)!(L−ML)!

z!(2L− 1− z)!(L−ML − z)!2(1− L+ML + z)!2
.

(2.51)

The sum over z is restricted to z = L−ML−1 and z = L−ML. Moreover, a factorial
n! is expressed as a smaller factorial via recursive application of n! = n(n− 1)!. In
this way, the Clebsch-Gordan coefficient becomes

C(L,L, 1;ML,−ML, 0) =

√
3

(2L+ 2)(2L+ 1)2L

×
{
(−1)L−ML−1 (L+ML)!(L−ML)!

(L−ML − 1)!(L+ML)!

+(−1)L−ML
(L+ML)!(L−ML)!

(L−ML)!(L+ML − 1)!

}

=(−1)L−ML
1

2

√
3

(L+ 1)L(2L+ 1)
{(L+ML)− (L−ML)}

=(−1)L−ML

√
3

(L+ 1)L(2L+ 1)
ML

(2.52)

and, therefore, it is

⟨T (L)†10⟩ =
√[

1

2L+ 1

] [
3

(L+ 1)L

]∑

ML

MLPML
. (2.53)
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The factor
√

1
2L+1

is equal to ⟨T (L)†00⟩, which is also known as the normalization

constant. Normalization of ⟨T (L)†10⟩ yields the orientation parameter O10, defined
as [59]

O10(L) =
⟨T (L)†10⟩
⟨T (L)†00⟩

=

√
3

(L+ 1)L

∑

ML

MLPML
. (2.54)

The orientation parameter O10 is a measure of the direction of the orbital-angular-
momentum projection of the ensemble of ions. O10 is negative, when ions with −ML

are more populated than those with +ML, and positive, when ions with +ML are
more populated than those with −ML. For P−ML

= P+ML
, there is no orientation

and, hence, O10 = 0. Since ⟨T (L)†10⟩ = ⟨L̂z⟩, no orbital-angular momentum is
transferred to an unoriented ensemble of ions during its production process [61].
For example, an unaligned ensemble of ions is produced by interaction with linearly
polarized photons. To break the symmetry in PML

and, thus, to create an oriented
ensemble of ions, circularly polarized photons or magnetic fields are required. Note
that O10 [Eq. (2.54)] has only been derived by state multipoles and can, in principle,
be used for an ensemble of ions produced by any X-ray-induced atomic transition,
not only photoionization.
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Alignment parameter Most important are the state multipoles of second rank
because they constitute the alignment tensor [61]. For the incoherent superposition
of states (with L > 0) [Eq. (2.47)], the alignment tensor has only a single nonzero
component

⟨T (L)†20⟩ =
∑

ML

(−1)L−MLPML
C(L,L, 2;ML,−ML, 0). (2.55)

In a very similar manner as for C(L,L, 1;ML,−ML, 0) [Eqs. (2.51) and (2.52)], the
present Clebsch-Gordan coefficient is calculated as follows

C(L,L, 2;ML,−ML, 0) =

√
20(2L− 2)!

(2L+ 3)!

×
∑

z

(−1)z2(L+ML)!(L−ML)!

z!(2L− 2− z)!(L−ML − z)!2(2− L+ML + z)!2

=

√
5

(2L+ 3)(L+ 1)(2L+ 1)L(2L− 1)

×
{
(−1)L−ML−2 (L+ML)!(L−ML)!

2(L−ML − 2)!(L+ML)!

+ (−1)L−ML−1 2(L+ML)!(L−ML)!

(L−ML − 1)!(L+ML − 1)!

+(−1)L−ML
(L+ML)!(L−ML)!

2(L−ML)!(L+ML − 2)!

}

=(−1)L−ML

√
5

(2L+ 3)(L+ 1)(2L+ 1)L(2L− 1)

×
{
(L−ML)(L−ML − 1)

2
− 2(L−ML)(L+ML)

+
(L+ML)(L+ML − 1)

2

}

=(−1)L−ML

√
5

(2L+ 3)(L+ 1)(2L+ 1)L(2L− 1)

×
{
3M2

L − L(L+ 1)
}
.

(2.56)

Hence, the alignment tensor reads

⟨T (L)†20⟩ =
√[

1

2L+ 1

] [
5

(2L+ 3)(L+ 1)L(2L− 1)

]∑

ML

[
3M2

L − L(L+ 1)
]
PML

.

(2.57)
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Table 2.1: Perfect alignment where all ions have the same |ML|, i.e., P|ML| = 1, for
different orbital-angular momenta L.

Alignment parameter A20

L ML = 0 ML = |1| ML = |2| ML = |3| ML = |4|
1 −

√
2

√
1/2

2 −
√

10/7 −
√

5/14
√
10/7

3 −
√

4/3 −
√

3/4 0
√
25/12

4 −
√

100/77 −
√
289/308

√
16/77

√
7/11

√
28/11

Normalization of ⟨T (L)†20⟩ yields the alignment parameter A20, defined as [59]

A20(L) =
⟨T (L)†20⟩
⟨T (L)†00⟩

=

√
5

(2L+ 3)(L+ 1)L(2L− 1)

∑

ML

[
3M2

L − L(L+ 1)
]
PML

.

(2.58)
The alignment parameter A20 measures the degree and direction of the alignment
of an ensemble of ions regarding its orbital-angular-momentum projection. A20 is
negative (alignment), when ions with smaller |ML| are more populated than oth-
ers, and positive (anti alignment), when ions with larger |ML| are more populated.
A20 = 0 (no alignment) indicates a uniform distribution, i.e., PML

= 1
2L+1

, while the
larger |A20| the stronger the alignment. The meaning of A20 is further elaborated in
Sec. 2.4.4 and extreme values of A20 are listed in Table 2.1.

2.4.3 Averaged alignment parameter

So far, the alignment parameter has been discussed for an ensemble of ions in the
same energy level. Now, let us consider many of these ensembles of ions, labeled with
an index j and each described by an alignment parameter A

Ej

20 (L) [Eq. (2.58)]. All
ensembles have the same orbital-angular momentum L, but each ensemble belongs to
a different energy level Ej. The probability that an ion is in the ensemble belonging
to energy level Ej is PEj

(L). In this case, the alignment parameter A20(L) with
definite L is the mean or average over all energy levels

Ā20(L) =
∑

Ej

PEj
(L)A

Ej

20 (L)

=f(L)
∑

ML

[
3M2

L − L(L+ 1)
]∑

Ej

P
Ej

ML
PEj

(L).
(2.59)
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Here, it is f(L) =
√

5
(2L+3)(L+1)L(2L−1)

and P
Ej

ML
is the energy-level specific probability

of ML [Eq. (2.43)]. We identify

∑

Ej

P
Ej

ML
PEj

(L) = P̄ML
, (2.60)

which is the probability that an ion is in a state with projection quantum number
ML regardless of its energy level. In this way, Ā20(L) [Eq. (2.59)] simplifies to

Ā20(L) = f(L)
∑

ML

[
3M2

L − L(L+ 1)
]
P̄ML

. (2.61)

Note that Ā20(L) has the same form as A20(L) [Eq. (2.58)], just using a probability
P̄ML

that is the average over all energy levels. Therefore, it has been demonstrated
that the alignment parameter derived in Sec. 2.4.2 is also applicable for multiple
ensembles of ions with definite L. Thus, explicitly indexing the average is omitted
in what follows, i.e., Ā20(L) = A20(L).

But when A20(L) is an average over ensembles, it has a corresponding width

∆2
A20

(L) =
∑

Ej

[
A

Ej

20 (L)
]2

PEj
(L)− A20(L)

2. (2.62)

This term cannot be simplified very efficiently. All we can do is to introduce

P̄MLM
′
L
=
∑

Ej

P
Ej

ML
P

Ej

M ′
L
PEj

(L), (2.63)

which can be thought of as the averaged probability of having two ions, one with
ML and the other with M ′

L. Then, the width reads

∆2
A20

(L) = f(L)2
∑

ML,M
′
L

[
3M2

L−L(L+1)
][
3M ′

L
2−L(L+1)

]
P̄MLM

′
L
−A20(L)

2. (2.64)

Let us next consider many ensembles of ions that have different orbital-angular
momenta Lj. In this case, the alignment parameter is the mean or average over all
energy levels

Ā20 =
∑

Ej

PEj
A

Ej

20 (Lj), (2.65)

with the probability PEj
that an ion is in the energy level Ej with regard to all L.

The energy levels are grouped according to their L values and each L value has a
probability of PL that an ion is found in a state with L regardless of the energy
level. Thus, it is PEj

= PEj
(L)PL. With Eq. (2.59), the expression for Ā20 simplifies
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to a mean alignment parameter average over all L

Ā20 =
∑

L

PL

∑

Ej

PEj
(L)A

Ej

20 (L)

=
∑

L

PLA20(L).
(2.66)

Its width is given by

∆2
A20

=
∑

Ej

[
A

Ej

20 (Lj)
]2

PEj
− Ā2

20

=
∑

L

PL

∑

Ej

[
A

Ej

20 (L)
]2

PEj
(L)− Ā2

20

=
∑

L

PLA20(L)
2 − Ā2

20 +
∑

L

∆2
A20

(L)PL.

(2.67)

Note that the width contains two parts. The first two terms determine the width
with respect to the average over L and the last term takes into account that each
A20(L) already contains a width [Eq. (2.64)].

The averaged orientation parameter can be obtained in a very similar manner
and with very similar outcomes and is, therefore, not discussed here.

2.4.4 Spatial shapes of aligned electron clouds

To develop some intuition about electron-cloud alignment, we next discuss the spa-
tial shape of the electron cloud of aligned ions. This part is based mainly on Ref. [61].
As in Secs. 2.4.1 and 2.4.2, we consider an ensemble of ions in an incoherent super-
position of states described by the density matrix ρ̂ =

∑
ML

PML
|LML⟩⟨LML|. (But

also ensembles of ions in different energy levels can be used as demonstrated in
Sec. 2.4.3.) Moreover, the z axis is chosen as the quantization axis.

Each individual state |LML⟩ has an electron or charge distribution

ϱML
(r) = e|⟨r|LML⟩|2 = e|ΨLML

(r)|2. (2.68)

The wave function ΨLML
(r) decomposes into a radial part RL(r) and an angular

part, given by the spherical harmonic Y ML
L (θ, ϕ). Thus, it is

ϱML
(r) = e|RL(r)|2|Y ML

L (θ, ϕ)|2. (2.69)

The average over the individual electron distributions yields the total electron dis-
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Figure 2.12: Polar diagram of the spatial shape of the electron cloud |ȲL(θ)|2. The
special case of perfect alignment, where all ions have the same |ML| (P|ML| = 1), is
considered for different orbital-angular momenta L. The corresponding alignment
parameters are given in Table 2.1. The dotted gray circles indicate the unaligned
electron cloud with a uniform distribution PML

= 1
2L+1

. The vertical axis corre-
sponds to the quantization (z) axis.
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tribution of the ensemble

ϱ(r) =
L∑

ML=−L

PML
ϱML

(r)

= e|RL(r)|2
L∑

ML=−L

PML
|Y ML

L (θ, ϕ)|2

= e|RL(r)|2|ȲL(θ)|2.

(2.70)

The angular part of the electron distribution

|ȲL(θ)|2 =
L∑

ML=−L

PML
|Y ML

L (θ, ϕ)|2 (2.71)

is the spatial shape of the electron cloud of the ensemble of ions. Its ϕ-dependence
is eliminated by the squaring. Figure 2.12 depicts the spatial shape of the electron
cloud for the special case of perfect alignment (Table 2.1), where all ions have the
same |ML|. In this case, |ȲL(θ)|2 reduces to a single |Y ML

L (θ, ϕ)|2. The electron cloud
exhibits a peanut-like shape aligned along the quantization axis, when all ions have
ML = 0. When all ions have |ML| = L, the peanut-like shaped electron cloud is anti
aligned. In between, there are more butterfly-like shapes, which become less aligned
along the quantization axis the larger |ML|. An arbitrarily aligned ensemble of ions
shows an electron-cloud shape that is averaged over the electron-cloud shapes for a
definite L in Fig. 2.12. For an unaligned ensemble of ions (uniform distribution of
ML), the electron cloud is perfectly spherically symmetric.

The spatial shape of the electron cloud |ȲL(θ)|2 is related to the state mul-
tipoles ⟨T (L)†KQ⟩ [Eq. (2.46)] and, consequently, the alignment parameter A20(L)

[Eq. (2.58)]. This relation is derived in the following. In general, the total electron
distribution of the ensemble ϱ(r) is given by the coordinate representation of the
density matrix [61]

ϱ(r) = e ⟨r |ρ| r⟩ . (2.72)

Inserting the general formula for the density matrix [Eq. (2.42)] and ⟨r|LML⟩ =

ΨLML
(r) = RL(r)Y

ML
L (θ, ϕ) into Eq. (2.72) yields

ϱ(r) =e
∑

M ′
L,ML

⟨LM ′
L |ρ̂|LML⟩ ⟨r|LM ′

L⟩⟨r|LML⟩∗

=e|RL(r)|2
∑

M ′
L,ML

⟨LM ′
L |ρ̂|LML⟩Y M ′

L
L (θ, ϕ)Y ML

L (θ, ϕ)∗.
(2.73)
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As a next step, the inverted relation for the state multipoles ⟨T (L)†KQ⟩

⟨LM ′
L |ρ̂|LML⟩ =

∑

K,Q

(−1)L−M ′
LC(L,L,K;ML,−M ′

L, Q)⟨T (L)†KQ⟩ (2.74)

and the identity [205]

Y
M ′

L
L (θ, ϕ)Y ML

L (θ, ϕ) =
2L+ 1√

4π

∑

K′,Q′

(−1)Q
′

√
2K ′ + 1

C(L,L,K ′;ML,−M ′
L, Q

′)

× C(L,L,K ′; 0, 0, 0)Y Q′

K′ (θ, ϕ)
∗

(2.75)

are used. Combining this with the fact that Y ML
L (θ, ϕ)∗ = (−1)MLY −ML

L (θ, ϕ) and
(−1)−M ′

L+ML+Q′
= 1, and with the orthogonality relation for Clebsch-Gordan coeffi-

cients,
∑

M ′
L,ML

C(L,L,K;ML,−M ′
L, Q)C(L,L,K ′;ML,−M ′

L, Q
′) = δK,K′δQ,Q′ [203],

we obtain for the total electron distribution

ϱ(r) = e|RL(r)|2(−1)L
2L+ 1√

4π

∑

K,Q

⟨T (L)†KQ⟩√
2K + 1

C(L,L,K; 0, 0, 0)Y Q
K (θ, ϕ)∗. (2.76)

Note that only even K contribute to the sum owing to the triangular condition for
the Clebsch-Gordan coefficients [203]. As a consequence, an orientation (K = 1) of
the ensemble of ions does not affect the spatial shape of its electron cloud. From
Eqs. (2.70) and (2.76), we are now able to derive the spatial shape of the electron
cloud |ȲL(θ)|2 in terms of state multipoles ⟨T (L)†KQ⟩ for an incoherent superposition

of states (Q = 0). Applying C(L,L,K; 0, 0, 0) = (−1)L
√

2K+1
2L+1

C(K,L, L; 0, 0, 0),

the normalization ⟨T (L)†00⟩ =
√

1
2L+1

, and the definition of A20(L) [Eq. (2.58)], the
spatial shape of the electron cloud separates as follows

|ȲL(θ)|2 =
1√
4π

{
1 +

√
4πA20(L)C(2, L, L; 0, 0, 0)Y 0

2 (θ)

+
√
4π
∑

K>2

⟨T (L)†K0⟩
⟨T (L)†00⟩

C(K,L, L; 0, 0, 0)Y 0
K(θ)

}
.

(2.77)

The first term yields a perfectly spherically symmetric electron cloud, whereas the
second term reshapes this perfectly spherically symmetric electron cloud according
to A20. When A20 < 0, the shape becomes more pronounced along the quantization
axis, while it is reduced in the quantization axis, when A20 > 0 (see L = 1 in
Fig. 2.12). For L > 1, the spatial shape of the electron cloud is further modified by
state multipoles of higher rank.
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2.4.5 Angular distribution of Auger-Meitner electrons

Electrons emitted from an aligned ion by Auger-Meitner decay are generally anisotrop-
ically distributed in space [60, 74–76]. Here, the resulting angular distribution of
Auger-Meitner electrons is discussed following Ref. [201]. We assume that the in-
teraction Hamiltonian does not couple to the spin. Therefore, the spin of both ions
and electrons is not of interest and, hence, is summed over in the density matrix
formalism (so-called reduced density matrix) [61, 201].

Let us start with the helicity system [166, 201] as coordinate system. In the
helicity system, the direction of the Auger-Meitner electron emission is chosen as
quantization (z) axis. As a consequence, the orbital-angular-momentum projection
mla of an Auger-Meitner electron is always zero. Following the density matrix
formalism introduced in Sec. 2.4.2, the initial and final system involved in the Auger-
Meitner decay are represented by a density matrix. The initial system is given by the
ensemble of initial ions, having orbital-angular momentum Li and being arbitrarily
aligned with alignment parameter A20(Li). The expansion in terms of irreducible
spherical tensor operators [Eq. (2.49)] is used for its density matrix, i.e.,

ρ̂i =
∑

K,Q

⟨T (Li)
†
KQ⟩T̂ (Li)KQ. (2.78)

The final system is given by the ensemble of resulting ions and the emitted Auger-
Meitner electrons. Its density matrix is related to the initial density matrix by the
transition or interaction operator V̂ in the following way [61]

ρ̂f = V̂ ρ̂iV̂
†. (2.79)

For Auger-Meitner decay, V̂ is the Coulomb operator [206]. A suitable normaliza-
tion of the final density matrix is by the intensity I of the Auger-Meitner electron
emission, so that tr(ρ̂f ) = I. Note that I exhibits no angular-dependence in the he-
licity system. Utilizing this normalization and Eqs. (2.78) and (2.79), the intensity
is expressed in terms of state multipoles ⟨T (Li)

†
KQ⟩ for the initial ensemble of ions

as follows

I = tr(ρ̂f ) = tr(V̂ ρ̂iV̂
†)

=
∑

K,Q

⟨T (Li)
†
KQ⟩tr(V̂ T̂ (Li)KQV̂

†). (2.80)

As a next step, an initial system in an incoherent superposition of states is assumed,
so that Q = 0 (Sec. 2.4.2). Moreover, the unnormalized generalized anisotropy
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parameter
A(KQ) = tr(V̂ T̂ (Li)KQV̂

†) (2.81)

is introduced. Then, Eq. 2.80 for the intensity reads

I =
∑

K even

⟨T (Li)
†
K0⟩A(K0). (2.82)

The sum over K is restricted to even values because of the symmetry relation
A(KQ) = (−1)KA(K −Q) [207].

However, when performing an experiment we are, of course, interested in the
laboratory (lab) system. Therefore, the state multipoles are transformed from the
helicity system to the lab system via reduced rotation matrices d

(K)
Q′Q(θ) [166, 201,

208]. For Q = Q′ = 0, the reduced rotation matrix is given by a Legendre polynomial
PK(cos θ) [208] and the transformation is

⟨T (Li)
†
K0⟩ = ⟨T (Li)

†
K0⟩labPK(cos θ). (2.83)

θ is the angle between the quantization (z) axes in the helicity system—the direction
of Auger-Meitner electron emission—and the lab system—e.g., the polarization di-
rection of the ionizing photon beam. The generalized anisotropy parameter A(K0)

is not transformed and remains in the helicity system. As a result of the transfor-
mation, the intensity becomes angle-dependent and is given by

I(θ) =
∑

K even

⟨T (Li)
†
K0⟩labA(K0)PK(cos θ). (2.84)

This equation describes the angular distribution of emitted Auger-Meitner elec-
trons. I only depends on the polar angle θ. Therefore, Auger-Meitner electrons are
anisotropically emitted with respect to θ, but isotropically emitted with respect to
the azimuthal angle ϕ. The total intensity I0 is obtained by summing up all emitted
Auger-Meitner electrons independent of their direction of emission, so that

I0 =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ I(θ)

= 2π
∑

K even

⟨T (Li)
†
K0⟩labA(K0)

∫ π

0

dθ sin θ PK(cos θ)

= 2π
∑

K even

⟨T (Li)
†
K0⟩labA(K0)

∫ 1

−1

dx PK(x)

= 4π⟨T (Li)
†
00⟩labA(00).

(2.85)
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⟨T (Li)
†
00⟩lab and A(00) can be thought of as normalizations. Accordingly, we define

the normalized anisotropy parameter

αK =
A(K0)

A(00)
(2.86)

and a generalized form of the alignment parameter

AK0 =
⟨T (Li)

†
K0⟩lab

⟨T (Li)
†
00⟩lab

, (2.87)

which is equal to Eq. (2.58) for K = 2. In this way, the angular distribution of
emitted Auger Meitner electrons is expressed as

I(θ) =
I0
4π




1 +

∑

K≥2
even

αKAK0PK(cos θ)





. (2.88)

There are a few points worthy of note regarding this equation. The sum over K

is restricted by K ≤ 2Li owing to the Clebsch-Gordan coefficient in ⟨T (Li)
†
K0⟩lab

[Eq. (2.46)]. Thus, in general, not only A20, but also higher AK0 contribute to the
sum unless Li = 1. Moreover, the angular distribution of emitted Auger-Meitner
electrons has a similar form as the spatial shape of the electron cloud of an aligned
ion [Eq. (2.77)]. The first term yields an isotropic angular distribution, whereas
the second term reshapes it. This reshaping depends on both the alignment of the
initial ion produced in a primary ionization step (AK0) and the dynamics of the
subsequent Auger-Meitner decay (αK). It is possible to express αK [Eq. (2.86)] ex-
plicitly in terms of summations over quantum numbers, Clebsch-Gordan coefficients,
and reduced transition matrix elements [201, 207, 209–211]. But this is beyond the
scope of this introduction into the theoretical framework of electron-cloud alignment
and is not necessary to understand the scientific contributions in Chapter 3.

Here, the angular distribution of emitted Auger-Meitner electrons is illustrated
by means of an example. Let us consider Auger-Meitner decays that involve only
a single continuum wave for the Auger-Meitner electron with orbital-angular mo-
mentum la. Examples are L2,3M1M1 or L1L2,3M1 Auger-Meitner decays or those
resulting in ions with final orbital-angular momentum Lf = 0. In these special cases,
the anisotropy parameter αK becomes independent of the reduced transition matrix
elements and simplifies to a purely analytic expression [75, 76, 201, 209]

αK = (−1)Li+Lf

√
2Li + 1(2la + 1)C(la, la, K; 0, 0, 0)

{
la la K

Li Li Lf

}
. (2.89)
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Figure 2.13: Polar diagram of the angular distribution of emitted Auger-Meitner
electrons I(θ). The initial ion, having orbital-angular momentum Li = 1, is either
unaligned (A20 = 0), perfectly aligned (A20 = −

√
2 ≈ −0.141), or perfectly anti

aligned (A20 = 1/
√
2 ≈ 0.707). The emitted Auger Meitner electrons are assumed

to be in a single continuum wave with orbital-angular momentum la = 1. Different
orbital-angular momenta Lf for the resulting final ion are discussed. The vertical
axis corresponds to the quantization (z) axis in the laboratory system.

Here, {·} is a 6j symbol [204] and K ≤ 2la due to the triangular condition for the
Clebsch-Gordan coefficient [203]. As a consequence of the latter, it is

I(θ) =
I0
4π

{1 + α2A20P2(cos θ)} for la = 1 or Li = 1. (2.90)

In these two special cases, the angular distribution of emitted Auger-Meitner elec-
trons gives direct access to the alignment parameter A20 for the initial ion. For
perfectly aligned or anti aligned ions with Li = 1, exemplary angular distribution
of emitted Auger-Meitner electrons with la = 1 are presented in Fig. 2.13. As can
be seen, for Lf = 0, the shapes of the angular distribution look fairly similar to
the spatial shapes of the electron cloud of the initial ion, shown in Fig. 2.12. For
Lf = 1, the angular distributions are rotated by π/2 due to the sign factor of α2

[Eq. (2.89)]. For Lf = 2, reshaping of the isotropic angular distribution is clearly
reduced, which is related to much smaller values for α2. When the initial ion is
unaligned, the angular distribution is always perfectly isotropic.

2.4.6 Conclusion and outlook

In this section, a general introduction into electron-cloud alignment has been given
with a focus on the alignment parameter for its describtion, on the spatial shape
of aligned electron clouds, and on the anisotropic emission of Auger-Meitner elec-
trons from aligned ions. Anisotropies in the angular distribution of Auger-Meitner
electrons are one possibility to make electron-cloud alignment experimentally acces-

60



2.4. Electron-cloud alignment

sible [58, 75, 76]. Others are anisotropies in the angular distribution of fluorescence
photons or their polarization [74, 78–80] as well as modifications in the photoelec-
tron angular distribution [66]. But because photoelectrons emitted from unaligned
ions already display an anisotropy [71–73], the latter is less useful. Both electron-
cloud alignment and angular distribution of Auger-Meitner electrons have already
been extensively explored theoretically and/or experimentally for a variety of singly
ionized atoms [54–58, 60, 64, 74, 80, 212–214]. Also the alignment of strong-field
ionized atoms has been studied [62, 63].

However, it is not clear how the electron-cloud alignment evolves during X-
ray multiphoton ionization dynamics (see Refs. [65, 66] for work in this direction,
though they employ XUV pulses). Answering this question is the aim of Sec. 3.1
and especially Sec. 3.4.
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Chapter 3

Scientific Contributions

Having introduced the theoretical framework relevant for this thesis, I present all
my scientific contributions in this chapter. An overview is given in Fig. 3.1.
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Figure 3.1: Graphical overview of my scientific contributions. For details, the reader
is referred to the corresponding sections.
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3.1 Theoretical investigation of orbital alignment of

X-ray-ionized atoms in exotic electronic config-

urations

The first publication presents a nonrelativistic quantum-state-resolved electronic-
structure framework for isolated atoms and atomic ions. This framework improves
the accuracy of calculated transition energies and enables to investigate orbital
alignment generated by an X-ray-induced transition. It also provides the basis
for the subsequent studies of state-resolved X-ray multiphoton ionization dynamics
(Secs. 3.2–3.4).

The underlying project was predominantly already performed as part of my mas-
ter thesis, which was jointly supervised by Dr. S.-K. Son and Professor Dr. R. Santra.
In particular, I embedded an improved quantum-state-resolved electronic-structure
description based on first-order many-body perturbation theory into the xatom

toolkit [20, 132, 215]. During my doctoral project, I used the alignment parameter
to investigate orbital alignment of X-ray-ionized atoms and wrote the manuscript
with inputs from all authors.
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We theoretically study orbital alignment in x-ray-ionized atoms and ions, based on improved electronic-
structure calculations starting from the Hartree-Fock-Slater model. We employ first-order many-body
perturbation theory to improve the Hartree-Fock-Slater calculations and show that the use of first-order-corrected
energies yields significantly better transition energies than originally obtained. The improved electronic-structure
calculations enable us also to compute individual state-to-state cross sections and transition rates and, thus, to
investigate orbital alignment induced by linearly polarized x rays. To explore the orbital alignment of transiently
formed ions after photoionization, we discuss alignment parameters and ratios of individual state-resolved
photoionization cross sections for initially neutral argon and two exotic electronic configurations that may be
formed during x-ray multiphoton ionization dynamics induced by x-ray free-electron lasers. We also present
how the orbital alignment is affected by Auger-Meitner decay and demonstrate how it evolves during a sequence
of one photoionization and one Auger-Meitner decay. Our present work establishes a step toward investigation
of orbital alignment in atomic ionization driven by high-intensity x rays.

DOI: 10.1103/PhysRevA.105.033111

I. INTRODUCTION

The development of x-ray free-electron lasers (XFELs)
around the world [1–5] has enabled scientists to study a va-
riety of new fields in structural biology [6–9], ultrafast x-ray
atomic and molecular physics [10–13], as well as dense matter
physics [14], owing to ultra-intense and ultrashort x-ray radi-
ation with an unprecedentedly high brilliance [15]. Prototype
examples of the excellent opportunities of XFELs are serial
femtosecond crystallography [16] and single-particle imaging
experiments [17,18], which permit structure determination
with almost atomic resolution [19–23].

Accurate theoretical simulations in combination with ex-
perimental studies [24–29] have shown that extremely highly
ionized atomic ions can be produced during interaction with
ultra-intense and ultrashort x-ray pulses. In general, an x-ray
photon is absorbed by an inner-shell electron, which is fol-
lowed by a decay process via Auger-Meitner decay or x-ray
fluorescence [30]. Further photoionization with accompany-
ing decay cascades lead to very highly charged states of atoms
[24–28] or molecules [29], which is called x-ray multiphoton
ionization [31]. In the molecular case, the sample undergoes
structural disintegration, which limits the resolution achiev-
able in x-ray imaging experiments [32–35].

On the other hand, it has been well known for a long
time that ions produced by single photoionization commonly
exhibit an alignment [36–39] due to different ionization prob-
abilities of ions with different projection quantum numbers.
A theoretical treatment of alignment, including a description
of parameters to quantify the alignment and orientation, can

be found in Refs. [40–42]. More recently, orbital alignment
has, for instance, been explored for single photoioniza-
tion of initially closed-shell atoms and cations with respect
to spin-orbit coupling [43,44] and for strong-field ionized
atoms [45,46].

As a consequence of these aspects, orbital alignment dur-
ing x-ray multiphoton ionization has become a topic of
interest, which remains relatively unexplored. It addresses
not only the orbital alignment of the highly charged ions
produced in the end of multiple sequences of photoabsorp-
tion and accompanying relaxation events, but also how the
alignment changes during the x-ray multiphoton ionization
dynamics. A first critical step in this research direction is to
develop a suitable atomic structure framework that provides
individual LS eigenstates as well as individual state-to-state
cross sections and transition rates for each angular momentum
projection ML. In a later step, this framework can then be
embedded in an ionization dynamics calculation, so that in-
dividual states can also be captured during x-ray multiphoton
ionization dynamics.

In this work, we present such a first step by extending the
ab initio electronic-structure toolkit XATOM [35,47]. XATOM

is a useful and successful tool [24–26,28] for simulating
x-ray-induced atomic processes and ionization dynamics of
neutral atoms, atomic ions, and ions embedded in a plasma
[48,49]. Based on a Hartree-Fock-Slater (HFS) calculation
of orbitals and orbital energies, subshell photoionization
cross sections and fluorescence and Auger-Meitner group
rates [35] can be computed, among other things [50–53].
These quantities are employed to determine the ionization
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dynamics by solving a set of coupled rate equations [31],
either directly [35] or via more efficient Monte Carlo algo-
rithms for heavy atoms [24,54]. Since, especially for heavy
atoms, an extremely huge number of electronic configura-
tions are involved in the ionization dynamics, computational
efficiency is critical. For instance, for xenon atoms, this num-
ber can be estimated to be ∼2.6 × 1068 when relativistic
and resonant effects are included [25]. Therefore, the XATOM

toolkit uses HFS, one of the simplest and most efficient first-
principles electronic-structure methods. Even though there
are other more accurate atomic structure toolkits (see, e.g.,
[55]), improving the XATOM toolkit is of critical relevance
for investigations in x-ray-induced ionization dynamics. Com-
putational efficiency becomes even more crucial for solving
state-resolved rate equations. In this case, the number of
individual electronic states involved in the ionization dy-
namics goes far beyond the number of involved electronic
configurations.

We extend the XATOM toolkit [35,47,56] by incorporat-
ing an improved electronic-structure description, based on
the first-order many-body perturbation theory. This permits
the computation of first-order-corrected energies and a set of
zeroth-order LS eigenstates, for arbitrary electronic config-
urations. Moreover, individual state-to-state photoionization
cross sections and transition rates are calculated, based on our
new implementation. A detailed comparison with experimen-
tal results available in the literature shows that the extended
XATOM toolkit delivers significantly improved transition en-
ergies in contrast to the original version. The knowledge of
individual state-to-state cross sections enables us to study
orbital alignment of ions produced by single photoionization.
We focus on the orbital alignment of transiently formed ions
resulting from photoionization of a neutral argon atom and
some exotic electronic configurations of argon by linearly
polarized x rays. An important remark here is that these ions
can be viewed as examples of species appearing in x-ray
multiphoton ionization of neutral atoms. It would be possible
to observe them experimentally with ultrafast XFEL pulses
by using a transient absorption experiment with two-color x
rays, similar to that employed in Ref. [45]. Using the individ-
ual state-to-state transition rates, we investigate any change
of orbital alignment after fluorescence and Auger-Meitner
decay. Combining state-to-state cross sections and rates, we
examine the orbital alignment after one x-ray-induced ion-
ization process, i.e., a sequence comprising a photoionization
event and a subsequent relaxation event. Understanding of
the orbital alignment of this x-ray single-photon ioniza-
tion will be a building block to explore and explain the
orbital alignment occurring during x-ray multiphoton ion-
ization dynamics induced by interaction with intense XFEL
pulses.

The paper is organized as follows. In Sec. II, we briefly
present the theoretical framework of our implementation in
XATOM and discuss quantities to quantify the alignment. The
validation of our implementation is the topic of Sec. III. Or-
bital alignment in initially neutral Ar, Ar+ (2p−1), and Ar2+

(2p−2) is studied in Sec. IV. We also briefly address the or-
bital alignment caused by x-ray-induced ionization including
relaxation in this section. We conclude with a summary and
future perspectives in Sec. V.

II. THEORETICAL DETAILS

The aim of this section is to outline the theoretical frame-
work. In particular, we start with the HFS Hamiltonian, whose
solutions are already present in the XATOM toolkit [56]. Then
we develop a method to determine first-order-corrected en-
ergies and a new set of eigenstates by employing first-order
degenerate perturbation theory. These improved electronic-
structure calculations are implemented as an extension of
the XATOM toolkit [56] and are further utilized to calculate
individual state-to-state cross sections and transition rates.
Throughout this paper, atomic units, i.e., m = |e| = h̄ = 1 and
c = 1/α, are used, where α is the fine-structure constant.

A. The Hamiltonian

The Hamiltonian describing N nonrelativistic electrons in
an atom can be separated into the HFS Hamiltonian ĤHFS and
the residual electron-electron interaction V̂res, defined by the
full two-electron interactions minus the HFS mean field [see
Eq. (6)],

Ĥmatter = ĤHFS + V̂res. (1)

The one-electron solutions of the HFS Hamiltonian are the
so-called spin orbitals ϕq and spin-orbital energies εq, respec-
tively [30]. Consequently, we solve the following effective
one-electron equation:[− 1

2∇2 + V̂ HFS(�x)
]
ϕq(�x) = εqϕq(�x). (2)

Here, V̂ HFS is the Hartree-Fock-Slater mean field [57],

V̂ HFS(�x) = − Z

|�x| +
∫

d3x′ ρ(�x′)
|�x − �x′| − 3

2

[
3

π
ρ(�x)

] 1
3

, (3)

with the local electron density ρ(�x) and the nuclear charge
Z . A more extensive description of how to numerically solve
Eq. (2) within the XATOM toolkit can be found in, e.g.,
Refs. [35,47]. In the context of this paper, it is only worth
mentioning that the spin orbitals can be decomposed into a
radial part, a spherical harmonic, and a spin part [35],

ϕq(�x) = uξq,lq (r)

r
Y

mlq

lq
(�)

(
δmsq , 1

2

δmsq ,− 1
2

)
. (4)

Accordingly, the index q refers to a set of four quantum num-
bers (ξq, lq, mlq , msq ) (with ξq = nq for bound spin orbitals,
i.e., εq < 0, and ξq = εq for unbound spin orbitals, i.e., εq �
0). Note that spin orbitals belonging to the same subshell, i.e.,
the same n and l quantum numbers, share the same orbital
energy, denoted as εnl .

Introducing anticommutating creation and annihilation op-
erators, ĉ†

q and ĉq, associated with the spin orbitals [30,58], the
two parts of Eq. (1) can be expressed as

ĤHFS =
∑

q

εqĉ†
qĉq (5)

and

V̂res = −
∑
p,q

V HFS
pq ĉ†

pĉq + 1

2

∑
p,q,r,s

vpqrsĉ
†
pĉ†

qĉsĉr . (6)
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In these expressions, the summations run over all spin orbitals.
Furthermore,

V HFS
pq =

∫
d3x ϕ†

p(�x)V̂ HFS(�x)ϕq(�x) (7)

is a mean-field matrix element and

vpqrs =
∫ ∫

d3x d3x′ ϕ†
p(�x)ϕ†

q ( �x′)
1

|�x − �x′|ϕr (�x)ϕs( �x′) (8)

is a two-electron Coulomb matrix element.
Having at hand the one-electron eigenstates, the N-electron

eigenstates of ĤHFS are then formed by an antisymmetrized
product [58]. Known as electronic Fock states, these multior-
bital states read

|
α〉 =
∣∣∣∣∣

∞∏
q=1

nα
q

〉
=

∞∏
q=1

(ĉ†
q )nα

q |0〉, (9)

where |0〉 is the vacuum and the occupation number nα
q ∈

{0, 1} is restricted by
∑∞

q=1 nα
q = N . The energy of a Fock

state is

Eα =
∞∑

q=1

nα
q εq =

∑
n,l

Nnlεnl , (10)

with the latter summation running over all subshells, occupied
by Nnl electrons. Note that the Fock states are only eigenstates
of ĤHFS, but not of Ĥmatter.

B. Improved electronic-structure calculations

In order to obtain approximate solutions of Ĥmatter, we
employ first-order time-independent degenerate perturbation
theory [59,60]. Regarding Ĥmatter in Eq. (1), ĤHFS is treated
as the unperturbed Hamiltonian, the well-known Fock states
|
α〉 as the unperturbed zeroth-order states, and V̂res as the
perturbation. Since the Fock states belonging to the same
electronic configuration share the same energy with respect
to ĤHFS [see Eq. (10)], degenerate perturbation theory has to
be applied.

Here the method implemented to determine the first-order-
corrected energy eigenvalues of Ĥmatter and a new set of
zeroth-order eigenstates by employing first-order degenerate
perturbation theory is briefly sketched. In particular, we as-
sume that an arbitrary electronic configuration is given for the
atom or ion for which we want to find the solutions. Then
an application of degenerate perturbation theory requires the
following steps.

(i) Find the set of Fock states belonging to the given elec-
tronic configuration and make subsets according to (MS, ML).
It is useful to group the Fock states |
α〉 into subsets ac-
cording to the total spin projection, Mα

S = ∑
q nα

q msq , and the
projection of the total angular momentum operator, Mα

L =∑
q nα

q mlq . Therefore, from now on, a Fock state is expressed
as |
MS ;ML

γ 〉, with its projection quantum numbers as upper
labels and with a lower index γ that runs from 1 to the
number of Fock states with MS and ML. Then, for each
subset {|
MS ;ML

γ 〉}, the Fock states are separately determined
as strings of occupation numbers, i.e., zeros and ones [see
Eq. (9)].

(ii) Compute the matrix elements of Hmatter within each
subset and diagonalize each submatrix H (MS,ML )

matter . Most im-
portantly, utilizing the Condon rules [61], it can be easily
shown that Hmatter is block diagonal in the previously in-
troduced subsets {|
MS ;ML

γ 〉}. Therefore, it is sufficient to
compute only matrix elements within the subsets, i.e.,
〈
MS ;ML

δ |Ĥmatter|
MS ;ML
γ 〉, and to numerically diagonalize each

submatrix H (MS ,ML )
matter separately. The eigenvalues of H (MS ,ML )

matter
deliver first-order-corrected energies and its eigenstates offer
a new subset of zeroth-order states having projection quantum
numbers MS and ML. These new states are linear combina-
tions of the Fock states |
MS ;ML

γ 〉 belonging to the subset in
question. In contrast to the Fock states, the new states have
the advantage of also being eigenstates of total orbital angular
momentum and of total spin. Thus, from now on, we refer to
the new zeroth-order states as zeroth-order LS eigenstates.

(iii) Identify the term symbol for each pair of first-order-
corrected energy and zeroth-order LS eigenstate. To label the
zeroth-order LS eigenstates, we use the set of quantum num-
bers (L, S, ML, MS ) together with an additional integer index
κ that runs from 1 to the number of states with (L, S, ML, MS ).
Consequently, the zeroth-order LS eigenstates read

|LSMLMSκ〉 =
∑

γ

cγ

LSMLMSκ
|
MS ;ML

γ 〉, (11)

with the expansion coefficient cγ
LSMLMSκ

obtained from step
(ii). The values for the projection quantum numbers are di-
rectly known from the subset in question, whereas the other
labels, i.e., L, S, and κ , need to be determined. The zeroth-
order LS eigenstates, having the same values for L, S, and
κ , form a term [62] which is characterized by a term symbol
2S+1L(κ ). Also note that all states within a term share the same
energy. So let the first-order-corrected energies be denoted by
ELSκ . Combining this knowledge with the method of Slater
diagrams, described in, e.g., Refs. [62,63], L, S, and κ can
be identified for each pair of first-order-corrected energy and
zeroth-order LS eigenstate.

(iv) If terms share the same first-order-corrected energy,
diagonalize S2 and/or L2 with respect to the zeroth-order LS
eigenstates in question. This step is necessary to guarantee
that the zeroth-order states are all proper LS eigenstates in the
end (for more details, see [61]).

The method described delivers all terms 2S+1L(κ ) together
with their first-order-corrected energies ELSκ and all zeroth-
order LS eigenstates |LSMLMSκ〉 for a given atom or ion in a
given electronic configuration. In the following, for simplicity,
the label κ is omitted, either because κ = 1 for all involved
states or because it is irrelevant in the computation in question.
We point out that the orbitals and their energies needed to
create the submatrices H (MS,ML )

matter are provided by the original
XATOM toolkit. Moreover, note that there exists an alternative
way of constructing the LS eigenstates by employing Racah
algebra [64–67]. However, here we have used the strategy
that was developed by Condon and Shortley [61]. Numerical
diagonalization of the relatively small matrices that arise in
the approach we adopt does not determine the overall compu-
tational effort.
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C. Individual state-to-state photoionization cross sections

Having at hand first-order-corrected energies and zeroth-
order LS eigenstates [Eq. (11)] for the initial and final
electronic configurations, we can compute photoionization
cross sections for these individual initial and final states. Note
that from now on, the index i appears when referring to the
quantities of the initial state, i.e., |LiSiMLi MSi〉, while the
index f is used for a final target state, i.e., |L f S f ML f MS f 〉.
We remark that the final target state excludes the unbound
photoelectron. Thus, the total final electronic state is given by
|L f S f ML f MS f ; εclcmlc msc〉, where the latter quantum numbers
refer to those of the photoelectron. However, attributed to the

use of a fully uncoupled approach for the continuum states,
the total final state is no LS eigenstate. In order to calculate
the cross section for orthogonal spin orbitals and for photons
linearly polarized along the z axis [68,69], we use the first-
order time-dependent perturbation theory [30] and the electric
dipole approximation [31]. As long as we integrate over the
photoelectron angular distribution, the latter approximation,
also utilized in the original XATOM toolkit [35], works well.
Then the individual state-to-state cross section for ionizing
an electron in the subshell with quantum numbers n and l by
absorbing a linearly polarized photon with energy ωin may be
written as

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nl, ωin) = 4π2

3ωin
α(εnl − εc)2

l+1∑
lc=|l−1|

l>

∣∣∣∣
∫ ∞

0
dru∗

εclc (r)runl (r)

∣∣∣∣
2

×
∑
MS f

|C(l, lc, 1; MLi − ML f , ML f − MLi , 0)〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉|2. (12)

In this expression, C(·) represents a Clebsch-Gordan coef-
ficient [65,67], l> = max(lc, l ), εc = ωin + ELiSi − EL f S f is
the energy of the photoelectron, and εnl is the orbital en-
ergy of the nl subshell [70]. Owing to the selection rules
for a dipole transition [68], the first sum in Eq. (12)
does not include lc = l . Following the independent-particle
model [71], the index j of the involved bound spin or-
bital (i.e., from which an electron is ejected) refers to
the set of quantum numbers (n j, l j, mlj , msj ) = (n, l, MLi −
ML f , MSi − MS f ) with the restriction MSi = Si. The interaction
Hamiltonian causing one-photon absorption [30] does not
affect the spin and its projection. Thereby, the cross sec-
tion is independent of the initial spin projection MSi when
performing a summation over the final spin projection MS f .
Accordingly, Eq. (12) describes a transition between one ini-
tial zeroth-order LS eigenstate |LiSiMLi MSi〉 with arbitrary
spin projection MSi and both final zeroth-order LS eigen-
states |L f S f ML f MSi + 1

2 〉 and |L f S f ML f MSi − 1
2 〉, as long as

|MSi ± 1
2 | � S f . We also remark that the matrix element

〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉 can be interpreted as the overlap
between the final and initial zeroth-order LS eigenstates. Due
to the involved annihilation operator ĉ j (see Sec. II A), the ini-
tial state is, however, already reduced by the involved electron
in the spin orbital ϕ j . The larger (smaller) this overlap is, the
larger (smaller) the cross section is. If the overlap is zero, the
cross section is zero.

D. Individual state-to-state transition rates

The fluorescence rate for a transition of an electron from
the n jl j subshell to a hole in the lower-lying nhlh subshell can
be calculated in a similar way as the photoionization cross
section [30,31,68]. Accordingly, the individual state-to-state
fluorescence rate associated with a transition from the initial
zeroth-order LS eigenstate |LiSiMLi MSi〉 to an accessible final
target state |L f S f ML f MS f 〉 may be written as

�
MLi ;ML f

2Si+1Li;
2S f +1L f

(n jl j, nhlh) = 4l>
3(2lh + 1)

α3(ELiSi − EL f S f )(εnhlh − εn j l j )
2

∣∣∣∣
∫ ∞

0
dru∗

nhlh (r)runj l j (r)

∣∣∣∣
2

×
∣∣∣∣∣∣
∑
h, j

C(1, l j, lh; ML f − MLi , mlj , mlh )
〈
L f S f ML f S f

∣∣ĉ†
hĉ j

∣∣LiSiMLi Si
〉∣∣∣∣∣∣

2

. (13)

Here, l> = max(l j, lh). The indices j and h of the solely
initially or, respectively, finally occupied bound spin orbitals
(between which the electron is transferred) refer to the set of
quantum numbers (n j, l j, mlj , msj ) and (nh, lh, mlh = ML f −
MLi + mlj , msh = msj ). We note that the total projections MLi

and ML f determine the relation between mlj and mlh only,
but not their values. Consequently, it is necessary to include
in Eq. (13) a summation over all possible spin orbitals that
are only occupied in the initial or the final state, respectively.

Since the interaction Hamiltonian [30] does not affect the spin
and its projection, and MSi = MS f due to the selection rules,
the transition rate is independent of the initial and final spin
projection.

Another transition rate of interest is the Auger-Meitner
decay rate that two electrons in the njl j and n j′ l j′ subshells
undergo transitions: one into a hole in the lower-lying nhlh
subshell and the other into the continuum. Since this process
occurs via the electron-electron interaction, its transition rate
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can be obtained by employing the first-order time-dependent
perturbation theory with the interaction Hamiltonian given

by Eq. (6) [30,69]. Accordingly, the individual state-to-state
Auger-Meitner decay rate may be written as

�
MLi ;ML f

2Si+1Li;
2S f +1L f

(n jl j, n j′ l j′ , nhlh) = 2π
∑

la

∑
MS f

∣∣∣∣∣∣
∑
h, j, j′

[vah j j′ − vah j′ j]〈L f S f ML f MS f |ĉ†
hĉ j′ ĉ j |LiSiMLi Si〉

∣∣∣∣∣∣
2

, (14)

where vah j j′ and vah j′ j are both two-electron Coulomb ma-
trix elements given by Eq. (8). Here, the index a refers
to the quantum numbers of the Auger electron, i.e., (εa =
ELiSi − EL f S f , la, MLi − ML f , MSi − MS f ). The sum over la
is restricted by |L f − Li| � la � min(lh + l j + l j′ , L f + Li ).
The indices j, j′, and h denote the involved spin orbitals in
the corresponding n jl j , n j′ l j′ , and nhlh subshells, respectively.
However, it is necessary to include in Eq. (14) a summation
over all possible spin orbitals that are either only occupied in
the initial or the final state because the projection quantum
numbers of these orbitals are not completely definite. Addi-
tionally, including a summation over the final spin projection
MS f provides a transition rate that is independent of the initial
spin projection.

E. Alignment parameter and ratios

We briefly introduce a few basic quantities that we em-
ploy for the investigation of orbital alignment. The alignment
parameter [40–42] offers a measure of the alignment of a
final ion with definite angular momentum L f due to different
projections ML f . Recall that there is no coupling to the spin
for the employed interaction Hamiltonians [30] and, thus, no
alignment with respect to MS f . Therefore, in what follows,
we neglect the spin S f and its projection MS f , i.e., in this
section, |L f ML f 〉 refers to a final zeroth-order LS eigenstate,
a sum over accessible MS f included as in Eqs. (12) and (14).
Here, we briefly define the alignment parameter in our con-
text. Further discussions and applications of the alignment and
orientation parameters can be found in Refs. [40–42].

Let us start with the density matrix for the L f under inves-
tigation [40,41],

ρ̂ =
∑
ML f

p(ML f |L f )|L f ML f 〉〈L f ML f |. (15)

Here, p(ML f |L f ) is the conditional population probability of
the final state with projection ML f for a given L f . For sin-
gle photoionization, this probability is given by p(ML f |L f ) =
σ

MLi ;ML f

2Si+1Li;
2S f +1L f

/
∑

ML f
σ

MLi ;ML f

2Si+1Li;
2S f +1L f

for an S f and an initial state.

Similarly, the population probability can be obtained for the
decay processes via the transition rates in Eqs. (13) and (14).
As a next step, we decompose ρ̂ in terms of irreducible spher-
ical tensor operators [41,72],

T̂JM =
∑

ML f ,M ′
L f

(−1)
L f −M ′

L f C(L f , L f , J; ML f ,−M ′
L f

, M )

× |L f ML f 〉〈L f M ′
L f

|. (16)

Thus, we may write

ρ̂ =
∑
J,M

ρJMT̂JM, (17)

where the expansion coefficients ρJM are given by [40]

ρJM =
∑
ML f

(−1)L f −ML f p(ML f |L f )

×C(L f , L f , J; ML f ,−ML f , M ). (18)

Note that these coefficients are only nonzero for M = 0. In
the case of p(−ML f |L f ) = p(ML f |L f ), ρJ0 vanishes for odd
J owing to the properties of the Clebsch-Gordan coefficient
[65]. Since there is no preference for ±ML f in the interaction
with linearly polarized light, i.e., p(−ML f |L f ) = p(ML f |L f ),
ρ10 is always zero. Thus, the orientation parameter, defined
by O10 = ρ10/ρ00 [42], is zero and no orientation is created
by the interaction with linearly polarized light.

The coefficients ρJ0 are also known as statistical tensors,
and they define the alignment parameter as follows [42]:

A20(L f ) = ρ20/ρ00

=
√

5

(2L f + 3)(L f + 1)L f (2L f − 1)

×
∑
ML f

[
3M2

L f
− L f (L f + 1)

]
p(ML f |L f ). (19)

To obtain the second line of Eq. (19), we have utilized the for-
mula for the Clebsch-Gordan coefficients given in Ref. [65].
Note that A20 is positive (negative) when states with larger
(smaller) |ML f | are more likely populated than the others.
For a uniform distribution, A20 = 0 (no alignment), while the
larger |A20| the stronger the alignment.

In general, an ion produced by photoionization can have
different L f , but the alignment parameter can only capture
one L f . Thus, if we are interested in the distribution of all
possible final states, then another quantity of interest is the
ratio of individual (state-resolved) cross sections,

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nl, ωin)/σ
MLi

2Si+1Li
(nl, ωin). (20)

This provides direct information about the probability to find
the ion produced in the final 2S f +1L f state with projection
ML f , when the atom or ion is initially in the 2Si+1Li state
with projection MLi and when the nl subshell is ionized. Here,

σ
MLi

2Si+1Li
(nl, ωin) is the subshell cross section of the nl subshell

restricted to the initial state in question, summing over all
possible final states. We do not distinguish between states with
different spin projection as the cross sections are independent
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of it. Moreover, replacing the cross sections in Eq. (20) by
the corresponding transition rates [Eqs. (13) and (14)] delivers
ratios of individual transition rates.

III. VALIDATION

Having discussed the basic formalism underlying our
implementation in XATOM, we next proceed to explore tran-
sition energies and photoionization cross sections for explicit
electronic configurations and to compare the results with
experimental measurements. In particular, we employ two
different theoretical strategies for describing physical pro-
cesses. In the zeroth-order strategy, transition energies are
computed based on zeroth-order energies for the initial and
final states. The zeroth-order energies are the sum of orbital
energies according to the initial or final electronic configura-
tion [Eq. (10)]. On the other side, in the first-order strategy,
transition energies are computed based on the first-order-
corrected energies ELS for the initial and final states (see
Sec. II B). For both strategies, energies and radial integrals are
calculated with orbitals and orbital energies optimized for the
initial configuration only. The usage of the same set of orbitals
for both the initial and final configurations avoids issues with
orbital nonorthogonality [73–75]. Moreover, it should be men-
tioned that we still perform zeroth-order calculations using
the original version of XATOM, whereas for the first-order
calculations, we employ the present implementation.

Orbitals and orbital energies are numerically solved on a
radial grid employed by XATOM (see Refs. [35,47] for details),
based on the HFS potential [Eq. (3)] including the latter tail
correction [76]. In what follows, the bound states are com-
puted using the generalized pseudospectral method [77,78] on
a nonuniform grid with 200 grid points and a maximum radius
of 50 a.u. The continuum states are computed using the fourth-
order Runge-Kutta method on a uniform grid [79,80] with a
grid size of 0.005 a.u., employing the same potential as used in
the bound-state calculation. It has been demonstrated that the
cross sections and rates calculated using XATOM (zeroth-order
strategy) show good agreement with the available experimen-
tal data and other calculations [35,53,54].

A. Transition energies for neon

First, the Kα fluorescence energy and all KLL Auger-
electron energies are examined for an initial Ne+ ion with a
K-shell vacancy (1s−1 2S). The results are presented in Fig. 1.
It is apparent from the data that the first-order strategy is in
reasonable agreement with the experimental Kα fluorescence
energy [81,82] and the KLL Auger-Meitner electron energies
[83], to within less than 2%. In contrast, the energies obtained
via the zeroth-order strategy differ significantly from the ex-
perimental values. These findings indicate that the first-order
strategy, contained in our implementation, is the better strat-
egy for describing the transition energy. The small difference
between experiment and theory still remaining for the first-
order calculation might be attributed to the use of the same set
of initial and final orbitals, the neglect of higher-order terms,
and relativistic effects. We remark that no value is shown for
the final state of 2p−2 3P in Fig. 1 because this transition is
forbidden on account of parity [30,84].
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FIG. 1. Comparison of experimental Kα fluorescence energy
[81,82] and KLL Auger-electron energies [83] for neon with two
theoretical strategies (see legend). The different lines are labeled by
the final open subshell(s) (first line) and by the final term symbol
(second line). In all cases, the Ne+ ion is initially in the 1s−1 2S
state.

B. Photoionization cross sections for argon

As a next example, we examine photoionization of a
neutral argon atom (1s22s22p63s23p6) in the region of the
thresholds. Figure 2 shows the total photoionization cross
section as a function of the photon energy in the (a) K-shell,
(b) L-shell, and (c) M-shell threshold regions. The total cross
sections, which are an incoherent sum over all individual
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FIG. 2. Calculated total photoionization cross section, in Mb, of
neutral argon as a function of the photon energy, in eV. Results for
both the first-order strategy (solid blue line) and the zeroth-order
strategy (dashed red line) are compared to experimental data (black
crosses) reported in Ref. [85] for the K- and L-shell thresholds and
Ref. [86] for the M-shell threshold.
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state-to-state cross sections in Eq. (12), are depicted. Inter-
estingly, with regard to the cross section, both the first-order
and zeroth-order strategies behave very similarly, if one ig-
nores the shift due to different threshold energies. In general,
both are in acceptable agreement with the experimental values
around the K- and L-shell thresholds [85] and the M-shell
threshold [86], often to within less than 10%. However, es-
pecially at the L- and M-shell thresholds, the calculated cross
sections are significantly higher than the experimental values
(more than 50% between the 3p and 3s thresholds and ∼25%
at the 2p and 2s thresholds). This observed disagreement and
the lack of improvement concerning the first-order strategy
mainly stem from the use of zeroth-order states in both strate-
gies. In the present framework, first-order-corrected energies
but only zeroth-order eigenstates are calculated (see Sec. II B).
If the first-order states were used, it would be possible to
capture a part of the interchannel coupling [87], since the
first-order states are a mixture of the zeroth-order states from
different electronic configurations [60]. Moreover, it should
be mentioned that the experimental results in Fig. 2(c) contain
resonances between the 3p and the 3s thresholds [86], but the
theoretical calculations do not.

Even though our implementation only leads to an improve-
ment on the transition energy but not on the cross section, it
has the following major advantage with respect to the orig-
inal version of XATOM: With the help of the zeroth-order
LS eigenstates, the present implementation is capable to pro-
vide individual state-to-state cross sections and transition rates
(see Secs. II C and II D), thus allowing us to study orbital
alignment (see next section).

IV. RESULTS AND DISCUSSION

We employ the individual state-to-state cross sections pro-
vided by our implementation to explore orbital alignment
induced by linearly polarized x rays. In particular, we consider
the distribution of the states belonging to the ions produced by
photoionization. As a first example, we discuss photoioniza-
tion of the neutral argon atom that is initially in a closed-shell
configuration. Having at hand the results for neutral argon, we
then generalize them to some argon charge states in open-shell
configurations. These ions can appear in the x-ray multipho-
ton ionization of neutral argon driven by an intense XFEL
pulse.

Before starting, however, the following should be pointed
out. In what follows, we focus on the photoionization of an
electron in a specific subshell of 2p or 3p (l = 1) without
any interaction between the subshells (interchannel coupling).
This is because (i) ionization of the subshell with l = 0 al-
ways completely aligns the remaining ion since only the final
state with ML f = MLi is allowed and (ii) binding energies
differ enough to neglect the interaction [88]. Furthermore, we
focus on a specific initial zeroth-order LS eigenstate. How-
ever, for MLi �= 0, we will consider a uniform distribution of
initial states with ±MLi , denoted in the following by |MLi |.
This prevents an orientation of the final ion, which would be
simply caused by a prior orientation of the initial ion. There-
fore, the population probabilities of the final ion are identical
for ±ML f , i.e., p(−ML f |L f ) = p(ML f |L f ). This is because
Eqs. (12)–(14) are identical for a transition from MLi to ±ML f
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FIG. 3. Ratio of individual cross sections σ
0;ML f
1S;2P

/σ 0
1S

for neutral
argon as a function of the photon energy from the 3p threshold
(≈13.46 eV) to the 1s threshold (≈3207.51 eV). Results for different
ML f for both ionizations of the 2p and 3p subshells are shown
(see legend). The gray line at 1/3 indicates the case of a uniform
distribution of ML f . In all cases, the atom is initially in the 1S state
with MLi = 0 and the final Ar+ ion is in one of the 2P states.

and −MLi to ∓ML f . So there is no orientation (see Sec. II E)
and we can investigate the ±ML f cases together (without
summing over both signs).

A. Orbital alignment after ionization of neutral Ar

We first investigate the orbital alignment of the Ar+ ion
following the photoionization of the 2p or 3p subshell of
neutral argon (1s22s22p63s23p6) by linearly polarized x rays.

The calculated ratios of individual cross sections σ
0;ML f

1S;2P /σ 0
1S

[Eq. (20)] are presented in Fig. 3 for all possible ML f as a func-
tion of the photon energy. Additionally, calculated alignment
parameters A20(P) [Eq. (19)] are listed in Table I for various
photon energies. For initially neutral argon, A20(P) can be
directly obtained from the ratios in Fig. 3, i.e., A20(P) =√

2[σ 0;1
1S;2P/σ 0

1S − σ 0;0
1S;2P/σ 0

1S]. As can be seen, in the x-ray
regime, where the photon energy is greater than ∼300 eV,
the resulting Ar+ ion (2p−1 or 3p−1) exhibits a clear orbital
alignment (i.e., A20 < 0), but it is not an extremely strong
orbital alignment (i.e., A20 is close to zero). It increases only
marginally with the photon energy and is a little stronger for
the 3p subshell than for the 2p subshell. As a consequence of
the alignment, almost 45% of the Ar+ ions produced have an
angular momentum projection of ML f = 0, while the others

TABLE I. Alignment parameter A20(P) of the final Ar+ ion after
ionization of neutral Ar. Results for both ionizations of the 2p and 3p
subshell of neutral argon are listed for various photon energies. For
comparison, note that a complete alignment with respect to ML f = 0

would yield a value of A20(P) = −√
2.

nl ωin (eV) A20(P)

3p 40 −1.406
2p 300 −0.178
3p 300 −0.221
2p 1000 −0.196
3p 1000 −0.218
2p 3000 −0.228
3p 3000 −0.240
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TABLE II. Radial integrals |Rεc0;n1| and |Rεc2;n1| as well as their
ratio for various photon energies for neutral argon.

nl ωin (eV) A = |Rεc0;n1| B = |Rεc2;n1| (A/B)2

3p 40 2.99 × 10−1 0.71 × 10−1 302.00
2p 300 0.37 × 10−1 1.51 × 10−1 0.06
3p 300 1.40 × 10−2 3.84 × 10−2 0.13
2p 1000 0.54 × 10−2 1.81 × 10−2 0.09
3p 1000 1.75 × 10−3 4.89 × 10−3 0.13
2p 3000 0.71 × 10−3 1.85 × 10−3 0.15
3p 3000 2.18 × 10−4 5.34 × 10−4 0.17

have ML f = ±1 with a probability of 28% for each ML f (see
Fig. 3).

There are two explanations for the observed alignment.
First, due to the angular momentum coupling of the photo-
electron and the involved final hole for incoming radiation
linearly polarized along the z axis [68,69], the ejection of
an electron with mlj = ±1 is less likely than with mlj = 0.
Hence, a transition with MLi − ML f = mlj = ±1 is less likely
than one with MLi = ML f . In particular, ratios of individual
cross sections differ by a value of 0.1. This value can be
obtained from an explicit calculation of Clebsch-Gordan coef-
ficients in Eq. (12) and is, evidently, independent of the photon
energy. Second, the remaining alignment can be explained
as follows. Owing to the selection rules for a dipole transi-
tion [68], the photoelectron can have two possible angular
momentum quantum numbers, lc = l ± 1. In the calculation
of cross sections, lc is summed over both [see Eq. (12)].
However, for MLi − ML f = ±1 and l = 1, the former is for-
bidden as lc = 0 < |MLi − ML f |, so only lc = 2 contributes
to the cross section. Consequently, when MLi = 0, the cross
section for ML f = ±1 (only lc = 2 contributes) is smaller
than that for ML f = 0 (both lc = 0 and lc = 2 contribute).
This effect becomes larger as the lc = 0 contribution of the
photoelectron increases. From Eq. (12), we can conclude that
the amount of this reduction depends on the ratio of radial
integrals |Rεc0;n1|2/|Rεc2;n1|2, where

Rεclc;nl =
∫ ∞

0
dru∗

εclc (r)runl (r). (21)

For the initial neutral argon, the ratios of the radial integrals
are shown in Table II. In the x-ray regime (ωin � 300 eV),
the ratio of radial integrals is quite small. Therefore, cross
sections for ML f = ±1 are reduced by the ratio of radial
integrals only a little and, thus, the alignment is not extremely
strong, as shown in Table I. Also worthy of note is that the
marginal increase of the alignment with the photon energy can
be attributed to the ratio of radial integrals as well. In contrast,
below the x-ray regime at roughly 40 eV, an opposite situation
can be discovered, as shown in Fig. 3, Table I, and Table II.
Photoionization of the 3p subshell by a linearly polarized
photon with around 40 eV predominantly produces an ion
with ML f = 0 (i.e., A20 ∼ −√

2).

B. Orbital alignment after 2p ionization of Ar+ (2p−1)

Next we proceed to investigate orbital alignment after
ionization of the initially open-shell configuration of Ar+

TABLE III. Alignment parameter A20(P) and A20(D) of the final
Ar2+ ion (2p−2) after 2p ionization of Ar+ (2p−1 2P). Results for
different |MLi | are listed at a photon energy of 1000 and 3000 eV.

ωin (eV) |MLi | A20(P) A20(D)

1000 0 0.707 −0.895
1000 1 −0.147 0.290
3000 0 0.707 −0.904
3000 1 −0.115 0.268

(1s22s22p53s23p6). Here we are considering only 2p−1 for
Ar+ because (i) the partial cross section of 3p of neutral Ar
is much smaller than that of 2p, when the photon energy is
greater than the 2p threshold, and (ii) fluorescence processes
that can also produce a hole in the 3p subshell are very slow
(∼2000 fs lifetime) compared to the pulse durations of XFELs
(a few fs). Therefore, Ar+ ions are barely found in the configu-
ration 1s22s22p63s23p5 during interaction with XFEL pulses.
Likewise, we will focus on 2p ionization of Ar+ (2p−1) in the
following discussion because of the low cross section of the
3p subshell.

To explore the orbital alignment of the final Ar2+

(2p−2) that is produced by the photoionization of the 2p
subshell of Ar+, we calculate the alignment parameters
A20(P) and A20(D) as well as the ratios of individual

cross sections σ
|MLi |;ML f

2P;2S f +1L f
/σ

|MLi |
2P , i.e., 1

2 [σ
+MLi ;ML f

2P;2S f +1L f
/σ

+MLi
2P +

σ
−MLi ;ML f

2P;2S f +1L f
/σ

−MLi
2P ] for MLi �= 0. As observed above for neutral

argon, we expect for the orbital alignment of initial Ar+ ions
a similar, very small, and smooth change with the energy of
the x-ray photons. The alignment parameters are listed at a
photon energy of 1000 and 3000 eV in Table III. A20(P) and
A20(D) are similar for both photon energies. For this reason,
we restrict ourselves here to only the analysis of a photon
energy of 1000 eV in Fig. 4, where the ratio of individual
cross sections is depicted for all possible initial states. The
sum of the bars for each panel in Fig. 4, after taking into
account a factor of 2 for ±ML f , is equal to one. Note that the
alignment parameters in Table III can be obtained from the
relation between the bars belonging to a final term.
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FIG. 4. Ratio of individual cross sections σ
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for

Ar+ (2p−1) at a photon energy of 1000 eV (a) for MLi = 0 and
(b) for |MLi | = 1 (i.e., uniform distribution of MLi = ±1). Results
for different final terms and different ML f are shown. In all cases, the
atom initially is in a 2P state and the subshell being ionized is 2p.
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Combining the findings in Fig. 4(a) and Table III, we
observe for MLi = 0 that the majority of Ar2+ ions produced
are in the 3P state (∼54% uniformly distributed between
ML f = +1 and ML f = −1), which is completely aligned [i.e.,
A20(P) = 1/

√
2]. This alignment is simply caused by the se-

lection rules for photoionization, where a transition to ML f =
0 is forbidden. In particular, if Li + L f + l is an odd num-
ber and MLi = 0, then only ML f �= 0 is allowed. Next, most
probably, is the production of ions in the 1D state (∼37%),
whereas there is only a probability of less than 10% to find
the final ion in the unaligned 1S state [always A20(S) = 0].
Note that also within the 1D term, there is orbital alignment
[i.e., A20(D) < 0]: It is twice as likely to find the state with
ML f = 0 than those with ML f = ±1, and ML f = ±2 is forbid-
den by the selection rules. Thus, it is very likely to observe an
alignment of the final ion, either in a 3P or 1D state.

Let us now discuss the outcome for |MLi | = 1 in Fig. 4(b)
and Table III. Again the majority of Ar2+ ions produced are
in one of the 3P states (∼62%). However, in contrast to MLi =
0, here the 3P states exhibit only a weak alignment that is
comparable to that for the residual Ar+ discussed in Sec. IV A,
but a little weaker. Worthy of note is also the alignment of the
final 1D state attributed to a larger population of states with
ML f = ±2 than for smaller ML f [for comparison, a complete
alignment with respect to ML f = ±2 has A20(D) = 2

√
5/14].

Although most of the observations are related to angular
momentum coupling, it is worthwhile to explain them ex-
plicitly with respect to the formula of the individual cross
section [Eq. (12)]. A detailed understanding might be useful
in a future study of alignment during multiphoton ionization,
which cannot be simply explained analytically by angular
momentum coupling. The observations can be explained by
a combination of the subsequent aspects.

First, in the computation of individual cross sec-
tions [Eq. (12)], we sum over all accessible final spin
projections, i.e., MS f . Owing to the selection rules, i.e., |MSi −
MS f | != 1

2 , for the final terms with S f = Si + 1
2 , two final states

(MS f = Si ± 1
2 ) are involved in the transition. In contrast, for

the final terms with S f = Si − 1
2 , only one final state (MS f =

Si − 1
2 ) is allowed. As a consequence, the states for the former

terms tend to have higher cross sections. It is because the
cross section is independent of the initial spin projection that
this argument is true for general initial states. Therefore, we
conclude that final states with S f = Si + 1

2 are generally more
probable than those with S f = Si − 1

2 . This explains why tran-
sitions to the final 3P states of Ar2+ are so dominant.

Second, if not forbidden, transitions preserving the an-
gular momentum projection, i.e., ML f = MLi , are generally
preferred, while those changing it by one are suppressed.
This is attributed to the fact that the incoming x rays are
linearly polarized (see Sec. IV A). It explains, for instance,
why final 1S states are a little more likely for MLi = 0 than for
MLi = ±1. It also explains the alignment of the 3P states for
|MLi | = 1 and that of the 1D states for MLi = 0.

However, it does not explain the alignment of the 1D
states for |MLi | = 1 or, more precisely, why the states with
ML f = ±2 are more probable than the other 1D states. This
can be explained by the square of the overlap matrix element,

TABLE IV. Alignment parameter A20(P) and A20(D) of the final
Ar3+ ion (2p−3) after 2p ionization of Ar2+ (2p−2). Results for dif-
ferent initial states are listed at a photon energy of 1000 and 3000 eV.

ωin (eV) 2Si+1Li |MLi | A20(P) A20(D)

1000 3P 0 0.707 −0.895
1000 3P 1 −0.148 0.290
1000 1D 0 −0.879 −0.598
1000 1D 1 −0.148 −0.321
1000 1D 2 0.707 0.743
1000 1S 0 −0.196
3000 3P 0 0.707 −0.904
3000 3P 1 −0.114 0.267
3000 1D 0 −0.905 −0.598
3000 1D 1 −0.114 −0.325
3000 1D 2 0.707 0.765
3000 1S 0 −0.230

〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉, also contained in the formula
for the individual cross section in Eq. (12). Thus, the third
point is that this overlap matrix element additionally affects
the orbital alignment. Obviously, a transition with a higher
overlap matrix element is more likely than that with a smaller
overlap matrix element. Hence, the ratio of individual cross
sections corresponding to the transition, being more proba-
ble, is enhanced. Therefore, transitions that do not preserve
the angular momentum projection can be preferred when
they exhibit very high overlap matrix elements. Regarding
the final term 1D, the final states with ML f = ±2 are pure
Fock states and so is the initial 2P state. When the transition
is not forbidden, for pure Fock states, the matrix element
〈L f S f ML f MS f |ĉ j |LiSiMLi Si〉 is evidently unity (maximal pos-
sible value). Thus, this transition is quite dominant. On the
other hand, the alignment related to the previously mentioned
point can be enhanced, when overlap matrix elements are
higher for transitions with ML f = MLi than for the others. Note
that this is the case for a transition from the initial state with
MLi = 0 to the final 1D states. In this context, it is worth
mentioning that for neutral argon (Sec. IV A), the overlap
matrix element is always unity because all involved states are
pure Fock states.

Finally, some transitions are directly forbidden by the se-
lection rules for photoionization (given in the middle of this
section). This is another important, but trivial reason for the
orbital alignment.

C. Orbital alignment after 2p ionization of Ar2+ (2p−2)

In order to complete our understanding of orbital
alignment, we finally investigate photoionization of Ar2+

(1s22s22p43s23p6) as another example of an initial open-shell
configuration. For the reasons explained in Sec. IV B, the
focus is again on the photoionization of the 2p subshell. To
characterize the orbital alignment of the final Ar3+ (2p−3), we
show calculated alignment parameters A20(P) and A20(D) in
Table IV (at photon energies of 1000 and 3000 eV) and ra-

tios of individual cross sections σ
|MLi |;ML f

2Si+1Li;
2S f +1L f

/σ
|MLi |

2Si+1Li
in Fig. 5

(at 1000 eV only). It becomes evident that the degree of
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for Ar2+ (2p−2) at a photon energy of 1000 eV. The atom is initially
in (a) the 1S state with MLi = 0, (b) one of the 3P states, or (c) one
of the 1D states. Results for different |MLi | (i.e., uniform distribution
of ±MLi ), different final terms, and different ML f are shown. In all
cases, the subshell being ionized is 2p.

alignment for the produced Ar3+ ions is comparable with that
observed in the previous cases. Above all, the observations for
the final Ar3+ ions can be explained by the same arguments as
provided for the final Ar2+ ions in Sec. IV B.

Nonetheless, three things should be pointed out. First, for
the initial 3P states of Ar2+, the most probable final state of
Ar3+ is the unaligned 4S state (∼40% for MLi = 0 and ∼30%
for |MLi | = 1), as shown in Fig. 5(b). As argued in the first
point in Sec. IV B, it is because of the spin quantum number
being the highest for the final 4S state that this state becomes
dominant here. Second, for the initial 1D state with |MLi | = 2,
more than half of the resulting Ar3+ ions retain the angular
momentum quantum number and its projection, i.e., L f = 2
and ML f = ±2, as depicted in Fig. 5(c). This leads to a com-
parably strong alignment of the 2D states [see Table IV and
compare with A20(D) = 2

√
5/14 for a complete alignment

with respect to ML f = ±2]. This alignment stems from the
facts that ML f = MLi transitions are preferred (Sec. IV A) and
the overlap matrix element takes on the highest possible value
for pure Fock states (see the third point in Sec. IV B). Third,
also note the comparably high alignment of the 2P state for
initial 1D states with MLi = 0 [compare with A20(P) = −√

2
for a complete alignment with respect to ML f = 0]. This can
be explained by the same arguments as provided for the
2D states. In particular, here the overlap matrix element for
ML f = 0 is two times that for ML f = ±1. Another important
remark here is that for initial states with equal Li and MLi ,
the alignment of the final states is almost independent of
the charge state of argon and of the spin multiplicity of the
initial and final states. This can be seen by comparing the
alignment parameters given in Tables I, III, and IV. All this
is closely related to the fact that alignment mainly depends on
angular momentum coupling and that ratios of radial integrals,
which additionally affect the alignment, are very similar for all
charge states of argon (not shown here for brevity).

TABLE V. Alignment parameter A20(P) and A20(D) of the fi-
nal Ar2+ ion (3p−2) after L23M23M23 Auger-Meitner decay of Ar+

(2p−1 2P). Results for different |MLi | are listed.

|MLi | A20(P) A20(D)

0 0.707 −0.770
1 −0.354 0.385

D. Orbital alignment after Auger-Meitner decay of Ar+ (2p−1)

We would like to point out that the lifetime of the 2p
hole in Ar+ (2p−1) is about 3.9 fs, that of the 2p2 hole in
Ar2+ (2p−2) is about 1.6 fs, and that of the 2p3 hole in
Ar3+ (2p−3) is only about 0.9 fs (calculated with the first-
order strategy). Therefore, it is likely that the transient hole
states produced by photoionization undergo an Auger-Meitner
decay before further photoionization can occur, unless the
x-ray intensity is extremely high. Note that decay also hap-
pens via fluorescence, but fluorescence rates are much smaller
than Auger-Meitner decay rates for the argon ions. As a
consequence, it is indispensable to involve Auger-Meitner
decay processes in the studies of orbital alignment. This
becomes especially important when investigating the orbital
alignment dynamics of ions produced by x-ray multiphoton
ionization.

Here we consider as an example the L23M23M23 Auger-
Meitner decay of Ar+ (2p−1), so the final configuration is
Ar2+ (3p−2). To explore the orbital alignment of the final
Ar2+ (3p−2), we calculate alignment parameters A20(P) and
A20(D) via Eq. (19) in Table V and ratios of individual
transition rates via Eq. (14) in Figs. 6(a) and 6(b). As can
be seen, for a fixed initial state, i.e., only one |MLi |, Auger-
Meitner decay leads to a clear alignment of the final Ar2+ ion.
However, if the initial state has no alignment, i.e., a uniform
distribution of MLi , then the weighted means of the ratios of
individual transition rates are equal for all ML f belonging to a
final term [see Fig. 6(c)]. Here, the weighted mean is the sum
over the ratios of individual transition rates for all possible
MLi , weighted by the population probability p(MLi |Li ) of the
initial state. Note that in the uniform case, p(MLi |Li ) equals
1/(2Li + 1). Consequently, the final Ar2+ ion produced by
Auger-Meitner decay of an unaligned Ar+ ion does not pos-
sess any alignment. We have A20(P) = 0 and A20(D) = 0
when taking the weighted mean of the alignment parameters
given in Table V, a factor of 2 for |MLi | = 1 included. The
reason for the zero alignment is the following. According
to the Wigner-Eckhart theorem [66,67], the transition rate is
independent of the angular momentum projection of the total
initial and final electronic state, the Auger electron included.
Thus, a sum over the individual transition rates in Eq. (14) is
independent of the final projection ML f when it is uniformly
summed over the initial projection MLi . Therefore, in general,
the Auger-Meitner decay processes will not create any align-
ment of the final ion if it initially starts with zero alignment,
i.e., a uniform distribution.

However, if the initial ion is already aligned, then the final
ion produced by Auger-Meitner decay will show an alignment
as demonstrated in the next section.
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FIG. 6. Ratio of individual Auger-Meitner transition rates

�
|MLi |;ML f

2P;
2S f +1

L f
/�

|MLi |
2P

for Ar+ (2p−1) (a) for MLi = 0 and (b) for |MLi | =
1 (i.e., uniform distribution of MLi = ±1). The weighted mean of the
ratios with respect to MLi is shown in (c) for a uniform distribution of
MLi and in (d) for the distribution of MLi after 2p ionization of neutral
argon at 1000 eV. Results for different final terms and different ML f

are shown. In all cases, the atom initially is in a 2P state and decays
via L23M23M23 Auger-Meitner decay.

E. Orbital alignment evolution in x-ray-induced
ionization process

Let us finally discuss how the alignment evolves in a
sequence comprising a photoionization event and an Auger-
Meitner decay. We start with neutral argon (1s22s22p63s23p6)
and ionize the 2p subshell as investigated in Sec. IV A.
Then the produced Ar+ ion (2p−1) undergoes one L23M23M23

Auger-Meitner decay. For a fixed initial state, i.e., |MLi |,
and a uniform distribution, the corresponding alignment has
been investigated in the previous section. Here, the population
probability p(MLi |Li ) of Ar+ (2p−1) before the Auger-Meitner
decay is given by the ratios of individual cross sections for
neutral argon in Fig. 3. To examine the alignment of the final
Ar2+ ion (3p−2) after the sequence of 2p photoionization and
L23M23M23 Auger-Meitner decay, the means of the ratios of
individual transition rates are shown in Fig. 6(d) (at a photon
energy of 1000 eV) and alignment parameters are shown in
Table VI (for 300, 1000, and 3000 eV). Most importantly,

TABLE VI. Alignment parameter A20(P) and A20(D) of the final
Ar2+ion (3p−2) after a sequence of 2p ionization and L23M23M23

Auger-Meitner decay of initial neutral argon. Results for different
photon energies are listed.

ωin (eV) A20(P) A20(D)

300 0.089 −0.097
1000 0.098 −0.107
3000 0.114 −0.124

we observe that the Ar2+ ion exhibits a slight alignment,
which is much smaller than that for MLi = 0 (see Table V).
The reason for this is that the transiently Ar+ ions produced
by 2p photoionization also possess only a weak alignment
(see Fig. 3 and Table I). Thus, they are close to the uniform
distribution with zero alignment (see Sec. IV D). For increas-
ing photon energies, this alignment after 2p photoionization
of neutral argon becomes a little stronger (see Fig. 3 and
Table I) and, with this, also the alignment of Ar2+ after the
sequence of photoionization and Auger-Meitner decay (see
Table VI).

V. CONCLUSION

In this paper, we have presented an implementation of im-
proved electronic-structure calculations in the XATOM toolkit
that provide individual zeroth-order LS eigenstates by em-
ploying first-order many-body perturbation theory. Based on
this implementation, we have calculated individual state-to-
state photoionization cross sections and transition rates. We
have investigated orbital alignment after either single pho-
toionization or one Auger-Meitner relaxation process, and
then the evolution of orbital alignment in a sequence of pho-
toionization and relaxation.

To set the stage, we have first presented a brief outline of
the underlying method to calculate first-order-corrected ener-
gies and zeroth-order LS eigenstates for arbitrary electronic
configurations. We have also shown an analytical expression
for the individual state-to-state cross section and transition
rates. Comparing Kα fluorescence energies and KLL Auger-
Meitner electron energies of Ne+ (1s−1) with experimental
data, we have confirmed that the extended XATOM toolkit
can describe transition energies significantly better than the
original version. On the other hand, we have observed almost
no improvement on the total photoionization cross sections for
neutral argon, which can be attributed to the use of zeroth-
order states.

Having the capability to calculate individual state-to-state
cross sections by using the extended XATOM toolkit, we have
investigated orbital alignment induced by linearly polarized
x rays for initial neutral argon and two exotic open-shell
configurations of argon. Some degrees of alignment has been
found for a wide range of x-ray photon energies. For initial
neutral argon, the ions produced by photoionization exhibit a
clear preference for conservation of the angular momentum
projection. For the initial open-shell ions, however, the distri-
bution of final states is affected not only by the conservation of
the angular momentum projection, but also by the final total
spin quantum number, the selection rules, and, most impor-
tantly, the overlap matrix element. Finally, we have showcased
how the orbital alignment is affected by Auger-Meitner decay
and how it evolves during one sequence of photoionization
and Auger-Meitner decay.

There are several promising perspectives for further de-
velopments. Above all, the individual state-to-state cross
sections and transition rates calculated with our implementa-
tion could be embedded in the rate-equation model employed
in the XATOM toolkit [31,35,54]. Solving rate equations would
enable investigations of orbital alignment dynamics of ions
produced by x-ray multiphoton ionization. In this way, it
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could be explored whether the orbital alignment observed
here for ions produced by single photoionization is enhanced
or reduced by successive photoionization events and accom-
panying decay processes. Another interesting perspective is
the improvement of the cross section by calculating and
utilizing not only first-order-corrected energies but also first-
order states and by taking interchannel coupling [87] into

account. Lastly, relativistic effects and resonance effects are
incorporated in the XATOM toolkit [53], but remain to be
addressed in combination with the present implementation.
Such methodological developments are not only important for
many practical applications of focused XFEL beams, but are
also useful for a quantitative characterization of XFEL beam
properties.
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Chapter 3. Scientific Contributions

3.2 State-resolved ionization dynamics of a neon

atom induced by X-ray free-electron-laser pulses

The second publication presents a state-resolved Monte Carlo rate-equation imple-
mentation for describing state-resolved X-ray multiphoton ionization dynamics of
atoms. The state-resolved approach provides more precise information about reso-
nant excitations and electron and photon spectra than the common configuration-
based approach.

The underlying project was performed by myself under the supervision of Dr. S.-
K. Son and Professor Dr. R. Santra. In particular, I combined the quantum-state-
resolved electronic-structure framework (Sec. 3.1) with xatom’s configuration-based
Monte Carlo on-the-fly rate-equation method [26, 29]. I carried out all X-ray mul-
tiphoton ionization dynamics calculations, interpreted the outcomes, and wrote the
manuscript with inputs from all authors.
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We present a theoretical framework to describe state-resolved ionization dynamics of neon atoms driven by ul-
traintense x-ray free-electron-laser pulses. In general, x-ray multiphoton ionization dynamics of atoms have been
described by time-dependent populations of the electronic configurations visited during the ionization dynamics,
neglecting individual state-to-state transition rates and energies. Combining a state-resolved electronic-structure
calculation, based on first-order many-body perturbation theory, with a Monte Carlo rate-equation method
enables us to study state-resolved dynamics based on time-dependent state populations. Our results demonstrate
that configuration-based and state-resolved calculations provide similar charge-state distributions, but the differ-
ences are visible when resonant excitations are involved, which are also reflected in calculated time-integrated
electron and photon spectra. In addition, time-resolved spectra of ions, electrons, and photons are analyzed for
different pulse durations to explore how frustrated absorption manifests itself during the ionization dynamics of
neon atoms.

DOI: 10.1103/PhysRevA.107.013102

I. INTRODUCTION

X-ray free-electron lasers (XFELs) [1–5] provide x-ray
radiation with extremely high intensity and ultrashort pulse
durations ranging from a few to a hundred femtoseconds [6].
Interaction with these ultraintense XFEL pulses can induce
x-ray multiphoton ionization dynamics in matter [7]. Enabled
by the high intensity and, thus, the extremely large num-
ber of x-ray photons in a single pulse, multiple sequences
of one-photon ionization accompanied by decay processes
(Auger-Meitner decay and fluorescence), refilling inner-shell
vacancies, can take place. Consequently, atoms or molecules
may become highly ionized during interaction with XFEL
pulses [8–12]. Such x-ray multiphoton ionization dynamics
can be simulated by a rate-equation approach [8,13,14] and
were first investigated both experimentally and theoretically
in neon atoms [8]. Further studies for neon have revealed
the relevance of direct nonsequential two-photon ionization in
excited neon ions [15] and resonant excitations at a specific
photon energy [16]. Moreover, x-ray multiphoton ioniza-
tion dynamics in heavier atoms [9–11,17,18] and molecules
[12,19–21] have been examined in various ways, including
resonant effects [22–25]. Typically, the ionization dynamics
of atoms and molecules have been examined with measure-
ment of ions generated after interacting with an intense XFEL
pulse, but electron spectra [26–28] and photon spectra [11,27–
29] are complementary to ion spectroscopy. Deepening our
understanding of multiphoton ionization dynamics and the
accompanying electronic damage [30–32] is relevant for ap-
plications of XFELs, like serial femtosecond crystallography
[33,34] and single particle experiments [35,36], which are
limited by electronic damage and structural disintegration of
the sample [37].

Most of the theoretical treatments of x-ray multiphoton
ionization dynamics are limited in the way that the states
visited during the ionization dynamics are described only by
electronic configurations in the rate-equation approach. In this
way, transition energies and rates are averaged over individual
electronic states for a given electron configuration. As will
be discussed in detail in Sec. II C, this configuration-based
approach already demands to solve a large set of coupled
rate equations, and the number of rate equations explodes
when resonant excitations are included [11,22,24,25]. The
configuration-based rate-equation approach has been widely
used and successfully applied for interpreting and designing
many XFEL experiments [8–25,27–30,38–40]. However, it
can treat neither individual state-to-state transitions nor de-
tailed state-resolved ionization dynamics.

In this work, we investigate x-ray multiphoton ioniza-
tion dynamics of neon atoms based on individual electronic
states by extending the ab initio electronic-structure and
ionization-dynamics toolkit XATOM [32,41,42]. Recently, a
state-resolved electronic-structure framework, based on first-
order many-body perturbation theory, has been introduced in
XATOM [43]. As a follow-up study, we here embed these im-
proved electronic-structure calculations into the Monte Carlo
on-the-fly rate-equation method for describing ionization dy-
namics [9,27]. This implementation permits us to perform
huge-size rate-equation calculations that are inevitable for
state-resolved ionization dynamics calculations. We compare
both configuration-based and state-resolved approaches for
x-ray multiphoton ionization of Ne. It can be expected that
resonant excitations and spectra should in general profit from
our state-resolved implementation for two reasons. First, as
shown in Ref. [43], the first-order-corrected energies, deliv-
ered by the improved electronic-structure calculations, often
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provide better transition energies. Second, individual states
associated with a configuration generally do not behave the
same during ionization dynamics. Based on the state-resolved
approach, we will also investigate the time evolution of
charge-state distributions (CSDs) and photoelectron, Auger-
Meitner electron, and fluorescence spectra during an XFEL
pulse.

The paper is organized as follows. In Sec. II, we present
our state-resolved Monte Carlo on-the-fly implementation in
XATOM. Additionally, individual state-to-state resonant pho-
toabsorption cross sections, which are missing in Ref. [43],
are addressed. A comparison with a configuration-based
Monte Carlo calculation is the topic of Sec. III, while in
Sec. IV we study the time evolution of ion, electron, and
photon spectra for neon for different pulse durations. We sum-
marize our findings and discuss future perspectives in Sec. V.

II. THEORETICAL DETAILS

A. Improved electronic-structure calculations

Here, we briefly summarize the formalism underlying the
improved electronic-structure calculations, implemented in
XATOM. For more details, the reader is referred to Ref. [43].
XATOM is based on the Hartree-Fock-Slater (HFS) approach
[32,44], in order to keep the calculations feasible and efficient
for heavy atoms also and the inclusion of resonant excitations
(see Sec. II C). The HFS calculations can be improved through
first-order many-body perturbation theory [45,46] for the full
N-electronic Hamiltonian [45]

Ĥmatter =
N∑

i=1

{
−1

2
∇2

i − Z

|�xi|
}

+ 1

2

N∑
i �= j

1

|�xi − �x j | . (1)

Here, �xi is the position of an electron in the atom of nuclear
charge Z , and atomic units are used. In this approach, for
an electronic configuration of interest, the matrix representa-

tion of Ĥmatter is created in the set of electronic Fock states.
The Fock states are antisymmetrized products of spin orbitals
that are eigenstates of the HFS Hamiltonian ĤHFS [47]. The
eigenstates of this matrix provide zeroth-order LS eigenstates
|LSMLMSκ〉 with first-order-corrected energies ELSκ , given
by the eigenvalues. An important feature of the new states
is that they are also eigenstates of the total orbital angular
momentum and of total spin. Therefore, they can be labeled
by the L and S quantum numbers and their projections ML

and MS , respectively. Since the set of (L, S, ML, MS) does not
always uniquely define the state, we need an additional integer
index κ . Note that the states within a term 2S+1L(κ ) share the
same first-order-corrected energy ELSκ .

B. Individual state-to-state resonant photoabsorption
cross sections

Having at hand first-order-corrected energies and zeroth-
order LS eigenstates, we can perform further state-resolved
calculations, e.g., cross sections and transition rates. A
detailed description of state-to-state photoionization cross
sections, Auger-Meitner decay rates, and fluorescence rates
can be found in Ref. [43].

Previous studies of x-ray multiphoton ionization dynamics
have demonstrated the importance of resonant excitations at
certain photon energies for neon [8,16], krypton [17,24,25],
and xenon [10,11,24,25]. Therefore, we present a calculation
of individual state-to-state resonant photoabsorption cross
sections, based on our improved electronic-structure frame-
work. It can be performed in a similar way as the calculation
of individual state-to-state photoionization cross sections (see
Ref. [43]).

Let us consider a bound-to-bound resonant transition of an
electron in the subshell with quantum numbers (nh, lh) to a
higher-lying (nj, l j )-subshell by absorbing a linearly polar-
ized photon with a photon energy ω. The associated initial
zeroth-order LS eigenstate is |LiSiMLi MSi〉 with first-order-
corrected energy ELiSi , and the accessible final target state
is |L f S f ML f MS f 〉 with EL f S f (here, κi and κ f are omitted for
simplicity). Then, the state-to-state resonant photoabsorption
cross section can be written as

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nhlh, n jl j, ω) = 4π2

3ω
αδ

(
EL f S f − ELiSi − ω

)(
εnhlh − εn j l j

)2
l>

×
∣∣∣∣∣
∫ ∞

0
dru∗

n j l j
(r)runhlh (r)

∣∣∣∣∣
2∣∣∣∣∣

∑
j,h

C(lh, l j, 1; ml,h−mlj ,0)〈L f S f ML f S f |ĉ†
j ĉh|LiSiMLi Si〉

∣∣∣∣∣
2

. (2)

In this expression, C(·) represents a Clebsch-Gordan coeffi-
cient [48,49] and l> = max(lh, l j ). The indices h and j denote
the involved spin orbitals in the (nhlh) and (n jl j ) subshells,
respectively, between which the electron is transferred. They
have orbital energies εnhlh and εn j l j , and quantum numbers
(nh, lh, mlh , msh ) and (n j, l j = lh ± 1, mlj = mlh , msj = msh ),
respectively. The relation between their quantum numbers
can be attributed to the selection rules for a dipole transition
with linearly polarized photons [50]. Creation and annihi-

lation operators ĉ†
j and ĉh can be associated with the spin

orbitals [51]. Since the interaction Hamiltonian corresponding
to one-photon absorption [51] does not affect the spin and its
projection, the cross section is independent of the initial and
final spin projections.

According to the energy conservation law, the transition
energy, EL f S f − ELiSi , equals the photon energy ω,

ω = EL f S f − ELiSi . (3)
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Therefore, it is critical to take into account that the pulse has
some energy distribution around a given peak photon energy
ωin. Let us assume a Gaussian pulse profile [22],

G(ω; ωin,	ωin ) = 1

	ωin

√
4 ln 2

π
e
−4 ln 2(

ωin−ω

	ωin
)2

, (4)

where 	ωin is the full width at half maximum (FWHM) of the
bandwidth of the photon energy distribution. After employing
convolution with the pulse profile, the individual state-to-state
resonant photoabsorption cross section for a peak photon en-
ergy ωin is

σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nhlh, n jl j, ωin )

= σ
MLi ;ML f

2Si+1Li;
2S f +1L f

(nhlh, n jl j, EL f S f − ELiSi )

× G(EL f S f − ELiSi ; ωin,	ωin ). (5)

Here, σ
MLi ;ML f

2Si+1Li;
2S f+1L f

(nhlh, n jl j, ω = EL f S f − ELiSi ) is given by

Eq. (2), but without the delta distribution that vanishes due to
integration over ω.

It is also worthwhile to mention that calculating resonant
photoexcitation cross sections requires additional computa-
tional parameters. First, in order to keep the calculation
feasible, the number of allowed (n, l ) subshells that can be
resonantly excited has to be restricted and checked for com-
putational convergence. In Sec. III, we have used a maximal
n quantum number of nmax = 7 and a maximal l quantum
number of lmax = 2 for Ne calculation at a photon energy of
1050 eV. Second, in order to guarantee an accurate description
of higher-n states the maximum radius employed in the nu-
merical calculation of orbital and orbital energies [32,41] has
to be sufficiently large for both bound and continuum states.
We used rmax = 100 a.u. for both in the following resonance-
related calculations. Third, due to the convolution procedure,
it is necessary to scan the transition energy to search for
all accessible resonant bound-to-bound transitions. However,
the state-resolved calculation of first-order-corrected transi-
tion energies costs a considerable amount of computational
time when a lot of open subshells are included. For instance,
calculating all cross sections for initial Ne3+ (1s02s22p44p1)
costs roughly 2 min in CPU time, due to the scanning of
all resonant excitations with nmax � 7 and lmax � 2 (for com-
parison, the nonresonant calculation of photoionization cross
sections takes less than 3 s). Therefore, when we search for
accessible resonant states, we employ an energy scan cri-
terion based on the zeroth-order transition energies, instead
of the first-order-corrected values. In our calculation for Ne
at 1050 eV, a bandwidth of 1% of the photon energy was
considered. Then, we scan ±157.5 eV (±15% of the photon
energy) to pick up resonant transitions based on the zeroth-
order transition energy. Only for these resonant transitions we
consider whether the first-order transition energy lies within
the photon energy bandwidth. This reduces the computational
time for the upper example to 30 s. Note that the differences
between zeroth- and first-order transition energies are less
than 50 eV in our calculations (see Table IV).

C. State-resolved ionization dynamics calculations

X-ray multiphoton ionization dynamics can be described
by a rate equation approach [8,13,14]. In this approach, the
time evolution of the population PI (t ) of a state I is given by
a set of coupled rate equations,

dPI (t )

dt
=

∑
I ′ �=I

[
I ′→IPI ′ (t ) − 
I→I ′PI (t )], (6)

for all possible states {I}. In this expression, 
I→I ′ is the
rate for a transition from the state I to the state I ′ via
either photoionization, photoexcitation, or relaxation (i.e.,
Auger-Meitner decay or fluorescence). In a configuration-
based approach {I} are defined by all possible electronic
configurations, whereas in our state-resolved approach {I} are
defined by the electronic configurations together with addi-
tional quantum numbers needed for specifying zeroth-order
LS eigenstates (L, S, ML, MS , κ).

There are two ways for solving the set of coupled rate equa-
tions of Eq. (6): either directly with precalculated rates and
cross sections [32] or via a Monte Carlo method [27]. The lat-
ter has been extended to a more efficient on-the-fly approach
[9], i.e., quantities are only calculated when needed, which
will be further explained in the following subsection. The
Monte Carlo on-the-fly method is especially crucial for heavy
atoms, for which the number of coupled rate equations to be
solved becomes extremely large. The number of coupled rate
equations is equivalent to the number of all possible states or
all possible configurations, depending on the definition of {I}.

For the configuration-based approach, an estimate of this
number can be found in Ref. [22] (also see Ref. [24] for the
case of resonant excitations). Let us consider an initial elec-
tronic configuration, 1sN1 2sN2 2pN3 3sN4 3pN5 , . . ., where the
number of electrons is given by Nelec = ∑all

j Nj . During x-ray
multiphoton ionization dynamics, different electronic config-
urations can be constructed by adding zero, one, or up to Nj

electrons for each jth subshell. Here, the index j labels all
subshells that can be ionized by the given photon energy via
one-photon ionization and no resonant excitation is assumed.
The number of all possible configurations is then evaluated by

Nconfig =
∏

j

(
Nj + 1

)
. (7)

For example, Ne has 1s22s22p6 and Nconfig = 3 × 3 × 7 = 63
if all subshells are accessible for one-photon ionization.

For the state-resolved approach, the number of possible
zeroth-order LS eigenstates (equal to the number of electronic
Fock states) can be estimated as follows. For each jth subshell
with (n, l ), there are Nmax

j (= 4l + 2) spin orbitals with differ-
ent ml (∈ {−l,−l + 1, . . . , l − 1, l}) and ms(= ± 1

2 ), which
equals the maximum occupancy. By adding zero, one, or up
to Nj electrons in the jth subshell, the number of possible
states is given by the sum of the numbers of possibilities to
distribute added electrons into Nmax

j spin orbitals (each spin
orbital has a maximal occupation number of one),

N j
state =

Nj∑
k=0

(
Nmax

j

k

)
, (8)
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FIG. 1. Number of configurations Nconfig (red dots) and number
of states Nstate (blue crosses) as a function of the nuclear charge Z ,
assuming that all electrons are actively involved in the ionization
dynamics. Only the nonresonant case is shown and the ground-state
configurations are given by the Aufbau principle. For the resonant
case, solely the point of Nstate for neon (Z = 10) with nmax = 7 and
lmax = 2 is marked (light blue).

where
(a

b

)
is a binomial coefficient. Then, the number of all

possible states is given by multiplying the N j
state for all j (no

resonant excitation is considered),

Nstate =
∏

j

Nj∑
k=0

(
Nmax

j

k

)
. (9)

If we consider the ground-state configuration, all subshells
are fully occupied (Nj = Nmax

j ), except for the outermost shell
(index j′ in what follows), which may be partially occupied.
For a closed subshell (Nj = Nmax

j ), N j
state = 2Nj . Thus, the

number of all possible states is written as

Nstate =
⎡
⎣∏

j �= j′
2Nj

⎤
⎦×

⎡
⎣

Nj′∑
k=0

(
Nmax

j′

k

)⎤
⎦. (10)

If the system has no partially occupied subshells initially and
all the subshells are accessible for one-photon ionization, then
it is further simplified to Nstate = 2Nelec . For example, Ne has 10
electrons and Nstate = 210 = 1024.

If resonant excitations are taken into account, a similar ex-
pression to Eq. (8) can be directly used. Let Nso be the number
of available spin orbitals given by computational parameters
nmax and lmax, and Nelec be the number of accessible electrons
for one-photon ionization or resonant excitation. Then, the
number of states is given by

N res
state =

Nelec∑
k=0

(
Nso

k

)
. (11)

Figure 1 shows the number of configurations and states as a
function of the nuclear charge Z for the nonresonant cases.
The ground-state electronic configurations are constructed by
the Aufbau principle. For all Z the photon energy is assumed
to be large enough to ionize all subshells, including the 1s

subshell. Both Nconfig and Nstate grow exponentially, but Nstate

is much larger than Nconfig for a given Z . For the resonant case,
this number explodes even for a low-Z system like Ne with
limited computational parameters (nmax = 7 and lmax = 2;
Nso = 100). With them, Nstate � 1.9 × 1013, which is marked
in Fig. 1. Therefore, even for low Z it is inevitable to employ
a Monte Carlo on-the-fly scheme for state-resolved ionization
dynamics when including resonant excitations.

D. State-resolved Monte Carlo implementation

In the state-resolved approach, the number of coupled rate
equations [Eq. (6)] that have to be solved is equal to the
number of states [Eq. (10)], as depicted in Fig. 1. We im-
plement a state-resolved Monte Carlo on-the-fly algorithm
within XATOM [42]. This allows us to apply our state-resolved
ionization dynamics framework to heavier atoms, like argon
(Z = 18) or xenon (Z = 54), and to the resonant case.

In general, in a Monte Carlo approach for ionization
dynamics, we stochastically consider many trajectories for
possible ionization pathways, i.e., sequences of repeated
one-photon ionization and inner-shell relaxation events. The
populations of entities, such as charge state, electronic con-
figuration, or electronic state, are then obtained by averaging
over an ensemble of trajectories. A detailed description of
the configuration-based Monte Carlo method can be found
in Ref. [27]. Extending it to a state-resolved Monte Carlo
algorithm basically requires to replace a configuration index
with a combination of configuration and state indexes through
the whole algorithm, i.e., I = Iconfig → I = (Iconfig, ILS ). Here,
Iconfig indicates an electronic configuration and ILS indicates
the additional quantum numbers needed for specifying a
zeroth-order LS eigenstate. Note that we do not include in ILS

the spin projection MS and, hence, do not distinguish between
states with different spin projection. Because of a lack of
spin coupling for all involved interaction Hamiltonians, states
with different spin projections always have the same transi-
tion probabilities and, consequently, behave exactly the same
during the ionization dynamics. Thus, MS can be neglected
in the description of the individual states. Moreover, cross
sections and rates based on configurations need to be replaced
by individual state-to-state cross sections and rates [43].

For the sake of completeness, we sketch our state-resolved
Monte Carlo on-the-fly implementation:

(a) Start with the initial electronic configuration Iconfig,
i.e., that for the neutral atom, and calculate all zeroth-
order LS eigenstates for the initial configuration via the
improved electronic-structure implementation (see Sec. II A
and Ref. [43]). If there is more than one LS eigenstate, the
state with the minimal first-order-corrected energy ELSκ is
selected. If L �= 0, the ML projection quantum number is
randomly chosen as an initial condition for each trajectory.
If S �= 0, then the maximal spin projection is chosen for con-
venience (it does not influence the ionization dynamics). In
this way we set up the initial state I = (Iconfig, ILS ). In order to
reduce the computational effort, store the information about
the electronic structure, so that it can be directly reused for
further trajectories.

(b) Set up an initial value for the time t and the time step
	t .
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(c) Calculate all individual state-to-state cross sections σk

and transition rates 
k for all transitions from the current state
I = (Iconfig, ILS ) to the accessible final state Ik = (Ik

config, Ik
LS ).

Transition energies are also calculated based on the first-
order-corrected energies for the current state, i.e., ELSκ , and
the final state, i.e., ELkSkκk . Note that we employ the same
orbital set optimized for the current (initial) state to evaluate
the final state energy [43]. Here, k is used as a label for one of
the processes, running from 1 to the number of all possible
individual state-resolved transitions. The index k in Lk , Sk ,
etc. indicates that the new state is reached via the kth process.
Also, the information about the possible processes is stored
for later use.

(d) Cross sections and rates determine the transition prob-
ability pk at time t for the kth process via

pk =
{

k	t for decay process,
σkJ (t )	t for photoionization/absorption,

(12)

with J (t ) being the time-dependent photon flux.
(e) Select a process k randomly, taking into consideration

the different transition probabilities pk of all possible pro-
cesses (for more details, see Ref. [27]).

(f) Counters for the time-dependent charge-state distri-
bution (CSD) and time-resolved spectra are considered as
follows. The time- and energy-bin counter for the photoelec-
tron, the Auger-Meitner electron, or the fluorescence photon
is increased by one, according to the electron kinetic energy
or emitted photon energy of the selected kth process at a given
time t . This counter will be used for generating time-resolved
spectra in Sec. IV B. Integrating this counter over time corre-
sponds to the spectra after time evolution shown in Sec. III B.
Regarding time-dependent CSDs in Sec. IV A, the charge state
of the given I is examined at every time step of time bins and
the corresponding counter is increased by one.

(g) Continue by proceeding to the kth process. Set up
the new electronic configuration, i.e, Iconfig = Ik

config, and the
new zeroth-order LS eigenstate |LkSkMLk κk〉, i.e., ILS = Ik

LS .
To get proper first-order-corrected energies, a new electronic-
structure calculation has to be performed and stored.

(h) Set up a new 	t based on the total transition probability,
i.e., the sum over all pk’s. The new 	t is smaller than or equal
to the initial 	t chosen in (b). The updated 	t should guar-
antee that the total transition probability stays significantly
smaller than unity when the updated 	t is used. Then go to
the next time step t → t + 	t .

(i) Repeat the time evolution [(c)–(h)], until the total tran-
sition probability is zero. When no process is available any
longer, the Monte Carlo trajectory ends. The counter for the
final charge is increased by one, which will produce asymp-
totic CSDs in Sec. III A.

(j) Run many more trajectories [(a)–(i)] and at every 100
trajectories, or in principle any other step size, check whether
the final CSD is converged. If this is the case, stop the Monte
Carlo iteration.

(k) Results for ensemble-averaged CSDs and spectra are
obtained by dividing the corresponding counters by the total
number of trajectories.

In what follows, we employ a maximal number of Monte
Carlo trajectories of 100 000 and a minimal CSD convergence

of 10−4 for asymptotic results in Sec. III and 5 × 10−5 for
time-resolved results in Sec. IV, respectively. The actual num-
bers of Monte Carlo trajectories, being necessary to achieve
the demanded convergence, range from 12 500 to 50 300. For
time-independent spectra, 1-eV bins are used, whereas 2-eV
bins are used for the time-resolved spectra. For the time-
resolved CSD and spectra, fixed temporal bins are chosen
according to the pulse duration.

III. ASYMPTOTIC RESULTS

We first contrast the configuration-based and state-resolved
Monte Carlo methods regarding temporally asymptotic results
for neon, i.e., CSDs (Sec. III A), and electron and photon
spectra (Sec. III B) at the end of time evolution when the
pulse is over and all decay processes are completed. The
state-resolved calculation is performed with the present imple-
mentation, whereas for the configuration-based calculation,
we employ the original version of XATOM. We do not include
direct nonsequential two-photon absorption [15,52] because
its contribution is much smaller than one-photon absorption
if the latter is available (for example, inner-shell nonse-
quential two-photon absorption versus valence one-photon
absorption). Above-threshold ionization in the x-ray regime
[53] is also negligible in the range of intensities that cur-
rent XFEL facilities can produce. For simplicity, we also
do not include higher-order many-body processes such as
double photoionization [54] and double Auger-Meitner decay
[55] via shake-off and knockout mechanisms. Note that the
branching ratio of double photoionization after Ne K-shell
photoabsorption is about 23% and that of double Auger-
Meitner decay is about 6% [56]. Including shake-off processes
in the rate-equation approach markedly improves compari-
son with experimental CSDs [15,29], especially regarding the
odd-even charge-state relation. Finally, the rate-equation ap-
proach employed here does not capture coherent effects such
as Rabi flopping [57–62]. For a stochastic ensemble of XFEL
pulses based on the self-amplified spontaneous emission prin-
ciple, these are minor effects [57–59].

For x-ray beam parameters, we use a temporal Gaus-
sian pulse envelope with 10 fs FWHM and a fluence of
1012 photons/µm2. Note that these are typical x-ray parame-
ters at current XFEL facilities [1–3]. The volume integration
[63], which is necessary for quantitative comparison with
experimental data, is not considered here. Following Ref. [8],
three different photon energies are examined: (i) 800 eV is
below the 1s threshold of neutral Ne and all Ne ions, (ii)
1050 eV lies in the middle of the 1s threshold region of a
series of Ne ions, and (iii) 2000 eV is above the 1s threshold
of all Ne ions. Note that in case (ii) resonant excitations for
some transiently formed ions play a relevant role [16]. Thus,
we include resonant bound-to-bound excitations in this case.

The computational time was about 6 min for 800 eV
(21 000 Monte Carlo trajectories), about 13 min for 2000 eV
(50 000 trajectories), and about 7 h for 1050 eV (18 400
trajectories) on an Intel Xenon E5-2609 CPU (single core).

A. Comparison of charge-state distributions

Figure 2 presents Ne CSDs at the three different photon
energies. The population probability Pq of the charge state q
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FIG. 2. Comparison of Ne CSDs obtained with the
configuration-based (red) and the state-resolved (blue) Monte
Carlo calculations: (a) 800 eV, (b) 1050 eV, and (c) 2000 eV. In all
cases, the Gaussian-shaped pulse has a duration of 10 fs FWHM and
a fixed fluence of F = 1012 photons/µm2 is used. For (b), resonant
excitations up to nmax = 7 and lmax = 2 are considered and an energy
bandwidth of 1% is assumed. The error bar indicates the statistical
error.

is given by the sum of all PI ’s (configurational population or
state population) belonging to q. The error bars represent the
statistical error estimate [64] for each charge state q, given
by εq = √

Pq(1 − Pq )/(Ntraj − 1), where Ntraj is the number of
Monte Carlo trajectories. Comparison in Fig. 2 shows that
the state-resolved calculation is in overall good agreement
with the configuration-based calculation, in particular, when
the photon energy is off resonance [Figs. 2(a) and 2(c)]. At
2000 eV, population probabilities differ beyond the error bars
only for high charge states. This can be explained by slightly
higher transition probabilities in the state-resolved approach
caused by the use of first-order-corrected energies and the ap-
pearance of a generally nonuniform distribution of individual
states for the intermediate configurations.

On the other hand, the differences between the two ap-
proaches are noticeable when resonant excitations play a role
[Fig. 2(b)]. Resonant photoexcitation cross sections are sensi-
tive to the differences between calculated transition energies
and the given photon energy. As a consequence, different
resonant excitations can be encountered in the state-resolved
and configuration-based ionization dynamics calculations (see
Table IV in the Appendix). For example, the production of
Ne8+ is enhanced in the configuration-based calculation at the
expense of suppression of Ne6+. More detailed analyses re-

FIG. 3. (a) Photoelectron (P) and (b) fluorescence (F) spectra of
Ne at a photon energy of 800 eV. Other x-ray parameters are the same
as used in Fig. 2. The peak labels in (a) are explained in Table I in
the Appendix.

garding relevant resonances are provided later when electron
and photon spectra are discussed in Sec. III B.

B. Comparison of electron and photon spectra

Figure 3 shows (a) photoelectron and (b) fluorescence
spectra at an incoming photon energy of 800 eV and compares
the state-resolved (blue dashed line) and configuration-based
(red solid line) calculations. At this photon energy, 1s ioniza-
tion is not available, so there is no Auger-Meitner spectrum. In
the photoelectron spectrum in Fig. 3(a), some of the dominant
peaks are labeled with roman numbers; the corresponding
physical processes are specified in Table I in the Appendix.
The configuration-based approach employs transition energies
computed from zeroth-order energies, i.e., the sum of orbital
energies according to the involved configurations. On the
other hand, in the state-resolved approach, transition energies
are computed based on the first-order-corrected energies for
the initial and final states. The energy levels that are degener-
ate in zeroth-order energies split up in first-order many-body
perturbation theory. Consequently, peaks in the state-resolved
spectra are not only shifted, but spectra are also broadened
with more peaks. The energy shifts are clearly visible in
Fig. 3(a), except for (viii) 2p ionization where two peaks
coincide. Splittings also clearly manifest in the photoelectron
lines [e.g., peaks (x) in Fig. 3(a)] and in the fluorescence
spectra of Fig. 3(b), where in the configuration-based spectra
many peaks coincide around 22 eV. Note that this behavior of
energy shifts and splittings in the state-resolved spectra is a
general feature, so it can be found at other photon energies as
will be shown below.

Figure 4 shows (a) photoelectron, (b) Auger-Meitner elec-
tron, and (c) fluorescence spectra at 2000 eV with the same
x-ray beam parameters as used for Fig. 2(c). The energy
shifts and splittings with the state-resolved approach are
clearly exhibited in the Auger-Meitner spectrum. Since the
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FIG. 4. (a) Photoelectron (P), (b) Auger-Meitner electron (AM),
and (c) fluorescence (F) spectra of Ne at a photon energy of 2000 eV.
Other x-ray parameters are the same as used in Fig. 2. The peak labels
are explained in Tables I–III in the Appendix.

Auger-Meitner peaks in Fig. 4(b) are not well separated and
they merge within a narrow energy window, resulting in a
complex spectrum, it is critical to apply improved transi-
tion energy calculations to interpret individual peaks. For
the single-core-hole Auger-Meitner line (i), the state-resolved
result shows considerable improvement towards experimental
data as demonstrated in Ref. [43]. The energy shift from
the configuration-based result to the state-resolved result is
−59 eV. For the double-core-hole Auger-Meitner line (iii),
which is also called KK–KLL hypersatellite [65], the en-
ergy shift is somewhat smaller (−6 eV). Even in this case,
the state-resolved value (868.84 eV) is closer to the ex-
perimental values (870.50 eV [65] and 870 eV [66]) than
the configuration-based value (875.27 eV). Note that the
prominent peak of the state-resolved approach at 764 eV
in Fig. 4(b) is the sum of Auger-Meitner lines (ii) and (v)
and other minor contributions that are not assigned here.
Regarding the fluorescence spectra, peak (ii) in Fig. 4(c) is
considerably reduced in the state-resolved approach. This is
because the initial configuration of (ii) has two states, 1P
and 3P (see Table III in the Appendix), and the latter can-
not relax via 2p → 1s fluorescence (final state: 1S) since a
triplet to singlet transition is forbidden in a nonrelativistic
calculation. Once the triplet initial state (Ne8+ 1s12p1 3P) is
formed during the state-resolved dynamics, it has to relax via
2p → 2s fluorescence, giving rise to peak (iii) in Fig. 4(c).
Thus, the changes of the peak heights provide more details
about underlying physical processes between state-resolved

FIG. 5. (a) Photoelectron (P), (b) Auger-Meitner electron (AM),
and (c) fluorescence (F) spectra of Ne at a photon energy of 1050 eV.
Other parameters are the same as used in Fig. 2. The peak labels are
explained in Tables I–III in the Appendix.

and configurations-based ionization dynamics. The fluores-
cence peak positions of (iv) in Fig. 4(c) coincide for both
approaches.

In Fig. 5, we investigate the effects of resonant excitations
on the electron and photon spectra at 1050 eV. The x-ray
beam and computational parameters are the same as used
in Fig. 2(b). In the state-resolved and configuration-based
approaches, different resonant excitations are predominantly
involved in the ionization dynamics at 1050 eV owing to
different transition energy calculations (see Table IV in the
Appendix). The different resonant excitations are all reflected
in the spectra in Fig. 5. For example, photoelectron peak
(vi) in Fig. 5(a), which is prominent in the configuration-
based approach, is absent in the state-resolved approach. This
is because (vi) refers to the 1s ionization of Ne3+ 1s12l6

(l = s, p) and its threshold is higher than the photon energy
in the state-resolved approach. Instead, resonant excitation of
single-core-excited Ne3+ predominantly via a 1s → 4p reso-
nant transition is the alternative process (see Table IV in the
Appendix). The same transition can also occur at Ne6+ 1s22l2

within the state-resolved approach. These 1s → 4p transitions
at Ne3+ and Ne6+ are responsible for the Auger-Meitner
decay involving 4p, which explains the emergence of (xii)
in Fig. 5(b), only in the state-resolved approach. On the
other hand, in the configuration-based approach, the 1s →
3p transition is dominant at Ne5+ 1s12l4 and the resulting
double-core-hole-excited state of Ne5+ 1s02l43p1 relaxes via
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FIG. 6. Time evolution of Ne CSDs at 2000 eV for pulses dura-
tion (FWHM) of (a) 1 fs, (b) 10 fs, and (c) 100 fs. For all cases, the
state-resolved Monte Carlo implementation is employed and a fixed
fluence of 1012 photons/μm2 is used.

Auger-Meitner decay, which corresponds to (x) in Fig. 5(b).
Note that there is no (x) peak in the state-resolved approach
in Fig. 5(b). At Ne7+, further resonant excitation can happen
for both approaches (see Table IV in the Appendix). The re-
sulting single-core-hole-excited Ne7+ is either 1s12p13p1 for
the state-resolved approach or 1s13p1np1 (n = 3, 4, 5) for the
configuration-based approach. The latter can relax via Auger-
Meitner decay [peak (xiii) in Table II], which contributes to
the higher yield of Ne8+ in the configuration-based approach
in Fig. 2(b). However, for the former case, it is most likely that
1s12p13p1 has a 2P state, in which the Auger-Meitner decay
is forbidden. Thus, in the state-resolved ionization dynamics,
the state of Ne7+1s12p13p1 2P has to relax via fluorescence,
giving rise to peak (v) in Fig. 5(c), which also explains why
the yield of Ne8+ is suppressed in the state-resolved approach
in Fig. 2(b). Note that regarding resonances, the state-resolved
approach is in better accordance with the findings in Ref. [16].

For a short summary, photoelectron, Auger-Meitner elec-
tron, and fluorescence spectra provide a plethora of detailed
information on x-ray multiphoton ionization dynamics. We
demonstrate that resonant excitations and spectral information
are described more accurately by the state-resolved imple-
mentation due to a general improvement of transition energies
and the capture of individual state-resolved features, i.e.,
transition probabilities. In the next section, we explore time-
resolved spectra based on the state-resolved Monte Carlo
implementation.

IV. TIME EVOLUTION

We employ the state-resolved Monte Carlo implementa-
tion to examine the time evolution of CSDs and spectra for
different pulse durations. We choose pulse durations of 1 fs,

FIG. 7. Mean number of events for (a) photoionization and
(b) Auger-Meitner decay in Ne at 2000 eV as a function of time.
(c) Mean charge and width (inset) of the time-dependent CSDs of
Ne shown in Fig. 6. For a better comparability, the time relative to
the pulse duration (FWHM) is considered on the x axis.

10 fs, and 100 fs FWHM, covering the range of typical
pulse durations for current XFEL facilities [1–6]. We con-
sider Ne at a photon energy of 2000 eV and a fluence of
F = 1012 photons/µm2, so that in principle all electrons can
be ionized via x-ray sequential multiphoton ionization, i.e., a
repeated sequence of one-photon ionization and inner-shell re-
laxation events. In this case, no resonant excitation is involved
in the ionization dynamics.

A. Time evolution of charge-state distribution

Figure 6 presents the Ne CSDs as a function of time
for pulse durations of (a) 1 fs, (b) 10 fs, and (c) 100 fs
FWHM. The temporal peak is located at t = 0 fs. For clar-
ity, the population of neutral Ne is not included. Note that
the sum of charge populations, including the neutral atom,
is unity at every time step. The charge distribution building
up looks discrete, which indicates that the populations of
odd charges are much smaller than those of even charges.
This is a consequence of the fact that Auger-Meitner decay
follows inner-shell photoionization, when the pulse duration is
sufficiently longer than the Auger-Meitner lifetime. One can
see that the time-dependent CSD is shifted to lower charges
for a shorter pulse duration. For a short pulse duration (1 fs),
the CSD peaks around +4 and highly charged ions are barely
found, as shown in Fig. 6(a). It can be clearly seen that the
charged ions are formed sequentially as time goes by, espe-
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FIG. 8. Time-resolved photoelectron spectra (P) of Ne at a photon energy of 2000 eV for pulse durations (FWHM) of (a and b) 1 fs, (c
and d) 10 fs, and (e and f) 100 fs. In (a), (c), and (e), the peaks belong to 1s ionization, while those in (b), (d), and (f) belong to 2s and 2p
ionization. The peaks are labeled by the involved initial ion, i.e., Neq+: electronic configuration 1s22l8−q for even charges or 1s12l9−q for odd
charges. A fluence of 1012 photons/μm2 is used.

cially near the peak of the pulse. For a long pulse duration
(100 fs), however, the distribution becomes broader with a
less pronounced peak at +8, as shown in Fig. 6(c). These
observations are all indicative of frustrated absorption [21]
or intensity-induced x-ray transparency [8]. The degree of
ionization is reduced for shorter pulse duration (i.e., higher
intensity) because 1s photoionization defeats Auger-Meitner
decay as the intensity increases. This has two consequences.
First, a double-core-hole state is formed and, thus, the 1s
photoionization cross section is reduced (it is zero for 1s0).
In Fig. 7(a), the mean number of photoionization events is
depicted as a function of time for the three pulse durations.
It may be seen that the photoionization number decreases as
the pulse duration becomes shorter. At the same time, the
suppression of ionization is also caused by the reduction of
the number of Auger-Meitner decays, depicted in Fig. 7(b).
These two mechanisms are responsible for the decreased
mean charge [Fig. 7(c)] as the pulse is decreased.

Another interesting observation here is that most changes
in the time-dependent CSD take place within a time interval
of ±1 × FWHM. However, the shorter the pulse, the more
extended the time interval needed to reach the final charge,
because the Auger-Meitner lifetime is often tens of femtosec-
onds (see more details in Sec. IV B). In Figs. 7(b) and 7(c),
the 1-fs curve is not converged to the temporally asymptotic
mean value even at 4 × FWHM, in contrast to the longer pulse
durations. Therefore, in Fig. 6(a), a longer time interval is
considered for the 1-fs result.

B. Time-resolved electron and photon spectra

In order to complete our understanding of the x-ray mul-
tiphoton ionization dynamics, we calculate time-resolved
photoelectron (Fig. 8), Auger-Meitner electron (Fig. 9), and
fluorescence spectra (Fig. 10) for all three pulse durations. For
all figures, the vertical axis is the time, using 0.08 × FWHM
bins, while the horizontal axis is the electron kinetic energy
(Figs. 8 and 9) or the photon energy (Fig. 10), using 2-eV
bins. Note that all the spectra showcase the number of emitted
electrons or photons in a time interval relative to the pulse
duration since the time binning is adapted for each pulse
duration.

Let us start with the time-resolved photoelectron spectra in
Fig. 8. The 1s photoelectron spectra can be grouped according
to the peaks belonging to the ionization of Neq+ in a pos-
sible configuration 1s22l8−q dominantly for even charges or
1s12l9−q dominantly for odd charges (with l = s, p). Note that
the former leads to the formation of single-core-hole states,
while double-core-hole states are produced via the latter. It
is apparent from the spectra that lines corresponding to low
odd charges (Ne1+ and Ne3+) emerge more with shorter pulse
duration in Fig. 8(a). The increased number of outer-shell ion-
izations of lowly charged ions can be observed in Fig. 8(b). On
the other hand, the lines corresponding to the photoionization
of highly charged ions appear more for longer pulse durations
as shown in Figs. 8(c) and 8(e), which is consistent with the
observation in Fig. 6.
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FIG. 9. Time-resolved Auger-Meitner electron spectra (AM) of
Ne at a photon energy of 2000 eV for pulse durations (FWHM)
of (a) 1 fs, (b) 10 fs, and (c) 100 fs. Some peaks are labeled by
the transitions listed in Table II in the Appendix. A fluence of
1012 photons/μm2 is used.

Figure 9 shows the time-resolved Auger-Meitner spectra.
For long pulse durations, Auger-Meitner decay immediately
follows inner-shell ionization and many lines appear in the
spectrum, as shown in Fig. 9(c). Here, immediately is meant
relative to the pulse duration, i.e., when the Auger-Meitner
lifetime is sufficiently short in comparison to both the pulse
duration and the inverse of the resulting inner-shell photoion-
ization rate, so that Auger-Meitner decay can beat further
photoionization. When several Auger-Meitner decays are pos-
sible for an initial ion state, lines for more probable processes
appear a bit earlier in time. When the pulse duration is
decreased, however, Auger-Meitner decay that takes place
on longer time scales than the short pulse duration barely
occurs during the pulse. Consequently, the number of pro-
cesses per time bin is reduced, resulting in weaker lines,
covering a longer time range, in Figs. 9(a) and 9(b). This
reduction of Auger-Meitner decays suppresses refilling of
the 1s shell and, thus, further inner-shell photoabsorption,
which is one of the mechanisms underlying frustrated ab-
sorption as discussed in the previous section. Note that in
our state-resolved calculation the time scales for Auger-
Meitner decay for Ne ions are in the range from 818 as
(Ne2+ 1s02s22p6) to 46 fs (Ne7+ 1s12s12p1). Thus, most
Auger-Meitner decays still take place within 10 fs, as shown
in Fig. 9(b). Yet another interesting point is that the de-
cay of the double-core-hole state of Ne2+, i.e., peak (iii),

FIG. 10. Time-resolved 2p → 1s fluorescence spectra (F) of Ne
at a photon energy of 2000 eV for pulse durations (FWHM) of
(a) 1 fs, (b) 10 fs, and (c) 100 fs. Some peaks are labeled by the
involved initial configurations. A fluence of 1012 photons/μm2 is
used.

is clearly visible for 1 fs and 10 fs, but is almost absent
for 100 fs. This hypersatellite line is located at the highest
energy and is well separated from other lines, which provided
direct evidence of double-core-hole formation [8,65,66]. De-
cays of other double-core-hole states, with lower energies
than peak (iii), can also be observed mainly for short pulse
durations.

Finally, we turn to the fluorescence spectra for inner-shell
relaxation via 2p → 1s transition as shown in Fig. 10. We do
not show the 2p → 2s fluorescence spectra that are mainly
generated long after the pulse on time scales up to ∼10 ns.
For the 2p → 1s fluorescence, we can make very similar
observations as for the Auger-Meitner spectra, even though
Auger-Meitner decay is much more dominant. However, due
to lower fluorescence rates in comparison with Auger-Meitner
rates, relaxation of highly charged ions via fluorescence takes
place on relatively longer time scales even beyond that shown
in Fig. 10. Interestingly, single-core-hole and double-core-
hole spectra for Ne ions are well separated and ordered by
charge, i.e., the higher the charge state, the higher the photon
energy for a fixed number of core electrons. (An analogous
effect was observed in XFEL experiments on warm dense
aluminum [67].) The 1s–2p fluorescence energy is given by
ωfluo = EI − EF , where the initial state I has one or two 1s
holes and the final state F has one 1s hole less than I . When
I has a double 1s vacancy, EI contains a strong Coulomb
repulsion penalty because the two 1s holes are spatially close
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TABLE I. Ionization potentials of selected processes calculated with the state-resolved approach, E (1)
IP , and the configuration-based

approach, E (0)
IP . Photoemission lines in Figs. 3(a), 4(a), and 5(a) are assigned by E = ωin − EIP and their labels are listed below.

Label Process E (1)
IP (eV) E (0)

IP (eV)

(i) Ne, 1s22s22p6 → 1s12s22p6 880 (1S → 2S) 857
(ii) Ne2+, 1s22s22p4 → 1s12s22p4 935 (1D → 2D) 912
(iii) Ne1+, 1s12s22p6 → 1s02s22p6 1001 (2S → 1S) 952
(iv) Ne4+, 1s22s12p3 → 1s12s12p3 1006 (1D → 2D) 983
(v) Ne4+, 1s22s22p2 → 1s12s22p2 1010 (1D → 2D) 986
(vi) Ne3+, 1s12s22p4 → 1s02s22p4 1070 (2D → 1D) 1020
(vii) Ne, 1s22s22p6 → 1s22s12p6 49 (1S → 2S) 43
(viii) Ne, 1s22s22p6 → 1s22s22p5 20 (1S → 2P) 20
(ix) Ne1+, 1s22s12p6 → 1s22s02p6 72 (2S → 1S) 64
(x) Ne1+, 1s22s22p5 → 1s22s12p5 66 (2P → 3P) 64

77 (2P → 1P) –

to each other. Thus, the fluorescence lines from double-core-
hole states are higher than those from single-core-hole states
corresponding to the same charge state. As the charge state
increases, both EI and EF increase, but the increase is less
for EF than EI because in state F there is more screening
by 1s electrons than in state I . Consequently, the fluores-
cence energy gets larger for higher charge states, which are
generated at later times. All these features are demonstrated
in the time-dependent fluorescence spectra: In each panel of
Fig. 10, there are two groups of transition lines—associated
with single- and double-core-hole states, respectively—that
move toward higher energies with increasing time.

V. CONCLUSION

In this paper, we have presented an implementation of
state-resolved Monte Carlo calculations for describing x-ray
multiphoton ionization dynamics. Our implementation in the
XATOM toolkit employs an improved electronic-structure cal-
culation that is based on first-order many-body perturbation
theory. We have compared the new state-resolved and the orig-
inal configuration-based Monte Carlo calculations for neon at
three different photon energies, including a resonant case. The
differences in the CSD are negligible when resonances do not
matter. Therefore, in these cases the original configuration-

TABLE II. Peak assignment in the Auger-Meitner electron spectra [Figs. 4(b) and 5(b)]. Transition energies for the state-resolved approach,
E (1)

tr , and the configuration-based approach, E (0)
tr , are listed for the underlying process.

Label Process E (1)
tr (eV) E (0)

tr (eV)

(i) Ne1+, 1s12s22p6 → 1s22s22p4 801(2S → 1D) 860
795 (2S → 1S) –

(ii) Ne1+, 1s12s22p6 → 1s22s12p5 764 (2S → 1P) 838
→ 1s22s12p5 777 (2S → 3P) –

(iii) Ne2+, 1s02s22p6 → 1s12s22p4 869 (1S → 2D) 875
863 (1S → 2S) –

(iv) Ne2+, 1s02s22p6 → 1s12s12p5 833 (1S → 2P) 856
(v) Ne3+, 1s12s22p4 → 1s22s22p2 764 (2D → 1D) 820

758 (2D → 1S) –
(vi) Ne3+, 1s12s22p4 → 1s22s12p3 733 (2D → 1D) 800

729 (2D → 1P) –
(vii) Ne4+, 1s02s22p4 → 1s12s22p2 826 (1D → 2D) 830
(viii) Ne7+, 1s12s12p1 → 1s22s02p0 673 (2P → 1S) 717
(ix) Ne7+, 1s12s22p0 → 1s22s02p0 654 (2S → 1S) 706
(x) Ne5+, 1s02s22p23p1 → 1s12s12p13p1 – 788
(xi) Ne6+, 1s12p2np1 → 1s22p0np1 690 (n = 4; 1F → 2P) 741 (n = 5)

690 (n = 4; 1D → 2P) 739 (n = 6)
– 737 (n = 7)

(xii) Ne6+, 1s24p2 → 1s22p1 119 (3P → 2P) 125
14 (3D → 2P) 13

(xiii) Ne7+, 1s13p1np1 → 1s12p1 43 (n = 3; 2P → 1P) 44 (n = 3)
1s13p1np1 → 1s12p1 51 (n = 3; 2D → 3P) 119 (n = 5)

– 131 (n = 6)
– 138 (n = 7)
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TABLE III. Peak assignment in the fluorescence spectra [Figs. 4(c) and 5(c)]. Transition energies for the state-resolved approach, E (1)
tr , and

the configuration-based approach, E (0)
tr , are listed for the underlying process.

Label Process E (1)
tr (eV) E (0)

tr (eV)

(i) Ne1+, 1s12s22p6 → 1s22s22p5 834 (2S → 2P) 906
(ii) Ne8+, 1s12s02p1 → 1s22s02p0 919 (1P → 1S) 972
(iii) Ne8+, 1s12s02p1 → 1s12s12p0 10 (3P → 3S) 11

7 (1P → 1S) –
(iv) Ne9+, 1s02s02p1 → 1s12s02p0 1020 (2P → 2S) 1020
(v) Ne7+, 1s12p13p1 → 1s22p03p1 916 (2P → 2P) –
(vi) Ne7+, 1s2np1 → 1s22s1 140 (n = 3; 2P → 2S) 143 (n = 3)

183 (n = 4; 2P → 2S) 188 (n = 4)
203 (n = 5; 2P → 2S) 210 (n = 5)
214 (n = 6; 2P → 2S) 222 (n = 6)
220 (n = 7; 2P → 2S) 230 (n = 7)

based version of XATOM already produces quite good results,
as demonstrated in former studies [9–11,15,17,18]. However,
resonant excitations and spectral information profit from the
improved first-order-corrected transition energies in the new
implementation. Our results have demonstrated that CSD for
the resonance case and calculated electron and photon spec-
tra are improved by using state-resolved ionization dynamics
calculations. Employing the state-resolved Monte Carlo im-
plementation, we have investigated CSDs and spectra of neon
atoms at a photon energy of 2000 eV for three different XFEL
pulse durations. In addition to asymptotic quantities, we have
computed time-resolved CSDs and spectra, which highlight
the mechanisms through which different pulse durations affect
the asymptotic observables. In our example, frustrated absorp-
tion clearly manifests itself in the time-resolved spectra as the
pulse duration gets shorter. Particularly, it is the dynamical
interplay between the suppression of Auger-Meitner decay
and the suppression of inner-shell photoabsorption that lies

at the heart of frustrated absorption—not the suppression of
photoabsorption alone.

We conclude with an outlook. An important next step
could be to employ our state-resolved Monte Carlo imple-
mentation to explore the orbital alignment of the ions [43,68]
produced during the x-ray multiphoton ionization dynamics.
Another promising perspective for further development is to
compare our results on time-dependent quantities with exper-
imental measurements. Experimental methods that may allow
such measurements could be attosecond transient absorption
spectroscopy [69,70] and attosecond streaking measurements
[71–73]. These methods have already been employed to in-
vestigate ionization dynamics under conditions in which only
a few processes were involved [74,75]. Probing dynamics
during x-ray multiphoton ionization may be experimentally
challenging due to a wide variety of involved charge states
and emitted photo- and Auger-Meitner electrons that are not
always well separated, either in time or in energy.

TABLE IV. Dominant resonant excitations at a photon energy of 1050 eV (1% bandwidth). Transition energies and cross sections for the
state-resolved approach, E (1)

tr and σ (1), and the configuration-based approach, E (0)
tr and σ (0), are listed for the underlying process. For brevity,

only a range of transition energies in the state-resolved approach are given instead of individual state-to-state transition energies. For the
same reason, only subshell cross sections, i.e., averages over initial states and sums over all final states, are shown. For Ne3+ (1s12l6), Ne5+

(1s12l4), Ne5+ (1s22l24p1), Ne6+ (1s22l2), and Ne7+ (1s22l1) with l = s, p, similar resonant excitations are also possible for other electronic
configurations than given here, but are not listed for brevity.

Process n E (1)
tr (eV) σ (1) (Mb) E (0)

tr (eV) σ (0) (Mb)

Ne3+, 1s12s22p4 → 1s02s22p4np1 4 1043–1059 6.98 × 10−2 – –
5 1050–1065 7.74 × 10−3 – –

Ne5+, 1s12s22p2 → 1s02s22p2np1 3 – – 1043 1.28 × 10−1

Ne5+, 1s22s24p1 → 1s12s24p1np1 4 1052–1054 2.73 × 10−1 1031 2.62 × 10−5

Ne6+, 1s22s02p2 → 1s12s02p2np1 4 1040–1053 2.85 × 10−1 – –
5 1056–1070 7.60 × 10−3 1041 2.97 × 10−2

6 1065–1069 6.19 × 10−3 1050 1.23 × 10−1

7 – – 1055 4.32 × 10−2

Ne7+, 1s22s02p1 → 1s12s02p1np1 3 1036–1046 1.73 × 10−1 – –
4 – – 1063 6.26 × 10−3

Ne7+, 1s2np1 → 1s13p1np1 3 1064–1067 9.51 × 10−3 1047 8.67 × 10−1

4 1067–1070 1.34 × 10−4 1056 4.84 × 10−1

5 1070 2.44 × 10−6 1061 7.07 × 10−2

6 1070 3.14 × 10−7 1063 1.77 × 10−2

7 1070 7.67 × 10−8 1064 6.85 × 10−3
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APPENDIX: PHYSICAL PROCESSES AND TRANSITION
ENERGIES

For dominant physical processes, calculated ionization po-
tentials and transition energies are listed in Tables I–IV.
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Chapter 3. Scientific Contributions

3.3 X-ray-induced atomic transitions via machine

learning: A computational investigation

The third publication presents a machine-learning-based state-resolved Monte Carlo
implementation. This implementation combines state-resolved X-ray multiphoton
ionization dynamics calculations with machine-learning models for predicting atomic
transition parameters. The purpose of machine learning is to reduce the high com-
putational effort of huge-sized state-resolved calculations.

The underlying project was performed by myself under the supervision of Pro-
fessor Dr. R. Santra and Professor Dr.-Ing. M. Tropmann-Frick. In particular, I
trained, evaluated, and optimized the machine-learning models and embedded them
into the state-resolved Monte Carlo implementation (Sec. 3.2). I also evaluated
the overall performance of the machine-learning-based implementation, discussed
its limitations, and wrote the manuscript with inputs from all authors.
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Intense x-ray free-electron laser pulses can induce multiple sequences of one-photon ionization and accompa-
nying decay processes in atoms, producing highly charged atomic ions. Considering individual quantum states
during these processes provides more precise information about the x-ray multiphoton ionization dynamics than
the common configuration-based approach. However, in such a state-resolved approach, extremely huge-sized
rate-equation calculations are inevitable. Here we present a strategy that embeds machine-learning models
into a framework for atomic state-resolved ionization dynamics calculations. Machine learning is employed
for the required atomic transition parameters, whose calculations possess the computationally most expensive
steps. We find for argon that both feedforward neural networks and random forest regressors can predict these
parameters with acceptable, but limited accuracy. State-resolved ionization dynamics of argon, in terms of
charge-state distributions and electron and photon spectra, are also presented. Comparing fully calculated and
machine-learning-based results, we demonstrate that the proposed machine-learning strategy works in principle
and that the performance, in terms of charge-state distributions and electron and photon spectra, is good. Our
work establishes a first step toward accelerating the calculation of atomic state-resolved ionization dynamics
induced by high-intensity x rays.

DOI: 10.1103/PhysRevResearch.6.013265

I. INTRODUCTION

The enormous peak brightness of x-ray free-electron lasers
(XFELs) [1–5], such as the European XFEL [6], offers ex-
citing new opportunities for the structure determination of
biomolecules with almost atomic resolution [7–13]. However,
due to the high-intensity x rays the electronic structure of the
investigated sample is unavoidably damaged [14–17]. As a
consequence, the sample undergoes structural disintegration
[18], which limits such applications.

A critical process, underlying these damages, is x-ray
multiphoton ionization dynamics in atoms and molecules
[19]. High-intensity x rays induce multiple sequences of one-
photon ionization accompanied by Auger-Meitner decay or
x-ray fluorescence. As a result, atoms or molecules often
become very highly ionized during the interaction with in-
tense XFEL pulses [20–24]. A validated approach to simulate
the x-ray multiphoton ionization dynamics is by solving a
coupled set of rate equations [20,25,26] describing the time-
dependent populations of the electronic configurations visited
during the ionization dynamics. Such a configuration-based
rate-equation approach has been widely used and successfully
applied for interpreting and designing many XFEL experi-
ments [20–43].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

However, the configuration-based approach does not in-
clude individual quantum states and individual state-to-state
transitions and, thereby, cannot capture state-resolved ion-
ization dynamics. A state-resolved approach delivers more
detailed information about the x-ray multiphoton ionization
dynamics, especially regarding resonant excitations and spec-
tra. This has recently been demonstrated for neon atoms
[44]. To explore state-resolved ionization dynamics based on
time-dependent quantum state populations, it is necessary to
include all possible electronic quantum states that may be
formed by removing zero, one, or more electrons from the
ground state of the neutral atom. The corresponding number
of involved states is dramatically larger than the number of
electronic configurations. For example, even for an isolated
argon atom without considering resonant or relativistic effects
the number of involved states is 262144 [44], whereas only
1323 electronic configurations are involved [34]. Thus, apart
from very light atoms like neon, solving rate equations in
an extremely large space of states is unavoidable. Therefore,
the huge-sized rate equation calculations are performed via a
more efficient Monte Carlo on-the-fly rate-equation method
[21,38]. However, even with such a Monte Carlo method, the
computational effort for the state-resolved ionization dynam-
ics calculations is inevitably large (as will be demonstrated
in Sec. III C). The main bottleneck in the state-resolved ion-
ization dynamics calculations is the first-principle calculation
of all required atomic transition parameters, i.e., transition
energies, cross sections, and rates, which has to be performed
on the fly.

With machine learning nowadays being a thriving and ac-
tively investigated field, it is natural to ask whether this critical
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challenge of high computational effort might be addressed
by applying a suitable machine learning strategy. Machine
learning, deep learning included, has already successfully
supported natural science in various ways [45–47]. A proto-
type example is the application to protein structure predictions
with atomic accuracy [48]. Other important applications of
machine learning include the prediction of x-ray absorption
spectra [49–52], the identification of phase transitions in con-
densed matter [53], the characterization and calibration of
laser pulses [54–57], as well as its use in electronic-structure
theory [58–63], just to name a few (for more see, e.g.,
Refs. [45,46] and references therein). One high-impact role
that machine learning has been playing in electronic-structure
theory so far is in speeding up the construction of potential-
energy surfaces [64–67]. A recent review about the progress
of machine learning in the context of potential-energy surfaces
can be found in Ref. [68]. Furthermore, another interest-
ing approach is to reduce the high computational effort in
configuration-interaction calculations by preselecting only the
most important configurations via machine-learning models
[69,70].

In this work, we present a strategy that embeds machine-
learning models for predicting atomic transition parameters
into a Monte Carlo on-the-fly rate-equation method for de-
scribing atomic state-resolved ionization dynamics. Recently,
a state-resolved Monte Carlo implementation [44], based
on a framework for performing quantum-state-resolved first-
principle calculations of atomic transition parameters [71],
was introduced in the ab initio electronic-structure and ion-
ization dynamics toolkit XATOM [16,72,73]. We here combine
the state-resolved Monte Carlo implementation with machine-
learning models for predicting atomic transition parameters.
This machine-learning-based implementation can reproduce
the results for neon published in Ref. [44]. However, for
neon, the computational effort is too small to gain much with
it. Therefore, here, we choose to focus on the much more
challenging problem of state-resolved ionization dynamics of
argon. Our work establishes a first step towards accelerating
huge-sized rate-equation calculations for easily examining x-
ray-induced ionization dynamics for a variety of atoms and
x-ray parameters.

The paper is organized as follows: In Sec. II, a descrip-
tion of the methods used to obtain the results presented in
Sec. III can be found. In Sec. III A, we demonstrate how to
collect data of x-ray-induced atomic transitions via a Monte
Carlo approach, before analyzing the performance of the
machine-learning models (i.e., neural networks and random
forest regressors) in Sec. III B. The performance, in terms of
charge-state distributions (CSDs) and spectra, is the topic of
Sec. III C. The paper finishes with a conclusion and future
perspectives in Sec. IV.

II. THEORETICAL DETAILS

A. State-resolved Monte Carlo calculations

We perform state-resolved x-ray multiphoton ionization
dynamics calculations using the state-resolved Monte Carlo
implementation [44] in the XATOM toolkit [16,72,73]. This
implementation is based on a nonrelativistic quantum-state-

resolved electronic-structure framework [71], also embedded
in XATOM. It performs first-principle calculations of atomic
first-order-corrected transition energies as well as state-to-
state cross sections and transition rates.

To provide an overview of the accuracy of the quantum-
state-resolved electronic-structure framework employed, we
list selected K and L fluorescence and KLL Auger-Meitner
transition energies for Ar1+ and Ar2+ (hypersatellites) in
Table I. Transition energies are calculated with two differ-
ent orbital optimization strategies within this framework:
based on first-order-corrected energies calculated with or-
bitals and orbital energies optimized (i) for the initial
electronic configuration only and (ii) for the initial and fi-
nal electronic configurations individually. Both strategies are
compared with relativistic calculations [74,75,77,79] and ex-
perimental measurements [74,76,78,79], which are in almost
perfect agreement with one another (see Table I). Relativistic,
quantum-electrodynamic, and finite-nuclear-size effects [74]
are not included in the quantum-state-resolved electronic-
structure framework employed. As a consequence, transition
energies calculated with both strategies are less accurate and
exhibit no spin-orbit splitting. Nonetheless, the selected tran-
sitions in Table I demonstrate an accuracy of more than 90%
(initial optimization) or 97% (individual optimization), re-
spectively. The individual optimization delivers more accurate
results, however, at the expense of computational efficiency.
Therefore, in what follows, we optimize for the initial elec-
tronic configuration only (as done in Refs. [44,71]). The main
focus in this work is on the usage of machine learning for
atomic transition parameters, whose accuracy does not affect
the general machine-learning approach.

Furthermore, a Monte Carlo on-the-fly rate-
equation method [21,38] is employed for describing the
time evolution of the atomic quantum state populations.
The number of coupled rate equations (= the number of
individual states involved in the x-ray multiphoton ionization
dynamics) is extremely large. For instance, for argon atoms,
this number is 218 when all subshells are accessible for
one-photon ionization, but relativistic and resonant effects
are not included [44]. Therefore, the Monte Carlo method is
critical since it permits us to efficiently perform huge-sized
rate-equation calculations by stochastically sampling possible
ionization pathways.

In the present work, we restrict the time propagation of the
x-ray multiphoton ionization dynamics to a time interval of 1
ps. This implies that decay processes that occur on timescales
much longer than 1 ps are assumed not to be of interest.
Therefore, the rates are set to zero when they are smaller
than �thres = 10−7 a.u. (corresponding to the timescale of
240 ps). In what follows, these comparatively slow processes
are referred to as quasiforbidden transitions. This is reason-
able since processes occurring later are actually modified by
plasma processes. Thus, the model of an isolated atom as-
sumed in our calculations breaks down after some time. Note
that, at this point, the few-femtosecond ionizing pulse is long
over.

Let us briefly explain what we mean by an individual
quantum state and an individual state-to-state transition in the
following. In our state-resolved approach, a state I is defined
by the electronic configuration, 1sN1s 2sN2s 2pN2p · · · , together
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TABLE I. Accuracy of the underlying quantum-state-resolved electronic-structure framework in XATOM. Selected fluorescence and Auger-
Meitner (hypersatellite) transition energies for argon are calculated with this framework [71] based on orbitals and orbital energies optimized
(i) for the initial electronic configuration only and (ii) for the initial and final electronic configurations individually. Results are compared with
(iii) more accurate relativistic calculations and (iv) experimental data (references are given next to values in the table), which contain energy
splittings due to spin-orbit coupling.

Transition energy EIi→I f (eV) Difference (%)

Process (i) XATOM (ii) XATOM–ind. (iii) Relativistic (iv) Experiment (iv) − (i) (iv) − (ii)

Ar1+, 1s12s22p63s23p6 (2S) 2931.5 2946.4 2957.9 [74] 2957.7 [74] 0.9 0.4
→ 1s22s22p53s23p6 (2P) 2955.9 [74] 2955.6 [74] 0.8 0.3

Ar1+, 1s12s22p63s23p6 (2S) 3140.3 3180.4 3191.5 [74] 3190.5 [74] 1.6 0.3
→ 1s22s22p63s23p5 (2P) 3191.3 [74] 3190.5 [74] 1.6 0.3

Ar1+, 1s22s22p53s23p6 (2P) 202.4 215.3 219.5 [74] 220.2 [74] 8.8 2.3
→ 1s22s22p63s13p6 (2S) 221.5 [74] 221.8 [74] 9.6 3.0

Ar2+, 1s02s22p63s23p6 (2S) 3105.9 3118.0 3131.5 [75] 3133.0 [76] 0.9 0.5
→ 1s12s22p53s23p6 (1P)

Ar1+, 1s12s22p63s23p6 (2S) 2646.9 2650.6 2661.8 [77] 2660.6 [78] 0.5 0.4
→ 1s22s22p43s23p6 (1D)

Ar1+, 1s12s22p63s23p6 (2S) 2634.8 2638.6 2649.9 [77] 2650.6 [78] 0.6 0.5
→ 1s22s22p43s23p6 (1S)

Ar2+, 1s02s22p63s23p6 (1S) 2765.4 2766.4 2779.2 [79] 2779.6 [79] 0.5 0.5
→ 1s12s22p43s23p6 (2D)

Ar2+, 1s02s22p63s23p6 (1S) 2752.5 2762.6 2769.6 [79] 2768.9 [79] 0.6 0.2
→ 1s12s22p43s23p6 (2S)

with additional quantum numbers (L, S, ML, κ ) (that specify
a so-called zeroth-order LS eigenstate [71]). For each state,
there is a corresponding (term-specific) first-order-corrected
energy ELSκ that is the same for all states within a term
2S+1L(κ ). Note that the spin projection quantum number MS

is missing in the description of an individual quantum state.
Since in our approach none of the interaction Hamiltonians
couples to the spin [44,71], transition probabilities are in-
dependent of MS and, thus, we are not interested in spin
projection quantum numbers. From now on the index i refers
to the initial state (before a certain process is happening),
while for the final target state we use the index f . Then,
an individual state-to-state transition is a transition from an
individual quantum state I i to I f with first-order-corrected
transition energy E (1)

I i→I f , cross section σI i→I f for photoab-
sorption or transition rate �I i→I f for Auger-Meitner decay or
fluorescence, respectively. (The corresponding equations are
given in Ref. [71].)

B. The machine-learning models

The tasks of the machine-learning models are to predict for
a given transition from an individual quantum state I i to I f the
first-order-corrected transition energy E (1)

I i→I f (E model) and
the cross section σI i→I f for photoabsorption (P model) or the
transition rate �I i→I f for Auger-Meitner decay (AM model)
and fluorescence (F model). These four tasks are solved by
separate machine-learning models. All are regression prob-
lems [80] with the following inputs (i.e., features) and outputs
(i.e., labels).

The features are given by the following quantities based on
our definition of an individual quantum state in Sec. II A:

(i) occupation numbers ni
occ of the initial electronic con-

figuration, i.e., (Ni
1s, Ni

2s, Ni
2p, . . . );

(ii) quantum numbers qni of the initial state, i.e.,
(Li, Si, MLi , κi );

(iii) type of process p being considered, i.e., (involved
hole, first involved electron, second involved electron {for
AM, otherwise zero}, kind of process {1:P, 2:AM, 3:F});

(iv) quantum numbers qn f of the final state, i.e.,
(L f , S f , ML f , κ f ).

The first case gives Norb features, where Norb is the number
of subshells involved in the initial electronic configuration,
and the rest provides four features per each case. Thus, the
total number of features Nfeatures in a feature vector is given by

Nfeatures = Norb + 12. (1)

Note that the type of process being considered can be in-
terchanged with the occupation numbers n f

occ of the final
electronic configuration. Here, the former is employed in the
feature vector to reduce the number of features, which is
especially important for heavy atoms and/or the inclusion of
resonant effects.

It is also worthwhile to mention that (as can be seen from
Ref. [71]) cross sections and decay rates are invariant un-
der a change of the angular-momentum projection quantum
numbers MLi → −MLi and simultaneously ML f → −ML f —a
relation the machine-learning models fail to learn. Therefore,
we force the machine-learning models to preserve this sym-
metry by using MLi � 0 as a feature only. More precisely,

if MLi

⎧⎨
⎩

> 0 : MLi and ML f

= 0 : MLi = 0 and |ML f |
< 0 : |MLi | and − ML f

(2)

are taken as features for the projection quantum numbers.
Another important point is that the individual models are

not given all features as inputs, only those that are relevant.
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Transition energies are independent of MLi and ML f —another
relation the machine-learning model fails to learn. Hence, for
the energy model, they are not used and, therefore, NE

features =
Nfeatures − 2. Similarly, for the other three models the kind of
process (P, AM, or F) is an unnecessary feature as it is fixed a
priori by the model used. Additionally, features for involved
holes and electrons are only important if they exist for the pro-
cess in question. Consequently, we have NP

features = Nfeatures −
3, NAM

features = Nfeatures − 1, and NF
features = Nfeatures − 2.

The label is always only one number since each task has its
own machine-learning model:

ypred =

⎧⎪⎪⎨
⎪⎪⎩

E (1)
I i→I f in eV for E model

σI i→I f in a.u. for P model
�I i→I f in a.u. for AM model
�I i→I f in a.u. for F model.

(3)

Data preparation depends on the type of machine-learning
model used. For the neural networks, the widely recom-
mended Z-score normalization is applied to each feature xk

[81], i.e.,

x′
k = xk − μk

σk
, (4)

with mean μk and standard deviation σk of the kth feature with
respect to all training data. Consequently, the prepared input
data form a distribution with zero mean and unit standard de-
viation. For the random forest regressors, however, no feature
normalization is required since it is not distance-based.

The energy values cover a wide range from 0 eV to the
energy of the incoming x rays, typically a few thousand elec-
tronvolts. For the neural network, they are also normalized
by Z-score normalization [see Eq. (4)] in order to keep their
values in a smaller range. For the random forest regressor, the
pure energy values are used.

Cross sections and rates cover several orders of magni-
tude. Thus, logarithmic scaling might be useful and is, in
fact, applied for the random forest regressors. For the neural
networks, however, we prefer to use pure cross section and
rate values by, instead, respecting the wide range in the loss
function and the output activation (see Sec. II C) without any
scaling. The advantage is that this avoids back-scaling, which
in combination with Z-score normalization is prone to errors,
especially for very small cross sections and rates.

C. Neural network

Neural networks [80,82,83] are the central tool of deep
learning. In general, they consist of a sequence of several
sets of linear transformations followed by nonlinear activa-
tions. Each step in this sequence is called a layer [59]. The
number of layers in the neural network determines its depth.
Based on a chosen loss function and an optimizer, they are
trained via back-propagation [84]. The basic idea of a (deep)
neural network is that each layer is effectively learning a
more complex representation of the raw input features and
that this reduces the number of parameters needed to be
fitted [85].

TABLE II. Neural network architecture: number of units per
layer for each neural network trained in this work (see Sec. II C).

Model In 1 2 3 4 5 Out

E 15 512 256 128 64 32 1
P 14 1024 512 256 128 64 1
AM 16 1024 512 256 128 64 1
F 15 1024 512 256 128 64 1

1. Hyperparameter tuning

Before explaining the neural network architecture and
the hyperparameters employed in the present work, let us
briefly explain the general way we have made these decisions.
This will make some of our reasoning in the following two
paragraphs clearer. The neural network architecture and hy-
perparameters are determined by “trial and error.” Due to high
training efforts and fluctuations in loss values from training
to training, a more systematic and automated hyperparameter
optimization, e.g., by a grid search [80], would not be well
suited for our purpose. It is especially worthwhile to note
that our models are system-specific. As will be explained
in Sec. II E, for each machine-learning-based Monte Carlo
calculation, the models need to be retrained. If we also had to
re-optimize the hyperparameters for (almost) every machine-
learning-based Monte Carlo calculation, this would be in clear
contrast to our goal of speeding up the calculations. Moreover,
for speeding up calculations, models should also be chosen
such that training is not more time consuming than really
necessary. Consequently, our aim is not to find the perfect
hyperparameters and the best possible model performance for
a given training set. Note that differences between different
models are often anyhow only very small. Instead, it is more
critical to build models, hyperparameters included, that allow
us to train them for different training sets and training set sizes
with a good (but not necessarily perfect) performance within
an acceptable amount of time.

2. Network architecture

For our neural networks, we employ the popular deep
learning library Keras [86] of the TensorFlow machine-
learning platform [87]. Our neural networks are standard
feedforward neural networks with seven layers, input and
output layer included, and with the number of units given in
Table II. This neural network architecture has sufficient model
capacity to approximately fit the data, but not enough to nearly
perfectly interpolate the training data (see Sec. III B). For ar-
gon, interpolating training data as suggested by the “modern”
interpolation hypothesis [88] is a tough task because it actu-
ally requires very large neural networks and, concomitantly,
very long training times (see Sec. III B). Therefore, we have
chosen this network architecture as a compromise between
computational effort and numerical accuracy. Of course, other
neural network architectures with comparable capacity would
work similarly well.

For the activation function, the hyperbolic tangent (tanh) is
chosen. Indeed, nowadays, in the deep learning community
rectified linear units (ReLU) or variants thereof are much
more recommended [80,89]. Nonetheless, in our numerical
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investigations we have found that for the situations considered
in this work, tanh matches or sometimes even outperforms the
other available activation functions. To improve the training
process with tanh activation, weights are initialized following
the “GlorotUniform” initializer explained in Ref. [90]. Energy
values are normalized to zero mean and are in principle un-
bounded. Thus, for the energy model a linear output layer is
a rational choice. On the other hand, cross sections and rates
are unnormalized and cover a range between zero and unity.
Hence, we chose a sigmoid output layer. Of course, in the
typical ranges of output values (≈10−3 to 10−7) sigmoid is
almost constant. But for the present models, this seems not
to be a very serious problem. Overfitting to the training data
is reduced by regularizing the models with dropout [91] with
a soft probability of 0.01 (E) or 0.05–0.1 (P, AM, and F),
respectively. We do not regularize our models very strongly
due to the model capacity being too low for interpolating
training data.

3. Optimization

The neural networks are trained on mini batches of size
211 using the Adam optimization algorithm [92] with early
stopping and a maximum of 1200 epochs (i.e., forward and
backward passes through the neural network). We have chosen
Adam as it is known to be fairly robust to the choice of
hyperparameters, like the learning rate. The learning rate for
Adam is set to 0.0005 (E) and 0.001 (P, AM, and F). Most
important for the learning is the loss function on which the
optimization is performed. For the energy model, the mean
squared error (MSE) on the training set is employed. MSE on
a general dataset D with size ND in one dimension is given by

LMSE
D = 1

ND

ND∑
j=1

(
ycalc

j − ypred
j

)2
, (5)

where ycalc
j is the label value of the jth example in D and ypred

j
is the prediction, respectively. However, MSE only works well
if labels cover a similar range. Otherwise, errors in small label
values will be overlooked. Therefore, for the other three mod-
els, we define a mean squared logarithmic error (MSLE) as

LMSLE
D = 1

ND

ND∑
j=1

(
log10

[
ycalc

j + ε
]

− log10

[
ypred

j + ε
])2

, (6)

on which they are trained. In this expression, ε = 10−10

is used for numerical stability. Values smaller than ε are
practically treated as zero. The value of 10−10 makes sense
since smaller photoionization cross sections are negligible.
Due to the choice of sigmoid output activation, it is guaranteed
that all ypred

j > 0. (They are set to zero later if they are found
to be very small). Note that MSLE basically measures by how
many orders of magnitude ycalc

j and ypred
j differ.

4. Performance measure

Finally, we need to evaluate how well the trained model
behaves on a test set not seen during training. A way of
measuring the performance of the model is to compute the

MSE (for E) or MSLE (for P, AM, and F) on the test set.
In addition to this, for each example in the test set the ab-
solute error ycalc

j − ypred
j or the logarithmic error log10[ycalc

j +
ε] − log10[ypred

j + ε] can be calculated and represented in a
histogram. For the AM or F models, however, there is one
problem with the (quasi-)forbidden transitions. If ycalc

j = 0 but

ypred
j > 0 or vice versa, the logarithmic error mainly depends

on our choice of ε. As a consequence, MSLE can be quite
large and (at least) for a human-based interpretation loses its
usefulness. Therefore, we perform the following: We measure
the accuracy on the whole test set (or any other dataset we are
interested in). The accuracy,

AD = # of correct predictions

ND
, (7)

here is a measure of how good the machine-learning model
learns whether a transition is allowed or (quasi-)forbidden,
i.e., “# of correct predictions” includes the cases in which
ycalc

j > 0 and ypred
j > 0 or ycalc

j = 0 and ypred
j = 0. Knowing

the accuracy, all wrong predictions, i.e., ycalc
j = 0 but ypred

j > 0

or ycalc
j > 0 but ypred

j = 0, can, then, be excluded from the
computation of MSLE and error histograms without any loss
of information. It should be stressed that during training only
MSLE is evaluated, but the accuracy is not. Embedding ac-
curacy into training by, e.g., using a preceding classification
model may be pursued in a future investigation.

D. Random forest regressor

A powerful alternative to neural networks is the random
forest regressor technique [93,94]. They are known to be much
faster and much easier to tune with respect to hyperparameters
than neural networks. But they have a limited capacity due to
a lack of the depth that deep neural networks can have [95].

Random forest regressors are a decision-tree-based ensem-
ble method. Briefly explained, the algorithm hierarchically
separates the input space into subsets with respect to a specific
feature and relation operators, i.e., it creates a decision tree.
For each node (i.e., subset), the most important feature and
the best split are controlled by a loss function; here we use
MSE (for all models). To improve generalization, several of
these trees are built and the final prediction is obtained as an
average over all trees.

For our random forest regressors, we made use of the
scikit-learn implementation [96] with 100 trees in the forest.
In accordance with the “modern” interpolation hypothesis
[88], we barely regularize our models (i.e., the whole training
dataset is used for building each tree and nodes are expanded
in an unrestricted manner). This enables us to perfectly fit the
training data and does not bound the test performance by a
poor training performance. The only regularization performed
here is that only NModel

features − 6 features are randomly chosen at
each node. As for the neural networks, these regularizations
are determined by “trial and error” with respect to the model
performance, the time efficiency, and the robustness to differ-
ent training sets. Performance is measured in the same manner
as for the neural networks (using MSE for the E model and
MSLE for the P, AM, and F models).
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FIG. 1. Structure of the machine-learning-based state-resolved Monte Carlo implementation. The state-resolved Monte Carlo part in
Fortran is called XATOM_MC, while XATOM_ML is the machine-learning part in Python. The arrows indicate that data are streamed into (→) or
are obtained from (←) the FIFO files.

E. Machine-learning-based state-resolved
Monte Carlo implementation

The state-resolved Monte Carlo calculations, described in
Sec. II A, are computationally very expensive for situations in
which a large number of orbitals is involved (i.e., for heavier
atoms or when resonant excitations are included), caused by
an exponentially large number of states involved in the x-ray
multiphoton ionization dynamics (see Ref. [44]). We approach
this challenge by employing a machine-learning strategy to
support the high-level Monte Carlo calculations. For this,
we implement a machine-learning-based version of the state-
resolved Monte Carlo implementation within XATOM [73],
which closely couples the Monte Carlo calculation (Sec. II A)
with a machine-learning algorithm (Secs. II C or II D). It is
sketched in Fig. 1. The state-resolved Monte Carlo implemen-
tation written in Fortran is coupled to the machine-learning
part written in Python via FIFO (first-in-first-out) special files.
This enables a hand-in-hand exchange of the most important
information or data without storing them physically on the
disk.

We separate the Monte Carlo part into two iterative phases:
(i) an initial training and test phase and (ii) a final produc-
tion phase. During the first NTT

traj Monte Carlo trajectories
(training and test phase, where TT indicates training and test
phase), the electronic structure as well as the atomic transi-
tion parameters, i.e., transition energies, cross sections and
rates, are explicitly calculated via quantum-state-resolved
first-principle calculations. The calculated atomic transition
parameters are collected and redirected to a FIFO file as a
combined set of training and test data. The data are split up
randomly into training data (85% of the data calculated) and
test data (15% of the data calculated). Based on these data, the
machine-learning models are trained and their performance is
evaluated. The trained model parameters are redirected into
another FIFO file. Based on them the machine-learning al-
gorithms are reconstructed in Fortran. This does not include
any complicated training procedures. It just means evaluat-
ing the sequence of linear functions and activation functions,
whose parameters are determined by the read-in parame-
ters. Using reconstructed machine-learning models eliminates
the need for further calls of the machine-learning part in
Python. Hence, no further communication between Fortran
and Python, requiring further data sharing, is necessary in

the final production phase. In the production phase a lot of
further Monte Carlo trajectories (NProd

traj ) are run until either
the maximum number of trajectories is reached or CSDs are
converged. During these Monte Carlo trajectories no further
quantum-state-resolved first-principle calculations are per-
formed. On the one hand, atomic transition parameters stored
in memory are employed. This is the case when the transition
at hand, for which we want to know the atomic transition
parameters, has already been visited during the training and
test phase and atomic transition parameters are stored. On the
other hand, atomic transition parameters for transitions newly
visited and, thus, not stored yet are predicted on the fly via the
reconstructed machine-learning models.

Results of x-ray multiphoton ionization dynamics calcu-
lations in Sec. III C are obtained in a way that all Monte
Carlo trajectories add up to a total number of 80 000 (=NTT

traj +
NProd

traj ).

III. RESULTS AND DISCUSSION

We examine the performance of the machine-learning-
based state-resolved Monte Carlo implementation for atomic
argon at a photon energy of 5 keV. For such a photon energy, in
principle all electrons can be ionized via x-ray sequential mul-
tiphoton ionization, i.e., a repeated sequence of one-photon
ionization and inner-shell relaxation events. Therefore, no
resonant excitation is involved in the x-ray multiphoton ion-
ization dynamics. Following Ref. [44], we use a temporal
Gaussian pulse envelope with 10 fs (full width at half max-
imum) and a fluence of 1012 photons/µm2. Neither relativistic
effects [34], nor nonsequential two-photon absorption, higher-
order many-body processes such as shake-off, nor volume
integration are included in the calculations (see Ref. [44] and
references therein). Due to the lack of volume integration,
a quantitative comparison with experimental results is not
directly possible.

A. Data collection

Before exploring the machine-learning-based results, we
start by considering how to choose the number of Monte Carlo
trajectories for the training and test phase and the production
phase. For the machine-learning-based state-resolved Monte
Carlo implementation, the quantity that can easily be tuned
in order to determine the size of the training and test datasets
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FIG. 2. Number of atomic transition parameters Ndata collected as
a function of the number of Monte Carlo trajectories Ntraj for argon
at 5 keV. The arrows indicate the three different cases considered in
this work (see Table III).

is the number of Monte Carlo trajectories during the training
and test phase (NTT

traj ). Figure 2 shows the number of atomic
transition parameters (Ndata) collected as a function of the
number of Monte Carlo trajectories (Ntraj). Of course, this
relation slightly varies from one Monte Carlo calculation to
another, but, nonetheless, Fig. 2 gives a very good orientation
on Ndata. As can be seen, for argon at 5 keV, Ndata is very
high (≈107). This is related to the huge number of individual
states involved in the calculations (Sec. II A). Moreover, Ndata

seems not to be saturated as Ntraj increases, within the range of
Ntraj we used (up to Ntraj = 80 000). This makes successfully
training the machine-learning models a tough task, as we are
going to demonstrate in Sec. III B. On the other hand, this
presents a situation in which a successful implementation of
machine learning can be really helpful, in contrast with light
atoms like neon. For our studies in Secs. III B and III C, we
have chosen three different NTT

traj such that they cover a wide
range of the curve in Fig. 2, i.e., NTT

traj = 4000, 9000, and
28 000, as listed in Table III.

To gain an overview of the remaining number of Monte
Carlo trajectories in the production phase, in Fig. 3 we
show argon CSDs obtained using the state-resolved Monte
Carlo implementation (no machine learning) [44] with dif-
ferent numbers of Monte Carlo trajectories Ntraj. The error
bars represent the statistical error estimate of the Monte
Carlo calculation for each charge state q, given by εq =√

Pq(1 − Pq)/(Ntraj − 1), where Pq is the population probabil-
ity of the charge state q. Note the proportionality of the Monte
Carlo error to 1/

√
Ntraj − 1, causing comparably large errors

for small Ntraj. Figure 3 demonstrates that for 10 000 Monte
Carlo trajectories the CSD is almost converged. It should be
mentioned that more Monte Carlo trajectories are necessary

TABLE III. Number of training and test Monte Carlo trajectories
NTT

traj as well as the corresponding training and test dataset size (NTT
data)

for the three different cases considered in this work for argon at
5 keV.

Label NTT
traj NTT

data

(i) 4000 2 686 711
(ii) 9000 4 680 860
(iii) 28 000 8 965 379

FIG. 3. Convergence behavior of argon CSDs as a function of
the number of Monte Carlo trajectories Ntraj. Results are obtained
with the state-resolved Monte Carlo implementation of Ref. [44] (no
machine learning). The error bars indicate the statistical error.

for convergence of state-resolved quantities such as spectra.
Due to this and in order to be safely sure that Monte Carlo
errors are sufficiently small for our purpose, we utilize here
80 000 Monte Carlo trajectories in total (i.e., training and
test plus residual production trajectories). Note further that
CSDs in Fig. 3 are converged when Ndata is still far from
a saturation point (Fig. 2). This demonstrates that only a
small fraction of frequently visited transitions is critical for
the ionization dynamics calculations. This is also the reason
why the Monte Carlo method is so powerful [38] and why
the machine-learning-based state-resolved Monte Carlo im-
plementation works (see Sec. III C).

B. Performance of machine-learning models

Let us next discuss machine-learning results for argon,
employing both neural networks (Sec. II C) and random forest
regressors (Sec. II D). We examine also how the machine-
learning performance depends on the training set size. In
particular, the three different dataset sizes (i.e., combined set
of training and test data) listed in Table III are considered.
According to the feature for the kind of process (p = 1, 2, or
3; see Sec. II B), each dataset is separated into the individual
subdatasets for the P model (25%–28% of NTT

data), the AM
model (57%–59% of NTT

data), and the F model (15%–16% of
NTT

data). For the E model, duplications with respect to the energy
label are removed. (Thus, 29%–35% of NTT

data are left over for
the subdatasets for the E model.) Moreover, 85% of randomly
selected data are employed as data for training a model, while
the remaining 15% serve as test data.

To inspect the model’s performance on the unseen test
dataset, we show three-dimensional scatter plots of predicted
data in Figs. 4(a)–4(d) and 5(a)–5(d) and the distribution
of absolute or logarithmic errors in Figs. 4(e)–4(h) and
5(e)–5(h). For Figs. 4(a)–4(d) and 5(a)–5(d), the vertical axis
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FIG. 4. Performance of the neural networks (NN) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: (a), (e) the transition
energy E in eV; (b), (f) the photoionization cross section (P) in logarithmic scaling; (c), (g) the Auger-Meitner decay rate (AM) in logarithmic
scaling; and (d), (h) the fluorescence rate (F) in logarithmic scaling. The color bars in panels (a)–(d) show the relative number of pairs
(ycalc, ypred), scaled by (a) 10−2 or (b)–(d) 10−3. The dotted white line indicates the identity mapping. We consider the test dataset of case (ii).

FIG. 5. Performance of the random forest regressors (RF) in terms of (a)–(d) scatter plots and of (e)–(h) error histograms: the panels show
the same quantities as in Fig. 4.
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TABLE IV. Test error statistics for the neural networks (NN) and
random forest regressors (RF): MSE loss (LMSE) [Eq. (5)] in eV2

for the energy model (E) and MSLE loss (LMSLE) [Eq. (6)] for the
photoionization cross section (P), Auger-Meitner decay rate (AM),
and fluorescence rate (F) models, evaluated on the test datasets of all
three cases (Table III). For the AM and F models, additionally the
accuracy (A) [Eq. (7)] is given, in %.

NN RF

Model L or A (i) (ii) (iii) (i) (ii) (iii)

E LTest 13.1 12.2 9.4 30.4 27.0 24.8
P LTest 0.42 0.41 0.43 0.36 0.32 0.26
AM LTest 0.44 0.46 0.49 0.32 0.32 0.29

ATest 87.7 86.6 84.3 87.7 87.6 87.9
F LTest 0.13 0.14 0.15 0.11 0.10 0.09

ATest 90.9 91.0 89.5 89.0 89.3 89.6

is the predicted energy in eV [Figs. 4(a) and 5(a)] or the
predicted cross section [Figs. 4(b) and 5(b)] or rate [Figs. 4(c),
5(c) and 4(d), 5(d)] in logarithmic scaling, while the horizon-
tal axis is the underlying calculated value. For both, 100-eV
bins [Figs. 4(a) and 5(a)] or 0.1 bins [Figs. 4(b), 5(b), 4(c),
5(c), and 4(d), 5(d)], respectively, are used. The color bars
show the relative number of scatter points, scaled by 10−2

[Figs. 4(a) and 5(a)] or 10−3 [Figs. 4(b), 5(b), 4(c), 5(c),
and 4(d), 5(d)], i.e., the number of pairs of calculation and
prediction within a bin divided by the total number of test data
for the model in question. The three-dimensional plots sup-
plement the common two-dimensional scatter plots by further
information about the distribution of scatter points, which is
sensible when the number of data is large, i.e., here, on the
order of 105. Moreover, for brevity, only results for the case
(ii) are given in the figures (for the other cases see below in
the context of Table IV).

It becomes evident from Figs. 4(e) and 5(e) that transition
energies are mostly predicted with better than 10-eV accuracy
[i.e., the sum of error bars within the 10-eV window yields
99% (NN) or 94% (RF) for case (ii)] and with at most around
50 eV difference. The good performance of the energy model
is underlined by Figs. 4(a) and 5(a), looking very similar to the
identity mapping of ypred = ycalc. In contrast with the energy
model, cross section and rate models perform less accurately
for argon. Most predictions [85%–98% for case (ii)] deviate
from the calculation by less than an order of magnitude [see
first-order windows in Figs. 4(f)–4(h) and 5(f)–5(h)]. How-
ever, deviations up to four orders of magnitude are possible.
Comparably poor predictions can occur for all cross sec-
tions or rates, even though higher calculated values seem to be
a little bit less inaccurate [see Figs. 4(b)–4(d) and 5(b)–5(d)].
Nonetheless, of course, a better accuracy is actually needed
the higher the calculated cross section or rate. Using MSLE
loss during training, the models cannot respect this in the
model training and evaluation. Moreover, we observe that
fluorescence rates are predicted the best, while Auger-Meitner
decay rates possess the largest deviations. Interestingly, for
photoionization and Auger-Meitner decay, there is a tendency
that predictions are smaller than the calculated cross sec-
tions or rates [see Figs. 4(b), 4(c) and 5(b), 5(c)].

TABLE V. Training times, real and CPU, in minutes for the
neural networks (NN) and the random forest regressors (RF) for
all four models. We consider the training datasets of all three cases
(Table III).

Real time (min) CPU time (min)

Data set Model NN RF NN RF

(i) E 92 5 2674 5
P 112 4 4339 4

AM 228 9 8904 9
F 40 2 1549 2

(ii) E 153 9 4401 9
P 187 8 7233 8

AM 399 22 15733 22
F 102 4 3965 4

(iii) E 247 16 7526 16
P 346 15 13833 15

AM 691 45 28627 45
F 211 8 8523 8

It is also worthy to note that 84%–91% of transitions
for Auger-Meitner or fluorescence decay are classified as
allowed or (quasi-)forbidden when also being allowed or
(quasi-)forbidden, respectively. The test accuracy is listed in
Table IV for both the neural network and the random forest re-
gressor. For the other transitions that are classified incorrectly,
the corresponding rates, i.e., those the transition actually has
or the one the actually (quasi-)forbidden transition receives,
are mostly also small (≈10−6 a.u.). Some of them are, how-
ever, comparably high with up to 10−3 a.u. (not shown for
brevity). Recall that these wrongly classified transitions are
not included in any other quantity to measure the test perfor-
mance, like the error distribution, to stress that this does not
cause alone the deviations from a perfect performance.

Next, we examine how the performance of the machine-
learning model depends on the training set size. Table IV
reports test loss and accuracy for all three dataset cases in
Table III and for both the neural network and the random
forest regressor. (For more details on these quantities see
Sec. II C.) More training data improve the energy model,
which is already quite good, whereas the cross section and rate
models only marginally profit for the random forest regressor
or do not profit at all for the neural networks. A possible
explanation for the lack of improvement, especially for the
neural networks, might be a too low model capacity that slows
down the gain of better generalization (see below in the con-
text of Table VI). In this context, it is important to emphasize
that using more data for training does not have an essential
impact on the machine-learning model’s performance, but
enhances training times more than linearly. Table V compares
training times for all three different dataset cases (Table III).
Calculations were performed on AMD EPYC 7302 16-Core
processors with a maximum number of 64 virtual cores
(threads).

We now contrast the neural network and the random forest
regressor. As expected, both behave generally fairly similarly
(compare Figs. 4 and 5). From the results in Table IV, we
conclude that neural networks are better suited for predicting
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TABLE VI. Training and validation performance of the neural
networks (NN): MSE loss (LMSE) [Eq. (5)] in eV2 for the energy
model (E) and MSLE loss (LMSLE) [Eq. (6)] for the photoionization
cross section (P), Auger-Meitner decay rate (AM), and fluorescence
rate (F) models, evaluated on the training (Tr) and validation (V)
datasets of all three cases (Table III). For the AM and F models,
additionally the accuracy (A) [Eq. (7)] is given in %.

Model L or A (i) NN (ii) NN (iii) NN

E LTr 8.2 8.0 5.9
LV 11.6 10.7 8.1

P LTr 0.22 0.29 0.36
LV 0.42 0.42 0.43

AM LTr 0.39 0.42 0.48
ATr 91.4 88.7 85.3
LV 0.44 0.46 0.50
AV 87.8 86.6 84.3

F LTr 0.09 0.11 0.13
ATr 96.5 95.2 91.9
LV 0.14 0.14 0.15
AV 90.9 90.6 89.6

energies. However, for cross sections and rates, the random
forest regressors outperform the neural networks. Random
forest regressors for cross section and rate predictions exhibit
an improvement with more data, while those for neural net-
works decline. As a consequence, this increases the difference
between neural networks and random forest regressors with
increasing training set sizes. Most importantly, neural net-
works have a critical disadvantage. Training is very expensive
(see Table V). It can cost several hours for a single neural
network, although multiple cores are utilized (real time �
CPU time). Unlike neural networks, random forest regressors
are trained in less than an hour even for the largest training
sets on a single core (real time = CPU time).

To complete our understanding of the neural networks’
performance, we finally briefly examine the training and val-
idation losses in Table VI. (For the random forest regressors,
those investigations are not possible since training data are
interpolated and, thus, always have near zero loss.) Note that
per default in TensorFlow some of the data are separated from
the training data and are used as validation data. Here, we use
10% of the training data for validation. The results in Table VI
demonstrate that the capacities of the cross section and rate
models are too low to nearly perfectly fit the training data.
The task of predicting cross sections and rates is too complex.
This can be seen by the large training losses, increasing with
more training data. As a consequence, validation and test data
cannot be predicted very accurately either. Whether a network
architecture with a higher model capacity can significantly
overcome this limitation remains an open question at the
moment (that might be answered in the future). However, it
is most likely that a higher model capacity will lead to a
substantial increase in training time. Therefore, the chosen
network architecture is a compromise between computational
effort and numerical accuracy. In contrast, for the energy
model, the capacity seems to be sufficient since predicting
transition energies is an easier task. In addition, Fig. 6 shows
the evolution of training and validation losses with the number

FIG. 6. Loss curves of the neural networks (NN): loss evaluated
on the training data (blue) and the validation data (orange) as a
function of the number of epochs trained for all four models. In panel
(a) the MSE loss [Eq. (5)] in Z-score scaling and in panels (b)–(d) the
unscaled MSLE loss [Eq. (6)] is shown. We consider the training
dataset of case (ii).

of epochs trained for the case (ii) only. We remark that using
dropout during training increases the training loss and, hence,
it is normal that validation losses can be smaller than train-
ing losses. For the final loss, dropout is not included. Thus,
the training losses in Table VI are smaller than in Fig. 6.
Moreover, we note that the losses for the Auger-Meitner decay
and fluorescence rate models are clearly larger in Fig. 6 than
in Table VI due to wrongly classified transitions. As can be
seen, loss curves are quite smooth and almost converged. Even
early stopping before the maximal number of 1200 epochs
due to increasing validation loss is possible [see Fig. 6(d)].
Especially for the cross section and rate models, the losses
decrease only by a few percent (<10%) during the last 600
epochs. As a consequence, training longer would not have a
notable effect on training, validation, and test performances.
Since training times are approximately linear in the number
of epochs trained, we may, on the contrary, save some training
time by using fewer epochs without a noticeable reduction in
performance.

C. Results for machine-learning-based state-resolved
Monte Carlo calculations

Having investigated the performance of different machine-
learning models in the previous section, we now study
the performance of x-ray multiphoton ionization-dynamics
calculations carried out with the machine-learning-based
state-resolved Monte Carlo implementation introduced in
Sec. II E. For simplicity, we only employ the neural networks
of Sec. III B as machine-learning models in the production
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FIG. 7. Comparison of machine-learning-based CSDs with the
fully calculated CSD. Results are obtained with the state-resolved
Monte Carlo implementation without machine learning [44] (fully
calculated) and with the machine-learning-based (ML-based) state-
resolved Monte Carlo implementation [Sec. II E] for different
numbers of training and test Monte Carlo trajectories NTT

traj (Table III).
The error bars indicate the statistical error of the Monte Carlo
calculation.

phase. Random forest regressors perform comparably to neu-
ral networks, as shown in Sec. III B. However, they are a bit
harder to embed in the state-resolved Monte Carlo implemen-
tation due to the large number of individual trees, which all
need to be redirected to the FIFO file and reconstructed in
Fortran (see Sec. II E). We compare machine-learning-based
state-resolved Monte Carlo calculations for argon with state-
resolved Monte Carlo calculations using the implementation
introduced in Ref. [44] (in which no machine learning is
employed).

Figure 7 compares argon CSDs for all three previously
considered dataset cases, which correspond to different num-
bers of training and test Monte Carlo trajectories (Table III).
All machine-learning-based CSDs match the overall behav-
ior of the fully calculated CSD (i.e., in which no machine
learning is employed). Especially for low charge states (i.e.,
q � 7), the agreement is good for all three machine-learning
cases. For larger charge states, however, deviations beyond
the Monte Carlo errors can be observed, which are enhanced
the smaller the number of training and test Monte Carlo
trajectories [cases (i) and (ii)]. This is because of the machine-
learning predictions of atomic transition parameters for the
transitions newly visited in the production phase. As seen in
Sec. III B, the predictions for cross sections and rates made by
the neural networks are not very accurate. Since the transitions
newly visited in the production phase are not directly sampled
from the same distribution as the training and test data used
in Sec. III B, they are generally expected to be predicted
even less accurately (not shown for brevity) [49,80]. The
fact that the machine-learning-based CSDs are, nonetheless,
quite good relies on the use of atomic transition parameters

FIG. 8. Similar to Fig. 7, but all atomic transition parameters are
predicted by the previously trained neural networks for the different
datasets (Table III).

already calculated. For ≈14% [case (i)], ≈24% [case (ii)],
or ≈40% [case (iii)] of individual initial states all possible
atomic transition parameters are calculated in the training and
test phase, and are used in the production phase (see Sec. II E).
It also explains the improvement with more training and test
Monte Carlo trajectories attributed to more calculated atomic
transition parameters.

To illustrate this point, in Fig. 8, we show compar-
isons of CSDs where the machine-learning-based CSDs are
obtained by using only machine-learning predictions for
atomic transition parameters. In particular, we do not use
the machine-learning-based implementation as described in
Sec. II E, combining both calculated and predicted atomic
transition parameters. Instead, for Fig. 8, only the produc-
tion phase is run with all atomic transition parameters being
predicted by the previously trained neural networks. As can
be seen, when only predicted atomic transition parameters
are used the overall behavior of the machine-learning-based
CSDs still roughly matches that of the fully calculated CSD.
But the agreement is no longer close to being quantitative.

In this context, let us briefly come back to the random
forest regressors (Sec. III B), which perfectly interpolate the
training data. Thus, employing random forest regressors, it
would barely make a difference whether atomic transition
parameters already calculated are used or whether all atomic
transition parameters are predicted by the random forest re-
gressors. In particular, Figs. 7 and 8 would look very similar
to each other and this would make the above investigation
impossible. Moreover, having at hand the atomic transition
parameters already calculated in the training and test phase
(see Sec. II E), we do not consider this as an advantage of the
random forest regressors.

Figures 9(a) and 9(b) show the photoelectron spectra,
Figs. 9(c) and 9(d) show the Auger-Meitner electron spectra,
and Figs. 9(e) and 9(f) show the fluorescence spectra with
an energy resolution of 1 eV. At this energy resolution, the
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FIG. 9. Comparison of machine-learning-based (ML-based) and fully calculated spectra for (a), (b) photoelectron (P); (c), (d) Auger-
Meitner electron (AM); and (e), (f) fluorescence (F). Calculations obtained with the state-resolved Monte Carlo implementation without
machine learning [44] (blue) are compared with those obtained with the machine-learning-based state-resolved Monte Carlo implementation
(Sec. II E) for case (i) in Table III (magenta). Additionally, results with all atomic transition parameters being predicted by the previously
trained neural networks (pink) are given. The peak labels are explained in Tables VII–IX.

Auger-Meitner electron and the x-ray fluorescence spectra
form a quasicontinuum over most parts of the energy ranges
shown. Like the CSD, fully calculated results obtained with
the implementation of Ref. [44] are compared with machine-
learning-based results obtained with the implementation of
Sec. II E, as well as those that are based only on machine-
learning predictions. [For brevity, only case (i) of Table III is
shown.] Some of the dominant peaks that can be assigned to
at most two dominant processes are labeled with roman num-
bers; the corresponding transitions are specified in Table VII

[for Figs. 9(a) and 9(b)], Table VIII [for Figs. 9(c) and 9(d)],
and Table IX [for Figs. 9(e) and 9(f)].

Most importantly, we observe in Fig. 9 that the machine-
learning-based spectra obtained with the implementation of
Sec. II E (magenta lines) are in overall very good agreement
with the fully calculated ones, apart from small details. This
is due to the fact that spectral features are dominated by
peaks belonging to very low charge states (see Tables VII–IX).
But for low charge states, the corresponding atomic transition
parameters are mostly all already calculated in the training and

TABLE VII. Peak assignment in the photoelectron spectra [Figs. 9(a) and 9(b)]. Calculated transition energies, E calc
Ii→I f , and transition

energies predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar, 1s22s22p63s23p6 (1S) → 1s12s22p63s23p6 (2S) 1792 1784
(ii) Ar1+, 1s22s22p53s23p6 (2P) → 1s12s22p53s23p6 (3P) 1737 1734

Ar3+, 1s22s22p63s13p4 (2D) → 1s12s22p63s13p4 (1D) 1731
(iii) Ar1+, 1s12s22p63s23p6 (2S) → 1s02s22p63s23p6 (1S) 1555 1593
(iv) Ar2+, 1s22s22p43s23p6 (1D) → 1s12s22p43s23p6 (2D) 1672 1671

Ar2+, 1s22s22p43s23p6 (1S) → 1s12s22p43s23p6 (2S) 1679
(v) Ar, 1s22s22p63s23p6 (1S) → 1s22s12p63s23p6 (2S) 4675 4666
(vi) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p53s23p6 (2P) 4751 4746
(vii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s13p6 (2S) 4968 4961
(viii) Ar, 1s22s22p63s23p6 (1S) → 1s22s22p63s23p5 (2P) 4987 4967
(ix) Ar1+, 1s12s22p63s23p6 (2S) → 1s12s12p63s23p6 (1S) 4629 4638
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TABLE VIII. Peak assignment in the Auger-Meitner electron spectra [Figs. 9(c) and 9(d)]. Calculated transition energies, E calc
Ii→I f , and

transition energies predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p43s23p6 (1D) 2647 2634
(ii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s12p53s23p6 (1P) 2561 2564
(iii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s02p63s23p6 (1S) 2498 2503
(iv) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p53s23p5 (1D) 2902 2903
(v) Ar2+, 1s02s22p63s23p6 (1S) → 1s12s22p43s23p6 (2D) 2765 2762
(vi) Ar1+, 1s22s12p63s23p6 (2S) → 1s22s22p53s13p6 (1P) 27 16
(vii) Ar2+, 1s22s12p53s23p6 (1P) → 1s22s22p43s23p5 (2P) 36 32
(viii) Ar2+, 1s22s22p43s23p6 (1D) → 1s22s22p53s23p4 (2D) 211 212
(ix) Ar7+, 1s22s22p53s23p0 (2P) → 1s22s22p63s03p0 (1S) 98 104
(x) Ar10+, 1s22s12p43s13p0 (3D) → 1s22s22p33s03p0 (2D) <0 47

test phase. Thus, they are unaltered by machine learning and
the good agreement mainly relies on atomic transition param-
eters already calculated. The small deviations in the spectra
are caused by the influence of the error between predictions
and calculations on the x-ray multiphoton ionization dynam-
ics; here mostly indirectly via the impact on the population
of the underlying initial states, so that there is no energy shift
[e.g., peak (ix) in Fig. 9(d) or peak (v) in Fig. 9(f)]. Shifts in
energy affect peaks that are too small to be visible.

Let us also examine the machine-learning-based spectra
obtained by using predicted atomic transition parameters only
(pink lines in Fig. 9). Interestingly, even in this situation the
spectra roughly capture the overall behavior of the fully cal-
culated spectra. Indeed, peak positions are shifted in energy,
however, mostly within less than 10 eV (see Tables VII–IX
and Sec. III B). Also the peak heights do not match very well.
Nonetheless, the neural networks are good enough to recog-
nize general tendencies in the x-ray multiphoton ionization
dynamics, e.g., more Auger-Meitner decay than fluorescence
decay [compare peak (i) in Fig. 9(c) to peak (i) in Fig. 9(e)].
Furthermore, it is worth mentioning that for high charge states
LLM Auger-Meitner decay [i.e., 2s–2p3l (l = s, p)] is often
actually forbidden due to calculated transition energies being
smaller than zero. However, the neural network is unable to
learn this. Consequently, actually forbidden transitions can
take place in the machine-learning-based calculations [see,
e.g., peak (x) in Fig. 9(d)]. In the present situation, this has
only a minor impact.

Next, we investigate the time effort of the produc-
tion phase in the machine-learning-based state-resolved
Monte Carlo implementation (Sec. II E). Table X lists
the computational times for a production phase con-

sisting of 5000 Monte Carlo trajectories based on the
three cases in Table III. For comparison, a fully calcu-
lated state-resolved Monte Carlo calculation (i.e., using the
implementation in Ref. [44]) is also included with the same
number of 5000 Monte Carlo trajectories. All calculations
are performed on Intel Xeon E5-2630L with a single core. A
significant reduction in the computational times can be found
for the production phases. Using atomic transition parameters
already calculated and machine-learning predictions for those
not already calculated is on average six to ten times faster
than the full calculation. The more atomic transition param-
eters are already calculated, the faster is the production phase
[compare cases (i)–(iii) in Table X] since fewer predictions
made by the machine-learning models are required. [But note
that this gain is at the expense of a more expensive train-
ing and test phase and machine-learning model training (see
Table V).] Although machine-learning models are employed
in the production phase, there is still a non-negligible time
effort of about 2 hours for just 5000 Monte Carlo trajectories.
Predicting a single transition via the reconstructed deep neural
networks is indeed fast (<5 ms). However, predicting a huge
number of transitions (order of 106) is notably expensive.

To evaluate the overall saving in computational times for
the machine-learning-based state-resolved Monte Carlo im-
plementation, timings for the training and test phase, for
the training of the machine-learning models, and for the
production phase must be compared with the full state-
resolved Monte Carlo calculation. However, such timings
mainly depend on the available computer architecture (i.e.,
parallelization of the calculations, cluster usage, number of
available cores). Therefore, we do not further discuss this
point here. Having at hand Tables V and X enables us to

TABLE IX. Peak assignment in the fluorescence spectra [Figs. 9(e) and 9(f)]. Calculated transition energies, E calc
Ii→I f , and transition energies

predicted by the neural network [case (i)], E pred
Ii→I f , are listed for the underlying process.

Label Process E calc
Ii→I f (eV) E pred

Ii→I f (eV)

(i) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p53s23p6 (2P) 2931 2935
(ii) Ar1+, 1s12s22p63s23p6 (2S) → 1s22s22p63s23p5 (2P) 3140 3153
(iii) Ar2+, 1s02s22p63s23p6 (1S) → 1s12s22p53s23p6 (1P) 3106 3111
(iv) Ar3+, 1s12s22p43s23p6 (2D) → 1s22s22p33s23p6 (2D) 2973 2973
(v) Ar9+, 1s22s12p53s03p1 (1D) → 1s22s22p53s03p0 (2P) 359 357
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TABLE X. Timings for the production phase of the machine-
learning-based state-resolved Monte Carlo implementation based on
the cases in Table III and for NProd

traj = 5000. Average real times
are compared with the full calculation with Ntraj = 5000 using the
implementation in Ref. [44] [no machine learning (ML)].

No ML ML (i) ML (ii) ML (iii)

Average 15 h 27 min 2 h 28 min 2 h 6 min 1 h 30 min
real time

estimate for a given computer architecture whether the em-
bedding of machine learning is more time efficient than the
full calculation.

Finally, another advantage of the machine-learning-
based state-resolved Monte Carlo implementation should be
stressed. In the production phase it is not necessary to perform
electronic-structure calculations [71], which are the funda-
mental basis for the calculation of individual state-to-state
cross sections and transition rates. To reduce the compu-
tational time, electronic-structure information is stored in
memory. However, storing electronic-structure information
for argon uses more than 100 times more memory than for
storing just atomic transition parameters. In particular, the
amount of memory used for storing the relevant information,
i.e., electronic-structure information and atomic transition
parameters, during 5000 Monte Carlo trajectories is on the
order of 104 megabytes. As a consequence, with the machine-
learning-based state-resolved Monte Carlo implementation
the memory usage can be dramatically reduced. In particular,
the amount of memory used for storing the relevant informa-
tion, i.e., only atomic transition parameters, in the production
phase is on the order of 102 megabytes.

IV. CONCLUSION

In this paper, we have presented a machine-learning-based
state-resolved Monte Carlo implementation for computing x-
ray multiphoton ionization dynamics using the XATOM toolkit.
The objective of machine learning is here to accelerate the ex-
tremely time-consuming state-resolved calculations of atomic
transition parameters. In particular, in an initial training
and test phase of the Monte Carlo calculation, quantum-
state-resolved first-principles calculations of atomic transition
parameters are carried out and these data serve for training
and testing of the machine-learning models. The trained and
tested machine-learning models are then employed in a final
production phase for predicting atomic transition parameters
for transitions newly visited in this phase.

We have compared the performance of neural networks
and random forest regressors as possible machine-learning
models. Both types of machine-learning models exhibit a
similar accuracy for the prediction of atomic transition param-
eters, although neural networks have the critical disadvantage
of very expensive training. Subsequently, we have discussed
state-resolved CSDs as well as electron and photon spectra
for argon, which have not been presented before. We compare
results obtained by the machine-learning-based state-resolved
Monte Carlo implementation embedding the neural networks
to fully calculated results obtained with the implementation in

Ref. [44]. Our work demonstrates that the proposed machine-
learning-based state-resolved Monte Carlo implementation
works in principle and that the performance, in terms of
CSDs and spectra, is good. The achieved level of accuracy
in CSDs and spectra is satisfactory in view of the fact that,
for instance, higher-order many-body processes are neglected
[44] and that calculated cross sections and rates are not perfect
either [71]. Once the machine-learning models are trained, the
final production phase can be performed faster than the full
calculation. However, two main shortcomings have become
evident: (i) the accuracy of the machine-learning predictions
is limited, especially for less likely transitions, and (ii) training
the neural networks is also quite time consuming.

In summary, let us briefly answer the question whether
state-resolved ionization dynamics calculations can be accel-
erated by the presented machine-learning-based state-resolved
Monte Carlo implementation. When a computer cluster
is available, running several fully calculated Monte Carlo
calculations—each with only a small number of trajectories—
in parallel on several cluster nodes is indeed the more
powerful method. This is attributed to large training times
of the machine-learning models, limited prediction accuracy,
and the need for fully calculated training and test Monte
Carlo trajectories anyhow in the machine-learning-based cal-
culations. But, if the computational resources are restricted,
i.e., only a single or few computers and/or rather limited
memory are available, then the machine-learning-based state-
resolved Monte Carlo implementation is a promising option.
After an expensive training and test phase, state-resolved ion-
ization dynamics calculations can be performed more easily
for a sufficiently large number of Monte Carlo trajectories.
Another optional application of the machine-learning-based
state-resolved Monte Carlo implementation would be its use
in an x-ray parameter scan, i.e., performing a lot of x-ray
multiphoton ionization dynamics calculations with different
fluence and/or pulse duration values. In this case, the advan-
tage is that machine-learning models need to be trained only
a single time and can then be reused in all other calculations.
Note that for a scan of the photon energy, this would not be
possible because cross sections are photon-energy specific.

There are several promising perspectives for future devel-
opments of the machine-learning-based state-resolved Monte
Carlo implementation. First, an important point is further fea-
ture engineering by adding more features and then sending the
resulting feature vectors through, for instance, autoencoders
[97] or using principal component analyses [80]. A better
suited feature representation might help the machine-learning
models to learn and, thus, can improve the performance. Other
interesting directions for improving the machine-learning
models would be ensemble methods, like gradient boosted
trees [98], batch normalization [80], advanced random for-
est methods [95], inclusion of feedback, like in recurrent
neural networks [80], or combining the power of neural net-
works and random forest regressors [94,99]. Training times
for neural networks are often reduced by using GPUs in-
stead of CPUs [80]. A further point is that for a new Monte
Carlo calculation using a different atomic species and/or
a different photon energy in principle the machine-learning
models have to be reoptimized on the newly collected atomic
transition parameters. A question here is whether information
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gained from previous Monte Carlo calculations can be trans-
ferred to a new Monte Carlo calculation and whether this
can accelerate training and/or improve the machine-learning
models’ performance. Lastly, another interesting aspect is that
the main computational effort of the state-resolved Monte
Carlo calculations is due to the extremely huge number of
atomic transition parameters that need to be calculated or
predicted. But are atomic transition parameters for all tran-
sitions really required? Or could a machine-learning model
maybe select the most dominant transitions for a visited initial
state, so that predictions (or calculations) could be restricted
to this subset of dominant transitions (in spirit of proposals
made in Refs. [69,70,100] for configuration-interaction calcu-
lations)? Such developments are crucial before many practical
applications can really profit from the presented machine-
learning-based state-resolved Monte Carlo implementation.

An attractive application of great scientific interest is the
extension of the machine-learning-based state-resolved Monte
Carlo implementation to atoms as heavy as xenon. Especially
for heavy atoms, relativistic, quantum-electrodynamic, and
finite-nuclear-size effects play an important role [34]. It is,

therefore, desirable to embed them into the quantum-state-
resolved electronic-structure calculations [44,71], although
this further expands substantially the number of atomic
transition parameters required and the computational effort.
Consequently, accelerating huge-sized ionization dynamics
calculations will be a promising perspective for the realiza-
tion of more accurate calculations. It is also an important
step toward the quantitative exploration of a wide variety
of different atomic systems and toward the optimization of
x-ray beam parameters for applications of x-ray free-electron
lasers.
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Chapter 3. Scientific Contributions

3.4 Electron-cloud alignment dynamics induced by

an intense X-ray free-electron laser pulse

The fourth publication presents an application of the state-resolved Monte Carlo
implementation (Sec. 3.2) for a complete description of X-ray multiphoton ionization
dynamics. This offers insight into the alignment of the electron cloud of atoms, being
initially perfectly spherically symmetric, through intense X-ray pulses generated by
X-ray free-electron lasers.

The underlying project was performed by myself under the supervision of Dr. S.-
K. Son and Professor Dr. R. Santra. In particular, I carried out the X-ray multipho-
ton ionization dynamics calculations with the state-resolved Monte Carlo implemen-
tation (Sec. 3.2). I also analyzed the results regarding orbital- and spin-angular mo-
mentum and, most importantly, electron-cloud alignment and wrote the manuscript
with inputs from all authors.
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Electron-cloud alignment dynamics
induced by an intense X-ray free-electron
laser pulse: a case study on atomic argon

Check for updates

Laura Budewig1,2, Sang-Kil Son1 & Robin Santra 1,2

In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray
photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic
ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during
sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored.
Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon
ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic
argon interactingwith an intense linearly polarised X-ray pulse,which generates ions in awide range of
charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment
parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses.
This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray
multi-photon ionisation can lead to noticeable reshaping of the electron cloud.

Sequential multi-photon processes have attracted attention with the recent
advent of X-ray free-electron lasers (XFELs)1–5. XFELs provide ultraintense
and ultrashort X-ray pulses6 with high degrees of typically linear
polarisation7,8. Exposed to such an intense X-ray pulse, an atom absorbs
more than one photon predominantly via sequences of one-photon ioni-
sation events9,10 accompanied by Auger-Meitner decay or X-ray
fluorescence11,12. As a consequence of these so-called X-ray multi-photon
ionisation dynamics9, high atomic charge states are formed within a single
X-ray pulse10–15. Because this unavoidably damages the electronic structure
of the irradiated sample16–20, applications of XFELs such as biomolecular
imaging21–29 are affected. Therefore, understanding X-ray multi-photon
ionisation dynamics is critical. For atoms, they have been widely explored
theoretically and/or experimentally based on ion10–15,30–36, electron12,35–37, and
photon12,14,33,36 spectra. Complementary information can be obtained by
studying the electron cloud alignment of atomic ions, but this requires
computationally expensive quantum state-resolved descriptions of atomic
ions and X-ray-induced transitions36,38,39.

An alignment of the electron cloud of atomic ions (hereinafter: ion
alignment) with nonzero orbital-angular momentum is induced by pho-
toionisation with different ionisation probabilities for different orbital-
angular-momentum projection states40–46. As a consequence of this ion
alignment, subsequently emitted Auger-Meitner electrons and fluorescence
photons are anisotropically distributed46–51 and fluorescence photons are
also polarised47,52,53. Angular distributions of photoelectrons emitted from

the aligned ions are likewise affected54 supplementary to their fundamental
anisotropy55–57. On the one hand, all these make ion alignment experi-
mentally accessible42–44,51,53. On the other hand, angle-resolved spectroscopy
experiments58–61 may profit from its theoretical study. However, how ion
alignment is affected by X-raymulti-photon ionisation dynamics driven by
an intense X-ray pulse is so far unknown.

Comparably strong alignments have been encountered in strong-field
ionised62,63 and resonantly-excited64 atoms. Further, sequential double and
triple ionisations driven by extreme ultraviolet (XUV) pulses have been
investigated via photoelectron angular distributions54,60,61,65,66. Recently,
alignment in XUV-ionised39 and X-ray-ionised38 atoms up to Kr3+39 and
Ar3+38, respectively, has been theoretically explored with a focus on a single
ionisation step. In all these studies, multiple competing sequences of pho-
toionisation and accompanying decay processes were not systematically
involved, either because they are absent or to simplify computations. But,
they matter for the interaction with intense X-ray pulses.

Extending a former study38, we here investigate the time evolution of
ion alignment during an intense linearly polarised X-ray pulse. To this end,
we performed state-resolved X-ray multi-photon ionisation dynamics
calculations36,38 for atomic argon (Ar), which simulate the time evolution of
individual quantum-state populations. An individual quantum state is
defined by an electronic configuration together with quantum numbers
(L, S,ML, κ). Here, L is the total orbital-angularmomentumwith projection
ML, S is the total spin-angular momentum (whose projection is irrelevant),

1Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany. 2Department of Physics,
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and κ guarantees uniqueness. Individual quantum states differing only in
ML form an energy level, defined by an electronic configuration together
with a term 2S+1L(κ). Enabled by these calculations, not only time-resolved
charge-state distributions and electron and photon spectra but also ion
orbital- and spin-angular momentum and alignment are explored. We
demonstrate that ion alignment (averaged over all individual quantum
states populated at a given time) shows a highly non-linear behaviour and is
suppressed by X-ray multi-photon ionisation dynamics. However, we find
that the degree of alignment reached is not negligible for the individual
atomic charge states populated.

Results
State-resolved X-ray multi-photon ionisation dynamics for Ar are calcu-
lated for an X-ray pulse having a temporal Gaussian pulse envelope of 10 fs
FWHM(fullwidthathalfmaximum)andafluence (not volume-integrated)
of 1012 photons per μm2 (unless noted otherwise). These are typical XFEL
pulse parameters1,2,4, in particular for atomic,molecular, and optical physics
instrumentations67–70. Such a high fluence has been realised not only in a
series of gas-phase XFEL experiments on atoms, molecules, and
clusters10,13,31,37,71,72, but also in many serial crystallography experiments27–29.
Even higher fluences are required for single-particle imaging at
XFELs16,19,20,29. We consider X-rays being linearly polarised along the z axis

(quantisation axis) and intentionally choseAr at a photon energy of 1.5 keV
to increase the possibility of ion alignment induced by non-trivial ionisation
dynamics. At this photon energy, there is no K-shell (1s) ionisation, which
cannot create ion alignment without electron correlation effects39. Instead,
L-shell (2s and 2p) photoionisation in Ar initiates non-trivial X-ray multi-
photon multiple ionisation, including M-shell (3s and 3p) electrons. The
target system can be any atomic species, including open-shell systems,when
the above conditions are fulfilled. We chose neutral Ar atoms because
corresponding gas-phase samples are straightforward to produce for
experiments, and it is beneficial to have zero alignment at the beginning.

Ion, electron, and photon spectra
In order to examine the X-ray multi-photon ionisation dynamics of Ar
driven by an intense linearly polarised X-ray pulse, we present in Fig. 1
calculated electron and photon spectra and charge-state distribution.

During the intense X-ray pulse, several photons per atom are absorbed
sequentially. Consequently, a wealth of spectral lines characterises the time-
resolved photoelectron spectrum inFig. 1a.Here, the vertical andhorizontal
axes are the time and energy, using 0.4-fs and 1-eV bins, respectively. The
photoelectron spectrum is grouped into large L-shell and minor M-shell
spectra. Each subspectrum is dominatedby lines for the ionisationofneutral
Ar, occurring early in time. These lines are followed in time by a flat quasi-
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Fig. 1 | Overview of X-ray multi-photon ionisation dynamics of Ar at a photon
energy of 1.5 keV, a fixed fluence of 1012 photons per μm2, and a pulse duration of
10 fs FWHM. a Time-resolved photoelectron spectrum. The temporal shape of the
X-ray pulse is depicted with a grey-shaded area. b Time-resolved Auger-Meitner
electron spectrum. c Time evolution of the charge-state distribution. d Time-
integrated fluorescence spectrum. In panels a, b, and d, double arrows indicate the

subspectra, defined by the involved subshells, i.e., L1 (2s), L2,3 (2p),M1 (3s), and/or
M2,3 (3p). In b and d, the first subshell index refers to the initial vacancy, whereas the
latter refer to the subshells from which the electrons are removed. Single arrows
indicate ions involved in the transition via initial charge state, involved electronic
configuration(s) (holes indicated), and/or terms (2S+1L). For all panels, the statistical
errors obtained via bootstrap estimate are too small to be shown.
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continuum, moving toward lower energy and weaker lines with time. The
quasi-continua are generated by photoionisation of ions produced by pre-
ceding ionisation and/or decay processes. These intermediate ions, gen-
erally, exhibit amanifoldof relativelyweak state-to-state transitionsbetween
different energy levels.

L-shell ionisation is mostly immediately accompanied by Auger-
Meitner decay as demonstrated by the time-resolved Auger-Meitner elec-
tron spectrum in Fig. 1b. Similar to the photoelectron spectrum, the Auger-
Meitner electron spectrum exhibits two energetically-separated quasi-con-
tinua, the L–LM and L–MM spectra. Here, an Auger-Meitner channel
L–MMmeans that an initial L-shell vacancy is filled by an electron from the
M-shell, accompanied by the ejection of another electron from theM-shell.
In the L–LM channel the initial L-shell vacancy decays such that in the final
state, one electron has been removed from a higher-lying L-shell orbital and
the other electron has been removed from the M-shell. The L–LM and
L–MM spectra are generated by a plethora of energy levels involved in the
given channels. The L–LM spectrum dominates at early times up to around
5 fs, but is energetically forbidden later. In contrast to the L–LM spectrum,
theL–MM spectrumextends to timesbeyond theX-raypulsedue to the long
lifetimes of some intermediate ion states. Nonetheless, most Auger-Meitner
decays ( ≈ 95%) take place within 40 fs after the peak of the X-ray pulse.

As a result of sequences of one-photon ionisation accompanied by
Auger-Meitner decay, charged ions are formed as shown by the time-
resolved charge-state distribution inFig. 1c.Here, the sumofprobabilitiesPq
of all charge statesq (q=0,+1,⋯ ,+16) is unity at each time.As canbe seen,
charged ions are formed sequentially as time goes by, with most changes
before and around the peak of theX-raypulse.When theX-ray pulse is over,
most ions ( ≈ 78% at 40 fs) have reached a charge of +8 to +12.

The highly-charged ions relax via fluorescence into stable states when
the X-ray pulse is over and Auger-Meitner decay is suppressed by a lack of
M-shell electrons. This is depicted in Fig. 1d by the time-integrated fluor-
escence spectrum, generated by Ar7+ to Ar13+. Fluorescence is a very weak
process, especially without K-shell holes. The associated lifetimes range
from 674 fs (Ar15+ 1s22s02p03s03p1) to 8 × 105 fs (Ar15+1s22s02p13s03p0) (state-
resolved fluorescence rate calculations38). Therefore, fluorescence pre-
dominantly occurs for highly-charged ions after the end of the X-raymulti-
photon ionisation dynamics. Only about 1% of fluorescence decays take
place within 40 fs after the peak of the X-ray pulse.

Orbital- and spin-angular-momentum distributions
The time-resolved orbital-angular-momentum distribution is of interest
because alignment parameters consider ions with definite orbital-angular

momentum L. In Fig. 2a, we plot the time-resolved probability PL of ions
with definite L (L= 0,…, 4), which is given by all individual quantum states
with quantumnumber L populated at a given time. Initially, neutral Ar is in
an S-state (L=0) and is included inPL=0. Inducedby theX-ray pulse, neutral
Ar turns into ions in P-states (L= 1; up to ≈ 43%). In subsequent sequences
of one-photon ionisation accompanied by Auger-Meitner decay, also D-
states (L = 2; up to 38%), a few F-states (L = 3; < 16%), and little G-states
(L=4; <3%) are formedat the expense ofS- andP-states.F- andG-states are
rare because unstable electronic configurations with several holes simulta-
neously in the 2p- and 3p-shells are required. As a consequence of their
instability, they (stepwise) decay into stable S- and P-states. Note that these
decays occur on time scalesmuch longer than the timewindow in Fig. 2a. In
the end (when all decay processes are completed) many P-states, some S-
andD-states, but neitherF- norG-states are left over (Table 1). InFig. 2b, the
mean of the orbital-angular-momentum distribution �L ¼ P

LLPL and its
width ΔL¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
L
L2PL��L2

p
are shown. The maximum mean and width are

reached shortly after the peak of the X-ray pulse (at about 4 fs), which
stresses that at this time themaximumnumber of ionswithL>1 is achieved.

The time-resolved spin-angular-momentum distribution, shown in
Fig. 2c, d, scrutinises the spin S (S = 0, 1/2,…, 4) instead of L. Similar to the
orbital-angular-momentumdistribution, themajority of ions is found in low
non-zero spin states (S = 1/2, 1, 3/2) during and after the X-ray pulse. The
maximummean spin is also reached shortly after thepeakof theX-raypulse.
The difference is that the spin-angular-momentum distribution barely
evolves after the X-ray pulse is over (compare Fig. 2c and Table 1). This is
because Auger-Meitner and fluorescence decays change S only by 1/2 or not
at all, respectively (non-relativistic selection rules). Consequently, decays
from some very high spin states, generally having low L, are spin-forbidden.

Ion alignment dynamics
Before defining the time-dependent alignment parameter, let us explore in
Fig. 3a–d the time-resolved distribution of orbital-angular-momentum
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Fig. 2 | Time evolution of ion orbital-angular momentum L and spin-angular
momentum S of Ar induced by an intense XFEL pulse with a fixed fluence of 1012

photons per μm2. a Probability PL of individual L. bMean of the orbital-angular-
momentum distribution together with its width (area around mean). c, d The spin-

angular-momentum distribution is presented likewise (with S = 5/2,… ,4 collected
in one line). The temporal pulse shape is depicted by the grey-shaded areas in a and c.
For all panels, the statistical errors obtained via bootstrap estimate are too small to
be shown.

Table 1 | Orbital- and spin-angular-momentum distributions
when the pulse is over and all decay processes are completed

L 0 1 2 3 4

PL(t→ ∞) 0.23 0.60 0.17 0.00 0.00

S 0 1/2 1 3/2 2 ≥5/2

PS(t→ ∞) 0.12 0.30 0.30 0.17 0.07 0.04

The corresponding time evolution is shown in Fig. 2.
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projectionsML for the givenL. For ionswith definiteL, the probabilitiesPML

ofML = −L,…, +L are obtained by summing up probabilities of all indi-
vidual quantum states withML for the given L and at a given time. Note that
PML

¼ P�ML
because no orientation38,45 is created by linearly polarised

X-rays. For the dominating P-state (L = 1), we observe in Fig. 3a that at the
beginning of the X-ray pulse and the X-ray multi-photon ionisation
dynamics, P-states are aligned along the X-ray polarisation direction
(PML¼0>PML¼± 1). In the course of X-ray multi-photon ionisation dynam-
ics, their alignment is reduced (PML¼0 decreases, whereas PML¼± 1 increa-
ses), until an almost uniform distribution (PML¼0 ¼ PML¼± 1 ¼ 1=3) is
reached shortly after the peak of the X-ray pulse (at about 3 fs). For higher L
(Fig. 3b–d), no uniform distribution (the dashed line) is reached after the
X-ray pulse and, consequently, their alignment is less reduced (which is
further discussed later). The statistical errors are larger than those for L = 1
due to smaller numbers of realisations.

The degree and direction of alignment is described by the alignment
parameter A20, which is also applicable to ion ensembles. Based on the

probabilities PML
;A20 for ions with definite L is defined as38,45,73,74

A20ðLÞ ¼
ffiffiffiffiffi
5
f L

s
×
X
ML

3M2
L � LðLþ 1Þ� �

PML
; ð1Þ

where fL = (2L+ 3)(L+ 1)L(2L− 1). The alignment parameter is negative
(A20 < 0), when ions with smaller ∣ML∣ are more populated than others, and
positive (A20 > 0), when ions with larger ∣ML∣ are more populated. A20 = 0
indicates a uniform distribution. The meaning of A20 is further elaborated
on in the next section, and extreme values of A20 are listed in Table 2. The
A20 calculatedwith the time-resolvedprobabilitiesPML

in Fig. 3a–d is shown
for the given L in Fig. 3e–h (blue line for a fixed fluence of 1012 photons per
μm2). For P-states, A20 is initially about − 0.16, which is already not an
extremely strong alignment compared to the perfect alignment of A20 ¼
� ffiffiffi

2
p

(Table 2).With time ∣A20∣decreases almost to zero. ForhigherL,A20 is
also negative, but with only a weakly declining trend in time.
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Fig. 3 | Alignment dynamics of Ar ions induced by an intense XFEL pulse.
a–d The distribution of orbital-angular-momentum projections ML of ions with
definite orbital-angular momentum L is shown by their probabilities PML

as a
function of time at a fixed fluence of 1012 photons per μm2. The dotted grey lines at 1/
(2L + 1) indicate a uniform distribution. e–h From the probabilities PML

the
alignment parameter A20 for a definite L is calculated and compared for three

different fluences. iThemean alignment parameter �A20, averaged over allL, is shown
for the same fluences. In all panels, the error bars every 2 fs indicate the statistical
error obtained via bootstrap estimate. Insufficient statistics are avoided by the
restrictionPL≥0.005 at each time step (a–h). The temporal pulse shape is sketched by
grey shading in d and i.
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Figures 3 e–h also show how the alignment of each L depends on the
X-ray fluence applied (number of incoming X-rays per unit area9). Fluence-
dependencies are important in volume integration75, necessary for quanti-
tative comparisons with experiments. The fluence of 1012 photons per μm2,
considered so far, is comparedwith two lower fluences: 5 × 1011 photons per
μm2 and 1011 photons per μm2. No strong fluence-dependence of A20 is
observed because ionisation dynamics aremainly only reduced and delayed
with lower fluence. For lower fluences, therefore, the evolution of A20 is
delayed, so that the alignment is less reducedwith time.Thus, the saturation
value reached after the X-ray pulse is sensitive to the X-ray fluence applied,
and its absolute magnitude decreases as the fluence increases. We observe
that the absolute magnitude of this saturation value is enhanced with
increasing L, which is to be further analysed later. As a result, for L > 1,
alignment is not negligible for all fluences, in contrast to P-states.

Figure 3i demonstrates what happens to the ion alignment when
averaging over L. It shows the mean alignment parameter �A20 ¼P

LPL ×A20ðLÞ (unaligned neutral Ar included). As can be seen, �A20
exhibits a highly non-linear behaviour. Before the X-ray pulse, neutral Ar is
unaligned (�A20=0). At the beginning of the X-ray pulse, p-shell ionisation of
neutral Ar creates a negative ion alignment (�A20<0) and j�A20j increases as
more ions are produced. Around the peak of the X-ray pulse, j�A20j is
maximised (�A20 � �0:047 for 1012 photons per μm2). At this time, most
neutral Ar is already ionised (see Pq=1 in Fig. 1c). If there were only single
photoionisation, j�A20j would continue increasing up to �A20 � �0:12
(ensemble of Ar1+ produced in 59% by p-shell ionisation). However, due to
progressing photoionisation accompanied by Auger-Meitner decay invol-
vingmainlyP- andD-states, j�A20jnoticeably decreases. A saturation value is
reached at the end of the X-ray pulse, which is clearly sensitive to the X-ray
fluence applied. On the one hand, the higher the fluence, the more j�A20j is
reduced compared to its maximum because of enhanced X-ray multi-
photon ionisation dynamics. On the other hand, for low fluence (1011

photons per μm2), only around 50%of the atoms are ionised at all and, thus,
the maximum of j�A20j is very small. As a consequence, to see a maximum
alignment, the fluence should be large enough to ionise most atoms ( > 1011

photons per μm2), but should not induce too much X-ray multi-photon
ionisation dynamics ( < 1012 photons per μm2).

To analyse the ion alignment further, we present in Fig. 4a–d charge-
resolved alignment parameters Aq

20 for different L. Note that A20ðLÞ ¼P16
q¼1 P

L
qA

q
20ðLÞ with the charge-state probabilities PL

q for definite L

(
P16

q¼1 P
L
q ¼ 1). PL

q evolves sequentially in time and charge similar to Pq
(Fig. 1c) though lackof initially neutralAr causesmuch largerPL

q for low q at

early times. Aq
20 is clearly non-zero and exhibits very different values and

signs for different q and L. For P-states, intermediately-charged ions are
weakly aligned (Aq

20 < 0) or weakly anti-aligned (Aq
20 > 0) along the X-ray

polarisation (Fig. 4a). ButAr1+ produced early by single 2p or 3p ionisation38

is clearly aligned along the X-ray polarisation (Aq¼1
20 � �0:21) and Ar14+

and Ar15+ produced less and later are clearly anti-aligned (Aq¼14
20 � þ0:05).

For P-states, only PML¼0 and PML¼± 1 determined the A20 value.
PML¼0 > PML¼± 1 results in a negative A20, while PML¼0 < PML¼± 1 gives a
positive A20. Typically, p-shell ionisation preferentially increases PML¼0

38.

On the other hand, theML = 0→ML = 0 transition is prohibited when the
sum of ion and involved bound electron angular momenta is odd, which
effectively increases PML¼± 1. The interplay of these two tendencies com-
bined with the manifold of parallel and competing state-to-state transitions
reduces the degree of alignment and changes its direction, already for Ar2+.
For comparison, a single (unaveraged) sequence of 2p ionisation andAuger-

Meitner decay leads toAq¼2
20 � 0:138. In contrast toP-states, jAq

20j forL>1 is
larger and becomes clearly positive only for very highly charged ions
(q≥12). This is attributed to a reduced effect of prohibited transitions on the
alignment when the ions involved in a transition have higher L. It also
explains why in Fig. 3 a non-vanishing alignment is observed for L > 1 at
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Table 2 | Perfect alignment (A20 < 0) andanti-alignment (A20 > 0)
where all ions have either ML = 0 or ML = ∣L∣, respectively

Alignment parameter A20

L ML = 0 ML = ∣L∣

1 �
ffiffiffi
2

p ffiffiffiffiffiffiffiffi
1=2

p
2 �

ffiffiffiffiffiffiffiffiffiffiffi
10=7

p ffiffiffiffiffiffiffiffiffiffiffi
10=7

p
3 �

ffiffiffiffiffiffiffiffi
4=3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25=12

p
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=77

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28=11

p
This gives the minimum or the maximum alignment parameter A20.
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long times in contrast to L = 1. In Fig. 4e, the charge-resolved alignment
parameter �Aq

20 averaged over all L is presented for selected q. From Figs. 3i
and 4e, we conclude that the reduction of ion alignment is mostly the result
of averaging over all L and q. Our results suggest that L-resolved or q-
resolved quantities are beneficial for detecting ion alignment dynamics.

Spatial shapes of aligned electron clouds
To develop some intuition about ion alignment, we show in Fig. 5 spatial
shapes of electron clouds for selected ions produced at some exemplary
times t. At the times selected, the corresponding ion yield becomes the
largest during the time evolution; the corresponding alignment parameters
as a function of time are given in Figs. 3 and 4. In Fig. 5a, we consider ions
with different L, but average over all q. The spatial shape of the electron
cloud, averaged over all projectionsML, is determined by using the quantity

j�YLðθÞj2 ¼
XL

ML¼�L

PML
∣YML

L ðθ; ϕÞ∣2: ð2Þ

Here, YML
L is a spherical harmonic (squaring eliminates the ϕ-dependence)

and PML
is the time-resolved probability for definite L at time t (Fig. 3a–d).

In Fig. 5b, we consider ions in a few selected charge states q, but average over
all L. In this case, the spatial shape of the electron cloud, j�YqðθÞj2, is the L-
average over all j�YLðθÞj2 [Eq. (2)] after replacing the PML

with the Pq
ML

underlyingAq
20 (Fig. 4). Taking the vertical axis as the X-ray polarisation (z)

axis, we observe for most selected electron clouds an oval, prolate shape
(corresponding to A20 < 0). Only highly-charged ions (q ≥ 12) exhibit an
oblate shape (A20 > 0). For a few selected electron clouds (L=4 in Fig. 5a and
q=1, 15 in Fig. 5b) the deviations fromauniformdistribution (circle; dotted
grey lines in Fig. 5) are quite pronounced and clearly visible in the
polar plots.

Discussion
The present paper presents a complete state-resolved description of X-ray
multi-photon ionisation dynamics, including electron-cloud alignment in
an XFEL pulse. The calculated alignment parameter for Ar1+

(Aq¼1
20 � �0:21) acceptably agrees with previous works38,44,54, taking into

account the photon-energy dependence. Due to X-ray multi-photon ioni-
sation, themagnitude of the alignment parameter after averaging overL and
q becomes relatively small ( < 0.05) as depicted in Fig. 3i. However, whenwe
analyse the alignment parameter for individual L and q (Fig. 4a–d),

individual L (Fig. 3e–h), and individual q (Fig. 4e), its magnitude is larger
than the averaged value. Non-trivial ion alignment dynamics for individual
quantumstates arepredicted.Weexpect that this result canbegeneralised to
other atomic species (ionised under suitable conditions), photon energies
(below the respective K-shell threshold), and (femtosecond) pulse dura-
tions. Observing electron-cloud alignment dynamics induced by XFEL
pulses requires few-femtosecond- or even attosecond-resolved measure-
ments sensitive toML quantum-state distributions.

Desirable are time-resolved measurements of Auger-Meitner electron
angular distributions42,44,48,49,76 generated in XFEL experiments. Best suited
for this propose are transitions involving only a single continuum wave for
the Auger-Meitner electron48,49, e.g., final ions with zero L. Then, the ani-
sotropy parameter47,50,77–80 is directly proportional to the alignment para-
meter for the initial ion. Future developments in this direction will enable
deeper insights into electron-cloud alignment in an XFEL pulse, including
the impact of effects so far neglected, such asnon-dipole effects54,66,81 or spin-
orbit coupling62–64,82. A further possibility is to apply circularly polarised
X-ray pulses8,83–86. Even though the direction of alignment changes40,
based on the present results, we expect similar electron-cloud alignment
dynamics during a circularly polarised X-ray pulse. However, how the
orientation induced by the circularly polarised X-ray pulse behaves is an
open question.

Lastly, wewould like to comment on electric alignment (orientation) in
molecular targets induced by XFEL pulses. Here, we demonstrate that the
polarisation of the X-ray beam is imprinted on the atomic electron-cloud
dynamics on ultrafast time scales. We anticipate a similar impact on the
electron-cloud dynamics in molecules. However, this depends in detail on
the strength of interatomic interactions and remains to be investigated in a
future study.

Methods
For X-ray multi-photon ionisation dynamics calculations, we employ
XATOM20,87,88, which has been successfully applied for interpreting XFEL
experiments11–15,31,32,34,35,89. XATOM has recently been extended to state-
resolved ionisation dynamics with a Monte Carlo implementation36, based
on a non-relativistic quantum-state-resolved electronic-structure
framework38 for isolated atoms. For any given electronic configuration, it
provides zeroth-order states with quantumnumbers (L, S,ML, κ) and term-
specific first-order-corrected energies ELSκ. On this basis, state-to-state
transition parameters for photoionisation, Auger-Meitner decay, and
fluorescence are calculated from first principles. Since they are independent
of the spin projectionMS,MS is neglected in this work.
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A Monte Carlo on-the-fly rate-equation method11,12 is employed for
describing the time evolution of individual quantum-state populations. The
number of individual quantum states involved is already very large for
argon36, i.e., 216, whichwould be challengingwithout aMonte Carlo on-the-
fly approach. Next to the Monte Carlo method a couple of simplifications
are critical to efficiently perform calculations. We made several approx-
imations: non-sequential two-photon absorption34,90, higher-order many-
body processes such as double photoionisation91 and doubleAuger-Meitner
decay92, coherent effects93–96, inter-channel coupling97,98, relativistic
effects32,99, finite-nuclear-size effects99, and non-dipole effects100,101 are not
included in this work.

Due to theMonteCarlomethod all presented results contain statistical
errors. Statistical errors are obtained via bootstrap estimate102 using 50
bootstrap samples of 200,000 Monte Carlo trajectories. For the results in
Figs. 1 and 2, errors are two orders ofmagnitude smaller than the dominant
quantities themselves and are, consequently, omitted. The calculated errors
becomequite large, particularly forpropagationat early times and for largeL
in Fig. 3, because the number of ions of interest is too small. To avoid such
insufficient statistics, results in Figs. 3 and 4 are only plotted when the
underlying ionprobability is≥0.005.We expect that the overall trend shown
in Figs. 3 and 4will remain unchangedwhenmoreMonte Carlo trajectories
are used.

Data availability
The raw data and the underlying data for the figures can be obtained from
the authors upon request.

Code availability
The state-resolved Monte Carlo implementation in the XATOM toolkit is
available from the authors upon request.
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Chapter 4

Conclusion and Outlook

In this cumulative dissertation, I have presented a state-resolved Monte Carlo rate-
equation implementation for simulating state-resolved X-ray multiphoton ionization
dynamics of atoms and have discussed a machine-learning strategy to reduce its
computational cost. The state-resolved Monte Carlo rate-equation implementation
is capable of describing electron-cloud alignment dynamics of ions produced by in-
teraction of atoms with an intense X-ray free-electron laser (XFEL) pulse. The main
conclusions of this dissertation are:

• For charge-state distributions, the common configuration-based rate-equation
calculations are sufficient. But the state-resolved rate-equation calculations
provide more precise information about resonant excitations as well as elec-
tron and photon spectra than the common configuration-based rate-equation
calculations.

• A machine-learning strategy to reduce the computational cost of the state-
resolved rate-equation calculations works in principle. Its performance, in
terms of charge-state distributions and electron and photon spectra, is good
when combining calculated atomic transition parameters with atomic transi-
tion parameters being predicted by machine-learning models.

• Even if initially the atomic electron cloud is perfectly spherically symmetric, it
is notably reshaped by an intense linearly polarized XFEL pulse for individual
atomic charge and/or orbital-angular-momentum states.

In the following, more detailed outlines of the key findings for all different scientific
contributions are individually provided along with an outlook. Because the first
scientific contribution (Sec. 3.1) has already been part of my master thesis [136], it
is discussed together with the second scientific contribution (Sec. 3.2), for which it
delivers the fundamental basis.
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Quantum-state-resolved electronic-structure and X-ray multiphoton ion-
ization dynamics calculations
As a first critical step regarding state-resolved X-ray multiphoton ionization dynam-
ics calculations, I have developed a nonrelativistic quantum-state-resolved electronic-
structure framework for isolated atoms and atomic ions (Sec. 3.1). This framework
employs first-order many-body perturbation theory to improve the Hartree-Fock-
Slater calculations in the xatom toolkit. A comparison of transition energies of
neon has demonstrated that the use of first-order-corrected energies provides more
accurate transition energies than the original Hartree-Fock-Slater calculations. Fo-
cusing on a single X-ray-induced atomic transition, I have also studied the electron-
cloud alignment of argon ions up to Ar3+ and have found a nonneglegible degree of
alignment.

As a follow-up study (Sec. 3.2), the quantum-state-resolved electronic-structure
framework has been combined with the Monte Carlo on-the-fly rate-equation method
to describe state-resolved X-ray multiphoton ionization dynamics. The resulting
state-resolved Monte Carlo rate-equation implementation has been applied to per-
form state-resolved calculations for neon, which have been compared to configuration-
based calculations. This comparison has shown that charge-state distributions only
differ little for X-ray photon energies that do not induce resonant photoabsorp-
tion transitions. In these cases, the configuration-based calculations produce al-
ready quite good charge-state distributions [27–30, 33, 34]. However, resonant pho-
toabsorption transitions and electron and photon spectra clearly profit from the
improved first-order-corrected transition energies used in the state-resolved calcu-
lations. Moreover, I have analyzed time-resolved spectra of ions, electrons, and
photons at different pulse durations. This enables detailed insight into ultrafast dy-
namics of state-resolved X-ray multiphoton ionization, including the phenomenon
of frustrated absorption.

As motivated in the introduction, the most attractive application of the state-
resolved Monte Carlo rate-equation implementation is the study of electron-cloud
alignment dynamics in an intense XFEL pulse. This application has been performed
in Sec. 3.4. Apart from that, a very promising perspective is to use the state-
resolved Monte Carlo rate-equation implementation to support the interpretation
of XFEL experiments by providing detailed state-resolved information. Recently,
high-resolution fluorescence spectra of neon have been measured in experiments at
the European XFEL1. The state-resolved Monte Carlo rate-equation implementa-
tion has not only been employed to help assign individual term-resolved fluores-

1Two corresponding manuscripts are in preparation.
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cence peaks, but also to elucidate multi-resonant mechanisms of transient ionization
and excitation dynamics. Additionally, it may be interesting to compare not only
temporally asymptotic but also time-resolved spectra with experiments. Potential
experimental methods that may allow a comparison of time-resolved quantities are
attosecond transient absorption spectroscopy [216, 217] and attosecond streaking
measurements [218–220].

Also of great scientific interest is to perform state-resolved X-ray multiphoton
ionization dynamics calculations for atoms as heavy as xenon. For xenon, reso-
nant excitations have recently been studied at the European XFEL in combination
with configuration-based calculations [42]. But especially for heavy atoms, rela-
tivistic, quantum-electrodynamic, and finite-nuclear-size effects play an important
role [40, 135]. Therefore, improving the accuracy of the underlying quantum-state-
resolved electronic-structure framework is desirable. It can not only be improved
by including the above mentioned crucial effects but also by utilizing advanced
first-order states, by including interchannel coupling [221, 222], or by an individ-
ual optimization of orbitals and orbital energies when calculating cross sections and
transition rates. Next to this, the accuracy of X-ray multiphoton ionization dy-
namics calculations can clearly be improved by including higher-order many-body
processes via shake-off and knockout mechanisms [34, 49]. However, all these po-
tential improvements will substantially expand the number of individual quantum
states and/or X-ray-induced atomic transitions involved in the state-resolved Monte
Carlo rate-equation calculation. Thus, the computational effort, being already ex-
tremely large for heavy atoms, will further increase dramatically. As a consequence,
accelerating state-resolved Monte Carlo rate-equation calculations is a first crucial
step for the realization of more accurate state-resolved calculations. Accelerating
them via machine learning has been the topic of the next scientific contribution.

X-ray-induced atomic transitions via machine learning
In Sec. 3.3, I have discussed whether the high computational cost of huge-sized
state-resolved X-ray multiphoton ionization dynamics calculations can be reduced
via a machine-learning strategy. This strategy combines the state-resolved Monte
Carlo rate-equation implementation with machine-learning models for predicting
atomic transition parameters. Their state-resolved calculation, performed on the
fly, is the main bottleneck in the Monte Carlo calculation. As potential machine-
learning models, neural networks and random forest regressors have been employed
and their performances have been compared for argon. This comparison has shown
that both types of machine-learning models predict atomic transition parameters
with similarly acceptable accuracy, although neural networks exhibit much longer
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training times. Moreover, I have employed the resulting machine-learning-based
state-resolved Monte Carlo implementation for calculating charge-state distributions
and electron and photon spectra for argon. Comparing the machine-learning-based
calculations with full calculations, I have demonstrated that the achieved level of
accuracy in charge-state distributions and spectra is satisfactory, especially also in
view of a couple of simplifications made in the calculations (see Secs. 3.1 and 3.2).
The reason for this good performance, in terms of charge-state distributions and
spectra, relies on the combination of calculated atomic transition parameters for the
most important X-ray-induced atomic transitions with predicted atomic transition
parameters for the remaining less likely ones. Atomic transition parameters are
calculated and collected in an initial state-resolved Monte Carlo rate-equation cal-
culation. Once the machine-learning models are trained on them, the final machine-
learning-based state-resolved Monte Carlo rate-equation calculation is performed
much faster than a full calculation. However, two main shortcomings have become
evident: (i) the accuracy of the machine-learning predictions is limited, especially
for less likely X-ray-induced atomic transitions, and (ii) training the neural net-
works is also quite time consuming. Therefore, whether we profit from the present
machine-learning-based state-resolved Monte Carlo implementation depends on the
available computer architecture.

As a consequence of these limitations, further developments of the machine-
learning-based state-resolved Monte Carlo implementation are crucial before we can
really profit from it. Promising perspectives are extended feature engineering to
support the learning process [83, 177] and improving the machine-learning models
by using gradient boosted trees [223], batch normalization [83], advanced random
forest methods [224], recurrent neural networks [83], or neural networks combined
with random forest regressors [180, 225]. Training times may be reduced by using
GPUs instead of CPUs [83] or by transferring knowledge between different machine-
learning-based calculations. Another interesting aspect is to preselect the most
important X-ray-induced atomic transitions via machine-learning models similar
to machine-learning approaches in configuration interaction calculations [130, 131,
226]. If some of these developments are successful, the machine-learning-based state-
resolved Monte Carlo implementation will also be applicable to heavier atoms. For
heavy atoms, the machine-learning-based implementation is crucial to make state-
resolved X-ray multiphoton ionization dynamics calculations feasible in the future.

Electron-cloud alignment dynamics
Finally in Sec. 3.4, I have presented insight into the possibility to reshape the elec-
tron cloud of atoms, initially being perfectly spherically symmetric, through an
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ultraintense and ultrashort linearly polarized X-ray pulse. In particular, I have sim-
ulated state-resolved X-ray multiphoton ionization dynamics for argon using the
developed state-resolved Monte Carlo rate-equation implementation. The simula-
tions have illustrated that X-ray multiphoton ionization dynamics generate ions in
a wide range of charge states with nonzero orbital- and spin-angular momentum.
When it is averaged over all individual quantum states populated at a given time,
the electron-cloud alignment shows a highly nonlinear behavior but is suppressed
with progressing X-ray multiphoton ionization dynamics. For individual orbital-
angular-momentum and charge states formed during X-ray multiphoton ionization
dynamics, the simulations have, however, clearly demonstrated nontrivial and non-
negligible electron-cloud alignment dynamics.

This offers opportunities for detecting exciting electron-cloud alignment dynam-
ics in XFEL experiments, using few-femtosecond- or attosecond-resolved measure-
ments sensitive to the distribution of orbital-angular-momentum projection states.
A promising way to make electron-cloud alignment experimentally accessible is via
Auger-Meitner electron angular distributions [56, 58, 75, 76, 212]. Best suited for this
purpose are transitions involving only a single continuum wave for the Auger-Meitner
electron [75, 76], e.g., final ions with zero L. In this case, the anisotropy parame-
ter [61, 74, 77, 201, 207, 209] is directly proportional to the alignment parameter for
the initial ion as also demonstrated in Sec. 2.4.5. When such experimental measure-
ments are available, a next interesting perspective will be to investigate whether
the observed electron-cloud alignment dynamics are noticeably affected by so far
neglected effects like nondipole effects [66, 70, 227], shake-off effects, or spin-orbit
coupling [62–64, 214]. Lastly, it may be considered how the electron-cloud align-
ment behaves when applying circularly polarized X-ray pulses [228–232]. Based on
the present results, similar electron-cloud alignment dynamics are expected during a
circularly polarized X-ray pulse even though the direction of alignment changes [54].
However, how the orientation induced by the circularly polarized X-ray pulse be-
haves is an open question.

Having at hand state-resolved calculations helps deepening our understanding of
X-ray multiphoton ionization dynamics in atoms and completes it by information
about the alignment dynamics of the electron cloud of the produced ions. A deeper
understanding of X-ray multiphoton ionization dynamics is relevant for interpreting
XFEL experiments, for optimizing XFEL beam parameters, and, in the end, for sup-
porting applications of XFELs like single-particle imaging. Computational efficiency
of the state-resolved calculations is a building block to a quantitative exploration of
a wide variety of different atomic species and XFEL beam parameters.
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