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Abstract

In recent years, strongly correlated materials have emerged as promising candi-
dates for hosting next-generation technologies. Due to their rich phase diagrams
featuring different competing orders, their macroscopic properties can be con-
trolled on demand with tailored external stimuli. In particular, the development
of intense ultrafast light sources in the mid-infrared and terahertz regime en-
abled the direct and efficient coupling to the low-energy tuning knobs of these
quantum solids. Experiments in this novel field have confirmed the generation
of transient ferroelectric, magnetic, topological, and superconducting orders.

Cuprate superconductors are the archetypical member of this class of ma-
terials, wherein antiferromagnetism, superconductivity, charge and spin order
interchange with moderate tuning of the carrier doping or crystal lattice. Re-
markably, in underdoped YBa2Cu3O7-δ, signatures of incoherent superconduct-
ing fluctuations are present above Tc, extending up to and above room tem-
perature. The most accepted interpretation postulates that superconductivity
exists locally in this pseudogap phase, and fluctuations prevent the emergence
of long-range order. These observations have sparked a series of experiments
aimed at resurrecting the superconducting state by directly driving the inter-
layer coupling of this layered compound, conjectured as the determining factor
for the superconducting pairing. These expectations were positively met by
experiments where transient optical properties reminiscent of equilibrium su-
perconductivity were observed in terahertz time-domain spectroscopy.

However, these findings were not conclusive since they were also compatible
with a non-superconducting state with enhanced mobility. In order to clarify
the nature of the photo-excited state, it was paramount to verify whether it pre-
sented the dynamical equivalent of a Meissner effect, considered a fingerprint
of the macroscopic coherence characterizing the superconducting order. How-
ever, prior to this work, no experimental study had interrogated the magnetic
properties of this exotic transient state.

Here, we set out to address this fundamental question. The core of the
investigation revolved around the development of the novel Ultrafast Magne-
tometry experimental technique, combining elements of magneto-optic imaging
with the sampling of terahertz pulses. The diamagnetic response of the super-
conductor was detected by measuring the spatial profile of the magnetic field in
its surroundings. Improving on previous designs, the adoption of diamagnetic
detectors and advanced analysis techniques made it possible, for the first time,
to follow the magnetic dynamics associated with the onset of superconductivity
with ∼ 1 ps time-resolution and ∼ 1 µT sensitivity.
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This experimental technique revealed the presence of a sizable magnetic
field expulsion in YBa2Cu3O6.48 upon photo-excitation. Quasi-static simula-
tions confirmed that the sampled magnetic field was caused by a colossal dia-
magnetic response χ ∼ −0.3, reproduced at equilibrium only by type-II super-
conductors. This observation is incompatible with a photo-induced increase in
mobility. Rather, it underscores the onset of superconducting coherence over
macroscopic length scales. Remarkably, the effect was seen to persist up to room
temperature and correlated positively with the terahertz optical measurements,
suggesting a common physical origin for these two different observables. These
experimental findings support the picture of a pseudogap phase in which incip-
ient superconducting correlations are enhanced or synchronized by the drive.
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Zusammenfassung

In den letzten Jahren haben stark korrelierte Materialien großes Potenzial als
Kandidaten für die nächste Generation von Technologien gezeigt. Aufgrund
ihrer reichen Phasendiagramme, die verschiedene konkurrierende Ordnungen
aufweisen, können ihre makroskopischen Eigenschaften nach Bedarf mit maßge-
schneiderten externen Stimuli verändert werden. Insbesondere die Entwicklung
intensiver ultraschneller Lichtquellen im mittleren Infrarot- und Terahertzbere-
ich ermöglicht die direkte und effiziente Kopplung an die niederenergetischen
Stellschrauben dieser Quantenmaterialien. Experimente in diesem neuen Bere-
ich bestätigten die Erzeugung transienter ferroelektrischer, magnetischer, topol-
ogischer und supraleitender Ordnungen.

Cuprat-Supraleiter sind das archetypische Mitglied dieser Materialklasse, in
denen Antiferromagnetismus, Supraleitung, Ladungs- und Spinordnung durch
eine moderate Anpassung der Trägerdotierung oder des Kristallgitters wechseln.
Bemerkenswerterweise zeigen unterdotierte YBCO-Proben Anzeichen von inko-
härenten supraleitenden Fluktuationen oberhalb von Tc, die sich bis hin zu und
über Raumtemperatur erstrecken. Die am weitesten akzeptierte Interpretation
dieses Phänomens postuliert, dass die Supraleitung lokal in dieser ”Pseudogap”-
Phase existiert, aber Fluktuationen das Entstehen einer langreichweitigen Ord-
nung verhindern. Diese Beobachtungen lösten eine Reihe von Experimenten
aus, die darauf abzielen, den supraleitenden Zustand wiederherzustellen, indem
die Interlayer-Kopplung dieses in Schichten aufgebauten Materials direkt anges-
teuert wird, die als der entscheidende Faktor für den supraleitenden Zustand ver-
mutet wird. Die ersten Experimente in der Terahertz-Zeitbereichsspektroskopie
bestätigten diese Vermutung, bei denen transiente optische Eigenschaften beo-
bachtet wurden, die denen der Gleichgewichts-Supraleitung ähneln.

Diese Ergebnisse waren jedoch nicht schlüssig, da sie auch mit einem nicht-
supraleitenden Zustand mit erhöhter Mobilität vereinbar waren. Um die Natur
des photoangeregten Zustands zu klären, war es entscheidend, zu überprüfen,
ob er das dynamische Äquivalent eines Meissner-Effekts aufwies, der als Fin-
gerabdruck der makroskopischen Kohärenz gilt, die den supraleitenden Zustand
charakterisiert. Vor dieser Arbeit hatte jedoch keine experimentelle Studie die
magnetischen Eigenschaften dieses exotischen transienten Zustands untersucht.

Hier gehen wir dieser fundamentalen Frage nach. Im Zentrum der Unter-
suchung steht die Entwicklung einer neuartigen experimentellen Technik der
Ultraschnellen Magnetometrie, die Elemente der magneto-optischen Bildgebung
mit der Abtastung von Terahertz-Pulsen kombiniert. Die diamagnetische Ant-
wort des Supraleiters wurde durch die Messung des räumlichen Profils des
umgebenden Magnetfelds detektiert. Durch Verbesserungen von früheren De-
signs, insbesondere die Verwendung von diamagnetischen Detektoren und fort-
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schrittlichen Analysetechniken, war es erstmals möglich, die magnetische Dy-
namik, die mit dem Einsetzen der Supraleitung verbunden ist, mit einer Zeitau-
flösung von ∼ 1 ps und einer Sensitivität von ∼ 1 µT zu verfolgen.

Diese experimentelle Technik erlaubte den Nachweis der Anwesenheit einer
beträchtlichen Magnetfeldverdrängung in YBCO nach Photoanregung. Quasi-
statische Simulationen bestätigten, dass das abgetastete Magnetfeld durch eine
kolossale diamagnetische Antwort von χ ∼ −0.3 verursacht wurde, die im Gle-
ichgewicht nur von Typ-II-Supraleitern reproduziert wird. Diese Beobachtung
ist nicht mit einer photoinduzierten Erhöhung der Mobilität vereinbar, sondern
unterstreicht das Einsetzen der supraleitenden Kohärenz über makroskopis-
che Längenskalen hinweg. Bemerkenswerterweise wurde festgestellt, dass der
Effekt bis hin zur Raumtemperatur anhielt und positiv mit den Terahertz-
optischen Messungen korrelierte, was auf einen gemeinsamen physikalischen
Ursprung dieser beiden unterschiedlichen Beobachtungen hindeutet. Diese ex-
perimentellen Befunde unterstützen das Bild einer Pseudospaltphase, in der
beginnende supraleitende Korrelationen durch die Anregung verstärkt oder syn-
chronisiert werden.
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Introduction

Control of Strongly Correlated Materials

Strongly correlated materials are the predominant focus of modern condensed matter
research. In these systems, the electronic kinetic energy is comparable with the in-
teraction energy associated with charge, spin, orbital, and lattice degrees of freedom.
As a consequence, different ground states, with different and often competing types of
orders, are frequently found close in energy. The delicate balance between them can
be toppled with a moderate external stimulus. For example, hydrostatic pressure can
induce the transition from a Mott-insulator to a Weyl semimetal by enhancing the
overlap between electronic wavefunctions [1], or an intense magnetic field can suppress
the superconducting state in favor of a charge-density order [2].

The development of ultrashort light sources was a successful addition to the field,
making it possible to induce transitions over significantly shorter time scales. Re-
cent applications in this field go beyond simply melting the thermal state. In these
cases, the process cannot be described by the conventional two-temperature model [3],
wherein the transient properties are accounted for by a heating of the electronic sub-
system. Rather, the use of intense light sources widely tunable from the ultraviolet to
the terahertz regime made it possible to selectively drive only the degrees of freedom
relevant to the desired transition. This approach explores non-thermal pathways and
offers the potential for reaching new states not available at equilibrium [4]. For exam-
ple, mid-infrared radiation resonant to a specific phonon mode in SrTiO3 was shown
to induce a metastable transition to a ferroelectric state not present at equilibrium [5].
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Figure 1: Illustration of possible non-thermal mechanisms upon laser
excitation. Adapted from [4].

This idea is illustrated in the first panel of Figure 1, where the intense drive can
induce switching to degenerate or metastable states. A complementary description is
shown in the second panel, where the drive induces a deformation of the free energy
landscape and, in particular conditions, critical behavior. The last panel depicts how
the resonant excitations of specific modes can drive the coordinate to high amplitudes
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and trigger nonlinear dynamics, where additional couplings between modes are avail-
able. In experiments involving strongly correlated systems, all these effects are often
realized simultaneously.

Light-induced Superconductivity

Superconductors are among the most studied quantum materials, given the poten-
tial they host in future technological applications. Considerable effort has been in-
vested into synthesizing superconductors with ever-increasing critical temperatures.
An alternative approach relies on selectively photo-exciting existing systems to favor
the superconducting pairing and increase their critical temperature. This may sound
counter-intuitive at first since injecting energy into a material will, in general, increase
its temperature and hinder superconductivity. The key lies in efficiently coupling to
specific degrees of freedom and studying the out-of-equilibrium dynamics that ensue
after photo-excitation before the system has thermalized.

This ambitious goal was first applied to the study of the single-layer cuprate
La1.8-xEu0.2SrxCuO4. In this compound, superconductivity is quenched for lower dop-
ings (x < 0.2), where a competing stripe order emerges (see diagram in Figure 2).
This 1-dimensional modulation of spin and charge is associated with a low-temperature
tetragonal (LTT) lattice distortion, as shown in the inset. In the parent compound
La2Sr2-xCuO4, this distortion is less pronounced, and superconductivity is retained
for higher temperatures (see orange dashed line in the phase diagram).
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Figure 2: First studies of light-induced superconductivity in
La1.8-xEu0.2SrxCuO4 employing terahertz reflectivity to reconstruct
the transient optical properties. SC: superconductivity, SO: stripe or-

der. Adapted from [6].

An experiment was performed in the stripe-ordered La1.675Eu0.2Sr0.125CuO4 (x =

0.125) at a base temperature of 10K. The goal was to induce a transition to the high-
temperature tetragonal (HTT) phase, where superconductivity is expected to be more
favorable, by selectively driving the lattice mode linked to the LTT with mid-infrared
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radiation. The dynamics was observed with time-domain terahertz spectroscopy. As
will be discussed in more detail in a dedicated section in Chapter 2, this technique
provides a measurement of the transient superfluid density of the system, which is
used as a figure of merit for the superconducting state. This quantity is plotted on
the right of Figure 2 as a function of delay with respect to the mid-infrared photo-
excitation, which drives the sample at time zero. The transient detection of a finite
superfluid density provided the first indication compatible with the induction of a
superconducting state.

Qualitatively similar transient optical features were later obtained in the stripe-
ordered phase of La2-xBaxCuO4 [7, 8], and extended even to organic compounds, such
as the charge-transfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br [9, 10] and the alkali-doped
fullerene K3C60 [11, 12, 13]. These experiments sparked the novel field of light-induced
superconductivity.

In related investigations, particular attention has been dedicated to the bilayer
cuprate YBa2Cu3O7-δ [14, 15, 16, 17], where superconductivity is not induced starting
from a sharply distinct competing order, but rather from a pseudogap phase, where
partial signatures reminiscent of superconductivity are still present. Remarkably, these
features are detected up to and above room temperature, prompting the search for a
room-temperature superconducting state, albeit transient. This promising yet poorly
understood material will be the central subject of this thesis work.

Why are magnetic measurements crucial?

Up to now, light-induced superconductivity has been uniquely investigated with time-
domain terahertz spectroscopy. The reason is twofold. First, terahertz (THz) frequen-
cies are well-suited for studying the low-energy properties of the superconducting
state. Second, THz pulses can be easily integrated into a pump-probe setup, offering
the time resolution required for ultrafast studies. However, the crucial limitation of
this technique is that it only measures the conductivity of the system. As such, it
cannot distinguish a transient superconducting state from a transient metallic state
with a significantly enhanced scattering time (see discussion in Section 2.3). Due
to this ambiguity, another experimental tool more sensitive to the superconducting
properties was highly required.

The Meissner effect, wherein a static magnetic field is expelled from the interior of
a material, originates from the macroscopic coherence typical of superconductors. It
is widely recognized as a cornerstone of superconductivity and is the ideal indicator
of this correlated state. The standard approach to observe its onset is the measure-
ment of the sample magnetization. Commercial superconducting quantum devices
(SQuID) can measure magnetic moments with unparalleled resolution and have been
established as the preferred technique by most experimentalists to detect superconduc-
tivity. Unfortunately, it does not offer the time resolution required to track ultrafast
dynamics.



4 Introduction

An alternative solution is optical magnetometry. In this case, the magnetic field
inside a detection crystal is encoded in the polarization state of an optical beam
traversing it and then quantified by conventional polarization analysis techniques.
The detector is then placed in proximity to the sample, to measure the magnetic field
due to its magnetization. Using short pulses as probe beams makes it is possible to
achieve the time resolution required for ultrafast studies. Additionally, by scanning the
probe beam, it is possible to retrieve the magnetic field distribution inside the sample
or in its proximity. For example, Figure 3 shows an ensemble of pinned vortices in a
thin film of Nb.

Nb

FGF

Probe beam

vortices

Figure 3: Magneto Optical Image of superconducting vortex array
in a Nb thin film measured in an adjacent Ferrite Garnet Film (FGF).
The color scale represents the different amplitudes of the sampled mag-

netic field. Data adapted from [18].

Despite the promising time resolution, the fastest superconducting magnetic field
dynamics found in literature is of order 100 ps1, a hundred times slower than the
expected onset of light-induced superconductivity [19]. The bottleneck in the time
resolution did not lie in the probe pulse duration but in the response time of the de-
tectors. In order to maximize efficiency, magnetically ordered materials are commonly
employed. However, the same magnetic order is also the cause of the slower response
time offered.

This thesis work has been dedicated to overcoming this fundamental limitation
by employing diamagnetic detectors, which offer the picosecond time resolution re-
quired for ultrafast studies. Their implementation has not been straightforward since
the significantly lower resolution required advanced techniques of polarization analy-
sis typically not needed with traditional ferrimagnetic detectors. These efforts were
fruitful. For the first time, the ultrafast magnetic properties of driven YBa2Cu3O7-δ

have come to light.

1This was enough to justify paper titles including the term “picosecond studies”.
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Thesis outline

Chapter 1 reviews the characteristic magnetic properties of superconductors. Par-
ticular emphasis is placed on the derivations of the distribution of magnetic fields
due to the superconducting diamagnetic response. This notion will prove crucial in
the interpretation of magnetometry data. A discussion on the possible mechanisms
responsible for the superconducting condensate instability is also included, which will
be applied to the phase diagram of YBa2Cu3O7-δ.

Chapter 2 introduces YBa2Cu3O7-δ, the cuprate compound that has been the sub-
ject of this thesis work. First, its equilibrium crystal structure is presented alongside
the techniques of nonlinear phononics employed to deform it transiently. The discus-
sion follows with an overview of its phase diagram, where all the competing orders
present in this compound are briefly introduced. Finally, the notion of light-induced
superconductivity in this compound is presented. The interpretations of the THz
time-domain reflectivity experiments and their limitations are discussed in detail.

Chapter 3 presents the development of the Ultrafast Magnetometry experimental
technique. First, the origin of the Faraday effect is reviewed, with considerations rel-
evant to the correct choice of Faraday detector. Second, the practical implementation
of an optical-magnetometry setup is discussed in detail, including a discussion on ad-
vanced analysis techniques to recover the full polarization state of the probe beam.
Finally, the spatial and temporal resolutions of the techniques are discussed, with
characterization experiments performed on thin films of optimally-doped YBa2Cu3O7.

Chapter 4 applies the Ultrafast Magnetometry technique to the study of photo-
excited YBa2Cu3O6.48. First, the equilibrium magnetic properties are presented, in-
cluding a comparison with more conventional magnetic probes. Subsequently, a broad
set of dependencies in the transient state and their relevance is discussed. Finally, ex-
periments related to the dynamical propagation of the magnetic signal are presented.
The interpretation of the experimental data and the future outlooks are discussed in
the Conclusions.
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Chapter 1

Magnetic properties of
superconductors

Superconductivity is a fascinating physical phenomenon that has attracted the at-
tention of condensed matter physicists since its discovery in 1911 by H. Kamerlingh
Onnes [20]. Its charm lies in the macroscopic manifestation of quantum properties
normally absent in everyday life. These properties are embodied by a resistivity that
falls to exactly zero and by the expulsion of a static magnetic field. The latter property
will be the focus of the current chapter.

1.1 Phenomenology of Superconductivity

1.1.1 Persistent currents

The name “superconductor” originates from the property of sustaining an electrical
current with significantly less resistance than a regular conductor. This effect is so
striking that it is quite challenging, experimentally, to put an upper bound on the
value of resistivity for these materials. The conventional technique relies on inductively
starting a current I in a superconducting ring and then measuring its evolution as a
function of time (see Figure 1.1).

The current has an initial value I0, and once the drive is over, it follows an expo-
nential decay of the form I0 e

t/τ . Here, τ defines the characteristic decay time of the
induced current. From this quantity, one can estimate an upper bound on the resis-
tivity of the material. In superconductors, this was shown to be as low as 10−21Ωm

[21]. As a comparison, the resistivity for gold at low temperatures is ∼2.4×10−8Ωm.

1.1.2 Meissner effect

Faraday-Lenz law states that a conductor builds up a current in response to a changing
magnetic field to counteract changes of the latter in its interior. This eddy currents
are effective at screening magnetic field changes only for a time proportional to their
decay time. In the case of superconductors, given their extremely long decay times
(or, equivalently, their vanishing resistivity), it immediately follows that the magnetic
field is constant in time within the material. Contrary to a common misconception,
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I

B

Figure 1.1: Persistent currents inductively induced in a supercon-
ductor.

this is not the Meissner effect but rather a consequence of the vanishing resistivity of
the superconductor.1

The following thought experiment can capture the key distinction between a state
of matter with zero resistivity and a superconductor. Place a material at high tem-
perature inside a coil and turn on a steady current to apply a static magnetic field. If
the material is a conductor, it builds up eddy currents to slow down the changes in the
magnetic field in its interior. After a finite amount of time, those eddy currents com-
pletely decay, and the statically applied magnetic field traverses the material. Cool
the sample below a certain critical temperature, which induces a phase transition.
Even if this new phase is characterized by a vanishing resistivity, we do not expect it
to expel the external magnetic field since conductors only respond to changing mag-
netic fields, as mentioned above (see Figure 1.2, left). Instead, the superconductor
does respond to the static magnetic field and expel it from its interior (see Figure 1.2,
right). As discussed in the following sections, this is a consequence of the macroscopic
quantum coherence of the superconducting state.

Assuming as constitutive relation for the material

B = µ0(H+M) = µ0H(1 + χ) (1.1)

where χ is its magnetic susceptibility, it immediately follows that the Meissner effect
implies a χ of −1. A negative χmeans that superconductors are diamagnetic. Further-
more, this value of χ is the minimum compatible with thermodynamic equilibrium.
Superconductors are therefore said to be perfect diamagnets.

1This confusion often leads to erroneously associating the divergence in the imaginary part of the
optical conductivity to the Meissner effect. This is not correct. As discussed in 2.3, the latter is
indicative of dissipationless transport. In order to directly probe the Meissner effect, a technique
sensitive to the magnetic properties of the superconductor is crucial.
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ideal conductor superconductor

Figure 1.2: The Meissner effect, the hallmark property of supercon-
ductivity, is the expulsion of a static magnetic field from the interior of
the medium (right). An ideal conductor with vanishing resistivity does
not respond to static magnetic fields (left). Arrows represent magnetic

field lines.

1.1.3 Shielding currents

Let us consider for simplicity the case of an infinitely long cylinder2 embedded in
an external magnetic field B0 = µ0H0 directed along its length. In this geometry,
all the fields are along the same direction and can be treated as scalars. From the
continuity equations for the H field (the component parallel to the interface has to be
continuous), it immediately follows that H is uniform in all space as H = H0.

In order to shield the B field, it follows from the constitutive relation 1.1 that
inside the superconductor the magnetization M is uniform and opposite to H, so that
M = −H0. From Ampère’s law, considering that ∇×H = 0, it follows that

∇×B = µ0∇×M = µ0Jsh (1.2)

where Jsh represents the shielding current density of the superconductor.
Deep inside the superconductor, M is uniform. Therefore, Jsh = 0. This is

expected since a non-zero current necessarily implies a finite magnetic field. The
shielding current is then localized at the edge of the superconductor.

In Section 1.3, we will see that the magnetic field, and consequently the shielding
current, actually penetrates inside the superconductor over a characteristic length λ.
This finite penetration makes the magnetization M non-homogenous in that region.
However, λ is typically of order ∼100 nm and is often neglected in calculations in-
volving bulk samples. To good approximation, the field due to the presence of the

2This shape allows us to neglect the complications associated with demagnetizing fields. These
effects are, however, relevant for this thesis work and will be discussed in Subsection 1.1.5.
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superconductor can be modeled as that generated by a uniformly magnetized body
with χ = −1.

1.1.4 Zero-field cooled and in-field cooled superconductors

In practice, the superconductor is far from the ideal cylinder presented in the previous
subsection. For example, point defects in the crystal create regions of normal material
where the field does not have to be excluded entirely. These imperfections can be
modeled as a superconducting ring, with either a vacuum or a normal region within
its center. Either of the two does not respond to magnetic fields, so we assume to
have a vacuum for simplicity. The dimension of this hole also makes little difference.
It could be a few atomic lattices wide or extend over macroscopic distances.

This different topology for the superconducting phase leads to significant differ-
ences in the response to an external magnetic field. Contrary to the case discussed in
Subsection 1.1.2, the final state depends not only on the value of temperature and of
the applied field but also on the order in which these two were applied. This charac-
teristic is not exclusive to superconductors and is observed in all those systems that
present hysteresis, most notably in ferromagnets.3

We start from the simplest case: an ideal superconductor without holes nor imper-
fections. As shown in Figure 1.3, whether the system is first subject to the external
magnetic field and cooled below Tc or vice versa does not make a difference. The final
state, with the entirety of the magnetic field expelled from its interior, is the same.

The situation differs for the ring geometry shown in Figure 1.4. In this case, if
we first cool down the material and then apply the external field, we reach the so-
called zero field cooled (ZFC) state. In this state, the field is expelled both from the
superconducting region and from the hole at its center. The physical origin is the
Faraday-Lenz law applied to an ideal conductor. The shielding current that builds
up to prevent a change in the magnetic field flux in the sample interior never decays.
Therefore, the field is excluded from the whole area of the system. As mentioned in
Subsection 1.1.2, this exclusion does not rely on the Meissner effect but rather on the
perfect conductivity of the superconducting ring.

On the other hand, if we first apply a static field and then cool down the system,
we reach the field cooled (FC) state, where the magnetic field is expelled4 only from the
superconducting region. This expulsion is a consequence of the Meissner effect since it
would not happen in an ideal conductor. Interestingly, the system builds up shielding

3More generally, any broken-symmetry phase can potentially host this feature. This is a direct
consequence of the ground state having a lower symmetry than the system itself. The direction in
which the symmetry is lowered is either random or dependent on the history of the system. As
discussed in Section 1.4, the superconducting state breaks a global U(1) symmetry by acquiring a
macroscopic phase for its order parameter. In non-simply connected topologies such as the ring shown
in the figure, the winding of the phase around the loop determines the magnetic flux through the ring.
Each integer number of winding corresponds to a different but equally possible state. Determining
which one is actually realized depends on the history of the system.

4Note the different terminology to highlight the different physical origins: field “exclusion” refers
to the field excluded by the ideal conductor response case and field “expulsion” to the field expelled
by the Meissner effect. In practice, the latter may be used for both without distinction.
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apply field

cool down

apply field

cool down

Zero-field cooled (ZFC)

In-field cooled (FC)

Figure 1.3: For an ideal superconductor without imperfections, it
does not matter in which order the system is cooled down and subject

to an external magnetic field. The final state is the same.

currents both on its outer edge to expel the external field from the superconducting
region and on its inner edge to retain the flux in the hole5.

Consequently, the FC and ZFC states in a superconductor with point defects differ
significantly. In particular, the magnetic moment of the former is proportional only
to the superconducting volume, excluding defects. In contrast, the magnetic moment
of the latter is proportional to the total volume of the system, including defects. Due
to this property, FC/ZFC ratios of the magnetic moment are the standard figure of
merit for superconducting samples quality.

1.1.5 Demagnetizing fields

When a body is subject to an external magnetic field, it gains a magnetization de-
pendent on the applied field. In Equation 1.1, the ratio between this magnetization
M and the H field6 has been defined as its magnetic susceptibility χ.

However, the H felt by the body is, in general, not only the externally applied
H0 = B0/µ0. There is a contribution originating from the magnetization of the body
itself that depends on its geometry. This additional field, referred to as demagnetizing

5The flux remains trapped inside the ring even after switching off the external magnetic field. A
talented experimentalist may “step up” their game and make good use of this trapped flux [22].

6Using the H field in this definition is mostly a matter of experimental convenience. An alternative
definition of the susceptibility as χ′ = M/B would be related to its standard definition by χ′ = µ0

χ
1+χ

.
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apply field

cool down

apply field

cool down

Zero-field cooled (ZFC)

In-field cooled (FC)

Figure 1.4: For a superconductor with imperfections, the ZFC state
(first cooled down and then subject to a field) expels more field than
the FC state (subject to a field first, then cooled down). Which state

is reached then depends on the history of the system.

field Hd, adds on top of the external one as

H = H0 +Hd (1.3)

Hd is generally non-uniform and hard to compute. For the simple case of ellipsoids
with a field applied along one of its principal axes, it can be shown [23] that a simple
relation exists between applied and internal fields. In this case, the internal magneti-
zation is uniform, and the fields, all pointing along the same axis, can be treated as
scalars. Then, the demagnetizing field is proportional to the magnetization as

Hd = −NM (1.4)

where N is a constant between 0 and 1 that depends on the geometry. For a sphere,
N = 1/3. If the principal axes have different lengths, N is higher if the field is applied
along the shortest and lower if along the longest. The negative sign justifies the term
“demagnetizing” since Hd is directed against the internal magnetization.7

7This term originated in the context of ferromagnets, wherein the induced magnetization usually
points along the external bias H0.
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Summing both external and internal contributions, the magnetization amounts to

M = H0
χ

1 + χN
(1.5)

For positive χ, such as in ferromagnets, the demagnetizing field is directed opposite
to the magnetization and, consequently, effectively works against the applied field. In
contrast, in superconductors, where χ is negative, the demagnetizing field enhances
the effect of the applied field.8 Assuming an ideal superconductor with χ = −1, from
Equation 1.5 we see that the internal field is increased by 1

1−N . This factor has to be
accounted for when investigating the properties of a superconductor, such as critical
field and susceptibility, with a given external field.

1.2 Spatial distribution of magnetic fields surrounding su-
perconductors

The presence of the superconductor strongly affects the magnetic field in its surround-
ings. Thus, sampling the magnetic field is a great diagnostic tool for superconductivity.
In this brief section, we visualize these changes by solving simple models to build a
physical intuition for experiments.

We want to solve the magneto-static problem for a magnetizable object (the super-
conductor) embedded in an external field. We start by writing the Maxwell equations
in a medium to include the response of the system, where we drop all time-dependent
terms since we are interested in the steady-state solution. Furthermore, we assume
there are no free currents. In this limit, the magnetic and electric variables are inde-
pendent, and we can focus only on the former

∇ ·B = 0

∇×H = 0
(1.6)

with the constitutive relation 1.1.
The external field is included by imposing, as a boundary condition, that the H

field far away from the magnetizable sample has to be equal to the applied field H0.
This assumption is justified for distances much greater than the sample dimensions
where the demagnetizing field is negligible.

8To give an intuitive picture of the effect of demagnetizing fields, it helps to consider the medium
as composed of separated regions, each generating a magnetic field due to a point-like magnetic
dipole. The demagnetizing field is the field felt by an individual region due to the presence of the
neighboring dipoles. N = 0 (no demagnetizing field) corresponds to the arrangement where they
are stacked in a line along the direction of the applied field (rod parallel to the field). In this case,
the field due to opposite dipoles cancels, and the demagnetizing field is zero. N = 1 (strongest
demagnetizing field) corresponds to the arrangement where they are stacked in a line perpendicular
to the applied field (thin film perpendicular to the field). Contrary to the previous case, the fields
of neighboring dipoles add, giving a strong contribution, which is important to account for in the
analysis.
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The system of Equations 1.6 can be solved numerically (see Appendix D). We
consider a cylindrical sample to lower the computation times so that the problem
possesses axial symmetry and the computed B field depends only on radial distance
ρ and vertical distance z. The system parameters are the sample dimensions (radius
and height) and its magnetic susceptibility. The latter can assume any value between
−1 (ideal superconductor) and 0 (normal state with negligible susceptibility). The
intermediate values are appropriate for type-II superconductors in their vortex state.

We present only the results obtained for the geometry relevant to this thesis
work, which is a thin cylinder whose height (2 µm) is much smaller than its diam-
eter (350 µm)9. An external magnetic field of 10mT is applied transversally along its
axis. Figure 1.5 shows the differential field, that is, the field due to the magnetization
of the superconductor. The field exclusion from the interior of the superconductor
decreases the external field on the top of the sample and enhances it on its edges.

Figure 1.5: Magnetic field differential response of a thin supercon-
ductor (black) placed transversally to an external field of 10mT. On
top of the superconductor, the field is screened (blue region) and en-
hanced on the side (red region). The left panel shows an ideal super-
conductor with χ = −1, and the right one a possible type-II supercon-

ductor in its vortex state with χ = −0.7.

Two different magnetic susceptibilities are shown. On the left, χ = −1 shows the
case of an ideal type-I superconductor or type-II below its first critical field. This
scenario presents the strongest response. On the right, χ = −0.7 shows the case for
a type-II superconductor in its vortex state. It is clear that, even for a slightly lower
susceptibility, the field expulsion is much reduced compared to the ideal case.

9Note that, as discussed in Subsection 1.1.5, this is a highly unfavorable geometry for supercon-
ductivity, in which the demagnetizing factor significantly enhances the external field. Hence, for the
validity of this analysis, it is essential to check whether the internal H field is still lower than the
critical field.
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1.3 London’s theory

A first phenomenological theory accounting for the electrodynamic properties of su-
perconductors was proposed by F. and H. London in 1935. This theory postulates
that below some critical temperature Tc, the electronic transport is due to two sep-
arate fluids, referred to as normal (nn) and superconducting (ns), where n indicates
their density, assumed to be uniform and stationary. This picture seemed plausible in
view of Einstein’s theory of Bose-Einstein condensation, but no justification on why
the fermionic electrons should condense was provided.

The normal fluid follows Ohm’s law

jn = σnE (1.7)

with Drude conductivity

σn =
nne

2τ

m
(1.8)

where nn, e, τ , and m represent the normal carriers’ density, charge, scattering time,
and mass, respectively.

The superfluid, instead, is assumed not to scatter, which leads to an inductive
response

∂js
∂t

=
nse

2

m
E (1.9)

where we assume that the mass and the charge are the same as the normal carriers.
This is the First London Equation. It shows that the superconducting response is
purely inductive and proportional to the superfluid density ns.

By taking the curl of Equation 1.9 and integrating in time, we obtain (using
Faraday’s law)

∇× js = −nse
2

m
B+C(r) (1.10)

where the last term is an integration constant to be determined. To derive it, we
assume that the material started with no currents and zero magnetic field inside.
Hence, C(r) ≡ 0, which leads to the Second London Equation

∇× js = −nse
2

m
B (1.11)

It is important to note that London theory, since it assumes a stationary super-
fluid density, cannot explain the Meissner effect. The latter is manifested by a field
expulsion upon superconducting transition when the superfluid density goes from zero
to a finite value. The London theory rather assumes the Meissner state as a starting
point.

The main experimental prediction that follows can be obtained by taking the curl
of Ampère’s law and dropping off all time-dependent terms since we are interested in
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the stationary case

∇×∇×B = −µ0nse
2

m
B (1.12)

Since ∇ ·B = 0, it follows that

∇2B =
1

λ2L
B (1.13)

where we introduced the London penetration depth

λL :=

√
m

µ0nse2
(1.14)

Let us solve this equation for a semi-infinite medium in the positive half of the x-axis.
An external field B0 = B0 ŷ is applied parallel to its surface. Inside the medium, the
field decays as

B(x) = B0 e
−x/λL ŷ for x ≥ 0 (1.15)

The physical meaning of λL is the length over which the magnetic field penetrates
inside the superconductor.

It is worth noting that in experiments, one often finds much longer penetration
depths than what is expected from London theory. This deviation can be accounted
for by introducing the notion of Pippard coherence length, which is connected to the
non-locality of the superconducting response (see e.g. [24], Section 1.3).

The main shortcoming of London Theory is that it assumes ns as spatially uni-
form and stationary. These constraints will be lifted in the Ginzburg-Landau theory
introduced in Section 1.4.

1.3.1 Rigidity of the superconducting state

F. London provided a justification for the assumptions that led to the Second London
Equation. First we combine the two London Equations 1.9 and 1.11 by introducing
the vector potential A, defined so that ∂A

∂t = −E and ∇×A = B

js = −nse
2

m
A (1.16)

Charge conservation requires ∇ · js = 0, which imposes the gauge choice ∇ ·A = 0,
referred to as London gauge in this context.

We now write the quantum mechanical expression for the current in zero field
given the many-body wave function Ψs(r1, r2, ···) representing the superconducting
stationary state.10 Assuming e as unit charge, we have

js(r) =
e

m

∑
j

ℜ{⟨Ψ∗
s|pj |Ψs⟩} (1.17)

10This is a general quantum mechanical representation of a many-body state, which applies equally
to superconductors and metals. It should not be confused with the Ginzburg-Landau treatment
introduced in the next section, which assumes that all the superfluid particles condense in the same
state.
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The presence of the vector potential A can be accounted for with the substitution
pj → pj − eA(rj) = −iℏ ∂

∂rj
− eA(rj). By splitting the kinetic and electromagnetic

contributions, we obtain

js(r) = −eℏi
m

∑
j

ℜ{⟨Ψ∗
s|
∂

∂rj
|Ψs⟩} −

e2ns
m

A(r) (1.18)

where ns denotes the superfluid density.
Now, the steady-state Ψs depends, in general, on A. The assumption advanced by

London was that the stationary state Ψs is rigid under A. This means that, to first
order, Ψs does not depend on A, in the gauge ∇ ·A = 0. In this situation, it follows
that the first term of Equation 1.18 represents the current flow of the stationary state
Ψs for A ≡ 0, and therefore vanishes.11 Therefore, the expression for the current flow
is equivalent to 1.16, and this assumption is sufficient to support the whole theory.

In the context of the Bardeen-Cooper-Schrieffer (BCS) theory, the rigidity of Ψs

was later understood as the presence of a non-zero gap in the excitation spectrum of
the superconducting wave function.

1.4 Ginzburg-Landau theory

Ginzburg-Laudau’s theory is a generalization of Landau’s symmetry-breaking theory
of phase transition. It is based on thermodynamical considerations and does not
provide a microscopical justification for the onset of superconductivity. However,
starting from very general considerations can lead to great physical insight.

1.4.1 Free Energy functional

We consider a complex order parameter ψ representing the macroscopic supercon-
ducting wave function. In the normal state ψ = 0. Below the critical temperature Tc,
we expect an energetic gain by giving a finite amplitude to the order parameter.

We can formalize these concepts by writing the Free Energy functional F [ψ], rep-
resenting the system energy as a function of ψ. The ground state of the system is
determined by the value of the order parameter that minimizes the Free Energy func-
tional. Landau proposed that, close to the transition temperature above which ψ

vanishes, we can express F [ψ] as a Taylor expansion in |ψ|.

F [ψ] ≈ F0 + α|ψ|2 + β

2
|ψ|4 (1.19)

We only have even powers because we require F [ψ] to be analytical, and we did not
include expansions on the phase of ψ because, in analogy with quantum mechanics, we
do not expect the energy to depend on the phase of the wave function. F0 represents
the Free Energy of the normal state above Tc.

11Note the analogy between the first term in Equation 1.18 and the integration constant C(r) in
Equation 1.10.
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In order to observe a phase transition, α should become negative below Tc. The
simplest functional form that accomplishes that is α(T ) = α′(T − TC), with α′ > 0

independent of T. β is assumed to be constant and is defined as positive for super-
conductors.

Below Tc, F [ψ] is minimized by

|ψ| =
√
−α
β

=

√
α′

β

√
Tc − T (1.20)

which has the typical ψ ∝
√
Tc − T scaling of mean field theories.

1.4.2 Spatial gradients

To capture edge effects, we must allow for a spatial dependence of the order parameter
ψ ≡ ψ(r). The Free Energy functional is then an integral of the energy density over all
space (the lowercase symbols correspond to energy densities). We expect an energy
cost associated with gradients of the order parameter. We add the simplest term
allowed by symmetry

F [ψ] ≈
∫
d3r

[
f0 + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣∣ℏi∇ψ
∣∣∣∣2
]

(1.21)

where the prefactors to the last term are added based on their physical interpretation
as kinetic energy with effective mass m∗.

The ground state of the system is found by minimization of F [ψ]. By techniques of
functional analysis, it is possible to show that this is achieved by an order parameter
ψ that solves the following differential equation

− ℏ2

2m∗∇
2ψ + αψ + β|ψ|2ψ = 0 (1.22)

This is equivalent to the Schrödinger equation with an additional non-linear term.12

The physical implications of the last equation can be illustrated by solving the 1-
dimensional problem for an interface between vacuum and superconductor. As bound-
ary conditions, we impose the order parameter to be identically zero at the interface
(x = 0) and fully developed as |ψ| =

√
−α
β deep in the superconductor (x→ ∞).

This problem can be solved analytically. Since all the coefficients are real, the
solution can be chosen real

ψ(x) =

√
−α
β

tanh

(
x√
2ξ

)
(1.23)

where
ξ :=

ℏ√
−2m∗α

> 0 (1.24)

12In the framework of the Gross-Pitaevskii theory of bosonic superfluids, this term accounts for an
attractive interaction between the particles.



1.4. Ginzburg-Landau theory 19

represents the Ginzburg-Landau coherence length. As shown in 1.6, ξ can be inter-
preted as the typical length over which the amplitude of the superconducting order
parameter can change.

vacuum superconductor

ψ

ξ x

Figure 1.6: The Ginzburg-Landau coherence length represents the
typical length over which the amplitude of the superconducting order

parameter can appreciably change.

1.4.3 Magnetic fields

In order to gain insight into the Meissner effect in the Ginzburg-Landau framework,
we need to include the effects of magnetic fields in the Free Energy functional. This
can be achieved by applying the usual Peierls substitution to the momentum operator
ℏ∇
i → ℏ∇

i − qA and by adding a term for the energy density of the magnetic field13

F [ψ,A] ≈
∫
d3r

[
f0 + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣∣(ℏ
i
∇− qA

)
ψ

∣∣∣∣2 +
B2

2µ0

]
(1.25)

Minimization of this Free Energy functional with respect to ψ (see for example [25])
leads to the First Ginzburg-Landau equation

1

2m∗

(
ℏ
i
∇− qA

)2

ψ + αψ + β|ψ|2ψ = 0 (1.26)

which is equivalent to a non-linear Schrödinger equation in a magnetic field.
The Second Ginzburg-Landau equation can be obtained by minimization with re-

spect of A

µ0 j =
q

m∗ ℜ
{
ψ∗
(
ℏ
i
∇− qA

)
ψ

}
(1.27)

13Different authors use different conventions for the magnetic contribution to the Free Energy. The
magnetic energy in the absence of the material H2

0
2µ0

is often omitted. We retain it in this analysis.
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In the limit of uniform ψ, the last equation reduces to

j = −q
2|ψ|2

m∗ A (1.28)

which is analogous to 1.16. Assuming that the order parameter represents the bound
state of two electrons in a BCS fashion, we can set q = −2e, the charge of a Cooper
pair, and m∗ = 2me, twice the electron mass, which implies 2|ψ|2 = ns.

Ginzburg-Landau’s theory is, therefore, a generalization of London’s theory, where
the superconducting density is allowed to be non-homogeneous in space. In the cur-
rent formalism, setting |ψ|2 = −α/β in Equation 1.14, the penetration depth can be
redefined as

λ :=

√
− m∗β

µ0 q2 α
(1.29)

So far, two typical lengths have appeared: the coherence length ξ and the pen-
etration length λ. They represent the typical lengths over which the superfluid and
the magnetic field, respectively, appreciably change. Both scale as ≈ (Tc − T )1/2 near
Tc and their ratio

κ := λ/ξ (1.30)

is therefore temperature independent. It is called the Ginzburg-Landau parameter and,
as shown in the following subsection, determines the behavior of superconductors in
a magnetic field.

In order to compute the response of the superconductor to externally applied
magnetic fields, it is convenient to consider the Gibbs Free Energy density G instead
of the Helmholtz Free Energy F , since experimentally it is easier to control H than
M. The two are related by a Legendre transformation

G = F −
∫
dr3 µ0H ·M (1.31)

For simplicity, we neglect demagnetizing effects and assume the magnetization
to be directed along H, so to consider the magnetic fields as scalars. We neglect
surface effects for the moment and consider only the energy inside the superconductor.
This assumption is valid for extended systems where the surface energy is negligible
compared to the bulk. In this case, |ψ|2 is uniform and equal to −α/β. Due to the
Meissner effect, the magnetic field B and the vector potential A (in the London gauge)
both vanish, andM = −H. In this situation, the energy density of the superconductor
is

gs = fs −HM = α|ψ|2 + β

2
|ψ|4 + µ0H

2 = −α
2

2β
+ µ0H

2 (1.32)

In the normal state, the condensation energy of the superconductor vanishes, and the
material does not respond to the magnetic field, so that M = 0, and we have

gn =
B2

2µ0
− µ0HM = −µ0

H2

2
(1.33)
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The condition gn = gs defines the phase boundary between superconducting and
normal states. Thus, above the critical field

Hc :=

√
α2

µ0β
(1.34)

superconductivity is not energetically favorable anymore. This analysis is valid only
for the case of a homogenous superconducting order parameter in the bulk of the
material.

Accidentally, using Equations 1.29 and 1.34, we can now express the two phe-
nomenological parameters of the Ginzburg-Landau theory in terms of the experimen-
tally measurable quantities Hc and λ

α = −µ
2
0q

2λ2H2
c

m∗ β =
µ30q

4λ4H2
c

m∗2 (1.35)

1.4.4 Type-I and Type-II superconductors

The energy cost of expelling the magnetic field can become significant, especially for
unfavorable geometries. Therefore, it is often more convenient for the superconductor
to “surrender” a fraction of the condensate to the normal state, allowing the magnetic
field to thread that portion of the material, lowering the overall energetic cost of the
system.

This trade-off can be quantified by computing the energy of a domain wall between
superconductor and normal state. We perform a simplified one-dimensional analysis
that can provide a good amount of physical insight. We assume the domain wall to
be centered around x = 0 and the external magnetic field H to be tuned to have the
energy density of the normal state gn, situated on the negative side of the x-axis, equal
to that of the superconductor gs, situated on the positive side. As in Equation 1.33,
deep inside the superconductor, we have

g(x→ ∞) = g(x→ −∞) = fn + µ0
H2
c

2
(1.36)

The additional Free Energy per unit area γ due to the domain wall is

γ =

∫ ∞

−∞
dx [g(x)− g(x→ ∞)] (1.37)

By using Equations 1.26 and 1.36, after some algebra, we get

γ = µ0
H2
c

2

∫ ∞

−∞
dx

[(
1− B

µ0Hc

)
− |ψ|4

|ψ∞|4

]
(1.38)

As anticipated, the energy density per unit area to form a domain wall is a balance
between two contributions: the energy cost required to exclude the magnetic field
(first term of the integrand) and the energy gain to form the condensate (second term
of the integrand).
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Deep inside the superconductor B → 0 and |ψ| → |ψ|∞, so the integrand vanishes.
The same happens deep inside the normal region, where B → µ0Hc and |ψ| → 0.
Therefore, as expected, the only contribution to the surface energy comes from regions
around the domain wall. Based on the considerations discussed in Subsection 1.4.3, we
can rewrite this expression as a function of the penetration depth λ and the coherence
length ξ

γ ≈ −µ0
H2
c

2
(λ− ξ) (1.39)

Type-I superconductors are defined by having a positive energy cost γ associated
with the formation of a domain wall. From Equation 1.39 it is clear that this is
the case for ξ ≫ λ (κ ≪ 1). In this limit, the superconductor prefers to maintain
a homogenous phase until the external field reaches the critical value Hc. At this
point, superconductivity is not energetically favorable anymore, and there is a phase
transition to the normal state14.

Type-II superconductors, on the other hand, are defined by having a negative γ,
which happens for ξ ≪ λ (κ ≫ 1). In this case, there is an instability towards the
formation of domain walls15. This process has to be counterbalanced by some other
effect. Otherwise, ψ would vary wildly over short-length scales, ultimately invalidating
the order parameter description. This regulatory effect is the fluxoid quantization
introduced in the following subsection.

1.4.5 Fluxoid quantization

Flux quantization is a direct consequence of the coherence properties of the wave
function used to describe a macroscopic system. These can be made more apparent
by expressing ψ as a product of an amplitude and a phase

ψ := |ψ|eiθ (1.40)

In these variables, the current density 1.27 reads

µ0j =
qℏ
m∗ |ψ|2∇θ − q2

m∗ |ψ|
2A (1.41)

Normalizing 1.41 by q2

m∗ |ψ|2 and taking the line integral around a closed loop yields

m∗

q2

∮
dl · µ0j

|ψ|2
+

∮
dl ·A =

ℏ
q

∮
dl · ∇θ (1.42)

14A more detailed analysis [24] shows that, for external fields close to Hc and depending on the
sample shape, type-I superconductors possess an intermediate phase. This phase is called mixed state
because superconducting and normal regions coexist close to one another, and the cost of forming
domain walls is compensated by lowering the magnetic energy outside the sample.

15This analysis has been carried out in the simplified assumption of gn equal to gs deep inside
the respective regions. Therefore, this instability does not happen for arbitrarily low values of the
external field, as expected.
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Since the order parameter must be single-valued, the integral on the right can only
take values multiple of 2π. Additionally, the integral on the right vanishes for simply
connected paths since ψ is analytical.

It does not necessarily vanish for topologically non-trivial paths as the one shown
in Figure 1.7. The hole in the center can be engineered or represent a physical va-
cancy. Alternatively, the system can decide to suppress the superfluid density in that
region to allow the magnetic field to penetrate through that area, as discussed in
Subsection 1.4.4 in connection with type-II superconductors.

A

Φ

Figure 1.7: A magnetic flux Φ through a superconducting ring gener-
ates a vector potential A even inside the superconductor, where there

cannot be a magnetic field B.

Using Stokes’ theorem, we recognize the second integral on the left as the magnetic
flux Φ through the area we considered. Equation 1.42 then becomes

m∗

q2

∮
dl · µ0j

|ψ|2
+Φ = nΦ0 (1.43)

where n is an integer, and we defined the quantum of flux as

Φ0 =
h

q
(1.44)

The left-hand term in Equation 1.43 is named fluxoid and is the quantity that is
quantized. It differs from the magnetic flux Φ by m∗

q2

∮
dl · µ0j|ψ|2 . In type-I supercon-

ductors, this integral can be taken over a region where the magnetic field has been
fully screened, and the current has vanished. In that case, the magnetic flux Φ is also
quantized.

This quantization has been experimentally demonstrated [26], where it was ob-
served that the charge q appearing in the expression for the flux quantum 1.44 was
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close to twice the charge of the electron. This observation provided further evidence
for the mechanism of two-electron pairing that leads to superconductivity in the BCS
framework.

As mentioned in the previous section, type-II superconductors spontaneously form
an inhomogeneous distribution of the order parameter that allows the magnetic field
to thread through the superconductor. Fluxoid quantization limits this effect and
leads to the creation of vortices, each of which carries a quantum Φ0 of magnetic field
flux.

This vortex phase forms for a sufficiently large external magnetic field Hc1 <

Hc, referred to as first critical field. Given their quantum nature, vortices can be
considered topological defects of the superconducting phase, of size proportional to
the coherence length of the superconductor ξ. For even higher fields Hc2 > Hc, the
density of vortices becomes so high that there is no more energetic gain from having a
superconducting condensate, and there is a transition to the normal state. In type-II
superconductors, no significant change happens at Hc.

1.4.6 Anisotropic formulation

The standard formulation of the Ginzburg-Landau theory assumes an isotropic ma-
terial. This assumption is valid for most elemental superconductors but not for lay-
ered superconductors such as high-Tc cuprates. In order to capture their intrinsically
anisotropic nature, the scalar mass term in Free Energy functional 1.21 has to be
replaced by a tensor so that

F [ψ] ≈
∫
d3r

[
F0 + α|ψ|2 + β

2
|ψ|4 +

∑
i

1

2m∗
i

∣∣∣∣ℏi∇iψ

∣∣∣∣2
]

(1.45)

where 1/m∗
i represents the principal values of the tensor of the inverse effective mass.

In layered superconductor, this results in an in-plane mass m// and an out-of-plane
mass m⊥, where m⊥ < m//. This distinction leads to redefining accordingly the
penetration depth λ and the coherence length ξ in Equations 1.29 and 1.24. For
example, in cuprates, the penetration depth of a magnetic field applied along the
planes λ⊥ is greater than that of a field applied perpendicular to them λ//. The effect
of anisotropy on other thermodynamic quantities is discussed in [27], Chapter 9.

1.4.7 Time-dependent formulation and vortex motion

Ginzburg-Landau’s theory is normally applied to equilibrium systems. It can, how-
ever, be extended to study dynamics. In this case the order parameter becomes
time-dependent ψ ≡ ψ(r, t) and the Lagrangian of the system reads

L =

∫
d3r iℏψ∗∂ψ

∂t
− F [ψ] (1.46)

where F [ψ] is the Ginzburg-Landau functional.
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From the least action principle, we obtain the equation of motion by minimizing
the action S =

∫ tf
ti
dtL, which leads to

iℏ
∂ψ

∂t
=

1

2m∗

(
ℏ
i
∇− qA

)2

ψ + αψ + β|ψ|2ψ +
B2

2µ0
(1.47)

This is a non-linear version of the time-dependent Schrödinger equation.16 In practice,
it is typically solved numerically and by adding phenomenological parameters related
to model non-idealities, such as flux pinning by defects.

The initial conditions depend on the problem at hand. The onset of supercon-
ductivity can be modeled by imposing a time dependence on the sign of α to make
superconductivity favorable at a given instant in time. It is possible, then, to study
the magnetic dynamics that follows. In the case of type-II superconductors such as
YBa2Cu3O7-δ, the dominant physical aspect is vortex motion [28].

1.5 Fluctuations above critical temperature

In Section 1.4, we have considered only the state ψ0 that minimizes the Ginzburg-
Landau functional given by Equation 1.25. In the many-body formalism, this is equiv-
alent to the mean-field state, where the interaction between particles is incorporated
as an average field acting on independent particles.

In this section, we first overview corrections to the mean-field state and then high-
light how, in low-dimensional systems, fluctuations alone can lead to the instability
of the superconducting state.

1.5.1 Gaussian fluctuations

At finite temperatures, the system fluctuates around its minimum Free Energy. As-
suming a bulk system with uniform ψ0, the order parameter of the system is then

ψ(r) = ψ0 + δψ(r) (1.48)

In order to extract the thermodynamic properties of the system, we need its Hamil-
tonian. As discussed in more detail in [29], the use of the Free Energy functional F [ψ]
for such a role is justified by recognizing ψ as the macroscopic wave function of the
system. The partition function Z then reads

Z =

∫
D2ψ e

−F [ψ]/kBT (1.49)

where
∫
D2ψ represents integration over the infinitely many possible realizations of

ψ(r).
The integral 1.49 is, generally, hard to compute. Since we are interested in the

situation T > Tc, we can simplify the expression by noting that ψ0 vanishes in this
16This equation is known as the time-dependent Gross-Pitaevskii equation in the context of super-

fluid condensates.
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regime and by neglecting in F [ψ] the terms higher than second order in |ψ|. This
assumption is justified since, at high temperatures, the term proportional to β is not
needed to stabilize the theory. This approach is called Gaussian approximation17.

Within this limit, the Free Energy in a zero magnetic field reads

F [ψ] ≈
∫
dr3

[
αψ∗(r)ψ(r) +

1

2m∗

(
ℏ
i
∇ψ(r)

)∗
· ℏ
i
∇ψ(r)

]
(1.50)

In the Fourier basis, where

ψ(r) =
1√
V

∑
k

eik·rψk (1.51)

the Free Energy becomes

F [ψ] ≈ 1

V

∑
k′k

∫
dr3e−i(k−k′)·r

[
αψ∗

kψk′ +
1

2m∗ (ℏkψk)
∗ · ℏkψk′

]
=
∑
k

(
α+

ℏ2k2

2m∗

)
ψ∗
kψk

(1.52)

By recognizing the term within parenthesis as the energy of the fluctuations

ϵk = α+
ℏ2k2

2m∗ (1.53)

we see that, for every k, there are two degenerate fluctuation modes corresponding,
for example, to the amplitude and phase degrees of freedom of ψ. Additionally, since
α is positive and temperature dependent, the dispersion has a finite energy gap, which
is also temperature dependent.

By inserting the Free Energy 1.52 into the definition of partition function 1.49, we
get

Z ≈
∫ (∏

k

d2ψk

)
exp

(
− 1

kBT

∑
k

ϵkψ
∗
kψk

)

=
∏
k

[∫
C
d2ψk exp

(
− 1

kBT
ϵkψ

∗
kψk

)]
=
∏
k

π
kBT

ϵk

(1.54)

where, in the last step, we used the analytical solution for a Gaussian integral.
With the partition function at hand, all thermodynamic properties follow. For

example the heat capacity reads

C = T
∂2

∂T 2
kBT lnZ (1.55)

17The name is due to the appearance of a Gaussian integral in the later derivation.
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By inserting the expression 1.54, and keeping only the term which is singular at
Tc and gives the strongest contribution, after some algebra, we find

C ≈ constant · 1√
α

∝ (T − Tc)
−1/2 (1.56)

Similar temperature dependencies can be extracted for other thermodynamic quanti-
ties.

This derivation shows that, due to thermal agitation, the system “feels” the pres-
ence of a phase transition even above its critical temperature. In superconductors,
however, the fast decaying − 1/2 exponent limits the observability range of these Gaus-
sian fluctuations to a few Kelvin above Tc.

1.5.2 BKT instability

In low dimensional systems (d ≤ 2), the Mermin-Wagner theorem prevents the onset
of long-range order. This applies specifically to 2-dimensional superconductors. In this
case, the system can at best establish a quasi-long-range order, where its correlation
function decays with some critical exponent η as

⟨ψ(r)∗ ψ(0)⟩ ≈ ψ2
0

(
r

r0

)−η
(1.57)

The reason is that the system is unstable towards the proliferation of fluctuations,
which tends to lower its Free Energy by maximizing the entropy. These effects are
particularly severe in systems with a low density of superconducting carriers, which
implies very high fluctuations in their number. Below a critical concentration of carri-
ers, the system is, therefore, subject to a phase transition where the superconducting
state is destroyed by fluctuations despite being favorable in a mean-field sense.

These concepts have been formalized for a 2-dimensional neutral superfluid by
Berezinskii, Kosterlitz and Thouless [30]. In their theory, based on the Ginzburg-
Landau formalism, the critical exponent in Equation 1.57 is given by

η =
1

2π

kBTβm
∗

ℏ2α
> 0 (1.58)

Close to the mean-field critical temperature TMF , α → 0 and the correlation length
diverges. The system, therefore, cannot attain the superconducting order. Supercon-
ductivity is restored only below a certain fluctuation critical temperature Tfl, where
the formation of vortices becomes energetically unfavorable. The threshold for the
formation of non-interacting vortices can be shown to correspond to the temperature
at which η = 1/4. Interactions between vortices lead to screening effects, further
lowering Tfl. Finally, no fluctuations can be thermally excited at zero temperature,
and η = 0 (see Figure 1.8).

Strictly speaking, the BKT formalism applies only to 2-dimensional systems. How-
ever, they are often qualitatively applied also to quasi-2-dimensional systems, such as
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Temperature

η  ~ 0

0

η  ~ 1/4

Tfl

η  ~   

TMF

Quasi-long
range order

Free vortices Normal state

Figure 1.8: Due to the generation of free vortices, the quasi-long-
range order in a 2-dimensional condensate is not attained at TMF but

rather at a lower temperature denoted Tfl.

cuprates. Indeed, as discussed in Subsection 1.4.6, these systems can be thought of as
weakly coupled 2-dimensional layers. A related discussion can be found in [31]. The
role of fluctuations in determining the superconducting properties in layered cuprates
is still under debate.
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Chapter 2

The unconventional
Superconductor YBa2Cu3O7-δ

Historically, YBa2Cu3O7-δ was the first discovered high-temperature superconductor
with a Tc ∼ 90K higher than the boiling point of nitrogen. Variation of the oxygen
doping strongly influences its electronic properties and, less drastically, its crystal
structure. More recently, the atypical properties of the pseudogap phase found in
the underdoped region sparked new interest in this compound, particularly for their
correlation with light-induced superconductivity.

Ba

Y

O4 (apical oxygen)

Cu-O chains
O1

Cu-O2 planes

O2

O3

Cu2

Cu1

YBa2Cu3O7-δ

Figure 2.1: Crystal structure of YBa2Cu3O7-δ. The partial filling
of O1 indicates non-stoichiometric occupancy of the oxygens, where
δ = 0 (orthorhombic phase) corresponds to full occupancy and δ =
1 (tetragonal phase) to complete vacancy. In the intermediate case,
the oxygens are organized in chains. “VESTA 3 for three-dimensional

visualization of crystal, volumetric and morphology data”.
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2.1 Crystal Structure and lattice modes

YBa2Cu3O7-δ crystals are arranged in a perovskite structure, shown in Figure 2.1.
Depending on the oxygen doping δ and the temperature of synthesis, the crystal
symmetry is either the orthorhombic Pmmm(D1

2h) or the tetragonal P4/mmm(D7
4h).

In the orthorhombic phase, typical dimensions of the unit cell are a = 3.83Å, b =
3.89Å, c = 11.65Å.

Contrary to most cuprates consisting of single layers, YBa2Cu3O7-δ organizes in a
bilayer structure composed of alternating Cu-O2 planes normal to the c-direction and
Cu-O chains along the b-direction. The latter are responsible for the orthorhombic
distortion of the structure, where the O2 and O3 oxygens are slightly shifted along
c. The Cu-O2 planes are highly conducting, and the chains act as charge reservoirs.
On the other hand, hopping across the planes is much less likely, and conductivity in
the c-direction is one order of magnitude lower. A satisfactory model describing the
system needs to include this anisotropic character (for example, see Subsection 1.4.6).

filled chain empty chain

YBa2Cu3O6.5

Figure 2.2: Crystal structure of YBa2Cu3O6.5. For this range of
doping, the Cu-O chains are alternatively filled and vacant. The unit
cell is doubled along the a-axis compared to YBa2Cu3O7.“VESTA 3 for
three-dimensional visualization of crystal, volumetric and morphology

data”.

By heating the sample above 500◦, the weakly coupled O1 oxygens in the chains
diffuse away, increasing the oxygen vacancies δ. It is then possible to continuously
tune the doping from YBa2Cu3O7 (δ = 0), where the chains are fully occupied, to
YBa2Cu3O6 (δ = 1), where they are completely vacant. For 0 < δ < ∼ 0.6, some
chains are missing while others remain unaffected, meaning all the vacancies tend to
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self-organize along the same chain over macroscopic distances. The chemical formula is
non-stoichiometric, and the structure in Figure 2.1 no longer represents the unit cell of
the system. This inhomogeneity leads to intermediate properties between YBa2Cu3O7

and YBa2Cu3O6. In particular, in YBa2Cu3O6.5, the chains are alternatively filled and
empty, and the unit cell is doubled along the a-direction (see Figure 2.2). This phase
is denoted orthorhombic-II to distinguish it from the one manifested by YBa2Cu3O7,
denoted as orthorhombic-I. Above δ ∼ 0.6, there is a structural phase transition to
the tetragonal phase where the a and b axes become equivalent. The orthorhombic
phase can be retained up to δ ∼ 0.8 by removing the oxygen with the low-temperature
Zr-gettered annealing technique [32].

The position of the O4 apical oxygen atom varies significantly with oxygen dop-
ing, and, as a consequence, the intralayer distance is modified. For example, in
YBa2Cu3O6.5, the unit cell is elongated along the c-direction by 3% with respect
to YBa2Cu3O7. Band structure studies covering almost all hole-doped cuprates have
suggested a correlation between their intralayer distance and the Tc manifested in the
superconducting state [33]. In the community of ultrafast science, this prompted the
question of whether one could influence the superconducting properties of YBa2Cu3O7-δ

by selectively altering its atomic structure with light.

2.1.1 Infrared active modes in YBa2Cu3O6.5

From the orthorhombic-II structure of YBa2Cu3O6.5, 72 different phonon modes are
present, 33 Raman-active and 39 IR-active. Here, we focus on the 7 IR-active modes
polarized along the c-direction. These can be observed in Fourier Transform Infrared
(FTIR) spectroscopy experiments. As an indicator of the presence of these modes,
the top panel of Figure 2.3 shows the real part of the optical conductivity σ1 as a
function of photon wavenumber. The peaks of the four predominant frequencies are
marked with dashed lines, and the corresponding atomic motions are shown below.

The modes at 16.4THz and 19.2THz correspond to the apical oxygen motions
of the oxygen-filled and oxygen-vacant chains. The former is the only one present in
YBa2Cu3O7 and the latter in YBa2Cu3O6, and therefore are often referred to with
the respective compound names. The intermediate systems present both in a ratio
proportional to their doping δ.

2.1.2 Transient displacement of the lattice via nonlinear phononics

The classical approach to modifying the lattice spacing relies on applying pressure
along a preferential direction. This can be performed either mechanically (e.g., with a
diamond anvil cell), epitaxially, or by chemical substitution. However, the maximum
lattice distortion achievable is ordinarily limited to about 1% of the lattice spacing.
On the other hand, resonant driving of phonons modes with intense pulses can lead
to much higher displacements. As an upper limit, Lindemann’s criterion estimates a
maximum atomic mean-squared displacement of about 10%.
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a

c

Figure 2.3: The top panel shows the infrared active modes of
YBa2Cu3O6.5 measured from FTIR spectroscopy. The bottom di-
agrams represent the four predominant modes (a) 140 cm−1, (b)
337 cm−1, (c) 547 cm−1 and (d) 640 cm−1. The quasi-static atoms

have been grayed out. Adapted from [16].

IR

R R

Figure 2.4: Comparison between infrared (red) and Raman (blue)
modes in a centrosymmetric crystal.
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In a centrosymmetric solid, the phonon modes can be classified based on whether
the atomic displacement is symmetry-odd or symmetry-even with respect to their
inversion center (see Figure 2.4). Symmetry-odd modes, also known as IR-active, are
the only ones that can be driven with an electric field1. Symmetry-even modes, also
known as Raman-active, are not set in motion by the driving field.

This is no longer true when the intensity of the electric field is strong enough to
access the nonlinear regime. In this case, the IR-active mode will transfer part of its
energy to other modes. The simplest potential allowed by symmetry that can describe
this process is

V =
1

2

∑
i

ω2
IR,iQ

2
IR,i +

1

2

∑
i

ω2
R,iQ

2
R,i + E(t) ·

∑
i

Z∗
i QIR,i

+
∑
i,j,k

fi,j,kQR,iQR,jQR,k +
∑
i,j,k

gi,j,kQIR,iQIR,jQR,k

+
∑
i,j,k,l

hi,j,k,lQiQjQkQl + . . .

(2.1)

where ω, Q, and Z∗ represent the eigenfrequency, coordinate, and effective charge of
the mode [35]. The IR and R suffixes differentiate between infrared and Raman modes,
and the summation indices run over the respective modes. The first line describes the
linear regime, where the first two terms account for the harmonic energy of the modes
and the third one for the energy transferred from the electric field.

The second line introduces third-order nonlinearities. The first term accounts for
self-anharmonicities, where the Raman modes are the only symmetry-allowed. The
second term accounts for the coupling between different modes. Finally, the third
line represents the fourth and higher orders. The material-dependent parameters f ,
g, and h indicate the strength of the nonlinearity.

In Figure 2.5, an example of a nonlinear regime is presented. The first plot rep-
resents the time-dependent driving field E(t). The second plot shows a resonantly
driven IR-active mode. As can be observed from the plot, its average displacement
over the whole transient ⟨QIR⟩ = 0. On the contrary, the non-linearly driven Raman
mode presented in the third plot has an effective driving force proportional to the
square of the IR-active mode. Consequently, its average displacement ⟨QR⟩ ≠ 0. Due
to the nonlinear coupling, the crystal lattice is transiently deformed over time scales
comparable with the decay time of the Raman mode. In systems with very few elec-
tronic carriers, the decay time is set by the strength of the phonon-phonon coupling
itself.

By employing first-principles density function theory (DFT) calculation, the ge-
ometries of the modes in YBa2Cu3O6.5 and their respective couplings were com-
puted [36]. The observed dynamics, tracked with femtosecond X-ray diffraction,
matched the theoretical predictions well. In particular, it was confirmed that driving

1Strictly speaking, this requirement is not sufficient. In addition, the displacement needs to induce
a non-zero electrical dipole. These modes are called “polar”. For the distinction, see, for example, [34],
Subsection 1.5.14.
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Figure 2.5: Comparison between infrared (red) and Raman (blue)
modes in a centrosymmetric crystal. Kindly provided by M. Fechner.

the apical-oxygen modes of the material influences both the inter- and intra-bilayer
spacing, strongly correlated with the onset of superconductivity in cuprate systems.

2.2 Phase diagram and electronic properties

The study of the phase diagram of YBa2Cu3O7-δ and other cuprates has been central
to condensed matter research for the past half-century. The coexistence of differ-
ent and often competing orders, with behavior contradicting well-established physical
paradigms, made it a theoretical challenge pushing forward the development of mod-
ern many-body theories.

Figure 2.6 presents the experimentally determined phase diagram of YBa2Cu3O7-δ.
For δ = 1, the system presents an antiferromagnetic order with a Néel temperature of
TN ∼ 420K. From a band theory perspective, the Cu2O planes contain an odd number
of electrons per unit cell and, consequently, should be conductive. This prediction
contradicts the experiments, where an insulating gap of ∼ 1 − 2 eV is observed and
highlights the importance of electron correlations in describing the system. Indeed,
it is found that the typical Coulomb repulsion energy U ∼ 9 eV is significantly larger
than the bandwidth of the conduction band W ∼ 3 eV, thus leading to the opening
of a Mott bandgap determined by spin fluctuations. The much lower gap found in
experiments suggests an additional mechanism. The energy of the charge transfer
∆ ∼ 3 eV is indeed found to sit at an intermediate value, W < ∆ < U , and acts as
the lowest energy excitation of the electronic system. For this reason, YBa2Cu3O6 is
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said to be a charge-transfer insulator (see [37], Chapter 5 for a more detailed discussion
on the electronic properties and band structure of cuprates).
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Figure 2.6: Phase diagram of YBa2Cu3O7-δ as a function of hole
concentration showing at least four different orders. The dashed line
indicates the transition from the strange metal to the pseudogap phase,
as determined by in-plane torque magnetometry [38], Nerst coeffi-
cients [39], ultrasound spectroscopy [40] and polarized neutron scat-
tering [41]. TCDW represent the phase boundary of the charge density
wave phase, as measured by x-ray resonant measurements [42, 43].

Adapted from [38].

Similarly to ionic semiconductors, metallic conductivity appears with a change of
stoichiometry, which in this case amounts to oxygen doping. As outlined in Section 2.1,
the additional oxygens sit in the Cu-O chains and act as charge reservoirs for the Cu2-O
planes. The hole doping p is proportional to the oxygen concentration in the chains.
At a critical value of p ∼ 0.05 at zero temperature, the antiferromagnetic order is
disrupted. This critical value appears at a progressively lower hole doping p as the
temperature increases.

For p > 0.05, a superconducting phase emerges, with a monotonically increasing
Tc up to an optimal value popt ∼ 0.18. The two plateaus observed in the phase diagram
are associated with the two orthorhombic phases, I and II (see Section 2.1). Above
this optimal value and up to p ∼ 0.25, Tc progressively lowers, closing the so-called
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superconducting dome. Phases realized for hole doping below and above the optimal
value popt are said to belong to the underdoped and overdoped regime, respectively.

In the underdoped regime, for temperature ranging from 100K to 200K, it has
been recently observed the appearance of static charge-stripe order [44], a feature
previously believed as exclusive to the La2Sr2-xCuO4 family. Subsequent experiments
confirmed that the short-ranged charge order is incommensurate and predominantly
localized at defects pinning the correlated charge fluctuations [45]. Interestingly, these
features gradually set in at the charge ordering temperature TCDW , reach a maximum
at the superconducting critical temperature Tc, and drastically drop below, indicating
strong competition between these two orders.

For even higher temperatures, the underdoped region of the phase diagram presents
the pseudogap phase. This name originates from angle-resolved photoemission spec-
troscopy (ARPES) measurements that showed a partial suppression of the electronic
density of states in the “antinodal” region of the Brillouin zone [46]. Many other
features reminiscent of superconductivity, such as an anomalous Nerst effect [39] or
anomalous diamagnetism [47, 48], have been observed in this regime, remarkably ex-
tending up to room temperature. These observations suggest that pairs already form
at these high temperatures, at least locally, but phase fluctuations prevent the super-
conducting order from setting in until much lower temperatures.

All these features emerge from the least understood of the phases presented so far,
which, due to its atypical properties, has been termed Strange Metal. The most strik-
ing feature is the absence of quasiparticles, which lie at the center of the description
of standard metals. This absence leads to significant deviations in the temperature
dependence of the electrical [49] and Hall conductivity [50]. Many new theories were
developed trying to capture these phenomena, spanning from the description as a
marginal Fermi liquid [51], in connection with quantum criticality and even as par-
allelisms with string theory [52]. Owning to the arduous mathematical formalism
required, a comprehensive theory capable of capturing the strong interactions in the
strange metal phase is still lacking to this day.

This little understanding of the electronic properties in the normal state lies at
the core of the difficulties in formulating a comprehensive theory for high-Tc super-
conductivity in cuprates. Indeed, in conventional superconductors, a good knowledge
of the normal metallic state is a prerequisite for a successful theoretical formulation
of the attractive interaction between electrons that leads to superconductivity.

For even higher hole dopings, the standard Fermi liquid behavior is finally retained.
There is no sharp boundary between the two regimes.

2.2.1 Fluctuations in the pseudogap phase

Currently, most many-body theories for high-Tc superconductivity assume that the
attractive potential in cuprates is mediated by spin fluctuations2 As confirmed by

2More recently, the discovery of the charge density wave phase opened the debate on charge
fluctuations as an alternative or concomitant mechanism.
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both inelastic neutron scattering and resonant inelastic x-ray scattering, these mag-
netic fluctuations survive for hole doping past the antiferromagnetic phase. They are
nevertheless stronger towards zero doping, so one would naively expect Tc to increase
towards the antiferromagnetic phase. This expectation is, however, contradicted by
experiments featuring a superconducting dome. The critical aspect is that the su-
perfluid density in cuprates is extremely low, leading to a very weak phase stiffness
of the superconducting condensate. This aspect starkly contrasts conventional BCS
superconductors, where phase fluctuations are hardly relevant.

In connection with the discussion on the BKT instability presented in Subsec-
tion 1.5.2, we can expect that what increases towards lower dopings is the mean-field
temperature TMF of the superconducting state. In contrast, the fluctuation tem-
perature Tfl, correlating with the number of carriers, follows the superfluid density
and increases with it. The experimentally manifested critical temperature Tc is the
minimum of the two, forming the superconducting dome as shown in Figure 2.7. Fur-
thermore, this behavior justifies the linear increase of Tc with superfluid density for
lower dopings, known as Uemura’s law [53].
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Figure 2.7: Towards lower hole dopings, both the amplitude of the
pairing and the instability due to fluctuations increase. These two
opposite tendencies result in the superconducting dome observed in

the phase diagram of most cuprates.

In the underdoped region, for the range of temperatures Tc < T < TMF , we
therefore expect superconductivity to form locally, just to be shortly after disrupted by
fluctuations. This fluctuations-dominated regime corresponds to the pseudogap phase,
where signatures of superconductivity without long-range coherence are observed.

Finally, it is important to stress that the concept of BKT instability is, strictly
speaking, applicable only to two-dimensional neutral superfluids. The hopping across
the Cu2O layers, even though it is much smaller than in the plane, is still not negligible.
Additionally, the interaction with the electromagnetic field, key for superconductors,
has to be included in the description. For these reasons, the concepts presented so far
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can be applied only qualitatively, and a more comprehensive theory to fully capture
the properties of high-Tc cuprates is of utmost importance.

2.3 Superconducting signatures in THz reflectivity

The standard probes for equilibrium superconductivity rely on DC measurements of
the electrical resistivity or the magnetic susceptibility. Ultrafast experiments, however,
require AC probes with enough time resolution to follow picosecond-fast dynamics.
THz frequencies are the ideal range, offering enough time resolution without disrupting
the low-energy superconducting condensate.

Experiments are performed by generating short pulses with a carrier frequency
in the THz range (e.g., by optical rectification of femtosecond pulses) and guiding
them on the material. Using electro-optic sampling (EOS), measuring the reflected
electric field in the time domain, it is possible to retain the amplitude and phase
information of the frequency-dependent reflectivity without the need for Kramers-
Kronig reconstructions. Additionally, knowledge of the absolute value of the impinging
electric field is required to derive the sample reflectivity. This calibration can be
achieved by self-referencing the incoming THz pulse by having it reflect on a gold
mirror, whose response is assumed to be featureless and temperature-independent,
placed next to the sample. This practice is often experimentally challenging because,
since the EOS measures the pulse in the time domain, it requires a control of the
mirror position with an error lower than the pulse wavelength. In practice, it is
often sufficient to reference the reflection measured from the superconductor with that
measured just above Tc on the same sample. This differential reflectivity is then added
to the reflectivity of the normal state obtained by other experimental techniques, such
as FTIR spectroscopy. A similar scheme is adopted for the pump-probe experiments
presented in Subsection 2.4.2, where the reflectivity induced upon photo-excitation is
instead referenced to the non-driven state.

Figure 2.8 shows the optical properties measured along the c-axis of YBa2Cu3O6.5.
σ1 and σ2 represent the in-phase and quadrature conductivity, respectively, extracted
from the reflectivity with Fresnel relations. Upon superconducting transition, σ1, as-
sociated with dissipation, is strongly suppressed. All the lost spectral weight (whose
integral over all frequencies, according to sum rules, should be conserved) is expected
to be shifted to a delta peak at zero frequency, indicative of the DC infinite conduc-
tivity typical of superconductors. Since σ1 and σ2 are Kramers-Kronig related, the
presence of this peak in the former can be inferred from the ∼ 1/ω divergence that
appears in the latter. Furthermore, from Equation 1.9, the superfluid density ns can
be obtained from the prefactor of this divergence. Finally, since the measurements
are performed along the c-axis, capacitative coupling between the planes gives rise
to an additional mode at a finite frequency: the Josephson plasma resonance. In
YBa2Cu3O6.5, its eigenfrequency lies at around 1THz and is responsible for the edge
centered at the same frequency in the reflectivity.
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Figure 2.8: THz optical features of equilibrium YBa2Cu3O6.5 mea-
sured along the c-axis, in the normal state (T = 100K > Tc, red
curve) and in the superconducting state (T = 10K < Tc, blue curve).

Adapted from [16].

Two important remarks are needed at this stage. First, THz reflectivity is weakly
sensitive to changes at DC, which lie outside its bandwidth fbw. For example, instead
of a superconductor with delta peak-like conductivity, the photo-excitation could in-
duce a conductor with an atypically high scattering time τ ≫ 1/fbw and a correspond-
ingly narrow Drude peak of width ∼ 1/τ ≪ fbw. In this case, its optical properties
above the peak width would be identical to those of a superconductor. This ambi-
guity is illustrated in Figure 2.9 by showing the behavior of σ2 for a superconductor
(dashed blue line) and an enhanced conductor (solid red line) with scattering time τ .
The observation of a ∼ 1/ω diverging σ2 in THz reflectivity rather sets a lower limit
to the Drude scattering time of a metal to about 1 ps. This value is still remarkable,
especially considering that the same quantity in room temperature copper is about
two orders of magnitude higher.

Second, to explain the delta peak in the σ1 and corresponding ∼ 1/ω divergence in
the σ2, a Drude metal with infinite (or very high) scattering time is sufficient. This is
the same scenario leading to the derivation of the First London Equation 1.9, whereas
the Meissner effect appears only in the Second London Equation 1.11. Contrary to
a common misconception, no notion of the Meissner effect or other magnetic-related
properties is required to reproduce these optical features. For this reason, THz re-
flectivity can be considered analogous to transport measurements, and the ultrafast
magneto-optical techniques introduced in Chapter 3 are required to characterize the
magnetic properties of driven superconductors.
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2.4 Ultrafast control of superconductivity

Since the early days of ultrafast physics, the control of the superconducting order
(and other quantum phases) has been at the heart of this field. This research was
uncharted territory, especially considering that superconductivity is a state that is
almost exclusively described at equilibrium, and little is known regarding the laws
determining its dynamical onset.

2.4.1 Disruption of superconductivity with optical pulses

On the left of Figure 2.10, the experimental configuration of the study in [54] is shown.
A YBa2Cu3O7 sample is irradiated with optical light (λ = 800 nm), and the evolution
of its optical properties is tracked with a THz pulse in a pump-probe fashion. Both
pulses are polarized in-plane, and the pump is expected to strongly couple to the
electronic degree of freedom of the system.

The measured σ2 at equilibrium (red) and on the peak of pump-probe response
(blue) are shown in the middle panel. The base temperature is 10K, well below the
critical temperature Tc ∼ 90K. Upon photo-excitation, there is a clear quench of the
∼ 1/ω divergence, indicative of disruption of the superconducting state. As mentioned
in Section 2.3, from the prefactor of the divergence, it is possible to extrapolate the
superfluid density ns ∝ ωσ2(ω)|ω→0. The right panel shows this quantity for different
pump-probe delays, where the zero of the delay is referenced with the arrival of the
pump. It is clear that, upon excitation, the superfluid density is suddenly lowered and
then slowly recovers over a few picoseconds. The time constant of the recovery has
been shown to progressively increase from 1.5 ps at 4K to 3.5 ps near Tc, correlating
well with the closing of the superconducting gap.
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Figure 2.10: Disruption of superconductivity with optical pulses.
Data extracted from [54]. Material from [55].

2.4.2 Light-induced superconductivity

More recently, a series of experiments attempted to enhance the superconducting
state rather than disrupt it [14, 15, 16, 17]. In Figure 2.11 one such representative
experiment on YBa2Cu3O6.5 is shown. In this case, the drive lies in the MIR frequency
range and is resonant with the apical oxygen modes of the system (see Section 2.1.1).
As mentioned in Section 2.1, the position of these atoms is strongly related to the onset
of superconductivity. The pump is then polarized out-of-plane, and the THz optical
properties are measured along the same direction (see left panel). In the middle and
right panel, the same quantities as in Figure 2.10 are shown. In this case, however, the
base temperature is T = 100K > Tc. Upon photo-excitation, σ2 develops the ∼ 1/ω

divergence typical of equilibrium superconductors. The extracted superfluid density
ns increases from zero to a finite value and then decays back to the equilibrium value
over a few picoseconds. It is important to notice that the driven state does not possess
intrinsic rigidity, meaning it immediately decays back once the drive is over.
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Figure 2.11: Enhancement of superconductivity with MIR pulses.
Data extracted from [16]. Material from [55].
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Qualitatively similar transient optical features were also detected in other cuprate
compounds [6, 7, 8] and two families of organic superconductors: the charge-transfer
salt κ-(BEDT-TTF)2Cu[N(CN)2]Br (abbreviated as κ-Br) [9, 10] and the alkali-doped
fullerene K3C60 [11, 12, 13]. The proposed mechanism leading to light-induced su-
perconductivity depends on the system under study. For the single layer cuprates
La2-xBaxCuO4 and La1.675Eu0.2Sr0.125CuO4, the current evidence points towards a
“melting” of a competing order. In this scenario, the light selectively disrupts the
stripe order, which would otherwise suppress the superconducting Tc.

This mechanism is less applicable to YBa2Cu3O7-δ. Indeed, the charge order disap-
pears above 200K (see phase diagram 2.6), whereas the light-induced superconducting
features are present up to room temperature and above. Doping and temperature de-
pendencies [56] correlate this effect with the pseudogap phase. In this case, the role
of light might be to impart coherence to the fluctuating superconducting order that is
made unstable in the underdoped region of this compound. A similar scenario seems
to apply to K3C60 and κ-Br. In both systems, observing a vortex Nerst effect above
Tc indicates the presence of preformed superconducting pairs, which seems to be a
prerequisite for observing light-induced superconductivity.

At this point, two questions arise naturally: “How does driving the phonons lead
to superconductivity? ” and “Does it work with any phonon? ”. The first question is
more complicated because it is related to the microscopic mechanism in action, but
the second can be straightforwardly verified in experiments.

2.4.3 Pump frequency dependence

In order to understand which phonons were responsible for light-induced supercon-
ductivity, the pump frequency dependence of the response in YBa2Cu3O7-δ has been
carefully investigated in [16]. This study has been possible upon the development of
a high amplitude, narrowband band MIR source continuously tunable between 4THz

and 20THz [57].
In this study, the pump fluence and duration have been kept constant at a value of

8mJ cm−2 and 600 fs, respectively, corresponding to an electric field peak amplitude
of ∼3MV cm−1. On the top panel of Figure 2.12, the spectrally integrated dissipa-
tive component of the pump-probe differential response

∫
∆σ1(ω)dω is plotted. As

a comparison, the dashed line represents the same quantity computed at equilibrium
between the base temperatures of 100K and 200K. As expected, the different peaks
visible match with the IR-active phonon modes of the material (see Figure 2.3). As
figure of merit for the superconducting response, we take again the extrapolated super-
fluid density ns ∝ ωσ2(ω)|ω→0, which is plotted on the bottom panel of Figure 2.12.
In this case, the dashed line represents the value of the superfluid density measured
at equilibrium well below Tc, at 10K. Quite remarkably, signatures of superconduct-
ing transport are present only when driving the apical oxygen phonon modes. This
observation suggests the non-thermal origin of the effect since it shows how it is not
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enough to deposit energy in the system. Instead, the selective drive of specific phonon
modes is required.

Figure 2.12: Pump frequency dependence of optical properties of
YBa2Cu3O6.5. From [16].

2.4.4 Josephson plasmons amplification

A step forward in understanding the microscopic mechanism leading to the observed
THz properties in YBa2Cu3O6.48 was provided by a series of beautiful studies regard-
ing Josephson plasmons amplification in this same system [56, 58].

Instead of investigating the low-energy properties of the driven state with THz
light, these experiments measured the Second Harmonic Generation (SHG) of an
optical pulse reflecting off the sample. Since the material is centrosymmetric, this
should be zero by symmetry3.

The action of the MIR pump breaks this symmetry. Its frequency is tuned to
drive the same IR-active modes that led to the transient THz properties presented in
Subsection 2.4.2. The nonlinear coupling between the driven IR mode at frequency
ωIR, and the probe field at frequency ωpr, generates a hyper-Raman polarization

P (3)(2ωpr ± ωIR) ∝
∂χ(2)

∂QIR
QIR(ωIR)E

2
pr(2ωpr) (2.2)

If the probe beam duration τ is shorter than the driven mode period TIR =

2π/ωIR, for every pump-probe delay t, the probe interrogates a snapshot of the
3This argument is no longer valid when considering that, for a finite angle of incidence, the surface

boundary breaks this symmetry. However, this effect, known as Surface SHG, is ordinarily small and
can be neglected.
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medium where the inversion symmetry has been broken. In this limit, we can de-
fine an effective second-order susceptibility

χ
(2)
eff (t) :=

∂χ(2)

∂QIR
ei ωIR t (2.3)

oscillating at the frequency of the driven mode and generating a delay-dependent field
close to the second harmonic of the probe pulse 2ωpr. This field is then detected
in a heterodyned or homodyned configuration by, respectively, overlapping it or not
with a reference second harmonic beam generated before the sample. In the former
configuration, the time-delay-dependent intensity measured on the photodetector is
proportional to the amplitude of the driven modes, whereas in the latter to its square.
Depending on the intensity of the reference beam, both contributions can be present
at the same time.
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Figure 2.13: IR-active modes coherently driven by the pump ob-
served with SHG. As the driving field is increased, an amplification of

the phonon and plasmon modes is observed. From [56].

On the left side of Figure 2.13, the time-dependent effective second harmonic is
plotted for three different driving fields: 300 kV cm−1, 500 kV cm−1 and 7MV cm−1.
The plots on the right show the corresponding Fourier transforms. For low values of
the driving fields, only the phonon modes resonant with the pump are observed. As the
amplitude of the field is increased, different IR-active modes at lower frequencies, of
either phononic or electronic nature, appear. Of particular interest are the low-energy
electronic modes, which are associated with tunneling between the superconducting
CuO2 layers and known as Josephson plasmons.

The intensity dependence of the conversion from high-energy phonons to low-
energy plasmons suggests a nonlinear coupling between modes similar to the one
described by Equation 2.1. As interaction Hamiltonian Vi, two choices are possible,
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corresponding to two different pathways for this conversion. The first possibility
corresponds to a three-way mixing between one driven phonon QIR and pairs of intra-
and inter-layer Josephson plasma polaritons at finite and opposite momenta J+qJP

P1

and J−qJP
P2

V 3w
i ∝ q2xQIR J

+qJP
P1 J−qJP

P2

where the plasmons are excited with a finite in-plane momentum qx, which is de-
termined by energy and momentum conservation. Alternatively, the coupling to the
plasmons can be explained by a four-way mixing between the two apical phonon
modes (see Subsection 2.1.1), resonantly excited by the MIR pump, and pairs of finite-
momentum interlayer Josephson plasma polaritons. The interaction Hamiltonian, in
this case, reads

V 4w
i ∝ (QIR1 +QIR2)

2 J+qJP
P J−qJP

P

These two scenarios, which are not distinguishable in the measurements presented so
far, can be disentangled by driving the system with two MIR pulses instead of one.
By controlling their relative delay, it is possible to investigate the coherent response
of the system to different excitation colors. This approach, closely related to 2D spec-
troscopy, has proven that the mechanism responsible for the observed amplification of
Josephson plasmons is based on four-wave mixing [58].
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Figure 2.14: Temperature dependence of the Josephson plasmon
amplification for selected dopings. From [56].

In the proposed theoretical model [59], this effect arises as an amplification of
pre-existing fluctuations of the Josephson plasmons polaritons. Experimental obser-
vations corroborate this picture. Figure 2.14 shows the temperature dependence of
the amplitude of the effect, performed on two different dopings: YBa2Cu3O6.48 and
YBa2Cu3O6.65. Remarkably, they exhibit a mean-field behavior scaling with the re-
spective pseudogap temperature T ∗ (see Section 2.2).
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Chapter 3

Ultrafast Optical Magnetometry

The core of this thesis work is the development of the Ultrafast Optical Magnetom-
etry (UOM) experimental technique. The idea of sampling the magnetic field with
light pulses to track magnetic dynamics is not new, and in some cases, it has also
been applied to the study of superconductors [60, 61, 19]. In these studies, a laser
pulse is propagating through a Faraday-active material, which acts as detector. The
polarization rotation of the beam encodes the magnetic field inside the detector in
the instant that the pulse is traversing it. By delaying the probe pulse with respect
to the pump pulse that triggers the dynamics, it is possible to reconstruct the time
evolution of the magnetic field.

However, the time resolution is limited by the type of detector used, whose prop-
erties determine the onset of the Faraday response. All the measurements performed
so far on superconductors have been carried out with ferrimagnetic detectors, with a
time resolution of order ∼100 ps. This resolution is two orders of magnitude slower
than the typical dynamics of light-induced superconductivity, which develops over
time scales of order ∼1 ps (see THz measurements in Subsection 2.4.2). On the other
hand, diamagnetic detectors have proven effective at following THz dynamics [62].
Their use comes at the expense of a significantly lower sensitivity, requiring more
careful experimental techniques to suppress all other spurious contributions that may
conceal the magnetic signal.

3.1 Origin of the Faraday effect

In the following section, we discuss the origin of the Faraday effect1. We consider a
plane wave propagating along z and linearly polarized along x. On the negative half
of the z-axis, the medium is vacuum, and the wave electric field can be expressed as
the superposition of two circularly polarized components

E(z, t) = E0exe
i(ωt−kz) = E0 [⟲⟲ + ⟳⟳ ] ei(ωt−kz) z < 0 (3.1)

1To understand magneto-optic sampling, knowing what causes the Faraday effect is not needed.
It is sufficient to believe the experimental observation that the polarization rotation is linear in
a magnetic field, and this effect is stronger in some materials than others. However, knowledge
regarding the physical origin of this effect can help design more sensitive and faster detectors.
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where the right circular polarization (RCP) and left circular polarization (LCP) basis
vectors are defined as

⟲⟲ :=
1

2
(ex + iey) ⟳⟳ :=

1

2
(ex − iey) (3.2)

At z = 0, the light enters a medium with a magnetic circular birefringence, that is a
difference between the refractive index for the RCP and LCP components, indicated
as n⟲ and n⟳, respectively. We ignore Fresnel reflections, which are more relevant
to the magneto-optic Kerr effect (MOKE). After propagation over a distance z, the
RCP component picks up a phase delay δ relative to the LCP one equal to

δ(z) =
2π(n⟲ − n⟳)z

λ
(3.3)

The electric field at a distance z inside the medium reads

E(z, t) = E0

[
⟲⟲ (z, t)e−iδ(z)/2+ ⟳⟳ (z, t)e+iδ(z)/2

]
ei(ωt−

2πn
λ
z) (3.4)

where n now represents the average refractive index. Transforming back to the linear
basis with relations 3.2 yields

E(z, t) = E0

[
cos

δ(z)

2
ex + sin

δ(z)

2
ey

]
ei(ωt−

2πn
λ
z) (3.5)

The polarization state obtained is still linear. Upon exiting the medium of length L,
the polarization plane is rotated, compared with the initial one 3.1, by an angle

θF =
δ(L)

2
=
ωL

2c
(n⟲ − n⟳) (3.6)

Linear birefringence in the crystal, so far neglected, can introduce a phase delay be-
tween light linearly polarized along different directions instead, introducing ellipticity
in the beam. Furthermore, circular dichroism can have similar effects by attenuating
differently right and left circular polarized light. We neglect both these effects for the
moment.

Becquerel gave a classical justification for the difference in refractive index (n⟲ −
n⟳). He considered that an applied magnetic field affects the electrons responsible for
the refractive index by setting them in a circular motion at the Larmor frequency

ωL =
qe

2mec
B (3.7)

In their reference system, the incoming electric field appears red-shifted for circular
co-rotating waves and blue-shifted for circular counter-rotating waves. This Doppler-
like frequency shift for the electrons accounts for the difference in refractive index for
RCP and LCP light. To first approximation, the frequency-shifted refractive index
can be expressed as

n⟲/⟳ = n(ω ± ωL) ≈ n(ω)± dn

dω
ωL (3.8)
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which, for typical magnetic fields, implies a relative shift much smaller than unity.
Plugging expressions 3.7 and 3.8 back into 3.6 gives

θF = − qeω

2mec2
dn

dω
BL =

qeλ

2mec2
dn

dλ
BL (3.9)

where the last expression is written in terms of the vacuum wavelength λ := 2πc/ω. As
confirmed by experiments, the Faraday rotation is then proportional to the magnetic
field and the length of the medium. The proportionality constant, and figure of
merit for the sensitivity of magneto-optic detectors, is the Verdet constant V . In the
Becquerel derivation, it is equal to

V =
qeλ

2mec2
dn

dλ
(3.10)

This derivation applies qualitatively well for diamagnetic materials, where the
Larmor precession assumed here is also at the origin of the material magnetization.
Faraday rotation and magnetization are indeed closely related. In practice, material-
dependent multiplicative or additive factors are included in the Verdet constant in 3.10
to account for deviations in experiments. These can be interpreted in terms of a
renormalization of the mass of the electrons me in band theory. This derivation fails
completely for ferro- and ferrimagnetic materials, where a full quantum description is
required to even qualitatively capture the magnetization of the medium.

3.1.1 Ferrimagnetic, diamagnetic, and paramagnetic detectors

When designing an experiment, a number of factors have to be taken into account for
an optimal choice of Faraday detector. Ferrimagnetic crystals, such as Bi:Y3Fe5O12,
EuS, or EuSe, offer by far the highest sensitivity (V ∼ 105 rad) [18, 61]. Due to the
presence of ferrimagnetic domains, their sensitivity can have strong spatial gradients.
Their main drawback is the limited time resolution, down to 100 ps at best, due to the
presence of low-lying magnetic excitations (e.g. ferromagnetic resonance) at sub-THz
frequencies. For this reason, they are best suited for equilibrium or slow-dynamics
measurements.

Diamagnetic II-VI and III-V semiconductors such as ZnSe, ZnTe, and GaP have
two to three orders of magnitude smaller sensitivity than ferrimagnetic materials.
For example, in Figure 3.1, the Faraday angle of an 800 nm laser pulse traversing
in double pass a 70 µm-thick GaP crystal at 100K is plotted as a function of an
external magnetic field. These conditions are relevant for the experiments presented
in Chapter 4. As expected, the dependence is linear, and from the slope of the curve,
the Verdet constant of the material is estimated as V ∼ 120 radT−1m−1, comparable
with literature values [63]. This significantly lower Verdet constant imposes severe
limitations in experiments. First, the crystal thickness needs to be significant to
accumulate a higher Faraday angle, with negative repercussions on the spatial and
temporal resolutions (see Sections 3.3 and 3.4). Second, due to the weak signal,
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great care must be invested into suppressing all other spurious contributions that may
overwhelm the small Faraday rotation (see Subsection 3.2.3). The great advantage of
diamagnetic detectors lies in their fast response. Careful studies with THz pulses in
GaP detectors showed a response time lower than ∼ 1 ps [64, 62]. Therefore, despite
the lower sensitivity, they are the preferred choice in the study of magnetic fields
changing over ultrafast timescales.
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Figure 3.1: Faraday rotation measured in a 70 µm-thick GaP crys-
tal, in double pass, for different values of the external magnetic field.

Material from [55].

Paramagnetic detectors, such as Terbium Gallium Garnet (TGG), Gadolinium
Gallium Garnet (GGG), Cd1-xMnxSe (CMS) or Cd1-xMnxTe (CMT) lie somewhere in
between ferrimagnetic and diamagnetic detectors. Due to the presence of diluted mag-
netic ions, their magnetization can be significantly stronger than diamagnets, yielding
Verdet constants up to two order magnitudes higher in absolute value. This difference
is evident when comparing the Faraday rotation measured in two paramagnetic crys-
tals with that of a standard diamagnetic detector such as ZnTe (see Figure 3.2). For
the 800 nm wavelength used, the Verdet constant is seen to be comparable (TGG) or
significantly higher (CMT), on top of being of opposite sign. Furthermore, since they
do not present magnetic domains, their Faraday rotation is spatially flat and reliably
controllable with external fields. They are, therefore, frequently used in applications
as Faraday isolators in conjunction with a permanent magnet.

Their time response is, however, debated. For example, theoretical studies on
CMT predicted that its time response is set by spin-spin interaction [65], which for a
Mn doping x > 0.5 should be ∼ 1− 10 ps. A subsequent experimental study claimed
the magneto-optical tracking of a short pulse with ∼ 1 ps time resolution [66, 67].
However, further polarization studies showed how the probe beam was rather sampling
the electric field component of the pulse, with a negligible magnetic sensitivity at those
high frequencies [68]. Electric and magnetic field sampling can be discerned based on
symmetry, as shown in Subsection 3.2.4. This initial mistake underscores the strong
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frequency dependence of the Verdet constant in ordered magnetic media and the
importance of polarization analysis in magneto-optic sampling.
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Figure 3.2: Comparison of Faraday rotation in CMT and TGG para-
magnetic crystals at 800 nm, with that of the diamagnetic ZnTe.

3.1.2 Frequency dependence of the Verdet constant

From the expression 3.10, we expect the Verdet constant to dramatically increase
close to an absorption edge, where the refractive index abruptly changes from positive
to negative. This feature is indeed observed in experiments. However, in that same
frequency range, the strong absorption of light, which lowers the transmitted signal,
and the strong circular dichroism, which makes it elliptical, are often detrimental to
measurements. These two opposite tendencies are summarized in Figure 3.3. The
polarization rotation and transmission of a continuous-wave (CW) linearly polarized
beam through a 300 µm-thick GaP crystal are characterized for three different wave-
lengths. The lowest (λ = 532 nm) presents the highest Verdet constant, but only 0.1%
of the light is transmitted. For the other two wavelengths (λ = 635 nm and 785 nm),
the absorption is already negligible, but there is still a substantial difference in their
Faraday rotations. Indeed, applying Equation 3.10 to a Lorentz model describing the
medium, close to resonance the Verdet constant scales as ∼ (λ0 − λ)−1, where λ0 in
GaP is at 553 nm, whereas the absorption scales as ∼ (λ0 − λ)−2. The latter de-
cays faster than the former. In practice, the ideal implementation consists of a probe
frequency close enough to the absorption edge to benefit from the enhanced Verdet
constant but far enough to avoid significant absorption.

3.2 Magneto-optic sampling

Magneto-optic sampling (MOS) is the magnetic analogous of the better known electro-
optic sampling (EOS). As the name suggests, this technique encodes the instantaneous
value of the magnetic field in the probe beam polarization state. The latter is linearly



52 Chapter 3. Ultrafast Optical Magnetometry

0.5 1.0 1.5
External B-field (mT)

−5

−4

−3

−2

−1

0

Fa
ra

da
y 

ro
ta

tio
n 

(μ
ra

d/
m

m
)

785nm
635nm
532nm

10
−4

10
−3

10
−2

10
−1

10
0

Transm
ission throught a 300μm

 slab

500 600 700 800
Wavelength (nm)

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 V
er

de
t c

on
st

an
t

Figure 3.3: Faraday rotation and transmission measured in GaP for
three different wavelengths. The Verdet constant increases closer to
the absorption edge λ0 = 553 nm, whereas the transmission signifi-

cantly decreases.

proportional to the former by virtue of the Faraday effect discussed in Section 3.1. To
maximize the sensitivity of the technique, it is advantageous to sample the magnetic
field inside a medium with a strong Verdet constant, referred to as “detector”. The
small contribution to the polarization rotation due to air is negligible. Therefore, the
magnetic field is sampled only in a region delimited by the detector. This detector is
usually placed in proximity to the sample to study near-field effects since a free prop-
agating wave would be more readily studied by sampling its electric field component
with EOS.

In some cases, the polarization rotation can be measured directly in the sample
instead of a separate detector. This arrangement offers an experimentally simpler
configuration, especially advantageous for thin films since it lowers the effect of de-
magnetizing fields (see Subsection 1.1.5). It is, however, more ambiguous, especially
in pump-probe experiments, where it is much harder to disentangle changes in mag-
netic field from those to the Verdet constant of the material. Furthermore, having a
separate detector is required in the study of superconductors since they do not present
a Faraday effect due to the time-reversal symmetric Meissner state.2

3.2.1 Reflection and transmission configurations

In experiments, two main configurations are customarily employed. These are shown
in Figure 3.4. They differ in whether the outgoing sampling beam exits the crystal on

2This statement is correct in the bulk of type-I superconductors, where the field is completely
screened. Shielding currents at the edges or vortices in type-II superconductors break this symmetry
and can give rise to a finite Verdet constant. The magnetic field associated with the superconducting
diamagnetic response discussed in the following sections has the same origin.
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the same or opposite side as the incoming one. If the Faraday rotation is measured
directly in the sample and not in a separate detector, the most convenient arrangement
is in transmission. This arrangement allows the beam to enter the crystal at normal
incidence and does not require any precise alignment between the sample and the
detector. In order to filter out undesired reflections that may lower the magnetic
contrast of the measurement, a wedge is often introduced in the sample. As discussed
previously, this configuration is often ambiguous or unsuited for some experiments.

ReflectionTransmission

incoming
outgoing

incoming

outgoing

detector

sample

sample

Figure 3.4: Transmission and reflection configuration for MOS. The
presence of a wedge allows for the filtering of undesired reflections.

Alternatively, in the reflection geometry, the probe beam traverses twice the de-
tection crystal by getting reflected from its back surface. In the reference frame of
the propagating beam, both the accumulated Faraday rotation and the direction of
the magnetic field are reversed upon reflection. Consequently, the additional Faraday
rotation in the second pass adds to that acquired in the first, yielding twice the po-
larization rotation compared to the transmission case. The great advantage of this
configuration is that it requires optical access only on one side of the detector and
allows the placement of the sample on the other. Similarly to the previous case, a
wedge allows filtering out undesired reflections.

Anti-reflection and high-reflection coatings can significantly increase the amount
of probe light collected, especially in the reflection geometry where most of the light
is typically lost in undesired reflections. Ideally, this solution makes the wedge super-
fluous. This simpler design comes, however, with great risks. Dielectric coatings may
introduce significant strain upon cooling, which can introduce strong birefringence
and affect the polarization state of light in a non-controllable way. Metallic coatings,
due to the presence of free electrons, build up eddy currents in response to magnetic
fields. As a result, they behave as low-pass filters for the magnetic signal. Ultimately,
the use of coatings depends on the application at hand. None were used in this thesis
work.

Finally, it is important to note that, despite the confusion that their name may
cause, both reflection and transmission configurations rely on the Faraday effect and
not on the magneto-optic Kerr effect. Indeed, in both cases, the polarization rotation
accumulated from the beam happens by propagating in transmission through the
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medium. In comparison, the reflection from the back surface has negligible effects on
the polarization state of the sampling beam.

3.2.2 Polarization analysis

In order to analyze the Faraday polarization rotation, different methods are available
(see [69], Section 4.2). One of the most sensitive relies on balanced detection. In this
configuration, the Faraday rotation accumulated in the detection crystal is measured
by splitting the beam into two orthogonal components with a Wollaston prism and
measuring their intensity difference (see Figure 3.5).

probe beam
Wollaston prism

I0

A

B

+
-

Balanced detector

polarization state

Figure 3.5: Polarization analysis for MOS. The Faraday angle θF is
quantified by splitting the beam into two orthogonal components and

measuring their intensity difference.

The incoming beam, of intensity I0, has its polarization referenced with a polarizer
placed before the detector. Its polarization lies along the diagonal of the Wollaston
prism so that, without the detector, the beam would be equally split into the two
orthogonal branches, which we call A and B, and their difference would be zero. For
this reason, this arrangement is called quasi-balancing configuration. By adding the
detector, the Faraday rotation θF changes the balance between the two branches so
that

IA = I0 cos
2
(π
4
− θF

)
IB = I0 cos

2
(π
4
+ θF

)
(3.11)

For θF ≪ 1, which is the typical case in experiments, their difference can be
expressed as

IA − IB = I0

[
cos2

(π
4
− θF

)
− cos2

(π
4
+ θF

)]
≈ I02θF (3.12)

This quantity is normally measured by a balanced photodetector, which computes this
difference electronically with great precision, optionally with a gain G. The balanced
detector also outputs the sum of the two channels, equal to I0, which can be used to
normalize the difference signal 3.12. This way, the output signal is independent of
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intensity fluctuations on the probe signal

IA − IB
IA + IB

≈ 2θF (3.13)

For probe polarization-dependent measurements, the polarization state of the in-
coming light can be controlled by rotating the polarizer placed before the detector.
In these cases, the light entering the polarizer can be set circular with a quarter-wave
plate to have a flat intensity profile for every polarization. Remaining in the quasi-
balanced configuration would require to rotate the Wollaston prism for every incoming
polarization. This solution is not practical because it affects the beam alignment past
it. Instead, a half-wave plate with its major axis aligned at half the angle of the
incoming polarization and placed before the Wollaston prism can be used to set the
light polarization back to the quasi-balancing configuration. The joint half-wave plate
and Wollaston prism can be thought of as splitting the light along two new orthogo-
nal axes, rotated with respect to the original configuration by the same angle as the
incoming polarization.

In reality, the Faraday effect also introduces a small ellipticity in the probe beam
due to circular dichroism, which has so far been neglected. Strain in the detection
crystal is also a source of ellipticity, which is important to monitor because it can
compromise the assumption of linear polarized light required for MOS. For these
reasons, measuring the probe beam ellipticity is also highly desirable. This inspection
can be achieved, similarly to EOS, by placing a quarter-wave plate between the half-
wave plate and the Wollaston prism, with its major axis aligned along the diagonal
of the Wollaston prism. The joint effect of the quarter-wave plate and Wollaston
prism is to split the beam in ratios proportional to its right and left circular intensity
components. This configuration is not sensitive to Faraday rotation since the latter
predominantly adds a relative phase between the two circular components. Instead,
it is sensitive to ellipticity, which originates from a phase delay between the linear
components.

3.2.3 Suppression of spurious contributions

The balanced detection scheme introduced in the previous section routinely allows
measuring Faraday angles with a precision of ∼ 10−8 rad. In order to push its sensi-
tivity even further, numerous technical measures are possible. They rely on removing
all the possible sources of polarization noise from the measurement, either random or
systematic.

A significant improvement is obtained when performing the experiment in a vac-
uum chamber rather than a simple cryostat. This approach is beneficial when applying
an external field with a coil. The reason is that the cryostat windows also possess a
Verdet constant, and if they are close to the coil, they can contribute to the Faraday
rotation. This source of noise is particularly troublesome because it appears at the
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same modulation frequency of the coil. Furthermore, when subject to vacuum pres-
sure, the windows can develop significant strain-induced birefringence, adding to the
polarization noise of the probe beam.

Similarly, another source of polarization noise is due to the mirrors between the
reference polarizer and the Wollaston prism, respectively setting and analyzing the
beam polarization state. In this case, pointing noise can change the angle of incidence
of the beam, which is converted into ellipticity noise. All these contributions can be
removed by placing the polarizer and Wollaston prism inside the vacuum chamber
directly before and after the detection crystal, as shown in Figure 3.6. This allows to
clearly define the polarization state of the light prior to MOS and analyze it before
the mirrors can influence its polarization state. The intensity noise of the light source
is less of a problem since, as noted above, the intensity is monitored by the balanced
detector and is used to normalize the balancing signal.

polarizer

detector

WollastonPrism

window

to balanced
detection

light
source

window

half-waveplate

vacuum
chamber

Figure 3.6: Experimental configuration to minimize spurious contri-
butions to the Faraday rotation. The polarizer, setting the incoming
polarization, and the Wollaston prism, analyzing it, are placed immedi-
ately before and after the detection crystal, respectively. The entrance
and exit windows are placed away from the detector location, where

the magnetic field is negligible.

In pump-probe experiments, there is another significant influence to the polariza-
tion state of the beam that is important to take into account. Placing the detection
crystal in proximity to the sample often causes the pump beam to interact with the
detector as well. The high intensity of the pump beam can strongly influence MOS
even if its wavelength falls in the transparency window of the detection crystal. This
influence is most evident when the two beams are overlapped both spatially and tem-
porally in the detector. Due to the electro-optic Kerr effect, the pump beam induces a
strong transient birefringence, which is a source of ellipticity for the probe beam. The
Faraday rotation and birefringence then happen in parallel, significantly complicating
the analysis of the polarization state of the outgoing beam.
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As discussed in Subsection 3.2.5, these contributions could, in principle, be ac-
counted for by analyzing the full polarization state of the beam. This approach is,
however, made unpractical when the spurious contributions of the pump beam are
orders of magnitude stronger than those of the pump-induced Faraday rotation. In
these cases, it is wiser to remove the effects of the pump altogether by preventing it
from entering the detection crystal. If the two beams have a different wavelength,
this can be achieved by a frequency filter. Dielectric coatings are, in principle, the
ideal solution, but they may induce strain, as mentioned previously. Alternatively, a
different material that selectively lets the probe through but reflects the pump can
be used to cover the detector. This solution was the one adopted for the dynamical
measurements presented in Chapter 4, where the 15 µm wavelength pump was filtered
out by a thin slab made of sapphire, whose Reststrahlen band covers completely.

Finally, modulation of the signal at high frequency helps remove all the noise
due to slow drifts in the experimental apparatus. When measuring responses due to
an applied magnetic field, this can be periodically inverted to subtract all magnetic
field-even contributions to the polarization rotation. In pump-probe measurements,
the high-frequency differential signal helps filter the noise further. As an example,
Appendix C presents the data acquisition scheme employed for this thesis work.

3.2.4 Polarization dependence

The Faraday effect arises as a consequence of a magnetic field applied parallel to the
propagation of the electromagnetic wave. For this reason, it possesses axial symme-
try with respect to the same propagation direction, and the Faraday rotation θF is
independent of the polarization plane of the incoming light. In contrast, the Pockels
effect manifests as a transient birefringence along an axis perpendicular to the light
propagation direction. Consequently, the amount of ellipticity it introduces is depen-
dent on the initial polarization state of the beam. In a configuration such as the
one depicted in Figure 3.5, designed to sample Faraday rotations, the ellipticity can
produce a signal that can be mistaken for a polarization rotation. This spurious con-
tribution is of higher order compared to the Faraday rotation (see Equation 3.15), so
it is normally negligible. However, if the Verdet constant is negligible or the magnetic
field is much smaller than the electric field, the ellipticity contribution can become
significant. In these cases, confusion can arise regarding the origin of the measured
signal, as outlined in Subsection 3.1.1. This situation is particularly relevant for ul-
trafast phenomena since the Verdet constant at THz frequencies can be significantly
different compared to DC and even completely vanish. In these cases, the Pockels
contribution may become dominant.

The ellipticity contribution can be minimized by employing detectors with an
exposed surface along crystal cuts that do not present a Pockels effect by symmetry.
For this thesis work, the choice was the (100) plane of GaP. Nevertheless, finite angles
of incidence, wedges, or alignment errors can contribute to deviating from this ideal
configuration.
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For this reason, it is good practice in experiments to ensure that the polarization
rotation is constant when rotating the incoming polarization. This “sanity check” can
be performed by rotating the polarizer responsible for setting the polarization before
the detector. In Figure 3.7, two different cases are compared. The first represents the
expected dependence if the polarization rotation is due to the Faraday effect. The
second shows what would be obtained if the measured signal is instead due to the
Pockels effect, i.e., a sampling of the electric field similar to EOS. In this case, the
signal inverts sign multiple times during a full rotation of the incoming polarization.
The absence of this distinctive feature is a strong indicator in favor of MOS, confirming
that the effect indeed originates from a sampling of the magnetic field.
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Figure 3.7: Comparison of the balancing signal measured in the
presence of Faraday or Pockels effect as a function of input polarization

θ. Material from [55].

3.2.5 Reconstruction of the full polarization state

As discussed in the previous sections, strain, circular dichroism, pump-induced Kerr
and Pockels effects, non-ideal mirrors, and more can all contribute to introducing ellip-
ticity in the probe beam. These non-idealities dramatically complicate the analysis of
Faraday rotations, especially when the signal is small. In Section 3.2.3, we introduced
a technique aimed at removing all these spurious contributions. In the following, we
show how to characterize all those left to extract the Faraday rotation required for
MOS.

We start by assuming that, in the detection crystal, the probe beam is both subject
to polarization rotation and ellipticity without specifying its origin for the moment.
The first is modeled by δ, the phase delay between circularly polarized components,
and the latter by η and α, the phase delay between the linear components and principal
axis of the birefringence, respectively. Up to now, we introduced a single observable,
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shown in Equation 3.13, and therefore, it is not possible to solve the model in a closed
form since it has three unknowns.

In order to extend the number of observables, it is possible to alternate the polarity
of the applied field and measure both the difference between the two signals and their
average. The first quantity, which we call Normalized Magnetic (NM), is mostly
sensitive to effects that invert with the applied field, such as the Faraday effect, and
the second, which we call Normalized Balancing (NB), is mostly sensitive to effects
that do not invert with the applied field, such as birefringence. By denoting the
Normalized difference in Equation 3.13 as ND±, where the sign indicates the polarity
of the applied field, we have

NM =
ND+ −ND−

2
NB =

ND+ +ND−

2
(3.14)

Furthermore, in order to increase our sensitivity to ellipticity, we perform the
measurement both with and without a quarter-wave plate, placed before the Wollaston
prism and with a principal axis along its diagonal (see Subsection 3.2.2). We indicate
the respective observables obtained in this ellipticity-sensitive configuration with an
additional Q. With these additions, we have four independent observables: NM, NB,
NBQ, and NMQ. The latter is often zero since it is sensitive to ellipticity due to
magnetic fields. We ignore it to simplify the expressions, but it should be included
when circular dichroism is not negligible.

We now express the polarization state and optical elements with Jones formalism
(see [69]). The input vector |IN⟩ is circularly polarized, as

IN⟩ = 1√
2

[
1

−i

]

This beam interacts with the following optical elements (in this order):

• a polarizer setting the incoming polarization linear and at an angle θ0 with respect
to the horizontal

POL =

[
cos θ20 cos θ0 sin θ0

cos θ0 sin θ0 sin θ20

]

• the detector, whose Jones matrix can be obtained by composing that for a circular
phase retarder δ with that for a linear phase retarder η with principal axis at α
with respect to the horizontal

DET = e−
iη
2

[
cos2 α+ eiη sin2 α (1− eiη)e−iδ cosα sinα

(1− eiη)eiδ cosα sinα sin2 α+ eiη cos2 α

]

• a half-wave plate with principal axis at θ0/2 with respect to the horizontal

HWP = e−
iπ
2

[
cos2 (θ0/2)− sin2 (θ0/2) 2 cos (θ0/2) sin (θ0/2)

2 cos (θ0/2) sin (θ0/2) sin2 (θ0/2)− cos2 (θ0/2)

]
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• optionally, a quarter-wave plate with principal axis at π/4 with respect to the
horizontal

QWP = e−
iπ
4

[
(1 + i)/2 (1− i)/2

(1− i)/2 (1 + i)/2

]

• a Wollaston prism placed with its diagonal along the horizontal, so that the A and
B beams are composed of the projections along ±π/4, respectively

WOLA =
1

2

[
1 1

1 1

]
WOLB =

1

2

[
1 −1

−1 1

]

The Jones vector in the two branches can then be obtained as

|A⟩ =WOLA (× QWP )×HWP ×DET × POL× |IN⟩

|B⟩ =WOLB (× QWP )×HWP ×DET × POL× |IN⟩

Finally, the balanced detector BDP measures the intensity of each branch and gives
as output their normalized difference

BPD(A,B) =
⟨A|A⟩ − ⟨B|B⟩
⟨A|A⟩+ ⟨B|B⟩

To model the change in polarity of the magnetic field, we reverse the sign to the
circular retardation δ → −δ. The quarter-wave plate is added only for the ellipticity
measurements.

By solving this model and computing the relevant quantities defined in 3.14, we
obtain the relations linking the three observables to the three unknowns, expressed as
a function of the input polarization θ0.

NM = +2δ
sin (

√
δ2 + η2)√

δ2 + η2
(3.15)

NBQ = −2η
sin (

√
δ2 + η2)√

δ2 + η2
sin(2(α− θ0)) (3.16)

NB = −2η2
sin2 (12

√
δ2 + η2)

δ2 + η2
sin(4(α− θ0)) (3.17)

A few comments are of order at this stage. Relation 3.15 for NM is a generalization
of expression 3.13, valid outside the small angle approximation and in the presence of
birefringence. The latter reduces the absolute value of the measured signal, but NM
remains independent of the input polarization. Therefore, in experiments, aligning
the input polarization along one of the principal axes of the birefringence does not
help in reducing its effects, as one may naively expect.3 Relation 3.16 for NBQ is the

3For example, any linear wave plate, despite possessing a significant linear retardation, does not
influence the polarization state of a beam whose polarization is aligned along one of its principal
axes.
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(static) birefringence counterpart of the previous expression. For small angles and
circular retardation, it is indeed linear in linear retardation. In this case, by changing
the input polarization, maxima and minima are observed periodically depending on
the birefringence principal axis. Finally, relation 3.17 for NB is similar to the previous
one but is instead proportional to the square of the linear retardation. It is, therefore,
much less sensitive to it. Also, its periodicity with input polarization is doubled with
respect to NBQ.

As a remark, it is important to remember that the current simplified analysis
leading to the relations 3.15-3.17 relied on the assumption that the linear retardation
in the detection crystal does not invert with the applied magnetic field, whereas the
circular retardation does. This assumption is based on the physical interpretation
that the former is due to pump-induced or static birefringence in the detection crystal
and the latter to a magnetic field-induced magnetization. This situation is valid for
the vast majority of applications. However, it is not in the presence of spontaneous
magnetization, such as in ferromagnets, or of an inverting electric field, for example,
linked to the induced magnetic field. In this case, further observables must be included
to account for both inverting and non-inverting parameters. For instance, it is pos-
sible to perform a Fourier analysis of the observables with the incoming polarization
angle. Alternatively, it is possible to add electric field measurements with EOS in a
separate detector close to the detector for MOS or in the same detector, presenting
both Faraday and Pockels effect [70].

Finally, for cases in which δ ≪ η, it is often needed to include further non-idealities
in the analysis. These can include mirror imperfections, finite angles of reflection,
non-ideal or misaligned half and quarter-wave plates, finite extinction ratios of the
polarizer and Wollaston prism, and not perfectly matched gain in the balanced de-
tector. Most of these imperfections can be characterized before the experiment and
included in the model. In particular, polarization dependencies are useful in disentan-
gling different sources of non-idealities manifesting with different periodicity in input
polarization. However, the introduction of more complicated optical elements requires
the use of numerical methods in order to solve the model, which makes the physical
interpretation more abstract.

3.3 Spatial resolution

Contrary to EOS, MOS is almost exclusively employed in the near-field. In this
configuration, it is crucial to retain a good spatial resolution in order to resolve small
features such as magnetic domains or superconducting vortices. For this task, there
are two characteristic lengths to consider: the lateral and the vertical resolutions,
which determine the smallest magnetic feature transversal and longitudinal to the
propagation of the beam, respectively, that can be resolved.

The geometrical dimensions of the detector determine the vertical resolution. The
Faraday angle is indeed the result of an accumulation of the Faraday rotation along
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the thickness of the medium. This can be expressed mathematically by writing the
Faraday equation in its differential form

dθF (z) = V Bz(z) dz (3.18)

where we assumed a constant Verdet constant V inside the medium and Bz is the
component of the B-field along the propagation of the beam. Then, the total Faraday
rotation is obtained as an integral over the thickness L of the detector

θF = V

∫ L

0
Bz(z) dz = V B̄zL (3.19)

where B̄z is the average of the magnetic field along the detector thickness.
For the reflection configuration (see Subsection 3.2.1), the integral 3.19 has to be

performed in both its passes through the detector, and the total rotation is twice
what is measured in the transmission configuration. For finite angles of incidence β,
two modifications are required. First, the total distance traversed inside the detection
crystal has to be modified as L→ L/ cos (β/ndet), where ndet is the relative refractive
index from outside to inside the medium, and we computed the internal angle with
Snell’s law (for small angles for simplicity). Second, the sampled component of the
magnetic field is no longer perpendicular to the plane of the detector, but it has an
angle instead. These corrections are usually minor and can often be neglected.

The transversal resolution is instead limited by the properties of the beam and the
detection scheme. In a confocal configuration, the beam is focused in the detection
crystal and then directed towards a photodiode. A magnetic field map can then be
obtained by scanning the position of the probe beam relative to the detector4. In
this case, the lateral resolution is determined by the region to which the beam is
confined in the detection crystal. In Figure 3.8, the case for the reflection geometry
is presented. For normal incidence, this corresponds to the spot size of the beam D0.
For a finite angle of incidence β, the lateral area explored by the beam corresponds
to D = D0/ cosβ.

For visible light, the typical lateral resolution obtained by these means is of order
50 µm, which can be further increased by improving the quality of the focus and
reducing its dimensions.

Alternatively, a magnetic field map can be obtained by wide-field techniques,
where, usually, a much larger beam is driven in the detector. The polarization spa-
tial profile of the probe beam is then analyzed using one or multiple CCD cameras
positioned in the detector image plane. In this case, the resolution is given by the
pixel size times the magnification of the optical system. This approach offers a better
resolution, of the order of a few micrometers, and the possibility of capturing a whole

4In experiments, it is not convenient to move the probe beam since then the following optics
should account for this change. Moving the detection crystal, sample, and pump beam, if present,
all by the same amount is usually simpler.
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Figure 3.8: Spatial resolution in MOS.

map in a single shot. These advantages come at the expense of a much more compli-
cated optical setup and a lower resolution per point. It is, therefore, advisable only
when the magnetic field spatial profile is relevant.

3.3.1 Equilibrium measurements of YBa2Cu3O7 thin films

As an example of the spatial resolution in MOS, we show measurements of the near-
field magnetic response of a YBa2Cu3O7 thin film. The sample-detector arrangement
is shown in Figure 3.9. The sample has a thickness of 150 nm and is shaped as a half-
disk of 400 µm. This shape, obtained with optical lithography, is specifically chosen
to mimic that of the light-induced superconducting region studied in Section 4.3.

YBCO thin film

GaP

Al2O3 substrate

100 μm

Figure 3.9: MOS characterization: sample detector geometry. Ma-
terial from [55].

The detector is composed of a ∼ 50 µm-thick GaP (100) crystal. This diamagnetic
detector is not the ideal choice for an equilibrium measurement, where ferrimagnetic
detectors would yield much higher sensitivities (see Subsection 3.1.1). It will, however,
be useful for its time resolution in the dynamics experiments of Section 3.4.
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The detector is placed on top of the sample and in close contact with it. An
external magnetic field is applied perpendicular to their planes. Upon superconducting
transition, the strong diamagnetic response of the sample induces an enhanced field
at its edge and a screened field on its top, as discussed in Section 1.2. These features
can be observed by scanning the probe beam over the detector. The accumulated
Faraday rotation is then proportional to the magnetic field in a plane immediately
above the sample, averaged over the thickness of the detector. This proportionality
constant represents the sensitivity of a given MOS apparatus.

In principle, by knowing the temperature-dependent Verdet constant of the de-
tector and its thickness, it would be possible to compute the sensitivity directly. In
practice, if the value of the applied field is known, for example, by measuring it with a
Gauss-meter, it is more accurate to calibrate the detector response by measuring the
Faraday rotation without the sample. In this situation, the applied field is homoge-
neous through the detector, and the measurement output, divided by the applied field,
corresponds to the sensitivity. In most cases, this approach offers a much lower uncer-
tainty compared to the error introduced by a detector thickness estimate, especially
if it presents a wedge.
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Figure 3.10: The sampled magnetic field on the top of the sample
shows a superconducting transition at ∼ 90K.

3.3.2 Superconducting transition

In Figure 3.10, the temperature dependence of the magnetic field sampled on top of the
YBa2Cu3O7 thin film is presented. The external field is 10mT and is indicated by the
dashed line. Upon cooling the sample below Tc ∼ 90K, a deviation from the applied
field is observed. Due to the specific acquisition scheme, as outlined in Appendix C,
the sampled field is sensitive to the ZFC Meissner effect. Even though the magnetic
field should go to zero immediately outside the sample, the measured screening field
is only reduced to ∼ 70% of the applied one. This apparent discrepancy originates
from the finite thickness of the detector, which leads to the averaging of the sampled
field (see expression 3.19).
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Indeed, if the measurement is repeated with a much thinner (∼ 100 nm) ferrimag-
netic detector, the measured field does go to zero. This same measurement with a thin
diamagnetic detector would be experimentally impractical because of the negligible
Faraday rotation it would yield.
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Figure 3.11: Spatial dependence of the magnetic field expulsion,
presenting an increased field on the edge and a reduced field in the

center. Material from [55].

3.3.3 Spatial dependence

After having cooled down the sample, it is possible to reconstruct the magnetic field
spatial features in its vicinity by scanning the probe beam across the edge of the
sample, as shown in Figure 3.11. In the figure, the color map represents the simu-
lated magnetic field obtained according to the finite elements techniques discussed in
Section 1.2. The diagram on the left indicates the alternated magnetic field scheme
employed for the measurement, explained in more detail in Appendix C. As the probe
beam is scanned over the sample (from left to right in the figure), the sampled mag-
netic field is seen to increase on its edge and decrease in its center.
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Magneto-static simulations (see Appendix D) match the measured curve well with
that calculated for a thin film with the same dimensions as the sample and an ideal
diamagnetic response χ = −1. In these simulations, the field is averaged vertically
over the detector thickness and laterally over the beam spotsize. Both have a typical
length of order ∼ 50 µm, corresponding to the lateral and vertical resolution of the
apparatus.

This equilibrium measurement validates the technique and highlights the two
equivalent signatures of a superconducting diamagnetic response: enhanced field on
the edge of the sample and reduced field in its center.

3.4 Time resolution

In this section, we test whether the MOS developed so far also has sufficient temporal
resolution to track ultrafast dynamics. We assume initially that the magnetization in
the material is realized instantaneously upon change of the local field. This assumption
is valid for diamagnetic detectors, whose magnetic dynamics is significantly faster than
the probe pulse duration τ (see Subsection 3.1.1). In this limit, the Faraday signal,
originating from the material magnetization, can be modeled as proportional to the
instantaneous magnetic field experienced by the probe pulse. In the following, we
consider the effects of the difference in the velocity of propagation of the probe beam
and of the magnetic signal. In analogy to EOS sampling of THz pulses (see for
example [34], Section 2.12), since the duration of the probe beam is typically much
shorter than the magnetic signal, we employ the group velocity vg for the former and
the phase velocity for the latter Vp, at the respective carrier frequencies.

As shown in Figure 3.12, we assume the magnetic signal to be generated from
the sample and directed vertically against the incoming beam. The relative time t is
defined as zero when the probe and magnetic pulse meet at the base of the detection
crystal. In the reflection configuration considered here, the probe beam meets the
magnetic pulse twice in its propagation through the crystal: in the first pass, where
the two pulses are counter-propagating with relative velocity vcounter = vg + Vp, and
in the second pass after being reflected from the back face of the crystal, where the
two pulses are co-propagating with relative velocity vco = vg − Vp.

In the counter-propagating interaction, the two pulses walk entirely past each other
in a short time. At negative time delays, the sampled signal is, therefore, small and
proportional to the integral of the magnetic pulse. This negative offset is often hardly
measurable and considered an artifact of the measurement. For delays t < −L/Vp,
where L is the detector thickness, the two pulses never overlap inside the medium,
and the signal is zero.

In the ideal co-propagating interaction, vco ∼ 0. In this case, the sampled signal
is dependent on the relative delay t and equal to the magnetic signal B(s) convolved
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Figure 3.12: Temporal resolution in MOS. The magnetic signal is
assumed to be generated at the detector base and to propagate away

from it with velocity Vp.

with the time profile of the probe pulse p(s), which here we assume as Gaussian

θF (t) ∝
∫
det
dsB(s) p(s− t) =

∫
det
dsB(s) e

(s−t)2/2τ2 (3.20)

where the crystal boundaries determine the integration limits. The time resolution is
then set by pulse duration τ , which is normally known. In this thesis work, as outlined
in Appendix B, the duration of the probe pulse was 35 fs.

If vco ̸= 0, the probe and magnetic pulses slowly walk off with respect to one
another. The longer the crystal, the longer the walk-off experienced. This effect can
be accounted for by increasing the width of the convolving Gaussian in Equation 3.20
so that

τ2 → τ2 +

(
Lvco
vgVp

)2

(3.21)

This correction leads to an effectively broader beam and poorer time resolution.
Other factors that may negatively influence the reconstruction of B(s) are the strong
dispersion of either the probe or magnetic beam in their propagation. Given the
crystal thickness, these are usually negligible for the former but not for the latter.
The magnetic signal is indeed often not well represented by a plane wave and can
possess significant angular dispersion.

Finally, we hint at how this analysis can be extended when the response time
of the detector is relevant. This correction is specifically important when employing
ferrimagnetic detectors, whose response time (∼ 100 ps) is significantly longer than
the typical pulse duration (∼ 100 fs). In these situations, the magnetization in the
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detector, responsible for the Faraday effect, does not depend only on the instantaneous
field inside the material but rather on the field applied in the previous time interval
R. This delayed response of the magnetization M upon application of a magnetic
field B can be expressed as

M(s) =

∫ s

−∞
ds′ χ(s− s′)B(s′) (3.22)

where χ(s−s′) represents the time-delayed magnetic susceptibility of the medium. In
its simplest form, it corresponds to

χ(s− s′) =
χ0

R
e−

s−s′
R (3.23)

where χ0 represents the DC magnetic susceptibility. Due to the exponential term,
the sampled field is averaged over a time-interval R. In the frequency domain, this
averaging corresponds to applying a low-pass filter to the magnetic field B(s) below
the frequency 1/R. The detector is, therefore, not sensitive to these higher frequencies.

3.4.1 Dynamical measurements of YBa2Cu3O7 thin films

As previously discussed, pulse duration, probe and signal walk-off, detector geometry
and response time, can all contribute to worsening the crystal time resolution. Often,
they are not all known a priori, and it is therefore important to characterize the time
resolution of the detector experimentally. This characterization can be achieved by
creating an ultrafast magnetic field change and sampling it with the detector. The
faster frequency the detector can follow sets an upper limit on its time resolution.
This resolution may be even lower if the bottleneck lies in the generated magnetic
field change.

For this thesis work, the time resolution has been characterized employing the
same YBa2Cu3O7 thin film studied in Subsection 3.3.1, embedded in a 2mT mag-
netic field. By irradiating it with an ultraviolet (λ = 400 nm) pulse below Tc, the
superconducting state was promptly disrupted, and the following ultrafast magnetic
dynamic was tracked. This dynamics is generated by the sudden transition from
the superconducting to the normal state and the concomitant disappearance of the
Meissner effect, similar to the thermal transition depicted in Figure 1.4.

As shown on the left side of Figure 3.13, the external field was inverted with
every probe pulse to yield a ZFC-like signal (see Appendix C). The pump was also
mechanically chopped to obtain a pump-induced magnetic field differential ∆B. In
order to avoid spurious contribution from the presence of the pump inside the detec-
tion crystal (see Subsection 3.2.3), the pump and probe beams were approaching the
sample-detector assembly from opposite directions (see schematics in Figure 3.13).
The pump was shaped as a half disk with the same dimensions as the sample by
placing a mask in the sample complementary plane of a 4-f system. The remain-
ing radiation was then completely absorbed from the opaque YBa2Cu3O7 thin film
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and did not reach the detector, traversed only by the probe beam and the generated
magnetic signal. Given this favorable configuration, the analysis did not require the
advanced techniques of full polarization reconstruction discussed in Subsection 3.2.5.
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Figure 3.13: MOS characterization: temporal dependence dynamics.
Material from [55].

The plot in Figure 3.13 represents the time evolution of the sampled magnetic
field in two representative positions: on the edge of the sample (red curve) and in
its center (blue curve). Upon disrupting superconductivity, we measured a negative
magnetic field differential on the edge and a positive one in the center. This change is
compatible with a transition from a strong diamagnetic response to a non-magnetic
state. The transition, of the order of a few picoseconds, confirms that the GaP detector
can track ultrafast dynamics. More careful studies focused on controlling the speed
of this transition were able to obtain even faster ramps, with time constants as low as
∼ 1.3 ps [22].

In conclusion, we show a complementary analysis of the results just presented. In
Figure 3.14, the plot of the magnetic field differential between negative delays and
10 ps is plotted as a function of position across the edge of the sample, defined at
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0mm on the horizontal axis. The finite thickness of the detector, which averages the
magnetic field above the sample, causes the crossover from a positive to a negative
differential to happen slightly away from the edge of the thin film. It is also evident
that the positive differential signal extends away from the edge for only ∼ 200 µm.
This will be relevant for the edge measurements presented in the next section, where,
due to a different pump configuration, exclusively edge measurements were performed.
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Figure 3.14: MOS characterization: spatial dependence dynamics.
Material from [55].
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Chapter 4

Magnetic properties of equilibrium
and driven YBa2Cu3O6.48

This chapter presents the main experimental results of this thesis work. It applies the
techniques of MOS developed in Chapter 3 to study the light-induced superconducting
state of YBa2Cu3O6.48 presented in Chapter 2. Before this work, its transient prop-
erties had been investigated exclusively with THz reflectivity and SHG, and nothing
was known related to its magnetic dynamics.

4.1 Sample and detector arrangement

The sample is a single crystal of approximate dimensions 2mm × 2mm in the ab-
plane and 0.5mm along the c-axis. The details related to the sample synthesis and
equilibrium characterization are outlined in Appendix A.

TOP VIEW

αwedge

αYBCO

detector

front reflection

YBCO reflection

incoming probe beam

GaP detector

YBCO sample

LATERAL VIEW

Figure 4.1: Top view (left) — micrograph of the sample (black) and
detector (orange) arrangement. Lateral view (right) — wedge angle
αwedge ∼ 1.5◦ and YBCO angle αY BCO ∼ 1◦ introduced to spatially

filter undesired reflections. Material from [55].

In view of the dynamical experiments presented later, the sample is mounted re-
taining optical access to its c-axis, aligned along the incoming pump beam polarization
(vertical direction in Figure 4.1, top view). Unlike the experiments on thin films pre-
sented in Chapter 3, the arrangement with the pump and probe beams approaching
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from different sides was not possible. The photo-excited superconducting region has a
thickness proportional to the pump penetration depth (∼ 1 µm), and its diamagnetic
response decays over distances much shorter than the sample thickness (∼ 2mm).
Therefore, the signal would not be detectable on the other side of the sample. Stan-
dard synthesis techniques produce thin films with the c-axis normal to the plane, a
geometry not suitable for optically driving the apical-oxygen phonon mode.

The external magnetic field is applied along the beam propagation direction, along
the ab-planes of the crystal. A 70 µm-thick GaP (100) detector is placed in close
proximity on top of the sample. As shown in Figure 4.1, lateral view, a small angle
αY BCO ∼ 1◦ between the detector and sample planes is introduced to filter out probe
beam reflections coming from the sample surface.

4.2 Equilibrium measurements

In this Section, we present a series of measurements characterizing the equilibrium
state of YBa2Cu3O6.48. The left plot in Figure 4.2 shows a temperature dependence
of the magnetic field sampled on top of the sample, with an external field of 1mT.
At Tc ∼ 55K, a progressive field screening is observed, indicative of the onset of the
diamagnetic response associated with the superconducting state. The field screening
saturates to about 50% of the applied field due to the finite thickness of the detector.

Magneto-static simulations can link the sampled magnetic field to the intrinsic
properties of the superconductor. A uniform magnetic susceptibility χ is assigned
to a volume of the same dimensions of the sample. Then, Maxwell equations are
numerically solved in the surrounding area with the boundary condition that the field
further away from the sample corresponds to the value of the applied field. Finally, the
field is integrated over the detector thickness to account for its averaging effects (see
Equation 3.19). By varying χ between ∼ 0 (weak metallic response) and ∼ −1 (ideal
diamagnetic response), magnetic field maps in the volume surrounding the sample are
computed.
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Figure 4.2: Temperature dependence of diamagnetic response at
equilibrium. Material from [55].
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As a comparison, the plot on the right of Figure 4.2 compares the susceptibility
extracted from MOS measurements (red circles) with that obtained from a conven-
tional SQuID magnetometer (blue line) performed on the same sample. The two agree
almost perfectly. Appendix D presents in more detail the magneto-static simulations
and the related analysis to compute the conversion function.

4.2.1 Spatial dependence

As presented in Subsection 3.3.3, the onset of the superconducting diamagnetic re-
sponse entails an enhancement of the magnetic field on the edge of the sample and
a reduction on the center. The two are complementary observables since the total
magnetic flux is conserved. Both features can be resolved by scanning the probe
beam across the edge of the sample, as shown in Figure 4.3, at a fixed temperature
T = 25K < Tc.
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Figure 4.3: Equilibrium magnetic field enhancement on the edge of
the sample (red) and reduction (blue) on the center. The solid line is

a guide to the eye. Material from [55].

4.2.2 Applied magnetic field dependence

The dependence of the magnetic field measured on top of the sample as a function
of the externally applied field is shown in Figure 4.4. The differential ∆B is defined
as the magnetic field measured with the sample, referenced to the field measured
without. In practice, the latter case is achieved by shifting the probe beam in a
position of the detector far away from the sample where its contributions are negligible
(see sketch in the figure). For zero applied field, the superconductor does not have a
magnetization, and the differential is zero. Upon increasing the field, there is a linear
increase in screening, corresponding to the Meissner state of the superconductor. Upon
reaching the first critical field Bc1 ∼ 2mT1, the superconductor enters its vortex state,

1The effects of internal fields can be estimated by computing the demagnetizing factor of the
sample [71]. The value of N ∼ 0.17, according to Equation 1.5, corresponds to a correction factor of
∼ 1.2 in the critical field estimate.



74 Chapter 4. Magnetic properties of equilibrium and driven YBa2Cu3O6.48

and the expelled field is reduced. This nonlinear behavior is typical of equilibrium
superconductors.
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Figure 4.4: Magnetic field dependence at equilibrium.

4.3 Driven magnetic field expulsion

In this Section, we present measurements of the transient properties in the photo-
excited state of YBa2Cu3O6.48. The dynamics is driven by a 1 ps-long, 15 µm MIR
pulse, polarized along the c-axis of the sample and resonant with the apical-oxygen
phonon modes responsible for the transient superconducting-like optical features ob-
served with THz spectroscopy. The base temperature is T = 100K > TC , and we
expect to induce a diamagnetic response upon photo-exciting the system. In Ap-
pendix B, the optical setup developed to generate the MIR radiation and the probe
beam are presented in detail.

Opposite to the measurements on thin films presented in Subsection 3.4.1, the
sample is initially in its normal state, and we expect to induce a superconducting
transition. We track the magnetic response by sampling the field on the edge of the
photo-excited region, as shown in Figure 4.5. The GaP detector is placed immedi-
ately adjacent to the focus of the pump beam. The radiation of the MIR pump is
prevented from interacting with the detection crystal by two 30 µm-thick z-cut Al2O3,
highly reflective at 15 µm, placed above the detector and on its side. Ellipticity mea-
surements performed by adding a quarter-wave plate before the Wollaston analyzer
(see Subsection 3.2.2), highly sensitive to the presence of the pump, confirmed its
total exclusion from the interior of the detector. Consequently, these measurements
did not require the advanced analysis techniques of full polarization reconstruction
presented in Subsection 3.2.5.

Importantly, the Al2O3 mask creates a sharp edge in the photo-excited region, a
prerequisite to maximizing the magnetic field changes in its vicinity. The 375 µm-
wide spotsize of the MIR pump is shaped into a half-disk with the same dimensions
as the thin film characterized in Chapter 3. The applied magnetic field is cycled, and
the pump pulses reach the sample at half the repetition rate as the probe, yielding
double differential pump-probe measurements. Time zero is defined as the instant in
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which the probe and pump beam reach the second interface of the detector and the
sample surface, respectively. Their relative delay and position are carefully optimized
and monitored in situ by maximizing the electro-optic Kerr effect in a portion of the
detector not covered by the Al2O3 mask. As a reference, the top plot in Figure 4.6
shows the time profile of the pump pulse.

The lower plot shows the transient magnetic field, sampled approximately 50 µm
away from the edge of the photo-excited region, for an external field of 10mT and
two base temperatures: 100K (red) and 300K (yellow). Upon driving the system, a
prompt increase of the magnetic field is observed, peaking at around 10 µT (Bext/1000)
at 100K and 3 µT (Bext/3000) at 300K. The sign of the magnetic field change is op-
posite compared to the disruption of superconductivity presented in Subsection 3.4.1,
indicating the onset of a diamagnetic response, compatible with a transient induction
of superconductivity.

A prompt diamagnetic response is observed upon driving the system, increasing
as long as the pump field is present. Once the drive is over, the system decays
to the initial state over ∼ 1 ps, a time comparable with the lifetime of the driven
phonons [36]. This observation indicates that the photo-excited state does not possess
intrinsic rigidity, in agreement with THz measurements.

The measured magnetic field expulsion can be converted into a quasi-static sus-
ceptibility by simulating the response originating from a sample of dimensions of the
photo-excited volume with a uniform χ (see Appendix D). In view of the dynamical
nature of the response discussed in Section 4.4, this assumption is not entirely justi-
fied, although it provides a good estimate for the size of the effect. The amount of
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Figure 4.6: Pump probe time dependence. Material from [55].

the induced magnetic susceptibility at 100K is shown in red on the right of Figure 4.6
and corresponds to approximately −0.3. As a comparison, this value is orders of mag-
nitude higher than what is realized in Landau diamagnets. Remarkably, it is at least
two orders of magnitudes stronger than that observed in the planes of graphite, the
strongest known metallic diamagnet. Rather, the colossal photo-induced diamagnetic
response is reproduced at equilibrium only by type-II superconductors.
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Figure 4.7: Spatial dependence away from sample. Material
from [55].
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4.3.1 Spatial dependence

As a first control experiment, in Figure 4.7 we show how the effect varies as the field is
sampled in a position of the detector where there is no sample. The base temperature
is 100K, and the applied field is 10mT. In this dependence, the pump beam is shifted
accordingly to follow the probe beam. The edge of the sample is located at 0mm on
the horizontal axis.

As shown in the plot, the effect gradually disappears as the magnetic field is
measured away from the sample. Since the pump position with respect to the probe
beam is unchanged, this observation confirms that the effect originates from the sample
and not from a spurious contribution of the pump beam inside the detection crystal.

4.3.2 Probe pulse polarization dependence

As a second control experiment, we study the dependence of the effect on the incoming
probe pulse polarization. This study is important in ruling out EOS as the origin of the
measured signal. As discussed in Subsection 3.2.4, the Faraday effect is independent
of incoming polarization, whereas the Pockels effect strongly depends on it. The
latter should be zero due to the crystal cut, but the finite angle of incidence or minor
misalignments may prevent its complete cancelation.

In Figure 4.8, the differential magnetic field at the peak of the pump-probe ∆Bpeak
is plotted as a function of incoming polarization. The base temperature is 100K, and
the applied field is 10mT. The flat dependence confirms the Faraday effect as the
origin of the measured signal.
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Figure 4.8: Probe pulse polarization dependence. Material from [55].
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4.3.3 Applied magnetic field dependence

In order to gain insight into the origin of the effect, we study its dependence on the
value of the applied magnetic field. In Figure 4.9, the differential magnetic field at
the peak of the pump-probe ∆Bpeak is plotted as a function of the externally applied
magnetic field. The base temperature is 100K. The observed dependence does not
show signs of deviation from linearity for fields as high as those achievable with the
Helmholtz coil employed for this experiment (Bmax = 12.5mT).
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Figure 4.9: External magnetic field dependence. Material from [55].

The absence of the effect with no applied magnetic field further rules out alter-
native mechanisms as the origin of the measured signal, such as the sampling of the
magnetic field carried by the MIR pump pulse. We note that the lack of nonlinear
behavior is in contrast with the equilibrium measurements presented in Figure 4.4.
Therefore, this deviation could imply that the effective critical field of the photo-
excited state has been pushed to higher magnetic field values, similarly to the increase
in effective critical temperature. As a comparison, the critical field of optimally doped
YBa2Cu3O7 is of order ∼ 20mT [72].

4.3.4 Fluence dependence

Figure 4.10 shows the dependence of the effect with the fluence of the driving field, for
1 ps-long pulse centered at 15 µm. The base temperature was 100K, and the applied
field 10mT.

Remarkably, the scaling is not proportional to the fluence but rather sublinear.
The data in all other dependencies were acquired at a fluence of ∼ 14mJ cm−2.
Considering a pulse duration of ∼ 1 ps, the peak electric field was approximately
∼ 2.5MV cm−1. These correspond to the optimal conditions for light-induced super-
conductivity in YBa2Cu3O6.48 obtained from THz studies [17].
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Figure 4.10: Fluence dependence. Material from [55].

4.3.5 Temperature dependence

Finally, we analyze how the effect scales with temperature. Pump-probe traces in
the same conditions as those presented in Figure 4.6 were repeated for a range of
base temperatures from 100K to 300K, in steps of 50K. The results are presented
in Figure 4.11. The traces at 100K and 300K have been averaged for significantly
longer and, consequently, have lower uncertainties. By comparing the different curves,
no significant difference in the dynamics is observed, except for their amplitude.
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Figure 4.11: Time traces at different temperatures. Material
from [55].

Figure 4.12 shows the extracted amplitudes (red circles), based on Gaussian fits of
the traces presented in Figure 4.11, as a function of temperature. The effect is seen to
monotonically decrease with increasing temperature. The temperature dependence of
the magnetic field expulsion is compared with that of the superfluid density obtained
from THz reflectivity [16] (blued dashed line). The agreement of the two suggests a
common physical origin for the two different observables.
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Figure 4.12: Temperature dependence of the differential magnetic
field change at the peak of the pump-probe response (red circles),
compared with the same dependence of the superfluid density ex-
tracted from THz reflectivity measurement [16] (dashed line). Ma-

terial from [55].

4.4 Magnetic field propagation

In this section, we consider the dynamical nature of the ultrafast diamagnetic response.
In analogy to a loop antenna, where a time-varying current in a circular path emits
a magnetic wave, we expect the ultrafast change in magnetization, associated with
the onset of superconducting shielding currents, to act as a source for a propagating
wave.
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Figure 4.13: Schematics of magnetic field pulse propagation. Mate-
rial from [55].

The origin of the wave is the irradiated area on the side of the detector. As shown
in Figure 4.13, by shifting the probe beam sequentially further and further away from
the edge, it is possible to sample the emitted wave at later and later delays. The
time traces of the magnetic field differential for three representative distances from
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the edge of the photo-excited region, at 50 µm, 110 µm, and 170 µm, are shown in the
left plot of Figure 4.14. For further distances, the amplitude of the effect is seen to
decrease (middle plot), and the arrival time of the ∼ 1 ps-long pulse to be delayed
(right plot).
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Figure 4.14: Magnetic field pulse propagation. Material from [55].

These observations are consistent with a propagating magnetic wave. In partic-
ular, its speed of propagation matches well with the group velocity of a 1THz wave
propagating in GaP [63].
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Conclusions

Interpretation

The magnetic field expulsion sampled on the edge of the photo-excited region in
driven YBa2Cu3O6.48 is compatible with the dynamical onset of a superconducting-like
diamagnetic response. Spatial and polarization dependencies exclude most alternative
scenarios as the origin of the detected signal, such as accidental EOS in GaP (100)
or MOS of the magnetic field carried by the pump. Different pump fluences result in
a sublinear dependence of the effect with pump intensity, ruling out the electro-optic
Kerr effect as the origin of the signal (which should be linear with pump intensity)
and possibly suggesting a saturation regime of the effect. Interestingly, no deviations
from linearity in the magnetic field dependence indicate that the critical field has been
pushed to higher values (similarly to the increase in critical temperature) or that its
notion must be modified when considering dynamical states. Finally, the temperature
dependence, qualitatively similar to that obtained in THz measurements, suggests a
common physical origin for these two different observables.

Quasi-static simulation associated a magnetic susceptibility χ ∼ −0.3 to the peak
of the response in the driven state. This interpretation builds on the parallelism
between equilibrium and photo-excited properties, in the same way that the ∼ 1/ω

divergence of σ2 in THz measurements is interpreted as a transient superfluid density.
This approach can be extended to other superconducting signatures in cuprates, such
as Josephson oscillations or nonlinear transport. The validity of this quasi-static pic-
ture relies on the assumption that the superconducting state manifests over timescales
much shorter than the duration of the drive. This situation can be realized by driving
specific modes to high amplitudes, where rectification processes can induce quasi-static
displacements of nonlinearly coupled modes, inducing more favorable conditions for
the superconducting pairing. The lattice displacement via nonlinear phononics pre-
sented in Subsection 2.1.2 is one of the possible routes to realize this scenario.

An alternative, not contrasting, interpretation explains these observations by a
mechanism where pre-existing diamagnetic currents, present throughout the pseudo-
gap phase, are amplified or stabilized by the drive. This scenario is closely related
to the amplifications of Josephson plasma polaritons presented in Subsection 2.4.4
and reminiscent of a Floquet-like dynamical superconductivity. An extension of the
theoretical framework presented in [59], accounting for the magnetic response of the
system, is currently being discussed.

Future prospects

The results presented in this thesis work required a considerable amount of experimen-
tal work, particularly for the development of the Ultrafast Magnetometry technique.
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One of the most challenging aspects has been the integration of an intense MIR beam
close to the detection crystal, which would have introduced significant spurious con-
tributions if not appropriately handled. In this particular case, key to this success
has been the implementation of Al2O3 crystals as frequency filters. Their operational
bandwidth is, however, limited to their Reststrahlen band (∼ 17 − 24THz), signifi-
cantly hindering the applicability of this technique to excitations at different energies.

On the other hand, the experimental configuration presented in Chapter 3, where
the pump and probe are approaching the sample-detector assembly from different
directions, is not constrained to a particular excitation frequency range provided that
the sample absorbs the pump beam radiation. However, thin samples are required to
detect sizeable changes in the surrounding magnetic field. This approach could not
be employed in the studies of YBa2Cu3O6.5 single crystals presented in Chapter 4
because of limitations linked to the growing process.

The development of Focused Ion Beam (FIB) machining technologies [73] pro-
vides the technical capabilities to produce thin lamellas of YBa2Cu3O7-δ with the
c-axis oriented in the plane, exposed to the MIR radiation. A possible experimental
setup employing thin YBa2Cu3O6.48 lamellas is shown in Figure 4.15. The sample
thickness (∼ 5 µm) is selected to be a few times larger than the pump penetration
depth (∼ 1 µm). In this way, most of the sample volume is excited, and a negligible
amount of the pump light traverses it. The remaining radiation is absorbed or re-
flected by an Al2O3 mask. In this geometry, the choice of the mask material is easier
because the probe beam does not traverse it. Therefore, different pump frequencies
are straightforwardly implementable. Furthermore, the probe beam is not constrained
to measure edge effects but can also access the field reduction present in the center
of the sample. This more flexible and controlled experimental configuration offers
the potential for accurate studies of the photo-excited state, which can be used as a
benchmark for quantitative theories of light-induced superconductivity.
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Figure 4.15: Experimental configuration for thin YBa2Cu3O6.48
lamella measurements.
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Appendix A

Sample growth and
characterization1

The optimally doped YBa2Cu3O7 thin films were obtained through a commercial sup-
plier (Ceraco GmbH) and grown on R-cut Al2O3 substrates. The films had a thickness
of approximately 150 nm, a sharp superconducting transition temperature at around
85K and a critical current density greater than 2MAcm−2. The YBa2Cu3O6.48 sin-
gle crystals had typical dimensions of approximately 2mm × 2mm × 0.5mm, where
the thin dimension corresponds to the c-axis, and were grown in yttrium-stabilized
zirconium crucibles. The hole doping of the Cu-O2 planes was adjusted by controlling
the oxygen content of the Cu-O chain layer by annealing in flowing O2 and subse-
quent rapid quenching. A superconducting transition at Tc = 55K was determined
by SQuID DC magnetization measurements, as shown in Figure A.1.
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Figure A.1: Temperature dependent DC magnetization measure-
ments (ZFC: zero field cooled, FC: field cooled) highlighting the su-
perconducting transition in YBa2Cu3O6.48. The measurements were
performed in a 1mT applied field perpendicular to the crystal c-axis

1Part of this and the following Appendices, given the highly technical nature of the content, have
been taken verbatim or adapted from the Supplementary Information and Methods of the related
publication [55].
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Appendix B

Light sources and signal acquisition

The equilibrium spatial scans and superconductivity disruption measurements shown
in Chapter 3 were performed using the experimental setup sketched in Figure B.1.
Ultrashort (100 fs) 800 nm laser pulses were produced starting from a commercial
Ti:Al2O3 oscillator-amplifier chain that generated pulses with energies up to 2mJ at
a repetition rate of 900Hz. These pulses were split using a beamsplitter into two
branches. After attenuation, the lowest intensity branch was used to probe polar-
ization rotation in the GaP (100) magneto-optic detector. In order to minimize the
polarization noise of the source, the polarization of the beam was set using a nanopar-
ticle high-extinction ratio linear polarizer.

As non-normal incidence reflections introduce a phase delay between s and p po-
larizations, incidence angle fluctuations can give rise to polarization noise. In order
to minimize this noise source, only reflections close to normal incidence were used
in the setup, and a commercial system using active feedback was used to stabilize
the laser beam pointing. After traversing and being reflected from the second sur-
face of the Faraday detector, the polarization state of light was analyzed using a
half-waveplate, Wollaston prism, and balanced photodiode setup that allowed us to
quantify the Faraday effect in the magneto-optic detection crystal. The higher inten-
sity branch was mechanically chopped at a quarter of the repetition rate (225Hz) and
frequency-doubled using Second Harmonic Generation (SHG) in a β-BaB2O4 (BBO)
crystal to obtain 400 nm pulses that were used to photo-excite the YBa2Cu3O7 thin
film samples. A mask, illuminated by these ultraviolet pulses, was imaged onto the
back surface of the sample to create a half-gaussian beam with an edge that matched
the long edge of the half-disk-shaped YBa2Cu3O7 sample. This procedure, alongside
YBa2Cu3O7 being fully opaque to 400 nm radiation, ensured that the GaP detector
was not exposed to the pump pulses.

The YBa2Cu3O7 thin film samples were embedded in the detector assembly (see
Figure 3.9) and mounted on the cold finger of a liquid helium cryostat to allow for
temperature control. The cryostat was directly placed in a high vacuum chamber that
also contained the part of the optical setup dedicated to polarization analysis to avoid
spurious contributions arising from vacuum windows. A pair of coils in a Helmholtz
configuration generated a magnetic field at the sample position whose polarity could
be reversed at a frequency of 450Hz. The highest achievable magnetic field was
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Figure B.1: Experimental setup for thin-film measurements pre-
sented in Chapter 3.

limited by heat dissipation and was ∼ 3mT. The sample position was controlled using
computer-driven linear translation stages that made it possible to reproducibly move
the cryostat and the sample inside the vacuum chamber with ∼ 10 µm repeatability.

The measurements shown in Chapter 4 were carried out with a different exper-
imental setup sketched in Figure B.2. Here, 800 nm pulses were generated using a
pair of commercial Ti:Al2O3 amplifiers seeded by the same oscillator to achieve fem-
tosecond synchronization. One amplifier produced 35 fs long, ∼ 2mJ pulses at 2 kHz

repetition rate and was used for the probe beam. The second amplifier produced
∼ 60 fs long, ∼ 5mJ pulses at 1 kHz repetition rate and was used to pump a home
built three stages Optical Parametric Amplifier (OPA) that generated ∼ 2mJ total
energy signal and idler pulses. These pulses were mixed in a 0.4mm-thick GaSe crys-
tal to obtain Difference Frequency Generated (DFG) ∼ 150 fs long, ∼ 20mJ energy
pulses centered at ∼ 20Hz, close to resonance with the B1u apical oxygen phonon
modes of YBa2Cu3O6.48. These pulses were then chirped using a 10mm-long NaCl
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rod to a duration of ∼ 1 ps in order to match the optimum pulse length for induc-
ing superconducting-like optical properties in YBa2Cu3O6.48 [17]. While the sample
stages and cryostat were similar between the two setups, in this case, the polarization
analysis setup is fully “in-line”, i.e., the beam travels directly from the polarizer to
the Wollaston analyzer without being reflected by additional mirrors other than the
detector. This scheme contributed to further reducing spurious sources of polarization
noise. A magnetic field was applied at the sample position using a pair of Helmholtz
coils whose polarity was switched at ∼ 10Hz frequency and could reach a maximum
amplitude of 12.5mT.

In both experimental setups, the polarity of the magnetic field is cycled periodically
at a sub-harmonic of the pump and probe repetition rates. In order to obtain differen-
tial pump-probe measurements, the electrical pulses from the balanced photodetector
were digitized using a commercial 8-channel 40MS/s data acquisition (DAQ) card,
triggered at the lowest frequency used in the experiment. These signals, acquired in
the time domain, were then integrated after applying boxcar functions, yielding the
signal amplitude from the sum and difference channels of the balanced photodetector
for each probe laser pulse. Since acquiring an entire pulse sequence requires the ac-
quisition of many pump-probe cycles, the sample clock signal of the data acquisition
card is derived using direct digital synthesis from the oscillator repetition rate. In this
way, drifts in the cavity length and repetition rates of the system do not affect the
relative timing of the boxcar functions with respect to the arrival time of the electrical
pulse.
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Appendix C

Data acquisition and analysis

As mentioned in the Appendix B, for all the experiments, the polarity of the mag-
netic field was cycled periodically, and measurements with and without the pump were
acquired to yield double differential pump-probe measurements and isolate contribu-
tions to the polarization rotation that were induced by the applied magnetic field.
This procedure allowed us to filter out all contributions to the polarization rotation
that would not invert with the externally applied magnetic field. In other words,
because the pump-induced magnetic field changes measured with applied field −Bext
were subtracted from those acquired with applied field +Bext, the signal is not sensi-
tive to magnetic fields carried by the MIR pulse itself or due to transient generation
of fast electrons in the sample. In the following, we discuss this approach in detail
and its impact on the measured quantities.
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Figure C.1: Data acquisition scheme for YBa2Cu3O7 measurements
presented in Chapter 3.

For the measurements presented in Chapter 3, the magnetic field polarity was
cycled following a sinewave at 450Hz, and the pump was mechanically chopped at
225Hz. A timing diagram of the acquisition scheme is shown in Figure C.1. The
amplitude of the signal of the balanced photodetector difference channel is normalized
by that of the sum channel in a pulse-by-pulse manner and indicated as Normalized
Difference (ND). With the same convention as in Equation 3.14, we compute the
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Normalized Magnetic (NM) observable by subtracting the ND signals obtained with a
negative polarity of the magnetic field from those obtained with a positive polarity and
indicate them as NMi. The subscript i runs over the n repetitions in the acquisition.
Furthermore, we distinguish those acquired in the presence of the pump from those
at equilibrium with the superscripts pump and equil, respectively. The i-th pump-
probe differential of the NM signal is indicated as Normalized Pump Probe Magnetic
(NPPM) signal and is defined as

NPPMi := NMpump
i −NMequil

i (C.1)

The quantities NMequil and NPPM are then obtained as the averages of NMequil
i and

NPPMi over n pulses and are proportional to the static and pump-induced differential
Faraday angles, respectively. After calibration of the Faraday effect in the GaP (100)
detector, these quantities yielded the amplitude of the magnetic field and its pump-
induced changes. To cancel out residual drifts, the phase of the magnetic field and
that of the pump laser with respect to the probe laser were periodically alternated
between 0 and π.

The measurements reported in Chapter 4 were acquired employing a slightly dif-
ferent scheme, shown in Figure C.2, to ensure that the sample was excited in a con-
stant magnetic field. Here, the probe repetition rate was 2 kHz, and the pump struck
the sample every second probe pulse (i.e., at 1 kHz). At the same time, the mag-
netic field polarity was modulated following a square wave at a lower frequency of
around ∼ 10Hz. This scheme ensured that the sample was photo-excited in a con-
stant magnetic field. The same quantities described above were calculated, yielding
double-differential pump-probe measurements that distilled only the contributions to
the polarization rotation arising from pump-induced changes in the sample magnetic
properties.
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Figure C.2: Data acquisition scheme for YBa2Cu3O6.48 measure-
ments presented in Chapter 4.
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Appendix D

Quasi-static magnetic simulations

The changes in the magnetic field surrounding the sample were computed numerically
using a commercial software (COMSOL Multiphysics®), which employs a finite ele-
ment method to solve Maxwell’s equations taking into account the geometry of the
experiment. The solution domain was defined as a spherical region of 1mm radius in
which a constant uniform magnetic field was applied. A half-disk-shaped region char-
acterized by a uniform and field-independent magnetic susceptibility χ was placed in
the center of the spherical region and was used to model the magnetic response of either
the patterned YBa2Cu3O7 thin film or the photo-excited region in YBa2Cu3O6.48.

Although the size of the half-disk in the simulation was exactly matched to the one
used in the experiments for the patterned YBa2Cu3O7, assumptions had to be made
regarding the thickness of the photo-excited region in YBa2Cu3O6.48. The latter was
modeled as a half-disk of 375 um diameter, coinciding with the measured 15 µm pump
beam spot size, using different thickness values corresponding to different assumptions
on the pump penetration depth as discussed below. The weak magnetic response of
the substrate or the unperturbed YBa2Cu3O6.48 bulk was not included in the modeling
as these are expected to be several orders of magnitude smaller because of their much
lower magnetic susceptibility.

To account for the vertical spatial resolution of the detector that, as discussed
in Section 3.3, is determined by the vertical dimension of the detection crystal, the
results of the calculation were averaged over the detector thickness. This yielded two-
dimensional maps of the spatially resolved magnetic field that were then convoluted
with a two-dimensional Gaussian function to account for the lateral spatial resolution
given by the finite size of the probe beam focus.

Figure D.1 shows a comparison between a line scan measured across the straight
edge of the YBa2Cu3O7 half-disk in an external field of 2mT and the results of a
magnetostatic calculation performed using geometrical parameters that reflect the ex-
perimental conditions. In this simulation, χ was varied to achieve the best agreement
with the experimental data. The extracted value for χ ∼ −1 is compatible with the
ZFC magnetic properties of YBa2Cu3O7 thin films [74]. Indeed, owing to the magnetic
field polarity inversion described in Appendix B, the NM signal defined in Appendix C
is effectively sampling a ZFC response. This can be understood by considering that,
in the presence of an impurity, the associated trapped flux does not change when the
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external field is inverted. Therefore, the differential magnetic signal measured above
the impurity is zero, equivalent to the field sampled above an ideal superconductor.
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Figure D.1: Comparison between measured magnetometry data and
simulations.

The left plot in Figure 4.2 shows the temperature dependence of the magnetic field
measured at equilibrium on top of a YBa2Cu3O6.48 single crystal, using a magneto-
optic detector of thickness 250 µm. At Tc ∼ 55K, as the sample turns superconduct-
ing, a sudden decrease in the measured magnetic field is observed. Magnetostatic
calculations were used to link the measured magnetic field expulsion to the magnetic
susceptibility of the YBa2Cu3O6.48 sample. The right plot in Figure 4.2 shows a com-
parison of the extracted magnetic susceptibility χ with that measured on the same
sample with a commercial DC SQuID magnetometer. The agreement between these
two measurements is very good, validating this approach.

Similar calculations were used to quantify the magnetic susceptibility that the
photo-excited region in YBa2Cu3O6.48 should acquire after photo-excitation to pro-
duce a magnetic field change equal to that measured at the peak of the pump-probe
response. This was achieved by running the calculations for a set of χ values and
thicknesses of the photo-excited region to obtain calibration curves that related the
average magnetic field expulsion measured 50 µm away from the edge to the suscepti-
bility χ. The conversion curve shown on the right of Figure 4.6 is calculated under the
assumption of a thickness d of the photo-excited region equal to 2 µm, corresponding
to the electric field penetration depth of the pump, defined as

d =
c

ωℑ[ñ0]

where ñ0 is the stationary complex refractive index of YBa2Cu3O6.48 along the c-
axis [75] at the pump frequency. This assumption is justified given the sublinear
fluence dependence reported in Figure 4.10. Figure D.2 shows the dependence of the
extracted χ on the thickness d of the photo-excited region used in the magnetostatic
calculations. Three different assumptions are considered:

• d = 1 µm, corresponding to the intensity penetration depth of the pump;
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• d = 2 µm, corresponding to the electric field penetration depth of the pump;

• d = 5 µm, corresponding to the region in which about 99% of the pump energy
is absorbed.
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Figure D.2: Magnetic susceptibility estimates.

We stress that independently of the chosen value for the penetration depth d, the
retrieved absolute value of χ remains in the 10−1 range, several orders of magnitude
higher than the strongest diamagnetic response observed in metallic systems such as
graphite.
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