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Abstract
This thesis investigates the behavior of classical ions and dipoles that are con-

fined to curved geometries. The combination of confining forces and the interactions
between particles gives rise to geometry-dependent effective interactions. The lat-
ter exhibit different characteristics compared to interactions in flat geometries. For
instance, Coulomb-interacting ions confined to a helical path exhibit oscillating ef-
fective interactions, allowing two or more ions to form a bound state. One example
of such a bound state are two ions trapping each other on opposite sides of a helix
winding. The diverse phenomenology induced by such geometry-dependent effec-
tive interactions is studied in detail throughout this thesis by considering a wide
range of geometries, and both isotropic and anisotropic interparticle interactions.

We first investigate the impact of external electric fields on the properties of ions
confined to a helix. We consider many-body equilibrium configurations on a toroidal
helix, focusing on the evolution of these configurations in the presence of a static ex-
ternal electric field. We are able to characterize the statistical properties of these equi-
libria. Additionally, we find that by varying the field strength a crossover between
staggered and ordered equilibrium configurations occurs. This crossover persists
for a wide range of system parameters.

Next, we explore time-dependent fields. We analyze the dynamics of a single
particle confined to a toroidal helix, driven by an either oscillating or rotating ex-
ternal field. Using phase space analysis, we identify a mechanism responsible for
effectively inducing directed transport of the particle, with the transport direction
being determined by the initial conditions. Remarkably, this directed transport oc-
curs even without any bias or asymmetries in the driving potential. In the case of the
oscillating external field, adding a static potential along the helical path will change
the systems behavior to that of a generalized Kapitza pendulum.

We also investigate what happens when considering anisotropic dipole-dipole in-
teractions instead of isotropic Coulomb interactions. We begin with a system of freely
rotating dipoles at fixed equidistant positions along a helical path. Our analysis of
the ground-state equilibrium configurations reveals a complex behavior and shows
a dependence on geometrical parameters, such as the helix radius and the (para-
metric) distance between two dipoles along the helix. In particular, the equilibrium
configurations can be uniquely described by integer tuples that can be mapped to
fractions of the number-theoretical Farey sequence, while in the parameter space, a
self-similar bifurcation tree akin to the Stern-Brocot tree is identified.

Beyond helical geometries, we explore dipole arrays on curved two-dimensional
surfaces. For this setup, the geometric curvature can lead to a ground state exhibiting
domain walls that separate regions of different dipole alignments. These curvature-
induced domain walls behave differently from typical (degeneracy-induced) do-
main walls. We highlight these differences by examining the domain-walls response
to an external field, as well as the impact of the domain-wall on the dispersion of ex-
citations. Notably, for the latter example, low-energy dynamics are confined within
the domains, without being able to cross the boundary of the domain wall. Finally,
we show that the emergence and annihilation of these curvature-induced domains
are accompanied by structural crossovers that are indicated by a dip in the 2D com-
pression modulus.
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Zusammenfassung
Diese Dissertation untersucht das Verhalten von klassischen Ionen und Dipolen,

die in gekrümmten Geometrien eingeschlossen sind. Die Kombination aus Zwangs-
kräften und den Wechselwirkungen zwischen den Teilchen führt zu geometrieab-
hängigen effektiven Wechselwirkungen. Letztere zeigt einen anderen Character als
Wechselwirkungen in flachen Geometrien. Beispielsweise zeigen Coulomb-wech-
selwirkende Ionen, die auf einem Helix-Pfad eingeschlossen sind, oszillierende ef-
fektive Wechselwirkungen, die es zwei oder mehr Ionen ermöglichen, einen gebun-
denen Zustand zu bilden. Ein Beispiel für einen solchen gebundenen Zustand ist,
wenn sich zwei Ionen auf entgegengesetzten Seiten einer Helix-Windung einfangen.
Diese Dissertation untersucht die vielfältige Phänomenologie, die durch solche ge-
ometrieabhängigen effektiven Wechselwirkungen hervorgerufen wird, wobei eine
breite Auswahl von Geometrien sowie sowohl isotrope als auch anisotrope Inter-
partikelwechselwirkungen betrachtet werden.

Wir untersuchen zunächst die Auswirkungen von externen elektrischen Feldern
auf die Eigenschaften von Ionen, die auf einer Helix eingeschlossen sind. Die Unter-
suchung beginnt mit Vielteilchen-Gleichgewichtskonfigurationen auf einem toroiden
Helix und konzentriert sich auf die Entwicklung dieser Konfigurationen in Gegen-
wart eines statischen externen elektrischen Feldes. Wir charakterisieren die statis-
tischen Eigenschaften dieser Gleichgewichtszustände. Darüber hinaus stellen wir
fest, dass durch Variation der Feldstärke ein Übergang zwischen ungeordneten und
geordneten Gleichgewichtskonfigurationen auftritt. Dieser Übergang besteht über
einen weiten Bereich von Systemparametern hinweg.

Als Nächstes untersuchen wir zeitabhängige Felder. Wir analysieren die Dy-
namik eines einzelnen Teilchens, das auf einem toroiden Helix eingeschlossen ist
und von einem oszillierenden oder rotierenden externen Feld angetrieben wird. An-
hand einer Phasenraumanalyse identifizieren wir einen Mechanismus, der für die
effektive Induzierung eines gerichteten Transports des Teilchens verantwortlich ist,
wobei die Transportrichtung durch die Anfangsbedingungen bestimmt wird. Be-
merkenswerterweise tritt dieser gerichtete Transport auch ohne jeglichen Bias oder
Asymmetrien im antreibenden Potential auf. Im Falle des oszillierenden externen
Feldes führt das Hinzufügen eines statischen Potentials entlang der Helix dazu, dass
sich das Verhalten des Systems zu dem eines generalisierten Kapitza-Pendels ändert.

Außerdem untersuchen wir, was passiert, wenn anisotrope Dipol-Dipol-Wechsel-
wirkungen anstelle von isotropen Coulomb-Wechselwirkungen berücksichtigt wer-
den. Wir beginnen mit einem System aus frei rotierenden Dipolen an festen equidis-
tanten Positionen entlang einer Helix. Unsere Analyse der Gleichgewichtskonfig-
urationen im Grundzustand zeigt ein komplexes Verhalten und eine Abhängigkeit
von geometrischen Parametern wie dem Helixradius und der (parametrischen) Ent-
fernung zwischen zwei Dipolen entlang der Helix. Insbesondere können die Gle-
ichgewichtskonfigurationen eindeutig durch ganzzahlige Tupel beschrieben wer-
den, die auf Bruchteile der zahlentheoretischen Farey-Folge abgebildet werden kön-
nen, während wir im Parameterraum einen selbstähnlichen Bifurkationsbaum iden-
tifizieren der dem Stern-Brocot-Baum ähnelt.

Über die helikalen Geometrien hinaus erforschen wir Dipolarrays auf gekrümm-
ten 2D-Oberflächen. Bei diesem Setup kann die geometrische Krümmung dazu
führen, dass der Grundzustand Domänenwände aufweist, die Regionen unterschied-
licher Dipolausrichtungen voneinander trennen. Diese durch Krümmung induzierten
Domänenwände verhalten sich anders als typische (durch Entartung induzierte)
Domänenwände: Wir verdeutlichen diese Unterschiede anhand der Reaktion der



x

Domänenwände auf ein externes Feld sowie mit dem Einfluss der Domänenwände
auf die Dispersion von Anregungen. Insbesondere bei letzterem Beispiel ist die Dy-
namik von kleinen Anregungen auf die Domänen beschränkt, ohne dass die begren-
zende Domänenwand überschritten werden kann. Schließlich zeigen wir, dass die
Erzeugung und Vernichtung dieser durch Krümmung induzierten Domänen von
Strukturübergängen begleitet wird, die durch einen Einbruch im 2D-Kompressions-
modul gekennzeichnet sind.
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Preface

Outline of this thesis

This cumulative thesis is based on the publications [A1–A6]. These works inves-
tigate model systems and explore the effects of confining long-ranged interacting
particles to curved geometries. An overview of these contributions, as well as their
embedding within the wider literature, are provided in Chapters 2-4.

Chapter 2 addresses classical Coulomb-interacting ions confined to a helical ge-
ometry. It provides a general overview of classical Coulomb systems, as well as
the existing literature on helically confined ions - together with an overview of the
related scientific contributions [A1–A3].

Chapter 3 covers helical dipole chains. It includes an overview of classical dipole
chains, as well as cylindrical phyllotaxis. The chapter concludes with an outline of
the scientific contribution [A4].

Chapter 4 is concerned with the properties of dipole lattices spanned across
curved manifolds. It gives an overview of classical dipole lattice systems and dis-
cusses the characteristics of magnetic and electric dipole arrays. It continues with an
outline of the scientific contributions [A5, A6].

All scientific contributions are presented in Chapter 5. Finally, a summary of this
thesis and concluding remarks are given in Chapter 6.
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Chapter 1

Introduction

At the core of all mathematical descriptions of the world are assumptions about
the geometry of space. Most often this geometry is assumed to be Euclidean (or
more generally a Hilbert space), i.e. a flat geometry. Nowadays, methods to con-
fine dynamics to a lower dimensional (i.e. one or two-dimensional) subspace are
feasible in experiments. Low-dimensional systems have recently attracted consid-
erable interest since they can possess features that are absent in higher dimensions
[1, 2]. Furthermore, when these low-dimensional systems are not flat but exhibit a
curved geometry they can possess additional properties, e.g. related to the topol-
ogy of the confining manifold. In addition to the dependence on geometry, these
effects generally also depend on the intrinsic components of the confined system,
such as interactions. In other words, one can expect these properties to be strongly
system-dependent. But can general claims be made regarding the impact of geo-
metric curvature on the properties of physical systems? This question is not easy to
answer. However, some general considerations require only a basic mathematical in-
tuition: Most prominently, curvature impacts the geodesics, i.e. the shortest distance
between two points, and thereby also the trajectories of any dynamics taking place.
One well-known example is the gravitational lensing of photons in the presence of
massive objects [3, 4]. Similar scattering effects can also be expected for dynam-
ics in other systems exhibiting geometric curvature, such as phonons traveling in a
curved two-dimensional (2D) material. Beyond that, the presence of geometric cur-
vature can lead to the emergence of geometric phases - a connection that is studied
also in differential geometry as holonomy. This is demonstrated for example by the
Foucault pendulum, where this geometric phase relates to the change of the rotation
angle during each period of the pendulum oscillation [5, 6].

The above examples highlight only two general (and rather intuitive) effects
of geometric curvature: its impact on geodesics and the emergence of geometric
phases. Besides such general effects, one can envision novel curvature-induced
properties arising, e.g., due to interactions between particles. It is particularly in-
teresting to consider systems of interacting particles confined to a curved 1D or
2D manifold - especially when the interactions themselves are not confined to this
manifold and instead depend on the Euclidean separation of the particles. This cre-
ates systems with mixed dimensionality - 3D interactions vs 1D or 2D confinement -
and non-trivial curvature-dependent properties. Prior investigations of such mixed-
dimensional setups have already been performed [7–12]: In the case of ions confined
to a helical geometry, it was demonstrated that the curvature enables the ions to con-
dense into stable few or many-body bound states even if the interactions are purely
repulsive [7] (more details are given in Secs. 2.2.2 and 2.2.3). Works like Ref. [7]
are the key motivation for the scientific contributions provided in this thesis. Specif-
ically, this thesis further explores the impact of curved confinement on long-range
interacting many-body systems.



2 Chapter 1. Introduction

1.1 Structure and overview

The scientific contributions [A1–A6] of this thesis are clustered into three groups:

• The impact of external fields on ions in helical confinement
[Refs. [A1–A3], Chapter 2]

• The ground state properties of helical dipole chains
[Ref. [A4], Chapter 3]

• The properties of dipole arrays on curved surfaces
[Refs. [A5, A6], Chapter 4]

Chapters 2-4 address for each group the relevant literature and summarize the scien-
tific contributions [A1–A6]. The scientific contributions are then presented in Chap-
ter 5. Finally, Chapter 6 gives a summary and outlook. Below is an overview of each
chapter of this thesis.

Overview of Chapter 2
This chapter introduces the literature and mathematical concepts related to the sci-
entific contributions [A1–A3]. The scientific contributions are concerned with the
impact of external electric fields on model systems of classical ions in helical con-
finement. The chapter starts in Sec. 2.1 with an overview of classical Coulomb sys-
tems and Wigner crystals. Then, the helical ion model (which is used for all scientific
contributions discussed in this section) is introduced in Sec. 2.2. Besides introduc-
ing the systems Lagrangian, the section also contains a general overview of helical
structures in physics (Sec. 2.2.1), as well as a review of the literature related to the
helical ion model 2.2.3. Finally, an outline of the scientific contributions [A1–A3] is
given in Sec. 2.3.

Overview of Chapter 3
This chapter introduces the literature and mathematical concepts related to the sci-
entific contribution [A4]. The scientific contribution investigates the ground state
properties of helical dipole chains. The chapter starts with an overview of the prop-
erties of (linear) dipole chains in Sec. 3.1. Mathematical patterns related to those
used for the ground state classifications in [A4] have previously been relevant in the
field of phyllotaxis - the study of the arrangement of lateral organs in plants. A brief
overview of the relevant discoveries in the field of phyllotaxis is provided in Sec.
3.2. Finally, Ref. [A4] is outlined in Sec. 3.3.

Overview of Chapter 4
This chapter introduces the literature and mathematical concepts related to the sci-
entific contributions [A5, A6]. The scientific contributions study the properties of
classical dipole arrays on curved surfaces. The chapter starts in Sec. 4.1 with an
overview of the equilibrium properties of classical dipole lattices. Then Secs. 4.2
and 4.3 respectively discuss relevant setups of electric and magnetic dipole arrays.
This includes a discussion of magnetic dipole arrays on curved surfaces. Finally, Sec.
4.4 outlines the scientific contributions [A5] and [A6].

Overview of Chapter 5
This chapter contains the scientific contributions [A1–A6]. An outline of each con-
tribution is provided in Secs. 2.3, 3.3, and 4.4.
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Overview of Chapter 6
This chapter summarizes the scientific contributions of Chapter 5 and provides an
outlook that discusses possible future investigations.
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Chapter 2

Interacting particles and helical
confinement

This chapter reviews the relevant literature related to classical ions confined to heli-
cal geometries and subsequently presents an overview of the scientific contributions
[A1–A3].

Section 2.1 provides an overview of classical Coulomb systems in flat geome-
tries. An in-depth overview of the helical ion model, which is the model used in the
scientific contributions [A1–A3], is given in Sec. 2.2. It includes a general motivation
of the helical geometry in Sec. 2.2.1, a mathematical description of the helical ion
model in Sec. 2.2.2, and a discussion of related literature in Sec. 2.2.3. The chapter
concludes with an outline of the scientific contributions [A1–A3].

2.1 Classical Coulomb systems and Wigner crystals

“There is an amusing analogy between the configuration of classical char-
ges in two dimensions and the arrangement of quantum dots. Quan-
tum dots are trapped, spin-aligned electrons in a magnetic field pinned
down in a substrate—the problem is treated in a fully quantum mechani-
cal way. Hartree–Fock calculations of the configurations include angular
momentum, and have large exchange terms in the interaction. Yet the
patterns obtained [...] are remarkably similar to the classical calculations
of charges confined to two dimensions. ”

- J. P. Schiffer
"Order in confined ions" J. Phys. B: At. Mol. Opt. Phys. 36, 511-523 (2003)

In 1934, Eugene Wigner predicted that systems of Coulomb-interacting electrons
can possess a crystalline phase - the Wigner crystal [13]. He predicted that this crys-
talline ordering would occur whenever the Coulomb energy in the system domi-
nates over the electron kinetic energies. In many Coulomb systems, such as metals,
Wigner crystal phases will therefore only emerge for very low temperatures. The
requirement of low kinetic energies has made the direct observation of Wigner crys-
tals rather difficult. While measurement techniques, such as scanning tunneling mi-
croscopy, do possess the spatial resolution to detect Wigner crystals, they also add
perturbations that can alter the electron configuration [14]. Nevertheless, signatures
of electronic Wigner crystals have been detected in a large number of systems [15–
19]. And in 2021, 87 years after their prediction, the first real-space imaging of an
electronic Wigner crystal was obtained [14]. In that regard, one should note that
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ionic Wigner crystals provide a more accessible platform [20–22] and have been pro-
posed for a number of applications including quantum computing [23], or research
on exotic stellar objects [24].

Wigner crystals can be treated classically, provided that the inter-particle distance
of the ions is large enough. This level of ‘quantumness’ of a Wigner crystal can be
classified by the ratio of the deBrogli length Λ = h/

√
2πmkBT of the electrons (or

ions) to the average inter-particle distance a. When the ratio is Λ/a ≥ 1 - which is
the case for most materials - the system has to be treated with quantum mechanics.
However, if Λ/a < 1, a classical description is applicable.

A simple model that captures the physics of Wigner crystals is the one-component
plasma (OCP) [25]. The model describes the (statistical) mechanics of classical Cou-
lomb-interacting ions (point particles) in the presence of a uniformly ‘smeared out’
background charge. The behavior of this model depends mainly on the relative
strength of thermal fluctuations to the strength of the Coulomb coupling. For very
weak Coulomb coupling, the system is in a gas phase that is characterized by an
almost collisionless motion of the ions. For weak to moderate Coulomb coupling,
rapid collisions can be observed and the system is said to be in a liquid phase. The
crossover between the gas and liquid phase can be detected from microscopic prop-
erties, e.g., through a minimum in the reduced shear viscosity [26, 27]. When cross-
ing a critical coupling strength, a first-order liquid-to-solid phase transition can be
observed [28–32]. Above this critical Coulomb coupling strength, Wigner crystals
will form. And while the model is (in most cases) a drastic oversimplification, it is
widely used as a reference system, e.g., in studies of electron dynamics in metals or
studies of strongly coupled plasmas. For example, the model can be used to estimate
system properties that are directly impacted by strong Coulomb coupling and other-
wise difficult to estimate, such as diffusion coefficients [33, 34], thermal conductivity
[35–37], or shear viscosity [27, 33].

In finite-size systems, the properties of the OCP depend also on the trapping ge-
ometry. For example for a 2D Coulomb system, the density profile is only uniform
when the trapping potential is harmonic - with non-uniform density distributions
arising for different trapping geometries. In the limit case of hard-wall boundary
conditions, the density profile will resemble that of a hollow shell [31]. In this regard,
there has been a strong interest in understanding the properties of Coulomb systems
with boundary conditions that effectively confine the ions to a (quasi) 1D subspace.
Common setups for studying effective 1D Coulomb systems employ parabolic traps
[38–43]. The equilibrium configurations of these systems depend almost exclusively
on the particle density and can emerge as complex configurations, including lin-
ear chains, zig-zag configurations, helical ‘chains’, or multiple interwoven helical
‘chains’ [44, 45]. The configuration space of this system can be represented by a
complex bifurcation tree that depends on the particle density within the trap [41].
Similar equilibrium configurations have been reported for different (quasi-1D) trap
geometries, including linear, spherical, or toroidal traps [46–48]. Experimental re-
alizations [39, 46] of these quasi-1D setups have been realized with dusty plasmas
- a type of low-temperature plasma containing macroscopic-sized charged particles
[49–51].

The OCP is only one (rather simple, yet prominent) type of model where classi-
cal Coulomb interactions between ions can be relevant for experimental setups. In
addition to the OCP, there are other microscopic or mesoscopic setups where the
behavior of confined ions can be treated classically. One example worth mention-
ing are counter-ions being adsorbed and moving along the surfaces of a macroion
[52]. These macroions can take various shapes including cylinders [53, 54], spheres
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[53–55], and helices [56]. The counter-ions can be mobile [57], and the Coulomb re-
pulsion between counter-ions can lead to the formation of Wigner crystals [58, 59].
In theoretical models, these macro-ions can sometimes be treated as hard surfaces
with uniform charge distributions, whereas the counter-ions are then treated based
on statistical dynamics.

2.2 The helical ion model

Coulomb systems similar to the OCP (see Sec. 2.1) have been studied for a va-
riety of boundary conditions, including helical confinement [7, 60]. This section
demonstrates the rich properties emerging in long-range interacting Coulomb sys-
tems when they are confined to a helical path.

Section 2.2.1 gives a brief overview of helical structures in physics and highlights
some of the general motivations driving contemporary investigations of helical sys-
tems. Section 2.2.2 explains the mathematical model employed in [A1–A3] and dis-
cusses the most significant effects of helical confinement. Finally, Sec. 2.2.3 provides
an overview of the relevant literature regarding ions in helical confinement.

2.2.1 The significance of the helical geometry

“[...] we only poorly understand why there exist so many spiraling galax-
ies and nebulae in our universe but we do have a reasonable good idea of
why DNA and many protein molecules spiral. We understand the basic
mechanism by which the chambered nautilus generates its logarithmic
spiral home but we do not understand how it is possible for the framed
narwhal, the unicorn of the sea, to possess two spiraling teeth located on
each side of a bilaterally symmetric body that both spiral in a left-handed
direction. [...] For a narwhal to have tusks originating on opposite sides
of the body which are both asymmetric and identical, not the mirror im-
age of one another, is highly paradoxical. ”

- R. I. Gamow
"Spirals in nature" Phys. Teach. 17, 14-22 (1979)

“From the deep universe to hurricanes, a tendrilled vine in a garden to
an apple peel, human genes to flower shapes, spirals or helices are ev-
erywhere in nature. Why would the seeds of sunflowers strictly arrange
in a “Fibonacci spiral”? Why would ammonites coil themselves into an
“Archimedean screw”? These ordered arrangements look surprising yet
mysterious in the chaotic surroundings. ”

- Z. Ren and P. Gao
"A review of helical nanostructures" Nanoscale 6, 9366 (2014)

Helical structures are ubiquitous and appear at almost all length scales. The
most prominent naturally-occurring helical structure is perhaps the DNA double
helix. Due to its important role in biology, DNA has been researched extensively in
biology, chemistry, and physics. Besides DNA, prominent naturally occurring nano-
scale helices include the α-helices in proteins, the triple helix of poly proline-glycine
helices in collagen, and the helix of protein sub-units in the tobacco mosaic virus, to
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just name a few. The formation of molecular helices is often accompanied by certain
properties or functionalities arising from the helical geometry. General examples of
these properties include the optical activity of chiral molecules [61] or an increased
stability regarding deformations [62, 63]. Examples for specialized functionality aris-
ing from helical geometries are ubiquitous in nature. For many biological molecular
helices, the helical shape has an impact on biological functions, such as biological
information storage or cell proliferation [64]. Another well-known example is the
impact of chirality - whether a molecule is left- or right-handed - on its function.
This impact of chirality on molecule-function is evident in, e.g., the taste of amino-
acids, which - depending on chirality - is either sweet or tasteless [65].

There is a great interest in understanding the properties, the controlled assembly,
and the possible applications of nano-scale helical structures [66, 67]. These nano-
scale helices are envisioned for applications including optoelectronics [68], sensors
[69], responsive materials [70], helical logic devices [71, 72], single-molecule elec-
tronics [73], nano-scale ‘machines’ [74], and more. There is already great experi-
mental control over the manufacturing of helical structures. Common methods for
the assembly of helical structures include guided fabrication methods [75, 76], as
well as self-organized processes [77, 78]. Especially for large-scale self-organized
structures, the origin of helical growth patterns is often a result of a chirality trans-
fer from the molecular level to macromolecular or supramolecular structures [70].
One noteworthy example for artificially created helical nano-structures are ‘coiled’
carbon nano-tubes [67, 79]. Helical carbon nano-tubes with helix radii as small as
∼ 20 nm have been created in laboratory environments [80]. Further information on
the fabrication of helical nano-structures, as well as their properties, are discussed in
a multitude of review articles (e.g. Refs. [66, 67, 69, 70, 79, 81–83]).

Beyond material science, helical structures also appear in a wide range of other
systems. One example that was already mentioned in Sec. 2.1 are Coulomb-interac-
ting ions in parabolic traps, which have been shown to self-organize into intertwin-
ing helical arrays [39, 41, 44–48]. In that regard, it is interesting to note that actual
helix-shaped traps for neutral atoms have been realized with evanescent light fields
around a thin optical fiber [84] (related setups are also described in Refs. [85, 86]).
Another example that is featured later in this thesis are phyllotactic (helix) patterns
appearing during the growth of certain biological systems (with some applications
in physics - see Sec. 3.2 for details). These helices in phyllotaxis are interesting be-
cause they naturally emerge from a ‘simple’ model of closest packing densities on
a cylinder; and despite their simplicity, they can explain the presence of the golden
ratio and the Fibonacci sequence in many biological systems. An overview of phyl-
lotaxis in cylindrical systems, as well as examples of phyllotactic patterns appearing
in physics, is given in Sec. 3.2.

Note that the purpose of the above text is only to motivate the properties of he-
lical structures, and to provide a basic picture of contemporary research interests
regarding nano-scale helical structures. It is not concerned with experimental real-
izations of the helical Coulomb systems investigated in Refs. [A1–A3].

2.2.2 The model

The scientific contributions [A1–A3] use the helical ion model. It describes classical
Coulomb-interacting ions confined to a helical path. This path can be described with



2.2. The helical ion model 9

the following parametric function

r(u) =




x(u)
y(u)
z(u)


 =




ρ cos(u)
ρ sin(u)
hu/2π


 , (2.1)

where ρ and h are the helix radius and pitch, respectively. The parametric coordi-
nate u in Eq. 2.1 is assigned a unique value for each point on the helix and can be
interpreted as an angular coordinate; whenever u increases by 2π, the position on
the helix changes by one winding. The helix shape is determined by the ratio of
the parameters ρ and h: In the limit of ρ/h → 0 the confining path r(u) becomes
effectively a straight line, whereas in the opposite limit, i.e. ρ/h → ∞, the helix
effectively degenerates into a circle.

A system of N identical ions with mass m and charge q, confined to the helical
path defined by Eq. 2.1, is described by the following Lagrangian

L(u1, u2, ...uN) =
N

∑
i=1

m
2

ṙ2(ui)−
N

∑
i,k=1
i<k

1
4πϵ0

q2

|r(ui)− r(uk)|
, (2.2)

where ui is the position of the i-th particle in parametric coordinates, and the mass
and charge are respectively denoted as m and q. The confining forces that prevent
the ion from leaving the helical path are automatically considered by only allowing
the particle positions r(u). Inserting r(u) from Eq. 2.1 yields

L(u1, u2, ...uN) =
N

∑
i=1

ξu̇2
i −

N

∑
i,k=1
i<k

1
4πϵ0

q2
√

2ρ2 (1 − cos(∆uik)) +

(
h

2π

)2

(∆uik)
2

, (2.3)

where ∆uik = (ui − uk) is the parametric distance of the i-th and k-th particle, and
ξ = m |∂r(u)/∂u|2/2 = m

(
ρ2 + (h/2π)2

)
/2 is the particles effective mass. Equa-

tion 2.3 shows that the confinement to a helical path drastically changes the behav-
ior of the ions: The denominator of the potential energy term has two summands -
a linear term and an oscillating term. By changing the helix geometry (specifically
the ratio ρ/h), one can tune between a dominantly repulsive (h ≫ ρ) or a domi-
nantly oscillating (h ≪ ρ) interaction potential. In the straight line limit (ρ/h → 0)
the potential becomes purely repulsive, whereas in the limit of a circular geometry
(ρ/h → ∞) interaction becomes purely oscillatory.

The behavior is easy to predict for the two limit cases discussed above. Outside
of these limits, i.e. ρ/h ∈]0, ∞[, both the oscillating and the repulsive term contribute
significantly to the interaction potential. Above a critical value of ρ/h, the oscillat-
ing term becomes strong enough to allow for the formation of bound states. Figure
2.1 explains the behavior for a system of two ions and a helix with ρ/h = 1.25. A
possible two-ion equilibrium configuration is indicated by the two dark blue dots in
Fig. 2.1(a). The ions form a bound state by trapping each other on opposite sides
of a helix-winding: Neither ion can change its position along the helix without de-
creasing the Euclidean distance between them, thereby increasing the Coulomb re-
pulsion. This is indicated in the figure: when one ion moves (as shown by the red
arrows) towards the positions marked by the orange dots, the Euclidean distance
between the ions decreases. The potential energy as a function of the parametric
distance ∆u of the ions along the helix is shown by the orange line in Fig. 2.1(b). For
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FIGURE 2.1: (a) Equilibrium configuration of two ions (dark blue)
on a helix with ρ/h = 1.25. Neither ion can move along the helix
without decreasing their Euclidean distance. This is exemplified by
the two orange dots: Moving one ion (as indicated by the red arrows)
to these positions visibly decreases the Euclidean distances. (b) The
potential energy for two ions with distance ∆u for a helix with ρ/h =
1.25 (orange line), ρ/h = 0.625 (yellow dashed line), and ρ/h = 0
(gray dashed line). For reference, the upper panel shows the positions

indicated in (a).

reference, the top panel indicates the configuration of the blue and orange dots from
Fig. 2.1(a). The potential landscape shows that for ρ/h = 1.25 there are several other
stable equilibrium configurations for the two-ion system - besides the one shown in
Fig. 2.1 (a): Each of these potential minima occurs close to where the relative dis-
tance becomes an odd multiple of π, corresponding to a ‘distance’ of 0.5, 1.5, 2.5, ...
helix windings 1. The depth and number of potential wells can be tuned by varying
the ratio ρ/h. An example for ρ/h = 0.625 is shown by the dotted orange curve in
Fig. 2.1(b): this second curve has fewer and more shallow minima than the curve for
ρ/h = 1.25. By decreasing ρ/h, the oscillating part of the potential becomes weaker
compared to the repulsive part.

Bound states consisting of more than two particles are also possible. However,
predicting these many-body equilibrium configurations can be non-trivial, even for
just three particles. Further insight into the equilibrium configurations featuring
three ions can be found in Ref. [7]. The scientific contribution [A1] also investigates
the statistical properties of many-body equilibrium configurations on a toroidal he-
lix.

2.2.3 Progress on the helical ion model

This section provides a literature overview concerning the helical ion model. There
have been investigations of setups similar to the helical ion model, such as studies
on helically confined excitons (i.e., oppositely charged electron-hole pairs) [87, 88],
or polarized dipoles in helical confinement [89–92]. Of course, beyond that, there
exists a plethora of works providing insights into the impact of curved geometry on
confined interacting particles, including studies of cylindrical geometries [93], and
spheres [94]. In that regard, one notable and relevant mathematical problem is the

1For an equilibrium configuration of two ions, we actually get ∆u ≥ (2n + 1)π, n ∈ N0; with the
distance being exactly ∆u = (2n + 1)π only for the case of h = 0. For h > 0, the equilibrium distances
will always be (albeit only slightly) greater.
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Thomson problem [95], which is concerned with finding the ground state configura-
tion of Coulomb-interacting ions on a sphere. The following overview will, however,
focus strictly on works that consider equally charged ions in helical confinement as
defined in Sec. 2.2.2.

Perhaps the most significant feature of the helical ion model is the emergence
of an oscillating effective interaction as described in Sec. 2.2.2. Many of the afore-
mentioned works on excitons and dipoles in helical confinement ‘rediscover’ this
effective interaction for their specific setups and rarely explore the consequences of
such an oscillating interaction further. However, in the case of Coulomb-interacting
ions, the properties arising from the helical confinement have been studied in more
detail, e.g., by exploring the three-body equilibrium configurations [7].

The helix possesses a translation invariance, which allows bound states to travel
collectively (i.e., with a constant center-of-mass velocity) along the helix. More math-
ematically, in a helical geometry, the center of mass motion decouples from the rela-
tive motion of the ions. However, defects or inhomogeneities along the helix break
this translation invariance, causing a coupling of the center-of-mass and the relative
motion, which can lead to effects such as the scattering or trapping of bound states
at these inhomogeneities [8].

On a toroidal helix, the translational invariance is broken globally. As a result,
charges in a toroidal helix geometry can be ‘pinned’ to equilibrium positions, such
that inducing a current along the helical path requires the applied voltage to be
larger than a (geometry-dependent) critical value [11]. In addition to the collec-
tive motion of bound states, some work has been dedicated to understanding the
dynamics of phonons in (crystalline) many-body bound states [9, 10]. There, it has
been shown that the toroidal helix geometry has a strong impact on the phonon-
dynamics. Specifically for a (crystalline) bound state of ions confined to a toroidal
helix, the phonon band structure can be inverted by varying the helix radius [9]. For
a critical helix radius, the band structure even becomes almost degenerate (i.e., al-
most flat), thereby effectively preventing linear excitations from spreading through
the system [9], and giving rise to complex nonlinear dynamics [10].

Finally, the impact of bound states of ions on the mechanical properties of the
helix has also been investigated. There, it has been shown that the bound ions lead
to unusual contributions to the systems bending response [12].

Especially relevant for the scientific contributions in this thesis is Ref. [96] - the
first exploration of the impact of an external electric field on the helical ion model.
Similar to the Coulomb forces, the forces arising from the external field are also par-
tially compensated by the confining forces (see Secs. 2.2.2 or 2.3 for details) and lead
to a geometry-dependent electric potential. Reference [96] demonstrated that exter-
nal fields can be used to induce controlled transitions between different equilibrium
configurations of two ions. The scientific contributions [A1–A3] are all continuing
this line of research and explore the effects arising in the presence of (both static and
time-dependent) external fields.

A comment on the quantum helical ion model
One question that comes to mind is, of course: What happens if we go from a clas-
sical to a quantum system? While this thesis is purely concerned with classical sys-
tems, there have been some related works on quantum particles in helical confine-
ment that are worth a brief comment. When quantum systems are confined to a
curved geometry, the constraints on the particle motion will lead to an additional
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potential term (of geometric origin) in the Hamiltonian [97–99]. Specifically for elec-
trons confined to a helical path the quantization procedure has already been calcu-
lated [91]. Just like in the classical case, the effective interaction potential shows os-
cillatory behavior allowing for the formation of a bound state of two ions [60]. How-
ever, in the case of a quantum system, this state will be unstable, since the ions can
dissociate by tunneling through the potential barrier. Nevertheless, for a helix ra-
dius that is much larger than the helix pitch, the lifetime of the lowest energy bound
state has been estimated [60]. Specifically for two electrons confined to a helix with a
radius of R ∼ 10−8 m, the lifetime of the bound state was predicted to be larger than
τ > 1015 s ∼ 107 yr. [60]. Similar calculations of the spectra and wavefunctions of
bound states of (polarized) dipoles in helical geometries have been performed [90].
There, it was shown that for moderate interaction strengths, the formation of well-
defined ‘chains’ (i.e., bound states that are similar to the classical predictions) can
be observed in many-body quantum systems [91]. Of course, in the regime of weak
interactions, the particles tend to delocalize and show (depending on circumstances)
either gas or Luttinger-liquid behavior [92].

Finally, there are also works on discretized (i.e., tight-binding-like) models of
interacting particles in helical geometries - sometimes referred to as the helical Hub-
bard model. In the helical Hubbard model, discrete lattice sites are arranged along a
helical path, and the hopping amplitude between distant lattice sites scales accord-
ing to their (Euclidean) distance. A limiting case of this model are zig-zag Hubbard
chains [100, 101], which are also referred to as the t1-t2 Hubbard model [102–104].
Apart from this special case, studies on the helical Hubbard model include investi-
gations of wave packet dynamics [105], the interaction of wave packets with defects
[106], a modulational instability that leads to the breakdown of breather modes [107–
109], the possibility of Thouless pumping [110], and more [111–113]. It is interesting
to note, that the model has also been used to model DNA electronics [114].

2.3 Outline of Scientific contributions [A1–A3]

The scientific contributions [A1–A3] explore properties of the helical ion model, al-
beit with slight modifications from the Lagrangian derived in Sec. 2.2.2: All three
works consider a toroidal helix geometry and external electric fields. For complete-
ness, the Lagrangian used in the scientific contributions [A1–A3] is derived below.

Toroidal helix Lagrangian
A toroidal helix with torus radius R and a total of M helix windings can be parame-
terized as follows:

rt(u) =




x(u)
y(u)
z(u)


 =




(R + ρ cos(u)) cos(u/M)
(R + ρ cos(u)) sin(u/M)

ρ sin(u)


 , (2.4)

where the integer M corresponds to the number of helix windings, ρ is the helix
radius, and u is the position of the ion on the helix in parametric coordinates. From
the condition that the helix is closed, i.e., rt(u) = rt(u+ 2πM), it is possible to derive
the relation Mh = 2πR, where h is the helix pitch. Similar to the case of the straight
helix, we can obtain the Lagrangian - already accounting for the constraints on the
particle positions - by replacing the parametric positions r(u) in Eq. 2.2 with the
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parametric positions rt(u) on the toroidal helix. By doing that, we obtain

L(u1, u2, ...uN) =
N

∑
i=1

m
2

ξ(ui)u̇2
i −

N

∑
i,k=1
i<k

1
4πϵ0

q2

|rt(ui)− rt(uk)|
, (2.5)

where ui and uk denote positions of the i-th and k-th ion on the toroidal helix and

ξ(ui) = r2 + [R + ρ cos(ui)]
2 /M2 (2.6)

is the effective mass of the i-th ion. The position dependence of the effective mass
term ξ(ui) arises from the choice of parametric coordinates and, if desired, can be
removed when converting to arclength coordinates s which are defined as

s : u 7→ s(u) =
∫ u

0
|∂rt(u‘)

∂u‘
|du‘ (2.7)

The pairwise Coulomb potential term in Eq. 2.5 behaves slightly differently than
the Coulomb term for the straight helix. Most importantly, on the toroidal helix, the
Coulomb potential cannot be expressed by the relative distance of the ions alone.
The relative position of the ions within a winding (i.e. whether it is closer of farther
from the torus center) is also relevant for the potential energy. This can be seen by
evaluating the Coulomb term in Eq. 2.5:

|rt(ui)− rt(uk)|−1 =

[
4 sin2

(
ui − uk

2M

)
(R + ρ cos(ui)) (R + ρ cos(uk)) + 4ρ2 sin2

(
ui − uk

2

)]−1
2

(2.8)

The pairwise Coulomb interaction for the toroidal helix is periodic in u and exhibits -
in the short range - decaying oscillations with increasing distance of the ions, similar
to those shown in Fig. 2.1(b). A more detailed discussion of the potential landscape
of ions on the toroidal helix can be found in Ref. [A1].

Impact of an external electric field
The external electric field that is considered in the scientific contributions [A1–A3] is
modeled with an additional potential term in the Lagrangian. The potential energy
of an ion with charge q in an external field E(r, t) is given by VField = qE(r, t) · r. In the
following, we only consider homogeneous fields E(r, t) = E(t) =

(
Ex(t), Ey(t), Ez(t)

)T.
For N ions at positions rt(ui) on a toroidal helix, this homogeneous field results in
an electric potential energy given by

VField =
N

∑
i=1

qE(t)rt(ui)

= q
N

∑
i=1

[
[R + ρ cos(ui)]

[
Ex(t) cos(ui/M) + Ey(t) sin(ui/M)

]
+ Ez(t)ρ sin(ui)

]

(2.9)
This electric potential energy oscillates with the position of each ion on the helix. In
general, the minima of this electric potential will not align with the positions that
minimize the Coulomb interaction energy. Adding the electric potential given in Eq.
2.9 to the Lagrangian will therefore add competing interactions to the system.
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Contributions [A1–A3]
The scientific contribution [A1], outlined in Sec. 2.3.1, explores the many-body equi-
librium states of ions confined to a toroidal helix in the presence of a static external
electric field. It is demonstrated that the electric field strength can be used to tune a
structural crossover of equilibrium configurations. The scientific contributions [A2]
and [A3], outlined in Secs. 2.3.2 and 2.3.3, consider the dynamics induced by time-
varying external fields.

2.3.1 Outline: Tunable order of helically confined charges [A1]

The scientific contribution [A1] explores the many-body equilibrium configurations
of ions on a toroidal helix - both with and without a static external field. This work
is also the first proper investigation of the many-body equilibrium configurations of
ions in helical confinement. Previous investigations focused either on few-body phe-
nomena (see e.g. Ref. [7]), or on symmetric (crystalline) equilibrium configurations
(see Refs. [9–11]). The electric field considered in [A1] is static and aligned along
the z-axis (according to the notation of Eq. 2.4). This electric field favors particles at
discrete positions u = 2πn, n ∈ N0, whereas the Coulomb interaction favors particle
distances of ∆u = (2n + 1)π, n ∈ N0. The question posed in this work is: how do
these competing interactions impact the equilibrium configurations of our system of
ions in helical confinement?

These two potential terms favoring particle order on different length scales are
reminiscent of the Frenkel–Kontorova model (FK model); one of the fundamental
and universal tools of low-dimensional nonlinear physics [115]. The FK model uses
spring-mass chains in a periodic (typically sinusoidal) potential to model solid-state
systems. Initially, the model has been used to describe the structure and dynam-
ics of a solid in the vicinity of a dislocation core [116, 117]. Since then, significant
interest has been directed at understanding complex dynamics exhibited by the FK
model and its variations, such as the study of solitons in a continuum analog of the
FK model [118–121]. The complex behavior in FK models typically emerges when
the equilibrium length of the springs is not commensurable with the wavelength of
the periodic potential - a potential landscape similar to that of the helically confined
ions in an external field. While a direct mapping of our setup to the FK model is not
possible, the inherent similarities between the two setups suggest that similar com-
plex behavior could be present in the helical ion model whenever a static external
field is present.

In [A1], the many-body equilibrium configurations are investigated as follows:
We first consider an example system and identify all possible equilibrium configura-
tions for the case of a vanishing external field. These equilibrium configurations are
then classified with an order parameter to demonstrate a tendency of amorphous
ordering of the ions on the helix. We demonstrate a structural crossover that occurs
as the strength of the external electric field is increased. This crossover changes the
particle order from amorphous configurations in the field-free case to equidistantly
spaced ions in the case of a dominating external field. This crossover is analyzed and
characterized statistically. We then discuss the impact of parameter variations on the
crossover, specifically focusing on variations of the system size, the number of par-
ticles per helix winding, and the helix radius. This discussion shows the persistence
of the crossover for a wide range of parameters.
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2.3.2 Outline: External field-induced dynamics of a charged particle on a
toroidal helix [A2]

The scientific contribution [A2] investigates the impact of time-dependent fields on
the dynamics of helically confined ions. The setup consists of a single ion confined to
a toroidal helix while being driven by an external electric field. Two types of periodic
driving fields are considered: an oscillating field and a rotating field, both aligned
in the torus plane (xy-plane as per the notation of Eq. 2.4). As described in Sec.
2.2.2, the confining forces of the helical path can be combined with the forces exerted
by the field into an effective interaction of the ion with the external field. For the
oscillating and the rotating field, the corresponding effective potentials (respectively
denoted as Vx and Vxy) are given by

Vx(u, t) = qE [R + ρ cos(u)] cos(u/M) cos(ωt) (2.10)

Vxy(u, t) = −qE cos(ωt − u/M) [R + ρ cos(u)] , (2.11)

where E is the amplitude of the driving field, ω is the frequency of the driving field,
t is the time, and R, ρ, M, and u respectively correspond to the torus radius, the helix
radius, the number of windings, and the ion position in parametric coordinates.

Periodic driving has been thoroughly investigated in the context of chaos re-
search. Significant interest in driven systems has been directed towards understand-
ing how periodic driving potentials can be used to control chaotic dynamics. One
of the most significant results in that regard is the relation between directed trans-
port of particles and the symmetries of the driving potential: For directed transport
to be present, the equations of motion should not possess any of the two following
spatiotemporal symmetries [122]

u → −u + δu t → t + δt (2.12)

u → u + δu t → −t + δt, (2.13)

where u is the particles spacial coordinate, t is the time, and δu and δt are (arbitrary)
constants. Driving potentials that break these symmetries have been used to achieve
a wide range of control over chaotic dynamics [123], such as inducing directed trans-
port of particles without requiring any bias (such as a net voltage) [124–129], the
implementation of velocity filters [130, 131] or spectrometers [132, 133], and even
to gather energy from thermal fluctuations [134, 135]. One can easily see, that from
the two considered driving potentials (Eqs. 2.10 and 2.11) only Vxy is breaking the
symmetries described in Eqs. 2.12 and 2.13. Nevertheless, this work demonstrates
a mechanism by which a non-zero average velocity for chaotic trajectories can be
observed for both Vxy and Vx. The identification of these trajectories, as well as the
explanation of the underlying mechanism, is one of the key results of this work.

The trajectories that allow for this directed transport can only be observed for low
driving amplitudes. The emergence of these trajectories during a transition from a
large to a low driving amplitude is investigated, and the transition is characterized.
The behavior is explained by the split-up of a chaotic phase space region into two
separate regions.

A similar separation of the chaotic phase space region has also been found in
the case of the rotating external field and very large driving amplitudes. Chaotic
trajectories become ‘trapped’ around the global minimum of Vxy for certain driving
amplitudes.
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For both types of phase-space separations, the mechanism can be linked to terms
in the driving potential that arise from the finite helix radius ρ. The results of [A2]
also include a phase-space analysis that characterizes the most prominent types of
trajectories arising due to Vx and Vxy.

2.3.3 Outline: Driven toroidal helix as a generalization of the Kapitza
pendulum [A3]

The scientific contribution [A3] builds directly on the results of [A2] (discussed in
Sec. 2.3.2 above). Similar to the setup investigated in [A2], we consider a single
particle on a toroidal helix and a periodically sinusoidal oscillating driving field.
The key difference to [A2] is, that this time, we consider an additional static potential
Vs(u) = V0 cos(u/M) along the helix. The total potential of an ion at a position u
along the path is then given by

V(u, t) = qE [R + ρ cos(u)] cos(u/M) cos(ωt) + V0 cos(u/M), (2.14)

where the integer M corresponds to the number of helix windings, R and ρ are the
torus and helix radius, E is the amplitude of the driving field, ω is the driving fre-
quency, and V0 is the amplitude of the static potential. Interestingly, in the limit case
of vanishing helix radius ρ → 0 the equations of motion for an ion moving in this po-
tential coincide with the equations of motion of the well-known Kapitza pendulum
[136].

The Kapizta pendulum is a pendulum driven by an oscillating pivot. A main
feature of this pendulum is, that it possesses two stable fixed points: Firstly, the
trivial fixed point corresponding to a pendulum position in the minimum of the
static potential V(u) at u = Mπ. The second stable fixed point corresponds to the
pendulum in the maximum of the static potential V(u) at u = 0. This second fixed
point is stabilized by the driving forces and becomes an unstable fixed point in the
limit of vanishing driving forces. The Kapitza pendulum, or more specifically the
underlying equation of motion, has been relevant for real-world problems, such as
explaining the stability of the design of bipedal walking [137].

The setup studied in [A3] can be considered a generalization of the Kapitza pen-
dulum: Features beyond those of the Kapitza pendulum emerge for finite helix radii
ρ > 0. We analyze the impact of finite helix radii on the stability of the two main
fixed points with a linear stability analysis. This allows us to analytically derive the
system parameters for which the fixed points are stable. These analytical results are
subsequently compared to (and show good agreement with) numerical simulations.
We find a strong dependence of the dynamics around the fixed point at u = Mπ
on the helix radius. In contrast, the effect of ρ on the fixed point at u = 0 is al-
most negligible. We additionally investigate the impact of a finite helix radius on
the phase space and discover prominent dynamical ‘phases’ that are absent in the
Kapitza limit, such as directed chaotic trajectories that move (on average) by one
helix winding every driving period.
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Chapter 3

Helical dipole chains

The discussion of Chapter 2 has provided many examples of intriguing effects that
arise when long-range Coulomb-interacting particles are confined to a helical geom-
etry. This naturally raises the question if similar - or perhaps even more complex -
behavior can be observed when the (isotropic) Coulomb interactions are replaced by
dipole-dipole interactions. One can expect that the anisotropic nature of the dipole-
dipole interactions will lead to behavior that differs from that of the ions in Chapter
2. As an initial step in this direction, the scientific contribution [A4] investigates the
equilibrium properties of interacting dipoles that are equidistantly spaced along a
helical path.

This chapter provides an embedding of [A4] into the existing literature. An
overview of classical dipole chains is given in Sec. 3.1. Next, Sec. 3.2 discusses
the field of Phyllotaxis [138], where geometric arrangements similar to those inves-
tigated in [A4] have previously been relevant. Finally, Sec. 3.3 provides an overview
of the scientific contribution [A4].

3.1 Properties and arrangements of classical dipole chains

One-dimensional chains of interacting dipoles are the main building blocks of many
physical models and have been rigorously studied in the past. The preparation of a
strictly linear chain can be achieved [139–141] using lithography methods [142], or
through self-organized processes [143]. Experimental studies of dipole chains typ-
ically focus on polar molecules with permanent dipole moments. Although these
are molecular systems, quantum effects can be neglected and dipole chains may be
treated classically when the dipole moments and moments of inertia are sufficiently
large, as has been shown for certain systems of polar molecular rotors [144, 145]. In
addition to chains of freely rotating dipoles, setups exist where the dipole rotation
is restricted to a single rotational degree of freedom [145–147]. Any such restric-
tion of the dipole rotation can impact the overall ground state dipole orientation:
Freely rotating dipoles in a straight chain arrange head-to-tail, while dipoles that are
constrained to rotate perpendicular to the chain (see e.g. certain molecular dipolar
rotors discussed in Ref. [148]) align in an anti-parallel configuration. Due to the un-
derlying symmetries, such as the invariance of the total energy with respect to the
inversion of all dipoles, these dipole chains support a large number of (often non-
trivial) excited states. These excited states can take the form of stable kinks [149], or
even entire domains separated by domain walls. This large number of stable equi-
librium configurations makes dipole chains interesting candidates for applications,
since they allow for example the controlled encoding of information within a dipole
chain [150].
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A chain of interacting dipoles with rotational degrees of freedom is a complex
system of nonlinear coupled oscillators and exhibits interesting dynamical behavior.
Studies of the energy transfer along one-dimensional dipole chains have been car-
ried out for both freely rotating, as well as various constrained dipole chains [145–
147]. In particular, complex dynamical behavior can be seen even in the shortest
dipole ‘chains’ [151]. Conversely, for large chains, analytical solutions exist that de-
scribe the dynamics of soliton waves traveling along the chain [152]. For more gen-
eral dynamical excitations of the dipoles, both chaotic motion and soliton-like trans-
port have been observed [153, 154]. The soliton-like transport of excitations allows
for efficient energy transfer along a linear chain [145–147, 155–157]. Furthermore,
simulations have demonstrated that dipole chains could be used as waveguides that
can transport signals below the diffraction limit [158–160], thereby overcoming size
limits for guiding and modulating light.

Besides the ‘simple’ dipole chain, there have also been investigations of slightly
modified setups. A relevant example are chains with closely-spaced dipoles where
the dipole approximation does not hold anymore [157]. In these models, an ultrasen-
sitivity to small periodic modulations has been demonstrated [157]. In that regard,
other interesting works that are related - but less relevant to [A4] - include studies of
temperature effects on classical dipole chains [161], or the dynamics of spin-waves
in chains of magnetic dipoles [162–164].

So far, the above discussion of the properties of dipole chains focused mainly
on strictly linear chains. However, the geometric arrangement of dipoles can also
impact the system properties. For example, a circular arrangement of dipolar rotors
shows a rich structure of stable as well as unstable equilibrium configurations that
depend on the overall symmetries of the arrangement [165]. Moreover, setups in-
volving two merging 1D dipole chains have been used to build controllable switches
and logic gates [166].

Specifically helical arrangements of classical dipolar rotors - such as those setups
investigated in [A4] - have not been studied in great detail: One example of an exper-
imentally accessible system containing a helical arrangement of dipoles are stacks of
BTA (trialkylbenzene-1,3,5-tricarboxamide) molecules [167, 168] Each BTA molecule
consists of three dipolar rotors attached to a central circular molecule. These BTA
molecules can self-arrange into stacks, and within a stack, the total energy is mini-
mized when the dipolar rotors align along head-to-tail chains. A naturally occurring
rotation of the molecules at each layer of the stack leads to a ground state consist-
ing of a helical dipole chain. Another rather prominent (and admittedly remote)
example of such a helical arrangement of dipoles in nature are the dipoles in the
secondary structure of proteins that are aligned due to hydrogen bonds between
different windings of α-helices [169–172].

Beyond such examples, the studies with perhaps the closest relation to [A4] are
investigations of magnetic nanowires (e.g. Refs. [173] and [174]). However, in
these works, the equilibrium properties are dominated by interactions other than
the dipole-dipole interaction1. Prominent, but less relevant for [A4], are systems
where dipoles possess motional degrees of freedom. Examples include Hubbard
models that consider dipoles in various geometries, such as zig-zag chains [175, 176]
or ladders [177, 178].

1Magnetic systems - including magnetic wires - are discussed in more detail in Sec. 4.3
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3.2 Cylindrical lattices and phyllotaxis

“Given the intersecting curves, the mathematical manipulation and de-
scription of continued fractions becomes a feature with which Botany has
nothing to do, nor is it at all helpful in any direction. Such expressions
may attract the mathematician, but they repel the botanist.”

- A. H. Church (1865-1937)
"On the relation of phyllotaxis to mechanical laws" p. 344

“According to the theory I am working on now there is a continuous ad-
vance from one pair of parastichy numbers to another, during the growth
of a single plant... You will be inclined to ask how one can move contin-
uously from one integer to another. The reason is this - on any spec-
imen there are different ways in which the parastichy numbers can be
reckoned; some are more natural than others. During the growth of a
plant the various parastichy numbers come into prominence at different
stages. One can also observe the phenomenon in space (instead of in
time) on a sunflower. It is natural to count the outermost florets as say 21
+ 34, but the inner ones might be counted as 8 + 13. Church is hopelessly
confused about it all, and I don’t know any really satisfactory account,
though I hope to get one myself in about a year’s time.”

- A. M. Turing (1912-1954)
(from a letter of 28th May, 1953)

The scientific contribution [A4] investigates a helical dipole array. From a purely
geometric point of view, this helical array is a special case of a cylindrical Bravais lat-
tice. Such cylindrical lattices have previously been relevant for a variety of biological
systems, especially in the field of Phyllotaxis [138] - the study of the formation of lat-
eral organs in plants. There, it was realized that the arrangement of these lateral
organs, such as plant leaves, often follows spiral patterns that correspond to the so-
lution of a closest packing problem of circles on a cylinder. Of course, the biological
(or rather the chemical) origin of these growth patterns has been understood to be
a result of self-organized directed transport of growth hormones (auxin) [179–183].
But already long before the biochemistry behind these patterns was uncovered, the
studies of closest packing densities had wide-ranging success in explaining plant
growth - especially in explaining the occurrence of the golden ratio, the Fibonacci
sequence, or the Luca sequence in nature. The geometric properties responsible for
this pattern formation are relevant for the ground state of the helical dipole array
studied in [A4]. Therefore, we will now provide a brief overview of selected phyl-
lotaxis concepts.

In 1837, the Bravais brothers where the first to explain phyllotactic patterns with
the geometry of point lattices on a cylinder [184]. They were the first to realize that
the eye-catching spirals - e.g. in the arrangement of scales of pinecones or pineap-
ples - are secondary structures originating from a single generating helix. These sec-
ondary spirals are called parastichy helices and typically correspond to helical paths
that connect a lattice point to its nearest or next-nearest neighbor. Each parastichy
helix can be assigned an integer number that counts how many of these spirals fit
on the cylinder. Alternatively, this number can be obtained by counting the number
of lattice points that the generating helix passes before passing the same parastichy
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FIGURE 3.1: Sketch of the van Iterson diagram.
It maps the possible arrangement of spheres on a cylindrical surface -
with the condition that spheres are placed equidistant along a gener-
ating helical path. This distance along the generating helix (relative to
the length of a helix winding) is mapped on the horizontal axis. The
vertical axis shows the radius of the spheres. Possible configurations
(corresponding to local minima in the packing density) are given by

the black lines. See Ref. [186] for details.

helix for the second time. These integers are used to classify the lattice (or leaf)
configurations. Specifically, the classification uses a parastichy pair (m, n) that cor-
responds to the two visually most dominant parastichy helices. In addition to these
visually dominant parastichy helices, other less dominant parastichies are possible.
For the majority of plants, the parastichy numbers of all possible parastichy helices
correspond to the values of the Fibonacci sequence - although, of course, in finite
lattices, the sequence is only reproduced to a finite length. Besides the Fibonacci
sequence, other sequences, such as the Luca sequence, can also sometimes appear
[185]. While the Bravais model succeeded to some extent in providing a theoretical
foundation for the geometrical arrangements of leaves, they ultimately failed to ex-
plain why certain sequences appear much more frequently in phyllotactic systems
than others.

Since the inception of the Bravais model of cylindrical phyllotaxis, the geomet-
ric understanding and interpretation of phyllotaxis has greatly improved [187–190].
Many of these later studies treat the problem by considering the closest packing
problem of spheres - instead of lattice points - on a cylinder. The full subset of possi-
ble closest packing solutions has been found by van Iterson [186] and can be visual-
ized with the so-called van Iterson diagram - a self-similar bifurcation diagram (see
Fig. 3.1). Each line in the van Iterson diagram corresponds to a specific lattice con-
figuration that can be characterized by a visually dominant parastichy pair (m, n).
At each bifurcation in the diagram, an ‘allowed’ lattice configuration splits into two
new ‘allowed’ configurations with different parastichy classifications (m, n). Over-
all, as one descends this self-similar bifurcation tree, the parastichy numbers that
classify the increasing number of ‘allowed’ configurations can be mapped to a math-
ematical sequence - the Farey sequence [191]. A lattice configuration that results in
parastichy numbers that correspond to the Fibonacci series is obtained only for those
configurations that are located on a specific path through the bifurcation diagram.

Reasons for the absolute prevalence of the Fibonacci sequence over other possible
sequences, such as the Luca sequence, have been provided by physicists studying,
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e.g., certain energetic treatments of cylindrical phyllotaxis [192]. Their considera-
tions result in bifurcation diagrams very similar to that of van Iterson - with one
striking difference: Their bifurcation diagrams show discontinuities located directly
at the bifurcation points. As a result, at each bifurcation one of the two branches is
always energetically preferred over the other. A nicely written and more detailed
explanation is provided by Levitov [192]. During the growth of a plant, the stem
(i.e. the cylinder radius) grows and the lattice configuration will smoothly descend
through the ‘allowed’ configurations as they are determined by the van Iterson dia-
gram. As long as the system follows the energetically preferred branch it will result
in a lattice where all the parastichy numbers map to the Fibonacci sequence. Accord-
ing to Levitov’s model, other sequences emerge by mistake, whenever the system
accidentally evolves along the ‘wrong’ branch in the van Iterson diagram.

The above-discussed geometrical properties of cylindrical phyllotaxis are not ex-
clusive to botany and occur in a variety of helical or cylindrical systems - for example
certain polypeptide chains [193]. Furthermore, Erickson [194] connected parastichy
patterns to a variety of biological systems, including microtubules, the microfila-
ments of actin, the flagella of bacteria, and even the protein coats of viruses. This
widespread occurrence of parastichy helices in nature has changed the contempo-
rary discussion of phyllotaxis from its originally purely botanical viewpoint into
a more general study of growth and self-organization. Specifically in physics, the
geometrical considerations of cylindrical phyllotaxis have found applications in a
variety of theoretical and experimental studies [195–201].

3.3 Outline of scientific contribution [A4]

As shown in Sec. 3.1, chains of classical dipoles possess a richness of static and
dynamic properties. It was also shown that new properties and functionalities can
emerge when the dipoles are not arranged along straight equidistant chains (see e.g.
Refs. [165, 166]). But what happens when a dipole chain is arranged along a he-
lical path? This question becomes rather intriguing when considering the complex
phyllotactic patterns exhibited by cylindrical lattices discussed in Sec. 3.2: For ex-
ample, how do the Fibonacci numbers and the golden ratio manifest in the dipole
equilibrium configurations?

The scientific contribution [A4] investigates the ground state properties of clas-
sical helical dipole chains. The rich phenomenology found in [A4] provided the
motivation for all remaining scientific contributions in this thesis, i.e. [A5] and [A6],
which are both discussed in Chapter 4. In the following, the setup and key results of
[A4] are outlined.

3.3.1 Outline: Formation and crossover of multiple helical dipole chains
[A4]

The scientific contribution [A4] investigates the ground state configurations of he-
lically arranged dipole chains. In this setup, the dipoles can freely rotate and are
positioned equidistant along a helical path. The position of the n-th dipole along the
chain is then given by

rn(∆) :=




ρ cos(n ∆)
ρ sin(n ∆)
h n ∆/2π


 , (3.1)



22 Chapter 3. Helical dipole chains

where ∆ is the divergence angle, i.e., the (angular) distance between two dipoles
along the helix, ρ is the helix radius, and h is the helix pitch. Due to the helical
shape, the nearest neighbor in Euclidean space does not necessarily correspond to
the nearest neighbor along the helical path. As a consequence, the equilibrium con-
figurations show a complex dependence on the geometrical parameters, namely the
helix radius ρ and the spacing ∆ of the dipoles along the helical path. The posi-
tions rn of the dipoles along the helix can be directly mapped to the lattice points
of cylindrical lattices, just like the phyllotactic systems discussed in Sec. 3.2. It is
therefore no surprise that we can employ considerations similar (but not identical!)
to those used in phyllotaxis to classify and predict the equilibrium configurations of
our helical dipole chains.

The ground states of helical dipole chains are classified for arbitrary system pa-
rameters ρ and ∆ - in contrast to the closest packing constraints in phyllotactic sys-
tems. In fact, we provide a classification of the ground state configurations for all
parameters - except for the closest packing configurations. Details on the differences
and similarities between the state classifications used in [A4] and phyllotaxis are
provided in [A4]. In the following, we will only address non closest packing config-
urations.

As a key result, [A4] classifies the ground state dipole configurations of the he-
lical dipole chain. These configurations consist of multiple interwoven head-to-tail
dipole chains that are akin to the parastichy helices in phyllotactic systems. Each
ground state dipole configuration can be mapped to an element of the Farey se-
quence2, which allows us to derive a self-similar phase diagram - related to the
Stern-Brocot tree - that characterizes these ground-state configurations. This map-
ping is used to derive an analytical expression for predicting the ground state dipole
orientations for a given Farey fraction and given geometrical parameters h, ρ, and
∆. The difference between nearest-neighbor and all-to-all interactions on the dipole
equilibrium configurations is also discussed.

Overall, the scientific contribution [A4] demonstrates that the helical arrange-
ment of dipoles can lead to intriguing and complex properties exceeding those of
the strictly linear dipole chain. Of course, the self-similar phase diagram and the
state characterization using fractions of the Farey series are specific to the arrange-
ment of the dipoles along a helical path. But what happens if a different geometry
is explored? Are there properties of dipoles arranged along curved manifolds some-
how guided by some underlying principles, such that the ground state configuration
can be predicted from the geometry of the manifold? These and similar questions
have motivated the works [A5] and [A6], which study the properties of dipole lat-
tices spanned on curved surfaces and are discussed in Ch. 4.

2Note that this mapping differs from the mapping used in phyllotaxis.
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Chapter 4

Dipole arrays on curved surfaces

Chapter 3 demonstrated that the properties of dipole chains are significantly im-
pacted by the geometry underlying their arrangement - especially if the geometry
is not flat but curved. Inspired by the complex ground state properties emerging
already in 1D helical dipole chains, the scientific contributions [A5] and [A6] inves-
tigate the properties of 2D dipole arrays on curved surfaces. This chapter reviews
the relevant literature related to the scientific contributions [A5, A6].

Section 4.1 discusses the general equilibrium properties of dipole lattices in flat
geometries. Section 4.2 continues with the properties and applications of ferro-
electrics, which are materials exhibiting electric dipole order. Section 4.3 addresses
the properties of magnetic dipole lattices and highlights the differences between
electric and magnetic dipoles. Finally, Sec. 4.4 outlines the scientific contributions
[A5] and [A6].

4.1 Equilibrium properties of dipole lattices

Classical dipole lattices have been studied for a variety of lattice geometries, includ-
ing Bravais lattices [202–204], as well as special cases, such as the Kagome lattice
[205, 206]. However, finding the ground state configuration for an arbitrary lattice
geometry proves to be quite difficult. Of course, well-defined theories for finding
these ground state configurations have been proposed. For example, one of the first
such theories was the Luttinger-Tisza method [207], which provides solutions for
common systems, such as the square lattice [208].

During the search for the ground state configurations of these dipole lattices, it
was discovered that for certain lattice geometries, the ground state becomes con-
tinuously degenerate - even though the underlying lattice possesses only discrete
symmetries [209]. The origin of this degeneracy has not yet been fully understood,
however, it has been shown to occur for a wide range of geometries [208, 210–213].
In particular, for certain geometries in 3D, this degeneracy exists with respect to two
parameters, whereas in the case of a 2D lattice, this is reduced to a degeneracy with
respect to one parameter. For example, the ground state energy of a 2D square dipole
lattice is invariant under a collective rotation of all dipoles. This degeneracy can be
lifted even by small perturbations (arising from e.g. lattice disorder or non-zero
temperature) in an order-by-disorder transition [210, 214].

For Bravais lattice geometries with non-degenerate ground states, the most fa-
vorable dipole orientations are typically striped patterns, where the dipoles align in
stripes along head-to-tail chains. Neighboring head-to-tail chains align either par-
allel or anti-parallel with each other, depending on the underlying lattice geome-
try. However, even for a given lattice geometry the specific ground state configu-
ration depends also on the system size and shape. For example, in large systems,
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the energy may sometimes be minimized by the formation of vortex states [215,
216]. Certain boundary conditions induce shape anisotropies that impact the dipole
equilibrium configurations. In the case of a triangular lattice, the ground state can
- depending on the system size - exhibit both stripe and vortex patterns, and even
domain walls for certain lattice shapes with large aspect ratios [215].

Beyond the ground state, dipole lattices can exhibit equilibrium configurations
consisting of domains with different dipole orientations that are separated by do-
main walls. Especially for magnetic dipole arrays, this feature has been exploited
for technological applications, such as information storage [217]. These domains and
domain walls typically arise from a ground state degeneracy, and their presence can
then be linked to a discrete symmetry breaking. More generally, domain walls are
topological solitons [218, 219] and can be described mathematically within general
frameworks, such as the Landau theory of phase transitions [220, 221]. Aside from
dipole lattice systems, domain walls have been observed in a variety of systems in-
cluding optics [222, 223], magnetic Bose-Einstein condensates [224], and even string
theory [225].

4.2 Electric dipoles in ferroelectrics and dipolar rotors

The most prominent class of materials featuring electric dipoles are perhaps ferro-
electrics [226–228]. Whether a material is ferroelectric depends first and foremost on
its underlying crystal structure: Crystal structures can be categorized into 32 possi-
ble point group symmetries, 21 of those are non-centrosymmetric, and 20 of them
are piezoelectric. Of those 20 piezoelectric crystal structures, 10 are pyroelectric and
possess spontaneous electric polarization. Ferroelectrics form a sub-group of pyro-
electric materials and are characterized by having a switchable electric polarization.

This switchable electric polarization makes ferroelectrics an invaluable ingre-
dient for modern electronic devices. For example, they are used as ferroelectric
field-effect transistors [229], sensors [230], or photonic devices [231]. Furthermore,
there is active research on new technological applications of ferroelectrics, such as
nonvolatile memories [232], negative capacity field-effect transistors [233, 234], neu-
romorphic memories [235–239], and logic-in-memory devices [240–242]. Common
examples of ferroelectric materials include ceramic perovskites, such as BaTiO3, or
PbTiO3. Due to the reliance on the underlying crystal structure, ferroelectric mate-
rials generally possess one or more preferred axes for the electric polarization - the
polar axes. Rotating the polarization away from this polar axis is only possible at
a substantial energy cost. Nevertheless, continuous rotation of the electric polariza-
tion has been experimentally observed in thin ferroelectric films [243].

Another approach for realizing arrays of freely rotating dipoles is using dipo-
lar molecular rotors [148, 244]. This has been done for example in the context of
metal-organic frameworks (MOF) [245, 246]. MOFs are complex materials where
inorganic building blocks (metal ions) are linked with organic molecules. In the so-
called rotor-MOFs [247], these linkers can possess rotational degrees of freedom, as
well as permanent electric dipole moments [248, 249]. However, it should be noted
that the dipole rotation in rotor-MOFs is typically restricted to one rotation axis.
In addition to bulk materials, MOFs can be arranged in a variety of one and two-
dimensional structures [250–254]. Furthermore, MOFs have been reported to exhibit
switchable ferroelectric order [255, 256].

The formation of long-range polarization order in a system of electric dipoles
generally depends on the dipole strength and the distance between dipoles. For
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most solid-state materials, the dipole strength is typically less than 10 Debye, and
rarely exceeds 50 Debye. In this context, it is interesting to note that extremely
large dipole moments of the order of 1000 Debye have been realized with Rydberg
molecules [257]. Dipole-dipole interactions between crystalline arrangements of Ry-
dberg atoms are already exploited in Rydberg-tweezer array setups [258, 259], with
possible applications in quantum computing [260], or nonlinear quantum optics
[261].

4.3 Magnetic dipoles and their interactions

The properties and applications of crystalline arrays of magnetic dipoles are dis-
cussed. The discussion is split into two parts. Section 4.3.1 gives a general overview
and Sec. 4.3.2 discusses magnetism on curved surfaces.

4.3.1 General considerations regarding magnetic dipole arrays

The magnetic dipole moment of an object is linked to an angular momentum via the
gyromagnetic ratio. This relation can be very nicely observed on the macroscopic
scale with the Barnett effect [262] which shows the magnetization of an uncharged
body under rotation, or with the Einstein–de Haas effect [263, 264], showing the
inverse, i.e., the rotation of a body when the magnetization changes. As a result of
this coupling, the magnetic properties of a material depend on the angular momenta
of its constituents. It should be noted, that other effects, such as currents within
a material, can also significantly contribute to the overall magnetic moment of a
solid. However, in the following, we will focus on materials where the dominant
contribution to the global magnetic field comes from the atoms at the lattice sites of
a crystal.

The magnitude m of the magnetic moment of each atom in a solid can be related
to its total angular momentum J [265, p. 368] with

m = gJµB

√
j(j + 1), (4.1)

where gJ is the Landé g-factor, µB is the Bohr magneton, and j is the angular momen-
tum quantum number. This relation to the angular momentum impacts the dynam-
ics of magnetic dipoles in the presence of an external magnetic field. Namely, when
a magnetic dipole aligns with an external field to minimize its energy it experiences
a torque. Due to a linear relation between magnetic moment and angular momen-
tum, the torque consequently also acts on the angular momentum. This causes the
so-called Lamor precession of the dipole around the direction of the external field
[266]. The dynamics of a classical magnetic moment m in an external (effective)
magnetic field B are described by the Landau-Lifshitz-Gilbert (LLG) equation [267,
268]

dm
dt

= γ

(
m × B − ηm × dm

dt

)
, (4.2)

where γ is the gyromagnetic ratio and η is a material-specific damping parameter. In
addition to dipole-dipole interactions, the formation of long-range order in a magnet
is often influenced by a variety of magnetic interactions, such as exchange type [269]
or the Dzyaloshinskii-Moriya interaction [270–272]. These magnetic interactions are
often much stronger than the dipole-dipole interaction and dominate the orienta-
tions of magnetic dipole moments. The competition between magnetic interactions
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for different equilibrium configurations can give rise to interesting equilibrium and
dynamical properties. For example, a combination of exchange and Dzyaloshinskii-
Moriya interactions can lead to non-colinear equilibrium configurations, such as
spin-spiral states [273, 274] and even soliton-like structures like magnetic skyrmions
[275–277]. Such non-collinear states have been envisioned for a variety of applica-
tions [278], including high-density storage devices [279, 280] and logic gates [281,
282].

In the past, the study of magnetic dipole arrays has focused on systems that are
dominated by exchange-type interactions. However, there is interest in magnetic
systems interacting dominantly with dipole-dipole interactions. Significant interest
has been extended into systems, such as magnetic pyrochlore oxides (especially of
the type A3+

2 B4+
2 O7) which feature both exchange-type and strong dipole-dipole in-

teractions [283]. It has been shown that the properties of these magnetic pyrochlore
oxides can be described by classical spins interacting with exchange and dipolar in-
teractions [284]. A similar competition between dipolar and exchange interactions
has been observed in thin magnetic films and other quasi-two-dimensional systems
[285].

Long-range order of magnetic dipoles arising purely from dipole-dipole inter-
actions is difficult to achieve on the microscopic level. Even when the distances
between neighboring magnetic dipoles are large enough to suppress the exchange
interaction, it is possible for non-magnetic atoms to mediate the exchange process,
such as during the super-exchange mechanism [286] or the Dzyaloshinskii-Moriya
interaction. Nevertheless, there are some creative approaches to realize microscopic
systems interacting purely with dipole-dipole interactions. One example are litho-
graphically prepared (single-domain) magnetic islands [287]: Within each island,
the magnetic moments align ferromagnetically due to the exchange interaction. The
entire island then acts as one magnetic dipole, such that the interactions between
islands are dipole-dipole interactions.

4.3.2 Magnetic dipoles on curved surfaces

The properties of magnetic dipole arrays have also been studied with respect to geo-
metric curvature. In the last decade, a rigorously formulated theory of magnetism in
curved geometries - sometimes referred to as curvilinear magnetism [288] - has been
developed [289, 290]. It has been demonstrated that curved geometries can induce
two types of effective interactions: an effective Dzyaloshinskii-Moriya interaction,
and an effective anisotropy. These effective interactions can be exploited in a vari-
ety of scenarios: For example, the induced DM interaction can be exploited to create
topological states in materials that by themselves (i.e., without curvature) are unable
to stabilize these configurations [291]. In magnetic wires, the curvature can suppress
the Walker breakdown of domain walls (see also Refs. [292, 293]) and thereby al-
low for massive domain wall velocities [294]. Other examples of curvature-induced
properties include the pinning of domain walls to regions with strong curvature
(e.g. the bending regions of a wire) [295], curvature-induced domain wall motion
[296, 297], asymmetric spin-wave dispersion in helical magnetic nanowires [174],
curvature-induced magnon modes [298] and magnonic crystals [173], and the ap-
pearance of geometrical phases [299] or Barry phases [300]. A detailed overview
can be gained from recent review articles on the topic [288, 301–304]. Despite this
wealth of phenomena, the number of experimental studies of curvature effects is still
limited [301].
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It should be noted, that all above-mentioned curvilinear magnetic works treat
(if at all) the dipole-dipole interaction as a small perturbation. They do not cap-
ture the physics of systems with dominating dipole-dipole interactions. The prop-
erties emerging in curvilinear systems dominated by dipole-dipole interactions are
explored in the scientific contributions [A5] and [A6].

4.4 Outline of Scientific contributions [A5, A6]

The scientific contributions [A5] and [A6] were motivated by the complex ground
state properties exhibited by the helical dipole chains (see Ch. 3 for details). In
contrast to the (effective) 1D system studied in [A4], the scientific contributions [A5]
and [A6] are concerned with the properties of 2D dipole arrays that are arranged on
curved surfaces. Together these works provide a first step towards understanding
the impact of geometric curvature on lattice systems with long-range dipole-dipole
interactions.

The contributions [A5] and [A6] share the same mathematical considerations,
which are outlined below. In general, a classical electric dipole is characterized by a
vector d - with the magnitude d = |d|. In [A4] and [A5], we arrange such dipoles on
a curved surface and focus on the resulting dipole orientations in the ground state.
The curved surface can in general be written as a parametric function

F : R × R → R3 ; (θ, ϕ) 7→ F(θ, ϕ), (4.3)

where θ and ϕ are the internal parametric coordinates of the surface (not necessarily
angles). We consider dipole positions that are equidistant in the parametric coordi-
nates, with fixed (parametric) distances ∆θ and ∆ϕ along the θ and ϕ directions. This
creates a rectangular lattice in the parametric coordinates, where the parametric po-
sition of the dipole in the n-th row and m-th column is given trivially by (n∆θ, m∆ϕ).
The corresponding position in Euclidean (3D) space is then given by

rnm = F(n∆θ, m∆ϕ). (4.4)

In the case of a finite lattice with N rows and M columns, the indices can be ‘simpli-
fied’ by mapping all possible dipole positions to a single integer i, such that ri = rnm
with n = Mod(i, N) and m = ⌊i/N⌋ and i ∈ [1, NM]. The total energy due to
dipole-dipole interactions between all dipoles is then given by

V(∆θ, ∆ϕ, d1, ..., dNM) =
NM

∑
i,k=1
i<k

1
4πϵ0

[
di dk

|ri − rk|3
− 3 [di · (ri − rk)] [dk · (ri − rk)]

|ri − rk|5

]
.

(4.5)
Note that for any given geometry F(θ, ϕ), the energy only depends on the dipole
orientations di and the (parametric) lattice spacings ∆θ and ∆ϕ. In the scientific con-
tributions [A4] and [A5], we are mainly interested in finding the dipole ground state
configurations and their dependence on ∆θ and ∆ϕ for a given geometry F(θ, ϕ).

Finding the ground state for a given geometry F(θ, ϕ) is a non-trivial problem.
The scientific contributions [A5] and [A6] mainly consider cases where the curvature
radius is larger than the spacing between neighboring dipoles. By doing that, we
exclude completely arbitrary arrangements of dipoles and force some correlation
of the Euclidean dipole positions. For sufficiently large curvature radii, the dipole
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arrangement can be treated locally as an (almost) flat lattice with (reasonably) well-
defined primitive lattice vectors. Such a locally flat lattice only changes gradually
across the surface F(θ, ϕ). This constraint can be exploited when determining the
dipole equilibrium configurations.

4.4.1 Outline: Geometry induced domain-walls of dipole lattices on curved
structures [A5]

The scientific contribution [A5] investigates the general impact of geometric curva-
ture on dipole lattices. The work is split into three parts: The first part discusses the
general properties of dipole lattices on a curved or deformed surface. The second
part discusses the universality of these effects and demonstrates their more general
character with an example consisting of a dipole lattice spanned on the surface of
a torus. The third part analyzes the dynamics of excitations in the toroidal dipole
lattice.

The first part of [A5] shows that a curved or otherwise deformed lattice geometry
can lead to the formation of domains and domain walls in the ground state. The
dipoles of neighboring domains are oriented along different lattice directions. We
derived a tool, the so-called gamma parameter, which can predict the positions of
the domains and the domain walls directly from the lattice geometry. The gamma
parameter is defined as

γ(θ, ϕ, ∆θ, ∆ϕ) :=
|F(θ, ϕ)−F(θ + ∆θ, ϕ)|
|F(θ, ϕ)−F(θ, ϕ + ∆ϕ)| . (4.6)

The gamma parameter predicts the ground state dipole orientation for each point
(θ, ϕ) on the surface F . Wherever γ < 1, the dipoles will align along the θ-direction,
and for γ > 1 along the ϕ-direction (see Eq. 4.3 for a definition of θ and ϕ). Domain
walls generally form at positions where γ = 1, i.e. where the Euclidean distances to
the nearest and next-nearest neighbors are equal. These curvature-induced domain
walls behave different from the ordinary (degeneracy-induced) domain walls. We
demonstrate this by showing the response of the domain wall to an external electric
field. For low field strengths, the domain-wall position is shifted proportional to the
field strength. Above a critical field strength, the domain wall splits into two domain
walls surrounding a newly formed ferroelectric domain. We explain the formation of
this new ferroelectric domain with the continuous ground state degeneracy appear-
ing in dipole lattices where the nearest neighbor and next-nearest neighbor distances
are equal (see also Ref. [209] for details).

In the second part of [A5], we validate and expand our understanding of the do-
main wall properties and formation by investigating a dipole lattice spanned on the
surface of a torus. We find a good agreement between the numerically calculated
domain wall positions and analytical predictions based on the gamma parameter.
The electric field response of the domain wall, which was observed in the first part,
could be replicated in the toroidal dipole lattice. This is notable insofar as the an-
gle between the external field and the domain wall changes continuously along the
domain wall.

Finally, in the third part, the dynamics of small amplitude excitations are ana-
lyzed in the limit of a harmonic approximation. We find a strong tendency of the
eigenmodes to stay confined within the boundary of a domain. Due to this, all small
amplitude excitations are unable to cross the boundary of the domain wall and are
therefore prohibited from dispersing over the entire torus surface.
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4.4.2 Outline: Compression-induced crossovers for the ground-state of
classical dipole lattices on a Moöbius strip [A6]

The scientific contribution [A5] has demonstrated the basic properties of dipole lat-
tices on curved manifolds. Motivated by this, we set out to investigate the prop-
erties of dipole lattices in a (topologically) non-trivial and non-orientable geometry.
The scientific contribution [A6] considers the ground state properties of dipoles on
a Möbius strip.

The scientific contribution [A6] provides an overview of the possible types of
ground state configurations. Just like in [A5], the gamma parameter (see Eq. 4.6)
can be used to accurately predict the formations of geometry-induced domains and
domain walls in the systems ground state. Based on the gamma parameter, it is
argued that all relevant dipole equilibrium configurations can be reached by varying
the width of the Möbius strip while keeping the other system parameters constant.
The dipole equilibrium configurations and their dependence on the Möbius strip
width are subsequently analyzed. In the limit of a narrow Möbius strip width, there
is only a single domain. When the width increases, a second domain will emerge
and spread across the strip and eventually cover the entire surface of the Möbius
strip.

The transition from a narrow to a wide strip (and vice versa) is then treated as
an (adiabatic) compression or stretching of the strip. The total energy of the system
during such compression is then analyzed together with the corresponding 2D (com-
pression) modulus [305]. We highlight and explain different types of crossovers.
Crossovers that are related to the creation or annihilation of a domain appear as
sharp dips in the 2D modulus. A second type of crossover is linked to a saddle
point on the Möbius strip. Specifically, there is a critical width for which one of the
domains has expanded so far around the Möbius strip that it connects with itself
exactly at this saddle point. Around this critical width, the domain sizes show great
sensitivity to changes in the Möbius strip width. This second type of crossover also
appears as a sharp dip in the 2D modulus. We also detect a crossover during which
the system changes from favoring compression to resisting it.
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In this chapter, we list our publications [A1–A6].
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We investigate a system of equally charged Coulomb-interacting particles confined to a toroidal helix in the
presence of an external electric field. Due to the confinement, the particles experience an effective interaction
that oscillates with the particle distance and allows for the existence of stable bound states, despite the purely
repulsive character of the Coulomb interaction. We design an order parameter to classify these bound states and
use it to identify a structural crossover of the particle order, occurring when the electric field strength is varied.
Amorphous particle configurations for a vanishing electric field and crystalline order in the regime of a strong
electric field are observed. We study the impact of parameter variations on the particle order and conclude that
the crossover occurs for a wide range of parameter values and even holds for different helical systems.
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I. INTRODUCTION

One of the most important unsolved packing problems is
the Thomson problem [1]. It considers the question of the
minimum energy configuration of N equally charged particles
confined to the surface of a sphere. This rather mathematical
problem, as well as its generalizations, are still relevant for re-
search in physics, mathematics, chemistry, and biology [2–8],
including, e.g., structural chemistry, virus morphology, and
even engineering problems such as the optimal positioning of
communication satellites. In this work we study the related
problem of N long-range interacting particles confined to a
one-dimensional (1D) path with nontrivial geometry.

One-dimensional interacting many-body systems are a
field of steadily growing interest, in particular due to the fact
that the properties of these 1D structures can be drastically dif-
ferent from those of bulk materials [9,10]. This renders them
interesting candidates for, e.g., nanoelectronics and photonic
applications [11–13]. Prominent approaches for confining par-
ticles to 1D space include carbon nanotubes (CNT) [14–16] as
1D nanowires or the trapping of particles in evanescent fields
of thin nanofibers [17–20]. Artificially prepared 1D struc-
tures with nontrivial geometry include helices [15,16,19,21–
25]. Helical structures offer several advantages, such as an
increased robustness with regard to deformations [26,27],
rendering them a desirable class of systems. Experimental
preparatory techniques have succeeded in designing helical
structures with diameters as small as 10 nm [15,28].

Charged particles confined to a helical structure can give
rise to interesting properties, such as the optical activity of
chiral molecules [29,30]. However, many approaches to the
physics of helical systems are based on approximations with
continuous charge densities or noninteracting particles. In

*asiemens@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

recent years, a series of theoretical works have demonstrated
that a fascinating behavior can emerge when long-range in-
teractions between helically confined particles are taken into
account [31–41]. In these works, corresponding phenomena
and effects are exposed by focusing on a model of ballistic
Coulomb-interacting particles confined to a helical structure.
It was shown that the Coulomb interaction, together with the
constraining forces of the helix can form an effective 1D
interaction potential that oscillates with the particle distance
on the helix [31,32]. Depending on the helix geometry, this
potential can possess several minima, at which the Coulomb
forces are exactly canceled by the constraining forces. This
allows the particles to “condense” into stable latticelike 1D
particle chains on the helix, even when their interactions are
purely repulsive.

As a direct consequence of the oscillating effective inter-
actions, interacting particles on inhomogeneous helices were
shown to exhibit interesting dynamics, such as the binding
or dissociation of particles by scattering at such an inho-
mogeneity [34]. Investigations of interacting particles on a
toroidal helix showed that the band structure and dispersion
of the phonons can be controlled by the helix radius [35]. For
the toroidal helix, a critical radius was found, at which the
oscillations of individual particles decouple, and excitations
are prevented from dispersing through the helical system
[35,36].

The unique properties arising from the oscillating effective
interactions are not limited to the structure and dynamics
of charged particles. The overall mechanical behavior of the
helix is equally affected. This can, for example, be observed
in the unusual electrostatic resistance to a bending of the helix
[38]: When interactions between the particles are considered,
it was found, that for a fixed particle density, the system
switches periodically between favoring and resisting the bend-
ing when the length of the helix is varied. Additionally, for
large helix radii, the system’s ground state (GS) was found
to drastically change for just slight variations in the bending,
resulting in a discontinuous GS bending response.

2470-0045/2020/102(1)/012147(9) 012147-1 ©2020 American Physical Society

5.1. Tunable order of helically confined charges 33



ANSGAR SIEMENS AND PETER SCHMELCHER PHYSICAL REVIEW E 102, 012147 (2020)

The above examples demonstrate the unique physics occur-
ring when long-range interactions between helically confined
particles are considered. A common denominator of these
investigations is the dependence of the unique properties on
the helix geometry. Another degree of freedom can be added
by applying an external electric field. Due to the confinement,
a static electric field will create an oscillating potential land-
scape similar to that of the Coulomb interaction. Intriguingly,
the oscillations of both interactions will in general have dif-
ferent characteristic length scales, leading to competing inter-
actions, and a resulting behavior and properties that can easily
be tuned by varying the electric field strength. A first step in
that direction was taken in Ref. [39], where time-dependent
electric fields were proposed to realize state transfers between
arbitrary equilibrium configurations in a helical system with
two charged particles.

In the above spirit, we study here the influence of an
electric field on the static properties of charged particles on
a toroidal helix. We identify two distinct phases of order
that depend on the external field strength: an amorphous-like
phase that persists for weak electric fields and a phase with
crystalline order that is adopted in the presence of strong
electric fields. We demonstrate the possibility of continuously
switching between the phases by varying the electric field
strength. Furthermore, we verify the existence of the observed
phases for a large parameter space.

This work is structured as follows. Section II describes the
confinement of charged particles to a toroidal helix and the
resulting effective interactions in detail. In Sec. III, we then
show the structural phase transition for an example system.
We start by demonstrating amorphous ordering for individual
particle configurations. Subsequently, an order parameter is
designed and the disorder of the system is classified. Then
we demonstrate how a continuous transition from amorphous
to lattice ordering can be induced by tuning the electric
field strength. In Sec. IV we demonstrate the generality of
our results for a wide parameter range. Our conclusions and
outlook are provided in Sec. V.

II. CHARGED PARTICLES ON A TOROIDAL HELIX

We consider a system of N equally charged particles
confined to a 1D path defined by a parametric function
r(u) : R → R3. The particles are subject to a gradient force
FE = qE in form of an external electric field and interact
via Coulomb forces FC = λei j/|r(ui ) − r(u j )|2, where λ =
q2/4πε0 is the coupling constant, and ui and u j are the
positions of the interacting particles in parametric coordinates.
Since the particles are only allowed to move along the 1D
path r(u), they additionally experience confining forces. The
confining forces cancel all forces acting perpendicular to the
path, resulting in an effective force parallel to the tangential
vector ∂ur(u). Mathematically, the consideration of confining
forces corresponds to a projection of forces on the parametric
curve. With

proj(a, b) := (a · b) · b
||b||

FIG. 1. (a) A toroidal helix with M = 8 windings for the parame-
ter values r/h = 1.6/π , R = 2. (b) The Coulomb potential VC (ui, uj )
for the same parameters as (a) and different fixed values of 0 � ui �
π . The position uj = πM = 8π corresponds to particle positions on
opposite sides of the torus. Coloring varies from red (ui = π ) to
black (ui = 0). (c) The Coulomb potential VC (0, uj ) for the same
parameters as (a) and different helix radii 0 � r � R. Coloring varies
from black for r = 0 to red for r = R.

the effective force on a particle can be written as

F(i)
eff = proj

⎡
⎣qE +

N∑
i �= j

λ ei j

|r(ui ) − r(u j )|2 ,
dr(ui )

dui

⎤
⎦. (1)

The effective force on a particle vanishes if the sum of all
forces is perpendicular to the confining path. Despite repulsive
interactions between the particles, the geometry of the path
can thereby allow for the existence of equilibrium states where
the effective forces on all particles vanish. These stable equi-
librium configurations correspond to minima in the potential
energy, which is given by

Vtot = VE + VC =
N∑

i=1

qE · r(ui ) +
N∑

i< j

λ

|r(ui ) − r(u j )| . (2)

Equation (2) already accounts for the effects of the confine-
ment by only allowing for particle positions on the parametric
curve r(ui ).

The effects of confining forces are particularly relevant
for paths with nontrivial geometry in the form of nonvan-
ishing curvature. A simple class of systems satisfying this
demand—while at the same time being common enough to
occur in nature—are helical systems. Here we investigate the
properties of equilibrium configurations on a toroidal helix.
An example of such a system is visualized in Fig. 1(a). The
particle positions on a toroidal helix are given by the following
parametrization in Euclidean space:

r(ui ) :=
⎧⎨
⎩

[R + r cos(ui )] cos(ui/M )
[R + r cos(ui )] sin(ui/M )

r sin(ui )

⎫⎬
⎭,

ui ∈ [0, 2πM]
i ∈ [1...N] , (3)

where R is the torus radius, r is the helix radius, and M
the number of windings. Since we want the helix to close
after circling around the torus exactly once, the parameters
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must satisfy the relation Mh = 2πR, where h is the helix
pitch. The parametric coordinate ui of the ith particle can be
interpreted as an angle. If ui changes by an amount of 2π ,
then the position on the helix changes by exactly one winding.
Since the toroidal helix has M windings, r(ui ) is invariant
under translations by ui → ui + 2πM. For easier comparison
between systems with different parameters, we introduce the
filling factor v = N/M as the ratio of particles per winding.

A. Coulomb potential

Since the confinement can drastically change the underly-
ing potential landscape, we will now discuss the effects of the
confinement on the two sums of Eq. (2) individually. For the
Coulomb potential, already the contribution of two particles
shows an immense complexity compared to the Coulomb
interaction of “free” particles. When written as a direct func-
tion of the parametric coordinates ui and u j , the two-particle
Coulomb potential V i j

C := VC (ui, u j ) of the particles i and j is
given by:

V i j
C = 2λ

{
sin2

(
ui − u j

2M

)
[R + r cos(ui )][R + r cos(u j )]

+r2 sin2

(
ui − u j

2

)}−
1

2
. (4)

This potential directly depends on the helix parameters and
can—depending on the helix geometry—possess several min-
ima. Minima in the Coulomb potential correspond to po-
sitions, where the particles cannot move further along the
helix, without decreasing their (3D) distance to each other,
for example, by trapping each other on opposite sides of a
helix winding. The general behavior of Eq. (4) is indicated by
Fig. 1(b) which shows multiple cross sections of the potential
for various fixed values of ui. Contrary to the Coulomb inter-
action of “free” particles, the effective Coulomb interaction of
particles on a toroidal helix cannot be described by the relative
particle distance alone. As a consequence, the cross sections
of Vtot are different for different positions of ui. This also
implies that both particles can experience slightly different
potential wells and compete for minimization of the total
potential energy. Note that the above-described behavior is
a direct consequence of the toroidal helix being bent since
in the case of a homogeneous helix the effective interaction
can be described using only the relative particle distance.
The influence of the helix radius on the effective Coulomb
potential is shown in Fig. 1(c). The figure shows the change of
a single cross section for variations of r in the range 0 � r �
R. With decreasing r, the stability of the minima decreases.
For small values of r, some of the equilibria become unstable.
In the limit of r → 0, the oscillations disappear, leaving only
a single stable minimum. In this minimum, both particles
are positioned on opposite sides of the toroidal helix with a
distance of �i j = πM.

B. Electric field

The potential energy contribution of the electric field VE

is similarly influenced by the confining forces. In this paper,
we consider an electric field in the z direction. The potential

energy VE then simplifies to:

VE =
N∑

i=1

qEr sin(ui ). (5)

Similarly to the Coulomb potential, VE also oscillates with
the particle positions. Both interactions therefore support the
formation of equilibrium configurations. However, the char-
acteristic length scales of the oscillations of VE and VC are
in general different. From this, one may already expect fun-
damentally different behavior for the regimes of dominating
Coulomb interaction and dominating electric field.

From the above discussion, it is easy to see that the
potential landscape of a system with N particles can become
quite complex since it consists of (N − 1)! sums of functions
like Eq. (4), in addition to the potential VE given by Eq. (5).
Already systems with only a few particles can support a
plethora of minima [31] that in general can only be found
within numerical calculations. With this, the tasks of finding
the equilibria of systems with large particle numbers can
quickly become computationally expensive.

In the following, we will describe the structural phase
transition of the equilibria, occurring when the electric field
strength is varied. Our results are given in dimensionless
parameters, where energies are measured in units of λ/α =
q2/4παε0, and—due to the scale invariance—distances can
be scaled by the constant α = 2h/π . For an initial overview
over the effective behavior, we use the following parameter
values: M = 8, N = 10, r = 0.8, and R = Mh/2π = 2.

A final remark on our computational approach is in order:
The minima of Vtot for E = 0 are obtained with a quasi-
Newton method [42,43]. For different electric field strength,
the minima were obtained using an interior-point method [44]
by stepwise varying E and calculating the new minima while
using the minima of the previous step as an initial guess.

III. STRUCTURAL CROSSOVER

In this section, we investigate the equilibrium configura-
tions of charged particles on the toroidal helix and show how a
transition from amorphous-like to crystalline particle ordering
can be induced by varying the external electric field strength.
While this structural crossover is a general effect that can be
observed for a wide parameter regime, the specific equilibria
can be influenced by the helix parameters. Consequently, the
results shown in this section will contain some parameter-
specific features. A generalization of the results to different
parameter regimes is discussed in Sec. IV.

A. The minima of the helical Coulomb potential

We start by demonstrating amorphous particle ordering
for the case of a vanishing external electric field. In this
case, the potential landscape simplifies to Vtot = VC . Here we
want to convey a basic intuition for the equilibrium particle
configurations in this regime.

1. The ground state

We start by examining the GS of the system, visualized in
Figs. 2(a)–2(c). For E = 0, the particles minimize their energy
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FIG. 2. [(a)–(c)] Visualizations of the ground state: (a) 3D view,
(b) xy projection, and (c) parametric coordinates. Vertical lines in
(c) indicate the outermost part of a winding. (d) Energies of stable
states sorted by the number of singlets s. [(e)–(i)] Example minima
in parametric coordinates, sorted by their energy. Vertical lines again
indicate the outermost part of each winding. [(j) and (k)] Different
visualizations of the equilibria of (e) and (i), showing the z com-
ponent of the particle positions rz(u) = r sin(u) as a function of the
parametric coordinate. For emphasis, the possible particle positions
are marked by the blue line.

by maximizing their distances. Our system is small enough
such that all particles interact significantly with each other,
and positions close to the center of the torus are avoided. If
we had as many particles as windings (filling factor v = 1),
in the GS, then each particle would occupy the outermost
point of a winding. However, since we have 10 particles and
only 8 windings, some of the helix windings are occupied
by several particles. When two particles occupy the same
winding [45], they want to align at a distance corresponding
to the first minimum of the two-particle Coulomb interaction.
Slight deviations from this distance are caused by interactions
with neighboring particles.

2. Nomenclature

From the top view of our system in Fig. 2(b) it is intuitive
that the energy of any configuration will increase if a particle
moves closer toward the center of the torus. We will now use
this effect to introduce some helpful nomenclature. We split
the toroidal helical path into M windings and characterize the
minima by the distribution of particles onto these windings.

These distributions will be called x-lets: A winding with only
a single particle is called a singlet , one with two particles
a doublet , and so on. By this definition, the GS depicted in
Figs. 2(a)–2(c) consists of six singlets and two doublets.

3. Excited states

An overview of the excited states is given in Fig. 2(d). It
shows the energy of all minima sorted by their number of
singlets s. Each minimum is represented by a black horizontal
line. The ground state can be found in the column for states
with s = 6 singlets. In total 710 distinct minima were found
in the potential landscape for E = 0. The minima seem to
be equally distributed over a large energy range. We observe
a decrease of the occupied energy range for an increasing
number of participating singlets. Example visualizations of
excited states are shown in Figs. 2(e)–2(i) together with their
corresponding energy. The particle positions in Figs. 2(e)–
2(i) follow a simple pattern: The particles try to accumulate
around the outermost part of a winding. If they share a
winding with other particles, then they somewhat deviate from
this lattice order, creating staggered particle configurations.
The distance between particles that share a winding is approx-
imately the same for doublets and triplets and corresponds to
about 30% of the length of a winding—a significant deviation
from a crystalline lattice ordering.

The distances between particles in doublets and triplets
are visualized in Figs. 2(j) and 2(k). They respectively
show the same equilibria as Figs. 2(e) and 2(i) and addition-
ally include the z position of each particle. We can see that
for example the particles in doublets prefer to align almost on
opposite sides of the winding to maximize their distance.

For our chosen parameters, all minima follow the same
pattern as the five example excited states in Figs. 2(e)–2(i):
The total particle number N is split up into singlets, doublets,
triplets, and in some cases even quadruplets, which are then
distributed among the windings. Therefore, every minimum is
uniquely characterized by a specific sequence of x-lets.

B. Classifying the particle order

Now we design an order parameter to classify the par-
ticle order of every equilibrium particle configuration in a
mathematically more rigorous way. Any quantifiable order
that can be observed for most of the minima will likely be
linked to a symmetry of the confining manifold. The toroidal
helix possesses a discrete rotational symmetry. It is invariant
under a rotation of 2πn/M with n ∈ N around its center. In
our parametric coordinates ui this corresponds to a discrete
translation symmetry. We have already seen hints for this
translation symmetry in the discussion above. From Eq. (5),
we can see that this symmetry holds even in the presence of
an electric field in z direction. Our order parameter should
therefore also reflect this symmetry. From Eq. (3) and the
definition of VE , we can also see that the symmetry is broken
if the field has a component perpendicular to the z direction,
which is why this case is not considered in this work. With
this in mind, we define our order parameter �:

� = 1 − 1

π

√∑
i(di − μ)2

N
with μ = 1

N

N∑
i

di, (6)
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FIG. 3. Probability density p� for finding a minimum with a
specific order � for a system with M = 8, r = 0.8, h = π/2, R = 2,
and N = 10.

where di = Mod(ui + π, 2π ) − Mod(ui+1 + π, 2π ) are
the truncated next-neighbor (tNN) distances. The di can be
interpreted as a relative deviation of the neighboring particle
positions within their winding. The second summand of � in
Eq. (6) is simply the normalized standard deviation of the tNN
distances.

As an order parameter, � is in the range [0,1]. � is 1 if
all di are the same and the particles show a lattice symmetry.
� decreases with increasing deviation from this translation
symmetry.

We can now use this order parameter to characterize the
order of the equilibria. From Fig. 2(b) we can see that the
particles in the GS are mostly aligned at the outermost point
of each winding. With the exception of the two doublets, the
particles already possess a translation symmetry. However, the
two doublets distort 6 of the 10 tNN distances from perfect
lattice ordering, resulting in �GS = 0.613. The order of the
minima shown in Figs. 2(e)–2(i) is 0.535, 0.517, 0.377, 0.453,
and 0.342 respectively. In this fashion, we can calculate the
order parameter for every minimum. The results are shown
in Fig. 3 as a probability density p�. The order parameter �

of a minimum is (approximately) proportional to the number
of singlets s. The large peak around � ∼ 0.53 consists en-
tirely of minima with 4 � s � 6. The peaks around � ∼ 0.45
and 0.35 consist of minima with 2 � s � 4 and 0 � s � 3,
respectively. As we will see, p� will evolve as a bulk when
the electric field strength is increased. For our purposes, the
statistics of p� is well described by the mean value p� and
the standard deviation σ (p�). For the curve of Fig. 3 we get
p� = 0.420 and σ (p�) = 0.071.

C. Forcing crystalline ordering

We will now show the crossover to crystalline particle
configurations in the presence of a static external electric
field. For the evaluation, the minima for E > 0 are obtained
by tracing the minima found for E = 0 while the electric
field is increased adiabatically, i.e., we do not actively search
for newly created minima, which are only stabilized by the
electric field. In practice, we varied the electric field in steps
of �E = 0.002 and calculated the new equilibrium positions
using the equilibria of the previous step as initial guesses.

1. Order parameter evolution

The evolution of p�(E ) for an adiabatic increase of E can
be seen in Fig. 4(a). The information is split up into the mean
value (blue), the minimum and maximum (dotted black), and
the standard deviation (red) (denoted as p�(E ), min[p�(E )],
max[p�(E )], and σ [p�(E )], respectively). Close to E = 0,
there is a small range where p�(E ) changes very little, while
the variance increases. In this field range, most of the complex
changes in the potential landscape, including the annihilation
of minima, take place. For our chosen parameters, about
∼16.5% of all minima are annihilated in this phase. When
a minimum is annihilated, there will be a sudden jump in
the tNN distances, corresponding to particles changing their
winding. This sudden change of particle positions is the
reason for the increase of σ (p�) in the low field regime. The
specific bifurcation scenarios by which these annihilations
take place depend strongly on the chosen system parameters
and can quickly get quite complex [39]. For larger fields,
p�(E ) increases with E while the variance decreases, in-
dicating a transition to minima with lattice order. In this
regime, variations in the electric field only adjust the particle
positions while their distribution among the windings persists.
From min[p�(E )] we can see that a large-enough field can
impose order in the system—independent of the initial particle
configuration.

2. Relative particle positions

The reason why an increase of the electric field strength
causes an increase in our order parameter can be understood
from the behavior of individual particles during the transition.
For this purpose, we consider the nearest-neighbor (NN)
distances qi := ui − ui+1 of the particles. Figure 4(b) shows
a statistic of the occurring NN distances for E = 0 (dark
blue) and E = 25 (orange). For E = 0, we see a relatively
sharp peak at a distance of slightly less than π , very close
to the first minimum in the Coulomb potential. It is caused
by the particles with a NN in the same winding, i.e., the
doublets, triplets, and so on. It is also possible that the NN
particle is in a neighboring winding. Therefore, we also see
NN distances around the value of 2π . There are also smaller
probabilities for finding a NN at distances around 4π , 6π , and
8π . They correspond to the cases with one, two, and three
empty windings between the NN particles.

The evolution of this statistics with variations of the
electric field strength is shown in the insets of Fig. 4(b).
In both insets, the information is split up into five curves,
each representing the evolution of a peak in the probability
density. The upper inset shows that the variance of each
peak decreases with increasing E , while the lower inset
describes a continuous shift of the mean position of each
peak to multiples of 2π when E is increased. For large
electric fields, the result are sharp peaks in the distribution
p(qi ) at distances of 2πn, n ∈ N0 [see Fig. 4(b) (orange)],
corresponding to a lattice ordering with a lattice constant of
2π . The dominating electric field drives the particles along the
z direction and forces a clustering around the top of the helix
windings.
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FIG. 4. (a) Evolution of the order parameter � when the electric field E is increased adiabatically; with the mean value p� (blue), the
minimum and maximum Min(p�)/Max(p�) (dotted black), and the variance σ [p�(E )] (thin red). Note the different scale of the variance.
(b) Normalized statistics of nearest-neighbor distances for E = 0 (dark blue) and E = 25 (orange). The two insets correspond to the variance
σp(qi ) and mean (modulo 2π ) p(qi ) of individual peaks in the statistics (regions I–V) as a function of E . (c) Energies of equilibrium
configurations for E = 25, sorted by their number of singlets s.

3. Potential landscape

The fundamental change of system properties for large E
is evident from the energies of individual minima [Fig. 4(c)].
Compared to the case E = 0 shown in Fig. 2(d), the minima
are now sorted into narrow “bands” with little relative distance
in energy. The minima of each band contain the same number
of singlets, doublets, and so on. These bands are formed be-
cause, for these large fields, the interaction between particles
is only significant when they share a winding. Therefore, for
large E , the specific number of x-lets in a minimum has a
greater impact on the energy than their relative ordering.

Furthermore, since the potential landscape for a dominant
electric field is qualitatively described by the potential VE , we
can also estimate the stability of minima in this regime. Tran-
sitioning to another minimum requires a particle to change
its winding and therefore to move past the transition state
at which the particle is located at the down most point of a
winding. Using Eq. (5) and neglecting the Coulomb interac-
tion, this transition requires energy in the order of �E = 2Er.
In theory, these energy barriers can be made arbitrarily large.
The increased stability in large electric fields can also be used
to tune a more common, temperature-induced, order-disorder
transition.

IV. GENERALIZATION TO PARAMETER VARIATIONS

We will now discuss the influence of parameter variations
on the transition between amorphous and crystalline particle
ordering. Since the clustering of particles at the top of the
helix windings can always be enforced if E is large enough
and r > 0, we will focus our discussion on arguments for the
persistence of amorphous ordering for parameter variations in
the absence of the external electric field.

A. System size

In the previous section, we have observed the tendency of
particles to avoid positions close to the center of the torus.

This effect is a direct consequence of the small system size
and can be suppressed by reducing the ratio of r/R. Here we
study the impact of the ratio r/R on the system by increasing
the winding number M (and consequently increasing R due to
the relation Mh = 2πR) while maintaining a constant filling
factor v = N/M and helix pitch h. Note that due to the large
number of minima and the numerical challenge of finding all
of them, data for systems with M > 8 were obtained from a
random subset of minima and not every possible equilibrium
configuration in the potential landscape for these specific
parameters. The number of minima η considered for each
subset has been chosen such that the total number of particles
used for the statistics is about ηvM ∼ 30 000. To ensure that
this statistics is representative for the system, we verified that
repeated calculations with different random subsets give very
similar results.

The influence of increasing the winding number (and
thereby increasing the torus radius) is analyzed in Fig. 5. A
general overview is given by Figs. 5(a)–5(c) which show the
particle positions in parametric coordinates over a distance of
eight windings for systems with a total of M = [8, 64, 128]
windings and a constant filling of v = 1.25. Figure 5(a) rep-
resents a system with M = 8, where all particle positions are
close to the outermost part of the windings which are indicated
by the vertical lines. With increasing M [Figs. 5(b) and 5(c)],
this specific position dependence disappears such that in (c)
the particle positions look almost random.

Further insight into the size effects can be gained from the
analysis in Fig. 5(d). It shows the probability density pu for
finding a particle at a specific position within a winding for
a system with M = 8 (blue) and a much larger setup with
M = 128 (orange). We can see that, for M = 8, particles avoid
positions close to the center of the torus (positions 0 and 2π

in the figure). In addition, there is a peak at π , indicating an
increased likelihood of finding a particle at the outermost part
of a winding (with a distance of R + r from the torus center).
This peak is mostly caused by the singlets which—due to
their lack of close neighbors—hardly deviate in terms of their
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FIG. 5. [(a)–(c)] Particle positions (cutout of eight windings) of
equilibrium configurations in parametric coordinates for a constant
filling v = 1.25 and (a) M = 8, (b) M = 64, and (c) M = 128.
(d) Probability density pu for finding a particle at a certain position in
a winding for M = 8 (blue) and M = 128 (orange). The inset shows
pu for M = 16, 32, 64 (purple, yellow, green), respectively.

position from the outermost part of the winding. In contrast,
this dependence of pu on the position within a winding is
hardly visible for M = 128. For M = 128, the system is a
good approximation of the straight helix with M, R → ∞ and
a constant probability density of 1/2π . Interestingly (except
for the peak at π ), the probability density pu for M = 8 is
of similar order in the range [π/2, 3π/2], indicating that the
particle positions for M = 8 are far less predictable than the
visualizations of Figs. 2(e)–2(i) might suggest.

Figure 5(d) shows only the cases of very small (M = 8)
and very large (M = 128) systems. A better understanding
of the evolution of the probability distribution pu between
these two regimes can be gained from the Fig. 5(e). It shows
the curves pu for different intermediate values of M. An
interesting observation is that for increasing M the peak at π

broadens and then disappears, before any significant change
in the “avoided” region around 0 and 2π can be observed.
The reason for this is that when M is increased, the forces of
NNs begin to dominate over the combined interactions with
all other particles. In general, the positions of singlets are
more strongly affected than doublets or triplets since they,
due to their lack of close neighbors, require less energy to
slightly shift their position. Only for (much) larger M, the
torus gets big enough such that the effect of particles avoiding
positions close to the center of the torus becomes negligible.
The described behavior implies that for increasing r/R the
particles deviate from the pattern for equilibrium particle
positions described in the previous section.

An increase of the winding number is therefore responsible
for an increase of the disorder—at first due to the shift in
singlet positions and for larger M due to the loss of any
preferred position within the windings. Specifically for the

FIG. 6. The mean p� and variance σ (p�) of the order parameter
for variations of [(a) and (b)] the particle number N and [(c) and (d)]
the helix radius r. All figures were obtained for M = 8 and E = 0.

values of Fig. 5(d): When the winding number is increased
from M = 8 to M = 128, the distribution of p� changes
from the values of Fig. 3 [p� = 0.42 and σ (p�) = 0.071] to
p� = 0.24 and σ (p�) = 0.03. Since the amorphous particle
order persists in the limiting case of the straight helix, we
can assume that the described behavior is valid for a large
parameter range of helical systems.

B. Impact of the helix radius and the filling factor

1. Filling factor

So far, we have explored the impact of the winding number
on the properties of our helical setup, while keeping the filling
factor v and the helix radius r constant. Now we examine the
respective effects of the latter two parameters on the particle
order for E = 0. We investigate the filling factor v = N/M by
varying the particle number N while maintaining a constant
number of windings M to prevent the occurrence of additional
effects on the order parameter due to the system size. The
mean and variance of the distribution p� for different particle
numbers are shown in Figs. 6(a) and 6(b), where the particle
number is varied in the range 4...20. The mean value is
approximately p� ∼ 0.5, while the variance decreases with
increasing N .

The overall behavior of p� with changes in the particle
number can be explained as follows: It is in general unfavor-
able for a winding to have a much larger particle density than
its surrounding windings. Consequently, lower-order x-lets,
such as singlets or doublets, are increasingly suppressed with
increasing filling factor v. Compare for example the case of
N = 10 to N = 20: In the former, the average equilibrium
particle configuration contains about ∼2.8 singlets (∼34%),
whereas, for N = 20, the average number of singlets per
equilibrium configuration is about ∼1.4 (∼18%). We also
know from the discussion of the previous section, that the NN
distances of particles that share a winding are very similar.
Since our order parameter only requires these NN distances
as input, slightly different particle distributions among the
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windings will (for large N) only have a small impact on the
order parameter. Consequently, the variance of the distribution
p� decreases with increasing filling factor v.

A final remark is in order for the extreme cases of very low
(N � M) and very large (N � M) filling factors. While the
parameter range explored in Figs. 6(a) and 6(b) does not have
any adverse effect on the structural crossover, the disorder for
E = 0 can be affected in the limits v → 0 and v → ∞. In
case of N � M, the system is too scarcely populated to define
any (useful) particle ordering. On the other hand, in the limit
of N � M, the average particle distance will approach zero.
We assume that in this case, the equilibria for E = 0 will con-
sist of particles with crystalline ordering—although in small
systems a slight position dependence of the lattice constant
may appear due to the previously discussed size effects.

2. Helix radius

The helix radius can be varied in the range 0 � r � R.
When r is varied within this range, we (again) obtain an
almost constant mean value of p� ∼ 0.5 [see Fig. 6(c)]. While
the corresponding variance σ (p�) is also approximately con-
stant for most of the parameter range, it becomes zero below a
critical helix radius [see Fig. 6(d)]. This is because the number
of equilibrium states can be tuned with the helix radius
(specifically the ratio of r/h) and for low values of r, the
system only possesses a single equilibrium state. Otherwise,
the behavior of p� for variations of r is mainly determined by
two competing effects: First, an increase in the helix radius
increases the ratio of r/R and thereby increases the size effect
(and the order parameter) similar to the description above for
variations of M. Second, at the same time, the helix radius
also tunes the number of particles that can be stabilized within
a single winding. From the discussion of Fig. 3, we know
that equilibria with higher-order x-lets will be less ordered
than, e.g., those with a large number of singlets. Consequently,
this second effect alone will lead to a decrease of the order
parameter for increasing r. The values of Figs. 6(c) and 6(d)
are the result of the competition between those two effects.

To summarize the parameter variations: The disorder in-
creases with increasing M. The influence of v is only relevant
in the limits of very large or very low v. Increasing r will
increase the disorder as long as the ratio r/R does not change
significantly; otherwise competing effects can also decrease
the disorder.

V. SUMMARY AND CONCLUSION

In this work, we considered an effective interaction arising
from the confinement of Coulomb interacting particles to a

1D toroidal helix. The effective interaction allows for the
existence of a plethora of stable equilibrium particle config-
urations. We investigated the properties of these equilibrium
configurations in the presence of an external electric field and
found a structural crossover that can be tuned by varying the
electric field strength. For a vanishing electric field, we found
a preference for amorphous particle ordering, whereas, in the
regime where the electric field dominates over the Coulomb
interaction, the particles cluster within the helix windings and
order themselves in crystalline structures. Especially in the
regime of low electric fields, the specific particle positions
of the equilibria can depend on the helix geometry and the
particle number. We therefore also explored the general effects
occurring when these parameters are varied. While some
parameter variations can influence the overall order of the
equilibria, the amorphous ordering for E = 0 persists for a
large parameter range. Notable limits to this parameter range
are low helix radii and both the upper and lower limits of the
filling factor.

A natural continuation of this work consists in the in-
vestigation of the quantum mechanics of helically confined
particle chains. Here the question arises whether we obtain
a fundamentally different behavior compared to the classi-
cal system. In case of equilibrium states, this concerns the
structure of the eigenstates and the question for the existence
of a quantum mechanical counterpart for the multitude of
minima in the classical description. For the dynamics, it will
be interesting to see if the intriguing phenomena found in
the classical description [34–37] survive and to what extent
they are modified. First steps toward a quantum mechanical
description of particle chains in helical confinement were
already taken in Refs. [40,41].

Another promising direction for future works is the study
of the optical properties of particles in a curved confine-
ment. Helical 1D nanowires have already been proposed as
terahertz antennas [46]. Modeling the system as nonlinearly
coupled oscillators, the observation of complex dynamics—
such as higher harmonics generation or period-doubling un-
der external driving—is very likely. In this case, the elec-
tric field could be used to switch from a disordered state
with a highly nontrivial optical response to a more ordered
regime.
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We investigate the dynamics of a charged particle confined to move on a toroidal helix while being driven
by an external time-dependent electric field. The underlying phase space is analyzed for linearly and circularly
polarized fields. For small driving amplitudes and a linearly polarized field, we find a split up of the chaotic part
of the phase space, which prevents the particle from inverting its direction of motion. This allows for a nonzero
average velocity of chaotic trajectories without breaking the well-known symmetries commonly responsible for
directed transport. Within our chosen normalized units, the resulting average transport velocity is constant and
does not change significantly with the driving amplitude. A very similar effect is found in case of the circularly
polarized field and low driving amplitudes. Furthermore, when driving with a circularly polarized field, we
unravel a second mechanism of the split up of the chaotic phase space region for very large driving amplitudes.
There exists a wide range of parameter values for which trajectories may travel between the two chaotic
regions by crossing a permeable cantorus. The limitations of these phenomena, as well as their implication
on manipulating directed transport in helical geometries are discussed.

DOI: 10.1103/PhysRevE.103.052217

I. INTRODUCTION

Helical structures and patterns can be frequently found in
nature, with systems ranging from molecules such as DNA or
amino acids to self-assembled configurations of particles in
nanotubes [1]. Especially for quasi-one-dimensional (quasi-
1D) structures, the helical geometry can offer advantages such
as increased stability and resistance to deformations [2,3]. In
the last decades great progress was made in attempts to syn-
thesize artificial 1D nanostructures, such as helical CNT’s [4],
with hopes for applications in nanoelectronic circuits [5–8].
Therefore, there is a great interest in understanding how the
electronic properties of 1D structures are affected by helical
geometries.

Already in minimal models, intriguing phenomena can
result from the geometric confinement to a 1D helix. It was
demonstrated that, due to the geometry, ballistic long-range
Coulomb interacting particles on a 1D helical path can form
bound states [9,10] and can even build 1D lattice structures
[10–12]. Novel physics resulting from this behavior has been
reported in several works discussing relevant setups [13–20].
Effects range from mechanical properties, such as an unusual
electrostatic bending response [12], to intriguing nonlinear
dynamics, such as the scattering of bound states at an inho-
mogeneity in the 1D path [13] or the tuning of the dispersion
relation of a 1D chain of bound particles by varying the
helix radius [14]. In the latter example, a degeneracy of the
band structure for a specific helix radius was identified, which
prevents excitations from dispersing through the system.

*asiemens@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

In helical systems, the novel effects typically emerge due
to the fact that the acting forces are partially compensated by
confining forces of the helix, and are therefore not limited
to Coulomb interactions. Effects of dipole-dipole interactions
[16–18], as well as external electric fields [11,20] have been
explored. Previous investigations of external electric fields
considered adiabatically varying forces and demonstrated the
possibility of using an external electric field for controlled
state transfer [20], and inducing crystalline lattice ordering
of particles [11]. For crystalline particles on a closed helix
exposed to a static electric field, an unconventional pinned-
to-sliding transition has been observed [19]. Investigating
the dynamics of confined particles being driven by time-
dependent external forces is therefore a natural next step.

Periodic driving is at the core of many intriguing phenom-
ena, such as resonances and chaos. In driven systems, already
simple models can often yield quite complex dynamics and
give valuable insight into real physical systems. For exam-
ple, the model of a driven Morse oscillator can give insight
into the (vibrational) stability of molecules [21]. In the same
spirit, particles in driven double well potentials have been
studied to explain the tunneling dynamics (or the suppres-
sion thereof) through a potential barrier [22–28]. Studies of
driven Hamiltonian systems, i.e., particle dynamics in time-
dependent periodic potentials, often possesses a focus on the
manipulation of transport phenomena due to the choice of the
driving potential. There, the transport of diffusive trajectories
is usually induced by breaking certain spatiotemporal sym-
metries [29–35]. However, other manipulation techniques,
such as the possibility of switching between ballistic and
diffusive motion by introducing localized disorder [36], have
been demonstrated. Furthermore, the presence of spatially
varying forces has been linked to a variety of intriguing
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phenomena, such as the formation of density waves [37].
Based on this understanding of driven systems, a plethora of
applications, including velocity filters [37,38], spectrometers
[39–41], or batteries extracting energy from thermal fluctua-
tions [32–34,41–46], have been proposed.

Motivated by the complexity arising when particles are
confined to curved space, we investigate in this work the
influence of time periodic forces on particles in helical
confinement. As a prototype, we consider a single particle
confined to a toroidal helix, being driven by either an oscil-
lating or a rotating electric field. The combination of driving
and confining forces leads to spatially and temporally varying
effective forces. For a wide range of driving amplitudes, the
systems phase space resembles that of a particle in either a
standing wave (oscillating driving field) or a running wave
(rotating driving field). However, for very low driving ampli-
tudes, as well as for large driving amplitudes in case of the
oscillating field, we identify two different scenarios by which
the chaotic phase space region can be split. We explain how
these splits are induced by the different scales of oscillations
in the driving potential, and how they influence the corre-
sponding transport phenomena.

Our paper is structured as follows. Section II contains
the parametrization of the toroidal helix, a discussion of the
Lagrangian, and the general equations of motion for our setup.
We further discuss the considered driving laws. In Secs. III
and IV we investigate and analyze the dynamics in the pres-
ence of driving with a linearly polarized and a circularly
polarized electric field, respectively. Finally, in Sec. V we
provide our conclusions.

II. PARTICLES IN HELICAL GEOMETRIES
WITH EXTERNAL DRIVING

We consider a single particle with charge q confined to
move along a toroidal helix [see Fig. 1(a) for a visualization].
The parametrization of the particle’s positions is then given by
the following equation:

r(u) :=
⎛
⎝(R + r cos(u)) cos(u/M )

(R + r cos(u)) sin(u/M )
r sin(u)

⎞
⎠, u ∈ [0, 2πM], (1)

where R is the torus radius determining how strongly our
helix is bent, r is the radius of the helix, and M is the total
number of helical windings. Since the path is closed we have
r(u) = r(u + 2πM ), and the parameters obey the following
restriction, R = Mh/2π , where h is the pitch of the helix.
When u changes by an amount of 2π , the particle moves the
distance of one winding on the helix. When u changes by an
amount of 2πM, the particle circles once around the torus and
is exactly at the same position it started in.

The driving force is assumed to be caused by an external
electric field E. The potential energy V (u, t ) of the particle is
then given by

V (u, t ) = qE(t ) · r(u). (2)

Our system is then described by the following Lagrangian:

L = m

2

(
dr(u)

dt

)2

− qE · r(u). (3)

FIG. 1. (a) A 3D illustration of the parametric function r(u), for
M = 10, r = 0.8, and R = 2.5. (b) The potential Vx (u) created by a
static field in the x direction shown for toroidal helices with M = 10,
R = 2.5, and helix radii of r = 0.2 (orange) and r = 1 (dotted gray).
(c) The potential landscape Vx (u, t ) for a linearly polarized oscil-
lating field in x direction shown for t = 0 (orange) and t = π/ω

(dashed gray). The inset in the top right corner visualizes the driving
direction of the field (red) for a top view of the setup. (d) The poten-
tial landscape Vxy(u, t ) for driving with a circularly polarized field in
the xy plane shown for the times t = [0, π/ωM, 2π/ωM]. After the
time t = 2π/ωM the motion of the potential repeats, being shifted
by �u = 2π . Again, the inset in the top right corner visualizes the
driving field (red) for a top view of the setup.

Equation (3) already accounts for the confining forces of
the setup by only allowing positions r(u) on the parametric
helical curve. Since r(u) is known, we can already evaluate
the derivative in the kinetic energy term and rewrite Eq. (3) as

L = m

2
ζ (u)

(
du

dt

)2

− qE · r(u), (4)

where ζ (u) := [dr(u)/du]2 = r2 + [R + r cos(u)]2/M2.
From this, we obtain the following equations of motion for an
arbitrary driving field E(t ):

ζ (u)
d2u

dt2
= 1

2

dζ (u)

du

(
du

dt

)2

− qE(t )

m

dr(u)

du
. (5)

Let us now take a closer look at the driving potential
V (u, t ) = qE(t ) · r(u) created by the electric field. Even in
the static case, i.e., without time dependence, the potential can
become quite complex and possesses multiple minima. This is
shown in Fig. 1(b) for a static field parallel to the x axis. In this
case the electric field is given by E = Eex and the potential
energy becomes

Vx(u) = qE [R + r cos(u)] cos(u/M ). (6)

This potential consists of two terms: The R cos(u/M ) term
creates a long-wavelength cosine-shaped potential that is
maximal at the position that extends most into the x direction
(for u = 0 or u = 2πM) and minimal for the position extend-
ing most into the negative x direction (for u = πM). Since it
is caused by the overall toroidal shape of the curve r(u) we
will call this the torus-induced potential (TIP). On top of that,
there is a smaller modulation given by the r cos(u) cos(u/M )
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term. Since this modulation originates from the helix wind-
ings we will call this the winding-induced potential (WIP).
The amplitude of the WIP can be modulated via the helix
radius r [shown in Fig. 1(b) for r = 0.2 and r = 1]. Due to
the cos(u/M ) dependence, the WIP oscillational amplitude
also changes with the position on the torus. The ampli-
tude is largest for u ∈ [0, πM, 2πM] and vanishes for u ∈
[πM/2, 3πM/2]. The number of minima in the modulation
is determined by the number of helical windings M.

In this work we focus on two different time-dependent
fields: Driving with a field oscillating parallel to the x axis, and
driving with a field rotating in the xy plane. In the first case,
the driving field becomes E(t ) = E cos(ωt )ex. The resulting
potential Vx(u, t ) is a standing wave with the shape shown in
Fig. 1(c)

Vx(u, t ) = qE [R + r cos(u)] cos(u/M ) cos(ωt ). (7)

When we consider an electric field rotating in the xy plane
the driving becomes slightly more complex. In this case, the
electric field can be written as E(t ) = E{cos(ωt ), sin(ωt ), 0}
and the potential landscape becomes

Vxy(u, t ) = −qE cos(ωt − u/M )[R + r cos(u)]. (8)

Figure 1(d) visualizes the time evolution of this potential
by showing the potential landscape at different times t . The
three curves in the figure correspond to the cases t = 0 (or-
ange), t = π/ωM (gray), and t = 2π/ωM (blue). Due to the
symmetries of the toroidal helix, we only need to consider
the time �t = 2π/ωM needed to rotate by one winding to
understand the driving, since the potential movement repeats
after this time; it is just shifted by a distance of �u = 2π . The
time evolution of the potential landscape resembles a crawling
motion: The local extrema of the potential oscillate between
being a potential minimum and a potential maximum, with a
constant phase shift of 2π/M between neighboring minima
(or maxima). A video showing the time evolution of Vxy(u, t )
can be found in the Supplemental Material [47]. It should also
be noted that for Vxy(u, t ) the equations of motion are not sym-
metric with regard to the spatiotemporal symmetries given by
(u → −u + �u, t → t + τ ) and (u → u + �u, t → −t + τ );
a necessary criterion for directed transport within the chaotic
sea [29,31]. In contrast, these symmetries are conserved for
Vx(u, t ).

We can eliminate redundant parameters by introducing di-
mensionless units. Without loss of generality, we choose to
express distances in units of 2h/π and time in units of ω/2π .
We also normalize the particle mass and charge to m = q = 1
(which is the same as absorbing both values in the driving
amplitude). The remaining independent system parameters
are the winding number M, the helix radius r, and the driving
amplitude E .

A final remark on our computational approach is in order:
The equations of motion are numerically integrated with the
Dormand-Prince method, a Runge-Kutta method with vari-
able step size. The maximal step size of our time steps was
chosen as �t = 0.01. It was verified that this maximum step
size produces accurate results even for driving amplitudes as
large as E > 2000, which is much larger than any driving
amplitude used in this work.

III. PARTICLE DYNAMICS FOR A LINEARLY
POLARIZED FIELD

In this section we will analyze the dynamics when the
system is driven by an electric field oscillating parallel to the
x axis. For this we will examine the phase space of the system
and understand how it is decomposed for different parameter
regimes. The dimensions of the phase space are made up of the
three parameters: position u, momentum p, and time t . Since
our Lagrangian is periodic in time, we can use a Poincaré sur-
face of sections (PSOS)– -specifically a stroboscopic map—to
visualize the phase space in a two-dimensional stroboscopic
u(p) dependence. Note, that our momentum p refers to the
canonical momentum given by

p = du/dt

m(r2 + {[R + r cos(u)]/M}2)
. (9)

We start our investigation by considering a toroidal helix
with M = 10 and r = 0.2. Figure 2 shows the PSOS of the
system for electric field amplitudes E = 80, E = 20, and E =
4. As we will see, the phase space for large and intermediate
driving amplitudes will closely resemble that of a particle in
a standing wave [48]. However, for low driving amplitudes,
we observe novel features of the dynamics arising from the
interplay of WIP and TIP. The investigation of these dynamics
and their implication for manipulating directed transport will
be the main result of this section.

In Fig. 2(a), for E = 80, we observe a mixed phase
space that mainly allows three different kinds of trajectories:
Chaotic trajectories, and two types of (quasi)periodic trajecto-
ries, which we will refer to as Type-I and Type-II trajectories.
Type-I trajectories (marked I and I in the figure) are invariant
spanning curves [49,50] for which the particle momentum
is too large to be significantly affected by the driving. The
driving results only in a weak modulation of their dynamics.
Towards smaller momenta the Type-I trajectories border on a
sea of chaotic trajectories, which contains two large regular
islands. These regular islands correspond to the Type-II tra-
jectories and describe motion around the torus in phase with
the driving period, i.e., after one driving period the particle
on a Type-II trajectory has circled the torus exactly once.
Both regular islands describe the same kind of motion, but
in opposite directions.

As one might expect, the size of the chaotic portion of
phase space decreases when the driving amplitude is de-
creased. This can be seen in Fig. 2(b) where E = 20. The
Type-I trajectories, as well as the two main fixed points we
identified in the previous figure are still present. However,
the chaotic region now occupies a much smaller momentum
range of the phase space. In addition, at the center of the
chaotic region around p ≈ 0 additional fixed points appear in
the phase space, e.g., at [u, p] ≈ [10.5, 0.45], [15.7, 0.8], and
[20.7,0.45]. They correspond to initial conditions in which
the particle stays within a narrow range of u and is hardly
affected by the driving. The reason for their appearance is
as follows: When the driving amplitude decreases, so does
the acceleration of the particle. Below a certain threshold the
particle has hardly moved before the driving field accelerates
the particle in the opposite direction. With decreasing driving
amplitude an increasing amount of trajectories with initial

052217-3

5.2. External-field-induced dynamics of a charged particle on a closed helix 45



ANSGAR SIEMENS AND PETER SCHMELCHER PHYSICAL REVIEW E 103, 052217 (2021)

FIG. 2. Poincaré surfaces of sections (PSOS) for a particle on the toroidal helix, driven by a linearly polarized oscillating field for (a) E =
80, (b) E = 20, and (c) E = 4. Different colors are assigned to the trajectories for easier differentiation. Each PSOS features between 45 and
75 trajectories, each simulated for 2000 driving periods. (Quasi)periodic trajectories between the two chaotic regions (around p = 0) in (c) are
only shown in the inset [top left of (c)] to emphasize the splitting of the chaotic sea into two parts in the main figure. The inset in (b) visualizes
the particle motion on Vx (u) for the three different types of trajectories (I–III) during a driving period in the range u ∈ [−2πM/3, 2πM/3]. The
symbols I–III mark the inverse of trajectories (I–III), i.e., trajectories moving in the opposite direction. (I) Quasifree trajectories that are too
fast to be significantly affected by the driving. (II) Trajectories belonging to the large regular islands with the fixed points at |p| ≈ 5.35, which
move around the torus once during every driving period. (III) The chaotic trajectories (after the chaotic sea has split) move by one winding
during each driving period.

conditions around p = 0 will exhibit this behavior. The effect
on the phase space can be seen in Fig. 2(c) for E = 4 (note the
adjusted range of p values). Here the driving amplitude is suf-
ficiently small, such that for every u there is a (quasi)periodic
trajectory [pictured only in the inset of Fig. 2(c)] close to
p = 0 that is hardly affected by the driving and mostly stays
in place. An interesting result is, that the appearance of these
trajectories is splitting the chaotic sea into two parts: One with
p > 0 [marked III in Fig. 2(c)] and one with p < 0 (marked
III), which we will refer to as Type-III trajectories. This has
significant consequences for the dynamics. Type-III trajec-
tories starting in the chaotic region with p > 0 will remain
there and maintain a strictly positive momentum. Inverting the
direction of movement is impossible, since that requires slow-
ing down and crossing the region of regular islands around
p = 0. The same is of course true for trajectories starting
in the chaotic region with p < 0. In other words: When the
chaotic sea splits up, we transition from a single chaotic sea
in which all trajectories have an average velocity of zero, to
two completely separated (symmetric) chaotic seas in which
chaotic trajectories have an average velocity of either +2π

(upper chaotic sea) or −2π (lower chaotic sea).
In Fig. 3 we take a closer look at this split up of the chaotic

sea. A close up of the split appearing in the PSOS is shown
in Figs. 3(a)–3(c). For clarity, the PSOS’s of Figs. 3(a)–3(c)
only contain initial conditions from the chaotic region with
p < 0. In Fig. 3(a), at E = 7, the emerging (quasi)periodic
regions around p = 0 are clearly visible. However, changing
the direction of motion is still possible and happens indeed
frequently. The momentum evolution p(t ) of a representative
example trajectory is shown in Fig. 3(d) (blue curve). From
this p(t ) curve we can see that already for E = 7 there are
effectively two momentum ranges the particle can be con-
fined to. The particle frequently switches between having

either positive or negative momentum for extended periods of
time.

When the driving amplitude is decreased further to E = 4
[see Fig. 3(b)], the two chaotic phase space regions are almost
separated from each other. An inversion of the direction of
movement now happens much less frequently. In the phase
space this can be seen from the decreasing density for p > 0.
From the corresponding example trajectory in Fig. 3(d) (red
curve), we see that the momentum inversion now also takes a
much longer time than for E = 7. It takes our example trajec-
tory almost ∼2200 driving periods to change its momentum
from p < 0 to p > 0.

Finally, for E = 3 [Fig. 3(c)], the two phase space regions
are completely separated from each other. None of our tra-
jectories cross into the phase space region with p > 0. In this
regime, the dynamics of all simulated trajectories resemble
that of our example trajectory in Fig. 3(d) (yellow curve):
The trajectories are chaotic while sustaining a strictly negative
momentum.

A better understanding of the Type-III trajectories can be
gained from statistical averages. We consider the average
velocity vav , as well as the mean switch time ts. For a set of tra-
jectories u(ui, pi, t ) with initial conditions u(t = 0) = ui and
p(t = 0) = pi the average velocity is determined by averaging
the mean velocities of all trajectories

vav = 1

NT

N∑
i=1

∫ T

0

du(ui, pi, t )

dt
dt, (10)

where T is the simulation time of individual trajectories. We
define the mean switch time as the average time a particle
spends with p > 0 (or p < 0) before inverting the direction of
its motion. Note, that within our numerical simulations, there
are limitations regarding the calculation and accuracy of ts.

052217-4

46 Chapter 5. Scientific Contributions



EXTERNAL-FIELD-INDUCED DYNAMICS OF A CHARGED … PHYSICAL REVIEW E 103, 052217 (2021)

FIG. 3. (a)–(c) PSOS created from ∼103 trajectories with initial
conditions in the chaotic sea (u ∈ [0, 1] and p ∈ [−0.42, −0.62]).
Each particle was simulated for 5000 driving periods. The appear-
ance of stable trajectories around p = 0 splits the chaotic sea into two
seas, when the driving amplitude E is decreased. (d) Representative
example trajectories emanating in the chaotic sea for p < 0 for E = 3
(yellow), E = 4 (orange), and E = 7 (blue). The two momentum
regimes the particles are confined to are clearly visible. Transition
between the two regimes is more likely for larger driving amplitudes.
(e) The average transport velocity vav and switch time ts as a function
of the driving amplitude. Each data point was obtained from simula-
tion numbers and times similar to those of (a)–(c).

We can only determine ts accurately from our simulations,
if we (on average) observe at least one switch in the time
T . Since each trajectory was simulated for T = 5000 driving
periods, our value of ts is accurate for values below ts � 2500.
In practice, we simulate 103 trajectories for 5000 time steps,
count the total number of switches n in all simulations, and
then calculate ts = 0.5 107/n.

Figure 3(e) shows both vav and ts as a function of the
driving amplitude. For better insight into the dynamics of
the Type-III trajectories both curves were only obtained from
trajectories with p(t = 0) > 0. Until the split up of the chaotic
region at about E = 4 both quantities increase with decreasing
driving amplitude. From ts we see that long before the two
chaotic regions are separated from each other, the particles
perform very long flights without inverting the direction of
their motion. Even for E = 7, where the chaotic regions
are still reasonably well connected in the phase space [see
Fig. 3(a)], we have a mean switch time of ts > 600 driving
periods.

In the figure, our mean switch time exceeds the critical
value of ts = 2500 for driving amplitudes E < 6. As stated
above, we cannot accurately calculate ts in this regime of
driving amplitudes because the change of the direction of
motion happens too infrequently. Consequently, in this regime
the choice of initial conditions [p(t = 0) < 0] becomes ap-
parent in the statistics of vav . While ts > 2500, the average
velocity vav increases with increasing ts. When the two chaotic
phase space regions splits up at around E = 4, vav reaches a
plateau [see vav in Fig. 3(e)]. After the split up, the Type-III
trajectories have a consistent mean velocity of slightly less
than vav ≈ 2π . This velocity corresponds to a position change
of about one helix winding during each driving period. More
precisely, each driving period the chaotic Type-III trajectories
move between neighboring minima in the WIP. Therefore, the
dynamics of Type-III trajectories are similar to the Type-II
trajectories, except that they are mostly determined by the
minima of the WIP with the TIP being a perturbation that
is mostly responsible for the chaos. In contrast, the Type-II
trajectories are mostly determined by the minima of the TIP,
with the WIP acting as a perturbation. For even lower driving
amplitudes the perturbation due to the TIP becomes small
enough for the Type-III trajectories to stabilize into a series
of fixed points [similar to the ones shown in Fig. 4(a) for a
rotating driving field].

Since the Type-III trajectories emerge due to the WIP, it
is no surprise that the occurrence of the phase space split
depends on the helix radius r. For larger values of r, the
(quasi)periodic trajectories around the Type-III fixed points
will already stabilize for larger values of E , since the relative
strength of the perturbation due to the TIP decreases. For a
large enough r, it is possible for the Type-III fixed points to
stabilize before the chaotic region is splitting up. In extreme
cases this may even prevent the occurrence of chaotic Type-III
trajectories.

The only independent system parameter we did not dis-
cuss so far is the winding number M. Changing M does not
significantly affect the overall dynamics. However, due to the
relation R = Mh/2π and our choice of units (thereby setting
h = π/2), changing M will change the torus radius R, thereby
changing the momentum of the Type-II trajectories. This, in
turn, changes, e.g., the driving amplitude required for a mixed
phase space as shown in Fig. 2(a). This also changes the ratio
of r/R and may cause the periodic Type-III fixed points to
stabilize at different driving amplitudes. Increasing M also
increases the number of extrema in the WIP, leading to more
fixed points in the (quasi)periodic Type-III trajectories once
they stabilize. Besides this, however, the split up of the chaotic
phase space region is mostly unaffected.

IV. PARTICLE DYNAMICS IN THE PRESENCE
OF A CIRCULARLY POLARIZED FIELD

Another intriguing split up in the phase space can be ob-
served when driving with a circularly polarized field in the
xy plane. In this case, the driving law is characterized by the
time-dependent potential landscape Vxy(u, t ) given in Eq. (8).
In this section, we will encounter trajectories that are very
similar to the Type-I-III trajectories that were classified in
Sec. III. We will again refer to them as Type-I, -II, and -III
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FIG. 4. Poincaré surfaces of sections (PSOS) for a particle on a
toroidal helix driven by a circularly polarized field in the xy-plane.
The inset in (c) visualizes the dynamics of different trajectories
(I, II, and III) on Vxy(u, t ) in the range u ∈ [−2πM/3, 2πM/3]. The
symbols I–III mark the inverse of trajectories (I–III), i.e., trajectories
moving in the opposite direction. (I) Quasifree trajectories that are
too fast to be significantly affected by the driving. (II) Trajectories
that are trapped in a well of the potential Vxy and move around the
torus once during every driving period. (III) Chaotic and regular
trajectories that (after the chaotic sea has split) move one helical
winding during each driving period. The PSOS are shown for driving
amplitudes of (a) E = 3, (b) E = 10, (c) E = 40, (d) E = 400, and
(e) E = 1000. In (e) the coloring was changed to emphasize the split
of the chaotic region; except for one highlighted periodic trajectory
(black) all data points are colored blue. The two chaotic regions
correspond to chaotic motion that is trapped in the moving potential,
and chaotic motion that is (on average) slower than the moving
potential. The yellow curve in (f) shows the motion of the highlighted
(black) trajectory of (e) in the moving potential.

trajectories. Type-I trajectories are again invariant spanning
curves that limit the momentum of chaotic trajectories and
are hardly affected by the driving. Type-II trajectories move
around the torus in phase with the driving. This time, however,
the potential Vxy describes a running wave, and the Type-II
trajectories correspond to particles that are trapped in one
of the moving potential wells. Type-III trajectories refer to
trajectories that are unable to invert their direction of move-
ment and move between successive minima of Vxy during each
driving period with an average velocity of vav = 2π .

An overview of the phase space for M = 10 and r = 0.2 is
given in Figs. 4(a)–4(e). For a large part, the phase space is
very similar to the one shown in the previous section: There is
a large regular island of Type-II trajectories corresponding to
motion around the torus in phase with the driving period. The

size of the corresponding chaotic region increases with the
driving amplitude and leads to a mixed phase space for large
E . The chaotic region is surrounded by Type-I trajectories.
Also, the r sin(u) dependence of Vav leads to the presence of
Type-III trajectories for very low driving amplitudes, which,
due to perturbations in form of the R-dependent term in Vav ,
can be chaotic and lead to a splitting of the chaotic sea similar
to the one discussed in Sec. III. At the same time, however,
there are major differences. Since our driving law breaks par-
ity and time inversion symmetries in the equations of motion,
the resulting phase space is not symmetric anymore. Instead
of two fixed points with Type-II trajectories as in Fig. 2,
there is now only one that corresponds to motion around the
torus with the same direction as the rotation of the driving
field. Furthermore, the emergence of Type-III trajectories with
decreasing driving amplitude is not symmetric anymore. For
our example parameters (quasi)periodic Type-III trajectories
with p > 0 emerge even before the split of the chaotic sea has
begun [see Fig. 4(b)].

The most interesting difference, however, emerges for very
large driving amplitudes. Whereas in the case of a linearly os-
cillating driving field a larger driving amplitude mostly leads
to an increased chaotic region, new structures can emerge in
the phase space when driving with a rotating large ampli-
tude field. For very large driving amplitudes [see Fig. 4(e)]
regular (quasi)periodic trajectories appear and split up the
chaotic sea into two regions. These (quasi)periodic trajecto-
ries correspond to Type-II trajectories that move around the
toroidal helix in phase with the driving. This can be seen from
Fig. 4(f), which shows the path of the highlighted (black)
trajectory from Fig. 4(e) in the driving potential. For conve-
nience, the data is plotted in a moving reference frame that is
moving in phase with the driving potential.

The two different chaotic regions in Fig. 4(e) correspond
to different kinds of chaotic motion. The chaotic region sur-
rounded by the newly stabilized periodic Type-II trajectories
consists entirely of trajectories that are trapped in a valley
of our driving potential. While the motion is chaotic, each
trajectory will on average move in phase with the driving,
once around the toroidal helix during each driving period.
These trajectories are consequently also Type-II trajectories—
just chaotic and not (quasi)periodic. With increasing driving
amplitude, the chaotic Type-II trajectories will stabilize into
periodic Type-II trajectories.

Before the driving amplitude is large enough to stabilize
any of these new (quasi)periodic Type-II trajectories, there
is a long intermediary range of driving amplitudes during
which the two chaotic regions are separated from each other
by a permeable cantorus (i.e., an unstable KAM torus). A
corresponding phase space is shown in Fig. 4(d). The pres-
ence of the cantorus allows for an appealing dynamics of the
chaotic trajectories. When they cross the cantorus, they switch
between two different kinds of chaotic motion. An example
for such a trajectory is shown in Fig. 5(a) for a driving am-
plitude of E = 500. The plotted trajectory u(t ) + 2πMt has
a negative (or positive) slope if the particle is moving faster
(or slower) around the torus than the rotating driving field.
The particle in the figure starts in the chaotic region outside
of the cantorus barrier (i.e., it is not a Type-II trajectory).
In this region it will (on average) be too slow to move in
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FIG. 5. (a) Example trajectory in a comoving reference frame
that moves in phase with the driving field. When the particle crosses
the cantorus and becomes a chaotic Type-II trajectory, u(t ) − 2πMt
will become constant, which is demonstrated in the inset. (b)–
(d) Each figure shows a PSOS for six trajectories (with the same
initial conditions for each figure) for (b) E = 300, (c) E = 400, and
(d) E = 500. In (b) and (c) only one of the six trajectories manages
to cross the cantorus, whereas in (c) all trajectories frequently switch
between the two types of chaotic motion. (e) Average velocity for
particles started in the chaotic sea with initial conditions chosen close
to [u, p] ≈ [15π, 0]. Each data point was obtained from 103 trajec-
tories, each simulated for 104 driving periods. The chaotic Type-II
trajectories are faster than those from the other chaotic region, so the
velocity decreases with decreasing permeability of the cantorus.

phase with the driving field. Once it crosses the cantorus, the
dynamics become that of a chaotic Type-II trajectory. This is
highlighted by the inset, which zooms into a small region of
the trajectory during which the particle crosses the cantorus,
briefly becomes a chaotic Type-II trajectory, and then crosses
the cantorus again into the other chaotic region. The times par-
ticles spend as chaotic Type-II trajectories follow a power law
with a critical exponent that depends on the driving amplitude
and the permeability of the cantorus.

The permeability of the cantorus does not simply decrease
with the driving amplitude until the two chaotic regions are
separated from each other. It switches multiple times between
being more or less permeable before the driving amplitude
is large enough to separate the two chaotic regions. This is
demonstrated in Figs. 5(b)–5(d). They each show the PSOS
of six trajectories (with the same initial conditions [u, p] used
for each figure) for various driving amplitudes. For E = 300

and E = 400, the two regions are almost separated from each
other and in both cases only one of the trajectories manages
to cross the cantorus. Despite the vast difference in driving
amplitudes, there is very little difference in the permeability
of the cantorus. In contrast, for E = 500 all of the trajectories
switch frequently between the two regions. In this case, the
presence of a cantorus is not even obvious from the phase
space alone. Only when looking at the individual trajectories
[such as the one shown in Fig. 5(a)], we can distinguish
between the different chaotic dynamics of the two chaotic
regions.

The average velocity is different for both chaotic regions,
and we shall use this to analyze the split up of the chaotic
region. This is shown in Fig. 5(e). It shows the average ve-
locity vav as a function of the driving amplitude. Each data
point was obtained from 103 trajectories started in the chaotic
region around [u, p] ≈ [15π, 0], and with simulation times of
104 driving periods for each trajectory. Note, that for very low
E , when the Type-III trajectories for p > 0 and p < 0 are sep-
arated by invariant spanning curves (i.e., Type-I trajectories),
we chose initial conditions with p < 0, leading to some bias in
the data for very low E . Note also, that the curve may slightly
change for different simulation times, if the switch time for
the cantorus crossing exceeds the simulation time.

At first, for very low E , vav decreases with increasing driv-
ing amplitude, which is caused by a combination of Type-III
trajectories disappearing with increasing E , and a bias in our
initial conditions [compare vav in Fig. 3(e) and discussion
thereof]. Then, vav will (mostly) increase with increasing
driving amplitude until E ≈ 270. This increase is due to the
chaotic sea expanding and changing its mean momentum.
Above E ≈ 270, the cantorus appears and splits the chaotic
region in two, resulting in a sharp drop of vav . From then on,
there are peaks in vav whenever the trajectories can frequently
switch between the two chaotic regions: (e.g., the plateau
around E = 500). Around E ∼ 900, the cantorus stabilizes
into periodic Type-II trajectories and the two chaotic regions
become fully separated from each other.

Similar to the phase space splitting for low driving ampli-
tudes discussed in Sec. III, this split likely originates from the
two different scales of oscillations in the driving potential. The
cantorus orbits are mainly stabilized due to the large scale
oscillation ∼qER cos(ωt − u/M ) of the running wave, with
the smaller oscillations ∼qEr cos(u) cos(ωt − u/M ) acting as
a perturbation that (for a wide parameter range) prevents the
Type-II trajectories from stabilizing and becoming periodic.
Due to the position dependence of the smaller oscillations,
the perturbation is always stronger for trajectories that are
tightly bound, i.e., closer to the fixed point, than for those with
greater variations of u̇(t ) − vav . This perturbation increases
with increasing the helix radius r and therefore a larger he-
lix radius requires larger driving amplitudes for the chaotic
region to split up. Similar to the discussion of Sec. III, the
winding number M changes the ratio of r/R and the velocity
of the Type-II trajectories. This can influence the general
parameter regimes in which the split up of the chaotic phase
space region is encountered, however, we did not observe any
changes in the underlying physics when varying the winding
number M.
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V. SUMMARY AND CONCLUSION

We have investigated the dynamics of a charged particle
confined to a toroidal helix, which is exposed to external driv-
ing forces originating from a time-dependent electric field.
The main results consist in the phenomenological description
and understanding of two different mechanisms for the split
up of the chaotic phase space region, both with their own
interesting consequences for the dynamics. We showed that
for low driving amplitudes the two different spatial scales of
oscillating potential lead to a split up of the chaotic region
around p = 0. This prevents chaotic trajectories to invert the
direction of their motion and leads to a consistent average
velocity of |vav| ≈ 2π for all diffusive trajectories. Especially
notable is that this split allows for chaotic particle trajec-
tories with nonzero average velocity, even in a case where
the spatiotemporal symmetries that are usually associated
with chaotic transport are not broken by the driving field.
Our understanding of this split and the resulting dynam-
ics is certainly also of interest in the context of Brownian
motors.

Specifically for driving with a circularly polarized field in
the xy plane, we found another mechanism for the split up
of the chaotic sea, this time splitting off a chaotic region in
which particles are trapped in a valley of the driving potential.
Trajectories confined to this separate region of the phase space

move around the torus in phase with the driving field and
will have a consistent average velocity of vav = 2πM. Before
this region is completely separated from the remainder of the
chaotic sea, there is a very large range of driving amplitudes
for which the trajectories can switch between the two chaotic
regions by crossing a permeable cantorus. The probability
of crossing the cantorus fluctuates heavily with the driving
amplitude. The origin of this separation has been identified as
a small perturbation of the driving potential, that is most in-
fluential around the extrema of the running wave and vanishes
in between those extrema.

The presented split ups of the chaotic phase space region
are not unique to setups with confining forces and mainly
depend on the different scales of oscillations in the driving
potential. A realization of similar physics in a driven lattice
with spatially varying forces, or with ultracold atoms in an
optical lattice seem feasible. Furthermore, recent experiments
have demonstrated the possibility of confining neutral atoms
to a helical path [51], however, in such setups, the realization
of our driving forces may be a challenge.
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We explore a model system consisting of a particle confined to move along a toroidal helix while being
exposed to a static potential as well as a driving force due to a harmonically oscillating electric field. It is
shown that in the limit of a vanishing helix radius, the governing equations of motion coincide with those of the
well-known Kapitza pendulum—a classical pendulum with oscillating pivot—implying that the driven toroidal
helix represents a corresponding generalization. It is shown that the two dominant static fixed points present
in the Kapitza pendulum are also present for a finite helix radius. The dependence of the stability of these two
fixed points on the helix radius, the driving amplitude, and the static potential are analyzed analytically. These
analytical results are subsequently compared to results corresponding of numerical simulations. Additionally,
the most prominent deviations of the driven helix from the Kapitza pendulum with respect to the resulting phase
space are investigated and analyzed in some detail. These effects include an unusual transition to chaos and an
effective directed transport due to the simultaneous presence of multiple chaotic phase space regions.

DOI: 10.1103/PhysRevE.105.054204

I. INTRODUCTION

Helical shapes are naturally occurring in nature, arising,
e.g., through hydrogen bonds in alpha-helix segments of
proteins or in molecules such as DNA and alpha-keratin.
Furthermore, helical structures can emerge through long-
range order in self-organizing systems on cylindrical surfaces
[1–3] or can be artificially created by rolling up thin sheets
into cylinders [4–7]. Helical structures can also appear
in trapping potentials induced by light fields around op-
tical fibers [8,9] which can be loaded with neutral cold
atoms. An advantage of the helical shape is the increased
stability with regard to deformations [10,11], making heli-
cal nanostructures desirable for future applications, e.g., in
nanocircuits.

Besides occurring in nature, helical systems of charged
particles have recently been explored in the literature thereby
demonstrating a number of intriguing effects emerging due
to the geometry, such as interactions that oscillate with the
(parametrized) distance along the helix [12]. These effects
have been studied in lattice systems with long-range hopping
[13,14], as well as in more fundamental models of classical
charges moving on helices [15–22]. In such model systems,
it has been demonstrated that based on the oscillating effec-
tive interactions, static setups already become very complex
since particles are able to localize into irregular latticelike
structures [16,20] exhibiting a plethora of possible equilib-
rium configurations [12,21]. By varying the helix geometry,
it is possible to tune a variety of effects, such as scattering
of bound states at local defects [15], band structure inver-

*asiemens@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

sion and degeneracies [16,17], or unusual pinned to sliding
transitions [18] in crystalline configurations on a toroidal
helix.

Inspired by the demonstrated richness of effects of charged
particles on a helix, we explore here a system consisting of a
single particle confined to a toroidal helix in the presence of
an oscillating driving field and a static potential. In a previous
study [22], the corresponding phase space in the absence of
the static potential and the related directed transport have been
investigated. Here, we build upon these results and explore the
effects of an additional spatially oscillating static potential.
We show that the governing equations map to the equations for
the Kapitza pendulum [23] in the limit of a vanishing helix
radius. For a nonvanishing helix radius, a dynamical behavior
beyond that of the Kapitza pendulum emerges. Our main
results include a stability analysis of two major fixed points
corresponding to the two major fixed points in the Kapitza
pendulum. We derive and analyze some of the most prominent
dynamical phases arising in the phase space of our driven
helical particle system.

This paper is structured as follows: In Sec. II, we explain
our setup and derive the underlying equations of motion. We
show that in the limit of a vanishing helix radius, the equa-
tions of motion simplify to those of the Kapitza pendulum.
Therefore, the main features of the Kapitza pendulum are
briefly summarized in Sec. III. The main results are provided
in Secs. IV and V, addressing the driven helix away from
the Kapitza limit. In Sec. IV, the influence of a finite helix
radius on the stability of the two fixed points of the Kapitza
pendulum is analyzed analytically. These analytical results are
then compared with the results of corresponding numerical
simulations. In Sec. V, major dynamical effects emerging for
a finite helix radius are investigated. A discussion and outlook
are presented in Sec. VI.

2470-0045/2022/105(5)/054204(7) 054204-1 ©2022 American Physical Society
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FIG. 1. (a) A 3D sketch of the torus and the toroidal helix with
the parametric function r(u), for M = 10, r = 0.8, and R = 2.5. The
inset in the top right visualizes the direction of the driving electric
field. (b) The potential energy created by the driving electric field
E (t ) (TIP, orange and WIP, green) and the static potential V (u)
(blue) shown for a toroidal helix with M = 10, R = 2.5, V0 = 5,
and a helix radius of r = 0.1. (c) Visualization of the Kapitza limit
r → 0. The toroidal helix becomes a circle in the xy plane. The
potential energy induced by the static potential is indicated by the
color. For comparison, a schematic of the Kapitza pendulum is shown
in the inset on the left. (d) Visualization of the Ince-Strutt diagram
highlighting the regions where the two major fixed points of the
Kapitza pendulum are stable (white) or unstable (red). (e) Poincare
surface of section (PSOS) in the Kapitza limit r → 0 for V0 = 5
and E0 = 3. The most prominent types of trajectories are shown:
(I) rotators that are not significantly affected by the driving, (II)
trajectories circling in phase around the ring with the driving, (III)
bounded trajectories centered at the minimum of the static potential,
and (IV) chaotic trajectories. Trajectories marked II circle around the
ring in the opposite direction as those trajectories marked II.

II. DRIVEN TOROIDAL HELIX

We consider a charged particle with charge q confined to
frictionlessly move on a geometry of the shape of a toroidal
helix [see Fig. 1(a)]. Additionally, the particle is subject to a
static potential and driven by a harmonically oscillating elec-
tric field. The confining geometry is parametrized as follows:

r(u) :=

⎛
⎜⎝

(R + r cos(u)) cos(u/M )

(R + r cos(u)) sin(u/M )

r sin(u)

⎞
⎟⎠, u ∈ [0, 2πM], (1)

where M, R, r are the number of helix windings, the radius
of the torus, and the radius of the helix, respectively. The
parametrized position u on the helix can be interpreted as an
angle. If u changes by 2π , the particle moves by exactly one
helical winding. The static potential V (u) at each position r(u)
is defined as

VS (u) = V0 cos

(
u

M

)
. (2)

The potential created by the periodic driving electric field E(t )
is modeled according to the corresponding Stark term:

VE (u, t ) = qE(t ) · r(u) = q cos(ωt )E0 · r(u). (3)

We consider a sinusoidally oscillating electric field with a
polarization in the torus plane (x direction). With this, the
potential energy induced by the driving field becomes

VE (u, t ) = qE0(R + rcos(u))cos(u/M ) cos(ωt ). (4)

This potential consists of two parts: one depending on the
torus radius R and one depending on the helix radius r. They
will from now on be referred to as torus-induced potential
(TIP) and winding-induced potential (WIP), respectively. An
understanding of the potential experienced by the particle
while moving along the helix can be gained from Fig. 1(b).
The figure shows the energy due to the static potential [blue
curve, compare Eq. (2)] and the energy due to the driving
field at t = 0 [orange and green curves for the TIP and WIP
respectively, see Eq. (4)] for a toroidal helix with M = 10,
R = 2.5, V0 = 5, and r = 0.8. The total potential Vtot(u, t ) =
VE (u, t ) + VS (u) contains both the static potential VS (u) and
the field potential VE (u, t ). Due to the time dependence of the
driving field, the total potential energy is, of course, also time
dependent. Specifically, the shown TIP and WIP will oscil-
late with cos(ωt ), resulting in the total energies Vtot(u, t = 0)
[pink dotted line in Fig. 1(b)] for a field aligned in positive x
direction, and Vtot(u, t = 0.5π/ω) [pink densely dotted line in
Fig. 1(b)] half a driving period later when the field is aligned
in the negative x direction. The pink shaded area indicates the
range of potential energies covered for each position u during
a driving period. An increase of r will lead to an increase of
the amplitude of the WIP. In the limit of r → 0, the WIP will
vanish and the fine structure of Vtot disappears. The number of
extrema in the total potential energy can therefore be tuned by
varying r.

The driven helix is then described by the following La-
grangian:

L = m

2

(
dr(u)

dt

)2

− q cos(ωt )E0 · r(u) − V0 cos

(
u

M

)

= m

2
(r2 + a2(R + r cos(u))2)u̇2

− qE0(R + r cos(u)) cos(ωt ) cos(au) − V0 cos(au), (5)

where a = 1/M is the inverse of the winding number. It is
sensible to introduce the parameter l (u) defined as

l2(u) := 1

a2
(r2 + a2(R + r cos(u))2). (6)
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Using this expression, the Lagrangian can be written as

L = ma2

2
l2(u)u̇2

−
(

V0 + qE0

√
l2(u)a2 − r2

a
cos(ωt )

)
cos(au). (7)

With p = ∂L/∂ u̇ = ma2l2(u)u̇, the Lagrangian in Eq. (7)
corresponds to the following Hamiltonian:

H = [2ma2l2(u)]−1 p2

−
(

V0 + qE0

√
l2(u)a2 − r2

a
cos(ωt )

)
cos(au). (8)

The Lagrangian in Eq. (7) efficiently accounts for the con-
fining forces by only allowing positions along the helix r(u).
From this Lagrangian, we obtain the following equation of
motion:

m[r2 + a2(R + r cos(u))2]ü − V0a sin(au)

− qE0 cos(ωt )[r sin(u) cos(au) + a(R + r cos(u)) sin(au)]

+ ma2r sin(u)(R + r cos(u))u̇2/2 = 0. (9)

Some of the parameters in the Lagrangian of Eq. (7) and
of the equation of motion in Eq. (9) are redundant and can be
absorbed by other parameters. The redundant parameters are
the driving frequency ω, the torus radius R, the particle mass
m, and charge q of the particle. These quantities can, without
loss of generality, be eliminated by rescaling the remaining
relevant parameters as follows:

t̃ = t
ω

2π
, r̃ = r

R
, Ẽ = 4π2qE

mRω2
, Ṽ = 4π2V

mR2ω2
. (10)

In the limit of r → 0, we get l2(u) = R2, and the La-
grangian from Eq. (7) becomes the Lagrangian of the Kapitza
pendulum [23]:

LK = m

2
a2R2u̇2 + (V0 + qE0R cos(ωt )) cos(au). (11)

The equivalence between the Kapitza pendulum and the
toroidal helix in the limit of r → 0 is further indicated in
Fig. 1(c) and its inset. The driving electric field and static
potential along the toroidal helix are, respectively, equivalent
to the oscillating pivot and the gravitation potential in the
Kapitza pendulum.

III. THE KAPITZA PENDULUM LIMIT

To be self-contained, we briefly demonstrate the main fea-
tures of our system that are already known from the Kapitza
pendulum. The Kapitza pendulum is a classical pendulum
with an oscillating pivot as depicted in the inset of Fig. 1(c).
One of the most interesting aspects of the Kapitza pendulum
is regarding the fixed points in the underlying equations of
motion. In addition to the expected fixed point where the
pendulum is in its potential minimum (corresponding to u =
Mπ ), the Kapitza pendulum can have another stable fixed
point in the upper position (corresponding to u = 0). This sec-
ond fixed point is stabilized due to the driving forces from the

oscillating pivot. In the Kapitza limit of r → 0, the equation of
motion shown in Eq. (9) simplifies to

ma2R2ü = [V0a + qE0 cos(ωt )aR] sin(au). (12)

From Eq. (12), the two fixed points at u = 0 and u = Mπ—
respectively corresponding to the Kapitza pendulum in the
upper and lower position—can be easily identified. The sta-
bility of these fixed points can be determined by linearizing
Eq. (12) around these two fixed points. This results in the
following equation:

mR2ü = u( ± V0 + qE0R cos(ωt )), (13)

where in case of the fixed point at u = 0 we obtain a positive
sign of the first summand and a negative sign in the case of
the fixed point at u = Mπ . Equation (13) is also known as the
Mathieu equation [compare Eq. (14) below]. The parameter
regions for which the Mathieu equation has periodic bounded
solutions can be determined from the Ince-Strutt diagram
[24] shown in Fig. 1(d). In this diagram, the white areas
mark regions where periodic solutions of Eq. (13) exist, i.e.,
where the fixed point is stable, whereas in the red regions,
no bounded solutions exist, i.e., the fixed point is unstable,
which can lead to an exponential increase of |p|. Further away
from the fixed point, this unbounded growth of energy and
momentum is suppressed by the nonlinearities of Vtot(u, t ). As
can be seen from Eq. (13), positive values on the (V0/R2)-=
axis of Fig. 1(d) describe the stability of the fixed point at
u = 0, whereas negative values describe the stability of the
fixed point at u = Mπ .

The below-given discussions in Secs. IV and V feature
an analysis of the phase space for r > 0 to understand the
dynamics for a wide range of initial conditions. To better
contextualize these results, the most prominent types of tra-
jectories in the Kapitza limit are now discussed. Since our
phase space is made up of three parameters (position u,
momentum p, and time t), we can use a Poincaré surface
of section (PSOS)– -specifically, a stroboscopic map—to vi-
sualize the phase space in a two-dimensional stroboscopic
u(p) mapping. A general overview of the most prominent
possible types of trajectories in the Kapitza limit is given
in Fig. 1(e). For large enough momentum, there will al-
ways be (quasi)periodic trajectories bounding the chaotic sea,
corresponding to a fast rotational motion around the torus
which is not significantly affected by the driving. They are
marked (I) in the figure (or I for trajectories moving in the
opposite direction). With increasing |p|, the corresponding
invariant tori approach a constant behavior. Islands of regular
motion around the two fixed points at u = 0 and u = Mπ

and are marked (III). Additionally, it is possible to stabilize
(quasi)periodic trajectories circling around the torus in phase
with the driving field. This type of motion occurs in the
regions marked (II) and (II) in Fig. 1(e). Chaotic trajecto-
ries [marked (IV)] will in general be present for all E0 > 0.
Through variation of E0 and V0, it is possible to tune the pres-
ence of the trajectories of types (II)–(IV). All these trajectories
are also encountered for arbitrary r > 0—albeit for different
parameter combinations than for r = 0.
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FIG. 2. Comparison of numerical calculations to the analytically predicted stability of the major fixed points in the generalized Kapitza
pendulum. (a)–(c) Maximal distance in phase space between the fixed point (at u = Mπ for α > 0 and at u = 0 for α < 0) and a trajectory
starting at a distance of 10−8 from this point after a simulation time of 1000 driving periods. White color indicates that the particle moves at
least once around the torus. The parameter regions where our analytical calculations based on Eqs. (14)–(16) predict the fixed points to be
stable are marked by the dotted red lines. (d)–(f) The time needed for the particle to move once around the torus. The used trajectories are the
same as in (a)–(c). Again, the corresponding Ince-Strutt diagram is indicated by the dotted red lines. (g), (h) Example PSOS for trajectories
from the purple and white regions.

IV. STABILITY ANALYSIS

We will now consider the general case of a finite helix
radius r > 0 and investigate how the helix radius influences
the stability of the two fixed points discussed in Sec. III. The
persistence of these fixed points in the generalized setup can
be directly verified by inserting the initial conditions u̇ = 0
and u = 0 (or u = Mπ for the second fixed point) into the
general equations of motion given by Eq. (9). In addition to an
analytical stability analysis through linearization of the equa-
tions of motion in the vicinity of the fixed point, we investigate
the particle dynamics close to the fixed point via numerical
simulations. Note that from now on, all calculations are per-
formed using the scaling introduced in Eq. (10). We start with
the analytical considerations and linearize the general equa-
tions of motion in Eq. (9) around the two fixed points. Similar
to the Kapitza limit, the resulting approximate equations of
motion are described by the Mathieu equation, except that
this time the coefficients of the Mathieu equation additionally
depend on the helix radius. The general Mathieu equation is
given by

ü + (α − β cos(τ ))u = 0. (14)

For the first fixed point at u = 0, the parameters α and β are
given by

α1 = − V0a2

4π2(r2 + a2(1 + r)2)
,

β1 = E0(a2(1 + r) + r)

4π2(r2 + a2(1 + r)2)
. (15)

For the second fixed point at u = Mπ we have

α2 = V0a2

4π2[r2 + a2(1 + (−1)Mr)2]

β2 = E0(a2(1 + (−1)Mr) + (−1)Mr)

4π2[r2 + a2(1 + (−1)Mr)2]
. (16)

The factor (−1)M in Eq. (16) accounts for the difference in the
potential energy at u = Mπ between setups with even and odd
winding numbers. In the following, all shown data are for an
even winding number M = 10. For even M, we get α1 = −α2

and β1 = β2 and we can therefore visualize the stability of
both fixed points in the same diagram. Different choices (i.e.,
odd values) of M will change the parameters α and β but to
the best of our knowledge do not lead to significantly different
behavior or dynamics.

Using Eqs. (14) to (16), we can establish and analyze
the Ince-Strutt diagram to determine the parameter sets for
which the two fixed points of our driven helix are stable.
This is illustrated in Fig. 2 for several values of the helix
radius r. The boundaries of the analytically obtained stability
tongues (i.e., regions where the fixed points are predicted to
be stable) obtained from Eqs. (14)–(16) are marked by red
dotted lines. The colors in Fig. 2 visualize the results of the
numerical calculations and provide insight into the dynamics
in the immediate vicinity of the fixed points. These numerical
results are obtained by calculating the trajectory of a particle
starting within an ε environment of the fixed points. If the
fixed point is stable, the resulting motion is (quasi)periodic;
in case it is unstable, the particle will explore a significant
region of the phase space. More specifically, we use the initial
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condition of (u, p) = (Mπ + 10−8, 0) and simulated the dy-
namics for 1000 driving periods. For each trajectory, the
maximal phase space distance of the trajectory to the fixed
point is determined. These results are shown in Figs. 2(a)–
2(c), where each pixel corresponds to a distance obtained
from a single trajectory. In total, 675 000 trajectories were
simulated for each of the subfigures Figs. 2(a)–2(c). The black
areas indicate that the particle stays in the immediate vicinity
of the fixed point, whereas the white color shows that the
particle moves at least once around the torus. The agreement
with the analytically determined stability diagrams can be
clearly seen in Fig. 2. However, an increase of the helix radius
r leads to a significant change of the dynamics of unbounded
trajectories for the fixed point at u = Mπ (i.e., positive values
of V0 in the figure). Increasing r increases the size of the
regions where the particle moves a significant distance away
from the fixed point but does not explore the complete phase
space (i.e., the purple and blue regions in the figure). In the
white regions of the figure, the unstable fixed point is (usually)
part of the chaotic sea, allowing the particle to explore the
entire toroidal helix. A PSOS for a corresponding example
trajectory can be seen in Fig. 2(h). An example PSOS for
a trajectory from the purple and blue regions is shown in
Fig. 2(g). The dynamics in the blue and purple regions of the
figures will be described in more detail in Sec. V.

In contrast to the fixed point at u = Mπ , judging from
Figs. 2(a)–2(c), the behavior outside of the analytically ob-
tained stability tongue for the fixed point at u = 0 (negative
values of V0 in the figure) seems to be hardly affected by
changes of r. One intuitive explanation for this is that VS (u)
has a maximum at u = 0 and at infinitesimal distances from
this point the particle will experience a force away from the
fixed point, thereby preventing the existence of trajectories
similar to the one shown in Fig. 2(g).

To provide insight into the trajectories in the white re-
gions,we determine the time needed until a distance of 2πM
is reached for the first time. The corresponding results are
shown in Figs. 2(d)–2(f). We observe that for increasing r the
transition from (quasi)periodic to chaotic trajectories in the
vicinity of the analytically obtained stability-tongue borders
changes from a (relatively) smooth transition for r = 0 to a
rather abrupt transition for large r.

V. PHASE-SPACE ANALYSIS

In addition to the modifications of the stability of the two
fixed points of the Kapitza pendulum, the driven helix also
exhibits various dynamical phases that appear only for a non-
vanishing radius r > 0. In this section, the most significant of
these features are described and analyzed.

One interesting characteristic concerns the unusual mech-
anism by which the dynamics in the vicinity of the fixed point
at u = Mπ transitions from (quasi)periodic to chaotic motion.
It might be natural to expect that the breakup of invariant
tori happens first for those trajectories with larger phase-
space distance to the fixed point when the system is exposed
to a perturbation. However, in contrast to this expectation,
we observe that trajectories close to the fixed point become
chaotic—resulting in a chaotic phase space region that is
centered around an unstable fixed point and separated from the

FIG. 3. (a) Poincare surface of sections (PSOS) for r = 0.1,
E0 = 5, and V0 = 10. Trajectories close to the fixed point at
(u, p) = (Mπ, 0) (indicated by the arrow) become chaotic while
(quasi)periodic trajectories with greater phase space distances from
the fixed point prevail. (b) Potential energy due to the WIP, as well as
the range of kinetic energy values taken by one of the (quasi)periodic
trajectories that separates the two chaotic regions shown in (a). (c),
(d) PSOS for r = 0.5, E0 = 2 and V0 = 0 (c), V0 = 2 (d). The two
separated chaotic seas marked V and V in (c) become connected
when V0 is of similar order as E0. (e), (f) PSOS for r = 0.1, E0 = 7,
and V0 = 0.9 showing the presence of three distinct chaotic regions.
The upper chaotic region is highlighted in (f).

main chaotic sea by a region with (quasi)periodic trajectories,
i.e., a regular island. The size of this chaotic region can be
tuned by varying the helix radius r. The results are chaotic
trajectories with a tunable motional amplitude (i.e., tunable
maximal distance from the fixed point) around the fixed point.
This effect is demonstrated in the PSOS in Fig. 3(a). In the
figure, one can clearly identify the (quasi)periodic trajectories
and regular regions separating the chaotic trajectories that are
trapped around the fixed point at (u, p) = (Mπ, 0) from those
chaotic trajectories that can explore the entire toroidal helix.
For small parameter regions, the simultaneous presence of
multiple bands of (quasi)periodic trajectories centered around
the (unstable) fixed point at (u, p) = (Mπ, 0), but separated
from one another by chaotic phase space regions, could be
observed.

The reason for this peculiar transition to chaos can be eluci-
dated by the changes in the potential landscape for increasing
r. For r � R, the radius dependent oscillations (the WIP, with
a period of 2π ) of the potential can be treated as a perturbation
to the r → 0 limit. This perturbation will be largest at the
global extrema of the potential at u = 0 and u = Mπ and will
vanish at u = Mπ/2 and u = 3Mπ/2 [see Fig. 1(b)]. This
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heavy oscillatory character of the time-dependent potential
landscape can induce chaotic motion—provided the particle
moves slow enough to be affected. From a comparison with
Fig. 1(e), it can be seen that this is more likely for trajecto-
ries oscillating closer to the fixed point and less likely with
increasing phase space distance of the trajectory from the
fixed point. Consequently, trajectories closer to the fixed point
(i.e., closer to the global minimum of the potential landscape)
will be stronger affected by this perturbation and will be-
come chaotic for smaller values of r than their more distant
counterparts. These arguments are supported by Fig. 3(b),
which shows the WIP-potential energy at t = π , together with
the set of kinetic energy values {Ekin(u(t )) | 0 < t < 2000π}
taken by the particle during a representative (quasi)periodic
example trajectory confining the chaotic phase space region
around the fixed point. It can be seen that the kinetic energy
is for the most part much larger than the perturbation by
the WIP. Only close to those points where the WIP van-
ishes does the kinetic energy also become comparatively
small.

Another interesting effect that is absent in the Kapitza
limit concerns the emergence of chaos in the regime of weak
driving forces. In the regime of small driving amplitudes, two
separate chaotic phase space regions, that are arranged sym-
metrically with respect to a point inversion symmetry through
the point (u, p) = (Mπ, 0), can appear—one consisting of tra-
jectories with only positive momenta, the other consisting of
trajectories with only negative momenta [see regions marked
V and V in Fig. 3(c)]. They are similar to the trajectories
marked (II) and (II) in Fig. 1(e) in the sense that they also
correspond to motion around the torus with strictly positive
or negative momentum. However, instead of moving once
around the torus during each driving period, these trajectories
are chaotic and move on average by one helix winding during
each driving period. The average velocity in these trajectories
is therefore slower by a factor of 1/M compared to the average
velocity of the type-II (and -II) trajectories. These trajecto-
ries appear only in the case of a finite helix radius r. The
(quasi)periodic trajectories separating the two chaotic regions
correspond mostly to very slow (quasi)periodic motion of the
particle around the torus and in some cases to (quasi)periodic
oscillations of the particle within one helix winding. The ori-
gin and mechanism of this effect has previously been explored
in the absence of the static potential [22]. When the static
potential is added, the two chaotic regions will persist while
V0 � E0. However, when V0 is increased, the chaotic regions
also increase and will fuse when V0 is of similar order of
magnitude as E0, thereby resulting in a phase space similar
to the one shown in Fig. 3(d). In the figure, V0 is sufficiently
large, such that all slowly moving (quasi)periodic trajectories
will be part of the regular island around the fixed point at
(u, p) = (Mπ, 0) [marked III in Fig. 3(d)] and none of the
separating trajectories persist.

Another interesting effect concerns the influence of a finite
helix radius on the trajectories moving around the torus in
phase with the driving [see regular islands marked II and II
in Fig. 1(e)]. As shown in Figs. 3(e) and 3(f), chaotic regions
separated from the main chaotic region which is centered
around p = 0 can appear around these regular islands. The
dynamics in the chaotic regions that surround the regular

islands marked II and II in Fig. 3(e) correspond to motion
where the particle moves around the torus (on average) in
phase with the driving frequency. A necessary condition for
this effect to occur is that the driving amplitude is small
enough, such that the chaotic sea centered around p = 0 does
not surround the corresponding two regular islands. Analo-
gous to the effect shown in Figs. 3(a) and 3(b), these chaotic
regions are caused by perturbations of the trajectories due to
the WIP. One difference to this previously discussed effect
is that the regular islands marked II and II are, respectively,
located at the positions u = Mπ/2 and u = 3Mπ/2 where the
WIP vanishes. The perturbation is consequently stronger for
trajectories with larger phase space distances from the fixed
point.

VI. SUMMARY AND DISCUSSION

We have demonstrated that the dynamics of a charged
particle confined to a toroidal helix while being exposed
to a static potential and a driving electric field represent a
generalization of the Kapitza pendulum in the sense that in
the limit of a vanishing helix radius their equations of mo-
tion coincide. We discuss the effects of a finite helix radius
while focusing on two different aspects: the stability of the
two prominent fixed points of the Kapitza pendulum, and
the impact of a nonzero helix radius on the structure of the
phase space and the corresponding dynamics. For a finite helix
radius, the dynamics in the linearized neighborhood of the
main fixed points can be approximated by a Mathieu equa-
tion with modified parameter values. From this, the general
stability of both fixed points for different driving amplitudes
E0, static potential amplitudes V0, and helix radii r have been
determined analytically. These analytical results agree with
those of corresponding numerical simulations. The latter show
that the dynamics in the extended neighborhood of the fixed
point at u = Mπ can change significantly for increasing r,
whereas for the fixed point at u = 0 no such changes could be
observed. Specifically, the change in dynamics can be directly
observed in the phase space, where for an increasing helix
radius the fixed point at (u, p) = (Mπ, 0) can undergo an
unusual transition to chaos. Additionally, two other promi-
nent dynamical phases that only appear for finite helix radii
have been discovered. These phases are characterized by the
presence of multiple separate chaotic seas in the phase space.
Especially notable is that the presence of multiple chaotic seas
allows for chaotic particle trajectories with nonzero average
velocity (i.e., directed transport), even though the spatiotem-
poral symmetries that are usually associated with a vanishing
directed transport [here (u, p, t ) → (−uMod (2Mπ ),−p, t )
and (u, p, t ) → (u,−p,−t )] are not broken by the driving
field. Notable are also the (quasi)periodic trajectories separat-
ing the two chaotic seas for small driving amplitudes and finite
r, since they correspond to regular (directed) motion with very
low momentum around the torus.

The observed dynamics in our driven helix to be seen as a
generalized Kapitza pendulum is a direct consequence of the
additional WIP appearing in the corresponding equations of
motion. Some of the described effects are even occurring in
parameter regimes where the WIP can be treated as a per-
turbation to the Kapitza pendulum. Therefore, an educated

054204-6

58 Chapter 5. Scientific Contributions



DRIVEN TOROIDAL HELIX AS A GENERALIZATION OF … PHYSICAL REVIEW E 105, 054204 (2022)

guess would be that other periodic position-dependent small
amplitude perturbations of the Kapitza pendulum will result in
a dynamic similar to the one observed here. Consequently, we

expect that many of the described effects can be found, e.g.,
in a mechanical Kapitza pendulum with position-dependent
length.
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Abstract
We investigate the classical equilibrium properties and metamorphosis of the
ground state of interacting dipoles with fixed locations on a helix. The dipoles
are shown to align themselves along separate intertwined dipole chains forming
single, double, and higher-order helical chains. The number of dipole chains,
and their properties such as chirality and length scale on which the chains wind
around each other, can be tuned by the geometrical parameters. We demonstrate
that all possible configurations form a self-similar bifurcation diagram which
can be linked to the Stern–Brocot tree and the underlying Farey sequence. We
describe the mechanism responsible for this behavior and subsequently discuss
corresponding implications and possible applications.

Keywords: classical mechanics, long-range interactions, bifurcations, dipolar
interaction

(Some figures may appear in colour only in the online journal)

1. Introduction

Efforts of miniaturization of functional devices have been progressing steadily in the last
decades. Due to advances in material science, it is now possible to manufacture a plethora
of one-dimensional (1D) nano-materials for experimental use [1–7]. An especially intriguing
class of 1D materials are chains of particles with permanent dipole moments, since it is possible
to controllably encode information [8] and transfer energy along a linear chain [9–14] by excit-
ing the orientation of the dipoles from an equilibrium state. It has also been shown that dipole
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chains can be assembled into logic gates [15], allowing to steer the energy transfer. Further-
more, simulations show that they could be used as waveguides that are able to transport signals
below the diffraction limit [16–18], thereby overcoming size limits for guiding and modulating
light. Realizing such quasi-1D molecular arrays in experimental studies is possible [19–21],
for example through self-organization [22] or by artificial creation through various lithogra-
phy methods [23]. Usually, the studies of molecular arrays focus on arrangements on planar
surfaces or studies of bulk materials—with more sophisticated geometric configurations being
much less explored. From a material science point of view, these more sophisticated structures
can possess several advantages, such as the increased stability and resistance to deformation
observed in helical nanostructures [24, 25]. Elaborate three-dimensional setups of permanent
dipoles with significant (angular) mobility could for example be realized in frameworks which
integrate dipolar rotors [26–31] into porous materials. In such materials, the orientation of
rotors under the influence of external electric fields [30–33], as well as the emergence of
ordered phases at low temperatures due to dipole–dipole interactions between rotors [28] have
been demonstrated. The possible applications of such frameworks as molecular machines and
sensors [34] has triggered many studies on their artificial fabrication—with the ultimate goal
of creating a crystalline array of dipolar rotors that has a ferroelectric (FE) ground state (GS)
at room temperature [35]. One example for such a class of materials are metal-organic frame-
works (MOF) [36], which are materials consisting of inorganic building units (metal ions) that
are linked with organic molecules. Specifically in the so-called rotor MOFs, these linkers can
possess permanent quasi-free rotating dipole moments [37, 38], that could be arranged into
arbitrary structures.

As a prototype model system for arrays of dipoles, we consider here a chain of equally
spaced dipoles arranged along a helix. It has previously been shown, that the combination
of long-range interactions and helical structures can lead to a variety of novel properties
and dynamics [39–46], such as oscillating effective interaction potentials [39], band structure
degeneracies [41, 42], or unusual transport properties in the presence of a driving field [46].
Specifically dipoles in helical geometries have been studied in lattice models with long-range
hopping [47], and in classical setups with fixed dipole orientations [48].

Motivated by the interesting effects found in the above works on model systems, we inves-
tigate here the configurations of a helical dipole chain with fixed positions of the dipoles and
find the GS to exhibit multiple crossovers between states that consist of a tunable number
of superimposed helical dipole chains that wind around each other with either positive or
negative chirality. Employing geometrical considerations that have previously been relevant
in the field of Phyllotaxis [49], we determine the underlying phase diagram and classify the
resulting self-similar bifurcation diagram using fractions of the Farey sequence. The organi-
zational principles of this emergent order and transitions between the occurring phases are
explored.

1.1. Helical dipole chains

Our setup (see figure 1(a)) consists of dipoles placed on a helix with radius ρ and pitch h. The
location of the nth particle is then given by the following parameterization

rn :=

⎛
⎝

ρ cos(n Δ)
ρ sin(n Δ)
h n Δ/2π

⎞
⎠, (1)

2
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Figure 1. (a) Visualization of the helical dipole chain and parameters for a helix radius
ρ = 2, a helix pitch h = π/2 and angular dipole-distance Δ = 0.21π. Coloring indi-
cates the position within a winding. (b) Euclidean distance rNN to the NN for h = π/2
and ρ = 2 as a function of the dipole-distance Δ. Configurations corresponding to the
orange points are visualized in sub-figure 1(a) and in sub-figures 2(d)–(i). (c) Euclidean
distance of NNs rNN as a function of the dipole-distance Δ and helix pitch h. The red line
corresponds to configurations of figure 1(b). (d) Bifurcation tree that shows the minima
(blue) and maxima (red) of cross-sections of rNN(h, Δ) for various h, corresponding to
the valleys (blue) and ridges (red) of rNN(h, Δ) in (c). The fractions (p/q) classify the
configurations between ridges. Note that the gaps in the drawing close to the bifurcation
points reflect the subtle transition in the number of maxima (ridges) which is accom-
panied by intermediates of non-smooth derivatives. The inset depicts these extrema for
a larger parameter regime. (e) Visualization of the Stern–Brocot tree. (f) and (g) Tran-
sition between a (2/5) and a (1/2) state by increasing the helix pitch h from 0.8 to 1.5.
Connections between NNs are indicated by red lines.

where Δ is the angular distance between two dipoles along the helix. We consider an all-to-all
dipole interaction. The interaction potential experienced by the nth dipole is then given by

Vn =

∞∑

i=−∞,i �=n

1
4π

[
di dn

r3
in

− 3(di · rin)(dn · rin)
r5

in

]
, (2)

where di is the dipole moment of the ith dipole in the chain and rin = ri − rn is the separation
vector between the dipoles i and n and rin is the corresponding magnitude. It should be noted,
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that due to the embedding of the dipoles in three-dimensional space, the nearest neighbor (NN)
in Euclidean space does not necessarily agree with the corresponding next neighbor along the
helical chain. As a result the alignment of the dipoles depends inherently on the geometrical
parameters (ρ, h) of the helix and the chosen dipole angular spacing Δ.

Our setup is scale invariant in the sense that for a given ratio of ρ/h, changes in the dipole
strength |di| or helix radius ρ only scale the potential energy given by equation (2) but do not
lead to new equilibria. This allows us to normalize the helix radius ρ, as well as the dipole
moments di. Without loss of generality, we therefore set ρ = 2 and |di| = 1. The relevant
parameters describing our system are then h and Δ. If not explicitly stated otherwise, we focus
on GS configurations. These presented GS configurations of our many-body dipolar system
are obtained as follows: first the GS is approximated by optimizing the energy with a simu-
lated annealing method while constraining the dipole alignment to the surface of the cylinder
spanned by the helix. Using the resulting configuration as an initial condition, the GS is found
through optimization with a principal axis method.

1.2. Phyllotaxis in cylindrical geometries

The considered system of equidistant particles on a 1D helix can also be interpreted as a cylin-
drical lattice where all lattice points can be accessed by a single generating helix. This set of
cylindrical lattices has been studied in the past, and has been especially relevant in the field
of Phyllotaxis [49]—the study of the arrangement of lateral organs in plants. In the context of
Phyllotaxis, geometrical aspects of these lattices are used to explain the emergence of math-
ematical sequences, such as the Fibonacci sequence or the Lucas sequence in nature, e.g., in
the arrangement of the scales of pine cones or pineapples. Patterns similar to those that emerge
in phyllotactic systems can also be used to classify the GS configurations in our helical dipole
chain. We will now give a brief overview of the phyllotactic patterns emerging directly from
the geometry of the setup.

To understand these phyllotactic patterns, it is necessary to understand the so-called paras-
tichy helices [50]. The parastichy helices are the secondary helices connecting all lattice points
that can be reached by translation along the two shortest lattice vectors; either the NN vector
rNN or the next-nearest neighbor (NNN) vector rNNN. In nature, such as e.g. for the scales of
pine cones, parastichy helices are usually much easier to visually identify than the underlying
generating helix. Due to the lattice site indexing defined in equation (1), the index n of the lat-
tice sites changes by a constant integer s when translating along rNNN and by a constant integer
q when translating along rNN. In Phyllotaxis (and the physical systems where similar geomet-
rical considerations become important [51–54]), it is these parastichy numbers s and q that are
usually used to demonstrate mathematical sequences that govern the behavior of cylindrical
lattices as a function of the parameters h and Δ. However, as we will show, in our setup the
NNN interaction becomes negligible for large parameter regions (compare figures 2(a)–(c)).
Consequently, it can happen that s changes, while our GS remains qualitatively unchanged
when h and Δ are varied. To uniquely classify the GS configurations of our helical dipole
chains, we therefore need to deviate from the standard Phyllotaxis notation and classify the
lattice configuration with the parameter q.

To understand how the NN index q can describe arbitrary GS configurations of helical dipole
chains, it is instructive to first focus on the case of h = π/2 and inspect the Euclidean distance
rNN of NNs for varying Δ shown in figure 1(b). When increasing Δ by starting at Δ = 0, rNN

first increases almost linearly, and changes to an oscillatory behavior showing cusps at the
maxima once rNN exceeds the helix pitch h. The cusp-like maxima of rNN(Δ) correspond to
sudden changes of the NN—and therefore to sudden changes of q. The overall behavior of rNN
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Figure 2. (a) Ratio (rNN/rNNN) of the NN to the NNN distance as a function of h
and Δ. Interaction between different chains is (mostly) negligible in the red regions.
(b) Zoom-in on (a). (c) Cross-section of rNN/rNNN for h = π/2 along Δ. The maxima of
rNN/rNNN coincide with the maxima of rNN (dashed blue line). The width of the peaks
of rNN/rNNN are proportional to h Δ. (d)–(i) Side views of example configurations for
Δ = 0.63π, 0.87π, 0.95π, 1.11π, 1.29π, 1.67π respectively. The angular position of the
dipoles within a helix winding, and thereby the chirality of the chains is encoded in the
color. The parameter q corresponds to the number of chains.

for arbitrary h is similar to the above description for h = π/2. The NN distance as a function
of h and Δ i.e. rNN(Δ, h) is shown in figure 1(c). For reference, the intersection corresponding
to figure 1(b) is highlighted by a red line. For any cross-section with constant h we observe,
that once rNN exceeds h, the behavior changes from an almost linear increase to an oscillation
with cusp-like maxima. In general, the number of extrema in each cross-section increases with
decreasing h. Again, configurations with different parastichy number q are separated by the
maxima of the cross section. Consequently, configurations for different values of q are sepa-
rated by the ridges of rNN(Δ, h). The positions of the ridges and valleys of rNN (i.e. positions of
the minima and maxima of cross-sections of rNN(h, Δ) for different h) are shown in the inset
of figure 1(d) for a broad range of values of h and Δ. We immediately recognize that their
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behavior follows a series of self-similar bifurcation trees. Each of the ‘trees’ is confined to a
region of 2πm � Δ � 2π(m + 1) (for m ∈ N) and the overall behavior is the same for all the
trees. They characterize the same set of lattices—just with a different parameterization of the
generating helix. In the mth tree, there are m − 1 empty windings without dipoles between
next neighbor lattice sites along the helix (i.e. sites n and n + 1). On close examination, the
trees differ in shape mainly by a scaling factor 1/Δ. This allows us to focus our analysis on a
single tree. The structure of one such tree is shown figure 1(d). Several features can be noticed
here: for decreasing h, each ridge splits via a pitchfork bifurcation into a new valley and two
ridges. When a new valley appears below a certain threshold value of h, it persists further for
arbitrarily small values of h. In contrast, each ridge will only persist for some finite range of h
before separating into a valley and two new ridges.

The classification of the parameter regions between the extrema of rNN(h, Δ) with integers
q follows a pattern. Firstly, when considering the mth tree, for each (reduced) fraction (p/q) ∈
[m, m + 1] we can find a parameter region classified by a parastichy number q that for h →
0 contracts towards Δ = 2π(p/q) (shown in figure 1(d)). Secondly, during a bifurcation of
a ridge that separates a (p1/q1) state from a (p2/q2) state, the newly created state after the
bifurcation can be described by the reduced fraction (p1 + p2)/(q1 + q2). This is the same rule
that generates new elements in the so-called Farey sequence [55]. And indeed, the possible
configurations (p/q) map exactly to the elements of the Farey sequence: with decreasing hΔ
the Farey sequence is replicated to a higher order. For a better overview, the generic structure of
the bifurcation tree is shown in figure 1(e). The resulting tree is also known as the Stern–Brocot
tree—a tree representation of the Farey sequence.

An intuitive understanding for the corresponding lattice configurations can be gained by
considering the mth tree and the limit case of the circle (h = 0). Placing dipoles on a circle
with progressing angular winding of Δ = 2π(m − 1 + p/q) will provide q points on the simple
circle [0, 2π] with a distance of 2π/q. Therefore, for every rational number (p/q) there exists
a pitch h0 so that for h � h0 a helical GS configuration classified by the fraction (p/q) can be
found. The number of possible configurations (p/q) decreases with increasing h. The reason,
why certain (p/q) states only persist for finite values of h is illustrated in figures 1(f) and (g).
In both figures the angular positions of the dipoles are the same while h is varied. The NN’s
are indicated by red connecting lines. Figure 1(f) depicts a (2/5) state for h = 0.8. Above a
certain value of h, the NN suddenly changes leading to the (1/2) state shown in figure 1(g) for
h = 1.5.

The Farey sequence, as well as geometric considerations similar to the ones above, have
previously been employed in the description of physical systems, including layered supercon-
ductors [52], repulsively interacting cylindrical lattices [51], and the domain wall dynamics in
a magnetic cactus [53, 54]. However, there are notable differences between the helical dipole
chains and other Phyllotaxis related works, such as the above mentioned examples. In Phyl-
lotaxis and related works, usually only those configurations with the closest packing density
are of interest—corresponding to the ridges of rNN(h, Δ). The configurations in between those
ridges may (depending on the employed model) be accessible, but do not correspond to any
equilibrium configuration. Consequently, in these works, it is the classification of these closest
packing configurations which follows the Stern–Brocot tree and maps to the fractions of the
Farey sequence.

Before continuing with the physics of interacting dipoles in helical geometries, a comment
on the choice of coordinate system is in order. Using the geometrical parameters h and Δ
allows to uniquely describe all possible cylindrical lattices of interest. In contrast, such a unique
description of classifications is not achieved with all coordinate systems. Using e.g. the ratio
of primitive lattice vector magnitudes and the angle between those vectors is not sufficient,
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since in that case additional information relating the magnitude of one lattice vector to the
circumference of the cylinder is required.

1.3. Phyllotactic patterns in ground-state configurations of helical dipole chains

In this section, we will use the geometrical considerations and classification scheme provided
above to describe the GS configurations of the helical dipole chains for arbitrary h and Δ.
These GS configurations are for a large range of parameters dominated by NN interactions.
This is demonstrated in figure 2(a), which shows the ratio rNN/rNNN of NN to NNN distances
as a function of h and Δ. Comparing this to the bifurcation tree in figure 1(d), we realize that
the NNN interaction only becomes significant close to the maxima of rNN. The cross section for
h = π/2 in figure 2(c) shows that the ratio rNN/rNNN possesses pronounced peaks; in between
those peaks flat regions emerge. In the flat regions, an asymptotic saturation tendency towards
the value of 0.5 can be observed (the relation rNN/rNNN � 0.5 is guaranteed by the symmetric
arrangement of dipoles within a single chain). As indicated by figure 2(b), this behavior con-
tinues for arbitrary low h. This dominance of NN interactions allows us to directly translate
the classification of lattice configurations with fractions of the Farey sequence to our helical
dipole chain GS configurations whenever rNN � rNNN.

Examples for various GS configurations in regimes of dominating NN interactions are
shown in figures 2(d)–(i). In these GS configurations, the dipoles generally align themselves
with their NN’s along several intertwined helical chains. Due to the symmetrical arrangement
of dipole positions within a chain, dipoles will align in the plane spanned by the helix axis
(z-axis) and the tangent vector drn/dΔ. These intertwined helical dipole chains map exactly
to the first parastichy helix. Therefore, the number of intertwined helical chains corresponds
directly to the integer q of the underlying lattice classification p/q. In addition to controlling the
number of chains q, changing h and Δ also allows to control the dipole density along the chain,
as well as the length scale λ (wavelength) on which the chains wind around each other. This
change of λ with varying Δ can be clearly seen in figures 2(e)–(g). In figure 2(f), close to the
minimum of rNN, NN dipoles show very gradual changes across the chain, thereby exposing the
character of each separate chain. For smaller (larger) values of rNN, the chains wind clockwise
(counterclockwise) around each other (see figures 2(e) and (g)). When Δ is increased fur-
ther, such that rNN crosses a maximum, the GS configuration changes from counterclockwise
chirality to a new set of chains with clockwise chirality.

The classification (p/q) allows us to determine an analytical expression for the dipole align-
ments in a NN approximation. For a given state (p/q) and a given helix geometry h and Δ,
the angle φ between the dipoles and the helix axis (z-axis) is (approximately) given by the
following equation:

φ(Δ, h) = −tan−1

[
hqΔ

2πρ sin(qΔ)

]
± π

2
, (3)

where the term ±π/2 selects an alignment parallel (+) or anti-parallel (−) to the helix axis.
The accuracy of this approximation is demonstrated in figure 3. As a representative example
for the comparison shown in figure 3, we consider a cross section through our parameter space
with constant helix pitch h and varying Δ. The analytically approximated angles together with
the corresponding angles obtained from numerical calculations are shown in figure 3(b) for
h = 0.3 and Δ ∈ [2π, 3π]. Discontinuities ( jumps) in the angle occur at the maxima of rNN

(compare figure 3(a)) when the configuration changes to a state with a different classification
(p/q). Within each of the regions where the angle changes smoothly the classification (p/q)
does not change. The difference between the two data-sets is for the most part very small.

7

5.4. Formation and crossover of multiple helical dipole chains 67



J. Phys. A: Math. Theor. 55 (2022) 375205 A Siemens and P Schmelcher

Figure 3. (a) Distance to the NN rNN(Δ) for Δ ∈ [2π, 3π] and h = 0.3. (b) The analyt-
ically predicted angle φ (orange) compared to the numerically determined value (blue).
Note that, to minimize edge defects, the numerical value corresponds to the average
angle of dipoles from the bulk. Smooth regions are classified by the same fraction (p/q),
whereas large jumps in φ(Δ) indicate a change to a configuration classified by a different
fraction (p/q). (c)–(e) The absolute difference |φA − φN| between the numerically and
analytically determined angle for three of the regions with smoothly changing angle, i.e.
three parameter ranges corresponding to parameter regions with different classification
(p/q).

However, visible deviations consistently occur close to the maxima of rNN. For a more detailed
comparison of the deviations between the analytically and numerically determined angles,
we show in figures 3(c)–(e) their absolute difference for three of the ‘smooth’ regions of
figure 3(b), i.e. three regions with different classifications (p/q). In each of the three figures, the
absolute difference between the analytically predicted and numerically calculated angles are
shown. Close to the minima of rNN the analytical predictions are very accurate. With increasing
distance from this minimum the error increases and reaches a maximum close to the maximum
of rNN. This is expected, since equation (3) is based on the fraction (p/q) which is not well-
defined for configurations in the immediate vicinity of the maxima of rNN. This behavior can
be summarized as follows: when the length scale on which the dipole chains wind around each
other increases, the accuracy of the analytically predicted angles also increases.

1.4. Significance of interactions between chains

The interaction with NNN’s can have significant effects on the dipole alignments in the
GS—even in those parameter regimes where rNNN � rNN. For parameter combinations where
the NN interaction dominates, the NNN interaction still influences the relative alignment of the
helical dipole chains to each other. They determine whether dipoles in neighboring chains are
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Figure 4. (a) Classification of dipole alignments in the GS: in the white regions, a FE
alignment is preferred, whereas anti-ferroelectric (AFE) configurations are preferred in
the gray regions, corresponding to configurations with very large wavelengths. For com-
parison, the bifurcation tree is shown in red. (e) Projected dipole density DZ along the
helix axis (red) during a transition between a (2/5) (blue area) and a (1/2) (white area)
state. For better identification of the transition state (i.e. maximum of rNN), rNN is shown
as a blue dotted line.

aligned parallel (FE) or antiparallel (AFE) to each other. To study this, we compare the ener-
gies of FE and AFE states. As shown in figure 4(a) for a specific parameter region, the AFE
alignment is energetically favorable in the vicinity of Δ ≈ 2π(p/q) and sufficiently small h.
For smaller wavelengths, the FE alignment becomes favorable. Note that the FE and AFE con-
figurations, based on which the energies in figure 4(a) were calculated, are obtained with the
analytical formula given in equation (3) and not through numerical optimization.

Additionally, figure 2(a) suggests that close to the ridges of rNN the NNN interaction
becomes significant enough for the dipole configurations to deviate from the pure (p/q) clas-
sification. To analyze this, we consider the transition between states for different values of
(p/q). As a representative example, we choose the transition from a (2/5) to a (1/2) state. It
is achieved by varying Δ between Δ = 2π(2/5) and Δ = 2π(1/2). In our simulations, this
was done by changing Δ in steps of 0.001 and then relaxing the configuration with a New-
ton method. As a matter of fact, this transition leads to a drastic change from clockwise to
counterclockwise chirality and vice versa. The transition could therefore result in a notice-
able change of the dipole orientations. To analyze this, we introduce the projected dipole
density DZ =

∑N
i 2π(di · êZ)/hNΔ. For our example case, Dz as a function of Δ is shown

in figure 4(b). Note, that since close to the transition state the FE alignment of neighboring
chains is preferred we only consider FE configurations to study this transition.

In the course of the transition, DZ inverts its sign. Exactly at the maximum of rNN, DZ is zero.
The dipoles behave as follows: at Δ = 2π(2/5) ≈ 2.513 all dipoles are parallel to the helix
axis. With increasing Δ, the position of the NN changes and the angle between the dipole and
the helix axis increases. Once rNN/rNNN significantly deviates from 0.5 and the NNN interaction
becomes significant, the dipoles increasingly turn towards their NNN in the sense of a head-
to-tail configuration. When rNN reaches a maximum, the dipoles are all aligned perpendicular
to the helix axis. When Δ is increased further, the same behavior can be seen in reverse order
until Δ = π is reached.
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2. Discussion and outlook

We have demonstrated that equilibrium configurations of helical dipole chains consist of a
variable number of tunable dipole chains winding around each other with either positive or
negative chirality. We showed how these equilibrium configurations are directly characterized
by fractions of the Farey sequence, and how a variation of the helical parameters yields a
metamorphosis of these equilibrium states into each other. The observed chain formations,
as well as the presence of FE and AFE GS configurations is consistent with previous studies
[56–58] of GSs of classical dipoles in 2D lattices.

The formation of chains is explained with the dominance of NN interactions over NNN
interactions. Therefore, an educated guess would be that the mechanical and electrical response
properties, as well as the information and energy transfer upon excitation is governed by the
sum of the properties of these individual chains. More complex behavior is only expected in
those regimes where the NNN interactions become comparable to the NN interactions (and the
classification scheme with fractions of the Farey sequence breaks down).

In experimental realizations of the setup, the dipole alignments will most likely additionally
depend on effects other than the geometrical constraints considered in our model system. A
realization with the above mentioned MOFs will for example feature additional constraints
[36] on the dipole rotations: for one, certain rotation angles may be preferred due to the so-
called torsion potential (an effective potential that can possess multiple minima as a function
of the rotation angle). For another, the significant rotation of linkers in MOFs is typically only
possible around one rotation axis while rotations around different axes are strongly constrained.
Furthermore, with the present state of the art regarding arrays of dipolar rotors, significant
cooling is required for the dipole–dipole interactions to dominate over temperature effects.
Finally, finite size effects could also play a significant role for any experimental realization:
however, in our numerical calculations a significant deviation of dipole alignments from the
bulk could only be observed for the first few dipoles of each chain.
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Abstract

We investigate the ground state (GS) properties of rectangular dipole lattices
on curved surfaces. The curved geometry can ‘distort’ the lattice and lead to
dipole equilibrium configurations that strongly depend on the local geometry
of the surface. We find that the system’s GS can exhibit domain-walls sep-
arating domains with different dipole configurations. Furthermore, we show
how, regardless of the surface geometry, the domain-walls (DWs) locate along
the lattice sites for which the (Euclidean) distances to nearest and next-nearest
neighbors are equal. We analyze the response of the DWs to an external electric
field and observe displacements and splittings thereof below and above a crit-
ical electric field, respectively. We further show that the DW acts as a boundary
that traps low-energy excitations within a domain.

Keywords: domain-walls, low-dimensional systems, dipolar interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

Topology based concepts are widely used for the description of physical systems. A prom-
inent example is that of domains and domain-walls (DWs) arising from spontaneous sym-
metry breaking, with applications ranging from optics, where DWs separate differently polar-
ized regions [1, 2], to magnetic Bose–Einstein condensates [3], or even string theory [4].
Moreover, in materials or model systems described by lattices of interacting electric dipoles,
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the ground-state (GS) degeneracy of the dipoles, i.e. the invariance of the energy under inver-
sion of all dipoles, can lead to the formation of local domains with different dipole orientations
[5] separated by DWs. For lattices of electric dipoles (related to ferroelectrics (FEs)), experi-
ments have shown a great controllability of these domains andDWs, allowing for their artificial
creation, annihilation, or controlled shifts [6, 7]. This, together with the fact that long-range
order of electric dipoles has been found at room temperature in a multitude of materials [8], has
made FE materials interesting candidates for applications, such as smart sensors, capacitors,
transducers, actuators, energy harvesting devices, and non-volatile memories [6, 7, 9, 10].

It has been shown that the application of strain to a FE material can be used to control
the overall FE response, as well as the DW energy and mobility [11]. In some FE materials,
the GS dipole configuration can even significantly change when the stress on the material
exceeds a (material dependent) critical value—an effect known as ferroelasticity [5, 12–14].
The sudden change of the GS in ferroelastic materials usually emerges due to (compression-
induced) changes of the underlying crystal structure. Consequently, the properties of strain-
induced DWs in ferroelastic materials can drastically differ from the properties of DWs in FE
materials [13].

Similar phenomenology can also be found in magnetic materials [15]. A difference between
FEs and magnets is that the formation of domains in FEs is usually due to the dipole–dipole
interaction, whereas in magnets other interactions, such as exchange processes [16], domin-
ate the equilibrium dipole alignment. In this context, one notable interaction arising in some
magnetic systems is the Dzyaloshinskii–Moriya (DM) interaction [17–19]: it allows for the
formation of non-collinear spin structures, such as magnetic skyrmions [20–22], which have
been proposed for applications [23–25] e.g. in high density storage devices [26, 27]. Studies of
the influence of spatial curvature on magnetic materials (e.g. two-dimensional magnetic films
on a spherical surface) have shown that curvature can effectively induce a DM type interaction
and thereby significantly change the GS dipole configuration [28–30]. Naturally, the question
arises: what is the influence of spatial curvature in FE materials where the material properties
are dominated by dipole–dipole interactions.

The first steps in this directionwere already done in studies of dipoles confined to cylindrical
or helical geometries. These studies range from experimental investigations (e.g. of the dipole
equilibrium configurations in stacks of BTA (trialkylbenzene-1,3,5-tricarboxamide) molecules
[31, 32]) to model systems, such as Hubbard models with long-range hopping terms [33–37].
Already in such (comparatively) simple curved geometries, the GS properties show a strong
dependence on the geometrical parameters: for example, for dipoles with fixed positions along
a helical path, it was demonstrated that the GS configurations are described by a complex self-
similar bifurcation diagram [38]. Even in systems without anisotropic interactions, such as
Coulomb-interacting ions on a helix, the confinement to a curved path or surface embedded in
Euclidean space induces a plethora of phenomena [39–47] that are absent in structures without
curvature.

Motivated by the above facts, we focus on possible novel features introduced into model
systems consisting of dipole lattices due to their curved structure. We start by explaining how
the structural arrangement of dipoles influences the GS and can lead to DWs that are ‘pinned’
through geometrical parameters of the system. We investigate the static DW properties and
their dependencies on system parameters for a two-dimensional prototype system, and high-
light the differences to those DWs that are commonly observed in FE materials by showing
the reaction of our DW to applied external fields. Then, using the example of a toroidal dipole
lattice, we demonstrate and discuss the appearance of the previously introduced properties.
It is further shown, how these DWs act as barriers that prevent low energy excitations from
traveling freely through the system.
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This work is structured as follows: Our setup and methodology for the dipoles on curved or
deformed surfaces is described in section 2. Section 3 then explains the physics of domains and
DWs on curved dipole lattices using a simple two-dimensional example system. In section 4,
we explore and analyze the toroidal dipole lattice. Section 5 investigates the eigenmodes based
on the GS of the toroidal dipole lattice and we show that DWs can act as ‘barriers’ preventing
excitations from traveling through the system. Finally, our results are summarized in section 6.

2. General setup and methodology

We investigate the physics of dipoles placed on rectangular Bravais lattices spanned on the
surface of curved structures (compare figure 1). In general, a curved surface, i.e. each point
on it, can be completely described by a parametric function f(θ,ϕ) depending on two para-
metric coordinates θ and ϕ (being internal coordinates of the surface, not necessarily angles).
For convenience we introduce êθ and êϕ as unit vectors that span a basis in the parametric
coordinates. These basis vectors are used to indicate directions along the surface. Without loss
of generality, we define our lattice points to be equidistant in the parametric coordinates, with
the parametric distances ∆θ and ∆ϕ. This way, the Euclidean distances, namely a= |a| and
b= |b| (see figure 1), between neighboring lattice points along êθ and êϕ become dependent
on the local geometry of the surface,

a(θ,ϕ) :=|| f(θ +∆θ,ϕ) − f(θ,ϕ) ||
b(θ,ϕ) :=|| f(θ,ϕ +∆ϕ) − f(θ,ϕ) || .

(1)

This dependence of a and b on the local surface geometry will have immediate con-
sequences on the arrangement (such as the orientation) of the dipoles placed in such a lattice.
For instance at one point on the surface the (Euclidean) nearest neighbor (NN) of a dipole is
reached through translation along êθ, while at another point the NN may be found along êϕ.
An example for this is shown in figure 1, where the ratio γ = a/b is one for the lattice point in
the uppermost part of the figure (indicated by the blue dot marked γ = 1), but visibly reaches
values γ < 1 for the lattice points in the right and lower part of the figure (indicated by the
blue dots marked γ < 1). As we will show in section 3, the properties of the many-body GS of
dipoles in such a curved lattice depends mainly on this spatially varying ratio γ.

The dipoles on the lattice points interact with dipole–dipole interactions, and are in a second
step exposed to an external electric field E. With this, the potential energy of the nth dipole in
a lattice containing K dipoles is given by

Vn =
K∑

i=1,i̸=n

1
4π

[
didn
r3in

− 3(di · rin)(dn · rin)
r5in

]
+dn ·E (2)

where di and dn are the dipole moments of the dipoles at lattice sites i and n respectively, and
rin denotes the (Euclidean) vector between them.

For our computational approach to determine the GS configurations, we use local polar
coordinates to describe the orientation of each dipole. Furthermore, since a change in the mag-
nitude d= |d| of the dipoles only leads to a scaling of the interaction term in equation (2), we
will without loss of generality use d= 1. The dipole equilibrium configurations are determ-
ined using a principle axis method [48]—a derivative-free optimization method that performs
line-search optimizations along a set of (continuously updated) conjugate search directions.

3
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Figure 1. Example of a lattice spanned on a curved surface f(θ,ϕ). As a result of the
curvature, the Euclidean distances a(θ,ϕ) and b(θ,ϕ) between lattice points depend on
the local geometry of the surface.

Specifically, we use Brent’s algorithm which ensures linear independence of the search direc-
tions after they are updated. Unless explicitly stated otherwise, the results shown in the fol-
lowing correspond to GS configurations. Additionally, we use a NN approximation, i.e. con-
sidering only interactions with the 4 nearest dipoles. This approximation is valid as long as the
lattice is dense enough to locally be considered flat. No qualitative differences were observed
when comparing the NN approximations to all-to-all simulations. The validity of these approx-
imations and the impact of interactions with more distant neighbors are discussed at appropri-
ate places in the following.

3. DWs in deformed lattices

In the limit of a vanishing curvature (i.e. a flat surface) the GS dipole configuration is well
known [49, 50]: The dipoles will align along head-to-tail chains with their NNs. In a rectangu-
lar (non-square) lattice, dipoles in neighboring chains (chains being defined along the shorter
NN distance) will orient anti-parallel to one another in an overall anti-ferroelectric (AFE) con-
figuration. Thus, the GS of a flat rectangular lattice cannot be a FE configuration [49, 51] when
only dipole–dipole interactions are considered. In the special case of a square lattice (γ = 1)
the GS becomes highly degenerate [52]. Flat regions in the potential landscape allow for con-
tinuous transformations between these different GS configurations. The behavior is, however,
entirely different for dipole arrays spanned on the surface of a curved or deformed structure.
This section is dedicated to showing and discussing the behavior emerging when the lattice
geometry becomes deformed. An application to a specific case, namely the toroidal dipole
lattice is provided in section 4.

A simple flat geometry showcasing the impact of deformation is given by the following
parametric surface

f2D (θ,ϕ) :=




θ
θ · tan [ϕ]

0


 (3)

4
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where −π/2 < ϕ < π/2. Adopting the nomenclature introduced in section 2, we place dipoles
on the surface while maintaining constant distances ∆θ and ∆ϕ in the parametric coordinates.
Note that ∆ϕ is considered to be small, i.e. ∆ϕ ≪ π/2, in order to provide a sufficiently large
number of lattice points along êϕ. The system now describes a ‘lattice’ which narrows with
decreasing θ. The positions of the lattice points for dipoles on a (N× (2M+ 1)) grid are given
by

f ik2D :=




i∆θ
i∆θ · tan [k∆ϕ]

0


 for

{
i ∈ [1,N]

k ∈ [−M,M]
. (4)

We also restrict the dipoles to rotate in the plane spanned by equation (3). A schematic visual-
ization of the lattice based on equation (4) is shown in figure 2(a). Note that the surface defined
in equation (3) possesses a singularity and will map all lattice points for θ = 0 (independent
of ϕ) to the same position in Euclidean space. We will therefore only consider lattice points in
the regime θ > 0.

As mentioned in section 2, the GS dipole orientation mainly depends on γ = a/b. An inter-
esting observation is that, for the lattice spanned by equation (4), γ becomes independent of
∆θ. This is because both a and b scale linearly with ∆θ. It can be directly shown that γ → 0
when θ → ∞. Furthermore, it can be shown that for any given point f ik2D in the lattice one can
get γ > 1 when ∆ϕ is chosen sufficiently small. We know that in regions where γ > 1 the
most favorable alignment of the dipoles will be head-to-tail chains along êϕ. On the contrary,
if γ < 1 the chains will preferably align along êθ. This implies—provided ∆ϕ is sufficiently
small—the presence of two domains with different dipole alignments in the GS. This results in
the existence of a DW acting as a boundary between the two domains. Such a GS configuration
exhibiting the two domains, as well as the separating DW, is shown in figure 2(b). As expec-
ted, the two domains for small and large values of θ feature AFE dipole configurations aligned
along êϕ and êθ respectively. To characterize the DW, we focus on those dipoles located along
a one-dimensional (1D) cut through the lattice. The cut is taken at constant ϕ = 0, perpendic-
ular to the DW. In figure 2(b) this cut is indicated by the red arrow. As an order parameter, we
choose the (absolute) angle χ between the dipoles and the direction of the 1D cut.

χ = |arccos(d · êθ|ϕ=0) |, (5)

where êθ|ϕ=0 is the unit vector along êθ for ϕ = 0. In the domain for large θ (right of the
DW in figure 2(b)) we approach χ = 0, whereas in the domain for small θ values we approach
χ = π/2. The angle χ as a function of the local value of γ for all dipoles along the 1D cut is
shown in figure 2(c) (orange-colored points). The blue and purple colored points correspond
to calculations with lattices where the change of γ along the 1D cut (denoted by ∆γ) is smaller
than in the orange curve. The solid lines correspond to a fitting sigmoid function given by

Φ(γ) =
π

2+ 2e−ξ(γ(θ)−γ0)
, (6)

where ξ is the sigmoid steepness and γ0 is the value of γ at the midpoint of the sigmoid func-
tion. From now on, we will refer to this midpoint as the position of the DW center. In the DW
profiles shown in figure 2(c), the DW center is located (almost exactly) at γ = 1. The deviation
from γ = 1 is of the order of ∼0.01∆θ—only a fraction of the lattice constant ∆θ. We determ-
ined DW profiles for a wide range of ∆ϕ and did not observe any significant deviation of the
DW center from γ = 1. Note, that the exact location of the DW at γ = 1 was only observed for
NN interactions. When all-to-all interactions are considered, a shift of the DW center towards
γ < 1was observed. The largest observed shift of the DWcenter from γ = 1was on the order of
∼∆θ. From figure 2(c) one can see that the DW steepness (corresponding to the fit-parameter

5
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Figure 2. (a) Schematic visualization of a lattice spanned on the surface defined by
equation (3) together with the lattice defined by equation (4). (b) GS configuration of
dipoles on the lattice defined by equation (4) showing two domains separated by a DW.
The red arrow indicates a one-dimensional cut through the lattice running perpendicular
to the DW. (c) DW profiles obtained from the dipoles located along the one-dimensional
cut (red arrow in (b)). χ describes the angle between the dipoles and the direction of
the one-dimensional cut. γ = a/b is the corresponding (local) ratio of the Euclidean
distances to the NNs. The orange, blue, and purple curves are obtained for lattices with
∆γ = 0.021, 0.01, and 0.005 respectively—with ∆γ being defined as the change of γ
between two successive dipoles along the one-dimensional cut. The inset depicts the
dependency of the sigmoid steepness ξ on ∆γ for calculations with nearest (red), next-
nearest neighbors (purple), and all-to-all interactions (green). For a detailed discussion,
see main text.

ξ in equation (6)) is larger for those lattices where ∆γ is smaller: A comparison of the fit
parameter ξ for different values of ∆γ is shown in the inset of figure 2(c) for NN, next-NN
(NNN), and all-to-all simulations. The only significant difference between the NN, NNN, and
all-to-all data is that the DWs are consistently narrower whenmore interactions are considered.
Consequently, DWs obtained for a given ∆γ from NN and NNN calculations are wider than
corresponding DWs calculated for the same ∆γ with all-to-all interactions. Besides this, no
qualitative differences could be observed for the DWs. For NN, NNN and all-to-all interac-
tions the DW steepness ξ scales (approximately) with ξ ∼ (∆γ)−0.67 (purple, red, and green
fit-functions in the inset of figure 2(c)).

The above discussed geometry induced DW differs significantly from other known types
of FE DWs: Firstly, it is a feature of the systems GS (i.e. not an excitation) with a (fixed)

6
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Figure 3. Schematic explaining how the equilibrium dipole orientations change around
γ = 1 when an electric field is applied along the y-direction (parallel to êϕ). For |E⃗| = 0,
there are two domains with dipoles aligned along êθ and êϕ (respectively corresponding
to the blue and red regions) separated by aDW (purple area between the domains).When
|E⃗| is increased, the domain with dipoles aligned along êθ expands, while the domain
with dipoles aligned along êϕ shrinks. As a result, the DW is shifted. When the field is
increased further—above a critical value Ecrit—a new ferroelectric domain with dipoles
aligned parallel to the field (green area in the lowest panel) emerges.

position that is predetermined by the geometry of the underlying lattice and surface. A second
difference concerns the overall response to applied external electric fields. To illuminate the
latter, we briefly address the impact of a field applied along the y-direction (parallel to êϕ) using
an adiabatic method: the field strength is increased stepwise, and at each step the configuration
is relaxed with a Newton method that takes into account NNN interactions.

A schematic demonstrating the effects of the external field on the dipole orientations in the
vicinity of the DW (i.e. in the vicinity of γ = 1) is shown in figure 3. The behavior can be
summarized as follows: For weak fields, the DW separating the two domains shifts to a new
equilibrium position. For strong fields, a (new) third domain emerges (green area in figure 3).
The dipoles in this third domain are aligned parallel to the field. This third domain will expand
with increasing field strength towards both lower and larger values of θ. We can explain this
behavior in the context of dipoles in square (non-deformed) Bravais lattices (with a global
γ = 1): In such square lattices, the external field breaks the GS degeneracy and orients the
dipoles along the field lines—in an AFE (FE) configuration for weak (strong) fields [53]. In
other words: in a lattice with γ = 1 the dipoles do not have a preferred alignment direction
(w.r.t. the primitive lattice vectors) and therefore require on average (compared to lattices with
γ ̸= 1) weaker fields to align all dipoles in a FE configuration along an arbitrary direction.
This is consistent with the behavior observed in figure 3. Namely, for strong fields the dipoles
around γ = 1 form a FE domain parallel to the field—even though the field is not strong enough
to significantly affect the dipole orientations in the neighboring domains.

4. Toroidal dipole lattice

In the previous section, we have shown how the GS configuration of a deformed dipole lattice
can be predicted based on the ratio γ = a/b. To demonstrate that this behavior is of a more
general character and can also be observed in compact curved or deformed dipole lattices,
we now demonstrate the formation of domains and DWs for a square dipole lattice spanned
on the surface of a torus. A schematic of the setup is provided in figure 4(a) together with a

7
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Figure 4. (a) Schematic representation of the toroidal lattice geometry and paramet-
ers, together with the GS for a dipole lattice with R/r= 2.5, ∆θ = 2π/30, and ∆ϕ =
2π/80. Dipole orientations are shown with colored cones. Coloring varies from red
(dipoles aligned along ϕ) to blue (dipoles aligned along θ). The upper panel depicts a
top-view to better showcase the dipole orientations. For reasons of illustration the lattice
constants chosen for the schematic do not exactly correspond to the shown GS. (b)–(d)
Cross sections through the parameter space for various values of R/r. Inside the blue
colored regions the inequality defined in equation (10) is fulfilled. Red crosses mark
valid parameter combinations (i.e. parameters that fulfill the toroidal boundary condi-
tions) for which we expect a DW in the GS.

8
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corresponding GS dipole configuration. The torus surface can be described by the following
parametric function

ft (θ,ϕ) :=




(R+ rcos(θ))cos(ϕ)
(R+ rcos(θ))sin(ϕ)

rsin(θ)


 ,θ,ϕ ∈ [0,2π] (7)

whereR and r respectively describe themajor andminor radius of the torus. Due to the periodic
boundary conditions enforced by the toroidal geometry, the lattice constants ∆θ and ∆ϕ for a
lattice with dimension (N×M) are given by

∆θ = 2π/(N+ 1)
∆ϕ = 2π/(M+ 1) .

(8)

Similar to the previous example system, the Euclidean distance of lattice points is constant
along êθ, whereas the lattice point distance along êϕ depends on θ. Specifically, the Euclidean
distance b between lattice points along the major torus radius direction increases with increas-
ing distance from the torus center. The distances a and b can be analytically expressed as
follows

a2 = 2r2 [1− cos(∆θ)]

b2 (θ) = 2(R+ rcos(θ))2 [1− cos(∆ϕ)] .
(9)

The positions of the lattice points of a lattice with dimension (N×M) are then given by
ft(i∆θ,k∆ϕ) for i ∈ [1,N] and k ∈ [1,M].

We start by discussing the parameter values for which DWs and domains appear on the
torus. In the limit of a< b (i.e. γ < 1), the dipoles will align in an AFE configuration parallel
to êθ. In the limit of a> b (i.e. γ > 1), the dipoles will align in an AFE configuration parallel
to êϕ. The presence of both domains is expected when Min[b(θ)] < a< Max[b(θ)]. Since the
maximum and minimum of b are reached for θ = 0 and θ = π respectively, the condition for
the presence of two domains can be expressed as

(
R
r

− 1

)2

<
[1− cos(∆θ)]

[1− cos(∆ϕ)]
<

(
R
r

+ 1

)2

. (10)

It should be noted that fulfilling the above inequality is a necessary, but not a sufficient con-
dition for the presence of two domains in the GS. In case the area on the torus where γ > 1
(or γ < 1) tends to zero (this will happen for a↘ Min[b(θ)] or a↗ Max[b(θ)]) the GS will
feature only a single domain—even though the inequality equation (10) is fulfilled.

The inequality equation (10) depends on ∆θ, ∆ϕ, and the ratio of the torus radii R/r.
Figures 4(b)–(e) show for R/r ∈ [1,1.5,2,2.5] the combinations of ∆θ and ∆ϕ for which
equation (10) is fulfilled (blue areas). Values in the regime R/r< 1 are not considered, since
they correspond to configurations where the torus surface intersects itself. The subset of para-
meters that satisfy the toroidal boundary conditions are marked by red crosses in figures 4(b)–
(e). An example for a GS configuration for R/r= 2.5, ∆θ = 2π/30, and ∆ϕ = 2π/80 (well
within the region specified by equation (10)) can be seen in figure 4(a). Configurations outside
of the blue regions in figures 4(b)–(e) consist of a single domain of dipoles covering the com-
plete torus and being aligned either along êθ or êϕ [regions marked I or II in figures 4(b)–(e)
respectively]. For configurations within the blue region, the position of the DW can be con-
trolled through the choice of ∆θ and ∆ϕ. For parameters within the blue region but close to
the border with region I, a narrow domain of dipoles aligned along êθ will appear on the outer
side of the torus. In the blue region and close to the border with region II the domain of dipoles

9
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aligned along êθ will encompass almost the entire torus, whereas the domain of dipoles aligned
along êϕ will only consist of a narrow band around the torus center.

The DW separating the two domains in the toroidal dipole lattice is reminiscent of the DW
described in section 3: the DW separates regions with γ = a/b> 1 from regions with γ < 1.
As one may expect, the orientation of the dipoles in the DW is also similar to the 2D case of
section 3: the dipoles in the DW align in a ‘zig-zag’ pattern similar to what we have observed
in figure 2(b). Indeed, the order parameter χ (along a 1D cut along êθ) can be well-described
by a sigmoid function. However, in our toroidal dipole lattice, we notice a deviation from the
behavior of the DW in the 2D lattice: The DW center is not exactly at the position where
γ = 1, but rather shifted w.r.t. it; for the example system shown in figure 4(a), it is located at
γ ≈ 0.96—a difference of about ∆θ/2 on the surface.

In addition to the GS properties, the corresponding response to an external electric field
can also be observed in our toroidal dipole lattice. We would like to stress that the purpose of
investigating the influence of electric fields is to highlight the difference to other (e.g. degener-
acy induced) DWs in FEs and not an attempt at an in-depth study of the field response in itself.
We consider therefore the configuration shown in figure 4(a) and apply a field along the torus
plane (x-direction). Simulation results for the case of such a field are shown in figure 5. Just
like for the flat lattice of section 3, a weak field causes a shift of the DW center towards the
region where dipoles are aligned (anti-) parallel to the field. This is shown in figure 5(a), where
the position of the DW center is indicated by the solid line on the torus surface. To highlight
the deformation, the position of the DW center without external field is indicated by the gray
dotted line. In the regime of strong fields, the emergence of new FE domains around γ = 1
can also be observed. These new domains emerge in those regions where the DW center has
shifted the most from its original (field-free) position and expand from there when the field
strength is increased. The formation of one of these FE domains is visualized in figure 5(b). In
the figure, the field strength does not quite suffice to force perfect FE order: rather than perfect
head-to-tail chains, the dipoles in the highlighted region align in a zig-zag pattern along par-
allel chains (see black arrows in figure 5(b)). Even larger field strengths are required for these
zig-zag chains to straighten into a head-to-tail alignment. However, for the considered para-
meters any further increase of the field strength will result in the entire outer domain aligning
parallel to the field.

5. Domain-localized excitations

We investigate in the following the dynamics of low energy excitations of the dipole orient-
ations for the toroidal dipole lattice. We will demonstrate a tendency of these excitations to
remain confined within the boundaries of a domain, i.e. these excitations will not spread or
finally cover the entire torus. Low energy excitations are treated on basis of a harmonic approx-
imation to the total potential energy using NN interactions. Specifically, the potential energy
landscape around the GS is approximated with a second order Taylor series. The first order
terms of the series vanish by definition, since the GS corresponds to a minimum of the poten-
tial. Consequently, only the second order terms will contribute to the equations of motion. The
orientation of each dipole in Euclidean space is described by local polar coordinates, i.e. a
polar and azimuthal angle denoted µ and ν, respectively. We will use the shorthand notation
X = (µ1, . . .,µK,ν1, . . .,νK) to describe the dipole configuration. Using this notation, the GS
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Figure 5. Equilibrium configurations for the toroidal dipole lattice in the regime of (a)
weak and (b) and (c) strong external electric fields. Coloring indicates orientation along
êθ (blue) and êϕ (red). (a) Weak electric fields cause an elliptic deformation of the DW-
region. The solid (dashed) line indicate the position of the DW center for weak fields
(no field). (b) and (c) Top and side view for a strong field. Dipoles in the highlighted
region in (b) align along parallel zig-zag chains. These zig-zag chains will straighten
into FE head-to-tail chains when the field strength is further increased. The side-view
in (c) shows the FE domain on the outside of the torus.

will be referred to as X0 =
(
µ0
1, . . .,µ

0
K,ν

0
1 , . . .,ν

0
K

)
. In this case the linearized equations of

motion for the polar and azimuthal angle of the nth dipole are approximated as follows

d2µn/dt
2 =

K∑

i

[
∂2Vn (X)

∂νi∂µn

∣∣∣
X0

νi +
∂2Vn (X)

∂µi∂µn

∣∣∣
X0

µi

]

d2νn/dt
2 =

K∑

i

[
∂2Vn (X)

∂νn∂µi

∣∣∣
X0

µi +
∂2Vn (X)

∂νi∂νn

∣∣∣
X0

νi

] (11)

where n is the index of the dipole, and Vn is the corresponding potential energy as defined in
equation (2). For small amplitude motion (with angles α ⩽ 5◦) around the GS the electromag-
netic fields induced by the dipole motion can be neglected—as long as the NN distances are
much smaller than cπ/2αω, where c is the speed of light and ω is the frequency of the dipole.
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This condition is derived from the ratio between the radiated and the ‘static’ components of
the electric field of an oscillating dipole [54]. To put that into context: if we assume a NN
distance on the nanometer scale, the emitted electromagnetic wave can be neglected as long
as the dipole oscillation are frequencies much smaller than ω ≪ 1019 s−1. Assuming only low
energy excitations, the solutions to equation (11) take the form of spatiotemporal harmonic
oscillations, allowing the problem to be written as an eigenvalue equation of the form

d2

dt2

(
µ⃗
ν⃗

)
= ω2

(
µ⃗
ν⃗

)
= H

(
µ⃗
ν⃗

)
, (12)

where H is the Hessian matrix of second derivatives of Vn(X) evaluated at X0, and µ⃗ =
{δµ1, . . ., δµN×M}T, ν⃗ = {δν1, . . ., δνN×M}T are vectors containing the deviations of polar
and azimuthal angles from the GS equilibrium configuration for all dipoles in the lattice.
Eigenmodes of the system then correspond to the eigenvectors of the Hessian: for each eigen-
mode, the components of the eigenvector describe the oscillation amplitude for each lattice
point on the torus. The corresponding eigenfrequencies are given by the square root of the
corresponding eigenvalues of the Hessian.

An example of an eigenmode that is confined entirely to the inner domain is shown in
figure 6(a). In order to characterize the eigenmodes we define the alignment variation at
each lattice point as the (absolute) angular rotation of the dipole from its GS orientation
|cos−1 [d(i∆θ,k∆ϕ) ·d0(i∆θ,k∆ϕ)] |. We can obtain a distribution Λ(i∆θ) of the eigenmode
through summation of the alignment variation along the ϕ-direction

Λ(i∆θ) =
∑

k

|cos−1 [d(i∆θ,k∆ϕ) ·d0 (i∆θ,k∆ϕ)] |. (13)

An example for such a distribution Λ(i∆θ) is shown on the right side of figure 6(a). The mean
(designated Λo) and variance of the distribution Λ(i∆θ) provide a quantitative measure of the
region to which an eigenmode is confined. Note that we define Λo by the distance to the outer-
most part of the torus, such that Λo = 0 (Λo = π) if the mean is located at the outermost (inner-
most) point of the torus. We analyzed the distributions Λ(i∆θ) for all eigenmodes and find that
each eigenmode is confined to a specific region on the torus surface. This allows a classifica-
tion of the eigenmodes into three types of excitations: excitations confined to the inner domain,
the outer domain, or excitations of the DW. The Λo of all eigenmodes are shown in figure 6(b),
together with the corresponding eigenfrequencies. A discernible pattern is that Λo increases
with the eigenfrequency, i.e. low frequency modes have a Λo located at the outer domain,
whereas large frequency modes have a Λo located at the inner domain. Eigenmodes with a Λo

located on the DWs can be found mainly for intermediate frequencies. The relation between
ω and Λo can be explained as follows: Compared to the outer domain, dipoles in the inner
domain interact stronger with their neighbors (due to smaller NN distances). Consequently,
dipoles in the outer domain require more energy to significantly change their orientation than
dipoles in the outer domain. The result are low frequency oscillations in the outer, and large
frequency oscillations in the inner domain. It is worth mentioning that excitations of the DW
manifest mainly as sinusoidal deformations, resulting in star-shaped excitations on the torus,
similar to those observed in e.g. Bose Einstein condensates [55] or magnetic skyrmions [56].
Examples for these DW excitations are shown in figures 6(d)–(f).

The confinement of eigenmodes to certain regions of the torus surface effectively prevents
arbitrary small energy excitations from exploring the torus beyond the boundary of the DW;
i.e. excitations started in the inner (outer) domain will never lead to a significant motion in the
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Figure 6. (a) Example visualization of the dipole orientations when an eigenmode is
excited. Each position (θ,ϕ) is colored according to the orientation of the closest dipole.
The color-function is the same as in figure 4, with blue and red colors respectively
corresponding to dipoles oriented along êθ and êϕ. The dipoles that are significantly
excited by the eigenmode, located in the inner domain at θ ≈ π, appear as yellow islands.
The corresponding distribution Λ(i∆θ) on the right has been determined according to
equation (13). (b) Squared eigenfrequencies ω2 as a function of Λo (defined as the mean
position of Λ(i∆θ)). Coloring corresponds to the position of Λo on the torus: Red (blue)
colored points indicate that Λo is located in the inner (outer) domain. (c) Top-view of
the GS of a toroidal dipole lattice with r= 0.4, ∆θ = 2π/30 and ∆ϕ = 2π/80. (d)–(f)
Top-views of eigenmodes corresponding to excitations of the DW of the state shown
in (c). The frequencies and localization of the eigenmodes shown in (d)–(f) are also
highlighted in the zoom-in in (b).

outer (inner) domain. This can be demonstrated by simulating the time evolution of perturb-
ations of the GS. In practice, this is done by expressing an initial excitation as a linear com-
bination of eigenmodes, and letting the eigenmodes oscillate with their respective eigenfre-
quencies. Specifically, using the notation Ei, i ∈ {i|i ∈ Z,1 ⩽ i⩽ 2K} to refer to the 2K eigen-
vectors, the time evolution of any initial small amplitude excitation δX(t) = Xex(t) −X0 can
be expressed analytically as

δX(t) =
2K∑

i

cos(ωi t) [δX(0) ·Ei] ·Ei /E
2
i , (14)

where ωi is the eigenfrequency corresponding to the eigenvector Ei. In the following, we will
consider two examples where the initial excitation δX(0) is a unit vector with a single non-
zero entry. This corresponds to an excitation a single dipole by rotating its polar angle by one
radiant. We visualize the time evolution of excitations showing the distribution Λ(i∆θ, t) for
discrete times t. Such a time evolution can be seen in figure 7 for an initial excitation of a
single dipole in the outer domain at θ = 0 (figure 7(a)) and an excitation of a single dipole
in the inner domain at θ = 39π/40 (figure 7(b)). As one might expect, with increasing time
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Figure 7. Time evolution an initial excitation at one lattice site in the outer domain (a)
and in the inner domain (b). The coloring indicates the strength of the excitation. Dark
colors indicate that the corresponding lattice sites are not perturbed and remain in their
GS orientation (or very close to it). Bright colors indicate large amplitude deviations of
the dipoles from the GS. The images marked 1–6 visualize the dipole orientations on the
torus for different times t ∈ [10,20,60]. Images (1–3) and (4–6) respectively correspond
to the excitations shown in (a) and (b). Just like in figure 6(a), each position (θ,ϕ) is
colored according to the orientation of the closest dipole. The color-function is the same
as in figure 4, with blue and red colors respectively corresponding to dipoles oriented
along êθ and êϕ.

the perturbation spreads through the system and an increasing number of dipoles begins to
oscillate. However, contrary to what one might initially expect, the excitation does not cross
over the DW into the other domain, but is reflected at the DW and thereby confined to the
domain it originated from. The images (1–6) in the lower panel of figure 7 visualize snapshots
of the dipole configuration at different times t ∈ [10,20,60]. Images (1–3) correspond to the
excitation shown in figure 7(a), whereas images (4–6) correspond to the excitation shown in
figure 7(b). A comparison of images (1–3) and (4–6) shows that the excitation of the outer
domain in (1–3) spreads slower than the excitation of the inner domain in (4–6). This can be
understood by inspecting figure 6, which shows that eigenmodes that excite mainly the outer
domain oscillate at lower frequencies than eigenmodes that excite predominantly the inner
domain.

6. Summary and outlook

We have demonstrated that dipole lattices spanned on curved structures can exhibit beha-
vior that drastically differs from that of dipole lattices in flat geometries. In particular, the
(Euclidean) distances between neighboring lattice points become dependent on the local geo-
metry of the surface within which the lattice resides. This can lead to the presence of AFE
domains in the GS of the system. While the DWs separating these domains appear similar
to other DWs found in FEs, their behavior can significantly differ. Most importantly, these
geometry-induced DWs are ‘pinned’ to positions where the ratio of the (Euclidean) distances
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to the NNs is equal (γ = 1). As a result of this ‘pinning’ of the DW center to γ = 1, these
DWs will not simply shift when e.g. external electric fields are applied, but rather show a
more complex behavior: For low field amplitudes, the DW position will be slightly displaced
until a new static equilibrium is reached. For larger field amplitudes, a new FE domain will
emerge between the two original domains.With increasing field amplitude, this FE domainwill
increasingly expand into the neighboring domains. Interestingly, this new FE domain appears
before dipoles in the neighboring domains begin to significantly align with the field.

For our prototype system of a toroidal dipole lattice, we further investigated the dynamics
of low energy excitations of the GS. There, we demonstrated the tendency of DWs to inhibit
the thermalization of the system by (effectively) preventing small energy excitations from
exploring beyond the boundary of the DW.We expect this effect to be caused by the continuous
change of the lattice constants: The dipoles towards the center of the torus are much closer to
one another and therefore more ‘costly’ to excite. Consequently, any excitation starting in
the outer domain may be prevented by energetic considerations from exploring too far into
any region where the dipoles are much closer and the interactions therefore much stronger. A
similar effect of excitations being confined to certain regions has been described in certain soft
matter systems and other inhomogeneous lattices [57].
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We explore the ground-state properties of a lattice of classical dipoles spanned on the surface of a Möbius
strip. The dipole equilibrium configurations depend significantly on the geometrical parameters of the Möbius
strip, as well as on the lattice dimensions. As a result of the variable dipole spacing on the curved surface of
the Möbius strip, the ground state can consist of multiple domains with different dipole orientations which are
separated by domain-wall-like boundaries. We analyze in particular the dependence of the ground-state dipole
configuration on the width of the Möbius strip and highlight two crossovers in the ground state that can be
correspondingly tuned. A first crossover changes the dipole lattice from a phase which resists compression to a
phase that favors it. The second crossover leads to an exchange of the topological properties of the two involved
domains. We conclude with a brief summary and an outlook on more complex topologically intricate surfaces.

DOI: 10.1103/PhysRevE.109.064125

I. INTRODUCTION

Long-range dipole interactions are ubiquitous in physics
and appear in a wide range of systems, ranging from atomic
setups, such as Rydberg arrays [1] or dipolar quantum gases
[2,3], to solid state systems, such as magnets [4] or ferro-
electrics [5,6]. Especially in crystalline lattices, such as in
ferroelectric (FE) materials, the anisotropic character of the
interaction can lead to the formation of complex ordered
phases [7]. For example, the degeneracy of the ground-state
(GS) configuration, i.e., the invariance of the energy under
inversion of all dipoles, can lead to the formation of lo-
cal domains separated by a domain wall (DW) [8]. For FE
materials, experiments have shown a great control of these
DWs, allowing for controlled shifts and even the controlled
creation or annihilation of domains [8,9]. Due to this direct
control of the dipole configurations, FE materials have been
used for applications, such as smart sensors, capacitors, trans-
ducers, actuators, energy harvesting devices, and nonvolatile
memories [8–11].

The ordered phases emerging in lattice systems of inter-
acting dipoles can significantly depend on the underlying
lattice geometry: In certain lattice geometries, the ground
state becomes continuously degenerate [12,13] and allows
for continuous transformations between different ground-state
configurations [14,15]. Other examples include spin-glass
phases emerging in disordered systems [16], and the sup-
pression of long-range order in lattices exhibiting geometric
frustration [17–19]. Besides these well-known examples, in-
teresting geometry-dependent effects can also be found in
lattice systems exhibiting mixed dimensionality: Already in a

*Contact author: asiemens@physnet.uni-hamburg.de
†Contact author: pschmelc@physnet.uni-hamburg.de

simple one-dimensional (1D) setup consisting of dipoles that
are spaced equidistant along a helical path, the ground state
can be classified by a complex self-similar bifurcation dia-
gram that depends on the helix geometry [20]. For dipoles that
are arranged on two-dimensional (2D) surfaces, the curved
geometries can enforce the presence of topological defects,
as can be seen for self-assembling dipoles on a sphere [21].
Furthermore, it has been demonstrated that dipole lattices on a
2D curved surface can exhibit domains and domain-wall-like
boundaries in their ground state [22]. Here, we build upon
these results and further investigate the properties of classical
dipole lattices in curved geometries. Specifically, we are inter-
ested in the effects arising when a dipole lattice is spanned on
a curved surface that is topologically nontrivial.

It has been demonstrated that spatial curvature or mixed
dimensionality by itself can lead to a variety of intriguing
(and often counter-intuitive) effects. Already for (isotropic)
Coulomb-interacting particles confined to a curved 1D path
a plethora of highly nontrivial static [23–26] and dynamic
[27–31] effects can emerge. Furthermore, in geometries
that are topologically nontrivial, such as the Möbius strip,
the surface topology can induce effects that are absent in
corresponding topologically trivial systems [32,33]. Specif-
ically magnetic dipoles dominated by exchange interactions
have been studied in curved geometries [34–36], including
the Möbius strip [37,38]. This motivates us to investigate
the ground-state properties of a lattice of classical dipoles
spanned on the surface of a Möbius strip. We find that a com-
pression of the strip can lead to two distinct crossovers in the
ground state of the embedded dipole lattice that are detected
as peaks in the compression module. One of the crossovers is
connected to the curvature-dependent changes of the dipole
configurations and corresponds to a change of the system
from resisting to favoring compression. The second crossover
has its origin in the nontrivial Möbius strip topology, and
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FIG. 1. Visualization of the Möbius strip surface and the param-
eters of Eq. (1). The mesh grid corresponds to a lattice with 6 × 26
lattice points.

corresponds to a change of the topological properties of the
ground-state domains.

Our work is structured as follows: The description of
our setup is provided in Sec. II. An overview of the stable
GS equilibrium configurations, as well as their dependence
on the system parameters, is given in Sec. III. In Sec. IV,
the two crossovers are discussed. Finally, we present in
Sec. V our brief summary and conclusions as well as an
outlook.

II. LATTICE OF DIPOLES ON A MÖBIUS STRIP

We consider a lattice of classical dipoles spanned on the
surface a Möbius strip. Each point on the Möbius strip’s sur-
face can be expressed by a parametric function f (u, v) given
by

f (φ, v) :=

⎛
⎜⎝

[R + v cos(φ/2)] cos(φ)

[R + v cos(φ/2)] sin(φ)

v sin (φ/2)

⎞
⎟⎠, (1)

where u and v are the parametric (i.e., the internal) coordinates
of the surface, and R is the “radius” of the center circle of
the Möbius strip. For φ ∈ [0, 2π ) and v ∈ [− L

2 , L
2 ], Eq. (1)

produces a Möbius strip with a width L. Before describing
the dipole lattice on the Möbius strip surface, it is helpful to
introduce the unit vectors

eφ = ∂ f (φ, v)

∂φ

/∣∣∣∣
∣∣∣∣∂ f (φ, v)

∂φ

∣∣∣∣
∣∣∣∣

ev = ∂ f (φ, v)

∂v

/∣∣∣∣
∣∣∣∣∂ f (φ, v)

∂v

∣∣∣∣
∣∣∣∣. (2)

At every point f (φ, v) the two unit vectors eφ and ev

are orthogonal to each other and tangential to the Möbius
strip surface. We will from now on respectively refer to
eφ and ev as the angular and the radial direction on the
Möbius strip. The parametric surface f (φ, v) is shown in
Fig. 1, together with visualizations of the above-described
parameters.

We now place a grid of (N × M ) dipoles on the Möbius
strip. The grid points are equidistant in the parametric coordi-
nates, with (parametric) lattice constants of �φ = 2π/N and

�v = L/M. Consequently the positions of the lattice points
in Euclidean space are given by rnm = f (n�φ, m�v − L/2),
where n ∈ [1, N] and m ∈ [1, M]. An example of such a grid
with N = 26 and M = 6 is visualized on the Möbius surface
in Fig. 1 (thin gray lines). At each position rnm, we place
a dipole with dipole moment dnm. The dipoles can freely
rotate and interact via dipole-dipole interactions. The potential
energy V i j

nm resulting from the interaction between two dipoles
positioned at rnm and ri j is then given by

V i j
nm = dnm · di j

4πε0
(
ri j

nm
)3 − 3

(
dnm · ri j

nm
)(

di j · ri j
nm

)
4πε0

(
ri j

nm
)5 , (3)

where ri j
nm = rnm − ri j is the (Euclidean) distance vector be-

tween the two dipoles, and ri j
nm = |ri j

nm| the corresponding
magnitude. The total energy of the system can then be de-
termined by summing up all pairwise interactions Vtot =∑

n,m �=i, j V i j
nm. We are interested in finding the ground-state

dipole configuration of the lattice, i.e., the configuration
that minimizes Vtot . Since the magnitude of the dipole mo-
ments d only scales the total energy and does not affect
the ground-state dipole configuration, we can - without loss
of generality - set d = |d| = 1. This optimization problem
then depends on 2MN + 4 parameters: The four system pa-
rameters R, L, �φ, and �v (which are held constant for
each individual optimization), as well as the dipole mo-
ments d (characterized by a total of 2MN angles). For the
calculation of the GS configurations we consider all-to-all
interactions. Nevertheless, some of the presented results were
obtained using a nearest-neighbor (NN) approximation. This
NN approximation provides a very good approximation of
the actual equilibrium configurations for systems where the
NN distance is small compared to the curvature radius of the
surface [22]. Results based on NN calculations are specif-
ically referred to as such in the text. Furthermore, to find
the GS configurations we use a principal-axis method. The
principal-axis method is a numerical optimization method
that does not rely on gradients. Instead, the optimizer per-
forms line searches along a set of continuously updated search
directions.

III. GS EQUILIBRIUM CONFIGURATIONS

The ground-state dipole configuration of the above-
described dipole lattice on a Möbius strip differs from the
well-known ground states of dipole lattices in “flat” ge-
ometries. This is because the distances between neighboring
dipoles on the Möbius strip depends on the local geometry of
f (φ, v). This can be easily seen by calculating the Euclidean
distances a and b between neighboring dipoles along the eφ

and ev directions

a(φ, v) = ‖ f (φ, v + �v) − f (φ, v) ‖,
b(φ, v) = ‖ f (φ + �φ, v) − f (φ, v) ‖ . (4)

Inserting the Möbius parametrization of f (φ, v) from Eq. (1)
into the above equations yields

a = �v = L/M (5)
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for the Euclidean distance between next neighbors along the
radial direction ev , and

b2(φ, v) = 8R2 cos

(
�φ

4

)2

+ v2

[
3 + cos(φ)

+ 2 cos

(
φ + �φ

2

)
+ 2 cos(�φ/2)

]

+ v2[cos(�φ) + cos(φ + �φ)]

+ 16Rv cos

(
�φ

4

)3

cos

(
2φ + �φ

4

)
(6)

for the Euclidean distance between next neighbors along the
angular direction eφ . The impact of such a varying nearest-
neighbor distance on the dipole equilibrium configurations
has been previously studied [22]. Following the nomencla-
ture set in Ref. [22], we introduce the parameter γ = a/b.
From Ref. [22], we know that the dipoles will favor aligning
along ev wherever γ < 1 (i.e., a < b), and along eφ wherever
γ > 1 (i.e., a > b). If the parameters are chosen such that
in some part of the Möbius strip γ < 1 and in another part
we have γ > 1, the ground state will feature two domains
with different dipole orientations separated by a domain-wall-
like boundary. A detailed description on the properties and
the mechanism behind the formation of the domain-wall-like
boundary can be found in Ref. [22]. Specifically, the prop-
erties and features discussed in Ref. [22] include the (finite)
thickness of the domain-wall-like boundary, the response of
this boundary to external fields, as well as a demonstration of
the fact that these geometry-induced boundary regions act as
barriers that prevent dynamic excitations from passing from
one domain to another.

An example ground-state dipole configuration on the
Möbius strip with N = 51, M = 9, R = 1, and L = 1.02 is
shown in Figs. 2(a)–2(c). Note, that an odd value of M was
chosen to avoid the presence of (topological) lattice defects.
In contrast, N being even or odd has no discernible impact on
the ground-state configurations. In the figure, the dipoles are
colored depending on their orientation: Dipoles with d ‖ eφ

are colored green, whereas all dipoles with d ‖ ev are colored
blue. Dipoles with significant alignment normal to the surface,
i.e., dipoles for which d ‖ (eφ × ev ), could not be observed in
any of our simulations. From now on, we will use the terms
angular domain and radial domain to, respectively, refer to the
domains where dipoles are dominantly aligned along eφ and
ev . For better visualization of this ground state, the orientation
of the dipoles with respect to the parametric coordinates φ and
v is shown in Fig. 2(d). A corresponding diagram of how the
parameter γ (φ, v) changes with the parametric coordinates is
shown in Fig. 2(e).

From the comparison in Fig. 2, as well as from Ref. [22],
we know that the ground-state dipole configuration can be
accurately predicted from the parameter γ , especially when
the dipole spacing is small compared to the curvature radius
of the surface. Therefore, we can get an intuition of the impact
of parameter variations on the ground state by analyzing the
impact of these changes on γ . For a given dipole lattice of
dimension (N × M ), the local value of γ can be impacted by
the Möbius parameters L and R. To get a first impression of
the overall behavior of γ , we expand b(φ, v) to the first order

FIG. 2. Example ground-state dipole configuration for N = 51,
M = 9, R = 1, and L = 1.02. (a)–(c) Visualizations of the ground
state from different viewpoints. (d) Visualization of the ground-state
dipole alignments within the surface. Dipole positions and align-
ments are given with respect to the parametric coordinates φ and
v. (e) A visualization of the parameter γ = a/b as a function of the
parametric coordinates. See text for details.

in �φ around �φ = 0. Since �φ = 2π/N , this is a good
approximation in the limit of large N . With this, the parameter
γ can be approximated as

γ � L

π

(N/M )√
4R2 + 3v2 + 8Rv cos

(
φ

2

) + 2v2 cos(φ)
. (7)

Consequently, in grids with many lattice points, the parameter
γ will scale globally when the ratio N/M changes. Note that
any change of L will also affect the range of the parameter
v ∈ [−L/2, L/2]. Therefore, it is possible to rewrite Eq. (7)
such that it depends entirely on the ratio L/R by introducing
v′ = 2v/L ∈ [−1, 1]. Changing the ratio L/R will not lead to
a simple global scaling factor for γ . Instead, an increase in
L/R can either increase γ everywhere, or (below a certain
value of L/R) it can lead to an increase of γ in some parts
of the lattice and to a decrease of γ in other parts.

In the following, we will study the ground GS for fixed
values of N/M and R. This reduces the problem of finding all
possible GS configurations on the Möbius strip to finding the
GS as a function of L. The GS configurations, and especially
the distribution of the two domains, are visualized in the lower
four panels of Fig. 3 for various values of L. From these four
panels, it can be seen that by varying L, we are able to tune
the size of the two domains, with the angular domain covering
the entire surface for large L and the radial domain covering it
for small L. In the following, we will analyze the size change
of the domains when L is increased. While we are focusing
on a specific example system, the shown behavior, i.e., the
evolution of the domains when L is varied, is general and
occurs almost exactly the same way regardless of the specific
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FIG. 3. Size Aφ of the angular domain as a function of the
Möbius strip width L for N = 101, M = 11, and R = 1. All data
points were obtained using a nearest-neighbor approximation. The
lower panel shows example configurations from the four regimes for
L ∈ [0.47, 0.6, 0.65, 0.83] obtained from all-to-all calculations.

values of R and N/M. However, before we analyze the domain
size, a final comment on the impact of the ratio N/M is in
order: The overall impact of varying N/M can be described
as follows: For certain values of N/M (especially towards the
extremes N � M or N � M) it may be that (depending on
the case) not all of the shown configurations are accessible,
unless we make L so large that the surface intersects itself.
Furthermore, in those regimes where the surface intersects
itself, significantly different GS configurations can be found.
However, the regime where the surface intersects itself is
outside of the scope of this work.

To get an idea of how the domain sizes change with L, we
classify the ground states by the area Aφ ∈ [0, 2πL] occupied
by the angular domain. Note that Aφ refers to the area in
parametric coordinates. For Aφ = 0, the entire strip is occu-
pied by the radial domain, whereas for Aφ = 2πL the entire
strip is covered by the angular domain. The value of Aφ can
be obtained for any GS configuration by simply counting all
dipoles that significantly align along eφ . Simulation results of
the area Aφ occupied by the radial domain as a function of
L are presented in Fig. 3 for numerically determined ground
states on a Möbius strip with N = 101, M = 11, and R = 1.
Note that the data shown in Fig. 3 are obtained using a NN
approximation. In the figure, four clearly distinct regions can
be seen: In region I, only the radial domain exists. In region
II, both the radial and the angular domain coexist, with the
angular domain increasing in size with increasing L. Note,
that the small jumps (or steps) of Aφ (L) arise due to the
discreteness of the underlying dipole lattice and will vanish
for M → ∞. When the angular domain first appears (the
border between regions I and II in Fig. 3), it emerges from
the point (φ, v) = (−π/N,−L/2). From there, the angular
domain will mainly grow along eφ as L is increased. As the
angular domain grows, it will eventually have circled around

the Möbius strip and for L = 2MR sin(π/N ) connect with
itself at the point (φ, v) = (π − π/N, 0). This corresponds to
the border between regions II and III in Fig. 3. At this point
both the angular and the radial domain occupy equal areas of
the strip. Note that due to the finite size of the domain wall
this border between regions II and III occurs for Aφ < 0.5.
Around the border between regions II and III, the domain
sizes change very rapidly - indicating a great sensitivity of
this point to parameter variations. Note, that in the continuum
limit (i.e., N, M → ∞) the slope of Aφ (L) diverges exactly
at the boundary between regions II and III. In region III, the
angular domain increases further in size when L is increased,
until finally in region IV it encompasses the entire strip. For
systems with different N/M, no discernible differences from
the above-described behavior could be observed.

IV. COMPRESSION-INDUCED TOPOLOGICAL
CROSSOVER

We will now demonstrate that the GS dipole configuration
passes through two distinct crossovers if the length L is varied.
The variation of L discussed above can also be interpreted as
an adiabatic compression or stretching of the Möbius strip.
The behavior of the lattice during such a compression can be
analyzed with the 2D compression modulus or, simply, 2D
modulus [39] of the strip. The 2D modulus is defined as

K = A0
d2U

dA2
= L0

2πR

d2U

dL2
, (8)

where A is the area of the strip, A0 and L0 denote the area
and strip width before compression, and U is the total energy
of the system. The 2D modulus describes how a change in
the width changes the force that is required to compress (or
stretch) the strip. Consequently, small values of K indicate
that the required force changes very little when L is varied,
whereas large values of K imply large changes in the required
forces when L is varied.

The 2D modulus of Eq. (8) depends mainly on the behavior
of the total ground-state energy U (L) of the system. This
total energy U (L) as a function of the strip width L is shown
in Fig. 4(a). Interestingly, the curve U (L) exhibits a global
maximum. We will from now on use Lcrit to refer to the width
of the Möbius strip at this maximum. For values L < Lcrit the
energy increases with increasing strip width, implying that
the strip prefers a compressed state and resists stretching.
On the other hand, for L > Lcrit , the energy decreases with
increasing L, implying that in this regime the compression
of the strip requires energy. This crossover from favoring
compression to favoring stretching can be understood from
the dipole alignments in the radial and angular domains. It is a
result of the competition between the angular domain favoring
stretching and the radial domain favoring compression. Within
the radial domain, the dipoles are aligned along ev and will
naturally prefer the distance a to their nearest neighbors along
the ev direction to be as small as possible. Minimizing a can be
achieved globally by decreasing L. Consequently, decreasing
L will decrease the total energy proportional to the number
of dipoles in the radial domain. On the other hand, in the
angular domain, dipoles are aligned along eφ . Consequently,
these dipoles will prefer a decrease in the nearest neighbor
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(a)

(b)

(
)

(
)

FIG. 4. (a) Total energy U as a function of the strip width L.
(b) The 2D modulus K ∼ d2U/dL2 as a function of the strip width L.
Both the energy and the 2D modulus data were obtained for a Möbius
strip with N = 101, M = 11, and R = 1.

distance b(φ + �φ, v) along the eφ direction. However, the
distance b can change, depending on the position on the strip.
Furthermore, when L is varied, the distance b can increase in
some parts of the strip and decrease in others. However, due to
the strong decay of the dipole-dipole interactions, the impact
of a change in L on the energy is larger for those dipoles
where b is smaller. The distance b(φ + �φ, v) is minimized
at (φ, v) = (−π/N,−L/2), i.e., at the origin of the radial
domain. And around this point, b will decrease further when
L is increased.

Close to the crossover point Lcrit , the 2D modulus varies
rapidly and has a local minimum [see Fig. 4(b)]. This dip in
the 2D modulus, however, corresponds to the border between
regions III and IV in Fig. 3. For different N , M, and R, this
dip does not necessarily coincide with the maximum of U (L).
This dip arises due to the finite thickness of the domain-wall-
like boundary. This has been verified by calculations where
a sharp domain boundary has been (manually) enforced. In
this constructed case of a vanishing domain-boundary thick-
ness, the 2D modulus showed only a sudden (discrete) jump
instead of a dip. Interestingly, a second dip can be seen in
the 2D modulus, indicating a second crossover. This second
dip also originates from the finite thickness of the domain-
wall-like boundary. This second dip appears at a width of
L = 2MR sin(π/N )—corresponding to the transition between
regimes II and III. Although this second dip has no discernible
effect on the total energy of the system, it does mark a signif-
icant change in the structure of the domains. For values of
L < 2MR sin(π/N ) slightly below the dip, the radial domain
not only covers the majority of the Möbius strip, but also
winds around it once, giving the domain a nontrivial topology.
At the same time, the angular domain has a trivial topology
for L < 2MR sin(π/N ). In contrast, for L > 2MR sin(π/N )
above the dip, it is the angular domain that has a nontrivial
topology and the radial domain being topologically trivial.
In summary, the domain which (azimuthally) extends over
the complete Möbius strip inherits its nontrivial topology,
whereas domains covering only a finite azimuthal part of the
Möbius strip are topologically trivial.

As described above, during the crossover, as L is increased,
the angular domain grows and connects with itself at the point
(φ, v) = (π − π/N, 0). To better understand this crossover, it
is helpful to analyze γ in the vicinity of this point. First, we
find

dγ (φ, v)

dφ

∣∣∣∣
φ→π−π/N,v→0

= dγ (φ, v)

dv

∣∣∣∣
φ→π−π/N,v→0

= 0,

(9)
indicating that γ always has a critical point at (φ, v) = (π −
π/N, 0). Furthermore, at (φ, v) = (π − π/N, 0) the Hessian
matrix of second derivatives is indefinite, indicating that the
critical point is a saddle point. Exactly for L = 2MR sin(π/N )
the value of γ at the saddle point becomes γ (π − π/N, 0) =
1. Any small change of L will lift (or lower) γ in the vicinity
of the saddle point. This is why for L < 2MR sin(π/N ) it
is the radial domain that winds around the Möbius strip and
for L > 2MR sin(π/N ) it is the angular domain. For L =
2MR sin(π/N ), the system reaches a transition point where
neither of the two domains winds around the Möbius strip. For
L = 2MR sin(π/N ), both domains are topologically trivial;
whereas for L �= 2MR sin(π/N ), one of them is not.

V. SUMMARY AND CONCLUSIONS

We investigated a lattice of interacting dipoles that is
spanned on the surface of a Möbius strip. The curved ge-
ometry of the lattice can, already for the ground state, lead
to the presence of domains with different dipole orientations,
as well as domain-wall-like boundaries separating these do-
mains. Specifically, the GS of the Möbius strip contains up to
two domains, referred to as the angular and the radial domain,
respectively. We discussed the dependence of the ground state
on the system parameters and subsequently analyzed the de-
pendence of the GS on the width L of the Möbius strip. We
demonstrated that by varying L, we are able to tune between
different GS configurations. For large and small L, the en-
tire Möbius strip is exclusively covered by either the radial
or the angular domain. For intermediate L, both domains
can be present simultaneously. In this intermediate regime,
the relative size of the domains can be tuned by varying L.
For a lattice with dimensions N × M and a given Möbius
strip radius R, one notable GS configuration is reached for
L = 2MR sin(π/N ). Any increase or decrease of the width
from this value will lead to a drastic change in the domain
topology. Specifically, for wider strips [L > 2MR sin(π/N )],
the angular domain will wind around the entire strip, thereby
being topologically nontrivial. And for narrower strips [L <

2MR sin(π/N )], it is the radial domain that winds around the
entire strip. We explained this behavior with the presence of
a saddle-point structure in the γ parameter which classifies
the domain structure of the entire Möbius strip. Furthermore,
we showed that this crossover in the domain topology can be
detected as a dip in the 2D compression modulus. Addition-
ally, the rapid change in the domain sizes that accompanies
this crossover highlights the sensitivity of the crossover point
to possible variations of the Möbius geometry.

In addition to this topological crossover, we also detected
a second crossover that can be tuned by varying the width L
of the Möbius strip. The crossover point coincides with the
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maximum of the total (width-dependent) ground-state energy
U (L). During the crossover, the system changes from a state
that resists compression to a state that favors compression.
Consequently, this crossover point will be quite sensitive to
variations of the Möbius strip width L—and by extension to
variations of the system parameters R, N , and M.

While our analysis of the dipolar lattice on a Möbius strip
shows already an intricate structure formation for the ground
state there is several open future directions of research. An im-
mediate case of investigation would be the low-lying excited
states and their properties. How and where do topological
and nontopological defects and possibly kinks emerge in the
dipolar lattice and how do they “interact” with the domain
walls? Quenches of the geometrical parameters across the
phase boundaries would be promising candidates for dynam-
ical and transient structure formation in the higher-energy
regime. As a longer term and promising perspective we en-
visage the investigation of dipolar lattices on geometrically
and topologically more complex curved surfaces. While there
is a plethora of such surfaces in particular in the framework
of (multiply-periodic) minimal surfaces [40] the impact of the
dipolar interaction on self-intersecting surfaces is an open and
intriguing problem to be explored in the future.

A final remark concerning the experimental preparation
of such surfaces is in order. A near-future possible experi-
mental realization of interacting dipoles on a curved lattice
can be based on dipolar ultracold molecules or Rydberg
atoms which are the workhorses of modern quantum simu-
lation [41,42]. The latter can be captured in arrays of optical

tweezers which can be arranged in almost arbitrary geome-
tries and in particular in the here-considered curved manifold.
Single atom deterministic loading and controlled excitation
to Rydberg states is nowadays achieved routinely in corre-
sponding experiments [41,42]. Their interaction can be of
dipolar character due to the resonant exchange process be-
tween, e.g., s and p Rydberg states. A competing time scale
is then the de-excitation due to, e.g., radiative decay which
happens typically on the time scale of dozens to hundreds of
microseconds for principal quantum numbers n � 60, leav-
ing ample time for preparation, processing, and detection.
Beyond that, curvilinear flat architectures can be prepared
in the framework of nanostructures using conventional tech-
niques based on thin-film deposition and lithographic methods
[43]. Ion-beam writing techniques represent another al-
ternative. Fabrication of complex 3D nanoarchitectures is
challenging and requires even more advanced and specialized
preparation tools in particular if it comes to the combi-
nation with magnetic sublattices [43]. As a conclusion,
we remark that while the experimental implementation of
the dipolar lattices on curved surfaces is certainly highly
demanding, the richness of their phenomenology and per-
spectives render them highly promising candidates for future
investigation.
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Chapter 6

Summary and outlook

This chapter contains two parts: A summary of the scientific contributions of this
thesis is given in Sec. 6.1. Concluding remarks are subsequently provided in Sec.
6.2.

6.1 Summary of the scientific contributions [A1–A6]

This cumulative thesis explored model systems of classical long-range interacting
particles confined to a curved space. The scientific contributions [A1–A3] consid-
ered Coulomb-interacting ions confined to a toroidal helix. A key feature of this
model is the oscillating effective interaction potential between the ions that arises
from a combination of the Coulomb interactions and the confining forces. We ex-
plored the system properties in the presence of external electric fields. In particular,
this includes a study of the static (field-dependent) many-body equilibrium config-
urations [A1], and studies of the driven dynamics of the ions [A2, A3].

The many-body case of ions confined to a toroidal helix has been addressed to
a limited extent in previous studies (see Refs. [9–12]). However, these investiga-
tions consider only selected symmetric equilibrium configurations. The scientific
contribution [A1] analyzed the general many-body equilibrium configurations and
their evolution when an external electric field is applied. We found a tendency for
staggered (disordered) equilibrium configurations in the field-free case. By tuning
the strength of the external electric field, it is possible to continuously switch be-
tween these staggered configurations for low field strengths and ordered configu-
rations (akin to a 1D lattice) for large field strength. We statistically analyzed the
crossover from staggered to ordered configurations and showed the robustness of
the crossover to parameter variations.

The impact of time-dependent external electric fields was investigated for the
single-particle case [A2]. We considered both oscillating and rotating external elec-
tric fields and performed a phase-space analysis. For low driving amplitudes the
phase space showed two separate chaotic regions. These regions correspond to tra-
jectories where the particles direction of motion cannot be inverted. This effectively
allows for a directed transport of the particle. For large driving amplitudes and a ro-
tating electric field, we found another mechanism by which the chaotic phase-space
region can separate into two parts; allowing to trap the particle in a valley of the
driving potential. We link these separations to those terms in the driving potential
that stem from a finite helix radius.

Building directly on the scientific contribution [A2], we continued the investiga-
tion of a driven particle on a toroidal helix in [A3]. In this work, we added a static
sinusoidal potential to the toroidal helix. We showed that in the limit of a vanish-
ing helix radius, the equations of motions of the driven particle coincide with the



100 Chapter 6. Summary and outlook

equations of motion of the well-known Kapitza pendulum - a driven pendulum that
possesses two stable fixed points. We analyzed the impact of finite helix radii on the
system in two steps: First, we performed a linear stability analysis for the two sta-
ble fixe points and analytically determined their stability with regards to variations
of the helix radius, the driving amplitude, and the static potential. The analytical
solutions showed good agreement with numerical calculations. Second, we inves-
tigated the impact of finite helix radii on the phase space and highlighted the most
prominent types of induced phase space structures.

Moreover, we also investigated the behavior of particles with anisotropic interac-
tions on curved manifolds. The scientific contribution [A4] considered freely rotat-
ing dipoles placed equidistant along a helical path. The ground state configuration
of this system consists of interwoven helical head-to-tail dipole chains. The number
and orientation of these head-to-tail chains depend significantly on the underlying
geometric parameters. We were able to classify all possible dipole equilibrium con-
figurations with a self-similar bifurcation tree. Specifically, we linked the mapping
between geometric parameters and ground state dipole configurations to the Stern-
Brocot tree and the number-theoretical Farey sequence.

For 2D dipole lattices on curved manifolds, we derived a number of general
properties [A5]. Lattice distortions as well as spatial curvature were shown to lead
to a ground state that features domains with different dipole orientations. These
domains are separated by a geometry-induced domain wall. We formalized a condi-
tion, the gamma parameter, that allows the analytical prediction of the domain wall
position on the surface. The width of the domain wall was also investigated and
showed a strong dependence on the density of dipoles. The differences between
geometry-induced domain-walls and typical (degeneracy-induced) domain walls in
dipole lattices are highlighted with two effects: the domain wall response to external
electric fields, and the linear excitation dynamics in systems exhibiting curvature-
induced domain walls. In the case of linear excitation dynamics, we demonstrated
that the domain wall acts as a hard barrier that confines arbitrary linear excitations
to the domain of its origin.

Finally, we decided to investigate dipole lattices on a topologically non-trivial
and non-orientable surface in [A6]. We considered a rectangular dipole lattice that
is spanned on the surface of a Möbius strip. Our analysis of the ground state dipole
configurations revealed several types of crossovers that take place as the Möbius
strip width is varied. One type of crossover occurs during the creation and anni-
hilation of domains and can be detected as a dip in the 2D compression modulus.
Another type of crossover, which also manifests as a dip in the 2D modulus, occurs
during domain-mergers at a saddle point in the surface geometry. A third type of
crossover is linked to a change of the system from resisting to favoring compression.

6.2 Outlook

6.2.1 Outlook regarding the helical ion model

Perhaps the most intriguing aspect of the helical ion model is the inherent com-
plexity and wealth of features arising despite the relative simplicity of the setup.
Building on the results of the scientific contributions [A1–A3], there are a number of
possible avenues for future investigations.



6.2. Outlook 101

Bound states
One direction is to further explore the many-body equilibrium configurations. The
scientific contribution [A1] is the first work addressing general many-body equilib-
rium configurations of helically confined ions. However, it mainly provides statis-
tical insight into these equilibrium configurations, while leaving a number of ques-
tions for future research. For example: is the number of particles that can form a
bound state limited? If so, how does this size limit depend on the helix geometry?

Predicting size limits for the many-body equilibrium configurations is difficult
due to the long-range character of the interaction. Regardless of the helix geometry,
the effective interaction potential becomes repulsive (albeit very weakly) at large dis-
tances. It is not clear, whether this repulsive interaction at long ranges prevents the
formation of many-body equilibrium configurations consisting of arbitrarily many
particles.

Changing the helix geometry allows to tune the number and depth of wells in
the effective interaction potential. The two-body bound state becomes stable only
when the ratio of helix radius and helix pitch is above a critical value. It is not clear
how this critical value evolves for many-body bound states. Closely related is the
question of whether many-body equilibrium configurations follow a general pat-
tern, such that the ion positions can be approximated or even predicted analytically.

Excitations and scattering dynamics of bound states
Besides the fundamental equilibrium properties of the many-body bound states, the
dynamics of bound ion configurations may also be of interest. Many-body bound
states behave like a chain of non-linear oscillators. Especially in the presence of an
external field (as discussed in Ref. [A1]), the Lagrangian is very similar to - but
not the same as - the Lagrangian of the FK model [115]. Due to the similarities to
the FK model, one can expect complex dynamics, such as the formation of solitons,
from the many-body bound states in the helical ion model. In that regard, another
interesting route would be to explore the collision of two or more of these bound
states. As explained in Ref. [8], the center of mass motion of these bound states is
decoupled from the relative motion of the ions - providing ideal prerequisites for a
scattering process. First steps toward the investigation of these many-body scatter-
ing dynamics have already been taken [A9]. These first explorations have revealed
a wealth of phenomena, including inelastic scattering events during which bound
states frequently break up and (re)combine in a cascade of final state interactions.

Experimental realizations
Experimental realizations of the helical ion model have so far not been a concern;
neither in the scientific contributions nor elsewhere in this thesis. Nevertheless, for
completeness, a final comment on such realizations is in order. Realizing the heli-
cal ion model in an experiment will be rather difficult. The most promising setups
are perhaps optical traps. Recent experiments have demonstrated the possibility of
confining neutral atoms to a helical path [84]. This could be used to implement the
setup of the scientific contributions [A2, A3] - although realizing the time-dependent
driving forces from [A2, A3] might be a challenge. Another interesting - and ad-
mittedly somewhat audacious - setup for a possible experimental realization could
be counter-ions adsorbed onto macro-ions. As discussed in Sec. 2.1, these macro-
ions can possess helical shapes [56], and it is possible for adsorbed counter-ions to
form Wigner crystals [58, 59]. However, finding a helical macro-ion with strong
counter-ion interactions and large times between adsorption and desorption will be
challenging.
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6.2.2 Outlook regarding curved dipole lattices

Dipole lattices have been studied extensively for a wide range of lattice-geometries
and boundary conditions (see Sec. 4.1 for further details). Often, this research was
not driven by specific experimental setups, but rather by a fundamental interest in
the properties arising from the dipole-dipole interaction. In that regard, it is curious
to note that the impact of spatial curvature on these systems has not been systemati-
cally explored. The scientific contributions presented in this thesis have shown that
curved dipole lattices can possess intriguing (and general!) curvature-induced prop-
erties: domains and domain-walls in the ground state, unique responses of these
domain-walls when exposed to external fields, curvature-induced domain-walls act-
ing as a natural boundary that prevents dynamics from crossing from one domain
into another, and structural crossovers that can be linked to the emergence or anni-
hilation of domains as the system parameters are varied. There are several avenues
for further exploration.

Phonons and domain walls
One especially interesting feature of curved dipole lattices is that (low amplitude)
dynamics are reflected at domain walls and cannot freely disperse through the sys-
tem. The scientific contribution [A5] explains this behavior by stating that the ex-
citations are prevented by ‘energetic considerations’. This statement can be further
elaborated: The dispersion relation in a linear dipole chain depends significantly
on the dipole orientations. When the dipoles are aligned head-to-tail along the lin-
ear chain, the dispersion relation is that of an optical phonon [145]. However, if
the dipoles are aligned perpendicular to the direction of the chain, the dispersion
relation is that of an acoustic phonon [146]. For the curved dipole lattices, it can
therefore be assumed that any excitation that crosses the domain wall would need
to transform from an acoustic to an optical phonon or vice versa. In other words, this
effect likely originates purely from the dipole orientations within the domains and
not from the specific change of the lattice constant across the domain boundary. In
that regard, it would be interesting to know what happens in other non-rectangular
lattices, such as the rhombic lattice: It may be that the rhombic angle allows for a par-
tial transmission of the excitation. If so, can the permeability of the domain wall be
tuned (to some extent) through the rhombic angle of the lattice? And if the domain
wall becomes permeable, one can imagine that the transmission of an excitation will
be accompanied by a rotation of the wavevector - similar to diffraction in optics.
This, in turn, raises the question of whether it is possible to describe these domain
walls in terms of diffraction indices and transmission/reflection coefficients. The
implications and applications of such a permeable domain wall would certainly be
an interesting direction for further research.

Exploring surface geometries
The ground state properties in the vicinity of common geometrical structures are
also of interest. One example of such a structure is a conical intersection - specifi-
cally in the case where a single dipole is placed directly at the intersection point. It
would be interesting to see to what extent this center-dipole impacts (or controls) the
surrounding ground state dipole orientations. Another structure that will likely be
encountered frequently in experimental setups are lattice defects. For lattice struc-
tures on curved surfaces, the formation of point defects can be expected. Especially
when these defects are positioned with some periodicity, their impact on the dipole
orientations and phonon dynamics may also be of interest. Related setups could
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also include the ground state properties of dipoles in fractal lattices, such as the Sier-
piński triangle.

Experimental realizations
The key motivation for this thesis was to gain a fundamental understanding of prop-
erties arising due to the interplay of long-range interactions and curved geometries.
Practical applications and experimental realizations of these systems were not at all
considered during the conception of the individual projects. Nevertheless, several
setups related to curved dipole lattices have already been mentioned in Chapters 3
and 4. In that regard, the perhaps most promising platforms for an experimental
realization are Rydberg atoms (see also the last paragraph of Sec. 4.2) or curvilinear
arrays of magnetic dipoles (see also the last paragraph of Sec. 4.3). Especially Ryd-
berg atoms are promising candidates, due to the possibilities provided by tweezer-
arrays in arranging these atoms, as well as their potential for exhibiting enormous
permanent dipole moments (see Ref. [257]). In the case of magnetic dipole arrays on
curved surfaces, the fact that exchange interactions typically dominate the dipole-
dipole interaction is certainly a problem. And while there are ways to overcome this
problem, such as fabricating dipoles from single-domain magnetic islands (similar
to e.g. Ref. [287]), any experimental realization of curved dipole lattices from mag-
netic materials will certainly be a challenge. Nevertheless, the present developments
regarding the fabrication and control of nano-scale systems are certainly promising.
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