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ABSTRACT

Gravitational waves have recently emerged as a novel messenger in
astronomy, providing profound insights into the evolution of the cosmos:
Last year, several pulsar timing arrays (PTAs) announced the detection
of a gravitational wave background (GWB) at nHz frequencies, marking
a significant milestone in this field. This discovery can be interpreted
as a signal emitted by the inspiral of supermassive black holes during
hierarchical structure formation. More excitingly, the signal’s origin
could alternatively predate recombination and Big Bang nucleosynthesis.
Such an explanation would require new physics in order to explain the
strong dynamics in the primordial plasma above the MeV temperature
scale necessary to emit those gravitational waves.

In this thesis, we explore the possibility that PTAs could have detected
a cosmological phase transition within a dark sector. A better fit to
the data than that for supermassive black hole binaries can be found
if the dark sector hosting the transition decays before the onset of
nucleosynthesis.

Furthermore, it is plausible that PTAs have instead observed a GWB
emitted by the inspiral of supermassive primordial black holes. Our
research indicates that these primordial black holes can account for the
observed signal only if they are initially clustered rather than homoge-
neously distributed.

Looking towards future gravitational wave observatories, we examine
the formidable opportunity offered by LISA, that is sensitive to mHz
frequencies, to probe GWBs emitted at temperatures of the primordial
plasma around the 100GeV scale, aligning with the freeze-out epoch
of a WIMP dark matter candidate. Our findings suggest that if LISA
detects such a cosmological GWB, it would hint towards a dark sector
phase transition producing the relic dark matter abundance, consistent
with cosmological and astrophysical observations.

Our results underscore the significance of gravitational wave observa-
tions in unveiling the dynamics of the early universe and provide new
pathways for understanding the fundamental nature of dark matter and
the cosmological history of the universe.



ZUSAMMENFASSUNG

Gravitationswellen haben sich jüngst als neuartige Boten in der Astrono-
mie herausgestellt und liefern tiefgreifende Einblicke in die Entwicklung
des Kosmos: Letztes Jahr kündigten mehrere PTAs die Entdeckung
eines Gravitationswellenhintergrunds bei nHz-Frequenzen an, was einen
bedeutenden Meilenstein in diesem Bereich darstellt. Diese Entdeckung
kann als Signal interpretiert werden, das durch die Verschmelzung von
supermassiven Schwarzen Löchern während der hierarchischen Struk-
turentstehung emittiert wurde. Noch spannender ist die Möglichkeit,
dass der Ursprung des Signals alternativ vor der Rekombination und
der Urknall-Nukleosynthese liegt. Eine solche Erklärung würde neue
Physik erfordern, um die starke Dynamik im primordialen Plasma über
der MeV-Temperaturskala zu erklären, die zur Emission von diesen
Gravitationswellen notwendig ist.

In dieser Dissertation untersuchen wir die Möglichkeit, dass PTAs einen
kosmologischen Phasenübergang innerhalb eines dunklen Sektors de-
tektiert haben könnten. Eine bessere Übereinstimmung mit den Daten
als bei supermassiven Schwarzen-Loch-Binärsystemen kann gefunden
werden, wenn der dunkle Sektor, der den Übergang beherbergt, vor dem
Beginn der Nukleosynthese zerfällt.

Darüber hinaus ist es plausibel, dass PTAs stattdessen einen Gravitati-
onswellenhintergrund beobachtet haben, der durch die Verschmelzung
von supermassiven primordialen Schwarzen Löchern emittiert wurde.
Unsere Forschung zeigt, dass diese primordialen Schwarzen Löcher das
beobachtete Signal nur dann erklären können, wenn sie anfangs geklumpt
und nicht homogen verteilt sind.

Mit Blick auf zukünftige Gravitationswellen-Observatorien untersuchen
wir die interessante Koinzidenz, dass LISA für mHz-Frequenzen emp-
findlich sein wird, die Gravitationswellen-Hintergründen entsprechen,
die bei Temperaturen des primordialen Plasmas um die 100GeV-Skala
emittiert werden und mit der Freeze-out-Epoche eines WIMP-Dunkle-
Materie-Kandidaten übereinstimmen. Unsere Ergebnisse legen nahe,
dass, wenn LISA einen solchen kosmologischen Gravitationswellenhinter-
grund detektiert, dies auf einen Phasenübergang in einem dunklen Sektor
hinweisen würde, der die Dunkle Materie-Menge produziert, die mit
kosmologischen und astrophysikalischen Beobachtungen übereinstimmt.

Unsere Ergebnisse unterstreichen die Bedeutung von Gravitationswellen-
beobachtungen für die Enthüllung der Dynamik des frühen Universums
und bieten neue Wege zum Verständnis der grundlegenden Natur der
Dunklen Materie und der kosmologischen Geschichte des Universums.
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Habt ihr euch mal überlegt,
wenn die Schwerkraft Runden dreht,

als Welle durch die Erde schwebt,
gemächlich durch die Häuser zieht,

Bratkartoffeln brotscheln riecht:
Geht sie dann bei Freunden ein,

setzt sich an das Feuerlein
und Schwerkraft lässt mal Schwerkraft sein –

wie schmecht ihr dann der rote Wein?

— Valerie Weber





ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to Kai
Schmidt-Hoberg for offering me the opportunity to pursue my PhD and
for his outstanding supervision throughout these years. Your approach
to supervision—providing ample freedom concerning research topics and
working hours—allowed me to grow as an independent researcher. You
made the start of my PhD journey easy, even during the challenging
times of the COVID-19 pandemic, and set a remarkable example of how
to balance family life and a demanding career. Your guidance during my
postdoc decisions was invaluable, and for all of this, I am truly grateful.

I am also thankful to Géraldine Servant for her co-supervision and to
Thomas Konstandin for his mentoring, both professionally and personally.
The insightful discussions and a memorable trip to Reeperbahn were a
highlight of my time in Hamburg. I would also like to thank Jochen Liske
and Oliver Gerberding for agreeing to join my disputation committee.

A special mention goes to my collaborators who have greatly enriched my
research experience. Felix Kahlhöfer, your supervision and collaboration
have extended far beyond the limits of my Master’s thesis, and I am
deeply thankful for your continued support, including writing reference
letters and inviting me to Karlsruhe. Torsten Bringmann, your insights
into statistical data analysis and our numerous collaborations have
been a cornerstone of my research. Your invitation to Oslo and your
invaluable support for my postdoc application were important steps in
my academic journey. Pedro Schwaller, thanks a lot not only for sharing
your insights on the latest movements within the PTA community, but
also for amusing bouldering sessions in Mainz and Munich.

I am particularly grateful to Frederik Depta for being a valuable collabo-
rator throughout my PhD. Your life advice during the challenging period
of postdoc applications was deeply appreciated. I would also like to thank
Jonas Matuszak and Tomás Gonzalo for our close collaboration and the
many fruitful discussions we have had. Additionally, I appreciated the
engaging conversations with Joachim Kopp and Yann Gouttenoire at
Fermilab and CERN which have greatly influenced my work.

I am grateful to the Quantum Universe cluster of excellence for giving me
the opportunity to travel the world during my PhD, and to the Fermilab
theory group for their hospitality during my visit. The latter was made
possible thanks to an ASYMMETRY grant and the Horizon Europe
Programme Staff Exchange project. I also want to thank the Swedish
Collegium for Advanced Study for allowing me to attend a conference
in Uppsala, even when my own funding was limited, ultimately helping
me find my future postdoc position.

ix



I am thankful to the Studienstiftung des deutschen Volkes and Cu-
sanuswerk for supporting me during my Bachelor’s and Master’s studies.
Your impact on my journey as researcher and part of society has been
profound and positive. My sincere thanks also go out to my former teach-
ers, Christoph Schuck, Florian Peter, Thomas Gerritzma, and Heiko
Nüllmann, who fueled my insatiable curiosity in school and helped me
find my place in physics with their guidance.

I would also like to express my gratitude for the unforgettable experiences
I had while participating in the Deutsche SchülerAkademie in 2023 and
2024. Special thanks to Simon Schwarz for co-teaching our “Big Bang
Math” course. You showed me how to convey complex concepts in a way
that students could truly understand. I am also immensely grateful to
our students, whose countless insightful questions constantly challenged
the limits of my own comprehension and, in turn, helped me become a
better physicist. The time spent at these academies was as enriching for
me as I hope it was for those I had the privilege of teaching.

A big thank you to my academic brother Jonas, my office mates Felix
and Andrii, as well as to the former group members Philine, Apratim,
Aleix, Jeremy, Lorenzo, and Philipp for making the office a welcoming
place. A long night in the office after visiting “Samarkand”, when we
“absolutely needed to finish writing a paper”, will always be a special
memory.

I am thankful to Henda Mansour, as well as Jonas Frerick and Jonas
Matuszak for proofreading parts of this thesis. I really appreciate the
time and effort you put into correcting my repeated errors and the many
occasions when you saved me from writing nonsense.

I am especially grateful to my tomato-European friends in the “danger
zone”—Margherita, Sara, Davide, Lorenzo, and Alain. Vi voglio tanto
bene, raga.

Finally, I would like to thank my family. Sandro, ich danke dir von
Herzen für deine brüderliche Hilfe aus der Ferne – nicht nur als ich
kopflos eine ganze Nacht in Rom ums Kolosseum gelaufen bin. Mama
und Papa, eure bedingungslose Liebe und Unterstützung haben mich
auf meinem gesamten bisherigen Lebensweg begleitet. Diese Thesis ist
genauso auch euer Verdienst.



PUBL I C AT IONS

This thesis is based on the following publications:

[1] T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg, and
C. Tasillo, Does NANOGrav observe a dark sector phase transition? ,
JCAP 11 (2023) 053, [2306.09411]

[2] T. Bringmann, T. E. Gonzalo, F. Kahlhoefer, J. Matuszak, and
C. Tasillo, Hunting WIMPs with LISA: correlating dark matter and
gravitational wave signals, JCAP 05 (2024) 065, [2311.06346]

[3] P. F. Depta, K. Schmidt-Hoberg, P. Schwaller, and C. Tasillo,
Do pulsar timing arrays observe merging primordial black holes? ,
[2306.17836]

The following publication was completed before the start of the doc-
torate and will therefore not be discussed in detail. Instead, its results
are incorporated into the introductory chapters of this thesis, as both
projects [1] and [2] are based on it:

[4] F. Ertas, F. Kahlhoefer, and C. Tasillo, Turn up the volume: listening
to phase transitions in hot dark sectors, JCAP 02 (2022), no. 02
014, [2109.06208]

xi

http://dx.doi.org/10.1088/1475-7516/2023/11/053
http://dx.doi.org/10.1088/1475-7516/2023/11/053
http://arxiv.org/abs/2306.09411
http://dx.doi.org/10.1088/1475-7516/2024/05/065
http://dx.doi.org/10.1088/1475-7516/2024/05/065
http://arxiv.org/abs/2311.06346
http://arxiv.org/abs/2306.17836
http://dx.doi.org/10.1088/1475-7516/2022/02/014
http://dx.doi.org/10.1088/1475-7516/2022/02/014
http://arxiv.org/abs/2109.06208




CONTENTS

1 Introduction 1
2 Gravitational wave cosmology 5

2.1 Chronology of our universe . . . . . . . . . . . . . . . . 5
2.2 Open questions . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The homogeneous universe . . . . . . . . . . . . . . . . . 11

2.3.1 The FLRW metric . . . . . . . . . . . . . . . . . 12
2.3.2 Thermodynamics of the primordial plasma . . . . 14
2.3.3 Dark and visible sectors . . . . . . . . . . . . . . 17
2.3.4 Going out of equilibrium . . . . . . . . . . . . . . 21
2.3.5 The freeze-out of dark matter . . . . . . . . . . . 23
2.3.6 The Big Bang nucleosynthesis . . . . . . . . . . . 26

2.4 Cosmological gravitational wave backgrounds . . . . . . 29
2.4.1 Gravitational waves in vacuum . . . . . . . . . . 31
2.4.2 Helicity decomposition of metric perturbations . 34
2.4.3 Gravitational waves in a curved background . . . 37
2.4.4 Gravitational waves in an expanding background 39
2.4.5 Equation of motion for a gravitational wave . . . 41
2.4.6 Stochastic GW signals from the early cosmos . . 43
2.4.7 The spectrum of primordial gravitational waves . 45
2.4.8 The redshift of gravitational wave spectra . . . . 48
2.4.9 Primordial GWB searches . . . . . . . . . . . . . 49

3 Pulsar timing arrays 53
3.1 A short history of pulsar timing . . . . . . . . . . . . . . 53
3.2 Gravitational wave effects on a single pulsar’s timing . . 55
3.3 Effect of a GWB on an array of pulsars . . . . . . . . . 57
3.4 The PTA likelihood . . . . . . . . . . . . . . . . . . . . . 60
3.5 Evidence for a gravitational wave background . . . . . . 65
3.6 Supermassive black hole binaries . . . . . . . . . . . . . 68

3.6.1 Binary evolution and the final parsec problem . . 68
3.6.2 GWBs from inspiraling binaries . . . . . . . . . . 69

4 Dark sector phase transitions 73
4.1 Finite-temperature effects in QFT . . . . . . . . . . . . 73

4.1.1 A quantum harmonic oscillator in a thermal bath 73
4.1.2 The Kubo-Martin-Schwinger relation . . . . . . . 74
4.1.3 The effective potential of an abelian gauge theory 75

4.2 Bubble nucleation and percolation . . . . . . . . . . . . 83
4.3 Gravitational waves from dark sector phase transitions . 88

4.3.1 Bubble collisions and sound waves . . . . . . . . 90
4.3.2 The dilution of GWs due to a dark sector decay . 92

5 Do PTAs observe a dark sector phase transition? 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Computation of GW spectra . . . . . . . . . . . . . . . . 95
5.3 Pulsar timing array data analysis . . . . . . . . . . . . . 97

xiii



xiv contents

5.4 Cosmological constraints . . . . . . . . . . . . . . . . . . 100
5.4.1 Stable dark sectors . . . . . . . . . . . . . . . . . 100
5.4.2 Decaying dark sectors . . . . . . . . . . . . . . . 101

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.1 Stable dark sector phase transitions . . . . . . . 102
5.5.2 Decaying dark sector phase transitions . . . . . . 105
5.5.3 Comparison with SMBHBs and later data sets . 107

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.A Details on the cosmological likelihood . . . . . . . . . . . 113

5.A.1 Stable dark sector . . . . . . . . . . . . . . . . . 113
5.A.2 Decaying dark sector . . . . . . . . . . . . . . . . 114

5.B Posterior distribution of GWB spectra . . . . . . . . . . 118
5.C Details on the calculation of Bayes factors . . . . . . . . 119

5.C.1 The product space method . . . . . . . . . . . . 119
5.C.2 Uncertainties of the computed Bayes factors . . . 121
5.C.3 Relating Bayes factors to p-values and Z-scores . 122
5.C.4 Influence of the prior choice on the Bayes factor . 122
5.C.5 Influence of priors on the credibility of a DSPT . 124
5.C.6 Priors for the Bayesian model comparison . . . . 126

6 Hunting WIMPs with LISA 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Dark sector model . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 The effective potential . . . . . . . . . . . . . . . 130
6.2.2 Properties of the phase transition . . . . . . . . . 133
6.2.3 The gravitational wave spectrum . . . . . . . . . 133

6.3 The dark sector relic density . . . . . . . . . . . . . . . . 136
6.4 Thermalization of the two sectors . . . . . . . . . . . . . 140

6.4.1 The dark sector temperature . . . . . . . . . . . 140
6.4.2 Thermalization within the dark sector . . . . . . 142
6.4.3 Thermalization of the dark and visible sector . . 145

6.5 Gravitational waves from hot dark sectors . . . . . . . . 148
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.A Dark bubble walls . . . . . . . . . . . . . . . . . . . . . 155
6.B Detail on thermalization and freeze-out . . . . . . . . . . 157

6.B.1 The thermal mixing angle . . . . . . . . . . . . . 157
6.B.2 The Boltzmann equation for entropy transfer . . 158
6.B.3 Annihilation cross sections . . . . . . . . . . . . . 161

7 Do PTAs observe inspiraling primordial black holes? 163
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Gravitational wave signal . . . . . . . . . . . . . . . . . 164
7.3 Expected number of binaries . . . . . . . . . . . . . . . . 168
7.4 PBH production and constraints . . . . . . . . . . . . . 170
7.5 PTA data analysis . . . . . . . . . . . . . . . . . . . . . 170
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.7 Discussion and conclusions . . . . . . . . . . . . . . . . . 173

8 Summary 175



ACRONYMS

BBN Big Bang nucleosynthesis
BBO Big Bang Observatory
CMB cosmic microwave background
CPTA Chinese Pulsar Timing Array
CURN common uncorrelated red noise
DM dark matter
DMGP dispersion measure as a Gaussian process
DMX dispersion measure extension of the timing ephemeris
dof degree of freedom
DS dark sector
DSPT dark sector phase transition
ET Einstein Telescope
EPTA European Pulsar Timing Array
EWPT electroweak phase transition
FLRW Friedmann–Lemaître–Robertson–Walker
FOPT first-order phase transition
GR General Relativity
GW gravitational wave
GWB gravitational wave background
HD Hellings-Downs
InPTA Indian Pulsar Timing Array
IPTA International Pulsar Timing Array
IR infrared
JWST James Webb Space Telescope
ΛCDM Λ cold dark matter
LIGO Laser Interferometer Gravitational-Wave Observatory
LISA Laser Interferometer Space Antenna
LO leading-order
LVK LIGO-VIRGO-KAGRA
MCMC Markov chain-Monte Carlo
NANOGrav North American Nanohertz Observatory for Gravitational

Waves
no-CURN no common uncorrelated red noise
NLO next-to-leading-order
PBH primordial black hole
PLI power-law integrated
PPTA Parkes Pulsar Timing Array
PT phase transition
PTA pulsar timing array
QCD quantum chromodynamics
QFT quantum field theory
SMBHB supermassive black hole binary

xv



SM Standard Model
SNR signal-to-noise ratio
SVT scalar, vector and tensor
TOA time of arrival
TT transverse-traceless
UV ultraviolet
vev vacuum expectation value
WIMP weakly interacting massive particle

NOTAT ION

In this thesis, Einstein’s summation convention
∑

µ aµb
µ ≡ aµb

µ and
the Dirac slash notation /k ≡ kµγµ are used. If not stated otherwise,
natural units in which c = ℏ = kB = 1 are employed. Further, space-time
indices are written as Greek letters, while spatial vectors are printed
in boldface (x) with components denoted by Latin indices (xi). The
flat Minkowski metric is chosen as ηµν ≡ diag (−1, +1, +1, +1), where
the 0-component corresponds to the time variable (i. e. xµ =

(
x0, x

)
with x0 = t). Partial derivatives with respect to a generic variable x
are abbreviated as ∂x; space-time derivatives read ∂µ = ∂

∂xµ = (∂t, ∂i),
while total derivatives with respect to time are denoted by ḟ(t) = df

dt . A
particle’s four-momentum is defined as pµ = (E, p), such that pµxµ =
−Et+ p · x and d4p = dE d3p.

The Einstein tensor is given by Gµν ≡ Rµν − 1
2Rgµν with the Ricci

scalar R ≡ Rµ
µ and the Ricci tensor Rµν ≡ Rγ

µγν , which is, in turn,
defined over the Riemann tensor

Rµ
νρσ ≡ ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ .

The Christoffel symbols

Γρ
µν ≡ 1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν)

can be calculated as space-time derivatives of the metric gµν . To simplify
the Einstein equations, the reduced Planck mass mPl = (8πG)−1/2 =
2.4 · 1018 GeV is employed, where G is Newton’s gravitational constant.
By default, energies, temperatures, masses, and momenta are all given
in units of eV = 1.6 · 10−19 J, whereas distances and time intervals are
expressed in inverse energy units.



1 I N TRODUCT ION

Ground Control to Major Tom:
Take your protein pills and put your helmet on

— Space Oddity by David Bowie

Gravitational waves were first detected by the LIGO collaboration in
September 2015 [5], a century after they were first predicted by Albert
Einstein in 1915 [6]. This groundbreaking discovery marked a significant
breakthrough in physics and astronomy in particular. In 2023, the field
saw another leap forward when pulsar timing arrays (PTAs) announced
the first detection of a gravitational wave background (GWB) [7–10].
Until now, gravitational waves (GWs) have primarily been used as The dawn of GW

cosmologyprobes of astrophysical phenomena, such as black hole and neutron star
mergers. However, with the PTA detection, the field of GW cosmology is
emerging, opening new avenues for understanding the expansion history
and matter content of our universe [11].

The impact of the PTA discovery on cosmology can be compared to
the first observation of the cosmic microwave background (CMB). Only
the following measurements of the CMB anisotropies made precision
cosmology possible and for the first time allowed testable statements
about the universe up to temperatures of a billion Kelvin (i.e., the
MeV scale) [12]. This period corresponds to the epoch of Big Bang
nucleosynthesis (BBN), which occurred shortly after the decoupling of
neutrinos. The latter happened at a point in time, when the interactions
between neutrinos and other particles of the Standard Model (SM) of Comparing

neutrino
decoupling ...

particle physics could no longer be sustained due to the decreasing
temperature of the primordial plasma. More quantitatively, this point in
time can be determined by comparing the weak interaction rate Γweak(T )
with the Hubble expansion rate H(T ) [13]:

Γweak

H
∼ G2

FT
5

T 2/mPl
∼
(

T

MeV

)3

, (1.1)

where GF = 1.17 · 10−5 GeV−2 is the Fermi constant. We find that,
as soon as the temperature of the primordial plasma dropped below
the MeV scale (T ≲ O(MeV)), neutrinos could no longer interact with
the surrounding SM particles and henceforth evolved as a decoupled,
free-streaming species.

In fact, the same argument can be repeated for GWs [11,14]: When the
gravitational scattering rate

Γgw

H
∼ G2

NT
5

T 2/mPl
∼
(

T

mPl

)3

(1.2)
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2 introduction

dropped below the Hubble rate, the plasma was sufficiently dilute and
cold enough in order to let GWs propagate freely. From this simple... to the

decoupling of GWs scaling argument we can infer that GWs decoupled already at extremely
high temperatures around the Planck scale, namely around a temperature
of 1032 K. Consequently, unlike other messengers from the early cosmos
like photons, which only decoupled at a temperature of roughly 3000K
during recombination [13], GWs could free-stream since the Planck
epoch: GWs only redshifted to lower frequencies and weaker amplitudes,
preserving their information about the very early cosmos up to the
present day. Now, it is on us to find and interpret these signals.

However, the sheer weakness of the gravitational interaction set by
Newton’s constant GN = 6.71 · 10−39 GeV−2 is a mixed blessing for
cosmologists: On the one hand, in principle it allows the observation
of phenomena up to the Planck epoch as shown above. On the other
hand, only the most extreme events in which incredible amounts ofGN: A mixed

blessing mass and energy move close to the speed of light, can emit GWs which
are strong enough for us to observe them. Following the recent PTA
measurements, now we are confronted with the burning question what
tremendous events could have sourced the novel PTA signal in the nHz
frequency band.

The leading hypothesis for the signal’s origin is an astrophysical GWB:
During the hierarchical structure formation, galaxies merged forming
larger galaxies and clusters [15]. During that process, supermassive black
holes residing at the center of galaxies formed bound systems which,
assuming the existence of sufficiently effective mechanisms for dissipating
binding energy, later inspiraled and merged. Their inspiral emits strongSupermassive black

hole binaries GW signals in the nHz frequency band. Still, there are ongoing debates
whether such a mechanism for dissipating a sufficient amount of binding
energy is realized in nature [16–24] and whether the amplitude and
spectral tilt of the observed GW spectrum can be explained by realistic
populations of astrophysical supermassive black holes [15]. In this thesis,
we explore two alternative, cosmological mechanisms in detail: Dark
sector phase transitions and the inspiral of primordial black holes.

The study of dark sector phase transitions is not only intriguing as
they offer an explanation to the PTA signal. Instead, it provides new
insights into the yet obscure realms of our universe, whose energy content
is dominated by dark energy and cold dark matter. In the following
chapter 2 we will see that the history of our universe can be understoodDark sector phase

transitions as a series of consecutive phase transitions. As 95% of our universe are
referred to as dark and are hence assumed to interact possibly only
gravitationally with other matter, it is reasonable to further assume
that also a dark sector (to be defined properly in section 2.3.3) featured
a phase transition in the early universe. Such a phase transition could
have not only given rise to dark matter but also to a still-observable
GWB [25–27].



introduction 3

Primordial black holes on the other hand, while being an interesting
dark matter candidate in their own right [28], could have played a
decisive role in the early cosmos: There are observations of quasars at
high redshifts (z > 6, corresponding to a time less then a billion years
after the end of inflation) which challenge conventional models of black
hole growth [29–33]. A population of primordial black holes (PBHs)
formed in the early universe, could have provided a seed mechanism for
these early supermassive black holes in the center of the first galaxies. Primordial black

holesMoreover, these PBHs could have played an important role in the
formation of large-scale structure by acting as starting points of galaxy
formation [34]. Finally, the formation of PBHs in the early universe
through the collapse of large density fluctuations is directly linked to
strong dynamics, e.g. coming from cosmological phase transitions or
domain wall networks [35,36]. The study of GWBs, phase transitions as
well as PBH formation together with their eventual inspiral and merger
is hence full of intriguing interconnections. This motivates us to also
consider inspiraling PBHs as an origin for the recently observed PTA
signal in this thesis.

After setting the stage for this thesis in an introduction to GW cosmology
in chapter 2, followed by a review of the latest PTA results in chapter 3,
and an in-depth description on how to calculate GWB predictions for
a given dark sector phase transition in chapter 4, we discuss three key
questions of this thesis: First, in chapter 5, we aim at answering the Outline of this

thesisquestion what the odds for a dark sector phase transition explanation of
the novel nHz signal are. Second, going beyond the nHz frequency range
in chapter 6, we ask what a similar detection of a GWB at the future
GW observatory LISA could teach us about the production of WIMP
dark matter in the early universe through a freeze-out triggered by a
dark sector phase transition. The third question we want to answer in
this thesis, in chapter 7, concerns the conditions under which the PTA
signal can be interpreted as a GWB from inspiraling primordial black
holes. We summarize our results and conclude this thesis in chapter 8.





2 GRAV I TAT IONAL WAVE COSMOLOGY

I became an astronomer because I could not imagine living on Earth
and not trying to understand how the Universe works.

— Vera Rubin

In this chapter we want to introduce the field of GW cosmology. We
start by giving a brief review of the main events that shaped the universe
we live in, in section 2.1. In section 2.2 we then aim at giving a concise
overview of the successes the concordance model of cosmology achieved
and which unsolved puzzles it leaves us with. The following section Outline of this

chapter2.3 provides a summary of our description of the expansion of space
and its effects on the primordial plasma. Section 2.4 then introduces
the concept of GWs in both flat space and a curved background. We
will find that GWs stemming from sources active in the early cosmos
are necessarily of stochastic nature today and can leave an observable
imprint on the observables of precision cosmology. This chapter will end
with a discussion of the existing limits on cosmological GWBs, stemming
from precision cosmology and direct (non-)observations of gravitational
radiation. Large parts of this chapter are based on the two famous books
by Michele Maggiore [14, 37] and the detailed review [11] by Chiara
Caprini and Dani Figueroa. The initial sections on the chronology and
evolution of our universe on large scales build up on the excellent books
by Rocky Kolb and Michael Turner [38], as well as Daniel Baumann [13].

2.1 chronology of our universe

The best model at our disposal to describe the evolution of the universe
is the concordance model. The model can be viewed as a consequence of
the two most fundamental theories human minds came up with so far:
Albert Einstein’s theory of General Relativity (GR), describing gravity,
and quantum field theory (QFT), describing all other interactions. The
QFT that made the mathematical formulation of the concordance model
possible is the Standard Model (SM) of particle physics. In order to
make observations fit with theoretical predictions, several extensions of ΛCDM

the SM needed to be introduced, most prominently dark energy (Λ) and
cold dark matter (CDM). These necessary additions to the SM give rise
to the alternative, more technical name Λ cold dark matter (ΛCDM)
model for the concordance model—and to two yet unsolved mysteries
of our universe. The objective of this section is to give a chronological

5
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overview of the events which shaped our universe and are described by
ΛCDM. A depiction of this timeline can be found in fig. 2.1.

Today
t ∼ 13.8Gyr

Recombination
t ∼ 380 kyr

Big Bang Nucleosynthesis
t ∼ 1min

Electron-positron annihilation
t ∼ 1 s

QCD phase transition
t ∼ 20 µs

Electroweak phase transition
t ∼ 10 ps

Inflation

T ∼ 240 µeV

T ∼ 250meV

T ∼ 100 keV

T ∼ 1MeV

T ∼ 150MeV

T ∼ 150GeV

?

Figure 2.1: A timeline of important events in ΛCDM cosmology.

The central observation that made today’s theory of cosmology possible
is that space expands. Our universe must have hence started in a hot and
dense state, which is colloquially referred to as the Big Bang. Due to theThe Big Bang
mathematical limitations of combining GR and QFT in a single, agreed-
on, more fundamental theory of everything for describing the interactions
of matter, only time scales larger than a Planck time (tPl ≃ 5 · 10−44 s)
and length scales larger than a Planck length (ℓPl ≃ 2 · 10−25 m) can be
described reliably. In particular, this forbids any clarifying statements
about the initial singularity, which appears if one extrapolates from
today’s 13.8 billion years old universe back to the state where its energy
density exceeded the Planck scale.

The earliest event ΛCDM postulates is cosmic inflation. During this
process, which lasted at least 10−33 s, space expanded by a factor of at
least 1026. Inflation is thought to be triggered by a phase transition (PT)Inflation
of the so-called inflaton field, which also extends the SM. Due to the
inflaton’s high vacuum energy density, space expanded exponentially fast
up to the point when the yet cold universe reheated to some temperature
below 1015 GeV. During this period of reheating, decays of the inflaton
field rapidly filled up the empty space with a thermal bath of SM particles.
Due to the strong inflationary period, the plasma is thought to be
highly homogeneous, with small inhomogeneities coming from quantum
fluctuations of the inflaton field which became macroscopic throughout
inflation. These imperfections eventually led to the accumulation of dark
matter, acting as a seed for baryonic (“visible”) matter over-densities,
which much later evolved into stars, galaxies and larger structures.
Additionally, also relic GWs were produced both through inflation
and the subsequent reheating. So far, only the existence of density
perturbations with an almost scale-invariant power spectrum has been
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observed, whereas the GWs emitted at these early times have not yet
been detected [12].

The next event, which we can be certain occurred, is baryogenesis.
During this process, whose precise underlying mechanism is yet unclear,
the asymmetry between matter and antimatter has been produced. An
often hypothesized connection is with the electroweak phase transition
(EWPT), happening at temperatures of around 100GeV. During this
PT, the Higgs field of the SM obtained its vacuum expectation value,
thus giving mass to itself, gauge bosons and fermions. In the SM, this PT
is a cross-over, i.e. it happens at the same point in time throughout the The electroweak

phase transitionprimordial plasma. There exist several extensions of the SM which render
the EWPT first-order, such that it succeeds through the nucleation of
bubbles of the new vacuum state, which then expand, collide and perturb
the primordial plasma. Under certain circumstances, the present-day
asymmetry between the abundance of matter and antimatter could
have been produced in the vicinity of these bubbles [13]. In case the
EWPT is first-order, GWs with mHz frequencies are expected to have
been emitted, lying well within the range where the Laser Interferometer
Space Antenna (LISA) will be most sensitive. Hopefully, LISA will hence
be able to shed light on the mechanism through which the electroweak
symmetry was broken in the early universe.

Most particle species of the primordial plasma became massive as a
result of the EWPT, the only exceptions being photons, gluons and
possibly neutrinos remaining massless.1 When those massive particles
can no longer be produced through thermal processes, because their
rest-mass can no longer be reached by the characteristic energy scale of
particle interactions set by the decreasing temperature, they typically
freeze out of the thermal plasma or become Boltzmann-suppressed. In
particular, the thermal freeze-out mechanism is often thought to be the
origin of dark matter (DM) in our universe, as it naturally gives rise
to a relic abundance of particles which at most interact weakly with Freeze-out of DM
SM particles, matching astrophysical observations. The precise point
in time of DM freeze-out is a model-dependent question. One of the
most studied DM candidates, the so-called weakly interacting massive
particle (WIMP), is expected to freeze out around the GeV–TeV scale.

The next noteworthy event happening in the early universe plasma is
two more PTs happening at once: Deconfinement and the chiral PT are
two intertwined PTs in which quarks and gluons became confined within
hadrons, and quarks formed non-zero chiral condensates, respectively.
Both events are usually subsumed and referred to as the quantum
chromodynamics (QCD) phase transition, as in the SM they occur The QCD phase

transition(s)simultaneously at a temperature of around 150MeV. Both transitions
are cross-overs in the SM, meaning that the process happens at once
throughout the universe and no GWs are expected to be emitted during

1 The SM does not allow for the generation of neutrino masses. From the observation
of neutrino oscillations we can, however, infer that at least two neutrino families
must be massive [13,39].
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the PT. There exist extensions of the SM which predict one of the two
transitions to succeed through the nucleation and expansion of bubbles.
The GWs emitted through this process could have already been observed
with PTAs or be probed in the µHz-band [40].

Around the MeV scale several events then happened in quick succession:
First, neutrinos decoupled from the thermal bath, which was henceforth
composed of neutrons, protons, electrons, positrons, photons and a still
negligible amount of light nuclei. The neutrinos free-streamed from that
point on and only recently became non-relativistic in the late universe.
Next, electrons and neutrinos annihilated (up to one part in a billion,
due to the previously produced matter-antimatter asymmetry) when
the temperature dropped below the electron mass. Their annihilationν-decoupling,

e+e−-annihilation
and BBN

reheated (or rather: slowed down the cooling of) the remaining bath
of nucleons, electrons and photons to a temperature slightly higher
than those of neutrinos. Eventually, the nucleons formed (quasi-)stable
bound states in a process called Big Bang nucleosynthesis (BBN). The
remaining stable bound states are the ionized nuclei of the early elements
hydrogen (hydrogen-1 1H as well as deuterium 2H) and helium (3He). To
some small fraction also the stable lithium isotope 7Li has been produced.
About three minutes after the end of inflation, the formation of the
early elements stalled as the universe had cooled so much that it could
no longer sustain nuclear interactions. Today’s observations of galaxies
with low metallicities in which star formation just started allows us to
test the predicted relic abundances of these isotopes observationally.
The predictions, being about 75% hydrogen, 25% helium and a little
(O(10−10)) lithium, match the observed mass abundances very well. This
success of the ΛCDM model leaves us with the so-called Neff constraint
on new physic at the MeV scale, which we will discuss in section 2.3.6.

Up until 60.000 years after BBN, the universe was dominated by rel-
ativistic species, commonly referred to as radiation. Since the energy
density of radiation dilutes faster than that of non-relativistic species,
commonly referred to as matter, from this point on cold dark and SM
matter then dominated the cosmic energy budget. In fig. 2.2 this energy-
redshift dependence is plotted. The redshift will be properly defined
in the following section, but can intuitively be understood as the rela-Radiation-Matter

equality tive factor a wavelength of a photon propagating towards us has been
stretched since a given point during cosmic expansion.

About 380.000 years after the end of inflation, the universe became
transparent to electromagnetic radiation. Whereas it was transparent
to GWs throughout all of the previously discussed processes, photons
interacted too frequently with the charged constituents of the plasma for
us to still observe them today if emitted before this point in time. Only at
recombination, electrons and ionized nuclei formed charge-neutral atoms,
allowing photons to free-stream until today. The resulting backgroundRecombination
of photons can be observed today as the CMB. The CMB can be
imagined as an almost perfectly smooth, spherical wall blocking our
view towards earlier times.Yet, the CMB embodies a rich source of
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Figure 2.2: Energy density of the primordial relativistic plasma (rad), the
matter energy density (mat) and the vacuum energy density (Λ)
in ΛCDM. The background module of the CLASS code [41] and
cosmological parameters inferred from Planck 2018 data [12] were
used to generate this figure.

information about the early universe whose interpretation marked the
dawn of precision cosmology: after the accidental detection of the CMB
in 1965 by Penzias and Wilson, the COBE satellite confirmed in 1989 that
the CMB photons indeed follow an almost perfect black body spectrum
with a mean temperature of temperature 2.73K and anisotropies of only
one part in 100.000. Subsequent measurements of the CMB anisotropies
with WMAP and eventually the Planck satellite allowed the formulation
of the ΛCDM model. In observing the temperature anisotropies and
mapping potential cosmic histories to their angular power spectrum, the
age and expansion rate of the universe, as well as its energy composition
could be inferred (see fig. 2.3).

After the emission of the CMB, the universe remained dark for about 10
to 100 million years. The so-called dark ages ended with the cosmic dawn
when baryonic matter fell into the potential well of cold DM, forming the
first (“Population-III”) stars which quickly burned hydrogen and helium
to form the first 26 elements of the periodic table. At about the same
time reionization happened: The first stars emitted ionizing photons, Reionization
thus re-ionizing the surrounding gas clouds. Again, the universe became
partially opaque due to the scattering of photons with free electrons.
Luckily, the ionization was only partial, such that the CMB is not
shielded from us, allowing us to still observe it and its anisotropies
today.

What follows is the hierarchical structure formation: stars form galaxies,
galaxies merged forming bigger galaxies, galaxy clusters, and super-
clusters, which are separated by large voids. Eventually, dark energy Today
dominated over matter, slowing down the formation of larger structures.
Recently, life started to evolve somewhere in the Milky Way, which
learned how to write PhD theses.
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Baryonic matter
5%

Dark matter

26%

Dark energy

69%

Figure 2.3: Today’s energy content of the universe, based on the cosmological
parameters inferred from Planck 2018 data [12]. The contribution
from radiation is O(0.1)% and was hence neglected in this graphic.

2.2 open questions

The ΛCDM model, only being defined through six parameters inferred
by observations [12], is the easiest model able to explain almost all
cosmological observables so far. In particular, it precisely explains the
power-spectrum of CMB anisotropies and the early element abundances
produced in BBN. It further successfully describes the distribution of
galaxies and large-scale structure in our universe, as well as the ob-
served accelerated expansion of our universe. In conclusion, ΛCDM has
been remarkably successful in providing a consistent and comprehen-
sive description of our universe, explaining a wide range of seemingly
uncorrelated observations like the structure of the CMB and galaxy
clustering. Yet, there are several pieces of evidence that ΛCDM will notSuccess and open

problems remain the cosmological model preferred by data. The most noteworthy
tension today is between local measurements of the current expansion
velocity (≈ 73 km/s/Mpc) and the inferred Hubble rate today from
CMB data (≈ 68 km/s/Mpc). Further, there is a mismatch between
the predicted and observed abundances of galaxy clusters. The two
tensions are referred to as H0 and σ8 tension, respectively. To date
there is no consensus on how to reconcile those significant tensions in a
sole cosmological model which is statistically preferred over ΛCDM [42].
There is, however, serious hope that data from the James Webb Space
Telescope (JWST) will either help in constructing a new cosmic distance
ladder which could either resolve the tensions or provide persuasive
evidence for new physics [43,44].

Further, ΛCDM fundamentally relies on the existence of DM, dark energy
and an inflaton field, neither of which have been directly observed.
The case of DM will be of particular importance for this thesis. It
therefore makes sense to briefly review the key pieces of evidence for
its existence: Cold DM is not only motivated through its explanatory
power when fitting the CMB data to a cosmological model [12], but
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further due to several independent sources of evidence: The historically
first motivation to introduce this form of non-relativistic (i.e., cold)
and non-interactive (i.e, dark) form of matter was to explain the faster-
than-expected movement of galaxies within the Coma cluster by Fritz
Zwicky in 1933 [45]. Further evidence for the existence of DM was
found by Vera Rubin and collaborators in 1970, when they found that
observations of galactic rotation curves contradicted expectations based The evidence for

DMon visible matter only [46]. Whereas these phenomena alone could also
be interpreted as a deviation from the Newtonian law of gravity at
large distances, several other phenomena motivate the hypothesized
existence of DM. Studies of galaxy clusters show that the majority
of the mass inferred from gravitational lensing is not associated with
visible matter [47–50]. Further, observations of the bullet cluster provide
a striking piece of evidence in favor of DM: Due to the collision of two
galaxy clusters, the distribution of baryonic matter within the bullet
cluster, visible as hot gas, differs from the distribution of mass as inferred
through gravitational lensing [51–53]. Here, we only listed the key pieces
of evidence favoring the existence of dark matter. A thorough review of
the mentioned phenomena and other sources of evidence can be found
for instance in refs. [54, 55].

The shortcoming of the SM to provide a viable DM candidate motivates
the prediction of new particle species, the arguably most famous one
being the WIMP. By now, the WIMP has been subject of many experi-
mental searches, which however only resulted in null-results and exclusion
bounds. These, in turn, put the WIMP idea under pressure [56]. Several What is DM made

of?other DM candidates have been proposed, such as sterile neutrinos,
axion-like particles, dark photons, several super-symmetric candidates
(such as neutralinos, sneutrinos, gravitinos and axinos), superheavy and
composite DM particles, as well as PBHs to just name a few [54,55].

There has been little progress in settling the debate what DM is com-
posed of. This thesis is aimed at contributing to the question how the
advent of GW cosmology can hopefully shed light on the still mysterious
origin of DM. In the following sections 2.3 and 2.4 we will start by
introducing this new sub-discipline of cosmology.

2.3 the homogeneous universe

As introduced above, the evolution of our universe can be derived from
coupling Einstein’s theory of GR with the matter content given by the
SM. We will start by solving the Einstein equations for a homogeneous Setting the stage

for particle
cosmology

and isotropic perfect fluid and find the Friedmann equations. Those will
fix the background evolution and set the stage for the thermodynamic
description of the primordial plasma of elementary particles presented
in section 2.3.2. In section 2.3.3 we will specifically review which impact
dark sector (DS) particles could have had on the primordial plasma. As
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cosmology became a mature field over the last decades, the derivations
this abbreviated introduction to cosmology is based on can be found
in countless excellent books, see e.g. [13,37,57]. GWs and other metric
perturbations only played a negligible role throughout the expansion
history, such that their impact can be neglected within this section. We
will discuss them in the following section 2.4.

2.3.1 The FLRW metric

According to GR, the gravitational interaction follows the field equations

m2
PlGµν = Tµν (2.1)

with the Einstein tensor Gµν being a non-linear function of space-The Einstein
equations time derivatives of the metric gµν and the energy-momentum tensor

Tµν describing the density and flux of energy and momentum through
spacetime. As the cosmological constant Λ and the intrinsic curvature
of spacetime are irrelevant for the expansion history of the primordial
universe, their effect will be ignored in the following discussion.

Observations indicate that our universe is spatially homogeneous and
isotropic on large scales. Focussing our discussion on these sufficiently
large scales, the metric and the energy-momentum tensor are both
subject to tight constraints: Due to homogeneity both quantities can only
depend on time, but not on a specific position in space. Isotropy furtherThe FLRW

universe requires them to be diagonal, where the remaining spatial components are
identical. The most general metric that fulfills these criteria for the case
of a flat universe is the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric

gµν(t) = diag [−1, a(t), a(t), a(t)] . (2.2)

The function a(t) is referred to as the scale factor and translates be-
tween physical and coordinate distances. It is related to the previously
mentioned redshift z of photons from a given cosmic epoch through
a0/a = 1 + z, where a0 is today’s scale factor, which is conveniently set
to a0 = 1. The energy-momentum tensor is given by

Tµν(t) = diag [−ρ(t), P (t), P (t), P (t)] , (2.3)

where ρ (P ) is the energy density (pressure) of the perfect fluid as which
the hot plasma of the early universe is described. Inserting these quanti-
ties into the Einstein field eqs. (2.1) yields two independent differential
equations for the scale factor, which are referred to as the first andThe Friedmann

equations second Friedmann equation. They can be written as

H ≡ ȧ

a
=

√
ρ

3m2
Pl

and ρ̇+ 3H (ρ+ P ) = 0 . (2.4)

The first equation defines the Hubble rate H(t), which works as a
measure for the expansion rate of the universe at a given point in time.
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Today’s Hubble rate is commonly referred to as the Hubble constant
H0. The above set of equations neatly captures the meaning of Wald’s
famous quote [58]: “Matter tells space how to curve and space tells
matter how to move”. Whereas the first Friedmann equation can be
identified with the first statement, the second equation maps to the
second statement: The energy density of the primordial plasma makes
space expand, which in turn leads to the dilution of the plasma.

In the second Friedmann eq. (2.4), not only the energy density, but
also the pressure of the primordial plasma enters, making the dimen-
sionless equation of state parameter w = P/ρ the decisive quantity for
determining the speed with which any form of energy dilutes. For an
equation of state w ̸= −1, we find that ρ ∝ a−3(1+w), a ∝ t2(1+w)/3 and
H = 2(1 + w)/(3t) by solving the set of the two Friedmann equations.
Of particular importance are the cases w = 1

3 and w = 0, correspond-
ing to a fluid dominated by relativistic and non-relativistic particles, Equation of state:

a song of fire, ice
and dark energy

respectively. More conventionally, these fluids are referred to radiation
and matter. In these cases the energy density evolves like ρrad ∝ a−4

and ρmat ∝ a−3. The case w = −1 corresponds to the case of vacuum
energy: If vacuum energy dominates over all other energy sources, as
in the present universe, the scale factor increases exponentially with
time, as vacuum energy does not get diluted by its own induced Hubble
expansion.

The total energy density of our universe today is referred to as ρ0 =
ρc,0 ≡ 3m2

PlH
2
0 ≃ 10−26 kg/m3, where the Friedmann equation was used

to relate its value to the Hubble constant H0. If today’s mean energy
density were larger (smaller) than this critical value, but H0 remained We live in flatland
the same, a positive (negative) intrinsic curvature of Euclidean space
would need to be introduced. Measurements of the Planck satellite are
however consistent with our universe being intrinsically flat [12].

We further introduce the normalized energy density Ωi = ρi,0/ρc,0, such
that

∑
i Ωi = 1, where the sum runs over all sources ρi contributing to the

total energy density ρ. The current energy densities in radiation, (dark
and visible) matter, and dark energy have been inferred from Planck
2018 data [12] and read Ωrad = 9 · 10−5, Ωmat = 0.31, and ΩΛ = 0.69,
c.f. fig. 2.3. In this thesis, the Hubble constant H0 = 67.7 km/s/Mpc = Today’s universe
2.1·10−42 GeV (based on TT,TE,EE+lowE+lensing+BAO data) is used [12].
In more conventional units, the inverse Hubble constant reads H−1

0 =
4.4Gpc = 14.5Gyr, providing us with a rough estimate of the size and
age of the observable universe, ignoring the redshift dependence of its
energy content. Integrating the Friedmann equation with the actual
energy content described by the above values for Ωrad, Ωmat and ΩΛ

leads to the current age of the universe, t0 = 13.8Gyr.
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2.3.2 Thermodynamics of the primordial plasma

So far we assumed that the energy-momentum tensor on the right-hand
side of the Einstein eqs. (2.1) is that of a generic perfect fluid, which isParticles: the

actors on the
FLRW stage

only characterized by a time-dependent energy density and pressure. The
goal of this section will be to derive those two expressions for the particle
content of a given QFT, in particular of the SM and DS extensions of it.

The primordial plasma has high number densities and typically also high
interaction rates between the different particle species. It can hence be
described using the tools of statistical mechanics. As such, we are not
interested in the dynamics of individual particles’ motions but instead
how their distribution changes over time. The distribution fa(x,p, t)
of positions and momenta of a given particle species a at a time t is
defined such that in a given spatial volume Vx in a three-dimensional
momentum range Vp, the number of particles is defined as

Na(t) =
ga

(2π)3

∫
Vx

d3x

∫
Vp

d3p fa(x,p, t) (2.5)

with ga being the internal degrees of freedom of species a. We now imposeThe Boltzmann
equation that the statistical distribution fa fulfills the Boltzmann equation

L [fa] = C [fa, ...] . (2.6)

The Liouville operator L on the left-hand side relates the geodesics,
given a specific metric tensor gµν , of individual particles of species a to
their full distribution fa. The collision operator C instead relates the
changes in the distribution function fa with those of all other particle
species, indicated by the ellipsis in the above equation. The right-hand
side describes particle interactions, i.e. decays and scatterings of a, and
can thus be understood as the way QFT enters into our description of
the early universe.

For an FLRW metric, in which fa(x,p, t) = fa(p, t) due to isotropy and
homogeneity, the Boltzmann equation reads

∂tfa(p, t)−H(t) p ∂pfa(p, t) =
C [fa, ...] (p, t)

Ea
, (2.7)

where E2
a = m2

a + p2 is the energy of a single a particle with momentum
p. In practice, this form of the Boltzmann equation is still too generic
to infer the dynamics of observable quantities from it. What is often
done, is to compute moments of the above partial differential equation
in order to obtain a set of ordinary differential equations.

The most relevant moments of the distribution fa in thermodynamicsThermodynamic
quantities are the number density, the energy density, the pressure and the entropy

density of a given species a. They can be obtained through

na(t) =
ga
2π2

∫ ∞

0
p2fa(p, t) dp , (2.8a)
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ρa(t) =
ga
2π2

∫ ∞

0
p2
√
p2 +m2

afa(p, t) dp , (2.8b)

Pa(t) =
1

3

ga
2π2

∫ ∞

0

p2√
p2 +m2

a

fa(p, t) dp and (2.8c)

sa(t) = − ga
2π2

∫ ∞

0
p2 [fa log (fa)∓ (1± fa) log (1± fa)] dp .

(2.8d)

The upper (lower) signs correspond to a bosonic (fermionic) species Moments of the
Boltzmann
equation

a. Integrating the Boltzmann equation in order to obtain equations of
motion for the above quantities, one finds

ṅa + 3Hna =
ga
2π2

∫ ∞

0
p2
C [fa, ...] (p, t)√

p2 +m2
a

dp, (2.9a)

ρ̇a + 3H (ρa + Pa) =
ga
2π2

∫ ∞

0
p2C [fa, ...] (p, t) dp (2.9b)

ṡa + 3Hsa = − ga
2π2

∫ ∞

0
p2
C [fa, ...] (p, t)√

p2 +m2
a

log

(
fa(p, t)

1± fa(p, t)

)
dp .

(2.9c)

Note that this set of equations for ṅa, ρ̇a, and ṡa does not necessarily
simplify our way to the original goal of simplifying the full Boltzmann
equation. Luckily, often the right-hand side can be approximated or
be expressed in terms of the same derived quantities na, ρa and sa,
allowing an enormous decrease in complexity of the problem. In the case
of no particle interactions, C = 0, one finds that the comoving particle The conservation

of particle number,
entropy and energy

number density Na = naa
3 and the comoving entropy density Sa = saa

3

are conserved. For a pressure-less non-interactive species, one further
finds that the comoving energy density ρaa3 is conserved. For radiation
instead, for which Pa = ρa/3, this is not the case. In the latter case,
the radiation pressure makes the energy density decrease faster and
ρaa

4 is conserved. The underlying physical process is the redshift of the
radiation to less energetic, lower frequencies.

If there is a non-zero collision term for species a, the term q̇a ≡ ρ̇a +
3H (ρa + Pa) will act as a heat source or sink for other species. The
quantity q̇a is hence often referred to as a heating rate. Comparing the
second Friedmann eq. (2.4) with the expression for q̇a, we can deduce Adiabatic

expansionthat the total heating rate q̇ =
∑

a q̇a = 0 vanishes, such that the
total heat Q = const in the universe is conserved, where Q̇ = q̇a3.
The Hubble expansion of the universe can hence be understood as an
adiabatic expansion in the sense of thermodynamics, slowly cooling
down its constituents.

In the case of frequent interactions, the plasma is thermalized. Frequent Thermal
equilibriuminteractions here refer to an interaction rate which exceeds the Hubble

rate, H ≫ Γ. In this case, the distributions can be shown to follow a
thermal Bose-Einstein or Fermi-Dirac distribution,

fa(p, t) =

[
exp

(
Ea(p)− µa(t)

Ta(t)

)
∓ 1

]−1

(2.10)
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with µa(t) being the chemical potential of a. Depending on the strength
of interactions allowed by the underlying QFT, the temperature Ta(t)
either is specific to the species a or shared between several species.
In case a only has frequent self-interactions, but no sufficiently fast
interactions with other species, Ta is specific for a. In case there are
frequent interactions involving also another species b, the two species
thermalize and obtain a common temperature Ta = Tb. For the sake
of generality, we will for now assume individual temperatures for all
particle species.

Plugging in the thermal distribution (2.10) into eq. (2.8d) we recover
the relation

Ṡa = a3(t)
ga
2π2

∫ ∞

0
p2 dp

C [fa, ...] (p, t)

Ea

Ea(p)− µa(t)

Ta(t)
(2.11)

=
Q̇a(t)− µa(t)Ṅa(t)

Ta(t)
, (2.12)

where we introduced the comoving heating rate Q̇a ≡ q̇aa
3 for species a.

This is just the second law of thermodynamics, which hence holds for
each individual particle species in a comoving volume. From this we can
conclude that a particle species’ entropy is conserved individually, when
there is no heat transfer to other particle species, Q̇a = 0, and if theEntropy is

conserved
individually if
Q̇a = Ṅa = 0

product µaṄa vanishes. The latter can be the case if either the chemical
potential µa = 0 vanishes or if particle number is conserved, Ṅa = 0.

Similarly, we can obtain the corresponding relation for the intrinsic
thermodynamic quantities,

sa(t) =
ρa(t) + Pa(t)− µa(t)na(t)

Ta(t)
, (2.13)

when plugging the thermal distribution (2.10) into the definitions of na,
ρa, Pa and sa in eqs. (2.8). We can use this equation to calculate the
entropy density of a given particle species in thermal equilibrium.

Under the assumption, that a species is fully relativistic, meaning thatLimits for hot and
cold species in

thermal equilibrium
its mass and chemical potential are much smaller than its temperature,
Ta ≫ µa,ma, we obtain

na = ga
ζ(3)

π2
T 3
a (t)×

1 for bosons
3
4 for fermions

, (2.14a)

ρa = ga
π2

30
T 4
a ×

1 for bosons
7
8 for fermions

, (2.14b)

Pa =
ρa
3

and (2.14c)

sa = ga
2π2

45
T 4
a ×

1 for bosons
7
8 for fermions

. (2.14d)
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If instead the particle species a is non-relativistic, Ta ≪ ma, such that
Ea ≃ ma + p2/ (2ma), one obtains

na = ga

(
maTa
2π

)3/2

exp

[
µa −ma

Ta

]
, (2.15a)

ρa =

(
ma +

3

2
Ta

)
na and (2.15b)

Pa = Tana ≪ ρa . (2.15c)

We recover the well-known Stefan-Boltzmann T 4 scaling of the radiation
energy density in eq. (2.14b), as well as the Boltzmann-suppression of a
non-relativistic species in eq. (2.15a), together with the ideal gas law in
eq. (2.15c). We can further identify eq. (2.15b) with the equipartition
theorem ⟨Ea⟩ = mx +

3
2Ta, also including the rest-mass energy ma of a

single a particle. Eventually, in the limit of a being thermally decoupled,
q̇a = 0, we can also retrieve the scaling ρa ∝ a−4 and ρa ∝ a−3 from
eq. (2.9b) for a being relativistic or non-relativistic, respectively. An
individual, decoupled species hence just feels the same Hubble expansion
as the whole system of coupled fluids.

Without any further ado, we can now perform a sum over all particle
species to obtain an expression for the total energy density, entropy and Summing over all

speciespressure of the primordial plasma, where each individual constituent
particle species is (at least individually) in equilibrium,

ρ =
∑
a

ρa , s =
∑
a

sa , P =
∑
a

Pa . (2.16)

The quantities ρ and P are those that appeared in the Friedmann
eqs. (2.4). Comparing the expressions derived for a relativistic and
non-relativistic species in eqs. (2.14b) and (2.15b), we can see that
the expansion will be dominantly driven by relativistic particle species,
i.e. by those satisfying ma ≪ Ta. Particles, whose mass exceeds the
temperature Ta will quickly become exponentially suppressed due to the
Boltzmann factor in eq. (2.15a), unless they carry a chemical potential,
forbidding them to decay or annihilate to lighter states.

2.3.3 Dark and visible sectors

So far, we only assumed that all particle species can individually be
described by a thermal distribution, with a temperature parameter that
can differ between different species. Often, however, two particle species
a and b carry a common temperature Ta = Tb. This is achieved through
sufficiently fast interactions between a and b. We will use this condition A definition for the

visible sectoras a definition of what we consider a sector of particles. In particular, we
will distinguish visible sector from dark sector particles. Visible sector
particles are understood to be those which interact frequently enough
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with the SM photon to form a thermal bath with them.2 For a given
temperature T of the photon, this is the case for all relativistic degrees
of freedom of the Standard Model, except for neutrinos below MeV
temperatures. We will discuss the case of neutrino decoupling towards
the end of this subsection.

Analogously, we define a DS to be a thermal bath with a common
temperature Td between frequently interacting particles, which however
do not have any sufficiently fast interactions with SM particles. In
general, the temperature of the SM photon therefore does not coincide
with the DS temperature, T ̸= Td. Note that this definition made noA definition for

dark sectors (DSs) statements about DM residing in the DS. In particular it should also
be noted that it is possible for a DS to start thermalizing with the SM
bath only at a certain point in cosmic history. This scenario will occur
in the model discussed in detail in chapter 6. For simplicity, we will still
refer to those particles as DS states.

The common temperature T of SM states motivates the definition of
so-called effective relativistic bosonic energy and entropy degrees of
freedom (dofs) (or short and less specific, just effective dofs) g∗(T ) and
h∗(T ), which satisfy

ρ(T ) = g∗(T ) ρbos(T ) and s(T ) = h∗(T ) sbos(T ) , (2.17)

where ρbos =
π2

30T
4 and sbos =

2π2

45 T
3 are the energy and entropy density

of a single massless degree of freedom at temperature T following a
Bose-Einstein distribution with vanishing chemical potential.

The full expressions for the effective dofs of a set of species with individualCounting effective
dofs temperatures Ta and intrinsic dofs ga read [59]

g∗(T ) =
∑
a

ga G(za)
(
Ta
T

)4

and (2.18a)

h∗(T ) =
∑
a

gaH(za)

(
Ta
T

)3

, (2.18b)

where

G(za) =
15

π4

∫ ∞

za

u2a
√
u2a − z2a

eua ± 1
dua and (2.19a)

H(za) =
3

4
G(za) +

15

4π4

∫ ∞

za

(
u2a − z2a

)3/2
eua ± 1

dua (2.19b)

with ua =
√
m2

a + p2/T and za = ma/T . The integrals G(z) and H(z)
can be evaluated numerically and tabulated for a range of z. For small
z ≪ 1 (i.e., m ≪ T ), both functions evaluate to 1 for bosonic species
and to 7/8 for fermionic species, whereas for large z ≫ 1 (i.e., m≫ T ),

2 For temperatures above that of the electroweak symmetry breaking, when no gauge
boson of electromagnetism was existent yet, the analogous massless gauge boson of
the hypercharge U(1)Y is used in this definition of the visible sector.
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both functions approach zero exponentially fast. Approximately, the
effective degrees of freedom are hence just the sum of internal degrees
of freedom of those particles which satisfy ma ≪ T (up to a factor 7/8
for fermions, see eq. (2.14b)).

Note, however, the factors (Ta/T )4 and (Ta/T )
3 in eqs. (2.18). Assuming The case of two

secluded thermal
baths

that all particles either can be thought of as visible sector particles with
temperature T or DS particles with a distinct temperature Td = ξT , we
obtain

g∗(T ) =
∑

a visible

ga G(za) + ξ4
∑

a dark

ga G(za) (2.20a)

h∗(T ) =
∑

a visible

gaH(za) + ξ3
∑

a dark

gaH(za) . (2.20b)

If the DS is colder (hotter) than the visible sector by a factor ξ, its
contribution to the total energy density will be reduced (enhanced) by
a Stefan-Boltzmann factor ξ4. Analogously, the total entropy density
will obtain a contribution that scales with ξ3.

One can make the point that also SM neutrinos constitute a DS according
to the above definition. As mentioned in section 2.1, neutrinos decouple Neutrino

decouplingfrom the photon bath at a temperature slightly above an MeV. More
quantitatively, this happens when the Hubble rate crosses the electroweak
interaction rate Γν ∼ G2

FT
5 with GF = 1.2 · 10−5 GeV−2 for processes

like νee
− → νee

− or νeν̄e → e+e− at Tν-dec = 2 − 3MeV.3 At this
point in time, the neutrinos inherit the temperature of the photon bath,
approximately retaining their Fermi-Dirac distribution. As they are
also far from being non-relativistic (mν ≪ MeV), their energy density
decreases with a−4 and their temperature Tν hence decreases with a−1.
When the photon temperature drops below the electron mass, electrons
and positrons annihilate.4 By that time the neutrinos can be considered
to be fully decoupled. As electrons and positrons can only annihilate into
photons then, e+e− → γγ, the photon bath cools slower than expected
by Hubble expansion alone. This process is referred to as reheating, as
eventually, the photons will have a slightly higher temperature than
neutrinos.

To compute the temperature of the photon bath compared to that of
the decoupled neutrinos, we use that entropy is conserved in the bath of
SM particles. Before the electron-positron annihilation, the photon (two Electron-positron

annihilationpolarizations), the electron and positron (each having two helicities) and
the three neutrino and three antineutrino families, all share the same

3 First, the muon and tau neutrinos decouple at a temperature of 3.1MeV, followed
by the electron neutrinos at 1.9MeV. An accurate calculation as performed in
ref. [60] shows that the decoupling temperature is momentum-dependent. We here
cite the temperature at which a neutrino with average momentum given their thermal
distribution decouples.

4 Being more precise, the long Boltzmann tail of high photon energies leads to the
production process γγ → e+e− being efficient until T = 0.3MeV [37].
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temperature T (a1). Using eq. (2.17), the entropy of the plasma is hence
given by

s1 =
2π2

45
T 3(a1)

[
2 +

7

8
(2 + 2 + 2 · 3)

]
. (2.21)

After the annihilation, only the two photon helicities and six neutrino
dofs are left, where the latter have a to-be-determined temperature Tν(a2)
differing from the photon temperature T (a2). Again using eq. (2.17),
one finds

s2 =
2π2

45

[
2× T 3(a2) +

7

8
× 6× T 3

ν (a2)

]
. (2.22)

Using entropy conservation, s1a31 = s2a
3
2, together with the condition

that the neutrino temperature drops like Tν ∝ 1/a as they are a non-
interacting, relativistic species, we find that

Tν(a2) =

(
4

11

)1/3

T (a2) . (2.23)

Since electrons and protons are (i) stable, (ii) the lightest SM states
that have non-zero masses and (iii) the only species still present in the
primordial plasma, there are no more states that could change the photon
temperature and neutrino through the above process known as entropy
injection. The ratio Tν/T =

(
4
11

)1/3 hence remains constant up until the
point in the late universe when the neutrinos become non-relativistic.

The energy density carried by the three neutrino and three anti-neutrinoA first encounter
with Neff degrees of freedoms at a point in time after the electron-positron annihi-

lation is hence given by

ρν(T ) = 3× 2× 7

8

π2

30
T 4
ν = Nν

eff × 7

4

π2

30

(
4

11

)4/3

T 4 . (2.24)

Here, we introduced the effective number of neutrinos Nν
eff, which is

used to take into account deviations from the ratio Tν/T = (4/11)1/3.
Assuming the simplified calculation were exact, Nν

eff = 3 would hold for
three SM neutrino families. Taking into account that (i) the neutrino
decoupling is not instantaneous (see footnote 3) such that also neutrinos
can be partially reheated through the electron-positron annihilation,
(ii) that the neutrino distribution function is not a perfect Fermi-Dirac
distribution after their decoupling, (iii) that neutrinos can oscillate into
each other, (iv) that electrons and positrons were not completely ultra-
relativistic at neutrino decoupling and (v) finite-temperature effects
changing the electron and photon dispersion relations in the plasma,
one instead finds Nν

eff = NSM
eff = 3.0440±0.0002 [61]. In the following we

will often encounter Neff again when deriving cosmological constraints
on different expansion histories.

In table 2.1, the mass spectrum of SM states as well as their intrin-
sic dofs is listed. Summing up all visible sector states, one obtains
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Particle a ma ga Particle a ma ga

u, ū 2.16MeV 12 e± 0.511MeV 4
d, d̄ 4.70MeV 12 µ± 105.7MeV 4
s, s̄ 93.5MeV 12 τ± 1.777GeV 4
c, c̄ 1.27GeV 12 ν1, ν̄1 < 0.082 eV 2
b, b̄ 4.18GeV 12 ν2, ν̄2 < 0.082 eV 2
t, t̄ 172.6GeV 12 ν3, ν̄3 < 0.082 eV 2

g 0 16 h 125GeV 1
γ 0 2
W± 80.4GeV 6
Z0 91.2GeV 3

Table 2.1: The particle content of the SM after the EWPT. We quote the
masses recommended by the particle data group [39] for quarks,
charged leptons, gauge bosons and the Higgs boson. The tightest
constraint on the sum of neutrino masses mtot < 0.082 eV is imposed
by a combination of BOSS, eBOSS and CMB data [62].

gSM(T ≫ mt) = hSM(T ≫ mt) = 106.75 at high temperatures. At low Effective dofs of
the SMtemperatures instead, the effect of photon reheating during the electron-

positron annihilation is relevant and one obtains gSM(T ≪ Tν-dec) =

2+ 7
8 × 6×

(
4
11

)4/3 ≈ 3.4 and hSM(T ≪ Tν-dec) = 2+ 7
8 × 6×

(
4
11

)
≈ 3.9.

In the left panel of fig. 2.4 the effective degrees of freedom of the SM are
plotted in dependence of the photon temperature. In particular, the QCD
PT can be nicely identified with the the drop in gSM around T = 150MeV.
The right panel instead shows the impact on the total effective dofs of a
minimalistic hot DS with ξ = 3 times higher temperature, containing
a scalar with mϕ = 104 GeV and a vector boson with mA′ = 106 GeV. Effective dofs from

the darkDue to the factors ξ3 and ξ4 in eq. (2.20), already a minimal extension
of the SM can have important consequences for the expansion history if
ξ > 1. Note, however, that for this figure it was assumed that the DS
keeps a temperature ratio of ξ = 3 to the SM bath over time and that
it is able to dispose of its energy density when the DS would become
non-relativistic, such that the approximation of thermal equilibrium
with vanishing DS chemical potentials holds at all times.

2.3.4 Going out of equilibrium

Apparently, the usual process of massive particle species becoming more
and more Boltzmann-suppressed with decreasing temperatures, up to
the point where they become negligible in cosmic history, must have The origin of

speciesexceptions. Otherwise, the energy budget of our universe would only
include radiation and vacuum energy today. Our own existence hence
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SM

h∗
g∗

keV MeV GeV TeV PeV

T

101

102

103
SM + DS with ξ = 3

keV MeV GeV TeV PeV

T

Figure 2.4: Left: Effective dofs of the SM in dependence of temperature. Right:
Impact of a hypothetical hot DS containing a dark Higgs boson
(mϕ = 10TeV) and a dark photon (mA = 1PeV) with ξ = Td/T = 3
on the effective dofs. To produce this figure, the tabulated data
from ref. [59] was used.

leaves us with a proof that a deviation from equilibrium must have
occurred. So far, we have not been very specific in our use of the term
equilibrium. Let us introduce the following different types of equilibrium
in order to be more precise in the following discussion of what it means
for a species to go out of equilibrium.

kinetic equilibrium refers to a state in which the distribution
function fa(p, t) of a given bosonic (fermionic) species a follows a Bose-
Einstein (Fermi-Dirac) distribution (2.10). It is maintained through
self-interactions which redistribute the kinetic energy among particles of
the species a. Usually, those interactions are elastic scatterings aa→ aa.
It implies that the a particles have a common temperature Ta. In anDecoupling =

going out of kinetic
equilibrium

extended sense, one can also speak of two species a and b to be in
kinetic equilibrium if they share a common temperature Ta = Tb. This
equilibrium is typically sustained when elastic scatterings ab→ ab are
efficient. The breakdown of the latter equilibrium is referred to as the
(kinetic) decoupling of a and b.

chemical equilibrium is a type of dynamic equilibrium (i.e., all
interactions are balanced by their reverse processes, such that the macro-
scopic properties do not change over time) specific to the particle type.
It occurs when there is a balance in particle-type changing interactions,
which create and destroy particles of a certain species, such that there is
no net change in the number density of that species. Given two particleFreeze-out = going

out of chemical
equilibrium

species a and b as well as their corresponding antiparticles ā and b̄,
chemical equilibrium between a and b is maintained when the interac-
tion rates for aā ↔ bb̄ are identical in both directions. For instance,
the interaction e+e− ↔ γγ sustained the chemical equilibrium between
electrons and photons at high temperatures (c.f., footnote 4). More
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generally, an efficient particle-type changing interaction ab↔ cd leads
to the species a, b, c and d to be in chemical equilibrium. If such an
interaction ceases to be efficient, the corresponding particles are said to
“freeze out” since their comoving number densities remain constant in
the absence of other interactions.

thermal equilibrium is a state between two or more particle
species (or in the broader thermodynamic sense: arbitrary subsystems
of a total system), which do not have any net energy exchange. This
implies that there is a common temperature and no net heat flow between
the species in thermal equilibrium. It is maintained if both elastic and
particle-type changing interaction between the different particle species
are efficient.

Each of these terms usually refers to a specific point in time at which
the corresponding interactions which maintain the kind of equilibrium
are sufficiently fast. What is meant by staying in equilibrium is that the
particle interaction rate through which the equilibrium is maintained ex-
ceeds the Hubble rate over an extended period of time. Vice versa, when
this rate drops below the Hubble rate, the corresponding interactions
required to maintain the equilibrium can no longer happen sufficiently
fast. Depending on the initial type of equilibrium, different phenomena
can happen: We have already seen at the example of neutrino decoupling
what happens when kinetic equilibrium (initially sustained by interac-
tions like ν̄e− → ν̄e−) breaks down: there is a decoupling of a species,
which will subsequently free-stream. What happens when chemical equi-
librium breaks down for a species initially in thermal equilibrium with
a bath of particles is called the thermal freeze-out5 and is the subject of
the following subsection.

2.3.5 The freeze-out of dark matter

Starting from an initial state in which all particles were in thermal
equilibrium with each other, the thermal freeze-out presents a natural
way in which a given particle species can escape its fate of disappearing
from the thermal plasma due to its Boltzmann-suppression. What needs
to happen can already be inferred from the factor exp [(µ−m)/T ] in Chemical potential

vs. Boltzmann
suppression

eq. (2.15a): The species needs to develop a non-zero chemical potential
which counteracts the Boltzmann-suppression factor exp (−m/T ). For
this to occur, chemical equilibrium needs to be broken. In other words,
the rate of annihilations of that particle species into particles of the

5 Technically, also the electron-positron annihilation could be referred to as a freeze-out,
given that it starts with a departure from chemical equilibrium. However, in this
case the annihilation process e+e− → γγ only ceases due to the electron chemical
potential required by charge neutrality of the bath of electrons and protons and not
due to smallness of couplings as in the case of DM and neutrons.
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thermal bath needs to drop below the Hubble rate in order for the
species to freeze out.

A particularly well-motivated scenario in which freeze-out produces a
relic density of particles is the aforementioned WIMP paradigm. Consider
a DM fermion χ and its anti-particle χ̄ which can annihilate into an SM
fermion ℓ and its associated anti-particle ℓ̄. For simplicity we will assume
that ℓ is essentially massless compared to χ. As ℓ is an SM particle,
it will remain in thermal equilibrium throughout the evolution of χ.
Hence, nℓ = neq

ℓ will hold at all times, where neq
ℓ refers to the numberThe Boltzmann

equation for DM
freeze-out

density in eq. (2.14a). We will further assume that χ and χ̄ have equal
abundances nχ̄ = nχ. To be able to use T ∝ a−1 we will also assume for
simplicity, that there are no other annihilations and entropy injections
during freeze-out. It can then be shown, that under these conditions the
Boltzmann eq. (2.9a) for the number density reads (see, e.g. [13, 54])

1

a3
d
(
nχa

3
)

dt
= −⟨σv⟩

[
n2χ −

(
neq
χ

)2]
. (2.25)

Here, ⟨σv⟩ is the thermally averaged6 cross section of the annihilation
process. To make the above equation dimensionless in order to solve it
numerically, one usually introduces the yield Yχ = nχ/s and the time
parameter x = mχ/T . One then obtains the Riccati equation

dYχ
dx

= − λ

x2

[
Y 2
χ −

(
Y eq
χ

)2]
. (2.26)

Here, we further introduced the dimensionless annihilation-rate-to-
Hubble-rate ratio λ = Γann(mχ)/H(mχ), where Γann(T ) = ⟨σv⟩nχ
and we assumed Γann(T ) ≃ Γann(mχ) to be a constant for simplicity.
Fig. 2.5 shows numerical solutions to the Riccati equation for a range
of interaction rates. One characteristic feature of freeze-out is that it
happens at a time xf = O(10− 20), i.e. when the number density of χ is
suppressed by exp (−xf). Moreover, one can see that the yield produced
via freeze-out decreases proportionally to λ−1. This is due to a laterAnalytical

solutions freeze-out in case of a stronger coupling between χ and ℓ: The longer χ
stays in chemical equilibrium with ℓ, the longer its number density can
get Boltzmann-suppressed. Ignoring the second term in eq. (2.26), one
can indeed obtain the analytical estimate Y∞

χ ≃ xf/λ for the relic yield
of χ.

Using this analytical approximation, one can convert the relic yield Y∞
χ

to a relic abundance Ωχ through [54]

Ωχ =
mχ

3m2
PlH

2
0

Y∞
χ T 3

0

h∗(T0)
h∗(Tf)

∼ 0.1
xf√
g∗(mχ)

10−8 GeV−2

⟨σv⟩ . (2.27)

To arrive at this approximate expression for the contribution of χ
to today’s matter abundance, we assumed that entropy is conserved

6 The averaging refers to an average over relative velocities between χ and χ̄, on
which the cross section σ(v) will depend. Given that χ is in kinetic equilibrium at
all times, the distribution of relative velocities can be inferred from the thermal
distributions (2.10).
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Increasing 〈σv〉
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Figure 2.5: Freeze-out of a scalar χ with mχ = 1TeV for five thermally averaged
cross sections ⟨σv⟩ = 10−17−10−9 GeV−2 (blue to red curves), each
being a factor 103 higher than the previous one. The dashed black
line depicts Y eq

χ = neq
χ /s, which χ would follow if it stayed in

chemical equilibrium with the SM bath.

between the freeze-out and today, used that g∗(mχ) ≃ h∗(mχ) as well
as h∗(T0) = 3.9, and plugged in the CMB temperature T0 = 2.7K and
the Hubble constant H0 = 67.7 km/s/Mpc [12].

From this analytical estimate we can see that the observed DM abun-
dance ΩDMh

2 = 0.12 can be produced by a weakly interacting particle
with annihilation rates into the SM bath of

√
⟨σv⟩ ∼ 10−4 GeV−1 ∼ The WIMP miracle

0.1G
1/2
F . This unexpected coincidence of producing the observed DM

relic density by a weakly interacting massive particle is usually referred
to as the WIMP miracle.

The thermal freeze-out mechanism can be seen as the starting point
of a whole variety of more involved DM production mechanisms. An
easy extension of the idea is based on the assumption that DM never
was in thermal equilibrium with the SM bath in the first place. This
idea led to the discovery of the freeze-in mechanism, which is relevant
for DM candidates with even lower couplings to the SM [63,64]. Other Variations of the

WIMP ideanoteworthy variations of the WIMP idea are for instance based on the
assumption of the DM mass being lower than that of any SM state
it can annihilate into (i.e., forbidden DM [65, 66]), number-changing
processes in the DS (i.e., cannibal DM [67,68] and pandemic DM [69]) or
a non-ΛCDM expansion history after DM production (i.e., homeopathic
DM [70,71]). An extension of the WIMP idea that will be of particular
importance for the course of this thesis is the freeze-out of a WIMP
from a DS bath instead of the SM bath. This idea will be discussed in
chapter 6.
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2.3.6 The Big Bang nucleosynthesis

In fact, the freeze-out mechanism is not only relevant for the hypothesized
production of WIMP DM, but also plays a central role within BBN.Neutron freeze-out

sets the initial
condition for BBN

Around the MeV temperature scale, the freeze-out of the processes
nνe ↔ p+e− and ne+ ↔ p+ν̄e sets the initial abundance of neutrons,
which directly influences the early element abundance produced in BBN.

The chemical equilibrium between protons and neutrons is initially
maintained as long as the rate Γpe→nν is much larger than the HubbleThe freeze-out of

neutron-proton
conversions

rate H(t). Ignoring the chemical potentials of electrons and neutrinos,
the chemical equilibrium of neutrons and protons implies µn = µp. Using
eq. (2.15a), the ratio of their number densities hence follows

nn

np
=

(
mn

mp

)3/2

e−(mn−mp)/T ≃ e−Q/T (2.28)

with the mass difference Q ≡ mn −mp = 1.30MeV. For temperatures
above an MeV, neutrons and protons hence have an equivalent number
density, whereas for lower temperatures the relative neutron fraction
decreases exponentially. If the interactions converting neutrons to protons
were infinitely quick, the chemical equilibrium would be maintained and
the neutron abundance would have basically vanished before the onset
of BBN starting with the production of deuterium at T ≲ 0.1MeV,
as we will discuss in more detail below. What happens instead is that
the conversion reaction freezes out at Tf ≃ 0.8 MeV, leaving us with
nn/np ≃ 0.20, i.e. roughly five times more protons than neutrons at that
temperature [13].

A quick estimate of the neutron freeze-out temperature Tf can be ob-
tained by comparing the rate Γweak ∝ G2

FT
5 for the weak processes

nνe → p+e− and ne+ → p+ν̄e with the Hubble rate H(T ). Next to
the energy density ργ + ρν from photons and neutrinos dominating the
cosmic expansion velocity, we also consider an additional energy density
ρextra contributing to the Hubble parameter through the FriedmannThe dependence of

the neutron
freeze-out on Neff

eq. (2.4). In eq. (2.24) we introduced the parameter Nν
eff to quantify

the impact of the number of neutrino species on the temperature ratio
between neutrinos and photons after electron-positron annihilation. We
now want to parameterize the amount of additional energy density ρextra
using the analogous parameter Neff defined through

ρν + ρextra ≡ Neff × 7

8

(
4

11

)4/3

ργ , (2.29)

such that the extra energy can be expressed as7

ρextra = ∆Neff × 7

8

(
4

11

)4/3

ργ where ∆Neff ≡ Neff −NSM
eff .

(2.30)

7 Note that in general ∆Neff is a function of temperature for ρextra having an arbitrary
temperature dependence. Only for ρextra redshifting like radiation ∆Neff is a constant.
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Plugging in ρ = ργ + ρν + ρextra into the first Friedmann eq. (2.4) to
get an expression for H(T ) and requiring freeze-out to happen when
Γ(Tf) ≃ H(Tf) yields

Tf ≃
(
π2

45

)1/6
[
1 +

7

8

(
4

11

)4/3

Neff

]1/6
1(

G2
FmPl

)1/3 . (2.31)

For an increase in Neff with respect to NSM
eff , corresponding to a positive

contribution ρextra and ∆Neff > 0, the Hubble expansion is faster, such
that the neutron freeze-out occurs at a slightly higher temperature. Due
to the exponential sensitivity of the neutron-to-proton ration in eq. (2.28),
Neff is hence an important input parameter in any prediction of the
early element abundances. In a more precise calculation the O(1) pre- A faster expansion

implies an earlier
freeze-out

factor and the full temperature dependence of the weak interaction rate,
which we here just approximated as Γweak ∝ G2

FT
5, can be determined

analytically. Our simplified treatment yields a freeze-out temperature of
1.2MeV for Neff = NSM

eff , which approximately agrees with the previously
stated temperature Tf = 0.8MeV which results from actually solving
the Boltzmann equation, see for instance ref. [13].

The onset of BBN is marked by the formation of deuterium nuclei,
composed of one proton and one neutron, as the fusion of two neutrons
only leads to a very unstable bound state which immediately decays.
Two-proton fusion is also inefficient, as the Coulomb barrier would need
to be overcome. Hence, only as soon as deuterium nuclei have formed,
more massive elements can form. The deuterium synthesis through the The onset of BBN:

the deuterium
bottleneck

interaction n+ p+ → D+ + γ is delayed, however, until a temperature
of around TD ≃ 0.1MeV due to the sheer abundance of photons in
the plasma. The baryon-to-photon ratio η ≡ nγ/nb was determined by
CMB measurements to be of order η ∼ 10−9 [12], meaning that there
are roughly a billion times more photons than neutrons and protons
present in the plasma. Due to the long Boltzmann-tail of the photon
distribution at high photon energies, the deuterium photo-disintegration
only freezes out at a temperature TD much lower than the deuterium
binding energy BD ≡ mn +mp −mB ≃ 2.22MeV. As all other nuclear
processes rely on the presence of deuterium due to the above reasoning,
this phenomenon became known as the deuterium bottleneck.

Eventually, since the binding energy of helium is larger than that of
deuterium, the production rate of helium exceeds that of deuterium.
Virtually all neutrons present at the onset of nucleosynthesis will hence
end up in 4He. The helium mass fraction

Yp ≡
4nHe

nn + np
=

2nn

nn + np
≃ 2

nn/np

1 + nn/np

∣∣∣∣
D

(2.32)

therefore directly connects the observable relative abundance of 4He to Virtually all
neutrons end up in
4He

the neutron-to-proton ratio at the time of the onset of BBN, indicated
by a D for the deuterium bottleneck in the above equation. Due to
the finite lifetime τn = 887 s of the neutron, the neutron-to-proton
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Figure 2.6: Evolution of the neutron-to-proton ratio (gray), the helium mass
fraction (blue), and the deuterium fraction (orange). The equilib-
rium neutron-to-proton ratio, cf. eq. (2.28), is plotted as a dotted
gray line. After the neutron freeze-out at Tf ≃ 0.8MeV, nn/np
only decreases slightly due to the neutron decay up to the point
when the deuterium photo-disintegration becomes inefficient at
TD ≃ 0.1MeV. After this point, deuterium can form efficiently and
fuse to helium. The data for producing this plot was kindly provided
by Frederik Depta.

ratio slightly drops between the neutron freeze-out at Tf ≃ 0.8MeV
and the formation of deuterium at TD ≃ 0.1MeV from nn/np ≃ 0.20
to nn/np ≃ 0.14. Plugging this into the above equation for the helium
mass fraction, we obtain Yp = 0.24, which coincides with the observed
value Yp = 0.245± 0.003. Analogously, one can further set up and solve
the Boltzmann equation for the production of heavier elements like
deuterium, lithium and beryllium. This task is usually done by tools
like Primat [72] or AlterBBN [73], which solve the tower of these coupled
Boltzmann equations including many hundred nuclear interactions.

In fig. 2.6, the evolution of the neutron-to-proton ratio (in gray), the
helium mass fraction (in blue) and the deuterium fraction (in orange)
are depicted. Note how the observed nuclear abundances precisely matchPrecision

cosmology their predictions. This success of BBN to predict nuclear abundances
(shown as horizontal dash-dotted lines) up to the percent-level is often
referred to by the term precision cosmology.

Above, we showed that any form of additional energy ρextra results
in a larger neutron-to-proton ratio at the time of neutron freeze-out.
Due to the above reasoning, this results in an overproduction of 4He.
An increase of Neff by 1 unit (corresponding to the equivalent of one
additional neutrino-like species contributing as ρextra) would increase
the Hubble parameter at that time by 7%, leading to a 2% increase in
the freeze-out temperature, a 2% increase in the neutron-to-proton ratio
and correspondingly also a 2% increase in Yp. Since the helium mass
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fraction was measured on a percent-level, precise bounds on Neff can
be inferred. In our above treatment we have seen, however, that not
only Neff, but also the baryon-to-photon ratio η is a crucial ingredient
in order to determine a prediction for the early element abundances. In Inferring Neff and

η from BBNa more careful analysis, see [13], one finds that there is a logarithmic
dependence of the predicted helium mass fraction on η, resulting in a
degeneracy between Neff and η. This degeneracy can however be resolved
when taking into account that the helium fraction is not the only BBN
observable. In particular, there is a strong dependence of the deuterium
fraction D/H on η, leading to a complementary measurement, solving
the degeneracy.

Comparing the observations of the early element abundances with their
predicted counterparts, one can hence obtain a probability distribution
p(η,Neff) which depends on both η and Neff. Observational limits on
Neff can then be obtained by combining the distribution p(η,Neff) in-
ferred from BBN with its counterpart inferred from CMB measurements
and marginalizing over η. Eventually, one obtains the observational
bound [74]

Neff = 2.941± 0.143 (2.33)

at 95% C.L. We will use this limit on Neff in two ways in this thesis: The
first use will be in constraining the amplitude of cosmological GWBs in
the following section by setting ρextra = ρgw (cf. eq. (2.82)). In chapter
5 we will instead interpret ρextra as coming from a DS, whose energy is
dominated by a plasma reheated in a PT.

2.4 cosmological gravitational wave back-
grounds

In the previous section 2.3 we discussed the expansion history of our
universe. We found that it only depends on the sum of all energy densities
and pressure contributions of its individual sub-components, which we
described through a perfect, hence spatially homogeneous and isotropic
fluid. Obviously, however, the present universe is neither homogeneous
nor isotropic—instead its matter distribution is clustered into celestial The limits of a

perfect fluid
description

bodies, galaxies and more extended objects, and large voids. Only when
describing large enough scales, the energy distribution and hence the
right-hand side of the Einstein eqs. (2.1) can be regarded as being
independent of a specific position in space. This section will now try to
bridge this gap by considering classes of solutions of the Einstein equation
which are not based on the assumptions of statistical homogeneity
and isotropy. Instead, we will in particular discuss how gravitational
waves (GWs) arise when considering deviations from homogeneity and
isotropy.
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Historically, the prediction that GR features propagating dofs is almost
as old as the theory itself. The derivation was first performed by Albert
Einstein himself in 1918 [6, 75]. The existence of GWs was, however,
facing serious doubts for a long time: Sir Arthur Eddington’s statement
that GWs would propagate “at the speed of thought” [76], due to someA short history of

doubt of the wave solutions found by Einstein being gauge artifacts quickly
became famous. Together with Nathan Rosen, again even Einstein
himself wrote an article in 1936 concluding that GWs could not exist [77].
The question of the correct gauge choice was only solved two decades later
by Felix Pirani in 1956 [78], who showed that passing GWs could actually
move test masses. This idea, eventually led to the “sticky bead argument”
by Richard Feynman at the first GR conference in 1957, which was
popularized by Hermann Bondi [79] and convinced physicists at the time
that gravitational radiation is indeed a detectable, physical phenomenon.
After some erroneous claims for the observation of GWs using so-called
Weber bars in 1969 [80], the first indirect evidence for a GW-induced
phenomenon came from astrophysics: In 1982, the Hulse-Taylor binary
pulsar B1913+16 was shown to have a cumulative shift of its periastron
time which precisely followed the prediction of an orbital decay through
GW emission [81]. Eventually, the first direct detection of GWs at the
Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2014 [5]
was made possible through the progress of laser interferometry based on
the work of Forward and Weiss in the early 1970s [82,83].

In the following four subsections we introduce the concept of gravitational
radiation with increasing levels of diligence: In section 2.4.1 we review
the conceptually easiest and most well-known scenario of GWs being theOutline of this

chapter propagating metric perturbations of the linearized Einstein equations.
In order to understand the sourcing mechanism of GWs better we then
go over to the more advanced notion of a GW as being a gauge-invariant
tensor perturbation after performing a helicity decomposition of the
Einstein equations into scalar, vector and tensor perturbations around
a flat Minkowski metric. This allows us to identify anisotropic stress
to be the source of GWs in section 2.4.2. Even after adding this level
of complication, there is yet no notion of the energy density of a GW.
Only after allowing the background metric to back-react on the GW
by treating it as a dynamical object itself in section 2.4.3, it becomes
clear how the energy-momentum tensor of a GW can be computed. In
section 2.4.4 we finally consider the case that the background through
which GWs propagate is the FLRW metric. This brings us straight to
the equations of motion of gravitational radiation in the context of
cosmology in section 2.4.5. In section 2.4.6 we then discuss why any
GWB from the early cosmos can only be detected as a stochastic signal
today. Subsections 2.4.7 and 2.4.8 deal with the different ways a GW
spectrum can be described and how a cosmic GWB gets redshifted until
today. Eventually, this chapter concludes with a short review of the
bounds on stochastic GWBs in section 2.4.9. The main references the
following subsections are based on are [11,14,37].
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2.4.1 Gravitational waves in vacuum

Let us start with the simplest scenario in which gravitational radia-
tion can be found as a solution of the Einstein eqs. (2.1). To start
with, note that the field equations are by construction invariant under
coordinate transformations xµ → x′µ(x) with x′µ being an arbitrary
smooth function of xµ. To be more precise, x′µ(x) can be an arbitrary The gauge

symmetry of GRdiffeomorphism, i.e. it has to be invertible, differentiable and its inverse
has to be differentiable. Sometimes, this invariance under coordinate
transformations is referred to as the gauge symmetry of GR. Under
these transformations, the metric tensor transforms as

gµν(x) → g′µν
(
x′
)
=

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) . (2.34)

We now consider a small perturbation hµν around a flat background,
gµν(x) = ηµν +hµν(x), and a coordinate-dependent shift of the reference
frame, xµ → x′µ = xµ + ξµ(x). In order to speak of small perturbations
we further need to require that in our frame |hµν(x)| ≪ 1 holds in a
sufficiently large region of space-time. After performing this change of
coordinates the metric tensor perturbation reads

hµν(x) → h′µν(x
′) = hµν(x)− (∂µξν + ∂νξµ) (2.35)

to linear order in hµν . The perturbativity condition |hµν | ≪ 1 is con-
served in this new coordinate frame if O(|∂µ ξν |) ≤ O(|hµν |). In this
case we can refer to the specific performed change of coordinates as
a symmetry of the whole theory. The underlying theory of linearized
gravity is characterized by the Ricci tensor Rµν not only being covariant Linearizing GR
under general coordinate changes gµν(x) → g′µν(x

′) but instead being
invariant under hµν(x) → h′µν(x

′) up to linear order in hµν .

In linearized gravity, any solution hµν of the Einstein equations is
therefore equivalent to a solution h′µν in another frame. It is customary
to introduce h ≡ ηµνhµν and h̄µν ≡ hµν− 1

2ηµνh to express the linearized The linearized field
equationsfield equations as

□h̄µν + ηµν∂
α∂βh̄αβ − ∂α∂ν h̄µα − ∂α∂µh̄να = −2

Tµν
m2

Pl
(2.36)

with the flat-space d’Alembertian □ = ∂µ ∂
µ. Note that so far we have

not specified the coordinate system we want to work in. In order to
simplify our calculations we now change this and will work in a frame The “Lorentz”

gaugewhich satisfies the Lorentz8 gauge ∂ν h̄µν = 0. In this coordinate system
the field equations simplify to the wave equation

□ h̄µν = −2
Tµν
m2

Pl
. (2.37)

8 Amusingly, this gauge was neither introduced by the Danish physicist Ludvig Valentin
Lorenz known for the related condition ∂µA

µ = 0 in electromagnetism, nor the Dutch
physicist Hendrik Antoon Lorentz who was still a child when Lorenz first proposed his
gauge. Instead it was De Sitter who suggested the gauge to Einstein [84]. Alternative
names of this particular and the more general condition ∂µ

(
gµν

√
g
)
= 0 are also

harmonic gauge, Hilbert gauge and De Donder gauge. Nonetheless, we will use the
commonly accepted, though technically incorrect, term “Lorentz gauge” in this thesis.
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In order to check whether this choice of coordinate system can be
used under the previous specifications, we need to check under which
conditions the transformed metric perturbations

h̄µν → h̄′µν = h̄µν − (∂µ ξν + ∂ν ξµ − ηµν ∂α ξ
α) (2.38)

indeed satisfy the gauge condition. We find that the gauge conditionGauge fixing
reduces the dofs to

6 = 10− 4
∂ν h̄µν

!
= 0 in the new frame implies

(
∂ν h̄µν

)′
= ∂ν h̄µν −□ ξµ

!
= 0. The

condition □ ξµ = ∂ν h̄µν for the last equation to hold can be satisfied by
fixing the coordinate transformation to

ξµ(y) =

∫
d4xG(x− y) ∂ν h̄µν(y) , (2.39)

whereG(x−y) is the Green’s function of the d’Alembertian, i.e. a solution
of □xG (x− y) = δ4(x − y). Since the gauge condition imposes four
distinct constraints, corresponding to the four independent components
of ξµ(y) in eq. (2.39), the independent dofs of the symmetric tensor field
h̄µν reduce to 10− 4 = 6.

Before we proceed with solving the wave equation, note that the previous
derivation is in fact completely analogous to what is commonly done for
finding a wave equation for the vector field Aµ in electromagnetism: TheAn analogy to

electromagnetic
waves

equations of motion in that case read ∂µ (∂
µAν − ∂νAµ) = jν , which

simplifies to □Aµ = jµ after imposing the Lorentz gauge ∂µAµ = 0.
This gauge leaves the residual gauge freedom Aµ → Aµ−∂µ θ untouched,
where θ only needs to satisfy □ θ = 0. In vacuum, one finds □Aµ = 0,
such that the residual gauge dof following □ θ = 0 can be used to fix
A0 = 0. This makes the gauge condition effectively a transversality
condition ∂iA

i = 0, indicating the vanishing mass of the underlying
photon field. If instead j0 ̸= 0 (i.e., in the presence of charges), one finds
that □A0 ≠ 0. In that case A0 cannot be set to zero using a function θ
that satisfies □ θ = 0, complicating the solution of the wave equation.

Analogously and to simplify the situation for now, we will therefore only
consider the case of a vacuum solution of linearized gravity by setting
□ h̄µν = 0. This wave equation already tells us that in GR the speed of
gravitational radiation is the speed of light. Completely analogous to the
above comment on the case of gauge fixing in electromagnetism, noteIn vacuum, only

2 = 6− 4 dofs
remain

that the Lorentz gauge condition is not spoiled by further constraining
the coordinate shift to satisfy □ ξµ = 0. Note that under this additional
condition, the term ξµν ≡ ∂µ ξν+∂ν ξµ−ηµν ∂α ξα in brackets in eq. (2.38)
satisfies □ξµν = 0. We can hence reduce the number of independent
components of the metric perturbation h̄µν yet another time by four
conditions, such that only 2 = 6− 4 independent components remain.

In particular, we can choose the function ξ0 such that the trace h̄ = 0
vanishes, such that h̄µν = hµν , and choose ξi such that hi0 = 0. The
0-component of the Lorentz gauge condition ∂ν h̄µν = 0 then implies
ḣ00 = 0, which means that h00 is a constant, being related to a stationary
gravitational potential. In this subsection we are only interested in the
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propagating solutions of the Einstein equations and will treat the effect
of stationary components in hµν only in the following section. For the The TT gauge
moment we can therefore set h00 = 0. In summary, we chose

h0µ = 0 , hii = 0 , ∂ihij = 0 . (2.40)

The only contributions to hµν which do not vanish under this very
convenient choice of coordinates are the spatial parts hij . Since they
satisfy the transversality condition ∂i hij = 0 and the tracelessness
condition h = ηµν h

µν = hii = 0, the above set of conditions is known
as the transverse-traceless (TT) gauge. Note that, similar to the above
discussion for electromagnetism, the TT gauge cannot be imposed if not
in vacuum.

In the TT gauge, the wave equation reads □hTT
µν = 0 where hTT

µν is a
symmetric tensor field which satisfies the conditions in eq. (2.40). We
now want to solve this equation in order to get a feeling for the effect of
a GW on test masses. The first TT-condition leaves us with only the
spatial parts hTT

ij as dynamical fields. For simplicity, we will assume that
the GW under considerations is a plane wave hTT

ij (x) = Re
[
eij(k)e

ikx
]

The plane wave
solutionmoving in k-direction. The wave equation requires a dispersion relation

ω ≡ k0 = |k|, such that kµ = (ω,k). We further assume without loss of
generality that the wave propagates in z-direction, such that k = (0, 0, ω).
The transversality condition ∂ihTT

ij = 0 hence implies kihTT
ij = 0, such

that hTT
3µ = hTT

µ3 = 0. The only remaining non-zero components hTT
ij

with i, j ∈ {1, 2} further need to satisfy the tracelessness condition
hTT
11 + hTT

22 = 0. We can thus write the solution of the wave equation as

hTT
µν (t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos [ω (t− z)] (2.41)

with the two dofs of a GW described by a + and a × polarization. The
corresponding infinitesimal line element reads

ds2 =dt2 − dx2 {1 + h+ cos [ω (t− z)]}
− dy2 {1− h+ cos [ω (t− z)]}
− 2 dx dy h× cos [ω (t− z)]− dz2.

(2.42)

Now consider two test masses at (t, x1, 0, 0) and (t, x2, 0, 0). Their
coordinate distance in x-direction Lx = x2 − x1 is constant in time,
whereas their proper distance reads s = Lx

√
1 + h+ cos (ωt). Keeping

only the linear order in h+, their relative proper distance in x-direction
hence changes like δsx = 1

2h+ cos (ωt). If the two test masses were mirrors The effect of a GW
on test massesreflecting a light beam hence and forth, this proper distance would

correspond to an oscillating time needed for the light to reach the other
mirror. This is precisely the working principle of GW interferometers.
Analogously, in a PTA one test mass is identified with the barycenter of
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Figure 2.7: Illustration of the effect of a purely +-polarized (left) and ×-
polarized GW propagating in z-direction on a ring of test masses
lying in the x-y-plane. Time dependence is indicated by the colors’
saturation.

our solar system, whereas the observed pulsars correspond to a set of
other test masses.

To understand the different effects of the + and × polarization further,
now consider a test mass at the origin (t, 0, 0, 0) and some test masses i
each sitting at a set of coordinates (t, xi, yi, 0). A GW that only carries
a + polarization causes the shifts

δsx,i ≃
h+
2
xi cos(ωt) and δsy,i ≃ −h+

2
yi cos(ωt) (2.43)

in the proper distance. Analogously, the shift in proper distance induced
through a ×-polarized GW reads

δsx,i ≃
h×
2
yi cos(ωt) and δsy,i ≃

h×
2
xi cos(ωt) . (2.44)

A sketch of these effects on a ring of test masses can be found in fig. 2.7.

2.4.2 Helicity decomposition of metric perturbations

In the previous section we found that linearized GR features a wave
equation, which we then solved in the absence of sources and other
energy distributions. The latter choice offered the tremendous advantage
of allowing us to make use of the TT gauge, in which it was easy to
show that there are two independent polarization modes of gravitational
radiation. One can hence speculate that the same statement should beAre there two

propagating dofs
only in vacuum?

true when solving the linearized Einstein equation in the presence of
sources. In this section, we want to show precisely that: We will find
that it is always possible to decompose a small metric fluctuation into
scalar, vector and tensor (SVT) dofs, out of which only two tensor dofs
propagate.
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To start with, let us consider the same decomposition gµν = ηµν +hµν as
before with hµν being sufficiently small in order to perform perturbative
calculations. We can decompose hµν into parts that behave in the same
way under rotations in three-dimensional Euclidean space, i.e. scalars,
vectors and tensors: The component h00 transforms as a scalar, h0i
transforms as a vector and hij transforms as a spatial tensor. We can
go even further and can decompose the vector field h0i into a transverse SVT decomposition

of the metric
perturbation

and a longitudinal part. Similarly, the spatial tensor hij can further be
decomposed into a diagonal part, a traceless part, an irrotational part
and a remaining TT part:

h00 = 2ψ, h0i = βi + ∂iγ, hij = −2ϕδij + P̂ijλ+ ∂(iϵj) + hTT
ij .

(2.45)

For brevity of the notation, we introduced the projector P̂ij = ∂i∂j −
1
3δij∆, being traceless δijP̂ij = 0 by definition, and the symmetrization
procedure ∂(iϵj) = 1

2 (∂iϵj + ∂jϵi), which makes sure that the term is
irrotational. The transversality of βi and ϵi can be ensured through the
two conditions ∂iβi = ∂iϵ

i = 0. The transversality of hTT
µν corresponds to

three conditions ∂ihij = 0; the tracelessness gives yet another constraint
δijhTT

ij = 0, totaling in six constraints on the 16 components of hµν .
The 10 components of the symmetric hµν tensor field are now captured
in the 10 = 4 · 1 + 2 · 2 + 1 · 2 components of the four scalar fields ψ, γ,
ϕ and λ, the two transverse vector fields βi and ϵi and the TT tensor
field hTT

ij .

Analogously, the energy-momentum tensor Tµν can be decomposed like

T00 = ρ , T0i = Si + ∂iS , Tij = pδij + P̂ijσ + ∂(iσj) + σTT
ij ,

(2.46)

where ρ, S, p and σ are scalar fields, Si and σi are transverse vector
fields and σTT

ij is a TT tensor field. Also in this case, the six conditions SVT decomposition
of Tµν∂iSi = ∂iσi = ∂iσTT

ij = δijσTT
ij = 0 reduce the 16 dofs of Tµν to 10, as

required by Tµν being symmetric.

These 10 dofs of the energy-momentum tensor are not independent.
Energy-momentum conservation ∂µTµν = 0 yields 4 conditions, because
of which only 6 = 10 − 4 components out of ρ, S, p, σ, Si, σi and ∂µTµν = ∂µGµν =

0 removes four
dofs

σTT
ij are independent. We will choose ρ, σ, Si and σTT

ij to be the six
independent components of Tµν in the following. The same statement
can be made about the fields ψ, γ, ϕ, λ, βi, ϵi and hTT

ij on the left
side of the Einstein equation based on the linearized Bianchi identity
∂µGµν = 0. However, the Einstein tensor Gµν is a rather complicated
function of those fields. We therefore take another road in this case
and use the feature of linearized GR being invariant under a change of
coordinates xµ → xµ + ξµ. Under this change of coordinates, the metric
perturbation transforms as shown in the previous section in eq. (2.35).
We now decompose ξµ = (ξ0, ξi) into a scalar ξ0 = A and a vector with
a longitudinal and transversal part ξi = Bi + ∂iC, ensured by ∂iBi = 0.
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Under this change of coordinates, the introduced fields describing the
metric perturbations transform as

ψ → ψ − Ȧ , ϕ→ ϕ+
1

3
∆C , γ → γ −A− Ċ , λ→ λ− 2C ,

βi → βi − Ḃi , ϵi → ϵi − 2Bi and hTT
ij → hTT

ij . (2.47)

As seen before in section 2.4.1, the TT tensor hTT
µν is indeed gauge-

invariant. Instead of choosing a specific gauge as we did before, we will
now construct the gauge-invariant Bardeen9 potentialsBardeen potentials

Φ = −ϕ− 1

6
∆λ , Ψ = −ψ + γ̇ − 1

2
λ̈ , Ξi = βi −

1

2
ϵ̇i and hTT

ij .

(2.48)

The Bardeen vector Ξi is transverse by construction since both βi and
ϵi are transverse as well. We are hence left with 6 = 1 + 1 + 2 + 2
dofs which are left unchanged by a small shift ξµ of the coordinates.The equations of

motion of
linearized gravity

in matter

The computation of the Einstein equations is lengthy, as usual. We
will therefore skip the derivation and only quote a selection of them
here in order to interpret them in the context of propagating and non-
propagating degrees of freedom:

∆Φ = − ρ

2m2
Pl
, ∆Ψ =

ρ− 2∆σ

2m2
Pl

, (2.49a)

∆Ξi = − 2Si
m2

Pl
and □hTT

ij = −
2σTT

ij

m2
Pl

. (2.49b)

Of course, this set of equations is not closed and therefore not sufficient
to describe the entirety of perturbation theory. In particular, next to the
missing Einstein equations, there are conservation equations following
from ∂µTµν = 0 which close the above system. Note, however, that
only the tensor perturbations follow a wave equation. The full set of
equations can be found in ref. [37].

The Bardeen scalar Φ can be interpreted as a Newtonian gravitational
potential, only differing from −Ψ through the scalar part σ of the
anisotropic stress. The scalar metric perturbations Φ and Ψ follow Pois-Interpretation of

the Bardeen
potentials

son equations, as expected from Newtonian gravity. The Bardeen vector
instead represent the response of the metric to vorticity. The equation
of motion for Ξi resembles the spatial part of the equation of motion
∆Aµ = jµ of the four-potential Aµ in classical electrodynamics (in the
Lorentz gauge ∂µAµ = 0, which corresponds to our transversality condi-
tion ∂iΞi = 0). This third equation presents an extension of Newtonian
gravity which is referred to as gravito-electromagnetism. It predicts phe-
nomena like the experimentally tested Lense-Thirring effect, in which a
rotating massive body drags the space-time around it. The last equation
above shows that it is the transverse-traceless part of the anisotropic

9 We will refer to the quantities in eq. (2.47) as Bardeen potentials, even though they
were first introduced only in the more general scenario of an SVT decomposition in
an expanding background, which we will come to in section 2.4.4.
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stress which sources the two independent polarization modes of GWs
hTT
ij . In the absence of sources, the Bardeen scalars and vector must

vanish, whereas the GW part of hij instead survives, as previously found
in section 2.4.1. Still, also in the presence of sources, we find that there
are in general two modes in hTT

ij which both follow a wave equation.
The hypothesized statement from the beginning of this section hence
holds true.

We summarize this mathematically challenging chapter as follows: A
metric perturbation hµν generally contains spurious gauge dofs, physical
but non-radiative dofs, as well as physical and radiative dofs. Due to
the presence of non-radiative dofs, it is not always possible to write a Also in matter

there are two
gauge-independent
propagating modes!

metric perturbation in TT gauge. Only in the vacuum case, the TT
gauge can be used, as otherwise the components T00 and T0i could not
be eliminated. Yet, the two dofs in hTT

µν are the only physical dofs that
represent gravitational radiation, independent of the choice of reference
frame and whether in vacuum or not.

2.4.3 Gravitational waves in a curved background

In the previous section we have identified GWs with the two propagating,
gauge-invariant dofs of a generic small metric perturbation around a
globally flat Minkowski background. In this section we drop the latter
assumption and tackle the definition of GWs as propagating metric
perturbations over a curved background. In fact, this step is necessary
in order to define an energy-momentum tensor tµν of the GW. It is clear
from the effect of gravitational radiation on test masses (see section 2.4.1)
that they must carry energy. Otherwise they would not be able to displace Going beyond the

flat background for
finding tµν

mirrors in interferometers. However, to arrive at an expression for tµν ,
one has to identify how GWs themselves curve spacetime. This simple
statement already shows us that we need to go beyond linearized gravity.
Instead, we want to explore how the background reacts to a metric
perturbation.

The task of splitting the metric gµν(x) = ḡµν(x) + δgµν(x) into a back-
ground part ḡ and a perturbation δg with |δgµν(x)| ≪ |ḡµν(x)| is far
from being a simple task for a generic metric. In the general case, it
is indeed not possible to precisely distinguish a background from the
fluctuations on top of it. This ambiguity can be understood more in- „Fischer, Fischer,

wie tief ist das
Wasser?“

tuitively when comparing with a more familiar scenario: water. Waves
in the sea can of course be split into a part which arises due to the
superposition of many incoherent waves and a single wave propagating
on top of these, e.g. towards a beach. A precise distinction of the two
modes, one defining the sea level and the other one being what we refer
to as a wave in everyday life, however requires a separation of scales of
their respective wavelengths.
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Mathematically speaking, it is possible to perform a sort of renormal-
ization procedure in order to split off a high-frequency part of the
metric, corresponding to the wave part δgµν , from the low-frequency
part, corresponding to the background ḡµν , which can be interpreted as
a quasi-stationary Newtonian potential. Using this method, one can thenSeparation of

scales integrate out short-wavelength modes by spatially averaging over the
Einstein equation in a volume defined by some intermediate length scale.
If both length scales coincide, a GW part cannot be unambiguously
identified within the total metric gµν .

Luckily, in the case of GWs propagating in an FLRW background, this
separation of scales indeed exists for GWs with wavelengths being much
smaller (or larger) than the Hubble radius. Indeed, a causal production
mechanism for gravitational radiation is only able to produce sub-Horizon
modes with a wavelength of λ = 1/f ≤ a0

a∗H∗
today, where a∗ and H∗

denote the scale factor and Hubble parameter at the production of the
wave. The universe is expanding, meaning that a∗H∗ ≫ a0H0, which
immediately leads to λ≪ H−1

0 ≡ Lbg. A GW produced through a causalA sub-Hubble GW
is well-defined process at a given time will thus always have a wavelength that is much

smaller than the current Hubble radius, which sets a length scale Lbg on
which the background metric varies. We can therefore already anticipate
that gravitational radiation can indeed be defined in a cosmological
context.

For GWs arriving in the gravitational potential of Earth the situation is
a little more complicated. Earth-based interferometers have their peak
sensitivities in the kHz band, corresponding to wavelengths on the scale
of 100 km. On these length scales, the deviations in the gravitational field
δg00 ∼ 10−9 of the Earth exceed the characteristic strain amplitudesAveraging over

times works just as
well

δgij ∼ 10−21 measured by interferometers by orders of magnitude. Luck-
ily, the Earth gravitational field is quasi-static (fbg < 0.1Hz) compared
to the kHz GWs LIGO detected in 2014. Performing an averaging over
an intermediate time scale hence allows to find a sensitivity window
which is safe from time variations in the Newtonian potential.

We will skip a rigorous treatment of the Einstein equations for a GW
propagating in a curved background, referring the interested reader to
the excellent discussion of this complex topic in chapter 1.4 of Maggiore’s
book [37]. Here, we will summarize the argument presented there: The
Ricci tensor Rµν = R̄µν +R

(1)
µν +R

(2)
µν +O(δg3) can be ordered into parts

according to the powers of δg ≡ O(|δgµν |) appearing in it, for a givenThe
energy-momentum

tensor tµν of a
gravitational wave

perturbation δgµν which was split off from the quasi-static background
metric ḡµν . Eventually, one finds that the energy-momentum tensor
tµν corresponding to the effect of the metric perturbation δgµν on the
background metric ḡµν is hidden in the part of the Ricci tensor which is
quadratic in δg, i.e. R(2)

µν , which vanishes in linearized GR, and reads

tµν =
m2

Pl
4

⟨∂µδgαβ ∂νδgαβ⟩ . (2.50)
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The derivatives in the above equation refer to the coordinates defined by
the background metric and ⟨·⟩ has to be understood as an averaging over
an intermediate length scale λ ≪ ℓ ≪ Lbg or intermediate time scale
1/f ≪ τ ≪ 1/fbg. In particular in the TT gauge the Lorentz condition
∂µδgµν = 0 implies that tµν only depends on the two physical modes in
hTT
ij = δgij , such that we can immediately read off the energy density

associated to a GW,

ρgw = t00 =
m2

Pl
4

⟨ḣTT
ij ḣ

ij
TT⟩ =

m2
Pl
2

⟨ḣ2+ + ḣ2×⟩ . (2.51)

Another important result of solving the Einstein equations after splitting
off a slowly varying from a quickly varying part is that GWs propagate
along null geodesics of the background metric, which immediately leads
to the result that also gravitational radiation is subject to optical
phenomena like gravitational lensing, absorption and scattering, even
though their effect usually is negligible due to a suppression by the
weakness of the gravitational interaction.

2.4.4 Gravitational waves in an expanding background

We will now combine our previous discussion of the homogeneous universe
in section 2.3 with the weak-field limit of GR in which we showed that
it is possible to perform an SVT decomposition. To do so we start by
specifying the line element

ds2 = a2(τ)(ηµν + hµν) dx
µ dxν , (2.52)

which corresponds to the perturbed FLRW metric in conformal time. The
metric gµν(x) hence splits into a background part ḡµν(x) = a2(τ)ηµν and
perturbations δgµν(x) = a2(η)hµν(x). The conformal time parameter τ
is related to the time parameter in the unperturbed FLRW metric in Cosmological

perturbation theoryeq. (2.2) through dτ = dt/a(t). We introduce conformal time here in
order to show that the following SVT decomposition closely parallels
the one performed for a flat background in the previous section 2.4.2.
Further, it is common to introduce the conformal Hubble parameter
H = a′/a = aH = ȧ, where we used that for any function f(t) one has
f ′ = aḟ with the prime denoting a derivative with respect to τ .

In order to understand the interplay of perturbations hµν(x) of the
metric and perturbations of the energy momentum tensor, let us use
the same decomposition into functions with different SVT helicities as
in eq. (2.45). As above for a flat background, we find that also the
perturbed FLRW metric can be decomposed into parts that transform SVT decomposition

on an FLRW
background

as scalars (ψ, ϕ, γ, λ), transversal vectors (βi, ϵi) and a TT tensor
(hTT

µν ) under spatial rotations. Under a linearized gauge transformation
xµ → xµ + ξµ the metric perturbation δgµν transforms as

a2hµν → a2hµν − (∇νξµ +∇µξν) (2.53)
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with ∇µ being a derivative with respect to the background metric as
required by eq. (2.34). We can write the performed small coordinate shift
again as ξµ =

(
ξ0, ξi

)
=
(
−A,Bi + ∂iC

)
with Bi = Bi and ∂iC = ∂iC,Gauge dependence

of the helicity
eigenfunctions

such that ξµ = gµνξ
ν = a2 (A,Bi + ∂iC). Under such a coordinate

change, the SVT functions change as

ψ → ψ −
(
A′ +HA

)
, ϕ→ ϕ+

(
1

3
∆C −HA

)
,

γ → γ −
(
A+ C ′) , λ→ λ− 2C , βi → βi −B′

i ,

ϵi → ϵi − 2Bi and hTT
µν → hTT

µν . (2.54)

In the flat limit a = 1, this set of transformations reproduces the ones
performed in eq. (2.47). Just as before, we do not specify a gauge but
rather construct four gauge-invariant Bardeen potentials in order to
reduce the amount of independent dofs from 10 to 6, which can againThe Bardeen

potentials be motivated by having four independent components of the Bianchi
identity:

Φ = −ϕ− ∆λ

6
+H

(
γ − λ′

2

)
, Ψ = −ψ +

1

a

d

dτ

[
a

(
γ − λ′

2

)]
,

Ξi = βi −
1

2
ϵ′i and hTT

µν . (2.55)

Again, in the limit a = 1, these simplify to the gauge-invariant Bardeen
potentials introduced before in eq. (2.48). As above, the requirement
that ξi is transversal immediately follows from the transversality of βi
and ϵi. The 6 = 1 + 1 + 2 + 2 independent components of the above
fields can hence be identified with the six physical metric components
which are dynamical.

The left-hand side of the Einstein equation can now be parameterized
as a function of the scale factor a(τ) and the Bardeen scalars, vector
and tensor. We also recycle the previously used parameterization of the
energy-momentum tensor from eq. (2.46), however splitting the energyPerturbations

around a perfect
fluid

density and pressure into a background and perturbation component,
ρ = ρ̄ + δρ and p = p̄ + δp. Since raising and lowering indices now
involves factors of the scale factors, it is most convenient to specify the
components of Tµ

ν instead of Tµν ,

T 0
0 = −(ρ̄+ δρ) , T i

0 = Si + ∂iS and

T i
j = (p̄+ δp)δij +

(
∂i∂j −

1

3
δij∆

)
σ +

1

2

(
∂iσj + ∂jσ

i
)
+ σTT

ij ,

(2.56)

Using this parameterization is particularly convenient because one solu-
tion of the Einstein equations already becomes obvious: For vanishing
matter perturbations, only ρ̄ and p̄ remain and the Friedmann eqs. (2.4)
can be obtained from the diagonal elements (00) and (ii) of the EinsteinThe equation of

motion for the
Bardeen potentials

equations (in conformal time and with the replacement ρ→ ρ̄, p→ p̄).
Expressing the other Einstein equations in terms of the linearized metric
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perturbations and the above matter perturbations requires a lengthy
computation. For brevity, we only cite the emerging equations of motion
for the Bardeen potentials here and refer to ref. [37] for the full set of
equations:

∆Φ− 3H
(
Φ′ −HΨ

)
= −2

a2δρ

m2
Pl
, ∆(Φ +Ψ) = −a

2∆σ

m2
Pl

,

∆Ξi = −2a2Si
m2

Pl
and

(
hTT
ij

)′′
+ 2H

(
hTT
ij

)′ −∆hTT
ij =

2a2σTT
ij

m2
Pl

.

(2.57)

We can again see that these equations of motion closely resemble their
counterparts in eq. (2.49b) for a flat background. In an expanding back-
ground, however, the Poisson equation for ∆Φ becomes time-dependent.
In fact, it allows for growing solutions, in which an initial overdensity
keeps growing. This is precisely the origin of the growth of structure in
the early universe and ultimately the reason we can see stars on the night Structure grows,

vectors decay and
GWs propagate

sky. The vector equation remains unchanged (up to an overall factor a2).
The complete set of SVT-decomposed Einstein equations also includes
the equation Ξ′

i+2HΞi = 2a2σi/m
2
Pl, which indicates the decay of vector

modes in the absence of a vector part of anisotropic stress [85]. As vector
modes further only satisfy a Poisson equation but not a wave equation,
they do not propagate and thus only play a negligible role in cosmology.
The equation for the tensor perturbation remains a wave equation also
in the case of an expanding background metric. However, there now
appears a damping term due to the expanding FLRW background. In
the following section we want to see how this term referred to as Hubble
friction leads to a damping of the GW amplitude over time.

2.4.5 Equation of motion for a gravitational wave

The last equation in (2.57) is the equation of motion of a GW in
the expanding FLRW background and thus central for this thesis. In
order to see what effect the Hubble expansion has on an individual
wave, it is convenient to rescale the metric perturbation to Hij(x, τ) =
a(τ)hTT

ij (x, t). Upon going to Fourier space we then obtain

H̃ ′′
ij +

(
k2 − a′′

a

)
H̃ij =

2a3

m2
Pl
σ̃TT
ij . (2.58)

In conformal time, the scale factor changes as a(τ) ∝ τn with n = 1 in
radiation domination, n = 2 in matter domination and n = −1 during A GW is also just

a harmonic
oscillator

inflation. In particular, this means that after its emission a GW follows
the equation H̃ ′′

ij + k2H̃ij = 0 in radiation domination.10 This equation
of motion is easily solved by H̃ij = Aij(k) sin (kτ) + Bij(k) cos (kτ).

10 It is not precisely true that after its emission a GW evolves as in vacuum. In fact,
there is an effect of relativistic species moving along the same geodesics of the
background metric as the GW [37,86]. This generates an anisotropic stress σ = O(h)
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Using that for sub-Hubble modes H ′
ij ∼ kHij ≫ HHij , we can express

the term contributing to the energy density in eq. (2.51) as

ḣTT
ij ḣ

ij
TT =

1

a4
(
H ′

ijH
ij′ + 2HH ′

ijH
ij +H2HijH

ij
)
≃
H ′

ijH
ij′

a4
.

(2.59)

The energy density of the GW under consideration hence reads

ρgw(τ) =
m2

Pl
4a4

⟨H ′
ijH

ij′⟩ = m2
Pl

4a4

∫
d3k

(2π)3
H̃ ′

ij(k, τ)H̃
ij′∗(k, τ) .

(2.60)

In the last step we expanded each Hij(x, τ) into Fourier components
H̃ij(k, τ), used that the spatial average can be performed through
evaluation of the integral

∫
d3x exp [−i (k + k′)x] = (2π)3 δ(3) (k + k′),

which in turn eliminates the integral over d3k′, and set H̃ ′
ij(−k, τ) =

H̃ ′∗
ij (k, τ) in order for hij(x, τ) to be real. Note that the remaining

integrand is a function oscillating over a short timescale 1/k. As we
are only interested in the evolution of ρgw over cosmic timescales, we
average over these oscillations. Using that ⟨sin2 x⟩ = ⟨cos2 x⟩ = 1

2 and
⟨sinx cosx⟩ = 0 we eventually obtain

ρgw(τ) =
m2

Pl
8a4(τ)

∫
d3k

(2π)3
k2
[
A∗

ij(k)A
ij(k) +B∗

ij(k)B
ij(k)

]
.

(2.61)

We hence find that once a GW is emitted, its energy density indeedGravitational
radiation scales

like radiation
follows ρgw ∝ a−4 as expected for radiation. The integral of the right-
hand side is independent of time but remains not being very insightful.
In section 2.4.7 we will consider the case of a stochastic GWB instead
of a single plane GW as in the above calculation. Expanding over plane
waves, we will find that the integrand on the right hand side can be
interpreted as the power spectrum of GWs.

Note that in our simplified calculation above, we used that the term
a′′/a vanishes in radiation domination. However, as long as a′′/a≪ k
our above calculation remains valid also for other equation of state
parameters p̄/ρ̄. This is in particular the case for sub-Hubble modes in
any generic epoch [37]. The main effect of a varying equation of state
parameter are spectral distortions of modes which enter the Hubble
sphere only late [86, 87]. As we only consider modes that are already
deep inside the horizon when the equation of state parameter dropsWe do not need to

solve the equations
of motion each

time

during radiation-matter equality at z ∼ 3600, these spectral distortions
are of no importance for this thesis. This in turn implies that we do not
need to solve the equations of motion of a metric perturbation, but can
rely on the simple ρgw ∝ a−4 scaling in the following calculations.

also after the initial source of the GW has become inactive. In particular, free-
streaming neutrinos damp modes that enter the Hubble sphere between neutrino
decoupling and matter-radiation equality.
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2.4.6 Stochastic GW signals from the early cosmos

GWs from the early universe are typically sourced by many individual,
incoherently acting contributions to the anisotropic stress. Examples
of these include bubble collisions in cosmological PTs (see chapter 4),
oscillating cosmic string loops and localized features called kinks and
cusps propagating along these loops, as well as decaying domain walls. Early-universe

sources of GWsFurther, going to second order in cosmic perturbation theory, one finds
that the decomposition into decoupled SVT components of the metric
breaks down. Scalar perturbations Φ and Ψ can then be shown to also
contribute to the source term σTT

ij , e.g. through a term proportional
to ∂iΦ∂jΨ [11]. Also cosmic inflation is predicted to give rise to an
irreducible background of GWs through the amplification of quantum
fluctuations and possibly due to reheating.

Either of these sources active in the early cosmos can emit a potentially
observable signal. However, unlike the GWs observed as transient signals
by the LVK collaboration since 2014, instead a stochastic GWB would
be detected. This means that it is not possible to precisely predict
hTT
ij (x, t) given an early universe phenomenon emitting GWs. Instead,
hTT
ij is a random variable whose statistical distribution can be predicted.

In particular, the variance of this distribution is relevant, as it is related
to the energy density carried by the GW, as shown in section 2.4.3.
Obviously, there is only one realization of each event that once happened
in the early universe. By using a variant of the ergodic hypothesis, the
ensemble average can however be interpreted as an averaging procedure
over large enough portions of space and time.

In practice, in order to predict a GW spectrum, one typically runs
numerical simulations of a given physical process in the early universe to
obtain σTT

ij . One then integrates the equations of motions (2.58) up to the
point in time when the source ceases to be active and identifies the GW
spectrum at the moment it decouples and starts propagating it as a free
wave. The necessary ensemble averaging can be performed by integrating
over modes in a large enough simulated volume, as demonstrated in
section 2.4.5. Since the metric perturbation at a given coordinate point
is random, also in order to observe a stochastic GWB as a form of
irreducible noise, one eventually needs to average over a large enough
portion of space for a long enough time.

In order to make use of the ergodic hypothesis, two requirements have to
be met, however: First, the process sourcing the GW production needs to The ergodic

hypothesishave the same initial conditions at every point in space. This condition
is usually fulfilled due to the homogeneity and isotropy of the FLRW
background in the case of cosmological sources. The second condition
is causality: We further need to require that the process sourcing the
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GW is causal (i.e., it acts within a causal horizon) and that the Hubble
sphere was smaller than today’s Hubble sphere [11].11

We can combine both requirements in order to obtain an estimate of
the correlation scale of a GW signal from the primordial universe. For a
process happening at the same instance throughout the universe and
it being causal, its largest possible correlation scale ℓ∗ at the time ofAn estimate of the

correlation length
ℓ0 today

production is roughly a Hubble radius H−1
∗ , where an asterisk refers

to the time of production. The corresponding correlation length scale
redshifted to today reads ℓ0 = ℓ∗ a0

a∗
≲ H−1

∗
a0
a∗

. In order to calculate the
ratio of scale factors, we can employ the conservation of entropy in the
SM bath requiring that hSM(T )T 3a3(T ) is constant in time (assuming
that there is no intermediate entropy injection from a DS). Plugging in
T0 = 2.4 · 10−13 GeV and h0SM = 3.9, we obtain

a0
a∗

=

(
h∗SM
h0SM

)1/3(T∗
T0

)
≃ 1.3 · 1013

(
h∗SM
100

)1/3( T∗
GeV

)
. (2.62)

We want to compare the correlation length ℓ0 redshifted to today with
today’s Hubble radius H−1

0 . The latter is related to the Hubble radius
H−1

∗ at emission of the GW signal through

H∗ = H0

√∑
i

Ωi
ρi(T∗)
ρ0i

≃ H0

√
Ωrad

ρrad(T∗)
ρ0rad

. (2.63)

In the first step we employed the Friedmann eq. (2.4), whereas in the
second step it was assumed that the emission happens in the early
universe in radiation domination, i.e. T∗ ≳ 1 eV. The ratio of radiation
energy densities reads ρrad(T∗)/ρ0rad = g∗SMT

4
∗ /(g

0
SMT

4
0 ). Using entropy

conservation another time in order to express the ratio of temperatures
as a ratio of scale factors then immediately yields the wanted relation

ℓ0H0 ≲ 1.3 · 10−11

(
100

g∗SM

)1/6(GeV
T∗

)
, (2.64)

where in the last step we used that g∗SM ≃ h∗SM for sufficiently high
temperatures. This result clearly shows that any GW signal produced
by a causal process in a short period of time around temperature T∗
will have tiny correlation lengths today compared to the Hubble radius.
Analogously to the above computation one can also compute the number
of regions in the sky in which a primordial GW would hypothetically
be sourced by a single realization of an early universe process [11]. The
GWB from a model turning the EWPT first-order would for instanceCosmic GWs can

only be measured
as noise

be sourced by a superposition of sources from at least 1024 uncorrelated
regions of the celestial sphere. Hence, a cosmological GW signal can in
practice only be observed through the determination of the statistical
distribution of tensor fluctuations hTT

ij . Pictorially speaking, a cosmic

11 The latter condition is not fulfilled in the case of inflationary GWs. Due to the
stochastic nature of the quantum fluctuations of the inflaton field, which then
become macroscopic during inflation, the emitted GWB is still stochastic.
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GWB will hence manifest itself as a sort of noise an observatory cannot
get rid of, much like Penzias and Wilson were not able to eliminate the
CMB noise from their Horn antenna [88].

2.4.7 The spectrum of primordial gravitational waves

The central result of the last section 2.4.6 is that a GW signal from
the early cosmos will necessarily be a superposition of many individual Superposition of

plane wavessources’ emitted radiation. We now want to connect this with our
previous discussion on the energy density of a single plane wave in section
2.4.5 in order to define the spectrum of a cosmic GWB. Employing the
TT gauge we can expand the solution of the equation of motion (2.58)
as a superposition of plane waves moving in direction n̂ = k/|k|

hij(t,x) =
∑

A=+,×

∫ +∞

−∞
df

∫
d2n̂ h̃A (f, n̂) eAij (n̂) e

−2πif(t−n̂x) .

(2.65)

The polarization vectors therein can be expressed as e+ij (n̂) = ûi ûj −
v̂i v̂j and e×ij (n̂) = ûi v̂j− v̂i ûj , where û and v̂ are unit vectors orthogo-
nal to the propagation direction of the GW and each other. The Fourier
amplitudes h̃A (f, n̂) = h̃∗A (−f, n̂) follow a statistical distribution. We
will now show how for a stationary, Gaussian, isotropic and unpolarized
background the whole distribution is determined through the variance
of h̃(f), which we then identify with the energy spectrum of the GWB.

stationarity implies that the two-point correlator ⟨hA(t)hA′(t′)⟩
only depends on the time difference t − t′ and not separately on the
two cosmic times t and t′. Since observations of GWs take place on
time scales t− t′ < O(10 yr) much shorter than the age of the signals
t, t′ = O(14Gyr), this assumption is usually very well justified. An
exception are sources which keep being active over long enough time
scales, see ref. [89]. Stationarity also leads to ⟨hA(t)⟩ being approximately Old GWBs are

stationaryconstant on human time scales, thereby contributing marginally to the
relative density of vacuum energy ρΛ. This is because ⟨hA⟩ = const
leads to a stationary curvature of spacetime, analogously to the case of
a cosmological constant. We are only interested in the time-dependent
part of metric fluctuations and can thus ignore the first moment of the
distribution by setting ⟨hA⟩ = 0 in our analysis.

gaussianity suggests that the full statistical information one can
possibly obtain from the background is contained in its mean, which we
set to zero, and its variance ⟨hA(t)hA′(t′)⟩. All higher moments can then
be computed from the two-point function. This assumption is supported
by our argument from section 2.4.6 that a single signal today is sourced
by a large number of independent processes. The central limit theorem
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then requires cosmic backgrounds to be Gaussian. Also the irreducible
GWB from quantum fluctuations during inflation is Gaussian, in that
case, however, rather due to the inflaton field being a free quantum fieldThe central limit

theorem also holds
for GWBs

whose amplitudes follow a Gaussian probability distribution. A small
slow-roll suppressed amount of non-Gaussianity can, however, be present
in that case due to deviations from a perfect de Sitter-like inflationary
phase. Note that the assumption of Gaussianity also needs to be dropped
for astrophysical GWBs being formed by a superposition of only a few
sources. In that case, further information on the distribution of the
metric perturbations can be obtained from higher-point correlators.

isotropy is a very well justified assumption for cosmic GWBs for pro-
cesses that happen at the same point in time in different Hubble patches.
Analogously to the CMB temperature anisotropies, which are of the order
∆T/T ∼ 10−5, also a GWB should show no evident (anti-)correlations
between the signal amplitude in different directions. We hence expect
⟨h̃∗A (f, n̂) h̃A′ (f ′, n̂′)⟩ to be proportional to δ (ϕ− ϕ′) δ (cos θ − cos θ′),
where ϕ and θ are the two angles in polar coordinates which specify the
direction n̂, and where the constant of proportionality cannot dependAnisotropy hints

towards an
astrophysical GWB

origin

on the direction n̂. Astrophysical backgrounds are typically much more
anisotropic than cosmic backgrounds due to their strong correlation
with the matter distribution in our galaxy compared to the isotropy of
the primordial plasma. The detection of anisotropy therefore is a strong
hint towards a local, astrophysical origin of a given signal.

no polarization in the GWB is expected regardless if the signal is
of astrophysical or cosmological origin, again due to the large number
of individual sources. This means, that ⟨h̃∗A (f, n̂) h̃A′ (f ′, n̂′)⟩ is propor-
tional to δAA′ , where the constant of proportionality is independent of
the polarization index A.

Combining these four well-justified assumptions in the case of cosmolog-
ical GWBs, we find that the two-point correlation function in Fourier
space can be expressed as

⟨h̃∗A (f, n̂) h̃A′
(
f ′, n̂′)⟩ = 1

4π
δAA′δ

(
f − f ′

)
δ
(
ϕ− ϕ′

)
× δ

(
cos θ − cos θ′

) 1
2
Sh(f) ,

(2.66)

where the full frequency dependence was absorbed into the polarization-
and direction-independent two-sided spectral density Sh(f) = S∗

h(−f).
The factor (4π)−1 cancels the normalization of the d2n̂ = dcos θ dϕ
integration; the factor 1

2 instead was chosen in order to be consistentThe spectrum is
fully described by

Sh(f)
with the definition of one-sided noise spectral densities. Going back
from Fourier space to position space and using that the polarization
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tensors satisfy eAije
ij
A′ = 2δAA′ , such that

∑
A e

A
ije

ij
A = 4, we find that the

two-point correlator of h0ij ≡ hij(t0,x = 0) reads

⟨h0ij hij0 ⟩ = 4

∫ ∞

0
df Sh(f) . (2.67)

Note that Sh(f) only describes the current spectrum of the GW spectrum.
We will discuss in the following section, how the spectrum redshifts
between production and detection. The spectral density Sh(f) has units The characteristic

strain hc(f)of Hz−1 and is often used when comparing with experimental noise
spectra in interferometers. Another way of specifying the spectrum is
through

h2c(f) = 2fSh(f) such that ⟨h0ij hij0 ⟩ = 2

∫
d log f h2c(f) ,

(2.68)

which is useful as it is dimensionless and directly related to the order
of magnitude of the tensorial metric perturbation, giving hc the name
characteristic strain amplitude.

In cosmology, the most frequently used way of describing a GW spectrum
is instead based on the corresponding relic energy density of the GWB. The spectrum

Ωgw(f)One introduces the energy density in GWs normalized to the critical
energy density ρ0c = 3m2

PlH
2
0

Ωgw =

∫
d log f

1

ρ0c

dρ0gw(f)

d log f
=

∫
d log f Ωgw(f) (2.69)

for which one needs to accept a slight abuse of notation in which
Ωgw ≠ Ωgw(f) and ρ0gw ̸= ρ0gw(f). Again, one obtains a dimensionless
spectrum Ωgw(f), now however with a related relative energy density
Ωgw, which can be compared to the relative energy density in radiation
Ωrad for instance. In particular for a spectrum Ωgw(f) peaked around fp,
stemming for instance from a cosmic PT, one obtains that Ωgw(fp) ≃
Ωgw, further motivating the use of this quantity in cosmology. In order
to obtain the energy density of the plane wave-expanded spectrum and
to relate it to hc(f) and Sh(f), we plug eq. (2.65) into eq. (2.51), equate
the ensemble average with a spatial average under use of the ergodic
hypothesis as in section 2.4.5, and eventually obtain

ρgw = m2
Pl

∫
d log f f(2πf)2 Sh(f) . (2.70)

The factor (2πf)2 therein comes from the two time derivatives in Translating between
spectraeq. (2.51) acting on the exponential of the Fourier transformation. The

spectral energy density hence relates to the previous two spectral func-
tions through

h2Ωgw(f) =
4π2

3H2
100

f3Sh(f) =
2π2

3H2
100

f2h2c(f) , (2.71)
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where we introduce the quantity H100 = 100 km/s/Mpc and multiplied
with h ≡ H0/H100 ≃ 0.69 in order to make the conversion independent
of the precise value of the Hubble constant H0, still being subject of
the previously mentioned Hubble tension. Numerically, one can hence
translate from h2Ωgw(f) to the other spectra using

Sh(f) ≃ 10−36

(
Hz
f

)3 h2Ωgw(f)

Hz
and (2.72)

hc(f) ≃ 10−18

(
Hz
f

) √
h2Ωgw(f) . (2.73)

2.4.8 The redshift of gravitational wave spectra

We already discussed in the introduction of this thesis, that GWs de-
couple as early as a Planck time from the rest of the universe. The
weakness of the gravitational interaction further allows us to describeThe spectrum

redshifts as
expected for
radiation...

gravitational radiation, once emitted, to a very good approximation
through linearized gravity. The interaction of GWs with the remaining
plasma and with itself can hence be neglected such that we can treat it as
a freely propagating wave in an expanding background, as described by
the equation of motion (2.58). We found that the corresponding energy
density redshifts like ρgw ∝ a−4 as expected for radiation. Further, an
individual mode scales with f ∝ a and the critical energy density is
proportional to ρc ∝ H2. The relation between the spectrum at emission
Ω∗

gw(f) and today Ωgw(f) is therefore given by

Ωgw(f) = RΩ∗
gw

(
a0
a∗
f

)
with R ≡

(
a∗
a0

)4 (H∗
H0

)2

. (2.74)

Note that the above equation only holds for modes that are already...as long as the
modes are
sub-Hubble

sub-Hubble at the time of their production (k ≫ a∗H∗). For lower-
frequency modes of the GW spectrum, one generally expects a spectral
distortion from entering at a time when the equation of state parameter
has changed from the one at the time of production. This effect will
however not be of relevance in the present thesis.

For getting a feeling of the orders of magnitude of the different quantities
involved in eq. (2.74), we can use the expression for the scale factor ratio
from eq. (2.62) and the ratio of Hubble parameters from eq. (2.63) to
obtain

Rh2 ≃ 1.6 · 10−5

(
100

g∗(T∗)

)1/3

. (2.75)

A given mode with physical wave number a0k/a∗ at production can be
related to the Hubble rate H∗ at that time to obtain xk = a0k/(a∗H∗).Each GW

frequency
corresponds to a

point in time after
the Big Bang

The corresponding frequency of that mode today is hence given by

f =
1

2π

k

a0
=
xk
2π

a∗
a0
H∗ ≃ 26 nHzxk

(
g∗(T∗)
100

)1/6( T∗
GeV

)
. (2.76)
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Since causality requires xk ≥ 1, the above equation yields a lower bound
on the frequency of a GWB caused by a process operative at temperature
T∗. For the same reason, one can also predict that for processes during
which the sources are active only over a brief period of time, the GW
spectrum will be peaked. Vice, versa, in the opposite case of a long-
lasting source, one rather expects an extended plateau in Ωgw(f). For Peaked and

plateau-shaped
spectra

instance, the spectrum emitted by bubble collisions in a first-order phase
transition (FOPT) typically peaks at a frequency given by eq. (2.76)
with xk ≃ 10− 104, depending on the bubble size. Oscillating cosmic
strings instead have a GW spectrum with a broad plateau spanning
many orders of magnitude in frequency due to the emission happening
over long time scales. The irreducible background in tensor fluctuations
from inflation is also almost flat, in this case because the source is active
while a∗H∗ grows exponentially.

Note that entropy conservation in the SM bath was assumed in deriving
eqs. (2.62) and (2.63), which we reused here. In the presence of an A DS decay can

change the redshift
relation

entropy injection into the SM bath, for instance from a DS decay, this
assumption breaks down and requires a correction of the above expression
for Rh2. We will discuss this correction in chapter 4.3.2.

2.4.9 Primordial GWB searches

We want to conclude this chapter with a brief discussion of the exist-
ing and predicted constraints on the cosmic GWB, the evidence for a
background at nHz frequencies and the ∆Neff bound on cosmological A selection of

observatoriesbackgrounds. Fig. 2.8 shows an overview of these different sources of
information. For the sake of simplicity we decided to only plot the
projected sensitivity curves of LISA, the Big Bang Observatory (BBO)
and the Einstein Telescope (ET), as well as the six lowest Fourier fre-
quencies of the free-spectral analysis of the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) 15yr data set. For a
more complete overview of the existent and prospective constraints see
refs. [25, 90] for instance.

Given an effective noise spectrum Ωeff(f) of an observatory, which is The SNR of an
interferometerunderstood to include all relevant noise contributions from the detector

but also from unresolved astrophysical backgrounds, we can construct
the optimal-filter cross-correlated signal-to-noise ratio (SNR) for a cos-
mological GWB

ρ2 = 2 tobs

∫ fmax

fmin

df

[
Ωgw(f)

Ωeff(f)

]2
. (2.77)

The factor tobs denotes the duration of the observation and the observa-
tory’s frequency band spans fmin to fmax. The initial factor of 2 only
appears when the SNR refers to a cross-correlation between different
detectors. If instead an auto-correlation is used by the observatory, this
factor 2 drops out of the equation. We will refer to a GW signal as
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Figure 2.8: Overview of observational bounds on primordial GWBs. The blue,
orange and purple filled areas correspond to the expected effective
noise spectra h2Ωeff of the interferometers LISA, BBO and ET from
ref. [25]. The dips in the spectra correspond to the expected unre-
solved astrophysical background from galactic and extra-galactic
white dwarf binaries. The blue, orange and purple contours are
the associated PLI curves. The green violins depict the six lowest
Fourier modes of the free-spectral analysis of the NANOGrav 15yr
data set. The blue hatched band corresponds to the Neff bound on
primordial GWBs from eq. (2.82).

Experiment Frequency range ρthr tobs Auto-correlated?
LISA 10−5 − 1Hz 10 4 yrs ✓

BBO 10−3 − 102Hz 10 4 yrs ✗

ET 1− 104Hz 5 5 yrs ✓

Table 2.2: Threshold SNRs ρthr of future GW observatories taken from ref. [25].

observable if its SNR exceeds a given specific threshold, ρ ≥ ρthr, which
we list in table 2.2.

If Ωgw(f) follows a power-law, it is convenient to not show Ωeff(f) in plotsPLI curves
as a comparison, but instead use so-called power-law integrated (PLI)
curves ΩPLI(f). For a given observatory, they are defined as

ΩPLI(f) = max
b

[
Ωthr
b

(
f

f̄

)b
]
, (2.78)

where f̄ is an arbitrary pivot frequency and

Ωthr
b ≡ ρthr√

2 tobs

∫ fmax

fmin

df

((
f/f̄

)b
Ωeff(f)

)2
− 1

2

(2.79)

is the minimum signal amplitude needed in order to reach the obser-
vatory’s SNR threshold ρthr for a power-law shaped GWB Ωgw(f) =
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Ωb

(
f
f̄

)b
. If a given power-law shaped GWB spectrum intersects with

the PLI spectrum, it can be considered observable by the respective
observatory. However, it’s important to note that this interpretation is
only indicative if the signal does not actually follow a power-law shape.
In such cases, comparing the SNR from eq. (2.77) with the threshold
value provided in table 2.2 is necessary to reach a definitive conclusion.

Fig. 2.8 also shows the so-called Bayesian spectrograms (commonly
referred to as violins) for the NANOGrav 15yr data set. We will discuss
the precise origin and interpretation of these in detail in chapter 3. An A note on violins
easy way of interpreting them is as data points whose error bars have
been upgraded to a full statistical distribution which is depicted as the
violin’s width. Note, however, that this interpretation can be misleading
as it forgets about the Bayesian character of these distributions: The
vanishing width of a given violin at low signal amplitudes does not
indicate that it is impossible for the signal to have an amplitude lower
than indicated by the violins. Instead, the range of the violins rather
indicates the boundaries of their underlying prior ranges.

In fig. 2.8 we also show ∆Neff bounds on primordial GWBs. In sec-
tion 2.3.6 we introduced the quantity ∆Neff which parameterizes any The Neff bound on

primordial GWBsadditional energy density ρextra in units of neutrino dofs after their
decoupling. Both BBN and the CMB observables can be used to infer
bounds on the Hubble rate around the temperature of neutrino de-
coupling and recombination, which can then be expressed in terms of
bounds on ∆Neff. If one equates the energy density ρextra in eq. (2.30)
with the energy density ρgw of a primordial GWB, one can obtain a
bound on its amplitude.

Using as reference values the 95% C.L. upper limit on Neff from BBN
and CMB combined from eq. (2.33) [74], Neff = 2.941 + 0.143 = 3.084,
and the corresponding ∆Neff = 3.084−3.044 = 0.040 as a normalization,
we obtain

ρgw

ργ

∣∣∣∣
tBBN

=
ρgw

ργ

∣∣∣∣
t0

< 9.1 · 10−3

(
Neff − 3.044

0.040

)
. (2.80)

To arrive at this conclusion we used that after the e+e−-annihilation the
photon energy density redshifts precisely like the GW energy density
until today. Of course, this bound can only depend on the energy density
of a primordial signal produced before T ∼ 0.1MeV, corresponding
to the onset of BBN after the deuterium bottleneck. In particular,
astrophysical backgrounds are therefore not affected by this bound. It Neff puts bounds

on the integrated
spectrum

should further be noted, that this bound can only depend on modes
that already entered the Hubble sphere at that time. This corresponds
to GWs which today have frequencies above fBBN ≃ 1.5 · 10−11 Hz. To
arrive at this value we used eq. (2.76) and for definiteness put in xk = 10,
requiring that only modes well within the Hubble sphere contribute.
Using h2Ωγ = 2.473 · 10−5, we can equivalently write∫ ∞

fBBN

df

f
h2Ωgw(f) < 2.5× 10−7

(
Neff − 3.044

0.040

)
. (2.81)
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If we further assume that the signal is peaked over at least an order
of magnitude in frequency (which is typically the case), we can further
impose

h2Ωgw(f) ≲ 2.5× 10−7

(
Neff − 3.044

0.040

)
for f > fBBN , (2.82)

which is the BBN bound shown in fig. 2.8.

There are considerable ongoing efforts to extend the probed GW spec-No sensitivity to
primordial GWs at

high frequencies
trum to higher frequencies [91, 92]. These proposals for instance rec-
ommend the use of the inverse Gertsenshtein effect, i.e. the coupling
of GWs to electromagnetic fields, or the direct mechanical coupling of
radio frequency cavities to GWs for their detection. So far, the existing
limits are far from exceeding the ∆Neff bound. We therefore do not show
any further bounds at higher frequencies.

The upper horizontal axis in fig. 2.8 corresponds to the temperature
T∗ a given frequency refers to according to eq. (2.76), where we set
xk = 1 for definiteness and ignored the mild dependence of g∗ ≃ O(100)
on temperature. It hence becomes apparent that the PTA signal hints
towards strong dynamics in the primordial plasma at MeV temperatures,
whereas GW observatories sensitive to higher frequencies will be able toWe live in the age

of GW cosmology! probe the primordial plasma at even higher temperatures. Previously,
BBN was considered the earliest direct probe of the ΛCDM model. With
the advancement of sensitivities for GWBs at higher frequencies, we will
therefore be able to directly probe the occurrence of anisotropic stress
in the primordial plasma at much earlier times. We can thus rightfully
claim: we are at the the dawn of GW cosmology!



3 PULSAR T IM ING ARRAYS

Wissen ist Nacht!

— Leitspruch der Dunkelheitsforschung,
Prof. Dr. Abdul Nachtigaller

In June 2023, a significant milestone was achieved in the field of GW
science and astrophysics: at an internationally acclaimed press conference
the first evidence for the detection of a stochastic GW background The nHz signal
in the nano-Hertz frequency band was unveiled. On the same day,
multiple collaborations, including the North American NANOGrav [7],
the Australian PPTA [8], the European EPTA in conjunction with the
Indian InPTA [9], and the Chinese CPTA collaboration [10], released
their latest data sets, all of which support this groundbreaking discovery.

In the first section of this chapter (section 3.1), we provide a brief
overview of the history and current status of PTAs. Following that, in
section 3.2, we explain how a monochromatic plane GW can manifest
itself in the timing data of a single observed pulsar. In section 3.3,
we express a stochastic GW signal as a superposition of plane waves,
leading to the characteristic Hellings-Downs (HD) correlation function, Contents of this

chapterfor which PTAs have recently announced to have found evidence. Sec-
tion 3.4 discusses the statistical methods used to separate a GWB
from other noise sources in a PTA. A review of the latest results from
the NANOGrav collaboration is presented in section 3.5. Finally, in sec-
tion 3.6, this chapter concludes with a brief summary of the novel signal’s
interpretation as an astrophysical background of supermassive black
hole binaries (SMBHBs), being the strongest contender for alternative
cosmological interpretations.

3.1 a short history of pulsar timing

In 1967 Jocelyn Bell, then a PhD student under Antony Hewish, made a
groundbreaking discovery by identifying the first pulsar J1921+2153 [93].
She observed radio sources with a very regular period of 1.337 s. At the
time, such regular fluctuations in radio signals were often attributed to The first pulsar
human activity rather than astronomical sources. Within the following
years of her discovery, more pulsars were identified thanks to rapid
advancements in radio astronomy. In particular, also the aforementioned
Hulse-Taylor binary pulsar J1915+1606 which led to the first indirect

53
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discovery of GWs [81], rewarded with a Nobel Prize in 1993, was observed
only a few years after Bell’s initial discovery.

Already in the early 1930s, three decades before Bell’s discovery, the
existence of neutron stars had been hypothesized by Landau, Baade,
and Zwicky [94, 95]. Just a few months before Bell’s discovery, Pacini
and Gold proposed the existence of rapidly rotating neutron stars which
would emit pulses of electromagnetic radiation [96,97]. The origin of theirPulsars are

spinning neutron
stars

fast rotations is now understood to be due to the conservation of angular
momentum from their progenitor stars, which become more compact
and faster-spinning as the nuclear fusion within them ceases [98].

Neutron stars are sources of strong dipolar magnetic fields of up to 1011 T,
whose axis is not necessarily aligned with the star’s axis of rotation.
The neutron star can thus be modeled as a precessing magnetic dipole,
which in turn generates an electric field. The latter accelerates chargedThe lighthouse

model particles within the neutron star’s magnetosphere, exciting beams of
electromagnetic radiation in the radio band along the magnetic dipole’s
direction, effectively turning the neutron star into a lighthouse sweeping
radio beams through its host galaxy [99].

Typical pulsars have an orbital period of P ≃ 0.1− 1 s and a spin-down
rate of Ṗ ≃ 10−15, meaning their periods increase only by about 1 ns
per month due to their high moment of inertia. Additionally, there is aMillisecond pulsars
population of millisecond pulsars which rotate much faster (P ≃ 10ms),
resulting in an even more stable orbital period (Ṗ ≃ 10−20). These
millisecond pulsars are typically formed in binary systems where a
regular pulsar accretes mass from its companion, thus gaining angular
momentum from the binary system [98].

Due to the stability of their orbital periods, the sequence of pulses
from millisecond pulsars can be predicted with extreme precision using
a timing model. These models account for factors like spin-down Ṗ
and higher time-derivatives of the period P , the effects of the ionized
interstellar medium, Earth’s proper motion, and possible delays from the
orbital motion of binary pulsars. Importantly, GWs also affect the arrival
times of these pulses, a phenomenon known since the late 1970s [100,
101]. The work of Hellings and Downs in the early 1980s provided aHellings and

Downs method to distinguish the effect of a GW background on arrival times
from other noise sources [102]: By correlating timing residuals between
several pulsars, a characteristic pattern due to the quadrupolar nature
of gravitational radiation was predicted to be observable in case a GWB
alters the time intervals between pulses.

This led to the concept of PTAs in the late 1980s [103], which promised
to be able to disentangle the effects of clock errors (monopolar corre-
lation) [104], a mismodeling of the Solar System’s barycenter (dipolar
correlation) [105], and the searched-for HD correlation of GWs. Today,The PTA idea
several PTA collaborations exist, namely NANOGrav, PPTA, EPTA,
InPTA, and CPTA. Each collaboration observes a set of pulsars using
radio telescopes, sometimes in various radio frequency bands. These col-



3.2 gravitational wave effects on a single pulsar’s timing 55

laborations (except for CPTA which acts as an observer) share their data
under the International Pulsar Timing Array (IPTA) framework, thus
drastically increasing the number of possible pulsar cross-correlations.

The lowest GW frequency a PTA can detect is determined by the inverse
time span of the arrival data, f ≳ 1/T . For an indicative observational
period of T = 10 yr, the lowest detectable frequency is slightly below
3 nHz. Lower-frequency GWs cannot be detected through pulsar timing
variations but rather manifest themselves as contributions to the pulsar
spin-down rate Ṗ and higher derivatives of the period P . Thus, PTAs nHz to µHz
are generally not sensitive to lower-frequency GWs. The upper frequency
limit is determined by how often a pulsar is observed, typically every
few weeks or even once per week in the case of EPTA. The highest
observable GW frequency is thus around 50 yr−1 ≃ 1 µHz. However,
sensitivity is lower at these frequencies due to noise-dominated timing
residuals, i.e. the difference between the timing model and the actually
observed times of arrival (TOAs) of pulses.

In their latest data release, the NANOGrav collaboration found evidence
for a GW background with an amplitude of around h2Ωgw ≃ 10−10−10−8

(see the previous fig. 2.8). It is not yet clear whether the signal is of
astrophysical or cosmological origin. The prevailing null hypothesis An unexpectedly

strong nHz
background

for the signal’s origin is an astrophysical background of SMBHBs [15].
However, due to the unexpectedly high amplitude and low spectral index
of the measured signal, as well as unresolved issues like the final parsec
problem (see sec. 3.6.1), this interpretation has been questioned [106].

3.2 gravitational wave effects on a sin-
gle pulsar’s timing

We will now study the effect of GWs on a pulsar’s emitted radio pulses.
Before we study the effect of a stochastic background on a pulsar timing
array, let us first consider the effect of a monochromatic and plane GW
on a single pulsar’s period. We will identify the coordinate origin with
the barycenter of the Solar System (often referred to as Earth in the
pulsar timing literature for simplicity) and refer to the pulsar position
with x = na. The label a will allow us to generalize and correlate
between two pulsars in the following section. We further work in TT We work in TT

gaugegauge, such that the coordinate distances da between Earth and pulsars
remain constant, whereas the proper distance between them oscillates. In
that sense the following calculation is very similar to the one performed
in section 2.4.1 and analogous to studying the response of a single
interferometer arm to a GW. Both this and the following subsection are
close to the calculations presented in [37,107].

For a radio pulse moving in x-direction, the line element reads A pulse moving
along the x-axis

0 = −dt2 +
(
δij + hTT

ij

)
dxi dxj = −dt2 +

(
1 + hTT

xx

)
dx2 . (3.1)
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The pulse moves from x to the coordinate origin, so ignoring the effect
of the metric perturbation we can write x(t) ≃ (tobs − t)x̂. To first order
in the metric perturbation we obtain

dx = −
√

dt2

1 + hTT
xx (t,x(t))

=

(
1− hTT

xx (t,x(t))

2

)
dt . (3.2)

By integrating this expression from the emission of the radio pulse at
tem to the time of observation tobs ≃ tem + da, ignoring the effect of the
metric perturbation in the integral boundary, we can obtain tobs to first
order in the metric perturbation,

tobs = tem + da +
1

2

∫ tobs

tem

dt′hTT
xx (t′,x(t′)) . (3.3)

We can easily generalize this expression to the case of a radio pulseA pulse moving in
direction n̂a in direction n̂a not necessarily coinciding with the x-axis by replacing

hTT
xx → nian

j
ahTT

ij , yielding

tobs = tem + da +
nian

j
a

2

∫ tobs

tem

dt′hTT
ij (t′,

(
tem + da − t′

)
n̂a) . (3.4)

The difference between tobs and the observation time t′obs of another
radio pulse emitted at t′em = tem+Pa hence reads t′obs− tobs = Pa+∆PaThe delay ∆Pa of

a single pulse with

∆Pa =
nian

j
a

2

∫ tobs

tem

dt′
[
hTT
ij (t′ + Pa,xa(t

′))− hTT
ij (t′,xa(t

′))
]
,

(3.5)

where xa(t
′) = (tem + da − t′) n̂a. Since the GW frequency is f ≃

O(nHz), while the pulsar’s rotational period is at the scale of Pa ≃
O(ms), their product fPa ≃ 10−9 is tiny. Therefore, it is enough to
expand the metric perturbation around t′ to first order in fPa to find
an expression for the relative delay

∆Pa

Pa
=
nian

j
a

2

∫ tobs

tem

dt′
[
∂

∂t′
hTT
ij (t′,x)

]
x=xa(t′)

(3.6)

between two pulses. A GW hTT
ij (t,xa) = Aij(n̂) cos (2πf (t− n̂xa))

propagating in n̂-direction hence induces a (sometimes referred to as
red -) shift za ≡ ∆Pa

Pa
of the pulse’s TOA reading

za =
nian

j
aAij(n̂)

2 (1 + n̂ · n̂a)
[cos (2πftobs)− cos (2πftem − 2πfτan̂a · n̂)]

(3.7)

=
nian

j
a

2 (1 + n̂ · n̂a)

[
hTT
ij (tobs,x = 0)− hTT

ij (tobs − τa,xa)
]

(3.8)

with τa = tobs − tem ∼ kpc ∼ 103 yr being the runtime of the radio
signal. The first term is usually referred to as the Earth term, as it only
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depends on the local metric perturbation at the time of observation. In
practice, the coordinate origin is however set to the barycenter of the
Solar System, from which the time delay za at Earth can be inferred by
translating into a rotating reference frame in the deterministic timing
model discussed in section 3.4. This is done by adding up the effects of
a Rømer time delay due to the annual motion of the Earth around the The “Earth” term

and the pulsar
term

Sun, a Shapiro time delay due to the Solar System’s own gravitational
field, and an Einstein time delay due to the detectors proper motion
around the Sun and the difference between coordinate time and proper
time on Earth [107]. The second term in eq. (3.8), referred to as the
pulsar term, depends on the metric perturbation at the location of the
pulsar at the time of the pulse’s emission, several thousand years ago.

3.3 effect of a gwb on an array of pulsars

We can now apply eq. (3.8) to the case of a stochastic GWB. Using the Expanding in plane
wavesplane wave expansion (2.65) and replacing tobs for t, we immediately

obtain

za(t) =
∑

A=+,×

∫ ∞

−∞
df

∫
d2n̂ h̃A(f, n̂)F

A
a (n̂) e−2πift

×
(
1− e2πifτa(1+n̂·n̂a)

)
(3.9)

with the antenna response pattern function for pulsar a

FA
a (n̂) ≡

nian
j
aeAij(n̂)

2 (1 + n̂ · n̂a)
. (3.10)

As discussed previously, a Gaussian stochastic GWB is only character-
ized through its variance and mean, the latter of which we deliberately
set to zero. Hence we need to compute the correlator ⟨za(t)zb(t)⟩ to
make progress, where the brackets refer to an ensemble average over
realizations of the stochastic variable h̃A(f, n̂). Plugging in the pre- A GW background

is characterized by
its variance

vious parameterization of the variance of a stationary, isotropic and
unpolarized GW background from eq. (2.66), we obtain the correlator

⟨za(t)zb(t)⟩ =
∫ ∞

0
df Sh(f)

∫
d2n̂

4π
Kab(f ; n̂)

∑
A=+,×

FA
a (n̂)FA

b (n̂)

(3.11)

with Kab(f ; n̂) =
[
1− e−2πifτa(1+n̂·n̂a)

] [
1− e2πifτb(1+n̂·n̂b)

]
.

(3.12)

The function Kab is quickly oscillating with fτa ≳ 10 for f ≳ 1 nHz and
τa > 0.1 kpc even for the closest observed pulsar. Unless |1 + n̂ · n̂a| ≲
1/10, i.e. unless the GW comes straight from the direction of the pulsar
under consideration, we obtain Kab → 1 for a ̸= b. For a = b, one instead
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obtains the auto-correlation limit Kab → 2. Since fτa is large for mostKab → 1 + δab

pulsars under consideration, we can hence safely set Kab(f ; n̂) → 1+ δab
and concentrate on the remaining integral over the product of detector
pattern functions FA

a (n̂)FA
b (n̂). This integral is elementary, but still

requires a tedious calculation at whose end one arrives at the overlap
reduction formula

Γab ≡
3

2

∫
d2n̂

4π
Kab(f ; n̂)

∑
A=+,×

FA
a (n̂)FA

b (n̂) (3.13)

=
3

2
xab lnxab −

1

4
xab +

1

2
δab +

1

2
(3.14)

with xab = 1
2 (1− cos θab), where θab is the angle between pulsars a and

b as seen from Earth. The function Γ(xab) was first derived by HellingsThe HD curve
and Downs [102] (for a ̸= b) and is since known as the HD curve. The
prefactor 3

2 was introduced to ensure the normalization to Γab = 1 for
a = b.

In fig. 3.1 the HD curve is plotted in comparison to a monopolar and a
dipolar correlation function. A flat monopolar correlation would show
up in the data analysis of a PTA in the case of clock errors which affect
all pulse timestamps in the same way, corresponding to a maximal cor-
relation between pulsars regardless of the specific pulsar pair. A dipolar
correlation would instead indicate a mismodeling of the barycenter of the
Solar System, leading to a secular motion of Earth with respect to the
pulsars. Note that the HD curve is not a pure quadrupolar correlation
function, as can be seen by it reaching 0.25 instead of 0.5 for two pulsarsInterpreting the

HD curve in opposite directions. Using a decomposition into Legendre polynomials
one can however show that the HD curve can be well approximated as
the sum of a quadrupolar and an octupolar term [107]. The reason for
the occurrence of the octupole and higher-order multipolar correlations
is that the denominator in the antenna response pattern (3.10) implies
that there is a preferred direction n̂ · n̂a = −1, in which the response
of the detector system of Earth and pulsar is largest. Note also that
the maximum of the HD curve is reached only in the case of an auto-
correlation a = b. Even pulsar pairs with a low angular separation can
have a maximum cross-correlation of 0.5, because the product of two
pulsar terms in Kab decorrelates quickly for pulsars with a separation
larger than a GW wavelength [108].

For the correlator of shifts of pulse arrival rates we hence obtain

⟨za(t)zb(t)⟩ =
2

3
Γab

∫ ∞

0
df Sh(f) . (3.15)

However, a PTA is not able to directly measure the shift za of a singleThe timing residual
Ra and its

variance rab
pulse. Instead, it measures pulse arrival times, which shift from their
regular pattern due to the accumulated timing residual

Ra(t) ≡
∫ t

0
dt′za(t′) . (3.16)
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Figure 3.1: Comparison of the HD curve from eq. (3.14), a monopolar, and a
dipolar correlation function. The latter two would for instance be
expected if clock errors or Solar System ephemeris errors affected
the TOAs instead of a GW background.

The quantity of interest to connect the previous considerations with
actual PTA measurements is hence rab(t) = ⟨Ra(t)Rb(t)⟩. Plugging in
the definition of Ra(t) and eq. (3.9) for za(t) we obtain the variance

rab(t) =
2

3
Γab

∫ ∞

0
df

Sh(f)

(2πf)2
2(1− cos(2πft)) . (3.17)

The time dependence occurs here due to the arbitrary lower integration
boundary in the above definition of Ra(t). Considering that the PTA only
is sensitive to GWs in a frequency band in which 2(1−cos(2πft)) = O(1),
one obtains [37]

rab ≃
∫ ∞

0
df Sab(f) with Sab(f) ≡

2

3
Γab

Sh(f)

(2πf)2
. (3.18)

The function Sab(f) is referred to as the timing-residual cross-power The timing-residual
cross-power
spectral density
Sab(f)

spectral density and has units of s3. PTA collaborations often work with
the parameterization Φab(f) = Sab(f)/T (with units of s2) when doing
their data analysis, where T = O(10 yr) is the total data set time span.
The effect of the overlap reduction function can easily be factored out
of this expression, Φab(f) = ΓabΦ(f), due to the previously identified
approximate frequency-independence of Kab. The remaining spectrum
Φ(f) (not carrying pulsar indices) only captures the effect of a given
GW mode with frequency f on the variance on the timing residuals.
The quantity ρ(f) =

√
Φ(f) in units of time is often referred to as the

excess timing delay.
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Expressing the GW spectrum through its characteristic strain amplitude
hc(f) or its energy density spectrum h2Ωgw(f), see eq. (2.71), we end
up with the following expressions for the excess timing delay

ρ(f) =

√
Sh(f)

6π2f2T
=

√
h2c(f)

12π2f3T
=

√
H2

100

8π4f5T
h2Ωgw(f) . (3.19)

Given a measurement of ρ(f), we can hence easily infer the underlyingThe excess timing
delay ρ(f) and its
relation to Ωgw(f)

GW spectrum. Typical values of ρ(f) that PTAs quote are between 1 ns
and 1 µs for frequencies in the range 1− 30 nHz (see for instance fig. 3.2
in the following section).

Note that in the above calculation we assumed that the stochastic
GWB under consideration is isotropic. In case the GWB is instead
of astrophysical origin, this assumption cannot be sustained and a
more generalized overlap reduction formula needs to be used. In the
presence of anisotropies, one finds that the overlap reduction formulaGeneralizing the

overlap reduction
formula

becomes a function of the individual pulsars’ positions on the celestial
sphere [109]. Further, GR modifications which lead to GWs with more
than two propagating tensorial metric components lead to a dependence
of the overlap reduction formula on the pulsar distances and the GW
frequency, rendering searches for the HD correlation and deviations from
it a powerful probe of new physics in their own right [110]. Within this
thesis, we will only consider the HD curve as a possible overlap reduction
formula or set Γab = δab for computational reasons to be explained in
the next section, thus ignoring the effect of the GW polarization on the
pulse arrival times, when trying to fit them to a specific backgrounds
h2Ωgw(f) in chapters 5 and 7.

3.4 the pta likelihood

In the above derivation we assumed that only GWs lead to a changeSeparating
deterministic
signals from

interesting noise

of the arrival times of a given pulsar’s radio pulses. This is obviously
an oversimplification. In practice, the mechanisms which predict the
TOA of a pulse are a combination of both deterministic and stochastic
processes, the latter of which include the effect of GWs,1

tTOA
ai = tdet

ai + δtstoch
ai . (3.20)

The index i here indicates the i-th pulse of pulsar a with respect to an
arbitrary initial point in time at which data taking starts. The goal of
this section will now be to identify how a GW-induced timing residual
Ra(ti) (defined in eq. (3.16)) contributes to the stochastic part δtstoch

ai of
the TOA. Eventually we will present how one can infer a GW spectrum

1 We will ignore the effect of continuous GWs (e.g. from a single close-by SMBHB
inspiral) for brevity, which would show up as an unmodeled contribution to the
deterministic timing model. So far, no significant evidence for such continuous GWs
has been found with PTAs [15].
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h2Ωgw(f) from pulsar timing data. To do so, we will summarize the
analysis pipeline used by the NANOGrav collaboration, described in
detail in ref. [107].

In a first step, a deterministic timing model needs to be found for each
pulsar of the PTA. To do so, there exist the highly specialized codes Step 1: The timing

modelTEMPO, TEMPO2 [111–113] and PINT [114]. They allow to perform a fit of
the observed TOAs tTOA

ai to a timing model (also referred to as timing
ephemeris) tdet

ai (βa), which depends on a set of deterministic timing
parameters βa, including the period of the pulsar, its spindown, possible
pulsar glitches, the aforementioned Solar System ephemeris, the precise
position of the pulsar in the celestial sphere and its motion therein, as
well as additional Keplerian parameters if the pulsar is part of a binary
system. After performing a least-squares fit, one obtains the best-fit
vector β0

a and the corresponding timing residuals

δtai = tTOA
ai − tdet

ai (β
0
a) (3.21)

for each pulsar.

No matter how accurate the first step is done, the process of finding
a timing model is limited by it only including deterministic processes.
The found timing model will hence be very good, but not a perfect fit Step 2:

Understanding the
timing residuals

for the observed TOAs tTOA
ai . Denoting the true (and unknown) timing

ephemeris with βtrue
a and interpreting the TOA index i as the component

of a vector, we can write eq. (3.20) as tTOA
a = tdet

a (βtrue
a ) + δtstoch

a .
Further, defining the difference between our initial timing model and
the true model as ϵa = βtrue

a − β0
a and plugging into eq. (3.21) we find

δta = tdet
a (β0

a + ϵa)− tdet
a (β0

a) + δtstoch
a

=Maϵa + δtstoch
a +O(ϵ2a) with Ma = ∇βata|β0

a
. (3.22)

The design matrix Ma has the shape (NTOA ×m), where NTOA is the
length of the vector ta corresponding to the number of TOAs for pulsar
a, and m refers to the number of timing ephemeris parameters in βa.

The goal is now to identify the different noise sources which contribute Stochastic noise
sources are red or
white

as random Gaussian processes in δtstoch
a , including a GWB. Typically,

one distinguishes between red and white noise sources,

δtstoch
a = δtreda + δtwhite

a . (3.23)

White noise is independent of the Fourier modes of δtstoch
a , whereas red

noise instead has a frequency dependence and amplitude that is largest
at the lowest frequencies. Red noise is therefore sourced by processes
which operate on long timescales of the order of months to decades.

The white noise δtwhite
a has different sources connected to radiometer White noises

noise, instrumental effects, and pulsar phase jitter. Often, white noise
sources are also referred to by their technical names EFAC, EQUAD and
ECORR. The specific origins of these various noises are not central to
the focus of this thesis. Let us only note here, that they are related
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to the specific combinations of radio telescope receiver systems and
data-processing backends. The data analysis is divided into epochs of
20 – 30 minutes, within which a pulse profile template is generated by
folding over many observed realizations of a given pulsar’s signal in that
epoch. The pulse template generation procedure adds jitter noise to the
TOAs, which are retrieved by identifying pulses in shape of the template
within the data. It therefore makes sense to distinguish the above noise
sources acting on different time-scales. For instance, the ECORR noise is
uncorrelated between two epochs but fully correlated for different radio
frequency channels through which a pulsar is observed.

For the red noise one decomposes the timing residual into Fourier modesRed noises
which are multiples of the lowest possible frequency T−1 which can be
probed by the PTA,

δtredai =

Nf∑
k=1

[
aak sin

(
2πktTOA

ai

T

)
+ bak cos

(
2πktTOA

ai

T

)]
. (3.24)

Usually, only the lowest Nf = 50 Fourier modes are used in the analysis,
as white noise dominates at high frequencies. Again, it is possible to
write this more compactly as a vector

δtreda = Faca , where ca = (aa1, ba1, ..., aaNf , baNf)
T (3.25)

and Fa is a matrix of shape (NTOA×2Nf) containing alternating sine and
cosine terms in each row with increasing arguments 2πk

T tTOA
ai in the k-th

column and i-th row. The vector ca hence includes both the amplitudes
for pulsar-intrinsic red noise of pulsar a and the GW spectrum, present
in all pulsars’ TOAs.

To distinguish the stochastic red noise sourced by a GWB from pulsar-
intrinsic red noise, we need to correlate the timing residuals betweenHow to distinguish

GWs from other
noise

pulsars. We assume that the Gaussian process underlying the stochastic
part of the TOAs has mean zero, as any residual mean would have been
absorbed by the deterministic timing model already. The full statistical
information of the distributions underlying the Gaussian processes is
therefore contained in the large cross-correlation matrix

C(ai)(bj) = ⟨δtai δtbj⟩ (3.26)

between the i-th TOA of pulsar a and j-th TOA of pulsar b. As discussed
above, this matrix splits into the different contributions C = CGWB +
CIRN + CWN from a GWB, pulsar-intrinsic red noise and white noise.
The different components can be expressed as

CGWB
(ai)(bj) = ΓabΦiδij , (3.27a)

CIRN
(ai)(bj) = δabκaiδij , (3.27b)

and CWN
(ai)(bj) =

[
F 2
a δij + J2

aδe(i)e(j)
]
δab , (3.27c)

where Γab is the HD-correlation from eq. (3.14) and Φi is related to
the GW spectrum Φ(f) (see eq. (3.19)) evaluated at the i-th Fourier
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mode. Similarly, κai is the intrinsic red noise power spectrum of pulsar
a. The factors Fa and Ja refer to EFAC + EQUAD and ECORR white noise
respectively, where the latter is only correlated when TOA i lies in the
same epoch e(i) = e(j) as TOA j.

In addition to the aforementioned noise sources, variations in the re-
fractive index of the interstellar medium also contribute significantly
to the timing residuals. These variations arise from (i) deterministic,
time-dependent changes in the line-of-sight from Earth to the pulsar,
such as the pulsar’s peculiar motion, and (ii) stochastic factors, such as
the distribution of free electrons in the interstellar medium. Since the
electron number density behaves more like a stochastic process than a A note on

dispersion measure
variations

deterministically modeled one, it is reasonable to include an additional
pulsar-intrinsic red noise component with a distinct spectrum to account
for this noise source. Modeling dispersion measure variations as a purely
deterministic effect in the timing ephemeris βa is referred to as the
DMX model. If dispersion measure variations are instead modeled as a
Gaussian process, they show up as an additional contribution in C(ai)(bj)

usually abbreviated as DMGP. As dispersion measure variations act
on the same long timescales as GWs with nHz frequencies it further
makes sense to specify whether a GWB spectrum was inferred using
the DMX or DMGP model. The analysis of the latest NANOGrav 15yr
data set (see ref. [7] and fig. 5 therein) indicates, that the DMGP model
yields slightly smaller GWB amplitudes, but comparable evidence for
an HD-correlation of the signal. Within this thesis, we will only make
use of the DMX model in our PTA analysis in chapters 4 and 7.

The full PTA likelihood for the set of all timing residuals {δta} for all The PTA likelihood
pulsars a = 1, ..., Np is hence given by a multidimensional Gaussian with
zero mean and the cross-correlation C(ai)(bj) [37],

LPTA({δta}|θ) =
exp

[
−1

2

∑
(ai),(bj) δtaiC

−1
(ai)(bj) δtbj

]
√

det (2πC)
. (3.28)

The parameter vector θ contains the timing ephemeris shifts ϵa, the red
noise Fourier amplitudes ca, the EFAC + EQUAD and ECORR parameters
Fa and Ja for all Np pulsars, as well as the hyper-parameters that go Power-law red

noise spectrainto the parameterization of the GWB spectrum h2Ωgw(f) and the Np
pulsar-intrinsic red noise spectra κa(f). In a typical PTA data analysis,
both Φ(f) and κa(f) are assumed to follow power-laws

Φ(f) =
h2c(f)

12π2f3
1

T
=

A2

12π2
1

T

(
f

1 yr−1

)−γ

yr2 (3.29a)

κa(f) =
A2

a

12π2
1

T

(
f

1 yr−1

)−γa

yr2 (3.29b)

with a spectral tilt γ = 2− 2α for hc(f) = A(f/1yr−1)α. This way, one
obtains 2 + 2Np hyper-parameters. Another way of parameterizing the
GW spectrum is the so-called free-spectral analysis, in which Φ(f) is
instead decomposed into individual Fourier modes whose amplitudes act
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as to-be-inferred hyper-parameters. In chapter 5 we will instead treatHyper-parameters
phase transition parameters like α, β/H and Tperc as hyper-parameters;
in chapter 7 the PBH parameters fPBH, mPBH and δdc are used as
hyper-parameters.

The sum in the exponent of LPTA runs over all combinations of all
TOAs of all pulsars. The matrix C is hence a high-dimensional, dense,
quadratic matrix consisting of (Np × Np) blocks on the diagonal δab,
each of which contains GW, as well as red and white noise contributions.
The off-diagonal parts of the matrix contain the pulsar cross-correlations.enterprise

While it is computationally feasible to evaluate this likelihood for a PTA
consisting of only a few pulsars, it certainly is not possible for a full PTA
with many pulsars due to the required inversion C−1 in the exponent.
Luckily, one is usually only interested in the hyper-parameters mentioned
above. As the full likelihood is Gaussian, one can analytically marginalize
over the nuisance parameters ϵa and ca of all pulsars. The remaining
marginalized PTA likelihood is written out explicitly in ref. [107] and
implemented in the code enterprise [115,116], which will be used to
derive the results of chapters 5 and 7.

The remaining parameter space of at least 2 + 2Np hyper-parameters
is still huge for today’s PTAs with Np = O(50− 100). The parameter
space is usually explored by running highly optimized MCMC codes (in
particular PTMCMC [117]) to pull samples from the likelihood in orderMCMC chains
to produce chains of the hyper-parameters, from which one can then
compute their posterior distributions as well as correlations between
them using the methods of Bayesian inference. As we will discuss in
chapter 5.C.1, this also allows Bayesian model comparisons between
models with different sets of hyper-parameters.

Recently, the code ceffyl was introduced by the NANOGrav collabo-
ration, which allows a much faster hyper-parameter inference [118]. ToThe need for speed:

ceffyl do so, it was realized that at low signal-to-noise ratios the impact of the
HD-correlation on the free-spectral analysis is negligible. One can hence
artificially set the overlap reduction function Γab = δab in eq. (3.27a)
to then perform a free-spectral analysis of the common uncorrelated
red noise (CURN). The matrix CGWB

(ai)(bj) is hence effectively replaced by
CCURN
(ai)(bj) = δabΦiδij , where Φi can now be understood as an estimator of

the GWB spectrum. The resulting likelihood for the timing residuals
given a spectrum ρ(f) =

√
Φ(f) then factorizes into the product of the

individual pulsars’ contributions to the CURN. Assuming further that
the Fourier modes ρk are statistically independent, one arrives at the
simple product of Ngw

f = O(10) “violin” likelihoods

Lceffyl({δta}|η) =
Ngw

f∏
k=1

Lk({δta}|ρk(η)) , (3.30)

where Lk({δta}|ρk(η)) is the likelihood to find a set of timing residuals
{δta} given a GWB amplitude ρk at Fourier mode k for a specific set
of GW hyper-parameters η. The likelihoods Lk can be found through a
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free-spectral analysis of the CURN and directly correspond to the violins
in fig. 2.8. Pictorially speaking, ceffyl hence computes how well a given Learning how to

play the violinrealization of the GWB signal described by η fits those violins. If the
violins were perfectly Gaussian distributions, the latter likelihood would
simplify to that of a least-squares fit. In turn, the ceffyl likelihood can
also be thought of as a the likelihood for a fit through data points whose
error bars are indicated by the widths of the violins. The computation
of the likelihood thus becomes a trivial task, which only requires a set
of well-sampled Bayesian spectrograms (“violins”) for ρk. In fact, the
hyper-parameter posteriors obtained from ceffyl and enterprise are
indeed often indistinguishable (cf. fig. 3 of ref. [118]).

However, one should remain cautious of this quick method since it can
lead to statistical fallacies like the following: Even though the PTA
violins only span a certain range within the predefined prior ranges of A note on

statistical fallaciesthe individual ρk, such that in particular Lk({δta}|0) = 0, this does not
mean that the null-signal hypothesis could be rejected with arbitrary
statistical significance. The distribution of ρk is a Bayesian posterior
and should only be interpreted as such. Hence, one needs to be careful
when interpreting the resulting hyper-parameter posteriors in regions
of their parameter space where they describe a signal that goes above
or below the limits of even a single violin for which Lk = 0. This is
precisely the reason why the full likelihood implemented in enterprise

had to be used to derive the results in chapter 5 and was still required
as a cross-check for the calculations presented in chapter 7.

3.5 evidence for a gravitational wave back-
ground

In 2023, the NANOGrav collaboration made a groundbreaking announce-
ment: compelling evidence for the detection of a stochastic signal that
follows the HD-correlation was found [7]. This observation is widely Multiple sources of

evidenceregarded as the first detection of a GWB. While other collaborations
such as EPTA [9], PPTA [8], and CPTA [10] reported similar results
on the same day, this section specifically focuses on the findings of
NANOGrav, as they were the only ones to make their full data set and
analysis tools publicly available.

NANOGrav’s analysis utilized data from 67 pulsars, each observed for
more than three years. The total data span is T = 16.03 yr, corresponding
to a lowest testable GW frequency of f = 1.98 nHz. The Bayes factor
comparing a GWB modeled as a power-law to a model with only pulsar-
intrinsic red noise exceeds 1014. When comparing a power-law GW 3− 4σ in favor of

the HD correlationbackground to a CURN model, the Bayes factor ranged from 200 to
1000, depending on the number of frequency bins Ngw

f considered in
the analysis. This Bayes factor translates to a false-alarm probability of
p = 5 · 10−5 to 10−3, corresponding to 3− 4σ evidence, depending on
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Figure 3.2: Results of a free-spectral analysis and fit to power-law GWB signals
of NANOGrav’s 15-year data set. The gray violins represent GW
amplitudes’ posteriors at different frequencies fk = k/T . The dashed
line indicates the best-fit GWB power-law model with a fixed
spectral index γ = 13/3. The blue bands represent the 1σ and 2σ
posterior intervals for the power-law model with a variable spectral
index. This figure was taken from ref. [7].

the precise method of translation. Dipolar and monopolar correlations
were ruled out with respect to CURN with Bayes factors below 10−7

and 10−8, respectively [7].

Fig. 3.2 presents the results of NANOGrav’s free-spectral analysis. The
vertical axis shows the Bayesian posteriors of the Fourier amplitudes
ρ(fk) =

√
Φ(fk) for an HD-correlated stochastic process at frequencies

fk = k/T , where T is the total data set time span. The dashed lineγ < 13/3 is
preferred represents the best-fit GWB of power-law shape with γ = 13/3 fixed.

The blue regions indicate the 1 and 2σ posterior bands for a power-law
with a variable spectral index γ. The tilt of the spectrum, showing
most power in the lower frequency bins, illustrates why it is referred
to as red noise. At high frequencies, the width of the posteriors ρ(fk)
broadens due to higher levels of white noise contaminating the GWB
signal. Comparing the blue bands to the black dashed line shows that
the data prefers a spectral index below γ = 13/3.

Fig. 3.3 showcases the Bayesian reconstruction of the overlap reduction
function for the common red noise. This function was modeled as a
cubic spline, while a power-law with a variable spectral index γ was
used for the GWB. The posterior distributions of the overlap reductionBayesian

reconstruction of
the HD curve

function were computed at pre-selected positions, including the point
of minimal HD correlation at 49 degrees, the zero-crossings of the HD
curve, and the minimal and maximal angular separations. For reference,
the HD curve is shown as a dotted line.

The robustness of these results was confirmed through various methods,
including a separate frequentist analysis, a dropout analysis (leaving
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Figure 3.3: Bayesian reconstruction of the overlap reduction function for the
common red noise signal in NANOGrav’s 15-year data set. The
blue violins display the posterior distributions of the overlap reduc-
tion function at selected separation angles, with the dashed line
representing the expected HD curve for a stochastic gravitational
wave background. This figure was taken from ref. [7].

out some pulsars), and analyzing data from individual radio telescopes.
While there is some dependence on the choice between the DMX and
DMGP model for hyper-parameter inference, this does not affect the
evidence for the HD correlation [7]. The evidence for the GWB is Robustness of

NANOGrav’s
findings

expected to increase further with time. The anticipated 5σ detection
limit might already be achieved within the upcoming third IPTA data
release, which will combine datasets from NANOGrav, EPTA, InPTA,
and PPTA, encompassing observations of 80 pulsars over a 24-year data
span.

Following the PTA announcements of 2023, a large number of articles
studied a hypothetical cosmological origin of the novel signal. Pos-
sible origins of the PTA signal include the GWB emission through
FOPTs [1,119–122] or merging primordial black holes [3,123], which we
will investigate in depth in the following chapters of this thesis. Other Cosmology or

astrophysics?hypothesized cosmological sources for the nano-Hertz signal include
cosmic strings [124–128], domain walls [129], tensor modes produced in
inflation [130–132], scalar-induced GWs [133], the production of primor-
dial black holes [132,134–137] and long-lived turbulence after a strong
first-order QCD PT [138]. The arguably strongest contender of these
explanations, each of which includes an extension of the SM in one or
the other way, is a stochastic background emitted by a population of
SMBHBs, being the subject of the following section.
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3.6 supermassive black hole binaries

In any part of the spectrum of stochastic GWBs within the nHz to kHz
range, one expects astrophysical foregrounds with amplitudes between
h2Ωgw ≃ 10−12−10−9, limiting the sensitivity to primordial backgroundsAstrophysical GW

foregrounds (cf. fig. 4 of ref. [139] and references therein). In this section we will
discuss the astrophysical GWB in the nHz range stemming from mergers
of SMBHBs, i.e. black holes with M = 108 − 1010M⊙, relevant for PTA
searches of primordial backgrounds.

There is general agreement that supermassive black holes reside at
the centers of most large galaxies, observable primarily through their
interactions with surrounding matter, for instance as quasars [140,141].
Only in 2019, it was possible to for the first time directly observe theSupermassive black

holes shadow of the supermassive black hole Sagittarius A* residing at the
center of our own galaxy [142], after the existence of a black hole at
the center of our galaxy with M = 4 · 109M⊙ was predicted already in
the late 1990s by the 2020 Nobel laureates Andrea Ghez and Reinhard
Genzel [143,144]. As the growth of cosmic structure occurs hierarchically,
through mergers of smaller galaxies into larger ones, a series of black
hole mergers is expected in the recent cosmic history, giving rise to a
stochastic GWB.

The GWB signal from SMBHBs is still a subject of active research and
several key processes have not been fully understood, yet: For instance,
it is still unclear how a large population of supermassive black holes
can form given the maximal speed of accretion set by the Eddington
formula [30], a challenge known as the timing problem. Moreover, theOpen problems

concerning
SMBHBs

merger process itself is complicated by the so-called final parsec prob-
lem [16,24,145]. While the existence of many SMBHBs with separations
ranging from hundreds to thousands of parsecs have been observed in
multi-messenger astronomy [146], the closest observed pair of supermas-
sive black holes was still separated by roughly 7 pc [147]. For binaries to
emit GWs in the nHz band, however, separations at the milliparsec-scale
are required, which current optical telescopes are far from being able to
resolve.

3.6.1 Binary evolution and the final parsec problem

The main process assumed to dominate the hardening (i.e., the dissi-
pation of binding energy) of a binary system with kiloparsec to parsec
separations is dynamical friction. It is sourced by viscous drag forces
of SMBHBs from many weak and long-range gravitational scatterings
with smaller bodies. This inspiral down to a parsec between the blackDynamical friction

(kpc− pc) holes takes roughly O(Gyr) times [16,24]. At lower distances, dynamical
friction ceases to be efficient because of the increased radial velocity of
the binary SMBHBs.
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Below parsec separations, a process known as stellar loss-cone scattering
becomes relevant instead. In this process, individual stars close to the
galactic core are scattered out of the central region due to a gravitational Stellar loss-cone

scattering ( ≲ 1 pc)slingshot mechanism. The hardening of the binary hence continues until
this reservoir of stars within the so-called loss-cone is depleted. The
original definition of the final parsec problem was the stalling of the
binary evolution at this stage. Today, there are several pieces of evidence
supporting the claim that there is an ongoing supply of stars in the
post-merger galaxy [21–23].

At even lower separations of a hundredth to a thousandth of a parsec,
viscous dissipation of binding energy to the gaseous circumbinary disk Viscous dissipation

( ≲ 10mpc)could become important. It is, however, not yet clear whether this process
actually hardens the binary [17,18] or rather widens it [20], giving rise to a
new final parsec problem. Another interesting mechanism, which however
requires new physics, acting at the same distance scales is dynamical
friction of a self-interacting DM fluid surrounding the SMBHB [148].

If a binary can pass this barrier and hardens down to below-milliparsec
separations, the binary evolution decouples from astrophysical inter-
actions and instead becomes driven by GW emission alone until the
black holes coalesce at microparsec separations. It has been proposed GW emission until

coalescence
(mpc− µpc)

that another mechanism might contribute to the hardening of binaries,
through so-called triplet interactions with a close-by third supermassive
black hole [19]. It appears reasonable that in the process of hierarchical
structure formation, a third galaxy might come close to the binary whose
orbit then becomes more eccentric, which accelerates its coalescence due
to an increased GW emission. In fact, this will be the mechanism which
will ensure a solution of the final parsec problem for the merging PBHs
considered in chapter 7. To date the final parsec problem has not been
solved on theoretical grounds. Given the recent advances of PTAs it
is however conceivable that the underlying mechanism can be inferred
through the emitted GW spectrum, which we will discuss in the the
following section.

3.6.2 GWBs from inspiraling binaries

Assuming that the final parsec problem can be resolved, the GWB
from a population of SMBHBs could explain the measured nHz back-
ground [149]. We will now briefly review how a power-law spectrum
can be derived from simple scaling relationships and where possible A simple power-law
deviations from it can stem from. The introduced formalism will be used
in chapter 7, in which we will test the assumption that the novel signal
stems from inspiraling SMBHBs of primordial origin.
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Any isotropic background from a large enough compact binary popula-
tion can be expressed as [37]

h2Ωgw(f) =
h2

ρ0c

dρgw

d log f
=
h2

ρ0c

∫ ∞

0
dz

dn

dz

1

1 + z

dEr
gw

d log fr

∣∣∣∣
fr=f(1+z)

,

(3.31)

where dn/ dz is the number density distribution of binaries over redshift
z, dEr

gw/d log fr is the source-frame GW energy spectrum per loga-Summing over
sources and

integrating over the
expansion history

rithmic frequency interval, fr = f(1 + z) is the GW frequency in the
source frame, and the factor 1/(1 + z) accounts for the redshift of the
energy Egw = Er

gw/(1 + z) to today. The interpretation of the above
equation is straightforward: to find the amplitude of the GW spectrum
at a frequency f , we sum over all contributions from binaries emitting
frequencies fr corresponding to a frequency f today and then integrate
over the cosmic expansion history.

To get a feeling for the quantities involved in eq. (3.31) let us first
compute the expected frequency dependence of the spectrum dEr

gw/ dfr
for a single binary. In the weak-field limit of small velocities and at large
radial separations r from the binary, the GW equation of motion (2.37)The quadrupole

formula can be solved by the famous quadrupole formula [14]

hTT
ij =

Λij,kl

4πm2
Plr

Q̈kl

(
t− r

c

)
with Λij,kl(n̂) = PikPjl −

1

2
PijPkl

and Qij =

∫
d3x ρ(t,x)

(
xixj −

1

3
δijr

2

)
, (3.32)

where Λij,kl(n̂) is simply known as the Λ-tensor. It can be expressed
through the tensor Pij(n̂) ≡ δij − ninj and it is commonly used to
project out the TT-part of tensors. A derivation of the above equation
can for instance be found in chapter 3 of ref. [14]. Assuming that the
binary consists of two compact objects of mass M on a stable circular
orbit with radius R in the x-y plane and orbital frequency ω, one obtainsωgw = 2ω

hTT
ij = −MR2ω2

πm2
Plr

cos 2ωt sin 2ωt 0

sinωt − cos 2ωt 0

0 0 0

 . (3.33)

Using the stress-energy tensor of a GW from eq. (2.50) one can obtain
an expression for the energy loss of the binary through GW emission
per unit solid angle. Integrating over a large enough sphere around theThe luminosity in

GWs binary, one obtains the gravitational luminosity of the source

Pgw =
dEr

gw

dtr
=

⟨
...
Q ij

...
Q

ij⟩
40πm2

Pl
∝ GM2R2ω2 ∝ G7/3M10/3ω10/3 ,

(3.34)

where in the last step we used Kepler’s law ω2 = GM
4R3 to eliminate

the R-dependence. Obviously, this radiative energy loss will reduce the
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binding energy Eb ∝ GM2/R of the binary, thus hardening the binary.
Working in the limit that this radiative energy loss takes place on much
longer timescales than the orbital motion, we can still treat the orbits
as quasi-circular and equate Ėb = Pgw in the cosmic rest-frame of the
binary. Plugging in Kepler’s law another time to eliminate R in favor of
ω and using the previously derived expression for Pgw, one immediately
arrives at ω̇ ∝ G13/3M17/3ω11/3.

Realizing that the GW frequency is proportional to the orbital frequency,
2πfr = 2ω (see eq. 3.33), we can hence perform the simple approximation
for the spectrum emitted by a compact binary

dEr
gw

d log fr
= fr

dEr
gw

dtr

dtr
dfr

∝ fr × f10/3r × f−11/3
r = f2/3r . (3.35)

Since this expression carries the full frequency dependence of eq. (3.31),
we find that h2Ωgw(f) ∝ f2/3 or equivalently hc ∝ f−2/3 and Φ(f) ∝
f−13/3 (cf. eq. (3.29a)). The exponents of hc(f) and Φ(f) are usually
referred to as α = −2/3 and γ = 2− 2α = 13/3, respectively. In fact,
the proportionalities derived above also hold for a general circular orbit γ = 13/3

of compact binaries with different masses, which was first appreciated
by Phinney in his influential article from 2001 [150].

Of course, the above scaling can only hold in a finite frequency window
as otherwise the energy carried in the GWB spectrum were unbounded:
At an initial state of the inspiral, the hardening of the binary will be
mostly driven by environmental effects, such that the spectrum will bend
down towards lower spectral amplitudes at low frequencies. The high-
frequency part of the spectrum is emitted by the inspiral of binaries just
before coalescence. The highest possible GW frequency emitted through Deviations from

γ = 13/3the inspiral of a binary hence corresponds to the so-called innermost
stable circular orbit and is given by f r

ISCO = 4.7 ·10−7 Hz
(
1010M⊙/M

)
,

cf. eq. (16.78) in ref. [37]. For a monochromatic mass spectrum the
of SMBHBs, this would correspond to a sharp cutoff of the spectrum
lying above the PTAs frequency band. In reality, however, the number
density distribution dn/ dz in eq. (3.31) will depend on the distribution
of SMBHB masses, softening the decrease of the spectrum at high
frequencies. Special attention needs to be paid due to the finiteness
of the distribution of black holes with extremely high masses: there
needs to be at least one source in order to emit a GW signal. We will
investigate this issue in more detail in chapter 7, see e.g. fig. 7.2.

The NANOGrav collaboration uses the code Holodeck [7] to generate
GWB spectra from SMBHBs based on realistic astrophysical distribu-
tions, starting from galaxy merger rates and black hole-host galaxy
mass relationships. Recently, a phenomenological model for those GWB
spectra has been put forward which allows the inference of black hole
properties [149]. In doing so, it was found that several astrophysical NANOGrav vs.

SMBHBsquantities like the binary hardening timescale need to be beyond the
borders of their previously expected ranges in order to explain the ob-
served GWB spectrum at nHz frequencies [149]. In fig. 3.4, a comparison
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Figure 3.4: Marginalized posterior distributions of the amplitude A and spectral
index γ for power-law fit of the HD-correlated red noise in the
NANOGrav 15yr data set compared to predictions obtained using
the Holodeck code for an SMBHB-induced background. The vertical
line at γ = 13/3 refers to a population of SMBHBs whose inspiral is
driven only by GW emission. This figure was taken from ref. [106].

of the expected amplitude and spectral tilt of the spectrum based on
Holodeck simulations and the regions of parameter space preferred by
the NANOGrav 15yr data set can be found. Even though the tension
between the contours of prediction and expectation still depends on the
used priors of the astrophysical simulations, the figure already indicates
that there is room (if not the necessity) for an additional GW source
which also contributes to the observed nHz signal. This serves as a
source of motivation when searching for alternative explanations of the
signal in the following chapters 5 and 7.



4 DARK SECTOR PHASE TRANS I T IONS

It cannot be seen, cannot be felt,
Cannot be heard, cannot be smelt,
It lies behind stars and under hills,

And empty holes it fills.

— Gollum

In the previous two chapters we have introduced the field of GW cosmol-
ogy and reviewed the state of PTA searches for stochastic GWBs. Now,
we will go beyond the established ΛCDM expansion history and beyond
SM physics by studying FOPTs in the early universe. As we have seen
in the introductory section 2.1 on the chronology of the early cosmos,
the history of our universe can be understood as a history of subsequent
PTs: during inflation, a scalar field slowly rolled to obtain a new vacuum Adding a dark PT

to the series of SM
ones

expectation value (vev). During reheating the equation of state of the
Universe then changed from vacuum to radiation, corresponding to yet
another PT. It followed the EWPT, as well as chiral symmetry breaking
and confinement during the QCD PT. As we will show below, PTs are
a generic feature of QFTs at finite temperature. This principle also
applies to additional gauge groups extending the SM of particle physics:
as noted in section 2.2, only 15% of the total non-relativistic matter in
our Universe is accounted for by the SM particle content. The remaining
85% of matter motivate us to study the spontaneous breaking of a dark
symmetry group in this chapter.

In the following section 4.1 we first make an analogy to a simple quantum
mechanical harmonic oscillator coupled to a thermal bath to get an
intuition for how a quantum field behaves at finite temperature. What Summary of this

chapterfollows is a discussion of the effective potential and the thermodynamics
of FOPTs in the early universe in section 4.2. In section 4.3 we then
come to the prediction of GWBs from PTs in DSs.

4.1 finite-temperature effects in qft

4.1.1 A quantum harmonic oscillator in a thermal bath

To start our discussion of thermal field theory, we will begin with
the conceptually much easier case of a quantum mechanical harmonic
oscillator with Hamiltonian H, the trace of which defines the partition
function Z(T ) ≡ Tr

[
e−βH]. Here and in the following, β = T−1 denotes

73
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the inverse temperature of the bath to which the harmonic oscillator
(and later the QFT) is coupled. For a frequency ω of the oscillator, we
obtain the partition function [151]

Zho =


∑∞

n=0 exp
[
−βω

(
n+ 1

2

)]
= e−βω/2

(
1− e−βω

)−1∑1
n=0 exp

[
−βω

(
n+ 1

2

)]
= eβω/2

(
1 + e−βω/2

)
,

(4.1)

where the above (below) expression holds for a bosonic (fermionic)
oscillator. One can show that a system in thermal equilibrium will
eventually go to a state with minimal free energy F ≡ −T lnZ(T ). For
the above partition function of a harmonic oscillator, we obtain

Fho =

ω
2 + T ln

(
1− e−βω

)
for bosons

−ω
2 − T ln

(
1 + e−βω

)
for fermions.

(4.2)

This is already the result which we wanted to obtain in this brief section:
the free energy of a single harmonic oscillator is the sum of a temperature-
independent term corresponding to the ground state energy ℏω/2 and
a temperature-dependent term which accounts for the occupation ofThe free energy of

a harmonic
oscillator

higher states due to the available thermal energy. The first term is purely
quantum mechanical and corresponds to Heisenberg’s uncertainty in the
oscillator’s position and momentum, whereas the second term instead
arises due to the coupled thermal bath and dominates the free energy
for sufficiently high temperatures. Indeed, we will recover a remarkably
similar expression after a much more tedious computation for the case
of QFT coupled to a thermal bath.

4.1.2 The Kubo-Martin-Schwinger relation

We now want to transition from quantum mechanics to QFT. To do
so, let us repeat that in statistical mechanics the expectation value of
a given operator A is given by the thermally averaged sum of A over
eigenstates of the Hamiltonian H,

⟨A⟩T ≡ 1

Z
Tr
[
e−βHA

]
. (4.3)

In particular, this also holds for the correlators of quantum fields ϕ. To
obtain the famous Kubo-Martin-Schwinger relation [152,153], consider
the two-point function of a quantum field ϕy at position y at time t and
the field at position x at zero time,

⟨ϕy(t)ϕx(0)⟩T =
1

Z
Tr
[
e−βHϕy(t)ϕx(0)

]
=

1

Z
Tr
[
ϕy(t)e

−βHei(−iβH)ϕx(0)e
−i(−iβH)

]
=

1

Z
Tr
[
ϕy(t)e

−βHϕx(−iβ)
]
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=
1

Z
Tr
[
e−βHϕx(−iβ)ϕy(t)

]
= ⟨ϕx(−iβ)ϕy(t)⟩T
= ±⟨ϕy(t)ϕx(−iβ)⟩T . (4.4)

To arrive at the final expression we made repeated use of the permutation
rule for traces and employed the time evolution ϕx(t) = eiHtϕx(0)e

−iHt.
In the last step, a minus sign occurs only for fermionic fields due to
them anti-commuting, but not for bosonic fields. We can hence see that
a bosonic (fermionic) field ϕ needs to be symmetric (anti-symmetric) The emergence of

periodicity in
imaginary time

and cyclic in time with the periodicity −iβ if it is coupled to a thermal
bath with inverse temperature β.

We now go to purely imaginary time t → τ = −it by performing a
Wick rotation. We find that in the so-called imaginary-time (or Mat-
subara) formalism, the Euclidean time parameter τ can be identified
with the inverse temperature β [154]. In performing the Wick rotation,
we gained access to the description of systems in thermal equilibrium,
but lost control over dynamical processes happening in real time. In
the alternative, more involved real-time (or Keldysh) formalism [155]
both is possible simultaneously, thus allowing the description of out-of-
equilibrium dynamics. For our goal of identifying the phase structure
of a given QFT, the Matsubara formalism is sufficient, however. To
go from correlators in a QFT at zero temperature to those of a finite- Matsubara sums
temperature QFT, we therefore need to replace the integral over the time
component in the occurring integrals over Euclidean four-momentum
space kµE =

(
k0E,kE

)
with a discrete sum over the so-called Matsubara

frequencies k0E = ωn [156],∫
d4kE

(2π)4
f(kE) → T

∞∑
n=−∞

∫
d3k

(2π)3
f(ωn,k)

with ωn =

2nπT for bosons

(2n+ 1)πT for fermions.
(4.5)

The summation corresponds to the integration over time in the theory
with T = 0 and may be arbitrarily complicated for a general integrand.
Intuitively, the Matsubara sum adds up all contributions to a given
integral allowed by the field boundary conditions set by the Kubo-
Martin-Schwinger relation in equation (4.4).

4.1.3 The effective potential of an abelian gauge theory

the tree-level potential For discreteness, we now want to study
the finite-temperature behavior of an additional dark U(1)′ extending
the gauge groups of the SM. This model will be of particular relevance A dark U(1)′

gauge symmetryin chapter 6. Its Lagrangian density is given by

L = |DµΦ|2 −
1

4
BµνB

µν + µ2 |Φ|2 − λ |Φ|4
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+ χ†
Li /DχL + χ†

Ri /DχR − yΦχ†
LχR − yΦ∗χ†

RχL . (4.6)

The complex scalar field Φ and the chiral fermions χL and χR are
charged under the U(1)′ gauge group. Their U(1)′ charges satisfy QΦ =
QχL −QχL , which we realize through the choice QΦ = 1, QχL = +1/2
and QχR = −1/2 in order to preserve the gauge symmetry of the Yukawa
interaction term and keep the model free of anomalies. This choice allows
us to express the interactions of the chiral fermions as those of a single
Dirac bi-spinor field in the following. The field strength tensor is defined
in terms of the dark photon field A′

µ as Bµν = ∂µA
′
ν − ∂νA

′
µ and the

corresponding covariant derivative reads Dµ = ∂µ + igA′
µ. In principle,

also a mixing term ∝ Φ2H2 with the SM Higgs field H and a kineticWe ignore portal
couplings mixing term ∝ FµνB

µν with the SM photon Fµν would be allowed. In
order to be able to ignore their effects on the effective potential for
simplicity, we assume the respective portal couplings to be sufficiently
small [157–159]. We will revisit their effect in chapters 5 and 6 when
discussing the decay of DSs in order to satisfy cosmological constraints.

The above Lagrangian features the tree-level potential Vtree(Φ) =
−µ|Φ|2 + λ|Φ|4, having a U(1)′-symmetric minimum at |Φ|2 = µ2/λ.Expanding around

the tree-level
minimum

At a given point in space, the field must be in a single vacuum state,
whereas the above condition is satisfied by an infinite set of fields related
by the gauge transformation Φ → eiαΦ with α ∈ [0, 2π). For convenience
we choose the vacuum to lie on the real field axis, thus breaking the U(1)′

spontaneously. Here, spontaneously refers to the field direction with zero
complex phase being arbitrary among the line of potential minima. Upon
this choice, we can expand the Lagrangian around Φ = (ϕ+vϕ+iφ)/

√
2

with ϕ and φ being real fields and vϕ ≡ µ/
√
λ, eventually obtaining

L =
1

2
∂µϕ∂

µϕ+
1

2
∂µφ∂

µφ− 1

4
A′

µνA
′µν − 1

2
m2

ϕϕ
2 +

1

2
m2

A′A
′2
µ

− gA′
µ[φ∂

µϕ− ϕ∂µφ− vϕ∂
µφ] +

g2

2
ϕ2A

′2
µ +

g2

2
φ2A

′2
µ

+ g2vϕϕA
′2
µ − λvϕϕ

3 − λvϕφ
2ϕ− λ

4
ϕ2φ2 − λ

4
ϕ4 − λ

4
φ4

+ iχ̄/∂χ−mχχ̄χ+
g

2
χ̄ /A

′
γ5χ− y√

2
ϕχ̄χ+ i

y√
2
φχ̄γ5χ (4.7)

with the tree-level masses

m2
ϕ = 3λv2ϕ − µ2 = 2λv2ϕ , mA′2 = g2v2ϕ , (4.8a)

m2
φ = λv2ϕ − µ2 = 0 , and m2

χ =
y2v2ϕ
2

. (4.8b)

including quantum effects The above mass spectrum only holds
at tree-level, i.e. in the limit ℏ → 0. Due to Φ being a quantum field,
however, quantum corrections become relevant for non-zero field values.
Mathematically, the effect of quantum corrections can be included
by promoting the tree-level potential Vtree in eq. (4.6) to a so-called
effective potential. The effective potential contribution of ℓ-loop Feynman



4.1 finite-temperature effects in qft 77

diagrams, corresponding to an expansion in powers of ℏℓ, can be derived
using the path-integral formulation of QFT and reads [160]

V ℓ
eff(ϕ) = −

∞∑
k=0

ϕk

k!
Γ
(k)
ℓ (p = 0) . (4.9)

Here, Γ(k)
ℓ is the k-point, ℓ-loop effective vertex with all external momenta

set to zero. Ignoring loop diagrams (ℓ = 0), one therefore just recovers the The one-loop order
tree-level potential. At leading loop order (ℓ = 1) and only considering
Φ-loops, we instead obtain the sum

V 1
eff,Φ(ϕ) =

ϕ2 + ϕ4 + ϕ6 + . . .


p=0

= 2i

∞∑
n=1

∫
d4k

(2π)4
1

2n

[
6λϕ2/2

k2 + µ2 + iϵ

]n
. (4.10)

In the above diagrams we denote the real part ϕ of the Higgs field
with dashed lines, whereas solid lines refer to Φ comprising both the
imaginary and real field components. In the second step we used that the
n-th diagram has 2n external legs and n propagators. Additionally, there
are symmetry factors of 1/(2n) and 1/2n from cyclic and anti-cyclic
permutations of the vertices as well as permutations of the external
lines of each vertex, respectively. The initial factor 2 accounts for the
two internal dofs of Φ on the loop. Further, we used that each vertex
comes with a factor −6iλ and each internal propagator brings a factor
i/(k2 + µ2 + iϵ).

We can perform the sum over n by comparing with the series expansion
of ln(1+x) around x = 0. Further performing a Wick rotation we arrive
at

V 1
eff,Φ(ϕ) =

∫
d4kE

(2π)4
ln
[
k2E +m2

ϕ(ϕ)
]
. (4.11)

So far we only considered the effect of quantum corrections arising due
to the self-coupling λ of Φ to ϕ, but not the effect of the gauge boson A
and the fermion χ. One can show that also fermions and gauge bosons Contributions from

all charged fieldscontribute in a similar way to the effective potential through their loop
contributions, up to a factor corresponding to their dofs and a respective
sign ηa = +1 (−1) for bosons (fermions) [156]:

V 1
eff(ϕ) =

∑
a

ηana
2

∫
d4kE

(2π)4
ln
[
k2E +m2

a(ϕ)
]
. (4.12)

Here, the sum goes over all particle species a coupled to ϕ, with na
being their internal dofs.

going to finite temperature To now compute the effective po-
tential at finite temperature Td = ξT (with the index d indicating a
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potential mismatch ξ between the DS temperature and the visible sector
temperature T ), we make use of the replacement rule from eq. (4.5) and
obtain

V 1
eff(ϕ, Td) =

∑
a

ηanaTd

2

∑
n

∫
d3k

(2π)3
ln
[
ω2
n + k2 +m2

a

]
=
∑
a

ηana

∫
d3k

(2π)3

[
Ea

2
+ Td ln

(
1− ηae

−Ea/Td

)]
= VCW(ϕ) + VT(ϕ, Td) . (4.13)

To simplify the notation, the energy parameter E2
a ≡ k2 + m2

a was
introduced. What we retrieve, closely resembles the free energy of a
single harmonic oscillator which we derived in eq. (4.2). Now, however,The harmonic

oscillator is
everywhere

the frequency ω of the oscillator corresponds to a quantum field’s energy
Ea, which is integrated over. This is analogous to the naive image of a
quantum field to be a superposition of infinitely many harmonic oscilla-
tors at each point in space. We obtained both a temperature-dependent
and temperature-independent part, the latter of which corresponds to
the (yet unrenormalized) Coleman-Weinberg potential [161].

The temperature-dependent part can be expressed as

VT(ϕ, Td) =
T 4

d
2π2

∑
a

ηanaJηa

(
m2

a(ϕ)

T 2
d

)
with (4.14)

Jηa
(
z2
)
≡
∫ ∞

0
dy y2 ln

[
1− ηa exp

(
−
√
y2 + z2

)]
. (4.15)

Fig. 4.1 shows the real part of the thermal functions J in dependence
of za = m2

a/T
2
d .1 In the low-temperature limit, z → ∞, the thermal

functions and therefore also VT vanish. In the high-temperature limit,
z → 0, the thermal functions can instead by approximated by [156]

Jbos(z
2) ≈ −π

4

45
+
π2

12
z2 − π

6
z3 − z4

32
ln
(
z2
)
+ const , (4.16a)

Jferm(z2) ≈ 7π4

360
− π2

24
z2 − z4

32
ln
(
z2
)
+ const . (4.16b)

The leading-order correction to the tree-level potential due to a single
bosonic dof hence reads π2T 4

d/90 if Td ≫ ma, i.e. the Stefan-Boltzmann
law we already identified in eq. (2.14b). Typically, this contributionInterpreting the

thermal corrections to the vacuum energy density is absorbed into the cosmological con-
stant, as it does not directly influence the dynamics of the scalar field.
Note, however, in particular the z2 terms in eqs. (4.16), which trans-
late to a term VT(ϕ, Td) ∝ ϕ2T 2

d , acting as a temperature-dependent
mass in the effective potential. At sufficiently high temperatures, these

1 The behavior of the thermal functions in fig. 4.1 at negative z2 is relevant as the scalar
field will obtain an imaginary mass wherever the potential has a negative curvature.
An in-depth study of the imaginary parts of the effective potential was performed in
ref. [162]. Generally speaking, an imaginary part of the effective potential indicates
an instability of the vacuum at a specific field value, eventually triggering a PT.
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Figure 4.1: The real part of the thermal functions Jbos(z
2) and Jferm(z2).

temperature-dependent mass terms inevitably dominate over any other
mass contribution, forcing the potential minimum to reside at vanishing
field values ϕ = 0. This phenomenon is known as symmetry restoration
at high temperatures, if ϕ ̸= 0 refers to a phase in which a symmetry
of the high-temperature QFT is broken as in the present case of the
spontaneous U(1)′ breaking.

High-temperature symmetry restoration is a feature of many QFTs
and the reason for us to understand the cosmic expansion history as a
sequence of PTs: When temperature drops, the effect of VT decreases
and the positions of the potential minima change. In fact it is not of
further relevance if Φ is a fundamental scalar (as the SM Higgs field
triggering the EWPT) or a bi-linear condensate ⟨q̄q⟩ of fermions (like the
quarks q in the QCD PT). In the specific case of the tree-level potential High-temperature

symmetry
restoration

Vtree = −µ2ϕ2 + λϕ4, again considering only the ϕ2 term of the effective
potential and ignoring O(1) factors, we see that at high temperatures
it will effectively include a term that reads V (ϕ, Td) ⊃

(
−µ2 + λT 2

d
)
ϕ2,

indicating that for Td ≲ µ/
√
λ the ϕ = 0 phase will become unstable.

the breakdown of perturbativity The contributions VCW and
VT to the effective potential can hence be regarded as corrections to
the potential energy density of a scalar field ϕ. However, both terms
are still plagued by divergences. This is expected as eq. (4.10) includes
diagrams with two and four external legs for which the integrand is
unbounded in the ultraviolet (UV) limit of large loop momenta. But
also the second, temperature-dependent term is expected to feature a
breakdown of perturbativity by the mere existence of two energy scales,
namely temperature and the scalar’s mass [163]. The latter is an IR UV and IR

divergencesdivergence which can be understood by the thermal distribution of bosons
[exp (E/T )− 1]−1 → T/E diverging for T ≫ E: At high temperatures
their distribution is dominated by low-energy bosons and diverges for
soft bosons with E → 0. This translates to an effective increase of the
coupling between infrared bosons up to the point where the coupling
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between them becomes non-perturbative and our perturbative expansion
breaks down.

The UV divergence of the Coleman-Weinberg potential can be treated
by dimensional regularization. Using the MS renormalization scheme we
arrive at [161,164,165]

VCW(ϕ) =
∑
x

ηxnx
m4

x(ϕ)

64π2

[
ln
m2

x(ϕ)

Λ2
− Cx

]
(4.17)

with Cx being equal to 3/2 (5/6) for scalars and fermions (gauge bosons)
and Λ being the renormalization scale [156,164,165]. To arrive at the
above expression, the dimensionality of the integral in eq. (4.13) was
first formally shifted to 4− ϵ. The singularities are then isolated in terms
∝ ϵ−1, which need to be canceled by adding a finite counterterm potential
Vct [156]. In this thesis, we will impose the renormalization conditions
0 = ∂ϕ (VCW + Vct)|ϕ=Λ and 0 = ∂2ϕ (VCW + Vct)|ϕ=Λ, effectively fixing
the tree-level vev and the Higgs mass mϕ to remain unchanged when
going from tree-level to one-loop order, and set Λ = vϕ.

hard thermal loops The divergences of the Td-dependent term in
eq. (4.13) cannot be treated as simply: Consider for instance diagram (a)
in fig. 4.2. Evaluating it by applying the replacement rule from eq. (4.5)
for vanishing external momenta we obtain

Πϕ(Td) = λTd
∑
n

∫
d3k

(2π)3
1

ω2
n + k2 +m2

ϕ

= λ

∫
d4k

(2π)4

(
1

2Eϕ
+

1

Eϕ

1

e−Eϕ/Td − 1

)
T≫mϕ≈ λT 2

d
12

(4.18)

In the last step we assumed that Td ≫ mϕ and discarded the temperature-
independent and UV-divergent first term in brackets. In fig. 4.2 the
other one-loop corrections for the scalar and gauge boson propagatorDebye masses
of the Lagrangian in eq. (4.6) are listed. These so-called Debye masses
are generally of the form Πϕ ∝ λT 2

d for scalars and ΠA′ ∝ g2T 2
d for

longitudinally polarized gauge bosons. We left out fermion Debye masses,
since they will not appear in the effective potential at leading order, as
we will show below.

daisy diagrams We will now attach N − 1 more Φ loops to the
central Φ loop of the diagram (a) in fig. 4.2 to obtain the daisy diagram,
which contributes to the mass of the real field ϕ as [166]

∼ λTd
∑
n

∫ ∞

0

dk

2π2
k2

(ω2
n + k2)N−1︸ ︷︷ ︸

main loop
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Figure 4.2: The so-called hard thermal loop corrections to the scalar (a, b and
c) and gauge boson propagators (d and e) of the U(1)′ model in
eq. (4.6) together with their Debye masses in the limit Td ≫ ma,
where ma is the mass of the particle constituting the loop.

×
[
λTd

∑
n

∫ ∞

0

dk

2π2
k2

ω2
n + k2

]N−1

︸ ︷︷ ︸
petals

∼ (λTd)
(
λT 2

d
)N−1

µ2N−3
= αN−3/2λ3/2T 2

d . (4.19)

In the last step, we introduced the effective coupling α ≡ λT 2
d/µ

2. We
can immediately see that the main loop is IR divergent for N > 2
due to the Matsubara zero-mode ωn = 0. This phenomenon can only
happen for bosonic thermal loops, which is the reason why we do not
need to consider fermionic loops at leading order. At the temperature
Td ∼ µ/

√
λ, which we motivated above by the mass µ2 and Πϕ becoming

of the same order, eventually triggering a PT, the factor α ∼ 1. This
implies that Πdaisy ∝ λ3/2T 2

d . Consequently, adding another petal to the
daisy does not alter its mass contribution, which strongly contradicts
our naive expectation from zero-temperature QFT, where in the case of Picking daisies is

importantperturbative couplings λ, a higher number of loops in a Feynman diagram
typically corresponds to a smaller contribution. Instead, in thermal field
theory, the daisy diagram contributes with a term proportional to λ3/2

to the effective potential, thereby constituting the next-to-leading order
correction to the effective temperature-dependent potential.

resumming hard thermal loops The daisy diagram showed to
be important in particular around the PT scale Td ≃ µ/

√
λ and to
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diverge in the IR for N > 2 total loops. To now account for its effect
in the effective potential, the propagators for bosons with tree-level
mass mϕ have to be resummed. This can be achieved by adding upDaisy resummation

techniques propagators with an increasing number of hard thermal loops with Debye
mass Πϕ(Td),

1

p2 −m2
ϕ

+
Πϕ(

p2 −m2
ϕ

)2 +
Π2

ϕ(
p2 −m2

ϕ

)3 + . . . =
1

p2 −m2
ϕ −Πϕ

+ + + . . . = .

(4.20)

Effectively, the resummation hence boils down to the substitution
m2

ϕ → m2
ϕ + Πϕ(Td) in VT(ϕ, Td). In this thesis, we choose to use

the Arnold-Espinoza method [167] for daisy resummation in which only
the Matsubara-zero mode’s contribution is resummed, as opposed to
the Parwani method [168] or the full dressing procedure [163], to spare
the introduction of temperature-dependent counter terms. Algebraically,
the resummation of the hard thermal loops can be achieved by the
replacement [169]

[VCW + VT]m2
ϕ→m2

ϕ+Πϕ
= VCW + VT + Vdaisy

with Vdaisy(ϕ, Td) = − Td

12π

[(
m2

ϕ +Πϕ(Td)
)3/2 − (m2

ϕ

)3/2]
(4.21)

The contributions from gauge bosons follow the same expression up to a
factor for their internal dofs. As only longitudinal gauge bosons obtain
Debye masses (see fig. 4.2), only the longitudinal dofs of a gauge boson
need to be considered.

summary Summing all discussed terms together, we obtain the one-
loop, daisy-resummed effective potential of the QFT defined by the
Lagrangian in eq. (4.6) [170]

Veff(ϕ, Td) = Vtree + VCW + Vct + VT + Vdaisy (4.22)

with the individual contributions

VCW(ϕ) =
∑

a=ϕ,φ,A′,χ

ηana
m4

a(ϕ)

64π2

[
ln
m2

x(ϕ)

v2ϕ
− Ca

]
,

VT(ϕ, Td) =
T 4

2π2

∑
a=ϕ,φ,A′,χ

ηana Jηa

(
m2

a(ϕ)

T 2
d

)
,

Vdaisy(ϕ, Td) = − Td

12π

∑
b=ϕ,φ,A′

L

nb

[(
m2

b +Πb(Td)
)3/2 − (m2

b

)3/2]
,

Vct(ϕ) = −δµ
2

2
ϕ2 +

δλ

4
ϕ4
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with Πϕ = Πφ =

(
λ

3
+
y2

12
+
g2

4

)
T 2

d , ΠA′ =
3

4
g2T 2

d ,

δµ2 =

[
3

2ϕ

dVCW(ϕ)

dϕ
− 1

2

d2VCW(ϕ)

dϕ2

]∣∣∣∣
ϕ=vϕ

,

and δλ =

[
1

2ϕ3
dVCW(ϕ)

dϕ
− 1

2ϕ2
d2VCW(ϕ)

dϕ2

]∣∣∣∣
ϕ=vϕ

.

(4.23)

As above, na are the dofs of the fields coupled to ϕ, ηx is +1 (−1) for
bosons (fermions), Ca = 3/2 (5/6) are the renormalization constants for
scalars and fermions (gauge bosons), and Jηa are the thermal functions
as defined in eq. (4.15).

There have been developments in favor of a more rigorous calculation
of the effective potential which allows for an expansion not in terms of
the number of loops but in terms of powers of the coupling constants.
This can be achieved through the construction of a three-dimensional
effective field theory by formally integrating out the hard thermal scale
(corresponding to the resummation of daisies), as well as the parameter-
ically smaller soft and ultra-soft thermal scale (also resumming so-called
super-daisies, lollipops and sunset diagrams) [163, 166]. The resulting
effective potentials recovered through this procedure in particular do Super-daisies,

lollipops and
sunsets

not suffer from a strong dependence of a specific chosen gauge and
renormalization scale in contrast to the above calculation. Recently,
dimensional reduction has become a feasible task using the Mathematica
package DRalgo [171]. In chapter 6 we use DRalgo in order to perform a
cross-check and validate our results obtained using the effective potential
from eq. (4.22).

4.2 bubble nucleation and percolation

We are now well-equipped to study PTs in the early universe. To start
with, let us study the derived effective potential in more detail: In fig. 4.3
we schematically plot Veff(ϕ, Td) for a range of temperatures given two
benchmark points, one with g = 0 on the left-hand side and one with g ̸=
0 on the right-hand side. At low temperature, in both cases the tree-level
potential is recovered, having a minimum at the vev vϕ. At sufficiently A thermally

induced barrier in
Veff

high temperatures, we further see that in both cases the minimum of the
potential shifts to ϕ = 0, which corresponds to the previously mentioned
phenomenon of symmetry restoration. For intermediate temperatures,
the effective potentials however are fundamentally different: For non-zero
gauge couplings a thermally induced potential barrier is produced.

The origin of this potential barrier can be traced down to the z3 term
in eq. (4.16a), which only appears in the bosonic but not the fermionic
thermal function. In fact, one can show that a thermally induced poten-
tial barrier can only be produced in the presence of transversal gauge
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Figure 4.3: Sketch of the effective potential (4.22) corresponding to the La-
grangian in eq. (4.6) for a set of decreasing temperatures (orange
to blue curves). Left: g = 0, no potential barrier can form. Right:
g ̸= 0, a FOPT can happen due to the generation of a potential
barrier.

bosons, as the daisy potential Vdaisy effectively cancels thermal barriers
induced by loops of scalars and longitudinal gauge bosons: ExpandingThe barrier is due

to transversal
gauge bosons

Vdaisy in the high-temperature regime, it evaluates to T 4
d
∑

b z
3
b/(12π),

such that after adding the z3b piece of VT to it only the transversal gauge
boson barrier survives.

In the presence of a potential barrier, the scalar field ϕ cannot smoothly
transition to a new potential minimum, i.e. ϕ cannot be homogeneous at
all times. Instead, for temperatures below the critical temperature Td,c
at which the minima degenerate, bubbles of the new phase can nucleate,
expand, accelerate up to relativistic velocities, and eventually collide,Below Td,c bubbles

can nucleate thereby possibly emitting strong gravitational radiation. In fig. 4.4 a
sketch of the bubble nucleation can be found: A bubble’s radius r, initially
sufficiently large such that the bubble does not collapse under its own
surface tension, will grow like r = |x| =

√
R2 + c2t2 if the interactions

of the bubble wall with the plasma can be neglected [172,173].

We now want to compute the temperature of the primordial plasma at
which bubble nucleation happens. There are two different mechanisms
through which the transition can be triggered: quantum tunneling and
thermal fluctuations. We will only consider the case of PTs induced
by thermal fluctuations, which typically have a bubble nucleation rate
which exceeds that of tunneling-induced transitions except for the caseThe bubble

nucleation rate of very strong supercooling [165]. In a semi-analytical approximation
the bubble nucleation rate (per unit volume and time) reads [172–174]

Γ(t) = A(Td) exp

[
−S3(Td)

Td

]
, (4.24)
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Figure 4.4: Left : Sketch of the bubble nucleation. Inside the bubbles ϕ ̸= 0,
whereas the vacuum around them is still in the ϕ = 0 phase. Right :
Sufficiently large bubbles can expand and accelerate up the speed
of light.

where S3(Td) is referred to as the (Euclidean) bounce action. The latter
is given by

S3 (Td) ≡ S3 [ϕb(x;Td)] =

∫
d3x

[
(∇ϕb)

2

2
+ Veff(ϕb, Td)

]
(4.25)

where ϕb(x;Td) is the “bounce” solution of the O(3)-symmetric Klein-
Gordon equation

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
=

dVeff(ϕ, Td)

dϕ
≡ V ′

eff(ϕ, Td) . (4.26)

Here, we made the bubble’s O(3) symmetry manifest by choosing spher-
ical coordinates with r = |x| denoting the distance to the bubble center.
The latter Klein-Gordon equation interpolates ϕ(r) between the two
phases and hence determines the bubble profile ϕb(r;Td). To determine
it numerically given a potential Veff, we impose the boundary conditions
ϕ(r → ∞) → 0 and ϕ′(r = 0) = 0 and use a shooting algorithm (see
fig. 11 in ref. [165]).

The time-dependence in eq. (4.24) was reintroduced to indicate that
Td(t) is a dynamical quantity due to the Hubble expansion. Note that
previously we assumed that there are no dynamical processes such that
we could work in the imaginary time formalism to derive Veff(ϕ, Td). This The reappearance

of dynamicsassumption still holds very well in the limit of a sufficiently slow Hubble
expansion. This assumption can be checked explicitly by comparing
typical particle interaction rates with the Hubble rate (cf. chapter 6.4.2).

In fig. 4.5 a schematic overview of the different quantities going into the
calculation of the bubble nucleation rate is shown: From a given effective
potential the phase structure can be obtained by tracking the position
of the potential minima over a range of temperatures. If there exists an
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Figure 4.5: Left : The coexistence of potential minima in range of temperatures
allows for a FOPT which succeeds through the nucleation of bubbles
at Tn. Right : A bubble profile which interpolates between the
vacuum states on both sides of the bubble wall at

√
R2 + t2.

overlap in which two phases separated by a potential barrier coexist, a
FOPT can occur. The bubble profile of an expanding bubble is shown
on the right: Within the bubble, at r <

√
R2 + t2, where R is the initialThe bubble profile

bubble radius and t is the time passed since the individual bubble’s
nucleation, the scalar field obtains the vev of the true minimum. In front
of the bubble wall, the field quickly goes to the false vacuum’s vev. Note
that there is some temperature dependence of the true minimum’s vev
as can be seen in the light blue curve in the left panel, which we refer
to ϕmax in the right panel.

We define the point in time at which nucleation happens by requiring
that one bubble per Hubble patch has been produced. By dimensional
analysis and for simplicity the prefactor of the nucleation rate can be
approximated as A(Td) ∼ T 4

d . This is usually sufficient for leading-order
calculations due to the exponential dependence of the bounce action.
For a more rigorous and already automated calculation of A(Td) up to
one-loop order see for instance ref. [175]. The number of bubbles perNucleation happens

when S3(Td)/Td ≃
O(150)

Hubble patch can be calculated by integrating Γ(t) over time. Due to
the exponential time dependence, this integral can be well approximated
by only considering the lowest temperature at which Γ is evaluated,
i.e. the nucleation temperature. In doing so we immediately obtain the
nulceation condition ΓH−4

∣∣
tn

= 1, which can be rewritten as [27]

S3(Td)

Td

∣∣∣∣
Td,n=ξnTn

≃ 146− 2 ln

(
g∗(Tn)

100

)
− 4 ln

(
Tn

100GeV

)
(4.27)

upon plugging in the Hubble rate H2(T ) = π2

90 g∗(T )T
4/m2

Pl in radiation
domination. In summary, nucleation is expected to happen when S3/Td
crosses log(m4

Pl/T
4
n ) ≃ O(150). Numerically, the nucleation temperature

can hence be found iteratively by repeated evaluation of the above
nucleation condition at different temperatures. Note that the above



4.2 bubble nucleation and percolation 87

log Td

lo
g
S

3
(T

d
)/
T

d

∆Veff = 0

Γ/H4 = 1

I = 0.34
Td,n Td,cTd,p

Figure 4.6: The temperature dependence of the bounce action S3(Td)/Td over
a range of temperatures. At Td,c the bounce action diverges since
∆Veff = 0, corresponding to a vanishing bubble nucleation rate. At
Td,n the bounce action becomes low enough for the nucleation of
one bubble per Hubble volume. Percolation happens at Td,p.

criterion is only approximate and needs to be corrected in case the
amount of vacuum energy in the DS is so large that it leads to a second
inflationary period, breaking the assumption of radiation domination.

In fig. 4.6 we schematically show how the bounce action drops for a
decreasing DS temperature. Note that at Td,c when the two minima are at
the same vacuum energy such that ∆Veff = 0, the bounce action diverges
and the bubble nucleation rate hence drops to zero, corresponding to a
zero probability for the nucleation of a bubble at a given point in space.

Bubble nucleation alone is not sufficient for the completion of a PT.
In case of a strongly super-cooled PT, i.e. for a large difference in
vacuum energy between the two phases, the Hubble parameter can be
dominated by ∆Veff leading to an exponential growth of the scale factor,
forbidding the collision of bubbles. It therefore makes sense to check
whether at some point in time the new phase actually percolates the Percolation
universe by a connected web of bubbles [176–178]. This point in time
is specified by roughly 30% of the Hubble volume having transitioned
to the true vacuum state. The corresponding false-vacuum fraction is
given by P (T ) = exp [−I(T )] with [165]

I(T ) =
4π

3
v3w

∫ Tc

T
dT ′ Γ(T ′)

T ′ 4H(T ′)

(∫ T ′

T

dT ′′

H(T ′′)

)3

, (4.28)

where vw is the terminal bubble wall velocity resulting from interactions
of the bubble wall with the surrounding plasma. The resulting percolation
temperature Tp ≲ Tn, which can be determined from the condition
I(Tp) = 0.34, approaches the nucleation temperature Tn in the limit of
weak PTs, but can be orders of magnitude smaller in the case of strong
super-cooling [179].



88 dark sector phase transitions

4.3 gravitational waves from dark sector
phase transitions

In principle, we now have all the necessary ingredients to predict the
GWB emitted during a FOPT. In practice, this is typically achieved
by simulating the nucleation, expansion, and collision of bubbles on a
lattice. This approach allows us to access the anisotropic stress within
the perturbed plasma, and thereby the GW spectrum that emerges over
time [151]. However, bubble expansion is complicated by the feedback
from fluid dynamics, making these computations increasingly demanding
depending on the size of the simulated volume and the chosen grid spac-
ing. To accurately approximate the generated GW signal, the simulatedLattice simulations

are expensive volume should include as many bubbles as possible, and the grid spacing
must be smaller than the relevant scales to precisely model the fluid
dynamics. Additionally, the bulk fluid motion that sources GWs can
persist much longer than the bubble collisions themselves [178], necessi-
tating long simulation times. As a result, predicting the GW spectrum
for a specific transition in a given effective potential is computationally
too expensive to simulate in each case. Fortunately, there are widely
used approximations derived from a combination of analytical and nu-
merical methods that can effectively predict GWB spectra. We will now
discuss how to map a given effective potential to these semi-analytical
expressions.

To do so, let us introduce a set of useful dimensionless parameters
which characterize the thermodynamics of dark sector phase transitions
(DSPTs): The most relevant parameters for the calculation of the GWB
spectrum, next to the previously derived percolation temperature Tp,
are the strength parameters α and αDS and the speed β/H of the PT.

The strength parameter α quantifies the amount of latent heat released in
the PT and relates it to the total energy density ρp

SM+ρp
DS of both the DS

and the SM bath at the time of percolation. In ref. [180], the trace θd ≡
−ηµνTµν

d = −4Veff + Td
∂Veff
∂Td

of the DS’s energy momentum tensor Tµν
dThe transition

strength has been advertised to be a good parameterization for mapping between
a given effective potential to the performed numerical simulations. The
effective potential is here understood to be evaluated at the percolation
temperature Td,p. The latent heat can then be obtained through ∆θd/4,
where ∆ refers to a difference between the two phases. The strength of
the phase transition can hence be expressed as

α ≡ ∆θd/4

ρp
SM + ρp

DS
with ∆θd =

[
−4∆Veff + Td

∂∆Veff

∂Td

]
Td,p

> 0 ,

(4.29)

where ∆Veff denotes the potential difference between the two vacua. This
parameterization of α has become a useful standard as it does not suffer
from the inaccuracies which arise when using the pressure or vacuum
energy difference instead of the trace difference ∆θd, as advertised in
earlier works [181,182].
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In case the DS is completely secluded, there is another important tran-
sition strength parameter: It can be obtained by instead normalizing Dark bubble walls

only feel the DS∆θd to the DS energy density alone [1, 4],

αDS ≡ ∆θd/4

ρp
DS

= α

(
1 +

1

ξ4p

gSM(Tp)

gDS(Tp)

)
, (4.30)

where ξp = Td,p/Tp is the temperature ratio the between symmetric
phase of the DS and the SM bath at the time of percolation. In a DSPT,
the bubble wall can only feel the effect of DS states, as visible sector
states do not obtain masses throughout the transition. The percentage of
liberated vacuum energy density available for accelerating the bubble wall
will hence depend on αDS and not on α. This is an important difference
with respect to the case of visible sector PTs. Also quantitatively, the
difference between αDS and α can be enormous due to the factor ξ4p.
The temperature ratio ξp therefore strongly impacts the dynamics of
the dark bubble walls.

The speed of the PT expressed in units of the Hubble rate at the time
of percolation can be determined by calculating the slope of the bounce The transition

speedaction at Tp,

β/H ≡ 1

H

d log Γ

dt

∣∣∣∣
tp

≃ Td,p
d

dTd

S3(Td)

Td

∣∣∣∣
Td,p

. (4.31)

Typically, S3/Td can be expanded as a polynomial in Td around Td,p, such
that β/H = O (S3(Td,p)/Td,p). As we argued in eq. (4.27), nucleation
happens when S3(Td,n)/Td,n = O(150). For sufficiently weak phase
transitions Td,p ≃ Td,n holds. Quite generally, one can hence expect
β/H ≃ O(100−1000) depending on the strength of the PT [1]. Obtaining
smaller values for β/H, in order to produce stronger GW signals, is
possible for near-conformal potentials [183–190] or at the expense of
tuning the scalar potential such that the system is close to meta-stable
(if it does not tunnel during the lifetime of the Universe). For as small
values as β/H = O(1), however, the phase transition might not complete
and a phase of eternal inflation might occur [165,183,184,187–190].

Typically, a PT is referred to as strong when α ≳ O(1) and slow when
β/H ≲ O(100). Both conditions need to be fulfilled in order to obtain
observable GW signals as we will see in the following section. This
corresponds to a latent heat release ∆Veff ≃ ρp

SM + ρp
DS of the order of Strong and slow

relative to what?the energy density of the primordial plasma before the transition and a
duration of the transition β−1 of at least a hundredth of a Hubble time.
To give some meaning to these scales, let us consider a PT percolating
at a 100MeV temperature for preciseness: Requiring it to be slow and
strong according to the above criteria implies a minimum duration on the
µs scale and a released equivalent mass density of roughly 1014 g cm−3

respectively. The latter is approximately the mass density of a neutron
star. Due to the sheer size of the expected energy flows, we can hence
expect the emission of observable GWBs by such transitions.
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4.3.1 Bubble collisions and sound waves

The GW spectrum emitted in FOPTs is sourced by a set of inter-
twined physical processes, most importantly bubble collisions, as well
as sound waves and turbulence in the perturbed plasma. Each of these
contributions can potentially dominate the GW spectrum, depending
in particular on the speed vw of the bubble wall and the strength αDS
of the PT. Since predictions for plasma turbulence as a GW source
often requires especially long lattice simulations with small grid spac-
ing [191], which are not yet understood well enough to make quantitativeThe energy budget

of a PT statements [178], we will only consider sound wave and bubble collision
contributions in this thesis. The energy budget of a PT is conventionally
parameterized by the sum κϕ + κsw + κtherm = 1, where the first contri-
bution quantifies the percentage of liberated vacuum energy going into
gradient field energy in the bubble walls, the second term corresponds
to bulk fluid motion and κterm corresponds to an immediate increase
of the thermal energy. In this thesis, we will work in the high-vw ap-
proximation discussed in the appendix of ref. [192] in which κtherm → 0.
We use the expression provided there to compute the efficiency κsw in
dependence of αDS. In section 6.A we will discuss the validity of the
high-vw approximation in the U(1)′ model.

bubble wall contributions The spectrum of GWs emitted by
bubble collisions was first derived analytically and then studied in
simulations using the so-called envelope approximation [193–195], in
which a thin sheet with large gradient field energy around the collided
bubbles is assumed to give rise to the anisotropic stress necessary for
emitting GWs. Since then several analytical works [196–200] have been
performed in order to refine the original results for the contribution ofThe envelope

approximation bubble wall collisions. In this thesis we will use the parameterization
used in the LISA 2015 review [27] based on ref. [198],

h2Ωbw(f) = Rh2 Ω̃bw

(
κϕ α

α+ 1

)2 ( β
H

)−2

sbw(f/fp,bw)

with sbw(x) =
3.8x2.8

1 + 2.8x3.8
and f em

p,bw/β = 0.23 . (4.32)

The amplitude of the signal at the time of production is fixed by Ω̃bw =
0.11v3w/

(
0.42 + v2w

)
= 0.077 for vw → 1. Assuming entropy conservation

between the spectrum’s emission and today, the amplitude redshift Rh2
follows the previously derived eq. (2.75) and a given mode’s frequency
f today is related to an emitted frequency f em through eq. (2.76) with
xk/(2π) corresponding to the above expression for the spectrum’s peak
frequency at the time of emission f em

p,bw. We see that the IR slope of the
spectrum sbw increases with f2.8 (which is close to the causality IR tail
with f3 [86, 201–203]), whereas the UV slope decreases slowly with f−1.

Numerical simulations of bubble collisions lately challenged the envelopeThe bulk-flow
model approximation: The peak frequency showed to be a factor 5 higher than



4.3 gravitational waves from dark sector phase transitions 91

previously expected and that the UV slope should fall off more quickly
with f−1.5 [204]. In ref. [205] it was further shown that both the IR and
UV slopes depend on the finite thickness of the wall profile, confirming
previous analytical works [200,206] referred to as the bulk-flow model.
A concise comparison of the different parameterizations of the bubble
wall spectrum can be found in chapter 6 of ref. [207].

In a given particle physics model featuring a FOPT the contribution
from bubble wall collisions is, however, often expected to be subdominant Sound waves

typically dominatecompared to the contribution from sound shell collisions since κϕ ≪ κsw.
Only in the case of bubble walls which run away, i.e. if the bubble walls
accelerate up to the point of their collision, the dominant contribution
to the total GW signal is expected to arise from bubble collisions [208].

sound wave contributions The sound wave contributions to the
total GWB spectrum were first studied in the early 90s [193]. Today,
hydrodynamical simulations [180,209–212] and corresponding analytical
investigations [213, 214] referred to as the sound shell model sustain
the parameterization of the GWB signal employed in the LISA 2019 The LISA sound

wave templatereview [178,212], which we will also use in this thesis. It reads

h2Ωsw(f) = Rh2Ω̃sw

(
κswα

α+ 1

)2( β
H

)−1

Yshssw(f/fp,sw)

with ssw(x) = x3
(

7

4 + 3x2

)7/2

, f em
p,sw/β = 0.53

and Ysh = min [1, τshH] ≃ min

[
1,

3.38

β/H

√
1 + α

κswα

]
. (4.33)

The normalization of the signal is given by Ω̃sw = 3× 0.012× 0.687×
(8π)1/3 = 0.072, where the first two factors were identified in ref. [212],
the third one arises from the normalization of the spectrum

∫
ssw d log x =

1/0.687 and the fourth one converts the estimated mean bubble sepa-
rations to β/H. Note that the initial factor 3 was erroneously missing
in LISA 2019 review [178]. It should be noted that that this expression
can lead to a slight overestimation of the GW signal for sources being
active for about a Hubble time. As the onset of turbulence is however an
unsolved and model-dependent question, we conservatively stick to the
shown expression for Ysh despite the developments shown in ref. [215].

Depending on the strength αDS and the bubble wall velocity vw, either
a shock wave forms in front or behind the bubble walls. These cases
correspond to sub- and supersonic bubble wall velocities, referred to as
deflagration and detonation fluid profiles, respectively. In this thesis,
we will use the fitting formula for vw → 1 provided in the appendix of The energy budget

for fluid motionref. [192] to calculate the efficiency κsw for converting vacuum energy
to bulk fluid motion. The factor Ysh accounts for the lifetime τsh of
the sound wave source, after which shocks form and non-linearities
develop. Note that the sound wave contribution is only suppressed by
a single power in β/H, whereas the bubble wall collision contributions
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scales with (β/H)−2. Typically the bubble wall contribution is therefore
suppressed even for similar energy budgets κϕ and κsw.

4.3.2 The dilution of GWs due to a dark sector decay

So far we did not specify any couplings to SM states. As noted above,
sufficiently small couplings (for instance to the SM photon through
kinetic mixing or to the SM Higgs field through mass mixing) do not
change the dynamics of the PT as their effect on the effective potential
can be neglected. A PT in a secluded DS, which cannot dispose of the
liberated vacuum energy density, is subject to strong constraints due
to the aforementioned ∆Neff constraints (cf. eq. (2.30)). We investigate
these constraints in detail in chapter 5. In previous studies it was realizedA decaying DS can

dilute the GWs that a decay of the DS can circumvent these constraints at the cost of
potentially changing the expansion history of the universe, especially
if the DS is hotter than the SM bath and decays out-of-equilibrium [4].
The effect of the resulting entropy injection into the SM bath is an extra
redshift between the time of GWB emission and today with respect
to the naive ΛCDM expansion history. We refer to this additional
decrease of the GWB amplitude and peak frequency as dilution [70]. It
is characterized by the dilution factor

D ≡ S0
SM

Sp
tot

, (4.34)

which relates the comoving entropy density of both the DS and SM bathThe effect of an
entropy injection
on Rh2 and the
peak frequency

at the time of the PT with the current comoving entropy density of SM
states. In case the DS thermalizes with the SM particles through the
decay of a relativistic DS state, D → 1 and the effect on the redshift
of the GW signal is negligible. If instead a large amount of entropy is
produced and injected into the SM bath, the previous expression for
the frequency redshift f/f em and amplitude redshift Rh2 need to be
corrected to [4]

fp,i =
17 nHz
D1/3

(
β

H

)(
Tp

100MeV

)(
f em
p,i

β

)(
gp
tot
100

)1/2(
100

hp
tot

)1/3

(4.35a)

and Rh2 = 1.7 · 10−5

D4/3

(
gp
tot
100

)(
100

hp
tot

)4/3

. (4.35b)

The temperature Tp here corresponds to the SM bath at the time of
percolation, at which also the dofs gp

tot and hp
tot of the combined bath

of SM and DS particles are evaluated, cf. eqs. (2.20a) and (2.20b).



5 DO PTAS OBSERVE A DARK SECTOR
PHASE TRANS I T ION?

This chapter is based on the following publication:

[1] T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-
Hoberg, and C. Tasillo, Does NANOGrav observe a dark
sector phase transition? , JCAP 11 (2023) 053, [2306.09411]

Never tell me the odds!

— Han Solo

5.1 introduction

In the last chapter we found that DSPTs can be the source of strong
GWBs. The recent PTA observation discussed in chapter 3 now leads us
straight to the central question of the present chapter: Do pulsar timing
arrays observe a dark sector phase transition?

At the end of chapter 3 we have already identified the strongest con-
tender for any alternative explanation of the novel signal’s origin: an
astrophysical GWB emitted by inspiraling SMBHBs. In order to explain
the observed signal’s amplitude, however, it was argued that the local Astrophysics or

cosmology?SMBHB density would need to be higher by an O(10) factor compared
to previous estimates [216–218], cf. fig. 3.4. The question of whether
realistic astrophysical models could give rise to a sufficiently strong
GWB hence remains the subject of an ongoing debate [149,219–222].

In order to match the observed GW signal at nHz frequencies, the
preferred temperature for a cosmological PT must be at the MeV-
scale [106, 121], cf. fig. 2.8. As new physics at this energy scale is
very strongly constrained by a large variety of direct experimental
searches [223], this immediately implies that the associated new states
should only couple very weakly to the SM. In other words, such a phase Stable and

decaying DSstransition would have to take place in a more or less secluded DS—which
could, in fact, also be directly related to the dark matter puzzle [224–226].
Importantly, even if the DS is only very weakly coupled to the SM, a
DSPT could impact the successful predictions of BBN and the CMB
due to the extra energy density that is present in the DS (conventionally
parameterized as an effective number of new relativistic neutrino degrees
of freedom ∆Neff, see eq. (2.30)) [12, 74] or through the late decay of
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NG12.5, sound waves, stable dark sector,
ignoring cosmological constraints

∆Neff > 0.22: excluded by
BBN and CMB at 95 % C.L.

β/H < 3: Super-Hubble bubbles

β/H < 10: GWB is overestimated
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Figure 5.1: Triangle plot showing the 1σ and 2σ contours obtained by a naive fit
(blue) of the NANOGrav 12.5yr data to a GW spectrum emitted in
a DSPT, ignoring cosmological constraints. To illustrate the tension
with BBN and CMB, the 95% C.L. excluded regions corresponding
to ∆Neff > 0.22 are shaded in red [74], cf. the discussion in sec-
tion 5.4. The regions in which super-Hubble bubbles (β/H < 3) and
an overestimation of the GW background amplitude (β/H < 10)
are expected are shaded in gray, see section 5.2 for further details.

the additional states [227–231]. In this chapter we will consider the two
main generic possibilities, namely where the additional energy density

1. fully remains within the DS (“stable/secluded DS”), or

2. is subsequently injected into the SM sector (“decaying DS”).

It is worth stressing that these options simply refer to different regimes
of the inter-sector coupling(s), and hence are a-priori equally viable
from a phenomenological point of view. In both cases, in particular, we
assume that those inter-sector couplings are sufficiently small for the
DS to not thermalize with the SM heat bath. As a result the visible and
dark sector will generally have different temperatures [25].

Fig. 5.1 illustrates in a nutshell the need to consistently combine cosmo-
logical and pulsar timing information when interpreting the NANOGrav
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12.5yr results in terms of a DSPT.1 The blue contours show the results
of a naive fit of the DSPT parameters to NANOGrav data, without
taking into account physically motivated priors on the rate β/H of the
PT or cosmological constraints. We discuss the former in more detail A first glance at

the tension for
stable DSPTs

in section 5.2, and the latter in section 5.4. Here, we simply want to
demonstrate that these considerations (as indicated by gray and red
shadings, respectively) will necessarily have a major impact on the
naively inferred parameter space. One of our main results from a full
statistical treatment, including information from cosmology, is indeed
that an astrophysical explanation of the GW signal is much more credi-
ble than a GWB due to a PT from a stable DS for sub-horizon bubble
sizes R∗H∗ < 1 (corresponding to β/H ≳ 3, cf. eq. (5.49) in ref. [165]).
When considering a DS that decays at pre-BBN temperatures, on the
other hand, we find that the viable parameter space of DSPTs opens up:
In this case, the NANOGrav data can be explained without violating
BBN constraints, fitting the pulsar timing data as good as SMBHBs.
For earlier works on cosmological constraints on PT interpretations of
the NANOGrav results, see refs. [119,232,233].

This chapter is organized as follows: We start by discussing our param-
eterization of GWB spectra from DSPTs in section 5.2. In section 5.3
we continue with a detailed description of our statistical procedure to
analyze PTA data, remarking also on pitfalls and limitations of simpler
or more heuristic methods sometimes adopted in the literature. We Outline of this

chapterdescribe the cosmological constraints on DS dynamics in section 5.4,
and explain how to construct global likelihoods that simultaneously take
into account pulsar timing and cosmological information. We present
our results in section 5.5, before concluding in section 5.6. In three
appendices, we provide further technical details about our analysis.

5.2 computation of gw spectra

In our analysis of the PT interpretation of the PTA data we use the
parameterization of GWBs emitted through bubble collisions and sound
waves provided in eqs. (4.32) and (4.33), respectively. In order to perform
a data analysis that is as model-independent as possible, we further do Model-independent

treatmentnot specify an underlying DS Lagrangian, but instead infer the PT pa-
rameters α, β/H, Tp and ξp occurring in the semi-analytical GW spectra
in eqs. (4.32) and (4.33) through a fit with the PTA data. This allows
us to understand the conditions a specific DS model needs to satisfy in
order to explain the nHz signal. In the following paragraphs we want to
briefly summarize the assumptions that go into our parameterization of
the GWB.

1 In the analysis presented in this chapter we used the now outdated NANOGrav
12.5yr data set instead of the latest 15yr data release. We comment on expected
differences between the datasets in the context of our PT parameter inference in
section 5.5.
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We use ξp ≡ Td,p/Tp to denote the ratio of the DS temperature in the
symmetric phase to that of the SM bath at the time of percolation.
Assuming that the energy injection into the DS bath happens instanta-
neously after percolation, this means that ξp corresponds to the ratio
just before the PT. To simplify our analysis, we also assume that theξp: temperature

ratio before the PT DS reheats instantaneously (cf. sec. 6.4.2 in the following chapter) and
that the DS energy density after the transition is dominated by at least
one relativistic particle species, such that the speed of sound is given by
cDS
s = 1/

√
3 throughout the transition.2

Following the example of ref. [235], we demand β/H > 3 for successful
percolation. This condition can also be interpreted as requiring that the
bubbles have sub-horizon size during percolation, since R∗H∗ > 1 implies
β/H > (8π)1/3 = 2.93. Moreover, the time between the nucleation of
the first bubbles to percolation is about 10/β (see, e.g., ref. [236]). AsSmall β/H are

problematic simulations neglect the expansion of the Universe during the PT, which
suppresses the GW signal, spectra obtained from such simulations are
therefore likely overestimated, or at least subject to sizable uncertainties,
for β/H < 10.

Concerning the exact form of the GW spectra that we adopt here, let us
mention that recent results seem to indicate sound shell decays leading
to an f−3 rather than f−4 scaling in the UV [236]. This scaling has
little impact on our results since very low phase transition temperatures
are disfavored in our analysis, implying that the signal is not fittedUV tail of GWB

spectra does not
matter

by the (far) UV tail. Moreover, for wall velocities close to the speed
of sound, the sound shell thickness becomes imprinted in the fluid
motion [213,214,236,237]. This leads to an additional knee in the power
spectrum and an intermediate scaling x1. We also neglect this effect
since we focus on wall velocities close to the speed of light.

In all scenarios studied in this chapter, we set the dilution factor ap-
pearing in eq. (4.35) to D = 1, corresponding to the assumption that
there is no significant deviation from the standard cosmological redshift
history. This is natural in our analysis of stable DSs, as the potentialDilution D is

negligible dilution gets sourced by an entropy injection, which can only happen
for decaying DSs. A dilution factor D > 1 would correspond to a faster
expansion than in radiation domination, e.g. if the PT were followed
by an intermediate phase of early matter domination [4]. We checked
that this dilution is always negligible also in the case of our decaying DS
scenario, cf. appendix 5.A.2. We find that the assumption of radiation
domination (corresponding to small deviations with respect to D = 1)
holds within the parameter space favored by the data, thereby justifying
this assumption a-posteriori (see below for a discussion and appendix
5.A.2 for further details).

2 The authors of ref. [234] found that a slightly smaller speed of sound is expected in
the broken phase of minimal DS models, which can lead to a sizable suppression of
the GW signal for detonations. This would introduce a model dependence which we
neglect in our analysis.
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We further set gp
DS = hp

DS = 1. This is not a strong assumption, as
the DS dofs always appear as prefactors of higher powers of ξp in the
calculation. Since the experimentally preferred temperature ratios ξp
are small, corresponding to cold DSPTs, the spectrum’s dependence on A specific choice

for DS dofsthe precise number of DS dofs is negligible. As discussed in section 5.4,
this choice also does not influence the cosmological constraints that we
impose.

Finally, we treat bubble wall collisions and sound wave spectra, parame-
terized in eq. (4.32) and eq. (4.33), as two separate models. For bubble
wall spectra, we set κϕ = 1 and consider only this contribution to the
total GW spectrum. For sound waves, we compute κsw(αDS) using the
high-velocity approximation from ref. [192], which yields κsw ≃ 1 for
large αDS in the case of non-runaway bubbles. Note that large αDS are Fast dark bubble

wallsgenerally expected due to αDS ∝ ξ−4
p in the limit of cold DSPTs ξp ≪ 1

(cf. eq. (4.30)). Hence, the conversion efficiency of vacuum energy to bulk
fluid motion is generally large, κsw → 1, and ultra-relativistic bubble
wall velocities vw → 1 are favored by the data.

In summary, we calculate the GWB spectrum based on the following
set of DSPT parameters:

{α, β/H, Tp, ξp} . (5.1)

In fig. 5.2 we illustrate the generic influence of increasing α, β/H, and
Tp on the sound wave and bubble wall collision spectra. The influence of
ξp on the GWB spectrum turns out to be negligible in our analysis since Four DSPT

parameters for the
GWB

cosmological constraints limit it to a sufficiently small value, cf. sec-
tion 5.5. The spectra shown here correspond to the best-fit points of
the analysis including cosmological constraints presented in section 5.5
(with a prior of β/H > 1).

5.3 pulsar timing array data analysis

In this section, we briefly review the commonly used methods for analyz-
ing PTA data. We begin by discussing two approaches frequently found
in the literature that are used to fit arbitrary GWBs to PTA data. Fol-
lowing that, we explain in detail why model comparisons based on global Our global fits

require enterprisefits require a more rigorous analysis, specifically using the full PTA
likelihood as implemented in NANOGrav’s code enterprise [115,116],
cf. eq. (3.28).

The NANOGrav collaboration found that the CURN signal (see chap-
ter 3) in their 12.5yr data set can be well-described by a power-law,
cf. eqs. (2.71) and (3.29a),

h2Ωgw(f) =
2π2

3H2
100

f2h2c(f) =
2π2

3H2
100

A2

(
f

1 yr−1

)5−γ

yr−2 , (5.2)
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Figure 5.2: Plot showing the NANOGrav 12.5yr “violins” (red) [238], their stan-

dard explanation through a power-law spectrum from the inspiral
of SMBHBs with ASMBHB = 1.53 × 10−15 and γSMBHB = 13/3
(gray), as well as two PT spectra. A characteristic bubble wall
collision spectrum is shown in orange. A sound wave-induced GWB
spectrum is shown in blue. These spectra correspond to the best-
fit parameter points found in section 5.5 (including cosmological
constraints and demanding β/H > 1). The blue arrows indicate
how an increase in the PT parameters α, Tp or β/H would shift
the spectra.

where A and γ are the spectral amplitude and tilt, respectively. Keeping
the tilt fixed to γ = 13/3 as expected for a GWB from inspiraling
SMBHBs, see section 3.6, they reported a preferred signal amplitude
A ≃ 1.53 · 10−15 [238].

An easy-to-implement possibility to fit arbitrary GWB spectra to PTA
data is to reinterpret the posterior contours in the (A, γ)-plane produced
by collaborations, cf. fig. 3.4, to also be valid for a GWB whose spectrumMapping broken

power-laws to A
and γ is not

sufficient

is close to a power-law in a certain frequency interval. This method has
been used in many works [126–128,136,235,239] that aim to explain the
CURN signal by a GWB from cosmic origins rather than astrophysical
sources. Since PTs result in GWBs with a broken power-law shape,
this mapping to a specific combination of A and γ breaks down around
the peak of the spectrum. While this method is often sufficient for
estimating the approximate overall amplitude of the signal, it is not
powerful enough for making a proper model comparison between different
signal hypotheses.

Another tempting possibility to fit an arbitrary GWB spectrum to the
CURN signal is to use the results of a free spectral analysis to the PTA
data, which lead to the infamous “violins” reproduced in fig. 5.2. In that
analysis the assumption of a power-law GWB is dropped in favor of
free spectral amplitudes at the frequencies of integer multiples of 1/Tobs.Using ceffyl

would be
tempting...

This approach then allows to directly fit spectra which can in principle
deviate arbitrarily from a power-law (see, e.g., refs. [120,240–242]). This
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approach eventually led to NANOGrav’s own tool ceffyl [118] which
promises a fast evaluation of the PTA likelihood, when marginalized over
the pulsar-intrinsic red noise parameters, cf. eq. (3.30). A significant
limitation of this approach is, however, that the posteriors for the
respective frequency bins are calculated with a finite prior range of
signal amplitudes. Adding to the fact that the tails of these posteriors
are not necessarily sampled well enough, this implies that the violins
cannot be used in any statistically meaningful way for signal amplitudes
too far from their most likely values. For example, the finite extent of the
violins shown in fig. 5.2 would strictly speaking imply that the ‘no-signal’
(i.e., the no common uncorrelated red noise (no-CURN)) hypothesis is
excluded with arbitrary confidence—while in reality it is only disfavored
by a Bayes factor of ∼ 104 − 105 [238]!

Crucially for our analysis, cosmological constraints can force a potential
DSPT to be so weak that the resulting GWB spectrum contributes only
negligibly to the measured CURN. In such cases, the signal is fitted
by fine-tuning the individual pulsar-intrinsic red noise amplitudes from
eq. (3.29b). The methods discussed above implicitly rely on likelihoods
that marginalize over these pulsar-intrinsic red noise parameters, making ... but leads to

statistical fallacies
for weak GWBs.

them unsuitable for our analysis. To properly account for correlations,
a full evaluation of the likelihood is required. This approach to fitting
cosmological GWB spectra using the full PTA likelihood has only been
employed in a limited number of studies [121, 133], due to the high
computational cost, and—to the best of our knowledge—never in a
context that also incorporates additional constraining likelihoods, such
as those from cosmology.

To interpret the NANOGrav data in terms of a DSPT we first construct
a likelihood LPTA(θPSR,θDS) for fitting the timing residuals to a given
set of pulsar-intrinsic red noise parameters θPSR and a GW spectrum
that depends on the DSPT parameters θDS. Each pulsar’s red noise is Constructing a

global likelihoodfitted by a power-law with an amplitude Aa and slope γa, cf. eq. (3.29b).
To include constraints from cosmology on the available DS parameter
space θDS, we further construct a likelihood Lcosmo(θDS) in section 5.4.
We multiply this likelihood with the PTA likelihood to obtain a global
likelihood,

Lglob(θPSR,θDS) = LPTA(θPSR,θDS)× Lcosmo(θDS) . (5.3)

In this analysis we concentrate on the NANOGrav 12.5 yr data [238], for
which the full set of arrival time data, the pulsar white noise parameters
as well as a tutorial on how to use these resources is publicly avail-
able [243]. In this data set, a total of 47 pulsars was taken into account,
out of which we consider those that were observed for at least three years,
as done in the original analysis [238]. From the remaining 45 pulsars, we Analysis choices

for the 12.5yr data
set

treat the pulsar J1713+0747 as advertised in ref. [243] due to the proba-
bly mis-modeled noise process found in the dropout analysis [238]. The
parameter space we evaluate therefore consists of 90 nuisance parameters
θPSR = {Aa, γa} for the pulsar-intrinsic red noise, adding to our four
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(five) DSPT model parameters θDS for the case of a stable (decaying)
DSPT. To evaluate this high-dimensional global likelihood in a numer-
ically feasible way, we implement the DSPT spectra and Lcosmo(θDS)
into the codes enterprise and enterprise_extensions [115,116]. To
sample over the global likelihood we use PTMCMC [117]. The Markov chain-
Monte Carlo (MCMC) chains are evaluated using numpy and scipy [244],
and triangle plots are generated using matplotlib and a customized ver-
sion of ChainConsumer [245]. For performing model comparisons, finally,
we calculate Bayes factors using the product space method [246–249],
which we briefly review in appendix 5.C.1.

5.4 cosmological constraints

The past decades of observational cosmology have provided a large
amount of data which allow us to confidently reconstruct the cosmological
evolution up to MeV-scale temperatures. Most notably these include
observations of the CMB, both in terms of the spectral shape [250] and
anisotropies [12], and the primordial light element abundances produced
during BBN [39]. These observations are in very good agreement withPrecision

cosmology at the
MeV-scale

the standard ΛCDM model and with each other [39], implying that
any changes to ΛCDM at temperatures below a few MeV can have
observational consequences and need to be checked for consistency with
available CMB and BBN data [12,74,227,228,230,231,251].

For a PT to produce a strong GW signal a sizable amount of vacuum
energy needs to be released in the transition, most of which is subse-
quently converted into DS energy density as only a small fraction ends
up in the GWB. This additional energy density could change the well-
tested cosmic expansion history, possibly even long after the transition
itself. To understand whether PTAs may observe the remnants of such aBBN and CMB

constraints are
most important

PT we therefore need to include a cosmological likelihood Lcosmo when
analyzing the PTA data. Specifically, we include information from the
primordial light element abundances and CMB anisotropies into our
analysis as described below.3

5.4.1 Stable dark sectors

If the entire DS energy density after the PT is contained in light degrees
of freedom, this contributes an additional radiation energy density that
can be described by a (potentially large) additional contribution ∆Neff
to the effective number of neutrinos Neff = NSM

eff +∆Neff, where NSM
eff =

3 Note that constraints from µ-distortions of the CMB photon spectrum [252] and
curvature perturbations [253] are less relevant as they quickly lose sensitivity for
transition temperatures above the MeV-scale. PBH formation due to first-order phase
transitions [35,254,255] could offer novel probes, but turns out to be irrelevant for
the phase transition strengths of interest in this analysis.
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3.044 [61] is the SM prediction for ΛCDM cosmology.4 The effective Stable DSs are
constrained through
∆Neff

number of neutrinos affects the predictions of BBN (see sec. 2.3.6) as
well as the CMB power spectrum and is constrained by observations to
Neff = 2.941 ± 0.143 [74]. This bound can be modeled by a Gaussian
likelihood LBBN+CMB(Neff), i.e.

Lcosmo(θDS) = LBBN+CMB(Neff = NSM
eff +∆Neff(θDS)) , (5.4)

enabling us to implement the cosmological constraints for the case of
a stable DS. The number of dofs in the DS does not have any relevant
impact on cosmological constraints as the available latent heat would
simply be distributed among the different species, leaving the total
injected energy density unchanged. (Taking into account the energy
density before the phase transition, a change in the number of dofs
can be absorbed in the temperature ratio ξd which we treat as a free
parameter in our scans anyway.) We therefore set gp

DS = 1 in our analysis.
For more details we refer to appendix 5.A.1.

5.4.2 Decaying dark sectors

If there are additional small inter-sector couplings—which happens very
naturally due to possible ‘portal’ couplings such as Higgs mixing for
scalars or kinetic mixing for dark photons—the energy density injected
into the DS will subsequently be transferred to the SM heat bath via Decaying DS

constraints depend
on the mediator’s
mass and lifetime

decays of DS particles. In this case cosmological constraints in general
depend on the lifetime, mass, and coupling structure of the decaying
particles. As a simple concrete example and for minimality, we consider
the DS after the PT to consist only of one bosonic dof ϕ decaying into
photons or electrons with a lifetime τϕ that we sample over. This is a
natural setup in the context of a potential PT at MeV temperatures,
as a light scalar dof with mass below the PT temperature is generally
expected to exist in that case and, e.g., constraints from Higgs mixing
would not be very severe.

Given that the NANOGrav data prefer an MeV-scale PT temperature,
also the mass of ϕ is expected to be of this order, mϕ ≃ MeV. In the
example of Higgs mixing very short lifetimes τϕ correspond to a sizable
Higgs mixing angle θ which is constrained by a number of laboratory τϕ ≲ 0.1 s

experiments to be θ ≲ 10−4 for small masses [159, 256]. Translating this
constraint for MeV-scale masses into the lifetime results in τϕ ≳ 10−2 s
whereas cosmological constraints roughly require τϕ ≲ 10−1 s, so that
some allowed region remains even in this scenario.5 As already indicated,

4 The assumption of a radiation-dominated DS is conservative in the sense that
constraints only become tighter if the energy density instead starts to redshift as
matter at some time after the phase transition. We also note that the contribution to
∆Neff from the GWs themselves, for a GWB with peak amplitude h2Ωpeak

GW ≲ 10−9

as required to explain the NANOGrav signal, is typically less than ∆Neff ≃ 10−3,
cf. ref. [37], and therefore irrelevant in the discussion of cosmological constraints.

5 Note that the case of a Higgs-mixed scalar is particularly constrained because of
the Yukawa-suppressed couplings to electrons, implying a rather long lifetime. If the
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the resulting cosmological constraints largely depend on the lifetime
τϕ of the particle, with only a very mild dependence on the mass as
long as the energy density in ϕ is not very suppressed. MeV and smaller
masses, on the other hand, generally lead to strong constraints for
arbitrarily short lifetimes τϕ due to thermalization by inverse decays. To
simplify our analysis we therefore fix the mass of the decaying particle
to mϕ = 5MeV, noting that the results will be very similar for other
choices of the mass in the MeV-range. To implement the cosmological
constraints, we use a likelihood LBBN+CMB incorporating the results
from refs. [232,251] (see appendix 5.A.2 for details).

5.5 results

We now present the results of our data analysis, based on global fits
of the model setups described in the previous sections. We begin by
examining PTs in stable DSs (section 5.5.1), followed by a discussion of a
decaying DS that thermalizes with the visible sector some time after the
PT (section 5.5.2). Finally, we compare with the SMBHB explanation
of the signal in terms of the respective Bayes factors (section 5.5.3) and
explore how later PTA data sets impact the DSPT interpretation.

5.5.1 Stable dark sector phase transitions

Let us first focus on GWs that are mainly emitted as a consequence of
the bulk motion of the DS plasma after the PT, i.e. a GWB dominantly
produced through sound waves. The full set of model parameters toFirst: Stable DS,

GWB from sound
waves

describe such a scenario for a stable DSPT, as introduced in section 5.2,
is given by

{α, β/H, Tp, ξp} . (5.5)

We sample over these input parameters with flat log priors, as well as
over 90 nuisance parameters θPSR for the pulsar-intrinsic red noise, based
on the combined PTA and cosmological likelihood given in eq. (5.3). For
a full overview over parameters and prior ranges, see also table 5.1 in
appendix 5.C.6.

We show the resulting corner plot of posterior distributions for the four
model parameters in fig. 5.3, to which we add the derived parameter
∆Neff. Allowing for inverse time scales down to β/H > 1 (light blue)
formally results in a good global fit of the pulsar timing residuals,
as indicated by the compact ellipsoid-like posterior regions where theA seemingly good

fit for β/H > 1 NANOGrav signal is explained by the GWB. Such small values of the
transition rate would however suppress the GW spectrum w.r.t. the

relevant state would be e.g. a dark photon, the allowed range of lifetimes would be
significantly larger.
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NG12.5, sound waves, stable dark sector, β/H > 1

NG12.5, sound waves, stable dark sector, β/H > 10

β/H < 3: Super-Hubble bubbles

β/H < 10: GWB is overestimated
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Figure 5.3: Comparison of the triangle plots for two MCMC chains with differ-
ent priors on β/H, assuming a stable DS and a GWB generated
through sound waves. The shaded regions mark 1σ and 2σ contours,
respectively. Regions with β/H < 3 and β/H < 10, in which the
phase transition cannot complete and the GW signal is overesti-
mated respectively, are indicated with gray shadings.

commonly adopted parameterization, cf. the discussion in section 5.2,
and, for β/H ≲ 3, likely not even lead to successful percolation.

We therefore also show, in the same figure, the results of a fit with a more
restrictive prior of β/H > 10 (orange). In this case, the best-fit region
moves to somewhat larger values of α, but it also becomes apparent that
there is no longer a single preferred region in the model parameter space: For β/H > 10: No

single preferred
best fit region

Instead, the combined data now shows a similar preference for a very
weak DSPT-induced GW signal with correspondingly weak cosmological
constraints, where the NANOGrav signal is not explained by the GWB
but absorbed in the pulsar-intrinsic noise amplitudes Aa. This indicates
that also the best-fit region no longer corresponds to an equally plausible
interpretation of the combined data set.

The reason is that cosmology adds a constraint on ∆Neff which effectively
translates into a constraint on the PT strength α. In terms of fitting
the NANOGrav signal, the required lower value of α can partially be
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compensated by a lower value of β/H (see also fig. 5.2). And indeed,
comparing the posterior distributions for β/H in fig. 5.3, we can see
that β/H always sticks closely to the lower prior boundary—which is
qualitatively different from the analysis without cosmological constraints,
cf. fig. 5.1, where inverse timescales of β/H = O(10− 100) are favored.
Increasing the lower prior bound on β/H therefore directly induces a
shift towards larger α. At the same time, a larger inverse timescale β/H
also means smaller bubbles at the time of their collision, and henceLow ∆Neff requires

low α, β/H and ξp a larger peak frequency in the spectrum (see again fig. 5.2). This is
compensated for by a lower percolation temperature Tp, which by itself
would lead to smaller peak frequencies. Finally, we can identify in fig. 5.3
an upper bound on the initial temperature ratio, which again is a direct
consequence of the constraint on ∆Neff. For ξp ≳ 0.7, in particular,
eq. (5.11) would imply a violation of this constraint already for a single
DS species that is not non-relativistic before the transition [25].

Overall, these effects push the posterior for ∆Neff towards higher values.
Since this is strongly punished by the cosmological part of the likelihood,
however, that also explains the already mentioned appearance of a
second preferred parameter region, characterized by a weak DSPT that
corresponds to ∆Neff ≃ 0 (at the price of an unobservably small GW
signal). We confirmed that this region of parameter space is indeedFor ∆Neff ≃ 0,

signal is absorbed
by {Aa, γa}

explained by fine-tuning the pulsar-intrinsic red noise parameters, rather
than by a GWB, by directly comparing the marginalized posteriors of
the nuisance parameters θPSR between the two chains depicted in light
blue and orange. Let us stress that this parameter range would have
been impossible to reliably infer with simpler statistical methods, i.e. by
re-fitting a power-law common red spectrum described by (A, γ) or by
using the free-spectrum “violins” (see the discussion in section 5.3).

From the above discussion, one would expect the Bayes factor between
the DSPT and the no-CURN hypothesis to decrease when increasing
the lower prior bound on β/H, as higher and higher values of ∆Neff
are needed to explain the combined data. We confirm this expectation
explicitly in fig. 5.4. Here, each of the colored dots corresponds to aEvidence for

DSPT depends on
β/H prior

separate MCMC chain that was employed to determine the Bayes factor
between the two models by using the product space method explained
in appendix 5.C.1. The corresponding lines serve as a cross-check for the
prior dependence of the Bayes factors, see appendix 5.C.4 for further
details. Yellow dots and lines refer to the case of a stable DSPT where
the GWB production is dominated by sound waves; this corresponds to
the same model as shown in fig. 5.3.

For comparison, we also show the case of a GWB that is mostly due
to bubble wall collisions (red). Just from the point of view of the
resulting spectrum, cf. fig. 5.2, one might expect that this could be
a viable alternative. Compared to sound waves, however, bubble wallBubble wall

collisions suffer
from additional

β/H suppression

spectra receive an additional parametric suppression of h2Ωpeak
GW by a

factor of (β/H)−1. This induces the need for a larger α and hence
an even stronger constraint on ∆Neff, making the GWB hypothesis
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Figure 5.4: Bayes factor estimates of various DSPT models with respect to the
no common red noise-hypothesis. Filled colored dots correspond
to actually performed full model comparisons, while lines in the
corresponding colors are derived from an a posteriori reduction
of the prior range of chains with minimal β/H of 1 (for details,
see appendix 5.C.4). We also indicate how to translate the Bayes
factor to Jeffrey’s scale (colored shadings) as well as Z-scores from
frequentist statistics (right y-axis, cf. appendix 5.C.3). In the gray
shaded area (β/H < 3), a constant nucleation rate is not sufficient
to drive percolation.

worse than the no-CURN assumption for β/H ≳ 5. To further illustrate
these considerations, we refer to fig. 5.6 in appendix 5.B, showing the
posterior distribution of the bubble wall spectra for different prior choices
on β/H. Note also that neither fig. 5.3 nor fig. 5.4 includes the expected
suppression in the GWB spectra for β/H ≲ 10, which would further
decrease our Bayes factor estimates.

Overall we therefore come to the conclusion that a stable DSPT can
hardly compete with the alternative SMBHB explanation of the PTA
timing residuals, once one takes into account cosmological constraints Stable DSPTs are

in strong tension
with BBN and
CMB

from BBN and CMB. For β/H > 10, in particular, the Bayes factor
between a DSPT explanation and the no-CURN hypothesis is only
O(10) even in the favorable case of sound wave-induced GWBs—much
smaller than the factor of ∼ 104.5 that is claimed for a GWB from
SMBHBs [238].

5.5.2 Decaying dark sector phase transitions

We next consider a DS that couples sufficiently strongly to ordinary
matter such that it can decay after the PT. A decay long before BBN,
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NG12.5, sound waves, decaying dark sector
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Figure 5.5: Posterior distributions of model parameters in the decaying dark
sector scenario.

in particular, is not subject to the cosmological constraints that played
such a decisive role for the case of a stable DSPT. On the other hand, a
PT happening too early would produce a GWB at too high frequencies
to be compatible with the NANOGrav signal. It is therefore a non-trivialCan the DS decay

before BBN? question whether any relevant parameter space remains where PTA and
cosmological data are indeed compatible. For concreteness, we assume
the decay of a dark Higgs boson as detailed in section 5.4 that decays
with a lifetime τϕ, such that our model parameters read

{α, β/H, Tp, ξp, τϕ} . (5.6)

For the dark Higgs lifetime we adopt a log prior ranging from 10−6 s
to 102 s; the remaining parameters we treat as in the previous section
(with β/H > 1).

We show the resulting triangle plot for this model in fig. 5.5. In a nutshell,
we find that the GW spectrum observed by NANOGrav can be explainedThe decay requires

τϕ ≲ 0.1 s and
Tp ≳ 2MeV

as long as τϕ ≲ 0.1 s and Tp ≳ 2MeV. Larger lifetimes, corresponding
to temperatures smaller than 2MeV, are strongly constrained as the
decays occur after the onset of BBN or neutrino decoupling. Such decays
change the time-temperature relation of the SM heat bath and alter the
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ratio of the neutrino and photon temperatures, leading to a negative
contribution to ∆Neff. If the percolation temperature Tp drops to values
close to the temperature of neutrino decoupling, strong constraints arise
independent of the lifetime τϕ. Note that we implemented the results
from ref. [232] for simplicity as a sharp cut-off enforcing Tp > 2MeV in
our likelihood, cf. appendix 5.A.2. Adopting a more accurate likelihood
would result in a smoother transition of the posterior in the range
Tp ≈ 1− 2MeV, the main effect being a slight increase of the maximal
possible value of β/H.

Compared to our analysis of stable DSPTs, the posterior for the inverse
timescale β/H is relatively flat up to β/H ∼ 30, implying a very limited
prior dependence. The underlying reason for this is the possibility of
dumping the liberated energy density into the SM photon bath before
the neutrino decoupling at around 2MeV, thereby evading cosmological The DSPT cannot

be arbitrarily
strong

constraints and hence opening up for large PT strengths α ≳ 0.1 to fit
the GW signal even for β/H ≳ 10. This however only works up to the
point when β/H becomes so large that its effect on the peak frequency
can no longer be compensated for by a correspondingly lower percolation
temperature, cf. fig. 5.2.

In fig. 5.4 we also indicate the Bayes factor for the decaying DSPT
scenario (blue). As anticipated, the prior dependence on β/H is much
less severe than in the scenarios discussed previously. In particular, “Decisive” evidence

for decaying DSPTthis shows that a GWB from a decaying DSPT is a viable explanation
of the observed signal even for β/H > 10. Quantitatively, the model
evidence is a factor of ∼ 200 larger than that of the no-CURN hypothesis,
corresponding to 2.5σ or a “decisive” evidence on Jeffrey’s scale.

5.5.3 Comparison with SMBHBs and later data sets

Let us next address in more detail the question of how a DSPT inter-
pretation of the signal compares to alternative GWB hypotheses, in
particular the leading astrophysical explanation of an SMBHB-induced
GWB, and how future data will help to further distinguish these two.

We start by pointing out that the DSPT spectra actually fit the GW
spectrum in the NANOGrav data slightly better than the SMBHB spec- A better fit despite

smaller Bayes
factors

tra. Naively, this is already expected from fig. 5.2, and we demonstrate
this in more detail in appendix 5.C.5. Nevertheless the maximal Bayes
factor (with respect to no-CURN) that we find is only about 102.5, signif-
icantly smaller than the ∼ 104.5 typically quoted for SMBHBs [238]. We
checked explicitly that the reason is not connected to the goodness-of-fit,
but entirely due to prior volume effects: Bayesian statistics dutifully
renders the simple SMBHB explanation of the data more credible than
the apparently more complicated DSPT model.

However, it is important to remember that the amplitude ASMBHB of the
astrophysical signal is not necessarily a single fundamental parameter,
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as assumed in deriving a Bayes factor of 104.5. Instead, it is derived
from more complex astrophysical models, involving parameters such as
merger timescales, and the mass, redshift, and spatial distributions of the
SMBHBs. A full Bayesian analysis should thus also consider constraints
on these fundamental parameters, as e.g. done in ref. [216] withoutAn equal footing

for the SMBHB
and PT priors?

fitting the NANOGrav data. This would decrease the formal evidence
for the SMBHBs interpretation because (i) the prior volume increases
due to the intrinsic parameters that the amplitude depends on, and (ii)
astrophysical models predict amplitudes that are smaller than those
inferred from the NANOGrav data [216–218,257]. Analogously, of course,
the DSPT parameters α, β/H, Tp, ξp, and τϕ are in reality derived
quantities from a given SM extension whose independent parameters are
masses and couplings. Evaluating specific models where these underlying
parameters are known would be interesting and clearly deserves further
study, but is not the aim of our more model-independent analysis.

Shortly after our calculations were published [1], the NANOGrav col-
laboration updated their data set and announced strong evidence in
favor of the HD curve [102] during an internationally acclaimed press
conference (see chapter 3). While the Bayes factor supporting a GW
origin of the common red signal reported by this collaboration and other
PTAs significantly increased, the relative odds between the SMBHBsEvidence in favor

of the HD curve explanation and an alternative DSPT interpretation are expected to
remain mostly unchanged. As discussed in section 3, the PTA response
to a GWB factorizes into a pulsar correlation-dependent part, Γab (corre-
sponding to the HD curve), and a common red noise spectrum, which we
correctly anticipated to be due to a GWB. Since the specific form of Γab

only slightly affects the common red noise spectrum, the reconstructed
spectrum received only minor, though interesting, updates.

Intriguingly, the favored spectral amplitude (for a fixed slope of γSMBHB =
13/3) increased slightly in the new NANOGrav 15yr data set, from
A12.5yr

13/3 = 1.5 · 10−15 to A15yr
13/3 = 2.4 · 10−15. This suggests a slightly

worse fit with SMBHB models, which generally predict lower signal
amplitudes [7,149,238]. It is worth noting that the posterior distribution
of the signal in the (A, γ) plane not only shifted toward stronger signalsSlightly stronger

signals with
positive spectral

slope

but also toward weaker spectral tilts. In the 12.5yr data, the posterior
centered around γ12.5yr = 5.5+1.3

−1.7 (median with 90% credible interval),
corresponding to an almost scale-invariant power-law in the h2Ωgw(f)
parameterization (see fig. 5.2). However, in the 15yr data, the preferred
slope decreased to γ15yr = 3.2+0.6

−0.6. As a result, the spectral slope re-
mained distinct from the naively expected γSMBHB = 13/3 = 4.33 for a
GW-driven inspiral of SMBHBs, but interestingly, the relative sign of
the slope flipped. The preferred GWB spectrum now features a positive
slope h2Ωgw(f) ∝ f5−γ = f1.8±0.6 instead of a flat plateau shape, as
shown in fig. 2.8.

In the data analysis presented above, we found that our fit favors spectra
peaking around 3 nHz. This can be understood by considering the small
relative uncertainty in the first two Fourier modes of the 12.5yr data set,
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as shown in fig. 5.2. Given the new observational preference for a positive
spectral tilt in the NANOGrav 15yr data set—consistent with the other
PTA data sets announced on the same day [8, 9] and the latest IPTA New data sets

favor
Tp ≃ 100MeV

data release [257]—the peak of a DSPT signal is expected to shift toward
somewhat higher peak frequencies and amplitudes. Consequently, the
contours shown in the corner plots in figs. 5.1, 5.3 and 5.5 are expected
to shift toward higher percolation temperatures, around Tp ≃ 100MeV.
Preliminary calculations and a comparison with ref. [106] indeed support
this argument.

Higher temperatures generally face weaker cosmological constraints due
to their association with larger mass scales and faster particle decays,
which have a smaller impact on the primordial plasma during BBN and
recombination. Nonetheless, the arguments presented earlier still hold: Stable DSPTs are

still in tension.Cosmological constraints remain critical when studying stable DSPTs.
The relative amount of liberated vacuum energy retained in the dark
sector (parameterized as α, or equivalently as a contribution to ∆Neff,
see eq. (5.11)) is independent of temperature and can significantly alter
the primordial element abundances produced during BBN and shift the
peaks in the CMB anisotropy multi-pole spectrum, as demonstrated in
fig. 5.1.

In the case of a decaying DSPT, the increase in the GW signal’s peak
frequency allows for slightly higher (and thus less problematic) values of
β/H: A higher fpeak ∝ Tp×(β/H) (see eq. (4.33)) can be accommodated
not only by an increased Tp but also by smaller bubbles, which correspond
to larger β/H. These are viable only in the decaying DS scenario, as
they are accompanied by an increase in the transition strength α in
order to keep a sizable peak amplitude. These stronger transitions
would contribute to the tension with ∆Neff constraints in the stable
DS scenario, but can be circumvented by DS decays. As a result, the Decays still save

the fit.constraints on the stable DS interpretation are expected to remain robust
or get somewhat stronger (with some variation due to normalization
factors proportional to the number of SM dofs in eq. (5.11)). Meanwhile,
the relative evidence supporting a decaying DSPT is likely to increase
slightly, thanks to the broader range of viable transition temperatures
Tp and speeds β/H.

An interesting connection to recent developments in our understanding
of GW spectra from PTs emerges from the evidence supporting a modest
spectral slope of ∝ f1.8±0.6. In the sound shell model (see sec. 4.3.1) this
presence of a double-broken power-law spectrum with an intermediate
Ωgw(f) ∝ f plateau shape, rather than a distinct peak, is predicted [151,
258]. This flattening occurs due to several relevant length scales present The emergence of a

flattening GW
spectrum?

in the phase transition, particularly for slow bubble wall velocities. A
double-broken power-law could also hint at a PT generating the GWB
through thick bubble wall collisions [200, 206, 259]. In this thesis, we
assumed a single-broken power-law shape for the GW signal from PTs,
as shown in eq. (4.33) and fig. 5.2, due to the expected high bubble wall
velocities, vw → 1. It is conceivable that future PTA data sets could
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in fact reveal a distinct plateau, indicating interesting features in the
underlying PT dynamics. As long as the GW spectral shape remains
uncertain, particularly at frequencies above 10, nHz (see fig. 3.2), any
evidence supporting a more complex PT explanation is, however, largely
driven by prior assumptions [259].

The determination of whether PTAs detect a GWB emitted from inspi-
raling SMBHBs or if the signal is instead of cosmological origin depends
not only on accurately identifying the spectral shape but also on the
search for GWB anisotropies [260–262]. As detailed in section 2.4.6,
the amplitude of an astrophysical background is expected to correlateThe case of GWB

anisotropies strongly with the inhomogeneous matter distribution in the universe,
while a cosmological background is likely to be highly isotropic, similar
to the CMB. So far, no significant signs of anisotropy or discreteness
in the GWB have been observed [15, 263–265]. Additionally, the po-
larization of the GWB is anticipated to provide valuable information
once detected [266–272]. The challenge remains to determine how to
incorporate these additional sources of information into the global fit
framework presented here.

Finally, it is important to emphasize that not only the evidence for a
nHz GWB is likely to strengthen in the future [273]; the competing
cosmological constraints on PTs are also expected to improve. Upcoming
experiments like the Simons Observatory and CMB-S4 measurements,Future probes of

precision
cosmology

in combination with large-scale structure surveys, will be capable of
tightening the limits on ∆Neff by about an order of magnitude [274–
276]. This will increase the tension on the stable DS explanation we
have explored and further reduce the parameter space for a decaying
DSPT. Additionally, measurements of CMB spectral distortions with
PIXIE [277] will provide complementary constraints [252], which will
be relevant even in scenarios where a decaying DS avoids constraints
on ∆Neff. In fact, confirming spectral distortions in the CMB could
potentially offer supporting evidence for such a scenario. Therefore, it
will remain crucial to incorporate all relevant cosmological observables
and new PTA data to ultimately determine the most probable origin of
the observed GWB signal.

5.6 conclusions

We investigated the appealing possibility that the GW spectrum observed
by the NANOGrav collaboration in their 12.5yr data set [238] is due to
a DSPT just before the onset of BBN. For the first time, we performed
a global analysis on PTA data from a GWB including constraints from
BBN and the CMB anisotropies.

We found that a DS undergoing a PT can in principle explain the
measured signal with a goodness-of-fit that is comparable to (or even



5.6 conclusions 111

better than) that of the standard astrophysical explanation in terms of
a stochastic GWB from SMBHBs. However, if one accounts for

1. the changes in the early element abundances that the energy
density released during the PT would induce,

2. the impact on the CMB anisotropies trough a contribution to
∆Neff, and

3. possible issues for transitions with β/H < 10, connected to perco-
lation and an overestimation of the produced GWB,

the possibility of a stable DSPT no longer gives a good fit to all available
data. Fig. 5.1 provides an intuitive illustration of this tension, by directly The stable DSPT

explanation is in
tension

confronting the above constraints with the results of a naive DSPT
analysis of the NANOGrav data that ignores them. Fully including all
relevant constraints in a global fit, the available parameter space is
indeed significantly reduced, cf. fig. 5.3.

On the other hand, there is no intrinsic reason why a DS should be
stable on cosmological timescales. In particular, tiny interactions with
the visible sector (e.g. through small portal couplings [278]) could well
lead to a decay before neutrino decoupling at Tp ≳ 2MeV. We find that
such a decaying DSPT scenario remains a compelling alternative to the
more conventional SMBHB hypothesis for lifetimes τϕ ≲ 0.1 s, cf. fig. 5.5.
We arrived at this conclusion by further taking into account constraints Decaying DSPTs

are a compelling
alternative to
SMBHBs

on electromagnetic energy injection from decaying dark scalars [251]
and on the reheating of the photon bath after a PT [232]. Compared to
the no-GWB hypothesis, we find a Bayes factor that indicates a decisive
evidence for the DSPT interpretation even for a prior of β/H > 10
on the transition rate. The currently maximal value of this quantity
that is compatible with the data, β/H ≲ 50, still indicates the need
for a relatively slow transition; further model-dependent research will
be needed to investigate how this can be implemented in a given SM
extension.

We also studied the effect of prior choices on the absolute scale of
Bayes factors, finding that prior volume effects are highly relevant when
comparing SMBHB and DSPT explanations of the NANOGrav data.
The SMBHB interpretation, in particular, seemingly only requires one The need for an

equal footing of
priors

parameter to fit the signal, namely the amplitude A. We however argue
that A should rather be treated as a derived quantity that depends on
several intrinsic, independently measured astrophysical quantities [216].
This would reduce the difference between the Bayes factors above 104

for the SMBHB explanation [238] and the Bayes factors of O(102) that
we find for the decaying DSPT interpretation.

We remain excited about the pending third IPTA data release and Global fits will be
key to
disentangling
GWBs

searches for possible signs of anisotropy. While we do not expect a
definite answer concerning the origin of the signal within the coming
months, we are confident that our central results are robust also when
considering the latest NANOGrav 15yr data set. Further, we are opti-
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mistic that additional PTA data as well as complementary constraints
from cosmology [252] will help to disambiguate between different mod-
els in the future. With additional data it will be ever more crucial to
fully include complementary constraints such as from BBN and CMB
when assessing different signal models. In this chapter we have made a
first step in this direction, thereby contributing to moving the realm of
testable cosmology to pre-BBN times.



5.A details on the cosmological likelihood 113

5.a details on the cosmological likeli-
hood

In this appendix we provide details on the cosmological likelihoods
that we adopt in our analysis and discuss how to compute the relevant
quantities that enter, including a mapping to previously published
results.

5.a.1 Stable dark sector

For the case of a stable DSPT we conservatively assume that the en-
ergy density in the DS after the transition purely consists of radiation Reproducing the

∆Neff limits from
ref. [232]

(cf. footnote 4). We focus on transitions before the onset of BBN and
neutrino decoupling, such that the DS energy density can entirely by
described by a simple additional contribution ∆Neff to the effective num-
ber of neutrinos Neff. This assumption is validated a-posteriori by the
results of our MCMC chains, which indicate that the phase transition
indeed happens sufficiently early.

At the time of percolation, the DS energy density is thus given by

ρp
DS =

π2

30
gp
DS (ξp Tp)

4 = ρreh
DS −∆Veff , (5.7)

where the index reh (p) indicates a point in time immediately after
(before) the DS reheating and we assumed instantaneous reheating in
the second step. Since ∆θd/4 ≃ ∆Veff for sufficiently strong transitions,
we find

ρreh
DS
ρp
SM

(4.29)
= α+ (1 + α)

ρp
DS
ρp
SM

= α+ (1 + α)
gp
DS
gp
SM
ξ4p . (5.8)

The total radiation energy density can be quantified in terms of the
effective number of relativistic neutrino species,

Neff =
8

7

(
11

4

)4/3 ρDS + ρν
ργ

. (5.9)

Subtracting the SM contribution NSM
eff = 3.044 [61], we find the DS

contribution as

∆Neff =
8

7

(
11

4

)4/3 ρDS

ργ
(5.10)

≃ 4

7

(
11

4

)4/3(3.93

hp
SM

)4/3

gp
SM ×

[
α+ (1 + α)

gDS

gp
SM

(ξp)
4

]
,

(5.11)

where we used ρreh
DS = ρreh

SM, inserted the SM degrees of freedom today
and assumed the DS degrees of freedom to remain constant, gDS = gp

DS.
This reproduces eq. (1) from ref. [232].
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Observationally, Neff affects the predictions of BBN as well as the CMB
power spectra. Combining data sets from the Planck satellite withLcosmo for stable

DSPTs observations of the primordial abundances of deuterium and helium-4,
and marginalizing over the baryon-to-photon ratio η = nb/nγ , ref. [74]
finds Neff = 2.941±0.143. We approximate this by a Gaussian likelihood:

Lcosmo(α, ξp, Tp) =
1

N
√
2πσ2Neff

× exp

[
−
(
∆Neff(α, ξp, Tp) +NSM

eff − µNeff

)2
2σ2Neff

]
, (5.12)

where µNeff = 2.941, σNeff = 0.143, NSM
eff = 3.044, and the normalization

needed for the correct determination of Bayes factors is given by

N =
1√

2πσ2Neff

exp

[
−
(
NSM

eff − µNeff

)2
2σ2Neff

]
. (5.13)

We note that in the above construction we do not have to take into
account differences that are reported between one-sided (∆Neff ≥ 0) and
two-sided (∆Neff ∈ R) limits on additional radiation degrees of freedom,
since we directly use the likelihood in our calculations. In particular, one-
sided limits on ∆Neff simply result from an integration of the likelihood
starting from NSM

eff rather than smaller values (e.g. ref. [74]).

5.a.2 Decaying dark sector

Constraints from BBN and CMB on a decaying particle with MeV-scale
mass have been calculated in ref. [251] for a general setup. Here the initialMapping ref. [251]

to the decaying DS
scenario

conditions for ϕ, at some SM temperature Tcd = 10GeV,6 were taken
to be a Bose-Einstein distribution with temperature Td,cd = ξcd Tcd and
zero chemical potential, i.e.

f cdϕ (p) =

exp

√
p2 +m2

ϕ

ξcd Tcd

− 1

−1

, (5.14)

with corresponding number density ncdϕ =
∫ d3p

(2π)3
f cdϕ (p). To use the

results and constraints from ref. [251] we therefore need to map to this
scenario.

Sufficiently strong intra-sector couplings lead to a self-thermalisation
of the DS quickly after the phase transition. If these processes are ϕ-
number violating, the chemical potential of ϕ will generally vanish. The

6 The subscript cd refers to chemical decoupling, having a setup of thermal production
of dark matter by freeze-out (chemical decoupling) in a DS in mind.
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phase-space distribution function after the DS reheating can hence again
be described by a Bose-Einstein distribution function

f reh
ϕ (p) =

exp

√
p2 +m2

ϕ

ξreh Treh

− 1

−1

, (5.15)

with corresponding number and energy densities

nreh
ϕ =

∫
d3p

(2π)3
f reh
ϕ (p) , (5.16)

ρreh
ϕ =

∫
d3p

(2π)3

√
p2 +m2

ϕ f
reh
ϕ (p) . (5.17)

To compute the DS energy density we again assume instantaneous
reheating, cf. eq. (5.7), and compute

ρreh
ϕ = ρreh

DS
(5.8)
=

π2

30
gp
SM T 4

p

[
α+ (1 + α)

gp
DS
gp
SM
ξ4p

]
. (5.18)

For fixed mass and lifetime, cosmological constraints are mostly driven
by the comoving number density of a particle. We hence compute nreh

ϕ

from eq. (5.16), where we obtain ρreh
ϕ by numerically solving eq. (5.17)

for Treh = ξreh Tp. From this, we get

ncdϕ = nreh
ϕ

scdSM
srehSM

= nreh
ϕ

hcdSM
hreh

SM

(
Tcd
Treh

)3

, (5.19)

which we in turn can solve numerically for the initial temperature
ratio ξcd, from eq. (5.14), and thus map the case of a DSPT to the
case computed in ref. [251]. We comment below on the validity of this
mapping.

To construct a likelihood, we use the calculated primordial light element
abundances, their theoretical errors from nuclear rate uncertainties,
and Neff underlying figure 6 (left) from ref. [251]. These are compared
to the recommended values of the observed primordial light element
abundances of deuterium D/1H

obs
= (2.547 ± 0.025) × 10−5 and the

mass fraction of helium-4 Yobs
p = (2.45 ± 0.03) × 10−1 [39] as well as

Nobs
eff = 2.99±0.17 from CMB observations alone [12]. Noting that BBN On combining

BBN and CMB
observables

calculations strongly depend on the baryon-to-photon ratio η, and that
Neff is affected by the DS decays, we use the best-fit value of η for
given Neff from figure 26 (Planck TT, TE, EE+lowE+lensing+BAO) of
ref. [12]. Due to the strong η dependence of D/1H, in particular, we need
to propagate the uncertainty in the determination of η, and the total
observational error effectively becomes ∆η(D/

1H)obs = 0.035×10−5 [251].
The total cosmological likelihood is given by a product of Gaussian
likelihoods, including also the aforementioned constraint on Neff, with
total errors obtained by summing the observational and theoretical
errors in quadrature.
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In the calculations outlined above we started from eq. (5.18), crucially
assuming that the DS and the SM only thermalize after reheating,For small τϕ, the

dark sector
becomes visible

i.e. that (inverse) decays of ϕ only become relevant after reheating.
This holds as long as τϕ > treh, where treh is related to the Hubble
rate through H(Treh) ≃ 1/(2treh). The two sectors thus have equal
temperatures soon after reheating, ξreh = 1, but Tp is no longer equal
to Treh. We find Treh = Td,reh by solving

ρreh
SM + ρreh

ϕ = (1 + α)(ρp
SM + ρp

DS) (5.20)

for Treh with ξreh = 1 in eq. (5.15). Given Treh, ρreh
ϕ , and ξreh, we can then

find nreh
ϕ as before and map to the results of ref. [251] by using eq. (5.14).

This however still assumes that there is no change in the comoving
number density of ϕ, and the comoving SM entropy density, between
Tcd = 10GeV and Treh, i.e. that (inverse) decays can be neglected
before reheating. Strictly speaking, this assumption is not valid due
to thermalization around the time t ∼ τϕ < treh. However, successful
thermalization erases all knowledge of initial conditions, implying that
our mapping becomes inaccurate only if the thermalization itself has
observable consequences, i.e. if it occurs during BBN. In that case,
also the reheating process would have to occur during BBN, making itInclude results of

ref. [232] as hard
cutoffs

necessary to include, e.g., also the effect of (re)heating the SM. This was
studied in ref. [232], with the result that the phase transition strength
is constrained as α∗ ≳ 0.07 if Tp ≲ 2MeV for reheating into photons
(under the assumption of ξp = 0). To compare this to our case we note
that in ref. [232] the transition strength is defined by α∗ = ∆θd/(4ρ

p
SM)

such that ρreh
SM = (1 + α∗) ρ

p
SM and we need to map

α∗ = α+ (1 + α)
gp
DS
gp
SM
ξ4p −

ρreh
ϕ

ρp
SM

. (5.21)

For simplicity, we implement these results as a hard cut on α. Our totalLcosmo for
decaying DSPTs cosmological likelihood is thus given by

Lcosmo(τϕ, α, ξp, Tp)

=
1

N ×LYp × LD/1H × LNeff

×

1 for τϕ > treh

θ(max[0.07− α∗, Tp − 2MeV]) for τϕ < treh

, (5.22)

where the normalization is N = LYp×LD/1H×LNeff
for standard ΛCDM

cosmology with only the SM contributing to the energy density during
BBN.

The likelihood given above accurately describes the relevant cosmological
constraints on a decaying scalar in a quite model-independent way. We
however needed to make some assumptions along the way, either to
assure the numerical feasibility of our calculations or to keep the number
of parameters describing the decaying dark sector scenario low to allow
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for a straight-forward phenomenological interpretation of our results.
We stress that these assumptions generally do not affect our conclusions
that the NANOGrav signal can be explained well by a decaying DSPT
as long as the energy from the DS is injected into the SM before the
onset of BBN and neutrino decoupling (i.e. τϕ ≲ 0.1 s and Tp ≳ 2MeV).
For completeness, let us still discuss the effect of these assumptions in
some more detail.

A first simplification is the choice of the specific value of mϕ = 5MeV
for the mass, due to readily available data from ref. [251]. Generally, the
dependence on the mass is expected to be very mild. Only when the mass
is small enough (mϕ ≲ 2MeV) for the decaying particle to thermalize Small dependence

on mϕwith the SM heat bath as a relativistic particle for τϕ ≲ 0.1 s and act
as an additional relativistic dof, this changes abruptly and arbitrarily
small lifetimes can be constrained [251].

Next, we use results for decays into photons. The results of ref. [251] show
that decays into electron-positron pairs give very similar constraints for
mϕ > 2me. For smaller masses, these decays are kinematically forbidden
such that a corresponding coupling will, in fact, mostly lead to decays
into two photons. Constraints on the total lifetime thus become largely
identical to the case of tree-level decays into photons (whereas constraints
on couplings would become suppressed by loops and additional SM Non-

electromagnetic DS
decays

couplings). There are of course further interesting portals that lead to
a thermalization between the two sectors, e.g. the kinetic coupling of
a dark photon field with the SM photon. Such couplings are beyond
the scope of this chapter due to additional model-dependent constraints.
Further model-dependent complications, not changing the qualitative
picture, may arise in case the assumption of instantaneous reheating is
not justified (or if thermalization within the DS is not sufficiently fast,
due to smaller intra-sector couplings).

By redshifting the number density of the decaying particle as in eq. (5.19),
furthermore, we neglected a possible change in the comoving number
density due to decays and inverse decays between Tcd and Treh. While our
mapping to the results of ref. [232] redeems this shortcoming adequately,
a full model-dependent study should calculate the whole cosmological
evolution of the DS including all relevant energy transfers between
the DS and the SM. In this way, also the dilution factor D entering Dilution is

negligiblethe GWB spectrum would be calculated [4], which we simply set to
1. This assumption is valid as long as the decaying particle does not
become non-relativistic for an extended period of time before its decays.
We checked a-posteriori how large the dilution factor would be for the
regions favoued by NANOGrav data, cf. fig. 5.5, using the dilution

sub-package of TransitionListener from ref. [4]. We find that, within
the 1σ contour, D deviates by at most 2% from 1. The maximal dilution
factor within the 2σ contour is D ≈ 2. Hence, our choice of setting
D = 1 is not only conservative but also well justified in the relevant
parameter space.
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Finally, our assumption of a negligible chemical potential—valid for
efficient number-changing processes—might be violated in some setups.
In particular, if the decaying scalar is not completely relativistic after re-Number-changing

processes in the
DS can become

important

heating and the scalar self-couplings are low, number-changing processes
can cease to be relevant and a chemical potential can develop [279, 280].
Such a scenario would likely require a full numerical solution of the
respective Boltzmann equations and is therefore beyond the scope of
this chapter.

5.b posterior distribution of gwb spec-
tra

To further demonstrate the possible tension between cosmological con-
straints and the interpretation of the NANOGrav data in terms of a
DSPT, we illustrate the posterior distribution of GWB spectra for differ-
ent parameter scans in fig. 5.6.7 The orange curves show the distributionConstraints can

push the spectra
below the “violins”

of bubble wall collision spectra from a DSPT with β/H > 1. For bubble
wall collision spectra with β/H > 10 (yellow curves), the tension in the
data becomes apparent through the low signal amplitudes. The spectra
cannot explain the GW spectrum, as depicted by the red “violins”, due to
the strong constraints from ∆Neff. When considering instead a decaying
DS (violet), a PT with β/H > 10 can clearly still be consistent with
the measured signal.

This visualization also illustrates in a very transparent way that a mere
fit using the violins could never result in the spectra shown in yellow,
implying that this analysis method cannot be sufficient when including
cosmological constraints. As explained in section 5.3, the reason is that
the violins no longer contain information about the likelihood for very
small GWB spectra, where the signal is absorbed in the finely tuned
pulsar-intrinsic red noise parameters {Aa, γa}.

7 The GWB posterior distributions are illustrated using the mean and standard
deviation of 1000 spectra randomly drawn from their respective posterior distributions.
The shaded areas hence correspond to the 1σ preferred spectral amplitudes.
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Figure 5.6: Envelopes of posterior distributions (at 1σ) of GWB spectra for
parameter scans assuming bubble wall collision spectra from a
stable DSPT with β/H > 1 (orange) and β/H > 10 (yellow), as
well as for a decaying DS (violet spectra). The GW from SMBHBs
with ASMBHB = 1.53 × 10−15 [238] is depicted as a gray line for
comparison.

5.c details on the calculation of bayes
factors

5.c.1 The product space method

The Bayes factor between two models H1 and H0 is given by the evidence
ratio

B01 =
Z1

Z0
, (5.23)

where Zi is the evidence of model i. The calculation of Bayes factors
in this chapter relies on the product space method, which we briefly
review here for completeness [246–249]. In order to compare H0 and H1,
a hyper-model H is introduced whose parameter space is given by the
Cartesian product θH of the two sub-models’ parameters θ0 and θ1 as
well as an additional model index n that can formally run from −0.5
to +1.5. The key idea of this method is that the model index n can be
treated as an additional, continuous parameter that is sampled over as Extending the

model parameter
space with index n

any other parameter in an MCMC chain (while sampling over discrete
parameters is technically more challenging). Whenever the hyper-model
is evaluated, the underlying algorithm still simply casts the model index
to either 0 or 1, corresponding to one of the two sub-models. For a given
model index n, the hyper-model parameter space is partitioned in an
active part, which is used to evaluate the respective likelihood of the
sub-model, and an inactive part. The posterior odds ratio P01 is then the
relative amount of chain entries in model 1 compared to model 0, from
which the Bayes factor B01 between the two models can be deduced.
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To demonstrate in some more detail how this procedure can be used
to calculate a Bayes factor, consider the posterior probability for the
model index n

p(n|data,H) =

∫
dθH p(θH, n|data,H)

=
1

ZH

∫
dθH p(data|θH, n,H) p(θH, n|H) . (5.24)

Here the first equality states that the posterior for n can be obtained
by marginalizing the posterior for n and θH over the hyper-model
parameters. The second equality follows from Bayes’ theorem, where
ZH is the hyper-model evidence, the first term in the integrand is the
likelihood and the second one is the prior for θH and n. The hyper-
model evidence is unknown and difficult to obtain, but of no further
importance, as we are interested in the posterior odds ratio P01 between
the two models. For a fixed n we can factorize

p(θH, n|H) = p(θn|Hn) p(θn|Hn) p(n|H) . (5.25)

This factorization of the prior makes the aforementioned distinction
between active (first factor) and inactive (second factor, where n̄ refers to
all parameters not contained in model n) parameters explicit, which are
not correlated with each other as the sub-models are distinct. The lastThe posterior odds

ratio for model 0
vs. model 1

factor is an overall, subjective prior for the respective sub-model. The
two last factors do not depend on the active parameters θn. Inserting
these expressions into the definition for the posterior odds ratio for the
model index n, we get

P01 ≡
p(n = 1|data,H)

p(n = 0|data,H)

=
ZH
ZH

∫
dθH p(data|θH, n = 1,H) p(θH, n = 1|H)∫
dθH p(data|θH, n = 0,H) p(θH, n = 0|H)

=
p(n = 1|H)

p(n = 0|H)

∫
dθ1 p(data|θ1,H1) p(θ1|H1)∫
dθ0 p(data|θ0,H0) p(θ0|H0)

∫
dθ1 p(θ1|H1)∫
dθ0 p(θ0|H0)

=
p(n = 1|H)

p(n = 0|H)︸ ︷︷ ︸
≡Π01

× Z1

Z0︸︷︷︸
≡B01

. (5.26)

In the last step we used that the inactive parameters, denoted by a bar,
do not contribute to the sub-model evidence Zn. A marginalization over
their priors therefore gives one for both sub-models and the last factor
in eq. (5.26) equals one. As P01 is just the ratio of the number of chain
entries after the burn-in period of sub-model 1 compared to sub-model 0,
and the model weight ratio Π01 can be set as a model prior ratio whenThe Bayes factor

between models starting the MCMC chain, the Bayes factor is obtained by multiplying
the posterior odds ratio with the inverse model weight ratio,

B01 = P01 ×Π−1
01 . (5.27)
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5.c.2 Uncertainties of the computed Bayes factors

Our goal is to calculate the Bayes factor as accurately as possible. This
can be achieved when the posterior odds ratio P01 is close to one, i.e. if
the hyper-model scan spends about the same amount of time in the
two sub-chains. We therefore set the model weight ratio Π01 to the
inverse of the expected Bayes factor and iterate over different weight Most accurate

results for Π01 → 1ratios until the posterior odds ratio is close to one. In practice, this
iterative procedure is still an intricate problem due to long runtimes.
When the two models that are compared favor rather different regions
of the available pulsar-intrinsic red noise parameter space, jumping from
one sub-model to the other is initially unlikely. Hence, the burn-in period
is long and uncertainties in the computed Bayes factors increase.

Even though our main aim is to calculate Bayes factors for different
DSPT scenarios compared to the no-CURN hypothesis, it is faster and
more reliable to first compare a given DSPT scenario with the SMBHB
hypothesis as given in eq. (5.2). This speeds up the burn-in phase by an
O(10) factor, and results in a more precise computation of the Bayes Speeding up the

burn-infactor because the posterior distributions for the pulsar-intrinsic red
noise parameters {Aa, γa} are very similar between these two scenarios.
As the Bayes factor between SMBHB and no-CURN hypotheses is
known, log10 BSMBHB/no-CURN = 4.5(9) [238], and since Bayes factors
are multiplicative, B02 = B01 × B12, we can then simply rescale our
results comparing to SMBHB to a Bayes factor that compares to the
no-CURN hypothesis. Still, even with an informed choice of Π01 and
using the method outlined above, the chains take several days before
the Bayes factor converges. A publicly available implementation of the
described pilot run in ref. [248] to speed up the calculation of Bayes
factors would therefore be highly appreciated.

Note, however, that the method of first comparing to the SMBHB
hypothesis does not work if cosmological constraints do not allow a
significant GWB in a DSPT model, like for a stable DS with a strong
lower bound on β/H. Here, the DSPT models favor similar regions in
pulsar-intrinsic red noise parameter space as in the case of the no-CURN Larger

uncertainties for
weak signals

hypothesis and a direct comparison would be more advantageous. The
Bayes factors that we calculate in these cases therefore have larger
uncertainties.

Computing Bayes factors inherently involves statistical uncertainties,
particularly due to the finite length of the underlying chains. We ensured
that this uncertainty is well-managed by calculating the Bayes factor
as a function of the number of drawn samples. Using 5× 106 samples
from the hyper-model (including both sub-models) and conservatively Statistical

uncertainties are
under control

discarding the first 25% due to burn-in, the Bayes factors all converged
to a relative uncertainty of a factor of up to ∼ 2. The convergence rate
however depends sensitively on the precise value of the model weights
Π01 as mentioned above. We therefore made sure that the number of
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samples of both models differed by no more than O(10%), which requires
to (iteratively) find the model weights Π01 up to one decimal place.

The continuous lines in fig. 5.4, depicting the Bayes factor expected prior
dependencies, are further prone to uncertainties due to the reduction of
points after adapting the prior, cf. appendix 5.C.4. This is particularly
relevant when this reduction is large, i.e. when the Bayes factor is reduced
by a significant amount, e.g. for a GWB from bubble wall collisions and
a large lower boundary for β/H. Taken together, these uncertainties are
the reason for the differences compared to the individually calculated
Bayes factors for a given prior choice (solid dots).

5.c.3 Relating Bayes factors to p-values and Z-scores

Bayes factors can be expressed in terms of a “Z-score” to describe the
(im)probability of the null hypothesis [181,281], more commonly known
as the “number of sigmas” with which some measured quantity deviates
from its expectation value. The probability of the null hypothesis can“How many σ is

B = 103?” be interpreted as p(0|data) = 1 − p(1|data) in a frequentist’s manner,
if one asserts that there is no other possible model to explain the data.
If one further interprets the posterior odds ratio to be the ratio of
these probabilities P01 = p(1|data)/p(0|data), one obtains p(0|data) =
1/(1 + P01). This can be interpreted as a p-value, i.e. the probability to
measure data as extreme as the one observed if the null hypothesis were
indeed correct. Assuming equal prior probabilities for the two models
under comparison, i.e. Π01 = 1, the p-value reads p = 1/(1+B01), which
formally corresponds to P01 = B01. We convert the obtained p-value to
a Z-score using a one-tailed Gaussian,

Z = Φ−1(1− p) = Φ−1

(
1

1 + 1/B01

)
, (5.28)

where Φ−1 is the inverse of the cumulative density function of the stan-
dard normal distribution with zero mean and unit standard deviation.

For Bayes factors B01 below 1 we replace B01 by its inverse, in order to
express the tension between data sets if the null hypothesis is a better
explanation for the observed data than a given, more complicated model.
In that case the interpretation of Z is related to the probability of
obtaining a signal as low as observed if the signal model were indeed
correct.

5.c.4 Influence of the prior choice on the Bayes factor

We now want to investigate the effect of a change in prior π(θ) → π̃(θ)
on the Bayes factor B01 → B01̃ (in this section, we denote for simplicityThe Bayes factor

correction R the model parameters of model 1 by θ). Keeping the likelihood and its
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normalization as well as the number of model parameters unchanged,
the Bayes factors differs by a factor

R ≡ B01̃

B01
=

Z1̃

Z0
· Z0

Z1
=

∫
dθL(θ) π̃(θ)∫
dθL(θ)π(θ) . (5.29)

Flat, proper priors (as assumed throughout this thesis) take a very
simple form satisfying

1 =

∫
dθ π(θ) =

1

Vπ

∫
Vπ

dθ and 1 =

∫
dθ π̃(θ) =

1

Vπ̃

∫
Vπ̃

dθ ,

(5.30)

where Vπ is the prior volume. In this case, the Bayes factor ratio simplifies
to

R =
Vπ
Vπ̃

∫
Vπ̃

dθL(θ)∫
Vπ

dθL(θ) . (5.31)

The effect of changing the range of a flat prior can thus be understood
intuitively: Increasing the prior into a region where the likelihood is
negligible comes with the cost of increased prior volume, while the
posterior integral is largely unaffected. If the likelihood were instead
globally flat, an increase in prior volume would have no effect on the
Bayes factor, as the increase in the posterior would just be compensated R compares the

posterior-to-prior
volume ratio
change for two
prior choices

by the increased prior volume. This simply reflects the well-known
feature of Bayesian statistics to disfavor unnecessary model complexity.
In other words, the cost of introducing a new parameter depends on
the coverage of the prior volume with the posterior. If the posterior of
this parameter is flat, it can be introduced without changing the Bayes
factor. If it however needs to be fine-tuned to fit the data, i.e. if its
posterior is only a thin peak, the coverage of the prior volume is low,
reducing the Bayes factor.

The above considerations allow us to reduce the prior ranges after having
computed a Bayes factor for some prior ranges that we initially set too
wide, without the need to start a new MCMC chain. This is possible For flat priors, R

can be computed
easily

as the chain entries are distributed following the model likelihood L(θ)
(being proportional to the posterior for a flat prior). The ratio of integrals
in eq. (5.31) thus reduces to a ratio of chain entries, thereby changing
the Bayes factor as

R→ Vπ
Vπ̃

Nπ̃

Nπ
, (5.32)

where Nπ̃ and Nπ are the number of chain entries enclosed within
the prior volumes Vπ̃ and Vπ respectively. Note that this “a-posteriori”
change of the priors is not more than a tool to quickly estimate the
effect of slightly reducing of the prior volume. As soon as one cuts
away a region of parameter space that was initially well-covered by the
prior, the above approximation comes with an increased statistical error
due to a potentially low number of samples Nπ̃. This can for instance
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Figure 5.7: Bayes factor dependence on the ASMBHB prior range for a SMBHB
signal when increasing the lower boundary (green line) and lowering
the upper boundary (red line). The posterior distribution of the
SMBHB GWB spectral amplitude ASMBHB is shown in yellow.

be seen by looking at the red line in fig. 5.4. It should also be noted
that the uncertainty of this approximation does not scale with 1/

√
Nπ̃

due to the immanent properties of importance sampling which were
required to evaluate the ratio of posterior integrals in the first place. A
considerable reduction of the prior therefore comes with a significant
error, in practice still requiring the computation of a full new MCMC
chain with the updated prior ranges.

The effect of changing the prior range is also illustrated in fig. 5.7, where
we show the Bayes factor ratio for SMBHBs with different choices of
lower and upper prior boundaries on the amplitude ASMBHB. As the
posterior for the amplitude peaks between 10−15 and 10−14.5, the lower
boundary of 10−18 on the log prior could be doubted to be a good choice,Evidence for

SMBHB can grow
by a factor four

cf. ref. [216]. If one instead chose the lower boundary to lie at 10−15, a
factor four increase in the SMBHB’s model evidence would be expected.
Only lowering the upper prior boundary from 10−14 down to 10−14.5,
on the other hand, would barely change the Bayes factor as this cuts
away only a tiny amount of the prior parameter space that is favored
by the posterior distribution.

5.c.5 Influence of priors on the credibility of a DSPT

Interpreting the results of Bayesian statistics can be challenging given
that posteriors and therefore also model evidences and Bayes factors
are prior-dependent (even though this of course makes sense in the
Bayesian framework, where prior beliefs should be updated when taking
into account measured data). Not the least to assess the robustness
of our main findings we therefore want to investigate the influence of
prior choices on the Bayes factors. Concretely, let us get back to the
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main question brought up in section 5.5.3: does the discrepancy between
the Bayes factors for a decaying DSPT and the SMBHB interpretation,
cf. fig. 5.4, have anything to do with the goodness-of-fit of the two
explanations – or is it completely dominated by prior-volume effects?

In order to answer this question, we used a twofold approach: First
we identified the region of parameter space that results in the highest
posterior probabilities. Then we started two chains, one where all priors
were constrained to only cover the best-fit regions8 and a second one
in which we fixed all model parameters to their best-fit values9 except
for α, for which we adopted a log prior in the range

[
10−3, 101

]
. In An equal footing

for model priorsdoing so the prior in the second approach spans over four orders of
magnitude, just as the prior for ASMBHB ∈

[
10−18, 10−14

]
, which allows

for a comparison of the two models on a similar footing.

In the first analysis we obtained a Bayes factor of ∼ 5 between the decay-
ing DSPT and SMBHB interpretation in favor of the DSPT hypothesis.
The second analysis found a Bayes factor of ∼ 1.4, again in (very slight)
favor of the decaying DSPT interpretation. We checked explicitly that
this matches the expected Bayes factors from an “a-posteriori” prior DSPTs can fit the

data slightly better
than SMBHBs

change as described in appendix 5.C.4. Both Bayes factors are also
consistent with each other, since the one of the second analysis could be
enhanced by a factor of 4 if one decreased the prior range to one decade,
α ∈

[
10−2, 10−1

]
, confirming the ∼ 5 Bayes factor of the first analysis.

To make this a fair comparison it should however be noted that also
the evidence of the SMBHB hypothesis can be boosted by a relative
factor of 4 by decreasing the prior range of A from

[
10−18, 10−14

]
to[

10−15, 10−14
]
, cf. fig. 5.7 in appendix 5.C.4.

We therefore conclude that a GWB with a broken power-law spectrum
with fixed slopes Ωsw(f) ∝ f3 and Ωsw(f) ∝ f−4 for low and high
frequencies respectively, can in principle fit the common red spectrum Prior choices result

in the difference
between B = 104.5

and B = O(200)

slightly better than a featureless single power-law with spectral index
γSMBHB = 13/3. As discussed further in section 5.5.3, the origin of the
discrepancy between the highest Bayes factors depicted in fig. 5.4 and
the reference value of ∼ 104.5 is thus indeed due to prior volume effects.

8 We chose the following log prior ranges in this case: α ∈ [0.02, 0.04], β/H ∈ [1, 3],
Tp/MeV ∈ [10, 100], ξp ∈ [0.01, 0.1], τϕ/s ∈ [0.01, 0.1].

9 Specifically, we chose β/H = 100.3 = 2, Tp = 10−1.6 GeV = 25MeV, ξp = 0.01,
τ = 10ms. These values were chosen somewhat arbitrarily and are not the result
of a precise maximization of the posterior probability. It is thus conceivable that a
slightly better fit to the common red spectrum could be obtained by fine-tuning the
parameter points.
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5.c.6 Priors for the Bayesian model comparison
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Table 5.1: Table showing the model parameters together with their respective
prior ranges.



6 HUNT ING W IMPS W I TH L I SA

This chapter is based on the following publication:

[2] T. Bringmann, T. E. Gonzalo, F. Kahlhoefer, J. Matuszak,
and C. Tasillo, Hunting WIMPs with LISA: correlating dark
matter and gravitational wave signals , JCAP 05 (2024) 065,
[2311.06346]

Snap back to reality
Ope, there goes gravity

— Eminem

6.1 introduction

Dark matter (DM) is known to be the dominant form of matter in
the universe, but it has so far evaded any attempt of detection in the
laboratory or by other non-gravitational means [39]. These null results
have cast doubt on the so-called WIMP miracle, where DM is produced
from the thermal bath of SM particles in the early universe, and which
for a long time has been used to motivate sizable couplings between DM
particles and the SM. Indeed, it has been shown that thermal freeze-out
may happen entirely within an extended DS, such that the observed
DM relic abundance ΩDMh

2 ≃ 0.12 [12] can be reproduced without DM could have
frozen out straight
from a DS

the need for any sizable couplings between the dark and the visible
sector [224]. These so-called secluded DM models pose a great challenge
for laboratory searches due to their apparent lack of testable predictions.

At the same time, GW observatories have opened a completely new
window into the universe, making it possible to observe objects and
phenomena that affect visible matter only through gravity. The proposed
LISA mission [282] will extend this window to the mHz frequency range,
allowing in particular for the observation of a stochastic GWB that would LISA will probe

electroweak
temperatures

be connected to a strong FOPT close to the electroweak scale [11,27,178],
see fig. 2.8. LISA therefore raises new hopes to detect DSs that are
otherwise unobservable.

Over the past few years, FOPTs in DSs have been studied in great
detail [1, 4, 25, 26, 283], and various correlations between GW signals
and the phenomenology of DM have been explored [186,254,255,284–

127
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293]. The conclusion of these studies is that it is difficult to robustly
predict the expected amplitude of the GW signal for a given DM model,
because strong PTs often only happen in special regions of parameterThere’s a

correlation between
ΩDM and fpeak

since...

space. In other words, it appears generally challenging to identify a
strong correlation between the GW amplitude and the DM abundance.
In this chapter, we instead focus on the peak frequency of the GW
signal and show that it can be tightly correlated with the predicted
DM relic abundance. Intriguingly, when imposing the observed value
of ΩDMh

2 = 0.12 and focusing on GW signals strong enough to be
potentially observable, we predict a GW peak frequency that falls right
into the most sensitive range of LISA.

Before describing our analysis in detail, let us provide a rough sketch of
the argument. We consider a DS comprised of a fermionic DM candidate
χ charged under a new U(1)′ gauge group that is spontaneously broken
by the vev vϕ of a new dark Higgs field. It is well known that strong PTs
can occur in this model for a sufficiently large gauge coupling [294,295].
All newly introduced particles are massless before symmetry breaking
and acquire a mass proportional to vϕ afterwards. The dark gauge
boson A′ (a.k.a. dark photon) and the dark Higgs boson ϕ are generally
unstable against decays into SM particles, but χ is stable and may obtain
a sizable relic abundance through thermal freeze-out. If the spontaneous... fpeak ∝ vϕ ...
symmetry breaking occurs in a FOPT, bubbles of the new phase will
nucleate spontaneously, expand and collide (cf. chapter 4). This process
perturbs the dark plasma and leads to the emission of GWs, with a
present-day peak frequency very roughly given by [178]

fpeak ≃ 10mHz
(
β/H

100

)(
Tp

1TeV

)
. (6.1)

Here β/H denotes the speed of the PT and Tp is the temperature of the
SM heat bath at the time of percolation. For a not-too-strongly super-
cooled DSPT, which is what we consider here, one expects β/H ∼ 100
and Tp ∼ vϕ.

The relic density from thermal freeze-out, on the other hand, can in
leading-order approximation be written as [38]

ΩDM ≃ 0.1
10−8 GeV−2

⟨σannv⟩
, (6.2)

with ⟨σannv⟩ the thermally averaged DM annihilation cross section,
cf. eq. (2.27). If the DM particles dominantly annihilate into the dark
Higgs bosons ϕ, arising from the same dark Higgs field that generates
the DM mass, it is parameterically of the form

⟨σannv⟩ ∼
y4

m2
DM

∼ y2

v2ϕ
, (6.3)

where y denotes the DM Yukawa coupling. At first sight, this coupling is
arbitrary, and hence the freeze-out mechanism does not predict a specific
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DS mass scale. However, if we are interested in DSs that produce strong
FOPTs and large GW signals, the dark gauge coupling g and the dark
Higgs quartic coupling λ must be sizable, which implies that the dark
Higgs boson mass mϕ cannot be much smaller than vϕ. At the same time,
the observed DM relic abundance can only be obtained through DS
freeze-out if the DM particle is not the lightest particle in the DS (or at ... and ΩDM ∝ v2ϕ.
least not much lighter than its annihilation products [66]). This, in turn,
implies that y cannot be much smaller than unity, and hence vϕ ∼ TeV
once we require ΩDMh

2 ∼ 0.1. Combining this with the conclusion from
eq. (6.1), we thus expect a peak frequency of fpeak ∼ 10mHz—which,
as advocated, lies right within the LISA band.

A possible concern with the simplified reasoning above is that a large
Yukawa coupling will affect the effective potential and may possibly
prevent a FOPT, or even destabilize the scalar potential [296]. We have
also neglected the impact of additional DM annihilation channels involv-
ing dark photons. In our full analysis, we explore the entire parameter
space of the model, calculating in detail the effective potential, the
thermodynamic quantities characterizing the PT and the relic density What could go

wrong?from thermal freeze-out. We then identify viable combinations of the
different DS couplings and show that the qualitative argument from
above is confirmed by quantitative calculations. In order to further refine
the analysis, we also perform parameter scans over all relevant model
parameters—namely the three couplings g, λ and y and the dark Higgs
vev vϕ, and we identify parameter points for which the correct DM
abundance is obtained. Interpreting the sampling distributions for the
model parameters as prior probabilities thus enables us to define “typical”
model predictions and quantify the probability (in the Bayesian sense)
of a detectable signal.

A significant focus of our analysis is to extend the simple argument
sketched above to situations where the couplings are so weak that the
dark and visible sectors do not necessarily share a common temperature,
which would be maintained through (inverse) decays of SM and dark
Higgs bosons. Indeed, even if the two sectors have the same temperature
initially, the FOPT in the DS will change the temperature ratio, as the
vacuum energy in the dark Higgs field is converted to rest mass and The thermalization

of DS and SMkinetic energy. This additional energy needs to be rapidly transferred
to the SM in order to avoid a dilution of GW signals from late-time
entropy injection [1,4]. We calculate the dilution of the GWB and derive
a lower bound on the portal coupling from the requirement that no
significant dilution occurs. We show that the portal coupling required
for this purpose is well below the sensitivity of laboratory experiments.

Finally, we explore what happens if the initial temperature ratio of
the two sectors differs from unity. In this case the amplitude of the
GW signal will change [25,297,298]—but the peak frequency remains
almost unaffected, such that the estimate from above remains robust
even for portal couplings that are too small to quickly (re-)thermalize
the sectors after the transition. This conclusion is only modified if the
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portal coupling is so weak that the energy density of the DS cannot be
depleted and starts to dominate the energy density of the universe.

The remainder of this chapter is structured as follows. In section 6.2 we
introduce the model under consideration and identify the interesting
regions of parameter space in which strong FOPTs can be predicted. In
section 6.3 we calculate the DM relic density under the assumption that
the dark and SM sector remain in thermal equilibrium throughout their
evolution, and explore the correlation between the relic density and the
GW signal. We revisit this assumption in section 6.4, and discuss in
detail the processes that thermalize the DS with itself and with the SM.
In section 6.5 we finally calculate the effect of inefficient thermalization
on the GW signal. We consider the dilution due to entropy injectionOutline of this

chapter and show that for hot DSs a net enhancement of the GW amplitude can
remain, while the peak frequency is essentially unaffected. We conclude
in section 6.6 with a summary of our results and some remarks about
their consequences. In two technical appendices, we provide details on
the bubble wall velocity (appendix 6.A) and on the Boltzmann equations
for entropy transfer (appendix 6.B).

6.2 dark sector model

6.2.1 The effective potential

The model we study in this chapter was already introduced earlier in this
thesis, in chapter 4.1.3, when we introduced the effective, temperature-
dependent potential Veff(ϕ, Td). Starting with the tree-level Lagrangian
in eq. (4.6) we found that the effective potential in eq. (4.22) allows
for a spontaneous breaking of the imposed U(1)′ gauge symmetry, thus
giving mass to the associated associated gauge boson A′

µ, the fermionic
DM candidate χ and the dark Higgs boson ϕ. In chapter 4 we only
provided a sketch of the effective potential for two representative cases
resulting in a cross-over and a FOPT, in fig. 4.3. Now, as a first step
of our analysis, we want to study the model parameter space in more
detail.

For this purpose we use TransitionListener [4], an extension of the
code CosmoTransitions [299], which takes care of the computation of
the effective potential, the bounce action, as well as phase tracing and
the calculation of the thermodynamic properties of the phase transition.
For the moment, we will assume equal temperatures for the SM bath
and the DS, i.e. we adopt a temperature ratio of

ξ ≡ Td

T
= 1 . (6.4)

The temperature that appears in the effective potential in eq. (4.22) and
in the thermodynamic quantities discussed below can thus be identified
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Figure 6.1: Total effective potential (solid) and finite temperature part (dot-
dashed) for g = 0.67, λ = 0.0035, vϕ = 1TeV and T = 240GeV, for
varying values of y.

with the temperature of SM photons. We discuss the general case with Let’s start with the
ξ = 1 caseξ ̸= 1 in sections 6.4 and 6.5. The remaining U(1)′ parameter space

hence depends on the three dimensionless couplings g, λ and y (i.e. the
U(1)′ gauge coupling, the dark Higgs quartic coupling, and the DM
fermion’s Yukawa coupling) as well as the vev vϕ.

In previous works [4, 25], the U(1)′ model was already studied in great
detail under the assumption that y = 0, i.e. assuming that there is no DM
fermion present in the dark sector. Let us therefore focus on the impact
of the Yukawa coupling y on the effective potential: In fig. 6.1 a plot of
the effective potential for a choice of parameters g = 0.67, λ = 0.0035,
vϕ = 1TeV and varying values of y can be found. We find that also in
the presence of a fermion coupled to the dark Higgs field, the effective
potential can still provide a barrier necessary for the occurrence of a
FOPT. The larger the Yukawa coupling y, the more the development of
the broken phase is delayed, however, due to the thermal corrections
VT + Vdaisy within the effective potential.

In addition to encoding the properties of the phase structure, the effective
potential also provides information about the stability of the true vacuum
after the PT occurs. In fact, a new feature becoming important for non-
zero Yukawa couplings is that for low values of λ and g the potential
can become unbounded from below [296]. To ensure vacuum stability
we require that no deeper vacua are present at zero temperature. The Fermions

destabilize the
vacuum

requirement of a DSPT already implies that Veff(0) > Veff(vϕ). Hence,
it is sufficient to check whether there exist vacua with lower potential
energy for large field values, i.e. whether Veff(ϕ) < Veff(vϕ) for ϕ≫ vϕ.
In our analysis, we explicitly exclude such parameter points.



132 hunting wimps with lisa

va
cu

um
tra

pping

cro
sso

ver

Yukawa coupling y = 0

10−1

100

G
a
u

g
e

co
u

p
li

n
g
g

unstable potential

Yukawa coupling y = 0.5

va
cu

um
tra

pping

cro
sso

ver

Yukawa coupling y = 0

10−4 10−3 10−2

Quartic coupling λ

10−1

100

G
a
u

g
e

co
u

p
li

n
g
g

unstable potential

Yukawa coupling y = 0.5

10−4 10−3 10−2

Quartic coupling λ

0

200

400

600

800

T
p

[G
eV

]

0.2

0.4

0.6

0.8

T
p
/
T

c

Figure 6.2: The percolation temperature Tp (top) and the ratio of percolation
temperature and critical temperature Tp/Tc (bottom) in the λ− g
plane for Yukawa couplings of y = 0.0 (left) and y = 0.5 (right)
and a vev of vϕ = 1TeV. The colored band shows the parameter
region where a first-order PT is possible.

It is well known that the one-loop, daisy-resummed calculation of the
effective potential can suffer from large theoretical uncertainties, foremost
sourced by a large renormalization scale-dependence [300]. A possibility
to improve upon those uncertainties is to systematically resum higher
orders of the thermal masses in the effective field theory framework of
dimensional reduction [301]. In order to validate our simpler approach, we
therefore also implemented our model in DRalgo [171], which automates
the task of dimensional reduction. We calculate the critical temperatureDRalgo validated

Veff(ϕ) in both our four-dimensional implementation and the reduced three-
dimensional theory for the parameter space where we expect a FOPT.
In the regime where the effective field theory is valid (T ≫ mϕ) we
find that the two results agree very well. We therefore conclude that
we can use the computationally more economical approach of using the
1-loop, daisy-resummed effective potential stated in eq. (4.22) within
the following calculations.
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6.2.2 Properties of the phase transition

Next, we want to study the dependence of the percolation temperature Tp
(see eq. (4.28)) and the critical temperature Tc on the model parameters.
We define the critical temperature as the temperature at which the
minimum of the effective potential with non-vanishing vev becomes a
global minimum.

The dependence of the percolation temperature Tp on the model parame-
ters is shown in fig. 6.2. In the top panels Tp is displayed as a function of
the quartic coupling λ and gauge coupling g for two values of the Yukawa
coupling, y = 0 (left) and y = 0.5 (right). There is a strong correlation
between the values of λ and g that produce a FOPT, with lower values
of Tp in the top-left end of the allowed band, and higher values of Tp in
the bottom-right. The disallowed areas correspond to parameter regions
where the transition is not first-order or does not occur at all. These
effects are better illustrated in the bottom panels, where the color scale
indicates the ratio Tp/Tc in the same parameter plane. The amount of
supercooling of the transition is largest when Tp is much lower than Tc
and smallest when both temperatures almost coincide. For the points
above the colored contours, the potential barrier becomes so large that Supercooling for

high g and low λthe bubble nucleation rate is too low for the transition to reach percola-
tion; the region below instead indicates a smooth crossover transition in
which no bubbles form since the potential does not develop a barrier
between the phases. For non-zero values of the Yukawa coupling y, the
enhanced thermal corrections in the effective potential cause a delay of
the development of the true vacuum (cf. fig. 6.1), thereby decreasing
the value of Tp. The vacuum also becomes deeper due to the Yukawa
coupling, which increases the tunneling rate close to the supercooled
region, and thus slightly larger values of g are within the allowed band.
The gray shaded regions, finally, indicate parameter combinations where
the potential is unstable.

In fig. 6.3 we show how the transition strength α (see eq. (4.29)) and
transition speed β/H (see eq. (4.31)) depend on the model parameters,
λ, g and y. The PT is relatively strong for most of the allowed region Strong and slow

transitions are
possible

α ∈ (10−2, 102) and it is particularly strong close to the supercooled
limit, where percolation is delayed (Tp ≪ Tc). On the other hand,
the speed of the PT β/H becomes smaller in the supercooling limit,
reaching values of β/H ≈ 102 − 103. Both are indicators for a strong
GW background.

6.2.3 The gravitational wave spectrum

The spectrum of GWs in our scenario is produced dominantly through
bulk fluid motion in the reheated plasma due to the large velocity-
dependent friction from the emission of soft dark photons in the bubble
wall, yielding a terminal bubble wall velocity [302–304]. A discussion of
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Figure 6.3: The transition strength α (top) and speed β/H (bottom) of the
PT, in the λ − g plane for y = 0 (left) and y = 0.5 (right), with
v = 1TeV and ξ = 1.

this argument can be found in appendix 6.A. As the case of runaway
bubbles can hence be excluded, we neglect the contribution of bubble
collisions to the GW signal. Since the onset of turbulence as a GW source
is not yet understood well enough to make quantitative statements [178],
and often requires complicated lattice simulations [191], we conservatively
consider sound waves the only relevant source of GWs emitted during
the PT. Therefore, the GW spectrum is exclusively determined by the
previously discussed set of parameters {α, β/H, Tp}. We use the semi-
analytical approximation provided in eq. (4.33) to compute the peak
frequency and GW spectrum from sound shell collisions.

A strong GW signal typically requires sizable α and values of β/H that
are not too large. From the discussion of fig. 6.3, a strong FOPT implies
large but perturbative values of both g and λ. Too small values of these
two couplings would imply very large values of β/H and correspondingly
weak GW signals, and even cause issues of vacuum stability (for large
y, cf. right panel of fig. 6.3). This in turn induces an upper limit on
the value of y as large values would cause an unstable vacuum for anyObtaining strong

GWs requires
strong couplings

perturbative value of g and λ. As will be seen below in section 6.3,
successfully producing the right DM relic density requires mχ ≳ mϕ,
which implies a lower limit y > 2

√
λ. Lastly, the vev vϕ is chosen in a

range that produces GWs in the frequency range of near-future GW
observatories, such as LISA.
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Consequently, we randomly draw parameters from distributions that
are logarithmically flat within the following ranges: 0.1 ≤ g ≤ 1, 10−4 ≤
λ ≤ 10−2, 0.01 ≤ y ≤ 0.7 and 10−3 GeV ≤ vϕ ≤ 103 GeV. We then
discard parameters that cause the vacuum to be unstable, that do not
predict a FOPT, or for which the PT is too supercooled and never
percolates, thereby removing 82% of the points drawn. The remaining Strong supercooling

for 1% of points18% of parameter points all feature a FOPT with a corresponding GW
signal. However, since the percolation temperature is very sensitive to
small changes in the couplings, the PT is only strong enough to give
an observable GW signal in certain small regions of parameter space.
Indeed, only about 1% of parameter points from the original sample
feature strong supercooling (Tp/Tc < 0.5).

We can quantify the fine-tuning required to obtain an observable GW
signal by interpreting our parameter scan as a sample drawn from
the prior distributions of the parameters. We then find that out of
the parameter points that give a FOPT, only about 0.8% would be
observable with LISA, whereas this number increases to 10% if we select
parameter points that give a strongly supercooled PT. For the parameter
ranges that we consider (in particular of vϕ) none would be observable Out of these, 10%

can be seen with
LISA

with PTAs or the Einstein Telescope. We note that these numbers do not
correspond to rigorously calculated posterior probabilities, but rather
rough estimates based on sampling densities. More precise estimates
would require a different sampling strategy (see e.g. [305]), which is
beyond the scope of this chapter.

We emphasize that these numbers are largely independent of the choice
of priors as long as we select only parameter points that predict any
kind of FOPT. The probability to find parameter points that give a
FOPT does however depend sensitively on the choice of priors. If we
were to extend the prior ranges for all parameters to lower couplings, the
volume of parameter space without a FOPT would grow significantly.
Choosing for example g > 0.01 (instead of 0.1), λ > 10−5 (instead of
10−4) and y > 10−3 (instead of 0.01) would decrease the fraction of
parameter points with a FOPT from 18% to 6%. Out of these, 0.7%
would be observable by LISA, which increases to 8.5% when considering
only points with a strongly supercooled PT. As expected, our results are Dependence on

prior choicesnot very sensitive to different prior choices as we find that points that
already have a FOPT have a roughly equivalent probability of being
visible at LISA regardless of the parameter ranges. In later sections,
we will discuss how these numbers change when imposing additional
constraints on the DS, such as the relic density requirement.

Finally, when studying the effects of thermalization in our model in
section 6.4.2 it will be convenient to identify a benchmark scenario with
the right properties for the PT and DM relic abundance. For reference
the benchmark point is given in table 6.1.
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g λ y vϕ mχ mϕ mA′

0.67 0.0035 0.62 430GeV 189GeV 36GeV 288GeV

Table 6.1: Benchmark point used for discussing the thermalization of visible
and dark sector.
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Figure 6.4: The upper (lower) panels show the ratio of the dark Higgs boson
mass mϕ (the dark photon mass mA′) to the mass of the DM
fermion mχ for y = 0.1 (left) and y = 0.5 (right), as a functions
of the gauge coupling g and the self-interaction λ. Note that these
ratios are independent of the dark Higgs vev.

6.3 the dark sector relic density

During the PT, the DS particles χ, ϕ and A′ all obtain masses propor-
tional to the dark Higgs vev vϕ. In the parameter regions of interest for
a strong FOPT, we generally find g >

√
2λ and g > y/

√
2 and hence

the dark photon is usually the heaviest state in the DS, cf. eq. (4.8b).
Depending on the value of the Yukawa coupling y, the lightest DS parti-
cle will instead be either the DM fermion or the dark Higgs boson, as
shown in fig. 6.4. The DS equilibrates soon after the PT (see section 6.4
for a more detailed discussion). Typically, the heaviest particles will
then first drop out of equilibrium as their number densities becomemχ < mϕ < mA′

or
mϕ < mχ < mA′

strongly suppressed. The relic abundance of the dark fermions χ is thus
determined through a freeze-out process [306] in the usual way. We
assume that the dark photon is unstable, decaying for example through
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kinetic mixing, and therefore does not contribute to the DM relic density
(unlike the case studied in ref. [290]).

In our model there are three possible DM annihilation processes that are
relevant for setting the DM abundance: χχ→ ϕϕ, χχ→ ϕA′ and χχ→
A′A′. If the DM fermion is the lightest particle in the DS, annihilation
into other DS states is kinematically forbidden for vanishing kinetic
energy, such that the annihilation cross section becomes exponentially
suppressed at low temperatures. In this so-called ‘forbidden’ regime [66],
a relic abundance in accordance with observations requires that all
mass scales must be correspondingly smaller, or the relevant couplings Available DM

annihilation
channels

(much) larger. For the parameter values we are interested in here, it is
therefore typically necessary for the DM particle to be heavier than the
dark Higgs boson, which in turn requires a sizable Yukawa coupling y.
For even heavier DM, with 2mχ ≳ mϕ +mA′ , the annihilation channel
χχ→ ϕA′ opens up. This process is a highly relevant contribution, once
kinematically accessible, as it proceeds via an s-wave; the annihilation
into a pair of dark Higgs bosons, χχ → ϕϕ, on the other hand, only
proceeds via a p-wave.

To compute the DM relic density, we have calculated the amplitudes
for all three processes, see appendix 6.B.3, and implemented them in
DarkSUSY [307], which calculates the thermal averages and solves the full We solve

Boltzmann
equations with
DarkSUSY

Boltzmann equation [308]. While DarkSUSY allows precision calculations
of the relic density in a fully secluded DS with a varying temperature
ratio ξ between the dark and the SM sector, cf. ref. [279], we will set
ξ = 1 for the purpose of this section. We will revisit this assumption of
thermal equilibrium between the two sectors in section 6.4.

We show the results from the parameter scan described in section 6.2.3
in fig. 6.5. The three two-dimensional scatter plots show the correlation
between the DM relic density ΩDMh

2, the peak frequency fpeak as well
as the peak amplitude Ωpeak

GW h2. One can immediately see that ΩDM and
Ωpeak

GW are not tightly correlated (with a correlation coefficient of 0.20),
while there exists a clear connection between the DM relic density and
the peak frequency (with a correlation coefficient of 0.85). We can trace Tight correlation

between ΩDM and
fpeak

this correlation back to the fact that both quantities are determined by
the dark Higgs vev vϕ (indicated by the color of each point). A smaller
value of vϕ implies a smaller DM mass and therefore a larger annihilation
cross section, which in turn results in a smaller relic density. At the
same time, a smaller vϕ also implies a smaller percolation temperature,
and hence a smaller peak frequency. The strength of the PT, on the
other hand, depends on the details of the effective potential, and can
vary over many orders of magnitude for any given value of vϕ.

We complement these scatter plots by showing distributions of the
derived quantities, in the form of histograms based on our random scan
described above. For example, one can infer that most samples drawn in Typically

Ωpeak
GW h2 ≈ 10−16our setup correspond to a peak GW signal strength of Ωpeak

GW h2 ≈ 10−16,
i.e. a few orders of magnitude below the PLI sensitivity of near-future
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Figure 6.5: Scatter plots and 1D distributions of the DM density ΩDMh
2,

the GW peak amplitude ΩGWh
2, and the peak frequency fpeak.

For comparison, the dashed line shows the observed DM density,
ΩDMh

2 = 0.12 [12]; gray shaded areas show the PLI sensitivities [25]
of PTAs, LISA and ET, respectively.

GW observatories (indicated as gray shaded areas). Note also that the
DM density caps at ΩDMh

2 ≈ 10, which would already correspond to an
overclosed universe; even higher values are avoided by our prior choice,
in particular the upper bound on vϕ and the lower bound on y.

In fig. 6.6 we show the result of sharpening the relic density requirement
by requiring that 0.06 ≤ ΩDMh

2 ≤ 0.12. Demanding in this way that
the fermionic DM candidate in our model constitutes the dominant form
of DM, the predicted range of peak frequencies of the GW signal shrinks
significantly—as expected from the discussion above. Interestingly, al-
most all viable parameter points now predict a peak frequency between
0.1mHz and 100mHz, largely overlapping with the frequency range to
which LISA is sensitive. In fact, the peak frequencies for those parameter
points that result in the strongest signal are the same as those whereRequire

ΩDMh2 ≃ 0.12:
GWs in LISA

band!

LISA is most sensitive. This striking correlation is a non-trivial feature
of our model and constitutes one of our main results. Let us note that a
few points remain that predict peak frequencies outside the LISA band.
Much smaller values of fpeak, in particular, correspond to parameter
points in the ‘forbidden’ regime, mχ < mϕ, where DM annihilations
are exponentially suppressed at small temperatures. Smaller values of
vϕ (and hence smaller temperatures of the PT) can then still result in
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Figure 6.6: Scatter plots and 1D distributions as in fig. 6.5, but with the
additional constraint 0.06 ≤ ΩDMh

2 ≤ 0.12. Here, the color scale
does not encode the vev, but the ratio of percolation temperature
Tp to the vev vϕ, thus indicating the amount of supercooling.

the correct DM relic abundance, but only at the cost of a significant
tuning between the various couplings (as reflected by the rareness of
such parameter points, cf. the fpeak histogram at the top of the plot).

In contrast to fig. 6.5, where the color coding of each point represents
the dark Higgs vev, the points in fig. 6.6 are colored according to the
percolation temperature of the PT, normalized to the vev vϕ. Doing so
allows us to confirm that the peak amplitude of the GW spectrum is Observability

requires strong
supercooling

determined primarily by the amount of supercooling. In other words, if
the PT is delayed by a large potential barrier, the strength of the PT
increases, yielding strong GW amplitudes (as expected from figs. 6.2
and 6.3). As discussed in section 6.2.3, the predictions for the PT
properties vary a lot with small changes of the model parameters, and
thus only certain regions of the parameter space predict a strong FOPT.
For this reason, our model cannot in general guarantee a strong PT, and
thus a GW signal that is visible with next-generation GW observatories.

We can make this statement more precise if we interpret the sampling
distributions of the model parameters as prior probabilities (as we did
in section 6.2.3), such that the density of points in figs. 6.5 and 6.6
can be interpreted as probability distributions for the observables under
consideration. As before, this makes it possible to quantify the amount
of fine-tuning required to obtain a strong FOPT, through the fraction
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of points with a FOPT that predict a signal observable with LISA. If
we do not impose the relic density requirement (fig. 6.5), only 0.8% of3% of points with

ΩDMh2 ≃ 0.12 can
be seen with LISA

points with a FOPT predict a GW signal visible at LISA, whereas this
fraction increases to 3% once the relic density requirement is included
(fig. 6.6). If we restrict ourselves to parameter points with a strongly
supercooled PT, the fraction of observable parameter points increases
from 10% to 35%. Again, we have checked that this number is not very
sensitive to our choice of parameter ranges.

6.4 thermalization of the two sectors

In this section we revisit the assumption that the temperature ratio of
the dark and visible sectors is ξ = 1 throughout the PT. To do so, we
first need to understand the evolution of the DS temperature during the
PT, and convince ourselves that the DS quickly thermalizes with itself
afterwards, such that the DS states remain in kinetic equilibrium with
each other until after DS freeze-out (i.e. chemical decoupling). However,
it is not necessarily the case that also the SM states are in kineticLet’s drop the

ξ = 1 assumption equilibrium with the DS, such that their temperature may differ from
the one of the DS both before and after the PT. We therefore discuss
the various processes that allow for the exchange of energy and entropy
between the dark and the SM sector, and the resulting Boltzmann
equations. This enables us to identify the necessary portal couplings for
efficient thermalization. For the case of delayed thermalization, after the
end of the PT, we calculate the resulting dilution of the GW signal due
to the injection of entropy into the SM thermal bath.

For the purpose of illustration, we will in this section consider a specific
benchmark point that we selected from the random parameter scan
discussed previously (see table 6.1). For ξ = 1, the parameters of this
point lead to α = 0.258, β/H = 874, Tn = 39.7GeV, Tp = 39.1GeV,
fpeak = 3mHz, ΩDMh

2 = 0.117, and Ωpeak
GW h2 = 3 · 10−13. The rationale

behind choosing this benchmark point is that (i) the observed DM relicA benchmark point
abundance is reproduced (for ξ = 1), and that (ii) the PT is sufficiently
strong in order to obtain an observable signal in LISA. We have explicitly
checked that our choice is representative in the sense that other points
fulfilling these two criteria lead to a very similar temperature evolution
and resulting predictions.

6.4.1 The dark sector temperature

As the bubbles of the broken phase expand, more and more DS particles
will pass through the bubble walls and enter the new phase. In the
process, not only their rest masses but also their kinetic energies increase
dramatically, by converting the vacuum energy of the dark Higgs field
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stored in the false vacuum. Here we neglect the small fraction of the
energy density that is converted into GWs and assume that the bubble
walls have already reached their terminal velocity, such that no energy We can ignore

bubble filteringis needed for their acceleration. As we have learned in the previous
section, in particular, the energy density of GWs produced in the PT is
bounded by Ωpeak

GW h2 < 10−10 and can therefore safely be ignored. We
also neglect the effect of bubble filtering [287,309], i.e. we assume that
all DS particles can enter the new phase. This is a good approximation
for sufficiently fast bubble walls, see appendix 6.A for details.

Since the different particle species in the DS were all relativistic before
the PT, their number densities immediately after the PT will be compa-
rable, even though their masses will now be very different. Indeed, for
strongly supercooled PTs the dark photons (and possibly also the DM
particles) will typically have a large mass compared to the temperature Particles behind

the wall are out of
equilibrium

of the plasma, such that their equilibrium number density would be
Boltzmann-suppressed. In other words, right after the PT the DS finds
itself far away from thermal equilibrium. Nevertheless, interactions be-
tween the different DS particles are rather strong, and hence the heavier
particles are expected to annihilate rapidly into lighter ones, thereby
restoring equilibrium.

As we will show below, the time required to reach equilibrium is negligi- Energy
conservation fixes
the broken-phase
temperature

ble compared to the duration of the PT, such that we can to a very good
approximation define a DS temperature of the broken phase Td,br imme-
diately after the PT. This temperature is obtained from the temperature
of the symmetric DS phase Td,sym using energy conservation:

ρvac(Td,br) + ρDS(Td,br) = ρvac(Td,sym) + ρDS(Td,sym) . (6.5)

Here, Td,br denotes the temperature in the broken phase and

ρDS(Td,br) =
π2

30
gDS(Td,br)T

4
d,br , (6.6)

where gDS(T ) takes into account the T -dependence stemming both from
thermal (field-dependent) masses and the minimum of the effective
potential. Eq. (6.5) can easily be solved numerically for Td,br for a given
Td,sym.

In practice, we find that slightly different temperatures Td,br of the
broken phase are obtained when solving the equation taking Td,sym =
Tp or Td,sym = Tn. This is because the energy density of the broken
phase redshifts differently from the symmetric phase. We have therefore
implemented a more detailed calculation, which tracks the temperature of We set Td,sym to

percolation
temperature

the symmetric and broken phases from bubble nucleation to percolation
and applies eq. (6.5) at each time step to the fraction of the universe
entering the broken phase. Here the energy in the bubble walls, which for
relativistic bubble wall velocities redshifts like radiation [35], is included
in the energy of the symmetric phase. We find that this more careful
treatment gives very similar results to simply applying eq. (6.5) at
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Figure 6.7: Contributions to the energy density around the PT for our bench-
mark point, as a function of the SM temperature and for a tem-
perature ratio ξ = 1. The energy densities in the symmetric and
broken phase of the DS have two contributions, namely the energy
of the particles (‘rad’) and the potential energy of the scalar field
(‘vac’).

Td,sym = Tp. We therefore use the latter prescription in the following
when computing the temperature of the DS after the PT.

For our benchmark point, we find that the energy density of the DS
before the PT is dominated by vacuum energy (see fig. 6.7). In the
broken phase, on the other hand, the vacuum energy is very small and
quickly relaxes to a value very close to its zero temperature value as the
temperature decreases further. This difference in vacuum energy leads
to a substantial reheating of the DS, which, as a result, is hotter thanReheating of the

DS leaves ϕ
relativistic

the SM sector after the PT. For our benchmark point, we find that if
the two sectors have equal temperature before the PT, in the broken
phase the DS temperature will be larger by a factor of about 1.3. This
reheating of the DS typically ensures that the dark Higgs bosons will
be relativistic immediately after the PT.

6.4.2 Thermalization within the dark sector

In the discussion above we have assumed that the DS can be char-
acterized by a common temperature shortly after the PT. To justify
this approach, we need an estimate of the time τ required to reach
this equilibrium state and show that it is sufficiently small. For this
purpose, we calculate the interaction rate for each DS state X in thermal
equilibrium:

ΓX =
∑
Y

⟨σXY v⟩neqY , (6.7)



6.4 thermalization of the two sectors 143

where the sum is over all DS states Y , σXY denotes the total interaction
cross section of X and Y , brackets denote thermal averaging (for sim-
plicity calculated by assuming Boltzmann distributions) and neqY denotes
the equilibrium number density of Y .

A total of 20 different processes contribute to the thermalization of the
DS, the relative importance of which depends on the specific choice of
parameters and the DS temperature. In the interest of brevity we refrain
from stating the thermalization rates explicitly. Broadly speaking, we find
that ΓX is only a few orders of magnitude smaller than mX . For example,
dark Higgs bosons can thermalize via self-scattering, i.e. ϕϕ ↔ ϕϕ, 20 processes

contribute to the
DS thermalization

for which the scattering cross section is 9λ2/(8πs). For temperatures
comparable to the dark Higgs boson mass, we have s ≈ 4m2

ϕ and
nϕ ≈ ζ(3)m3

ϕ/π
2, such that Γϕ ∼ 10−7mϕ for the benchmark point.

Interactions of the dark Higgs bosons with dark fermions or dark photons
benefit from the larger couplings y, g ≫ λ, but suffer from a Boltzmann
suppression if Tp < mχ,mA′ .

A rough estimate of the thermalization timescale is then obtained via

τ = max
X

Γ−1
X . (6.8)

Given the timescale τ we can estimate the out-of-equilibrium fraction
F (t) of the universe, which describes the relative volume of the universe
that entered the broken phase so recently that it has not had enough
time to reach thermal equilibrium. The related false vacuum fraction
P (t), cf. eq. (4.28), describes the fraction of the universe which has not
yet transitioned to the new phase, such that the true vacuum fraction is The

out-of-equilibrium
fraction F (t)...

given by Pt(t) = 1− P (t). Its time derivative Ṗt describes the rate with
which the volume is transitioning to the true minimum of the potential
for a given time t. We introduce the quantity

F (t) ≡ P (t− τ)− P (t) > 0 , (6.9)

which can hence be interpreted as the volume fraction Ṗt ∆t that just
transitioned to the broken phase within the small thermalization time
scale ∆t = τ , cf. fig. 6.7. The volume fraction F becomes small exactly
when the thermalization timescale τ is small compared to the transition
timescale 1/β, as can be seen from the saddle point approximation of
P (t) around the percolation time tp:

F (t) ≈ exp
(
−0.34eβ(t−tp−τ)

)
− exp

(
−0.34eβ(t−tp)

)
= βτeβ(t−tp) exp

(
−0.34eβ(t−tp)

)
≤ 0.37βτ .

(6.10)

Here, the last term follows by inserting the time at which F (t) peaks,
which is found to be t ≈ tp − 1.08/β. Alternatively, one can interpret ... is always small.
F as the volume fraction of a shell around the bubbles with the width
of the mean free path of the particles that just entered the bubbles.
In the left panel of fig. 6.8 we show F as a function of T − Tp for our
benchmark point. As expected, we find that F takes its maximal value
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Figure 6.8: Left: The light blue line shows the energy fraction of the DS that
is out of equilibrium for our benchmark point, as a function of the
SM photon temperature. For reference, the fraction of the DS in
the broken phase is given by the black line and the percolation
temperature as the dashed vertical line. Right: Out-of-equilibrium
fraction as a function of λ and g for y = 0.62 and vϕ = 430GeV.

close to the percolation temperature Tp. Nevertheless, even at the peak
the value is tiny, implying that the fraction of the universe that is not in
thermal equilibrium and therefore cannot be described by a temperature
is completely negligible. In the right panel of fig. 6.8 we show the value
Fp ≡ F (Tp) at the percolation temperature for more points from our
parameter scan, varying both g and λ. Similarly we find that for all our
cases the thermalization is fast compared to the transition timescale.
Even strongly supercooled points, where Fp becomes close to unity, are
expected to return to equilibrium before freeze-out, since β/H ≫ 1.

So far, we have throughout assumed that chemical potentials in the DS
can be neglected after thermalization has taken place. This is certainly
a good approximation as long as at least the lightest state in the DS has
a mass that is small compared to the DS temperature, which is typically
the case shortly after the PT. However, as the universe continues to
cool down, this assumption becomes increasingly critical. If we assume
that the DS cannot transfer its entropy to the SM thermal bath, the
subsequent evolution depends crucially on whether number-changing
processes of the lightest state, such as 3ϕ → 2ϕ, are efficient enoughA note on

cannibalistic DSs to maintain chemical equilibrium in the DS. If this is the case, the DS
temperature will decrease much more slowly than the SM temperature,
and the universe will enter a period of ‘cannibal’ domination [310,311].
If, on the other hand, number-changing processes are inefficient, the DS
will develop large chemical potentials and the universe will eventually
enter a period of matter domination. In both cases, the energy and
entropy stored in the DS must later be transferred to the SM heat bath
in order to recover radiation domination before neutrinos decouple at
T ≈ 2MeV, marking the onset of BBN [1]. Neither of these scenarios is
very desirable, as the GW signals from the PT will be strongly diluted
in the process [4].

We are therefore more interested in the case where the dark and SM
sector quickly equilibrate after the PT, such that their temperatures
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become equal, chemical potentials become negligible, and the universe
evolves approximately as in radiation domination. In the following we
discuss the processes that contribute to this process, and we derive the
coupling strengths required for it to happen rapidly enough.

6.4.3 Thermalization of the dark and visible sector

The conceptually simplest way for the dark and visible sector to exchange
entropy and energy is via Higgs mixing [298,312–315].1 Such a mixing
arises from an additional term in the scalar potential:

Vmix(H,Φ) = λhϕ|H|2|Φ|2 . (6.11)

As long as the vevs of both Higgs bosons vanish, the dominant process Thermalization
through the Higgs
portal

connecting the two sectors is HH → ΦΦ. As soon as one of the two
Higgs bosons acquires a vev, it can decay into the other one, i.e. h→ ΦΦ
(if the electroweak symmetry breaks first) or ϕ → HH (if the dark
symmetry breaks first). If kinematically allowed, these decay processes
typically dominate over the 2 → 2 process for non-relativistic particles.

After both electroweak symmetry and the dark gauge symmetry have
been spontaneously broken, the Higgs mixing generates a non-diagonal
mass term, which can be rotated away by introducing the mixing angle

θ =
λhϕvϕvh
m2

h −m2
ϕ

, (6.12)

where we have assumed θ ≪ 1 both in order to satisfy experimental
constraints on the properties of the SM-like Higgs boson and to ensure
that thermal corrections from SM fields to the effective potential are
negligible so that the DSPT can be treated separately from the EWPT.
Both the masses and the vevs, and hence also the mixing angle, depend
on the temperature. As a result of this mixing, the dark Higgs boson
obtains couplings to SM fermions and gauge bosons proportional to θ.
Of the greatest relevance for our discussion will be the decay of dark
Higgs bosons into bottom quarks b, with a tree-level decay width given
by

Γϕ→bb̄ =
3mϕm

2
b sin

2 θ

8πv2h

√
1− 4m2

b

m2
ϕ

. (6.13)

To calculate the entropy transfer between the dark and visible sector,
we define the heat transfer rate

q̇DS ≡ ρ̇ϕ + 3H(ρϕ + Pϕ) , (6.14)

1 A second possibility would be to consider kinetic mixing between the dark photon
and SM hypercharge. However, given that the dark photon is typically the heaviest
state in the DS, it will be strongly Boltzmann-suppressed at low temperatures, and
therefore cannot efficiently keep the two sectors in equilibrium.
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which is related to the change of entropy density via

ṡDS = −3HsDS +
q̇DS

Td
. (6.15)

At the same time, the first moment of the Boltzmann equation gives∫
d3p

(2π)3
Eϕ L[fϕ] = q̇DS =

∫
d3p

(2π)3
EϕC[fϕ] . (6.16)

The general expression for the first moment of the collision operator
for decays (including relativistic corrections and quantum effects) was
derived in refs. [316,317]. It was shown there that the leading relativistic
effects (namely a time dilation of the decay proportional to 1/γ and an
increase of the injected energy by a factor γ) cancel, and it is therefore
a good approximation to assume that the decaying particle is at rest.
The integral of the collision operator thus gives

q̇DS ≃ mϕ (ṅϕ + 3Hnϕ) , (6.17)

and the evolution of the number density is given by the usual Boltzmann
equation

ṅϕ + 3Hnϕ = −Γϕ→bb̄ n
eq
ϕ

(
nϕ
neq
ϕ

− 1

)
. (6.18)

Here neq
ϕ denotes the equilibrium number density for Td = T , whereas

the actual number density can be calculated from the DS temperature
and the assumption of negligible chemical potential. Putting everythingEntropy injection

to b quarks together, we obtain

ṡDS = −3HsDS − mϕ

Td
Γϕ→bb̄ n

eq
ϕ

(
nϕ
neq
ϕ

− 1

)
. (6.19)

A completely analogous equation holds for the evolution of the SM
entropy density sSM. Since the Hubble rate H depends on the combined
energy density of both sectors, both equations need to be solved simul-
taneously, together with the equation ȧ = Ha, which we will need below
to calculate the evolution of the GW spectrum.

In practice, we also include decays into lighter quarks and leptons,
which become relevant if decays into bottom quarks are kinematically
forbidden. We further include the processes h→ ϕϕ and ϕ→ hh if theyWe also include

other DS cooling
processes

are kinematically allowed. We do not, however, include 2 → 2 processes
of the form qq̄ → gϕ or qϕ → qg, which may give a non-negligible
contribution for light dark Higgs bosons [318,319]. Additional details,
and the relevant equations, can be found in appendix 6.B. We note that
analogous equations to the ones above can be derived for the case that
only one Higgs boson has a vev and the case that both symmetries are
unbroken.

As discussed above, it is not necessarily the case that the DS is in kinetic
equilibrium with the SM at high temperatures. In the following, we will
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Figure 6.9: Evolution of the DS temperature (dotted) and the SM temperature
(solid) for different values of the initial temperature ratio ξEWPT
as a function of scale factor. The vertical lines indicate the scale
factor at percolation, which depends on the temperature ratio. The
horizontal lines indicate when the lightest state in the DS becomes
non-relativistic (Td = mϕ/3) and approximately when the DM
particles freeze out (Td = mχ/25). The different panels correspond
to different values of the portal coupling λhϕ.

therefore take the temperature ratio of the two sectors at the EWPT,
ξEWPT, as a free parameter and calculate the evolution of ξ during
the subsequent cosmological stages (see appendix 6.B for details). In
fig. 6.9 we show the visible and DS temperatures as a function of the
scale factor for different initial values of ξEWPT, defined at T = 150GeV.
In the four panels the portal coupling was set to the representative The portal coupling

λhϕ decides on the
time of
thermalization

values λhϕ = 10−6 (top left), 3 · 10−7 (top right), 10−7 (bottom left)
and 3 · 10−8 (bottom right). In each panel, we indicate the moment of
percolation by a vertical dot-dashed line; the approximate temperature
of the dark Higgs becoming non-relativistic (mϕ/Td = 3) and the DM
fermion freezing out (mχ/Td = 25) are indicated by horizontal dotted
and dashed lines, respectively. We make the following observations:

• For λhϕ = 10−6, the two sectors thermalize efficiently already
before percolation. The initial value of ξEWPT is therefore incon-
sequential for the subsequent evolution, and we obtain the same
results for all cases.

• For λhϕ = 3 × 10−7, the two sectors do exchange energy and
entropy already in the unbroken phase, but do not fully ther-
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malize before percolation, such that ξp depends on ξEWPT. After
dark symmetry breaking, the two sectors thermalize rapidly, such
that the subsequent evolution, and in particular the relic density
calculation, do not depend on ξEWPT.

• For λhϕ = 10−7, the energy exchange before dark symmetry break-
ing is completely negligible. Even after dark symmetry breaking,
it will take a while for the temperatures of the two sectors to ap-
proach each other. Nevertheless, the two sectors reach equilibrium
before the dark Higgs bosons become non-relativistic.

• For λhϕ = 3 × 10−8, the two sectors do not quickly thermalize
after the PT, and the universe enters an early period of cannibal
domination.2

In general the value of λhϕ needed to ensure thermalization depends
somewhat on the dark Higgs vev, since for mϕ ≪ mh the mixing angle
scales as θ ∝ λhϕvϕ. Moreover, for small dark Higgs boson masses, decays
into bottom quarks are kinematically forbidden and thermalization is
less efficient. For the parameter points that reproduce the observed relic
density we find that the assumption ξ = 1 made in section 6.3 is wellAll considered λhϕ

are well bellow
direct detection

constraints

justified for λhϕ greater than 10−6–10−5. This value should be compared
to the currently strongest bounds from direct detection experiments,
which are only sensitive to λhϕ ≳ 10−3 [159].

6.5 gravitational waves from hot dark sec-
tors

While the analysis of the DSPT is simplest for λhϕ > 10−6, it is phe-
nomenologically interesting to also consider smaller values of λhϕ, such
that the temperature ratio of the two sectors before the PT may differTurn up the

volume: ξp > 1
enhances the GWs

from unity. The reason is that ξp > 1 leads to an enhancement of the
GW signal, as a result of the larger total energy density in the DS
compared to the SM thermal bath [4, 25]. In this case, however, we also
need to consider what happens to the energy density of the DS after the
PT.

If the transfer of energy from the dark to the visible sector after the PT
is slow, the energy density of the universe will eventually be dominated
by non-relativistic DS particles. This effect is already visible in fig. 6.9,
where for small values of λhϕ = 3× 10−8 the temperature ratio ξ still
differs from unity when the lightest DS particle becomes non-relativistic.
When the non-relativistic dark Higgs bosons eventually decay into SM
particles, their entropy is transferred to the thermal bath; this modifies

2 For the purpose of this plot, we assume that number-changing processes in the DS
remain efficient throughout, such that the chemical potential of the dark Higgs boson
vanishes and (in the absence of decays) the DS temperature grows relative to the
SM temperature.
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the expansion history of the universe and leads to a dilution of the
GW signal. It is a-priori unclear whether this dilution effect dominates
over the enhancement with increasing DS temperature, or whether ξp and λhϕ have

competing effectsa net increase in the strength of GW signals remains. Moreover, the
dilution effect also shifts the GW frequencies and might thereby spoil the
correlation between peak frequency and relic density found in section 6.3.
In the following we will investigate these effects in detail.

If the portal coupling is extremely small, in principle even the relic
density calculation could be modified. If the dark Higgs bosons become
non-relativistic after freeze-out, in particular, they may come to dominate
the energy density of the universe at later times, and dilute not only
the GW energy density but also the DM energy density through their
decays (see e.g. ref. [320]). If, on the other hand, the dark Higgs bosons
are non-relativistic already during freeze-out, inefficient thermalization
between the two sectors may additionally imply a non-trivial evolution Other dilution

effectsof the DS temperature during freeze-out. While these are interesting
scenarios in their own right, they are beyond the scope of this thesis.
Instead, we will here focus exclusively on the case where the dark Higgs
bosons decay sufficiently quickly for the standard freeze-out calculation
(with temperature ratio ξ = 1) to be valid.

In section 4.3.2 we introduced the dilution factor D ≡ S0
SM/S

p
tot to

account for the dilution of the GWB [4, 70]. In fig. 6.10 we show its
dependence on the portal coupling λhϕ. Here, we choose the same
benchmark point as studied in section 6.4, and show the result for
different values of the initial DS temperature ratio ξEWPT, defined at
T = 150GeV. As expected, for sufficiently large λhϕ there is no significant
dilution3, as entropy is conserved and only relativistic dofs contribute Dilution becomes

relevant for
λhϕ ≪ 10−7

to the energy content of the universe. However, with decreasing λhϕ this
is no longer the case and the dilution factor grows, becoming sizable for
λhϕ ≪ 10−7.

In fig. 6.11 we show the resulting GW spectra for ξ ̸= 1 and λhϕ <
10−6. As anticipated, a net enhancement of the GW signal is found for
ξEWPT > 1, provided that λhϕ is sufficiently small for the sectors to
not equilibrate before the PT (cf. fig. 6.9). The enhancement saturates
for ξEWPT ≳ 2, see also the discussion in ref. [4], implying a DS energy
density that initially dominates over that of the SM sector. For too A net enhancement

remains for ξp > 1small portal couplings λhϕ ≲ 3× 10−8, on the other hand, the effect of
dilution becomes relevant and the GW signal starts to become suppressed.
Crucially, changing ξ and λhϕ does not significantly affect the peak
frequency, such that the GW signal remains within the LISA sensitivity
range.

3 In the limit of large portal couplings λhϕ, the dilution factor D approaches a value
slightly larger than 1. This is an expected feature, indicating a negligible dilution
effect that is entirely due to the additional degrees of freedom in the combined
thermal bath of SM and DS particles and not a consequence of additional entropy
injection (with respect to ΛCDM) into the SM bath after the PT.
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Figure 6.10: Dilution factorD, cf. eq. (4.35), as a function of the portal coupling
λhϕ, and for different values of the initial temperature ratio ξEWPT
as indicated.

We can now test the robustness of our results from section 6.3, where
we assumed ξ = 1 and λhϕ > 10−6, by allowing larger values of ξ and
smaller values of λhϕ. In fig. 6.12 we show the same result as in fig. 6.6,
but now for ξEWPT = 2 and λhϕ = 10−7. For comparison we show the 1D
distributions from fig. 6.6 as orange lines. In this plot we have removed
points for which the DS temperature still differs significantly from the
SM temperature when the dark Higgs boson becomes non-relativistic,
i.e. for which ξnr > 1.1 at Td,nr = mϕ/3. The reason is that for such
cases our final predictions depend on the details of chemical decoupling
within the DS, which we do not study further in this thesis. While thisThe correlation is

present also when
ξEWPT = 2 and

λhϕ = 10−7

requirement removes almost half of the parameter points, it does not
introduce any significant bias, i.e. the distributions of fpeak and Ωpeak

GW h2

look very similar with and without this additional requirement.

The parameter combination ξEWPT = 2 and λhϕ = 10−7 leads to a nearly
maximal enhancement of the GW signal. As expected, we find that the
peak position of the GW signal is not affected, such that the frequency
range implied by the observed DM relic abundance remains within the
LISA sensitivity window. The amplitude of the GW signal, on the other
hand, is slightly enhanced, as can be seen from the comparison in the
corresponding one-dimensional histogram. We can make this statement
more precise by once again interpreting the density of points in the69% of points with

strong supercooling
are observable

scatter plots as a probability distribution for the observables. Compared
to fig. 6.6, we find that the probability to obtain a signal observable with
LISA increases from 3% to 8%. Limiting ourselves to parameter regions
with strong supercooling, the fraction of observable events increases
from 35% to 69%. We summarize our findings in table 6.2.

We emphasize that this large increase is a result of fixing ξ and λhϕ to
particular values. If we instead vary ξ and λhϕ as part of the scan, most
parameter combinations will either give very similar results to the case
ξ = 1 considered in section 6.3 or lead to an extended period where the
DS energy density dominates.
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Figure 6.11: GW signal of the scenarios considered in fig. 6.9, i.e. for various
values of the portal coupling λhϕ (different panels) and the initial
temperature ratio ξEWPT (different colors).

6.6 conclusions

In this chapter we explored correlations between the DM relic density and
GW signals arising from a FOPT that breaks a U(1)′ gauge symmetry
and gives rise to the mass of a fermionic DM particle. We demonstrated
that, while the amplitude of the GW signal depends on the details of
the effective potential and can vary over many orders of magnitude, the A FOPT-triggered

freeze-out hints
towards LISA
frequencies

peak frequency is tightly constrained once we impose the observed value
for the DM relic abundance. Intriguingly, the peak frequency is found to
lie exactly in the milli-Hertz range, which will be explored by the LISA
mission.

The DS considered in this chapter is characterized by four parameters:
the dark gauge coupling g, the quartic coupling of the dark Higgs field λ,
the dark Yukawa coupling y and the dark Higgs vev vϕ. As a first step,
we calculated the effective potential and the percolation temperature
of the PT and identified the regions of parameter space that give a
strong (large α) and not too fast (β/H ∼ 102–104) PT, corresponding
to potentially observable GW signals. We showed in particular that large
GW signals require sizable couplings g and λ and occur also for large
values of y. The relic density of the DS is determined by annihilations
of DM fermions into pairs of dark Higgs bosons. The requirement to
match the observed DM relic density then requires that the DM fermion
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Figure 6.12: Same as fig. 6.6, but without the assumption of thermal equilibrium
between the two sectors. Specifically, we consider ξEWPT = 2 and
λhϕ = 10−7. Compared to the situation in fig. 6.6 (indicated by
the red lines in the 1D histograms), the GW amplitude is shifted
to slightly larger values, while the peak position remains almost
unaffected.

cannot be much lighter than the dark Higgs boson, with mass mϕ ∼ vϕ,
which in turn implies a sizable Yukawa coupling and a DM mass that
is comparable to the dark Higgs vev vϕ. The dark Higgs vev, on the
other hand, determines the percolation temperature and hence the peakThe correlation is

due to requiring a
strong FOPT &

imposing
ΩDMh2 = 0.12

frequency of the resulting GW signal. This connection leads to a tight
correlation between relic density and GW peak frequency. Through
comprehensive scans of the parameter space, we confirmed that this
correlation is indeed highly generic in our model.

A rigorous statistical interpretation of our results is beyond the scope of
this chapter, but some estimates of the significance of the samples can
be performed. A rough measure of the fine-tuning required to have a
visible signal at LISA can be obtained by assuming that the samplingA FOPT producing

relic DM is
observable with

35% chance

distributions of the parameters act as prior probabilities, and that the
sampling density of points hence indicates the posterior distributions
of derived quantities. Indeed, the majority of points drawn from these
distributions do not feature any FOPT at all. Out of the points that
feature a strongly-supercooled PT (Tp/Tc < 0.5), the probability of
producing a visible signal at LISA in our model is around 10%. With
the additional requirement that the observed DM relic abundance be
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Observable by LISA

Selection requirement ξEWPT=1,
λhϕ=10−6

ξEWPT=2,
λhϕ=10−7

Full sample 0.1% 0.5%

FOPT 0.8% 3%
FOPT + relic density 3% 8%

Strong supercooling 10% 21%
Strong supercooling + relic density 35% 69%

Table 6.2: Fraction of parameter points that predict an observable GW signal
for LISA after imposing various selection requirements on the sample
of points drawn from the parameter ranges discussed in section 6.2.3.

reproduced, this probability increases to 35%, as a result of the strong
correlation between the predicted relic density and the peak frequency
of the GW signal (see fig. 6.6).

We then studied two connected questions: How does the DS transfer
its energy density to the SM? And is it justified to assume the same
temperature for both sectors? Indeed, the PT leads to an increase of
the DS temperature, as vacuum energy is converted into rest mass
and kinetic energy. Having confirmed that the DS itself thermalizes
immediately after the PT, we discussed in detail how the two sectors
thermalize with each other for the specific case that the two Higgs bosons DS thermalization

is efficientin the theory interact via the portal coupling λhϕ. After both electroweak
symmetry breaking and DS symmetry breaking, this interaction leads
to mixing between the Higgs bosons, such that they can decay into each
other as well as into fermions of both sectors.

We derived and solved the Boltzmann equations for the entropy transfer
between the two sectors and showed that for λhϕ > 10−6 the assumption
of equal temperature for both sectors is well justified. This portal
coupling is small enough to be consistent with all laboratory constraints,
in particular with direct detection experiments. For even smaller portal
couplings, on the other hand, the temperatures of the two sectors may
differ significantly, motivating us to consider the initial temperature ratio
ξEWPT as a free parameter. While small values of λhϕ combined with
large initial values of ξEWPT may lead to an increase in the amplitude
of the GW signal, the dark Higgs bosons will decay only slowly after the For λhϕ ≈ 10−7,

ξ > 1 leads to
stronger GWs

PT and may end up dominating the energy density of the universe. The
resulting entropy injection would then lead to a substantial dilution of
GW signals. We find that for λhϕ ≈ 10−7 a net enhancement remains,
demonstrating that it is possible to have ξ > 1 during the DSPT
while at the same time avoiding the dilution of the DS signal due to
sufficiently rapid thermalization afterwards. Repeating our parameter
scans for ξ = 2 and λhϕ = 10−7, we find that the impact on the GW
spectrum is only modest; while the typical amplitude is slightly enhanced,
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the peak frequency remains unchanged. In combination, these effects
increase the fraction of points with a strongly supercooled PT that
would be observable in LISA to 69%. Hence, our conclusion regarding
the correlation between the DM relic abundance and the GW peak
frequency applies also to DSs that thermalize only slowly with the SM.

An interesting open question is how the relic density calculation would
change for even smaller values of the portal coupling than what we
consider. In this case, the energy density of the universe would be
dominated by non-relativistic dark Higgs bosons, which may develop a
chemical potential if number-changing processes are inefficient. The relic
density calculation then requires solving a coupled set of Boltzmann
equations with non-trivial evolution of the DS temperature. While
the details of this calculation are beyond the scope of this thesis, the
general expectation is that the DM relic abundance would be increased.Can chemical

potentials push the
signal to nHz?

This might open up the possibility to have a DSPT in the nano-Hertz
frequency range and hence of interest in the context of recent results from
PTAs [7–9]. Another promising avenue for further investigations opens
up due to our findings regarding the bubble wall velocity presented in
appendix 6.A. There exists a potentially relevant part in the parameter
space of our model in which the Bödeker-Moore criterion hints towards
non-relativistic bubble wall velocities. For such low wall speeds the effect
of bubble filtering [287] may be non-negligible, and the calculation of
the DM relic abundance is expected to be more involved than presented
here.

Let us finally mention that even for tiny portal couplings there is a
chance to actually detect the DM particles that we consider: unlike for
annihilation into dark Higgs boson pairs, the mixed annihilation channel
into one dark Higgs boson and one dark photon is not suppressed in
the limit of small DM velocities. If kinematically allowed, it may thusIndirect detection

probes lead to observable signals in indirect detection experiments [321] such
as CTA [322]. Such an observation would raise the possibility to explore
in practice the correlations studied in this chapter and pin down the
detailed structure of the DS.
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6.a dark bubble walls

In addition to the strength α of the PT, its speed β/H, the percolation
temperature Tp, and the temperature ratio ξp, it is also necessary to know
the speed of the bubble walls vw in order to determine the processes that
dominate the GW signal from a DSPT. While the former parameters
can be obtained from the effective potential Veff(ϕ, Td), the bubble wall
velocity depends on plasma effects of the expanding bubble walls and
therefore requires additional considerations. For bubbles expanding into
the vacuum (i.e. if bubbles expand into a plasma that is not influenced
by a change of the scalar vev), there is no source of friction, such that
bubble walls can accelerate up to the point of their collision. For walls The dark wall

velocitythat interact with the surrounding plasma, on the other hand, several
model-dependent sources of friction have been discussed [302,323–326]. If
the friction increases with the bubble wall velocity, the acceleration of the
bubble walls eventually stalls and a terminal velocity is reached. In this
case, the bulk motion of the plasma dominates the GW spectrum [304].

In this paper we take the approach suggested in ref. [208], i.e. we show
that vw is either expected to be non-relativistic in our model or that
the bubbles are relativistic, but do not run away due to the emission Gauge bosons

prohibit runawayof soft gauge bosons in the bubble walls. We conclude that the plasma
motion is responsible for the dominant part of the GW signal and the
contribution from bubble wall collisions is negligible.

To decide whether a bubble wall can accelerate up to relativistic ve- The Bödeker-Moore
criterionlocities, we use the Bödeker-Moore criterion [324], which relates the

velocity-independent leading-order (LO) bubble wall friction PLO to the
amount of liberated vacuum energy density ∆Veff:

BM criterion:

∆Veff > PLO Relativistic bubble walls.

∆Veff < PLO Non-relativistic bubble walls.
(6.20)

We emphasize that this criterion is insufficient to decide whether walls
can run away (i.e. accelerate indefinitely), because of the next-to-
leading-order (NLO) friction PNLO, which scales with powers of γw =
1/
√
1− v2w [302,303,327]. Bubbles can run away only if ∆Veff > PLO +

PNLO for all vw. Otherwise they will reach a relativistic terminal velocity
given by the equilibrium of forces, ∆Veff = PLO + PNLO.

The LO friction due to particles acquiring a mass when crossing the
bubble wall is given by [192,324]

PLO ≃
∑
i

gi ci
∆m2

i

24
T 2

d,p , (6.21)

where ∆m2
i is the positive change of the mass square of particle species LO friction from

mass increase ∆m2
ii during the PT, gi is the corresponding number of degrees of freedom,

and ci = 1 (1/2) for bosons (fermions). This expression assumes that
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the particle masses outside the bubble are below the DS temperature.
For ultra-relativistic bubble walls, the production of heavy particles
with mass up to γwTd,p can also add to the LO friction [325]. For the
DS considered in this chapter, all particles are light before the PT and
subsequently obtain a mass comparable to the scale of the PT, such
that (6.21) is the only relevant contribution to the LO friction.

In the case of a broken U(1)′ with a fermionic species, the LO friction
reads [192]

PLO ≃
(
3m2

A′ +m2
ϕ + 2m2

χ

) Td,p
2

24
≈ m2

A′ Td,p
2

8
, (6.22)

where in the last step we have used that the dominant contribution
comes from the heaviest state in the DS, which in the parameter regions
of interest is the dark photon. The amount of released vacuum energy
∆Veff can be estimated from the zero-temperature potential, which gives

∆Veff ≈ λ

4
v4ϕ =

m2
ϕ

8
v2ϕ . (6.23)

Hence we find that the Bödeker-Moore criterion for relativistic bubble
walls is satisfied ifmϕ/mA′ > Td,p/vϕ, which is the case for the parameter
regions that give strongly supercooled PTs corresponding to observable
GW signals (Td,p ≲ 0.1 vϕ). In these parameter regions, the bubbleStrong supercooling

implies fast walls walls are therefore expected to be relativistic, vw → 1. This finding also
implies that we can neglect the effect of bubble filtering, which is only
relevant in the (deeply) non-relativistic regime vw ≪ 1 [287,309]. In the
regions in which weaker GW signals are expected, the Bödeker-Moore
criterion instead hints towards slower bubble walls, see fig. 6.13.

The NLO friction created by the emission of soft dark photons into
the broken phase quickly starts to grow with γw. The bubble walls will
therefore reach a terminal, asymptotic bubble wall velocity which is
close to the speed of light. The precise value of γterminal

w is unnecessary
for our purposes, as the existence of a terminal yet relativistic bubble
wall velocity is sufficient to assume a dominant GW emission through
bulk fluid motion. A more refined calculation of the respective energySound waves are

dominant GW
source

budgets for the processes emitting gravitational radiation was performed
in refs. [185,328,329]. In ref. [328] it was shown that for sufficiently high
terminal bubble wall velocities the fluid profiles are strongly peaked,
such that the emitted GW spectral shapes are in fact indistinguishable
from bubble collisions. We conclude that it is hence a reasonable approx-
imation to work with a GW spectrum that is solely sourced through
sound waves.
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Figure 6.13: The leading-order friction PLO over the difference ∆Veff in potential
energy between the true and false vacuum phases as a function
of the quartic coupling λ and the gauge coupling g for values of
the Yukawa coupling y = 0 and y = 0.5. Values greater than one
indicate that relativistic bubble wall velocities cannot be reached,
cf. eq. (6.20). For values smaller than one, a relativistic terminal
velocity is expected.

6.b detail on thermalization and freeze-
out

Here we discuss the processes we consider for the entropy transfer
between the DS and the SM.

6.b.1 The thermal mixing angle

The Higgs mixing angle defined in eq. (6.12) depends on temperature
through the masses and vevs of the two Higgs bosons. The temperature
dependence of the dark Higgs boson can be directly obtained from
the effective potential, whereas we follow ref. [316] to implement the
temperature dependence of the SM Higgs boson. For large values of the Mixing depends on

temperaturedark Higgs vev, we sometimes encounter the situation that the SM Higgs
and dark Higgs mass become similar or even cross, in which case the
mixing angle apparently diverges. To regulate this unphysical divergence,
we have to include the finite width Γh of the Higgs resonance. As shown
in ref. [319], including the width leads to an effective mixing angle given
by

θ2eff(T ) =
(λhϕvh(T )vϕ(T ))

2

(m2
ϕ(T )−m2

h(T ))
2 + (mϕ(T )Γh)2

. (6.24)
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6.b.2 The Boltzmann equation for entropy transfer

In our analysis we specify the initial conditions, i.e. the temperature
ratio ξEWPT of the DS and SM bath at the EWPT, for which we take
TEWPT = 150GeV. Which processes contribute to the thermalization ofOn the order of

DSPT and EWPT the two sectors depends on whether or not the U(1)′ gauge symmetry is
already broken at this point. We consider two different timelines:

• The electroweak symmetry breaks before the DSPT. This is the
case for the majority of our parameter space. Here, the thermal-
ization between the two sectors is initially determined by the
processes hh ↔ ΦΦ and the decay of the SM Higgs h → ΦΦ.
Additional processes can only contribute after the DSPT.

• The DSPT occurs before the EWPT. This can happen for param-
eter points with a large vev of the dark Higgs and not too strong
supercooling. Once both symmetries are broken, thermalization
proceeds via hh↔ ϕϕ, the decays of the SM Higgs into dark Higgs
h→ ϕϕ if it is kinematically allowed, and the decays of the dark
Higgs into SM particles ϕ→ SM SM through Higgs mixing.

In the following we give the relevant expressions contributing to the
entropy transfer.

2 → 2 processes In most regions of parameter space, the DS phase
is unbroken immediately after the EWPT, such that there are no dark
Higgs boson decays that can transfer entropy between the two sectors.
Here the 2 → 2 process induced by the portal coupling ΦΦ ↔ hh
become relevant. Since the particles’ thermal masses are smaller thanThermalization

through ΦΦ ↔ hh the temperature, we cannot take the usual non-relativistic approach.
Instead we will follow the relativistic treatment of the calculation of the
entropy transfer developed in refs. [330, 331], which we briefly sketch
here. The heat transfer for 2 → 2 processes can be expressed as

q̇
∣∣DS
2→2

=

∫
d3p1
(2π)3

d3p2
(2π)32E2

d3k1
(2π)32Ek1

d3k2
(2π)32Ek2

|M|2(2π)4δ(Σp)

× f(p1)f(p2)(1 + f(k1)(1 + f(k2))

=

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

8E1F (p1, p2)σ(p1, p2)f(p1)f(p2) .

(6.25)

Here the final state statistical factors are absorbed into the cross section
and F (p1, p2) =

√
(p1 · p2)2 −m2

1m
2
2. It is easiest to calculate this cross

section in the center of mass frame. However, since the Bose-Einstein
and Fermi-Dirac distributions are not Lorentz-invariant we have to apply
a Lorentz boost Λ from the cosmic rest frame where u = (1, 0, 0, 0)T into
the center of mass frame, which can be parameterized by the rapidity
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η and two angles θ and φ; for details see ref. [330]. The phase space
distribution becomes

f(k) =
1

eu·k/Td ∓ 1

Λ→ fΛ(k) =
1

e(k0 cosh η+k1 sinh η)/Td ∓ 1
. (6.26)

With this, we can rewrite the center of mass cross section as

σCM(p1, p2) =
1

(2π)216F (p1, p2)

∫
dφd cos θ |M|2

×

√
E2 −m2

f

E
((1 + fΛ(k1))(1 + fΛ(k2))) .

(6.27)

The matrix element for the processes ΦΦ → hh is at tree level simply
given by M = iλhϕ. For this angle-independent transition amplitude,
we can integrate over the solid angle and obtain

σCM =
|M|2
64πE2

Td√
E2 −m2

Φ sinh η

1

1− e
− 2E

Td
cosh η

× ln

sinh
(

E cosh η+
√

E2−m2
h sinh η

2Td

)
sinh

(
E cosh η−

√
E2−m2

h sinh η

2Td

)


︸ ︷︷ ︸
≡λ(E,η,Td,mh)

. (6.28)

In the case of initial and final states with respectively equal masses,
eq. (6.25) reduces to

IΦΦ→hh ≡ 2Td
π4

∫ ∞

mΦ(Td)
dE
√
E2 −m2

ΦE
4

×
∫ ∞

0
dη
σCM sinh η cosh η

e2E cosh η/Td − 1
lnλ(E, η, Td,mΦ) .

(6.29)

This expression can now be efficiently evaluated numerically. An analo-
gous expression is obtained for the process hh→ ϕϕ.

We note that in principle there are additional 2 → 2 processes that may
contribute to thermalization. The process ϕϕ→ tt̄ via an off-shell SM
Higgs boson is strongly Boltzmann-suppressed below the EWPT [316]
and does not give a relevant contribution in the temperature range that
we consider. However, processes such as ϕ + q → g + q with a quark We neglect

ϕ+ q → g + qin the t-channel can give a relevant contribution if the decay ϕ→ bb̄ is
kinematically forbidden [318,319]. Since this is the case only in a very
small fraction of the parameter space that we consider, we neglect these
processes, thus giving a conservative estimate of the thermalization rate.

standard model higgs boson decays After both symmetries are
broken and for temperatures comparable to the SM Higgs boson mass,
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a second process of interest besides dark Higgs decays is the resonantly
enhanced pair-annihilation of dark Higgs bosons into predominantly
bottom quarks: ϕϕ→ h→ bb̄. In thermal equilibrium, the rate of this
process can be related to the inverse process, which is the decay h→ ϕϕ
with partial width given by

Γh→ϕϕ =
(m2

h + 2m2
ϕ)

2 sin2 2θeff

128πmh

(
1−

4m2
ϕ

m2
h

)1/2

×
(

1

vϕ
cos θeff +

1

vh
sin θeff

)2

. (6.30)

This gives the additional term in the heat transfer rate

q̇
∣∣DS
h→ϕϕ

= −mhΓh→ϕϕn
eq
h

1−( nϕ
neq
ϕ

)2
 . (6.31)

Before the DSPT, we also have the decay h→ ΦΦ with the decay rate

Γh→ΦΦ =
λ2hϕv

2
h

128πmh
, (6.32)

which can be treated in analogy to the case above.

full boltzmann equation The full Boltzmann equation that we
solve before the PT, in case it occurs after the EWPT then readsBefore the DSPT,

after the EWPT

ṡDS + 3HsDS = −mh

Td
Γh→ΦΦn

eq
h

( nϕ
neqϕ

)2

− 1


− 1

Td
IΦΦ→hh +

1

Td
Ihh→ΦΦ . (6.33)

The equation for the case of the DSPT occurring before the EWPT
follows analogously. After both symmetries are broken the full BoltzmannAfter both PTs
equation reads

ṡDS + 3HsDS = −mϕ

Td
Γϕ→SMSMn

eq
ϕ

(
nϕ
neq
ϕ

− 1

)

+
mh

Td
Γh→ϕϕn

eq
h

1−( nϕ
neq
ϕ

)2


− 1

Td
Iϕϕ→hh +

1

Td
Ihh→ϕϕ . (6.34)

where we use the decay widths of the SM Higgs into other SM par-
ticle pairs from ref. [159]. The equations for the SM entropy follow
analogously.
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6.b.3 Annihilation cross sections

In the following we list the various DM annihilation cross sections in the
non-relativistic limit, up to second order in the center-of-mass velocity
v (of each of the DM particles):

(σv)χχ→A′A′ =
m4

A′(m2
χ −m2

A′)3/2

64π v4ϕmχ(m2
A′ − 2m2

χ)
2

+
v2
√
m2

χ −m2
A′

384π v4ϕmχ(m2
ϕ − 4m2

χ)
2(m2

A′ − 2m2
χ)

4

×
[
144m12

A′m2
χ

+ 2m10
A′(7m4

ϕ − 88m2
ϕm

2
χ − 432m4

χ)

+ 128m10
χ (m4

ϕ + 8m4
χ)

− 64m2
A′m8

χ(3m
4
ϕ + 16m2

ϕm
2
χ + 32m4

χ)

+ 4m4
A′m6

χ(17m
4
ϕ + 600m2

ϕm
2
χ + 592m4

χ)

+m8
A′(−73m4

ϕm
2
χ + 1128m2

ϕm
4
χ + 1840m6

χ)

+ 4m6
A′(25m4

ϕm
4
χ − 648m2

ϕm
6
χ − 496m8

χ)
]

+O
(
v4
)

(6.35)

(σv)χχ→ϕϕ =
v2mχ

√
m2

χ −m2
ϕ

(
3m4

ϕ − 8m2
ϕm

2
χ + 8m4

χ

)
192π v4ϕ(m

2
ϕ − 4m2

χ)
2(m2

ϕ − 2m2
χ)

4

× (9m8
ϕ − 64m6

ϕm
2
χ + 200m4

ϕm
4
χ

− 352m2
ϕm

6
χ + 288m8

χ)

+O
(
v4
)

(6.36)

(σv)χχ→A′ϕ =
1

2048πv4m4
χ

× (m4
A′ − 2m2

A′m2
ϕ +m4

ϕ − 8m2
A′m2

χ

− 8m2
ϕm

2
χ + 16m4

χ)
3/2

+
v2
√
m4

A′ + (m2
ϕ − 4m2

χ)
2 − 2m2

A′(m2
ϕ + 4m2

χ)

12288π v4ϕm
4
χ(m

2
A′ − 4m2

χ)
2(m2

A′ +m2
ϕ − 4m2

χ)
4

×
[
− 11m16

A′ − 2m14
A′(11m2

ϕ − 228m2
χ)

− 16m4
χ(m

2
ϕ − 4m2

χ)
4

× (15m4
ϕ − 80m2

ϕm
2
χ + 16m4

χ)

−m12
A′(−11m4

ϕ − 1200m2
ϕm

2
χ + 7264m4

χ)

+ 4m10
A′(11m6

ϕ + 266m4
ϕm

2
χ

− 4328m2
ϕm

4
χ + 15136m6

χ)
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+ 8m2
A′m2

χ(m
2
ϕ − 4m2

χ)
2

× (15m8
ϕ − 244m6

ϕm
2
χ + 1280m4

ϕm
4
χ

− 2880m2
ϕm

6
χ + 6912m8

χ)

−m4
A′(m2

ϕ − 4m2
χ)

2(11m8
ϕ − 344m6

ϕm
2
χ

+ 1808m4
ϕm

4
χ − 8704m2

ϕm
6
χ + 80384m8

χ)

−m8
A′(−11m8

ϕ − 32m6
ϕm

2
χ + 12464m4

ϕm
4
χ

− 114688m2
ϕm

6
χ + 291840m8

χ)

− 2m6
A′(11m10

ϕ − 140m8
ϕm

2
χ + 1216m6

ϕm
4
χ

− 29056m4
ϕm

6
χ + 201984m2

ϕm
8
χ

− 412672m10
χ )
]

+O
(
v4
)

(6.37)



7 DO PTAS OBSERVE INSP I RA L ING
PR IMORD I A L B LACK HOLES?

This chapter is based on the following publication:

[3] P. F. Depta, K. Schmidt-Hoberg, P. Schwaller, and C. Tasillo,
Do pulsar timing arrays observe merging primordial black
holes? , [2306.17836]

Our hopes and expectations:
Black holes and revelations

— Starlight by Muse

7.1 introduction

In chapter 3 we reviewed the recent PTA results and concluded that the
inspiral of SMBHBs is expected to contribute to the observed GWB at Astrophysical

SMBHBs can only
partially explain
NANOGrav

nHz frequencies [238]. To match the observed signal amplitude, however,
the local SMBHB density would need to be an O(10) factor larger than
previously estimated [216–218]. Hence, the validity of this explanation is
under active debate [219–222] and it is interesting to consider alternative
sources.

In chapter 5 we studied whether cosmological PTs could account for
the novel PTA signal. In the present chapter we move on and study
the possibility that the observed GWB could be due to inspiraling
supermassive primordial black holes. The existence of PBHs in this mass Motivation for

supermassive
PBHs

range is motivated by yet unresolved puzzles concerning the observation
of a large population of high-redshift quasars [29–33] and the related
problem of missing seeds for non-linear structure formation at early
times [34,332].

To obtain the correct GWB signal amplitude, however, we will find that
a sizable abundance of PBHs is required, which is subject to strong
constraints from various observational probes [28]. It is therefore a Our results

contradict Atal et
al.

non-trivial question whether inspiraling PBHs could constitute a viable
explanation. Indeed we find, in accordance with ref. [123] which appeared
shortly after our work [3], that it is not possible to consistently explain
the NANOGrav data with homogeneously distributed PBHs. Specifically
the parameter regions at very large PBH masses which naively allow
fitting the PTA data (as done in [333]) no longer result in a stochastic
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(or even continuous) signal. For clustered PBHs, on the other hand,
we find that the formation of binary systems is more efficient and the
merger rate is generally enhanced [334], opening the possibility for an
overall consistent description of the observed GWB.

This chapter is structured as follows: We first review and extend the
formalism required to compute the GWB emitted from binary mergers
for the case of clustered PBHs in section 7.2. In section 7.3 we summarize
our calculation of the number of PBH binaries responsible for a given
GWB, justifying our claim that ref. [333] came to an erroneous result.Outline of this

chapter After discussing the relevant PBH constraints and how to match the
predicted signal to PTA data in sections 7.4 and 7.5, respectively, we
present our results in section 7.6.

7.2 gravitational wave signal

We provided a first approximation for computing the GWB spectrum
from the inspiral of a population of SMBHBs in eq. (3.31). Now, we will
go beyond this: In the scenario at hand, the GWB h2Ωgw(f) is generated
from PBH binary mergers occurring at a rate R(tr) per comoving volume
Vc and cosmic time tr. The frequencies accessible to PTAs can be wellGoing beyond

Ωgw(f) ∝ f2/3 below the maximal frequency emitted during the merger and might
therefore have been radiated long before coalescence, which we need to
take into account. In particular, a given binary merging at time tr,merg
has emitted a frequency fr in the cosmic rest frame, redshifted to a
frequency f = fr/(1 + z) today, at time tr = tr,merg − τfr , where

τfr =
5× 21/3

256π8/3
f−8/3
r (GmPBH)

−5/3 (7.1)

is the time until coalescence for fr [14]. As tr,merg is the argument for the
merger rate, the number of events per comoving volume and cosmic time
emitting a frequency fr in the cosmic rest frame at cosmic time tr is given
by R(tr + τfr). Note that to the best of our knowledge this frequency-
dependent rate has not been discussed in the literature concerning GWs
generated by PBHs before. The GW energy density parameter is given
by (cf. ref. [150])

Ωgw(f) =
f

ρcrit

∫ t0

0
dtr

(
R(tr + τfr)

dEr
gw

dfr

)
fr=(1+z)f

, (7.2)

where t0 is the current cosmic time, fr = (1 + z) f is the frequency that
needs to be emitted at the redshift z = z(tr) corresponding to tr to



7.2 gravitational wave signal 165

detect a frequency f today, and the GW spectrum can be estimated by
power-laws for inspiral, merger, and ringdown [335]1

dEr
gw

dfr
≃ (πG)2/3m

5/3
PBH

3× 21/3



f
−1/3
r fr < f1

f
2/3
r
f1

f1 ≤ fr < f2
f2
r f

4
4

f1f
4/3
2 [4(fr−f2)2+f2

4 ]
2

f2 ≤ fr < f3

0 f3 ≤ fr .

(7.3)

Here we assumed PBHs with equal masses mPBH, fi = (aiη
2 + biη + GWs from inspiral,

merger and
ringdown

ci)/(2πGmPBH) with η = 1/4, and used the coefficients provided in
Table I of ref. [335]

(a1, a2, a3, a4) = (2.97, 5.94, 8.48, 5.08)× 10−1 , (7.4a)

(b1, b2, b3, b4) = (4.48, 8.98, 12.8, 7.75)× 10−2 , (7.4b)

(c1, c2, c3, c4) = (9.56, 19.1, 27.3, 2.24)× 10−2 . (7.4c)

Note that the GW energy density Ωgw(f) is in fact a cosmological
average of many PBH binaries. We discuss the effect of only having
access to a local realization of the GWB within PTA measurements in
sec. 7.3.

For the merger rate we adapt the calculation from ref. [336]. We assume a
monochromatic initial PBH mass distribution, expecting that going to an
extended distribution does not qualitatively change our results. A PBH
binary forms in the early Universe when the gravitational attraction
between two neighboring PBHs overcomes the Hubble flow. A third
close-by PBH provides angular momentum such that the two PBHs do
not simply collide [337–339].

Clearly the merger rate depends on the local PBH density at binary
formation. It is therefore interesting to study the effect of clustering,
which increases the global comoving number density nPBH by the local Clustering δdc

increases the
merger rate

density contrast δdc. The density contrast can be considered constant
on the scales relevant for binary formation [336]. The comoving number
density nPBH can be expressed in terms of the PBH mass mPBH, the
fraction of PBH DM fPBH and the DM density ρDM,0 today

nPBH = fPBH
ρDM,0

mPBH
. (7.5)

The number density dn3 of the three-body configurations relevant for
binary formation, where the comoving distance from a given PBH in
the binary to the other PBH in the binary is within x and x+ dx and
the comoving distance to the third PBH is within y and y + dy, is [336]

dn3(x, y) =
nPBH

2
e−NPBH(y) (4πnPBHδdc)

2 x2 y2 dx dy . (7.6)

1 In our calculations we include a cut-off at fr = 1/tr, since smaller frequencies cannot
have completed even one complete orbit.
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Here, the factor of 1/2 removes over-counting as either one of the PBHs
in the binaries can be chosen and e−N(y) makes sure that there is
no fourth binary within the comoving distance y (assuming Poisson
statistics), where

NPBH(y) =
4π

3
nPBH δdc y

3 (7.7)

is the expected number of binaries within a sphere of comoving distance
y. The coalescence time τ of this binary is given by [336,340]

τ(x, y) = τ̃
(x
x̃

)37 (y
x̃

)−21
, (7.8)

where

τ̃ =
3

170

(aeqx̃)
4

(GmPBH)3
, x̃ =

3

4π

2mPBH

a3eq ρeq
, (7.9)

aeq and ρeq are the scale factor and total energy density at matter-
radiation equality. The merger rate at time tr is then given by

R(tr) =

∫ x̃

0
dx

∫ ∞

x
dy

∂2n3
∂x ∂y

δ(tr − τ(x, y))

=
9 Ñ

53/37
PBH

296π δdc x̃3 τ̃

(
tr
τ̃

)−34/37

×
(
Γ

[
58

37
, ÑPBH

(
tr
τ̃

)3/16
]
− Γ

[
58

37
, ÑPBH

(
tr
τ̃

)−1/7
])

(7.10)

with the incomplete gamma function Γ and ÑPBH = NPBH(x̃). By
substituting tr → tr + τfr we can therefore compute the rate R(tr + τfr)
for the emission of this frequency fr. Multiple merger steps, possibly
present due to successive hierarchical merging of PBH binaries with
increasing mass due to large clustering, can be easily implemented by
adding the rates and contributions to the GW energy density parameter
for the corresponding steps as detailed in ref. [334]. We include multiple
merger steps when discussing the case of significant clustering, noting
that this slightly shifts our results for δdc = 103 to lower PBH abundances
compared to only considering a single step.

To illustrate the importance of the time when a given frequency is
emitted we show in the left panel of fig. 7.1 the rate for binaries merging
at tr (dotted blue line) with the one for GW emission with frequenciesThe correction

tr → tr + τfr is
important!

f = 1µHz and 2.5 nHz today (solid green and orange lines), assuming
mPBH = 105M⊙, fPBH = 1, and δdc = 1 in each case. For instance, at
tr = 108 yr (i.e. z ≈ 30) one obtains τfr((1 + z)1µHz) ≈ 130 yr and
τfr((1 + z)2.5 nHz) ≈ 1.1× 109 yr. Hence, the rate for the emission of
GWs with the larger frequency (solid light green line) is very close to
the merger rate (dotted line), whereas the rate for the emission of GWs
with the smaller frequency (solid dark green line) differs significantly,
i.e. it takes the value that the dotted blue line attains 1.1× 109 yr later.
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Figure 7.1: Left: Rate for binaries merging at tr (dotted line) as well as rate
for emitting GWs at tr with frequencies today f = 1µHz and
2.5 nHz (solid light green and dark green lines) assuming mPBH =
105M⊙, fPBH = 1, and δdc = 1. Right: GW energy density h2Ωgw(f)
obtained using the correct rate R(tr + τfr) (solid lines) and instead
using the merger rate R(tr) in eq. (7.2) (dotted lines) for mPBH =
105M⊙, fPBH = 1, and δdc = 1 (green) and mPBH = 109M⊙,
fPBH = 2 × 10−2, and δdc = 1 (purple). We also show the region
where the NANOGrav 12.5yr and 15yr signals are located assuming
a power-law with slope γ = 13/3 (see eq. (3.35)).

In the right panel of fig. 7.1 we show h2Ωgw(f) as a function of the
GW frequency today according to eq. (7.2) (solid lines) as well as just
inserting the merger rate R(tr) instead of R(tr + τfr) in the integral
(dotted lines). The difference between those calculations is especially
important for the low frequencies observed by NANOGrav if the PBH
mass is relatively light.

We close the discussion of the GWB signal by mentioning some assump- Assumptions
tions that entered in its calculation. These include

• a monochromatic mass distribution for the PBHs [336],

• a circular orbit of the PBH binaries for the GWB spectrum and
the time until coalescence for a given frequency,

• neglecting the effect of other PBHs on the binaries [341, 342] as
well as other environmental effects e.g. due to accretion, and

• late-time formation of binaries [336].

Apart from the effect of other PBHs which can potentially significantly
reduce their merger rate on binaries [342], these assumptions are not
expected to have a qualitative impact on our results. A valuable test of
these assumption is within reach using astrophysical N -body simulations,
which are, however, computationally expensive and hence beyond the
scope of this thesis.
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7.3 expected number of binaries

The PTA signals are reported as stochastic GWBs. While there haveOn the
stochasticity of

Ωgw

been searches for signals of individual binaries in the data of different
PTAs [15,264,343], no compelling evidence for these signals was found.
For sufficiently large PBH masses and small abundances the expected
signal will in general no longer resemble a stochastic background, as
only very few binaries will contribute to the signal, causing inconsistency
with observations.

The problem is exacerbated by the question of how well an actual
distribution of merging binaries observed by a PTA (corresponding to a
local2 value of GW energy density Ωgw,loc) would reproduce the global
average of the GW energy density h2Ωgw(f) = h2⟨Ωgw,loc(f)⟩, i.e. how
well the global mean is reproduced by the binaries that are in our past
light cone. As shown in ref. [272], even relatively generic distributions
of binary mergers, scaling with the luminosity distance squared, canGood predictions

require large N̄ lead to wide distributions in Ωgw,loc, with width-to-mean ratios scaling
like ∆Ωgw,loc/Ωgw ∝ N̄−1/3 with N̄ the expected number of binaries
contributing to a certain frequency range, slower than predicted from
the central limit theorem ∝ N̄−1/2.

To calculate the average number of binaries contributing to a certain
frequency range, recall that R(tr + τfr) is the number of binaries per
comoving volume Vc and per time interval in the cosmic rest frame trOn calculating N̄

emitting with a frequency fr. Hence, the number of binaries dN̄ emitting
at redshifts between z and z+dz with a frequency within the logarithmic
interval d ln fr around fr is [344]

R(tr + τfr) =
d2N̄

dtr dVc
=

dz

dtr

d2N̄

dz d ln fr

d ln fr

dtr

dtr
dz

dz

dVc

=
d2N̄

dz d ln fr

(
−d ln fr

dτfr

)
dz

dVc
, (7.11)

where we used that the time in the cosmic rest frame a source is emitting
within the frequency interval is given by

dtr
d ln fr

dtr
= −dtr

d ln fr

dτfr
, (7.12)

as τfr is the time until coalescence for fr. Since the binaries emitting in
the logarithmic frequency interval d ln fr around fr are detected today
in a logarithmic frequency interval d ln f around f , where d ln fr =
dfr/fr = df/f = d ln f , we have

d2N̄

dz d ln f
=

d2N̄

dz d ln fr
. (7.13)

2 Local on the scales relevant for a GW signal in PTA observations, i.e. at least within
a sphere around earth with a few light-years radius such that correlations between
different pulsars can be affected.
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With eq. (7.1) and the definition of the comoving volume in a spatially
flat universe

Vc(z) =
4π

3
[dc(z)]

3 =
4π

3

(∫ z

0

dz′

H(z′)

)3

, (7.14)

where dc is the comoving distance and H is the Hubble rate, we find

d2N̄

dz d ln f
=

8

3
τfr

4π [dc(z)]
2

H(z)
R(tr(z)− τfr) . (7.15)

The average number of binaries N̄(f−, f+) contributing to GWs of
frequencies between f− and f+ is therefore given by3

N̄(f−, f+) =
∫ f+

f−

df

f

∫ ∞

0
dz

8

3
τfr

4π [dc(z)]
2

H(z)
R(tr(z)− τfr) .

(7.16)

As we are interested in the number of binaries contributing to the
NANOGrav 15yr signal, we take the frequency interval to span over the
corresponding lowest 14 Fourier modes, i.e. f− = 1/T 15yr

obs = 1.98 nHz
and f+ = 14/T 15yr

obs = 27.7 nHz, cf. fig. 2.8.

The signal prediction for PTAs is crucially affected by the expected
number of binaries emitting in the relevant frequency band [272]. Gen-
erally, the local GWB h2Ωgw,loc(f) that may be observed by a PTA is
obtained by adding individual PBH binaries (the total number drawn
from a Poisson distribution with mean N̄(f−, f+)) distributed accord-
ing to d2N̄/(dz d ln f). In particular, h2Ωgw,loc(f) is not deterministic
given model parameters (mass, abundance, and clustering of PBHs), but
instead stochastic in itself. The statistics of h2Ωgw,loc(f) can be evalu-
ated using Markov chain Monte Carlo methods or moment generating
functions [272]. Due to the considerable additional numerical effort we
leave this for future studies, use the global average signal prediction
h2Ωgw(f), and identify regions in parameter space where we expect a High signal

prediction
uncertainty for
N̄ ∼ O(few)

significant deviation from the global average. If N̄(f−, f+) ≫ 1, a lot of
different PBH binaries contribute to the GW signal and the local GWB
h2Ωgw,loc(f) is close to the global average h2Ωgw(f). This holds even
though uncertainties due to some close-by binaries can be relevant for
N̄(f−, f+) ≲ 100 [272]. If N̄(f−, f+) ∼ O(few), i.e. if the GW signal is
composed of only a few binaries, the uncertainty in the signal prediction
is considerable. Arguably, it would be more appropriate to search for
individual GW events instead of a GWB [15,264,343]. If N̄(f−, f+) ≪ 1,
even having a single PBH binary emitting GWs is unlikely and, though
it is possible to have an unexpectedly large background as there is a
single binary nonetheless, in most realizations h2Ωgw,loc(f) = 0.

3 The actual number of binaries is then Poisson distributed with mean N̄(f−, f+).
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7.4 pbh production and constraints

There are many different production mechanisms for PBHs, see e.g. [35,
254,255,345–348]. Highly clustered PBH distributions in particular areWe remain

agnostic about the
PBH production

not expected for Gaussian primordial fluctuations [349,350], but could
e.g. arise due to primordial non-Gaussianities [332,351,352] or from the
collapse of domain walls [346]. In this thesis we remain agnostic about
the origin and spatial distribution of PBHs and concentrate on exploring
the phenomenological impact of different assumptions.

Different astrophysical and cosmological observations place constraints
on the abundance of heavy PBHs, which we adopt from [28]. These limits
assume a monochromatic mass function as well as a roughly homogeneous
spatial distribution (no clustering). While we briefly comment on the
expected impact of sizable clustering, a full re-evaluation of these limits
would require going beyond some of the simple approximations made in
the original derivations and is beyond the scope of this thesis. Also note
that many of the different constraints come with different uncertainties
and sometimes also with additional caveats.

The most relevant limits in the mass range of interest come from the
heating of stars in the Galactic disk [353], the tidal disruption of galax-
ies [353], the dynamical friction effect on halo objects [353], requiring
successful formation of the observed large scale structure [34], and ob-The most relevant

PBH constraints servations of X-ray binaries [354]. Many of these limits require at least
one PBH per relevant cosmic structure. In case of PBH clustering, we
expect that some structures will contain more than one PBH while
others contain no PBH at all. This will likely weaken a number of limits
and move them to smaller masses. A proper evaluation of the PBH
spatial distribution and the resulting limits will however require detailed
simulations.

Depending on the production mechanism of the PBHs, strong limits
may also arise from the observation of the CMB. In particular if PBHsThe case of

µ-distortions form due to the tail of Gaussian density fluctuations, Silk damping leads
to µ-distortions and strong constraints over a sizable mass range [355].
However, this limit crucially depends on the production mechanism and
may therefore even be completely evaded, see for instance ref. [332]. In
fact, as discussed above, large clustering generally requires a different
production mechanism, calling into question the relevance of these limits.

7.5 pta data analysis

We fit the GWB spectrum from PBH binary mergers to the NANOGrav
15yr and 12.5yr data sets via the interface ptarcade [356] for ceffyl [118]
using the 14 (five) lowest Fourier modes for the 15yr (12.5yr) data set.
Given that evidence for an HD correlation is only present in the new
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Figure 7.2: Best-fit regions where the NANOGrav 15yr (orange) and 12.5yr
(purple) data set can be explained by inspiraling PBH binaries
without clustering (left) and with significant clustering (right). We
indicate regions, where N̄ < 1, 10, and 100 PBH binaries are
expected to contribute to the signal, and show complementary
constraints as discussed in the main text.

data set, we assume a CURN spectrum for the 12.5yr data set and Our analysis
pipelineonly move to HD correlations for the 15yr data set. We validated our

approach by comparison to results obtained using enterprise and
enterprise-extensions [115, 116]. We perform calculations with no
clustering, δdc = 1, and significant clustering, δdc = 103, choosing log
priors fPBH ∈ [10−5, 1] and mPBH ∈ [105, 1012]M⊙.

To obtain constraints on the (clustered) PBH scenario, we perform an ad-
ditional scan over an extended model parameter spacemPBH, fPBH, AGWB

including an additional mock GW signal contribution (with γ = 13/3
and AGWB ∈ [10−18, 10−14], cf. eq. (2) in ref. [238]) and then marginalize
over AGWB. The region in the remaining (mPBH, fPBH) plane excluded Deriving PBH

constraintswith 2σ corresponds to the parameter space in which the GW signal
would be too strong to account for the signal. To obtain our constraints
on clustered PBHs we further conservatively remove the parameter
space in which less than N̄ = 10 merger events would contribute to the
NANOGrav signal.

7.6 results

In fig. 7.2 we show the regions in PBH mass mPBH and DM fraction Homogeneously
distributed PBHs
cannot explain the
signal

fPBH, where the NANOGrav signal can be explained assuming merging
PBHs with no clustering (left) and significant clustering with δdc = 103

(right). These contours are only expected to be reliable when the ex-
pected number of binaries is N̄ ≳ 10 (cf. dashed dark red lines) as
otherwise the signal observable in NANOGrav is expected to have sig-
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Figure 7.3: Constraints on PBHs from PTA observations with no clustering (or-
ange) and significant clustering δdc = 103 (blue). We conservatively
cut the limits when the expected number of binaries contributing
to the signal falls below N̄ = 10.

nificant deviations from the global average GWB signal used in our
analysis. Especially for N̄ < 1 (full red line) one would not even ex-
pect any GWB signal in most realizations of PBH binary distributions.
These effects were neglected in [333] that falsely concluded that the
NANOGrav signal could be explained in a region of parameter space
without clustering, where N̄ ≲ 1. We find that the case without clus-
tering cannot explain the NANOGrav signal once taking into account
cosmological and astrophysical constraints.

Including clustering shifts the signal regions to smaller fPBH, enabling a
consistent explanation of the PTA data without violating observational
constraints, provided that the PTA formation mechanism does notClustering saves

the explanation result in significant µ-distortions. Note that clustering is also expected
to further open up parameter space for a consistent explanation as
complementary constraints are expected to become weaker.

Comparing the results for the 15yr and 12.5yr data sets we note that the
signal regions have shifted to larger fPBH, due to the preference for a
larger GWB in the new data set [7,238], and there is a slight preference15yr vs. 12.5yr

data for lower masses, where the earlier emission of GWs leads to an increased
slope, cf. fig. 7.1, as preferred by the new data [7].

If the GWB signal generated by inspiraling PBH binaries becomes too
large, above the regions explaining the PTA data in fig. 7.2, the abun-Novel PTA

constraints dance of PBHs can be constrained by PTA observations. The constraints
are shown in fig. 7.3 with and without clustering, conservatively requiring
N̄ ≥ 10.
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7.7 discussion and conclusions

In this chapter we have studied the possibility that the signal observed
by various PTAs is due to inspiraling primordial SMBHBs. If the PBHs
are “homogeneously” distributed at their formation, i.e. follow a Poisson
distribution, significant cosmological and astrophysical constraints ex-
clude the possibility of explaining the PTA signal with inspiraling PBHs.
Instead considering a clustered spatial distribution of PBHs increases
the binary merger rate and thus enables a consistent explanation of the PTAs could have

detected inspiral of
clustered PBH

PTA signals with merging PBH binaries. Crucially, we have checked
that also the signal prediction is reliable in the relevant parameter space
by computing the expected number of binaries contributing to the GW
signal. Further, we used PTA data to constrain the PBH parameter
space when the GWB generated during the inspiral would result in
stronger signal strengths than the one detected.

The studied scenario may serve as a motivation for model builders
to construct scenarios that can generate clustered supermassive PBHs
without running into cosmological and astrophysical constraints, in
particular due to µ-distortions of the CMB arising from PBH formation. Our model also

features
anisotropies

While the latest PTA data finds no evidence for individual compact
binary merger events on top of a stochastic background or anisotropies
of the GW spectrum, the situation might change in the future. Such a
detection would likely invalidate most other cosmological explanations,
while being a prediction of our scenario.





8 SUMMARY

The wild ideas of yesterday quickly become today’s dogma.

— Sheldon Glashow, Physics Nobel laureate 1979

In this thesis, we have explored the dawn of GW cosmology, an emerging
field that promises to revolutionize our understanding of the early
universe. Traditionally, BBN has served as the earliest probe of the
ΛCDM model, allowing us to make precise statements up to temperatures The meaning of the

PTA results for
cosmology

around the MeV scale. However, the recent detection of a gravitational
wave background (GWB) by pulsar timing arrays (PTAs) has provided
us with the first direct probe of much higher temperatures, reaching up
to the GeV scale.

Specifically, we have demonstrated in chapter 5 that dark sector phase
transitions (DSPTs) occurring at around Tp ≃ 10MeV could explain the
observed GWB. In a first step we found that a phase transition within a
secluded dark sector is in significant tension with precision observables
from BBN and the CMB: Ignoring constraints on the effective number Cosmological

constraints
challenge stable
DSPTs

of neutrino species (Neff), one could incorrectly conclude that arbitrarily
strong DSPTs could explain the PTA signal (see fig. 5.1). However, when
including these constraints, we find that only transitions with a strength
parameter α < 0.1 and extremely small β/H ≃ O(1−10), corresponding
to very slow transitions, are favored (see fig. 5.3). Requiring β/H > 3 in
order to have bubbles of sub-Hubble size emitting the GW signal yields
a reasonably good fit to the data. However, further requiring β/H > 10
to avoid overestimating the GWB, leads to the conclusion that no good
match to the PTA data can be obtained when cosmological constraints
are included within our global fit framework.

Thereafter, we have shown that the fit to the data can be significantly
improved, and the DSPT interpretation preserved, if the dark sector is
not secluded but instead decays into the photon bath before the onset of PTAs could have

observed a
decaying DSPT

BBN. Modeling this through the decay of a 5MeV scalar into photons
in our global fit, we found that the maximal allowed lifetime of the dark
Higgs boson is τϕ = O(0.1 s), which is below the sensitivity of laboratory
experiments (see fig. 5.5). The central conclusions of this chapter are
anticipated to remain robust even when updated with the new 15yr
NANOGrav data set, replacing the 12.5yr data set that was the most
recent available at the time our analysis was conducted.

In the study presented in chapter 6, we examined the implications
of a future detection of a GWB with LISA when interpreted as a
DSPT. Specifically, we considered the spontaneous breaking of a U(1)′

symmetry, triggering the freeze-out of a fermionic dark matter candidate.
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We uncovered a previously underappreciated correlation between the
peak frequency of the produced GW signal and the relic abundance
of dark matter (see fig. 6.5). Fixing the produced DM abundance toA FOPT-triggered

freeze-out emits
GWs in LISA band

the observed relic density leads to the prediction of a GWB within
the LISA band, see fig. 6.6. We performed extensive scans over the
U(1)′ model parameter space and showed that this conclusion remains
a robust feature which could potentially also be present in other dark
sector models.

Further, we investigated in detail how the dark sector transfers energy to
the SM bath and whether it is justified to assume a common temperature
for both sectors. We found that the two sectors quickly thermalize
for portal couplings of λhϕ ≳ 10−6 between the dark Higgs and theThe correlation is

not spoiled for hot
DSs, allowing

stronger GWBs

visible Higgs, a value small enough to satisfy laboratory constraints (see
figs. 6.9). Even when treating λhϕ < 10−6 and the initial temperature
ratio between the two sectors (the latter having a strong impact on the
amplitude of the emitted GWB) as open parameters, the correlation
between the GWB’s peak frequency and the relic abundance remains
robust (see fig. 6.12).

In our final chapter 7, we explored the conditions under which the
inspiral of PBHs could account for the GWB observed by PTAs. We
found that while the signal can be explained by inspiraling PBHs, this
is only possible if the PBHs are initially clustered, contrary to previous
claims (see fig. 7.2). We argue that there exists a part of parameter spaceInspiraling PBHs

can explain
NANOGrav

in which the signal can be explained while avoiding astrophysical con-
straints, provided that the PBHs are formed circumventing µ-distortion
limits. This explanation of the PTA signal is of particular relevance, as
it would not be ruled out in case future PTA observations find signs of
strong anisotropy in the GWB spectrum, which indicate a tension with
early universe explanations like phase transitions.

In summary, this thesis has contributed to the burgeoning field of GW
cosmology. It highlights the crucial role that BBN and CMB observations
will play in interpreting PTA results and performing model comparisons
in global fit frameworks. Looking forward, future observatories like LISAThis thesis was

only the start will expand our observational capabilities to phenomena occurring as
early as picoseconds after the end of inflation, possibly helping us in
unraveling the origin of dark matter in our universe.

The interplay between GW science and dark matter phenomenology
is still in its early stages, with much more to explore. This thesis lays
the groundwork for understanding the intimate relationship between
violent early universe processes like phase transitions or the inspiral of
supermassive primordial black holes and their respective GW emission.The road ahead
The key takeaway is clear: gravitational wave backgrounds can provide
a unique window to the dark universe and offer new insights into the
fundamental processes that shaped our cosmos.
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