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Zusammenfassung
In dieser Arbeit wird die Kältesaison für eine urbane Region charakterisiert, Eisepiso-
den definiert und deren zukünftige Entwicklung im Zusammenhang mit atmosphärischen
Mustern untersucht. Kälteereignisse können insbesondere für Städte verheerende Fol-
gen haben. Zu den Folgen zählen beispielsweise Stromausfälle, Verkehrsbehinderungen,
Schließung öffentlicher Einrichtungen, Schäden an Straßen, Schienen, Gebäuden und
Versorgungsleitungen sowie Ernteausfälle. Um deren zukünftige Entwicklung und die
damit verbundenen Risiken einschätzen zu können, werden hier Zukunftsprojektionen
von regionalen Klimamodellen (RCM) analysiert.

Da es bislang keine einheitliche Definition von Kälteereignissen gibt und in der Literatur
häufig unterschiedliche Begriffe verwendet werden, wird in dieser Arbeit eine Definition
für anhaltende Kälteereignisse mit Temperaturen unter dem Gefrierpunkt vorgeschla-
gen. Dafür wird der Begriff Eisepisode eingeführt, die Definition dafür lautet: Eine
Eisepisode ist ein Ereignis von mehr als fünf aufeinander folgenden Eistagen. Ein Eistag
ist ein sogenannter Schwellwert-basierter Klimaindex, bei dem die maximale Temper-
atur eines Tages unter dem Gefrierpunkt verbleibt. Der Schwellwert ist also 0°C. Um die
Zuverlässigkeit der Schwellwert-basierten Klimaindizes zu beurteilen, musste zunächst
ermittelt werden, inwieweit ihre Ergebnisse durch die Datenunsicherheit (z.B. Temper-
aturdaten) beeinflusst werden. Es konnte gezeigt werden, dass integrierende Indizes, die
auf aufeinanderfolgenden Tagen und nicht auf der Zählung einzelner Tage beruhen, bei
kleinen Änderungen des Schwellenwerts nur geringe Änderungen der resultierenden An-
zahl von Tagen aufweisen. Die Kältesumme einer gesamten Kältesaison zeigt keine nen-
nenswerten Änderungen und ist daher am wenigsten anfällig für Datenunsicherheit. Die
hier definierten Eisepisoden sind weniger anfällig für Datenunsicherheit als die Gesam-
tanzahl der Eistagen.

Damit belastbare Aussagen über die Zukunft dieser Eisepisoden für die Zielregion gemacht
werden können, wurde geprüft wie realistisch die Ergebnisse der RCMs für einen Evalua-
tionszeitraum in der Vergangenheit sind. Außerdem wurden die während dieser Eisepiso-
den vorherrschenden atmosphärischen Zirkulationsmuster in Reanalysedaten identifiziert.
Zusätzlich wurde überprüft, ob die RCMs die (thermo-)dynamischen Prozesse, die zu
Eisepisoden in der Zielregion führen, generell richtig darstellen. Dafür wurde untersucht,
inwieweit die RCMs die in der Reanalyse identifizierten atmosphärischen Zirkulations-
muster reproduzieren und ob diese dann auch mit Eisepisoden einhergehen. Dafür wurde
eine Pattern-Matching Methode entwickelt und angewendet. Die Ergebnisse dieser Meth-
ode bestätigen, dass die hier analysierten RCMs generell in der Lage sind, die vorherrschen-
den Zirkulationsmuster zu reproduzieren und dass diese Muster mit Eisepisoden in der
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Zielregion einhergehen.

Die zukünftige Entwicklung der Eisepisoden wurde unter der Annahme des Emission-
sszenarios RCP8.5 gemacht. Dieses geht von hohen CO2 Emissionen und damit von
einem starken Anstieg der global gemittelten Temperatur aus. Dieses Szenario gibt somit
eine Obergrenze für die mögliche Reduktion bzw. eine Untergrenze für das Auftreten von
Eisepisoden in der Zukunft an. Es konnte gezeigt werden, dass Eisepisoden in Hamburg
auch am Ende dieses Jahrhunderts noch auftreten können. Trotz anhaltender globaler
Erwärmung werden diese Ereignisse mit mittleren Temperaturen von -4.6 °C einherge-
hen, wobei die Minimalwerte bis auf -13.2 °C absinken können. Ebenso konnte gezeigt
werden, dass die in der Reanalyse identifizierten atmosphärischen Zirkulationsmuster in
zwei Drittel aller Fälle mit einer Eisepisode in Zusammenhang gebracht werden können.
Dieses Verhältnis bleibt nahezu konstant von der jüngsten Vergangenheit (1971–2000)
über die nahe Zukunft (2030–2060) bis in die ferne Zukunft (2065–2095). Allerdings
nimmt die absolute Anzahl der Eisepisoden in der fernen Zukunft im Vergleich zur jüng-
sten Vergangenheit um 80 % ab.

Die Ergebnisse dieser Dissertation zeigen, dass Eisepisoden trotz des starken globalen
Temperaturanstiegs auch in Zukunft in den mittleren Breiten auftreten können und daher
bei langfristigen Planungen (z.B. Planung von Anpassungsmaßnahmen für Städte und
Infrastruktur) nicht vernachlässigt werden sollten.
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Abstract
In this study, the cold season has been characterised for an urban area, ice episodes
were defined and their future development was analysed in association with atmospheric
circulation patterns. Cold weather events can have severe consequences, particularly for
cities. These include power outages, traffic disruptions, the closure of public facilities,
damage to roads, railways, buildings and supply lines as well as crop failures. In order to
be able to assess the future development of these events and the associated risks, future
projections from regional climate models (RCMs) are analysed here.

As there is no standard definition of cold weather events to date and different terms are
often used in the literature, this paper proposes a definition for prolonged cold weather
events with temperatures below the freezing point. For this the term ice episode is intro-
duced and the definition is as follows: An ice episode is defined as an event with more
than five consecutive ice days. An ice day is a so-called threshold-based climate index
where the maximum temperature of a day remains below the freezing point. The thresh-
old value is therefore 0°C. In order to assess the reliability of threshold-based climate
indices, it was necessary first to determine the extent to which their results are affected
by data uncertainty. It was demonstrated that integrating indices, which are based on con-
secutive days rather than counting single days, show only small changes in the resulting
number of days for small changes in the threshold value. The coldsum of an entire cold
season shows negligible changes and is hence least susceptible to data uncertainty. The
ice episodes defined here are less susceptible to data uncertainty than the total number of
ice days.

Prior to making robust statements about the future of these ice episodes for the target
region, the reliability of RCM results was examined for an evaluation period in the past.
Furthermore, the prevailing atmospheric circulation patterns during these ice episodes
were identified in reanalysis data. Additionally, it was investigated whether the RCMs
are able to reproduce the atmospheric circulation patterns identified in the reanalysis and
whether these are then also associated with ice episodes. A pattern-matching method
was developed and applied for this purpose. The results of this method confirmed that
the RCMs analysed here are generally capable of reproducing the prevailing atmospheric
circulation patterns and that these patterns are associated with ice episodes in the target
region.

The future development of the ice episodes was analysed under the assumption of the
RCP8.5 emissions scenario. This assumes high CO2 emissions and therefore a large in-
crease in global mean temperature. This scenario therefore sets an upper limit for the
possible reduction and a lower lower limit for the occurrence of ice episodes in futuree.
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It has been shown that ice episodes can still occur in Hamburg by the end of this cen-
tury. Despite the continued global warming, these events will be accompanied by mean
temperatures of -4.6 °C, with the minimum values dropping to -13.2 °C. It has also been
shown that the atmospheric circulation patterns identified in the reanalysis can be asso-
ciated with an ice episode in two-thirds of all cases. This ratio remains almost constant
from the recent past (1971–2000) through the near future (2030–2060) to the far future
(2065–2095). However, the absolute number of ice episodes in the far future decreases
by 80 % compared to the recent past.

The results of this thesis show that mid-latitude ice episodes may still occur in the future
despite a large global temperature increase and should therefore not be neglected in long-
term planning (e.g. adaptation planning for cities and infrastructure).
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1 Introduction

Climate change — one of the most pressing global challenges of our time — has far-
reaching impacts on natural systems and human activities. Global warming caused by
climate change leads to changes in atmospheric and oceanic circulation, affecting weather
patterns and increasing the frequency and intensity of extreme events (INTERGOVERN-
MENTAL PANEL ON CLIMATE CHANGE (IPCC), 2021). In recent years, the impacts of
climate change have already been felt in different parts of the world.

Looking at individual regions, it is clear that warming is progressing at different rates.
Europe is one of the fastest warming mid-latitude regions in the world. The tempera-
ture increase in Europe since the pre-industrial era (1850–1900) is about 2.2 °C, which is
about 1 °C above the global average (COPERNICUS CLIMATE CHANGE SERVICE (C3S),
2023, last updated on 20 April 2023). According to the State of the Climate in Europe

in 2022 report by the WORLD METEOROLOGICAL ORGANIZATION (WMO) (2022),
the year 2022 was one of the warmest years in Europe. However, according to the same
report, there were also several cold weather events: In December 2022, a cold wave hit
northern and western Europe. Extremely low temperatures were recorded in Reykjavik,
Iceland, making it the coldest December in the last 100 years. Athens, Greece, closed
schools, public facilities, and private businesses in January due to remarkably low tem-
peratures and heavy snowfall. The severe conditions left some households without power
for days and caused transport disruption. Widespread frost in France, Germany, Spain
and Austria caused agricultural losses (WORLD METEOROLOGICAL ORGANIZATION

(WMO), 2022).

Cold weather events pose specific challenges for urban areas. They can result in a multi-
tude of consequences: In addition to the closure of public facilities, power outages, and
transport disruptions, as illustrated by the Athens example, extreme cold can also lead
to an increased demand for heating and electricity, as described in RANASINGHE et al.
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(IPCC report 2021, Working Group I, Chapter 12) and highlighted by STUIVENVOLT-
ALLEN and WANG (2019). Furthermore, temperatures below the freezing point can
cause water pipes to burst and damage roads, railway tracks, or buildings, as noted by
UNDERWOOD et al. (2017). The occurrence of cold waves early in the winter season can
impact human health, as individuals have not yet adapted to the cold weather (RANAS-
INGHE et al., 2021, IPCC report, Working Group I, Chapter 12). Another effect is that of
temperature-attributable deaths, with cold-related mortality exceeding heat-related mor-
tality in urban areas, as highlighted by GASPARRINI et al. (2015); RYTI et al. (2016);
CHENG et al. (2017). Prolonged cold weather events can increase the risk of hypother-
mia, which can lead to a range of cold-related health problems, particularly for the home-
less and the elderly (BAUMGARTNER et al., 2008; WANG et al., 2016; LEI et al., 2022;
RICHARD et al., 2023). Due to the demographic shift occurring in Europe, more elderly
people will experience cold-related health problems and this will likely result in more
winter-related deaths in the future, as discussed in RANASINGHE et al. (IPCC report
2021, Working Group I, Chapter 12). Although global temperatures are increasing, the
frequency and intensity of cold waves are decreasing and will continue to do so in the
future (SENEVIRATNE et al., 2021, IPCC report, Working group I, Chapter 11), it is still
possible for cold weather events to periodically occur and affect urban areas and their
infrastructure (DODMAN et al., 2023, IPCC report, Working Group II, Chapter 6). Con-
sequently, cold extremes will remain a potentially hazardous factor for urban areas in the
future.

More and more people are choosing to live in cities. The proportion of the urban popu-
lation is increasing worldwide and it is expected that this trend will persist in the future
(UNITED NATIONS, 2019). As extreme weather events will increase in frequency and
intensity in the future, it is very important to be able to make reliable statements for ur-
ban regions, or to be able to make statements about the effects of such extreme events
with or without adaptation measures. Studies on the future development of such extreme
weather events and their impact on urban regions often deal with heavy precipitation and
heat waves in the summer. There are fewer studies for the cold season. This may be due
to the fact that for Northern hemisphere mid- and high-latitude regions it is not yet clear
how a weakened north-south temperature gradient (due to faster warming of the Arctic
compared to other regions) will influence cold extremes, as discussed in (SENEVIRATNE

et al., 2021, IPCC report, Working Group I, Chapter 11). It is the subject of current
research and is not yet certain. However, uncertainty regarding the occurrence of cold
weather events does not rule out the possibility of such events happening in the future.
Therefore, it is crucial to take into account the cold season when examining possible
future developments.
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In order to be able to examine the future development of cold weather events, such events
are often defined by threshold-based climate indices. If, for example, the daily minimum
temperature falls below 0 °C, this day is a frost day according to the definition proposed
by the EXPERT TEAM ON CLIMATE CHANGE DETECTION AND INDICES (ETCCDI)
(2020). For more extreme situations, the daily maximum temperature is used instead
of the daily minimum temperature: If the daily maximum temperature does not exceed
0 °C, this day is, according to the correspondingly defined climate index, an ice day.
These indices thus allow complex climate data to be translated into easily understandable,
concrete quantities. An analysis of these indices then enables an objective assessment of
changes over time. The definitions of the indices examined in this study are taken from
the EUROPEAN CLIMATE ASSESSMENT AND DATASET (2024) climate index dictionary,
which provides indices specifically for Europe.

1.1 Hamburg as target region
In order to investigate how cold weather events will change in the future for a European
urban region, Hamburg was chosen as the target region. This medium-sized city in north-
western Europe is situated within a warm temperate climate region, characterised by a
fully humid climate with warm summers (KOTTEK et al., 2006). The city of Hamburg
is considered as an example of a warm temperate climate region in the mid-latitudes,
where cold weather events also occur. It is the largest city in northern Germany and, as
a Hanseatic city on the River Elbe, it is an important hub. As mentioned above, there are
several studies on extreme events in summer but few for winter. In the Hamburg climate
report (VON STORCH et al., 2017), the word “Sommer” (summer) is used 54 times in
the chapter Stadtklima Hamburg (urban climate of Hamburg SCHLÜNZEN et al., 2018),
while the word “Winter” is used only 18 times. The word “Kälte” (cold) or the climate
indices “Frosttag” and “Eistag” (frost day/ice day) are not mentioned at all. This shows
that there is an imbalance between studies on summer and winter. There is a need for
research on cold season characteristics in cities, including Hamburg, to close the research
gap.

In a comprehensive study by SCHLÜNZEN et al. (2010), the analysis of meteorologi-
cal in-situ data from standard sites, showed that the annual mean daily temperature in-
creased significantly by 0.07 °C/decade (1891–2007). Extending the analysis up to 2023
(own analysis of station data from HH-Fuhlsbüttel provided by GERMAN METEORO-
LOGICAL SERVICE (2020)) shows that the linear temperature trend has increased from
0.07 °C/decade to 0.11 °C/decade. Despite this trend, temperatures below freezing in the
cold season have not been uncommon over the last 30 years, as shown in Figure 1.1. For

3



Chapter 1: Introduction

example, the lowest value of daily minimum temperatures in the last 30 years of the anal-
ysed timeseries (1993–2022) was −19.3 °C, which is lower than the value in 1891–1920
(−18.4 °C, first 30 years of analysed timeseries). This suggests that temperatures around
and below freezing might also continue to occur regularly until the end of this century.
Against this background, the city of Hamburg is very well suited as an example for the
planned investigations of the cold season characteristics for an urban area.
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Figure 1.1. Histograms of daily (a) maximum, (b) average, (c) minimum temperatures in the cold season
(November–March) for three different climate periods. Grey dashed vertical lines indicate the freezing
point. Data are taken from station measurements at Hamburg-Fuhlsbüttel provided by GERMAN METEO-
ROLOGICAL SERVICE (2020)

1.2 Research questions
In order to address the identified research gap, three guiding questions are formulated,
each of which is addressed in a separate paper and presented here in the following three
chapters.

For a general characterisation of the current cold seasons in Hamburg, a reference data
set (derived from station data) can be used. To quantify the future development of cold
season characteristics, long-term climate projections are required. These are typically
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calculated using global climate models (GCMs) up to the year 2100, assuming different
future scenarios. The focus in this thesis is on the RCP8.5 emission scenario (RIAHI

et al., 2011), which projects the highest level of CO2 emissions compared to the RCP2.6
(VAN VUUREN et al., 2011) or the RCP4.5 (SAMUELSSON et al., 2011) scenarios, and is
associated with strong climate change. By analysing the high emission RCP8.5 scenario,
an upper limit of possible changes can be determined.

GCMs developed for long-term climate projections have a too coarse resolution (grid size
50–100 km) to provide data that is sufficiently detailed for regional and local consider-
ations. Therefore, they are refined in a dynamic process using regional climate models
(RCMs). In the Coordinated Regional Downscaling Experiment (CORDEX GIORGI and
GUTOWSKI, 2015) initiative of the WCRP, GCM data from the 5th Coupled Model In-
tercomparison Project (CMIP5 TAYLOR et al., 2012) have been refined using a number
of different RCMs.

To assess how reliable statements about future cold seasons in Hamburg based on RCM
data are, the climate model’s ability to simulate cold season characteristics is evaluated.
For this assessment, several climate indices for the cold season are calculated based on
RCM data and the results are compared with reference data. However, the reference
data, which can be reanalysis data or gridded data sets based on in-situ measurements,
are not perfect representations of reality. It is therefore necessary to ask how “perfect”
the RCMs should reproduce the results of the reference data, if the ground truth is not
known. In order to determine the extent to which RCMs should be allowed to deviate
from reference data, it is essential to investigate the influence of both reference data
uncertainty and RCM data uncertainty on the results of the climate index calculation.
The research question leading to the study presented in chapter 2 is

RQ1. How does data uncertainty affect cold season threshold-based climate indices?

For more impact-related information, the calculation of climate indices such as the num-
ber of frost days or the number of ice days is not sufficient, since single-day events are not
as damaging as cold weather events of longer duration. As there is no uniform definition
of cold weather events in the literature reviewed and different terms are often used (e.g.
cold wave, cold spell, cold weather event, extreme cold event), a definition of prolonged
cold events needs to be given first. The study presented in chapter 3 introduces the term
ice episode and proposes a definition.

Against the background of the discussion about the influence of Arctic warming on winter
weather in the mid-latitudes and the question of the future development of ice episodes
in Hamburg, it is important to investigate the atmospheric conditions during these ice
episodes. The question is whether there is a typical condition, i.e. a very typical atmo-
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spheric circulation pattern, or whether the occurrence of ice episodes cannot be linked to
specific atmospheric conditions at all.

In order to assess the future development of ice episodes using the RCM results for Ham-
burg, the relationship between these ice episodes and the atmospheric state in the RCMs
must be examined. The question is whether the ice episodes in the RCMs can be asso-
ciated with the same patterns as those in the reference data. If a different relationship is
found in the RCMs, this would indicate that the relevant physical processes are insuffi-
ciently represented in the climate models and that no reliable statements can be made for
the future. Whether it is possible for the RCMs to reproduce the relationship identified
in the reanalysis data is investigated in the work presented in Chapter 3 and is guided by
the following research question

RQ2. Can regional climate models reproduce local cold season characteristics, ice episodes
and prevailing atmospheric patterns?

It is questionable whether ice episodes will occur at all in the future due to global warm-
ing. In particular, under the assumption of RCP8.5 as the upper limit of possible changes,
it is of interest to see whether global warming influences the amospheric dynamics to such
an extent that ice episodes no longer occur in the mid-latitudes, or whether the air in the
Arctic warms up to such an extent that cold air outbreaks from the Arctic are no longer
cold enough to lead to an ice episode in Hamburg. It is important to investigate whether
ice episodes will continue to play a role in the future and whether the relationship be-
tween ice episodes and atmospheric conditions will change. These aspects are explored
in chapter 4 and are guided by the following research question

RQ3. How will the frequency of local ice episodes and associated atmospheric patterns
change in future climate periods?

Chapter 5 provides answers to the research questions, discusses the limitations of this
work, recommends future research directions, and ends with some closing words.
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2 Influence of data uncertainty
on cold season

threshold-based climate
indices

Preface
This chapter is published as:

Bell, L. M. and K. H. Schlünzen and K. Sieck (2023): Influence of data uncertainty on

cold season threshold-based climate indices. Meteorologische Zeitschrift 32(3), 195–
206. http://dx.doi.org/10.1127/metz/2023/1158.

The layout and the numbering of the manuscript were adopted to fit this thesis. The
references are combined with all references used in this thesis and can be found at the
end of this thesis in References. The acknowledgments and the supporting information
that were published together with this manuscript can be found in a separate section of
the Appendix (First paper).

K. Heinke Schlünzen has contributed to the conceptualisation. K. Heinke Schlünzen and
Kevin Sieck have contributed to the discussion of the results.
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Abstract
Climate indices are used to reduce the complex climate system and its changes to simple
measures. The data basis — whether observational data or climate model data — to
which the climate indices are applied, is usually subject to uncertainties. For threshold-
based climate indices, the data uncertainty influences the threshold value, and, hence,
the uncertainty can influence the values for the climate index. What the actual impacts
of these uncertainties are on threshold-based climate indices is examined in this paper.
The focus is not only on the climate model uncertainty, but also on the observational data
uncertainty. The general sensitivity of each of the chosen climate indices to arbitrary
changes in the threshold is studied. This shows a higher sensitivity of indices assessing
extremes (ice days, heavy precipitation days) to changes in the threshold than indices
that integrate a quantity over a given time interval (coldsum, consecutive days). For
assessing an ensemble of climate model data with respect to their ability to reproduce the
index values for current climate, the reference data uncertainty is applied to the chosen
threshold-based climate indices by changing their threshold value by its corresponding
uncertainty. It is shown that the climate model uncertainty can be within the range of
the reference data uncertainty. When using threshold-based climate indices to assess
changes in future climate periods, uncertainties should always be taken into account and
ideally corrected in an appropriate way. This is especially important for indices that
assess extremes.
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2.1 Introduction
The climate system is of a chaotic nature and is dominated by complex spatial and tem-
poral variability. With the help of climate indices, this complexity can be reduced to
simple measures (e.g. STENSETH et al., 2003). Climate indices are diagnostic tools that
enable one to monitor and describe the state and the changes of the climate system. Ex-
amples are mean temperatures or precipitation sums; these are simple climate indices
from which essential information on the state of the climate system and its changes can
be derived. Nevertheless, these indices give little insight into changes in the frequency of
specific meteorological situations. To further investigate, understand, and quantify these
changes, related climate indices are used.

The CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETC-
CDI) recommends a core set of 26 climate indices, the ECA&D Indices Dictionary
(ECA&D) provides another 50 indices specifically for Europe. These indices cover a
wide range of areas of application as well as complexity and spatial/temporal scales.
Large-scale atmospheric circulation climate indices, such as ENSO, NAO, AO, SOI, or
PDO, are used to better understand local ecological effects (STENSETH et al., 2003;
HALLETT et al., 2004). Small-scale and more complex indices include, for example,
the Tourism Climatic Index (MIECZKOWSKI, 1985; DUBOIS et al., 2016) or the Univer-
sal Thermal Climate Index (BRÖDE et al., 2012; JENDRITZKY et al., 2012), one of the
many human thermal indices (DE FREITAS and GRIGORIEVA, 2017; FISCHEREIT and
SCHLÜNZEN, 2018). In agriculture, relevant indices are, for example, growing degree
days, growing season length, and first fall and last spring frost day (e.g. KUKAL and
IRMAK, 2018). These agro-meteorological indices are less complex than the other afore-
mentioned indices, since they are based on only one climate variable — in this case near,
surface air temperature. In addition, they are based on fixed thresholds: A day where the
minimum temperature is below 0 °C is defined as frost day.

One important application of climate indices is in climate change studies. For many ar-
eas of society, the knowledge about future changes of those indices is crucial in order to
adapt properly to climate change. As we cannot get this information from measurements,
we have to use climate models to assess future changes in climate indices. Because
climate models only represent the real world in simplified form, they are subject to un-
certainty (TEBALDI and KNUTTI, 2007). A common way to deal with, and quantify,
climate model uncertainty is to use a multi-model ensemble (TEBALDI and KNUTTI,
2007; KNUTTI et al., 2010; HAWKINS and SUTTON, 2011). Nevertheless, an impor-
tant step before using climate models to assess climate change is the evaluation of such
models. This is typically done by comparing climate models to observations during a
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historical/reference period (GLECKLER et al., 2008; CADULE et al., 2010; KOTLARSKI

et al., 2014; KATRAGKOU et al., 2015).

A particular challenge that arises when comparing climate models and observations is
the mismatch in the spatial and/or temporal resolution of both data-sets. On the one
hand, model based data is typically given on some sort of grid, where the actual value
represents a spatial and temporal mean/sum for a box of the grid. On the other hand,
observations are often taken from a single point in space and time. To overcome this
mismatch, observations are often extrapolated to a grid in order to make the comparison
between climate models and observations easier.

The process of extrapolating measurement data to a gridded observational data-set in-
volves several sources of uncertainty. As ZUMWALD et al. (2020) have shown, there are
generally three types of uncertainties in these data-sets: (1) The uncertainty that arises
in the generation of such data-sets, e.g., on account of the statistical model that is used.
(2) The uncertainty that arises because of biased samples, e.g., from inaccurate measure-
ments. (3) The uncertainty that occurs on account of the choice of abstract properties,
such as the resolution or a particular metric. To get a measure of uncertainty in gridded
observational data-sets, the ensemble approach can also be adopted here. For example,
according to ZUMWALD et al. (2020), there are structural ensembles (equivalent to the
multi-model ensemble for climate models) where several observational data-sets are con-
sidered. Another is the parametric ensemble (equivalent to a perturbed-physics ensemble
for climate models), where multiple realisations of a data-set are generated. One such
data-set is E-OBS, which is used for this study.

Being aware of all these sources of uncertainty, it quickly becomes clear that fixed thresh-
olds cause a problem. The data — whether measurement data at specific sites, gridded
observational data, or climate model data — are subject to uncertainties on account of the
various reasons mentioned above. For the calculation of frost days where the threshold
value is 0 °C, it is possible that the temperature value of 0 °C in the data does not corre-
spond to 0 °C in the “real world”. Since impact studies often consider these threshold-
based indices, it is very important to take uncertainties of climate models, as also of
observations, into account, so to make these studies more transparent and thereby more
reliable.

The present paper, therefore, focuses on the impact of the data uncertainty on calculated
values of threshold-based climate indices and on the impact of data uncertainty on the
comparison between gridded observational data and climate model data.

One way to overcome climate model uncertainty is bias correction. HOFFMANN et al.
(2018) presented a method, wherein thresholds of several climate indices were bias-
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corrected for an ensemble of climate models. This means that each climate model is
assigned its own threshold value, depending on how large the bias is relative to the ref-
erence (gridded observational) data. We have applied this method to the climate model
data used in this work. Nevertheless, the focus of this paper is on the influence of data
uncertainty on threshold-based climate indices, not on the correction of any data. A full
analysis of the results obtained using the bias-correction method is, therefore, beyond the
scope of this paper and will not be shown.

Here, we present and apply a new method to estimate the influence of data uncertainty
on a set of threshold-based climate indices. In the present study, we answer the follow-
ing questions: 1) How can data uncertainty be incorporated in threshold-based climate
indices? 2) What is the influence of data uncertainty on threshold-based climate indices
in current and 3) future climates under different emission scenarios?

For the application of our method, we focus on the cold season. Temperatures close
to the freezing point occur frequently within the cold season and lead to challenging
situations, e.g. icy roads. How often these situations occur in a future climate is of
relevance not only for urban planning but also for e.g. infrastructure maintenance in
the future. As an example of its use, the new method is applied to the north-western
European city of Hamburg (Germany) and its rural surroundings, an area of ∼ 70 × 70
km2. Currently, daily minimum temperatures of 0 °C are of high frequency in Hamburg
during the cold season. SCHLÜNZEN et al. (2010) showed that winter temperatures in
this city have already increased. A warming, therefore, can have a strong influence on
e.g. frost duration.

This paper is structured as follows: This introduction (sec. 2.1) is followed by sec. 2.2,
with information on the data used. The description of our method as well as some nec-
essary data preparation steps can be found in sec. 2.3. The application of our method for
the area of interest is presented in sec. 2.4. Conclusions are drawn in sec. 2.5.

2.2 Database

2.2.1 Climate model data
For the analysis, the results of regional climate models (RCMs) are used. These are taken
from the Coordinated Downscaling Experiment (CORDEX, GIORGI and GUTOWSKI

(2015)), at 0.11° horizontal resolution for the European domain (EURO-CORDEX, JA-
COB et al. (2014)). An ensemble of model results is available, provided by the regional
climate modeling community. They downscaled global climate model (GCM) simula-
tions from CMIP5 (TAYLOR et al., 2012) for different climate scenarios. These scenarios
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Table 2.1. Global climate model (GCM) - regional climate model (RCM) combinations, used GCM
ensemble member (Ens Mem), modeling group providing the data and calendar of each GCM-RCM result.

GCM RCM Ens Mem Modeling Group Calendar

EC-EARTH CCLM4-8-17 r12i1p1 CLM-Community Proleptic Gregorian
REMO2015 r12i1p1 GERICS Proleptic Gregorian
RACMO22E r12i1p1 KNMI standard
RCA4 r12i1p1 SMHI standard
HIRHAM5 r3i1p1 DMI Proleptic Gregorian

MIROC5 REMO2015 r1i1p1 GERICS Proleptic Gregorian

HadGEM2 REMO2015 r1i1p1 GERICS 360 day
RACMO22E r1i1p1 KNMI 360 day
RCA4 r1i1p1 SMHI 360 day

MPI-ESM-LR REMO2009 r1i1p1 MPI-M and CS2.0 Proleptic Gregorian
REMO2009 r2i1p1 MPI-M and CS2.0 Proleptic Gregorian
RCA4 r1i1p1 SMHI Proleptic Gregorian
CCLM4-8-17 r1i1p1 CLM-Community Proleptic Gregorian
WRF361H r1i1p1 UHOH standard

start in 2006 and last until 2099 or 2100, depending on the duration of the GCM simu-
lation. In the present paper, the years 1971–2000 are chosen as the reference period for
comparison with observational (reference) data (sec. 2.2.2), using historical runs from
the very same RCM-GCM combinations.

For future changes, the results of two climate model ensembles are analysed; one en-
semble is based on the representative concentration pathway (RCP) 2.6 scenario (VAN

VUUREN et al., 2011) and one ensemble is based on the RCP8.5 scenario (RIAHI et al.,
2011). The two climate model ensembles comprise the results of four different GCM
simulations downscaled by seven RCMs. The reason for choosing this particular ensem-
ble of models is that these simulations were available for both RCP scenarios at the time
we started our research (January 2019). The model simulation-combinations used are
given in Table 2.1. The ensemble member (Ens Mem) indicates the realisation of the
GCM; there may be more than one simulation from one GCM. The rip-nomenclature
(e.g. r1i1p1) indicates which realisation (r: could be started from different initial states),
which initialisation (i: could be started with different initialisation methods), and which
physics (p: could be started with different physics details, such as parameterisation con-
stants) were used.
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2.2.2 Reference data
As reference E-OBS, a gridded daily data-set produced by interpolating station data is
used. E-OBS is used in its ensemble version for temperature (daily minimum, mean, and
maximum values) as well as precipitation (v20.0e, CORNES et al. (2018)). This gridded
data-set is frequently used as reference for the evaluation of EURO-CORDEX data (e.g.
JACOB et al., 2014; KOTLARSKI et al., 2014; HOFFMANN et al., 2018). E-OBS gridded
daily fields have a spatial resolution of 0.1°.

The ensemble version consists of 100 ensemble members for each daily field to cap-
ture the uncertainty range of the statistical model used for interpolation. The ensemble
mean is provided as “best guess” fields, while the ensemble spread is calculated as the
difference between the 5th and 95th percentiles of the ensemble. Hence, the ensemble
version of E-OBS provides a measure which indicates the 90 % uncertainty range. This
uncertainty range relates to the interpolation uncertainty, which is closely related to sta-
tion density. It is used and denoted in the present paper as reference data uncertainty
(sec. 2.3.3).

2.3 Calculation of cold season climate indices and
their uncertainty

For the analysis, we concentrate on the time period from November 1971 to March 2100.
Here, the days between the 1st of November and the 31st of March of the following year
are defined as the cold season. We hereby follow the German Meteorological Service
(DWD), which defined the coldsum, one of the climate indices we use, for this period.
As shown in Table 2.1, the different GCM-RCM combinations have different calendars:
Proleptic Gregorian or standard with 365/366 days per year including leap years and a
360-day calendar where every month has 30 days. To have a consistent ensemble of
model simulations every 31st of December, January and March as well as every 29th
of February (if existing) was deleted. The same was applied to the reference data-set.
Hence, a cold season contains 148 instead of 151/152 days.

2.3.1 Preparation of data for area of interest
As mentioned in the introduction, one aim of the present study is to investigate climate
changes by means of threshold-based climate indices. Here, the area of interest is the
region of Hamburg, located in the northern part of Germany (Fig. 2.1). Hamburg expe-
riences a mild maritime climate with average (1971–2000) temperatures of 2.9 °C and
average minimum temperatures around zero (0.1 °C) in the cold season (Station data for
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Hamburg-Fuhlsbüttel accessed via OpenData of DWD). SCHLÜNZEN et al. (2010) inves-
tigated long-term changes in temperature and precipitation based on station data (1891–
2007). They found a significant annual mean temperature increase by 0.7 °C/century. The
winter (December, January, February) temperature increase — based on climate periods
1891–1917 to 1978–2007 — was found to be 0.6 °C. It is, therefore, of great interest to
investigate cold season changes especially for climate indices with threshold values close
to the average temperature in the reference period.

Figure 2.1. Location of area of interest, the city of Hamburg and its rural surroundings.

The area of interest lies at 53.25 °N – 53.85 °N and 9.48 °E – 10.53 °E. It covers the
area of Hamburg and its surroundings and is located in the north-western part of Europe
(Fig. 2.1). Climate model data and reference data were not interpolated onto a common
grid for the comparison, but each data-set was analysed in its native grid to preclude the
introduction of further uncertainties by additional interpolation or aggregation. Since all
data were selected for the same domain but each data-set has a different spatial resolution,
the data-sets for the area of interest consist of a different number of grid points: Climate
model data = 36 grid points, reference data = 60 grid points.

2.3.2 Cold season threshold-based climate indices
The calculation of the threshold-based climate indices (Table 2.2) is based on mean val-
ues of the relevant variables for the area of interest. The calculation was also tested for
extreme values within the domain (not shown), but since reference and climate model
data have different spatial resolutions, differences between the data-sets were large and,
so, the interpretation of the results was not straightforward.
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Table 2.2. Definition of used threshold-based climate indices. Squared brackets in the calculation stand
for the Iverson bracket that converts any logical proposition into the numbers 1 or 0. n: total number of
days within a cold season; i,j:first and last day of a period of consecutive frost days or ice days. mod. =
moderately.

Index Variable Threshold Calculation

frost days1 Tmin 0 °C ∑
n
d=1[Tmin,d < 0 °C]

mnoc frost days1 Tmin 0 °C max(∑ j
i [Tmin,i < 0 °C])

ice days1 Tmax 0 °C ∑
n
d=1[Tmax,d < 0 °C]

mnoc ice days1 Tmax 0 °C max(∑ j
i [Tmax,i < 0 °C])

coldsum2 Tavg 0 °C ∑
n
d=1 |Tavg,d|[Tavg,d < 0 °C]

wet days1 pr 1 mm ∑
n
d=1[prd ≥ 1 mm]

heavy pr days1 pr 10 mm ∑
n
d=1[prd ≥ 10 mm]

coldsum categories: < 98 mild
98 to 196 mod. warm

196 to 294 mod. cold
> 294 harsh

1 Definition from ECA&D
2 Definition from DWD

Values for the threshold-based climate indices used in this work are calculated as the
sum of days over a cold season. The number of frost days is the sum of all days per cold
season with a minimum temperature (Tmin) value below 0 °C (Table 2.2). Frost days that
occur one after another are consecutive frost days. Of the numbers of consecutive frost
days, the maximum number of consecutive (mnoc) frost days is found per cold season.
The same procedure applies to the number of ice days and the maximum number of
consecutive (mnoc) ice days, using daily maximum temperature (Tmax) values.

The coldsum is calculated from daily average temperatures (Tavg) as the sum of all ab-
solute values of negative temperatures within a cold season. Based on the coldsum, the
cold season falls into one of four defined categories: Mild, moderately warm, moderately
cold, or harsh. Here, a cold season contains 148 instead of 151/152 days; hence, the cate-
gory thresholds given in Table 2.2 are used. They are adjusted from the original category
thresholds provided by DWD.

Indices derived from daily precipitation (pr) amounts are the number of wet days and
the number of heavy precipitation days per cold season. A day on which the precipi-
tation amount is equal to, or exceeds, 1 mm (10 mm) is considered a wet day (heavy
precipitation day).
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2.3.3 Determination of data uncertainty

Reference data uncertainty

As mentioned in sec. 2.2.2, the reference data-set is based on an ensemble of 100 calcula-
tions; it consists of an ensemble mean (“best guess”) and an ensemble spread value indi-
cating the 90 % ensemble range. Here, the latter is used as the estimate for the reference
data uncertainty; it is denoted as uncertainty hereafter for simplicity. For each threshold
used in the indices of Table 2.2, the uncertainty of that threshold value is determined
by calculating the median uncertainty across all days and all cold seasons (November to
March) within the reference time period 1971–2000.

Figure 2.2. Illustration of (a) E-OBS "best guess" field and (b) E-OBS 90 % ensemble range (uncertainty)
field of the minimum daily temperature (Tmin) for four arbitrary days. Grey marked cells indicate (a) where
Tmin = 0 °C and (b) the corresponding uncertainty.

This procedure for estimating the uncertainty is not based on area averages, since the aim
is to derive an uncertainty estimate for the exact threshold (e.g. 0.0 °C). By averaging
over the area of interest, one would loose the exact threshold value that is necessary to
determine the uncertainty estimate. Therefore, each grid cell within the area of interest is
considered separately: In the “best guess” field, all grid cells are considered in which the
value is equal to the threshold sought. This is depicted in Fig. 2.2 as an example for frost
days for which the threshold in daily minimum temperatures is 0 °C (grey in Fig. 2.2 (a)).
The median uncertainty is then found from all the grid cells considered in the uncertainty
field (grey in Fig. 2.2 (b)) of all days within the reference period.

The median uncertainty was also separately calculated for cold seasons within the entire
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Table 2.3. E-OBS (reference data) uncertainty for cold season threshold-based climate indices. pr: pre-
cipitation.

Index frost day ice day coldsum wet day heavy pr day

Variable Tmin [°C] Tmax [°C] Tavg [°C] pr [mm/day] pr [mm/day]
Threshold 0 0 0 1 10
Uncertainty ± 0.86 ± 0.76 ± 0.64 ± 0.8 ± 2.8

reference data time period (January 1950 to July 2019), 10-year time slices, and for each
cold season month to investigate the variability and stationarity of the uncertainty esti-
mate. No detailed result is presented here. Across the months, no variability was found.
However, the last two 10-year time slices showed a slightly larger spread than the time
slices between 1950 and 2000. This might be on account of a change in station density
over time. Therefore, the reference time period 1971 to 2000 was selected without the
last two decades available in the data-set. Across the period 1971–2000, the median un-
certainty was calculated for Tmin, Tmax, Tavg at 0 °C and for pr at 1 and 10 mm/day. The
calculated median uncertainty determined for each threshold is further used in the calcu-
lation of the climate indices. More precisely, under the assumption that the uncertainty
is normally distributed, half of the uncertainty is added to and half of the uncertainty is
subtracted from the original threshold for a sensitivity study. These uncertainty values
can be found in Table 2.3.

Model data uncertainty

As stated in previous sections, the EURO-CORDEX multi-model ensemble is used as
model data in this work. The ensemble consists of 14 different simulations, each based
on a different GCM-RCM model combination (Table 2.1). To assess the ensemble un-
certainty, a common method is to define the bandwidth of the results (e.g. DÉQUÉ et al.,
2007). Here, we define the model bandwidth as the ensemble spread between the 5th
and the 95th percentiles. In addition, we analyse the ensemble median (instead of the
ensemble mean) to preclude possible outliers from having too strong an influence on the
result.
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2.4 Results

2.4.1 Sensitivity of threshold-based climate indices to chosen
threshold

The simplest way to include data uncertainty in the calculation of threshold-based climate
indices is to vary the threshold by the uncertainty.

As a first step, the general sensitivity of the climate index values to changes in the thresh-
old is assessed. Hence, the number of days determined by each of the threshold-based
climate indices is calculated for several different thresholds above and below the origi-
nally defined threshold (Table 2.2) for all cold season days within the reference period.
The total number of cold season days within the reference period is 4,440 days.

The total numbers of days calculated within the reference period are compared to the
total number of days calculated with the originally defined threshold. This dependency
is depicted in Fig. 2.3 for frost days and ice days as the percentage change in the number
of days as a function of the selected threshold relative to the number of days calculated
with the originally defined threshold.
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Figure 2.3. Distribution of (a) daily minimum and (c) daily maximum temperature between 1971-2000.
Percentage changes in the number of (b) frost days and (d) ice days are shown as function of the threshold.
Blue: 5th to 95th percentile of climate model ensemble (a,c), all 14 model results (b,d); black: reference
data.

When changing the threshold for frost days from 0 °C to values smaller than zero or
values greater than zero, changes in the number of frost days are apparent and of similar
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size for increased and decreased thresholds (Fig. 2.3b). When changing the threshold for
frost days to e.g. −2 °C and 2 °C, relative changes in the number of days are around ±45
% which translates to (on average) ±30 days per cold season.

Doing the same for ice days reveals a higher sensitivity towards thresholds greater than
the originally defined one: An increase in the threshold to 2 °C leads to an increase in the
number of ice days of nearly 100 % (+18 days). A decrease in the threshold to −2 °C
leads to a decrease of 50 % (−9 days).

The difference in the sensitivity between frost days and ice days is caused by the dis-
tance between the position of the threshold and the mode of the underlying temperature
distribution. Fig. 2.3a, c show the distributions for daily minimum and daily maximum
temperatures for the area of interest. If the originally defined threshold is in accordance
to the mode of the underlying distribution, a change in the threshold in both directions
causes changes in the number of days of similar magnitude. This is the case for frost days
(Fig. 2.3a, b). If the threshold is not at the mode of the underlying distribution, a change
towards the mode causes a far greater change in the number of days than a change away
from the mode. Hence, the relative change curve would increase until the mode of the
underlying distribution is reached.

Changes in the coldsum caused by changes in the threshold are small compared to the
other climate indices (Appendix A, Fig. A.1). When changing the threshold to −2 or 2
°C, the coldsum changes by ±15 %.

The precipitation-based indices show a high sensitivity towards a decrease in the thresh-
old: When decreasing the threshold for wet days by 1 mm/day, the number of wet days
increases by 149 % (+90 days) (Appendix A, Fig. A.2). An increase by 1 mm/day
results in a decrease in the number of wet days by 23 % (−13 days). For heavy pre-
cipitation days, a decrease in the threshold from 10 mm/day to 5 mm/day results in an
increase in the number of days by +223 % (+15 days) whereas an increase by 5 mm/day
results in a decrease in the number of days by 71 % (−5 days). This behaviour can again
be explained by the underlying frequency distribution: the precipitation distribution is
skewed with frequent light precipitation events while heavy precipitation events are rare
(SCHLÜNZEN et al., 2010).

This sensitivity study shows that the number of days derived from a threshold-based
climate index strongly depends on the underlying distribution of the climate variable
and on the distance between the threshold and the mode. A larger distance between the
threshold and the mode leads to a larger percentage change in the number of days when
the threshold is changed (e.g. ice days vs frost days). A change in the threshold towards
the mode generally leads to a larger percentage change in the number of days than a
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change away from the mode.

2.4.2 Consideration of data uncertainty in determined values
of threshold-based climate indices

To not just take an arbitrary number for the uncertainty of the thresholds, the uncertainty
estimates derived from the reference data (sec. 2.3.3) are used to vary the threshold of
each climate index. As an example, for frost days, the varied thresholds result to T+

min

= 0.86 °C and T−
min = −0.86 °C (Table 2.3). The number of frost days based on the

originally defined threshold is compared with the number of frost days based on the
varied thresholds. The number of days per cold season is calculated between 1971 and
2000 and then averaged.
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Figure 2.4. Number of (a) frost days, (b) ice days, (c) years of each coldsum category, (d) wet days and (e)
heavy precipitation days as mean cold season value between 1971-2000. From left to right: climate model
ensemble bandwidth for the originally defined threshold, climate model ensemble bandwidth for increased
threshold, climate model ensemble bandwidth for decreased threshold. Black dots represent reference data
values for the corresponding thresholds.

The reference data-set is considered the “truth” here, and the truth — as we have seen —
is not exact, but is subject to uncertainty. If we let the “truth” vary by its uncertainty, the
baseline is changed. For a fair comparison between reference and climate model data,
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the baseline in the climate model data needs to be changed as well. Consequently, when
calculating the number of frost days in the climate model data, the thresholds are varied
by the same values as used for the reference data. The resultant three groups of 14 values
for the climate model data and the three values for the reference data are shown in Fig. 2.4
for the number of frost days (Fig. 2.4a), the number of ice days (Fig. 2.4b), the coldsum
(Fig. 2.4c), the number of wet days (Fig. 2.4d), and the number of heavy precipitation
days ((Fig. 2.4e). Each box in this figure shows the first quartile (25th percentile), the
median, and the third quartile (75th percentile) of the distribution. The central 50 % of
the data are within this interquartile range, the rest of the distribution is shown by the
whiskers. Outliers are determined using a method that is a function of the interquartile
range.

For frost days (Fig. 2.4a), a change in the threshold by the reference data uncertainty
leads to an overall range of possible numbers of frost days per cold season of between
35 (lower whisker of climate model ensemble with decreased threshold) and 108 (upper
whisker of climate model ensemble with increased threshold). This is a range of roughly
one to three months of frost caused by an uncertainty in the daily minimum temperature.
The range based on reference data values is between 52 and 80 days per cold season and
is roughly the same as the median of the climate model data. The maximum number of
consecutive (mnoc) frost days (Appendix A, Fig. A.3a) varies from 15 days to 40 days
in the climate model data with varied thresholds. The values derived from the reference
data-set are located below the 25th percentile of the climate model data distribution. This
shows that the models, in general, overestimate the duration of frost periods.

For ice days (Fig. 2.4b), a change in the threshold by the reference data uncertainty (±
0.76, Table 2.3) leads to a range in the number of days of 10 to 40 days. In general, the
climate model ensemble tends to result in too many ice days independent of the chosen
threshold, since the models are generally too cold in this region and for this period (e.g.
Fig. 2.3c). A lowering of the threshold in the climate model data, therefore, leads to
a better agreement between the range of reference data values and the climate model
ensemble compared to the original threshold.

For the mnoc ice days (Appendix A, Fig. A.3b), the range with varied thresholds is not as
large as for the number of ice days, which is caused by the lower number of mnoc ice days
in general. The reference data value is generally at the first quartile of the climate model
data distribution independent of the chosen threshold. As for the number of ice days,
a lowering of the threshold in the climate model data improves the agreement between
climate model data and reference data.

For the coldsum (Fig. 2.4c), a change in the threshold does not result in a noticeable
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change. Here, daily average values below the chosen threshold are summed up per cold
season (148 days). Regardless of whether the threshold is 0 °C, −0.64 °C, or 0.64 °C, in
the end, the large negative values are decisive for the coldsum of a cold season. And these
large values are counted irrespective of a changed threshold. As a result, the inclusion
of uncertainty in the threshold leads to marginal changes in the coldsum. Therefore,
the categorisation based on the coldsum seems to be robust against uncertainties in the
reference data.

For wet days (Fig. 2.4d), a decrease in the threshold by 0.8 mm/day (Table 2.3) leads to
a large increase in the number of days in the model results. It is much larger than the
corresponding reference data value. This is probably because of the fact that very small
precipitation amounts cannot be measured and result in zero precipitation. The climate
models produce precipitation in this “barely measurable” range. Precipitation rates up to
1 mm/day (without 0 mm/day) are more frequent in the climate model data compared to
the reference data. A change in the threshold towards these small precipitation amounts
leads to a stronger increase in wet days for the climate model data compared to the
reference data. The overall climate model data range with changed thresholds ranges
from 47 to 118 days. In general, the models overestimate the number of wet days since
the models are too wet in this region (KOTLARSKI et al., 2014, shown for DJF in their
Figure 3). Although the increase in the threshold, and, so, the consideration of a possible
bias in the reference data in this comparison, leads to a better agreement between the
range of reference data values and the climate model ensemble, an overestimation of wet
days is still evident.

Changing the threshold by ± 2.8 mm/day (Table 2.3) for heavy precipitation days (Fig. 2.4e)
leads to an overall range of 3 to 13 days. The climate model ensemble median and the
reference data are in very good agreement for all chosen thresholds. Therefore, a change
in the threshold neither improves nor leads to a deterioration in the agreement between
climate models and reference data.

2.4.3 Influence of data uncertainty on threshold-based cli-
mate indices for future climate periods

The number of days derived from threshold-based climate indices are analysed for the
near future (2031–2060) and the far future (2071–2099) for the emission scenarios RCP2.6
and RCP8.5, based on regional climate model results. The number of days is calcu-
lated for three different thresholds: the originally defined threshold and the thresholds
increased and decreased by the uncertainty estimate derived from the reference data-set.
Changes in future climate periods are considered relative to the reference period (1971–
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Figure 2.5. Number of frost days for three different thresholds (x-axis) as mean cold season value in near
future (2031–2060, light shading) and far future (2071–2099, dark shading) based on climate model data.
(a,c): Total number of days, (b,d): Change in the number of days relative to reference period 1971–2000.
Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and (c,d) RCP8.5 in red.

2000) for all climate indices. The relative change between two future climate periods is
always considered on the basis of values calculated with exactly the same threshold.

In general, the number of frost days per cold season is projected to decrease in the future.
For RCP2.6, the decrease relative to the reference period is around 18 days (Fig. 2.5 a,
b) for the different thresholds with minimal difference between the two future periods.
In addition, the climate model ensemble spread is small and remains similar for different
thresholds and future periods. For RCP8.5 (Fig. 2.5 c, d), the reduction of the number
of days as well as the ensemble spread is larger in near future compared to RCP2.6 and
further increases in the far future.

Very similar results are found for the maximum number of consecutive frost days per cold
season in the near and far future (Appendix A, Fig. A.4): The decrease for RCP2.6 in
the near future is around 5 days and slightly larger for the far future. For RCP8.5, again
a stronger reduction in the number of days is found which is larger for the far future.
Differences in the number of days are small for the different thresholds.

The results for the number of ice days and the maximum number of consecutive ice days
(Appendix A, Fig. A.5 and A.6) are very similar to the results for the number of frost
days and the maximum number of consecutive frost days. Since the absolute values in the
reference period are already small (5 to 17), the change in future climate periods cannot
be greater than these values. For RCP8.5, the maximum number of consecutive ice days
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Figure 2.6. Distribution of cold season daily maximum temperatures in the area of interest for (a) RCP2.6
and (b) RCP8.5. Shown are distributions for three different climate periods: the reference period (1971–
2000, blue), near future (2031–2060, orange) and far future (2071–2099, red). Shown is the 95th percentile
of the climate model ensemble. Black: reference data values for the reference period.

is close to zero in the far future, which means that the changes relative to the reference
period cannot increase much after 2100.

For all temperature threshold-based climate indices, it is evident that an increase in the
threshold leads to a higher number of days in the reference period but also to a stronger
decrease in future climate periods compared to the number of days based on the original
or decreased threshold. The larger differences in the changes relative to the reference
period for the three different thresholds, found for RCP8.5 compared to RCP2.6, may
be caused by the fact that the underlying distribution of the climate variable changes its
shape and shifts to a higher mean and higher mode (Fig. 2.6). For RCP2.6, the frequency
distribution shifts only slightly to higher values. Hence, a change in the threshold has
a small effect on the relative change of the number of days. The larger the change of
the shape of the distribution for future climate periods, the larger the difference in the
number of days between the three thresholds when looking at future changes relative to
the reference period.

As shown in sec. 2.4.2, changes in the threshold lead to marginal changes in the coldsum.
Therefore, the categorisation based on the coldsum seems to be robust against changes
in the threshold. This can also be seen for future periods, when looking at the total
number of years shown in Fig. 2.7a, c, and also when looking at relative changes shown
in Fig. 2.7b, d. In future periods, mild winters are projected to increase whereas winters
of all other categories occur less frequently. Again, in RCP2.6, there is no further change
from the near to the far future. In RCP8.5, around 10 more years of mild winters are
projected in the near future and around 15 more years of mild winters are projected for
the 30-year period in the far future. Moderately cold as well as harsh winters will become
very rare.

For wet days, there is little difference between the two scenarios and the models do not
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Figure 2.7. Categorisation of future winters based on the coldsum. Shown are the number of years
of each category in two future climate periods. Light shading: 2031–2060, dark shading: 2071–2099.
Three boxes of the same shading represent values for three different thresholds (f.l.t.r.: original, increased
threshold, decreased threshold). (a,c): Total number of days, (b,d): Change in the number of days relative
to reference period 1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and
(c,d) RCP8.5 in red.

agree on the direction of change (Appendix A, Fig. A.7). Some simulate an increase
in the number of wet days while some others simulate a decrease in the number of wet
days. Consequently, the overall changes are small and in the range of ± 5 days. As for
the reference period, a decrease in the threshold by the uncertainty estimate leads to a
large increase in the number of wet days which is not visible when one looks at changes
relative to the reference period.

For heavy precipitation days, the climate models project an increase in the near and
the far future for RCP8.5 (Fig. 2.8). For RCP2.6, the climate models do not agree on
the direction of change and are mostly in the range of ± 1 day. Similarly as for the
temperature threshold-based climate indices, a decrease in the threshold leads to a larger
number of days in the reference period but also to a stronger increase in future climate
periods compared to the number of days based on the original, or the increased, threshold.

2.5 Summary and conclusions
The influence of data uncertainty on cold season threshold-based climate indices is in-
vestigated in this work. In addition to a general sensitivity study, wherein thresholds of
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Figure 2.8. Number of heavy precipitation days for three different thresholds (x-axis) as mean cold season
value in near future (2031–2060, light shading) and far future (2071–2099, dark shading) based on climate
model data. (a,c): Total number of days, (b,d): Change in the number of days relative to reference period
1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and (c,d) RCP8.5 in red.

a set of climate indices are varied arbitrarily, uncertainties derived from a reference data-
set have been used to vary the defined thresholds in a defined range of uncertainty. The
application of our method has been demonstrated by analysing future climatic changes
for a north-western European city and its rural surroundings. Based on our results, we
conclude the following:

1. Data uncertainty can be included by changing the threshold by a data uncertainty
estimate that is preferably based on known uncertainties — here, the ensemble
spread of the E-OBS data-set in its ensemble version.

2. In general, each threshold-based climate index responds differently to changes in
the threshold. This behaviour mostly depends on the frequency distribution of the
climate variable, especially on the distance between the defined threshold and the
mode of the distribution. Indices based on extreme values are more sensitive to
variations of the threshold.

3. For RCP2.6, changes can be reliably assessed when the same threshold is used for
current and future climate periods. Relative changes are very similar for all chosen
thresholds.
For RCP8.5, relative changes for the far future depend on the chosen threshold
when compared to the current climate period. Differences across the different
thresholds are most pronounced for the number of frost/ice days, the maximum
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number of consecutive frost/ice days, and heavy precipitation days. A reason for
these large differences is most likely the change in the frequency distribution of the
corresponding data.

In addition, it has been shown that climate model uncertainty can be within the range
of (interpolation) uncertainties of the reference data. Hence, it is important to account
for these uncertainties when evaluating climate models. This might also be of help for
climate change impact analyses, e.g. when threshold-based indices from climate models
are used to force impact models. However, it should always be checked if the frequency
distribution of the analysed data remains similar for future climate periods.

The categorisation based on the coldsum seems to be robust against changes in the thresh-
old, and can, therefore, be used to gain insights into future changes. Indices that integrate
a quantity over a given time interval (such as coldsum or consecutive days) are less sus-
ceptible to uncertainties in the threshold. When applying the bias-correction method
proposed by HOFFMANN et al. (2018) to the thresholds, it became clear that integrating
indices benefit little from it. This supports our conclusion that integrating indices show
little response to changes in the threshold, and, so, can be used for future assessments.
Other indices can be used, but uncertainties should always be taken into account, and
ideally corrected in an appropriate way in order to assess climate change.
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Abstract
This study investigates the cold season characteristics and the occurrence of ice episodes
for a target region in northern Germany. Additionally, it identifies the typical atmospheric
patterns associated with ice episodes using reanalysis data. A pattern-matching method is
developed, that uses the structural similarity index to determine whether regional climate
models (RCMs) can reproduce the ice episode-specific atmospheric patterns identified
from the reanalysis data. The results show that the frequency of ice days is overestimated,
but not the frequency of frost days. This suggests a daytime cold bias in the RCMs
in this region, as maximum temperatures are too low. Moreover, most of the analysed
RCMs simulate too many ice episodes (> 5 consecutive ice days). The developed pattern-
matching demonstrated, based on reanalysis data, that ice episodes in the target region
can be associated with a variety of different atmospheric patterns. Specifically, longer ice
episodes (lasting 14–29 consecutive ice days) in the target region are associated with a
blocking pattern over Iceland/the British Isles. This is the most frequent pattern observed
during ice episodes in the target region. The least frequent patterns show a system of
low GPH over the European continent and are associated with shorter ice episodes (6–8
consecutive ice days) in the target region. The RCMs can reproduce these patterns and
their frequency well, regardless of their forcing, and these patterns are also associated
with an ice episode in the RCMs. Furthermore, it can be concluded that the “typical”
blocking pattern is not a reliable indicator for ice episodes in the target region.
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3.1 Introduction
A cold spell is an event characterized by low temperatures that persist for several days.
Cold spells can have a variety of impacts on society. They can be the cause of severe
damage and loss of life (PFAHL, 2014; WEILNHAMMER et al., 2021), they can cause
transport disruption and have a direct impact on energy demand (VAN DER WIEL et al.,
2019). Therefore, cold spells pose a considerable threat to society.

The characteristics of such events can be studied using observational or reanalysis data.
The future development of cold spells can be analysed using climate model projections.
To examine these changes for a specific region, such as Europe, projections from re-
gional climate models (RCMs) can be used. RCMs are limited-area climate models that
typically have a finer resolution than global climate models (GCMs) and are frequently
used for impact studies (see GIORGI (2019) for a summary). However, in order to derive
reliable statements about the future development of cold spells from the RCM data, it
is crucial to evaluate the RCMs’ ability to reproduce the current cold season character-
istics. Thus, the first research question is: Are RCMs able to reproduce cold season
characteristics for a specific target region?

As there is no standard definition for cold spells (MENG et al., 2022, e.g.), here the term
“ice episode” is introduced. An ice episode is defined here as an event consisting of more
than five consecutive ice days. Therefore, this study analyses events where the maximum
daily temperature is below freezing for at least six consecutive days. This duration is
chosen based on the understanding that certain atmospheric conditions associated with
cold events persist for about 7 to 10 days (PFAHL, 2014). To assess the ability of RCMs
to reproduce the frequency of ice episodes in a specific target region, we have selected an
urban area as a use case. The second question to answer is Are RCMs able to reproduce
the frequency of ice episodes for a specific target region?

As use case the Hamburg metropolitan region in northern Germany is selected. Due to
its geographical location, the cold season in this region is strongly influenced by weather
patterns originating in the North Atlantic. Cold extreme events in many parts of Europe
are generally associated with similar atmospheric conditions in the North Atlantic region
(KAUTZ et al., 2022). A weakened air pressure gradient between Greenland and the
Azores can cause the jet stream to meander and become unstable. This can interrupt
the predominant westerly flow and result in meridional air mass transport. When a high-
pressure system separates and remains stable in the same location for an extended period,
it "blocks" the westerly flow, which is known as atmospheric blocking (REX, 1950). For
central Europe, BRUNNER et al. (2018) could show, that up to 70 % of cold spells can
be associated a blocking anywhere between 60°W and 30°E. Therefore, to investigate
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the future development of ice episodes using RCM data, it is necessary to examine the
extent to which the RCMs can reproduce typical atmospheric patterns and the relationship
between those patterns and ice episodes in the target region. The third question to answer
is Can RCMs accurately reproduce the atmospheric patterns prevailing during ice
episodes?

To evaluate the ability of RCMs to reproduce the prevailing atmospheric patterns, these
patterns are first identified in the reanalysis data and then searched for in the RCM data
using a pattern matching method developed in this study. This method of pattern match-
ing utilises the Structural Similarity Index (SSIM) (WANG et al., 2004), which is com-
monly used in image processing. The developed method allows to identify the atmo-
spheric patterns prevailing during local ice episodes and to search for these ice episode
specific patterns in RCM data. Subsequently, it can be examined whether the ice episode
specific patterns found in RCM data lead to a local ice episode in the target region.

Following this introduction, sec. 3.2 describes the data used for the study. A detailed de-
scription of the workflow and methods is given in sec. 3.3. The results are then presented
and discussed in sec. 3.4. Sec. 3.5 closes with a summary and conclusions.

3.2 Database
The database consists of a gridded observational data-set, a reanalysis as well as the
output of RCMs. Variables that are analysed are: daily 2 meter temperature (T2m), daily
minimum and maximum 2 meter temperatures (T2mmin, T2mmax) and daily geopotential
height (GPH) at 500 hPa (Zh500hPa). Two threshold-based climate indices derived are
from T2mmin and T2mmax, the number of frost days and the number of ice days.

3.2.1 Gridded data-set
The E-OBS data-set is a gridded data-set based on interpolated station data across Europe
(CORNES et al., 2018). It is provided with a spatial resolution of 0.1° (used here) and
0.25°, and has a temporal resolution of 1 day. The E-OBS data-set version used here
(v27.0e), consists of an ensemble of 20 members for temperature (daily minimum, mean
and maximum values), precipitation, sea level pressure, wind speed, relative humidity
and global radiation. The ensemble methodology, based on the work of HUTCHINSON

and GESSLER (1994), takes into account the uncertainty of the underlying statistical
model, resulting in larger model residuals leading to a wider spread within the ensemble.
Variables from E-OBS used here are T2m, T2mmin and T2mmax. Besides the “best guess”
(ensemble mean) value, the ensemble version provides an uncertainty estimate. This
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uncertainty estimate represents the 90 % uncertainty range (5th to 95th percentile) of the
ensemble. E-OBS is commonly used as reference for the evaluation of EURO-CODEX
model data (e.g. JACOB et al., 2014; KOTLARSKI et al., 2014; HOFFMANN et al., 2018)
and is also used as reference for target region temperatures in this work.

3.2.2 Reanalysis
The reanalysis used in this work is the global reanalysis ERA5 (HERSBACH et al., 2020).
It is the successor of ERA-Interim reanalysis (DEE et al., 2011) and has a finer horizontal
resolution (31 km), a higher temporal resolution (hourly) and a longer duration period
(1950-present). In this work, surface variables (HERSBACH et al., 2018b) as well as vari-
ables on the 500 hPa pressure level (HERSBACH et al., 2018a) are used to calculate daily
values. Daily T2mmin and daily T2mmax are calculated from the hourly instantaneous
T2m values, as recommended by ECMWF (2022). ERA5 is used as the reference for
the atmospheric circulation patterns in this work.

3.2.3 Model simulations
RCM results used here were generated within the frame of the Coordinated Downscaling
Experiment (CORDEX, GIORGI and GUTOWSKI (2015)). They have a spatial resolu-
tion of 0.11° for the European domain (EURO-CORDEX, JACOB et al. (2014)). Here,
historical runs as well as evaluation runs from RCMs are analysed. The historical runs
are forced with GCM simulations from the Coordinated Model Intercomparison Project,
Phase 5 (CMIP5, TAYLOR et al. (2012)) models at the boundaries and have therefore
higher degrees of freedom than the evaluation runs forced with ERA-Interim (DEE et al.,
2011). A general evaluation of the ERA-Interim forced runs can be found in KOTLARSKI

et al. (2014).

The model-simulation combinations used in this work are listed in Table 3.1. Our selec-
tion criteria are, first, that an evaluation run, a historical run and a future projection based
on RCP8.5 (forced by any GCM) are available, second, that the evaluation run covers at
least the period 1989–2005 and, third, that in addition to the surface variables, also the
geopotential (height) at 500 hPa is provided. These criteria are met by eight evaluation
runs and 29 GCM-driven RCM simulations. This selection provides a variety of forcing
GCMs with different performance in reproducing, for example, blocking frequencies in
the northern hemisphere. Performance information is taken from the circulation-based
performance atlas of CMIP5 and CMIP6 models presented by BRANDS (2022).

The CCLM4-8-17 (ROCKEL et al., 2008), HIRHAM5 (BØSSING CHRISTENSEN et al.,
2007), WRF331F (SKAMAROCK et al., 2008) and REMO2009 (JACOB et al., 2001)
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Table 3.1. Climate model simulations used in this work. Forcing from global climate model (GCM) or
reanalysis (ERA-Interim) data. The regional climate model (RCM) used and the used GCM-realisation for
the forcing. The different calendars used for the simulations and the duration of the simulations lead to a
different number of total cold season days (days) within 1979–2005.

Forcing RCM Realisation Calendar total days

ERA-Interim CCLM4-8-17 r1i1p1 proleptic Gregorian 2419
ALADIN53 r1i1p1 proleptic Gregorian 3932
HIRHAM5 r1i1p1 proleptic Gregorian 2419
REMO2015 r1i1p1 proleptic Gregorian 3932
WRF331F r1i1p1 proleptic Gregorian 2419

RACMO22E r1i1p1 standard 3932
REMO2009 r1i1p1 proleptic Gregorian 2419

RCA4 r1i1p1 standard 3871

CanESM2 CCLM4-8-17 r1i1p1 365-day 3925
REMO2015 r1i1p1 proleptic Gregorian 3932

CNRM-CM5 CCLM4-8-17 r1i1p1 proleptic Gregorian 3932
ALADIN53 r1i1p1 proleptic Gregorian 3932
REMO2015 r1i1p1 proleptic Gregorian 3932
RACMO22E r1i1p1 standard 3932

RCA4 r1i1p1 standard 3932

EC-Earth CCLM4-8-17 r12i1p1 proleptic Gregorian 3932
HIRHAM5 r3i1p1 proleptic Gregorian 3932
REMO2015 r12i1p1 proleptic Gregorian 3932
RACMO22E r3i1p1 standard 3932

RCA4 r12i1p1 standard 3932

IPSL-CM5A-MR WRF331F r1i1p1 proleptic Gregorian 3932
RACMO22E r1i1p1 standard 3925

RCA4 r1i1p1 standard 3925

MIROC5 CCLM4-8-17 r1i1p1 365 day 3925
REMO2015 r1i1p1 proleptic Gregorian 3932

HadGEM2-ES CCLM4-8-17 r1i1p1 360 day 3900
RACMO22E r1i1p1 360 day 3900

RCA4 r1i1p1 360 day 3900
REMO2015 r1i1p1 360 day 3900

MPI-ESM-LR CCLM4-8-17 r1i1p1 proleptic Gregorian 3932
REMO2015 r3i1p1 proleptic Gregorian 3932
RACMO22E r1i1p1 standard 3932
REMO2009 r2i1p1 proleptic Gregorian 3932

RCA4 r1i1p1 proleptic Gregorian 3932

NorESM1-M HIRHAM5 r1i1p1 proleptic Gregorian 3932
REMO2015 r1i1p1 proleptic Gregorian 3932
RACMO22E r1i1p1 365-day 3925

evaluation runs start in 1989, the RCA4 (SAMUELSSON et al., 2011) evaluation run
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starts in 1980, ALADIN53 (COLIN et al., 2010), REMO2015 (JACOB et al., 2001) and
RACMO22E (VAN MEIJGAARD et al., 2008) evaluation runs start in 1979. Therefore,
the evaluation runs have different numbers of total cold season days within the chosen
analysis period of 1979–2005 (see Table 3.1, last column).

3.3 Methodology
The driving questions for the development of the methodology are: How to determine ice
episodes for the target region? How to determine the atmospheric patterns that prevail
during these events? How to find these patterns in RCM data? To be able to answer these
questions, a data processing/analysis workflow is established. The methodologies for the
different analysis steps within the workflow are shown in Fig. 3.1 and described below.

Figure 3.1. Workflow established to answer research questions. From data pre-processing, through data
classification, to atmospheric pattern analysis. For more details see text.

3.3.1 Data pre-processing
All data-sets are pre-processed to meet the following requirements:

1. A common analysis period. The longest overlapping period of the data-sets used
in this work is 1979–2005.

2. The consideration of cold season months only. As cold season, we define all days
of a year between the 1st of November and the 31st of March of the following year.
This results in the final time period from the 1st of November 1979 til the 31st of
March 2005. Hence, 26 cold seasons in total. As shown in Table 3.1, the different
model simulations were generated using different internal calendars: The proleptic
Gregorian or standard calendar with 365/366 days per year including leap years;
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the 360 day calendar where each month has exactly 30 days; the 365 day calendar
excluding leap years. To ensure a fair comparison of, for example, the number of
frost days, results are always given relative to the total number of cold season days
in the respective data-set.

3. All data is converted into daily average or daily minimum/maximum values. This
temporal frequency is needed for the calculation of the climate indices.

4. Two domains are selected. A target region is selected for which the ice episodes
are calculated. The target region covers the area of Hamburg (53.55°N and 10°E)
and its surroundings and its size is roughly 70 km × 70 km (53.25°N – 53.85°N
and 9.48°E – 10.53°E) (Fig. 3.2). For the data sets used here, this results in an
area of 60 grid cells for E-OBS, 12 grid cells for ERA5 and 36 grid cells for the
RCMs. For ERA5, a larger north European domain is selected to investigate the
atmospheric circulation during the ice episodes. This larger domain corresponds to
the EURO-CORDEX domain with the boundaries 27°N – 72°N and −22°E – 45°E
(Fig. 3.3).

This data-processing methodology can be applied to other data-sets or target regions.
The large domain should be large enough to ensure that atmospheric circulation patterns
are captured. The target region should cover several climate model grid cells to enable
the calculation of average values from more than one value (grid cell). Averaging over
several grid cells is crucial as models lack grid point precision, and the kinetic energy in
the system is too low for a single grid point (based on work by SKAMAROCK (2004)).
Consequently, averaging over several grid cells results in a more representative value.

3.3.2 Data classification
In this paper, cold season characteristics are studied for the target region. For this pur-
pose, the classes shown in Table 3.2 are defined, into which all the data used in this work
are classified.

Classes 1, 2 and 3 are warm, frost and ice days, respectively. Three sub-classes of ice days
are defined to account for different durations of ice episodes. The short duration class (3–
Ds) corresponds to the duration of average atmospheric blocking events that can cause
cold events (see also the Introduction). The long duration class (3–Dl) corresponds to the
persistence of atmospheric blocking events during extreme cold events. All ice episodes
with durations between average and extreme persistence of atmospheric blocking events
belong to the medium duration class (3–Dm).

For classes 1–3 it is checked for each day whether the daily maximum and minimum
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Figure 3.2. Target region: Hamburg and its surroundings. Shown is the daily average 2m temperature on
the 1996-12-24 based on the E-OBS data-set. This date is the 5th day of the longest ice episode identified
in E-OBS within 1979–2005. Note the different scalings.

Figure 3.3. Remapping of ERA5 data to fit the EURO-CORDEX domain. As an example, the geopotential
height at 500 hPa pressure level is shown for three different data-sets on different grids on the 1996-12-24.
The different data-sets are: (a) ERA5 on its native grid. (b) ERA5 remapped to the exact EURO-CORDEX
domain and resolution. (c) A EURO-CORDEX RCM simulation on its native grid.

Table 3.2. Defined cold season characteristic classes into which data is divided. Temperatures (T2mmin,
T2mmax) are considered as target region averages.

Class Cold season characteristic Definition

1 warm day T2mmin > 0 °C
2 frost day T2mmin < 0 °C and T2mmax > 0 °C
3 ice day T2mmax < 0 °C

Sub-classes

3–Ds short duration 6–10 consecutive ice days
3–Dm medium duration 11–15 consecutive ice days
3–Dl long duration > 15 consecutive ice days
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temperatures are below 0 °C. Depending on the result of the test, the date of the day
is assigned to the corresponding class. For example, the daily minimum temperature is
below 0 °C but the daily maximum temperature is not. Then, the date of this day is
assigned to the frost-day class. In this way, a time mask is created for each class.

For the ice episode classes, the ice days are analysed separately per season. If the condi-
tion for an ice day is met, the next day is checked. This continues until the condition is no
longer met. The duration of the event is then determined and all dates of all days within
the event are allocated to the appropriate duration class. Again, a time mask is created
for each class. In addition, the start date and duration of the considered ice episode are
stored. The same procedure is then carried out for the remaining days within the analysis
period.

For each class, the frequency of occurrence is calculated relative to all cold season days
within the analysis period. For E-OBS and ERA5 there are 3932 cold season days within
1979–2005. Since the GCMs and RCMs have different calendars (see Table 3.1 and sec.
3.3.1, point 2.), the number of cold season days in the RCM simulations is smaller. The
numbers range from 2419 to 3932 and can be found in Table 3.1.

For E-OBS, the frequency of occurrence is calculated for the defined threshold of 0 °C
as well as for varying thresholds based on the observational uncertainty provided by the
E-OBS ensemble version (see sec. 3.2.1). The uncertainty estimates for the thresholds
have been derived in BELL et al. (2023). This provides an observational uncertainty
range for warm days, frost days and ice days. This uncertainty estimate was not used to
calculate the frequency for the ice episode classes. The reason for this is that a change in
the threshold may lead to longer events on the one hand, but also to fewer events in total
on the other. These compensating effects would lead to an ambiguous result that would
be difficult to interpret.

In the final step, the created time masks are used to filter the GPH at the 500 hPa pressure
level.

All these steps are applied to the reference data-set E-OBS, the reanalysis ERA5 and the
RCM data.

3.3.3 Pattern analysis
In order to better estimate when and under what conditions certain ice episodes occur,
it is helpful to know the state of the atmosphere during these events. As described e.g.
in MESSORI et al. (2017), the GPH at 500 hPa is a good proxy for the large-scale at-
mospheric circulation in the North Atlantic region. It is a key component of synoptic-
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meteorology and is often used for the analysis of weather patterns, e.g. the calculation of
atmospheric blocking (e.g. SCAIFE et al., 2010; DUNN-SIGOUIN and SON, 2013; FRAN-
CIS et al., 2022). Therefore, the GPH at 500 hPa is used here to determine typical patterns
for each of the classes defined.

In a first step, mean atmospheric patterns are calculated for each of the defined classes.
This is done by averaging over all days within the class under consideration. This is
done both for ERA5 as a reference and for the RCM simulations. In this way, the mean
patterns for each class can be compared.

In the second step, the focus is shifted to the individual events in the duration classes. It is
examined whether the RCMs are able to reproduce the event-specific patterns identified
for the reference. The information whether and if so, which cold event occurs in the
target region in the RCM is neglected. In the RCM simulations, therefore, only the
event-specific atmospheric reference pattern is searched for. How this search works and
which individual steps are important is described below:

1. The ERA5 reanalysis data are used as reference for the atmospheric circulation
patterns against which the RCM data are compared. Thus, event-specific patterns
are derived from the ERA5 reanalysis data and are referred to as reference patterns.
For each event within the different duration classes, an event-specific reference
pattern is obtained. For the entire analysis period, there are 17 events for class
3–Ds, so 17 individual patterns are derived. For class 3–Dm there are 4 events (=
4 patterns) and for class 3–Dl there are also 4 events (= 4 patterns). See Table B.1
in Appendix B for the number of events derived from E-OBS, ERA-Interim and
ERA5.

2. In order to find the event-specific reference patterns in the RCM data, a method
often used in image processing is applied: The structural similarity index (SSIM)
(WANG et al., 2004). This index describes the similarity between two input signals
(images). The first signal is the original, which is assumed to be perfect. The
SSIM can then be used as a quantitative measure of the similarity of the second
signal. This index divides the similarity measure into three separate comparisons:
Luminance (l), contrast (c) and structure (s). Combining the three comparison
functions gives the following equation:
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where x, y are the two signals. µx,y is the mean intensity (luminance), σx,y is the
standard deviation (contrast) and σxy is the correlation (structure) of the two im-
ages. l, c and s indicate the luminance, contrast and structure comparison functions.
The constants C1 and C2 = 2C3 ensure stability of the equation when the denom-
inator is close to 0. The structure comparison function s (last factor of eq. 3.1)
is similar to the anomaly correlation coefficient (ACC) calculation. In the field of
weather and climate prediction, the ACC is widely used to determine the skill of a
forecast (e.g. WILKS, 2019). For the complete derivation of the SSIM with all the
details, we refer to the original work by WANG et al. (2004).

To apply the SSIM index to the data used in this paper, the implementation within
the Python library scikit-image (VAN DER WALT et al., 2014) is used.

HOFFMANN et al. (2021) used this index to derive a weather persistency index
from it. In their work, they were able to show an increase in persistent weather
conditions that are associated with hydro-climatic risks. While HOFFMANN et al.
(2021) looked at the persistence of weather patterns in ERA5 data, the approach
presented here uses the SSIM index to detect event-specific reference patterns in
the RCM data.

3. To ensure a fair comparison between event-specific reference patterns and patterns
of the RCM data, a sliding window (temporal) is applied to the RCM data within
which average patterns are calculated. This sliding window is of the same length as
the duration of the reference event that is being considered. For example: The cold
season reference event consists of 14 consecutive ice days, so a sliding window of
14 days is used to calculate average patterns in the RCM data time series. Each
day i that is compared to the ERA5 pattern contains an average pattern calculated
from days [i:i+14]. Thus, a comparison is made between average patterns that are
calculated from the same number of days.

4. Before being able to calculate the SSIM index between the two average patterns,
further pre-processing steps are required. First, the RCM data and the ERA5 data
have to be made comparable. This is done by remapping (cdo remapycon
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Figure 3.4. Geopotential height conversion into greyscale image [0–255].

(SCHULZWEIDA, 2023)) the event-specific reference (ERA5) patterns, which are
searched for in RCM data, to the RCM native (EUR-11) grid (Fig. 3.3). Second,
the two average patterns have to be converted into 1-channel greyscale images
(Fig. 3.4). For the conversion, each average pattern is normalised to a range of
0–255. For the normalisation, the minimum and maximum values from the ERA5
time series (cold season months only) are estimated once for the whole period of
1979–2005 and used for the normalisation. The normalisation is derived as fol-
lows:

Po,gray =
Po −minerai

maxerai −minerai
·255

where P is the average ice episode pattern and o is the origin (data source), which
can be either ERA5 or RCM data.

5. A calibration of the SSIM index implementation was performed to find the appro-
priate configuration for our use case. For further details on configuration options
of the SSIM, we refer the reader to VAN DER WALT et al. (2014). In addition,
an appropriate threshold is set above which the samples are considered to be very
similar, i.e. a match. The most suitable setup for our application was found to be a
window size of 61x61 pixels (pixel size ≈ 12.5 km × 12.5 km) without Gaussian
weights for the SSIM calculation and a threshold of 0.85 for finding the event-
specific reference patterns. The selected window size is approximately equal to the
horizontal length scale of the synoptic scale systems.

6. With these settings, event-specific reference patterns are searched for in the RCM
data. If a match is found, details of the RCM in question, such as the average
temperature during the identified event within the target region, are stored in order
to make a statement about whether there was an ice episode present during the
identified atmospheric pattern being sought.
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3.4 Results

3.4.1 Cold season characteristics
The frequency of the defined classes is determined in relation to all cold season days
within 1979–2005. The cold season characteristics are evaluated for the target region
(see Fig. 3.2). The results are shown in Fig. 3.5 and described in detail below.

Figure 3.5. Frequency of different classes, describing cold season characteristics (Class 1: warm days,
Class 2: frost days, Class 3: ice days). Ice days are further divided into three sub-classes representing ice
episodes (class 3–Ds: 6 to 10 consecutive ice days, class 3–Dm: 11 to 15 consecutive ice days, class 3–Dl:
more than 15 consecutive ice days). Blue dashed lines indicate the E-OBS value, blue shading indicates the
E-OBS uncertainty range. Red/blue letters in lower panel indicate overestimation (red) or underestimation
(blue) of duration (D) and occurrence (O) of ice episodes. Boldface indicates whether D or O has a greater
effect on over- or underestimation of ice episode frequencies. Frequencies are given relative to all cold
season days within the respective data set.

The reference data show that warm days (class 1, Fig. 3.5(a)) occur with a frequency of
57%. Including the uncertainty (as described in sec. 3.3.2), the frequency range is be-
tween 47% and 65% (blue shading). The ERA5 reanalysis data are in the range of the
E-OBS results. Just over half of the RCM simulations result in warm day frequencies
that are within the uncertainty range, regardless of whether runs driven by reanalysis data
(light grey bars) or GCM data (dark grey bars) are considered. The RCMs ALADIN53
and RACMO22E generally underestimate the frequency of warm days regardless of the
forcing. Simulations forced by the GCMs CNRM-CM5 and MIROC5 underestimate
the frequency of warm days, while those forced by NorESM1-M overestimate it. The
overestimation of the driving GCM NorESM1-M counteracts the general tendency of
RACMO22E to underestimate this frequency, resulting in a frequency close to the refer-
ence for this particular GCM/RCM combination.
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The frequency of frost days (class 2, Fig. 3.5(b)) is 32% (27–38%) in the reference data.
The result from the reanalysis is within the uncertainty range of the reference data. The
RCMs show both over- and underestimation of frequency, with most models showing
underestimation. For the ERA-Interim driven runs, two of the eight runs are within the
uncertainty range of the reference data, four underestimate the frequency and two are
above the uncertainty range. For the 29 GCM-driven runs, 12 are within the uncertainty
range, 10 show an underestimation and seven show an overestimation. The runs that
show an overestimation of frost days are always the ALADIN53 and RACMO22E runs,
regardless of the forcing. For the GCM/RCM combination NorESM1-M/RACMO22E,
the opposite tendencies again result in a frost day frequency which is close to the refer-
ence.

Ice days (class 3, Fig. 3.5(c)) occur with a frequency of 11.5% (9–15%) in the reference
data. The reanalysis data, again, do not differ much from this value, hence, ERA5 is
within the uncertainty range of the reference data. The majority of the RCM data show
an overestimation of the frequency. For the ERA-Interim driven runs, four are within
the uncertainty range and the other four show higher frequencies above the uncertainty
range of the reference data. A similar behaviour is observed for the GCM-driven runs.
11 runs are within the uncertainty range, 16 runs overestimate and 2 underestimate it the
frequency of ice days. In the two runs driven by the MIROC5 GCM, ice days occur more
than twice as often as in the reference data (about 30% compared to 11.5%). In this case
the forcing appears to have a major influence on the results.

Based on the reference data, ice days occur most frequently (≈ 50%) as very short
events (1-5 consecutive ice days, not shown). Ice episodes of short duration (6–10 days,
Fig. 3.5(d)) as well as of long duration (> 15 days, Fig. 3.5(f)) occur similarly frequent.
Ice episodes of medium duration (11–15 days, Fig. 3.5(e)) have the lowest frequency.
This is not always reproduced by the different RCMs.

The short period duration class (class 3–Ds, Fig. 3.5(d)) contains 13 ice episodes for
the reference data E-OBS (see B, Table B.1 for details). For ERA5 there are 17 ice
episodes. The RCMs overestimate the frequency of this class, with two exceptions of
underestimation. The overestimation is mostly due to an overestimation of the number
of ice episodes (O), not necessarily an overestimation of the duration of each ice episode
(D).

In the reference data there are four ice episodes in the medium period duration class
(class 3–Dm, Fig. 3.5(e)), the same is true for ERA5. Most of the RCMs overestimate
the frequency of this class, too. And, as in the case of class 3–Ds ice episodes, this is
mostly due to an overestimation of the number of ice episodes (O). Among the 29 GCM-

43



Chapter 3: Second Paper

driven runs, there is one where there is no ice episode in this class. This does not seem to
be a typical behaviour of any particular model, but rather a coincidence.

There are four ice episodes in the long period duration class (class 3–Dl, Fig. 3.5(f)) in
the reference data, with durations of 20 days, 17 days, 21 days and one with a duration
of 23 days. These are also found in ERA5 with slightly different durations and starting
dates (± one day). One of the ice periods in this class is much longer with a duration of
29 days. In the reference, there are two ice episodes during these 29 days. There is one
ice episode in class 3–Ds (7 days) and one in class 3–Dm (17 days). More than half of the
ERA-Interim driven runs overestimate the number of ice episodes, three underestimate
the frequency. For the GCM-driven runs, more than half show an underestimation and
10 show an overestimation. The largest overestimations in Fig. 3.5(f) come from the
REMO2015 simulations, which overestimate the number of ice episodes (O) and their
duration (D). In the ERA-Interim driven run of REMO2015, there are 10 ice episodes
with durations ranging from 17 to 31 days and one very long ice episode of 53 days. To
reproduce the correct frequency of this type of event, the forcing seems to play a rather
minor role, at least in terms of the number of occurrences.

In general, there is no better agreement between RCM data and reference data when
reanalysis (ERA-Interim) data is used as forcing compared to a GCM data forcing.

3.4.2 Circulation patterns of cold season characteristic classes

Typical patterns for each cold season characteristic class are derived from the GPH at
500 hPa as the mean of all days within each class. The data from the ERA5 reanalysis
are used as pattern reference, since only surface variables are available for the reference
data used so far (E-OBS). The typical patterns are shown in Fig. 3.6.

During warm days, a maritime flow from the west is present, resulting from a stable
north-south GPH gradient. For frost days, the large-scale flow is more meandering, which
is the result of a less pronounced GPH gradient. The flow into the target region (cross in
Fig. 3.6(a)–(g)) comes from a north-westerly direction. For ice days, the gradient over
the target region is more east-west oriented with high GPH over the British Isles and low
GPH over north-eastern Europe. Cold air is advected from the north towards the target
region.

A similar pattern to the ice-days pattern is found for class 3–Ds (short ice episodes) in the
target region. For ice episodes of medium duration (class 3–Dm), large parts of central
Europe are covered by an area of the same GPH (5300–5350 m), leading to lower GPH
values also south of this area. For ice episodes of long duration (3–Dl), a blocking system
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Figure 3.6. Geopotential height at 500 hPa for the defined cold season characteristic classes based on
ERA5. The time period for computing average class patterns is 1979–2005. The black cross indicates the
target region.

prevails in the North Atlantic, located between Iceland and the British Isles, leading to
a flow from the north-east into the target region, bringing cold air from the Arctic. As
described in BUEHLER et al. (2011) and PFAHL (2014), cold spells need some time to
evolve during blocking situations. The development of a longer-lasting cold event (like
class 3–Dl events) is therefore more probable during long-lasting blocking events.

3.4.3 Circulation patterns generated by RCMs

Mean circulation

As VAN ULDEN and VAN OLDENBORGH (2006) describe, differences in the mean circu-
lation can indicate that climate models may have some shortcomings. Therefore, the first
step is to look at the mean circulation in the models during the cold season and compare it
with the pattern reference (ERA5). Fig. 3.7 shows these differences (RCM minus ERA5)
for each of the RCM simulations considered here. Since the RCM ALADIN53 uses a
slightly different grid, we excluded all ALADIN53 simulations from the further analysis.

For the ERA-Interim-driven runs, the GPH differences are less than ± 25 m (except
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Figure 3.7. Difference in mean (1979–2005) cold season GPH at the 500 hPa level between RCM sim-
ulations and ERA5. Columns indicate the RCM, rows indicate the forcing of the RCM simulation (either
ERA-Interim or GCM).

RCA4 with up to 50 m). The mean GPH (north) west of the British Isles over the North
Atlantic (Fig. 3.6(a)) is underestimated in all GCM-driven RCM simulations, thus, lead-
ing to a stronger north-south GPH gradient. The underestimation is strongest for the
CanESM2 and IPSL-CM5A-MR forcings with GPH difference values of up to 125 m.
An exception are the RCM simulations forced by MIROC5 — the lower mean GPH
values in the north are overestimated and the higher mean GPH values in the south are
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underestimated. Therefore, the gradients between the southerly higher and the northerly
lower GPH are reduced (GPH differences of up to ± 50 m). This highlights the fact
that the mean cold season large-scale atmospheric circulation produced by the RCMs is
strongly influenced by the forcing and may result in different gradients at the 500 hPa
level than found in ERA5. This could lead to slightly wrong flow directions and, thus,
prevent the models to e.g. produce cold spells. Overall, the GPH differences of the 500
hPa level are well below 50% of the ERA5 gradients (3.6(a)).

In order to examine the differences between the RCMs and the reference for each of the
defined classes, average patterns are now calculated separately for each of the classes
(Fig. 3.8). For convenience of the reader, the average class patterns for the reference
(Fig. 3.6) are repeated here as the first row. For classes 1–3, the patterns for ERA-
Interim-driven runs are similar to the reference patterns (Fig. 3.8, columns 1–3). The
patterns for duration classes 3–Ds, and 3–Dl are also similar to the reference, with slight
differences. However, there are features that are common to all RCMs. For class 3–Ds
events, there is a west to east GPH gradient over the target region and an area of low GPH
over (south-) eastern Europe, resulting in cold air advection from the north/northeast into
the target region. For class 3–Dl events, not all models show a blocking between Iceland
and the British Isles, but there is at least an area of higher GPH in this region. There
is no event in this class in the WRF331F evaluation run. For class 3–Dm events, the
RCMs produce different results that do not resemble the reference pattern for this class.
The majority (5/8) shows a pattern with an area of high GPH over northwestern Europe
and an area of lower GPH over southeastern Europe, some (2/8) show a pattern with low
GPH over most of Europe and one RCM shows a pattern with high GPH over most of
Europe. Overall, the “typical” patterns identified here for the ice episode classes may not
be representative of individual ice episodes within the classes.

The patterns of the GCM-driven runs are similar to the reference patterns for the classes
1 and 2 (warm days, frost days). For all ice day classes there are substantial differences,
which appear to be mainly caused by the forcing (i.e. the GCM). RCMs driven by the
same GCM show similar patterns for all ice day classes. Figures for the GCM-driven
RCM patterns can be found in the Appendix (Figures B.1–B.8).

Ice episode specific patterns

From the analysis presented above, it is evident that the RCMs produce different mean
patterns for ice episodes of different durations (Class 3–Ds,–Dm,–Dl) compared to the
reference. Therefore, in the following it is examined whether the RCMs are able to repro-
duce the event-specific reference patterns, regardless of whether an ice episode occurred
in the target region of the RCM during this time or not. Thus, it is only a matter of repro-
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Figure 3.8. Mean class patterns derived from the GPH at 500 hPa. Shown are climate model data result-
ing from RCM simulations with ERA-Interim forcing. The RCMs considered are (from top to bottom):
CCLM4-8-17, ALADIN53, HIRHAM5, REMO2015, WRF331F, RACMO22E, REMO2009, RCA4. The
top row shows mean class patterns for ERA5.

ducing the event-specific patterns identified in the pattern reference (ERA5), independent
of the timing. It is important to focus on longer-lasting events (ice episodes), as these are
potentially dangerous for society and can have far-reaching consequences.
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In order to be able to investigate reproducibility, the event-specific reference patterns
(Fig. 3.9) are searched for in the RCMs. For this purpose, the SSIM index (described
in sec. 3.3.3) is used to measure the similarity of the patterns. In addition, an ERA5
self-test is performed to provide a best case measure. The analysis considers total fields
rather than anomalies. The reason for this was shown in sec. 3.4.3: The RCMs, driven
by GCM simulations, produce a mean cold season flow that shows differences from the
mean reference flow (up to 100 m for the GPH at 500 hPa, Fig. 3.7). If this “wrong”
mean flow were subtracted to obtain anomalies, the exact features sought might be lost.

Figure 3.9. Event-specific patterns identified from ERA5 reanalysis data.

The results of the method presented here show that the event-specific reference patterns
generally occur with a similar frequency in the RCM simulations as in the ERA5 self-
test. However, the patterns found are not necessarily associated with extreme cold events.
For many of the events found, the maximum daily temperature in the target region is
above freezing, and thus it is not an ice day in the target region. This is true for both

49



Chapter 3: Second Paper

the ERA-Interim and the GCM-driven RCM simulations as well as for the ERA5 self-
test. Therefore, a second filtering stage is required to obtain only those pattern matches
associated with a cold event in the target region. The generated pattern matches were
therefore filtered so that only those pattern matches are returned where the daily maxi-
mum temperature in the target region within the event under consideration is below 0 °C
on average. After this second filtering stage, about one third of the pattern matches re-
main (not shown). In a final step, the remaining pattern matches were used to derive
the number of matches of individual events. This is important because in the search for
the same ERA5 pattern, one event in the RCM (i.e. several average patterns on consec-
utive days) can theoretically generate several pattern matches and the search for longer
events could artificially generate too many pattern matches. The resulting numbers of
event-specific pattern matches are given as ensemble mean values using all RCMs in
Table 3.3. Numbers are given for the ERA-Interim driven RCM ensemble (evaluation)
and for the GCM-driven ensemble (historical), both as ensemble mean values (Σ)). In
addition, numbers are given for the ERA5 self-test (ERA5 Σ).

Table 3.3 shows that all event-specific reference patterns can be reproduced by both the
evaluation RCM ensemble and the historical RCM ensemble, even when the target-region
temperature is used as an additional selection criterion. Events IV (7 days), XI (8 days)
and XIV (7 days) generate two pattern matches in the ERA5 self-test, indicating that these
event-specific patterns occur very rarely in ERA5 during 1979–2005. The small number
of pattern matches generated for these events is reflected within the assumed uncertainty
(± 2 pattern matches) in both the evaluation ensemble and the historical RCM ensem-
ble. Individually, this does not apply to every RCM (see Appendix B, Tables B.5–B.11):
Some cannot reproduce these patterns or have a too high temperature within the target
region (0 pattern matches) and others generate significantly more than 2 pattern matches
(maximum of 10 generated pattern matches for event pattern IV in MIROC5/CCLM4-8-
17, see Appendix Table B.9). Event patterns IV and XI both show a closed system with
low GPH over the European continent. Other event patterns may share similarities, but
typically the low-GPH system is smaller in these cases. Examples of these include events
XV (6 days) and XIX (6 days), for which the GCM-driven RCM ensemble generates the
lowest number of pattern matches. Event XIV (7 days), which generates the lowest num-
ber of matches for the ERA-driven RCM ensemble and the GCM-driven RCM ensemble,
is dissimilar to other event patterns and is extremely rare. This is indicated by the number
of pattern matches generated in the ERA5 self-test. This event pattern shows a blocking
system over Eastern Europe and the adjacent Russian areas.

The most frequent patterns are those of events XVI (14 days) and XVII (22 days). These
patterns are also the most frequent in the two RCM ensembles. Similarly frequent in the
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Table 3.3. Number of event-specific reference (ERA5) pattern matches in the ERA5 self-test (ERA5 Σ),
the ERA-Interim driven RCM ensemble (evaluation Σ) and the GCM-driven RCM ensemble (historical
Σ). Events considered here are ice episodes (class 3–Ds, class 3–Dm and class 3–Dl events). The red and
blue numbers indicate the highest and lowest numbers per column. Rows in bold indicate event-specific
reference patterns that are well reproduced by the RCMs (deviation of < 2 in the number of matches
compared to the ERA5 self-test).

ERA5 event ERA5 evaluation historical
№ duration Σ Σ Σ

I 14 11 10.6 7.5
II 11 8 9.1 21.8
III 10 10 10.0 7.0
IV 7 2 0.6 2.3
V 7 5 4.7 8.2
VI 19 6 5.1 6.0
VII 9 6 4.7 6.3
VIII 6 8 4.6 12.9
IX 29 10 8.3 9.1
X 12 11 6.9 6.2
XI 8 2 0.7 1.9
XII 8 4 6.3 4.4
XIII 10 5 1.7 4.5
XIV 7 2 1.0 0.6
XV 6 3 1.4 1.7
XVI 14 12 9.0 14.2
XVII 22 12 10.3 10.6
XVIII 23 11 6.1 4.6
XIX 6 3 2.3 1.8
XX 7 7 4.4 3.3
XXI 7 9 6.9 3.8
XXII 8 6 6.9 3.6
XXIII 6 3 3.9 3.8
XXIV 8 8 5.6 7.6
XXV 6 7 6.6 10.5

ERA-Interim driven ensemble are events I (14 days) and III (10 days), which are also the
second and third most frequent in the ERA5 self-test. The GCM-driven RCM ensem-
ble generates the most pattern matches for event pattern II (11 days) and significantly
overestimates its frequency (8 in the ERA5 self-test to 22 in the GCM/RCM ensemble).
This pattern shows an area of low GPH extending far to the south of Europe without any
distinctive features. Following event pattern XVI, which generates the second-highest
number of pattern matches in the GCM/RCM ensemble and the highest number in the
ERA5 self-test, event pattern VIII generates the third-highest number of pattern matches.
This pattern is similar to event pattern II, but shows slightly higher GPH over Iceland.
The area of very low GPH is limited to Scandinavia.

In general, the event patterns that are least overestimated or underestimated (deviation
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of less than two matches) are those with a high GPH over (or east of) Iceland and/or the
British Isles and a low GPH over the rest of Europe (blocking patterns in IV, VI, VII, IX,
XVII) or a low GPH system in southwestern (IV), central (XV) or eastern Europe (XI,
XIX). Event XXIII is also one of the least overestimated or underestimated event patterns
by the RCMs. It shows a strongly meandering flow.

The results indicate a general tendency towards longer ice episodes in the target region
during an Iceland/British Isles blocking. This is well reproduced by the RCMs regardless
of the forcing. For shorter ice episodes, atmospheric blocking is not a reliable indicator,
as short-lived low GPH systems tend to play a role in these events. This is also well
reproduced by the RCMs.

3.5 Summary and conclusions
In this work, the cold season characteristics of a target region and their representation in
RCMs were investigated. The cold season was divided into three characteristic classes,
namely warm days, frost days and ice days, with the ice day class being further divided
into three sub-classes covering ice episodes of different durations. The frequency of the
classes within 1979–2005 was determined and compared between reference (E-OBS)
data and RCM data.

The first research question Are RCMs able to reproduce cold season characteristics
for a specific target region can be answered by this analysis as follows: The majority
of the RCMs appear to have a cold bias for the target region. This is consistent with the
analyses of other authors (e.g. KOTLARSKI et al., 2014; LHOTKA and KYSELÝ, 2018).
As a result, the number of warm days is underestimated by the majority of the RCMs
analysed here. On the other hand, the number of ice days is overestimated. For the
number of frost days, there is no uniform behaviour of the RCMs analysed here. It can
therefore be assumed that the cold bias only affects the daily maximum temperatures, but
not the daily minimum temperatures.

The second research question Are RCMs able to reproduce the frequency of ice episodes
for a specific target region? can be answered als follows: RCMs seem to produce too
many ice episodes of short and medium duration. For ice episodes of long duration no
clear tendency is found.

In addition to analysing the temperature based cold season characteristics, atmospheric
patterns were analysed. In agreement with many other studies, it was shown that the
mean cold season large-scale atmospheric circulation produced by the RCMs is strongly
influenced by the forcing and that this influences the frequency of warm vs. ice days.
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Mean patterns for the different cold season characteristic classes were determined and
compared between reference (ERA5) and RCM data. For warm and frost days, the aver-
age class patterns in the RCMs are similar to the reference. For the ice episode classes,
the average class patterns differ from the reference and are unique for each RCM simu-
lation. Therefore, the average class patterns are not representative of ice episodes and it
should be emphasized that these patterns are a possible but not a necessary condition for
the occurrence of certain ice episodes.

The fact that the mean class patterns are not representative of ice episodes was again
confirmed by analysing the event-specific patterns in ERA5. For the 25 ice episodes
identified in the target region, the atmosphere (GPH at 500 hPa) shows many different
patterns. However, there are patterns that occur more frequently in cold seasons within
1979–2005 and are associated with longer ice episodes. These are atmospheric blockings
over Iceland/the British Isles. Patterns that are very rare in cold seasons within 1979–
2005 and are associated with shorter ice episodes usually show a system of low GPH
over the European continent.

In order to answer the third research question Can RCMs accurately reproduce the
atmospheric patterns prevailing during ice episodes?, an image processing method
was used to assess the similarity of the patterns. As with the results obtained, it was
found that the RCMs are not only able to reproduce the patterns identified in ERA5, but
also to reproduce their frequency without major deviations, with a few exceptions. The
association of the patterns with an ice period in the target region is also reproduced by
the RCMs.

Overall, the RCMs seem to be able to reproduce cold season characteristics for the tar-
get region in the ensemble average. Each RCM produces slightly different results and,
therefore, individual results should be treated cautiously. In particular, results for future
projections must be interpreted with caution, as the physical mechanisms that cause these
events may not be perfectly represented in climate models.

Regarding the further application of the pattern-matching method presented here, it can
be said that it works well in cases where one wants to search for a frequently occur-
ring feature (e.g. blocking event) or wants to know how persistent certain features are
(HOFFMANN et al., 2021). It can also be used to assess the ability of climate models,
whether global or regional, to reproduce certain atmospheric features (as presented here
for RCMs). All that is needed is a representative reference pattern to search for.

Limiting aspects of the work presented here include the analysis being limited to the
present state. Another important aspect would be to see how the frequency of the patterns
identified here changes in future climate periods. PFAHL (2014) argues that an increase in
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the frequency of atmospheric blocking and a tendency towards and increased occurrence
of the negative NAO phase leads to a weakening of the prevailing westerly flow. This is
accompanied by increased advection of cold Arctic air masses into Europe. Accordingly,
the frequency of the events analysed here is expected to increase in the future. However,
there is an ongoing scientific debate about the underlying mechanisms, in particular the
influence of Arctic warming on mid-latitude cold extremes and how these will change
in the future (COHEN et al., 2020; BLACKPORT and SCREEN, 2020). Further research
is needed to better understand these processes and how they can be better represented in
(global) climate models.

Furthermore, in this work events have been analysed only in terms of their temperature.
In general, winter events that are perceived as extreme, at least in the Hamburg region,
are usually associated with strong winds and related storm surges or heavy snowfall.
Therefore, it would also be important to analyse other variables (e.g. wind, precipitation)
and their prevailing patterns.
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characteristics, ice episodes
and their circulation patterns

in a changing climate
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Abstract
This study investigates cold season characteristics and the frequency of local ice episodes
in the Hamburg region of northern Germany under the RCP8.5 emission scenario using
regional climate model (RCM) simulations. Three cold season characteristic classes —
warm days, frost days, and ice days — are analysed for the recent past, the near future,
and the far future. In addition to investigating the frequency of ice episodes for future cli-
mate periods, atmospheric patterns associated with these ice episodes are identified in the
recent past using ERA5 data. The future changes of the identified atmospheric patterns
are assessed using a newly developed pattern-matching method. The results indicate that
despite climate change, local ice episodes will persist into the far future, with a total of
eight events (ensemble mean) projected to occur within the 30 years of the far future cli-
mate period. Moreover, the frequency of atmospheric circulation patterns associated with
these events is not expected to change significantly, suggesting a consistent association
between identified patterns and ice episode occurrences. Notably, no definitive “typi-
cal” ice episode pattern could be identified, highlighting the complexity of atmospheric
dynamics governing ice episodes. These findings provide insights into the persistence
and characteristics of future ice episodes, facilitating informed adaptation and mitigation
strategies in affected regions.
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4.1 Introduction
Cold weather events in winter affect regions in the mid-latitudes of the Northern Hemi-
sphere. Such events have an impact on various sectors, including critical infrastruc-
ture, agriculture, and human health. Cold weather events can disrupt transport networks
and increase energy demand for heating and electricity (VAN DER WIEL et al., 2019;
RANASINGHE et al., 2021; STUIVENVOLT-ALLEN and WANG, 2019). At the same time,
buildings and, for example, supply pipes may be damaged (UNDERWOOD et al., 2017).
Prolonged cold weather events can increase the risk of hypothermia, which can lead to
a range of cold-related health problems, particularly for the elderly and the homeless
(BAUMGARTNER et al., 2008; WANG et al., 2016; LEI et al., 2022; RICHARD et al.,
2023).

How cold weather events will change in the future under climate change is the subject
of current research and controversial debate (COHEN et al., 2020; SENEVIRATNE et al.,
2021). Observations indicate that the strong warming of the Arctic leads to a weakening
of the pressure gradient between the North Pole and the equator, which makes the pre-
vailing westerly flow more unstable (more meandering) and cold air outbreaks from the
Arctic could occur more frequently (e.g. FRANCIS and VAVRUS, 2012; PFAHL, 2014).
On the other side, modelling studies analysing climate models find no link between Arc-
tic warming induced sea ice loss and mid-latitude cooling through more frequent cold air
outbreaks (e.g. MCCUSKER et al., 2016; BLACKPORT et al., 2019) or only a weak link
between future sea ice loss and changes in winter atmospheric circulation (e.g. SMITH

et al., 2022; YE et al., 2024). It is questionable whether the climate change induced
warming, which is largest in the Arctic, will also warm the cold air in the Arctic to such
an extent that Arctic air outbreaks will not be as extreme as they are today in the mid-
latitudes. The report The Next Frontier for Climate Change Science: Insights from the

authors of the IPCC 6th Assessment Report on knowledge gaps and priorities for research

by BEDNAR-FIEDL et al. (2024) states that efforts should be made to fill the knowledge
gap regarding the influence of arctic warming on mid-latitude winter weather, as it is
crucial for informed policy-making in all sectors to improve resilience, sustainability and
preparedness.

In previous studies on the future development of cold weather events, the term cold spell
is usually used. A cold spell has no uniform definition, but usually refers to days that
are below a certain percentile of the temperature (e.g. VIHMA et al. (2020); MENG

et al. (2022)). As fresh water freezes when the temperature falls below 0 °C which can
cause damage to e.g. plants, buildings or pipes, it is useful for a risk assessment to
analyse ice days (Tmax < 0 °C) and to determine events consisting of consecutive ice
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days which last longer than a specified number of ice days. In this study ice episodes are
determined, which are events of more than five consecutive ice days (BELL et al., 2024).
The analysis of ice episodes is of significant importance for impact assessments, as the
frost only develops its effect after a certain period of time in which the temperatures
remain constantly below the freezing point. The current study focuses on ice episodes
that occur in a local, spatially limited target region, as ice episodes do not always occur
regionally at the same time and with the same duration everywhere e.g. in Europe and
not even in a region, like Northern Germany. To investigate future projections that are
detailed enough for local consideration, the study uses the results of regional climate
model (RCM) simulations. Based on the above aspects, the following research question
is posed: Will local ice episodes still play a role at the end of this century?

To better understand the relationship between such ice episodes and certain atmospheric
conditions and whether this relationship will change in a projected future climate, the
atmospheric circulation patterns that prevail during local ice episodes are identified and
their characteristics are analysed. Thus, the second research question of this study is:
Will atmospheric circulation patterns associated with local ice episodes change to-
wards the end of this century?

Previous studies have analysed changes in the prevailing westerly flow or certain circu-
lation types, using various data sets (Observations or Reanalysis data (FARANDA et al.,
2023), global climate model (GCM) results (HANSEN et al., 2023), RCM results) and
methods (Großwetterlagen classification (BECK et al., 2007; KUČEROVÁ et al., 2017;
HUGUENIN et al., 2020), Grosswetterlagen classification with deep-learning approach
MITTERMEIER et al. (2022) or Lamb-weather type, i.e. Jenkinson-collision classifi-
cations (HERRERA-LORMENDEZ et al., 2022) or self-organising map cluster analysis
(HORTON et al., 2015; FRANCIS et al., 2023)). These studies focus solely on the atmo-
spheric state and use it to derive a general conclusion for an entire region, such as Central
Europe.

In contrast to these previous studies, the current study assesses ice episodes from a
ground-level, local perspective as a starting point and analyses how the atmosphere be-
haves during such events. This study is unique in that it focuses not on the statistics
of cold extremes that are single-day events, but on prolonged events with temperatures
below 0 °C. BELL et al. (2024) has identified prevailing atmospheric circulation pat-
terns during ice episodes based on the ERA5 reanalysis (HERSBACH et al., 2020). In
addition, (BELL et al., 2024) investigated the reproducibility of the atmospheric circula-
tion patterns identified in ERA5 in RCMs using a pattern-matching approach. The work
presented here builds on these results and applies a further developed pattern-matching
method to future climate periods. The aim is to determine whether the prevailing at-
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mospheric circulation patterns identified in ERA5 (representing the recent climate) also
occur in RCM projections of future climate periods and whether they are associated with
local ice episodes. It is also investigated whether the projected global warming in the
RCM reduces the effect of future Arctic cold air outbreaks and ice episodes no longer
occur in the target region.

The data used are described in section 4.2, an overview of the methods is given in section
4.3. The findings are then presented in section 4.4, followed by a discussion in section
4.5. Finally, a brief summary and answers to the posed research questions are provided
in section 4.6.

4.2 Data

The findings presented here are based on an analysis of the results of RCM simulations.
These RCM simulations are a refinement of GCM simulations. As RCM simulations
are more computationally intensive due to their higher resolution, they are calculated
for smaller areas rather than globally. The EURO-CORDEX simulations (JACOB et al.,
2014) analysed here are an ensemble of RCMs that refine the data of the CMIP5 GCM
simulations for the European domain. This study analyses historical simulations for a
recent past climate period (1971–2001) and future projections for two future climate pe-
riods, the near future (2030–2060) and the far future (2065–2095), assuming the RCP8.5
emission scenario (RIAHI et al., 2011). Table 4.1 provides a list of the GCM-RCM model
chain simulations used.

As observations, E-OBS (CORNES et al., 2018) is used as a reference in the recent past
climate period for ground level variables. E-OBS is based on a statistical model that
converts station data into a gridded data set. The data set provides “best guess” values
as mean of the 20-member ensemble that the full data set consists of. In addition to this
“best guess” value, the ensemble spread is provided and taken into account here as an
uncertainty in the calculation of ice days. The procedure of including this uncertainty in
the calculation of cold season climate indices is described in BELL et al. (2023). In ad-
dition, the ERA5 renalysis is used as a second reference, specifically for the comparison
of atmospheric circulation patterns for which the daily geopotential height at 500 hPa
(HERSBACH et al., 2018a) is used.
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Table 4.1. Climate model simulations used in this study. The driving global climate models (GCM)
combined with the regional climate model (RCM) simulations use different internal calendars. This
results in a different number of total cold season days. The recent past and far future climate periods
have the same number of total cold season days, while the near future has one day less in the case of the
standard/Gregorian calendar due to one leap year less.

GCM RCM Calendar total cold season days

CanESM2 CCLM4-8-17 365-day 4530
REMO2015 proleptic Gregorian 4538

CNRM-CM5 CCLM4-8-17 proleptic Gregorian 4538
ALADIN53 proleptic Gregorian 4538
REMO2015 proleptic Gregorian 4538
RACMO22E standard 4538

RCA4 standard 4538

EC-Earth CCLM4-8-17 proleptic Gregorian 4538
HIRHAM5 proleptic Gregorian 4538
REMO2015 proleptic Gregorian 4538
RACMO22E standard 4538

RCA4 standard 4538

IPSL-CM5A-MR WRF331F proleptic Gregorian 4538
RACMO22E standard 4530

RCA4 standard 4530

MIROC5 CCLM4-8-17 365 day 4530
REMO2015 proleptic Gregorian 4538

HadGEM2-ES CCLM4-8-17 360 day 4500
RACMO22E 360 day 4500

RCA4 360 day 4500
REMO2015 360 day 4500

MPI-ESM-LR CCLM4-8-17 proleptic Gregorian 4538
REMO2015 proleptic Gregorian 4538
RACMO22E standard 4538
REMO2009 proleptic Gregorian 4538

RCA4 proleptic Gregorian 4538

NorESM1-M HIRHAM5 proleptic Gregorian 4538
REMO2015 proleptic Gregorian 4538
RACMO22E 365-day 4530

4.3 Methods

4.3.1 Cold season characteristics

The cold season is defined here as the months of November, December, January, February
and March. To examine the temperature characteristics of the cold season within the
target region and possible changes in future climate periods, all cold season days are
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classified according to their temperature. The characteristic classes into which all cold
season days are assigned to are ice days (Tmax < 0 °C), frost days excluding ice days
(Tmin < 0 °C and Tmax ≥ 0 °C) and warm days which are the remaining cold season
days. These characteristic classes are referred to as class 1 (warm days), class 2 (frost
days) and class 3 (ice days).

To analyse the frequency of ice episodes of different duration, three further classes are
defined, which represent subclasses of class 3. Class 3-Ds contains short ice episodes
of 6–10 days, while class 3-Dm contains medium ice episodes with durations of 11–15
days. All longer events are assigned to class 3-Dl. The nomenclature of these classes
is derived from their subclassification of class 3. The designation “D” — which stands
for the “duration” — is followed by a letter indicating the specific duration of the ice
episode, which can be classified as “short”, “medium” or “long”. This nomenclature was
proposed in (BELL et al., 2024).

Since the GCMs and RCMs use different internal calendars and therefore may not in-
clude leap years, the individual simulations have different numbers of cold season days
(Table 4.1). For this reason, the frequencies of the defined classes for each GCM-RCM
simulation are given as a proportion relative to all cold season days occurring in the
respective model simulation.

4.3.2 Target region
Maximum temperatures below 0 °C for several consecutive days are particularly prob-
lematic for cities and their critical infrastructure. As such temperature events, defined
here as ice episodes, tend to occur locally rather than regional or continental, they are
identified here for an urban target region. The Hamburg region in northern Germany
was chosen as a mid-latitude target region. The Hamburg region is affected by frost and
ice episodes due to its location and is therefore a representative starting point for in-
vestigating the behaviour of the atmospheric circulation in the North Atlantic/European
sector during local ice episodes. For the identification of e.g. ice days, Tmax values are
calculated as spatial mean across the target region domain.

4.3.3 Prevailing circulation patterns
Numerous studies suggest that the geopotential (or geopotential height (GPH)) at the
500 hPa level is a good indicator of how weather systems move below this layer. For
simplicity, the GPH at the 500 hPa level is denoted GPH500 hereafter. As the ECMWF,
2024 writes about their GPH500 charts, the contours show the main tropospheric waves
that affect our (Europe) weather, with low GPH500 indicating troughs and cyclones in the
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Figure 4.1. Daily average 2m temperature on the 1996-12-31 based on the E-OBS data-set. This date is
the 12th day of the longest ice episode (23 days) identified in E-OBS within 1979–2005. The square marks
the target region also in the enlarged figure. Note the different scalings.

middle troposphere, and high GPH500 indicating ridges and anticyclones. Wind speeds
are proportional to the distance between contours. The denser the contours, the stronger
the winds.

The GPH500 is used in the current study to identify representative atmospheric circula-
tion patterns that prevail during the ice episodes that occur in the target region. The ice
episodes were previously identified for the target region in BELL et al. (2024), based
on ERA5 data for the analysis period of 1979–2005. The methodology for identifying
representative event patterns for these ice episodes is explained below.

The identification of representative event patterns is based on the concept of finding at-
mospheric circulation patterns that, after applying a 3-day smoothing, are most represen-
tative of the entire ice episode identified in ERA5. A 3-day smoothing is selected in ac-
cordance with the definition of a Grosswetterlage as outlined in BAUR et al. (1944), who
defined a Grosswetterlage as an atmospheric pattern that persists for at least three con-
secutive days. To test for representativeness, the similarity of the individual atmospheric
patterns within each ERA5 ice episode was determined using a matching criterion. The
matching criterion used is the structural similarity index (SSIM) (WANG et al., 2004).
This index focuses on features (i.e. the structure) and outperforms other metrics such as
the RMSE, which is often used to assess image quality. The SSIM can produce values
between 0 and 1, where 1 means “the images are the same” and 0 means “the images are
completely different”.
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Figure 4.2. Ice episode XVIII identified for ERA5 emerged on the 20th December 1996 and lasted 23
days in the target region. Shown is the 3-day smoothed geopotential height at the 500 hPa pressure level for
each day within the ice episode. Day 19 (1997-01-07) was determined as the representative event pattern.

To illustrate the atmospheric state during an ice episode, Figure 4.2 shows the GPH500

(3-day smoothed) for all days within a 23-day ice episode (Event XVIII). Note that for
the later comparison with RCM data, the ERA5 data have been remapped to the EURO-
CORDEX grid using CDO’s (SCHULZWEIDA, 2023) function remapycon. For each
day of this event, the corresponding atmospheric pattern was tested as a representative
event pattern. To determine the representativeness of each day’s pattern for the event in
question, the similarity between it and each of the 22 other patterns within the event was
calculated. The day on which the atmospheric pattern with the highest number of intra-
event matches occurred was selected as the representative event pattern, in this example
day 19. Details of the representative event patterns identified are given in Table 4.2. If two
patterns generated the same number of intra-event matches, the minimum SSIM required
to generate a match with all other days within the event was used as a second selection
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Table 4.2. Details of the determined representative event patterns for ERA5 ice episodes. The ice episode
number (№) and its duration (dur) are given in the first two columns. The day of occurrence of the identi-
fied representative event pattern within the ice episode (denoted as representative day rd), the persistence
of this pattern within the corresponding ice episode (denoted as pattern persistence pp), the intra-event
mean SSIM index and the intra-event min SSIM index values are given in the other columns. Numbers in
parentheses in the pp column indicate more than one occurrence of the pattern within the corresponding ice
episode. The date of the day on which the representative event pattern occurred is given in the last column
(date of rd). See text for details of the methodology used to determine a representative event pattern.

№ dur rd pp mean SSIM min SSIM date of rd

I 14 10 9 0.78 0.56 1980-01-17
II 11 7 9 0.86 0.77 1981-12-20
III 10 5 7 0.83 0.65 1982-01-10
IV 7 4 5 0.95 0.91 1983-02-11
V 7 3 4 0.86 0.73 1983-12-13
VI 19 10 11 0.75 0.49 1985-01-11
VII 9 4 7 0.88 0.78 1985-02-10
VIII 6 3 4 0.93 0.85 1985-12-29
IX 29 17 17(3+14) 0.77 0.63 1986-02-18
X 12 7 5 0.74 0.55 1987-01-16
XI 8 4 6 0.92 0.81 1987-03-04
XII 8 3 6 0.91 0.82 1989-12-30
XIII 10 6 7 0.87 0.72 1991-02-11
XIV 7 3 5 0.89 0.79 1993-11-23
XV 6 2 4 0.95 0.89 1994-02-20
XVI 14 7 11 0.86 0.72 1995-12-30
XVII 22 9 10(2+8) 0.75 0.55 1996-01-28
XVIII 23 19 21 0.83 0.75 1997-01-07
XIX 6 2 4 0.92 0.84 1998-12-07
XX 7 3 5 0.91 0.84 2000-12-23
XXI 7 3 5 0.94 0.85 2001-01-17
XXII 8 4 6 0.94 0.89 2002-12-12
XXIII 6 3 4 0.93 0.86 2002-12-21
XXIV 8 4 6 0.92 0.81 2003-01-07
XXV 6 3 4 0.95 0.89 2005-03-03

criterion. This ensures that a pattern with the highest similarity to all other patterns within
the considered ice episode is selected as the representative event pattern. In general, the
atmospheric patterns of the last two days within an event look quite different from the
other patterns and are therefore not relevant to the onset or persistence of the ice episode
at ground level. Therefore, the last two days are neglected when looking at the minimum
SSIM.

The threshold for the similarity criterion was set to 0.75 when searching for representative
event patterns. When looking at intra-event matches in ERA5 event patterns, the 0.75
threshold seems to generate matches for atmospheric patterns that appear similar enough
to the sought representative event pattern to theoretically have the same impact on the
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target region, which is a purely subjective judgment.

In order to investigate the extent to which atmospheric patterns that prevail during ice
episodes in the target region will change in future climate periods, the patterns found as
representative event patterns in ERA5 are searched for in the RCM data. In this way,
it can be determined whether the representative event patterns are also characteristic of
ice episodes in the GCM-driven RCM simulations and whether they will remain charac-
teristic of these events in future climate periods. For this purpose, the pattern matching
method described in BELL et al. (2024) is applied in a slightly modified form.

Similar to the changes in the methodology for identifying the representative event pat-
terns in ERA5, the comparison between ERA5 and RCM patterns has also been modi-
fied. As the ERA5 based representative event patterns consist of a 3-day average, a 3-day
smoothing is also used for the comparison with the RCM data. The day for comparison
is always the centre of the averaging (i.e. ± one day). If the comparison between the rep-
resentative event pattern and the 3-day average pattern of the considered RCM results in
an SSIM index ≥ 0.75, this is considered as a match. If the pattern of the RCM day under
consideration produces matches with several ERA5 event patterns, all matches belonging
to that specific RCM day are distributed proportionally to the corresponding ERA5 event
patterns. For example, if 12 January 1987 generated a match with ERA5 event patterns
III, XII, XVI and XIX in any RCM simulation, 0.25 of a match is added to each of these 4
patterns, rather than a full match. Thus, each day for which at least one match is found is
equally weighted, ensuring that the total number of RCM days that generated a match is
equal to the total number of matches in the considered RCM. For each match generated
in the model simulations, a further step is to check whether the day that generated the
match falls within an ice episode in the target region. This sequence of steps is repeated
for each of the 25 ERA5 event patterns against each of the 24 model simulations for the
three climate periods. The result is then analysed as an ensemble mean.

Note that only 24 of the 29 available RCM simulations were used in the pattern matching.
ALADIN53 data are provided on a slightly different grid, so values were missing at some
boundaries of the EURO-CORDEX domain, and the HadGEM2-ES GCM uses a 360-day
calendar with each month having 30 days, which caused problems when using python
datetime functions in the developed algorithm. Therefore, the simulation of CNRM-
CM5/ALADIN53 and all HadGEM2-ES forced RCM simulations were neglected.

In order to be able to deduce from the number of matches how, for example, the ratio
of one pattern to the other will develop in future climate periods, in addition to the total
number of matches (any day or within an ice episode), the percentage share of this pattern
in the total number of matches (any day or within an ice episode) was calculated. This is
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done separately for each model simulation and the result is then combined and analysed
as an ensemble mean. In order to derive a tendency of change from this ensemble mean,
it is necessary to define conditions under which a change can be seen as a tendency. The
conditions formulated here are based on the assumption that all patterns occur with equal
frequency (equal distribution). For each of the 25 identified ERA5 patterns, this would
result in a frequency of 4 %. A relevant change, i.e. a tendency, is found if, for example
the frequency of a pattern in the near future differs by 10 % of the 4 % assumption
compared to the frequency of this pattern in the recent past. So a tendency is found,
when the change in frequency is greater than or equal to 0.4 %. There are two cases to
consider:

(1) if |∆near−recent |< |∆ f ar−recent |, then |∆near−recent |, |∆ f ar−near| ≥ 0.4%

(2) if |∆near−recent | ≥ |∆ f ar−recent |, then |∆near−recent | ≥ 0.4% and |∆ f ar−recent | ≥ 0.8%

where ∆near−recent is the change in frequency in the near future relative to the recent
past, ∆ f ar−near is the change in frequency in the far future relative to the near future, and
∆ f ar−recent is the change in frequency in the far future relative to the recent past. In case
(1), the change in frequency in the far future ∆ f ar−recent is greater than the change in
the near future ∆near−recent , so a steady change in frequency can be seen. A tendency is
then found if the change in frequency in the near future ∆near−recent is greater than (or
equal to) 0.4 % and the change in frequency in the far future (relative to the near future)
∆ f ar−near is also greater than (or equal to) 0.4 %. In case (2), the change in frequency
in the far future ∆ f ar−recent is less than (or equal to) the change in frequency in the near
future ∆near−recent , so no steady change can be seen. However, a tendency is found, if the
change in frequency in the near future ∆near−recent is greater than (or equal to) 0.4 %, and
the change in frequency in the far future ∆ f ar−recent is at least as large as the total change
in case (1), so must be at least 0.8 %. Finally, the last criterion for a tendency is that both
changes relative to the recent past must be in the same direction. Changes in opposite
directions are indicative of (multi-) decadal variability, and tendencies cannot be clearly
identified in these cases. The term tendency is used because no statistical significance
tests have been carried out.

The entire pattern-matching method was also applied to ERA5 itself (ERA5 self-test) to
see how the identified patterns are distributed across all ice episode days in ERA5. The
results of the self-test are shown in Figure 4.6 and described in section 4.4.2.
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4.4 Results

4.4.1 Frequency of cold season classes and number of ice
episodes

Figure 4.3 shows the frequencies of the cold season classes, i.e. the cold season tem-
perature characteristics, for three climate periods — the recent past, the near future and
the far future — based on RCM results assuming the high emission RCP8.5 scenario.
The box plot shows the RCM ensemble distribution, where the black horizontal line rep-
resents the ensemble median and the box represents the interquartile range (IQR) from
the first quartile to the third quartile (25th to 75th percentile) of all RCM results. The
whiskers indicate a distance of 1.5 × IQR from the first and third quartiles and represent
the ensemble range. All other data points outside this range are shown as outliers. For
comparison, the E-OBS values are shown by the blue dashed lines and their uncertainty
is shown by the blue shading, both for the recent past.

Not surprisingly, the frequency of warm days (class 1) increases in the future under the
assumption of the RCP8.5 scenario (Figure 4.3a). While E-OBS (blue dashed line in
Figure 4.3a) shows a proportion of 58 % warm days in the recent past for the target region,
the GCM-driven RCM simulations show a slightly lower value (ensemble median), but
this is within the E-OBS uncertainty range. The range of the RCM ensemble is 58 % and
lies between 21 % and 79 %. The proportion of warm days increases in the ensemble
median to 70 % in the near future and to 80 % in the far future, while the range is slightly
reduced (50 % and 30 %, respectively).

The proportion of frost days (Figure 4.3b) is similar in E-OBS and in the RCMs (ensem-
ble median) in the recent past. The ensemble median decreases from 30 % to 25 % in the
near future and to 15 % in the far future. With 42 % for the near future and 35 % for the
far future, the ensemble range is somewhat larger than in the recent past climate period
(32 %).

Ice days cover the smallest proportion of all cold season days, and are somewhat overes-
timated in the RCMs (Figure 4.3c, see also BELL et al. (2024)). The ensemble median
decreases from 18 % to 10 % in the near future and to 5 % in the far future. The ensemble
range decreases from 20 % in the recent past to 10 % in the near future and to 8 % in
the far future. This means that the RCM results for the proportion of ice days are closer
together than for the proportion of warm and frost days.

The division of ice episodes into three classes with different ice episode durations, shows
a general decrease of ice episodes. While class 3-Ds events accounted for 4 % of all cold
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season days (≈ 182 days), in the ensemble median this class accounts for 2 % of days
in the near future and for 1 % of days in the far future, with 1 % of days corresponding
to about 45 days (Figure 4.3d). The proportion of class 3-Dm events was just over 2 %
in the recent past. This class accounts for about 1 % of all cold season days in the near
future and 0.5 % of days in the far future (Figure 4.3e). The results for class 3-Dl events
are very similar, although the range within the recent past is larger (Figure 4.3f).

Figure 4.3. Days of the cold season classified into (a) warm days, (b) frost days, and (c) ice days. The
ice day class is further divided into classes of different ice episode lengths: (d) Ds: 6–10 consecutive ice
days, (e) Dm: 11–15 consecutive ice days and (f) Dl: more than 15 consecutive ice days. The frequencies
are always given as proportion relative to all cold season days within the respective climate period. Blue
dashed lines indicate the E-OBS value for the recent past, blue shading indicates the E-OBS uncertainty
range.

Looking at the number of ice episodes for each RCM simulation individually (Table 4.3),
it is clear that the driving GCM has an influence on the total number and also on its
change. For example, the change in the number of ice episodes in all RCM simulations
with CanESM2 or EC-Earth forcing is > 60 % in the near future. At the same time,
the number of ice episodes in the recent past is much lower in RCM simulations with
CanESM2 forcing (≈ 15) than with EC-Earth forcing (≈ 44). However, it is clear that
the RCMs themselves also have an influence on the number of ice episodes. For example,
the RCMs RACMO22E and RCA4 show the general tendency to have the lowest number
of ice episodes compared to the other RCMs using the same GCM as forcing. The RCMs
CCLM4-8-17, REMO2015 and HIRHAM5 show the general tendency to have the highest
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number of ice episodes.

While there were 41 ice episodes in the ensemble mean in the recent past (minimum 15,
maximum 87), the number is reduced to 21 in the near future (minimum 6, maximum 52)
and to 8 ice episodes in the far future (minimum 1, maximum 23). All model simulations
analysed here therefore show at least one ice episode within the far future, assuming
RCP8.5.

Table 4.3. Number of ice episodes in the recent past, near future and far future climate periods together
with the percentage change relative to the recent past climate period. The last row shows the ensemble
mean values.

GCM RCM hist near diff [%] far diff [%]

CanESM2 CCLM4-8-17 17 7 -59 3 -82
REMO2015 21 6 -71 3 -86

CNRM-CM5 CCLM4-8-17 60 43 -28 21 -65
ALADIN53 34 22 -35 8 -76
REMO2015 87 52 -40 23 -74
RACMO22E 52 31 -40 8 -85
RCA4 41 28 -32 11 -73

EC-Earth CCLM4-8-17 50 18 -64 15 -70
HIRHAM5 56 17 -70 11 -80
REMO2015 44 17 -61 15 -66
RACMO22E 37 6 -84 2 -95
RCA4 31 8 -74 12 -61

IPSL-CM5A-MR WRF331F 56 37 -34 10 -82
RACMO22E 42 13 -69 1 -98
RCA4 25 10 -60 1 -96

MIROC5 CCLM4-8-17 79 45 -43 20 -75
REMO2015 86 41 -52 12 -86

HadGEM2-ES CCLM4-8-17 41 18 -56 3 -93
REMO2015 36 20 -44 4 -89
RACMO22E 30 8 -73 3 -90
RCA4 31 11 -65 2 -94

MPI-ESM-LR CCLM4-8-17 32 22 -31 8 -75
REMO2015 54 13 -76 6 -89
RACMO22E 24 12 -50 1 -96
REMO2009 42 25 -40 9 -79
RCA4 20 12 -40 7 -65

NorESM1-M HIRHAM5 28 20 -29 9 -68
REMO2015 24 17 -29 9 -62
RACMO22E 18 16 -11 8 -56

ensemble mean 41 21 -49 8 -80
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4.4.2 ERA5 ice episode patterns
The atmospheric circulation patterns prevailing during local ice episodes are identified in
ERA5 based on the GPH500. In general, ice episodes in the target region can be associated
with a variety of different atmospheric circulation patterns. As can be seen in Figure 4.4,
there are 25 more or less distinct atmospheric circulation patterns for the 25 local ice
episodes identified in ERA5. These 25 atmospheric circulation patterns are hereafter
referred to as representative patterns. To assess how similar the 25 representative patterns
are to each other, an ERA5 self-test matrix is generated (Figure 4.5).

Figure 4.4. Representative patterns identified in ERA5, that prevail during local ice episodes in the target
region. Shown is the geopotential height at the 500 hPa pressure level. The cross (×) marks the target
region.

In principle, local ice episodes can be associated with atmospheric circulation patterns
in which the prevailing westerly flow is somehow disrupted. The most frequent repre-
sentative patterns (Figure 4.6, all) are the representative patterns of ice episode V (high
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I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV

I 1 0.78 0.83

II 1 0.75

III 1 0.75 0.81 0.76 0.81 0.78 0.75

IV 1 0.84

V 0.78 1 0.75

VI 1 0.82

VII 0.75 1 0.79 0.88 0.78 0.84

VIII 1 0.75

IX 0.79 1 0.76 0.84 0.75 0.86 0.77 0.78 0.9 0.79

X 1

XI 1 0.89

XII 1 0.77

XIII 0.76 1 0.79

XIV 1

XV 1 0.78

XVI 0.75 0.81 0.88 0.75 0.84 1 0.84 0.79 0.82

XVII 0.75 1 0.79 0.75 0.83

XVIII 0.83 0.76 0.78 0.86 0.84 0.79 1 0.81 0.76 0.82 0.85

XIX 0.82 0.89 1

XX 0.81 0.79 0.75 0.81 1 0.76

XXI 0.77 0.77 0.78 0.76 1 0.78

XXII 0.78 0.83 0.82 0.76 0.78 1 0.75

XXIII 0.78 0.75 1

XXIV 0.75 0.84 0.9 0.82 0.85 0.75 1

XXV 0.84 0.79 0.79 1

Figure 4.5. Resulting SSIM index values from applying the pattern-matching method to ERA5 as a self-
test. The 25 representative patterns identified in ERA5, that prevail during local ice episodes in the target
region are compared. The resulting SSIM value, i.e. their similarity, is noted for each pair of comparisons.

GPH500 with weak gradients over most of Europe) and ice episode XXIII (meandering
character, GPH500 gradients in southwest to northeast direction without special features),
but can rarely be associated with an ice episode in the target region (Figure 4.6, within ie).
Due to their meandering character, there is a similarity between these two representative
patterns (Figure 4.5).

The representative patterns most frequently associated with an ice episode in the target
region are the representative patterns of ice episode IX (low GPH500 over most of Europe,
with slightly larger GPH500 between the British Isles and Iceland) and ice episode XXI
(large GPH500 over north-eastern Europe, low GPH500 over south-western Europe). A
pattern with larger GPH500 located somewhere between the British Isles and Iceland, as
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 ie pattern             matches
№ ie dur all within ie
I 14 4.6 5.1
II 11 8.0 4.3
III 10 2.4 5.1
IV 7 1.3 2.1
V 7 17.3 3.2
VI 19 2.6 5.0
VII 9 0.7 3.3
VIII 6 7.0 2.8
IX 29 1.9 6.5
X 12 1.7 3.0
XI 8 2.0 2.1
XII 8 4.0 4.7
XIII 10 3.6 3.7
XIV 7 1.4 2.0
XV 6 1.0 3.6
XVI 14 4.3 5.8
XVII 22 0.9 3.1
XVIII 23 2.2 5.6
XIX 6 3.8 3.4
XX 7 1.3 2.1
XXI 7 3.3 6.9
XXII 8 3.6 6.0
XXIII 6 15.3 1.6
XXIV 8 0.9 4.0
XXV 6 4.8 5.0

Figure 4.6. Number of pattern matches resulting from the ERA5 self-test. The representative patterns
of the 25 ice episodes (ie pattern) are searched for in ERA5. The number () of each ice episode and its
duration (ie dur) are given in the first two columns, the pattern matches are given in the last two columns.
The number of all matches is given as a percentage of all cold season days (all), and the number of matches
within an ice episode (within ie) is given as a percentage of all ice episode days. Colours indicate the
highest and lowest number of matches per column, with reds indicating higher values and blues indicating
lower values.

in the representative pattern of ice episode IX, is known as a blocking pattern, which can
cause extreme weather events at different locations in Europe (KAUTZ et al., 2022). The
representative pattern of ice episode XVIII is another good example of such a blocking
situation. In addition to the similarity between the representative patterns of ice episode
IX and XVIII, eight other ice episodes are associated with a similar blocking pattern (I,
III, VII, XVI, XVII, XX, XXII, XXIV). However, these 10 representative patterns have
different GPH500 values and slightly different locations of the blocking position, resulting
in different gradient orientations and magnitudes.

The representative patterns of ice episodes VI, XI and XIX are similar to each other.
These representative patterns consist of a ridge over the western coast of Europe ex-
tending northwards to the British Isles and a trough/cyclone extending southwards over
eastern Europe. Another group of similar patterns includes the representative patterns
of ice episodes IV and XXV, which also show a ridge-trough pattern. However, this is
located more westerly: the ridge is located west of Europe and extends further north to
Iceland, and the trough is located across northern and central Europe. The representative
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pattern of ice episode XXV is also similar to the representative patterns of ice episodes
IX and XIII.

The representative patterns of ice episodes II and VIII show similarities with the repre-
sentative pattern of ice episode XVI, but not with each other. Both show low GPH500

extending towards the Alpine region and large GPH500 in the southern Mediterranean re-
gion, hence a north-south gradient. As with the patterns just described, the representative
patterns of ice episodes XII and XV show similarities with the representative pattern of
ice episode XXI, but not with each other. In these three patterns, areas of low GPH500

are located far to the north (except for the area towards Greenland) and larger GPH500

are found across Europe. The pattern of ice episode XV shows a small system of low
GPH500 over the target region.

Two patterns that bear no resemblance to any of the other patterns, nor to each other,
are the representative patterns of ice episode X and XIV. The representative pattern of
ice episode X shows a high GPH500 system over Scandinavia and a low GPH500 system
south of it (northwestern Mediterranean area). The representative pattern of ice episode
XIV shows a ridge across the Russian border and south-eastern Europe with a relatively
high GPH500 in the centre.

Overall, the frequency of each of the 25 patterns associated with ice episodes is much
more evenly distributed (1.6–6.9 %, Figure 4.6, within ie) than the overall frequency of
the patterns in the cold season (0.9–17.3 %, Figure 4.6, all).

4.4.3 Ice episode patterns in future climate periods

For the recent past, the near future and the far future, the representative event patterns
were searched for in GCM-driven RCM simulations. The results are shown for each event
pattern relative to the total number of matches per climate period and are summarised in
Fig. 4.7. These are described in more detail below.

Certain representative patterns occur more frequently in the GCM-driven RCM simula-
tions, while others occur less frequently. Similar characteristics were found in the ERA5
self-test (Figure 4.6). As in ERA5, the representative patterns of ice episodes V and
XXIII occur frequently during the cold season (Figure 4.7, all matches, past). In addition
to these two patterns, those of ice episodes II, VIII and XVI are also frequently found in
the cold season of the RCMs (Figure 4.7, all matches, past). Patterns that are found least
frequently in the RCMs during the cold season (≤ 1%) are the representative patterns
of ice episodes VII, X, XIV, XVII, and XX. A similar characteristic was also found for
ERA5. The characteristics of the recent past frequency distribution of the representative
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 ie pattern all matches within ie percentage of RCMs
№ ie dur past near far past near far past near far
I 14 1.9 1.8 1.7 1.7 1.9 1.8 91.7 79.2 62.5
II 11 12.3 12.2 11.5 10.0 8.6 5.8 ⬇ 100.0 100.0 83.3
III 10 2.2 2.2 2.1 3.8 3.1 4.4 100.0 95.8 58.3
IV 7 1.1 1.2 1.1 2.1 1.8 3.7 95.8 79.2 83.3
V 7 12.4 11.0 11.0 5.0 5.1 3.3 100.0 100.0 75.0
VI 19 3.3 3.2 3.0 5.3 3.8 3.4 ⬇ 100.0 100.0 83.3
VII 9 1.0 1.0 1.0 2.6 3.8 3.2 100.0 100.0 66.7
VIII 6 11.7 12.3 12.7 ⬆ 5.9 4.6 4.3 100.0 95.8 87.5
IX 29 2.2 2.0 1.8 3.7 4.1 4.9 ⬆ 100.0 95.8 91.7
X 12 1.0 0.9 1.0 3.0 2.7 3.4 100.0 83.3 79.2
XI 8 2.5 2.8 2.6 4.9 6.8 5.3 100.0 100.0 70.8
XII 8 2.4 2.3 2.3 2.4 2.2 3.1 83.3 70.8 58.3
XIII 10 4.2 4.9 5.0 3.6 3.8 4.6 100.0 95.8 79.2
XIV 7 0.6 0.9 0.9 0.5 0.1 0.4 66.7 37.5 25.0
XV 6 1.5 1.3 1.2 2.9 2.0 2.7 95.8 83.3 70.8
XVI 14 9.4 9.3 9.3 8.5 8.4 7.4 100.0 100.0 79.2
XVII 22 0.4 0.5 0.4 0.7 0.8 0.8 87.5 79.2 45.8
XVIII 23 1.6 1.5 1.4 2.3 2.1 2.3 100.0 91.7 75.0
XIX 6 3.5 3.8 3.8 4.9 5.1 4.4 100.0 100.0 87.5
XX 7 0.8 1.0 1.0 1.0 0.7 0.5 100.0 58.3 41.7
XXI 7 3.3 3.1 3.2 4.6 4.2 6.3 100.0 83.3 83.3
XXII 8 3.3 3.4 3.6 5.6 5.1 5.5 100.0 95.8 83.3
XXIII 6 11.4 10.9 11.7 0.8 1.1 0.8 83.3 70.8 41.7
XXIV 8 1.8 2.0 1.9 5.0 9.4 6.4 ⬆ 100.0 100.0 87.5
XXV 6 4.3 4.5 4.6 9.6 8.6 11.3 100.0 95.8 95.8

Figure 4.7. Number of pattern matches in the GCM-driven RCM ensemble for three climate periods
(recent past, near future, far future) given as percentage for each pattern relative to the sum of all matches
within the respective climate period. The ensemble mean value of percentages in the RCMs is provided
for all matches and for those matches that occurred within a ice episode (within ie). Colors indicate the
highest and lowest number of matches per column. Reds indicate higher values and blues indicate lower
values. For the percentage of RCMs that resulted in at least one pattern match within a ice episode (last
three columns) white does indicate a higher number of models, dark grey does indicate a lower number of
models.

patterns found in the RCMs do not change in the two future climate periods. An excep-
tion is the representative event pattern of the ice episode VIII (one of the more frequent
ones), which shows a tendency to increase towards the far future (11.7 % to 12.7 %). In
general, most matches are found in five patterns with little change in the near and far fu-
ture (∼ 56 % of all matches). The remaining 20 patterns have an average share of 2.1 %
(0.4–5 %). In summary, it can be said that the representative event patterns are found in
the GCM-driven RCM simulations with a similar frequency within the cold season as in
ERA5, and that this frequency remains stable towards the end of this century.

If only those matches are analysed in which an ice episode (ie) occurred in the RCM
simulation for the target region, a slightly different characteristic of the frequencies can
be observed (Figure 4.7, within ie). In the recent past, the representative patterns of ice
episodes II, XVI and XXV are the most frequent. While the representative patterns of
ice episode XVI and XXV are still among the most frequent patterns in the far future, the
representative pattern of ice episode II almost halves its frequency in the far future and
thus shows a tendency to decrease. The three least frequent patterns, as in the analysis
of all matches, are the representative patterns of ice episodes XIV, XVII and XX, which
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are still the least frequent patterns in the far future and are found in the fewest RCMs
(25–46% of RCMs in the far future).

One pattern that is one of the most frequent patterns when looking at all matches and one
of the least frequent when looking at matches within an ice episode is the representative
pattern of ice episode XXIII. This was also found for ERA5. Just over a third of all pattern
matches within an ice episode show counter-directional changes in the near future and
the far future. As this is not the case for the frequency of all pattern matches, it can be
assumed that the occurrence of ice episodes in the target region is subject to decadal or
multi-decadal variability.

By comparing the number of ice episode days with the number of ice episode days that
generate a match with the representative patterns, it can be shown that over two-thirds
of all ice episode days in the RCMs can be associated with the representative patterns
identified in ERA5. This proportion is consistent for the recent past, the near future and
the far future (see Table 4.4). The patterns that are projected to occur during ice episodes
in Hamburg in the far future, as simulated by the RCMs under the RCP8.5 scenario, are
presented in the Appendix C.

Table 4.4. Number of ice episode (ie) days vs. number of matches within ie (ie days with match). The
left over days without match are given and the proportion of ie days with a match relative to all ie days is
given and denoted as captured ie characteristic.

ERA5 recent past near future far future

ie days 270 460 206 85
ie days with match 256 307 135 59
ie days without match 14 153 71 26
captured ie characteristic 94.8 % 66.7 % 65.5 % 69.4 %

4.5 Discussion
As mentioned in the introduction, the field of classification of atmospheric circulation
patterns (or types) and their changes is very diverse in terms of the selection of underly-
ing data and methods. For example, HUGUENIN et al. (2020) use the results of a CMIP5
GCM ensemble (23 members) and the CESM12-LE large ensemble (84 members) for
their analysis. They classified GPH500 in the main circulation types (CTs). No clear
change in the individual large-scale weather types for the winter (DJF) (2070–2099 com-
pared to 1988–2017) could be identified. MITTERMEIER et al. (2022) classified the data
of the SMHI-LENS large ensemble (50 members, based on the GCM EC-Earth3) for the
winter half-year (ONDJFM) into 29 subjective circulation types (Grosswetterlagen after
Hess and Brezowsky (e.g. GERSTENGARBE and WERNER, 2005)) using a deep learning
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approach. Assuming the SSP37.0 scenario, they found a significant increase in an east-
erly flow type (“High Fennoscandia”) and a southerly flow type (“Low British Isles”) and
a decrease in the cyclonic and anticyclonic south-easterly flow types (2071–2100 com-
pared to 1991–2020). Overall, a significant change was observed in 34% of all CTs dur-
ing the winter season. HANSEN et al. (2023) also analysed data from the SMHI-LENS.
In their study, CTs were determined based on six SSP scenarios with 50 members each,
based on the sea level pressure. The clustering method SANDRA (Simulated Annealing
and Diversified Randomisation, see PHILIPP et al. (2010)) was used for this purpose.
No significant frequency changes were found for CTs in winter (2081–2100 compared
to 1995–2014). OZTURK et al. (2022) analysed EURO-CORDEX RCM simulations, as
in the study presented here, to investigate the changes in atmospheric circulation over
Europe for different global warming levels. They employed a pattern-scaling approach
and analysed a number of variables, including the monthly mean GPH500. They found
a robust increase in the GPH500 in winter over the Mediterranean and Central Europe
(2080–2099 compared to 1985–2004). This suggests an intensification of the anticy-
clonic circulation.

The above summary of these studies demonstrates that different studies arrive at differ-
ent conclusions. This is due to the differing classification methods and the similarity
criteria employed (HANSEN et al., 2023). Additionally, all studies use different data sets
as well as different reference and future climate periods, which also differ in their du-
ration. The pattern matching method developed in the present study represents a novel
approach that employs the SSIM index as a similarity criterion, specifically designed for
the comparison of features within images. Furthermore, it considers the magnitude of
the pressure gradients by using a contrast comparison function. The pressure gradient
magnitude is not considered, for example, in the Grosswettertypen classification, which
makes it difficult to estimate the influence of CTs on other variables such as temperature
and precipitation (HANSEN and BELUŠIĆ, 2021; HANSEN et al., 2023).

All of these studies take into account the atmospheric circulation at each point in time for
a specific analysis period, allowing them to make statements about general CT changes
based on the model data used. The approach presented here considers only days on
which ice episodes appear for the recent past and future climate periods and classifies
only their corresponding atmospheric circulation patterns. Therefore, this work cannot
be directly compared with other studies. When all days are classified, as is done in
the aforementioned and many other studies, the change in circulation patterns of the
rarely occurring ice episodes in a future climate might be superimposed by the overall
winter circulation type trend and thus not be seen. Therefore, considering only days on
which some kind of extreme weather occurs will help to understand how the associated
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atmospheric circulation patterns change. Furthermore, an event definition is chosen here
that is physically relevant due to the 0 °C limit.

In general, the results presented here depend on the representativeness of the ice episode
patterns. The approach presented here focusing on a relatively small target region and
analysing how the atmosphere behaves during certain events has advantages, precisely
because it was found here that the atmosphere for local ice episodes varies greatly and
there is therefore no typical pattern. To categorise a whole season for a whole region (a
whole country or a whole continent), it would be sufficient to look for the atmospheric
pattern that represents the negative phase of the North Atlantic Oscillation (NAO−). The
NAO− is accompanied by colder and drier winters than normal almost everywhere in Eu-
rope (MARSHALL et al., 2001; HURRELL et al., 2003). As demonstrated by VIHMA et al.
(2020) in their large-scale pattern analysis, the NAO− correlates with the divergence of
dry-static energy transport and is associated with cold spells. In their study cold spells
correspond to extreme temperature anomaly events and are defined as the detrended tem-
perature anomaly ≤−2× standard deviation for at least four consecutive days).

The NAO index (taken from NOAA,CLIMATE PREDICTION CENTER, analysis not shown)
is not a reliable indicator for the occurrence of ice episodes in the target region considered
in the present study, as the NAO index also takes positive values up to a value of 0.8 as the
mean value within an ice episode. As previously stated, the NAO index is more effective
for categorising an entire cold season in a region as mild or severe, or for predicting the
trend of the upcoming cold season with seasonal prediction systems, as demonstrated in
e.g. SCAIFE et al. (2014) and DOBRYNIN et al. (2018).

4.6 Summary and Conclusions
The occurrence of cold events has a significant impact on critical infrastructure, agricul-
ture and human health. In order to estimate the influence of such events in the future,
this study analyses the occurrence of local ice episodes in future climate periods, taking
global warming into account. The analysis is based on the results of RCM simulations
under the assumption of the RCP8.5 emission scenario. The analysis focuses on the re-
gion of Hamburg in northern Germany to determine the frequency of local ice episodes
in the future. For the purposes of this analysis, the days of the cold season were di-
vided into three classes: warm days, frost days and ice days. The frequency of each of
these classes was then analysed. In addition to the recent past climate period, the fre-
quency was analysed for the near future and the far future. The ice days were divided
into three further subclasses, covering different durations of ice episodes. Furthermore,
atmospheric patterns were identified in ERA5 that prevail during the local ice episodes.
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A pattern-matching method was employed to analyse the RCM data in order to identify
the extent to which the ice episode patterns identified in ERA5 will change in the future
and to ascertain whether they can still be associated with local ice episodes.

Based on our analysis, the posed research questions can be answered as follows:

Will local ice episodes still play a role at the end of the century?
All RCM simulations analysed here show the occurrence of at least one local ice episode
within 2065–2095, assuming the RCP8.5 emission scenario. The ensemble average indi-
cates that eight ice episodes occur in the target region within 2065–2095.

Will atmospheric circulation patterns associated with local ice episodes change to-
wards the end of the century?
The use of the developed pattern-matching method has revealed that the representative
patterns of the ice episodes identified in the ERA5 data will continue to occur during
ice episodes with small variations in frequency in future climate periods compared to the
recent past, as simulated by the RCMs.

Furthermore, it was found that the representative patterns of the identified ice episodes
exhibit distinct features and, thus, lack a definitive “typical pattern”, such as a blocking
pattern or the NAO− pattern. Furthermore, the identified ice episode patterns in ERA5
can be associated with two-thirds of all ice episode days in the RCMs, a proportion
that remains consistent over the recent past, near future, and the far future, suggesting a
consistent association between identified patterns and ice episode occurrences.
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5 Overall assessment and
concluding remarks

In the following sections, the posed research questions are answered. Based on the devel-
oped methods and using the obtained results, general conclusions are drawn. In addition,
the limitations of this thesis are identified and areas for further research are highlighted.

5.1 Answers to research questions
In summary, the research questions identified can be answered as follows:

RQ1. How does data uncertainty affect cold season threshold-based climate indices?

The influence of data uncertainty on several threshold-based climate indices was investi-
gated for the cold season. These include the number of frost days, the number of ice days,
the maximum number of consecutive frost days and the maximum number of consecutive
ice days, the number of wet days and the number of heavy precipitation days. The influ-
ence of data uncertainty was also investigated for the categorisation of cold seasons into
mild, moderately warm, moderately cold and harsh cold seasons based on the coldsum.

To assess the influence of data uncertainty on cold season threshold-based climate in-
dices, the threshold value of each index was first varied by an arbitrary range. This
showed that the response, i.e. the percentage change in the number of days, depends
on the distribution of the underlying climate variable. A threshold change towards the
mode of the distribution leads to a larger percentage change in the number of days than
a threshold change towards the tails of the distribution. This is particularly evident for
indices describing more extreme situations (e.g. ice days or heavy precipitation days).
For example, the percentage change in the number of ice days resulting from varying
the threshold of 0 °C by an arbitrary range, depends on the distribution of Tmax. Taking
Hamburg as an example (Figure 1.1), where the most frequent values in the Tmax dis-
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tribution are around 7 °C, increasing the threshold causes a more pronounced increase
(percentage change) in the number of ice days, compared to frost days. This is because
the most frequent values in the Tmin distribution are around 0°C, which corresponds to
the defined threshold value. Wet days and heavy precipitation days show a much higher
sensitivity to threshold changes than the temperature-based indices considered, due to the
skewed precipitation distribution in Hamburg, characterised by frequent light precipita-
tion events and rare heavy precipitation events. Indices that integrate quantities over time
intervals (e.g. coldsum or consecutive days) show less sensitivity to threshold changes.
Categorisation based on the coldsum appears to be robust to threshold changes, making
it a useful tool for gaining insight into possible future changes.

A threshold uncertainty estimate was then derived from the E-OBS reference data set to
avoid arbitrary threshold changes. This uncertainty estimate was determined separately
for each threshold of the considered climate indices and used in calculations with both
E-OBS and RCM data, allowing the RCMs to vary by the observational uncertainty.
Using this uncertainty range and the same threshold as for the recent past, the results of
future projections were analysed. For the example of Hamburg, it was shown that data
uncertainty has only a small impact on projected future changes when analysing future
changes relative to the recent past, especially for the RCP2.6 scenario. For the RCP8.5
scenario, a dependence on threshold changes was observed, especially in the far future.
This dependence is likely due to changes in the distribution of the underlying climate
variable.

Overall, when using threshold-based climate indices to assess future change, and es-
pecially for impact studies, it is essential to take account of uncertainties and, ideally,
to correct for them appropriately. This is particularly important for indices that assess
extremes. This highlights the importance of understanding and accounting for data un-
certainties in climate change assessments.

RQ2. Can regional climate models reproduce local cold season characteristics, ice episodes
and prevailing atmospheric patterns?

To obtain cold season characteristics for Hamburg, all cold season days were classified
as either ice days, frost days or days that are neither ice days nor frost days, which are
summarised as warm days. To assess their reproducibility by the RCMs, the frequency
of the cold season characteristic classes was calculated for a recent past climate period
(1979–2005) and compared with reference data sets (E-OBS and ERA5). The RCMs
show a tendency to underestimate warm days and overestimate ice days, indicating a cold
bias. No consistent tendency to over- or underestimate frost days was found, suggesting
that the cold bias mainly affects daily maximum temperatures, indicating a daytime cold
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bias.

In addition to characterising the cold season, it is important to consider cold weather
events of longer duration, as they are potentially more damaging than temperature-related
single-day events. As there is no uniform definition of cold weather events, the term ice
episode is introduced and defined as more than five consecutive ice days. The frequency
of ice episodes is calculated. The results of the RCMs show a tendency towards slightly
more ice episodes compared to the reference data sets E-OBS and ERA5 for the period
1979–2005, which is in line with the general overestimation of ice days.

To gain a better understanding of the atmospheric conditions under which an ice episode
occurs in Hamburg, the study identified prevailing atmospheric circulation patterns based
on ERA5 data. It was shown that longer ice episodes are generally associated with block-
ing patterns over Iceland/the British Isles, while shorter ice episodes are generally asso-
ciated with lower geopotential heights (GPH500 troughs or cyclones) extending towards
southern Europe. Nevertheless, no definitive “typical” ice episode pattern could be iden-
tified, highlighting the complexity of atmospheric dynamics governing ice episodes.

To enable comparison of the identified atmospheric patterns in the ERA5 data with the
RCM data, a pattern-matching method was developed that uses the Structural Similarity
Index (SSIM) as a matching criterion to measure reproducibility. The SSIM index was
originally developed for image processing by WANG et al. (2004) and, to the best of our
knowledge (as of May 2024), has only been used in two other peer-reviewed publications
in the field of climate data analysis. In the other studies, however, the SSIM index was not
used to find certain patterns of one dataset in another, as here. DOAN et al. (2021) used
the SSIM index as a replacement for the more traditional Euclidean distance measure,
to group data into different weather types. HOFFMANN et al. (2021) used the SSIM
index to investigate the persistence of certain weather patterns. Using the developed
pattern-matching method it was found in this thesis that the RCMs are able to reproduce
the identified atmospheric circulation patterns and their frequencies well, regardless of
whether they are forced with GCM or reanalysis data at their boundaries.

Overall, the results indicate that RCMs can reproduce local ice episodes in the Hamburg
region. However, biases, such as the too low daily maximum temperatures, need to be
addressed in order to conduct more in-depth studies of local impacts.

RQ3. How will the frequency of local ice episodes and associated atmospheric patterns
change in future climate periods?

Despite the projected increase in global mean temperatures under the high emission sce-
nario RCP8.5, local ice episodes are expected to continue into the future. The RCMs
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project 6–45 ice episodes (21 in the ensemble mean) within the near future (2030–2060)
and 1–23 ice episodes (eight in the ensemble mean) within the far future (2065–2095).
This represents a reduction in the ensemble mean of 49 % in near future and of 80 % in
the far future compared to the recent past (1971–2000).

The developed pattern-matching method shows that the representative patterns of local
ice episodes identified in ERA5 data persist in the RCMs into future climate periods with
reduced frequency, due to the reduced frequency in ice episodes. However, the frequency
relative to all ice episode days in the respective climate period, shows minimal variation.
The representative patterns remain associated with two-thirds of all ice episode days in
the RCMs over the recent past, near future, and far future climate periods. This suggests
a stable association between the identified patterns and the occurrence of ice episodes in
Hamburg.

Despite the projected increase in global mean temperature, cold events are expected to
continue to occur in Hamburg under the assumption of the RCP8.5 emission scenario.
However, they will occur less frequently. The probability of experiencing an ice episode,
defined here as more than five consecutive ice days, is projected to be about twice every
three cold seasons (0.7 events/cold season) in the near future (2030–2060) and once every
four cold seasons (0.26 events/cold season) in the far future (2065–2095) under the high
emission scenario RCP8.5. As this high emissions scenario represents strong climate
change, the resulting number of future ice events presented here can be seen as the upper
limit of potential reductions. Consequently, it can be seen as the lower limit of ice episode
occurrences in the future. During ice episodes between 1979 and 2005, the average
temperature in Hamburg was -6.3°C. This average ice episode temperature is projected
to increase to -5.2°C in the near future and to -4.6°C in the far future.

Overall, the results of this thesis provide valuable insights into the persistence and char-
acteristics of future cold season characteristics and ice episodes in the Hamburg region,
facilitating informed adaptation and mitigation strategies to address their impacts on crit-
ical infrastructure, agriculture, and human health.

5.2 Limitations
The data analysis and methods developed in this thesis were applied solely to the cold
season and an urban area. However, they can be applied to any point on Earth. Two
points should be considered: (1) More than one grid cell should be chosen as the target
region. This is because a more robust result can be obtained by averaging values from
several grid cells of a numerical model instead of considering only a single value. (2)
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The climate indices used are only relevant in certain regions. In regions situated near
the equator, for example, cold does not pose a threat because the influence of cold polar
air does not extend as far and temperatures do not drop as much. Thus other climate
indices should be considered. However, in regions situated in the northern hemisphere
mid-latitudes, such as Hamburg, a study at the freezing point is crucial, as the results can
influence, for example, the planning of the depth of pipe installations and the choice of
construction materials for buildings. Furthermore, the impact of successive temperature
changes above and below the freezing point on vegetation is also relevant. Consequently,
research into agricultural cultivation areas should be a priority alongside that of urban
regions.

Another aspect to consider is the choice of climate indices. In this thesis, the focus was
on temperature-based indices. As demonstrated in chapter 2, under the assumption of
RCP8.5 in the far future (2060–2090), an increase in heavy precipitation days is projected
for the cold season by the RCMs. Therefore, in addition to temperature-based indices, it
would be important to consider precipitation in particular for detailed studies within the
city. However, the simulation of precipitation is a challenge for the RCMs. In particular,
heavy precipitation events occur at scales below the resolution of the RCMs. Since the
output of the RCM data provides daily sums of precipitation, it is not possible to derive
the actual impact from a heavy precipitation day from the data. For example, if this
precipitation occurs within 30 minutes, it is a much more devastating event for the city
than if the precipitation is spread over 24 hours. It would also be important to consider
the potential threat of winter storms to Hamburg. However, due to the resolution of the
RCMs, they cannot accurately simulate surface winds, which are strongly influenced by
the orography. Consequently, the more detailed analysis (see chapter 3) was limited to
temperature-based indices.

Another issue related to climate indices is the choice of the underlying climate variable.
If Tmax is used to calculate an ice day, observations and (climate) models may produce
different results for this climate variable. Models have short computational timesteps, but
provide their results at relatively long output intervals (e.g. 6 hourly or daily) in order to
avoid exceeding storage capacities. According to the metadata in the EURO-CORDEX
model data, the daily Tmax is the most extreme value of all computational timesteps within
the output interval (e.g. one day). In the case of observational data, the instantaneous
value has traditionally been obtained every hour after changing from mercury to electical
thermometers. It is unclear whether this instantaneous value represents the mean value
for the hour or a short-term value; extremes within the hour may or may not be taken into
account. Daily extreme values are derived from these hourly temperature values, which
may result in the de facto minimum and maximum values being missed. Consequently,
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the challenging questions arises to “What should be compared with what?”, and “To
what extent should climate model results align with observations or reanalyses, given
that the methodologies for determining such extremes are not identical?”. In the course
of this thesis, a better agreement of ice episodes, in terms of start date and duration, was
found between ERA-Interim (based on a model) and E-OBS (based on station data), by
calculating the daily Tmax as the maximum of the 6 hourly Tavg for ERA-Interim and
comparing it with the given daily Tmax from E-OBS.

As has been shown, the large-scale atmospheric circulation generated by the RCMs dur-
ing the cold season is strongly forcing-dependent. RCMs can therefore only be as reli-
able as their boundary values, which are either provided by reanalysis or GCM data. As
demonstrated by BRANDS (2022), there are considerable differences in the performance
of the large-scale circulation in GCMs. In general, the CMIP6 models perform better
on average than the CMIP5 models, which can be attributed to the enhanced resolution.
Consequently, it would be beneficial to repeat the analysis presented in this thesis for the
CMIP6 simulations in order to reach a more robust conclusion. However, the downscal-
ing of CMIP6 simulations using RCMs was not fully completed at the end of this thesis,
and since GCMs are generally only of limited use for regional or even local studies, the
results of the CMIP6 GCMs were not considered for the analysis of local ice episodes.

5.3 Future directions – recommendations

In addition to further research into the relationship between Arctic warming and winter
weather in mid-latitudes of the Northern hemisphere, it is necessary to focus on cities. A
considerable proportion of the global population lives in urban areas, thus certain weather
events influence many people if hitting a city. It is therefore crucial (1) to improve the
representation of cities in GCMs and RCMs, as cities develop their own urban climate,
which can influence the regional and the global climate, and (2) to conduct high reso-
lution city simulations to estimate the impact of certain weather events on particularly
vulnerable parts of an urban area. The characteristics of cities in the context of climate
change are subject of the planned IPCC Special Report on Climate Change and Cities,
for which a first scoping meeting was held in April 2024 (IPCC, 2024).

In the following sections the representation of cities in climate models is examined by
presenting examples from current research. In addition, the possibility of high-resolution
city simulations is discussed and areas of further research needs in this context are iden-
tified.
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5.3.1 Representation of cities in climate models

As stated in the previous section, a repetition of the analysis presented here with EURO-
CORDEX simulations based on CMIP6 would be beneficial in order to facilitate more
comprehensive statements. Furthermore, the use of results from the new generation of
convection-permitting RCMs with a grid spacing of 2–5 km (in contrast to the 12.5 km
RCM data used here), would enable the inclusion of precipitation in this analysis, which
can also fall as snow during ice episodes. Moreover, the representation of the city and
its effects on the regional climate are more precise at a 2–5 km resolution, if appropriate
parameterisations have been included in the models.

With regard to the representation of cities, a pilot study is currently being conducted
to investigate the influence of urban regions on regional climate and the influence of
regional climate on cities in CORDEX models (FPS URB-RCC URB-RCC, officially
endorsed by WCRP). In order to achieve this, coordinated RCM simulations of two ex-
treme situations in the city of Paris are currently being carried out by various research
institutes. The objective is to quantify the influence of the city on the regional and local
climate and to investigate how different this influence is in the various models. Differ-
ences arise not least due to the fact that these models use different parameterisation to
account for city-related effects. The results will then be used to derive how complex
such a city parameterisation in RCMs must be in order to map the city effect on the local
and regional climate. Subsequently, further coordinated simulations will be conducted
with the improved parameterisations for a selection of cities under future scenarios. This
is important with regard to the development of climate services for health aspects, risk
management, urban planning and others.

Another area of research concerns the further development of GCMs towards finer reso-
lutions, by resolving more complex processes. As an example, the Earth system model
ICON (JUNGCLAUS et al., 2022) is briefly discussed. Among other new features, this
model uses an icosahedral grid, i.e. triangular grid cells, in contrast to square grid
cells typically used in previous climate models. Further developments, such as ICON-
Sapphire (HOHENEGGER et al., 2023), demonstrate the potential of conducting a globally
coupled 5 km simulation for an entire year with today’s computing capacities. Addi-
tionally, a model configuration can be selected in which an atmosphere-only simulation
is conducted for a smaller area, analogous to the refinement of GCM simulations with
RCMs. Further grid refinements are then applied towards the centre of the area, using
a uniform grid with inside nests. These inner nests then reach grid spacings of 620 m
and 308 m. The authors demonstrate that ICON-Sapphire can be employed for regional
climate and process studies. However, it is unclear from referenced publications whether
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and, if so, how cities and their effects are incorporated.

The aforementioned efforts to resolve more details in GCMs and RCMs are promising.
However, the computing effort increases with increasing resolution. Consequently, even
ICON-Sapphire in global configuration can only be run for a simulation of one year or,
in the case of large-eddy simulations, only for a small area and for a comparatively short
period of time. For simulations to be carried out for a future climate, all these models
require boundary values from the long-term projections of GCMs, which were developed
for exactly this specific purpose. In this respect, it is essential that the processes are better
understood and better modelled in the GCMs without increasing the computational effort
too much.

5.3.2 Simulations of extreme events within the city
It is not possible to investigate the impact of an ice episode on the heterogeneity within
Hamburg using regional climate model data, as these models are not sufficiently detailed
with a grid sizes of 12.5 km, or 2–5 km in the case of convection-permitting RCMs. Fur-
thermore, the city itself is, if at all, represented in the model by a very simple parameter-
isation with surface properties equal to those of a rock. Models that can resolve detailed
processes within an urban area are obstacle resolving microscale models (ORMs). These
are computationally intensive due to their high resolution, which currently limits their
applicability to small domain sizes (several 10 km2) and short integration periods. To
simulate realistic impacts of an ice episode, these models require boundary values for the
small model domain. However, there is a large gap in resolution (scale jump) between the
RCM data (12.5 km) and the ORM (∼500 m at the boundaries for non-equidistant grids
BÖTTCHER (2023)). This scale jump leads to two key issues: (1) The phase velocities of
the phenomena on the grids of varying size are different, which leads to reflections of the
waves at the boundaries and thus introduces numerical disturbances (SCHLÜNZEN et al.,
2011). (2) The simulation of a large area with an ORM covering more than one RCM
grid cell (i.e. more than 12.5 km2) is computationally intensive and, thus, too expensive.
The scale jump, namely the difference in resolution between the ORM and the bound-
ary values, should not exceed a factor of 4–6 (SCHROEDER and SCHLÜNZEN, 2009;
BÖTTCHER, 2023). However, in order to resolve small-scale details within the urban
area, the resolution required to resolve processes is of the order of 10 m. Thus a dynamic
downscaling is not possible, even with boundary values of 1 km resolution. An ORM
simulation should not use a grid spacing of less than 200 m (factor 5). Consequently, a
method must be developed that overcomes the scale jump without introducing numerical
disturbances and at the same time does not exceed the computing capacities of today’s
supercomputers.

86



Chapter 5: Conclusions

The nesting represents a major challenge for the ORM community. There is a limited
availability of observational or reliable model data at such high resolutions that could
possibly be used as boundary values. One potential solution of obtaining such data would
be the use of mesoscale models, which, however, also require time dependent boundary
values. Furthermore, conducting such a mesoscale model simulation, to obtain a high-
resolution data set to be used by an ORM, would also require considerable computing
power. Consequently, current research is seeking to identify methods to circumvent this
intermediate step at the mesoscale level without causing numerical disturbances, while
ensuring that the coarser data used as boundary values are sufficiently detailed.

A mesoscale interface (INIFOR) was developed for the ORM PALM (MARONGA et al.,
2020), which derives realistic initial and boundary values from the operational weather
model COSMO-DE/D2 (2.8 km grid spacing, BALDAUF et al. (2011)). This allows
simulations to be calculated for realistic heterogeneous areas under changing synoptic
conditions. Nevertheless, precipitation events cannot be simulated with this ORM, as
this requires the inclusion of the relevant processes within the model, which necessitates
further model development. By incorporating precipitation relevant processes into the
ORM MITRAS (SALIM et al., 2018), FERNER et al. (2023) were able to demonstrate
first results of rainfall heterogeneity within an urban neighbourhood. This kind of model
development is essential for the estimation of the risks, especially those associated with
compound events, which are defined as events comprising several extremes at the same
time (e.g. winter storms and extreme precipitation).

A more promising and resource-efficient approach for developing a scale interface that
generates data sets of sufficient detail is that of machine learning. For example, SINGH

et al. (2023) use a convolutional neural network (CNN), which learns patterns from grid-
ded data sets, to create a high-resolution precipitation climatology from remote sensing
precipitation data. The authors have applied an iterative super-resolution convolutional
neural network (SRCNN) and downscaled the ∼10 km satellite precipitation data to a
grid spacing of ∼300 m. However, this resolution is still coarser than in-urban resolu-
tions. They argue that their method may not be able to identify hyper-local convective
rain events, but that it is likely to be most effective for larger-scale frontal rain events
to improve the spatial information at the local scale. Nevertheless, validating such high-
resolution results is challenging due the lack of observational reference data sets. In a
recently published review on deep learning in statistical downscaling for deriving high
spatial resolution gridded meteorological data (SUN et al., 2024), it was highlighted that
deep learning has outperformed traditional methods in various areas. Deep learning has
the potential to establish a complex mapping between large-scale and local-scale meteo-
rological data, and this could be of significant benefit to downscaling, particularly with
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super-resolution networks.

For planned RCM simulations, it would be desirable to consider the possibility of storing
results for e.g. heavy precipitation events, at a higher frequency. This would at least im-
prove the temporal resolution for mesoscale or ORM applications. An internal automated
criterion could be used (based on the idea proposed by BUNGERT (2008)) to determine
whether a change is large or small and whether the output frequency should be increased.

In conclusion, it can be stated that there is no universal method for simulating extreme
events that is optimal for all use cases. The choice of method depends on the specific use
case (Which variable? Which area? Which time period?) and the resources available. In
most cases, a combination of different techniques is a good approach.

5.4 Closing words
This work is the first to define and analyse local ice episodes, to determine the prevailing
atmospheric circulation patterns for them and to investigate how both might change in the
future under the assumption of the high emission scenario RCP8.5. Based on the GCM-
driven RCM projections, it was shown that ice episodes will become less frequent, but
may still occur in Hamburg in the far future despite the strong global warming. Further-
more, it was shown that ice episodes are generally associated with a variety of different
large-scale atmospheric patterns and cannot be associated with a single typical pattern.
The results of this work demonstrate the need to consider the possibility of ice episodes
occurring towards the end of the century in future planning (urban development, infras-
tructure, etc.), despite existing uncertainties regarding the climate scenario that humanity
will follow in the future. At the same time, it is essential to improve models or de-
velop methods that can accurately simulate the impact of small-scale urban effects on
the global climate, and provide a more comprehensive understanding of the relationship
between Arctic warming or sea-ice retreat and winter weather in the mid-latitudes of the
Northern hemisphere.
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Appendix

A First paper
This section was published together with chapter 2 as:

Bell, L. M. and K. H. Schlünzen and K. Sieck (2023): Influence of data uncertainty

on cold season threshold-based climate indices. Meteorologische Zeitschrift, http:
//dx.doi.org/10.1127/metz/2023/1158.
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Figure A.1. Distribution of daily average temperatures between 1971–2000 (left) and percentage changes
of the coldsum as function of the chosen threshold (right). Blue: 5th to 95th percentile of the climate model
ensemble (a, both panels), all 14 model results (b,c, both panels); black: reference data.
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Figure A.2. Distribution of daily precipitation (left) and percentage changes of the number of wet days
(middle) and the number of heavy precipitation days (right) as function of the chosen threshold. Blue: 5th
to 95th percentile of the climate model ensemble (a, both panels), all 14 model results (b,c, both panels);
black: reference data.
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Figure A.3. Maximum number of consecutive (a) frost days and (b) ice days as mean cold season value
between 1971-2000. From left to right: climate model ensemble bandwidth for the originally defined
threshold, model ensemble bandwidth for increased threshold, model ensemble bandwidth for decreased
threshold. Black dots represent reference data values for the corresponding thresholds.
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Figure A.4. Maximum number of consecutive frost days for three different thresholds (x-axis) as mean
cold season value in near future (2031–2060, light shading) and far future (2071–2099, dark shading) based
on the climate model ensemble. (a,c): Total number of days, (b,d): Change in the number of days relative
to reference period 1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and
(c,d) RCP8.5 in red.
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Figure A.5. Number of ice days for three different thresholds (x-axis) as mean cold season value in near
future (2031–2060, light shading) and far future (2071–2099, dark shading) based on the climate model
ensemble. (a,c): Total number of days, (b,d): Change in the number of days relative to reference period
1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and (c,d) RCP8.5 in red.
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Figure A.6. Maximum number of consecutive (mnoc) ice days for three different thresholds (x-axis) as
mean cold season value in near future (2031–2060, light shading) and far future (2071–2099, dark shading)
based on the climate model ensemble. (a,c): Total number of days, (b,d): Change in the number of days
relative to reference period 1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in
blue and (c,d) RCP8.5 in red.

91



1 mm/day
1.8 mm/day

0.2 mm/day

40

60

80

100

120

# 
Da

ys

1 mm/day
1.8 mm/day

0.2 mm/day
10

5

0

5

10
 #

 D
ay

s

1 mm/day
1.8 mm/day

0.2 mm/day

40

60

80

100

120

# 
Da

ys

1 mm/day
1.8 mm/day

0.2 mm/day
10

5

0

5

10

 #
 D

ay
s

(a) (b)

(c) (d)

RCP2.6 RCP2.6

RCP8.5 RCP8.5

Figure A.7. Number of wet days for three different thresholds (x-axis) as mean cold season value in near
future (2031–2060, light shading) and far future (2071–2099, dark shading) based on the climate model
ensemble. (a,c): Total number of days, (b,d): Change in the number of days relative to reference period
1971–2000. Numbers are shown for two climate scenarios, (a,b) RCP2.6 in blue and (c,d) RCP8.5 in red.
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B Second paper
This section was submitted together with chapter 3 as:

Bell, L. M. and K. H. Schlünzen and K. Sieck: Reproducibility of local cold season char-

acteristics, ice episodes and prevailing circulation patterns in regional climate models.
Quarterly Journal of the Royal Meteorological Society, under review.

B.1 Supporting information

Comparison between ERA5 and ERA-Interim

A comparison between ERA5 and its successor ERA-Interim, which was used as forcing
for the EURO-CORDEX evaluation runs, is presented. The identified ice episodes are
listed in Table B.1 for ERA-Interim, ERA5 and, for comparison with a gridded observa-
tional dataset, also for E-OBS. The ice episodes are given for the period 1979 to 2005, for
ERA-Interim only for 1989 to 2005. This is due to technical problems associated with
the provision of ERA-Interim data. As a result, ERA-Interim data were only available
for this short period.

It is obvious that there is a large agreement between ERA5 and E-OBS, whereas ERA-
Interim fails to capture the same ice episodes. This might be due to two different reasons:
(1) As ERA-Interim has the lowest resolution, values are averaged over a larger area that
represent an extreme value (either maximum or minimum). Higher resolutions capture
more detail, hence, ice episodes might be better captured. (2) In ERA-Interim, daily max-
imum Temperature values are selected from the 6 hourly maximum temperature values.
For ERA5 it is recommended to calculated daily maximum (or minimum) temperature
values from the provided on hourly instantaneous T2m values (https://confluence.
ecmwf.int/display/CKB/ERA5%3A+2+metre+temperature). Therefore, ERA5s
daily maximum values are similarly obtained as is done for station data on which E-OBS
is based.

In addition, the proposed pattern-matching method is applied to search for ERA5 patterns
in ERA-Interim. For this, the same methodology, as described in sec. 2.3 is used. The
resulting matches can be found in Table B.2. In addition, matches for a carried out ERA5
self-test are provided. The results clearly show that there is no exact agreement between
ERA5 and ERA-Interim in terms of the number of pattern matches. One reason for
this may be that the daily maximum temperature in the target region differs in the two
reanalyses, as it is calculated in different ways (see previous paragraph). Another reason
could be due to the relatively coarse resolution of ERA-Interim, small-scale features are
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Table B.1. Details of ice episodes (classes 3–Ds, 3–Dm, 3–Dl) for E-OBS, ERA-Interim and ERA5. The
details given are the start date of each event and the duration (D). As ERA5 events are used as reference
in the analysis of atmospheric patterns, each ice episode is given a number (№), according to its time of
occurence within 1979–2005. Due to technical issues, ERA-Interim data was only available for 1989–
2005.

Class E-OBS ERA-Interim ERA5
start date D start date D №: start date D

3–Ds 1982-01-06 10 N.A N.A III: 1982-01-06 10
- - N.A N.A IV: 1983-02-08 7

1983-12-11 7 N.A N.A V: 1983-12-11 7
1985-02-07 9 N.A N.A VII: 1985-02-07 9

- - N.A N.A VIII: 1985-12-27 6
1986-02-05 7 N.A N.A - -

- - N.A N.A XI: 1987-03-01 8
1989-12-28 6 1989-12-28 6 XII: 1989-12-28 8
1991-02-06 9 1991-02-06 9 XIII: 1991-02-06 10
1993-11-21 7 - - XIV: 1993-11-21 7
1994-02-19 6 - - XV: 1994-02-19 6

- - 1996-02-05 6 - -
1998-12-06 6 - - XIX: 1998-12-06 6

- - 2000-12-21 6 XX: 2000-12-21 7
2001-01-15 6 - - XXI: 2001-01-15 7
2002-12-09 8 2002-12-08 9 XXII: 2002-12-09 8
2002-12-20 6 - - XXIII: 2002-12-19 6
2003-01-04 8 2003-01-04 8 XXIV: 2003-01-04 8

- - - - XXV: 2005-03-01 6

3–Dm 1980-01-08 14 N.A. N.A. I: 1980-01-08 14
1981-12-14 11 N.A. N.A. II: 1981-12-14 11
1987-01-10 12 N.A. N.A. X: 1987-01-10 12
1995-12-25 13 1995-12-24 14 XVI: 1995-12-24 14

3–Dl 1985-01-02 20 N.A N.A. VI: 1985-01-02 19
1986-02-13 17 N.A. N.A. IX: 1986-02-02 29
1996-01-21 21 1996-01-18 17 XVII: 1996-01-20 22
1996-12-20 23 1996-12-20 23 XVIII: 1996-12-20 23

simply not present even after interpolating to the much finer EURO-CORDEX grid for
the comparison.
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Table B.2. Number of matches generated by applying the pattern-matching method to ERA-Interim to find
event-specific ERA5 patterns (vs. ERA-Interim). In addition, results for the ERA5 self-test are provided
(vs. ERA5). Considered are atmospheric circulation patterns associated with ice episodes of short (5 to 10
consec. ice days), medium (11 to 15 consec. ice days) and long duration (> 15 consec. ice days) only.

ERA5 event vs. ERA5 vs. ERA-Interim
startdate duration Σ

1989-12-28 8 3 3
1991-02-06 10 1 1
1993-11-21 7 1 1
1994-02-19 6 2 2
1995-12-24 14 5 4
1996-01-20 22 7 6
1996-12-20 23 7 4
1998-12-06 6 2 1
2000-12-21 7 2 2
2001-01-15 7 4 5
2002-12-09 8 4 4
2002-12-19 6 2 2
2003-01-04 8 4 2
2005-03-01 6 4 2
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ERA5 ice episode temperatures

Table B.3. ERA5 mean target region temperature values for the identified ice episodes. Temperatures
provided are the event average daily average temperature (Tavg), the event average daily maximum tem-
perature (Tmax), the event maximum daily maximum temperature ((Tmax)min) and the event minimum daily
minimum temperature ((Tmin)min).

ERA5 event ERA5 temperature
№ duration Tavg Tmax (Tmax)max (Tmin)min

I 14 -6.2 -3.9 -0.5 -13.7
II 11 -8 -5.6 -0.9 -16
III 10 -9.6 -5.6 -2.4 -16.5
IV 7 -4.2 -1.1 -0.1 -14.5
V 7 -4.4 -2.2 -0.8 -9.2
VI 19 -8.3 -5.7 -0.3 -16.1
VII 9 -7.4 -4 -0.4 -14.3
VIII 6 -3.8 -2.4 -0.7 -8.5
IX 29 -5.9 -2.7 -0.1 -21.4
X 12 -10.7 -8.3 -1.4 -19.7
XI 8 -5.2 -2.1 -0.1 -12.3
XII 8 -1.7 -1.1 -0.2 -2.7
XIII 10 -5.4 -3.4 -0.1 -11.9
XIV 7 -4.1 -2.5 -0.9 -7.5
XV 6 -5.1 -2.2 -0.5 -13.5
XVI 14 -6 -4 -0.2 -12.5
XVII 22 -6.7 -4 -0.1 -14.8
XVIII 23 -6.9 -4.5 -0.8 -21
XIX 6 -4.5 -2.2 -0.9 -10.7
XX 7 -2.8 -1.2 -0.2 -8.7
XXI 7 -2.7 -1.3 -0.5 -6.2
XXII 8 -5.5 -3 -1.5 -10.6
XXIII 6 -2.3 -1.3 -0.3 -4.9
XXIV 8 -7.4 -3.9 -1 -15.6
XXV 6 -3.4 -0.9 -0.2 -11.1
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Mean class patterns for RCMs with GCM forcing

Figures displaying the average cold season characteristic class patterns for each RCM
simulation are presented. Each figure represents a different GCM forcing.

Figure B.1. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with CanESM2 forcing. The RCMs considered are (from top
to bottom): CCLM4-8-17, ALADIN53, REMO2015.

Figure B.2. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with CNRM-CM5 forcing. The RCMs considered are (from
top to bottom): CCLM4-8-17, REMO2015, RACMO22E, RCA4.
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Figure B.3. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with EC-Earth forcing. The RCMs considered are (from top
to bottom): CCLM4-8-17, HIRHAM5, REMO2015, RACMO22E, RCA4.

Figure B.4. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with IPSL-CM5A-MR forcing. The RCMs considered are
(from top to bottom): WRF331F, RACMO22E, RCA4.
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Figure B.5. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with MIROC5 forcing. The RCMs considered are (from top
to bottom): CCLM4-8-17, REMO2015.

Figure B.6. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate model
data resulting from RCM simulations with HadGEM2-ES forcing. The RCMs considered are (from top
to bottom): CCLM4-8-17, REMO2015.
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Figure B.7. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate model
data resulting from RCM simulations with MPI-ESM-LR forcing. The RCMs considered are (from top to
bottom): CCLM4-8-17, REMO2015, RACMO22E, REMO2009, RCA4.

Figure B.8. Mean class patterns derived from the geopotential height at 500 hPa. Shown are climate
model data resulting from RCM simulations with NorESM1-M forcing. The RCMs considered are (from
top to bottom): HIRHAM5, REMO2015, RACMO22E.
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Pattern matches between ERA5 and GCM forced RCM simulations

The following Tables provide the resulting numbers from applying the pattern-matching
for each RCM individually. Each Table represents a different forcing, which can be either
reanalysis (ERA-Interim) or GCM data.

Table B.4. Number of event-specific reference (ERA5) pattern matches (Σ) in ERA-Interim-driven RCM
simulations. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-8-17,
B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addition, an
RCM mean (avg) number of matches is provided in the last column. Events considered are ice episode of
short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A B C D E F G avg
№ duration Σ Σ

I 14 11 9 10 16 6 11 9 13 10.6
II 11 8 5 9 14 9 10 5 12 9.1
III 10 10 8 9 12 4 12 7 18 10.0
IV 7 2 1 0 1 0 1 0 1 0.6
V 7 5 2 3 9 2 7 4 6 4.7
VI 19 6 3 3 8 2 10 3 7 5.1
VII 9 6 2 3 8 3 6 3 8 4.7
VIII 6 8 2 5 8 1 6 3 7 4.6
IX 29 10 5 7 13 4 11 5 13 8.3
X 12 11 4 6 12 4 10 4 8 6.9
XI 8 2 1 0 1 1 1 0 1 0.7
XII 8 4 8 6 9 3 7 7 4 6.3
XIII 10 5 1 1 2 1 2 1 4 1.7
XIV 7 2 1 1 0 1 2 1 1 1.0
XV 6 3 1 1 2 1 2 1 2 1.4
XVI 14 12 4 8 16 3 15 8 9 9.0
XVII 22 12 5 12 15 7 12 9 12 10.3
XVIII 23 11 3 4 8 3 10 4 11 6.1
XIX 6 3 2 2 3 1 3 2 3 2.3
XX 7 7 5 5 4 1 4 3 9 4.4
XXI 7 9 8 7 10 3 7 6 7 6.9
XXII 8 6 4 7 10 5 8 6 8 6.9
XXIII 6 3 3 3 5 1 8 3 4 3.9
XXIV 8 8 3 5 9 2 9 5 6 5.6
XXV 6 7 5 6 9 4 9 5 8 6.6

102



Table B.5. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with CanESM. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-8-17,
B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addition, an
RCM mean (avg) number of matches is provided in the last column. Events considered are ice episodes of
short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A C avg
№ duration Σ Σ

I 14 11 7 3 5
II 11 8 15 6 10.5
III 10 10 2 2 2
IV 7 2 0 0 0
V 7 5 9 5 7
VI 19 6 2 0 2
VII 9 6 4 3 3.5
VIII 6 8 13 0 6.5
IX 29 10 1 1 1
X 12 11 5 3 4
XI 8 2 0 0 0
XII 8 4 4 7 5.5
XIII 10 5 4 1 2.5
XIV 7 2 0 0 0
XV 6 3 1 1 1
XVI 14 12 8 5 6.5
XVII 22 12 5 4 4.5
XVIII 23 11 0 0 0
XIX 6 3 0 0 0
XX 7 7 2 2 2
XXI 7 9 4 4 4
XXII 8 6 0 2 1
XXIII 6 3 0 0 0
XXIV 8 8 2 3 2.5
XXV 6 7 3 1 2
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Table B.6. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with CNRM-CM5. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-
8-17, B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addi-
tion, an RCM mean (avg) number of matches is provided in the last column. Events considered are ice
episodes of short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A C E G avg
№ duration Σ Σ

I 14 11 12 14 11 8 11.3
II 11 8 42 59 29 33 40.8
III 10 10 18 20 13 13 16.0
IV 7 2 5 3 2 3 3.3
V 7 5 16 18 18 13 16.3
VI 19 6 8 9 2 3 5.5
VII 9 6 11 17 9 13 12.5
VIII 6 8 21 34 26 24 26.3
IX 29 10 13 21 9 10 13.3
X 12 11 8 6 4 2 5.0
XI 8 2 2 4 3 0 2.3
XII 8 4 13 7 7 10 9.3
XIII 10 5 5 9 1 1 4.0
XIV 7 2 0 1 2 0 0.8
XV 6 3 4 4 5 5 4.5
XVI 14 12 35 39 25 27 31.5
XVII 22 12 21 17 10 12 15.0
XVIII 23 11 8 8 3 5 6.0
XIX 6 3 1 6 2 3 3.0
XX 7 7 5 5 6 5 5.3
XXI 7 9 5 8 4 4 5.3
XXII 8 6 7 7 6 5 6.3
XXIII 6 3 11 8 4 11 8.5
XXIV 8 8 16 14 5 10 11.3
XXV 6 7 18 18 14 14 16.0
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Table B.7. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with EC-Earth. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-8-
17, B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addition,
an RCM mean (avg) number of matches is provided in the last column. Events considered are ice episodes
of short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A B C E G avg
№ duration Σ Σ

I 14 11 12 16 9 8 7 10.4
II 11 8 18 19 15 14 12 15.6
III 10 10 6 9 6 5 3 5.8
IV 7 2 1 0 4 0 2 1.4
V 7 5 10 14 7 16 5 10.4
VI 19 6 5 6 6 2 5 4.8
VII 9 6 3 10 3 8 4 5.6
VIII 6 8 6 11 6 9 10 8.4
IX 29 10 8 9 7 5 4 6.6
X 12 11 9 8 7 7 6 7.4
XI 8 2 0 2 1 1 0 0.8
XII 8 4 8 8 5 2 7 6.0
XIII 10 5 2 2 9 4 3 4.0
XIV 7 2 1 0 0 2 2 1.0
XV 6 3 2 2 3 2 1 2.0
XVI 14 12 15 21 13 12 9 14.0
XVII 22 12 13 11 9 12 8 10.6
XVIII 23 11 7 3 2 2 3 3.4
XIX 6 3 2 3 2 2 2 2.2
XX 7 7 1 3 1 4 2 2.2
XXI 7 9 9 6 4 3 6 5.6
XXII 8 6 2 7 3 4 2 3.6
XXIII 6 3 3 4 4 4 2 3.4
XXIV 8 8 7 6 8 5 6 6.4
XXV 6 7 10 3 10 2 9 6.8
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Table B.8. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with IPSL-CM5A-MR. Letters stand for the following RCM simulations: R: Reference (ERA5), A:
CCLM4-8-17, B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4.
In addition, an RCM mean (avg) number of matches is provided in the last column. Events considered are
ice episodes of short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R D E G avg
№ duration Σ Σ

I 14 11 4 4 2 3.3
II 11 8 29 35 25 29.7
III 10 10 4 9 6 6.3
IV 7 2 1 2 1 1.3
V 7 5 2 5 5 4.0
VI 19 6 7 3 2 4.0
VII 9 6 10 7 6 7.7
VIII 6 8 12 14 11 12.3
IX 29 10 10 7 4 7.0
X 12 11 4 3 2 3.0
XI 8 2 2 1 2 1.7
XII 8 4 3 1 1 1.7
XIII 10 5 0 1 1 0.7
XIV 7 2 1 0 0 0.3
XV 6 3 1 0 1 0.7
XVI 14 12 12 15 7 11.3
XVII 22 12 10 6 4 6.7
XVIII 23 11 4 2 2 2.7
XIX 6 3 2 1 1 1.3
XX 7 7 2 2 3 2.3
XXI 7 9 1 0 0 0.3
XXII 8 6 0 4 3 2.3
XXIII 6 3 3 3 3 3.0
XXIV 8 8 11 6 6 7.7
XXV 6 7 9 8 7 8.0
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Table B.9. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with MIROC5. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-8-17,
B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addition, an
RCM mean (avg) number of matches is provided in the last column. Events considered are ice episodes of
short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A C avg
№ duration Σ Σ

I 14 11 19 8 13.5
II 11 8 28 32 30
III 10 10 20 15 17.5
IV 7 2 10 6 8
V 7 5 11 10 10.5
VI 19 6 23 21 22
VII 9 6 13 7 10
VIII 6 8 21 26 23.5
IX 29 10 26 20 23
X 12 11 19 17 18
XI 8 2 9 2 5.5
XII 8 4 0 6 3
XIII 10 5 11 10 10.5
XIV 7 2 0 0 0
XV 6 3 3 1 2
XVI 14 12 23 19 21
XVII 22 12 26 20 23
XVIII 23 11 19 15 17
XIX 6 3 3 3 3
XX 7 7 9 11 10
XXI 7 9 6 3 4.5
XXII 8 6 10 4 7
XXIII 6 3 5 9 7
XXIV 8 8 23 16 19.5
XXV 6 7 35 37 36
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Table B.10. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with MPI-ESM-LR. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-
8-17, B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addi-
tion, an RCM mean (avg) number of matches is provided in the last column. Events considered are ice
episodes of short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R A C E F G avg
№ duration Σ Σ

I 14 11 7 8 6 3 8 6.4
II 11 8 14 19 12 17 8 14
III 10 10 1 0 1 3 1 1.2
IV 7 2 3 1 0 2 2 1.6
V 7 5 7 8 5 8 1 5.8
VI 19 6 7 7 4 6 4 5.6
VII 9 6 5 7 4 5 2 4.6
VIII 6 8 10 5 10 6 8 7.8
IX 29 10 11 11 9 11 6 9.6
X 12 11 7 4 6 4 4 5
XI 8 2 2 1 4 3 0 2
XII 8 4 3 6 2 6 4 4.2
XIII 10 5 4 3 5 5 4 4.2
XIV 7 2 1 0 1 1 1 0.8
XV 6 3 1 2 0 1 0 0.8
XVI 14 12 12 8 10 10 5 9
XVII 22 12 12 12 11 8 6 9.8
XVIII 23 11 6 1 4 3 3 3.4
XIX 6 3 0 0 1 1 0 0.4
XX 7 7 3 4 2 0 3 2.4
XXI 7 9 6 5 3 4 4 4.4
XXII 8 6 2 6 3 2 3 3.2
XXIII 6 3 1 0 3 3 0 1.4
XXIV 8 8 4 4 4 4 3 3.8
XXV 6 7 6 7 3 6 7 5.8
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Table B.11. Number of event-specific reference (ERA5) pattern matches (Σ) in RCM simulations forced
with NorESM1-M. Letters stand for the following RCM simulations: R: Reference (ERA5), A: CCLM4-8-
17, B: HIRHAM5, C: REMO2015, D: WRF331F, E: RACMO22E, F: REMO2009, G: RCA4. In addition,
an RCM mean (avg) number of matches is provided in the last column. Events considered are ice episodes
of short (class 3–Ds), medium (class 3–Dm) and long duration (class 3–Dl) only.

ERA5 event pattern R B C E avg
№ duration Σ Σ

I 14 11 5 4 3 4.0
II 11 8 15 11 14 13.3
III 10 10 5 4 3 4.0
IV 7 2 1 0 1 0.7
V 7 5 3 3 3 3.0
VI 19 6 2 3 2 2.3
VII 9 6 2 1 1 1.3
VIII 6 8 6 9 10 8.3
IX 29 10 4 6 6 5.3
X 12 11 6 4 6 5.3
XI 8 2 4 2 1 2.3
XII 8 4 0 0 0 0.0
XIII 10 5 9 4 8 7.0
XIV 7 2 1 0 0 0.3
XV 6 3 0 1 1 0.7
XVI 14 12 5 6 6 5.7
XVII 22 12 5 6 6 5.7
XVIII 23 11 5 2 1 2.7
XIX 6 3 4 3 2 3.0
XX 7 7 1 1 1 1.0
XXI 7 9 3 1 1 1.7
XXII 8 6 3 3 2 2.7
XXIII 6 3 2 1 3 2.0
XXIV 8 8 6 6 6 6.0
XXV 6 7 6 6 6 6.0
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C Third paper
This section will be submitted together with chapter 4.

C.1 Supporting information

Prevailing circulation patterns during ice episodes in far future

Figure C.1. Ice episode patterns (GPH500) in far future based on CCLM4-8-17 with CanESM2 forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.2. Ice episode patterns (GPH500) in far future based on REMO2015 with CanESM2 forcing.
The number of days in the header indicates the duration of the respective ice episode.
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Figure C.3. Ice episode patterns (GPH500) in far future based on CCLM4-8-17 with CNRM-CM5 forcing.
The number of days in the header indicates the duration of the respective ice episode.
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Figure C.4. Ice episode patterns (GPH500) in far future based on REMO2015 with CNRM-CM5 forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.5. Ice episode patterns (GPH500) in far future based on RACMO22E with CNRM-CM5 forcing.
The number of days in the header indicates the duration of the respective ice episode.
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Figure C.6. Ice episode patterns (GPH500) in far future based on RCA4 with CNRM-CM5 forcing. The
number of days in the header indicates the duration of the respective ice episode.

Figure C.7. Ice episode patterns (GPH500) in far future based on CCLM4-8-17 with EC-Earth forcing.
The number of days in the header indicates the duration of the respective ice episode.
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Figure C.8. Ice episode patterns (GPH500) in far future based on HIRHAM5 with EC-Earth forcing. The
number of days in the header indicates the duration of the respective ice episode.

Figure C.9. Ice episode patterns (GPH500) in far future based on REMO2015 with EC-Earth forcing. The
number of days in the header indicates the duration of the respective ice episode.
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Figure C.10. Ice episode patterns (GPH500) in far future based on RACMO22E with EC-Earth forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.11. Ice episode patterns (GPH500) in far future based on RCA4 with EC-Earth forcing. The
number of days in the header indicates the duration of the respective ice episode.

Figure C.12. Ice episode patterns (GPH500) in far future based on WRF331F with IPSL-CM5A-MR
forcing. The number of days in the header indicates the duration of the respective ice episode.
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Figure C.13. Ice episode patterns (GPH500) in far future based on RACMO22E with IPSL-CM5A-MR
forcing. The number of days in the header indicates the duration of the respective ice episode.

Figure C.14. Ice episode patterns (GPH500) in far future based on RCA4 with IPSL-CM5A-MR forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.15. Ice episode patterns (GPH500) in far future based on CCLM4-8-17 with MIROC5 forcing.
The number of days in the header indicates the duration of the respective ice episode.
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Figure C.16. Ice episode patterns (GPH500) in far future based on REMO2015 with MIROC5 forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.17. Ice episode patterns (GPH500) in far future based on CCLM4-8-17 with MPI-ESM-LR
forcing. The number of days in the header indicates the duration of the respective ice episode.
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Figure C.18. Ice episode patterns (GPH500) in far future based on REMO2015 with MPI-ESM-LR forc-
ing. The number of days in the header indicates the duration of the respective ice episode.

Figure C.19. Ice episode patterns (GPH500) in far future based on RACMO22E with MPI-ESM-LR
forcing. The number of days in the header indicates the duration of the respective ice episode.

Figure C.20. Ice episode patterns (GPH500) in far future based on REMO2009 with MPI-ESM-LR forc-
ing. The number of days in the header indicates the duration of the respective ice episode.
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Figure C.21. Ice episode patterns (GPH500) in far future based on RCA4 with MPI-ESM-LR forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.22. Ice episode patterns (GPH500) in far future based on REMO2015 with NorESM1-M forcing.
The number of days in the header indicates the duration of the respective ice episode.

Figure C.23. Ice episode patterns (GPH500) in far future based on RACMO22E with NorESM1-M forc-
ing. The number of days in the header indicates the duration of the respective ice episode.
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D Temperatures in Hamburg during ice episodes
This appendix is intended for informational purposes only. The temperatures referenced
in the abstract and in the conclusions can be obtained from the following tables.

Table C.1. Average ice episode temperatures in Hamburg. The average is always calculated for the given
time period. In addition to E-OBS and ERA5, average temperatures for four different climate periods of
the GCM driven RCM projections (RCP8.5) are provided as ensemble mean values. All values are given
in °C, changes (∆) are given relative to 1971–2000.

data set time period Tavg Tmax Tmin

E-OBS 1979–2005 -6.3 -3.5 -9.7
ERA5 1979–2005 -6.1 -3.6 -8.9
RCM ensemble 1979–2005 -6.1 -3.6 -8.7

1971–2000 -6.1 -3.7 -8.8
2030–2060 -5.2 ∆ + 1.0 -3.0 ∆ + 0.6 -7.5 ∆ + 1.3
2065–2095 -4.6 ∆ + 1.6 -2.5 ∆ + 1.2 -6.7 ∆ + 2.1

Table C.2. Minimum ice episode temperatures in Hamburg. The minimum is always calculated for the
given time period. In addition to E-OBS and ERA5, minimum temperatures for four different climate
periods of the GCM driven RCM projections (RCP8.5) are provided as ensemble mean values. All values
are given in °C, changes (∆) are given relative to 1971–2000.

data set time period Tavg Tmax Tmin

E-OBS 1979–2005 -15.2 -11.9 -20.2
ERA5 1979–2005 -16.9 -13.3 -21.4
RCM ensemble 1979–2005 -17.6 -14.6 -21.5

1971–2000 -18.6 -15.1 -22.7
2030–2060 -14.2 ∆ + 4.4 -11.5 ∆ + 3.6 -17.4 ∆ + 5.2
2065–2095 -10.4 ∆ + 8.2 -7.6 ∆ + 7.5 -13.2 ∆ + 9.4
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List of Acronyms

ACC Anomaly Correlation Coefficient

AO Arctic Oscillation

C3S Copernicus Climate Change Service

CDOs Climate Data Operators

CMIP Coupled Model Intercomparison Project

DWD Deutscher Wetterdienst (German Meteorological Service)

ECA&D European Climate Assessment and Dataset project

ECMWF European Centre for Medium-Range Weather Forecasts

ENSO El Nino Southern Oscillation

(EURO-)CORDEX Coordinated Regional Downscaling Experiment (for Europe)

GCM Global Climate Model

GPH Geopotential height

IPCC Intergovernmental Panel on Climate Change

NAO North Atlantic Oscillation

PDO Pacific Decadal Oscillation

RCM Regional Climate Model

RCP representative concentration pathway

SOI Southern Oscillation Index

SSIM Structural Similarity (Index)

WCRP World Climate Research Programme

WMO World Meteorological Organization
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