
Embodied Crossmodal Language
Learning Using Neurocognitively

Plausible Mechanisms

Dissertation
submitted to the University of Hamburg

with the aim of achieving a doctoral degree at the
Faculty of Mathematics, Informatics and Natural Sciences,

Department of Informatics

Ozan Özdemir
Hamburg, 2024

mailto:ozan.oezdemir@uni-hamburg.de

Day of submission:

17 September 2024

Day of oral defence:

5 December 2024

Dissertation Committee:

Prof. Dr. Stefan Wermter (reviewer, advisor)

Dept. of Informatics

University of Hamburg, Germany

Prof. Dr. Loo Chu Kiong (reviewer)

Dept. of Artificial Intelligence

Universiti Malaya, Malaysia

Prof. Dr. Chris Biemann (chair)

Dept. of Informatics

University of Hamburg, Germany

Prof. Dr.-Ing. Timo Gerkmann (deputy chair)

Dept. of Informatics

University of Hamburg, Germany

Abstract

Abstract

Despite the remarkable progress made by advanced foundation models in com-
puter vision and natural language processing, the research on language-conditioned
robotic object manipulation continues to lag behind, underscoring the need for
more in-depth exploration. As evidenced by the research on early childhood de-
velopment, embodiment, i.e. actively changing the environment while perceiving
it via multiple senses, is crucial for language learning in human infants. Inspired
by this phenomenon, embodied language learning for artificial agents tries to emu-
late the process of early language acquisition with computational models. As most
approaches focus on language-instructed action execution but cannot produce lan-
guage themselves, language learning for robots remains a challenge.

This doctoral work aims to achieve unrestricted language learning with embod-
ied artificial agents via crossmodal binding between linguistic, visual and motor
signals, exploiting neurocognitively plausible mechanisms such as multimodal fu-
sion, channel separation and environmental feedback. We begin with an existing
bidirectional action-language translation model that can only map one robot ac-
tion to one language description. To relax this strict mapping, we integrate the
stochastic variational Bayes method into the hidden space, enabling one-to-many
associations between actions and language descriptions. We also utilise channel
separation in vision to distinguish object colours more accurately. However, the
resulting approach can only work with predefined grammar-based instructions. By
employing a pre-trained language model, we allow the model to accept natural
language instructions as input. Since this model needs to be adjusted based on
the desired translation direction, we replace the implicit loss-based binding mech-
anism between the action and language streams with an explicit gated-network-
based multimodal fusion technique, allowing training-time consistent full model
utilisation during inference without expert intervention. When we train this novel
model with increasingly unlabelled data, its performance in language production
and action execution deteriorates. To counter this drop in performance, we adopt
a self-attention-based multimodal fusion network to learn efficiently in a predomi-
nantly unsupervised fashion.

We also tackle generalisation to continuous action spaces in various object
manipulation tasks by developing a two-stage learning concept, asymmetrically
combining supervised learning with reinforcement learning. This novel approach
improves action precision on various object manipulation tasks, but it is limited to
robotic task-related language. To address this limitation, we introduce a novel mul-
timodality fusion technique incorporating our bidirectional action-language trans-
lation model into a large language model (LLM), combining the language skills
embedded in LLMs and the sensorimotor capabilities of robotic object manipu-
lation. Lastly, for speech processing and object-agnostic robotic manipulation in
the real world, we devise a modular human-robot interaction approach primarily
composed of pre-trained foundation models such as vision-language, speech recog-
nition, text-to-speech and object localisation, leading to free-flowing open-ended

III

Abstract

conversation, scene understanding and task-specific open-vocabulary object ma-
nipulation skills in the real world.

To summarise, this thesis makes several key contributions. It builds a flexi-
ble action-language translation model architecture that remains consistent during
training and testing. By combining multiple learning paradigms, it enhances the
execution of language-instructed actions. The thesis enables free-flowing human-
robot dialogue and motor control by developing a modular approach composed of
foundation models. Furthermore, it introduces a data-efficient intra-LLM fusion
technique that endows action-language models with LLM capabilities. Addition-
ally, it demonstrates the efficiency of self-attention-based multimodal fusion in
action-language associations. As a result, this doctoral research is a valuable step
towards fully autonomous embodied companion agents capable of assisting humans
in their everyday tasks through advanced communication and sensorimotor skills.

IV

Abstract

Zusammenfassung

Trotz der bemerkenswerten Fortschritte, die durch fortschrittliche Basismodelle
im Bereich der Bildverarbeitung und der Verarbeitung natürlicher Sprache erzielt
wurden, hinkt die Forschung zur sprachlich bedingten Manipulation von Robo-
tern mit Objekten weiterhin hinterher, was die Notwendigkeit einer tiefergehende-
ren Erforschung unterstreicht. Wie die Forschung zur frühkindlichen Entwicklung
zeigt, ist die Verkörperung, d. h. die aktive Veränderung der Umgebung bei gleich-
zeitiger Wahrnehmung mit mehreren Sinnen, für den Spracherwerb bei Kleinkin-
dern von entscheidender Bedeutung. Inspiriert von diesem Phänomen versucht das
verkörperte Sprachenlernen für künstliche Agenten, den Prozess des frühen Sprach-
erwerbs mit Computermodellen nachzuahmen. Da sich die meisten Methoden auf
die Ausführung von Handlungen unter Anleitung von Sprache konzentrieren, aber
selbst keine Sprache produzieren können, bleibt das Sprachenlernen für Roboter
eine Herausforderung.

Diese Doktorarbeit zielt darauf ab, uneingeschränktes Sprachenlernen mit
verkörperten künstlichen Agenten über eine multimodale Verbindung zwischen
sprachlichen, visuellen und motorischen Signalen zu erreichen, indem neuroko-
gnitiv plausible Mechanismen wie multimodale Fusion, Trennung der Verarbei-
tungskanäle und Feedback von der Umgebung genutzt werden. Wir beginnen mit
einem bestehenden bidirektionalen Aktions-Sprach-Übersetzungsmodell, das nur
eine Roboteraktion auf eine Sprachbeschreibung abbilden kann. Um diese strenge
Zuordnung zu lockern, integrieren wir die stochastische Variations-Bayes-Methode
in dem latenten Raum und ermöglichen so ein-zu-viele Assoziationen zwischen Ak-
tionen und Sprachbeschreibungen. Wir nutzen auch die Trennung der Kanäle in der
Bildverarbeitung, um Objektfarben genauer zu unterscheiden. Der daraus resultie-
rende Ansatz kann jedoch nur mit vordefinierten grammatikbasierten Anweisungen
arbeiten.

Durch den Einsatz eines vortrainierten Sprachmodells können wir dem Mo-
dell erlauben, Anweisungen in natürlicher Sprache als Eingabe zu akzeptieren. Da
dieses Modell je nach gewünschter Übersetzungsrichtung angepasst werden muss,
ersetzen wir den impliziten, verlustbasierten Bindungsmechanismus zwischen den
Aktions- und Sprachströmen durch eine explizite, auf einem Gated-Network basie-
rende multimodale Fusionstechnik, die während der Trainingszeit eine konsistente
vollständige Modellnutzung während der Inferenz ohne Eingreifen eines Experten
ermöglicht. Wenn wir dieses neuartige Modell mit zunehmend unmarkierten Daten
trainieren, verschlechtert sich seine Leistung bei der Sprachproduktion und Hand-
lungsausführung. Um diesem Leistungsabfall entgegenzuwirken, setzen wir ein auf
Selbstbeobachtung basierendes multimodales Fusionsnetzwerk ein, um überwie-
gend unüberwacht auf effiziente Weise lernen.

Wir befassen uns auch mit der Verallgemeinerung auf kontinuierliche Hand-
lungsräume bei verschiedenen Objektmanipulationsaufgaben, indem wir ein zwei-
stufiges Lernkonzept entwickeln, das überwachtes Lernen und Verstärkungslernen
asymmetrisch kombiniert. Dieser neuartige Ansatz verbessert die Handlungspräzi-

V

Abstract

sion bei verschiedenen Objektmanipulationsaufgaben, ist aber auf roboterbezogene
Sprache beschränkt. Um diese Einschränkung zu beheben, führen wir eine neu-
artige multimodale Fusionstechnik ein, die unser bidirektionales Aktions-Sprach-
Übersetzungsmodell in ein großes Sprachmodell (LLM) integriert und die in LLMs
eingebetteten Sprachfähigkeiten mit den sensomotorischen Fähigkeiten der robo-
tischen Objektmanipulation kombiniert. Schließlich entwickeln wir für die Sprach-
verarbeitung und objektagnostische Robotermanipulation in der realen Welt einen
modularen Ansatz für die Mensch-Roboter-Interaktion, der in erster Linie aus vor-
trainierten Basismodellen wie Bild-Text-Verarbeitung, Spracherkennung, Text-to-
Speech und Objektlokalisierung besteht und zu einer frei fließenden, offenen Kon-
versation, Szenenverständnis und aufgabenspezifischen Objektmanipulationsfähig-
keiten in der realen Welt führt.

Zusammenfassend lässt sich feststellen, dass diese Arbeit mehrere wichtige
Beiträge liefert. Sie entwickelt eine flexible Architektur für die Übersetzung von
Aktionen und Sprache, die während des Trainings und der Tests konsistent bleibt.
Durch die Kombination mehrerer Lernparadigmen wird die Ausführung von sprach-
gesteuerten Aktionen verbessert. Die Arbeit ermöglicht einen frei fließenden Dialog
zwischen Mensch und Roboter und motorische Kontrolle durch die Entwicklung ei-
nes modularen Ansatzes, der aus Basismodellen besteht. Außerdem wird eine da-
teneffiziente Intra-LLM-Fusionstechnik vorgestellt, die Aktions-Sprachmodelle mit
LLM-Fähigkeiten ausstattet. Darüber hinaus wird die Effizienz der auf Selbstauf-
merksamkeit basierenden multimodalen Fusion bei der Verknüpfung von Aktion
und Sprache demonstriert. Im Ergebnis ist diese Doktorarbeit ein wertvoller Schritt
auf dem Weg zu vollständig autonomen, verkörperten Agenten, die den Menschen
durch fortgeschrittene Kommunikation und sensomotorische Fähigkeiten bei seinen
alltäglichen Aufgaben unterstützen können.

VI

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Overview of Main Approaches and Novel Contributions 4
1.4 Thesis Organisation . 6

2 Related Work 7
2.1 Language-to-Action Translation . 8
2.2 Action-to-Language Translation . 18
2.3 Bidirectional Translation . 20

3 One-to-Many Action-to-Language Translation through
Variation in Latent Space 27
3.1 Introduction . 27
3.2 Proposed Method: Paired Variational Autoencoders (PVAE) 29

3.2.1 Model Architecture . 30
3.2.2 Language Autoencoder . 31
3.2.3 Action Autoencoder . 31
3.2.4 Visual Feature Extraction 32
3.2.5 Sampling and Binding . 32
3.2.6 Loss Function . 33
3.2.7 Training Details . 33

3.3 Experiments and Results . 33
3.3.1 Experiment 1: Three Colour Alternatives 35
3.3.2 Experiment 2: Six Colour Alternatives 36

3.4 Discussion . 36
3.5 Conclusion . 37

4 Advanced Language Comprehension via a Pre-trained Language
Model 39
4.1 Introduction . 39
4.2 Proposed Method: PVAE-BERT . 42

4.2.1 Language Variational Autoencoder 43
4.2.2 Action Variational Autoencoder 44
4.2.3 Visual Feature Extraction 45
4.2.4 Sampling and Binding . 46

VII

Contents

4.2.5 Loss Function . 46
4.2.6 Transformer-Based Language Encoder 47
4.2.7 Training Details . 47

4.3 Experiments and Results . 48
4.3.1 Experiment 1: Action-to-Language Translation with Different

Colours and Shapes . 50
4.3.2 Experiment 2: Bidirectional Translations with BERT 53
4.3.3 Principal Component Analysis on Hidden Representations . 56

4.4 Discussion . 57
4.5 Conclusion . 59

5 Learning Flexible Translation Between Action and Language
through Explicit Multimodal Fusion 61
5.1 Introduction . 61
5.2 Proposed Method: Paired Gated Autoencoders (PGAE) 64

5.2.1 Language Autoencoder . 64
5.2.2 Action Autoencoder . 65
5.2.3 Gated Multimodal Unit (GMU) Bottleneck 66
5.2.4 Task Signals . 66
5.2.5 Visual Feature Extraction 67
5.2.6 Loss Function . 67
5.2.7 Training Details . 68

5.3 Experiments and Results . 68
5.3.1 Action-to-Language Translation 69
5.3.2 Language-to-Action Translation 71
5.3.3 Language-to-Language and Action-to-Action Translations . . 71

5.4 Discussion . 71
5.5 Conclusion . 72

6 Efficient and Neurocognitively Plausible Translation via
Crossmodal Attention 75
6.1 Introduction . 75
6.2 Proposed Method: Paired Transformed Autoencoders (PTAE) . . . 78

6.2.1 Crossmodal Transformer . 80
6.2.2 Language Decoder . 81
6.2.3 Action Decoder . 81
6.2.4 Visual Feature Extraction 82
6.2.5 Loss Function . 82
6.2.6 Training Details . 83

6.3 Experiments and Results . 83
6.3.1 Task Signals . 84
6.3.2 Reduction of Supervised Training 84
6.3.3 Exposure to Conflicting Input Modalities 88

6.4 Discussion . 90
6.5 Conclusion . 92

VIII

Contents

7 Asymmetrical Combination of Learning Paradigms for Superior
Action Execution 95
7.1 Introduction . 95
7.2 Background: Fine-Tuning with Reinforcement Learning 99

7.2.1 Large Language Model (LLM) Fine-Tuning 99
7.2.2 Reinforcement Learning Pre-training 100
7.2.3 Supervised Pre-training . 100

7.3 Proposed Method: Crossmodal Bidirectional Transformer (XBiT) . 101
7.3.1 Language Encoder . 101
7.3.2 Action Encoder . 102
7.3.3 Crossmodal Transformer Bottleneck 102
7.3.4 Language Decoder . 103
7.3.5 Action Decoder . 103
7.3.6 Supervised Learning Loss Functions 103
7.3.7 Reinforcement Learning Fine-Tuning 104
7.3.8 Training Details . 105

7.4 Experiments and Results . 106
7.4.1 Action-to-Language Translation 107
7.4.2 Language-to-Action Translation 107

7.5 Discussion . 111
7.6 Conclusion . 114

8 Capturing Strengths of Large Language Models for
Bidirectional Action-Language Translation 115
8.1 Introduction . 116
8.2 Background: Types of Crossmodality 119

8.2.1 Leveraging LLMs for Vision-to-Language Tasks 119
8.2.2 Action Execution from Multimodal Input 120
8.2.3 Action-Centric Crossmodality 120
8.2.4 Full Crossmodality . 121

8.3 Proposed Method: CrossT5 . 121
8.3.1 Model Architecture . 122
8.3.2 Crossmodal Language-Action & Natural Translation Dataset 123
8.3.3 Training Setup . 124
8.3.4 Loss Calculation . 127

8.4 Experiments and Results . 129
8.4.1 Action Execution Evaluation in Simulation 132
8.4.2 Language Robustness . 133

8.5 Discussion . 135
8.6 Conclusion . 136

9 Seamless Integration of Foundation Models for Full-Fledged
Dialogue in Robotic Manipulation 139
9.1 Introduction . 139
9.2 Background: Leveraging LLMs for Robotics 141

IX

Contents

9.3 Proposed Method: ELMiRA . 141
9.3.1 Vision-Language Model . 141
9.3.2 Object Detection . 143
9.3.3 Visuospatial Coordinate Transfer 143
9.3.4 Motion Planner . 143
9.3.5 Inverse Kinematics Solver 143

9.4 Experiments and Results . 144
9.4.1 Mode Selection Experiments 144
9.4.2 Action Execution Experiments 144

9.5 Discussion . 145
9.6 Conclusion . 146

10 Conclusion 147
10.1 Discussion . 148
10.2 Addressing the Research Question 151
10.3 Future Research . 153
10.4 Final Remarks . 154

A Nomenclature 157

B Code Snippets 159

C Publications Originating from this Thesis 175

D Acknowledgements 177

Bibliography 179

X

List of Figures

2.1 Overview of Language-to-Action Models 8
2.2 Conventional Language-to-Action Model Architectures in Practice . 10
2.3 Learning from Human Demonstrations in Practice 14
2.4 LLM-Based Language-to-Action Approaches 16
2.5 Overview of Action-to-Language Models 19
2.6 Overview of Bidirectional Models 20
2.7 Conventional Bidirectional Architectures in Practice 22
2.8 LLM-based Bidirectional Architectures in Practice 24

3.1 NICO Robot in Simulation . 28
3.2 Paired Variational Autoencoder (PVAE) Architecture 30

4.1 NICO with Toy Objects in Simulation 40
4.2 PVAE and PVAE-BERT Architectures 42
4.3 Joint Angle Trajectories for PUSH-LEFT-SLOWLY 52
4.4 Joint Angle Trajectories for PULL-LEFT-SLOWLY 53
4.5 Summed Error Margin for PUSH-LEFT-SLOWLY 54
4.6 Joint Angle Trajectories for Description Variations by PVAE-BERT 55
4.7 Hidden Features of Language and Action 57

5.1 Object Manipulation Scenario with Primary and Secondary Agents 62
5.2 Schematic Architecture Depicting Information Flow 63
5.3 Paired Gated Autoencoder (PGAE) Architecture 64

6.1 Tabletop Object Manipulation Scenario 77
6.2 Paired Transformed Autoencoder (PTAE) Architecture 79
6.3 Crossmodal Transformer (CMT) Architecture 80
6.4 Action-to-Language Translation Performance Regarding Ratio of

Crossmodal Translation Iterations 85
6.5 Action-to-Language Translation Performance Regarding Ratio of

Labelled Samples . 86
6.6 Language-To-Action Translation Performance Regarding Ratio of

Labelled Samples . 87
6.7 Action-to-Language & Language-to-Language Performance with

Conflicting Extra Input . 89
6.8 Action-to-Action & Language-to-Action Performance with

Conflicting Extra Input . 90

XI

List of Figures

7.1 Training Stages of Crossmodal Bidirectional Transformer (XBiT) . 97
7.2 XBiT Tasks in Simulation . 98
7.3 XBiT Architecture . 101
7.4 Action Execution Accuracies on PushButton 108
7.5 Action Execution Accuracies for 1K-Epoch Checkpoint After Longer

RL Training . 109
7.6 Action Execution Accuracies on PushButtons 109
7.7 Action Execution Accuracies on All Tasks for SL-Only and

RL-Fine-Tuned Versions . 110

8.1 Multimodal Integration Architectures 117
8.2 NICO with Three Cubes . 118
8.3 CrossT5 Architecture . 122
8.4 Sample from Crossmodal Language-Action and Natural Translation

(CLANT) Dataset . 125
8.5 Language Performance in Different Loss Modes 129
8.6 CrossT5 Language Performance . 130
8.7 CrossT5 Action Performance . 131

9.1 NICO in Real-World Scenario . 140
9.2 ELMiRA Architecture . 142
9.3 Object Displacements . 145

XII

List of Tables

3.1 Dataset Vocabulary . 34
3.2 Experiment 1: Action-to-Description Accuracy with Three Colours . 35
3.3 Experiment 2: Action-to-Description Accuracy with Six Colours . . 36

4.1 Channel-Separated Convolutional Autoencoder Architecture 45
4.2 Vocabulary with Original and Alternative Words 49
4.3 Action-to-Language Translation Accuracies at Sentence Level 51
4.4 Sentence Translation Accuracies . 51
4.5 Description Variations and Language-to-Language Performance . . 55

5.1 Translation Results for Dataset without Second Agent 70
5.2 Translation Results for Dataset with Second Agent 70

7.1 Dataset Splits Per Task . 106
7.2 Target Selection and Action Precision Accuracies 111

8.1 Vocabulary with Original and Alternative Words 123
8.2 Language Performance with Different Shares of Translate Signal . . 129
8.3 Action Execution Quality in Simulation 133
8.4 Language Robustness Patterns . 134
8.5 Action Execution Quality in Different Robustness Modes 134

9.1 Mode Detection Success . 144
9.2 Action Execution Success . 144

XIII

List of Tables

XIV

Chapter 1

Introduction

Language learning relies on two complementary processes: language comprehension
and language production. Language comprehension means understanding spoken
or written language, while language production involves generating spoken or writ-
ten language. The former can be considered a prerequisite for the latter; humans
cannot produce language without comprehending it in the first place. Moreover,
human language development commences with more concrete and basic phenom-
ena rather than abstract and complex concepts. Human infants learn about their
surroundings and interact while listening to their caregivers. Only after recognising
the utterances of their caregivers can they begin to speak.

Similarly, when teaching language to a robot which is supposed to interact
with humans naturally, it is wise for a language teacher to start with concrete
examples rather than abstract concepts. When the robot is seated at a table with
toy objects, naming each object and its physical features, e.g. colour, shape and
weight, is a natural starting point. The next step may involve showing some simple
actions and describing them, e.g. pushing the objects around while naming the
directions in which they move. In this passive observation phase, our robot should
watch your actions and listen to the relevant words and phrases. After learning the
objects, object properties and action types, since our embodied agent has arms
for interacting with and changing its environment, letting it name these objects
and perform the actions it has observed forms the following phase. This second
phase can be considered the active learning phase, where language is grounded
in the environment through embodied actions. The active learning phase should
help our robot reinforce its linguistic knowledge acquired during the first phase by
actively participating in the environment. In this vein, a humanoid robot capable
of full-fledged conversation must first understand and then generate language.

1.1 Motivation

Despite the recent success of deep learning approaches in language modelling and
computer vision, language learning for embodied artificial agents remains chal-
lenging. Teaching robots language via computational models like artificial neural

1

Chapter 1. Introduction

networks (ANNs) as they interact with objects in the environment and perceive
linguistic input is not trivial. At the same time, embodied language learning can
enhance language acquisition in robots, using multiple modalities such as visual
and sensorimotor input. Bisk et al. [19] argue that embodiment, i.e. action taking
in the environment, is the necessary step after perception, i.e. using multimodal
input, in language acquisition and production. An embodied agent with linguis-
tic capabilities must be able to transform language into control and vice versa
since control and action open up new dimensions to understanding and actively
learning about the world. Consequently, executing simple actions in the environ-
ment according to natural language commands is essential for embodied language
learning.

Crossmodal binding between language, action and vision has proven beneficial
in language learning for embodied agents. The state-of-the-art approaches in the
field rely on tabletop environments where a robot interacts with objects according
to given instructions [22, 78, 79, 127, 158, 160]. These approaches rely on ANNs to
ground language using multiple modalities such as audio, text, vision and propri-
oception. They associate language and vision with proprioception; they translate
from language commands to robot actions, relying on the image processing capa-
bilities of visual networks like convolutional neural networks (CNNs) [92, 93, 94] or
vision Transformers (ViTs) [38]. The ability to conduct robot actions based on user
instructions is only one side of the coin and does not suffice for comprehensive lan-
guage proficiency. The other side of the coin is to produce language given an action;
some approaches translate from robot actions to language descriptions [42, 43, 69].
It is only by combining the two skill sets – learning to comprehend and produce lan-
guage – that it becomes possible to develop approaches truly proficient in language.
There also exist approaches that can translate in both directions, from language to
action and vice versa [21, 41, 146]. However, most of these bidirectional approaches
learn in a supervised fashion, which requires large quantities of labelled robotic ma-
nipulation data that is not readily available. Moreover, they rely on large models
with billions of parameters, necessitating substantial computational resources for
training. Therefore, it is imperative to introduce novel methods to learn language
in an embodied and crossmodal fashion, using different learning paradigms such
as supervised, unsupervised and reinforcement learning.

1.2 Research Objectives

To take the first step towards developing an embodied artificial agent that can
seamlessly interact with humans in a free-flowing conversation, we need to en-
dow our robot with specific language comprehension and production capabilities
grounded in the environment. Therefore, this research work sets out the following
research objectives:

• Objective 1: advancing the language comprehension and production ca-
pabilities of bidirectional action-language modelling by enabling a model to
interpret free-form language instructions and describe robot actions variously,

2

1.2. Research Objectives

• Objective 2: building an action-language translation model architecture ca-
pable of flexibly translating from a given modality into a desired modality
without any change in the model configuration during testing and generalis-
ing to different perspectives, e.g. recognising and repeating the actions of a
second agent,

• Objective 3: emulating the characteristics of developmental human infant
learning through predominantly unsupervised learning with minimal super-
vision and scrutinising the consequent model behaviour when it encounters
contradictory inputs from different modalities, drawing analogies with human
behaviour in psychology literature,

• Objective 4: modelling robust robotic action execution through a combina-
tion of data-driven supervised learning and active learning in the environment
via sparse feedback, i.e. reinforcement learning,

• Objective 5: endowing crossmodal bidirectional action-language transla-
tion modelling with broad linguistic capabilities of pre-trained large language
models (LLMs) involving unscripted dialogue, scene understanding and ob-
ject manipulation in simulation and the real world.

These research objectives result in an overarching research question: how to
achieve more robust, free-form language learning, which is not restricted
to a set of predefined descriptions, for a humanoid robot utilising neu-
rocognitively plausible mechanisms. Therefore, this thesis explores several
neurocognitively plausible mechanisms, including variational autoencoders, chan-
nel separation in visual feature extraction, multimodal fusion, crossmodal attention
and learning with direct feedback as rewards from the environment.

In order to address the research objectives and the overall research question,
we have taken specific steps which culminated in developing a robot that executes
actions according to given natural language instructions and describes those ac-
tions, simulated in a virtual environment and demonstrated in the real physical
world. The main steps taken during this doctoral research can be summarised as
follows. I) We have created multimodal datasets of textual descriptions and obser-
vations of actions taking place in a tabletop object manipulation scenario involving
NICO (Nico2Blocks, NICO CoppeliaSim datasets) as well as Franka Panda robots
(PushButton, PushButtons, SlideBlockToTarget and PickUpCup datasets) since
multimodal datasets are a prerequisite for crossmodal learning. II) We have de-
veloped distinct novel neural network models (see Section 1.3) trained on these
multimodal datasets for flexible action-language translations. III) We have in-
creased the complexity of our tabletop scenario by introducing different types of
objects and colours and by tackling multiple object manipulation tasks (e.g. mov-
ing cubes and pressing buttons) to test the scalability of our novel approaches.
IV) We have utilised large-scale pre-trained language models like BERT [35] and
Clip text encoder [140] as well as LLMs like T5 [143] and GPT-4 [130] to embed

3

Chapter 1. Introduction

linguistic input for transfer learning [107] to scale up our approaches to com-
prehend virtually unconstrained language instructions. V) We have simulated the
language learning process of children to develop and exploit neurocognitively plau-
sible mechanisms consistent with intricacies in developmental language learning.
VI) We have adapted a versatile robot learning environment, i.e. RLBench [77],
to explore generalisation to a continuous action space via reinforcement learning.
VII) We have adopted a text-only LLM, i.e. T5, by incorporating it into our cross-
modal architecture to augment bidirectional action-language translation skills with
natural language skills such as neural machine translation. VIII) We have devised
a modular approach predominantly composed of off-the-shelf speech recognition,
object detection, vision-language and text-to-speech models aimed at closed-loop,
free-flowing human-robot interaction (HRI). IX) The performance of our novel ap-
proaches has been consistently evaluated in terms of success with metrics like the
percentage of accurately translated descriptions and executed actions, as well as
the normalised root-mean-square error (nRMSE) between original and predicted
action trajectories.

1.3 Overview of Main Approaches and Novel

Contributions

Within the scope of this dissertation, we have introduced a series of novel neural
network architectures aimed at modelling embodied crossmodal language learning.
These architectures, along with the novel contributions made to the domain of
language grounding and the research objectives each architecture addresses, are as
follows:

1. Paired Variational Autoencoders (PVAE) [136] facilitates one-to-many map-
pings between robot actions and language descriptions by opting for a Bayesian
method (i.e. variational autoencoder); its handling of visual observations via
a channel-separated convolutional autoencoder leads to a superior distinc-
tion of object colours. As a result, our contributions with PVAE involve i)
modelling one-to-many action-to-language associations and ii) de-
veloping a more colour-accurate visual feature extraction mecha-
nism. The one-to-many action-language translation capability of the PVAE
architecture partially addresses Objective 1.

2. PVAE-BERT [133] augments the action-language translation capabilities by
employing a pre-trained language model, i.e. BERT, for an upscaled dataset
of unconstrained language vocabulary and an increased number of colours
and various objects. Thus, the contribution made by introducing PVAE-
BERT is advancing the language comprehension capabilities of a
bidirectional action-language model via transfer learning. Leveraging
the pre-trained BERT model for understanding unconstrained language input
fulfils Objective 1.

4

1.3. Overview of Main Approaches and Novel Contributions

3. Paired Gated Autoencoders (PGAE) [135] overcomes the obstacle of hav-
ing to change the model configuration during inference based on the de-
sired translation direction by making use of signal word prefixes and a flex-
ible multimodal fusion technique (i.e. Gated Multimodal Unit (GMU) [13]);
it can also recognise and imitate actions of an opposite-sitting agent via
robot demonstrations. Therefore, our contributions with PGAE are i) mod-
elling a flexible training-and-test-time-consistent translation be-
tween robot actions and language descriptions through explicit
binding via a multimodal fusion mechanism and ii) recognising and
imitating the actions performed by a second agent. The PGAE archi-
tecture addresses Objective 2 with its flexible translation between action
and language and its recognition and imitation of second-agent actions.

4. Paired Transformed Autoencoders (PTAE) [134] utilises a Transformer-based
crossmodal attention to compensate for the lack of labelled samples in the
training data; it is also tested with conflicting multimodal input to com-
pare with the incongruence experiments in psychology. Our contributions
to the field with PTAE are i) emulating the mechanisms behind hu-
man infant language learning by utilising unsupervised learning
to overcome the lack of labelled samples and ii) exhibiting biologi-
cally plausible behaviour when provided with conflicting multisen-
sory information. PTAE’s utilisation of chiefly unlabelled data through
its Transformer-based attention mechanism and its testing with incongruent
multimodal information addresses Objective 3.

5. Crossmodal Bidirectional Transformer (XBiT) [137] masters continuous dex-
terous robotic object manipulation by employing reinforcement learning fine-
tuning, which leads to moderate improvements in the object selection prob-
lem but substantial performance boosts in action precision. Consequently,
with XBiT, we contribute to the field by being able to asymmetrically
combine supervised learning with reinforcement learning to im-
prove language-instructed robotic action performance while sup-
pressing the cons of either learning paradigm. The introduction of the
XBiT model, which is initially trained through supervision and then fine-
tuned via reinforcement learning, addresses Objective 4.

6. CrossT5 [24] brings together the text-only capabilities of an LLM and senso-
rimotor control skills of a bidirectional action-language model by fusing their
internal representations within a crossmodal network, being rapidly trained
on a small-scale natural language and robotic object manipulation dataset
while requiring a small amount of computational resources. With CrossT5,
we contribute to the field by i) introducing a novel method of integra-
tion for combining LLMs with robotic object manipulation models,
which can reliably learn low-level action execution while retaining
the inbuilt dialogue capacity from a tiny dataset compared with the

5

Chapter 1. Introduction

vast scale of data LLMs are trained on and ii) demonstrating ad-
vanced language comprehension ability in the face of more natural
diverse user instructions, resulting in robust action execution per-
formance. The seamless integration of an LLM with a bidirectional action-
language model in simulation by the CrossT5 architecture partially addresses
Objective 5.

7. Finally, ELMiRA [50] is a modular approach developed for diverse HRI
scenarios, featuring a free-flowing, open-ended dialogue with a tabletop ob-
ject manipulation task. While utilising minimal robotic platform- and task-
specific modules, it primarily leverages general pre-trained foundation models
of vision language, speech recognition, speech synthesis and zero-shot object
detection, which do not require further scenario-specific learning, i.e. fine-
tuning. The contributions we make by introducing ELMiRA are i) bring-
ing advanced capabilities of foundation models such as open-ended
conversation, open-vocabulary object detection and image caption-
ing into the robotic domain and ii) creating a recipe for facilitat-
ing full-fledged dialogue and sensorimotor action control applicable
to diverse robotic platforms and tasks. Therefore, the introduction of
ELMiRA fulfils Objective 5.

1.4 Thesis Organisation

The rest of this dissertation is divided into the following chapters: in the next
chapter, we will probe more deeply into state-of-the-art (SOTA) approaches in
language-instructed robotic object manipulation, compare and categorise them
and explain their shortcomings; Chapters 3 to 9 will detail the novel architectures
we developed as well as the various experiments we conducted with each model;
lastly, in Chapter 10, we will discuss the proposed approaches, highlighting their
originality and the novel contributions they bring to the field, as well as the con-
clusions drawn while addressing the research question, and we will conclude this
work with what it entails for the future.

6

Chapter 2

Related Work

Translation between language and robot action has been a topic of interest. Some
approaches learn the general mapping between objects and language as well as
attributes like colour, texture and size [61, 161], and there exist approaches that
learn complex manipulation concepts [107, 158]. The state-of-the-art approaches
in embodied language learning mostly rely on tabletop environments [61, 69, 158,
161, 185] or interactive play environments [107] where a robot interacts with vari-
ous objects according to given instructions. Our focus lies on the approaches that
exploit tabletop scenarios. We group these approaches into three categories: those
that translate from language to action, those that translate from action to lan-
guage [43, 69] and those that can translate in both directions [1, 11, 128, 136, 185],
i.e. bidirectional approaches. Bidirectional approaches allow greater exploitation
of available data as training in both directions can be interpreted as multitask
learning, which ultimately leads to more capable and powerful models indepen-
dent of the translation direction. By maximising the use of shared weights for
multiple translation directions, such models should theoretically be more efficient
than individual unidirectional networks regarding data utilisation and model size.

When it comes to training, most recent approaches in language-oriented robotic
object manipulation require large quantities of teacher trajectories, as they rely on
supervised learning (SL) and do not consider reinforcement learning (RL) as an
efficient paradigm for robot learning. Much of the research addresses the challenge
of generalisation to new objects, environments and even robots by expanding and
diversifying datasets. These approaches use an imitation learning method called
behavioural cloning (BC) that learns from pre-collected trajectories in a supervised
manner. BC is limited because it cannot explore the environment on its own and
suffers from the distributional shift, where the cases encountered during inference
diverge from the training set. In the following sections, we will delve deeper into
various approaches in language-guided robotic object manipulation, divided into
three main parts: language-to-action, action-to-language and bidirectional trans-
lation.

7

Chapter 2. Related Work

Neural Network Model

Language Instruction

Action Prediction

Visual Observation

(one-hot encoding, word embedding,
sentence embedding etc.)

(RGB images, depth images, voxels,
point clouds etc.)

(joint values, target arm poses,
gripper open/close, affordances etc.)

Figure 2.1: Overview of language-to-action models. Language-to-action models ac-
cept language instructions and visual observations as input and output action
predictions such as joint angle values or target arm poses.

2.1 Language-to-Action Translation

Most language-instructed robotic object manipulation approaches can only trans-
late from language commands to robotic action execution because their model ar-
chitectures are not designed for bidirectional translation. As recent developments
in language processing allow natural language to control robots for object ma-
nipulation tasks, translating from language to action is the most common form
in embodied language learning. As can be seen in Figure 2.1, language-to-action
translation models accept language instructions as well as visual observations as
input, while they produce robot actions in different forms, e.g. joint angle values or
target end-effector poses. Some approaches utilise modular architectures combin-
ing separate vision and language components such as object detection and speech
recognition. For example, Hatori et al. [61] introduce a neural network architecture
for moving objects given the visual input and language instructions, as their work
focuses on the interaction of a human operator with the computational neural sys-
tem that picks and places 100 miscellaneous items as per verbal commands. In
the setup, they distribute many items of different shapes and sizes (e.g. toys and
bottles) across four bins with many of them occluded – hence, the scene is very
complex and cluttered – and a robot is instructed to pick up an object and move it
to a specific bin. Given an instruction from the human operator, the robot executes
a pick-and-place action after confirming that the desired object is unambiguous.
Otherwise, the robot asks the human operator to clarify the desired object. The
network receives a verbal command from the operator and an RGB image from the
environment, and it has separate object recognition and language understanding
modules, which they train jointly to learn the names and attributes of the objects.
Moreover, it learns different properties of an object, e.g. its colour, texture or size.
Since it depends on the successful functioning of many different modules like object
detection, target object selection and ambiguity resolution, the overall approach is
brittle.

Similarly, Shridhar and Hsu [161] propose a comprehensive system for a robotic
arm to pick up objects based on visual and linguistic input. The system, named
INGRESS (Interactive Visual Grounding of Referring Expressions), consists of
multiple modules, i.e. manipulation, perception and a neural network architecture.

8

2.1. Language-to-Action Translation

INGRESS has two network streams (self-referential and relational) trained on large
datasets to generate a definitive expression for each object in the scene based on
the input image. The generated expression is compared against the language input
to identify the desired object. INGRESS is, therefore, responsible for grounding
language by learning object names and attributes via manipulation. INGRESS has
the freedom of numerous object categories for the robot to interact with diverse
objects available for everyday use. The approach can resolve ambiguities about
which object to lift by asking confirmation questions to the user. As a modular
approach relying on multiple modules such as the outdated object localisation
network, Faster R-CNN [148], INGRESS has many potential sources of error.

Conventional Approaches A large majority of approaches train with BC
on a precollected dataset of paired visuolinguistic sensorimotor data, D ={

(okt , a
k
t)
T
t=0, l

k
}K
k=0

, where o ∈ O represents state observations, a ∈ A represents
actions and l ∈ L is a language command, to learn language-instructed robotic
object manipulation. Architecturally, they include language and vision encoders,
a backbone policy network and an action decoder. These can be formulated as
follows:

s = fσ(o), (2.1)

d = fϕ(l), (2.2)

πθ(a|s, d), (2.3)

p = fψ(a), (2.4)

where fσ, fϕ and fψ are vision encoder, language encoder and action decoder re-
spectively, while πθ is the policy network. s, d and p are state representations
(i.e. visual features), embedded language and practical action output (e.g. joint
angle value or end-effector pose predictions) respectively. Figure 2.2 shows the
general framework of language-to-action translation architectures. For example,
the DreamCell architecture introduced by Paxton et al. [138] seeks to learn hid-
den representations to transform human-generated natural language instructions
into sequences of executable subgoals for a pick-and-place task in the domain of
simulated robotic object manipulation. Given a language command and the cur-
rent state observation as input, DreamCell predicts not only the next action but
also the next state and subgoal. It utilises an autoencoder network to encode the
current state observation, including the RGB image, into a latent code. Then, it
uses this code and a given goal to construct the predicted future state. Predict-
ing future states makes the model understand the environment dynamics better
and results in more robust language-to-action modelling. Dividing a plan into exe-
cutable low-level actions helps in handling complex human instructions. However,
the approach is not tested in the real world and minor errors in the low-level control
over multiple steps may lead to failure in executing a high-level plan.

As a prime example of conventional language-to-action approaches, Jang et
al. [78] propose BC-Z leveraging a large multi-task dataset, including 100 tasks,

9

Chapter 2. Related Work

Policy Network

Text

Target Pose

RGB
Image

Language
Encoder

Vision
Encoder

Action
Decoder

Figure 2.2: Conventional language-to-action model architectures used in practice.
Most language-to-action models receive language instructions in textual format and
visual observations as RGB images. They encode the text and image inputs via
their modality-specific networks: language and vision encoders. The policy network
is the backbone of the architecture and uses encoded representations to choose the
best action. Finally, the action decoder outputs action predictions as target arm
poses.

to train a single policy which is supervised with BC to match the actions demon-
strated by humans in the dataset. To generalise to new tasks, they condition the
policy on a task description, i.e. a joint embedding of a video demonstration and a
language instruction, allowing passing either the video command or the language
command to the policy when trained to match the actions in a demonstration. BC-
Z performs relatively poorly on new tasks and requires a large collection of human
demonstrations. It also relies on human intervention to avoid unsafe situations and
to correct mistakes.

Lynch and Sermanet [107] introduce the LangLfP (language learning from play)
approach using multi-context imitation to train a single policy based on multiple
modalities. Specifically, they train the policy on image and language goals, enabling
the approach to follow natural language instructions during evaluation. LangLfP
extends the previous work, LfP [106], by pairing robot actions with hindsight lan-
guage instructions. During training, fewer than 1% of the tasks are labelled with
instructions because it suffices to train the policy for more than 99% of the cases
with goal images alone. Furthermore, they utilise a Transformer-based [173] multi-
lingual language encoder, Multilingual Universal Sentence Encoder [186], to encode
linguistic input to handle unseen language input like synonyms and instructions
in 16 languages. Despite being reduced to 1% of overall training samples, labelling
even a tiny portion of a large dataset with around 10M samples requires several
human annotators, which is expensive. Based on the same learning method, Mees
et al. [113] present the HULC (Hierarchical Universal Language Conditioned Poli-
cies) framework aimed at improving the language-conditioned imitation learning
performance on long-horizon1 tabletop object manipulation tasks. In addition to

1Long-horizon tasks are those that require high-level long-term goal planning [56].

10

2.1. Language-to-Action Translation

a multimodal Transformer network, HULC employs a contrastive loss to align vi-
sual and linguistic representations semantically. Following LangLfP, the model is
trained on action trajectories produced by human teleoperators controlling the
robotic arm in the environment. HULC learns a single policy in a task-agnostic
manner and achieves promising results on the robotic manipulation benchmark
CALVIN [114]. In a follow-up work, HULC++ [112] extends upon HULC by inte-
grating a language-conditioned visual affordance model [20] and an LLM to perform
long-horizon tasks in the real world. Another work extending upon LangLfP and
HULC is the Skill Prior-based Imitation Learning (SPIL) framework by Zhou et
al. [197], exploiting primitive actions such as rotation and grasping to generalise
to unseen environments. Instead of learning a policy to act directly based on state
observations and language instructions, SPIL learns an intermediate-level policy
to select the appropriate primitive action.

Inspired by the two-stream theory in cognitive psychology, CLIPort [159] com-
bines the CLIP model [140], for pre-trained vision-language representations, with
the Transporter model [190], for robotic manipulation tasks, to predict pick- and
place-coordinates of objects. Transporter takes an action-centric approach to per-
ception by detecting actions, rather than objects, and then learns a policy, which
allows CLIPort to exploit geometric symmetries for efficient representation learn-
ing. On multiple object manipulation tasks, CLIPort outperforms CLIP and Trans-
porter alone. Further, CLIPort trained on multiple tasks performs better in most
cases than CLIPort trained only on particular tasks. This supports the hypothesis
that language-conditioned task-learning skills can be transferred from one task to
another. However, the approach is only realised with a relatively simple gripper
as it does not output joint angle values but 2D-pixel affordance predictions. The
actual action execution relies on the calibration between the robotic arm base and
the RGB-D camera.

A more recent approach introduced by the same authors, Perceiver-Actor
(PERACT) [160], is designed to efficiently learn multi-task robotic manipulations
according to given language input by utilising voxel grids extracted from RGB-D
images. The backbone of the model is the Transformer-based Perceiver IO [76]
which uses latent vectors to tackle the processing of very long sequences. After
Perceiver IO processes the appended language and voxel encodings, the voxels are
decoded again to generate discrete actions using linear transformations. PERACT
outperforms baselines and achieves promising results in multiple tasks such as
opening a drawer, turning a tap and sliding blocks. However, its dependence on
voxelisation for generalising to different object positions via data augmentation
renders PERACT expensive to train.

Introduced by Brohan et al. [22] as the first iteration of a series of Transformer-
based robotic manipulation models, Robotics Transformer 1 (RT-1) can navigate
through a kitchen environment and interact with objects according to language
instructions. RT-1 is trained with BC on a large multi-robot dataset. The results
show that RT-1 can generalise to unseen tasks, handle challenging situations with
many distractors and different backgrounds and respond to more realistic instruc-
tions. It outperforms previous language-prompted robotic manipulation models.

11

Chapter 2. Related Work

The authors also leverage SayCan [6] to divide long-horizon tasks into executable
steps. Although it partially generalises to unseen tasks and outperforms previous
language-prompted robotic manipulation models, as another BC approach, RT-1’s
performance is strictly bound to the quality of the expert demonstrations. RT-1
is also limited to the objects it learns during training. Stone et al. [164] extend
RT-1 to a virtually unlimited number of objects by leveraging a pre-trained open-
vocabulary object detection network (OWL-ViT [119]). They query OWL-ViT with
the initial scene image and the desired object names to produce bounding boxes
marking the target objects. The pixels at the centre of bounding boxes alongside
histories of images and encoded language instructions are passed to the RT-1 net-
work. The approach shows a significantly better object generalisation performance
and robustness against different backgrounds, distractors and environments.

The encoder-decoder-based VisuoMotor Attention (VIMA) model [79] handles
robot action generation from multimodal prompts by interleaving language and
image or video frame tokens at the input level. In contrast to the approaches
that process raw pixels, VIMA uses an object detection module to extract objects
and bounding boxes from visual input to use as object tokens. The object tokens
are then interleaved with the language tokens and processed by the pre-trained
T5 model [143], which is used as the encoder. On the decoder end, the approach
uses a causal Transformer decoder which consists of cross- and self-attention lay-
ers and autoregressively generates actions based on the history of actions and
the multimodal prompt. VIMA outperforms state-of-the-art approaches, including
GATO [146], on numerous increasingly difficult object manipulation tasks, involv-
ing zero-shot generalisation with unseen objects and their combinations. However,
including images as part of the instructions given to a robot is impractical in real-
world scenarios. As a modular approach, another apparent weakness of VIMA is its
reliance on the accuracy of an off-the-self object detector, i.e. Mask R-CNN [64].

Lynch et al. [108] introduce an interactive language-guided robots paradigm
with which a robotic arm can be instructed to manipulate objects in real time.
The main contribution is about how they collect and annotate real-world and
simulation data. The dataset is collected in two steps: first, teleoperated control,
where human operators are hired to remotely control a robotic arm to manip-
ulate objects on a tabletop; second, event-selectable relabelling, where humans
annotate the recorded object manipulation episodes with the freedom of choos-
ing any interval to describe a meaningful action event. A novel neural network,
named LAVA (Language Attends to Vision to Act), is trained on the collected
data with BC. The experiments show that success in long-horizon goals heavily
depends on sufficient real-time feedback rather than open-loop instructions. The
proposed approach can also be used to instruct multiple robots simultaneously.
However, it does not address intention detection, non-verbal communication and
physically collaborative task completion. The action space is also relatively sim-
ple, with a robotic arm moving in two dimensions. A follow-up approach by Jin
et al. [81] employs LAVA as the low-level action execution model in a closed-
loop high-level multi-step reasoning setup, utilising a multimodal LLM capable of
updating its plans based on visual feedback. This framework, named CogLoop,

12

2.1. Language-to-Action Translation

outperforms open-loop models (e.g. SayCan) and closed-loop with language feed-
back approaches (e.g. Text2Motion [99]) on a simulated block-placement task. The
results show that even with a smaller and less powerful LLM, i.e. MiniGPT-4 [198],
it is possible to integrate visual capabilities into language modelling, with instant
visual feedback, for high-level task planning. Nevertheless, CogLoop’s success rate
of 23.5% is low for reliable long-horizon task execution, and the approach is only
tested on a block manipulation task in simulation.

Another attempt at robotic generalisation is the Octo model [127], which is
made up of a Transformer architecture [173], a pre-trained language encoder, a shal-
low convolutional visual encoder and diffusion-based action heads. Octo is trained
on 800k episodes from the Open X-Embodiment dataset [175]. Thanks to its flexible
architecture, leveraging a diffusion policy [29], Octo can be fine-tuned on different
tasks and robotic platforms after pre-training. Despite being a radically smaller
model compared to state-of-the-art robotic action models, Octo’s performance re-
lies on the careful curation of the vast amounts of pre-training data. Moreover,
its performance drops considerably when it is conditioned on language annota-
tions instead of goal images. Lastly, the novel OpenVLA (Open-Source Vision-
Language-Action) [88] model, based on two separate vision encoders (SigLIP [191]
and DINOv2 [132]) and an LLM (Llama 2 [169]), is fine-tuned on the Open X-
Embodiment dataset to bring about a generalised robotic object manipulation
approach. After concatenating visual features extracted by the two encoders, they
are projected to the input space of the LLM and passed as input alongside the
language tokens. The LLM outputs action tokens which are detokenised to control
a robotic arm continuously. OpenVLA outperforms SOTA approaches, including
Octo, in different aspects of generalisation across multiple robotic platforms. How-
ever, it has 7B parameters compared to Octo’s 86M parameters. Both Octo and
OpenVLA can only produce actions like the aforementioned approaches in this
category, which are designed to act upon a given language input as in textual or
verbal commands.

Learning from Human Demonstrations Some approaches leverage labelled
human-action datasets for learning the basics of action execution via imitation
learning (see Figure 2.3). For example, Shao et al. [158] put forward a robot learn-
ing framework, Concept2Robot, for learning manipulation concepts from human
video demonstrations in two stages. In the first stage, they use RL, while in the
subsequent stage, they utilise imitation learning. The architecture consists of three
main parts: a semantic context network, a policy network and action classification.
The model receives as input a natural language description for each task alongside
an RGB image of the initial scene. In return, it is expected to produce the pa-
rameters of a motion trajectory to accomplish the task in the given environment.
Since it uses the output of the action classification model as a proxy reward, Con-
cept2Robot utilises human demonstration videos from the “something something”
database [53]. Similar to Concept2Robot, the LOReL (Language-conditioned Of-
fline Reward Learning) approach [122] maps language instructions to rewards by

13

Chapter 2. Related Work

Pre-training on Human Demonstrations

Human
Demonstration

Dataset
'put the white remote into the

cardboard box'

Aligning Video and Language
Representations

Language
Encoder

Vision
Encoder

Figure 2.3: The approaches that learn from human demonstrations in practice.
These approaches usually pre-train on annotated human demonstration videos to
learn manipulation concepts in advance. In addition to other learning objectives,
they try to align videos and their corresponding textual task representations after
embedding them with modality-specific encoders. This pre-training helps models
learn robotic object manipulation tasks later. The exemplary video frames and the
corresponding annotation have been adopted from Goyal et al. [53].

learning language-conditioned behaviour from offline video datasets annotated by
humans in natural language. LOReL has a convolutional vision encoder and em-
ploys the pre-trained language model DistilBERT [153] to embed language. Ex-
periments show that utilising language-conditioned rewards accelerates learning
and improves generalisation to new tasks. Nonetheless, both Concept2Robot and
LOReL require tens of thousands of human demonstrations to learn the basics of
object manipulation.

Another approach utilising human demonstrations from videos is R3M
(reusable representation for robotic manipulation) by Nair et al. [123]. The Ego4D
egocentric video dataset [54] with language annotations is used to pre-train the
R3M perception network to learn multimodal representations that can be trans-
ferred to downstream robotic manipulation tasks. This pre-training involves time-
contrastive learning (i.e. aligning temporally closer states in the latent space),
video-language alignment (i.e. pairing specific frames of visual observations with
corresponding annotations) and a sparsity penalty favouring sparse representa-
tions over dense ones. After pre-training, R3M is frozen and used as a perception
module for object manipulation tasks with a robot. R3M employs a convolutional
ResNet [65] architecture for visual processing. The simulated and real-world exper-
iments across multiple benchmarks involving several manipulation tasks show that
the approach outperforms the state-of-the-art (SOTA) visual representation mod-
els like CLIP [140]. However, R3M is limited to learning with BC as the authors
admit that it may not be beneficial for RL. Similarly, introduced by Ma et al. [109],
LIV (Language-Image Value Learning) can train on arbitrary human action videos
that are paired with language annotations to produce zero-shot multimodal vision-

14

2.1. Language-to-Action Translation

language representations. Built upon Value-Implicit Pretraining (VIP) [110] and
CLIP, LIV can be fine-tuned on smaller robotic manipulation datasets for context-
specific language grounding. It outperforms SOTA approaches such as R3M and
VIP in various object manipulation tasks across different environments. However,
unless fine-tuned with robot videos, it performs poorly on manipulation tasks.

RL Approaches Another group of approaches train via RL algorithms. For ex-
ample, Sodhani et al. [163] adapt CMDP (contextual Markov decision process) [59]
into the multi-task RL domain in order to leverage language-oriented contextual in-
formation as a task definition. The proposed model, CARE (Contextual Attention-
Based Representation Learning), employs several state encoders to model diverse
state representations, while the language input is encoded by a pre-trained lan-
guage model (RoBERTa [103]) followed by an MLP, which results in a contextual
representation. Afterwards, the contextual representation attends to the state rep-
resentations to arrive at a unified state encoding, which is then concatenated with
the contextual representation to form the policy input. The policy is trained with
the Soft Actor-Critic (SAC) [57] RL algorithm. The approach outperforms SOTA
methods in multi-task RL in the Meta-World benchmark [188]. However, it uses
state observations from the simulator instead of visual inputs.

Introduced by Silva et al. [162], LanCon-Learn utilises natural language in-
structions instead of one-hot task IDs to enable skill transfer between semanti-
cally related tasks in multi-task object manipulation settings. LanCon-Learn uses
GloVe [139] word representations and a bidirectional LSTM to embed language in-
put. Trained with either RL (SAC algorithm) or imitation learning (DaGger [150]
algorithm), LanCon-Learn displays some zero-shot learning capabilities for unseen
tasks in the Meta-World benchmark. However, similar to CARE, it is provided
with direct environment states instead of visual observations. Therefore, it cannot
work under realistic circumstances where the internal states of a simulator are not
available.

A similar approach, MILLION [18], focuses on skill learning based on natu-
ral language instructions to master multi-task learning with a trial-and-error RL
approach in Meta-World. Like LanCon-Learn, GloVe is employed to extract lan-
guage representations that define tasks. MILLION divides the learning into two
stages, namely instruction and trial phases. In the instruction phase, the agent
acts in the environment based on the given language instruction while ignoring
the rewards provided by the environment, whereas in the trial phase, language
instructions are no longer provided as the agent acts in the environment and re-
ceives rewards. MILLION is trained with an on-policy RL algorithm and outper-
forms SOTA approaches in terms of average success rate in multiple tasks. A more
recent approach built upon MILLION by Yao et al. [187] exploits linguistic and
action-space symmetries between tasks to learn faster and more successfully. For
example, the open-drawer task is a mirrored version of the close-drawer task as
the push-left task is the mirrored version of the push-right task. Learning one task
of each pair thus helps in learning the other task. The approach uses a concrete

15

Chapter 2. Related Work

LLM Value Function

Combined Scores
for Low-Level

Skills

High-Level
Language
Instruction

List of
Low-Level

Skills
Chosen Skill
with Highest

Score

Low-Level
Skill

Description

RGB
Image

Figure 2.4: LLM-based language-to-action approaches like SayCan in practice. An
LLM is used to choose a low-level skill from a high-level language instruction and
a list of available low-level skills. They also use a value function to calculate the
affordance value of low-level skills according to the current state observation from
an RGB image. The low-level action with the highest combined score by the LLM
and value function is chosen to be carried out.

syntax three method [82] to parse the input sentence into verb and noun phrases so
that it can comprehend it semantically. The approach outperforms MILLION on
symmetrical test tasks by a great margin showing good generalisation capabilities.
Nevertheless, both approaches use direct state observations from the simulator
instead of modelling visual representations as they focus on meta-RL.

An RL paradigm, Language-Goal-Behaviour (LGB), introduced by Akakzia et
al. [7], decouples skill learning from language grounding in a 3D tabletop object
manipulation task with a robotic arm stacking differently coloured blocks. In the
first stage, the LGB agent learns primitive object manipulation skills by interacting
in the simulation environment with curiosity and exploring possible block configu-
rations. In the second stage, language grounding in actions is realised via feedback
from a social partner in the form of hindsight descriptions of the performed action.
LGB paradigm leads to robust and diverse behaviours in goal-conditioned RL.

LLM-Based Approaches LLM-based approaches calculate two kinds of prob-
abilities, the first of which is the task grounding probability that is modelled by an
LLM, p(lπ|i), and the second is the world grounding probability that is formalised
by a value function, p(cπ|s, lπ). The selection of the low-level action is determined
by the combined score of these two probabilities, which is calculated by multiplying
them: p(ci|i, s, lπ) = p(cπ|s, lπ) ·p(lπ|i), where i is a high-level language instruction,
s is a state, lπ ∈ lΠ is a low-level action skill, cπ is an affordance value and ci is the
chosen skill. Figure 2.4 displays this procedure in detail.

As a pioneering work, SayCan [6] employs LLMs to provide task-grounding
capabilities to the agent, which is capable of executing low-level actions. The use
of LLMs helps to ground these capabilities in the real world using value func-
tions of the agent in order to produce feasible and useful instructions. An LLM
is utilised to assign affordance probabilities to these skills according to a given
high-level user instruction. The way these skills are defined in language (the word-
ing, the length, etc.) can affect the overall performance, e.g. LLMs tend to favour

16

2.1. Language-to-Action Translation

shorter phrases over longer ones. The follow-up work, Inner Monologue [74], brings
SayCan into closed-loop planning as the employed LLM adapts its output accord-
ing to various sources of feedback, including success detection, scene description
and human response. This closed-loop versatile feedback in the form of language
to the LLM increases the success rate of plan completion on simulated as well
as real-world tabletop object manipulation and mobile manipulation tasks. How-
ever, neither SayCan nor Inner Monologue account for the geometric dependencies
in a given scene based on the high-level plan; LLMs can generate plans com-
posed of semantically viable steps, which may still involve spatially infeasible ac-
tions. In order to address the geometric feasibility issue, Lin et al. [99] propose
Text2Motion that utilises a geometry-dependent long-horizon planner (STAP [5]);
the LLM plans new actions until STAP determines the LLM-produced action as
adhering to geometric dependencies. Text2Motion outperforms the previous ap-
proaches in challenging long-horizon tasks requiring geometric acumen. A more
recent approach, ViLa (Robotic Vision-Language Planning) [72] employs the pre-
trained VLM GPT4-V [131] to decompose high-level natural language instructions
to low-level executable action steps for object manipulation. Due to its utilisation
of a VLM, instead of separately handling language and vision which may lead
to imprecise and inaccurate task planning, jointly processing vision and language
results in a task-focused understanding of the current scene based on the given
instruction. ViLa outperforms SayCan in common-sense-related tasks by a large
margin. It also works with different modalities in the high-level instructions such
as providing a goal image or a combined image-language goal. Nevertheless, all of
these approaches are limited to the set of skills that the agent can possess in the
environment.

Another example of leveraging LLMs is the approach proposed by Ren et
al. [147] which employs an LLM (i.e. GPT-3 [23]) for tool manipulation. The novel
tool learning paradigm ATLA, short for Accelerated Learning of Tool Manipula-
tion with Language, utilises LLMs in two ways: first, to generate descriptions of
tools (including affordances and shapes of tools), and second, to obtain feature
representations. ATLA consists of two phases, namely meta learning and meta
testing. During meta learning, GPT-3 is used to collect descriptions of tools; a
predefined sentence template is used to prompt GPT-3 to describe the uses and
shapes of tools. The resulting language description is fed to a pre-trained BERT to
extract features. In the meta-testing phase, GPT-3 creates descriptions and tries
to generalise to new tools. The results of the actions with test tools show that lan-
guage information indeed helps adapt to new tools. Moreover, meta learning seems
to help learn unseen tools better as it supports the gain from language informa-
tion. However, when using a smaller version of BERT as the language encoder,
the adaptation to new tools deteriorates, which indicates that richer, more de-
tailed representations of language are needed for better generalisation. In a similar
vein, Tang et al. [166] utilise an LLM for real-world object grasping; the approach,
named GraspGPT, uses the LLM to generate multiple descriptions of given objects
(e.g. a cup and a pitcher) and action types (e.g. pouring, and spraying), which are
then used to generalise to unseen objects and action types for grasping. These

17

Chapter 2. Related Work

generated descriptions are passed to a Transformer decoder-based grasp evaluator
alongside point-cloud embeddings of the object and the attempted grasp pose to
predict the grasp score.

Palo et al. [37] also leverage an LLM to devise a comprehensive RL approach
covering efficient language-guided exploration, experience reuse from offline data,
timely execution of actions and learning human expert demonstrations for a pick-
and-place object stacking task. They use the CLIP model as their VLM, which
they fine-tune for their task, to bridge object manipulation actions with language
descriptions via the dot product operation between the language embedding and
the embedding of each video frame. This CLIP-based vision-language mapping
serves as an internal reward model during RL. As the LLM, the authors employ
FLAN-T5 [33], which was fine-tuned on language instructions, to generate exe-
cutable subgoals for a given stacking task. The robot executes the subgoal in the
environment, which is shown to the VLM to determine successful action execution.
If the action is successful, the robot continues with the next subgoal generated by
the LLM. In addition, the approach also makes use of successful action sequences
from offline data collected on other tasks to bootstrap the RL policy. Compared
with the baseline using only sparse environment rewards, the approach shows im-
proved performance in stacking two or three cubes. However, it uses the object
positions provided by the simulator as input, and it outputs actions only in X
and Y coordinates, bypassing the height dimension. Besides, fine-tuning a large
pre-trained VLM like CLIP requires large amounts of data, not least when scaling
up the approach with more objects and real-world data.

All in all, language-to-action translation approaches can recognise commands
and execute desired actions. However, they cannot describe the actions that they
perform because their model architectures are not suitable for processing sensori-
motor input or generating language output.

2.2 Action-to-Language Translation

Another class of approaches in embodied language learning translates from action
to language. Visualised in Figure 2.5, these models produce language outputs like
verbal or textual descriptions and answers to yes-no questions as they are fed visual
(ranging from RGB images to point clouds) and proprioceptive (joint angle values,
end effector poses, etc.) observations. Some of them even accept language as input
in the form of hindsight descriptions and yes-no questions.

As an exemplary method for action-to-language translation, Heinrich et al. [69]
introduce an embodied crossmodal neurocognitive architecture, the adaptive mul-
tiple timescale recurrent neural network (adaptive MTRNN), enabling a robot to
acquire language by listening to commands while interacting with objects in a
playground environment, emulating language development conditions for human
infants. The adaptive MTRNN has auditory, sensorimotor and visual perception
capabilities. As neurons at multiple timescales facilitate the emergence of hier-
archical representations, the results indicate good generalisation and hierarchical

18

2.2. Action-to-Language Translation

Neural Network Model Language DescriptionProprioceptive Observation

Visual Observation

(verbal or textual description,
yes-no answer etc.)

(RGB images, depth images,
voxels, point clouds etc.)

(joint values, current arm poses,
gripper open/close etc.)

Language Input
(hindsight description,
yes-no question etc.)

Figure 2.5: Overview of action-to-language models. Action-to-language models ac-
cept as input language, proprioceptive and visual observations and output verbal
or textual descriptions of actions and answers to yes-no questions.

concept decomposition within the network. However, the approach is tested on a
limited-scale dataset [66] and achieves at most 64% accuracy in describing actions.
Furthermore, it uses a specialised type of recurrent neural network (RNN) model
that has been superseded by Transformers in natural language processing.

As another action-to-language approach, Eisermann et al. [43] study the prob-
lem of compositional generalisation, in which they conduct numerous experiments
on a tabletop scenario where a robotic arm manipulates various objects. They
utilise a simple LSTM-based (long short-term memory [70]) network to describe
the actions performed on the objects in hindsight – the model accepts visual and
proprioceptive input and produces textual descriptions. The results show that, with
the inclusion of proprioceptive input, i.e. joint angles, and training on more data,
the model performance on compositional generalisation improves significantly. Nev-
ertheless, like the adaptive MTRNN, the approach employs an old-fashioned RNN
for language production. Also, it cannot achieve more than 67% accuracy on the
challenging compositional generalisation test sets.

As an action success detection method, which can be considered yet another
action-to-language approach, Du et al. [42] employ a VLM, i.e. the Flamingo
model [8], to detect successful action execution in three domains, namely the sim-
ulated household environment, real-world robotic object manipulation and ego-
centric human videos. They treat success detection as a visual question answering
(VQA) task; Flamingo is given a sequence of images showing a performed action
alongside an accompanying yes-no question. The model then answers with yes or
no depending on the outcome of the action carried out in the sequence. Flamingo
is fine-tuned on this VQA task for each domain while its language layers are kept
frozen. The results show that pre-trained VLMs can be used as a reward model or
an oracle to evaluate the performance of a robotic object manipulation approach.
Nevertheless, the approach struggles with ‘in-the-wild’ human videos as it cannot
generalise well to unseen demonstrations in that domain.

Analogous to language-to-action translation, the action-to-language transla-
tion methods operate only in one direction: they generally describe the actions
performed in the environment. They are unable to execute a desired action given
by the human user. From the robotics perspective, it is still desirable to have mod-

19

Chapter 2. Related Work

Neural Network Model

Language Instruction

Action PredictionVisual Observation

(one-hot encoding, word embedding,
sentence embedding etc.)

(RGB images, depth images, voxels,
point clouds etc.)

(joint values, target arm poses,
gripper open/close, affordances etc.)

Language Production
(verbal or textual)

Figure 2.6: Overview of bidirectional models. Bidirectional models can translate
from language to action as well as from action to language. They accept as input
language instructions (as one-hot-encoded, word- or sentence-embedded) and vi-
sual observations (e.g. RGB or depth images, voxels and point clouds) and output
language in verbal or textual form and action predictions, ranging from joint angle
values to affordances.

els that can also translate from action to language and not just execute verbal
commands; such robots can explain their actions by verbalising an ongoing action,
which paves the way for more interpretable systems.

2.3 Bidirectional Translation

Only few approaches [1, 11, 128, 185] are capable of bidirectional translation,
i.e. they have the ability to translate a given action into language as well as to
translate a given language description into an action. As depicted in Figure 2.6,
bidirectional models accept language instructions and visual observations as input
and can produce both action and language. While unidirectional approaches are
feasible for smaller datasets, we aim to research architectures that can serve as
large-scale multimodal foundation models and solve multiple tasks in different
modalities. By generating a discrete set of words, bidirectional models can also
provide feedback to a user about the information contained within its continuous
variables. By providing rich language descriptions, rather than only performing
actions, such models can contribute to explainable AI (XAI) [2] for non-experts.

In one of the early examples of bidirectional translation, Ogata et al. [128]
present an RNN-based model, RNNPB, that is aimed at articulation and allocation
of arm movements by using a parametric bias to bind motion and language. The
method enables the robot to move its arms according to given sentences and to
generate sentences according to given arm motions. RNNPB enables bidirectional
translation between compound sentences and robotic arm motions. Artificial bias
vectors are used to bind the two modalities, which have separate RNNs, to enable
flexible translation between them. The model shows generalisation towards motions
and sentences that it is not trained with. However, it fails to handle complex
sentences.

Exploiting the notion of multiple timescales like adaptive MTRNN, Antunes
et al. [11] introduce the multiple timescale long short-term memory (MT-LSTM)
model in which the slowest layer establishes a bidirectional connection between

20

2.3. Bidirectional Translation

action and language. The MT-LSTM consists of two components, namely lan-
guage and action streams, each of which is divided into three layers with varying
timescales. The two components are bound by a slower meaning layer that allows
translation from action to language and vice versa. However, MT-LSTM shows
limited generalisation capabilities.

Conventional Approaches The conventional bidirectional approaches can be
formulated as follows:

s = fσ(o), (2.5)

d = fϕ(l), (2.6)

h = MMF(s, d), (2.7)

at = fψ(h, at−1), (2.8)

lt = fλ(h, lt−1), (2.9)

where fσ, fϕ, fψ and fλ are vision encoder, language encoder, action decoder and
language decoder respectively, while MMF stands for the multimodal fusion net-
work. o, l, s, d, h and a denote visual observations, language descriptions, state
representations (i.e. visual features), embedded language, common hidden repre-
sentations and action output (e.g. joint angle value or end-effector pose predictions)
respectively. Figure 2.7 illustrates the general framework of these bidirectional ar-
chitectures.

As an ambitious project to go beyond modelling architectures only capable of
following instructions, Abramson et al. [1] propose a complex paradigm combining
supervised learning, reinforcement learning (RL) and imitation learning in order to
solve the problem of intelligently interacting in an abstract 3D play environment
while using language. In the environment, two agents communicate, with one agent
(the setter) asking questions to or instructing the other (the solver) which answers
questions and interacts with objects according to a given instruction. The scenario
is abstract as the objects are unrealistically interacted with. As the actions are
abstract, there is no need for proprioception, i.e. actual action execution. Therefore,
the transfer of the approach from simulation to the real world is non-trivial.

To map robotic action and natural language bidirectionally, Yamada et al. [185]
propose the paired recurrent autoencoder (PRAE) architecture comprising two
recurrent autoencoders: action and description. The action autoencoder receives
joint angle trajectories with visual features as input and reconstructs the original
joint angle trajectories. The description autoencoder, on the other hand, reads
and then reconstructs the language descriptions. The dataset consists of pairs of
simple robot actions (including sequences of images and joint angle values) and
their textual descriptions, e.g. ‘pushing away the blue cube’. The model is trained
end-to-end, with both autoencoders reconstructing language and action, whilst
there is no explicit neural connection between the two. A loss term that aligns the
hidden representations of paired actions and descriptions, i.e. binding loss, enables
the crossmodal pairing between action and description autoencoders. The binding

21

Chapter 2. Related Work

Multimodal Fusion Network

Vision
Encoder

RGB
Image

Text

Action
Output

Language
Description

Language
Encoder

Recurrent
Language
Decoder

Recurrent
Action

Decoder

Figure 2.7: Conventional bidirectional model architectures used in practice. Most
bidirectional models take language instructions in textual format and visual obser-
vations as RGB images as input. They encode the text and image inputs via their
modality-specific networks: language and vision encoders. The multimodal fusion
network is the backbone of the architecture and combines linguistic and visual
features to arrive at a common hidden vector. Finally, the common hidden vector
is used to output language and action predictions via the respective language and
action decoders.

loss allows PRAE to execute actions given instructions as well as translate actions
into descriptions. As a bidirectional approach, PRAE is biologically plausible to
some extent, since humans can execute given commands and also describe these
actions linguistically. Bidirectionality is essential to imitate human-like language
recognition and production. However, due to its use of standard autoencoders,
PRAE can only bind a robot action with a particular description in a one-to-one
way even though actions can be expressed in language in various ways.

To map each robot action to multiple description alternatives, we introduce the
PVAE (paired variational autoencoders) approach [136] which utilises variational
autoencoders (VAEs) to randomise the latent representation space and thereby al-
lows one-to-many translation between action and language. Specifically, we enable
one-to-many translation between actions and descriptions by utilising the stochas-
tic gradient variational Bayes-based sampling (SGVB) [90] that randomises the
hidden representation space so that descriptions that are equivalent in meaning
are represented tightly together, whereas those that have different meanings are
represented far from each other. A review by Marino [111] highlights similarities
between VAEs and predictive coding from neuroscience in terms of model formu-
lations and inference approaches. PVAE extends the PRAE architecture [185] by
replacing regular autoencoders with variational autoencoders so that it can learn
one-to-many mappings between robot actions and instructions. Furthermore, it
modifies the visual feature extraction by separately training the channels of the
convolutional autoencoder, which leads to a more accurate recognition of object
colours. In Chapter 3, we detail the PVAE model and the experiments conducted
to test its one-to-many action-language translation capabilities. Inspired by the

22

2.3. Bidirectional Translation

TransferLangLfP paradigm by Lynch and Sermanet [107], we propose to use the
PVAE with a pre-trained BERT language model [35] to facilitate the comprehen-
sion of unconstrained language instructions from human users. Furthermore, we
perform experiments with PVAE-BERT on our dataset for various use cases and
examine the internal representations for the first time. The details of the PVAE-
BERT model and the experiments are given in Chapter 4.

Like PRAE, PVAE and PVAE-BERT employ a binding loss to map descrip-
tions and actions. Therefore, due to its artificial nature in its multimodality fusion,
PVAE too must be in a certain configuration according to the desired transla-
tion direction. To lift this constraint and allow flexible use of the model trig-
gered by a verbally provided signal, we introduce the Paired Gated Autoencoders
(PGAE) [135] model in Chapter 5. PGAE makes use of signal word prefixes and
a flexible multimodal fusion technique, i.e. GMU. It is also able to recognise and
imitate the actions of an opposite-sitting agent via robot demonstrations.

When we test PGAE with a more realistic case of limited labelled data, we
observe a significant drop in performance. To address the issue of reliance on large
quantities of labelled supervised samples, we introduce the Paired Transformed
Autoencoders (PTAE) approach [134] that uses Transformer-based crossmodal at-
tention to learn action-language mappings from mostly unsupervised data in an
efficient manner. Chapter 6 details the PTAE architecture and the experiments
conducted to prove the merits of PTAE in embodied language learning.

LLM-Based Approaches The bidirectional approaches that exploit LLMs in
their architectures are modelled by optimising model parameters θ based on the
following log probabilities:

log pθ(t0, ..., tI) =
I−1∑
i=0

log pθ(ti|t0, ..., ti−1), (2.10)

where the model output token ti depends on the previous tokens t0, ..., ti−1. Fig-
ure 2.8 shows the architecture of such models.

For example, GATO [146] is a single multi-task, multi-embodiment model that
is general and performs well on hundreds of tasks in various domains such as
playing Atari games, manipulating objects and image captioning. Irrespective of
the modality (e.g. vision, proprioception or language), the input is flattened and
embedded before it is provided to the model. The model is a large Transformer
decoder with the same weights and architecture for all tasks and is trained solely
in a supervised manner. However, despite performing moderately in each task, the
approach cannot compete with specialised approaches in various tasks. Besides, it
is tested on a limited number of real-world robotics tasks.

Similarly, Driess et al. [41] introduce an embodied robotic task planning ap-
proach, PaLM-E, based on the PaLM LLM [32]. PaLM-E can work with multi-
ple modalities including vision and states as all modalities are embedded with
modality-specific encoders before being fed to the LLM. Inputs to the model are

23

Chapter 2. Related Work

Large Language Model
RGB

Image

Text

Action

Language

Proprio-
ception

To
ke

ni
se

r

Em
be

dd
er

D
et

ok
en

is
er

Figure 2.8: LLM-based bidirectional model architectures used in practice. These
models first tokenise all modalities in order to have a unified representation of
inputs. These tokenised inputs are embedded by encoders specific to each modality
before being fed to the LLM. The LLM forms the backbone of the architecture and
outputs target tokens, which are then dekotenised accordingly. The model outputs
are language (e.g. text) and action (e.g. end-effector poses).

multimodal sentences that interleave text with images and other embedded modal-
ities. The model then outputs text specific to the task such as planning steps, an-
swers to questions and descriptions of images. PaLM-E does not only perform well
on robotic manipulation planning tasks but also on various VQA tasks. Although
the model achieves impressive robotic manipulation planning performance, the ap-
proach requires an extra module to supply the robot with low-level outputs like
joint angles or end-effector poses for action execution. In Chapter 8, we introduce
the CrossT5 architecture, utilising the intra-LLM integration (i.e. the encoder-
decoder-based LLM employed is split in the middle to allow the integration of the
action representations via a crossmodal network), which can output joint angle
values and process potentially unrestricted language. Following that, in Chapter 9,
we present a minimally trained modular approach, leveraging out-of-the-box foun-
dation models, including a powerful VLM, which combines communication skills
and sensorimotor capabilities for a real-world HRI scenario.

As the successor of RT-1, RT-2 [21] leverages a VLM trained on large-scale
Internet image-text data (i.e. PaLM-E or PaLI-X [28]). The approach fine-tunes
the VLM on robotic tasks alongside vision-language tasks. This co-fine-tuning ap-
proach allows RT-2 to not only execute low-level actions but also generate high-
level action plans. RT-2 outperforms previous SOTA models such as its predecessor
RT-1, displaying emergent capabilities inherent in large VLMs. However, RT-2 is
a substantially large model with billions of parameters. It requires plenty of com-
putational resources and hence it is not possible to run it on a personal computer
with a single GPU. Furthermore, RT-2 requires a pre-trained large VL model as a
backbone, which itself is not widely available and trivial to train. More recently,
Open X-Embodiment Collaboration has introduced the RT-X models [175], as well
as a collection of 60 datasets that include 22 different robots and 527 robotic skills.
RT-X models have the same architecture as RT-1 and RT-2 but are trained on var-

24

2.3. Bidirectional Translation

ious robotic manipulators. This extension leads to a significant performance boost
across all tasks over task-specific models. Nevertheless, as they solely use SL and
do not benefit from RL, these models rely on large datasets and they can struggle
to generalise to cases where supervised data is scarce or unavailable. To address
the problem of overreliance on large datasets of labelled robot actions, we propose
the Crossmodal Bidirectional Transformer (XBiT) approach in Chapter 7. XBiT
first trains supervised on a relatively small dataset. After this pre-training, XBiT
is fine-tuned in the simulation environment via a simple online RL algorithm.
This two-stage training scheme, utilising supervised and reinforcement learning,
improves performance in action execution on multiple object manipulation tasks.

25

Chapter 2. Related Work

26

Chapter 3

One-to-Many Action-to-Language
Translation through Variation in

Latent Space

Language acquisition is an integral part of developmental robotics, which seeks to
understand the key components in human development and learn to utilise them
in artificial agents. Like human infants, robots can learn language while interacting
with objects in their environments and receiving linguistic input. This process, also
known as embodied language learning, can enhance language acquisition in robots
via multiple modalities such as visual and sensorimotor input. In this chapter, we
explore ways to translate each simple action in a tabletop environment into var-
ious linguistic commands, based on an existing approach which exploits the idea
of multiple autoencoders. While the existing approach focuses on strict one-to-one
mappings between actions and descriptions by implicitly binding two standard
autoencoders in the latent space, we propose a variational autoencoder model to
facilitate one-to-many mapping between actions and descriptions. Additionally,
we employ a channel-separated convolutional autoencoder to extract visual fea-
tures more effectively. The results show that our model outperforms the existing
approach in associating multiple commands with the corresponding action1.

3.1 Introduction

The linguistic capabilities of robots are still substantially inferior to humans al-
though there have been many attempts at natural human-robot communication
in recent years. Despite the recent success of LLMs in NLP applications such as
virtual assistants and chatbots, language learning requires multisensory capabili-
ties beyond processing text and images. Human infants, for example, use multiple
senses, i.e. hearing, sight, touch, smell and taste, when they learn language. Ac-
cording to Bisk et al. [19], embodiment (action taking in the environment) is the

1The code belonging to this chapter is available at https://github.com/oo222bs/PVAE.

27

https://github.com/oo222bs/PVAE

Chapter 3. One-to-Many Action-to-Language Translation through Variation

Figure 3.1: The NICO robot in the simulation environment: on the left, NICO is
sliding the yellow cube; on the right, NICO is pulling the violet cube. In both
segments, NICO’s field of view is shown in the top right insets.

needed next step after perception (using multimodal input) in language acquisition
and production. An embodied agent must be able to relate language to physical
control via sensory perception, as action and control open up new dimensions to
understanding and actively learning about the world [19]. With embodiment, nat-
ural language processing can be brought to a level at which it can be deployed in
realistic HRI contexts [19].

Embodied language learning is one of the main research topics in embodied
robotics [66, 67, 68, 125]. In a typical scenario, a robot would execute an action
and receive a description of the action. In well-structured environments, the com-
plexity and ambiguity of language can be overcome by strictly defining the corpus,
with each word having a distinct meaning. In this fashion, it is possible to trans-
late actions into descriptions. Nevertheless, this strict one-to-one mapping between
robot actions and linguistic descriptions is unnatural in human-to-human commu-
nication since we may use different words to describe the same action. In order
to break the premise of one-to-one binding, alternative descriptions can be used
to define an action, thereby facilitating one-to-many binding between action and
language.

In our scenario, we have a robot, i.e. NICO (Neuro-Inspired COmpan-
ion [85, 86]), interacting with cubes of different colours on a table in a simulation
environment using its arm and hand while descriptions of the actions are provided
(Figure 3.1). In this setup, we control the complexity of language and motion with
appropriate actions and descriptions (e.g. “push the red cube fast”, “pull the green
cube slowly”). Inspired by the work of Yamada et al. [185] with paired recurrent

28

3.2. Proposed Method: Paired Variational Autoencoders (PVAE)

autoencoders (PRAE), we propose a novel paired variational autoencoder (PVAE)
architecture to enable our robot to translate from action to language in a one-
to-many fashion. Our architecture is composed of two variational autoencoders:
one for language and one for action. These two autoencoders, which consist of
long short-term memory networks (LSTMs) [70], are integrated using Yamada et
al.’s [185] binding loss in the latent space. PVAE extends the action-to-description
translation capability of PRAE [185] by being capable of producing alternative
versions of a description from an action (one-to-one vs one-to-many association).
Aiming to address the research question of one-to-many association of actions and
descriptions, i.e. an action can be translated into different variations of a descrip-
tion, the novelty of our PVAE model is exploiting a Bayesian method, i.e. vari-
ational autoencoders [90], to deal with the inexactness of relationships between
actions and descriptions. PVAE learns from a dataset2 that pairs visual obser-
vations and kinematics of actions with their corresponding textual descriptions.
The robot actions are represented as sequences of joint angle values, and the vi-
sual input gathered from the egocentric perspective of the robot is extracted via
a novel channel-separated convolutional autoencoder (CS-CAE). Besides, the tex-
tual descriptions are fed into the network word by word as sentences with one-hot
encoding.

Our contribution, by introducing PVAE, is two-fold:

1. we show that employing variational autoencoders instead of standard au-
toencoders leads to a better one-to-many action-to-description translation
accuracy, especially with a larger corpus and more data, hence addresses the
linguistic ambiguity between an action and its probable descriptions;

2. the experiment results also indicate the superiority of channel separation
(i.e. channel-separated CAE) in visual feature extraction, leading to a more
accurate recognition of object colours where the objects cover only a small
portion of the visual field.

The rest of this chapter is divided into the following parts: in the next sec-
tion, we describe the PVAE architecture and its training in detail. In Section 3.3,
we explain the conducted experiments and present their results, comparing PVAE
with PRAE and channel-separated CAE with standard CAE. In Section 3.4, these
results are discussed, giving reasons for PVAE’s superior performance. Finally, Sec-
tion 3.5 summarises the chapter while hinting at future work.

3.2 Proposed Method: Paired Variational

Autoencoders (PVAE)

Following the PRAE approach [185], we use two recurrent autoencoders to learn
robot actions and the corresponding descriptions alongside the mapping between

2https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html

29

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html

Chapter 3. One-to-Many Action-to-Language Translation through Variation

Lz_var

Lz_mean

Lz LSTM LSTM LSTM

<BOS>

pull red <EOS>

pull fast

LSTM LSTM LSTM LSTM
Az_mean

Az_var

Az LSTM LSTM LSTM
j1 v1 j2 j3 jM vM j1

 ĵ2 ĵ3

Binding
Loss

Language
Encoder

Action
Encoder

Language
Decoder

Action
Decoder

y1 yN-1

v1 vM-1

Bottleneck (Latent Representations)

Sampling

Sampling

v2 ĵ2 ĵM-1v2 v3

y2

ĵM

x1 y1 y3
LSTM LSTM LSTMLSTM

pull red fast <EOS>x2 xNx3 x4
LSTM

<BOS>x1

Figure 3.2: The architecture of the PVAE model. The language VAE (depicted
with blue rectangles which denote unfolded LSTMs) is responsible for reconstruct-
ing descriptions and the action VAE (depicted with orange rectangles which de-
note unfolded LSTMs) is responsible for reconstructing the joint angles at each
time step. The input to the language VAE is a one-hot-encoded word of a given
description at a time, whereas the action VAE takes as input joint angle values
and visual features at a time. The two VAEs are implicitly bound via a binding
loss between their latent representations.

them in the latent space. Both autoencoders have a very similar architecture with
LSTMs for temporal sequence processing. Different from PRAE [185], instead of
regular autoencoders, we employ variational recurrent autoencoders (VRAE) [45],
in which latent vectors are randomly sampled from a normal distribution over la-
tent variables. Combining the capabilities of LSTMs and the Stochastic Gradient
Variational Bayes (SGVB) [90] allows us to have efficient unsupervised learning
on sequential data [45]. Moreover, following the advice of Yamada et al. [185] to
use a Bayesian method, we overcome the inevitable ambiguity of relations between
actions and descriptions. Thus, our approach can link an action with multiple lan-
guage instructions. The two variational autoencoders that form the PVAE architec-
ture are the language VAE and action VAE. The language VAE learns descriptions
in an unsupervised manner, while the action VAE learns joint angles conditioned
on the visual input similarly.

3.2.1 Model Architecture

As shown in Figure 3.2, the architecture consists of two VAEs: language and ac-
tion VAE. The input to the language VAE is a sentence describing a robot action.
The sentence is fed into the language encoder word by word using one-hot encod-
ing. After the encoding phase, the encoded representation is used to extract latent
representations using the reparameterisation trick [90], following the VRAE ap-
proach [45]. These latent representations are exploited in the decoder to reproduce
the sentence describing the action.

30

3.2. Proposed Method: Paired Variational Autoencoders (PVAE)

The action VAE has two types of input: robot joint angles and visual input
from the perspective of the robot. After the encoding, similar to the language
VAE, latent representations are extracted from encoded actions in the bottleneck.
The action decoder reproduces the joint angles from the latent representations,
conditioned on the visual features. The two VAEs have no explicit connection, but
they are integrated with a binding loss reducing the distance between two latent
variables, binding actions to descriptions bidirectionally.

3.2.2 Language Autoencoder

The language VAE encodes descriptions so that they can be reproduced by de-
coding. It has two components which are the language encoder and decoder. The
language encoder embeds a description of length N , (x1, x2, . . . , xN), into two fixed-
dimensional vectors, zmean and zsigma, with the following equations:

henct = EncCell
(
xt, h

enc
t−1

)
(1 ≤ t ≤ N), (3.1)

zmean = W enc
mean · hN + bencmean, (3.2)

zsigma = W enc
sigma · hN + bencsigma, (3.3)

zlang = zmean + zsigma · N
(
µ, σ2

)
, (3.4)

where EncCell is an LSTM, ht is the state of the LSTM at time step t, with h0
set as a zero vector. N is a Gaussian distribution with µ and σ as its mean and
standard deviation respectively. zlang is the latent representation of a description.
The language decoder generates a sequence by recursively expanding zlang:

hdec0 = W dec · zlang + bdec, (3.5)

hdect = DecCell
(
yt−1, h

dec
t−1

)
(1 ≤ t ≤ N − 1), (3.6)

yt = s
(
W out · hdect + bout

)
(1 ≤ t ≤ N − 1), (3.7)

where DecCell is an LSTM and s is the softmax activation function. y0 is given as
a first symbol indicating the beginning of the sentence.

3.2.3 Action Autoencoder

The action VAE encodes robot actions with its encoder, allowing its decoder to
reproduce them. Similar to the language VAE, it has two components: action en-
coder and action decoder. The action encoder encodes a sequence of length M ,
((j1, v1), (j2, v2), . . . , (jM , vM)), that concatenates joint angles, j, with visual fea-
tures, v, which are extracted from images by the channel-separated convolutional
autoencoder:

henct = EncCell
(
vt, jt, h

enc
t−1

)
(1 ≤ t ≤M), (3.8)

zmean = W enc
mean · hM + bencmean, (3.9)

zsigma = W enc
sigma · hM + bencsigma, (3.10)

zact = zmean + zsigma · N
(
µ, σ2

)
, (3.11)

31

Chapter 3. One-to-Many Action-to-Language Translation through Variation

where EncCell is an LSTM, ht is the state of the LSTM at time step t, with h0
set as a zero vector. N is a Gaussian distribution with µ and σ as its mean and
standard deviation respectively. zact is the latent representation of a robot action.
The action decoder reconstructs the joint angles:

hdec0 = W dec · zact + bdec, (3.12)

hdect = DecCell
(
vt, ȷ̂t, h

dec
t−1

)
(1 ≤ t ≤M − 1), (3.13)

ȷ̂t+1 = tanh
(
W out · hdect + bout

)
(1 ≤ t ≤M − 1), (3.14)

where DecCell is an LSTM, tanh is the hyperbolic tangent activation function and
ȷ̂1 is equal to j1.

3.2.4 Visual Feature Extraction

We follow the visual feature extraction architecture provided by Yamada et
al. [185]. Accordingly, our CS-CAE accepts 120× 160 RGB images gathered from
the egocentric view of the robot; it consists of a convolutional [92, 93, 94] encoder,
a fully connected bottleneck (from which latent representations are extracted) and
a deconvolutional [189] decoder. However, our CS-CAE is trained separately for
each channel (red, green and blue) to recognise different colours more accurately,
which we define as channel separation. After training, we extract the visual fea-
tures of each image for all channels from the bottleneck positioned between the
encoder and the decoder. The visual features extracted from each channel are then
concatenated to form the ultimate visual features v.

3.2.5 Sampling and Binding

The two VAEs have identical random sampling procedures. After producing the
latent variables, zmean and zsigma, using fully connected layers, a normal distribu-
tion, N (µ, σ2), is used to derive random latent representations, which are, in turn,
used with zmean and zsigma to arrive at the ultimate sample latent representation
z [90]:

z = zmean + zsigma · ϵ (3.15)

where ϵ is the approximation of N (µ, σ2) with µ = 0 and σ2 = 0.01.
Similar to PRAE [185], in order to bind the encodings of the language and

action VAEs, we use an extra loss term that brings zmean values of the two VAEs
closer. This allows the network to bidirectionally translate actions to descriptions
and vice versa after training, without an explicit fusion of the two modalities. The
loss term is given below:

Lbinding =
B∑
i

ψ
(
zlangmeani

, zactmeani

)
+

B∑
i

∑
j ̸=i

max{
0,∆ + ψ

(
zlangmeani

, zactmeani

)
− ψ

(
zlangmeanj

, zactmeani

)}
, (3.16)

32

3.3. Experiments and Results

where B stands for the batch size and ψ is the Euclidean distance. The first term in
the equation aligns the corresponding instructions and actions whereas the second
term helps distinguish irrelevant actions from descriptions. Hyperparameter ∆ is
used to adjust the second term.

3.2.6 Loss Function

The total loss function has three main components: reconstruction, regularisation
and binding loss. The binding loss is calculated for both VAEs together. In contrast,
the reconstruction and regularisation losses are calculated independently for each
VAE. The respective reconstruction loss for the language VAE, Llang, and action
VAE, Lact, are defined as:

Llang =
1

N − 1

N−1∑
t=1

(
−

W∑
w

xt+1(w) log yt(w)

)
, (3.17)

Lact =
1

M − 1

M−1∑
t=1

∥jt+1 − ȷ̂t+1∥22 , (3.18)

where W is the vocabulary size. The regularisation loss, which is specific to varia-
tional autoencoders, is defined as Kullback–Leibler divergence for language DKLlang

and action DKLact . Therefore, the overall loss function can be defined as:

Lall = αLlang + βLact + γLbinding + αDKLlang
+ βDKLact , (3.19)

where α, β and γ are weighting factors for different terms in the loss function. In
our experiments, α and β are set to 1 and γ is set to 2 to bind the two modalities
sufficiently.

3.2.7 Training Details

The model was trained with both networks (the language and action VAEs) to-
gether for 15,000 iterations and the gradient descent method was employed to
update the weights using the Adam optimiser [89]. The learning rate was set to
10−4 and the batch size was chosen as 100 (100 description and action pairs) after
preliminary studies.

3.3 Experiments and Results

The proposed PVAE is evaluated with two experiments of varying data sizes to
display the advantage of using variational autoencoders over regular autoencoders,
i.e. PRAE, and the benefit of using the channel separation technique in visual
feature extraction. We also analyse the impact of a larger corpus on action-to-
language translation. Therefore, in both experiments, our PVAE and Yamada et
al.’s PRAE [185] are trained on the same datasets and we evaluate their accuracy

33

Chapter 3. One-to-Many Action-to-Language Translation through Variation

in translating actions into descriptions. In addition, to see the effect of channel
separation on the overall translation accuracy, we train our architecture with visual
features provided by a regular CAE without channel separation. In all experiments,
two cubes of different colours are placed on a table where the robot is seated to
interact with the cubes. For the first experiment, each cube is one of three colours
(red, green, blue) and, for the second, one of six colours (red, green, blue, yellow,
cyan, violet). The words (vocabulary) that make up the descriptions are given in
Table 3.1. Two-word phrases like ‘move up’ are hyphenated (i.e. ‘move-up’) and
hence considered a single word for the one-hot encoding. We introduce a more
diverse vocabulary by adding an alternative word for every word belonging to the
original vocabulary.

Each cube arrangement has two cubes and these cubes are never of the same
colour. There are three action types (‘PUSH’, ‘PULL’, ‘SLIDE’), two positions (‘L’,
‘R’) and two speed settings (‘SLOW’, ‘FAST’): 12 possible actions. Each sentence
has three words (excluding the <BOS/EOS> tags which indicate the beginning
or end of a sentence) with the first word indicating the action, the second the
cube colour and the last the speed at which the action is taken (e.g. “push green
slowly”). Therefore, without the alternative words, there are 18 possible sentences
(3 action verbs × 3 colours × 2 adverbs). As a result, our dataset consists of six
cube arrangements (12 for the second experiment), 18×8 = 144 possible sentences
(36 × 8 = 288 for the second experiment – the factor of eight because of eight
alternatives for each sentence) and 12 actions (3× 2× 2). We have 72 patterns for
the first experiment (12 actions with six cube arrangements each) and 144 patterns
for the second. Following Yamada et al. [185], we choose the patterns (action-
description-arrangement combinations) rigorously ensuring that combinations of
action, description and cube arrangements selected for the test set do not exist in
the training set although every action, description and cube arrangement is shown
during training. Therefore, 54 patterns are used for training while the remaining 18
are for testing (second experiment: 108 for training, 36 for testing). Each pattern is
collected six times in the simulation with random variations on the action execution
resulting in different joint trajectories. Additionally, we use 4-fold cross-validation
to provide more reliable results.

Table 3.1: Dataset Vocabulary with Original Words and Their Alternatives

Original Alternative Original Alternative

push move-up yellow blonde

pull move-down cyan greenish-blue

slide move-sideways violet purple

red scarlet slowly unhurriedly

green harlequin fast quickly

blue azure

34

3.3. Experiments and Results

Table 3.2: Experiment 1: Action-to-Description Accuracy with Three Colours

Method Training Acc. Test Acc.

PRAE + regular CAE 33.33 ± 1.31% 33.56 ± 3.03%

PVAE + regular CAE 66.6 ± 1.31% 65.28 ± 6.05%

PVAE + CS-CAE 100.0 ± 0.0% 90.28 ± 4.61%

The robot used in our experiments is NICO (Neuro-Inspired COmpanion) [85,
86] in a virtual environment created with the Blender software – see Figure 3.1.
NICO is a humanoid robot, approximately one metre tall and weighs approximately
20 kg. We use the left arm of NICO to interact with the objects utilising five joints.
Actions are realised with an inverse kinematics solver. NICO has a camera in each
of its eyes, which is used to extract egocentric visual images.

3.3.1 Experiment 1: Three Colour Alternatives

We use the same instructions and actions as in the PRAE paper [185], e.g. “PUSH-
R-SLOW” which can be interpreted as ”push the right object slowly”. Similarly,
we use three colour options for the cubes following PRAE. In addition, the in-
structions are extended by adding an alternative for each word in the vocabulary.
Hence, the vocabulary size of 9 is extended to 17 (we do not add an alternative
for <BOS/EOS> tags). As every sentence is composed of three words, we extend
the number of sentences by a factor of eight (23 = 8).

After training our PVAE and PRAE, we test them for action-to-description
translation. For the reproduced description to count as correct, all three words (plus
the <BOS/EOS> tag) must be correctly predicted. As each description has seven
more alternatives, predicting any of the eight correct descriptions is considered
successful. As can be seen in Table 3.2, our model translates approximately 90%
of the patterns in the test set (last row), while PRAE translates only one third of
the patterns. Thus, our model outperforms PRAE in one-to-many mapping.

We also test the impact of channel separation on the translation accuracy by
training our model with visual features extracted with the regular CAE as de-
scribed in Yamada et al.’s approach [185]. In Table 3.2, we can see that using
our variational approach alone significantly increases the accuracy. Nevertheless,
using PVAE with channel-separated CAE improves the results further, indicating
the superiority of channel separation in our tabletop setting. Therefore, our ap-
proach with variational autoencoders and a channel-separated CAE is superior to
both PRAE and PVAE with regular visual feature extraction in this experiment,
involving three colours.

35

Chapter 3. One-to-Many Action-to-Language Translation through Variation

Table 3.3: Experiment 2: Action-to-Description Accuracy with Six Colours

Method Training Acc. Test Acc.

PRAE + regular CAE 33.64 ± 1.13% 33.3 ± 0.98%

PVAE + regular CAE 69.60 ± 0.46% 61.57 ± 2.01%

PVAE + CS-CAE 100.0 ± 0.0% 100.0 ± 0.0%

3.3.2 Experiment 2: Six Colour Alternatives

To test the limits of our PVAE and the impact of more data with a larger corpus,
we add three more colour options for the cubes: yellow, cyan and violet. These
secondary colours are combined amongst themselves for the arrangements in ad-
dition to the colour combinations used in the first experiment, i.e. a cube of a
primary colour and a cube of a secondary colour do not co-occur. Therefore, this
experiment has 12 arrangements. Moreover, the vocabulary size is extended to 23
compared with 17 in Experiment 1 (two alternative words for each colour – see
Table 3.1). As in the first experiment, each sentence has eight alternative ways to
be described.

We train both PVAE and PRAE on the extended dataset from scratch and test
both architectures. As shown in Table 3.3, PVAE succeeds in performing 100% by
translating every pattern from action to description correctly, even for the test set.
In contrast, PRAE performs poorly in this setting and manages to translate only
one third of the descriptions correctly in the test set. Compared with the accuracy
values reached in the first experiment with less data and a smaller corpus, extending
the dataset helps PVAE to perform better in translation, while PRAE is not able
to take advantage of more data.

As in Experiment 1, we also test the influence of channel separation on trans-
lation accuracy by training PVAE with visual features provided by a regular CAE.
In this setting, PVAE only achieves around 61% of accuracy in the test set. This
highlights again the importance of channel separation in visual feature extraction
for our setup. while the improvement by using our PVAE over PRAE is significant,
further improvement is made by utilising CS-CAE.

3.4 Discussion

The results from both experiments show that our variational autoencoder approach
with a channel-separated CAE visual feature extraction outperforms the standard
autoencoder approach, i.e. PRAE, in the one-to-many translation of actions into
language commands. Our approach not only proved more successful in the case of
three colour alternatives per cube but also in the case of six colour alternatives by
a large margin. Specifically, when the dataset and the corpus were extended, our
PVAE model performed better, proving that a Bayesian method like variational

36

3.5. Conclusion

autoencoders can scale up with more data for generalisation; on the contrary,
standard autoencoders cannot capitalise on more data. Moreover, standard au-
toencoders are fairly limited when it comes to handling ambiguity in linguistic
input. In contrast, variational autoencoders yield remarkably better results in one-
to-many mapping between actions and descriptions, because stochastic generation
(random normal distribution) within the latent feature extraction allows latent
representations to slightly vary, leading to VAEs learning not only one specific de-
scription but various descriptions for each action. Moreover, analysing the specific
case in which we train our PVAE with visual features extracted by the standard
CAE demonstrates that separating the channels of CAE helps to increase distin-
guishing objects of different colours significantly with a visual input in our setup
in which the objects cover only a modest portion of the visual field.

On the one hand, the translation accuracy results of PRAE show that adding
more data (i.e. more colour options) does not help regular autoencoders bind ac-
tions with descriptions more successfully in the case of one-to-many mapping. In
fact, the results of PRAE on both experiments are very similar, which also indicates
that regular autoencoders are not suitable for this task as they do not respond well
to data with more variations.

On the other hand, our PVAE performs even better with more colour alterna-
tives when trained with visual features extracted by the channel-separated CAE.
This shows the importance of larger and more varied data in one-to-many map-
ping. When compared with our PVAE and channel-separated CAE approach, the
‘PVAE + regular CAE’ option yields significantly lower translation accuracy, which
exhibits the importance of visual input since the channel-separated CAE performs
a more accurate visual feature extraction than a standard CAE in our setup. A sig-
nificant number of errors for the ‘PVAE + regular CAE’ case was caused by failing
to distinguish colours, e.g. “push green slowly” instead of “push red slowly”.

3.5 Conclusion

PVAE has extended one-to-one mapping between actions and descriptions to one-
to-many mapping by employing variational autoencoders to tackle the ambiguity
of various descriptions describing the same action. Besides, we have shown that in
tabletop scenarios with the objects covering only a small portion of the visual field,
it is plausible to use a channel-separated CAE to distinguish objects of different
colours. The experimental results show that our approach with variational and
channel-separated autoencoders outperforms the standard autoencoder approach
PRAE in one-to-many action-to-description translation. Moreover, our PVAE net-
work performs even better with more data and a larger corpus, suggesting that
Bayesian methods like VAEs may scale up well with more data. In real-world ap-
plications, exploiting Bayesian methods may lead to profiting from larger and more
complex data.

In the next chapter, we will introduce the PVAE-BERT model which extends
the PVAE architecture with a pre-trained language model, i.e. BERT. PVAE-

37

Chapter 3. One-to-Many Action-to-Language Translation through Variation

BERT furthers the linguistic capabilities of action-language modelling by allowing
the network to comprehend more diverse and natural language instructions such
as full commands and polite requests.

38

Chapter 4

Advanced Language
Comprehension via a Pre-trained

Language Model

Human infants learn language while interacting with their environment in which
their caregivers may describe the objects and actions they perform. Similar to hu-
man infants, artificial agents can learn language while interacting with their envi-
ronment. In this chapter, first, we present a neural model that bidirectionally binds
robot actions and their matching language descriptions in a simple object manipu-
lation scenario. Building on our previous Paired Variational Autoencoders (PVAE)
model, we demonstrate the superiority of the variational autoencoder over stan-
dard autoencoders by experimenting with cubes of different colours and enabling
the production of alternative vocabularies. Additional experiments show that the
model’s channel-separated visual feature extraction module can cope with objects
of varying shapes. Next, we introduce PVAE-BERT, which equips the model with a
pre-trained large-scale language model, i.e. Bidirectional Encoder Representations
from Transformers (BERT), enabling the model to go beyond comprehending only
the predefined descriptions that the network has been trained on; the recognition
of action descriptions generalises to unconstrained natural language as the model
becomes capable of understanding unlimited variations of the same descriptions.
Our experiments suggest that using a pre-trained language model as the language
encoder allows our approach to scale up for real-world scenarios with instructions
from human users1.

4.1 Introduction

Humans use language as a means to understand and to be understood by their
interlocutors. Although we can communicate effortlessly in our native language,
language is a sophisticated form of interaction which requires comprehension and

1The code of this chapter is available at https://github.com/oo222bs/PVAE-BERT.

39

https://github.com/oo222bs/PVAE-BERT

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

Figure 4.1: Our tabletop object manipulation scenario in the simulation environ-
ment: the NICO robot interacts with toy objects. In the left panel, NICO views all
the toy objects; on the right, NICO pulls the red house. In both panels, NICO’s
field of view is given in the top right inset. Note that the left panel displays all the
toy objects for illustrative purposes. In all our experiments, only two objects are
placed on the table, as exemplified in the right panel.

production skills. Understanding language depends also on the context, because
words can have multiple meanings and a situation can be explained in many ways.
As it is not always possible to describe a situation only in language or understand
it only with the medium of language, we benefit from other modalities such as
vision and proprioception. Similarly, artificial agents can utilise the concept of
embodiment (i.e. acting in the environment) in addition to perception (i.e. using
multimodal input like audio and vision) for better comprehension and production
of language [19]. Human infants learn language in their environment while their
caregivers describe the properties of the objects, which they interact with, and the
actions, which are performed on those objects. In a similar vein, artificial agents
can be taught language; different modalities such as audio, touch, proprioception
and vision can be employed towards learning language in the environment.

The field of artificial intelligence has recently seen many approaches attempt-
ing to learn language in an embodied fashion [7, 26, 68, 107, 125]. In this work,
we bidirectionally map language with robot actions by employing three distinct
modalities, i.e. text, proprioception and vision. In our robotic scenario, two ob-
jects are placed on a table as the NICO (Neuro-Inspired COmpanion) robot [86]
physically interacts with them (see Figure 4.1). NICO moves objects along the
table surface according to given textual descriptions and recognises the actions
by translating them to corresponding descriptions. The possibility of bidirectional

40

4.1. Introduction

translation between language and control was realised with a paired recurrent
autoencoder (PRAE) architecture by Yamada et al. [185], which aligns the two
modalities that are each processed by an autoencoder. We extended this approach
(PRAE) with the Paired Variational Autoencoders (PVAE) [136] model, which
enriches the language used to describe the actions taken by the robot: instead of
mapping a distinct description to each action [185], PVAE maps multiple descrip-
tions, which are equivalent in meaning, to each action. Hence, we have transcended
the strict one-to-one mapping between control and language since our variational
autoencoder-based model can associate each robot action with multiple descrip-
tion alternatives. PVAE is composed of two variational autoencoders (VAEs), one
for language, the other for action, and both of them consist of an LSTM (long
short-term memory) [70] encoder and decoder which are suitable for sequential
data. The dataset2 that we train our model on consists of paired textual descrip-
tions and corresponding joint angle values with egocentric images. The language
VAE reconstructs descriptions, whereas the action VAE reconstructs joint angle
values that are conditioned on the visual features extracted in advance by the
channel-separated convolutional autoencoder (CS-CAE) [136] from egocentric im-
ages. The two autoencoders are implicitly bound together with an extra loss term
which aligns actions with their corresponding descriptions and separates unrelated
actions and descriptions in the hidden vector space.

However, even with multiple descriptions mapped to a robot action as imple-
mented in our previous work [136] and described in Chapter 3, replacing each word
with its alternative does not lift the grammar restrictions on the language input.
In order to process unconstrained language input, we equip the PVAE architecture
with the Bidirectional Encoder Representations from Transformers (BERT) lan-
guage model [35] that has been pre-trained on large-scale text corpora to enable
the recognition of unconstrained natural language commands by human users. To
this end, we replace the LSTM language encoder with a pre-trained BERT model
so that PVAE can recognise different commands corresponding to the same actions
as the predefined descriptions given the same object combinations on the table.
This new model variant, which we call PVAE-BERT, can handle not only the de-
scriptions it is trained on but also various descriptions equivalent in meaning with
different word order and/or filler words (‘please’, ‘could’, ‘the’, etc.) as our analysis
shows. We capitalise on transfer learning by utilising a pre-trained language model
and thus benefit from large unlabelled textual data.

Our contributions in this chapter can be summarised as follows.

1. In Chapter 3, we showed that variational autoencoders facilitate better one-
to-many action-to-language translation and that channel separation in visual
feature extraction, i.e. training RGB channels separately, results in more
accurate recognition of object colours in our object manipulation scenario.
Here, we extend our dataset with different shapes and show that our PVAE
with the channel separation approach is able to translate from action to
language while manipulating different objects.

2https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html

41

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

2. In this chapter, we introduce PVAE-BERT, which, by using pre-trained
BERT, indicates the potential of our approach to be scaled up for uncon-
strained instructions from human users.

3. The principal component analysis (PCA) shows that language and action
representation vectors are arranged according to the semantics of the lan-
guage descriptions.

The remainder of this chapter is organised as follows: the next section presents
the architecture of the PVAE and PVAE-BERT models. In Section 4.3 various
experiments and their results are given. Section 4.4 discusses the results and their
implications. The last section concludes the paper with final remarks.

4.2 Proposed Method: PVAE-BERT

Lz_var

Lz_mean

Lz LSTM LSTM LSTM

<BOS>

pull red <EOS>

pull fast

LSTM LSTM LSTM LSTM
Az_mean

Az_var

Az LSTM LSTM LSTM
j1 v1 j2 j3 jM vM j1

 ĵ2 ĵ3

Binding
Loss

Language
Encoder

Action
Encoder

Language
Decoder

Action
Decoder

y1 yN-1

v1 vM-1

Bottleneck (Latent Representations)

Sampling

Sampling

v2 ĵ2 ĵM-1v2 v3

y2

ĵM

x1 y1 y3

'pull red
fast' LSTM or BERT

Figure 4.2: The architecture of the PVAE and PVAE-BERT models. The language
VAE (blue rectangles) processes descriptions, while the action VAE (orange rectan-
gles) processes joint angles and images at each time step. The input to the language
VAE is the given description x, whereas the action VAE takes as input joint angle
values j and visual features v. The two VAEs are implicitly bound via a binding
loss in the latent representation space. <BOS> and <EOS> denote beginning of
sentence and end of sentence tags respectively. The two models differ solely in the
language encoder used: PVAE employs an LSTM, whereas PVAE-BERT utilises a
pre-trained BERT model.

As can be seen in Figure 4.2, the PVAE model consists of two variational
autoencoders: a language VAE and an action VAE. The former learns to generate
descriptions matching original descriptions, while the latter learns to reconstruct
joint angle values with conditioning on the visual input. The two autoencoders do
not have any explicit neural connection between them; instead, they are implicitly
aligned by the binding loss, which brings the two autoencoders closer to each other
in the latent space over the course of learning by reducing the distance between

42

4.2. Proposed Method: PVAE-BERT

the two latent variables. First, action and language encoders map the input to the
latent code, i.e. the language encoder accepts one-hot encoded descriptions word by
word as input and produces the encoded descriptions, whereas the action encoder
accepts corresponding arm trajectories and visual features as input and produces
the encoded actions. Next, the encoded representations are used to extract latent
representations by randomly sampling from a Gaussian distribution separately for
language and action modalities. Finally, from the latent representations, language
and action decoders reconstruct the descriptions and joint angle values respectively.

Our model is a bidirectional approach, i.e. after training, translation is possible
in both directions, action-to-language and language-to-action. The PVAE model
transforms robot actions into descriptions in a one-to-many fashion by appropri-
ately randomising the latent space. PVAE-BERT additionally handles variability
in language input by using pre-trained BERT as the language encoder module. As
part of the action encoder, the visual input features are extracted in advance using
a channel-separated CAE, which improves the ability of the approach to distin-
guish the colours of cubes. The details of each model component are given in the
following subsections.

4.2.1 Language Variational Autoencoder

The language VAE accepts as input one-hot encoded matrix of a description word
by word in the case of PVAE or the complete description altogether for PVAE-
BERT, and for both PVAE and PVAE-BERT, it is responsible for reproducing the
original description. It consists of an encoder, a decoder and latent layers (in the
bottleneck) where latent representations are extracted via sampling. For PVAE,
the language encoder embeds a description of length N , (x1, x2, . . . , xN), into two
fixed-dimensional vectors, zmean and zsigma, as follows:

henct , cenct = LSTM
(
xt, h

enc
t−1, c

enc
t−1

)
(1 ≤ t ≤ N), (4.1)

zmean = W enc
mean · hN + bencmean, (4.2)

zvar = W enc
var · hN + bencvar , (4.3)

zlang = zmean + zvar · N
(
µ, σ2

)
, (4.4)

where ht and ct are the hidden and cell state of the LSTM at time step t respec-
tively, and N is a Gaussian distribution with mean µ and standard deviation σ.
h0 and c0 are set as zero vectors, while µ and σ are 0 and 0.1 respectively. zlang
is the latent representation of a description. LSTM here, and in the following, is
a peephole LSTM [152] following the implementation of Yamada et al. [185]. The
language input is represented in one-hot encoded matrices, whose rows represent
the sequence of input words and columns represent every word included in the
vocabulary. In each row, only one cell is 1 and the rest are 0 which determines the
word given to the model at that time step.

For PVAE-BERT, we replace the LSTM language encoder with the pre-trained
BERTBASE model, and following the implementation by Devlin et al. [35], we

43

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

tokenise the descriptions accordingly with the subword-based tokeniser Word-
Piece [184].

The language decoder LSTM generates a sequence by recursively expanding
zlang:

hdec0 , cdec0 = W dec · zlang + bdec, (4.5)

hdect , cdect = LSTM
(
yt−1, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤ N − 1), (4.6)

yt = soft
(
W out · hdect + bout

)
(1 ≤ t ≤ N − 1), (4.7)

where soft denotes the softmax activation function. y0 is the first symbol indicating
the beginning of the sentence, hence the <BOS> tag.

4.2.2 Action Variational Autoencoder

The action VAE accepts a sequence of joint angle values and visual features as
input; it is responsible for reconstructing the joint angle values. Similar to the
language VAE, it is composed of an encoder, a decoder and latent layers (in the
bottleneck) where latent representations are extracted via sampling. The action
encoder encodes a sequence of length M , ((j1, v1), (j2, v2), . . . , (jM , vM)), which
includes concatenation of joint angles j and visual features v. Note that the visual
features are extracted by the channel-separated CAE beforehand. The equations
that define the action encoder are as follows3:

henct , cenct = LSTM
(
vt, jt, h

enc
t−1, c

enc
t−1

)
(1 ≤ t ≤M), (4.8)

zmean = W enc
mean · hM + bencmean, (4.9)

zvar = W enc
var · hM + bencvar , (4.10)

zact = zmean + zvar · N
(
µ, σ2

)
, (4.11)

where ht and ct are the hidden and cell state of the LSTM at time step t respec-
tively, and N is a Gaussian distribution with mean µ and standard deviation σ.
h0 and c0 are set as zero vectors, while µ and σ are set as 0 and 0.1 respectively.
zact is the latent representation of a robot action.

The action decoder reconstructs the joint angles:

hdec0 , cdec0 = W dec · zact + bdec, (4.12)

hdect , cdect = LSTM
(
vt, ȷ̂t, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤M − 1), (4.13)

ȷ̂t+1 = tanh
(
W out · hdect + bout

)
(1 ≤ t ≤M − 1), (4.14)

where tanh denotes the hyperbolic tangent activation function and ȷ̂1 is equal to
j1, i.e. joint angle values at the initial time step.

3To ensure clarity, we use primarily the same symbols in the equations as those used in the
language VAE equations.

44

4.2. Proposed Method: PVAE-BERT

4.2.3 Visual Feature Extraction

Following Yamada et al. [185], we utilise a convolutional autoencoder architecture
to extract the visual features of the images. Different from the approach used by
Yamada et al. [185], we change the number of input channels the model accepts
from three to one and train an instance of CAE for each colour channel (red, green
and blue) to recognise different colours more accurately, which we define as channel
separation. Therefore, we call our visual perception model the channel-separated
CAE (CS-CAE). The idea behind the channel-separated CAE is similar to depth-
wise separable convolutions [31], where completely separating cross-channel con-
volutions from spatial convolutions leads to better results in image classification
as the network parameters are used more efficiently. The CS-CAE accepts a colour
channel of 120× 160 RGB images captured by the cameras in the eyes of NICO –
referred to also as the egocentric view of the robot – at a time. As can be seen in
detail in Table 4.1, it consists of a convolutional encoder, a fully connected bottle-
neck, which incorporates hidden representations, and a deconvolutional decoder.
After training for each colour channel, we extract the visual features of each image
for every channel from the middle layer in the bottleneck (FC 3). The visual fea-
tures extracted from each channel are then concatenated to constitute the ultimate
visual features v.

Table 4.1: Detailed Architecture of Channel-Separated Convolutional Autoencoder

Block Layer Out. Channels Kernel Size Stride Padding Activation

Encoder

Conv. 1 8 4x4 2 1 ReLU

Conv. 2 16 4x4 2 1 ReLU

Conv. 3 32 4x4 2 1 ReLU

Conv. 4 64 8x8 5 2 ReLU

Bottleneck

FC 1 384 - - - -

FC 2 192 - - - -

FC 3 10 - - - -

FC 4 192 - - - -

FC 5 384 - - - -

Decoder

Deconv. 1 32 8x8 5 2 ReLU

Deconv. 2 16 4x4 2 1 ReLU

Deconv. 3 8 4x4 2 1 ReLU

Deconv. 4 1 4x4 2 1 Sigmoid

Channel separation increases the use of computational resources compared to
the standard convolution approach because it essentially uses three separate mod-
els. Although these models are identical, they do not share weights. The number
of model parameters is about three times that of the standard approach. There-
fore, it requires roughly three times more computational power than the standard

45

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

approach. Nonetheless, channel separation excels at distinguishing the colours of
objects as evidenced by our experiments.

4.2.4 Sampling and Binding

Stochastic Gradient Variational Bayes-based sampling (SGVB) [90] enables one-
to-many mapping between action and language. The two VAEs have identical
random sampling procedures. After producing the latent variables, zmean and zvar,
via the fully connected layers, we utilise a normal distribution, N (µ, σ2), to derive
random values, ϵ, which are in turn used with zmean and zvar to arrive at the latent
representation z, which is also known as the reparameterisation trick [90]:

z = zmean + zvar · ϵ, (4.15)

where ϵ is the approximation of N (µ, σ2) with the mean, µ, set to 0 and the
variance, σ2, set to 0.01.

As in the case of PRAE [185], to align the latent representations of robot
actions and their descriptions, we use an extra loss term that brings the mean
hidden features, zmean, of the two VAEs closer to each other. This enables bidi-
rectional translation between action and language, i.e. the network can transform
actions into descriptions as well as descriptions into actions, after training without
an explicit fusion of the two modalities. This loss term, i.e. binding loss, can be
calculated as follows:

Lbinding =
B∑
i

ψ
(
zlangmeani

, zactmeani

)
+

B∑
i

∑
j ̸=i

max{
0,∆ + ψ

(
zlangmeani

, zactmeani

)
− ψ

(
zlangmeanj

, zactmeani

)}
, (4.16)

where B stands for the batch size and ψ is the Euclidean distance. The first term
in the equation binds the paired instructions and actions, whereas the second term
separates unpaired actions and descriptions. Hyperparameter ∆ is used to adjust
the separation margin for the second term – the higher it is, the further apart the
unpaired actions and descriptions are pushed in the latent space.

4.2.5 Loss Function

The overall loss is calculated as the sum of the reconstruction, regularisation and
binding losses. The binding loss is calculated for both VAEs jointly. In contrast,
the reconstruction and regularisation losses are calculated independently for each
VAE. Following PRAE [185], the reconstruction losses for the language VAE (cross
entropy between input and output words) and action VAE (Euclidean distance

46

4.2. Proposed Method: PVAE-BERT

between original and generated joint values) are Llang and Lact respectively:

Llang =
1

N − 1

N−1∑
t=1

(
−

V−1∑
i=0

x
[i]
t+1 log y

[i]
t

)
, (4.17)

Lact =
1

M − 1

M−1∑
t=1

∥jt+1 − ȷ̂t+1∥22 , (4.18)

where V is the vocabulary size, N is the number of words per description and M
is the sequence length for an action trajectory. The regularisation loss is specific
to variational autoencoders; it is defined as the Kullback-Leibler divergence for
languageDKLlang

and actionDKLact . Therefore, the overall loss function is as follows:

Lall = αLlang + βLact + γLbinding + αDKLlang
+ βDKLact , (4.19)

where α, β and γ are weighting factors for different terms in the loss function. In
our experiments, α and β are set to 1, while γ is set to 2 in order to bind the two
modalities effectively.

4.2.6 Transformer-Based Language Encoder

For the model to understand unconstrained language input from non-expert hu-
man users, we replace the LSTM for the language encoder with a pre-trained
BERTBASE language model [35] – see Figure 4.2. According to Devlin et al. [35],
BERT is pre-trained with the BooksCorpus, which involves 800 million words,
and English Wikipedia, which involves 2.5 billion words. With the introduction of
BERT as the language encoder, we assume that PVAE-BERT can interpret action
descriptions correctly in our scenario. However, since language models like BERT
are pre-trained exclusively on textual data from the internet, they are not spe-
cialised for object manipulation environments like ours. Therefore, the embedding
of an instruction like ‘push the blue object’ may not differ from the embedding
of another such as ‘push the red object’ significantly. For this reason, we fine-
tune the pre-trained BERTBASE, i.e. all of BERT’s parameters are updated, during
the end-to-end training of PVAE-BERT so that it can separate similar instructions
from each other, which is critical to our scenario.

4.2.7 Training Details

To train PVAE and PVAE-BERT, we first extract visual features using our CS-
CAE. The visual features are used to condition the actions depending on the cube
arrangement, i.e. the execution of a description depends also on the position of
the target cube. For both PVAE and PVAE-BERT, the action encoder and action
decoder are each a two-layer LSTM with a hidden size of 100, while the language
decoder is a single-layer LSTM with the same hidden size. In contrast, the language
encoder of PVAE-BERT is the pre-trained BERTBASE model with 12 layers, each
with 12 self-attention heads and a hidden size of 768, whereas the language encoder

47

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

of PVAE is a one-layer LSTM with a hidden size of 100. Both PVAE and PVAE-
BERT are trained end-to-end with both the language and action VAEs together.
PVAE and PVAE-BERT are trained for 20,000 and 40,000 iterations respectively,
with the gradient descent algorithm and Adam optimiser [89]. We take the learning
rate as 10−4 with a batch size of 100 pairs of language and action sequences after a
few trials with different learning rates and batch sizes. Due to having approximately
110M parameters, compared with PVAE’s approximately 465K parameters, an
iteration of PVAE-BERT training takes about 1.4 times longer than an iteration
of PVAE training. Therefore, it takes about 2.8 times longer to train PVAE-BERT
in total.

4.3 Experiments and Results

We evaluate the performance of our PVAE and its variant using BERT, namely
PVAE-BERT, with multiple experiments. First, we compare the original PVAE
with PRAE [185] in terms of action-to-language translation by conducting exper-
iments of varying object colour options to display the superiority of variational
autoencoders over regular autoencoders and the advantage of using the channel
separation technique in visual feature extraction. Different object colour possibil-
ities correspond to a different corpus and overall dataset size; the more object
colour options there are, the larger both the vocabulary and the overall dataset
become. Therefore, with these experiments, we also test the scalability of both
approaches. In order to show the impact of channel separation on the action-to-
language translation performance, we train our architecture with visual features
provided by a regular CAE (no channel separation) as implemented by Yamada et
al. [185]. Overall, these experiments are Experiment 1a (with 3 cube colour al-
ternatives: red, green, blue) and Experiment 1b (with 6 cube colour alternatives:
red, green, blue, yellow, cyan, violet) – see Table 4.3.

Moreover, in Experiment 2, we train PVAE-BERT on the dataset with 6
colour alternatives (red, green, blue, yellow, cyan, violet) to compare it with
the standard PVAE by conducting action-to-language, language-to-action and
language-to-language evaluation experiments. Unlike machine translation which
requires translating from one natural language to another, in our language-to-
language translation experiments, the model should produce the ground-truth lan-
guage description when given the same description or one of its variations (e.g.
different word order) as input. Experiment 2 uses the pre-trained BERT as the
language encoder which is then fine-tuned with the rest of the model during train-
ing.

In Experiments 1a, 1b and 2, two cubes of different colours are placed on a
table at which the robot is seated to interact with them. The words (vocabulary)
that constitute the descriptions are given in Table 4.2. We introduce a more diverse
vocabulary by adding an alternative word for each word in the original vocabulary.
As descriptions are composed of 3 words with two alternatives per word, we arrive
at 8 variations for each description of a given meaning. Table 4.2 does not include

48

4.3. Experiments and Results

Table 4.2: Vocabulary with Original and Alternative Words

Component Original Alternative

push move-up

pull move-downVerb

slide move-sideways

Colour

red scarlet

green harlequin

blue azure

yellow blonde

cyan greenish-blue

violet purple

Speed
slowly unhurriedly

fast quickly

nouns because we use a predefined grammar, which does not involve a noun, and
the same-sized cubes for these experiments.

For each cube arrangement, the colours of the two cubes always differ to avoid
ambiguities in the language description. Actions, which are transcribed in capitals,
are composed of any of the three action types PUSH, PULL, SLIDE, two positions
LEFT, RIGHT and two speed settings SLOWLY, FAST, resulting in 12 possible
actions (3 action types×2 positions×2 speeds), e.g. PUSH-LEFT-SLOWLY means
pushing the left object slowly. Every sentence is composed of three words (excluding
the <BOS/EOS> tags which denote beginning of sentence or end of sentence) with
the first word indicating the action, the second the cube colour and the last the
speed at which the action is performed (e.g. ‘push green slowly’). Therefore,
without the alternative words, there are 18 possible sentences (3 action verbs ×
3 colours × 2 adverbs) for Experiment 1a, whereas for Experiment 1b and 2, the
number of sentences is 36 as 6 cube colours are used in both experiments. As
a result, our dataset consists of 6 cube arrangements (3 colour alternatives and
the colours of the two cubes on the table never match) for Experiment 1a, 12
cube arrangements for Experiments 1b and 2 (3 secondary colours are used in
addition to 3 primary colours, and secondary and primary colours are mutually
exclusive), 18×8 = 144 possible sentences for Experiment 1a, 36×8 = 288 possible
sentences for Experiments 1b and 2 with alternative vocabulary (see Table 4.2)
– the factor of 8 because of eight alternatives per sentence. We have 72 patterns
(action-description-arrangement combinations) for Experiment 1a (12 actions with
six cube arrangements each) and 144 patterns for Experiments 1b and 2.

As in Section 3.3, we choose the patterns rigorously to ensure that the com-
binations of action, description and cube arrangements used in the test set are

49

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

excluded from the training set, while the training set includes all possible com-
binations of action, description and cube arrangements that are not in the test
set. For Experiment 1a, 54 patterns are used for training while the remaining 18
for testing, whereas for Experiments 1b and 2, 108 patterns are for training, 36
for testing. Each pattern is collected six times in the simulation environment with
random variations on the action execution resulting in different joint trajectories.
We also use 4-fold cross-validation to provide more reliable results (see Table 4.3)
for Experiment 1.

Experiment 1c tests for different shapes, other than cubes: we perform the
same actions on toy objects, which are a car, duck, cup, glass, house and lego brick.
For testing the shape processing capability of the model, all objects are of the same
colour, namely yellow. Analogous to the other experiments, two objects of different
shapes are placed on the table. We keep the actions as they are but replace the
colours with object names in the descriptions. Before we extract the visual features
from the new images, we train both the regular CAE and the channel-separated
CAE with them. Similar to Experiments 1a and 1b, we experiment with three
methods: PRAE with standard CAE, PVAE with standard CAE and PVAE with
channel-separated CAE.

We use NICO in a virtual environment created with Blender4 for our experi-
ments (see Figure 4.1). NICO is a humanoid robot that has a height of approx-
imately one metre and a weight of about 20 kg. The left arm of NICO is used
to interact with the objects while utilising 5 joints. Actions are realised using the
inverse kinematics solver provided by the simulation environment: for each action,
first, the starting point and endpoint are adjusted manually, then, the Gaussian
deviation is applied around the starting point and endpoint to generate the varia-
tions of the action, ensuring that there is a slight difference in the overall trajectory.
NICO has a camera in each of its eyes, which is used to extract egocentric visual
images.

4.3.1 Experiment 1: Action-to-Language Translation with
Different Colours and Shapes

We use the same actions as those used by Yamada et al. [185], such as PUSH-
RIGHT-SLOWLY. We use three colour options for the cubes as in the PRAE
paper [185] for Experiment 1a, but six colours for Experiment 1b. In addition, we
extend the descriptions in the PRAE paper [185] by adding an alternative for each
word in the original vocabulary. Hence, the vocabulary size of 9 is extended to 17
for Experiment 1a and the vocabulary size of 11 is extended to 23 for Experiment
1b – note that we do not add an alternative for <BOS/EOS> tags. Since every
sentence consists of three words, we extend the number of sentences by a factor of
eight (23 = 8).

After training PVAE and PRAE on the same training set, we test them for
action-to-language translation. We consider only those produced descriptions in

4https://www.blender.org/

50

4.3. Experiments and Results

Table 4.3: Action-to-Language Translation Accuracies at Sentence Level

Method Experiment 1a (3 colours) Experiment 1b (6 colours) Experiment 1c (6 shapes)

Training Test Training Test Training Test

PRAE + reg. CAE 33.33 ± 1.31% 33.56 ± 3.03% 33.64 ± 1.13% 33.33 ± 0.98% 68.36 ± 2.12% 65.28 ± 2.45%

PVAE + reg. CAE 66.66 ± 1.31% 65.28 ± 6.05% 69.60 ± 0.46% 61.57 ± 2.01% 80.71 ± 1.41% 73.15 ± 1.87%

PVAE + CS-CAE 100.00 ± 0.0% 90.28 ± 4.61% 100.0 ± 0.0% 100.0 ± 0.0% 95.99 ± 3.74% 92.13 ± 2.83%

which all three words and the <EOS> tag are correctly predicted as correct. The
produced descriptions with one or more incorrect words are considered false trans-
lations. As each description has seven more alternatives, predicting any of the eight
description alternatives is considered correct.

For Experiment 1a, our model is able to translate approximately 90% of the
patterns in the test set, while PRAE could translate only one third of the patterns,
as can be seen in Table 4.3. We can thus say that our model outperforms PRAE
in one-to-many mapping. We also test the impact of channel separation on the
translation accuracy by training our model with visual features extracted with the
regular CAE as described in Yamada et al.’s approach [185]. It is clearly indicated
in Table 4.3 that using variational autoencoders instead of standard ones increases
the accuracy significantly. Using PVAE with CS-CAE improves the results further,
indicating the superiority of channel separation in our tabletop scenario. There-
fore, our approach with variational autoencoders and a channel-separated CAE is
superior to both PRAE and PVAE with regular visual feature extraction.

In Experiment 1b, in order to test the limits of our PVAE and the impact of
more data with a larger corpus, we add three more colour options for the cubes:
yellow, cyan and violet. These secondary colours are combined amongst themselves
for the arrangements in addition to the colour combinations used in the first ex-
periment, i.e. a cube of a primary colour and a cube of a secondary colour do not
co-occur. Therefore, this experiment has 12 arrangements. Moreover, the vocabu-
lary size is extended to 23 from 17 in Experiment 1b (two alternative words for each
colour – see Table 4.2). As in Experiment 1a, each sentence has eight alternative
ways to be described.

We train both PVAE and PRAE on the extended dataset from scratch and
test both architectures. As shown in Table 4.3 (Experiment 1b), PVAE succeeds
in performing 100% by translating every pattern from action to description cor-

Table 4.4: Sentence Translation Accuracies for PVAE and PVAE-BERT

PVAE PVAE-BERT

Translation Direction Test Acc. (T - F) Test Acc. (T - F)

Action→Language 100.00% (216 - 0) 97.22% (210 - 6)

Language→Language 100.00% (216 - 0) 80.56% (174 - 42)

51

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

rectly, even for the test set. In contrast, PRAE performs poorly in this setting and
manages to translate only one third of the descriptions correctly in the test set.
Compared with the accuracy values reached in the first experiment with less data
and a smaller corpus, the extension of the dataset helps PVAE to perform better
in translation, whereas PRAE is not able to take advantage of more data. Similar
to Experiment 1a, we also test the influence of channel separation on translation
accuracy by training PVAE with visual features provided by a regular CAE. In
this setting, PVAE only achieves around 61% of accuracy on the test set. This
highlights once again the importance of channel separation in visual feature ex-
traction for our setup. while the improvement by using our PVAE over PRAE is
significant, further improvement is made by utilising the channel-separated CAE.

In addition, as the results show in the last column of Table 4.3 (Experiment
1c), our PVAE with channel separation in visual feature extraction outperforms the
other methods even when the manipulated objects have different shapes. Although
there is a slight drop in action-language translation performance, it is clear that
PVAE with the channel-separated CAE is able to handle differently shaped objects.
The PRAE model performs considerably better than it does in the experiments
with cubes of different colours. Nevertheless, our variational autoencoder approach
without channel separation improves the translation accuracy by approximately
8%. The channel separation in visual feature extraction improves the results even
more similar to Experiment 1a and Experiment 1b, which shows the robustness of
the channel-separated CAE when processing different objects.

Figure 4.3: Joint angle trajectories for language-to-action translation by PVAE-
BERT for the PUSH-LEFT-SLOWLY action. Solid lines show the ground truth,
while the dashed lines, which are often covered by the solid lines, show the predicted
joint angle values. In both plots, the X axis represents the time steps.

52

4.3. Experiments and Results

4.3.2 Experiment 2: Bidirectional Translations with BERT

In this experiment, we test the performance of PVAE-BERT on action-to-language,
language-to-action and language-to-language translation. We use the same dataset
as in Experiment 1b for a fair comparison with the original PVAE (LSTM language
encoder). We thus use the same descriptions, which are constructed by using a
verb, colour and speed from the vocabulary given in Table 4.2 as well as the
<BOS/EOS> tags in the same order. Both PVAE and PVAE-BERT utilise CS-
CAE-extracted visual features.

As shown in Table 4.4, when translating from action to language, PVAE-BERT
achieves approximately 97% accuracy, failing to translate only six of the descrip-
tions, comparable with the original architecture – the original PVAE correctly
translates all 216 descriptions. The false translations are all due to incorrect trans-
lation of cube colours, e.g. the predicted description is ‘slide blue slowly’ in-
stead of the ground truth ‘slide red slowly’. We hypothesise that the slight drop
in the performance is due to the relatively small size of the dataset for almost 110
million parameters trained in the case of BERT. Nevertheless, these results show
that fine-tuning BERT during training leads to almost perfect action-to-language
translation in our scenario.

As can be seen in Figures 4.3 to 4.5, both PVAE and PVAE-BERT perform
decently in language-to-action translation and produce joint angle values that are
in line with and very similar to the original descriptions. In Figure 4.5, we can see
that the joint trajectories output by PVAE-BERT are more accurate than those

Figure 4.4: Joint angle trajectories for language-to-action translation by PVAE-
BERT for the PULL-LEFT-SLOWLY action. Solid lines show the ground truth,
while the dashed lines, which are often covered by the solid lines, show the predicted
joint angle values. In both plots, the X axis represents the time steps.

53

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

Figure 4.5: The total error margin of the five joint values produced by PVAE and
PVAE-BERT for language-to-action translation per time step on the PUSH-LEFT-
SLOWLY action. The X axis represents the time steps, while the Y axis shows the
summed error margin.

produced by PVAE. We hypothesise that the error margins are negligible and
both models succeed in language-to-action translation. Since we did not realise the
actions with the generated joint values in the simulation, we do not report the
language-to-action translation accuracies in Table 4.4. However, we calculated the
mean squared errors (MSE) for both PVAE and PVAE-BERT, which were both
very close to zero. Therefore, it is fair to say that both architectures recognise
language and translate it to action successfully.

Language-to-language translation, however, suffers a bigger performance drop
when BERT is used as the language encoder; PVAE-BERT reconstructs around
80% of the descriptions correctly (see Table 4.4). We hypothesise that this is partly
due to having an asymmetric language autoencoder with a BERT encoder and an
LSTM decoder. The BERTBASE language encoder constitutes the overwhelming
majority of parameters in the PVAE-BERT model, which renders the language
VAE heavily skewed to the encoder half. This may affect the performance of the
language decoder when translating back to the description from the hidden code
produced mainly by BERT as the decoder’s parameters constitute less than 1%
of the parameters of the language VAE. This hypothesis is further supported by
the original architecture, which has a symmetric language VAE, achieving 100%
of accuracy on the same task.

Nevertheless, our findings show that the PVAE-BERT model achieves stable
language-to-language translation performance even when the given descriptions
do not comply with the fixed grammar and are full commands such as ‘push
the yellow cube slowly’ or have a different word order such as ‘quickly push

54

4.3. Experiments and Results

Table 4.5: Variations of Descriptions for One Example and PVAE-BERT Language-
to-Language Sentence Translation Accuracies

Var. Type Example Acc.

1 Standard ‘push green slowly’ 80.56%

2 Changed Word Order ‘slowly push green’ 80.56%

3 Full Command ‘push the green cube slowly’ 81.02%

4 ‘please’+Full Command ‘please push the green cube slowly’ 81.94%

5 Full Command+‘please’ ‘push the green cube slowly please’ 81.48%

6
Changed Word Order+

‘slowly push the green cube please’ 81.48%
Full Command+‘please’

7 Polite Request
‘could you please push

79.63%
the green cube slowly?’

yellow’. To turn predefined descriptions into full commands, we add the words
‘the’ and ‘cube’ to the descriptions and we also experiment with adding the word
‘please’ and changing the word order as can be seen in the examples given in
Table 4.5. Although it is not explicitly stated in the table for space reasons, we

Figure 4.6: The joint values produced by PVAE-BERT given three variations (Ta-
ble 4.5) of the same command for PULL-LEFT-SLOWLY – notice how the joint
trajectories overlap most of the time. The X axis represents the time steps, while
the Y axis shows the normalised joint values.

55

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

alternate between the main elements of the descriptions as in the other experiments
following the vocabulary; for example, ‘push’ can be replaced by ‘move-up’ and
‘quickly’ can be replaced by ‘fast’. Moreover, we achieve consistent language-to-
action translation performance with PVAE-BERT when we test it with different
description types shown in the table as can be seen in Figure 4.6. As PVAE-BERT
performs consistently even with descriptions not following the predefined grammar,
we can see that adopting a language model to the architecture is promising towards
acquiring natural language understanding skills.

4.3.3 Principal Component Analysis (PCA) on Hidden
Representations

We also conduct a principal component analysis (PCA) on the hidden features ex-
tracted from PVAE-BERT. Figure 4.7 shows the latent representations of language
in Plot (a) and of action in Plot (b). The PCA on the representations of language
shows that the model learns the compositionality of language: the X-axis (principal
component PC 1) distinguishes the descriptions in the speed component (adverb),
the Y-axis (PC 3) distinguishes colour, and the Z-axis (PC 6) distinguishes the
action type (verb)5. Plot (b) shows that the PCA representations of actions are
semantically similar since their arrangement coincides with those in Plot (a).

Our method learns actions according to their paired descriptions: it learns the
colour of the object (an element of descriptions) which is interacted with. However,
it does not learn its position (an element of actions). We inspected the represen-
tations along all major principal components but could not find any direction
along which the position was meaningfully distinguished. For example, in Plot (b),
some of the filled red circles (corresponding to description ‘push red slowly’)
are paired with the action PUSH-LEFT-SLOWLY while the others with PUSH-
RIGHT-SLOWLY. As actions are learnt according to their paired descriptions,
hence semantically, the filled red circles are grouped together even though the red
cube may be on the right or left. In contrast, an action can be represented far from
another identical action: e.g. the representations of ‘pull red slowly’ (filled red
circles in Figure 4.7) are separated from those of ‘pull yellow slowly’ (filled
yellow circles) along PC 3 even when they both denote the action PULL-LEFT-
SLOWLY. These results indicate that the binding loss has transferred semantically
driven ordering from the language to the action representations.

Even though our agent receives language instructions containing the colour
but not the position information, the agent is still capable of acting based on the
target object position (see Figures 4.3 to 4.6). Thus, the retrieval of the position
information must be undertaken by the action decoder: it reads the images to
obtain the position of the object that is of the colour given in the instruction.
It is therefore not surprising that the PCA does not reveal any object position
encodings in the bottleneck.

5The percentages of variance explained by PC 2 up to and including PC 6 were comparable;
thus, we opted for PC 3 and PC 6 as they optimally distinguished object colour and action type.

56

4.4. Discussion

Figure 4.7: Hidden features of language (a) and hidden features of action (b). The
PCA was performed jointly on the hidden features of 36 descriptions and the hidden
features of 144 actions. For (b), each unique action (12 in total) occurs 12 times
as there are 12 possible cube arrangements; therefore, 144 points are shown. For
both (a) and (b), we label the points according to descriptions, i.e. for (b), actions
are also labelled according to their paired descriptions. As can be seen from the
legend, different shapes, colours and fillings indicate the verb (action type), object
colour and adverb (speed) respectively.

4.4 Discussion

Experiments 1a and 1b show that our variational autoencoder approach with a
channel-separated CAE visual feature extraction (‘PVAE + CS-CAE’) performs
better than the standard autoencoder approach PRAE in the one-to-many trans-
lation of robot actions into language descriptions. Our approach is superior both
in the case of three colour alternatives per cube and in the case of six colour alter-
natives per cube by a large margin. The additional experiment with six different
objects highlights the robustness of our approach against the variation in object
types. We demonstrate that a Bayesian inference-based method like variational
autoencoders can scale up with more data for generalisation, whereas standard au-
toencoders cannot capitalise on a larger dataset, since the proposed PVAE model
achieves better accuracy when the dataset and the corpus are extended with three
extra colours or six different objects. Additionally, standard autoencoders are fairly
limited in coping with the diversification of language as they do not have the ca-
pacity to learn the mapping between an action and its multiple descriptions. In
contrast, variational autoencoders yield remarkably better results in one-to-many

57

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

translation between actions and descriptions, because stochastic generation (ran-
dom normal distribution) within the latent feature extraction allows latent rep-
resentations to slightly vary, which leads to VAEs learning multiple descriptions
rather than a particular description for each action.

A closer look into action-to-language translation accuracies achieved by PRAE
for Experiments 1a and 1b shows that having more variety in the data (i.e. more
colour options for cubes) does not help the standard autoencoder approach to
learn one-to-many binding between action and language. Both in the first case
with three colour alternatives and in the second case with six colour alternatives,
PRAE manages to translate only around one third of the samples from actions to
descriptions correctly. In contrast, the accuracies achieved by our proposed PVAE
for both datasets prove that the variational autoencoder approach can benefit from
more data as the test accuracy for the ‘PVAE + CS-CAE’ goes up by approximately
10% to 100% when three more colour options are added to the dataset.

Furthermore, training PVAE with the visual features extracted by the standard
CAE demonstrates that training and extracting features from each RGB channel
separately mitigates the colour distinction issue for cubes when the visual input,
like in our setup, includes objects covering a relatively small portion of the visual
field. The ‘PVAE + regular CAE’ variant performs significantly worse than our
‘PVAE + CS-CAE’ approach. This also demonstrates the importance of the visual
modality for the overall performance of the approach. Our analysis on the incor-
rectly translated descriptions shows that a large amount of all errors committed by
the ‘PVAE + regular CAE’ were caused due to cube colour distinction failures such
as translating ‘slide red fast’ as ‘slide green fast’, which proves CS-CAE’s
superiority over the standard CAE in visual feature extraction in our scenario.
Moreover, using CS-CAE for visual feature extraction rather than the standard
CAE results in better action-to-language translation accuracy even when the ob-
jects are of various shapes. This indicates that CS-CAE not only works well with
cubes of different colours but also with objects of different shapes. We emphasise
the superiority of channel separation in our scenario, which has been tested and
proven in a simulation environment. For real-world scenarios with different lighting
conditions, it is advisable to take into account also the channel interaction [170]
to have a more robust visual feature extraction.

Experiment 2 indicates the potential of utilising a pre-trained language model
like BERT for the interpretation of language descriptions. This extension produces
comparable results to the original PVAE with the LSTM language encoder in
language-to-action and action-to-language translations. The drop in language-to-
language performance to 80% is most probably caused by the asymmetric language
VAE of the PVAE-BERT model that consists of a feedforward BERT encoder with
attention mechanisms, which reads the entire input sequence in parallel, and of a
recurrent LSTM decoder, which produces the output sequentially. A previous study
on a text classification task also shows that LSTM models outperform BERT on a
relatively small corpus because, with its large number of parameters, BERT tends
to overfit when the dataset size is small [44]. Furthermore, we have also tested
PVAE-BERT, which was trained on predefined descriptions, with full sentence de-

58

4.5. Conclusion

scriptions – e.g. ‘push the green cube slowly’ for ‘push green slowly’ – and
with variations of the descriptions that have a different word order. We have con-
firmed that PVAE-BERT achieves the same performance in language-to-action
and language-to-language translations. The pre-trained BERT allows the model to
understand unconstrained natural language commands that do not conform to the
defined grammar.

The PCA conducted on the hidden features of PVAE-BERT shows that our
method can learn language and robot actions compositionally and semantically.
Although it is not explicitly given, we have also confirmed that both PVAE and
PVAE-BERT can reconstruct joint values with almost perfect accuracy when we
analysed the action-to-action translation results. Together with the language-to-
language performance, the action-to-action capability of both variants of our archi-
tecture demonstrates that the two variational autoencoders (language and action)
in our approach retain their reconstructive nature.

4.5 Conclusion

In this chapter, we have reported the findings of the previous chapter and its
extension with several experiments. We have shown that variational autoencoders
outperform standard autoencoders in terms of one-to-many translation of robot ac-
tions to descriptions. Furthermore, the superiority of our channel-separated visual
feature extraction has been proven with an extra experiment that involves differ-
ent types of objects. In addition, using PVAE with a BERT model pre-trained on
large text corpora, instead of the LSTM encoder trained on our small predefined
grammar, unveils promising scaling-up opportunities for the proposed approach,
and it offers the possibility to map unconstrained natural language descriptions
with actions.

In the next chapter, we will present the PGAE architecture which overcomes
the need to adjust the model architecture configuration according to the desired
translation direction during inference. PGAE utilises a flexible multimodal fusion
technique to explicitly bind the language and action streams in a more biologically
plausible way. It also uses signal word prefixes as part of language input to direct
the agent in the desired translation. Furthermore, it is capable of recognising and
imitating the actions of a mirrored agent via robot demonstrations.

59

Chapter 4. Advanced Language Comprehension via a Pre-trained Language Model

60

Chapter 5

Learning Flexible Translation
Between Action and Language
through Explicit Multimodal

Fusion

Handling various robot action-language translation tasks flexibly is an essential
requirement for natural interaction between a robot and a human. Previous ap-
proaches (Chapters 3 and 4) require a change in the configuration of the model
architecture per task during inference, which undermines the premise of multi-task
learning. In this chapter, we propose the Paired Gated Autoencoders (PGAE) ar-
chitecture for flexible translation between robot actions and language descriptions
in a tabletop object manipulation scenario. We train our model in an end-to-end
fashion by pairing each action with appropriate descriptions and adding a signal
in the language input informing about the translation direction. During inference,
our model can flexibly translate from action to language and vice versa according
to the given language signal. Moreover, our model can recognise and imitate the
actions of a second agent by utilising robot demonstrations. The experiment results
highlight the flexible bidirectional translation capabilities of our approach as well
as the ability to generalise to the actions of the opposite-sitting agent1.

5.1 Introduction

Learning language involves multiple modalities such as audio, vision and proprio-
ception. For example, a colour word refers to a visual concept; sensing the weight
of an object is related to the concept of force; the concept of position such as
left and right can be learnt with proprioception and vision. More modalities can
be enumerated that help with learning language but the essential component of
language learning pertains to embodiment, i.e. having a body and interacting in

1The code belonging to this chapter is available at https://github.com/oo222bs/PGAE.

61

https://github.com/oo222bs/PGAE

Chapter 5. Learning Flexible Translation between Action and Language

a b

Figure 5.1: Our object manipulation scenario: a) an example action (‘push cyan
slowly’) performed by NICO, b) the same action performed by the opposite-sitting
agent as seen by NICO.

the environment [19]. The embodied language learning or language grounding has
recently been a topic of interest at the crossroads between natural language pro-
cessing and robotics [1, 19, 107, 161]. Inspired by the early language development in
children where interactions in the environment are paired with language, language
grounding approaches have made strides in representation learning, abstraction
forming, sequence-to-sequence learning and bidirectional action-language trans-
lations. However, these approaches are not designed to endow a robot with the
autonomy to understand and choose the appropriate action to carry out during
an interaction with a human. They are either designed to carry out a single task2

such as recognising an instruction and executing it [61, 107, 158, 161] or they can
handle multiple tasks but they require the task mode in advance to know what
is expected of them [128, 136, 185]. In contrast, a truly autonomous agent must
be able to decide whether to produce language or execute an action according to
the verbal instruction provided by its human partner. Therefore, end-to-end mul-
timodal and multi-task models which do not require adaptation to new tasks by
the experimenter are desired.

In this chapter, we address the problem of flexible bidirectional translation be-
tween robot actions and language. We define flexibility as translating between the
two modalities without having to reconfigure the model for a specific task during
inference. According to our scenario (Figure 5.1), we expect our agent to flexibly
translate from action to language and vice versa – given textual descriptions, joint
angle values and visual features, our agent must either manipulate an object or
describe the object manipulation act carried out by itself or a second agent depend-
ing on the situation. To this end, we introduce the PGAE architecture for flexible
translation between robot actions and language, realised by our humanoid robot
NICO in the simulation environment. PGAE includes an attention mechanism in
its bottleneck, which allows the model to directly exchange information between
the action and language modalities. The attention mechanism, which is adapted

2Note that the term task in this chapter refers to different directions of action-language
translation.

62

5.1. Introduction

'describe' 'execute' 'repeat action' 'repeat language'

GMU GMU GMU GMU

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

Language
Encoder

Action
Encoder

Action
Decoder

Language
Decoder

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

'describe' 'execute' 'repeat action' 'repeat language'

GMU GMU GMU GMU

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

Language
Encoder

Action
Encoder

Action
Decoder

Language
Decoder

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

Language
Encoder

Language
Decoder

Action
Decoder

Action
Encoder

Figure 5.2: The schematic architecture with respect to the four different tasks:
‘describe’, ‘execute’, ‘repeat action’ and ‘repeat language’. The PGAE architec-
ture consists of encoders, decoders and a GMU bottleneck. Each panel shows the
architecture with the information flow (indicated by the green arrows) per task.
The thick arrows denote the main information flow in a given task.

from the gated multimodal units (GMU) [13], acts as a filter to pick information
between the modalities across all dimensions. Additionally, we signal the task by
prepending a phrase to the language input and ensure that our model recognises
the task and is trained accordingly. Thus, during inference, our model is able to
perform each of the translation tasks (Figure 5.2) according to user input without
having to configure the model in advance. Furthermore, we test a realistic setup in
which the NICO robot can describe and repeat the actions of the opposite-sitting
second agent. Our experiment results show that PGAE performs competitively
in terms of translations between language and action with the previous approach
PVAE that implicitly binds the two modalities and, in turn, could use only some
parts of the network, which is set a priori according to the given translation task.

Our contributions to the field, with the introduction of PGAE, can be sum-
marised as:

1. introducing an end-to-end neural network (NN) architecture that can flexibly
handle multiple action-language translation tasks during inference, consistent
with the training conditions,

2. enabling the robot to recognise and imitate both the self-performed actions
and the actions of an opposite-sitting agent.

The remainder of Chapter 5 is structured as follows: In the next section, we de-
scribe the PGAE architecture in detail, including the signals used during training.
The subsequent section involves the experiments and their results in all translation
tasks. Finally, we conclude the chapter with a summary and hints about the next
chapter.

63

Chapter 5. Learning Flexible Translation between Action and Language

tanh

<BOS>

pull red <EOS>

pull fast

tanh

j1 v1 j2 jM vM j1

 ĵ2

Language
Encoder

Action
Encoder

Language
Decoder

Action
Decoder

y1 yN-1

v1 vM-1

Bottleneck (Latent Representations)

LSTM

v2 ĵ2 ĵM-1v2

y2

x1 y1 y3

'execute:
pull red

fast'
LSTM or BERT

Lfeats

Afeats

sig

X

X

+z

Lh

Ah

1-z

h

z

LSTM LSTM LSTM LSTM LSTM

 ĵ3

LSTM LSTM LSTM

ĵM

Figure 5.3: The architecture of the PGAE model. The language encoder is either
an LSTM or the BERT model. The action encoder and both decoders are LSTMs
– we show unfolded versions of the LSTMs. j and v denote joint angle values and
visual features respectively. y is the language output which is produced one word
at a time. The bottleneck, where the two streams are connected, is based on the
GMU network; z is the gating vector, whilst h is the shared representation vector.

5.2 Proposed Method: Paired Gated

Autoencoders (PGAE)

Similar to the models introduced in Chapters 3 and 4 (PVAE and PVAE-BERT),
PGAE is a bidirectional translation model between robot actions and language
descriptions. As can be seen in Figure 5.3, PGAE consists of two autoencoders,
namely language and action. It is intended to associate simple robot actions like
pushing a cube on the table with their corresponding language descriptions. PGAE
accepts as input language descriptions, visual features extracted from images and
joint angle values. PGAE outputs language descriptions and joint angle values con-
ditioned on visual features. Moreover, PGAE is trained end-to-end with a signal
prepended to the language input indicating the expected output of the training
iteration. Five different signals are randomly chosen during training at each it-
eration: ‘describe’, ‘execute’, ‘repeat action’, ‘repeat both’ and ‘repeat language’.
These signals direct the agent in the desired translation direction without recon-
figuring the model during inference.

5.2.1 Language Autoencoder

The language autoencoder accepts as input one-hot encoded words of a description
(or the whole description at once when BERT is used as the language encoder) and
produces a description by outputting a word at each time step. The language AE
has an encoder, a decoder and hidden layers (in the bottleneck) that contribute to
the common hidden representations. The language encoder embeds a description

64

5.2. Proposed Method: Paired Gated Autoencoders (PGAE)

of length N + 1, (x1, x2, . . . , xN+1), including the signal, into the final state, fN+1,
as follows:

henct , cenct = LSTM
(
xt, h

enc
t−1, c

enc
t−1

)
(1 ≤ t ≤ N + 1), (5.1)

f enc
N+1 =

[
hencN+1; c

enc
N+1

]
, (5.2)

where henct and cenct are the hidden and cell state of the LSTM at time step t
respectively. henc0 and cenc0 are set as zero vectors, whereas x1 is the signal word.
The square brackets [.; .] denote the concatenation operation. The LSTMs we use
here and the action encoder and both decoders are peephole LSTMs [152], following
the PRAE [185] and PVAE architectures (Chapter 3). The language encoder LSTM
can also be replaced by a pre-trained language model to recognise unconstrained
user instructions. Specifically, we use the pre-trained BERTBASE model [35] as the
language encoder. This variation of the model is called PGAE-BERT.

The language decoder autoregressively generates the descriptions word by word
by expanding the shared latent representation vector h:

hdec0 , cdec0 = W dec · h+ bdec, (5.3)

hdect , cdect = LSTM
(
yt−1, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤ N − 1), (5.4)

yt = soft
(
W out · hdect + bout

)
(1 ≤ t ≤ N − 1), (5.5)

where soft represents the softmax activation function. y0 is the vector for the
symbol indicating the beginning of the sentence, the <BOS> tag.

5.2.2 Action Autoencoder

The action autoencoder accepts a sequence of joint angle values and visual fea-
tures as input and generates the appropriate joint angle values. It consists of an
encoder, a decoder and latent layers (in the bottleneck) that contribute to the
common latent representations. The action encoder encodes a sequence of length
M , ((j1, v1), (j2, v2), . . . , (jM , vM)) that is the combination of joint angles j and
visual features v. The visual features are extracted by the channel-separated con-
volutional autoencoder (CS-CAE) in advance. The action encoder can be defined
as3:

henct , cenct = LSTM
(
vt, jt, h

enc
t−1, c

enc
t−1

)
(1 ≤ t ≤M), (5.6)

f enc
M = [hencM ; cencM] , (5.7)

where henct and cenct are the hidden and cell state of the LSTM at time step t. henc0

and cenc0 are set as zero vectors. f enc
M is the final state of the action encoder.

The action decoder generates the joint angles at each time step by recursively
expanding the shared latent representation vector h:

hdec0 , cdec0 = W dec · h+ bdec, (5.8)

hdect , cdect = LSTM
(
vt, ȷ̂t, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤M − 1), (5.9)

ȷ̂t+1 = tanh
(
W out · hdect + bout

)
(1 ≤ t ≤M − 1), (5.10)

3Certain symbols in the equations are the same as those utilised for the language autoencoder.

65

Chapter 5. Learning Flexible Translation between Action and Language

where tanh is the hyperbolic tangent activation function and ȷ̂1 is equal to j1, i.e.
joint angle values at the initial time step. Visual features, v, are used as in teacher
forcing, i.e. they are not necessarily the result of the action output produced by
the model but the features extracted based on the ground-truth trajectories.

5.2.3 Gated Multimodal Unit (GMU) Bottleneck

The language and action streams connect at the bottleneck, which is situated
between the encoders and decoders of the model. We use a Gated Multimodal Unit
(GMU) to fuse the language and action (joints, images) modalities. Thanks to its
learned gating mechanism, the GMU allows our model to flexibly learn multiple
tasks according to the given command such as ‘describe’ or ‘execute’. This way, our
approach works in different translation directions using the whole model during
inference without having to put the model in a specific mode. Our bottleneck can
be defined with the following equations:

Lfeats = fN+1, Afeats = fM , (5.11)

Lh = tanh
(
WL · Lfeats + bL

)
, (5.12)

Ah = tanh
(
WA · Afeats + bA

)
, (5.13)

z = σ(W z · [Afeats;Lfeats] + bz), (5.14)

h = z ⊙ Ah + (1− z)⊙ Lh, (5.15)

where σ denotes the sigmoid activation function, whilst tanh stands for the hy-
perbolic tangent activation function and ⊙ is the Hadamard product. h represents
the shared hidden representation vector and is used as input to both language and
action decoders. W and b represent learnable weights and biases for the respective
streams, while their superscripts L, A and z stand for language, action and merged
representations respectively.

5.2.4 Task Signals

Five different signals are used during training to guide the model in the desired
translation direction. Four of those signals can be used during inference. According
to the given signal, the input and output of the model change. The five signals are
as follows.

• Describe tells the model to describe the given action sequence, i.e. action-
to-language translation. With this signal, the model accepts as input the
sequence of visual features and joint angle values for the action as well as the
<EOS> tag for language. The model is then trained to output the correct
description and the static joint angle values corresponding to the final time
step of the action sequence.

• Execute signals the model to execute the given language description, i.e.
language-to-action translation. With this signal, the model expects to be fed

66

5.2. Proposed Method: Paired Gated Autoencoders (PGAE)

with the whole description sentence, and joint angle values and visual features
corresponding to the first time step of the action sequence. The model is
then expected to output the joint angle values of the action sequence from
the action decoder and <EOS> from the language decoder.

• Repeat Action is the signal for reconstructing the sequence of joint angle
values. PGAE expects as input the sequence of joint angle values and visual
features for the action encoder and the <EOS> tag in addition to the signal
for the language encoder. The action decoder reconstructs the joint values
and the language decoder outputs the <EOS> tag.

• Repeat Both demands the paired language and action input to be present.
With this signal, PGAE is trained similarly to PVAE end-to-end. The lan-
guage encoder accepts the full description in addition to the phrase ‘repeat
both’, while the action encoder accepts the corresponding action sequence
(joint values and visual features). The language decoder and the action de-
coder output the full description and joint angle values correspondingly. This
signal is intended to be used only during training since it is implausible to
expect the robot to repeat an action and its description simultaneously.

• Repeat Language is used for reconstructing the full description. The full
description and the first time step of the action sequence are fed as input to
the encoders. As output, the language decoder reconstructs the description
and the action decoder outputs the joint angle values of the first time step.

5.2.5 Visual Feature Extraction

Following our previous approach PVAE [136], we employ the channel-separated
convolutional autoencoder architecture (CS-CAE) to extract the visual features
from images captured by the NICO robot. Instead of processing all three channels
together, we train an instance of the CAE for each colour channel (red, green and
blue), i.e. channel separation. The channel separation technique has been shown to
distinguish between the colours of the objects more accurately in previous chapters
(PVAE and PVAE-BERT). Each channel of 120 × 160 RGB images fed into CS-
CAE at a time. CS-CAE consists of a convolutional encoder, a fully connected
bottleneck and a deconvolutional decoder. After training for the RGB channels
separately, the channel-specific visual features are extracted from the bottleneck
and then concatenated. The resulting visual features v are used as input to PGAE.
For more details of CS-CAE including its detailed architecture, readers may refer
to Section 4.2.3 of the previous chapter.

5.2.6 Loss Function

The overall loss is calculated by adding up the reconstruction losses, i.e. language
loss and action loss. Similar to the PVAE approach, the language loss, Llang, is
defined as the cross entropy loss between input and output words, whereas the

67

Chapter 5. Learning Flexible Translation between Action and Language

action loss, Lact, is defined as the mean squared error (MSE) between original and
predicted joint values:

Llang =
1

N − 1

N−1∑
t=1

(
−

V−1∑
i=0

w[i]x
[i]
t+1 log y

[i]
t

)
, (5.16)

Lact =
1

M − 1

M−1∑
t=1

∥jt+1 − ȷ̂t+1∥22 , (5.17)

where V is the vocabulary size, N is the number of words per description, M is
the sequence length for an action trajectory and w is the weight vector used to
counter the imbalance in the frequency of words. The overall loss is the sum of the
language and action loss:

Lall = αLlang + βLact, (5.18)

where α and β are weighting factors for language and action terms in the loss
function. In our experiments, we set α and β to 1. In contrast to our previous
PVAE and PVAE-BERT models (Chapters 3 and 4), PGAE does not require a
binding loss since the two modalities are explicitly bound via the GMU.

5.2.7 Training Details

To train PGAE and PGAE-BERT, we first extract visual features using our
channel-separated CAE. The visual features are used to condition the actions de-
pending on the cube arrangement, i.e. the action execution according to a given
description is dependent on the position of the target cube. Both PGAE and
PGAE-BERT are trained end-to-end. PGAE and PGAE-BERT are trained for
6,000 epochs with the gradient descent algorithm and the Adam optimiser [89]. In
our experiments, h has 50 dimensions, x has 28 dimensions, j has 5 dimensions, N
is equal to 5 and M is 50 for fast and 100 for slow actions. We take the learning
rate as 10−5 with a batch size of 6 samples after determining them as optimal hy-
perparameters. After a few trials, we decided to freeze the weights of BERT during
training as fine-tuning BERT reduces the performance of our model. As BERT has
millions of parameters, fine-tuning leads to overfitting.

5.3 Experiments and Results

We train and test our model on the Nico2Blocks dataset [136], introduced in Chap-
ter 3, involving 864 samples of sequences of images, joint values and textual de-
scriptions. The dataset consists of simple manipulations of two cubes of different
colours on the table by the humanoid NICO robot. The NICO robot is a child-size
humanoid robot with a camera in each of its two eyes. The dataset was created
using the Blender software4. According to our scenario, using its left arm, NICO

4https://www.blender.org/

68

https://www.blender.org/

5.3. Experiments and Results

manipulates one of the two cubes on the table for each sample utilising the inverse
kinematics solver provided on Blender. Each sample includes a sequence of first-
person view images and joint angle values from NICO’s left arm, accompanied by
a textual description of the action. In total, the dataset includes 12 distinct ac-
tions, 6 cube colours, 288 descriptions and 144 patterns (action-description-cube
arrangement combinations). We randomly vary the 144 patterns six times slightly
in terms of action execution in simulation. Out of 864 samples, we exclude 216
samples, involving every unique description and action type, and use them as the
test set. By carefully selecting the test samples, we ensure that the combinations
of descriptions, action types and cube arrangements in the test set are not seen
during training. For more details on the dataset, readers may consult Section 3.3.

In addition to the previous data, we introduce a second agent that does the
same actions from the opposite side of the table. Then, we include the resulting
images from the perspective of NICO. We use the visual features extracted from
these images as additional input and randomly select between them and the visual
features extracted from those images, where NICO performs the actions. These
cases are shown in Table 5.2, with the ‘-opposite’ suffix for describing or repeating
the actions of the second agent, and with the ‘-self’ suffix for describing or repeating
the actions of NICO. Consequently, PGAE-self and PGAE-opposite are the same
model (with the same weights) trained on the extended dataset – the former is
tested with self-agent (NICO’s own) actions, while the latter with the second-agent
actions. PGAE and PGAE-BERT in Table 5.1, on the other hand, refer to the
models trained on the same dataset as PVAE introduced in Section 3.3, excluding
the second-agent actions. We test the models on action-to-language, language-to-
action, action-to-action and language-to-language translations as shown in both
tables.

5.3.1 Action-to-Language Translation

PGAE and its variants use the ‘describe’ signal as input to the language encoder
to translate from action to language. The first result columns of Tables 5.1 and 5.2
report the accuracy of predicted test descriptions for different approaches. For a
generated description to be accepted as correct, all of its words must match the
ground truth description according to our predefined grammar, i.e. action-colour-
speed-<EOS>. Moreover, the second halves of the tables show the normalised
root-mean-square error (nRMSE) between the generated and ground truth joint
values. We calculate nRMSE values by dividing the square root of the MSE (which
is used as the action loss Lact) by the observed range of joint values. Accordingly,
the results in Table 5.1 show that PGAE is competitive with the earlier approach,
PVAE, that has to be set in the specific configuration, which includes using only
the action encoder and language decoder while bypassing the language encoder
and action decoder by avoiding feeding any language input and not outputting the
final joint values. Therefore, PVAE cannot output joint values when it is config-
ured to be used for action-to-language translation. Both PGAE and PGAE-BERT,
however, recognise the task from the signal in the language input and generate

69

Chapter 5. Learning Flexible Translation between Action and Language

Table 5.1: Translation results on the test set of the Nico2Blocks dataset without the
second agent. The top half of the table shows the description accuracies per task,
while the joint angle value errors are given in the bottom half. Grey background
denotes the main output of a task (e.g. description for the action-to-language
translation). PVAE cannot produce the auxiliary output of a task (N.A.).

Describe Execute Repeat Lang. Repeat Act.

Act.→Lang. Lang.→Act. Lang.→Lang. Act.→Act.

Approach Description Accuracies

PVAE 100% N.A. 100% N.A.

PGAE 93.05% 100% 96.30% 100%

PGAE-BERT 94.91% 100% 99.07% 100%

Approach Joint Angle Value Errors (nRMSE)

PVAE N.A. 0.89% N.A. 0.90%

PGAE 0.23% 0.44% 0.37% 0.44%

PGAE-BERT 0.21% 0.44% 0.33% 0.42%

Table 5.2: Translation results on the test set of the Nico2Blocks dataset involv-
ing the second agent. The top half of the table shows the description accuracies
per task, while the joint angle value errors are given in the bottom half. Grey
background denotes the main output of a task (e.g. joint values for the language-
to-action translation). As the opposite-sitting agent data is irrelevant for ‘repeat
language’ and ‘execute’ tasks, PGAE-self and PGAE-opposite share those results.

Describe Execute Repeat Lang. Repeat Act.

Act.→Lang. Lang.→Act. Lang.→Lang. Act.→Act.

Test Set Description Accuracies

PGAE-self 80.56% 100%

PGAE-opposite 65.28%
100% 93.98%

100%

Test Set Joint Angle Value Errors (nRMSE)

PGAE-self 0.58% 0.89%

PGAE-opposite 2.40%
0.79% 0.73%

0.80%

both the description and the joint values for all different tasks. Both PGAE and
PGAE-BERT achieve near-perfect joint value prediction. Moreover, PGAE-BERT
performs slightly better than PGAE in terms of description accuracy.

In the setting where we train the model on both self- and opposite-agent actions
and demand the model to describe the action performed by the opposite agent
(Table 5.2), our model achieves 65% accuracy (PGAE-opposite). It achieves 80%
accuracy when describing NICO’s own actions (PGAE-self). Moreover, the joint

70

5.4. Discussion

value error increases slightly to over 2% for the opposite-agent actions, whereas it
is comparable with the original approaches for PGAE-self.

5.3.2 Language-to-Action Translation

PGAE and its variants use the ‘execute’ signal prepended to the description in
order to translate from language to action. The description accuracy (whether
<EOS> is outputted by the language decoder) and nRMSE between predicted and
ground-truth joint values for language-to-action translation are given in Column
‘Lang.→Act.’ of both Table 5.1 and Table 5.2. All of the approaches are able to gen-
erate near-perfect joint values (less than 1% nRMSE). Our previously introduced
model PVAE, on the other hand, is not trained to generate descriptions (<EOS>
in this case) when configured to execute actions based on the language input.
Besides, training PGAE with the demonstrations from the opposite-sitting agent
does not significantly affect the action-to-language performance (0.79% nRMSE
for PGAE-self/PGAE-opposite).

5.3.3 Language-to-Language and Action-to-Action
Translations

According to Table 5.1, PGAE and PGAE-BERT are competitive with PVAE in
terms of the description accuracy for language-to-language translation and slightly
better in terms of the joint value prediction for the action-to-action translation.
PVAE does not have the capacity to output joint values for language-to-language
and descriptions for action-to-action translations, whereas PGAE and PGAE-
BERT almost perfectly output the initial time-step joint values for language-to-
language translation and achieve perfect description accuracy in action-to-action
translation. As can be seen in Table 5.2, training PGAE with the additional
opposite-sitting agent demonstrations slightly increases the joint value error in
action-to-action translation for both the actions executed by NICO (PGAE-self)
and by the second agent (PGAE-opposite). Furthermore, there is a slight decrease
in description accuracy regarding language-to-language translation when the sec-
ond agent is involved in the training set.

5.4 Discussion

The results in different action-language translations, including those with an
opposite-sitting agent, represent the capacity of the PGAE architecture to model
bidirectional translation between robot actions and language descriptions while
retaining a training-and-test-time-consistent configuration thanks to its explicit
multimodal fusion mechanism. By using signals prepended to the language input,
we overcome the limitation of setting the model in a specific configuration during
deployment, which is necessary for the previous PVAE architecture. With the sec-

71

Chapter 5. Learning Flexible Translation between Action and Language

ondary agent experiments, we prove that PGAE can describe and mimic its own
and opposite-agent actions to a considerable extent.

We also leverage a pre-trained language model, BERT, as a language encoder
instead of our regular LSTM: PGAE-BERT. PGAE-BERT slightly outperforms
the regular PGAE variant in both action-to-language and language-to-language
translations. However, its main advantage over PGAE is that it has the potential
to recognise unconstrained natural language by leveraging a pre-trained language
model.

When we introduce the second agent in our dataset, PGAE’s action-to-language
performance declines moderately – more than 10% for the self-actions and almost
30% for the opposite-agent actions. This drop in the action-to-language accuracy
is expected as introducing the second-agent actions makes the problem more chal-
lenging, e.g. pulling an object by the second agent might be interpreted as pushing
the object by NICO itself. Despite the performance drop, describing the actions of
an opposite-sitting agent is an extra capability demonstrated by our approach.

The ultimate advantage of using PGAE over PVAE on bidirectional translation
between action and language is that PGAE can output both language descriptions
and joint angle values regardless of the translation direction, whereas PVAE can
only output language when it is configured in action-to-language translation and
action when it is configured in language-to-action translation. This highlights the
superiority of integrating the task signals into the language input and having a
common hidden representation vector over the artificial use of a loss term (i.e.
binding loss) to align two separate modality-specific streams.

5.5 Conclusion

In this chapter, we have introduced an end-to-end NN approach that can flexibly
perform translation between robot actions and language descriptions in multiple
directions, some of which involve both first-person actions and opposite-sitting
agent actions. By integrating the task signal in the language input, our approach
can recognise the given task and output the suitable descriptions and joint values
during inference. Our approach, PGAE, exhibits competitive performance in all
four translation tasks while having a consistent configuration across learning and
inference. With the additional demonstrations from a second agent, our model can
recognise and imitate not only its own actions but also the actions of the second
agent despite the inherently challenging nature of the task. To our knowledge, this
skill set was not modelled by previous approaches. In summary, PGAE can perform
various translation tasks robustly without any change in the use of the architecture
between learning and test time, which the previous approaches lacked, through its
attention-based explicit multimodal fusion mechanism and the insertion of the task
signal to the language input.

In the next chapter, we will introduce the Paired Transformed Autoencoders
(PTAE) model that can efficiently learn action-language translations by employing
a superior multimodal fusion mechanism. Owing to its Crossmodal Transformer-

72

5.5. Conclusion

based bottleneck, PTAE can learn language-action associations with scarcely la-
belled data and it behaves naturally when it encounters conflicting input through
different modalities.

73

Chapter 5. Learning Flexible Translation between Action and Language

74

Chapter 6

Efficient and Neurocognitively
Plausible Translation via
Crossmodal Attention

Human infant learning happens during exploration of the environment, by inter-
action with objects, and by listening to and repeating utterances casually, which
is analogous to unsupervised learning. Only occasionally, a learning infant would
receive a matching verbal description of an action it performs, which is similar
to supervised learning. Such a learning mechanism can be mimicked with deep
learning. In this chapter, we model this weakly supervised learning paradigm us-
ing our PGAE model from Chapter 5, which combines an action and a language
autoencoder. After observing a performance drop when reducing the proportion of
supervised training, we introduce the Paired Transformed Autoencoders (PTAE)
model, using Transformer-based crossmodal attention. PTAE achieves significantly
higher accuracies in language-to-action and action-to-language translations, par-
ticularly in realistic but difficult cases when only a limited number of supervised
training samples are available. We also test whether the trained model behaves
realistically with conflicting multimodal input. In accordance with the concept of
incongruence in psychology, conflicting input deteriorates the model output. Con-
flicting action input has a more severe impact than conflicting language input,
and more conflicting features lead to larger interference. PTAE can be trained on
mostly unlabelled data where labelled data is scarce, and it behaves plausibly when
tested with incongruent input1.

6.1 Introduction

Embodiment, i.e. action-taking in the environment, is considered essential for lan-
guage learning [19]. Recently, language grounding with robotic object manipulation
has received considerable attention from the research community. Most approaches

1The code belonging to this chapter is available at https://github.com/oo222bs/PTAE.

75

https://github.com/oo222bs/PTAE

Chapter 6. Efficient and Neurocognitively Plausible Translation

proposed in this domain cover robotic action execution based on linguistic in-
put [61, 107, 158, 161], i.e. language-to-action translation. Others cover language
production based on the actions done on objects [43, 69], i.e. action-to-language
translation. However, only few approaches [1, 11, 128, 136, 185] handle both di-
rections, enabling not just action execution according to given instructions but
also the description of those actions, i.e. bidirectional translation. Moreover, as
infants learn, the actions that they are performing are not permanently labelled
by matching words from their caretakers, hence, supervised learning with labels
must be considered rare. Instead, infants rather explore the objects around them
and listen to utterances, which may not frequently relate to their actions, hence,
unsupervised learning without matching labels is abundant. Nevertheless, most
language grounding approaches do not make use of unsupervised learning except
those that use some unsupervised loss terms [1, 136, 185], while LLMs [23, 35, 142]
introduced for various unimodal downstream language tasks rely on unsupervised
learning for pretraining objectives.

In order to reduce this dependence on labelled data during training, we intro-
duce a new training procedure where we limit the amount of training data used for
supervised learning. More precisely, we only use a certain portion of training sam-
ples for crossmodal action-to-language and language-to-action translations while
training unimodally on the rest of the training samples. As crossmodal transla-
tion requires each sample modality to be labelled with the other modality (e.g.
an action sequence must be paired with a corresponding language description),
we artificially simulate the realistic conditions where there is a large amount of
unlabelled (unimodal) data but a much smaller amount of labelled (crossmodal)
data.

Another aspect of human language learning is that it takes place in an environ-
ment while making use of different modalities such as vision and proprioception.
Concepts such as weight, softness and size cannot be grounded without being in the
environment and interacting with objects. Language learning approaches that use
multiple modalities and take action in an environment into account are preferable
to those that use a unimodal approach to process large amounts of text. A recent
study [25] in language teaching concludes that learning is enhanced when the lan-
guage learner uses language to produce meaningful outputs. Hence we strive to
devise embodied multimodal models that tackle language grounding. To this end,
our robotic object manipulation dataset is generated from a simulation setup as
seen in Figure 6.1. We use our humanoid child-size robot NICO to perform various
actions on cubes on a table and label those actions with language descriptions. We
introduce further details of our setup in Section 6.3.

Different from other approaches, our previous PGAE model (Chapter 5) can
bidirectionally translate between language and action, which enables an agent not
only to execute actions according to given instructions but also to recognise and
verbalise its own actions or actions executed by another agent. As the desired
translation task is communicated to the network through an additional signal word
in the language input, PGAE can flexibly translate between and within modali-
ties during inference. However, when trained under limited supervision conditions,

76

6.1. Introduction

slide blue quickly

Figure 6.1: Our tabletop object manipulation scenario in the simulation environ-
ment: the NICO robot is moving the blue cube on the table. The performed action
is labelled as “slide blue quickly”. Our approach can translate from language to
action and vice versa; i.e. we perform actions that are described in language and
also describe the given actions using language.

PGAE performs poorly on the action-to-language translation task, under two con-
ditions: firstly, we experiment with reducing the number of supervised training
iterations while using the whole data set for supervised training. Secondly, we ex-
periment with reducing the number of training samples used with the supervised
signals. In both instances, even though the first is more trivial than the second, the
action-to-language performance of PGAE suffers as the proportion of supervision
is lowered.

In this chapter, we introduce a novel model, PTAE, to overcome this hur-
dle. Inspired by the successful application of the Crossmodal Transformer in
vision-language navigation by the Hierarchical Cross-Modal Agent (HCM) archi-
tecture [75], PTAE replaces the gated multimodal fusion mechanism of PGAE and
optionally the LSTM-based encoders with a Crossmodal Transformer. Thanks to
its more efficient and sequence-retaining crossmodal attention mechanism, PTAE
achieves superior performance even when an overwhelming majority of training
iterations (e.g. 98 or 99%) consist of unsupervised learning. When most training
samples are used for unsupervised learning, PTAE maintains its perfect action-
to-language performance up to 80% of training samples learnt unimodally and
performs relatively well for the 90% case (over 80% sentence accuracy). Even in
cases where only 1 or 2% of the training samples are used in a supervised fashion,
which is analogous to realistic few-shot learning settings, PTAE describes actions
well over chance level with up to a 50% success rate. Our results hint that PTAE

77

Chapter 6. Efficient and Neurocognitively Plausible Translation

precludes the need for large amounts of expensive labelled data, which is required
for supervised learning, as the new architecture with the Crossmodal Transformer
as the multimodality fusion technique significantly outperforms PGAE (Chapter 5)
under the limited supervision training conditions.

Furthermore, inspired by the concept of incongruence in psychology and to
test the robustness of the trained model against noise, for each task, we introduce
an extra input that is contradictory to the expected output of the model. For
example, for language-to-action translation, we introduce extra conflicting action
input showing an action different from the expected action of the model. The
intertwined processing of language and action input in the Crossmodal Transformer
resembles the tight interconnection between language and sensorimotor processes
observed in the human brain [62, 172]. Embodied accounts of human language
comprehension assume that linguistic information induces mental simulations of
relevant sensorimotor experiences. As a direct consequence of embodied language
processing, conflicts between linguistic input and sensorimotor processes have been
shown to result in bidirectional impairments of language comprehension on the
one hand and perceptual judgements and motor responses on the other hand [12,
51, 84, 115] although the strength of these behavioural effects has recently been
debated [182]. In our PTAE model, we found asymmetry in terms of the impact of
the action and language modalities on the performance of the model. Regardless
of the output modality, introducing extra contradictory action input affects the
model performance much more than introducing it in the language modality.

Our contributions in this chapter can be summarised as follows:

1. we introduce PTAE that handles realistic learning conditions that mainly in-
clude unsupervised/unpaired language and action experiences while requiring
minimal use of labelled data, which is expensive to collect,

2. we show plausible behaviour of the model when testing it with psychology-
inspired contradictory information.

The rest of Chapter 6 is structured as follows: in the next section, we define
the PTAE architecture in detail. Section 6.3 introduces our experiments and their
results. Section 6.4 discusses these results, while Section 6.5 concludes the chapter
with a summary and pointers on the following chapters.

6.2 Proposed Method: Paired Transformed

Autoencoders (PTAE)

The PTAE model has an encoder-decoder architecture that is capable of bidirec-
tional translation between robot actions and language descriptions. It consists of a
Crossmodal Transformer that is the backbone and multimodality fusion mechanism
of the architecture and LSTM-based decoders that output language and joint val-
ues respectively. As input, PTAE accepts language descriptions of actions including
the task signal, which defines the translation direction, as well as a sequence of

78

6.2. Proposed Method: Paired Transformed Autoencoders (PTAE)

A

Lhdec

<BOS>

pull red <EOS>

pull fast

j1 v1 jM vM j1

 ĵ2

y1 yN-1

v1 vM-1v2 ĵ2 ĵM-1

y2

ĵM

x1 y1 y3

'execute:
pull red

fast'

LSTM LSTM LSTM

 ĵ3

LSTM LSTM LSTM

Crossmodal
Transformer

FFW

FFW

h

Lfeats

Afeats
hdec

Figure 6.2: The architecture of the PTAE model. The inputs are a language de-
scription (incl. a task signal) and a sequence of visual features (extracted using
the channel-separated convolutional autoencoder) and joint values, while the out-
puts are a description and a sequence of joint values. The language encoder can
be an LSTM, the BERTBASE model or the descriptions can be directly passed to
the transformer word by word. The action encoder can be an LSTM or the action
sequence can be passed directly to the Transformer. Both decoders are LSTMs –
we show unfolded versions of the LSTMs. Forming the bottleneck, the Crossmodal
Transformer connects the two streams. h is the shared representation vector.

the concatenation of multivariate joint values and visual features. According to the
task signal, PTAE outputs joint values required for executing a particular action
or outputs language descriptions of an action.

Different from most of the aforementioned approaches, our model is bidirec-
tional: it can not only produce actions according to given language descriptions
but also recognise actions and produce their descriptions. As our model is based
on an autoencoder-like architecture, it can be trained in a mostly unsupervised
way by asking the model to reproduce the given language or proprioception input.
Moreover, our approach is flexible during inference since it does not need to be
reconfigured for the translation task; due to the inclusion of the task signal in the
language input, our PTAE can reliably execute the desired task on the go, whe-
ther it is a translation from language to action or vice versa. This is an essential
step towards an autonomous agent that can interact within the environment and
communicate with humans.

As shown in Figure 6.2, PTAE comprises a Crossmodal Transformer, which
accepts multimodal input (i.e. language, proprioception and vision), and language
and action decoders that output language descriptions and joint values respec-
tively. The language and action input can optionally be preprocessed by LSTM-
based encoders, as in the case of PGAE2. However, after some initial trials with
both cases, in this chapter, we do not use any extra encoding layers before the

2Readers may consult Chapter 5 for detailed definitions of LSTM-based language and action
encoders.

79

Chapter 6. Efficient and Neurocognitively Plausible Translation

Scaled D
ot Product Attention

Lfeats

Afeats

Input
Emb.

V

Conc.

K

Q

Pos.
Emb.

Lfeats

Input
Emb.

FFW h

FFW

FFW

FFW

Scal.
Dot

Prod.
Att.

Figure 6.3: The architecture of the Crossmodal Transformer. The language fea-
tures are embedded and used as the query vector (Q), while the embedded action
features are used as the key (K) and value (V) vectors. The positional embedding
is applied only to the language features. The multi-head attention (MHA) involves
the Q-, K- and V -specific feedforward (FFW) and scaled dot product attention
layers following the original Transformer architecture. The multiple heads are then
concatenated and fed to the final FFW, which outputs the common hidden repre-
sentation vector h.

Crossmodal Transformer for the sake of simplicity and model size as we do not see
any significant change in the performance.

6.2.1 Crossmodal Transformer

The Crossmodal Transformer (CMT) replaces the Gated Multimodal Unit
(GMU) [13] in our previous PGAE model (Chapter 5) and can be employed in
effect as language and action encoders. The simplified architecture of the CMT
can be seen in Figure 6.3. The functionality of the CMT is to extract the com-
mon latent representations of paired language and action sequences. Following
the HCM architecture [75], we use the language modality as queries (Q vectors)
and the action modality (concatenated visual features and joint values) as keys
(K vectors) and values (V vectors). The language descriptions are represented as
one-hot encoded vectors, while action input is composed of joint values of NICO’s
left arm and the visual features from images recorded by the camera in NICO’s
eye. As in Chapters 3 to 5, we use a channel-separated convolutional autoencoder
(CS-CAE) to extract visual features from images. The CMT encodes the common

80

6.2. Proposed Method: Paired Transformed Autoencoders (PTAE)

latent representations as follows:

Q = ReLU
(
W token · xt + btoken

)
+ PE(xt) (1 ≤ t ≤ N + 1), (6.1)

K,V = ReLU
(
W act · [vt; jt] + bact

)
(1 ≤ t ≤M), (6.2)

At = MHA(Q,K, V) (1 ≤ t ≤ N + 1), (6.3)

ht = PWFF(At) (1 ≤ t ≤ N + 1), (6.4)

h = AvgPool(ht) (1 ≤ t ≤ N + 1), (6.5)

where x, v and j are linguistic, visual and proprioceptive inputs respectively –
note that when no language or action encoder is used, x corresponds to Lfeats,
while the concatenation of visual features and joint values [vt; jt] corresponds to
Afeats in Figure 6.3. ReLU is the rectified linear unit activation function, while PE,
MHA and PWFF are the positional encodings, multi-head attention layer and the
position-wise feedforward layer as used in the original Transformer paper [173].
As the Transformer architecture does not include any recurrence, we employ a
fixed sinusoidal function-based PE layer on the language features to include the
position information. At is the crossmodal attention vector for time step t, whereas
ht is the hidden vector for time step t. AvgPool is the average pooling applied
on the time axis to the sequential hidden vector to arrive at the common latent
representation vector h. For our experiments, we employ a single-layer CMT with
4 parallel attention heads.

6.2.2 Language Decoder

We use an LSTM as the language decoder to autoregressively generate the de-
scriptions word by word by expanding the common latent representation vector h
produced by the CMT:

hdec0 , cdec0 = W dec · h+ bdec, (6.6)

hdect , cdect = LSTM
(
yt−1, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤ N − 1), (6.7)

yt = soft
(
W out · hdect + bout

)
(1 ≤ t ≤ N − 1), (6.8)

where soft represents the softmax activation function. y0 is the vector for the
symbol indicating the beginning of the sentence, the <BOS> tag.

6.2.3 Action Decoder

Similarly, an LSTM is employed as the action decoder to output joint angle values
at each time step via the common representation vector h:

hdec0 , cdec0 = W dec · h+ bdec, (6.9)

hdect , cdect = LSTM
(
vt, ȷ̂t, h

dec
t−1, c

dec
t−1

)
(1 ≤ t ≤M − 1), (6.10)

ȷ̂t+1 = tanh
(
W out · hdect + bout

)
(1 ≤ t ≤M − 1), (6.11)

81

Chapter 6. Efficient and Neurocognitively Plausible Translation

where the predicted joint values for time step t are represented by ȷ̂t and tanh is
the hyperbolic tangent activation function. We take ȷ̂1 as j1, i.e. ground-truth joint
angle values corresponding to the initial position of the arm. The visual features
used as input v are extracted from the ground-truth images and used similarly to
teacher forcing, whereas the joint angle values ȷ̂t are learnt autoregressively.

6.2.4 Visual Feature Extraction

Following the PGAE pipeline (Chapter 5), we use CS-CAE to extract visual fea-
tures from first-person images from the eye cameras of NICO recorded in the sim-
ulation. We utilise channel separation when extracting visual features: an instance
of the CAE is trained for each RGB colour channel. In Chapter 3, we demonstrate
that CS-CAE distinguishes object colours more accurately than the regular CAE
without channel separation.

As before, we feed each instance of CS-CAE with the corresponding channel
of RGB images of size 120 × 160. CS-CAE consists of a convolutional encoder, a
fully connected bottleneck, and a deconvolutional decoder. Each RGB channel is
trained separately, after which we extract the channel-specific visual features from
the bottleneck and concatenate them to arrive at composite visual features. These
visual features make up v which is used as visual input to PTAE. For further
details on the visual feature extraction process, readers may refer to Section 3.3.

6.2.5 Loss Function

As with PGAE in Chapter 5, we use two loss functions to calculate the deviation
from the ground-truth language descriptions and joint values. The language loss,
Llang, is calculated as the cross entropy between input and output words, while the
action loss, Lact, is the mean squared error (MSE) between original and predicted
joint values:

Llang =
1

N − 1

N−1∑
t=1

(
−

V−1∑
i=0

x
[i]
t+1 log y

[i]
t

)
, (6.12)

Lact =
1

M − 1

M−1∑
t=1

∥jt+1 − ȷ̂t+1∥22 , (6.13)

where V is the vocabulary size, N is the number of words per description, and M
is the sequence length for action trajectories. The total loss is then the sum of the
language and action losses:

Lall = αLlang + βLact, (6.14)

where α and β are weighting factors for language and action terms in the loss
function. In our experiments, we take both α and β as 1.0. We use the identical
loss functions as PGAE except for the weight vector used in the language loss to
counter the imbalance in the frequency of words, after seeing that it is unnecessary
for PTAE.

82

6.3. Experiments and Results

6.2.6 Training Details

Visual features are extracted in advance by CS-CAE before training PTAE and
PGAE. Visual features are necessary to execute actions according to language
instructions since cube arrangements are decisive in manipulating the left or right
object, i.e. determining whether to manipulate the left or right cube depends on
the position of the target cube. After extracting visual features, both PGAE and
PTAE are trained end-to-end with all three modalities. After initial experiments,
PGAE is trained for 6,000 epochs, while PTAE is trained for 2,500 epochs using the
gradient descent algorithm and Adam optimiser [89]. For PTAE, we decided that
h has 256 dimensions following [75], whereas the same vector has 50 dimensions
in PGAE. x has 28 dimensions, j has 5 dimensions, N is equal to 5, while M is
fixed to 50 for fast and 100 for slow actions. For both PGAE and PTAE, we take
the learning rate as 10−5 with a batch size of 6 samples after determining them as
optimal hyperparameters. PTAE has approximately 1.5M parameters compared to
PGAE with a little over 657K parameters.

6.3 Experiments and Results

We use the same dataset [136] as in the previous chapter, except that in this chapter
we exclude experiments with another agent from the opposite side of the table. The
dataset encompasses 864 samples of sequences of images and joint values alongside
their textual descriptions. It consists of robot actions on two cubes of different
colours on the table by the NICO robot, generated using inverse kinematics and
created in the simulation environment using Blender software3. The NICO robot
has a camera in each eye, which is used to record a sequence of egocentric images.
According to the scenario, NICO manipulates one of the two cubes on the table
with its left arm at a time. Accordingly, we use and record 5 joints of the left arm
during object manipulation. In total, the dataset includes 12 distinct actions4, 6
cube colours, 288 descriptions5, and 144 patterns6 (action & cube arrangement
combinations). The 144 patterns are randomly varied six times in terms of action
execution in simulation. As a result, we arrive at a dataset of 864 samples in total.
Out of 864 samples, 216 samples that involve every unique description and action
type are excluded and used as the test set. The remaining 648 samples make up
the training set. The vocabulary consists of the following words divided into 3
categories:

• 6 action words (3 original/3 alternative): ‘push/move-up’, ‘pull/move-down’,
‘slide/move-sideways’;

3https://www.blender.org/
4We distinguish the actions according to the action type (PUSH, PULL or SLIDE), the target

object position (LEFT or RIGHT) and the speed setting (SLOW or FAST).
5Since the vocabulary includes 6 action words, 12 colour words and 4 speed words, we arrive

at 288 unique descriptions.
6The dataset involves 12 unique actions and 12 unique cube arrangements (e.g. blue and

yellow cubes placed on the table from left to right); hence, their combinations yield 144 patterns.

83

https://www.blender.org/

Chapter 6. Efficient and Neurocognitively Plausible Translation

• 12 colour words (6 original/6 alternative): ‘red/scarlet’, ‘green/harlequin’,
‘blue/azure’, ‘yellow/blonde’, ‘cyan/greenish-blue’, ‘violet/purple’;

• 4 speed words (2 original/2 alternative): ‘slowly/unhurriedly’, ‘fast/quickly’.

The sentences consist of a word from each category: therefore, our textual descrip-
tions are 3-word sentences. For more details on the dataset, readers may consult
Section 3.3. PGAE and PTAE are trained on this dataset and their performances
are tested in terms of action-to-language and language-to-action translations under
various amounts of supervision.

6.3.1 Task Signals

We use four signals to train PTAE. According to the given signal, the input and
output of the model change. The signals are:

• Describe indicates action-to-language translation,

• Execute indicates language-to-action translation,

• Repeat Action indicates action-to-action translation,

• Repeat Language indicates language-to-language translation.

According to the latter two ‘repeat’ signals, the network uses mainly unimodal
information. The ‘describe’ and ‘execute’ signals, on the other hand, involve cross-
modal translation from one modality to the other. The unimodal signals are used
in the unsupervised learning of an autoencoder, whereas the crossmodal signals are
used in supervised learning, where coordinated action values and language labels
must be available. In the case of PGAE training, an additional ‘repeat both’ signal
is also used, which also requires coordinated labels, and leads to a slightly better
performance [135]. For PTAE, however, this was found unnecessary. More details
of the task signals can be found in Section 5.2.4.

6.3.2 Reduction of Supervised Training

We restrict the amount of supervision by increasing the ratio of unsupervised
learning iterations, i.e. training with the unimodal ‘repeat’ signals, in the overall
training iterations. Thereby, the ratio of supervised learning iterations, i.e. training
with the crossmodal signals, decreases. The resulting training paradigm is analo-
gous to developmental language learning, where an infant is exposed only to a
limited amount of supervision. We train both PTAE and PGAE with varying ratios
of unimodal/total training iterations. For another set of experiments, we restrict
the amount of supervision by limiting the proportion of training samples used for
crossmodal translation tasks. We test the performance of both models with varying
degrees of unsupervised training under different schemes (limiting the percentage
of iterations or samples) on the crossmodal translation tasks. Here, we investigate

84

6.3. Experiments and Results

1 2 10 20 50 66
(Crossmodal Training Iterations)÷(Total Training Iterations) (%)

0

20

40

60

80

100
Se

nt
en

ce
 A

cc
ur

ac
y

(%
)

Action-to-Language Performance wrt. Ratio of Supervised Training Iterations

PGAE
PTAE
chance

Figure 6.4: Sentence accuracy for action-to-language translation on the test set
with respect to supervised training iterations. Supervised training refers to the
crossmodal translation cases ‘describe’ and ‘execute’. The two crossmodal signals
receive the same number of iterations between them out of the supervised itera-
tions. We report the results for 1%, 2%, 10%, 20%, 50% and 66.6% (the regular
training case) crossmodal (supervised) iterations. These percentages correspond
to the fraction of supervised training iterations for PGAE and PTAE. Note that
the 100% case is not shown here, since the models need unsupervised iterations
(unimodal repeat signals) to be able to perform the ‘repeat language’ and ‘repeat
action’ tasks.

action-to-language and language-to-action translations because they are the more
important and difficult tasks. For the ‘repeat’ tasks, the results match those in the
previous chapter; therefore, readers may refer to Section 5.3.3.

Reducing Supervised Training Iterations Figure 6.4 shows the results of
PGAE and PTAE on action-to-language translation with different percentages of
training iterations used in a supervised fashion. Both PGAE and PTAE with differ-
ent training regimes based on different proportions of supervised training iterations
achieve accuracies higher than the chance level (2.78%), which we calculate based
on our grammar (action, colour, speed): 1 ÷ (3 × 6 × 2). The action-to-language
translation performance of PGAE falls when the ratio of crossmodal (i.e. super-
vised) training iterations is low, particularly when 10% or a smaller proportion
of the iterations are supervised. Even though the description accuracy slightly in-
creases to over 95% when supervised training amounts to only 20% of all training
iterations (it may partially be due to overfitting), it sharply drops to well be-

85

Chapter 6. Efficient and Neurocognitively Plausible Translation

low 50% when the rate is decreased to 2%. PGAE is able to describe 36% of the
test samples when only 1% of the training iterations are used to learn crossmodal
translations between action and language. In contrast, PTAE maintains its perfect
description accuracy even when it has only been trained with 1% supervised train-
ing iterations. While there is a detrimental impact of reduced supervision, i.e. the
limitation on the percentage of crossmodal training iterations, on the action-to-
language translation performance of PGAE, the Transformer-based PTAE is not
affected by the same phenomenon. For space reasons, we do not report language-
to-action results with respect to the different percentages of supervised iterations,
but we observed a similar trend comparable with Figure 6.4.

12 5 10 20 50 66 100
(Crossmodal Training Samples)÷(Total Training Samples) (%)

0

20

40

60

80

100

Se
nt

en
ce

 A
cc

ur
ac

y
(%

)

Action-to-Language Performance wrt. Ratio of Supervised Training Samples

PGAE
PTAE
chance

Figure 6.5: Sentence accuracy for action-to-language translation on the test set with
respect to supervised training samples. Supervised training refers to the crossmodal
translation cases ‘describe’ and ‘execute’. We limit the number of training samples
for supervised tasks. We report the results for the 1%, 2%, 5% 10%, 20%, 50% and
66.6% cases as well as the 100% regular training case. These percentages correspond
to the fraction of training samples used exclusively for the supervised training for
PGAE and PTAE, i.e. both ‘execute’ and ‘describe’ signals are trained with only
a limited number of samples corresponding to the percentages.

Reducing Supervised Training Samples In order to further investigate the
performance of PTAE with limited supervision, we introduce a more challenging
training regime. We limit the number of training samples shown to supervised
signals, ‘describe’ and ‘execute’, and show the rest of the training samples only
on ‘repeat action’ and ‘repeat language’ modes. We train both PGAE and PTAE
with varying percentages of supervised training samples. Figure 6.5 displays the

86

6.3. Experiments and Results

results. In all cases with different proportions of supervised training samples, both
PGAE and PTAE outperform the chance level. While maintaining perfect sentence
accuracy down to 20% supervised training and keeping up its performance for
10% supervised training for the ‘describe’ signal, the performance of PTAE drops
sharply when the ratio of training samples used for crossmodal signals is 2% and
below. Nevertheless, PTAE beats PGAE in each case when trained on different
percentages of supervised training samples. The performance of PGAE suffers even
when 50% of the training samples are used for supervised signals; it drops below
80% – PTAE retains 100% for the same case. It takes more than 90% of the training
samples to be exclusively used in the unsupervised signals for the performance of
PTAE to decrease meaningfully (from 100% to 81%), while this ratio is much
lower for PGAE as its performance already drops significantly at 50%. Even for
1% supervised training samples, which amount to only 7 training samples, PTAE
manages to translate one-third of the test samples from action to sentences.

12 5 10 20 50 66 100
(Crossmodal Training Samples)÷(Total Training Samples) (%)

0

2

4

6

8

10

12

14

No
rm

al
ise

d
Ro

ot
-M

ea
n-

Sq
ua

re
d

Er
ro

r (
NR

M
SE

) (
%

) Language-to-Action Performance wrt. Ratio of Supervised Training Samples
PGAE
PTAE

Figure 6.6: Joint value prediction error in language-to-action translation on the
test set with respect to supervised training samples. Supervised training refers to
the crossmodal translation cases ‘describe’ and ‘execute’. We limit the number of
training samples for supervised tasks. We report the results for the 1%, 2%, 5%
10%, 20%, 50% and 66.6% cases as well as the 100% regular training case. These
percentages correspond to the fraction of training samples used exclusively for the
supervised training for PGAE and PTAE. ‘execute’ and ‘describe’ translations are
shown the same limited number of samples.

Language-to-action translation results with respect to different percentages of
supervised training samples for PGAE and PTAE are shown in Figure 6.6. We show
the deviation of the produced joint values from the original ones in terms of the

87

Chapter 6. Efficient and Neurocognitively Plausible Translation

normalised root-mean-squared error (NRMSE), which we obtain by normalising
the root-mean-squared error (RMSE) between the predicted and ground-truth val-
ues by the range of joint values – the lower percentages indicate better prediction
(0% NRMSE meaning predicted values are identical with ground-truth values),
whereas the higher percentages indicate worse prediction (100% NRMSE meaning
the RMSE between predicted and ground-truth values is equal to the range of
possible values). We can see a similar trend as in action-to-language translation
apart from the regular case (100%) when PGAE has a lower error than PTAE,
which is probably due to the fact that PGAE is trained for more than two times
the number of iterations of PTAE since it takes longer for the training loss of
PGAE to reach a global minimum. In all other cases, limiting the ratio of training
samples to be used in the supervised modes impacts the language-to-action per-
formance of PGAE heavily: the NRMSE rises from less than 0.5% to almost 8%
when the percentage of supervised samples is reduced to two thirds of the training
samples. The error rate increases further as the number of training samples used in
the crossmodal training modes decreases. The NRMSE for PTAE is also inversely
proportional to the ratio of supervised training samples. However, the impact of
limiting the number of training samples for supervised modes on PTAE is much
lower than on PGAE. When the percentage of supervised training samples is re-
duced to 1%, the deviation from the ground-truth joint values is only a little more
than 4% for PTAE, whereas the same statistic for PGAE is almost 14%.

6.3.3 Exposure to Conflicting Input Modalities

We also investigate the impact of contradictory extra input on the performance
of PTAE; we use PTAE-regular trained with 33% unsupervised training iterations
and no contradictory input. We test the robustness of our approach to varying
numbers of conflicts (up to 3) in the extra input. The definitions of the added
conflict per task signal are given below.

• Describe: we add a conflicting description to the language input (conflict in
language).

• Execute: we use a conflicting sequence of vision and proprioception input
(conflict in action).

• Repeat Action: we add a conflicting description to the language input
(conflict in language).

• Repeat Language: we use a conflicting sequence of vision and propriocep-
tion input (conflict in action).

The conflicts are introduced using the following scheme.

• Conflict in the extra language input: one, two or all of the action, colour
and speed words that constitute a description do not match with those of
the ground-truth paired description of the action. For instance, for the input

88

6.3. Experiments and Results

action paired with the description “push red slowly”, a description like “push
green slowly” (one conflict present, namely colour), or “pull green fast” (all
three conflicts present: action, colour and speed) is given to the model as
conflicting extra language input.

• Conflict in the extra action input: one, two or all of the action-type,
position and speed aspects which form distinct actions do not match with
the language description. We choose one of those action trajectories that are
not paired with the given language input. The conflict(s) can be in the action
type (e.g. pushing instead of pulling), the position of the manipulated object
(e.g. the left cube being pulled instead of the right), or the speed of the action
(e.g. the cube being pulled fast instead of slowly).

The results of this experiment are given in Figures 6.7 and 6.8. In the case of
the ‘describe’ and ‘repeat action’ signals, the action supplies the relevant input
whereas the language is the conflicting distractor. Here, we observe only a slight
decrease in performance. In the case of action-to-language translation (‘describe’)
the sentence accuracy goes down from 100% to 95% when there are three conflicting
input elements (action type, colour, speed) – see the left bar chart in Figure 6.7.
Action-to-action (‘repeat action’) translation manages to retain its performance as
the error in joint values only slightly increases from 1.03% to 1.09% for the case
with 3 conflicts – see the bottom left bar chart.

In the case of ‘execute’ and ‘repeat language’ signals, the language supplies
the relevant input while the action is the conflicting distractor. Here, we observe
a big performance drop. Language-to-action translation (‘execute’) suffers heavily

0 1 2 3
No. of conflicts in extra language input

0

20

40

60

80

100

Se
nt

en
ce

 A
cc

ur
ac

y
(%

) Action-to-Language Performance

0 1 2 3
No. of conflicts in extra action input

0

20

40

60

80

100
Language-to-Language Performance

Action (Vis.+Prop.) Conf.
Only Vis. Conf.
Only Prop. Conf.

0 1 2 3
No. of conflicts in extra language input

0

1

2

3

4

5

NR
M

SE

Action-to-Action Performance

0 1 2 3
No. of conflicts in extra action input

0

1

2

3

4

5
Language-to-Action Performance

Action (Vis.+Prop.) Conf.
Only Vis. Conf.
Only Prop. Conf.

Figure 6.7: Model performance on action-to-language (left panel) and language-
to-language (right panel) on the test set with respect to the number of conflicts
introduced in the extra input. The predicted sentence accuracy per number of
conflicts is visualised for both translations. For action-to-language, the extra con-
flicting inputs are added in the language input, whereas for language-to-language,
they are added in the action input. When the conflict is introduced in the action
modality, we also test having the conflict only in the vision or only in the pro-
prioception submodalities – in this case, the other submodality has the matching
input.

89

Chapter 6. Efficient and Neurocognitively Plausible Translation

0 1 2 3
No. of conflicts in extra language input

0

20

40

60

80

100

Se
nt

en
ce

 A
cc

ur
ac

y
(%

) Action-to-Language Performance

0 1 2 3
No. of conflicts in extra action input

0

20

40

60

80

100
Language-to-Language Performance

Action (Vis.+Prop.) Conf.
Only Vis. Conf.
Only Prop. Conf.

0 1 2 3
No. of conflicts in extra language input

0

1

2

3

4

5
NR

M
SE

Action-to-Action Performance

0 1 2 3
No. of conflicts in extra action input

0

1

2

3

4

5
Language-to-Action Performance

Action (Vis.+Prop.) Conf.
Only Vis. Conf.
Only Prop. Conf.

Figure 6.8: Model performance on action-to-action (left panel) and language-to-
action (right panel) on the test set with respect to the number of conflicts intro-
duced in the extra input. The NRMSE for predicted joint values is visualised for
both translations. For action-to-action, the extra conflicting inputs are added to
the language input, whereas for language-to-action, they are added to the action
input. When the conflict is introduced in the action modality, we also test having
the conflict only in the vision or only in the proprioception submodalities – in this
case, the other submodality has the matching input.

as the deviation of the predicted joint values from the ground-truth joint val-
ues increases from 0.99% to 4.95% (the right bar chart in Figure 6.8). In the
language-to-language translation case (‘repeat language’), PTAE loses its ability
to repeat the given language description when one or more conflicting elements
(action type, position, speed) are introduced with the extra input: the sentence
accuracy decreases from 100% to 0% (the right bar chart in Figure 6.7).

The discrepancy in the results demonstrates the asymmetric impact of conflicts
in the two modalities, namely, when language input is introduced as a contradictory
element, the performance drops slightly, whereas when the contradictory input is
introduced in the action stream, the model is affected heavily and performs poorly.
The primary output modality has no significant impact on the result; for example,
we can see that both ‘describe’ and ‘repeat language’ output language at large,
but they are affected very differently by the conflicting input. To test whether the
bigger impact of conflicting action input is due to the involvement of two modalities
in action (vision and proprioception), we also tried introducing the conflict either
only in vision or only in proprioception (the relatively brighter bars in the right
charts in both Figure 6.7 and Figure 6.8). In either case, the performance is still
substantially negatively affected, although the drop in performance is naturally
not as severe as introducing the conflict in both modalities.

6.4 Discussion

The experimental results on action-to-language and language-to-action translations
show the superior performance and efficiency of our novel PTAE model under
limited supervision. Limiting the percentage of supervised crossmodal iterations

90

6.4. Discussion

during training has no adverse effect on PTAE as it maintains its perfect sentence
accuracy when translating from action to language. In contrast, the action-to-
language translation accuracy for the previous PGAE model drops substantially
when only a tiny proportion of the training iterations are supervised. When we
challenge both models more by limiting the number of training samples for the
supervised crossmodal ‘execute’ and ‘describe’ signals, we see a similar pattern:
when half or less than half of the training samples are used for supervised signals,
action-to-language sentence accuracy for PGAE decreases directly proportional to
the ratio of supervised samples. PTAE, on the other hand, retains its action-to-
language performance up until when an overwhelming majority of training samples
are used in a supervised fashion. Even after being trained with 2% supervised
training, which amounts to only 13 samples out of 648, PTAE is able to describe
more than half of the action sequences correctly. These results are to some extent
comparable with those achieved by the Child’s View for Contrastive Learning
(CVCL) model [174], a generic contrastive language encoder- and action encoder-
based network trained on a visuolinguistic infant-experience dataset when its linear
classifier-fitted version is trained on a limited amount of supervised samples. All in
all, PTAE shows superior action-to-language performance than PGAE for varied
levels of limited supervision.

The adverse effect of limiting the number of supervised training samples on
the language-to-action performance can already be seen for PGAE even when only
one-third of the samples are excluded as the error rate between predicted and
ground-truth joint values rises significantly. It continues to increase gradually after
reducing the level of supervision further. On the contrary, PTAE is robust against
limited supervision with respect to the ratio of crossmodal training samples until
the supervised percentage is brought down heavily. Achieving similar error rates
on the range from one fifth of training samples to all of them being trained in a
supervised fashion also shows that for PTAE the learning of language-to-action
translation reaches a plateau, where added labels do not provide additional useful
information. After reducing the supervised ratio further, it can be seen that the
error rate gradually increases, albeit only just over 4% for PTAE, when only 7
samples are used for the supervised signals. Overall, these results indicate the
clear superiority of Transformer-based multimodal fusion over a simpler attention
mechanism by the GMU in terms of performance and efficiency. Although it is
relatively larger than PGAE, PTAE is trained much faster and reaches a global
optimum in less than half of the training iterations of PGAE. It is clear from these
results that scaled dot-product attention, which forms the backbone of the CMT,
can work with a low proportion of supervision during training, whereas gated
attention, which is used by GMU, requires a much larger supervised proportion to
learn the crossmodal mapping between action and language. The CMT utilises a
relatively long set of matrix operations over all time steps (temporal information
is kept until the extraction of the representation vector), while the GMU relies on
simpler equations over the mean input features that no longer bear a temporal
dimension.

When introducing a conflicting modality input during testing, we observed an

91

Chapter 6. Efficient and Neurocognitively Plausible Translation

asymmetry in that a conflicting action input leads to a larger disturbance than
a conflicting language input. One possible reason is that the CMT architecture is
asymmetric; as input, we are using the action input as two input vectors (K and
V : keys and values), whereas the language is used as one input vector (Q: queries).
This setting was chosen because the opposite setup (with action as queries) was
found less performant. Our setup can be interpreted as language-conditioned ac-
tion attention. A computationally more expensive architecture could combine both
asymmetric setups, as has been done for learning vision and language representa-
tions [104].

Another possible reason for the larger impact of a conflicting action could be
that the action input combines two submodalities, vision and proprioception, and
hence involves more information than the language input. However, limiting the
conflict to one of the submodalities did not completely remove the asymmetry as
introducing the conflict only in one action submodality (vision or proprioception)
still had a stronger effect on the model performance than a conflicting language
input. Unlike language, vision contains the complete information to perform a task.
Consider the example “pull red slowly” for language-to-action translation. Here,
the language lacks any information about whether the object is on the left or right
side, so the agent can only execute this correctly by taking the visual input into
account during action execution. In contrast, in the opposite direction (action-
to-language translation) and action repetition, the visual input contains all the
necessary information.

6.5 Conclusion

In this chapter, we have introduced a paired Transformer-based autoencoder,
PTAE, which we train largely unsupervised with additional but reduced supervi-
sion. PTAE achieves significantly better action-to-language and language-to-action
translation performance under limited supervision conditions compared to the pre-
vious GMU-based model PGAE. Furthermore, we have tested the robustness of our
new approach against contradictory extra input. In line with the concept of incon-
gruence in psychology, these experiments show that conflict deteriorates the output
of our model and more conflicting features lead to higher interference. We have
also found an asymmetry between the action and language modalities in terms of
their conflicting impact: the action modality has significantly more influence over
the model performance regardless of the main output modality.

Our novel bidirectional embodied language learning model is flexible in perform-
ing multiple tasks and is efficient and robust against the dearth of labelled data.
Hence, it is a step towards an autonomous agent that can communicate with hu-
mans while performing various tasks in the real world. In Chapter 8, we substitute
the language encoder and decoder of PTAE with a pre-trained Transformer-based
LLM to tackle more diverse natural language descriptions, resulting from more
actions and objects on the table.

Hitherto, the approaches introduced in this thesis (PVAE, PVAE-BERT,

92

6.5. Conclusion

PGAE and PTAE) use teacher trajectories to learn action-language mappings in
a supervised fashion. They are unable to observe and act in the environment due
to their unsuitable architectures that require observing the entire sequence before
outputting language or action. To address this issue, in Chapter 7, we will expand
our approach with RL to reduce the need for expert-defined action trajectories.
Specifically, we will introduce the Crossmodal Bidirectional Transformer (XBiT)
model aimed at tackling generalisation to the action space and continuous object
positions by implementing a two-stage SL pre-training and RL fine-tuning learning
paradigm. After regular SL training on labelled supervised trajectories, XBiT em-
ploys a policy-gradient-based online RL fine-tuning method, using sparse rewards
as direct feedback from the environment. Experiments show that RL fine-tuning
enhances performance in language-to-action translation by exploring more dexter-
ous object manipulation with diversified action trajectories while maintaining the
perfect action-to-language performance.

93

Chapter 6. Efficient and Neurocognitively Plausible Translation

94

Chapter 7

Asymmetrical Combination of
Learning Paradigms for Superior

Action Execution

Modern human-robot interaction requires a robot to possess sufficient language
and physical skills. Supervised learning (SL) is a powerful paradigm for acquiring
a combination of these skills using aligned language-action data. However, training
data for robot actions in continuous high-dimensional environments is often lim-
ited in quality or quantity. On the other hand, reinforcement learning (RL) is well
suited for action learning but impractical for learning language-action associations.
To overcome these shortcomings, we introduce the Crossmodal Bidirectional Trans-
former (XBiT) model which combines SL pre-training and RL fine-tuning in robotic
object manipulation. It first uses SL on labelled samples to learn action-language
mappings and coarse motions. Next, via RL, it explores the environment and uses
reward feedback to improve dexterity and execute fine-grained actions. The multi-
modal XBiT architecture integrates language, vision and proprioception, and it can
perform actions instructed by language as well as describe them in language. Our
tabletop experiments show that with limited labelled data, RL fine-tuning results
in fast and significant improvements in action execution compared with SL-only
training. More specifically, the improvement by RL is limited in object selection but
significant in action precision. We conclude that language-enabled robots benefit
from versatile neural architectures, combining multiple learning paradigms1.

7.1 Introduction

The human brain employs complementary learning mechanisms as its different re-
gions specialise in distinct types of learning. According to Doya [39, 40], the basal
ganglia are responsible for selecting actions by assessing candidate actions through
reward-based RL, whereas the cerebellum controls muscles via error-based SL. On

1The code belonging to this chapter is available at https://github.com/oo222bs/XBiT.

95

https://github.com/oo222bs/XBiT

Chapter 7. Combining Learning Paradigms for Superior Action Execution

the other hand, the outermost cerebral cortex is tasked with modelling a concise
representation of the sensory state, guided by the statistical properties of the input,
analogous to unsupervised learning. Inspired by these biological phenomena, com-
parable learning mechanisms can be implemented in robotics. RL is able to produce
goal-directed robotic action sequences from random exploration, but interacting
with the robot by language is non-trivial to realise. Supervised models, mean-
while, have recently made substantial progress in grounding language in robotic
action, but their training requires large amounts of action sequence data, which is
not always available. In addition, unsupervised learning can be used to efficiently
learn state representations from unlabelled data. However, it falls short when fus-
ing multiple modalities, which is integral to full-fledged grounded robot learning.
In the human brain, the basal ganglia and the cerebellum complement each other
in motor control and cognitive functions, and both have recurrent connections with
the cerebral cortex. These three brain regions collaborate on everyday tasks; the
cerebellum is utilised as an internal model of the environment, the cerebral cortex
provides the state representations of the environment, and the basal ganglia enable
action selection through evaluation of these environmental states [39, 40]. In a sim-
ilar manner, to combine the merits of SL with RL for neuro-inspired robot learning,
we introduce a combined supervised and RL training paradigm. Besides, we ex-
tract visual state representations with an auto-encoder-based vision encoder which
is pre-trained on training demonstrations in an unsupervised fashion. As depicted
in Figure 7.1, we first train our model, XBiT, via SL with collected demonstrations.
After this pre-training process, we continue to train XBiT on live demonstrations
in simulation, using RL.

A cognitive robot that can interact with humans should be able to tackle robotic
action-language translation bidirectionally, i.e. language-to-action and action-to-
language translation. It is inadequate for a robot to merely perform actions ac-
cording to given descriptions by humans. Effective communication is vital for a
reliable autonomous agent designed for successful collaboration with humans [63].
To enable seamless communication between a human and a robot, besides possess-
ing language understanding skills, the robot should be able to produce language,
e.g. describe actions. Although it may seem appealing to use a separate model for
each translation direction, a model that can both execute an action based on a
given instruction and describe a given action in language is preferable to those
models that can only do either of these tasks. Similar to multi-task learning ap-
proaches [78, 159, 175] that are trained on multiple robotic object manipulation
tasks in parallel, learning one translation direction may help learn the other direc-
tion due to the multimodal nature of the robotics domain. As there are many ways
to benefit from transfer learning [165], each action-language translation direction
can be treated as a single task learnt in parallel with the other. This approach
also aligns with the biological example of human learning, where prior knowledge
is utilised when acquiring a new skill instead of learning each task from scratch
independently.

As a multimodal approach that integrates language, vision and proprioception,
XBiT is a bidirectional model that can execute actions according to instructions

96

7.1. Introduction

Language

Action Action

Language

Environment

CMT

Reward

Observe

1st Stage: SL Training

2nd Stage: RL Fine-Tuning

Act

SL Loss

Language

Action Action

Language

CMT

Data
set

Ground
truth

Figure 7.1: The two training stages of XBiT. XBiT consists of language and action
streams integrated by the Crossmodal Transformer (CMT). First, we train XBiT
on a dataset using supervised learning (SL) until convergence. Second, action per-
formance improves via exploration in simulation using reinforcement learning (RL).

from humans with randomly initialised object positions as well as describe its own
actions. Since SL-only training cannot generalise to the action space given a lim-
ited number of training trajectories, we employ RL to fine-tune XBiT. We train
our model with a certain number of samples in a supervised fashion and then let
a policy gradient-based RL algorithm (i.e. REINFORCE [181]) explore the ac-
tion space further online and fine-tune on the pre-trained weights for only a mere
fraction of supervised training epochs. As a result of pre-training and fine-tuning,
XBiT can model bidirectional translation between dexterous object manipulation
actions and language by combining a relatively simple crossmodal Transformers
approach with RL. As visualised in Figure 7.2, to test our approach, we choose
the PushButton, PushButtons, SlideBlockToTarget and PickUpCup tasks from
the RLBench learning environment [77], which uses the CoppeliaSim simulation
environment [149]. Apart from the PushButton task, these tasks require the skill
of language-defined target object selection among distractor objects. Moreover, all
four tasks, including the PusButton task, are challenging for SL due to the contin-
uous positioning of objects and the need for interpolation. We compare the results
of the pure SL approach with the results of the RL fine-tuning. The results show

97

Chapter 7. Combining Learning Paradigms for Superior Action Execution

PushButton PushButtons

SlideBlockToTarget PickUpCup

Figure 7.2: The scenario in simulation with action examples. The performed RL-
Bench tasks are shown from left to right and top to bottom: PushButton, Push-
Buttons, SlideBlockToTarget and PickUpCup. The Franka Panda robotic arm is
employed to execute actions according to given language instructions. As can be
seen from the insets, the front and wrist cameras are used for observation.

that fine-tuning with RL helps the model improve its action output, especially
in terms of precision, with exploration to accomplish the given robotic manipula-
tion task, whereas the purely supervised approach fails to generalise to different
object positions in the action space and underperforms in terms of action execu-
tion accuracy. To the best of our knowledge, XBiT is the first model performing
bidirectional robotic action-language translation by employing a two-stage SL and
RL training paradigm. Therefore, the introduction of XBiT is valuable towards
achieving general artificial intelligence. Our main contributions with XBiT are as
follows:

1. introducing a novel flexible model architecture that can be trained with SL
and RL,

2. using the limited available teacher trajectories to model the basics of action
execution,

3. combining our approach with RL fine-tuning for closed-loop action execution
in the environment,

4. showing that RL fine-tuning is more efficient and performant than further
training in a supervised fashion.

98

7.2. Background: Fine-Tuning with Reinforcement Learning

The remainder of this chapter is structured as follows: in the next section, we
briefly discuss related approaches in RL fine-tuning. In Section 7.3, we detail our
approach and its training scheme. Section 7.4 shows our experiments and results,
while Section 7.5 discusses these results. Finally, we conclude the chapter with
Section 7.6.

7.2 Background: Fine-Tuning with Reinforce-

ment Learning

Recently, the domain of robotic object manipulation has witnessed a great deal of
progress [41, 78, 79, 146, 160, 175] with the advent of foundation models [32, 35, 38,
140] in language and vision. While these approaches perform well on generalisation,
multi-task learning and robotic dexterity, they are large models primarily trained
with supervised learning (SL), demanding vast amounts of labelled data. As data is
not always available on a large scale, a complementary approach could be utilising
reinforcement learning (RL). Specifically, RL can be used in the fine-tuning phase
of learning [129, 145]. In the upcoming subsections, we will elaborate on RL fine-
tuning with various examples, involving LLM training, RL pre-trained models and
approaches pre-trained with imitation learning, i.e. behavioural cloning (BC).

Fine-tuning a pre-trained model with RL has been experimented with in dif-
ferent domains. For example, the video pre-training model VPT [15] learns to
control a Minecraft agent by first pre-training on videos and then fine-tuning with
RL in the environment. While the Minecraft agent trained from scratch with RL
can barely do any meaningful actions, the RL-fine-tuned agent achieves human-
level performance. Here, we review LLM fine-tuning, fine-tuning RL pre-trained
methods and fine-tuning BC pre-trained methods.

7.2.1 Large Language Model (LLM) Fine-Tuning

Recent examples of combining SL with RL fine-tuning are LLMs. For example,
ChatGPT [129] is pre-trained unsupervised on large amounts of text. In the fine-
tuning phase, it first learns from labelled data in a supervised fashion. Afterwards,
human testers rank model outputs and shape a reward model. At last, ChatGPT
is fine-tuned by using the PPO algorithm [156] based on the rewards provided
by the reward model. This fine-tuning process is coined as reinforcement learning
from human feedback (RLHF). Similar to LLM fine-tuning, RLHF is also applied
to text-to-image generation by DPOK [46], which outperforms SL fine-tuning in
terms of generated image quality and alignment to text. RLHF optimises the model
outputs so that they conform to human preferences. In contrast, XBiT seeks to
avoid overfitting to the SL training data by generalising to the continuous action
space.

99

Chapter 7. Combining Learning Paradigms for Superior Action Execution

7.2.2 Reinforcement Learning Pre-training

There exist approaches that use RL for both the pre-training and fine-tuning stages
in the robotics field and beyond. For instance, Feng et al. [47] fine-tune a model-
based RL algorithm (TD-MPC [60]), which is pre-trained with offline RL, with
a relatively small amount of online data for visuomotor robot control. Likewise,
in an analysis of online RL fine-tuning for offline RL pre-trained models, Luo et
al. [105] conclude that a conservative online RL fine-tuning policy leads to stable
and sample-efficient learning. Besides, RL fine-tuning can also adapt a robotic
manipulation policy to variations in backgrounds, lighting conditions and object
shapes [83].

Adeniji et al. [4] propose the LAMP (Language Reward Modulated Pretrain-
ing) approach that distinctively leverages a VLM for reward design in robotic
object manipulation. In the pre-training stage, an off-policy model-based RL algo-
rithm, MWM (Masked World Models) [157], learns a language-conditioned task-
independent policy based on rewards generated by the VLM. Afterwards, this
policy is fine-tuned on downstream tasks with sparse rewards from the environ-
ment.

7.2.3 Supervised Pre-training

PixL2R [52] is an example of two-stage SL-RL training for robotic object manipu-
lation. Via SL, it first trains a network to align action trajectories with correspond-
ing language commands. In the second phase, a separate RL policy is trained to
act in the environment, receiving extrinsic rewards alongside intermediate rewards
generated based on the priorly learnt associations between action and language.
However, PixL2R does not constitute an RL fine-tuning approach as the RL policy
learnt in the second phase is different from the model trained on action-language
mappings in the first phase – the weights of the model learnt in the first phase are
not modified and the model is merely used to partially guide the RL policy in the
second phase.

JIRL (joint imitation-reinforcement learning) [36] framework gradually switches
from BC to RL to boost performance while avoiding diverging excessively from
the pre-trained policy, which may cause forgetting previously learnt skills. PIRL-
Nav [145] employs imitation learning to bootstrap RL for navigation tasks. BC is
used to pre-train the navigation policy on 77K human demonstrations, which is
then further trained with the DD-PPO (Decentralised Distributed Proximal Policy
Optimisation) [180] on-policy RL algorithm.

Similar to PIRLNav, our XBiT approach employs an RL fine-tuning paradigm.
However, our approach is able to output not just actions but also language de-
scriptions. To the best of our knowledge, XBiT is the first of its kind to exploit
RL fine-tuning for an SL-pre-trained model in language-instructed robotic object
manipulation.

100

7.3. Proposed Method: Crossmodal Bidirectional Transformer (XBiT)

7.3 Proposed Method: Crossmodal Bidirectional

Transformer (XBiT)

iM

1

<BOS> push the orange button

CS-CAE

p1

i1

Language
Stream

Action
Stream

y1

i2

y2'execute: push the
orange button' CLIP Text Encoder tfeats

CS-CAE

CM Transformer
Textual Attention on Action

h

Q

afeats

v1
p2 pMv2 vM

Language Decoder

Position

push the orange button <EOS>

pos
quats
g
c

CM Transformer
Action Attention on Text

Q

K & V

mean

K & V

CMT Bottleneck
SL-only

CS-CAE

Baseline b
RL-only

🔥

Orientation
Gripper

Collision

🔥

Action Heads
afeatsafeats

2 M

🔥
MLP

Figure 7.3: The XBiT architecture. The inputs are the signal word, i.e. ‘execute:’ or
‘describe:’, and a language description (only for the ‘execute’ signal) and a sequence
of images and robotic arm poses, while the outputs are a description and the
target robotic arm poses. A pre-trained CLIP text encoder embeds language input
into text features tfeats. Visual features are extracted via the channel-separated
convolutional autoencoder (CS-CAE) and concatenated (

⊕
) with the arm poses,

p, to form the action input. Together, the action features, afeats, are then passed
to the CM Transformer (CMT) bottleneck, which fuses information from the two
streams. The output of the CMT is the common representation vector h. The
language decoder is a Transformer decoder, while the action decoders (heads) are
individual feed-forward layers. The baseline unit is used to reduce variance during
RL fine-tuning. Apart from the language decoder (only trained during SL) and
the baseline unit (only trained during RL), the whole network is used during SL

pre-training and RL fine-tuning, and the components marked with 🔥 are trained
with SL and RL.

XBiT models bidirectional action-language translation (Fig 7.3). It consists of
a CLIP text encoder, convolutional autoencoder-based vision encoder, Crossmodal
Transformer (CMT), Transformer-based language decoder and fully connected
(FC) action decoder layers. Following the PGAE and PTAE models [134, 135]
(see Chapters 5 and 6), we use signal words as part of the language input to direct
the model in the desired translation: action-to-language (‘describe’) and language-
to-action (‘execute’) translations. XBiT performs these translations individually
according to the given signal word, i.e. ‘describe’ or ‘execute’.

7.3.1 Language Encoder

The language encoder embeds the language input to extract the meaning of the
instruction provided by the user. Following prior works [108, 159, 160], we use

101

Chapter 7. Combining Learning Paradigms for Superior Action Execution

the pre-trained CLIP Text Encoder [140] as our language encoder. The language
input is fed to the network as text strings and then converted into a vector by the
language encoder. Apart from the action instruction, the language input includes
the signal word, which is either ’execute’ or ’describe’. When ’describe’ is chosen
as the signal, the language input does not contain an action instruction. The CLIP
text encoder embeddings are forwarded as language features, tfeats, to the CMT.
Note that the choice of the CLIP text encoder as the language encoder is due
to its pre-training with an image encoder aimed at pairing vision and language,
which shows similarities with XBiT, but it can be replaced by any other pre-
trained language encoder such as BERT [35], as demonstrated in our previous
PVAE-BERT and PGAE approaches (see Chapters 4 and 5).

7.3.2 Action Encoder

The action input consists of two modalities: proprioception and vision. The propri-
oceptive observation, p, contains the end-effector poses, gripper information and
collision avoidance signal. The visual observation consists of RGB images cap-
tured by two cameras in the environment: the front camera, which captures the
view across the table, and the wrist camera, which captures the view over the grip-
per. For encoding the visual input, as it is done with our previous models, we first
train a channel-separated convolutional autoencoder (CS-CAE) [136] in an unsu-
pervised fashion on training images. We then freeze the CS-CAE and extract visual
representations, v, from its middle layer during the training of XBiT. The visual
representations from both cameras and the proprioceptive input are concatenated
for each time step. This combined representation forms the action features, afeats,
which are fed to the CMT bottleneck.

7.3.3 Crossmodal Transformer Bottleneck

The Crossmodal Transformer (CMT) bottleneck fuses multiple modalities by ap-
plying crossmodal attention. It involves two CMT blocks in order to align language
and action streams symmetrically, similar to the ViLBERT architecture [104]. In
the top block (Figure 7.3, Bottleneck), language features are used as queries (Q),
while action features serve as keys (K) and values (V). This kind of attention
application can also be coined as language-conditioned action attention, as each
language feature attends to all action features along the temporal dimension. It
calculates how valuable the features of each pair of an image and proprioceptive
input for a word in the language input are. In the bottom block (Figure 7.3), we
do the opposite and use action features as Q, while textual features are fed to the
CMT as K and V vectors. We call this action attention on language. In the end,
the outputs of both CMT blocks are averaged over the batch dimension to produce
the hidden representation vector h:

h = µ
(
CMTta (tfeats, afeats) ,CMTat (afeats, tfeats)

)
(7.1)

102

7.3. Proposed Method: Crossmodal Bidirectional Transformer (XBiT)

where µ stands for mean averaging, CMTta and CMTat stand for the respective
CMT blocks, tfeats are the language embeddings, while afeats are action features that
involve visual features and proprioceptive input. For our experiments, we employ
a single-layer CMT with 4 parallel attention heads for each block. Irshad et al. [75]
detail the internal structure of a CMT block – see also Section 6.2.1 in the previous
chapter.

7.3.4 Language Decoder

The language decoder outputs the description of a given action by using the com-
mon hidden representation h. We use a Transformer-based language decoder that
learns to output the correct language description during training, where mask-
ing is employed to prevent looking ahead at the future tokens as in the original
Transformer [173]. Due to its Transformer-based architecture, the language decoder
outputs the descriptions word by word autoregressively during inference. Like each
CMT block, the language decoder is a single-layer Transformer with 4 attention
heads.

7.3.5 Action Decoder

The action output is the target end-effector position alongside the orientation,
gripper condition and collision avoidance signal according to the current observa-
tion and language input. The common hidden representation h is projected with a
multi-layer perceptron (MLP) to be used as input to the action decoder. For each
type of action output, we use an FC layer as a head. The position head outputs
the absolute position values, (posx, posy, posz), in Cartesian space. The orientation
head outputs the orientation values, (quatx, quaty, quatz, quatw), in quaternion
space. The gripper head outputs g, whether the gripper should be closed or open
at the next step. Finally, the collision head provides the binary output of c, whe-
ther the robotic arm should avoid collision or not. We use the sigmoid activation
function for the gripper and collision outputs.

Following PERACT [160], the practical execution of the action relies on a
motion planner provided by the RLBench environment. The motion planner tries
to find an accurate path for the target action by using inverse kinematics or sample-
based planning solutions. After the path is found, the robotic arm is moved to the
desired pose.

7.3.6 Supervised Learning Loss Functions

During supervised training, we use two loss functions to calculate the deviation
of the model output from the ground-truth language descriptions and end-effector
poses. The language loss, Llang, is defined as the cross entropy between target (x)

103

Chapter 7. Combining Learning Paradigms for Superior Action Execution

and output (y) words:

Llang =
1

N − 1

N−1∑
t=1

(
−

V−1∑
i=0

x
[i]
t+1 · log y

[i]
t

)
, (7.2)

where V is the vocabulary size and N is the number of words per description. The
action loss, Lact, is a combination of the L1 loss on the gripper pose (including XYZ
positions and orientation quaternions) and binary cross entropy loss on gripper
open and collision outputs:

Lpos =
1

M − 1

M−1∑
t=1

∥p̂ost − post∥ , (7.3)

Lquat =
1

M − 1

M−1∑
t=1

∥∥∥q̂uatt − quatt

∥∥∥ , (7.4)

Lg = − 1

M − 1

M−1∑
t=1

(gt · log(ĝt) + (1− gt) · log(1− ĝt)) , (7.5)

Lc = − 1

M − 1

M−1∑
t=1

(ct · log(ĉt) + (1− ct) · log(1− ĉt)) , (7.6)

where M is the sequence length for action trajectories, while hats (ˆ) over variables
denote model outputs. Following BC-Z [78], the weighting for the action output
loss is 1 for positions, 0.1 for quaternions and 0.005 for gripper open and collision
avoidance, which results in the following action loss:

Lact = Lpos + 0.1 · Lquat + 0.005 · (Lg + Lc) . (7.7)

The total loss is the sum of the language and action losses:

Lall = αLlang + βLact, (7.8)

where α and β are weighting factors. In our experiments, considering the relative
difficulty of producing language and action, we take α as 1 and β as 10, which
yields comparable loss values in magnitude for the modalities. Setting both Llang

and Lact to 1 resulted in the degradation of the action performance. Conversely,
setting β to 100 led to poor language performance.

7.3.7 Reinforcement Learning Fine-Tuning

We employ the policy gradient-based REINFORCE algorithm [181] to update the
weights of our model during fine-tuning. REINFORCE trains an actor, for which
we use the XBiT architecture, and a baseline, for which we add a separate FC
layer. The actor acts based on the current observation and language instruction
and receives sparse rewards from the environment. The baseline tries to model the

104

7.3. Proposed Method: Crossmodal Bidirectional Transformer (XBiT)

rewards by estimating the future rewards based on the current observation and the
action produced by the actor.

As a policy gradient method, REINFORCE directly searches for the optimal
policy. It uses gradient ascent to update the policy weights in order to max-
imise the expected return. For each episode, E = {s1, a1, r2, . . . , sT−1, aT−1, rT},
encountered following the policy, πθ, where s, a and r are states, actions
and rewards respectively, REINFORCE tries to maximise its discounted return,

Gk ←
∑T

t=k+1 γ
t−k−1rk, by optimising the objective function, Jθ = Eθ

[∑T
t=0Gt

]
.

The weights of the policy are updated as follows with the learning rate α at the
end of every episode:

θ ← θ + α▽θJ(θ), (7.9)

where ▽θJ(θ) =
T−1∑
t=1

▽θ log (πθ(at|st))Gt. (7.10)

As our approach works in continuous domains, during training, we let the algorithm
explore on top of action values, a, predicted by XBiT by employing a Gaussian
distribution with a fixed standard deviation: N (a, 0.01). To reduce variance [120],
we subtract the baseline prediction, b, from the discounted return, G, before we
calculate the objective function, Jθ.

7.3.8 Training Details

We train XBiT end-to-end with three modalities in both action-to-language and
language-to-action directions. Considering the relative difficulty of the two trans-
lation directions, we randomly choose in which direction to train XBiT with a
ratio of 4:1 in favour of the language-to-action translation. We freeze the CS-CAE
and CLIP Text Encoder layers and train the rest of the network. In the initial
SL phase, XBiT is trained for 20,000 epochs via gradient descent using the Adam
optimiser [89]. Following Irshad et al. [75], we set h with 256 dimensions. The
language vector, x, has 24 dimensions, whereas the proprioception vector, p, has 9
dimensions. The longest sequence is 39 time steps, while the shortest is 14 in the
dataset collected in advance to pre-train XBiT in a supervised manner. We take
the learning rate as 10−5 with a batch size of 8 samples after determining them as
optimal hyperparameters. In total, XBiT has approximately 67M parameters with
only about 3M of them trained while the rest are frozen.

After supervised training, we further train the model (except the language
decoder) with the REINFORCE algorithm. This training is conducted online in a
simulation environment with sparse rewards. The baseline layer is initialised with
all zeros. At the end of each episode, our agent receives a reward of 1.0 only if it
completes the action successfully. Otherwise, it receives zero rewards. We set the
discount factor γ to 0.9, which empirically led to robust learning.

105

Chapter 7. Combining Learning Paradigms for Superior Action Execution

Table 7.1: Dataset Splits Per Task

Task Training Set Validation Set Test Set

PushButton 1,000 25 25

PushButtons 10,000 100 150

SlideBlockToTarget 5,000 100 150

PickUpCup 10,000 100 150

7.4 Experiments and Results

We perform the PushButton, PushButtons, SlideBlockToTarget and PickUpCup
tasks from RLBench [77]. The first two tasks include either one button (PushBut-
ton) or three differently coloured buttons (PushButtons) situated on the table, and
the Franka robotic arm is used to press the buttons. The buttons have a red top
plate, which turns green after being pushed by the gripper. The PushButton task
involves one of 18 buttons, each of which is of a different colour, placed on the table
per episode. The PushButtons task involves three of 6 differently coloured buttons
placed on the table per episode. The language instruction specifies the target but-
ton by naming its colour. The buttons are randomly placed in continuous positions
on the table. The SlideBlockToTarget task involves a red block which needs to be
moved to the correctly coloured target area on the table for the successful com-
pletion of an episode. The four differently coloured patches (blue, green, pink and
yellow) are positioned randomly on four sides of the arbitrarily placed red block.
The PickUpCup task requires one of the two coloured cups placed on the table to
be grasped and lifted based on the language instruction. Each cup is of one of 8
colours and the two cups cannot be of the same colour in an episode. We generated
a separate dataset for each task, involving successfully completed episodes exclu-
sively. Table 7.1 lists the dataset splits for the four tasks. The training set sizes have
been decided in terms of the varying difficulties of the four tasks. Accordingly, the
simplest task of PushButton has the lowest number of training episodes, whereas
the more challenging PushButtons and PickUpCup tasks include the most training
samples. Our dataset is substantially smaller compared with the approaches that
need hundreds of thousands to over a million training episodes [21, 22, 146, 175].
The sequences of 128×128-pixel images make up most of the dataset sizes, which
sum up to 29.4 GB, and generating the data in simulation took approximately 106
hours. SL pre-training alone on each dataset takes a few days up to two weeks on
8 Nvidia Quadro RTX 6000 GPUs, depending on the dataset size. Therefore, a
further upscaling of training data would be expensive concerning data generation
and training time.

We train our model in both language-to-action and action-to-language transla-
tions using the ‘execute’ and ‘describe’ signals respectively. The signal is prepended
to the language input, which determines the direction of the action-language trans-

106

7.4. Experiments and Results

lation. For each training iteration, XBiT is trained in one of the translation direc-
tions, with approximately 80% of the iterations in the more challenging language-
to-action direction. After training XBiT in both translation directions through SL
on training data, we fine-tune it only in the language-to-action direction via di-
rect rewards from the environment using the REINFORCE algorithm for 1,000
episodes. In the following subsections, we report XBiT’s performance for action-
to-language and language-to-action translations before and after RL fine-tuning.

7.4.1 Action-to-Language Translation

For XBiT to translate from action to language, we pass the ‘describe’ signal as a
single word in the language input, excluding the ground-truth language description,
together with the sequence of images and proprioception. For the PushButton and
PushButtons tasks, the language output is considered correct when it describes
the correct button based on its colour, e.g. “push the blue button <EOS>”, where
<EOS> denotes the end-of-sentence tag. For the SlideButtonToTarget task, the
language output must correctly denote the colour of the area the block is pushed
towards, e.g. “slide the block to pink target <EOS>”. Finally, the PickUpCup
language output must name the colour of the cup being lifted, e.g. “pick up the
black cup <EOS>”. Apart from the colour word, all language descriptions are
identical, following the “push the colour button”, “slide the block to colour tar-
get” and “pick up the colour cup” templates. We use sentence accuracy as the
performance metric for action-to-language translation and only accept a language
output as accurate when all output words match with the ground truth.

For all training checkpoints starting from 1K epochs until the final checkpoint,
we achieve 100% action-to-language translation accuracy on the test sets of all
four tasks, as XBiT describes all of the 475 episodes correctly. For the PushButton
task, this may seem trivial as there is only a single button on the table, but for
the other tasks, the model has to distinguish the target from the distractors (the
target button from the other two buttons on PushButtons, the target area from
the other three areas on SlideBlockToTarget and the target cup from the other
cup on PickUpCup). Furthermore, for each checkpoint, we observe no performance
drop after the RL fine-tuning stage which trains the model only in the language-
to-action direction, as the fine-tuned model perfectly describes all actions in the
test sets.

7.4.2 Language-to-Action Translation

We test XBiT after supervised training and RL fine-tuning on language-to-action
translation in the simulation environment. During testing, we give a language in-
struction such as “push the orange button” with the ‘execute’ signal prefix and the
current observation including two camera views and proprioceptive input. XBiT
then outputs the next target pose accordingly, which triggers the motion planner
to move the gripper to the desired location. The action is deemed correct only if
the gripper successfully completes the task according to the task-specific success

107

Chapter 7. Combining Learning Paradigms for Superior Action Execution

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K 17K 18K 19K 20K
Number of Supervised Training Epochs

0

20

40

60

80

100
Ac

tio
n

Ac
cu

ra
cy

 (%
)

Action Execution Accuracy on Test Set for One Button

Unidirectional
SL Only
SL + RL

Figure 7.4: Action execution performance for the PushButton task (involving a
single button) across different training epochs. The unidirectional XBiT is trained
only in the language-to-action direction, with SL only.

metric such as pressing the target button causing its top plate to turn green or
lifting the target cup up to a certain height.

Figure 7.4 shows the action accuracies of XBiT on the test set of the PushBut-
ton task across every 1000th training epoch before and after RL fine-tuning. As an
ablation study, we first experiment with a unidirectional version of XBiT, trained
only to do language-to-action translation, and compare it against the proposed
bidirectional XBiT. Both models are trained using SL without RL fine-tuning.
The blue thin dashed curve of the unidirectional model displays significantly slower
learning than the solid blue curve of the bidirectional model. This indicates that
bidirectionality does not impede but rather facilitates action learning.

When comparing RL fine-tuned XBiT with the SL-only XBiT in Figure 7.4, we
can see that RL fine-tuning improves the action performance significantly and even
leads to a perfect action completion for all checkpoints from 15K epochs onwards,
including the 10K epoch checkpoint. With SL alone, XBiT does not achieve per-
fect precision, thus not reaching its full potential. Moreover, bootstrapping with
RL does not lead to any successful episodes (see 0th checkpoint) – this can be
regarded as an ablation experiment where XBiT is trained with RL only. However,
on top of SL pre-training, RL fine-tuning boosts accuracies consistently across dif-
ferent training epochs, with the largest improvements in the intermediate SL stages
between 2K and 10K epochs and the highest performance boost of over 75% for the
5K checkpoint. In order to determine if we can reach perfect performance with RL
fine-tuning early on, without longer SL training, we also test the performance of

108

7.4. Experiments and Results

0 1K 2K 3K 4K 5K
Number of RL Fine-Tuning Episodes

0

10

20

30

40

50

Ac
tio

n
Ac

cu
ra

cy
 (%

)

Action Performance of 1K Checkpoint on Test Set for One Button
SL Only
RL Improvement

Figure 7.5: Action execution performance on the PushButton task after longer RL
training for the 1K-epoch-SL-trained model.

1K epoch checkpoint after up to 5,000 RL episodes (Figure 7.5). The results show
that while the performance improves at first, the resulting model cannot reach a
high success rate, as the accuracies saturate around the one-third level.

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K 17K 18K 19K 20K
Number of Supervised Training Epochs

0

20

40

60

80

100

Ac
tio

n
Ac

cu
ra

cy
 (%

)

Action Execution Accuracy on Test Set for Three Buttons
SL Only
SL + RL

Figure 7.6: Action execution performance on the PushButtons task (involving three
buttons) across different training epochs.

Figure 7.6 shows the action execution performance in the three-button setting
(PushButtons task). As can be seen, RL fine-tuning consistently improves the ac-
tion accuracies of XBiT starting from earlier checkpoints until the last checkpoint.

109

Chapter 7. Combining Learning Paradigms for Superior Action Execution

SL Only SL + RL
65

70

75

80

85

90

95

100
Ac

tio
n

Ac
cu

ra
cy

 (%
)

PushButton

SL Only SL + RL

45

50

55

60

65

PushButtons

SL Only SL + RL
78

80

82

84

86

88

90

92

94 SlideBlockToTarget

SL Only SL + RL

26

28

30

32

34

36

38

40

42 PickUpCup

Figure 7.7: SL Only and SL+RL action execution accuracies averaged between
10K to 20K epoch checkpoints with intervals of 1,000 checkpoints for all of the
four tasks.

We can see a performance boost of up to over 20% after RL fine-tuning. The
best-performing purely-supervised set of weights can barely reach the 50% mark,
whereas after fine-tuning our approach tops action execution accuracy with 66%.

Figure 7.7 shows the distributions of action execution performance with and
without RL fine-tuning on all of the four tasks. We average starting from the 10K
epoch checkpoint until the end of the SL training (20K epochs) for every 1000th
epoch checkpoint. The left panel in the figure displays the model performance in
the one-button setting (PushButton task). The boxes indicate the clear advantage
of RL fine-tuning over purely supervised training with a significant improvement
of 20% in the median values, consistent with Figure 7.4. Moreover, the RL fine-
tuned checkpoint results are more narrowly distributed, while the supervised-only
checkpoints have a visibly higher variance as the results range between 65% and
90%.

The left middle panel in Figure 7.7 displays the model performance on the
PushButtons task. As can be seen, the median accuracy achieved by a purely
supervised set of weights (45%) rises by 17% after fine-tuning (62%). Furthermore,
the worst performance after RL fine-tuning is still better than the best-performing
SL checkpoint (∼54% vs ∼50%).

The right middle panel in Figure 7.7 illustrates action execution performance
on the SlideBlockToTarget task. While supervised training alone achieves decent
performance with an average success rate of slightly over 84%, RL fine-tuning over
the supervised model yields a significant performance improvement of 4%. The
best-performing SL-only checkpoint reaches an action accuracy of 88%, whereas
the highest accuracy after RL fine-tuning is over 93%. Moreover, the RL fine-tuned
model attains a better result than its supervised-only counterpart in terms of the
minimum success rate (∼81% vs 78%).

In Figure 7.7, the rightmost box plot shows the action accuracy results for the
PickUpCup task. Although the overall performance is the lowest amongst all four
tasks, the SL pre-trained and RL fine-tuned model significantly outperforms the

110

7.5. Discussion

Table 7.2: Average Target Selection and Action Precision Accuracies

PushButtons SlideBlockToTarget PickUpCup

Training Selection (%) Precision (%) Selection (%) Precision (%) Selection (%) Precision (%)

SL Only 67.82 ± 3.60 67.66 ± 4.15 98.67 ± 0.85 85.68 ± 2.68 92.00 ± 1.21 32.54 ± 2.36

SL + RL 72.48 ± 2.93 84.22 ± 4.91 98.06 ± 1.85 90.04 ± 2.26 90.85 ± 1.31 38.43 ± 3.22

RL Improvement 4.66 ↑ 16.56 ↑ -0.60 ↓ 4.36 ↑ -1.15 ↓ 5.89 ↑

SL-only model on this task as well. The results show that RL fine-tuning can help
XBiT attain an over 40% success rate on this challenging task as the supervision
alone struggles to lift the target cup in one-third of the test episodes at best. All
in all, the average performance from 10K to 20K checkpoints on the PickUpCup
task is elevated by approximately 5% with RL fine-tuning.

The Pushbuttons, SlideBlockToTarget and PickUpCup tasks involve two chal-
lenges: (i) selection of the correct target and (ii) precision of controlling the gripper
to successfully execute the action. To measure the individual contributions of RL
to mastering these two challenges, we make the following definitions. The selec-
tion accuracy is the percentage of episodes where the gripper has moved closer to
the target than to any of the distractors2, irrespective of successful action comple-
tion. The execution accuracy is the percentage of successfully completed episodes.
Hence, we define precision accuracy, which is the number of successful executions
given correct selection, as:

precision =
execution

selection
· 100. (7.11)

The precision accuracy measures the dexterity of the gripper manipulating the
selected object. We quantify these performance measures of XBiT from 10K up
to 20K checkpoints for the three tasks. The results in Table 7.2 show that the av-
erage button selection accuracy increases by around 4% during RL fine-tuning on
the PushButtons task. The real benefit of RL, however, reveals itself in the action
precision once a button is correctly selected: RL fine-tuning improves precision
accuracy by more than 16% on average, from 67% to 84%. For the SlideBlock-
ToTarget task, the selection accuracy does not improve any further, since it is at
an almost perfect performance after the supervised training. The precision, on the
other hand, rises to above 90% after RL fine-tuning with an increase of more than
4% over the SL-only model. The results on the PickUpCup task indicate a simi-
lar pattern: there is a slight decrease in the selection rate, whereas the precision
accuracy is enhanced by almost 6%.

7.5 Discussion

In our experiments, we have investigated how the strengths of SL and RL can
be combined to overcome the weaknesses of both learning paradigms. RL is a

2In the SlideBlockToTarget task, selection is considered correct when the block is moved
towards the target area rather than any of the other three regions.

111

Chapter 7. Combining Learning Paradigms for Superior Action Execution

powerful way to explore the action space and learn various tasks based on direct
feedback from the environment. It is especially suitable for dynamic environments
(e.g. a rescue robot scenario [126]) and tasks that require active learning (e.g.
humanoid walking [97, 121]), where labelled data for SL is unavailable. However,
REINFORCE fails to learn from scratch based on only sparse rewards in our robotic
manipulation scenario. Therefore, SL is necessary to learn from teacher trajectories
initially. Nevertheless, SL alone cannot unlock the full potential of end-to-end
models and causes overfitting to training samples, thus requiring further learning
with RL to compensate for the scarcity of available data.

Our results on language-to-action translation show that when data is in short
supply, SL is limited in generalising to different object positions in a continuous
space and object combinations. Online RL fine-tuning in simulation with sparse
rewards as direct feedback brings about better performance, achieving perfection
in some cases. In the one-button scenario, the SL pre-trained and RL fine-tuned
XBiT outperforms the solely SL-trained model by a great margin, showing the po-
tential of our approach. The three-button experiments also show results in favour
of RL fine-tuning over pure supervision. However, compared to the one-button
experiments, the boost in performance is lower. The reason for this may have to
do with the difficulty of the task. In the PushButtons task, the model must first
identify the target button amongst the distractor buttons (the selection problem)
and then accurately press it (the precision problem). As evidenced by the results
in Table 7.2, when the SL pre-trained model chooses the wrong button, RL fine-
tuning has limited ability to rectify the trajectory and move the gripper towards
the correct button (less than 5% increase in selection). In contrast, for those cases
when the model selects the correct button, RL boosts the action execution per-
formance significantly (more than 16% increase in precision). An alternative way
to overcome the problem of selecting the correct button could be to implement
a modular approach, where a colour detection module identifies button colours
before proceeding with low-level action execution. On the task requiring a block
to be moved to the target area (SlideBlockToTarget), the performance boost by
RL fine-tuning is limited to 4%. Here, the SL-only model achieves good results by
completing the majority of test episodes successfully, leaving little room for RL
fine-tuning to improve – the improvement in precision is still noteworthy as it re-
sults in the successful completion of about one-third of the remaining episodes (see
the precision accuracies for SlideBlockToTarget in Table 7.2). The almost perfect
selection rate on the SlideBlockToTarget task cannot be improved further using
RL. On the PickUpCup task, the overall accuracy of our model is noticeably lower
than the other tasks. On this task, we observed a particular phenomenon caus-
ing low precision rates despite high selection accuracies: as the target cup can be
grasped along its rim, the variation in the grasp location of the cup causes the
model to try to grasp the cup often in the centre of the rim, leading to failed
grasp attempts, hence unsuccessful episodes. Nevertheless, RL fine-tuning leads to
a significantly better performance over pure supervision.

Unlike most approaches in robotic object manipulation, XBiT does not only
execute actions based on language input, but it can also describe robotic actions

112

7.5. Discussion

based on visual and proprioceptive observations. In our action-to-language transla-
tion experiments, XBiT displays perfect sentence accuracies across all checkpoints
on all four tasks, even if it sometimes fails to perform the actions successfully. We
also show that the bidirectional model learns action execution skills more quickly
than its unidirectional variant, which is incapable of translating from action to
language. More importantly, we report that XBiT retains its perfect action-to-
language translation performance even after RL fine-tuning which is used to train
the model only in the language-to-action direction, including the baseline unit and
excluding the language decoder. Hence, fine-tuning in one translation direction
does not negatively affect the performance in the other direction. RL fine-tuning
on action does not lead to forgetting action-to-language translation despite both
modes sharing the common CMT bottleneck.

We perform RL fine-tuning for 1,000 episodes only, which is a tiny fraction
of SL training steps. Although it needs to interact with the environment, the
RL fine-tuning stage is very efficient in terms of training iterations. A further
attempt at improving model performance would be iteratively alternating between
SL and RL training. We tried further training an RL fine-tuned checkpoint (20K
on PushButtons) with SL but saw no further improvement in performance. We
also tried RL fine-tuning for up to 5K episodes starting from earlier checkpoints,
for example, the 1K checkpoint on the PushButton task; while we observed some
improvement at first (from 1K to 2K episodes), the action accuracy eventually
plateaued, reaching its upper limit (Figure 7.5). This might be the case because
when the model is under-trained, it can only come close to accomplishing the task
in fewer cases. In contrast, it should come close to accomplishing the task in most
cases when it has been sufficiently trained with SL. RL fine-tuning perfects these
actions and creates a model that is always able to press the button (see the 10K
checkpoint and compare with earlier checkpoints in Figure 7.4.)

REINFORCE is a simple off-policy gradient-based RL algorithm that directly
optimises the policy to maximise return. Its simplicity, efficiency and compatibility
with our model were the main factors in choosing REINFORCE when fine-tuning
XBiT. In terms of architecture, the baseline output unit can be compared with
the critic unit of an actor-critic RL architecture. However, while SL teaches a
policy, it does not provide any reward information, leaving the baseline network
untrained. Nevertheless, since the baseline is not crucial in REINFORCE, the RL
phase seamlessly continues to refine policy learning starting with a zero-valued
baseline. In contrast, an untrained critic would disrupt the already trained policy
when switching from SL to RL in actor-critic learning. This would render an actor-
critic learning paradigm less suitable for our approach. To enable the early learning
of the value function in the absence of rewards, inverse reinforcement learning [3],
which learns a value function directly from expert trajectories, could be considered.
Furthermore, our approach could be tested with more sophisticated RL algorithms
such as DDPG (Deep Deterministic Policy Gradient) [98] and PPO [156]. Though
not explored in this work, multi-task RL approaches [80, 176] could be considered
instead of learning every new manipulation task in isolation.

113

Chapter 7. Combining Learning Paradigms for Superior Action Execution

7.6 Conclusion

In this chapter, we have introduced a novel bidirectional robotic object manipula-
tion model that can be pre-trained in a supervised fashion in the first learning stage
and fine-tuned with RL in the second stage. Our end-to-end model, XBiT, performs
well in both action-to-language and language-to-action directions in a simulated 3D
continuous tabletop scenario. Fine-tuning with RL boosts its language-to-action
performance, improving the precision of actions by a significant margin on all four
tasks while leading to relatively minor gains or no improvements in the selection
performance on the three tasks requiring correct identification of the target. Inter-
estingly, perfect performance in the action-to-language direction, for which XBiT
is not fine-tuned in the second stage, is retained, indicating no negative interference
caused by RL. In the future, our method can be applied to more object manipula-
tion tasks, including real-world scenarios. Powerful LLMs such as GPT-3.5 [129],
Palm2 [9], Llama [168] and Vicuna [30] can also be employed with XBiT to enable
complex human-robot dialogue.

Until now, we have only tackled simple language related to robotic object ma-
nipulation with our bidirectional action-language translation approaches. We have
trained our models to understand and output robotic task-oriented sentences. How-
ever, a humanoid companion robot must have the ability to comprehend and pro-
duce language in any given context, not restricted to the specific robotic task.
Therefore, in the next chapter, we will introduce the CrossT5 architecture, designed
for combining low-level robotic action skills with the advanced linguistic capabil-
ities of LLMs. Specifically, CrossT5 integrates our bidirectional action-language
model PTAE into the encoder-decoder-based T5 LLM via our crossmodal fusion
method CMT. Experiments show that the combined model achieves competitive
performance in both robotic action-language translation and NLP tasks.

114

Chapter 8

Capturing Strengths of Large
Language Models for

Bidirectional Action-Language
Translation

Natural language processing (NLP) and computer vision tasks have recently seen
large improvements through the rise of Transformer-based architectures. The pow-
erful LLMs take advantage of the extensive textual datasets that are abundantly
available online. However, robotic action and particularly bidirectional action-
language translation tasks are less explored as they require more specific and
labelled data. Therefore, this chapter aims to enable robotic action capabilities
for a pre-trained LLM while maintaining maximum efficiency in terms of training
time and dataset size. To achieve this, we partition a Transformer-based LLM and
insert our multimodal PTAE (Chapter 6) architecture in the middle. Specifically,
we split a pre-trained T5 LLM between its encoder and decoder parts in order
to insert the Crossmodal Transformer (CMT) network of the PTAE bidirectional
action-language model. We conduct experiments on a new dataset, consisting of
unimodal language translation and crossmodal bidirectional action-language trans-
lation. The natural language capabilities of the original T5 are efficiently reestab-
lished by training the CMT on a tiny fraction of the original training data of
T5. Furthermore, the new model, named CrossT5, achieves high accuracy for the
vision- and language-guided robotic-action tasks. By design, the CrossT5 agent
acts robustly when tested with language commands not included in the dataset.
The results demonstrate that this novel approach is successful in combining the
advanced linguistic capabilities of LLMs with the low-level robotic control skills of
vision-action models1.

1The code of this chapter is available at https://github.com/samsoneko/CrossT5.

115

https://github.com/samsoneko/CrossT5

Chapter 8. Capturing Strengths of LLMs

8.1 Introduction

Recently, LLMs have gained popularity as versatile and powerful approaches to
general-purpose language processing. Being merely trained on large text corpora,
they are capable of a wide range of NLP tasks, including text generation, transla-
tion, classification and analysis as well as holding natural conversations, answering
questions and generating action plans for robotic tasks. Popular implementations
include PaLM 2 [9], LLaMA [168] and GPT-4 [130], which reaches a size of ap-
proximately 1 trillion parameters, as well as publicly available applications like
ChatGPT [129], Gemini [167] and Bing Chat [117] and open-source models such
as BLOOM [155] and T5 (Text-to-Text Transfer Transformer) [144].

LLMs are built based on the Transformer model [173], an encoder-decoder ar-
chitecture incorporating self-attention [101]. At its core, the Transformer converts
one sequence of tokens into another, making it ideal for handling natural language.
However, it is not trivial to bring the LLM capabilities into the robotics domain
that would allow humans to communicate with a robot. Through additional input
processing, the Transformer architecture can also be adapted or extended for other
modalities as well as crossmodal applications to translate between different modal-
ities. Most popular multimodal implementations focus on augmenting LLMs with
visual capabilities such as image captioning, object recognition and visual informa-
tion extraction [27, 96, 198]. Besides, many implementations only deal with either
image captioning (vision to language) or image generation (language to vision).
Approaches that handle both directions rely on separate models trained for their
respective tasks sharing parameters [192]. These often require large-scale image-
text datasets and only cover tasks on single images rather than image sequences
or features extracted from them [95].

LLMs hold great potential for HRI [17], but they require combining more
modalities beyond vision and language. A robot perceives its physical environ-
ment, e.g. via image sequences, proprioception and tactile input, to carry out co-
ordinated actions. Through language, a robot can understand human commands
and describe information on its own, hence, a robot should be able to translate
between language and action in both directions, showing the same crossmodal be-
haviour as expressed by humans. A common way to augment LLMs for robotic
multimodality is via early fusion, where the robotic sensory input is converted into
a textual format and is passed to the LLM as tokens of a uniform language prompt,
as shown in Figure 8.1a. The outputs of the LLM are tokens which may not be op-
timal to encode robot actions. Due to the novel tokens, fine-tuning LLMs is highly
recommended [21]. Nevertheless, high-quality large datasets for multiple robotic
modalities are scarce [14]. Therefore, LLMs are often augmented with external
tools [116], and for human-robot collaboration, it is advisable to combine a nearly
modality-independent physical task model with a dedicated dialogue model [91].

One of the most important factors influencing the performance of a model
is the choice of a dataset. For language-only tasks, such as machine translation

116

8.1. Introduction

Language LLM
Encoder

LLM

Action
Decoder

Action
Encoder

Vision,
Sensory

LLM
Decoder

Tokens

Language

Action

Action
Decoder

Action
Encoder

Vision,
Sensory Action

Language Language

Tokens Tokens

Tokens

a)

b)

CMT

()

Figure 8.1: Multimodal integration architectures combining LLMs with robotic
behaviour. a) Integration in many conventional architectures is via the input and
output tokens of the LLM. b) Our concept uses the CMT for intra-LLM integration.

and text summarisation, there is an abundance of large-scale datasets2. For cross-
modal vision and language processing on static images, datasets are also ready for
use [10, 100]. However, for paired datasets of robotic action (including vision and
proprioception modalities) and language, data is harder to collect and requires an
expensive labelling effort [66, 175].

To achieve multimodal and crossmodal functionality on robotic action and nat-
ural language without the need for aligned large-scale datasets and expensive train-
ing, we propose a novel approach, shown in Figure 8.1b. We integrate a crossmodal
architecture built for action-language tasks deeply into a pre-trained LLM. This
allows us to use the pre-trained weights of the LLM while following the training
procedure of the crossmodal architecture. The new model, which is called CrossT5,
is trained on a combination of two different datasets, one for learning robotic action
through the crossmodal architecture and another for retaining the original features
of the LLM. This follows the assumption that the natural language capabilities of
the LLM can deal with the addition of the new modality, and the resulting model
can be used for both NLP and crossmodal action tasks.

We use an HRI setup involving the NICO robot [86] in the CoppeliaSim sim-
ulator [149], as visualised in Figure 8.2. The robot perceives its environment thro
ugh cameras in both eyes and interacts with it by controlling its arms.

After conducting experiments with different dataset splits and loss calcula-
tions, we arrive at a final version of CrossT5 that satisfies our demands. The key
advantages of our proposed approach are as follows:

2https://commoncrawl.org/

117

https://commoncrawl.org/

Chapter 8. Capturing Strengths of LLMs

Figure 8.2: The NICO robot setup. NICO is supposed to converse with the human,
execute commands and comment on the scene, which is captured by its left and
right eye cameras (as shown in insets).

• since the natural language capabilities are inherited from the LLM, CrossT5
does not need a large-scale paired language-action dataset to train on, hence,
the object manipulation dataset can be small in size;

• CrossT5 performs competitively with its pre-trained version before modifi-
cation on natural language tasks by including a tiny portion of the natural
language dataset to reestablish the LLM features during training;

• the CrossT5 architecture permits an easy exchange of the LLM, making it
scalable for larger model variants or different LLMs;

• after a very efficient short training, CrossT5 adapts to the language encodings
of the LLM and achieves high performance on both the natural language task
and the action-language translation tasks;

• alongside competitive results for both the language-only task and the multi-
modal PTAE tasks (Chapter 6), CrossT5 demonstrates high robustness for
differently phrased language commands, showing successful adoption of the
linguistic capabilities of the LLM.

The remainder of this chapter is organised as follows. In Section 8.2, we give
background information on the different types of crossmodal fusion approaches
and provide concrete examples. Next, Section 8.3 defines our proposed method
CrossT5 in detail. In Section 8.4, we describe the various experiments conducted

118

8.2. Background: Types of Crossmodality

with CrossT5 and their results, while Section 8.5 discusses these results. Finally,
we conclude the chapter with a summary and an outlook on the upcoming chapter
in Section 8.6.

8.2 Background: Types of Crossmodality

While there are numerous approaches in vision-language and action-language cross-
modality, many of them focus on specific modalities. Accordingly, we divide them
into four categories.

8.2.1 Leveraging LLMs for Vision-to-Language Tasks

Many multimodal approaches focus on adding image processing and understanding
capabilities for LLMs [116], which are either frozen or fine-tuned as part of the
new architecture. While these approaches are crossmodal, they are not capable
of bidirectional translation. For instance, BLIP-2 [96] leverages the performance
of pre-trained language models and image encoders to enable vision-to-language
generation without expensive training. To achieve this, the image encoder and the
language model are connected via a Querying Transformer (Q-Former), through
which the vision and language Transformers share some of their parameters. For
their experiments, they choose an OPT [193] model to serve as the decoder-only
LLM variant, while a FLAN-T5 [33] variant serves as the encoder-decoder variant.
Despite having fewer trainable parameters than its competitors, BLIP-2 achieves
SOTA performance, even outperforming much larger models in zero-shot VQA.

Similarly, the Flamingo model [8] incorporates pre-trained and frozen LLMs
and vision encoders. It accepts visual and textual data as input and can perform
tasks such as captioning, VQA and visual dialogue. Similar to our CrossT5, it
combines the two modalities using gated cross-attention layers, where the keys
and values are obtained from the visual features and the queries from the text
input. In few-shot learning, Flamingo sets a new SOTA on all of the 16 considered
benchmarks and is often on par with models specifically fine-tuned for a respective
task.

MiniGPT-4 [198] explores the advanced multimodal vision-to-language capa-
bilities of GPT-4. It incorporates a frozen LLM, the Vicuna [30] model built upon
LLaMA, which is connected to a frozen vision encoder through a linear projection
layer. This projection layer is trained for aligning the visual features with the LLM,
which are passed to the language model in a combined text prompt. MiniGPT-4
expresses a variety of capabilities similar to those of GPT-4, processing visual in-
formation through a correct alignment of features. Employing a similar method,
PaLM-E [41] extends the concept to more input modalities, each with their re-
spective encoder. After being embedded by the encoders, the input is fed to an
LLM, which is a decoder-only PaLM [32]. PaLM-E performs well on VQA tasks
and robotic manipulation planning. However, the performance on natural language
generation tasks drops significantly when a smaller PaLM is used.

119

Chapter 8. Capturing Strengths of LLMs

As an innovative framework, VisionLLM [177] treats images as a foreign lan-
guage, enabling the LLM to comprehend and execute vision-centric tasks. Other
approaches with more emphasis on action execution show that although they are
still limited to the language output, LLMs can generate action plans [73] and in-
teract with multiple sensory modalities [196] on a variety of different tasks in a
virtual environment in a zero-shot fashion.

8.2.2 Action Execution from Multimodal Input

One category of approaches is not built for language production but instead tack-
les the execution of robotic action based on multimodal input [160], in most cases
language, vision and proprioception. Many of these approaches also focus on multi-
task generalisation [55, 78]. For example, VIMA [79] uses an encoder-decoder ar-
chitecture to translate from visual and linguistic input to robotic action output.
The model accepts combined prompts consisting of language commands and de-
scriptions as well as visual information, using a pre-trained T5 as the language
encoder. VIMA outperforms SOTA approaches on different robotic tasks, includ-
ing zero-shot generalisation.

Tackling the problem of the lack of adaptation in action execution, the
Language-Informed Latent Actions with Corrections (LILAC) framework [34] cor-
rects robotic action through language commands in real time. Similarly, the ATLA
model [147] demonstrates that language descriptions can help in adapting robotic
policies to unseen tools. ATLA uses LLMs to generate these descriptions and obtain
the respective feature representations. Another approach, InstructRL [102], utilises
a unified multimodal encoder to encode both language and vision for robotic tasks
in a virtual environment. We provide a more comprehensive review of the ap-
proaches in this category in Section 2.1.

8.2.3 Action-Centric Crossmodality

Action-centric crossmodal approaches are able to reason and describe actions and
visual information, but they are not built for language-only tasks. For example, the
RT-2 model [21] demonstrates robotic action-language crossmodality, leveraging
a large-scale pre-trained LLM. Its architecture treats the robotic action as an
extension of language, tokenising it on the input level and detokenising it for the
robotic action output. Despite having a high computation cost, RT-2 outperforms
earlier models such as its predecessor RT-1 [22] and generalises to unseen objects
and backgrounds while maintaining a high accuracy. Trained on the Open X-
Embodiment dataset, a consolidated dataset with 22 robotic embodiments, the
RT-X models show a further improvement in success rate [175].

Another approach, the Mani-GPT [194] model, incorporates an LLM and a
network for grasping objects. Its input consists of object labels from a vision mod-
ule, the past dialogue history and human instructions. Based on the nature of the
input, the model classifies it into one of several response categories and generates
a corresponding output. A similar approach, SayCan [6], leverages the semantic

120

8.3. Proposed Method: CrossT5

knowledge inherent in LLMs for the execution of low-level skills. The model incor-
porates the PaLM LLM and is connected to a robotic system that lets it navigate
through and manipulate its environment.

Although these approaches demonstrate bidirectional crossmodality to a certain
extent by being able to generate both language and action, their language output
is limited to the context of the visual or robotic scene the model is confronted with
as they do not involve pre-trained LLMs for general-purpose dialogues. We provide
a more comprehensive review of the approaches in this category in Section 2.3.

8.2.4 Full Crossmodality

A bidirectional approach to both language and visual robotic action tasks is our
PTAE model (Chapter 6), which connects two separate input and output channels
through the CMT to enable action-to-language, language-to-action and unimodal
language and action skills. The action dataset that the model is trained on focuses
on moving two coloured cubes positioned on a table in front of the robot. PTAE
receives a textual description of the action as well as visual features and the robotic
joint sequence. It achieves high performance on the specified tasks, even with a
small number of crossmodal labelled training samples, given sufficient unimodal
experience from unlabelled data (Section 6.3). However, it is not built for language
tasks such as natural dialogue outside of its multimodal training data.

As another example of full crossmodality, the multimodal GATO agent [146]
can perform many different tasks in various modalities, such as image captioning,
acting as a chatbot and playing Atari games, all with a single pre-trained model. It
is trained on a wide variety of data involving visual, language and action modalities.
All input modalities are fed to the model in a batched and tokenised fashion. While
GATO’s capabilities are numerous, it requires extensive training on a large number
of datasets to achieve its crossmodal proficiency. In contrast, for CrossT5, we use
a pre-trained LLM to obtain language proficiency without having to fine-tune it.

8.3 Proposed Method: CrossT5

Our proposed model integrates a pre-trained LLM with the crossmodal PTAE
architecture. PTAE consists of two input encoders, one for language and another
for action, and two respective decoders. The two input and output modalities are
connected via the CMT in the middle. For action encoding and decoding, PTAE
uses LSTMs. Since PTAE only features simple language processing, we extend it
with an LLM to enhance its linguistic capabilities.

A few factors should be taken into consideration for deciding on the LLM. It
has to be pre-trained and open source, as well as compact enough to be run and
fine-tuned locally without major expense. Furthermore, its architecture needs to
be compatible with the PTAE model to allow for a seamless integration of the two
models. T5 [144] meets all of these requirements. Its largest variant is the most
performant, but for our conceptual research, we utilise the T5-small variant with 60

121

Chapter 8. Capturing Strengths of LLMs

lenc'execute:
push red'

Crossmodal
Transformer

FC

FC

T5 Encoder T5 Decoder lout

Action
Decoder

aout

hfull

hmean

Action
Encoder

aenc
j1

v1
Conc.

vM

...

...

jM...

j1

v1
Conc.

vM...

jM...

h

Figure 8.3: The CrossT5 architecture. The T5 encoder and decoder are integrated
with the PTAE architecture via the Crossmodal Transformer (CMT). j vectors
represent joint angle values of NICO’s arms, while v vectors are visual features
extracted from images recorded by NICO’s eye cameras. Conc. denotes concatena-
tion and FC is a fully connected layer.

million parameters. A fine-tuned variant of T5, FLAN-T5, could be suitable as well,
but Wei et al. [178] found that fine-tuning tends to result in worse performance for
smaller FLAN-T5 variants. Another model compact enough could be the smallest
variant of BLOOM [155], featuring 560 million parameters. However, BLOOM
has no encoders but a stack of 70 decoder blocks, hence there is no distinguished
single point to integrate the PTAE. In contrast, T5 matches the encoder-decoder
architecture of the PTAE model, making the gap between the encoder and decoder
an obvious point of integration. This yields the new CrossT5 model.

As presented in Section 8.2, most other vision-language approaches instead
make use of early fusion, combining the data at an initial part of the model.
These models also implement only a single multimodal direction but are either
not built for language-to-action capabilities (BLIP-2, MiniGPT-4) or action-to-
language capabilities (RT-2, VIMA).

8.3.1 Model Architecture

CrossT5 follows the PTAE architecture (Section 6.2). It retains the CMT alongside
the two encoders and two decoders, of which the action encoder and decoder remain
unchanged from the PTAE, while the language encoder and decoder are from T5.
The CMT takes the language encoding as query, while the action encoding is
taken as key and value. After applying scaled dot product attention, it outputs the
crossmodal hidden representation vector h, which is passed onto the two decoders.
T5-small consists of 6 encoder and 6 decoder layers, which are split up in the
middle to connect it with the CMT (Figure 8.3).

The hidden dimension of the CMT and therefore of the output vector h is set
to 512 to match the encoding of the T5-small. In the PTAE model, the mean over
the temporal dimension of the vector h is used as the input for the language and
action decoders. Since the tokens of the T5 language encoding are presented as
one sequence, this step is unnecessary for the T5 language decoder and only done

122

8.3. Proposed Method: CrossT5

for the action decoder.
The T5 weights are frozen. In contrast, we train the CMT, the action encoder

and the action decoder from scratch. The T5 decoder is still used for backpropaga-
tion of the language error during loss calculation, but its weights are not modified.

8.3.2 Crossmodal Language-Action & Natural Translation
Dataset

We name our dataset Crossmodal Language-Action and Natural Translation, or
CLANT for short. CLANT combines two separate datasets: an action dataset is
used to augment the model with bidirectional action capabilities, while a language
dataset is necessary to restore the capabilities of T5 since its encoder and decoder
are separated by the insertion of CMT as the multimodal fusion method.

Table 8.1: Vocabulary with Original and Alternative Words

Component Original Alternative

push move-up

pull move-down

slide-to-left move-sideways-to-left
Action

slide-to-right move-sideways-to-right

Colour

red scarlet

green harlequin

blue azure

yellow blonde

cyan greenish-blue

violet purple

Action Dataset We train the crossmodal tasks of the architecture using the
NICO CoppeliaSim Dataset. A variant of this dataset [136] was used for training
PTAE – see Section 6.3. The dataset consists of a total of 1440 samples, out of
which 360 samples (25%) are used for testing, while 1080 samples (75%) are used
for training.

Each sample consists of a sequence of images and joint values and a description
of an action carried out by the NICO robot [86]. NICO sits in front of a table where
three coloured cubes are placed in three pre-configured positions. The entire scene
is generated on Coppeliasim [149]. NICO has a camera in each eye, overseeing the
table, its hands, arms and their shadows. In each sample, NICO moves one cube
using either its right or left arm. During this action, the camera records, depending
on the sample, a sequence of T = 40, 60 or 85 images. A 30-dimensional feature

123

Chapter 8. Capturing Strengths of LLMs

vector from each image is extracted using CS-CAE (Section 4.2.3), resulting in a
matrix of 30× T features for each action. The joint angle values of both arms are
also recorded for each of the T time steps, with 5 joint values for each arm.

Each textual description consists of two words, one describing the desired action
and the other describing the colour of the target cube. There are 6 different cube
colours and 4 distinct actions, each of which has an alternative name. The action
vocabulary consists of the words given in Table 8.1, which results in 12 × 8 = 96
distinct textual commands in total.

The dataset includes one sample for each distinct action, so the alternative
language descriptions do not increase the number of action sequences. As the vo-
cabulary does not include object positions, language descriptions do not specify
cube positions but cube colours.

Since there are always exactly three cubes on the table, with four possible
actions, the total number of possible actions for a given cube configuration is
3 × 4 = 12. The number of distinct cube configurations is the number of subsets
of 3 cubes from a set of 6 possible cube colours, which is 120. This makes a total
of 12× 120 = 1440 samples in the dataset.

Language Dataset The language dataset used for training the natural language
capabilities of CrossT5 is the Tilde RAPID 2019 German to English dataset [16].
It consists of more than a million sentence pairs in German and English taken from
the press release database of the European Commission. Because the original T5
model was already trained on English-to-German translation, this dataset is well
suited for training the new model. We focus on language translation because it can
be evaluated more easily than text summary or information extraction and works
well on shorter text samples.

For the new CLANT dataset, the first 1440 samples from RAPID 2019 are
taken and added to the NICO CoppeliaSim dataset as an additional category. The
contents of a CLANT dataset sample are visualised in Figure 8.4. As the content
of RAPID 2019 is not ordered by any specification, taking the samples from the
beginning does not cause the data to be restricted in vocabulary or versatility. 1440
translation samples would be an insufficient amount of data to train from scratch
for a complex task like translation, but this is beyond the scope of this chapter.
The CMT in the centre of CrossT5 only has to learn how to identically reproduce
the encoding from the T5 encoder to the T5 decoder for the language translation
to stay intact.

8.3.3 Training Setup

The new architecture should allow the user to specify whether one is performing
actions or having a conversation. To implement this kind of control, we use different
mode signals like those used for PGAE (Chapter 5), PTAE (Chapter 6) and XBiT
(Chapter 7), so that the model can differentiate between the different operation
modes. Following the same idea, the new signals now not only distinguish between

124

8.3. Proposed Method: CrossT5

Figure 8.4: The setup of a CLANT dataset sample. The NICO CoppeliaSim dataset
provides a textual action description, joint values and the visual features extracted
from the action image sequence before training, while the Tilde RAPID 2019
dataset provides a natural language translation sample. These two datasets are
combined into a single dataset, from which, depending on the performed task, dif-
ferent parts are used or ignored on the input level.

the unimodal and crossmodal tasks as in the previous chapters but also the natural
language translation task of the integrated T5 model. The signals are given below.

• Translate indicates the unimodal natural language translation. To retain
the capabilities of T5, this mode trains the new model on natural language
translation samples taken from the Tilde RAPID dataset.

• Describe indicates the crossmodal action-to-language translation. This
mode trains the model to describe the perceived NICO action.

• Execute indicates the crossmodal language-to-action translation. This mode
trains the model to generate the correct sequence of joint values correspond-
ing to the NICO action description.

• Repeat Action indicates the unimodal action-to-action translation. This
mode trains the model to repeat the sequences of joint values from the re-
ceived NICO action.

• Repeat Language indicates the unimodal language-to-language transla-
tion. This mode trains the model to repeat the language description from
the received NICO sample.

We refer to the last four signals as “PTAE signals” for the remainder of this
chapter. During training, one of the signals is chosen at random to determine

125

Chapter 8. Capturing Strengths of LLMs

the mode according to a varying probability distribution. In ‘translate’ mode, the
model receives an English sentence sample from the Tilde RAPID 2019 dataset
as its language input with the added prefix “translate English to German: ”. This
prefix is needed for the pre-trained T5 model to differentiate the translation task
from the rest of its skill set. In ‘translate’ mode, the action input is set as the
repeated initial joint configuration of the robot concatenated with zeros for the
visual features. The language target is set as the equivalent output that the original
T5 model produces, while the action target is the initial joint for all time steps.
This trains the robot to not move during a unimodal language task by design.

For the PTAE signals, the action is given to the model in the form of the joint
value sequence of NICO’s arms concatenated to the corresponding matrix of visual
features. If the mode signal is ‘execute’ or ‘repeat language’, the action input is
instead provided as the repetition of the joint values and visual features at the first
time step. In the same way, the language input is the two-word description of the
action, except for the ‘describe’ or ‘repeat action’ mode, where the description is
left out. In all cases, the desired mode signal term is appended as a prefix to the
language input.

In the ‘execute’ and ‘repeat action’ modes, the action target is the correct
sequence of joint values for the action, while the language target is an empty
string. In the ‘describe’ mode, the action target is the repeated final time step
joint configuration, while in the ‘repeat language’ mode, the action target is the
repeated initial joint configuration. In both modes, the language target is the
corresponding two-word description of the action.

The ‘translate’ mode indicates that the new model treats the input in the same
way the pre-trained T5 would do. The translate task was chosen because the focus
for keeping T5’s capabilities lies in its proficiency in English-to-German translation,
which T5-small can perform best and which can be quantitatively measured with
ease.

Technically, T5 supports a maximum encoding length of up to 512 tokens with
positional encoding. By default, this number is capped at 20 tokens. Since the
translation dataset includes sentences longer than 20 tokens, we set the maximum
sequence length to 60 tokens.

During training, the T5 decoder uses teacher forcing : instead of generating one
token per time step by using the previously generated tokens as input, the decoder
uses the ground-truth token. The error is calculated between the predicted and the
ground-truth tokens individually. Since this method does not rely on the prior t
tokens for the token at t+ 1 to be predicted, the entire encoding can be processed
in parallel with only one pass of the decoder. As the T5 language encodings can be
up to 60 tokens in length and would normally require the same number of decoder
iterations, this significantly optimises the training time. The LSTM action decoder
inherited from PTAE also uses teacher forcing but does not run in parallel.

126

8.3. Proposed Method: CrossT5

8.3.4 Loss Calculation

For the action loss, we keep Equation (6.13) of PTAE, as the action decoder and the
general training process remain unchanged. This implementation takes the mean
squared error (MSE) of the produced joint sequence and the target joint sequence.
For the language loss, there are two alternatives, implemented at different points
in the model architecture. We train CrossT5 with these two loss calculations to
evaluate their usability for the modified architecture:

h-vector Loss In this calculation mode, the loss is defined as the MSE between
the hidden vector h of the CMT and the target hidden vector ĥ:

Llang =
1

N

N∑
t=1

(
ht − ĥt

)2
, (8.1)

where t indexes the numerical values within an encoding of length N . This elim-
inates the necessity of running the T5 decoder thereby reducing computational
costs. For the T5 translation, the target ĥ is the encoding generated by the T5
encoder, because for translation, the T5 encoder already produces an optimum
encoding that generates a good result when passed to the decoder without change.
The CMT only needs to learn not to modify the encoding. While this proves to
be true and works well for the T5 translation tasks, the targets for the crossmodal
tasks of the NICO CoppeliaSim dataset have to be given additional attention.
Since not using the T5 decoder during training means only comparing numerical
encodings against each other, we need T5 encodings that evidently produce cor-
rect sentences such as “push blue” or “pull red” in the decoder. The encodings of
prompts such as “translate English to English: NICO command” reliably decode to
“NICO command” in vast majority of the cases, allowing us to evaluate this train-
ing method. Therefore, during training, if the model receives an encoded action for
“push yellow” in the ‘describe’ mode, the resulting output vector h is compared
against the corresponding T5 encoding of “translate English to English: push yel-
low”. Given that these two encodings differ in token count, ranging from 2 to 10
tokens, which leads to complications in the loss calculation, language encodings of
the PTAE signals are padded to a uniform length of 20 tokens. Unfortunately, this
method is found to be inadequate, as demonstrated in Figure 8.5. The language
performance for ‘describe’ and ‘repeat language’ is 0% and 1.36% respectively. Even
for ‘execute’, where the model is trained to give an empty output, the score is just
0.56%. This outcome may be due to the use of padding tokens. The only PTAE
signal that CrossT5 learns to some extent is ‘repeat action’, where the ground-
truth language output is empty. Different from ‘execute’, the language input for
‘repeat action’ is “repeat action:” and the action input is a joint sequence. As a
result, the T5 decoder does not receive a meaningful encoding and produces an
empty output in 53.89% of the cases.

T5 Decoder Loss This method uses the loss calculation implemented in T5. All
language output is decoded through T5 with teacher forcing, the loss calculated

127

Chapter 8. Capturing Strengths of LLMs

as the cross-entropy loss between target x and prediction y:

Llang =
1

M

M∑
t=1

(
−

V∑
i=1

x
[i]
t log y

[i]
t

)
, (8.2)

where t indexes the tokens within a sequence of length M , and V is the vocabulary
size. The error is backpropagated through the decoder into the CMT. This increases
the accuracy for the PTAE signals dramatically, because calculating the loss at the
actual output layer teaches the model to generate encodings directly corresponding
to, for example, “push blue” and not “translate English to English: push blue”.
Unfortunately, as displayed in Figure 8.5 in the middle, this training method does
not work well for English-to-German translation. When training only with the T5
decoder loss calculation, the translation performance drops to 5.86% on the test
data. Even though the dataset used for training the ‘translate’ mode aligns with
what the pre-trained T5 model can already do, for the same input prompt, the
pre-trained model often generates an output completely different from the target.
Although most dataset targets and the respective T5 predictions are identical
in terms of information and grammatical correctness, the flexible syntax of the
German language means that they can be completely different in their word order
and sentence structure. For this reason, the cross-entropy loss calculates a large
error for an acceptable translation. This interferes with the CMT which tries to
learn to change the translation encodings in accordance with the dataset targets
instead of learning to identically map them to the decoder.

To solve this problem, we propose a new way of calculating the loss. Since
training the translation using the h-vector loss already proved to be sufficient, we
keep it only for the ‘translate’ mode. In each training iteration, the current mode
signal is checked in the loss function. If it is ‘translate’, the function calculates
the MSE loss between the h-vector and the T5 encoder output. If it is any of the
PTAE signals, the function instead runs the T5 decoder and calculates the cross-
entropy loss of its output compared to the target of the NICO sample. This is
possible because of the way the T5 model is integrated into the new architecture,
making it optional during training. We name this dynamic way of switching the
loss calculation mixed loss, which we formally define as follows:

Llang =

 1
N

∑N
t=1

(
ht − ĥt

)2
if signal=‘translate’,

1
M

∑M
t=1

(
−
∑V

i=1 x
[i]
t log y

[i]
t

)
otherwise.

(8.3)

The total loss combines the corresponding language loss Llang and the MSE-defined
action loss Lact, taking a weighted average:

Lall = αLlang + βLact, (8.4)

where α = β = 1 for our experiments. The results shown in Figure 8.5 on the right
confirm the success of this method, as the mixed loss calculation results in good
accuracy for all mode signals.

128

8.4. Experiments and Results

h vector T5 decoder Mixed
0

20

40

60

80

100
BL

EU
2

in
 %

98.52

5.86

97.27

0

100 100

0.56

100 100

1.36

97.22
99.72

53.89

100 100

Translate
Describe
Execute
Repeat Language
Repeat Action

Figure 8.5: Language test performance for each signal in the three loss modes “h-
vector”, “T5 decoder” and “Mixed”, trained for 10,000 epochs.

8.4 Experiments and Results

We train the CrossT5 model for up to 10,000 epochs as a trade-off between high
performance and minimal training time. Training CrossT5 on a system equipped
with an RTX 3080 Ti for 10,000 epochs takes approximately 6 hours.

Table 8.2: Language test performance (in percentages) with different shares of the
‘translate’ signal, trained for 5,000 epochs.

Signal 10% 25% 50% 75% 90%

Translate 57.48 71.33 91.48 92.67 92.04

Describe 96.94 99.17 99.17 93.33 94.44

Execute 100 100 100 100 100

Repeat Language 100 99.44 99.17 99.37 99.27

Repeat Action 100 100 100 100 100

To sufficiently attend to both the English-to-German translation and robotic

129

Chapter 8. Capturing Strengths of LLMs

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of epochs

0

20

40

60

80

100
BL

EU
2

sc
or

e
in

 %

Translate
Describe
Execute
Repeat Language
Repeat Action

Figure 8.6: CrossT5 language test performance over training, calculated as the
BLEU2 score of the language output compared against the target.

action-language translation, CrossT5 is trained with the ‘translate’ and PTAE
signals for about 75% and 25% of the training iterations respectively. Amongst the
PTAE signals, the training iterations are further split into one third for ‘describe’,
another third for ‘execute’, one sixth for ‘repeat action’ and the remaining sixth
for ‘repeat language’. However, the model also performs well with different splits.
Both 50% for ‘translate’ and 50% for the PTAE signals and also 90% for ‘translate’
and 10% for the PTAE signals only affect the accuracy by 1-2% as can be seen
in Table 8.2. Moreover, the model performs well for all NICO signals, albeit with
a slight performance drop in ‘describe’ at a 75% or higher share of the ‘translate’
signal.

Evaluating the translation performance is non-trivial. As explained in Sec-
tion 8.3.4, T5 and hence CrossT5 often give a grammatically and factually correct
output that only differs from the dataset target in terms of syntax structure or
choice of words. In addition, because we used T5-small, the T5 variant with only 60
million parameters, there are inaccuracies in English-to-German translations even
by the stand-alone T5 model. When evaluating the translation performance based
on the dataset targets, the calculated BLEU2 accuracy only reaches about 10%
at 10,000 epochs. For the translation performance alone, this can be considered a
low score. However, it is not representative of the spirit of our proposed architec-
ture, because we train CrossT5 by identically reproducing the language encodings

130

8.4. Experiments and Results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
NR

M
SE

 in
 %

Translate
Describe
Execute
Repeat Language
Repeat Action

Figure 8.7: CrossT5 action test performance over training, calculated as the
NRMSE between the action output and the target joint sequence.

in the CMT, thus, its translation performance can never exceed and most likely
not fully reach the level of T5. In this context, the fairest way of measuring the
translation performance of CrossT5 is to compare its output with the output of
the stand-alone T5 model instead of the ground-truth output from the dataset.
This gives us an estimate of how much of the original T5 performance is retained
in the new model.

For the evaluation of the PTAE-signal performance, the output is compared
with the actual dataset targets (ground-truth output), because CrossT5 is trained
from scratch on these tasks. The language accuracy for the PTAE signals ‘describe’
and ‘repeat language’ is calculated as the BLEU2 score compared to the target
sentences, whereas the action accuracy for ‘execute’ and ‘repeat action’ is the
similarity to the ground-truth joint sequence, calculated using the NRMSE metric.

Figures 8.6 and 8.7 show the language and action results of CrossT5 over 10,000
epochs, evaluated on the test set. At 10,000 epochs, the model achieves a BLEU2
score of 97% for the ‘translate’ signal and between 99 and 100% for the PTAE sig-
nals. These results demonstrate that almost all of the initial language translation
capabilities of T5 stay intact, while the added crossmodal skills also achieve high
performance; most PTAE signals reach over 90% accuracy after only 3,000 epochs.
Furthermore, as the CMT quickly learns that the language output for ‘execute’ and
‘repeat action’ should always be an empty string, these signals even reach 100%

131

Chapter 8. Capturing Strengths of LLMs

accuracy after only 1,000 epochs. In terms of action accuracy, CrossT5 performs
well with an NRMSE of 0.85% at maximum and an average of 0.4% at 10,000
epochs. The crossmodal PTAE signals ‘describe’ and ‘execute’ have noticeably al-
ways a higher error than the unimodal PTAE signals ‘repeat language’ and ‘repeat
action’. Besides, the action performance for the ‘translate’ signal is significantly
better than all PTAE signals, having an NRMSE of only 0.025%.

As the weights of the CMT are initialised randomly, the language performance
at 0 epochs displayed in Figure 8.6 is at chance level. For the action performance
in Figure 8.7, the NRMSE score of around 18% for the action output is worse than
the average distance of any dataset joint sequence from the initial joint values
(around 6%) and worse than the average distance of all joint sequences to each
other (around 11%) in the dataset. For the language accuracy in Figure 8.6, the
BLEU2 score of the output is 0% for all signals, except for the ‘execute’ signal,
where it is about 90%. This is because, by chance, some random initialisation
seeds cause the T5 decoder to always generate an empty output for a certain
input, which is the target for ‘execute’ and ‘repeat action’. For instance, another
run with a different seed instead resulted in an 80% accuracy for the ‘repeat action’
signal and 0% for the rest of the signals, including ‘execute’.

8.4.1 Action Execution Evaluation in Simulation

Calculating the NRMSE between the predicted sequences and ground-truth se-
quences is not sufficient for a thorough assessment of the action execution per-
formance of CrossT5. Therefore, we conduct an additional practical evaluation in
which the joint values generated by CrossT5 for the ‘execute’ signal are executed
on the 3D CoppeliaSim simulator. For this evaluation, we maintain the setup of
the dataset, consisting of NICO in front of a table with three cubes on it. For
each generated action, the respective cube configuration is loaded in the simula-
tor. To evaluate the success of actions scrupulously, three factors are taken into
consideration:

1. whether the target cube is pushed beyond a minimum threshold in the right
direction (successful action),

2. whether the target cube is pushed in the right direction for at least the
dataset threshold (perfect action),

3. whether any distractor cube is contacted or accidentally moved during the
action (failed action).

Based on these factors, an automatic score is calculated for each generated joint
sequence in the test set for the ‘execute’ signal.

To determine the target cube displacement threshold for successful actions,
the ground-truth joint sequences are also executed in simulation and used as a
benchmark. To reach this threshold, the execution must be of at least the same
quality as the ground-truth joint sequence from the corresponding dataset sample,

132

8.4. Experiments and Results

Table 8.3: Quality of the action execution (in percentages) for the checkpoints
ranging from 1,000 to 10,000 epochs, given as the share of “successful” and “per-
fect” executions of all the evaluated test dataset samples.

Quality
Epochs

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Successful 53.17 95.00 96.39 98.06 98.61 98.61 97.78 98.33 93.61 95.83

Perfect 34.17 75.56 75.00 79.17 77.22 81.67 83.33 82.50 59.44 81.11

meaning a movement of roughly the same magnitude, without touching any of the
other cubes. Even if an executed action does not reach the threshold set by its
ground truth, it can still be considered successful if the target cube is displaced
in the right direction for at least the predetermined minimum threshold. This
distinction is necessary as we observed that many CrossT5-generated movements
were just below the dataset threshold, but were de facto still successful, i.e. no
contact with other cubes and the target cube clearly moved in the right direction.

To emphasise this fact, we distinguish between perfect actions, indicating an
execution quality equal to the ground truth from the dataset, and successful
actions, indicating an execution quality that should still be considered successful,
i.e. the correct cube is moved in the correct direction but not reaching the dataset
threshold.

The checkpoints from 1,000 to 10,000 training epochs are evaluated on the test
set, and the results can be seen in Table 8.3. As the results show, CrossT5 achieves
high quality for its predicted joint sequences executed on the simulator. In the best
case, it manages to execute 98.61% of the actions successfully, while 83.33% are of
almost identical quality to the ground-truth actions.

8.4.2 Language Robustness

We conduct robustness experiments on CrossT5 to find out if the combination of
a crossmodal architecture, designed for simple language input, with an LLM can
boost robustness to variations in the language input without utilising a complex
language-action dataset.

In the NICO CoppeliaSim dataset, each sample contains a language description
of the respective action that serves both as an input command in the language-to-
action translation (e.g. “execute: push red”) and as a target output in the action-
to-language translation (‘describe’ signal). These language descriptions are con-
structed with a limited vocabulary, only containing words for the colour of the
target cube and the intended push direction. Even though the dataset includes
alternative words for both colour and direction (e.g. ‘scarlet’ instead of ‘red’ and
‘move-up’ instead of ‘push’), these variations are hard-coded and do not teach any
semantics to the model.

In the new CrossT5 architecture, the language descriptions are encoded and
processed through T5 but only the simple language commands like “push red”

133

Chapter 8. Capturing Strengths of LLMs

Table 8.4: The 9 different robustness patterns exemplified for “push red”. direction
and colour refer to the corresponding word from the dataset sample.

No. Robustness Pattern Example

1 ‘please’ + direction + colour ‘please push red’

2 ‘would you please’ + direction + colour ‘would you please push red?’

3 direction + ‘the’ + colour + ‘cube’ ‘push the red cube’

4 direction + ‘the’ + colour + ‘cube now’ ‘push the red cube now’

5 ‘please’ + direction + ‘the’ + colour + ‘cube’ ‘please push the red cube’

6 ‘would you please’ + direction + ‘the’ + colour + ‘cube’ ‘would you please push the red cube?’

7 colour + direction ‘red push’

8 ‘the’ + colour + ‘cube’ + direction ‘the red cube push’

9 alternative direction word + colour ‘shove red’

continue to be used for the training. To evaluate whether the model can handle
more complex language, 9 alternative command patterns are introduced, testing
different aspects of more natural language such as varying vocabulary, word order,
utilising adverbs and polite phrases. By applying these 9 command patterns, more
complex language input is constructed from the simple descriptions used during
training, as visualised in Table 8.4.

We reevaluate the 10,000th epoch checkpoint on these 9 robustness modes and
afterwards test its practical action performance in the same way as in Section 8.4.1.
As can be seen in Table 8.5, there is a small to medium performance drop in some
of the robustness modes, which is expected for the more complex commands as in
Patterns 2 and 6. However, the overall performance especially for the “successful”
actions is retained in many cases, even exceeding the accuracy of the simple dataset
commands in Patterns 7 and 8. Even for Pattern 6, which yields the lowest scores,
the accuracy of 84.72% is still acceptable. It is also important to note that even for
the failed action executions, in none of the cases did the model confuse actions or
colours and move the target cube in the wrong direction or move the wrong cube.

Table 8.5: Quality of the action execution (in percentages) for the 10,000th epoch
checkpoint, evaluated on the 9 different robustness modes.

Quality
Robustness Pattern

1 2 3 4 5 6 7 8 9

Successful 95.28 88.61 95.28 93.89 94.17 84.72 96.67 96.39 95.56

Perfect 79.17 68.06 76.67 75.83 74.44 64.17 80.00 78.89 78.61

Overall, CrossT5 demonstrates a good performance on more natural linguistic
input, in many cases reaching or even exceeding the performance on the original
dataset samples. The language robustness experiments cover only the language-to-
action translation; as the language output has been specifically trained to align
to the ground-truth descriptions from the dataset, the action-to-language and

134

8.5. Discussion

language-to-language translations still produce the regular language outputs. For
example, a command like “repeat language: would you please push red” will still
output “push red” in most cases.

8.5 Discussion

With an almost perfect performance on the English-to-German translation task
from the pre-trained T5 and the crossmodal language-action tasks from the NICO
dataset, CrossT5 shows promising initial results. The experiments were only con-
ducted with one combined dataset and one language model. Extending the model
with larger T5 variants should be straightforward, but more adjustments may be
necessary for different LLM architectures. While the bottleneck between the en-
coder and decoder of T5 is an obvious place to insert the PTAE via CMT, many
LLMs have decoder-only architectures. Finding an optimal pair of layers for inser-
tion of the CMT in such models may require experimental exploration. Alternative
architectures, e.g. those that add small trainable matrices between a frozen net-
work’s layers, as done for fine-tuning in multi-task learning [71, 151], could also be
investigated for a multimodal enhancement of LLMs.

An advantage of integrating a pre-trained language model and only training
the crossmodal architecture to keep its capabilities is that it saves a lot of com-
putational resources during training. As the language model is kept frozen, our
dataset is significantly smaller than those used for training SOTA LLMs. With
only 1080 training and 360 test samples, CrossT5 is able to achieve the original
T5’s translation performance. Moreover, for our model, the loss is calculated for
the LLM tasks on the hidden representation vector h, which is generated by the
CMT and does not have to use the language model decoder output. Thereby, the
English-to-German translation does not require targets during training. Even for
the integration of LLMs pre-trained on different NLP tasks, a small collection of
suitable inference prompts (e.g. ‘translate’ signal) would suffice to reliably retain
LLM capabilities during the training of our novel CrossT5 model.

The number of parameters for the CMT is about 2.6M (the action encoder and
decoder have an additional 3M parameters together) as opposed to the 60M frozen
parameters of T5-small, making the CMT’s parameter count approximately 22.8
times less. The language dataset used to retrain T5’s original abilities has a size
of 131KB, as opposed to the 745GB of the C4 dataset the original T5 was trained
on. This is about 5.7 million times less data. The training time of CrossT5 was 6
hours on an RTX 3080 Ti GPU. While there is no official information about the
training time of T5, similar projects using the T5 architecture [154, 171] report
an estimate of multiple days to over a week of training time on four 40GB A100
GPUs even for the smallest checkpoint. Despite such a contrast in the dataset size
and computational resources, CrossT5 achieves over 97% of the performance of the
original T5 after retraining.

In addition to its high performance for both the crossmodal PTAE tasks as well
as the translation from T5, CrossT5 also displays an impressive performance when

135

Chapter 8. Capturing Strengths of LLMs

tested with more complex language commands on the ‘execute’ signal. Even though
the model has only been trained on the simple descriptions from the NICO Cop-
peliaSim dataset, such as “push red”, it is able to execute more natural commands
like “Would you please push the red cube” in more than 84% of the cases. Other
command variations, like switching the word order (“red push”) or using alterna-
tive descriptions (“shove red”) do not deteriorate the practical performance. This
shows that CrossT5 not only retains the features of T5 but can further leverage
its advanced linguistic capabilities for action-language tasks.

Due to the CLANT dataset’s restricted set of actions and predefined object
positions, the CrossT5 model has not been tested on its ability to generalise to
new scenes and actions. As our goal was to prove the feasibility of our approach
with the limited resources at our disposal, testing CrossT5 on larger datasets with
more diverse setups and continuous object positions is out of the scope of this
thesis. As the architecture is easily scalable, it can be used with different and even
larger variants of T5 and other LLMs by merely adjusting the hidden dimension
size of the CMT. As a first experiment in that direction, we tested the model with
FLAN-T5, which features the same size variants and architecture as T5 but an
extended skill set, and the model achieved good performance.

8.6 Conclusion

Towards combining unimodal LLM conversation skills with a robot’s sense and
motor control capabilities, we have proposed a model that robustly integrates a
robotic model with an LLM, where both share internal representations within a
crossmodal fusion network with mutual read and write access. The CMT, inserted
between the T5 encoder and decoder, adapts well to T5’s internal representation
while requiring minimal training data and effort. This leaves the performance of
T5 intact.

Our experiments show that the new CrossT5 model achieves nearly 100% ac-
curacy on crossmodal action-language tasks and retains the performance of its
T5 LLM on a representative NLP task. Furthermore, it performs well when practi-
cally evaluated in terms of action execution in simulation and remains robust when
confronted with more natural language input. Thus, our approach of dissecting a
frozen LLM and integrating it with a crossmodal architecture fulfils its intended
objective. The resulting model excels in bidirectional language-action translation
tasks without compromising the skill set of the language model. By design, it also
demands little computational resources for training and is robust against more nat-
ural language commands even without dedicated training. Hence, this procedure
efficiently equips an LLM with crossmodal capabilities.

So far, we have only dealt with embodied language learning in simulation. More-
over, our models have processed and produced language in the textual format. In
contrast, HRI scenarios in practice demand embodied agents verbally interacting
with humans in the real world. For this reason, our final model ELMiRA, which
we will introduce in the next chapter, is aimed at open-ended, free-flowing human-

136

8.6. Conclusion

robot dialogue involving robotic object manipulation and scene understanding
skills. As a modular approach, ELMiRA leverages SOTA off-the-shelf foundation
models for full-fledged human-robot conversation requiring speech recognition, vi-
sual reasoning, dialogue management and speech synthesis capabilities. The ex-
periments demonstrate that ELMiRA is a promising HRI approach applicable to
diverse robotic platforms and scenarios.

137

Chapter 8. Capturing Strengths of LLMs

138

Chapter 9

Seamless Integration of
Foundation Models for

Full-Fledged Dialogue in Robotic
Manipulation

LLMs have recently achieved significant success in deep learning. The remaining
challenges in robotics and human-robot interaction (HRI) still need to be tackled;
yet, pre-trained off-the-shelf LLMs with advanced language and reasoning capabili-
ties can provide solutions to problems in the field. In this chapter, we conceptualise
an open-ended HRI scenario involving a humanoid robot communicating with a hu-
man while performing robotic object manipulation tasks at a table. To this end, we
combine pre-trained general models of speech recognition, vision-language, text-to-
speech and open-world object detection with robot-specific models of visuospatial
coordinate transfer and inverse kinematics, as well as a task-specific motion model.
Our experiments reveal robust performance by the language model in accurately
selecting the task mode and by the whole model in correctly executing actions
during open-ended dialogue. Our innovative architecture enables a seamless inte-
gration of open-ended dialogue, scene description, open-world object detection and
action execution. It is promising as a modular solution for diverse robotic platforms
and HRI scenarios1.

9.1 Introduction

The recent advances made in deep learning have led to successful applications of ar-
tificial intelligence such as chatbots, visual object detection, image captioning and
speech recognition. The advent of the Transformer architecture [173] has brought
about the possibility of training ever larger models with enormous amounts of

1The project page with the code and an exemplary video for this chapter can be found at
https://knowledgetechnologyuhh.github.io/ELMiRA.

139

https://knowledgetechnologyuhh.github.io/ELMiRA

Chapter 9. Seamless Integration of Foundation Models for Dialogue in Robotics

Figure 9.1: The NICO robot in our scenario. The scenario involves multiple toy
objects being manipulated by NICO, which can describe the objects, based on user
instructions. NICO can also have open-ended conversations with users.

data. Omnipresent LLMs, for example, have usually billions of parameters and are
trained on trillions of text tokens. Although these large models perform well on
tasks they are trained on, training them on such large datasets requires a con-
siderable amount of computational power, which is not available to small labs
or end users. Fortunately, the availability of pre-trained models renders training
from scratch unnecessary. Pre-trained models can be either fine-tuned on a smaller
dataset for a different domain or directly used as out-of-the-box solutions for nu-
merous tasks.

In this chapter, we propose a modular approach, named ELMiRA (Embodying
Language Models in Robot Action), that integrates highly capable foundation
models trained on big datasets for a conversational HRI scenario. Independent
from the robotic platform, ELMiRA uses pre-trained models of automatic speech
recognition (ASR), text-to-speech (TTS), vision-language (VLM) and object de-
tection, which do not require further training. To adapt ELMiRA to our specific
robotic setup, we employ a visuospatial coordinate transfer network and an in-
verse kinematics (IK) solver. Moreover, we devise a specific motion planner to
perform several actions within our object manipulation scenario. By utilising mul-
tiple off-the-shelf models, our humanoid robot NICO [86] can manipulate objects
on a table while conversing with humans in an open-ended fashion (Figure 9.1).
This brings capabilities of pre-trained models such as conversing with a human,
zero-shot open-vocabulary object detection and scene description into a robotic
application.

140

9.2. Background: Leveraging LLMs for Robotics

9.2 Background: Leveraging LLMs for Robotics

Recently, many approaches have been proposed utilising LLMs or VLMs in the
context of robotic manipulation [37, 74, 99, 147, 166]. SayCan [6] uses LLMs
to split high-level instructions into executable actions, which are evaluated by
a value function in terms of affordance. It chooses actions with a combined score of
high common-sense relevance and affordance. Likewise, ViLa [72] employs GPT4-
V [130] to decompose high-level instructions into low-level executable actions for
object manipulation. Jointly processing vision and language via a VLM results in
a task-focused understanding of the current scene based on the given instruction.
ViLa outperforms SayCan in common-sense-related tasks and works with different
modalities in input instructions, i.e. providing a goal image or a combined image-
language goal. TidyBot [183] exploits common-sense knowledge inherent in LLMs
for generalising to object types according to user preferences in a room-tidying
task. It can generalise to objects regarding their attributes like colour or practi-
cal use. PIVOT [124] leverages VLMs for robotic control by casting robotic tasks
as VQA problems. The scene images are annotated with possible movements for
spatial control and fed to a VLM with an accompanying question querying for
the best actions. The actions are iteratively optimised based on the VLM’s an-
swers without requiring learning. This iterative process is repeated until the VLM
outputs the best possible action. However, the experimental results show that am-
biguities in depth information degrade PIVOT’s performance, indicating the need
for an adaptive mechanism. Generally, the state-of-the-art approaches focus on
action planning, while we capitalise on LLMs to facilitate open-ended multi-turn
dialogue. Moreover, the zero-shot generalisation capabilities of ELMiRA allow us
to detect and localise all objects as well as describe any given scene independent
of the scenario.

9.3 Proposed Method: ELMiRA

To leverage state-of-the-art models in different domains, we devise the modular
ELMiRA architecture, shown in Figure 9.2. It is composed of an ASR, a VLM, an
object detector, a visuospatial coordinate transfer unit, a motion planner, an IK
solver and a TTS model. We evaluate it in a tabletop object manipulation task-
oriented HRI scenario where a user communicates verbally with the robot. The
conversation can range from chitchat to task-related visual processing requiring
action commands. The robot needs to know when to speak and when to execute
an action according to the user instruction.

9.3.1 Vision-Language Model

The VLM assumes the role of a dialogue manager. It receives user input in textual
format via the ASR model (Whisper [141]) and sends textual output to the TTS
model (VITS [87]) to produce it as speech. We use GPT-4V as the VLM, while

141

Chapter 9. Seamless Integration of Foundation Models for Dialogue in Robotics

"Hi NICO!
Can you show me

the red cube?"

Object Detector
(OWLv2)

Real
 Coord. IK

Solver

Action
Execution

 (joint values)

ASR
(Whisper) VLM

(GPT-4(V))

TTS
(VITS)

Img2Real

Text

Image

speak "Hello! Sure,
here's the red

cube."

Action
Type

Target Object

Pixel
Pos.

Action
Feedback

describe

Motion
Planner

Target
Pose

act

Figure 9.2: The ELMiRA architecture. It accepts as input human user speech
and images from the robotic eye camera; it outputs speech and executes actions.
Blue modules denote pre-trained off-the-shelf models, red modules denote robotic
platform-specific models and the yellow module is task-specific. Akin to a conductor
of an orchestra, the VLM decides whether to output speech (speak mode), describe
the current scene (describe mode) or trigger a robot action (act mode).

also employing the GPT-4 LLM via the OpenAI API. We utilise both the text-only
GPT-4 and the image-allowing GPT-4V since the GPT-4V is not yet available as
a conversational assistant that can manage a dialogue. We therefore deploy GPT-4
as the chatbot that has conversation memory, while triggering a one-time response
only GPT-4V instance when visual processing is required. Based on the user input
and visual observation, GPT-4 chooses one of the three task modes: speak, describe
and act.

• speak : when the given user input is not related to the tabletop scenario,
ELMiRA generates a textual output via GPT-4, which is passed to the TTS
model to produce speech.

• describe : when the user asks the robot to describe what it sees on the table,
the current scene image from NICO’s perspective is fed to the GPT-4V with
the user input. The GPT-4V then passes the description of the tabletop scene
to GPT-4 which in turn triggers the TTS to produce speech.

• act : when the user asks the robot to manipulate an object, the VLM triggers
the action mode and infers the action type and target object. The target
object name is passed to the object detector alongside the current image to
localise the target object in pixel space. The pixel positions are then passed
to the Visuospatial Coordinate Transfer model which locates the real-world
coordinates of the object. These coordinates and the action type are fed to
the motion planner to find the target arm pose including orientation. The IK
solver uses the target pose to produce the joint angle values of the suitable
arm for action execution.

142

9.3. Proposed Method: ELMiRA

9.3.2 Object Detection

We deploy the open-vocabulary object detection model OWLv2 [118] to detect
the target object on the table. OWLv2 is triggered in the act mode after GPT-
4 extracts the target object name from the user action command. It receives the
current scene image through the robot eye camera as well as the target object name
as input. In principle, OWLv2 can detect multiple instances of the same object
but we choose the one with the highest score and extract the pixel coordinates of
the bottom centre of the bounding box. In case the target object cannot be found
on the table or is located in an unreachable position, the object detection module
informs the VLM that the action cannot be executed.

9.3.3 Visuospatial Coordinate Transfer

The Img2Real module (Figure 9.2) transforms the pixel coordinates to 3D real-
world coordinates. It uses a multi-layer perceptron (MLP) trained as an implicit
energy-based model (EBM) [48] with an InfoNCE loss function and sampling-
based derivative-free optimisation for inference. We train the implicit MLP in
advance by distinguishing a set of uniformly distributed real-world coordinates
from random counter-examples based on the corresponding points in image pixel
space. When deployed, it finds the real-world coordinates for given pixel positions
of the target object by iteratively resampling random candidates based on their
predicted probabilities and adding Gaussian noise.

9.3.4 Motion Planner

Our motion planner decides whether to use the left or right arm of the robot based
on the real-world coordinates of the target object and outputs the corresponding
end-effector trajectory of the chosen arm for a given action type (i.e. show, touch,
push-forwards, push-leftwards and push-rightwards). Each target pose in the tra-
jectory consists of the Cartesian (x, y, z) position of the end-effector and its target
orientation as a unit quaternion.

9.3.5 Inverse Kinematics Solver

The corresponding joint configurations needed to execute the robot arm’s trajec-
tory are computed using EvoIK [49], an evolutionary inverse kinematics solver
which aligns the forward kinematics of its population with the target pose by min-
imising the weighted sum of the Euclidean distance between the position vectors
and the geodesic distance between the orientation quaternions. The trajectory is
computed iteratively, using the previous joint angles as the initial centre of the
population for the following step to accelerate the computations and guide the
algorithm to find solutions which are close to each other.

143

Chapter 9. Seamless Integration of Foundation Models for Dialogue in Robotics

Table 9.1: Mode detection success. We measure the mode selection performance of
ELMiRA for each of the three predefined modes.

Act Describe Speak

86.67±4.71% 46.67±28.67% 100.0±0.0%

9.4 Experiments and Results

We conduct two sets of experiments with the NICO robot on our tabletop setup,
aimed at evaluating the robustness of ELMiRA in two aspects: mode selection and
action execution.

9.4.1 Mode Selection Experiments

We test the mode selection performance of our method by having three instances
of a scripted human-robot conversation, where we check whether the VLM detects
the correct mode intended by the user. The detection success rate for each mode
is given in Table 9.1. In most cases (77% on average), ELMiRA understands the
user’s intention and switches to the correct mode. However, frequently the VLM
refuses to describe a scene in describe mode and goes into speak mode instead. In
the few cases, when it refuses to trigger the act mode, it also chooses the speak
mode.

Table 9.2: Action execution success. We measure the action execution performance
of ELMiRA for pushing objects forwards, to the left and to the right. The push
action is considered successful if the target object moves in the intended direction
for at least the distance of 2 cm.

Forwards Leftwards Rightwards

79.17% 86.96% 72.0%

9.4.2 Action Execution Experiments

The action execution experiments involve three directions of push (forwards, left-
wards and rightwards) on 8 different objects (a sponge, a die, a rubber duck, a
toy tomato, a green cube, a toy car, a cup and a red cube). We use a minimum
threshold of 2 cm displacement in the direction of the intended push action as an
objective success metric. Table 9.2 shows the action execution results per push di-
rection. Overall NICO executes the given action with an average accuracy of 79%.
The push-leftwards action is the most successful, while push-rightwards is the least
successful action. Figure 9.3 displays the distribution of target object displacements

144

9.5. Discussion

Forwards Leftwards Rightwards
0.3

0.2

0.1

0.0

0.1

Di
st

an
ce

 (m
)

Push Action Object Displacement

Success Threshold (2cm)

Figure 9.3: Object displacements per push direction. The distributions of displace-
ment in metres are visualised in a distinct colour for each of the three push direc-
tions. The dashed line represents the success threshold of 0.02 m.

in the intended direction; samples over 2 cm (dashed line) are considered correct.
NICO clearly pushes the target object in the right direction in most cases, with
few exceptions in which the target is moved in the wrong direction due to mistakes
in the IK solution. Apart from the push actions, we tested ELMiRA with show
and touch actions, both of which were distinguishably and correctly executed.

9.5 Discussion

The advancement of the field by novel pre-trained models in various tasks has
allowed us to design the modular ELMiRA architecture for a comprehensive HRI
scenario. The publicly available ASR model Whisper makes it possible to convert
user speech input into the textual format, which our VLM subsequently processes.
The availability of GPT-4V as a VLM provides us with a dialogue manager capa-
ble of controlling the flow of the conversation by choosing the appropriate mode
at each turn. The open-vocabulary object detector OWLv2 enables object type-
independent localisation and generalisation to the action space. Lastly, the end-
to-end text-to-speech model VITS facilitates the conversion of the textual format
of the response by the VLM back into the speech format for an interactive verbal
conversation with a human partner.

Apart from these out-of-the-box models, we use a few robotic platform- and
task-specific modules, which need to be trained or manually designed. We have
managed to keep the number of these modules minimal to make ELMiRA adapt-
able to diverse robotic platforms and scenarios. The backbone of our approach

145

Chapter 9. Seamless Integration of Foundation Models for Dialogue in Robotics

does not require any training as it relies on pre-trained models.
ELMiRA also suffers from several limitations. Firstly, as we noticed during

the mode selection experiments, GPT-4 occasionally hallucinates and refuses to
describe the scene when asked to have a look at the table. We describe the ca-
pabilities of NICO and the scenario details in the initial prompt given to GPT-4.
Nevertheless, it states that it has no vision access, preventing it from processing
images when it should be able to do so. Although these mistakes can be recti-
fied by further user intervention, insisting that the model should switch to the
describe mode, we recommend improving the initial prompt to minimise instances
of hallucination in the future. During the action execution experiments, we ob-
served the second limitation of our approach: occasionally, the actions cannot be
performed correctly, causing the target object to be moved in the wrong direction.
This displacement happens due to the IK solver’s imprecise calculation of the joint
angle trajectories. This type of error can be resolved by employing more recent IK
solvers like CycleIK [58]. In addition, the VLM in our architecture can be used
to detect the success of a performed action, as done by Du et al. [42], so that
ELMiRA is aware of the success of its actions without requiring user feedback.
Lastly, ELMiRA’s reaction and processing time may sometimes require longer re-
sponse times, making it far from ideal for a real-time live demonstration. These
waiting times can be minimised by better parallelisation of different modules.

9.6 Conclusion

We have proposed a novel modular architecture leveraging recent progress in
large language modelling, open-vocabulary object detection and speech recogni-
tion. Specifically, we have used pre-trained general ASR, VLM, object detection
and TTS models alongside small robotic platform-specific and task-specific mod-
ules for a dialogue-based tabletop object manipulation scenario. ELMiRA is a
starting point for facilitating full-fledged dialogue and robotic action through the
seamless integration of open-world object detection, scene description and gen-
eral conversational skills. By drawing inspiration from neuroscience concepts [179]
and leveraging increasingly capable foundation models, our modular approach can
widely benefit HRI.

In this thesis, we have introduced seven distinct neural network models tack-
ling bidirectional action-language translation with a focus on different aspects at
hand per model while iteratively expanding the capabilities of modelling embod-
ied language learning. The following and final chapter will conclude this doctoral
thesis by summarising and discussing the novel approaches introduced during this
research to address our objectives and the ensuing research question, listing our
contributions and elaborating on future directions to arrive at fully autonomous
embodied agents capable of cooperating and solving everyday tasks with humans
through interactive verbal communication.

146

Chapter 10

Conclusion

In this doctoral thesis, we have explored various methods governing language learn-
ing for embodied agents within the framework of crossmodal neural network archi-
tectures. As a result, this research encompasses several key advancements in the
domain of language-instructed robotic object manipulation, including improved
language comprehension, training- and test-time-consistent action-language trans-
lation, efficient utilisation of labelled data, the ability to generalise to larger action
spaces, a recipe for embodying LLMs with action taking and a modular approach
for HRI scenarios.

Firstly, we have relaxed the limitations on language understanding in bidirec-
tional action-language modelling. Secondly, we have enabled flexible inference-time
translation, removing the need for expert configuration on the model. Thirdly,
we have addressed the shortage of labelled data by exploiting a more efficient
Transformer-based attention mechanism that can learn action-language mappings
using predominantly unimodal data.

Moreover, we have tackled generalisation to the action space by initially pre-
training on relatively small datasets and then fine-tuning with direct feedback from
the simulation environment. This approach leads to improved action precision on
multiple object manipulation tasks. Further, we have capitalised on the linguis-
tic knowledge embedded in LLMs for a bidirectional action-language model by
replacing its language components with a pre-trained LLM. This integration com-
bines language-instructed action execution skills with language-only task-solving
capabilities. Lastly, we have unleashed the full potential of powerful deep learn-
ing models from computer vision and NLP by developing a modular approach
tackling open-ended free-flowing dialogue and closed-loop action execution in HRI
scenarios.

In sum, we have developed various ANN model architectures, leveraging
autoencoder-based networks (e.g. variational and convolutional autoencoders) and
multimodal fusion mechanisms (e.g. binding loss, gated attention, Transformer-
based crossmodal attention). We have trained these models by employing diverse
learning paradigms, ranging from supervised learning to unsupervised learning to
reinforcement learning. To evaluate our models, we have generated paired robotic
action-language instruction datasets using different simulation environments such

147

Chapter 10. Conclusion

as CoppeliaSim. Utilising these datasets and simulations, we have conducted com-
prehensive experiments on unimodal and crossmodal action-language translation,
performing several tabletop object manipulation tasks such as moving cubes, press-
ing buttons and lifting cups. Last but not least, in order to evaluate our approaches
consistently and accurately, we have used various measures such as sentence ac-
curacy, joint angle value deviation, target object selection and action precision
rates.

In the following sections, we will start by comparing our approaches with each
other and elucidate their respective novelties. We will then elaborate on how this
dissertation has addressed the all-important research question defined in the In-
troduction, highlighting the contributions made by this doctoral work and the new
knowledge produced as a result. Following that, we will outline the limitations of
this work and explain what it entails for future research and how future researchers
can benefit from it. We will conclude this thesis with reflections on our overall con-
tribution to the field, particularly in the pursuit of developing fully autonomous
embodied language learning agents capable of serving as companions for humans
in real-world settings.

10.1 Discussion

This thesis contributes to the domain of language grounding by introducing a se-
quence of novel multimodal NN architectures and their thorough analysis involving
various experiments in robotic object manipulation settings. All of these NN ar-
chitectures allow bidirectional robot action-language description translation; i.e.
contrary to most approaches in the field, they allow an embodied agent to not
only perform object manipulation actions according to given user instructions but
also describe an executed action in natural language according to visual and propri-
oceptive observations. The last two models go beyond action-describing language
input understanding and output production by integrating LLMs into their archi-
tectures and capitalising on the language skills embedded in LLMs via transfer
learning. Alongside robotic object manipulation, these two models can perform
language-only tasks such as machine translation and text generation while poten-
tially comprehending unrestricted language input.

All NN architectures introduced within the scope of this dissertation work with
multiple modalities. As input, they accept natural language instructions (as text
or audio), sequences of images and proprioceptive observations (as joint angle val-
ues or end-effector poses). All architectures except the final architecture use the
channel separation technique to extract visual features accurately representing ob-
ject colours. Utilising various crossmodal fusion techniques, they combine these
three input modalities to comprehend the task at hand, observe the scene visu-
ally and perceive the location and movement of robotic actuators. As a result of
this crossmodal combination, they provide a unified representation of the task and
the current scene. The unified crossmodal representation is then exploited to out-
put the two modalities: language and proprioception. Employing different decoder

148

10.1. Discussion

networks for each output modality, all our architectures produce natural language
and joint angle values or end-effector poses. Therefore, excluding the final modular
architecture, which utilises multiple off-the-shelf models in combination, they can
all be treated as autoencoders.

While sharing many similarities functionally and architecturally, the models
also exhibit many differences. The first architecture, PVAE, is designed to ease the
problem of strict action-language mapping by accepting the use of synonymous
words to describe a given action. Using a Bayesian-based sampling method, i.e.
variational autoencoders, PVAE forms one-to-many associations between action
and language. The second architecture, PVAE-BERT, builds upon this premise
and further relaxes this restriction by employing a pre-trained language model, i.e.
BERT. Replacing the previous LSTM-based language encoder with BERT leads
to comprehension of almost unconstrained language instructions. However, both
PVAE and PVAE-BERT require a binding loss for implicit alignment of the lan-
guage and action stream representations. Thus, they must be configured at test
time to conduct action-language translations in the desired direction. For example,
when the task is to translate from action to language, only the action encoder and
language decoder are used, removing the language encoder and action decoder from
the architecture in practice. Consequently, the two models cannot handle arbitrary
action-language translations without expert intervention during inference.

The third model, PGAE, addresses the problem of flexible action-language
translation during inference. It replaces the implicit crossmodal binding mecha-
nism of PVAE with a learnt gating mechanism, i.e. GMU, that explicitly connects
the action and language streams. Provided by modality-specific features, the GMU
network produces a joint multimodal representation vector. Besides the utilisation
of GMU, PGAE introduces signal words that are prepended to the language input
to guide the model in the desired translation direction; for instance, the ‘execute’
signal tells the model to perform language-to-action translation, whereas ‘describe’
asks the model to translate from action to language. Owing to GMU and signal
words, PGAE can be deployed at test time, consistent with training, without re-
quiring architectural reconfiguration based on the desired translation direction.
For all of the translation tasks, GMU uses its entire architecture and outputs both
language and action. Specifically, when the task is action-to-language translation,
the language decoder outputs the description of the given action as expected, while
the action decoder outputs the same joint angle values as the final time step of the
action to keep the agent still. In contrast, when the ‘execute’ signal is included in
the language input, PGAE outputs the sequence of joint angles required to perform
the desired action while the language decoder remains silent. Therefore, PGAE is a
valuable approach towards building autonomous agents that can naturally interact
with humans.

The fourth architecture, PTAE, tackles the challenge of overreliance on su-
pervised learning that necessitates the presence of large amounts of labelled data.
PTAE replaces the GMU bottleneck with CMT which enhances the efficiency of as-
sociating robot actions with their corresponding language descriptions. The CMT
bottleneck applies language-conditioned attention to the unified visual and pro-

149

Chapter 10. Conclusion

prioceptive observation representations by using language as queries and action as
keys and values. Relying on unsupervised learning by training mainly on repeating
actions and language descriptions, PTAE requires considerably fewer supervised it-
erations and samples to achieve superior language-to-action and action-to-language
translation performance. PTAE mimics the developmental language learning phe-
nomenon where children usually learn language by interacting with objects in their
surroundings and casually repeating what they hear from their parents with min-
imal supervision.

The fifth model, XBiT, brings another learning paradigm into play: reinforce-
ment learning. It employs a two-stage learning strategy where the model is first
trained on a pre-collected dataset in a supervised fashion and then fine-tuned via
RL by observing and acting in the environment and receiving positive feedback
when completing the desired action successfully. To have an SL- and RL-compatible
architecture, XBiT replaces the sequential action output decoder with feedforward
layers, which enable XBiT to behave in an observe-and-act loop when performing
an action. Combining SL with RL helps XBiT master continuous dexterous robotic
object manipulation, leading to superior performance in action precision. XBiT
brings the language-conditioned robotic object manipulation modelling closer to
the real-world application phase. In the future, XBiT can be deployed in a real-
world HRI scenario to complement a free-flowing closed-loop dialogue.

With the sixth architecture, CrossT5, we redirect our attention to advancing
the linguistic capabilities of bidirectional robotic action-language modelling. In-
spired by the progress in language modelling, CrossT5 adopts the T5 LLM into
our previous Transformer-based PTAE architecture in order to equip it with NLP
abilities embedded in LLMs. The choice of an encoder-decoder LLM simplifies its
integration into the PTAE architecture. Moreover, CrossT5 exploits a distinct mul-
timodal integration mechanism that fuses different modalities in the middle layers
of the model via the CMT network, in contrast to the mainstream multimodal in-
tegration of early fusion commonly followed by VLMs, which tokenises the inputs
from different sources in a standardised manner, irrespective of modalities. The
compatibility of T5 and PTAE architectures, leading to their seamless integration,
means that CrossT5 needs only a sliver of the LLM dataset and computational
power required to train LLMs for learning bidirectional robotic action-language
description associations while retaining the natural language skills of T5. Not only
does CrossT5 achieve competitive performance in English-to-German and bidi-
rectional action-language translations, but it also displays robustness in action
execution when it encounters differently phrased language commands owing to the
language understanding ability of the pre-trained T5.

The seventh and final architecture, ELMiRA, targets real-world HRI scenarios
involving verbal communication alongside user-guided robotic action execution.
Unlike all our other architectures, ELMiRA is a modular approach chiefly com-
posed of pre-trained models of speech recognition, object detection, speech synthe-
sis and visual language. When constructing ELMiRA, we took account of the recent
developments in deep learning brought about by increasingly capable foundation
models. ELMiRA brings the success of language modelling to an HRI application

150

10.2. Addressing the Research Question

by embodying an LLM with an action-taking humanoid robot. Besides, all our
prior approaches are trained and tested in simulation, whereas ELMiRA works in
the real world. It accepts audio as input and produces speech, which makes the user
experience more interactive and appealing. Since it leverages the advanced capa-
bilities of off-the-shelf models like GPT-4 and OWLv2, ELMiRA requires minimal
training only for its robotic platform-specific modules. Therefore, it can serve as
a blueprint for diverse future HRI scenarios involving a humanoid robot capable
of full-fledged dialogue, scene understanding, zero-shot object localisation and ob-
ject manipulation. As our most powerful approach, ELMiRA is the culmination of
all the architectures in this thesis, enabling free-flowing, open-ended human-robot
conversation with closed-loop action execution on any given object according to
human instructions.

10.2 Addressing the Research Question

While tackling the research question of how to achieve more robust, free-
form language learning, which is not restricted to a set of predefined
descriptions, for a humanoid robot utilising neurocognitively plausible
mechanisms, we have reached several conclusions. These are organised according
to their relation to the research objectives (see Section 1.2), which are provided in
brackets, and followed by the respective contributions made.

Substituting regular autoencoders with their Bayesian equivalents en-
ables one-to-many action-to-language translation and scales well with
extended data, while utilising pre-trained language models enhances lan-
guage comprehension (Objective 1). We have shown that Bayesian methods
like VAEs are a better choice for both the association of a robot action with multiple
synonymous language descriptions and more varied and extensive datasets due to
their use of stochastic generation for hidden representations since stochastic gener-
ation in the latent feature space allows minor variations in hidden representations
(Chapter 3). Moreover, we have successfully incorporated an earlier pre-trained
language model, i.e. BERT, into one of our architectures as the language encoder.
This adoption leads to a more advanced language understanding capacity as it al-
lows the model to go beyond processing language inputs conforming to predefined
grammar and enables the comprehension of differently phrased action execution
commands (Chapter 4).

Employing explicit multimodal fusion mechanisms and guiding the
model in the desired translation direction results in flexible transla-
tion, while commonly modelling action-language mapping for different
perspectives negatively affects performance (Objective 2). We have in-
tegrated fully connected neural networks (i.e. GMU and CMT) as explicit multi-
modal fusion mechanisms into our architectures to have unified multimodal hidden
representations and included the intended action-language translation direction in

151

Chapter 10. Conclusion

the language input which equips a bidirectional action-language translation model
with the flexible translation ability at test time, consistent with the training condi-
tions, i.e. training- and test-time-consistent model, eliminating the necessity of an
expert operator configuring the model during deployment (Chapters 5 and 6). We
have also modelled self- and opposite-sitting-robot actions (first-person and coun-
terpart actions) together with the PGAE model, which has revealed that although
the robot can recognise and imitate the actions of the opposite-sitting robot to
a degree, the overall model performance on action-to-language and language-to-
action translations moderately declines (Chapter 5).

Self-attention-based multimodal fusion outperforms gating-based fusion
under limited supervision, while contradictory inputs degrade the model
performance akin to human behaviour (Objective 3). We have ascer-
tained that a Transformer-based multimodal fusion network is more performant
and efficient than a simpler gated network in bidirectional action-language trans-
lation, especially when supervised data is lacking by primarily exploiting unsuper-
vised learning on unlabelled data as the CMT-based PTAE model outperforms its
GMU-based alternative PGAE. The introduction of PTAE minimises the need for
labelled data for action-language mapping as it primarily relies on unsupervised
learning by repeating actions or language descriptions. PTAE has also exhibited
biologically plausible behaviour similar to humans when exposed to contradictory
action and language inputs, as contradictory multimodal inputs degrade the action
and language performance in our psychology-inspired experiments (Chapter 6).

Asymmetrically combining distinct learning paradigms permits gener-
alisation to a continuous action space (Objective 4). We have employed
unsupervised, supervised and reinforcement learning in different stages of model
training for the XBiT approach, which significantly improves the language-to-
action model performance while preserving the perfect language production ability.
The RL fine-tuning in simulation after SL pre-training on pre-collected data leads
to a more dexterous and precise action execution in multiple robotic object ma-
nipulation tasks. Despite language-to-action-only fine-tuning, the model retains its
ability to translate from action to language with 100% accuracy (Chapter 7).

Intra-LLM integration precludes the need for a large-scale paired ac-
tion-language dataset, while an orthogonal modular approach leveraging
pre-trained models facilitates interactive, open-ended human-robot dia-
logue (Objective 5). Our innovative novel intra-LLM integration approach,
CrossT5, has proven to be an effective and inexpensive solution, on the one
hand, for enabling action execution in the environment for pre-trained LLMs
and, on the other hand, for carrying the language-only task-solving skill set of
LLMs over to bidirectional action-language modelling. CrossT5 inherits natural
language capabilities from the pre-trained LLM T5 for a versatile bidirectional
action-language model with advanced language comprehension and production

152

10.3. Future Research

skills, trained on a remarkably smaller combined machine translation and tabletop
object manipulation dataset (Chapter 8). Furthermore, we have developed a mod-
ular HRI approach, ELMiRA, built upon pre-trained out-of-the-box foundation
models. ELMiRA facilitates spontaneous, interactive, free-flowing, verbal human-
robot conversations alongside closed-loop motor control in the real world. We have
demonstrated that the VLM-based dialogue manager can control the flow of dia-
logue by switching between different output modes, while the minimal task- and
robotic platform-specific modules allow the successful execution of robotic actions.
ELMiRA is the most advanced of all our approaches as it works in the real world
with the ability to engage in interactive, unrestricted, free-flowing conversation,
describe scenes and perform actions without being limited to specific objects. It
does not require further training and encompasses skills of zero-shot object detec-
tion, scene understanding, vision-language modelling and robotic action execution,
applicable to different robotic platforms and HRI scenarios (Chapter 9).

10.3 Future Research

We believe that we have significantly contributed to the knowledge present in
the domain of embodied language learning with this doctoral thesis. Nevertheless,
future research is essential to achieving fully autonomous companion robots that
can cooperate and solve everyday tasks with humans through advanced verbal
communication and motor control skills.

Excluding ELMiRA, all of our bidirectional action-language translation mod-
els are trained and tested either on pre-collected simulation data or directly in
simulation. In order to equip them with real-world action execution capabilities,
future work can explore sim-to-real transfer [195] as well as training on real-world
data and conducting experiments with robots in the real world. Additionally, it is
advisable to diversify the manipulation tasks and extend the variety and quantity
of objects. To surpass low-level granular motor control, robotic planning models
like SayCan and PaLM-E can be employed. These models should also assist in
tackling multi-task learning where a single set of weights is used to learn multiple
object manipulation tasks.

Another aspect that future work can further analyse is the language compre-
hension capabilities of our models, especially CrossT5 and ELMiRA. Even though
we tested these models with diverse language instructions for action execution
regarding their robustness to different phrasings, we advise future researchers to
collect large quantities of language instructions via crowdsourcing to investigate
the viability of using pre-trained LLMs within model architectures to relate from
language to motor control. As ELMiRA enables interactive verbal communication
with humans, another option could be conducting HRI experiments with several
human subjects to evaluate our modular approach further in terms of criteria such
as likeability, satisfaction and awareness.

By utilising SL pre-training and RL fine-tuning, XBiT expands our previous
models as it reduces the need for expert-defined action trajectories. Nevertheless,

153

Chapter 10. Conclusion

we used a simple online RL algorithm, i.e. REINFORCE, for the fine-tuning stage.
XBiT can be tested with more sophisticated RL algorithms, e.g. DDPG and PPO,
to boost its action execution performance. Besides, inverse RL can be considered to
directly learn value functions from expert trajectories for tasks for which rewards
cannot be easily defined. Like CrossT5, the XBiT architecture can be modified to
incorporate powerful LLMs such as GPT-4 and Llama 3 to enable complex natural
language capabilities. Lastly, future work can explore how to embed XBiT into the
ELMiRA framework for continuous human-robot dialogue with the possibility of
learning closed-loop action execution for any given manipulation task.

With CrossT5, we transfer only the English-to-German translation skills of the
small T5 variant to our bidirectional action-language modelling in practice. As
T5-small is limited in NLP tasks, it should be straightforward to replace it with
its larger variants or even its enhanced version FLAN-T5. As long as the LLM
in question has an encoder-decoder architecture, it is trivial to switch LLMs in
our intra-LLM multimodal fusion concept. However, opting for a more common
decoder-only LLM with text generation capabilities that can be used for dialogue
applications as in the case of ELMiRA may require preliminary exploration to find
the exact layers between which to divide the LLM into two parts. Another avenue
worth exploring is to add a few trainable layers between frozen LLM network layers
as done for fine-tuning in multi-task learning.

Our modular HRI solution, ELMiRA, can also be further improved in terms
of dialogue and action execution capabilities. For example, the current evolution-
ary solution, EvoIK, can be replaced with more recent IK solvers such as CycleIK.
Moreover, improving the parallelisation of different modules can minimise the wait-
ing times to tailor the approach for real-time human-robot interactions. Another
interesting approach could be incorporating our previous learning models, which
are more biologically plausible, into the ELMiRA concept. Last but not least, the
models used in the different modules of the ELMiRA architecture can be replaced
by more capable foundation models as they become available.

10.4 Final Remarks

In conclusion, the overall contribution of this thesis is advancing the language com-
prehension and production capabilities as well as improving motor control skills of
bidirectional action-language models by using neurocognitively plausible mecha-
nisms (e.g. multimodal fusion, channel separation in vision and crossmodal atten-
tion) and multiple learning paradigms (i.e. unsupervised learning, SL and RL), re-
alised with a humanoid robot in simulation and real-world settings. We have shown
that incorporating explicit multimodal fusion networks for action-language associ-
ations and including the desired translation direction in the language input enable
flexible bidirectional translation between robot actions and language descriptions.
In addition, utilising multiple learning paradigms asymmetrically, e.g. SL and RL,
reduces the amount of labelled action sequences necessary and improves the action
execution performance on multiple object manipulation tasks. Furthermore, pre-

154

10.4. Final Remarks

trained models like open-vocabulary object detection, speech recognition, TTS and
LLMs can be employed in a modular approach for diverse HRI scenarios involving
free-flowing verbal communication between a robot and a human and language-
instructed action execution in the real world. Therefore, we have paved the way
towards developing an artificial intelligent agent capable of collaborating with hu-
mans on daily tasks via superior communication and sensorimotor capabilities.

155

Chapter 10. Conclusion

156

Appendix A

Nomenclature

AE Autoencoder

ANN Artificial Neural Network

ASR Automatic Speech Recognition

BC Behavioural Cloning

BERT Bidirectional Encoder Representations from Transformers

CAE Convolutional Autoencoder

CLIP Contrastive Language-Image Pre-training

CMT Crossmodal Transformer

CNN Convolutional Neural Network

CS-CAE Channel-Separated Convolutional Autoencoder

DDPG Deep Deterministic Policy Gradient

ELMiRA Embodying Language Models in Robot Action

FFW Feedforward Layer

GMU Gated Multimodal Unit

GPT Generative Pre-trained Transformer

HRI Human-Robot Interaction

IK Inverse Kinematics

LLM Large Language Model

LSTM Long Short-Term Memory Network

MHA Multi-Head Attention

MLP Multilayer Perceptron

MSE Mean Squared Error

NICO Neuro-Inspired Companion

NLP Natural Language Processing

NN Neural Network

NRMSE Normalised Root-Mean-Squared Error

157

Appendix A. Nomenclature

PGAE Paired Gated Autoencoders

PPO Proximal Policy Optimisation

PRAE Paired Recurrent Autoencoders

PTAE Paired Transformed Autoencoders

PVAE Paired Variational Autoencoders

ReLU Rectified Linear Unit

RL Reinforcement Learning

RLHF Reinforcement Learning from Human Feedback

RNN Recurrent Neural Network

SL Supervised Learning

SOTA State of the Art

TTS Text to Speech

VAE Variational Autoencoder

VL Vision Language

VLM Vision Language Model

VQA Visual Question Answering

XAI Explainable Artificial Intelligence

XBiT Crossmodal Bidirectional Transformer

158

Appendix B

Code Snippets

PVAE & PVAE-BERT

Model Definition

1 # Peephole LSTM used as encoders and decoders

2 class PeepholeLSTM(nn.Module):

3 def __init__(self , input_size , hidden_size , peephole=False , forget_bias =0.0):

4 super().__init__ ()

5 self.input_sz = input_size

6 self.hidden_size = hidden_size

7 self.peephole = peephole

8 self.W = nn.Parameter(torch.Tensor(input_size+hidden_size , hidden_size *4))

9 self.peep_i = nn.Parameter(torch.Tensor(hidden_size))

10 self.peep_f = nn.Parameter(torch.Tensor(hidden_size))

11 self.peep_o = nn.Parameter(torch.Tensor(hidden_size))

12 self.bias = nn.Parameter(torch.Tensor(hidden_size * 4))

13 self.forget_bias = forget_bias

14 self.init_weights ()

15

16 def forward(self , x, sequence_len=None , init_states=None):

17 """ Assumes x is of shape (sequence , batch , feature)"""

18 if sequence_len is None:

19 seq_sz , bs, _ = x.size()

20 else:

21 seq_sz = sequence_len.max()

22 _, bs, _ = x.size()

23 hidden_seq = []

24 if init_states is None:

25 c_t , h_t = (torch.zeros(bs, self.hidden_size).to(x.device), torch.

zeros(bs, self.hidden_size).to(x.device))

26 else:

27 c_t , h_t = init_states

28 HS = self.hidden_size

29 for t in range(seq_sz):

30 x_t = x[t, :, :]

31 if sequence_len is not None:

32 if sequence_len.min() <= t+1:

33 old_c_t = c_t.clone ().detach ()

34 old_h_t = h_t.clone ().detach ()

35 # batch the computations into a single matrix multiplication

36 lstm_mat = torch.cat([x_t , h_t], dim=1)

37 if self.peephole:

38 gates = lstm_mat @ self.W + self.bias

39 else:

40 gates = lstm_mat @ self.W + self.bias

159

Appendix B. Code Snippets

41 g_t = torch.tanh(gates[:, HS * 2:HS * 3])

42 if self.peephole:

43 i_t , j_t , f_t , o_t = (

44 (gates[:, :HS]), # input

45 (gates[:, HS:HS * 2]), # new input

46 (gates[:, HS * 2:HS * 3]), # forget

47 (gates[:, HS * 3:]) # output

48)

49 else:

50 i_t , f_t , o_t = (

51 torch.sigmoid(gates[:, :HS]), # input

52 torch.sigmoid(gates[:, HS:HS * 2]), # forget

53 torch.sigmoid(gates[:, HS * 3:]) # output

54)

55 if self.peephole:

56 c_t = torch.sigmoid(f_t + self.forget_bias + c_t * self.peep_f) *

c_t + torch.sigmoid(i_t + c_t * self.peep_i) * torch.tanh(j_t)

57 h_t = torch.sigmoid(o_t + c_t * self.peep_o) * torch.tanh(c_t)

58 else:

59 c_t = f_t * c_t + i_t * g_t

60 h_t = o_t * torch.tanh(c_t)

61 out = h_t.clone()

62 if sequence_len is not None:

63 if sequence_len.min() <= t:

64 c_t = torch.where(torch.tensor(sequence_len).to(c_t.device) <=

t, old_c_t.T, c_t.T).T

65 h_t = torch.where(torch.tensor(sequence_len).to(h_t.device) <=

t, old_h_t.T, h_t.T).T

66 out = torch.where(torch.tensor(sequence_len).to(out.device) <=

t, torch.zeros(out.shape).to(out.device).T, out.T).T

67 hidden_seq.append(out.unsqueeze (0))

68 hidden_seq = torch.cat(hidden_seq , dim=0)

69 return hidden_seq , (c_t , h_t)

70

71 # Binding loss (description , action)

72 def aligned_discriminative_loss(lang , act , margin =1.0):

73 batch_size = int(lang.shape [0]) # number of actions

74 # replicate the descriptions according to no. of actions

75 lang_tile = torch.tile(lang , (batch_size , 1))

76 # do the same for actions

77 act_tile = torch.tile(act , (1, batch_size)).view(batch_size ** 2, -1)

78 # Calculate the euclidean distance between paired descriptions and actions

79 pair_loss = torch.sqrt(torch.sum(torch.square(lang - act), axis =1))

80 all_pairs = torch.square(lang_tile - act_tile)

81 loss_array = torch.sqrt(torch.sum(all_pairs , axis =1)).view(batch_size ,

batch_size)

82 # Make representation of an action be far from that of its unpaired

description

83 lang_diff = torch.unsqueeze(pair_loss , axis =0) - loss_array + margin

84 act_diff = torch.unsqueeze(pair_loss , axis =1) - loss_array + margin

85 lang_diff = torch.maximum(lang_diff.to('cuda'), torch.zeros(lang_diff.size()).

to('cuda'))
86 act_diff = torch.maximum(act_diff.to('cuda'), torch.zeros(act_diff.size()).to(

'cuda'))
87 mask = 1.0 - torch.eye(batch_size)

88 lang_diff = lang_diff * mask.to('cuda')
89 act_diff = act_diff * mask.to('cuda')
90 # return the binding loss

91 return torch.mean(lang_diff) + torch.mean(act_diff) + torch.mean(pair_loss)

92

93 # Method for Losses

94 def loss(output , gt_description , gt_action , B_bin , net_conf):

95 [L_output , B_output , L_z_mean , VB_z_mean , L_z_log_var , VB_z_log_var] = output

96 # Calculate the loss

97 B_output = B_output * B_bin [1:]

98 # description loss

99 L_loss = torch.mean(-torch.sum(gt_description * torch.log(L_output), 2))

100 B_loss = torch.mean(torch.square(B_output - gt_action)) # action loss (MSE)

160

Appendix B. Code Snippets

101 # binding loss

102 share_loss = aligned_discriminative_loss(L_z_mean , VB_z_mean , net_conf.delta)

103 # add the regularisation loss (KLD)

104 L_reg = L_z_log_var.exp()-L_z_log_var -1+ L_z_mean.square ()

105 L_reg = torch.mean (0.5 * torch.sum(L_reg , axis=-1))

106 VB_reg = VB_z_log_var.exp() - VB_z_log_var - 1 + VB_z_mean.square ()

107 VB_reg = torch.mean (0.5 * torch.sum(VB_reg , axis=-1))

108 # total loss

109 loss = net_conf.L_weight*L_loss + net_conf.B_weight*B_loss + net_conf.S_weight

*share_loss + net_conf.KL_weight*L_reg + net_conf.KL_weight*VB_reg

110 # return losses

111 return L_loss , B_loss , share_loss , loss , L_reg , VB_reg

112

113 # BERT language encoder

114 class BertEncoder(nn.Module):

115 def __init__(self , params):

116 super(BertEncoder , self).__init__ ()

117 self.params = params

118 self.tokeniser = BertTokenizer.from_pretrained('bert -base -uncased ')
119 self.encoder = BertModel.from_pretrained('bert -base -uncased ')
120

121 def forward(self , inp):

122 # Use the vocabulary to feed descriptions

123 file = open('../ vocabulary.txt', 'r')
124 vocab = file.read().splitlines ()

125 file.close()

126 t = inp[:, :, :]. argmax(axis=-1)

127 descriptions = []

128 for i in range(inp.shape [1]):

129 sentence = ''
130 for k in range(1, inp.shape [0] - 1):

131 sentence += vocab[t[k, i]] + ' '
132 descriptions.append(sentence [: -1])

133 encoded_input = self.tokeniser(descriptions , return_tensors='pt', padding=

True)

134 output = self.encoder (** encoded_input.to(self.encoder.device))

135 v = self.mean_pooling(output , encoded_input['attention_mask '])
136 return v

137

138 # Paired Variational Autoencoders

139 class PVAE(nn.Module):

140 def __init__(self , params):

141 super(PVAE , self).__init__ ()

142 self.params = params # obtain the parameters

143 #Encoders

144 self.lang_encoder = Encoder(self.params , True)

145 self.action_encoder = Encoder(self.params , False)

146 # Bottleneck

147 self.lang_mean = nn.Linear(self.params.L_num_units*self.params.

L_num_layers *2, self.params.S_dim)

148 self.lang_log_variance = nn.Linear(self.params.L_num_units*self.params.

L_num_layers *2, self.params.S_dim)

149 self.action_mean = nn.Linear(self.params.VB_num_units*self.params.

VB_num_layers *2, self.params.S_dim)

150 self.action_log_variance = nn.Linear(self.params.VB_num_units*self.params.

VB_num_layers *2, self.params.S_dim)

151 # Initial states

152 self.initial_lang = nn.Linear(self.params.S_dim , self.params.L_num_units*

self.params.L_num_layers *2)

153 self.initial_act = nn.Linear(self.params.S_dim , self.params.VB_num_units*

self.params.VB_num_layers *2)

154 # Decoders

155 self.lang_decoder = Decoder(self.params , True)

156 self.action_decoder = Decoder(self.params , False)

157

158 def forward(self , inp):

159 # Encode language

161

Appendix B. Code Snippets

160 encoded_lang = self.lang_encoder(inp['L_bw'], inp['L_len '].int().numpy (),
True)

161 # Encode action

162 # Prepare vision -joint angle input

163 VB_input = torch.cat([inp['V_bw'], inp['B_bw']], dim =2)

164 encoded_act = self.action_encoder(VB_input , inp['V_len '].int().numpy ())
165 VB_input_f = inp['VB_fw '] #Initial input for action decoder

166 # Get means and variances

167 L_z_mean = self.lang_mean(encoded_lang)

168 L_z_log_var = self.lang_log_variance(encoded_lang)

169 VB_z_mean = self.action_mean(encoded_act)

170 VB_z_log_var = self.action_log_variance(encoded_act)

171 # Get z_lang and z_act using the reparameterisation trick

172 L_sampling = self.reparameterise(L_z_mean , L_z_log_var)

173 VB_sampling = self.reparameterise(VB_z_mean , VB_z_log_var)

174 # Get initial states for decoders

175 L_dec_init_state = self.initial_lang(L_sampling)

176 VB_dec_init_state = self.initial_act(VB_sampling)

177 # Reproduce the inputs

178 L_output = self.lang_decoder(inp['L_fw'][0], len(inp['L_fw']),
L_dec_init_state , True)

179 B_output = self.action_decoder(VB_input_f , len(inp['B_fw']),
VB_dec_init_state)

180 return L_output , B_output , L_z_mean , VB_z_mean , L_z_log_var , VB_z_log_var

181

182 def reparameterise(self , mean , log_var):

183 std = torch.exp(log_var *0.5)

184 epsilon = torch.normal(mean =0.0, std=0.1,

185 size=(mean.size()[0], mean.size()[1])).to('cuda')
186 return mean + std * epsilon

187

188 # PVAE -BERT

189 class PVAEBERT(nn.Module):

190 def __init__(self , params):

191 super(PVAEBERT , self).__init__ ()

192 self.params = params # obtain the parameters

193 # Encoders

194 self.lang_encoder = BertEncoder(self.params)

195 self.action_encoder = Encoder(self.params , False)

196 ...

197 ...

198 ...

Listing B.1: PVAE & PVAE-BERT model definition classes and methods taken
from https://github.com/oo222bs/PVAE-BERT/blob/master/src/pvae.py

CS-CAE

1 # Convolutional Encoder

2 class ConvolutionalEncoder(nn.Module):

3 def __init__(self):

4 super(ConvolutionalEncoder , self).__init__ ()

5 self.first_conv = nn.Conv2d(in_channels =1, out_channels =8, kernel_size =(4,

4), stride =(2, 2), padding =1)

6 self.second_conv = nn.Conv2d(in_channels =8, out_channels =16, kernel_size

=(4, 4), stride =(2, 2), padding =1)

7 self.third_conv = nn.Conv2d(in_channels =16, out_channels =32, kernel_size

=(4, 4), stride =(2, 2), padding =1)

8 self.fourth_conv = nn.Conv2d(in_channels =32, out_channels =64, kernel_size

=(8, 8), stride =(5, 5), padding =2)

9 self.relu = nn.ReLU()

10

11 def forward(self , input_images):

12 first_conv = self.relu(self.first_conv(input_images.float()))

162

https://github.com/oo222bs/PVAE-BERT/blob/master/src/pvae.py

Appendix B. Code Snippets

13 second_conv = self.relu(self.second_conv(first_conv))

14 third_conv = self.relu(self.third_conv(second_conv))

15 fourth_conv = self.relu(self.fourth_conv(third_conv))

16 return fourth_conv

17

18 # Fully connected layers (Bottleneck)

19 class Bottleneck(nn.Module):

20 def __init__(self):

21 super(Bottleneck , self).__init__ ()

22 self.first_fc = nn.Linear(in_features =3*4*64 , out_features =384)

23 self.second_fc = nn.Linear(in_features =384, out_features =192)

24 self.third_fc = nn.Linear(in_features =192, out_features =10)

25 self.fourth_fc = nn.Linear(in_features =10, out_features =192)

26 self.fifth_fc = nn.Linear(in_features =192, out_features =384)

27

28 def forward(self , encoded_features):

29 flattened = torch.flatten(encoded_features , start_dim =1)

30 first_dense = self.first_fc(flattened)

31 second_dense = self.second_fc(first_dense)

32 third_dense = self.third_fc(second_dense)

33 fourth_dense = self.fourth_fc(third_dense)

34 fifth_dense = self.fifth_fc(fourth_dense)

35 return third_dense , fifth_dense

36

37 # Deconvolutional Decoder

38 class DeconvolutionalDecoder(nn.Module):

39 def __init__(self):

40 super(DeconvolutionalDecoder , self).__init__ ()

41 self.first_deconv = nn.ConvTranspose2d(in_channels =32, out_channels =32,

kernel_size =(8, 8), stride =(5, 5), padding=2, output_padding =1)

42 self.second_deconv = nn.ConvTranspose2d(in_channels =32, out_channels =16,

kernel_size =(4, 4), stride =(2, 2), padding =1)

43 self.third_deconv = nn.ConvTranspose2d(in_channels =16, out_channels =8,

kernel_size =(4, 4), stride =(2, 2), padding =1)

44 self.fourth_deconv = nn.ConvTranspose2d(in_channels =8, out_channels =1,

kernel_size =(4, 4), stride =(2, 2), padding =1)

45 self.relu = nn.ReLU()

46 self.sigmoid = nn.Sigmoid ()

47

48 def forward(self , dense_features):

49 reshaped = torch.reshape(dense_features ,(dense_features.size()[0],-1,3,4))

50 first_deconv = self.relu(self.first_deconv(reshaped))

51 second_deconv = self.relu(self.second_deconv(first_deconv))

52 third_deconv = self.relu(self.third_deconv(second_deconv))

53 output = self.sigmoid(self.fourth_deconv(third_deconv))

54 return output

55

56 # Convolutional Autoencoder (CAE)

57 class CAE(nn.Module):

58 def __init__(self):

59 super(CAE , self).__init__ ()

60 self.convolutional_encoder = ConvolutionalEncoder ()

61 self.bottleneck = Bottleneck ()

62 self.deconvolutional_decoder = DeconvolutionalDecoder ()

63

64 def forward(self , input_images):

65 encoded_features = self.convolutional_encoder(input_images)

66 _, dense_out = self.bottleneck(encoded_features)

67 output_images = self.deconvolutional_decoder(dense_out)

68 return output_images

69

70 def extract_visual_features(self , input_image):

71 encoded_features = self.convolutional_encoder(input_image)

72 visual_features , _ = self.bottleneck(encoded_features)

73 return visual_features

74

75 # Train for every channel

76 def train():

163

Appendix B. Code Snippets

77 train_for_channel('red')
78 train_for_channel('green ')
79 train_for_channel('blue')

Listing B.2: CS-CAE model definition classes and methods taken from
https://github.com/oo222bs/PVAE-BERT/blob/master/src/channel_

separated_cae.py

PGAE

Model Definition

1 def train_gmu_opp(model , batch , optimiser , epoch_loss , params):

2 optimiser.zero_grad () # free the optimizer from previous gradients

3 gt_description = batch['L_fw'][1:]
4 gt_action = batch['B_fw'][1:]
5 ran_sig = torch.randint(3, (1,))

6 opp = 0

7 if ran_sig == 0:

8 rep_sig = torch.randint(3, (1,))

9 if rep_sig == 0:

10 signal = 'repeat action '
11 opp = torch.randint(2, (1,))

12 gt_description = gt_description [-1]. unsqueeze (0)

13 elif rep_sig == 1:

14 signal = 'repeat both'
15 opp = torch.randint(2, (1,))

16 else:

17 signal = 'repeat language '
18 gt_action = batch['B_fw'][0]. repeat(len(gt_action), 1, 1)

19 * batch["B_bin"][1:]

20 elif ran_sig ==1:

21 signal = 'describe '
22 opp = torch.randint(2, (1,))

23 if opp == 0:

24 gt_action = batch['B_bw'][0]. repeat(len(gt_action), 1, 1)

25 * batch["B_bin"][1:]

26 else:

27 gt_action = batch['B_fw'][0]. repeat(len(gt_action), 1, 1)

28 * batch["B_bin"][1:]

29 else:

30 signal = 'execute '
31 gt_description = gt_description [-1]. unsqueeze (0)

32 output = model(batch , signal , opp)

33 L_loss , B_loss , batch_loss = loss_gmu(output , gt_description , gt_action ,

34 batch["B_bin"], signal , params) # compute loss

35 batch_loss.backward () # compute gradients

36 optimiser.step() # update weights

37 epoch_loss.append(batch_loss.item()) # record the batch loss

38 return L_loss , B_loss , batch_loss , signal # return the losses

39

40 # Gated Multimodal Unit (Arevalo et al., 2017)

41 class GatedMultimodalUnit(nn.Module):

42 def __init__(self , params , bert=False):

43 super(GatedMultimodalUnit , self).__init__ ()

44 self.params = params

45 if bert:

46 self.lang_h_linear = nn.Linear (768, self.params.hidden_dim)

47 self.z_linear = nn.Linear(self.params.VB_num_units

48 * self.params.VB_num_layers * 2 + 768, self.params.hidden_dim)

49 else:

50 self.lang_h_linear = nn.Linear(self.params.L_num_units

164

https://github.com/oo222bs/PVAE-BERT/blob/master/src/channel_separated_cae.py
https://github.com/oo222bs/PVAE-BERT/blob/master/src/channel_separated_cae.py

Appendix B. Code Snippets

51 * self.params.L_num_layers * 2, self.params.hidden_dim)

52 self.z_linear = nn.Linear(self.params.VB_num_units

53 * self.params.VB_num_layers * 2 + self.params.L_num_units

54 * self.params.L_num_layers * 2, self.params.hidden_dim)

55 self.act_h_linear = nn.Linear(self.params.VB_num_units

56 * self.params.VB_num_layers * 2, self.params.hidden_dim)

57 self.tanh = nn.Tanh()

58 self.sigmoid = nn.Sigmoid ()

59

60 def forward(self , act_features , lang_features):

61 h_act = self.tanh(self.act_h_linear(act_features))

62 h_lang = self.tanh(self.lang_h_linear(lang_features))

63 z = self.sigmoid(self.z_linear(torch.cat([act_features , lang_features],

dim=-1)))

64 h = z * h_act + (1 - z) * h_lang

65 return h

66

67 class PGAE(nn.Module):

68 def __init__(self , params):

69 super(PGAE , self).__init__ ()

70 self.params = params

71 self.lang_encoder = Encoder(self.params , True)

72 self.action_encoder = Encoder(self.params , False)

73 self.hidden = GatedMultimodalUnit(self.params)

74 self.initial_lang = nn.Linear(self.params.hidden_dim , self.params.

L_num_units*self.params.L_num_layers *2)

75 self.initial_act = nn.Linear(self.params.hidden_dim , self.params.

VB_num_units*self.params.VB_num_layers *2)

76 self.lang_decoder = Decoder(self.params , True)

77 self.action_decoder = Decoder(self.params , False , False)

78 def forward(self , inp , signal):

79 if signal == 'repeat both':
80 ...

81 elif signal == 'repeat language ':
82 ...

83 elif signal == 'repeat action ':
84 ...

85 elif signal == 'describe ':
86 signalrow = torch.zeros ((1, inp['L_fw'].size()[1],
87 inp['L_fw'].size() [2]+5) , requires_grad=True).to('cuda')
88 VB_input = torch.cat([inp['V_fw'], inp['B_fw']], dim =2)

89 signalrow [0,:, self.params.L_input_dim] = 1.0

90 l_fw_ndim = torch.cat((inp['L_fw'][-1]. unsqueeze (0), torch.zeros(1,

inp['L_fw'].size()[1], 5).to('cuda')), axis=-1).to('cuda')
91 lang_in_length = inp['L_len '].int().numpy()
92 - (inp['L_len '].int().numpy () - 1)

93 else:

94 l_fw_ndim = torch.cat((inp['L_fw'], torch.zeros(inp['L_fw'].size()[0],
inp['L_fw'].size()[1], 5).to('cuda')), axis=-1).to('cuda')

95 signalrow = torch.zeros ((1, l_fw_ndim.size()[1], l_fw_ndim.size()[2]),

requires_grad=True).to('cuda')
96 signalrow [0,:, self.params.L_input_dim +1] = 1.0

97 VB_input=torch.cat((inp['V_fw'][0]. repeat(len(inp['V_fw']), 1, 1),

98 inp['B_fw'][0]. repeat(len(inp['B_fw']), 1, 1)), dim=2)

99 * inp['B_bin '][:, :, 0]. unsqueeze (-1).repeat(1, 1,

100 inp['V_fw'].size()[-1] + inp['B_fw'].size()[-1])
101 lang_in_length = inp['L_len '].int().numpy()
102 lang_inp = torch.cat((signalrow , l_fw_ndim), axis =0).to('cuda')
103 encoded_lang = self.lang_encoder(lang_inp , lang_in_length + 1, True)

104 encoded_act = self.action_encoder(VB_input , inp['V_len '].int().numpy ())
105 z = self.hidden(encoded_act , encoded_lang)

106 L_dec_init_state = self.initial_lang(z)

107 VB_dec_init_state = self.initial_lang(z)

108 if signal == 'repeat both':
109 ...

110 elif signal == 'describe ':
111 L_output = self.lang_decoder(inp['L_fw'][0], len(inp['L_fw']),

L_dec_init_state , True)

165

Appendix B. Code Snippets

112 VB_input_f = [inp["V_bw"][0]. repeat(len(inp['V_fw']) ,1,1),
113 inp["B_bw"][0, :, :]]

114 B_output = self.action_decoder(VB_input_f , len(inp['B_fw']),
VB_dec_init_state , teacher_forcing=True)

115 elif signal == 'repeat language ':
116 ...

117 else:

118 VB_input_f = inp['VB_fw ']
119 L_output = self.lang_decoder(inp['L_fw'][0],2, L_dec_init_state ,True)
120 B_output = self.action_decoder(VB_input_f , len(inp['B_fw']),

VB_dec_init_state , teacher_forcing=True)

121 return L_output , B_output

Listing B.3: Examples of PGAE model definition classes and methods taken from
https://github.com/oo222bs/PGAE/blob/main/src/pgae.py

PTAE

Model Definition

1 class PTAE(nn.Module):

2 def __init__(self , params , lang_enc_type='LSTM', act_enc_type='LSTM',
app_length=True):

3 super(PTAE , self).__init__ ()

4 from crossmodal_transformer import Visual_Ling_Attn as CMTransformer

5 self.params = params

6 self.lang_enc_type = lang_enc_type

7 self.act_enc_type = act_enc_type

8 if self.lang_enc_type == 'LSTM':
9 self.lang_encoder = Encoder(self.params , True ,

10 lstm_type='bidirectional ')
11 elif self.lang_enc_type == 'BERT':
12 self.lang_encoder = LanguageModel(self.params , 'bert -base')
13 elif self.lang_enc_type == 'WordEmbedding ':
14 self.word_embedder = Embedder(self.params.L_input_dim + 5,

15 emb_dim=params.L_num_units)

16 if self.act_enc_type == 'LSTM':
17 self.action_encoder = Encoder(self.params , False ,

18 lstm_type='bidirectional ')
19 self.hidden = CMTransformer(self.params)

20 self.initial_lang = nn.Linear(self.params.hidden_dim ,

21 self.params.L_num_units*self.params.L_num_layers *2)

22 self.initial_act = nn.Linear(self.params.hidden_dim ,

23 self.params.VB_num_units*self.params.VB_num_layers *2)

24 self.lang_decoder = Decoder(self.params , True , lstm_type='regular ',
25 appriori_length=app_length)

26 self.action_decoder = Decoder(self.params , False , lstm_type='regular ',
27 appriori_length=app_length)

28 def forward(self , inp , signal , appriori_len=True):

29 if signal == 'repeat language ':
30 ...

31 elif signal == 'repeat action ':
32 ...

33 elif signal == 'describe ':
34 signalrow = torch.zeros ((1, inp['L_fw'].size()[1],
35 inp['L_fw'].size() [2]+5) , requires_grad=True).to('cuda')
36 VB_input = torch.cat([inp['V_fw'], inp['B_fw']], dim =2)

37 signalrow[0, :, self.params.L_input_dim] = 1.0

38 if appriori_len:

39 l_fw_ndim = torch.cat((inp['L_fw'][-1]. unsqueeze (0), torch.zeros

(1, inp['L_fw'].size()[1], 5).to('cuda')), axis=-1).to('cuda')
40 else:

166

https://github.com/oo222bs/PGAE/blob/main/src/pgae.py

Appendix B. Code Snippets

41 l_fw_eos = torch.zeros ((1, inp['L_fw'].shape [1],
42 inp['L_fw'].shape [2]+5))
43 l_fw_eos[:, :, 1] = 1

44 l_fw_ndim = l_fw_eos.to('cuda')
45 lang_in_length = inp['L_len '].int().numpy()
46 - (inp['L_len '].int().numpy () - 1)

47 else:

48 l_fw_ndim = torch.cat((inp['L_fw'], torch.zeros(inp['L_fw'].size()[0],
inp['L_fw'].size()[1], 5).to('cuda')), axis=-1).to('cuda')

49 signalrow = torch.zeros ((1, l_fw_ndim.size()[1], l_fw_ndim.size()[2]),

requires_grad=True).to('cuda')
50 signalrow[0, :, self.params.L_input_dim +1] = 1.0

51 VB_input=torch.cat((inp['V_fw'][0]. repeat(len(inp['V_fw']), 1, 1),

52 inp['B_fw'][0]. repeat(len(inp['B_fw']), 1, 1)), dim=2)

53 * inp['B_bin '][:, :, 0]. unsqueeze (-1).repeat(1, 1,

54 inp['V_fw'].size()[-1] + inp['B_fw'].size()[-1])
55 lang_in_length = inp['L_len '].int().numpy()
56 lang_inp = torch.cat((signalrow , l_fw_ndim), axis =0).to('cuda')
57 if self.lang_enc_type == 'LSTM':
58 encoded_lang = self.lang_encoder(lang_inp , lang_in_length + 1, True)

59 elif self.lang_enc_type == 'BERT':
60 encoded_lang = self.lang_encoder(lang_inp)

61 elif self.lang_enc_type == 'WordEmbedding ':
62 encoded_lang = self.word_embedder(lang_inp.argmax(axis=-1)).permute

(1,0,2)

63 else:

64 encoded_lang = lang_inp.permute (1,0,2).float ()

65 if self.act_enc_type == 'LSTM':
66 encoded_act = self.action_encoder(VB_input ,inp['V_len '].int().numpy ())
67 else:

68 encoded_act = VB_input.permute (1,0,2).float()

69 h = self.hidden(encoded_lang , encoded_act , None , None).mean (1)

70 L_dec_init_state = self.initial_lang(h)

71 VB_dec_init_state = self.initial_act(h)

72 if signal == 'describe ':
73 VB_input_f = [inp["V_bw"][0]. repeat(len(inp['V_fw']), 1, 1),

74 inp["B_bw"][0, :, :]]

75 if appriori_len:

76 L_output = self.lang_decoder(inp['L_fw'][0], len(inp['L_fw']),
L_dec_init_state , True)

77 B_output = self.action_decoder(VB_input_f , len(inp['B_fw']),
VB_dec_init_state)

78 else:

79 L_output = self.lang_decoder(inp['L_fw'][0], None ,

L_dec_init_state , True)

80 B_output = self.action_decoder(VB_input_f ,None ,VB_dec_init_state)

81 elif signal == 'repeat language ':
82 ...

83 else:

84 VB_input_f = inp['VB_fw ']
85 if appriori_len:

86 L_output = self.lang_decoder(inp['L_fw'][0], 2, L_dec_init_state ,

True)

87 B_output = self.action_decoder(VB_input_f , len(inp['B_fw']),
VB_dec_init_state)

88 else:

89 L_output = self.lang_decoder(inp['L_fw'][0], None ,

L_dec_init_state , True)

90 B_output = self.action_decoder(VB_input_f ,None ,VB_dec_init_state)

91 return L_output , B_output

Listing B.4: Examples of PTAE model definition classes and methods taken from
https://github.com/oo222bs/PTAE/blob/main/src/ptae.py

167

https://github.com/oo222bs/PTAE/blob/main/src/ptae.py

Appendix B. Code Snippets

Training

1 def main():

2 # get the network configuration (parameters like number of layers and units)

3 parameters = PTAEConfig ()

4 parameters.set_conf("../ train/ptae_conf.txt")

5 # get the training configuration

6 # (batch size , initialisation , num_of_epochs number , saving and loading

directory)

7 train_conf = TrainConfig ()

8 train_conf.set_conf("../ train/train_conf.txt")

9 seed = train_conf.seed

10 batch_size = train_conf.batch_size

11 num_of_epochs = train_conf.num_of_epochs

12 learning_rate = train_conf.learning_rate

13 save_dir = train_conf.save_dir

14 # Create a model instance

15 model = PTAE(parameters , lang_enc_type='None', act_enc_type='None').to(device)
16 # Initialise the optimiser

17 optimiser = torch.optim.Adam(model.parameters (), lr=learning_rate)

18 scheduler = MultiStepLR(optimiser , milestones =[10000] , gamma =0.5)

19 # Inspect the model with tensorboard

20 model_name = "ptae_limited_supervised_data_98pc"

21 model.train () # tell the model that it's training time

22 # Load the dataset

23 training_data = PairedNico2BlocksDataset(train_conf)

24 test_data = PairedNico2BlocksDataset(train_conf , True)

25 # Load the training and testing sets with DataLoader

26 train_dataloader=DataLoader(training_data ,batch_size=batch_size ,shuffle=True)

27 test_dataloader = DataLoader(test_data , batch_size=batch_size , shuffle=True)

28 step = 0

29 super_perc = 2

30 super_batches = np.random.choice(range(len(train_dataloader)),

31 math.ceil(len(train_dataloader)*super_perc /100), replace=False)

32 # Training

33 for epoch in range(num_of_epochs):

34 epoch_loss , epoch_loss_describe , epoch_loss_execute =

35 ([] for i in range (3))

36 iter_within_epoch = 0

37 for input in train_dataloader:

38 # Generate random index for description alternatives

39 sentence_idx = np.random.randint (8)

40 L_fw_feed = input["L_fw"][5* sentence_idx :5+5* sentence_idx , :, :]

41 input["L_fw"] = L_fw_feed.to(device)

42 if iter_within_epoch in super_batches:

43 supervised_sig = torch.randint (2,(1,))

44 if supervised_sig == 0:

45 signal = 'describe '
46 else:

47 signal = 'execute '
48 else:

49 rep_sig = torch.randint(2, (1,))

50 if rep_sig == 0:

51 signal = 'repeat action '
52 else:

53 signal = 'repeat language '
54 #Train and print the losses

55 l, b, t, signal = train_limited_data(model , input , optimiser ,

epoch_loss , parameters , signal , vis_out=False)

56 print("step :{} total:{}, language :{}, behavior :{}, signal :{}".format(

step , t, l, b, signal))

57 step = step + 1

58 if signal == "describe":

59 epoch_loss_describe.append(epoch_loss [-1])

60 elif signal == "execute":

61 epoch_loss_execute.append(epoch_loss [-1])

62 iter_within_epoch = iter_within_epoch + 1

168

Appendix B. Code Snippets

63 scheduler.step()

64 # Flush and close the summary writer of Tensorboard

65 writer.flush()

66 writer.close()

Listing B.5: Snippet from PTAE model training script taken from https://

github.com/oo222bs/PTAE/blob/main/src/main_ptae.py

XBiT

Model Definition

1 class XBiT(nn.Module):

2 def __init__(self ,params ,lang_enc_type ,lang_onehot_inp=False ,coll_out=False):

3 super(XBiT , self).__init__ ()

4 from crossmodal_transformer import Visual_Ling_Attn as CMTransformer

5 from crossmodal_transformer import Linguistic_Vis_Attn as

CMTransformerMirrored

6 from crossmodal_transformer import LanguageDecoderLayer as LangDecoder

7 self.params = params

8 self.lang_enc_type = lang_enc_type

9 self.lang_onehot_inp = lang_onehot_inp

10 self.vis_feat_extractor_red = CAE(self.params.B_max_length)

11 self.vis_feat_extractor_green = CAE(self.params.B_max_length)

12 self.vis_feat_extractor_blue = CAE(self.params.B_max_length)

13 ...

14 ...

15 ...

16 if self.lang_enc_type == 'BERT':
17 self.lang_encoder = LanguageModel('bert -base', self.lang_onehot_inp)

18 else:

19 self.lang_encoder = LanguageModel('clip', self.lang_onehot_inp)

20 self.hidden = CMTransformer(self.params)

21 self.hidden_mirror = CMTransformerMirrored(self.params)

22 self.lang_decoder = LangDecoder(self.params)

23 self.init_act_decoder = nn.Linear(self.params.hidden_dim * 2,

24 int(self.params.hidden_dim / 2))

25 self.second_act_decoder = nn.Linear(int(self.params.hidden_dim / 2),

26 int(self.params.hidden_dim / 4))

27 self.xyz_coord = nn.Linear(int(self.params.hidden_dim / 4), 3)

28 self.quats = nn.Linear(int(self.params.hidden_dim / 4), 4)

29 self.grip_open = nn.Linear(int(self.params.hidden_dim / 4), 1)

30 if coll_out:

31 self.ignore_coll = nn.Linear(int(self.params.hidden_dim / 4), 1)

32 self.dropout = nn.Dropout(p=self.params.T_dropout)

33 self.relu = nn.ReLU()

34 self.sigmoid = nn.Sigmoid ()

35 self.layer_norm = nn.LayerNorm(self.params.hidden_dim)

36 def forward(self , inp , signal):

37 if signal == 'describe ':
38 ... # visual_features

39 V_input = torch.cat([vs_ftrs_red.transpose(0, 1),

40 vs_ftrs_green.transpose(0, 1), vs_ftrs_blue.transpose(0, 1),

41 vs_ftrs_wrist_red.transpose(0, 1), vs_ftrs_wrist_green.transpose

(0, 1), vs_ftrs_wrist_blue.transpose(0, 1)], dim=2)

42 VB_input = torch.cat([V_input , inp['B_fw']], dim =2) # action input

43 if self.lang_onehot_inp:

44 signalrow = torch.zeros ((1, inp['L_oh_fw '].size()[1],
45 inp['L_oh_fw '].size()[2] + 5), requires_grad=True).to('cuda')
46 signalrow[0, :, self.params.L_input_dim] = 1.0

47 l_fw_eos = torch.zeros ((1, inp['L_oh_fw '].shape [1],
48 inp['L_oh_fw '].shape [2] + 5))

169

https://github.com/oo222bs/PTAE/blob/main/src/main_ptae.py
https://github.com/oo222bs/PTAE/blob/main/src/main_ptae.py

Appendix B. Code Snippets

49 l_fw_eos[:, :, 5] = 1

50 l_fw_ndim = l_fw_eos.to('cuda')
51 lang_inp = torch.cat((signalrow , l_fw_ndim), axis =0).to('cuda')
52 else:

53 lang_inp = [signal + ': ' for i in range(len(inp['L_fw']))]
54 else:

55 ... # visual_features

56 V_input = torch.cat([vs_ftrs_red [0], vs_ftrs_green [0],

57 vs_ftrs_blue [0], vs_ftrs_wrist_red [0], vs_ftrs_wrist_green [0],

58 vs_ftrs_wrist_blue [0]], dim=-1)

59 VB_input = torch.cat((V_input , inp['B_fw'][0]), dim=-1).unsqueeze (0)

60 if self.lang_onehot_inp:

61 l_fw_ndim = torch.cat((inp['L_fw'], torch.zeros(inp['L_fw'].size()
[0], inp['L_fw'].size()[1], 5).to('cuda')), axis=-1)

62 signalrow = torch.zeros ((1, l_fw_ndim.size()[1], l_fw_ndim.size()

[2]), requires_grad=True).to('cuda')
63 signalrow[0, :, self.params.L_input_dim + 1] = 1.0

64 lang_inp = torch.cat((signalrow , l_fw_ndim), axis =0).to('cuda')
65 else:

66 lang_inp = [signal + ': ' + desc for desc in inp['L_fw']]
67 encoded_lang = self.lang_encoder(lang_inp)

68 encoded_act = VB_input.permute(1, 0, 2).float()

69 h = self.hidden(encoded_lang , encoded_act , None , None)

70 h_mirror = self.hidden_mirror(encoded_act , encoded_lang , None , None).mean

(1).unsqueeze (1)

71 h = torch.mean(torch.stack((h, h_mirror)), dim =0)

72 mask_enc_att = None

73 if signal == 'describe ':
74 B_dec_inp = inp["B_bw"][0]

75 ... # visual_features from the last time step

76 h_linear = self.relu(self.init_act_decoder(torch.cat((VB_input_f ,

77 h.repeat(1, VB_input_f.shape[0], 1).permute(1, 0, 2)), axis=-1)))

78 act_dec_inp = self.relu(self.second_act_decoder(h_linear))

79 L_tar = torch.cat((inp['L_oh_fw '][:-1],
80 torch.zeros(inp['L_oh_fw '].size()[0] - 1,

81 inp['L_oh_fw '].size()[1], 2).to('cuda')), axis=-1).to('cuda')
82 mask_self_att_lang = torch.triu(torch.ones(h.shape[0], self.params.

T_num_heads , L_tar.shape[0], L_tar.shape [0]).bool(), diagonal =1)

83 L_output = self.lang_decoder(L_tar.permute(1, 0, 2), h,

mask_self_att_lang , mask_enc_att)

84 xyz_coord = self.xyz_coord(act_dec_inp)

85 quats = self.quats(act_dec_inp)

86 grip_open = self.sigmoid(self.grip_open(act_dec_inp))

87 B_output = torch.cat((xyz_coord , quats , grip_open), -1)

88 # if we have an ignore collision output

89 if self.coll_out:

90 collision = self.sigmoid(self.ignore_coll(act_dec_inp))

91 B_output = torch.cat((B_output , collision), -1)

92 else:

93 ... # visual_features

94 h_linear = self.relu(self.init_act_decoder(torch.cat((VB_input_f ,

95 h.repeat(1, VB_input_f.shape[0], 1).permute(1, 0, 2)), axis=-1)))

96 act_dec_inp = self.relu(self.second_act_decoder(h_linear))

97 L_tar = torch.cat((inp['L_oh_fw '][0]. unsqueeze (0), torch.zeros(1,

98 inp['L_oh_fw '].size()[1], 2).to('cuda')), axis=-1).to('cuda')
99 mask_self_att_lang = torch.triu(torch.ones(h.shape[0], self.params.

T_num_heads , L_tar.shape[0], L_tar.shape [0]).bool(), diagonal =1)

100 L_output = self.lang_decoder(L_tar.permute(1, 0, 2), h,

mask_self_att_lang , mask_enc_att)

101 ...

102 ...

103 ...

104 B_output = torch.cat((xyz_coord , quats , grip_open), -1)

105 # if we have an ignore collision output

106 if self.coll_out:

107 collision = self.sigmoid(self.ignore_coll(act_dec_inp))

108 B_output = torch.cat((B_output , collision), -1)

109 return L_output , B_output

170

Appendix B. Code Snippets

Listing B.6: Examples of XBiT model definition classes and methods taken from
https://github.com/oo222bs/XBiT/blob/main/src/xbit.py

CMT

1 class PositionWiseFeedForward(nn.Module):

2 def __init__(self , d_model =512, d_ff =2048 , dropout =0.1):

3 super(PositionWiseFeedForward , self).__init__ ()

4 self.fc1 = nn.Linear(d_model , d_ff)

5 self.fc2 = nn.Linear(d_ff , d_model)

6 self.dropout = nn.Dropout(p=dropout)

7 self.dropout_2 = nn.Dropout(p=dropout)

8 self.layer_norm = nn.LayerNorm(d_model)

9

10 def forward(self , input):

11 pwff = self.fc2(self.dropout_2(F.relu(self.fc1(input))))

12 pwff = self.dropout(pwff)

13 out = self.layer_norm(input + pwff)

14 return out

15

16 class ScaledDotProductAttention(nn.Module):

17 def __init__(self , d_model , d_k , d_v , h):

18 """

19 :param d_model: Output dimensionality of the model

20 :param d_k: Dimensionality of queries and keys

21 :param d_v: Dimensionality of values

22 :param h: Number of heads

23 """

24 super(ScaledDotProductAttention , self).__init__ ()

25 self.fc_q = nn.Linear(d_model , h * d_k)

26 self.fc_k = nn.Linear(d_model , h * d_k)

27 self.fc_v = nn.Linear(d_model , h * d_v)

28 self.fc_o = nn.Linear(h * d_v , d_model)

29 self.d_model = d_model

30 self.d_k = d_k

31 self.d_v = d_v

32 self.h = h

33 self.init_weights(gain =1.0)

34

35 def init_weights(self , gain =1.0):

36 nn.init.xavier_normal_(self.fc_q.weight , gain=gain)

37 nn.init.xavier_normal_(self.fc_k.weight , gain=gain)

38 nn.init.xavier_normal_(self.fc_v.weight , gain=gain)

39 nn.init.xavier_normal_(self.fc_o.weight , gain=gain)

40 nn.init.constant_(self.fc_q.bias , 0)

41 nn.init.constant_(self.fc_k.bias , 0)

42 nn.init.constant_(self.fc_v.bias , 0)

43 nn.init.constant_(self.fc_o.bias , 0)

44

45 def forward(self , queries , keys , values , attention_mask=None ,

attention_weights=None):

46 b_s , nq = queries.shape [:2]

47 nk = keys.shape [1]

48 # (b_s , h, nq , d_k)

49 q = (self.fc_q(queries).view(b_s , nq , self.h, self.d_k).permute (0,2,1,3))

50 # (b_s , h, d_k , nk)

51 k = (self.fc_k(keys).view(b_s , nk, self.h, self.d_k).permute (0,2,3,1))

52 # (b_s , h, nk , d_v)

53 v = (self.fc_v(values).view(b_s , nk, self.h, self.d_v).permute (0,2,1,3))

54 att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s , h, nq, nk)

55 if attention_weights is not None:

56 att = att * attention_weights

171

https://github.com/oo222bs/XBiT/blob/main/src/xbit.py

Appendix B. Code Snippets

57 if attention_mask is not None:

58 att = att.masked_fill(attention_mask , -np.inf)

59 att = torch.softmax(att , -1)

60 if attention_mask is not None:

61 att = att.masked_fill(attention_mask , 0)

62 # (b_s , nq , h*d_v)

63 out = (torch.matmul(att , v).permute(0, 2, 1, 3).contiguous ().view(b_s , nq,

self.h * self.d_v))

64 out = self.fc_o(out) # (b_s , nq, d_model)

65 return out

66

67 class MultiHeadAttention(nn.Module):

68 def __init__(self , d_model , d_k , d_v , h, dropout =0.1):

69 super(MultiHeadAttention , self).__init__ ()

70 self.attention = ScaledDotProductAttention(d_model=d_model , d_k=d_k ,

71 d_v=d_v , h=h)

72 self.dropout = nn.Dropout(p=dropout)

73 self.layer_norm = nn.LayerNorm(d_model)

74

75 def forward(self , queries , keys , values , attention_mask=None ,

76 attention_weights=None):

77 att = self.attention(queries , keys , values , attention_mask ,

78 attention_weights)

79 att = self.dropout(att)

80 return self.layer_norm(queries + att)

81

82 class InterModuleAttnLayer(nn.Module):

83 def __init__(self , d_model =512, d_k=64, d_v=64, h=8, d_ff =2048, dropout =0.1,

pooler=False):

84 super(InterModuleAttnLayer , self).__init__ ()

85 self.enc_att = MultiHeadAttention(d_model , d_k , d_v , h, dropout)

86 self.pwff = PositionWiseFeedForward(d_model , d_ff , dropout)

87

88 def with_pos_embed(self , tensor , pos: Optional[Tensor]):

89 return tensor if pos is None else tensor + pos

90

91 def forward(self , input_1 , input_2 , mask_self_att , mask_enc_att ,

92 pos_embed=None):

93 enc_att = self.enc_att(input_1 , input_2 , input_2 , mask_enc_att)

94 ff = self.pwff(enc_att)

95 return ff

96

97 # Base Class for Crossmodal Transformer - Hidden layer dimension size is 256, 1-

layer 4-head Transformer Encoder , number of dimensions per q,k,v is 64, ff

dimensionality is 1024

98 class Visual_Ling_Attn(nn.Module):

99 def __init__(self , params):

100 super(Visual_Ling_Attn , self).__init__ ()

101 self.params = params

102 self.d_model = self.params.hidden_dim

103 self.d_att = int(self.d_model / self.params.T_num_heads)

104 self.layers = nn.ModuleList ([InterModuleAttnLayer(self.d_model ,

105 self.d_att , self.d_att , self.params.T_num_heads , self.params.T_ff_dim ,

106 self.params.T_dropout) for _ in range(self.params.T_num_layers)])

107 self.vis_fc = nn.Linear(self.params.VB_input_dim , self.d_model)

108 self.ins_fc = nn.Linear (512, self.d_model)

109 self.dropout = nn.Dropout(p=self.params.T_dropou)

110 self.layer_norm = nn.LayerNorm(self.d_model)

111

112 def forward(self , input , input_2 , self_att_mask , enc_att_mask):

113 out = F.relu(self.vis_fc(input_2))

114 out = self.dropout(out)

115 out = self.layer_norm(out)

116 input = F.relu(self.ins_fc(input))

117 input = self.dropout(input)

118 input = self.layer_norm(input)

119 # Apply positional encoding to Q input

120 dev = input.get_device ()

172

Appendix B. Code Snippets

121 pe = sinusoid_encoding_table(input.shape[1], input.shape [2])

122 pe = pe.expand(input.shape[0], pe.shape[0], pe.shape [1]).to(dev)

123 input = input + pe

124 for l in self.layers:

125 out = l(input , out , self_att_mask , enc_att_mask)

126 return out

Listing B.7: Definition of CMT taken from https://github.com/oo222bs/XBiT/

blob/main/src/crossmodal_transformer.py

RL Fine-Tuning

1 def create_agent(cfg: DictConfig):

2 # get the network configuration (parameters such as number of layers and units)

3 paramaters = XBiTConfig ()

4 lang_onehot = False

5 coll_out = True

6 train = True # set to True if RL fine -tuning is desired

7 # set to True if baseline layer is desired for RL fine -tuning (default True)

8 baseline = True

9 rl_alg = 'REINFORCE ' # choose the RL fine -tuning algorithm

10 device = 'cuda' if torch.cuda.is_available () else 'cpu'
11 print('Using {} device '.format(device))
12 model = XBiT(paramaters , lang_enc_type='clip', lang_onehot_inp=lang_onehot ,

13 coll_out=coll_out , baseline=baseline , rl_alg=rl_alg).to(device)

14 # Load the trained model

15 checkpoint = torch.load(save_dir+model_name+'.tar') # get the checkpoint

16 if train:

17 model.load_state_dict(checkpoint['model_state_dict '], strict=False)

18 optimiser = torch.optim.Adam(model.parameters (), lr=1e-6)

19 model.set_optimiser(optimiser)

20 model.set_save_dir(save_dir)

21 model.set_model_name(model_name)

22 model.train ()

23 else:

24 model.load_state_dict(checkpoint['model_state_dict '], strict=False)

25 model.eval()

26 return model

27

28 def update_with_reinforce(self , log_probs , reward , baseline_preds=None ,

29 gamma =0.90, negative_upd=True):

30 if baseline_preds != None:

31 baseline_preds = torch.cat(baseline_preds , dim=-1).squeeze (0).squeeze (0)

32 returns = [] # compute return for each step

33 policy_loss = [] # compute policy loss for each step

34 R = 0

35 rewards = [0.0 for i in range(len(log_probs) -1)]

36 if reward == 0.0:

37 rewards.append (0.0)

38 else:

39 rewards.append (1.0)

40 # compute returns

41 for r in rewards [:: -1]:

42 R = r + gamma * R

43 returns.insert(0, R)

44 returns = torch.tensor(returns).to('cuda') # convert to tensor

45 if baseline_preds !=None:

46 adjusted_returns = returns -baseline_preds.detach ()

47 # compute policy loss at each step

48 if baseline_preds !=None:

49 for log_prob , R in zip(log_probs , adjusted_returns):

50 # don't update when adjusted return is negative

51 if negative_upd == False and R <= 0.0:

52 policy_loss.append(torch.zeros (1,1).to('cuda'))

173

https://github.com/oo222bs/XBiT/blob/main/src/crossmodal_transformer.py
https://github.com/oo222bs/XBiT/blob/main/src/crossmodal_transformer.py

Appendix B. Code Snippets

53 else:# the minus sign cause we perform gradient ascent

54 policy_loss.append(-(log_prob.sum(dim=-1) * R))

55 else:

56 for log_prob , R in zip(log_probs , returns):

57 # the minus sign cause we perform gradient ascent

58 policy_loss.append(-(log_prob.sum(dim=-1) * R))

59 if baseline_preds != None:

60 baseline_loss = torch.nn.functional.mse_loss(baseline_preds , returns)

61 self.optimiser.zero_grad ()

62 policy_loss = torch.cat(policy_loss).mean()

63 if baseline_preds !=None:

64 overall_loss = policy_loss + baseline_loss

65 overall_loss.backward ()

66 else:

67 policy_loss = policy_loss

68 policy_loss.backward ()

69 self.optimiser.step()

70 if baseline_preds !=None:

71 return rewards [-1], baseline_loss

72 else:

73 return rewards [-1]

74

75 class BaselineNetwork(nn.Module):

76 def __init__(self , input_size , output_size):

77 super().__init__ ()

78 self.input_layer = nn.Linear(input_size , int(input_size /2))

79 self.relu = nn.ReLU()

80 self.output_layer = nn.Linear(int(input_size /2), output_size)

81 torch.nn.init.orthogonal_(self.input_layer.weight , np.sqrt (2))

82 torch.nn.init.constant_(self.input_layer.bias , 0.0)

83 torch.nn.init.orthogonal_(self.output_layer.weight)

84 torch.nn.init.constant_(self.output_layer.bias , 0.0)

85

86 def forward(self , h_t):

87 m_t = self.relu(self.input_layer(h_t.detach ()))

88 b_t = self.output_layer(m_t)

89 return b_t

Listing B.8: Snippet from XBiT RL fine-tuning phase taken from https:

//github.com/oo222bs/XBiT/blob/main/agents/xbit/launch_utils.py and
https://github.com/oo222bs/XBiT/blob/main/agents/xbit/xbit_agent.py

174

https://github.com/oo222bs/XBiT/blob/main/agents/xbit/launch_utils.py
https://github.com/oo222bs/XBiT/blob/main/agents/xbit/launch_utils.py
https://github.com/oo222bs/XBiT/blob/main/agents/xbit/xbit_agent.py

Appendix C

Publications Originating from
this Thesis

Journal Articles

• Frank Röder, Ozan Özdemir, Phuong D. H. Nguyen, Stefan Wermter,
and Manfred Eppe. The Embodied Crossmodal Self Forms Language and
Interaction: A Computational Cognitive Review. Frontiers in Psychology,
12:716671. doi: 10.3389/fpsyg.2021.716671, 2021.

• Jae Hee Lee, Yuan Yao, Ozan Özdemir, Mengdi Li, Cornelius Weber,
Zhiyuan Liu, and Stefan Wermter. Spatial Relation Learning in Comple-
mentary Scenarios with Deep Neural Networks. Frontiers in Neurorobotics,
16:844753. doi: 10.3389/fnbot.2022.844753, 2022.

• Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, and
Stefan Wermter. Language-Model-Based Paired Variational Autoencoders
for Robotic Language Learning. In IEEE Transactions on Cognitive and
Developmental Systems, vol. 15, no. 4, pp. 1812-1824, Dec. 2023. doi:
10.1109/TCDS.2022.3204452, 2023.

• Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, M.
Burhan Hafez, Patrick Bruns, and Stefan Wermter. Learning Bidi-
rectional Action-Language Translation with Limited Supervision and
Testing with Incongruent Input. Applied Artificial Intelligence, 37(1).
https://doi.org/10.1080/08839514.2023.2179167, 2023.

• Anton Caesar, Ozan Özdemir, Cornelius Weber, and Stefan
Wermter. Enabling Action Crossmodality for a Pretrained Large
Language Model. Natural Language Processing Journal, 7:100072.
https://doi.org/10.1016/j.nlp.2024.100072, 2024.

175

Publications Originating from this Thesis

Conference Papers

• Ozan Özdemir, Matthias Kerzel, and Stefan Wermter. Embodied Language
Learning with Paired Variational Autoencoders. 2021 IEEE International
Conference on Development and Learning (ICDL), Beijing, China, 2021,
pp. 1-6, doi: 10.1109/ICDL49984.2021.9515668, 2021.

• Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, and Stefan
Wermter. Learning Flexible Translation Between Robot Actions and Lan-
guage Descriptions. In: Elias Pimenidis, Plamen Angelov, Chrisina Jayne,
Antonios Papaleonidas, Mehmet Aydin (Eds.) Artificial Neural Networks
and Machine Learning - ICANN 2022. Lecture Notes in Computer Science,
vol 13530, pp. 246-257. Springer, Cham. https://doi.org/10.1007/978-3-031-
15931-2 21, 2022.

• Connor Gäde, Ozan Özdemir, Cornelius Weber, and Stefan Wermter. Em-
bodying Language Models in Robot Action. In Proceedings of the 32nd Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2024), pages 625–630. Ciaco - i6doc.com,
Oct 2024.

176

Appendix D

Acknowledgements

As this enriching four-year journey comes to an end, I would like to express my
heartfelt gratitude to all those who made this research possible. First and foremost,
I want to thank my supervisor, Professor Wermter, for his excellent guidance and
unwavering support throughout my doctoral study. My special thanks go to Dr We-
ber for his dedicated supervision and the insightful discussions on my research and
the C4 project, alongside the shared experience of supervising numerous bachelor’s
and master’s students.

I am profoundly thankful to Dr Lee for his collaboration on many papers and
the valuable advice he ceaselessly offered. Dr Kerzel deserves particular acknowl-
edgement for supporting me with my initial research ideas, assisting dataset gen-
eration and collaborating on many of my publications. I also wish to thank Katja
Kösters for providing administrative support and efficiently managing all sorts of
paperwork during my doctoral study. My gratitude extends to our former engineer,
Erik Strahl, for his technical assistance with the GPU servers and work PCs.

I also want to thank Anton Caesar and Connor Gäde for their primary con-
tributions to the approaches presented in Chapter 8 and Chapter 9 respectively.
Additionally, I thank Connor Gäde for his efforts in applying my research ideas
to our humanoid robot NICO in real-world settings and Philipp Allgeuer for his
contribution to the software used for Chapter 9. I owe a debt of gratitude to Kyra
Ahrens for her help with the German translation of the Abstract and for many
pleasant conversations, work related and beyond, over the years.

I gratefully acknowledge the financial support from the German Research Foun-
dation (DFG) under project CML (TRR 169).

Finally, I am deeply grateful to my girlfriend, Maren, and my parents, Esin
and Hasan, for their emotional support throughout my doctoral journey. Your
unconditional love and encouragement mean the world to me.

177

Acknowledgements

178

Bibliography

[1] Josh Abramson, Arun Ahuja, Arthur Brussee, Federico Carnevale, Mary
Cassin, Stephen Clark, Andrew Dudzik, Petko Georgiev, Aurelia Guy, Tim
Harley, Felix Hill, Alden Hung, Zachary Kenton, Jessica Landon, Timothy P.
Lillicrap, Kory W. Mathewson, Alistair Muldal, Adam Santoro, Nikolay Savi-
nov, Vikrant Varma, Greg Wayne, Nathaniel Wong, Chen Yan, and Rui Zhu.
Imitating interactive intelligence. arXiv preprint arXiv:2012.05672, 2020.

[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI). IEEE Access, 6:52138–
52160, 2018.

[3] Stephen Adams, Tyler Cody, and Peter A Beling. A survey of inverse rein-
forcement learning. Artificial Intelligence Review, 55(6):4307–4346, 2022.

[4] Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen
James, and Pieter Abbeel. Language reward modulation for pretraining
reinforcement learning. arXiv preprint arXiv:2308.12270, 2023.

[5] Christopher Agia, Toki Migimatsu, Jiajun Wu, and Jeannette Bohg. Stap:
Sequencing task-agnostic policies. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 7951–7958, 2023.

[6] Michael Ahn, Anthony Brohan, Noah Brown, et al. Do as I can, not as I say:
Grounding language in robotic affordances. In Conference on Robot Learning
(CoRL), pages 287–318. PMLR, 2022.

[7] Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani,
and Olivier Sigaud. Grounding Language to Autonomously-Acquired Skills
via Goal Generation. In International Conference on Learning Representa-
tions (ICLR), Virtual (formerly Vienna, Austria), 2021.

[8] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. Flamingo: a visual language model for few-shot learning.
Advances in Neural Information Processing Systems, 35:23716–23736, 2022.

[9] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

179

Bibliography

[10] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answer-
ing. In 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, pages 2425–2433. IEEE Computer Society, 2015.

[11] Alexandre Antunes, Alban Laflaquiere, Tetsuya Ogata, and Angelo Can-
gelosi. A bi-directional multiple timescales LSTM model for grounding of
actions and verbs. In 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 2614–2621, 2019.

[12] Pia Aravena, Esteban Hurtado, Rodrigo Riveros, Juan Felipe Cardona, Fa-
cundo Manes, and Agust́ın Ibáñez. Applauding with closed hands: neural
signature of action-sentence compatibility effects. PloS ONE, 5(7):e11751,
2010.

[13] John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A
González. Gated multimodal networks. Neural Computing and Applications,
32(14):10209–10228, 2020.

[14] Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad An-
wer, Hisham Cholakkal, Mubarak Shah, Ming-Hsuan Yang, and Fahad Shah-
baz Khan. Foundational Models Defining a New Era in Vision: A Survey and
Outlook. arXiv preprint arXiv:2307.13721, 2023.

[15] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien
Ecoffet, Brandon Houghton, Raul Sampedro, and Jeff Clune. Video pretrain-
ing (VPT): Learning to act by watching unlabeled online videos. Advances
in Neural Information Processing Systems, 35:24639–24654, 2022.

[16] Löıc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller, Santanu Pal, Matt Post,
and Marcos Zampieri. Findings of the 2019 conference on machine translation
(wmt19). In Proceedings of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 1–61, Florence, Italy, August
2019. Association for Computational Linguistics.

[17] Erik Billing, Julia Rosén, and Maurice Lamb. Language Models for Human-
Robot Interaction. In Companion of the 2023 ACM/IEEE International
Conference on Human-Robot Interaction, HRI ’23, page 905–906, New York,
NY, USA, 2023. Association for Computing Machinery.

[18] Zhenshan Bing, Alexander Koch, Xiangtong Yao, Kai Huang, and Alois
Knoll. Meta-reinforcement learning via language instructions. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 5985–
5991. IEEE, 2023.

180

Bibliography

[19] Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Ben-
gio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Alek-
sandr Nisnevich, Nicolas Pinto, and Joseph Turian. Experience grounds
language. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, pages 8718–8735. Association for Computa-
tional Linguistics, November 2020.

[20] Jessica Borja-Diaz, Oier Mees, Gabriel Kalweit, Lukas Hermann, Joschka
Boedecker, and Wolfram Burgard. Affordance learning from play for sample-
efficient policy learning. In 2022 International Conference on Robotics and
Automation (ICRA), pages 6372–6378. IEEE, 2022.

[21] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. RT-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[22] Anthony Brohan, Noah Brown, Justice Carbajal, et al. RT-1: Robotics Trans-
former for Real-World Control at Scale. In Proceedings of Robotics: Science
and Systems (RSS), Daegu, Republic of Korea, July 2023.

[23] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. Advances in
Neural Information Processing Systems, 33:1877–1901, 2020.

[24] Anton Caesar, Ozan Özdemir, Cornelius Weber, and Stefan Wermter. En-
abling action crossmodality for a pretrained large language model. Natural
Language Processing Journal, 7:100072, 2024.

[25] Laia Canals and Yishay Mor. Towards a signature pedagogy for technology-
enhanced task-based language teaching: Defining its design principles. Re-
CALL, 35(1):4–18, 2023.

[26] Joyce Y. Chai, Qiaozi Gao, Lanbo She, Shaohua Yang, Sari Saba-Sadiya,
and Guangyue Xu. Language to action: Towards interactive task learning
with physical agents. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 2–9. Interna-
tional Joint Conferences on Artificial Intelligence Organization, 7 2018.

[27] Guo Chen, Yin-Dong Zheng, Jiahao Wang, Jilan Xu, Yifei Huang, Junting
Pan, Yi Wang, Yali Wang, Yu Qiao, Tong Lu, and Limin Wang. VideoLLM:
Modeling Video Sequence with Large Language Models. arXiv preprint
arXiv:2305.13292, 2023.

[28] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Chang-
pinyo, Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang,

181

Bibliography

Yi Tay, et al. PaLI-X: On scaling up a multilingual vision and language
model. arXiv preprint arXiv:2305.18565, 2023.

[29] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin
Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning
via action diffusion. In Proceedings of Robotics: Science and Systems (RSS),
2023.

[30] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing GPT-4
with 90%* ChatGPT quality, March 2023.

[31] François Chollet. Xception: Deep learning with depthwise separable convo-
lutions. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1800–1807, 2017.

[32] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, et al. PaLM: Scaling language modeling with
pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

[33] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma,
et al. Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416, 2022.

[34] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy
Liang, and Dorsa Sadigh. No, to the Right: Online Language Corrections
for Robotic Manipulation via Shared Autonomy. In Proceedings of the 2023
ACM/IEEE International Conference on Human-Robot Interaction, HRI ’23.
ACM, March 2023.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics.

[36] Sheelabhadra Dey, Sumedh Pendurkar, Guni Sharon, and Josiah P Hanna.
A joint imitation-reinforcement learning framework for reduced baseline re-
gret. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3485–3491. IEEE, 2021.

[37] Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus
Wulfmeier, Nicolas Heess, and Martin Riedmiller. Towards a unified agent

182

Bibliography

with foundation models. In Workshop on Reincarnating Reinforcement
Learning at ICLR 2023, 2023.

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Conference on Learn-
ing Representations (ICLR), 2020.

[39] Kenji Doya. What are the computations of the cerebellum, the basal ganglia
and the cerebral cortex? Neural Networks, 12(7-8):961–974, 1999.

[40] Kenji Doya. Complementary roles of basal ganglia and cerebellum in learning
and motor control. Current Opinion in Neurobiology, 10(6):732–739, 2000.

[41] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, et al. PaLM-E: An embod-
ied multimodal language model. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

[42] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon,
Felix Hill, Nando de Freitas, and Serkan Cabi. Vision-language models as
success detectors. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and
Doina Precup, editors, Proceedings of The 2nd Conference on Lifelong Learn-
ing Agents, volume 232 of Proceedings of Machine Learning Research, pages
120–136. PMLR, 22–25 Aug 2023.

[43] Aaron Eisermann, Jae Hee Lee, Cornelius Weber, and Stefan Wermter. Gen-
eralization in multimodal language learning from simulation. In Proceedings
of the International Joint Conference on Neural Networks (IJCNN 2021),
Jul 2021.

[44] Aysu Ezen-Can. A comparison of LSTM and BERT for small corpus. arXiv
preprint arXiv:2009.05451, 2020.

[45] Otto Fabius and Joost R Van Amersfoort. Variational recurrent auto-
encoders. arXiv preprint arXiv:1412.6581, 2014.

[46] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig
Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and
Kimin Lee. Reinforcement learning for fine-tuning text-to-image diffusion
models. In Thirty-seventh Conference on Neural Information Processing Sys-
tems (NeurIPS), 2023.

[47] Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and
Xiaolong Wang. Finetuning offline world models in the real world. In Con-
ference on Robot Learning (CoRL), pages 425–445. PMLR, 2023.

183

Bibliography

[48] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid,
Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan
Tompson. Implicit behavioral cloning. In Conference on Robot Learning
(CoRL), pages 158–168. PMLR, 2022.

[49] Connor Gäde, Jan-Gerrit Habekost, and Stefan Wermter. Domain adaption
as auxiliary task for sim-to-real transfer in vision-based neuro-robotic control.
In 2024 International Joint Conference on Neural Networks (IJCNN), pages
1–8, 2024.

[50] Connor Gäde, Ozan Özdemir, Cornelius Weber, and Stefan Wermter. Em-
bodying language models in robot action. In Proceedings of the 32nd Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2024), pages 625–630. Ciaco - i6doc.com,
Oct 2024.

[51] Arthur M Glenberg and Michael P Kaschak. Grounding language in action.
Psychonomic Bulletin & Review, 9(3):558–565, 2002.

[52] Prasoon Goyal, Scott Niekum, and Raymond Mooney. Pixl2r: Guiding re-
inforcement learning using natural language by mapping pixels to rewards.
In Jens Kober, Fabio Ramos, and Claire Tomlin, editors, Proceedings of the
2020 Conference on Robot Learning (CoRL), volume 155 of Proceedings of
Machine Learning Research, pages 485–497. PMLR, 16–18 Nov 2021.

[53] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend,
Peter Yianilos, Moritz Mueller-Freitag, et al. The “something something”
video database for learning and evaluating visual common sense. In Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV),
pages 5842–5850, 2017.

[54] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, An-
tonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu,
Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric
video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 18995–19012, 2022.

[55] Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel, Makarand Tapaswi,
Ivan Laptev, and Cordelia Schmid. Instruction-driven history-aware policies
for robotic manipulations. In Karen Liu, Dana Kulic, and Jeff Ichnowski, ed-
itors, Proceedings of The 6th Conference on Robot Learning (CoRL), volume
205 of Proceedings of Machine Learning Research, pages 175–187. PMLR,
14–18 Dec 2023.

[56] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol
Hausman. Relay policy learning: Solving long-horizon tasks via imitation

184

Bibliography

and reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and
Komei Sugiura, editors, Proceedings of the Conference on Robot Learning
(CoRL), volume 100 of Proceedings of Machine Learning Research, pages
1025–1037. PMLR, 30 Oct–01 Nov 2020.

[57] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International Conference on Machine Learning (ICML),
pages 1861–1870. PMLR, 2018.

[58] Jan-Gerrit Habekost, Connor Gäde, Philipp Allgeuer, and Stefan Wermter.
Inverse kinematics for neuro-robotic grasping with humanoid embodied
agents. arXiv preprint arXiv:2404.08825, 2024.

[59] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov deci-
sion processes. arXiv preprint arXiv:1502.02259, 2015.

[60] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learn-
ing for model predictive control. In International Conference on Machine
Learning (ICML), pages 8387–8406. PMLR, 2022.

[61] Jun Hatori, Yuta Kikuchi, Sosuke Kobayashi, Kuniyuki Takahashi, Yuta
Tsuboi, Yuya Unno, Wilson Ko, and Jethro Tan. Interactively picking real-
world objects with unconstrained spoken language instructions. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
3774–3781. IEEE, 2018.

[62] Olaf Hauk, Ingrid Johnsrude, and Friedemann Pulvermüller. Somatotopic
representation of action words in human motor and premotor cortex. Neuron,
41(2):301–307, 2004.

[63] Hongmei He, John Gray, Angelo Cangelosi, Qinggang Meng, T. Martin
McGinnity, and Jörn Mehnen. The challenges and opportunities of human-
centered AI for trustworthy robots and autonomous systems. IEEE Trans-
actions on Cognitive and Developmental Systems, 14(4):1398–1412, 2022.

[64] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-
CNN. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2961–2969, Oct 2017.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, June
2016.

[66] Stefan Heinrich, Matthias Kerzel, Erik Strahl, and Stefan Wermter. Embod-
ied multimodal interaction in language learning: the EMIL data collection.
In Proceedings of the ICDL-EpiRob Workshop on Active Vision, Attention,
and Learning (ICDL-Epirob 2018 AVAL), page 2p, 2018.

185

Bibliography

[67] Stefan Heinrich, Cornelius Weber, Stefan Wermter, Ruobing Xie, Yankai Lin,
and Zhiyuan Liu. Crossmodal language grounding, learning, and teaching.
In CoCo@ NIPS, 2016.

[68] Stefan Heinrich and Stefan Wermter. Interactive natural language acqui-
sition in a multi-modal recurrent neural architecture. Connection Science,
30(1):99–133, 2018.

[69] Stefan Heinrich, Yuan Yao, Tobias Hinz, Zhiyuan Liu, Thomas Hummel,
Matthias Kerzel, Cornelius Weber, and Stefan Wermter. Crossmodal lan-
guage grounding in an embodied neurocognitive model. Frontiers in Neuro-
robotics, 14:52, 2020.

[70] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[71] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of
Large Language Models. In International Conference on Learning Represen-
tations (ICLR), 2022.

[72] Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before
you leap: Unveiling the power of GPT-4V in robotic vision-language plan-
ning. In First Workshop on Vision-Language Models for Navigation and
Manipulation at ICRA 2024, 2024.

[73] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Lan-
guage models as zero-shot planners: Extracting actionable knowledge for
embodied agents. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning (ICML), volume 162 of Pro-
ceedings of Machine Learning Research, pages 9118–9147. PMLR, 17–23 Jul
2022.

[74] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence,
Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. In-
ner monologue: Embodied reasoning through planning with language models.
In Conference on Robot Learning (CoRL), pages 1769–1782. PMLR, 2023.

[75] Muhammad Zubair Irshad, Chih-Yao Ma, and Zsolt Kira. Hierarchical cross-
modal agent for robotics vision-and-language navigation. In 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 13238–
13246, 2021.

[76] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch,
Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock,
Evan Shelhamer, et al. Perceiver IO: A general architecture for structured

186

Bibliography

inputs & outputs. In International Conference on Learning Representations
(ICLR), 2021.

[77] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison.
RLBench: The robot learning benchmark & learning environment. IEEE
Robotics and Automation Letters, 2020.

[78] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey
Lynch, Sergey Levine, and Chelsea Finn. BC-Z: Zero-shot task generalization
with robotic imitation learning. In Conference on Robot Learning (CoRL),
pages 991–1002. PMLR, 2022.

[79] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou,
Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan.
VIMA: Robot manipulation with multimodal prompts. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning (ICML), volume 202 of Proceedings of Machine Learn-
ing Research, pages 14975–15022. PMLR, 23–29 Jul 2023.

[80] Chenying Jin, Xiang Feng, and Huiqun Yu. A brain-inspired incremental
multitask reinforcement learning approach. IEEE Transactions on Cognitive
and Developmental Systems, 16(3):1147–1160, 2024.

[81] Chuhao Jin, Wenhui Tan, Jiange Yang, Bei Liu, Ruihua Song, Limin Wang,
and Jianlong Fu. Alphablock: Embodied finetuning for vision-language rea-
soning in robot manipulation. arXiv preprint arXiv:2305.18898, 2023.

[82] Vidur Joshi, Matthew Peters, and Mark Hopkins. Extending a parser to
distant domains using a few dozen partially annotated examples. In Iryna
Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1190–1199, Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics.

[83] Ryan Julian, Benjamin Swanson, Gaurav Sukhatme, Sergey Levine, Chelsea
Finn, and Karol Hausman. Never stop learning: The effectiveness of fine-
tuning in robotic reinforcement learning. In Conference on Robot Learning
(CoRL), pages 2120–2136. PMLR, 2021.

[84] Michael P Kaschak, Carol J Madden, David J Therriault, Richard H Yaxley,
Mark Aveyard, Adrienne A Blanchard, and Rolf A Zwaan. Perception of
motion affects language processing. Cognition, 94(3):B79–B89, 2005.

[85] Matthias Kerzel, Theresa Pekarek-Rosin, Erik Strahl, Stefan Heinrich, and
Stefan Wermter. Teaching NICO how to grasp: an empirical study on cross-
modal social interaction as a key factor for robots learning from humans.
Frontiers in Neurorobotics, 14:28, 2020.

187

Bibliography

[86] Matthias Kerzel, Erik Strahl, Sven Magg, Nicolás Navarro-Guerrero, Stefan
Heinrich, and Stefan Wermter. NICO—Neuro-Inspired COmpanion: A de-
velopmental humanoid robot platform for multimodal interaction. In 2017
26th IEEE International Symposium on Robot and Human Interactive Com-
munication (RO-MAN), pages 113–120. IEEE, 2017.

[87] Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoen-
coder with adversarial learning for end-to-end text-to-speech. In Interna-
tional Conference on Machine Learning (ICML), pages 5530–5540. PMLR,
2021.

[88] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Bal-
akrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag
Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel, Russ Tedrake,
Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. OpenVLA: An
open-source vision-language-action model. arXiv preprint arXiv:2406.09246,
2024.

[89] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning Representations,
ICLR, San Diego, CA, USA, May 7-9, 2015.

[90] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes.
In Proceedings of International Conference on Learning Representations
(ICLR), Banff, AB, Canada, April 14-16, 2014.

[91] Niko Kleer, Maurice Rekrut, Julian Wolter, Tim Schwartz, and Michael Feld.
A Multimodal Teach-in Approach to the Pick-and-Place Problem in Human-
Robot Collaboration. In Companion of the 2023 ACM/IEEE International
Conference on Human-Robot Interaction, HRI ’23, page 81–85, New York,
NY, USA, 2023. Association for Computing Machinery.

[92] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard
Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recog-
nition with a back-propagation network. Advances in Neural Information
Processing Systems, 2, 1989.

[93] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural Computation, 1(4):541–551,
1989.

[94] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[95] Suhyeon Lee, Won Jun Kim, and Jong Chul Ye. LLM Itself Can Read and
Generate CXR Images. arXiv preprint arXiv:2305.11490, 2023.

188

Bibliography

[96] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrap-
ping language-image pre-training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th International Conference on Ma-
chine Learning, ICML’23. JMLR.org, 2023.

[97] Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen
Berseth, and Koushil Sreenath. Reinforcement learning for robust param-
eterized locomotion control of bipedal robots. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 2811–2817. IEEE,
2021.

[98] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Representations (ICLR),
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[99] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette
Bohg. Text2motion: from natural language instructions to feasible plans.
Autonomous Robots, Nov 2023.

[100] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO:
Common objects in context. In Computer Vision–ECCV 2014: 13th Eu-
ropean Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[101] Zhouhan Lin, Minwei Feng, Ćıcero Nogueira dos Santos, Mo Yu, Bing Xi-
ang, Bowen Zhou, and Yoshua Bengio. A Structured Self-Attentive Sentence
Embedding. In 5th International Conference on Learning Representations
(ICLR), Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

[102] Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel. Instruction-Following
Agents with Multimodal Transformer. arXiv preprint arXiv:2210.13431,
2023.

[103] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[104] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining
task-agnostic visiolinguistic representations for vision-and-language tasks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

189

Bibliography

[105] Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth.
Finetuning from offline reinforcement learning: Challenges, trade-offs and
practical solutions. arXiv preprint arXiv:2303.17396, 2023.

[106] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson,
Sergey Levine, and Pierre Sermanet. Learning latent plans from play. In
Conference on Robot Learning (CoRL), pages 1113–1132. PMLR, 2020.

[107] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning
over unstructured data. In Dylan A. Shell, Marc Toussaint, and M. Ani
Hsieh, editors, Robotics: Science and System XVII, 2021.

[108] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker,
Robert Baruch, Travis Armstrong, and Pete Florence. Interactive language:
Talking to robots in real time. IEEE Robotics and Automation Letters, 2023.

[109] Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang,
Osbert Bastani, and Dinesh Jayaraman. Liv: Language-image representa-
tions and rewards for robotic control. arXiv preprint arXiv:2306.00958, 2023.

[110] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani,
Vikash Kumar, and Amy Zhang. Vip: Towards universal visual reward and
representation via value-implicit pre-training. In The Eleventh International
Conference on Learning Representations (ICLR), 2022.

[111] Joseph Marino. Predictive coding, variational autoencoders, and biological
connections. Neural Computation, 34(1):1–44, 2021.

[112] Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language
with visual affordances over unstructured data. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 11576–11582. IEEE,
2023.

[113] Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in lan-
guage conditioned robotic imitation learning over unstructured data. IEEE
Robotics and Automation Letters, 7(4):11205–11212, 2022.

[114] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard.
CALVIN: A benchmark for language-conditioned policy learning for long-
horizon robot manipulation tasks. IEEE Robotics and Automation Letters,
7(3):7327–7334, 2022.

[115] Lotte Meteyard, Bahador Bahrami, and Gabriella Vigliocco. Motion detec-
tion and motion verbs: Language affects low-level visual perception. Psycho-
logical Science, 18(11):1007–1013, 2007. PMID: 17958716.

[116] Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ra-
makanth Pasunuru, Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane

190

Bibliography

Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, and Thomas
Scialom. Augmented Language Models: a Survey. Transactions on Machine
Learning Research (TMLR), 2023.

[117] Microsoft. Introducing Microsoft 365 Copilot — your copilot for work. 2023.

[118] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-
vocabulary object detection. Advances in Neural Information Processing
Systems, 36, 2024.

[119] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk
Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab,
Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf,
and Neil Houlsby. Simple open-vocabulary object detection with vision trans-
formers. European Conference on Computer Vision (ECCV), 2022.

[120] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of
visual attention. Advances in Neural Information Processing Systems, 27,
2014.

[121] Jun Morimoto, Gordon Cheng, Christopher G Atkeson, and Garth Zeglin. A
simple reinforcement learning algorithm for biped walking. In IEEE Interna-
tional Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, pages 3030–3035. IEEE, 2004.

[122] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al.
Learning language-conditioned robot behavior from offline data and crowd-
sourced annotation. In Conference on Robot Learning (CoRL), pages 1303–
1315. PMLR, 2022.

[123] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav
Gupta. R3m: A universal visual representation for robot manipulation. In
Conference on Robot Learning (CoRL), pages 892–909. PMLR, 2023.

[124] Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, et al. PIVOT: Itera-
tive visual prompting elicits actionable knowledge for VLMs. arXiv preprint
arXiv:2402.07872, 2024.

[125] Hwei Geok Ng, Paul Anton, Marc Brügger, Nikhil Churamani, Erik
Fließwasser, Thomas Hummel, Julius Mayer, Waleed Mustafa, Thi Linh Chi
Nguyen, Quan Nguyen, et al. Hey robot, why don’t you talk to me? In
2017 26th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pages 728–731. IEEE, 2017.

[126] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep
reinforcement learning robot for search and rescue applications: Exploration
in unknown cluttered environments. IEEE Robotics and Automation Letters,
4(2):610–617, 2019.

191

Bibliography

[127] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black,
Oier Mees, Sudeep Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias
Kreiman, You Liang Tan, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. https://octo-models.

github.io, 2023.

[128] Tetsuya Ogata, Masamitsu Murase, Jun Tani, Kazunori Komatani, and Hi-
roshi G. Okuno. Two-way translation of compound sentences and arm mo-
tions by recurrent neural networks. In 2007 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 1858–1863, 2007.

[129] OpenAI. Introducing ChatGPT. 2022.

[130] OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.

[131] OpenAI. GPT-4V(ision) System Card. 2023.

[132] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc
Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco
Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba,
Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat,
Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust
visual features without supervision. Transactions on Machine Learning Re-
search (TMLR), 2024.

[133] Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, and Stefan
Wermter. Language-model-based paired variational autoencoders for robotic
language learning. IEEE Transactions on Cognitive and Developmental Sys-
tems (TCDS), 15(4):1812–1824, 2023.

[134] Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, Muham-
mad Burhan Hafez, Patrick Bruns, and Stefan Wermter. Learning bidirec-
tional action-language translation with limited supervision and testing with
incongruent input. Applied Artificial Intelligence, 37(1):2179167, 2023.

[135] Ozan Özdemir, Matthias Kerzel, Cornelius Weber, Jae Hee Lee, and Stefan
Wermter. Learning flexible translation between robot actions and language
descriptions. In Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios
Papaleonidas, and Mehmet Aydin, editors, Artificial Neural Networks and
Machine Learning – ICANN 2022, pages 246–257, Cham, 2022. Springer
Nature Switzerland.

[136] Ozan Özdemir, Matthias Kerzel, and Stefan Wermter. Embodied language
learning with paired variational autoencoders. In 2021 IEEE International
Conference on Development and Learning (ICDL), pages 1–6, Aug 2021.

192

https://octo-models.github.io
https://octo-models.github.io

Bibliography

[137] Ozan Özdemir, Cornelius Weber, Jae Hee Lee, and Stefan Wermter. Improv-
ing action precision of a bidirectional transformer via reinforcement learning.
Submitted to IEEE Transactions on Cognitive and Developmental Systems
(TCDS), 2024.

[138] Chris Paxton, Yonatan Bisk, Jesse Thomason, Arunkumar Byravan, and
Dieter Foxl. Prospection: Interpretable plans from language by predicting
the future. In 2019 International Conference on Robotics and Automation
(ICRA), pages 6942–6948. IEEE, 2019.

[139] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe:
Global vectors for word representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[140] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from natural language su-
pervision. In International Conference on Machine Learning (ICML), pages
8748–8763. PMLR, 2021.

[141] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale
weak supervision. In International Conference on Machine Learning (ICML),
pages 28492–28518. PMLR, 2023.

[142] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[143] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1–67, 2020.

[144] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research, 21(1):1–67, January 2020.

[145] Ram Ramrakhya, Dhruv Batra, Erik Wijmans, and Abhishek Das. PIRLNav:
Pretraining with imitation and RL finetuning for ObjectNav. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 17896–17906, 2023.

[146] Scott Reed, Konrad Zolna, Emilio Parisotto, et al. A generalist agent. Trans-
actions on Machine Learning Research (TMLR), 2022.

193

Bibliography

[147] Allen Z Ren, Bharat Govil, Tsung-Yen Yang, Karthik R Narasimhan, and
Anirudha Majumdar. Leveraging language for accelerated learning of tool
manipulation. In Conference on Robot Learning (CoRL), pages 1531–1541.
PMLR, 2023.

[148] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. Advances
in Neural Information Processing Systems, 28, 2015.

[149] E. Rohmer, S. P. N. Singh, and M. Freese. CoppeliaSim (formerly V-REP):
a Versatile and Scalable Robot Simulation Framework. In Proc. of The
International Conference on Intelligent Robots and Systems (IROS), 2013.
www.coppeliarobotics.com.

[150] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imita-
tion learning and structured prediction to no-regret online learning. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

[151] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer,
James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive Neural Networks. arXiv preprint arXiv:1606.04671, 2022.

[152] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling.
In Proceedings of Interspeech 2014, pages 338–342, 2014.

[153] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

[154] Gabriele Sarti and Malvina Nissim. IT5: Text-to-text pretraining for Ital-
ian language understanding and generation. In Nicoletta Calzolari, Min-Yen
Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue,
editors, Proceedings of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pages 9422–9433, Torino, Italy, May 2024. ELRA and ICCL.

[155] BigScience Workshop: Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha
Luccioni, François Yvon, Matthias Gallé, et al. BLOOM: A 176B-
Parameter Open-Access Multilingual Language Model. arXiv preprint
arXiv:2211.05100, 2023.

[156] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

194

Bibliography

[157] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James,
Kimin Lee, and Pieter Abbeel. Masked world models for visual control.
In Conference on Robot Learning (CoRL), pages 1332–1344. PMLR, 2023.

[158] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg.
Concept2Robot: Learning manipulation concepts from instructions and hu-
man demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2020.

[159] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort: What and where
pathways for robotic manipulation. In Proceedings of the 5th Conference on
Robot Learning (CoRL), pages 894–906. PMLR, 2022.

[160] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-Actor: A multi-
task transformer for robotic manipulation. In Proceedings of the 6th Confer-
ence on Robot Learning (CoRL), pages 785–799. PMLR, 2023.

[161] Mohit Shridhar, Dixant Mittal, and David Hsu. INGRESS: Interactive visual
grounding of referring expressions. The International Journal of Robotics
Research, 39(2-3):217–232, 2020.

[162] Andrew Silva, Nina Moorman, William Silva, Zulfiqar Zaidi, Nakul Gopalan,
and Matthew Gombolay. LanCon-Learn: Learning with language to enable
generalization in multi-task manipulation. IEEE Robotics and Automation
Letters, 7(2):1635–1642, 2021.

[163] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement
learning with context-based representations. In International Conference on
Machine Learning (ICML), pages 9767–9779. PMLR, 2021.

[164] Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei
Lee, Quan Vuong, Paul Wohlhart, Brianna Zitkovich, Fei Xia, Chelsea Finn,
et al. Open-world object manipulation using pre-trained vision-language
models. arXiv preprint arXiv:2303.00905, 2023.

[165] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. A survey on deep transfer learning. In Artificial Neural Net-
works and Machine Learning–ICANN 2018: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceed-
ings, Part III 27, pages 270–279. Springer, 2018.

[166] Chao Tang, Dehao Huang, Wenqi Ge, Weiyu Liu, and Hong Zhang.
Graspgpt: Leveraging semantic knowledge from a large language model for
task-oriented grasping. IEEE Robotics and Automation Letters, 2023.

[167] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja
Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023.

195

Bibliography

[168] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. LLaMA: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

[169] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhar-
gava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

[170] Du Tran, Heng Wang, Matt Feiszli, and Lorenzo Torresani. Video classifica-
tion with channel-separated convolutional networks. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages 5551–5560, 2019.

[171] Matej Ulčar and Marko Robnik-Šikonja. Sequence-to-sequence pretraining
for a less-resourced Slovenian language. Frontiers in Artificial Intelligence,
6, 2023.

[172] Michiel van Elk, Hein T van Schie, Rolf A Zwaan, and Harold Bekkering. The
functional role of motor activation in language processing: Motor cortical
oscillations support lexical-semantic retrieval. Neuroimage, 50(2):665–677,
2010.

[173] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, pages 5998–
6008, 2017.

[174] Wai Keen Vong, Wentao Wang, A Emin Orhan, and Brenden M Lake.
Grounded language acquisition through the eyes and ears of a single child.
Science, 383(6682):504–511, 2024.

[175] Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh,
Ria Doshi, Charles Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open X-
Embodiment: Robotic learning datasets and RT-X models. In 2nd Workshop
on Language and Robot Learning: Language as Grounding, 2023.

[176] Lei Wang, Yunzhou Zhang, Delong Zhu, Sonya Coleman, and Dermot Kerr.
Supervised meta-reinforcement learning with trajectory optimization for ma-
nipulation tasks. IEEE Transactions on Cognitive and Developmental Sys-
tems, 16(2):681–691, 2024.

[177] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang
Zeng, Ping Luo, Tong Lu, Jie Zhou, Yu Qiao, and Jifeng Dai. VisionLLM:
Large language model is also an open-ended decoder for vision-centric tasks.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36,
pages 61501–61513. Curran Associates, Inc., 2023.

196

Bibliography

[178] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned Language
Models are Zero-Shot Learners. In International Conference on Learning
Representations (ICLR), Virtual Event, April 25-29, 2022, 2022.

[179] Stefan Wermter, Günther Palm, and Mark I. Elshaw. Biomimetic Neural
Learning for Intelligent Robots. Intelligent Systems, Cognitive Robotics and
Neuroscience. Springer, Jul 2005.

[180] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi
Parikh, Manolis Savva, and Dhruv Batra. DD-PPO: Learning near-perfect
pointgoal navigators from 2.5 billion frames. In International Conference on
Learning Representations (ICLR), 2019.

[181] Ronald J Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[182] Alice Winter, Carolin Dudschig, Jeff Miller, Rolf Ulrich, and Barbara Kaup.
The action-sentence compatibility effect (ACE): Meta-analysis of a bench-
mark finding for embodiment. Acta Psychologica, 230:103712, 2022.

[183] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shu-
ran Song, Jeannette Bohg, Szymon Rusinkiewicz, and Thomas Funkhouser.
TidyBot: Personalized robot assistance with large language models. Au-
tonomous Robots, 47(8):1087–1102, 2023.

[184] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[185] Tatsuro Yamada, Hiroyuki Matsunaga, and Tetsuya Ogata. Paired recurrent
autoencoders for bidirectional translation between robot actions and linguis-
tic descriptions. IEEE Robotics and Automation Letters, 3(4):3441–3448,
2018.

[186] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Con-
stant, Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung,
Brian Strope, and Ray Kurzweil. Multilingual universal sentence encoder for
semantic retrieval. In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demonstrations, pages 87–94,
Online, July 2020. Association for Computational Linguistics.

[187] Xiangtong Yao, Zhenshan Bing, Genghang Zhuang, Kejia Chen, Hongkuan
Zhou, Kai Huang, and Alois Knoll. Learning from symmetry: Meta-
reinforcement learning with symmetrical behaviors and language instruc-
tions. In 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5574–5581. IEEE, 2023.

197

Bibliography

[188] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman,
Chelsea Finn, and Sergey Levine. Meta-World: A benchmark and evaluation
for multi-task and meta reinforcement learning. In Conference on Robot
Learning (CoRL), pages 1094–1100. PMLR, 2020.

[189] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus.
Deconvolutional networks. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2528–2535. IEEE,
2010.

[190] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan
Chien, Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas
Sindhwani, and Johnny Lee. Transporter networks: Rearranging the vi-
sual world for robotic manipulation. In Jens Kober, Fabio Ramos, and
Claire J. Tomlin, editors, 4th Conference on Robot Learning, CoRL 2020,
16-18 November 2020, Virtual Event / Cambridge, MA, USA, volume 155
of Proceedings of Machine Learning Research, pages 726–747. PMLR, 2020.

[191] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sig-
moid loss for language image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 11975–11986,
2023.

[192] Han Zhang, Weichong Yin, Yewei Fang, Lanxin Li, Boqiang Duan, Zhihua
Wu, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. ERNIE-ViLG: Unified
Generative Pre-training for Bidirectional Vision-Language Generation. arXiv
preprint arXiv:2112.15283, 2021.

[193] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open Pre-trained Transformer Language Models. arXiv preprint
arXiv:2205.01068, 2022.

[194] Zhe Zhang, Wei Chai, and Jiankun Wang. Mani-GPT: A Generative Model
for Interactive Robotic Manipulation. Procedia Computer Science, 226:149–
156, 2023. Proceedings of International Conference on Biomimetic Intelli-
gence and Robotics.

[195] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 737–744.
IEEE, 2020.

[196] Xufeng Zhao, Mengdi Li, Cornelius Weber, Burhan Hafez, and Stefan
Wermter. Chat with the Environment: Interactive Multimodal Perception

198

Bibliography

Using Large Language Models. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3590–3596, Oct 2023.

[197] Hongkuan Zhou, Zhenshan Bing, Xiangtong Yao, Xiaojie Su, Chenguang
Yang, Kai Huang, and Alois Knoll. Language-conditioned imitation
learning with base skill priors under unstructured data. arXiv preprint
arXiv:2305.19075, 2023.

[198] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny.
MiniGPT-4: Enhancing vision-language understanding with advanced large
language models. In The Twelfth International Conference on Learning Rep-
resentations (ICLR), 2024.

199

Bibliography

200

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift
selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt habe. Sofern im Zuge der Erstellung der vorliegenden Dissertationsschrift
generative Künstliche Intelligenz (gKI) basierte elektronische Hilfsmittel verwen-
det wurden, versichere ich, dass meine eigene Leistung im Vordergrund stand und
dass eine vollständige Dokumentation aller verwendeten Hilfsmittel gemäß der
Guten wissenschaftlichen Praxis vorliegt. Ich trage die Verantwortung für eventuell
durch die gKI generierte fehlerhafte oder verzerrte Inhalte, fehlerhafte Referenzen,
Verstöße gegen das Datenschutz- und Urheberrecht oder Plagiate.

Ort, Datum Unterschrift

201

Hamburg, 09.12.2024

Erklärung zur Veröffentlichung

Ich erkläre mein Einverständnis mit der Einstellung dieser Dissertation in den
Bestand der Bibliothek.

Ort, Datum Unterschrift

203

Hamburg, 09.12.2024

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Overview of Main Approaches and Novel Contributions
	1.4 Thesis Organisation

	2 Related Work
	2.1 Language-to-Action Translation
	2.2 Action-to-Language Translation
	2.3 Bidirectional Translation

	3 One-to-Many Action-to-Language Translation through Variation in Latent Space
	3.1 Introduction
	3.2 Proposed Method: Paired Variational Autoencoders (PVAE)
	3.2.1 Model Architecture
	3.2.2 Language Autoencoder
	3.2.3 Action Autoencoder
	3.2.4 Visual Feature Extraction
	3.2.5 Sampling and Binding
	3.2.6 Loss Function
	3.2.7 Training Details

	3.3 Experiments and Results
	3.3.1 Experiment 1: Three Colour Alternatives
	3.3.2 Experiment 2: Six Colour Alternatives

	3.4 Discussion
	3.5 Conclusion

	4 Advanced Language Comprehension via a Pre-trained Language Model
	4.1 Introduction
	4.2 Proposed Method: PVAE-BERT
	4.2.1 Language Variational Autoencoder
	4.2.2 Action Variational Autoencoder
	4.2.3 Visual Feature Extraction
	4.2.4 Sampling and Binding
	4.2.5 Loss Function
	4.2.6 Transformer-Based Language Encoder
	4.2.7 Training Details

	4.3 Experiments and Results
	4.3.1 Experiment 1: Action-to-Language Translation with Different Colours and Shapes
	4.3.2 Experiment 2: Bidirectional Translations with BERT
	4.3.3 Principal Component Analysis on Hidden Representations

	4.4 Discussion
	4.5 Conclusion

	5 Learning Flexible Translation Between Action and Language through Explicit Multimodal Fusion
	5.1 Introduction
	5.2 Proposed Method: Paired Gated Autoencoders (PGAE)
	5.2.1 Language Autoencoder
	5.2.2 Action Autoencoder
	5.2.3 Gated Multimodal Unit (GMU) Bottleneck
	5.2.4 Task Signals
	5.2.5 Visual Feature Extraction
	5.2.6 Loss Function
	5.2.7 Training Details

	5.3 Experiments and Results
	5.3.1 Action-to-Language Translation
	5.3.2 Language-to-Action Translation
	5.3.3 Language-to-Language and Action-to-Action Translations

	5.4 Discussion
	5.5 Conclusion

	6 Efficient and Neurocognitively Plausible Translation via Crossmodal Attention
	6.1 Introduction
	6.2 Proposed Method: Paired Transformed Autoencoders (PTAE)
	6.2.1 Crossmodal Transformer
	6.2.2 Language Decoder
	6.2.3 Action Decoder
	6.2.4 Visual Feature Extraction
	6.2.5 Loss Function
	6.2.6 Training Details

	6.3 Experiments and Results
	6.3.1 Task Signals
	6.3.2 Reduction of Supervised Training
	6.3.3 Exposure to Conflicting Input Modalities

	6.4 Discussion
	6.5 Conclusion

	7 Asymmetrical Combination of Learning Paradigms for Superior Action Execution
	7.1 Introduction
	7.2 Background: Fine-Tuning with Reinforcement Learning
	7.2.1 Large Language Model (LLM) Fine-Tuning
	7.2.2 Reinforcement Learning Pre-training
	7.2.3 Supervised Pre-training

	7.3 Proposed Method: Crossmodal Bidirectional Transformer (XBiT)
	7.3.1 Language Encoder
	7.3.2 Action Encoder
	7.3.3 Crossmodal Transformer Bottleneck
	7.3.4 Language Decoder
	7.3.5 Action Decoder
	7.3.6 Supervised Learning Loss Functions
	7.3.7 Reinforcement Learning Fine-Tuning
	7.3.8 Training Details

	7.4 Experiments and Results
	7.4.1 Action-to-Language Translation
	7.4.2 Language-to-Action Translation

	7.5 Discussion
	7.6 Conclusion

	8 Capturing Strengths of Large Language Models for Bidirectional Action-Language Translation
	8.1 Introduction
	8.2 Background: Types of Crossmodality
	8.2.1 Leveraging LLMs for Vision-to-Language Tasks
	8.2.2 Action Execution from Multimodal Input
	8.2.3 Action-Centric Crossmodality
	8.2.4 Full Crossmodality

	8.3 Proposed Method: CrossT5
	8.3.1 Model Architecture
	8.3.2 Crossmodal Language-Action & Natural Translation Dataset
	8.3.3 Training Setup
	8.3.4 Loss Calculation

	8.4 Experiments and Results
	8.4.1 Action Execution Evaluation in Simulation
	8.4.2 Language Robustness

	8.5 Discussion
	8.6 Conclusion

	9 Seamless Integration of Foundation Models for Full-Fledged Dialogue in Robotic Manipulation
	9.1 Introduction
	9.2 Background: Leveraging LLMs for Robotics
	9.3 Proposed Method: ELMiRA
	9.3.1 Vision-Language Model
	9.3.2 Object Detection
	9.3.3 Visuospatial Coordinate Transfer
	9.3.4 Motion Planner
	9.3.5 Inverse Kinematics Solver

	9.4 Experiments and Results
	9.4.1 Mode Selection Experiments
	9.4.2 Action Execution Experiments

	9.5 Discussion
	9.6 Conclusion

	10 Conclusion
	10.1 Discussion
	10.2 Addressing the Research Question
	10.3 Future Research
	10.4 Final Remarks

	A Nomenclature
	B Code Snippets
	C Publications Originating from this Thesis
	D Acknowledgements
	Bibliography

