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Abstract

Modern experimental quantum physics experienced a rapid development in the past
decades. The high degree of control and state of the art experimental techniques moti-
vated the research field of hybrid quantum systems. Hybrid quantum systems combine
different hybrid partners that can acquire quantum properties on their own to exploit
their individual advantages.
Here we report on the latest results at our experiment that aims to realize strong hy-
brid coupling between a micromechanical Si4N3 trampoline resonator and laser-cooled
87Rb atoms. The coupling is mediated via a coherent light field that is reflected from
the resonator and forms an optical 1D lattice potential for the atoms.
Due to optical losses on the beam path, the coupling lattice is asymmetrically pumped.
This leads to the emergence of atomic density waves in the lattice which has a detrimen-
tal effect on the coupling for attractive lattice potentials. We numerically simulated this
phenomenon and found that introducing an additional pump-asymmetry-compensation
beam can remove the asymmetry-induced instability. As a result we implemented a
compensation lattice which allowed us to operate in the previously inaccessible regime
of attractive coupling lattice potentials where we reached a maximal cooperativity
Chybrid = (100 ± 25) at room temperature.
In a parallel endeavor we successfully implemented a new fiber cavity with F = 785
to significantly improve the coupling between atoms and the mechanical resonator. In
this configuration we reached a maximal cooperativity of Chybrid = (5900 ± 1300) at
room temperature. Furthermore we show experimentally that increasing the finesse of
the cavity even further to F = 14500 does not improve the coupling strength in good
agreement with theoretical predictions such that further improvements by tuning the
finesse are not feasible.
Lastly we realized a quantum-non-demolition measurement technique to perform rapid
state tomography of a mechanical resonator. Here the interaction between the resonator
and the light field takes place on time scales much smaller than the mechanical oscilla-
tion period, which allows for back-action evading measurements of the resonator state
with sub-standard-quantum-limit resolution. We calculated a finesse of F = 14500 to
resolve the resonator ground state and manufactured as well as implemented a corre-
sponding new fiber cavity into the experimental setup. We conducted pulsed measure-
ments with cavities of F = 785 and F = 14500. While the medium finesse configuration
allowed to resolve the resonator state with an imprecision of 16 zero-point motions, the
first experiments using the high finesse configuration suggest that further experimental
modifications are necessary to acquire meaningful results.





Zusammenfassung

Die moderne Quanten-Experimentalphysik hat in den vergangenen Jahrzehnten große
Fortschritte gemacht. Die vielfältigen Möglichkeiten Quantensysteme zu manipulieren,
kombiniert mit modernsten, experimentellen Techniken motivierten das Forschungs-
feld der hybriden Quantensysteme. Hybride Quantensysteme kombinieren verschiedene
Subsysteme mit dem Ziel deren jeweilige Vorteile zu vereinen.
In dieser Arbeit präsentieren wir die neuesten Ergebnisse unseres Experimentes, des-
sen Ziel die Realisierung starker Kopplung zwischen einem mikromechanischen Si4N3
Trampolin-Resonator und lasergekühlten 87Rb Atomen ist. Die Kopplung wird über ein
kohärentes Lichtfeld vermittelt, das vom Resonator reflektiert wird und ein optisches
1D-Gitterpotential bei den Atomen bildet.
Aufgrund optischer Verluste auf dem Strahlweg wird das Kopplungsgitter asymme-
trisch gepumpt. Diese Pump-Asymmetrie führt zur Entstehung atomarer Dichtewellen
im Gitter, die einen destruktiven Effekt auf die hybride Kopplung in attraktiven Git-
terpotenzialen haben. Wir haben dieses Phänomen in einer numerischen Simulation
modelliert und herausgefunden, dass die hybride Instabilität durch einen zusätzlichen
Kompensationsstrahl unterdrückt werden kann. Infolgedessen haben wir ein Pump-
Asymmetrie kompensiertes Gitter implementiert. Dies erlaubte uns im vormals nicht
zugänglichen Regime attraktiver Gitterpotentiale zu arbeiten und eine Kooperativität
von Chybrid = (100 ± 25) zwischen beiden Systemen zu erreichen.
Um die Kopplungsstärke zu erhöhen, haben wir erfolgreich eine neue Faser-Cavity mit
einer Finesse von F = 785 im System eingebaut. In dieser Konfiguration war es möglich
eine maximale Kooperativität von Chybrid = (5900 ± 1300) zu erreichen. Des Weiteren
konnten wir, in guter Übereinstimmung mit theoretischen Vorhersagen, experimentell
nachweisen, dass eine weitere Erhöhung der Finesse auf F = 14500 zu keiner weiteren
Verbesserung der Kopplungsstärke führt.
Zusätzlich präsentieren wir eine Methode zur „rückwirkungsfreien“ Messung des Reso-
natorzustandes, die eine vollständige Zustandstomographie im Phasenraum ermöglicht.
In diesen Messungen findet die Lichtfeld-Resonator Wechselwirkung auf Zeitskalen statt
die viel kürzer sind, als eine Oszillationsperiode des Resonators. Dies erlaubt die Ver-
messung des Zustandes mit einer Auflösung unterhalb des Standard-Quanten-Limits.
Um den Grundzustand des Resonators aufzulösen, haben wir eine notwendige Fines-
se von F = 14500 errechnet. Im Rahmen dieser Arbeit wurden Cavities entsprechend
dieser Spezifikation gefertigt und in das Experiment implementiert. Messungen wurden
bei Finessen von F = 785 und F = 14500 durchgeführt. Während das System den
Resonatorzustand bei der niedrigeren Finesse mit einer Präzision der 16-fachen Grund-
zustandsbreite auflösen konnte, zeigten die ersten Experimente mit der Hochfinesse-
Cavity, dass weitere experimentelle Verbesserungen notwendig sind, um aussagekräftige
Ergebnisse zu erhalten.
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Chapter 1

Introduction

The discovery of quantum mechanics in the early 20th century heralded a new era of
physics and provided us with a fundamentally different conception of our world. Quan-
tum mechanics erased the idea of a deterministic world in which it would be possible
to describe and predict the behavior of any physical system precisely given enough
knowledge about it. While being heavily debated in the first decades of its creation [1],
involving some of the most prestigious physicists of that time, it quickly became one of
the most successful and fundamental theories of modern physics besides the theory of
general relativity.
The evolution of experimental quantum physics reflects this success. Beginning with
famous experiments to verify the quantum nature of matter [2–5] and gaining insight
into the microscopic world [6, 7], the aspiration nowadays shifted towards creating and
controlling of new quantum systems. Quantum theory branched out and formed new
physical disciplines that accounted for the increasing depth and complexity it provided.
Nowadays, this deep understanding even allows for the design of systems on the quan-
tum level, be it in the creation of new quantum materials [8, 9], the setup of tailored
platforms for high-precision sensing [10–12] or in the realization of quantum systems
to store [13, 14] or even process information.
A major obstacle all modern quantum technologies must overcome is their scalability
up to a system size that enables us to benefit from their unique properties in daily life
applications. Quantum properties can only emerge in a coherent system. While quan-
tum objects live in a superposition of coherently overlapped states, they maintain their
quantum properties only until any decoherence is introduced [15]. Decoherence can
emerge due to a measurement or coupling to classical noise [16]. As such, any quantum
system converges towards a classical system upon a certain size which is widely known
as the correspondence principle.
The boundary at which this happens is not fixed. If at all, it has been shifted to allow
for larger system sizes by trying to suppress any influence that disturbs the underly-
ing quantum system. This can be achieved i.e., by cryogenic cooling or by introducing
highly confined and isolated systems that hardly couple to the classical environment
[16].
Another major challenge is the combination of different quantum systems. While there
have been rapid advancements in the creation of quantum systems that serve a par-
ticular purpose for quantum simulation [17–21], quantum computing [22–26], quantum
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memory or for information transfer and cryptography [27, 28], most systems lack any
compatibility with each other. This partly arises from the different quanta that are used
for particular tasks. Atomic states, for example, Rydberg states [29], are particularly
suited for use in quantum gates. Quantum information transfer over long distances can
be done particularly well with photons [30], while spin states are promising candidates
to use in quantum memories [31]. The combined use of these systems would require a
coherent state transfer and thus a hybridization of the system as a whole.
These challenges are linked to the question of whether it is possible to combine quan-
tum systems of different kinds and to which degree. Hybrid quantum systems are used
as an experimental platform to investigate these questions and give insight into the
fundamental physics behind phenomena such as quantum state transfer [32–39], tele-
portation [40] and quantum entanglement [41–44].
Two particularly suited hybrid partners are ultracold atoms and micromechanical res-
onators. While ultracold atoms offer exceptional control and access to their internal and
external states [45], micromechanical resonators excel in their customizability. They
can be designed to realize various hybrid systems that couple optically, capacitively,
via magnetic fields [46–48], via microwaves [44] or Van-der-Vaals forces [40, 47, 49, 50].
They can be prepared in their motional ground state [43, 46, 49–54] by continuous
radiation pressure cooling or using pulsed, backaction-evading measurement protocols.
Specific designs allow hybrid atom-optomechanical coupling to motional or internal
[38, 55] degrees of freedom.

An atom-optomechanical hybrid system

The NanoBEC experiment aims to realize a strongly coupled quantum hybrid system.
It consists of ultracold 87Rb atoms and a cryogenically cooled, micromechanical tram-
poline resonator inside a Fiber Fabry-Pérot microcavity (FFPC) in the Membrane-in-
the-Middle (MiM) configuration that couples via a light field as depicted in Fig. 1.1(A).
Due to its short length, the linewidth of the cavity exceeds the resonance frequency of
the trampoline resonator by orders of magnitude (κcav ≫ ωm), placing the system in
the unresolved-sideband-regime. Hence, the cavity response to the membrane motion
can be approximated as instantaneous [56]. This renders it particularly suitable for ex-
periments with low-frequency resonators, pulsed experiments, and hybrid experiments
that require high coupling strengths between their constituents [56].
The main goal of this experiment is to enter the strong coupling regime. In this regime,
the system can be described with a fully quantized Hamiltonian Hint where any single
photon light field excitation due to the motional state of the atoms corresponds to a
phononic excitation of the resonator [53]. This would allow for coherent energy transfer
between both systems and would render quantum state transfer between both systems
possible [57].
Fulfilling the strong coupling condition is a challenging task. It requires the coupling
rate between both sub-systems to be larger than the sum of all decoherence rates
[57, 58]. This condition is expressed by the cooperativity parameter Chybrid. Strong
coupling requires the cooperativity to exceed the thermal phonon occupation of the
resonator (Chybrid ≫ n̄th).
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Figure 1.1: Sketch of the experimental configurations: (A) Hybrid Coupling: Ultracold
atoms are coupled resonantly to a micromechanical resonator using an optical lattice. The cou-
pling arises if the resonance condition is fulfilled (ωm = ωat). The resonator state is detected by
continuous balanced homodyne detection. (B) Pulsed experiments: The resonator is prepared in
a conditional squeezed state by using a quantum-non-demolition (QND) measurement protocol.
Therefore, very short detection light pulses (τpulse ≪ 1/ωm) are used to take snapshots of the
quasi-stationary states of the resonator. These allow for a reconstruction of the resonator state
with sub-standard-quantum-limit (SQL) precision. Figure (B) based on Ref. [59].

In pursuit of fulfilling this condition, many efforts were made to optimize the coopera-
tivity parameter at the experiment, ranging from the integration of the optomechanical
system into a high-vacuum cryogenic environment [60, 61] over customized designs of
the micromechanical resonator to the implementation of radiation pressure cooling pro-
tocols that allow for cooling near the resonator ground state [57, 62]. While these efforts
yielded an overall improvement of the cooperativity, it remained orders of magnitude
too small to access the strong coupling regime [63].

During this work, we tried to further improve the cooperativity by addressing two
properties of the hybrid system that remained unchanged until now.

Since the cooperativity linearly scales with the number of atoms that couple to the
resonator, the system would benefit from a red-detuned coupling lattice (relative to
the atomic transition) which attracts the atoms and thus provides higher atomic den-
sities. Previous experiments from independent groups showed this operating regime to
be inaccessible, as it consistently drives the optomechanical system into limit cycles
[62, 64]. In 2011, J.K. Asboth et al. provided a theoretical model of this phenomenon
in the form of density waves that arise in asymmetrically pumped optical lattices with
high atomic densities [65, 66]. This “dynamic instability” leads to a phase lag in the
coupling lattice that induces a positive feedback loop between the resonator and the
atomic motion. Since the asymmetry of the coupling lattice is an inherent property
of such systems, most coupling experiments are done in blue-detuned coupling lattices
where this effect does not occur.
To enter this regime nonetheless, we implemented an auxiliary branch to compensate
for the pump asymmetry in our system. We verified the feasibility of this approach with
a numerical simulation that describes the lattice dynamics for different pump asymme-
tries and under the influence of a pump asymmetry compensation beam. This allowed
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us to perform coupling experiments in a previously inaccessible regime, yet the overall
cooperativity was worse than in a blue-detuned coupling lattice. The pump asymme-
try compensation (PAC) experiments were done together with J. Butlewski and are
described in detail in his thesis [63]. We restrict ourselves to presenting the core results
in this thesis.

Finally, we optimized the fiber cavity finesse. While it strongly affects the coopera-
tivity (Chybrid ∝ F2), it also influences the shot-noise related decoherence rates in the
optomechanical system. Thus, it is supposed to have an optimum value for our specific
setup at Fopt = 600 [55]. In this thesis, we exchanged the previously used fiber cavity
(F1,empty = 60 ± 2) for a fiber cavity with higher finesse1 (F2,empty = 785 ± 15). By
adjusting the resonator position in the intra-cavity field, the finesse can be adjusted to
600 and 1500. Coupling experiments were done for F = 650 ± 50 and F = 1500 ± 100.
As presented in Fig. 1.2, this modification significantly increased the cooperativity of
the hybrid system by a factor of 30 for the lower finesse. Furthermore, the experi-
ments show a backaction-induced decrease in cooperativity at higher finesses in good
agreement with theory, rendering a fundamental limit to the cooperativity that can be
achieved with this setup.

Figure 1.2: Hybrid Coupling
at optimized finesse:
Sympathetic cooling rates as a
function of the atomic trapping fre-
quency in units of ωm. The mea-
surements were conducted at F =
650±50 (blue) and F = 1500±100
(red). The maximum obtained hy-
brid cooperativity at F = 650 is by
a factor of 30 higher than in previ-
ous measurements for the lower fi-
nesse Chybrid,old = 190 ± 40. For
higher finesses, the cooperativity
decreases again.

QND measurements of the optomechanical system

Apart from their excellent properties as hybrid partners, micromechanical resonators
are objects of current research interest [68]. When prepared in their ground state, they
serve as powerful platforms for quantum entanglement experiments [43, 69, 70], and can
even be controlled at the quantum level with sophisticated feedback techniques [71].
Due to the cryogenic environment and high degree of control, our experiment is ideally
suited to prepare our resonator in its motional ground state despite its low eigenfre-

1Produced during Ref. [67].
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quency. Previous experiments allowed for continuous radiation pressure cooling near
the motional ground state of the resonator, reaching a minimal phonon occupation of
n̄th = 3.8 ± 0.1 [62].

An alternative method for preparing any oscillator in a (conditional) ground state was
proposed in 2011 by Vanner et al. [59] and is depicted in Fig. 1.1(B). Here, the quadra-
tures of the resonator are treated as quantum-non-demolition (QND) observables. By
using very short light pulses that fulfill the condition τpulse ≪ 1/ωm, snapshots of the
quasi-steady state of the oscillator are taken. At the same time, the back-action from
the measurement on the system is minimized. The information acquired from the snap-
shots allows for reconstruction of the resonator state with sub standard-quantum-limit
(SQL) precision. In the context of mechanical resonators, the SQL is resembled by the
zero-point motion xzpm. This quantity describes the motion the resonator undergoes
upon excitation by one phonon. QND measurements of micromechanical resonators
were initially realized in a proof-of-principle experiment in 2013 by the same group [72]
and successfully applied on the quantum scale in 2018 [73, 74]. They resemble a power-
ful method in high-precision metrology [10, 11, 75]. The precision of the measurements
is quantified by the measurement strength parameter χ that relates the acquired infor-
mation per pulse to the noise introduced to the measurement device. Squeezing below
the standard quantum limit was never accomplished as the required measurement reso-
lution χ > 1 was inaccessible in the systems mentioned above. We determined a finesse
of F = 14500 to be necessary to reach the required resolution. Thus, we designed new
high-finesse fiber cavities with Fempty = 14500 ± 1500 and overhauled the detection,
introducing an all fiber based setup. While operation at F = 1500 allowed us to squeeze
the resonator state to a width of (16 ± 1)xzpm, measurements at F = 14500 did not
provide enough statistics such that further experimental modifications are necessary to
acquire meaningful results.

This thesis is structured as follows:

Chapter 2 - The atom-optomechanical hybrid system

In this chapter, we describe the experimental platform in detail. The new cavities
used in this work require an updated description of the optomechanics of the system.
Furthermore, we give an overview over the atomic part of the experiment, used for
the hybrid coupling. The homodyne detection was rebuilt to reach better detection
efficiency, higher stability, and lower detection noise. We decided to implement an all
fiber based detection setup. We introduce and characterize this setup and compare it
to the previously used free-space setup. Finally, we discuss the production and charac-
terization of new fiber cavities with Fempty = 785 and Fempty = 14500 for the pulsed
experiments that have been performed in this work. This chapter is structurally oriented
along previous theses [62, 63, 76].
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Chapter 3 - Towards a strongly coupled atom-optomechanical hybrid system

This chapter summarizes the results of our hybrid coupling experiments. After a short
introduction to sympathetic cooling as a benchmark for determining the cooperativ-
ity parameter, we present the core results of our measurements on Pump Asymmetry
Compensation. Furthermore, we show how the exchange of the fiber cavity significantly
increases the cooperativity of the system. We verify that any further improvement by
increasing the finesse is not feasible, which is in good agreement with theory and poses
a limit on the cooperativity that can be reached in this kind of system.

Chapter 4 - Rapid state preparation using QND measurement techniques

This chapter is dedicated to ground state preparation of the micromechanical resonator
by a pulsed QND measurement protocol. We introduce the concept of back-action evad-
ing QND measurements and how they apply to our system. We discuss the upgrades
implemented on our system to be able to resolve the oscillator state with sub-SQL
precision and present the outcome of these efforts.



Chapter 2

The atom-optomechanical hybrid
system

In this chapter, we describe the experimental platform on which all ex-
periments in this thesis were conducted. The hybrid experiment consists
of a cryogenically cooled, micromechanical resonator in a FFPC and a
87Rb BEC system. While the BEC system has not been changed compared
to previous theses, extensive modifications have been made on the optome-
chanical side of the system. This includes the increase of the fiber cavity
finesse to values of Fempty = 785 ± 15 and Fempty = 14500 ± 1500 and the
implementation of an all fiber based homodyne detection. These modifica-
tions require a new characterization of the optomechanical system, which
is presented in this chapter. Furthermore, we give a brief overview of the
atomic system and will discuss the design considerations and production of
the newest high finesse cavities.

The research field of hybrid quantum systems has evolved rapidly in recent years lead-
ing to a wide variety of possible hybrid partners. Quantum hybrid systems have been
realized in many different setups by coupling superconducting circuits and microwave
resonators [33, 77, 78], mechanical resonators with semiconductor quantum dots [79, 80]
and by the creation of atom-optomechanical systems [46, 58, 81, 82]. Beneficial prop-
erties for creating a quantum hybrid system are long coherence times in and between
the individual systems and similar excitation frequencies between both partners.
Ultracold atoms are particularly suited as hybrid partners due to the high degree of
control possible with state of the art technology. This allows for preparation of internal
[83, 84] and motional [85, 86] states of an atomic system with high lifetimes on the order
of multiple seconds. Micromechanical resonators are highly customizable platforms that
can be tailored to a specific coupling mechanism. The figure of merit of these devices
is the Qω product of the resonators eigenfrequency and quality factor which char-
acterizes the coherent oscillations the resonator undergoes after an initial excitation.
The increasing manufacturing capabilities nowadays allow for high Q micromechanical
resonators with GHz frequencies, rendering ground state preparation of these devices
possible even at room temperature [87–89]. Here, we describe the experimental setup
of the individual hybrid partners, starting with the cold atom apparatus, the coupling
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lattice, and the detection where the focus lies on the new fiber based detection setup.
Furthermore, we introduce the optomechanical system and discuss the new fiber cavi-
ties in more detail. For extensive information on the initial design considerations, also
refer to [90, 91].

2.1 Cold atom apparatus

To prepare the atomic part of the hybrid system, we use a 87Rb BEC machine that was
designed and set up by A. Bick and C. Staarmann. While a detailed description and
characterization of the system is provided in their respective theses [90, 91], we give an
overview of the most important parts of the experiments conducted in this thesis.
Initial design considerations aimed at a system that provides short cycle times while
reaching high atom numbers in the Magneto-Optical-Trap (MOT) and for the BEC.
This is necessary because the coupling strength scales proportionally to the number
of atoms [53, 58]. Our system meets these requirements by using a two-stage MOT
setup with a 2D-MOT from which the atoms are transferred to the 3D-MOT by an
optical pushing beam. Both glass cells of the experiment are separated by a differential
pumping stage which allows for high vapor pressures in the 2D-MOT glass cell while
providing an excellent background pressure. This benefits high BEC lifetimes in the
3D-MOT glass cell. Figure 2.1 depicts the transitions of 87Rb and the individual com-
ponents of the apparatus that address the respective transitions.

Figure 2.1: Sketch of the laser system and the addressed hyperfine states of 87Rb:
The laser system consists of a cooling laser (M1) and a repumping laser (M2) that are locked via
a doppler-free spectroscopy branch to the respective crossover resonances (1) and (2) depicted
by the dashed gray lines. The cooling laser is amplified by a tapered amplifier (TA) and split
up into three branches for the pushing and detection beam (DET), 3D-MOT (CLUSTER IN
1) and 2D MOT where the intensity is amplified by additional TAs and tuned to the hyperfine
resonances depicted on the right side of the picture by the respectively colored acousto-optic-
modulators (AOM). The repumper is split into branches for the 2D and 3D MOT to account
for the non-closed level structure. Figure adapted from Ref. [90].
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The atoms are cooled on the transition |52S1/2, F = 2⟩ → |52P3/2, F
′ = 3⟩. Since

this transition does not create a closed cycle the atoms have to be repumped on the
|52S1/2, F = 1⟩ → |52P3/2, F

′ = 2⟩ transition. The cooling laser (M1) is locked to the
F = 2 → F ′ = 2, 3 crossover resonance via a 2x134 MHz double pass acousto-optic-
modulator (AOM) and split into three branches. While for the detection and pushing
branch it is tuned on resonance by a double pass AOM, it is slightly red detuned to
the F ′ = 3 level for the 2D- and 3D-MOT branch. These branches are fed into a fiber
cluster where they are split and adjusted in their polarization. The repumper (M2) is
locked to the F = 1 → F ′ = 1, 2 crossover resonance and tuned to the F ′ = 2 level via
a single pass AOM. It is overlapped with the 2D- and 3D-MOT beams.

The 2D-MOT is created in the upper glass cell by two elliptical, retro-reflected beams
that catch atoms from the background gas. A near detuned pushing beam transfers the
atoms from the 2D-MOT into the lower glass cell. Because of this setup the 3D-MOT
can operate at low background pressures (p < 10−11 mbar) and has fast loading times
of a few seconds.

MT

GC
110A

radio
frequency

30 MHz

920 kHz

13 s 5 ms 5 ms 1.2 s

1000 mW

600 mW
180 mW

102 mW

DT

TOF
DT1

DT2

t

Dipole trap

Molasses isotropic Evaporation TOF detection

t
Magnetic trap

10 ms 36 ms 1.5 s 15 s 1.3 s 1-25 ms0.4 s8 s
2D & 3D
MOT compressed

Pushing Beam

Figure 2.2: Experimental sequence for BEC creation: After the initial MOT loading
and a short molasses phase where the atoms are cooled to sub-doppler temperatures, the atoms
are loaded into a magnetic trap in which they are cooled by radio-frequency (RF) evaporation.
The evaporation is depicted in the lower graphic in more detail and depends on whether a BEC
in a magnetic trap (MT) or a BEC in a dipole trap (DT) is created. During evaporation, the
gradient coils (GC) are switched on and the RF-frequency is ramped down exponentially from
30 MHz to 920 kHz (960 kHz for the DT sequence). For the MT-BEC sequence, the gradient
coils are switched off after the evaporation and a time-of-flight (TOF) image is taken. In case
of the DT-BEC, the atoms are loaded into the crossed dipole trap by linearly ramping DT1
and DT2 to 180 mW and 1000 mW. After the GC are switched off, DT1 and DT2 are ramped
down to 102 mW and 600 mW respectively. Figure from Ref. [63].
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BEC in magnetic trap:
The experimental setup allows for the creation of large BECs (Natoms ≈ 1.4 · 105 )
in a magnetic trap with cycle times under 30 seconds. The experimental sequence is
depicted in Fig. 2.2. After an initial MOT loading time of a few seconds, where the
atoms are cooled to the doppler temperature TD = ℏΓ/2kB = 146µK, they reach a
temperature of 10µK in the molasses phase of the sequence. Thereafter the atoms are
loaded into an isotropic magnetic trap (4D magnetic cloverleaf trap [91]) which is over-
lapped with a homogenous Helmholtz field. By ramping down the Helmholtz field, the
magnetic trap is compressed. The temperature is further reduced by RF-evaporation
cooling of the atoms, transitioning the trapped atoms into a BEC. After evaporation,
the magnetic trap is switched off and an absorptive time-of-flight (TOF) image is taken.

BEC in dipole trap:
The magnetic trap only allows for trapping atoms in a certain mF-state (mF > 0). For
experiments that realize the coupling via internal states, the atoms need to be trapped
independently of their mF-states. This is realized by trapping the atoms in a far red
detuned crossed dipole trap that is created from a Nd:YAG laser at λDT = 1064 nm.
The dipole trap is formed by two circular shaped beams with diameters wDT1 = 52µm
and wDT2 = 242µm at final evaporation beam powers of 102 mW and 600 mW. This
yields different trapping frequencies along the different axes of the dipole trap. While
in the y and z-direction, the trapping frequency is (ωy, ωz) = 2π · (144, 105) Hz. In the
x-direction it yields ωx = 2π · 12 Hz [91]. Furthermore, the dipole trap leads to a cigar
shaped BEC that is elongated along the x-direction. This is beneficial for coupling ex-
periments since the coupling lattice beam is co-propagating in this direction such that
more atoms can participate in the coupling. The dipole trap sequence is mostly similar
to the sequence for a BEC in the magnetic trap. At the end of the RF-evaporation
the dipole trap is ramped up and the atoms are loaded into the dipole trap. After the
gradient fields are switched off, the power of the dipole trap beams is exponentially
ramped down until an almost pure BEC with Natoms ≈ 5 · 104 remains. The BEC in
the dipole trap has a very long lifetime (τ1/e ≈ 17 s) and is also used for the lattice
calibration as described in Section 2.2.1.2.
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Figure 2.3: 3D Sketch of the BEC machine: (a) Top down view on the upper part of
the 2D-MOT / 3D-MOT setup. The dashed yellow lines show the path of the 2D-MOT beams
while the red lines denote the 3D-MOT beams that are directed to the lower glass cell. (b)
Side view of the setup. The atoms are transferred from the upper 2D-MOT to the 3D-MOT
by a resonant pushing beam (dashed orange line) and trapped in the 3D MOT by red detuned
3D MOT beams (dashed red lines). The turquoise dashed lines show the beam path of the 2D
trapping lattice. The coupling beam path is shown as dashed green line. (c) Top down view on
the lower part of the setup. The purple lines show the beam path of the crossed dipole trap
(DT1 and DT2). The DT1 beam is co-propagating with the coupling lattice beam (blue dashed
line). At the end of the sequence the BEC is imaged via the detection beam (green dashed line)
by absorption imaging on a CCD camera. Figure from Ref. [63].

.
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2.2 Hybrid coupling laser system

The coupling is mediated via light that couples to both hybrid partners. The atoms are
loaded into an optical 1D-lattice that is created when the light incident on the atoms
is reflected from the MiM-system [52]. For reasons described later in this thesis the
coupling lattice laser is moderately detuned with respect to the D2 F = 2 → F ′ = 3
transition. It creates optical potential wells along the lattice axis, separated by dpot =
λcoupl/2. The lattice trapping frequency ωlat has to be matched with the eigenfrequency
of the resonator ωm to achieve coupling. Figure 2.4 shows a sketch of the coupling laser
system.

Figure 2.4: Sketch of the hybrid coupling setup: The Titanium-sapphire (TiSa) laser
(red ray) is split into five branches. A small amount of the beam is split off into the transfer
lock branch where it is coupled into a reference cavity (Toptica FPI100, ∆ν = 3 MHz) together
with the cooling laser beam (orange ray). The length of the reference cavity is locked to the
frequency stabilized cooling laser. The TiSa is subsequently locked to the reference cavity. The
cooling laser beam can be frequency shifted by a 80 MHz double pass AOM to tune the TiSa
frequency via the transfer lock. The majority of the beam power goes into the laser system that
is used for the hybrid coupling experiments (grey dashed box). The coupling lattice branches
contains a single pass 110 MHz AOM for intensity regulation and fast switching. The homodyne
branch contains a 80 MHz AOM. The coupling lattice beam is focused onto the atoms via a
telescope that is directly appended to the glass fiber. It is reflected from the MiM-system and
creates an optical 1D lattice. The feedback cooling branch couples to the MiM-system from
the opposite side of the fiber cavity. The motional state is read out via balanced homodyne
detection. Since this part is distinct for different experiments, a detailed drawing is depicted
in the corresponding Sections 2.4 and 4.2.3. The remaining beam is directed into a wavemeter
(HighFinesse WS6-600).
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We briefly outline the essential components of the setup with and then focus on the
coupling lattice setup.

Titanium-sapphire laser The lattice beam is derived from a Titanium-Sapphire
(TiSa) laser2 that can be tuned over a frequency range of 25 THz, covering the reso-
nances of the rubidium D1 and D2 line at a vacuum wavelength of λD1 = 794.8 nm and
λD2 = 780 nm [92]. Despite the large frequency range, it is possible to stabilize the laser
to a specific frequency with an accuracy of 50 MHz. This is possible via a combination of
multiple locks that together provide a large locking bandwidth. The MBR 110 utilizes
an etalon lock for compensation of small frequency deviations by locking the etalon
transmission signal to the laser frequency. Larger frequency drifts are compensated by
the internal servo lock that references the laser to a low finesse Fref ≈ 25−50 cavity and
stabilizes its frequency with respect to the cavity resonance via a dither lock [57]. The
combination of these locks results in a bandwidth for small disturbances up to 100 kHz3.

Transfer lock
Fulfilling the resonance condition between both hybrid partners requires for accurate
tuning of the coupling lattice frequency. The TiSa can be locked to an external reference
with a 6 dB locking bandwidth of 12 Hz. This feature is used for the transfer lock that
allows to stabilize the TiSa frequency to the cooling transition of the rubidium D2 line
with an accuracy of 3 MHz. As depicted in Fig. 2.4 both the TiSa and the M1 cooling
laser are coupled into the same high finesse cavity4 (∆ν = 3 MHz) from opposite sides.
Sidebands are modulated onto the TiSa laser light via a 10 MHz EOM. The cavity
signal is used to derive a Pound-Drever-Hall (PDH) signal. While the reference cavity
is stabilized onto the M1 cooling laser, the TiSa laser frequency is stabilized onto the
reference cavity. This allows us to lock the TiSa laser onto the atomic resonance in
units of FSR of the reference cavity. The FSR of the reference cavity was determined
in previous theses [57, 62] to ∆ν = nFSR × (997.544 ± 0.004) MHz The transfer lock is
essential for the precise calibration of the wave meter and the coupling lattice depth.
When activated it diminishes slow drifts of the TiSa laser (up to 50 MHz in 5 min-
utes without the lock). For the coupling experiments with the new cavities it became
necessary to tune and stabilize the frequency with a precision of < 10 MHz near the
atomic resonance. Thus, the transfer lock was modified and an additional double pass
AOM between the M1 cooling laser and the reference cavity was implemented. This
allows us to use the transfer lock to carefully tune the coupling lattice detuning close to
the atomic resonance between ∆min (2,3) = (22±3) MHz and ∆max (2,3) = (182±3) MHz.

Homodyne detection
The motional state of the resonator is detected by phase sensitive homodyne detection.
Homodyne detection is particularly insensitive to common mode noise on the light and
offers excellent signal to noise ratios [93, 94]. The homodyne detection beam is split
into two branches one of which serves as local oscillator (LO) while the other one in-
teracts with the resonator. Via lock-in detection at the resonator eigenfrequency, the

2Coherent MBR 110
3According to the manufacturer Coherent.
4Toptica FPI 100
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interference signal between both beams is detected. The homodyne detection branch
contains an AOM that uses a similar electronics configuration as the coupling lattice
AOM to regulate the homodyne beam intensity. Dependent on the conducted experi-
ments (i.e., coupling experiments or pulsed experiments) this part of the experiment is
built differently5. All recent experiments were conducted with a fiber based instead of
a free space homodyne detection setup6.

Feedback cooling
Feedback cooling is done by acquiring the position of the resonator via balanced ho-
modyne detection and deriving a phase shifted feedback signal that counteracts the
resonators motion. For this, fast processing of the signal as well as an excellent detec-
tion noise floor is necessary [95]. The feedback cooling branch couples the TiSa light
into a fast fiber EOM7 via a polarization maintaining (PM) fiber. Behind the EOM we
measure the intensity of the feedback beam and regulate it via the EOM bias input.
To achieve the highest possible modulation depth, the working point of the EOM is
chosen such that it operates at half of the maximum transmission. Feedback cooling is
only relevant for the experiments on pump asymmetry compensation. For a thorough
theoretical description of the feedback cooling mechanism we refer to Appendix C.

2.2.1 Coupling lattice

The coupling lattice has to be intensity stabilized and able to be switched on and off
reproducibly on the order of 100 ns. This is realized via a 110 MHz single pass AOM8

in the coupling lattice branch that is driven by a RF-modulation that can be regulated
in power and switched via a high speed RF-switch. Additionally, the lattice beam can
be blocked with a shutter in front of the fiber to ensure that no stray light can disturb
the experimental sequence. The setup allows for the generation of short pulses with
minimal pulse widths of 100 ns with low cycle to cycle pulse power deviations of only
0.3 % [57]. These are necessary properties for the calibration of the lattice via Kapitza-
Dirac diffraction (Sec. 2.2.1.2). The coupling lattice light is transferred to the lower lab
via a single mode (SM) fiber.

5Figure 2.4 depicts the configuration for the hybrid coupling experiments. The configuration for
pulsed measurements is slightly different and described in the respective Chapter 4.

6A description of the free space setup that has been used for the PAC experiments can be found in
Appendix A.1.

7Jenoptik AM785b
8The AOM operates at 120 MHz.
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Figure 2.5: Sketch of the coupling lattice setup: The coupling lattice beam is focused
onto the atoms by a telescope (Schäfter & Kirchhoff fiber collimator 60FC-L-4-M20L-02 and
focusing lens 13M-S500-05-S) at a working distance of 49.2 cm and re-coupled into the cryostat
via a second, identically configured telescope. It is reflected from the MiM-system and forms a
standing wave. The lattice beam is passing through a R:T = 30:70 beamsplitter and directed
onto a photodiode for the lattice intensity control. The back-reflected beam is monitored on
the lattice back-reflex PD. The beam can be fine adjusted onto the atoms and onto the cryo
telescope by micrometer screws at the respective positions. The dipole trap is aligned along
the coupling lattice and passes through the same dichroic mirror, the coupling lattice beam is
reflected at.

2.2.1.1 Lattice setup

Figure 2.5 depicts a detailed sketch of the coupling lattice as it is used for hybrid
coupling experiments9. The coupling lattice lights polarization is cleaned by a PBS in
the outcoupling telescope and directed onto the atoms via a substrate with a reflectivity
of R780 = 30%. The transmitted light is used for the intensity control. A second,
identical substrate which reflects the lattice light onto the photodiode compensates for
the slight wavelength dependency of the substrates reflectivity. The lattice beam passes
through the AR coated glass cell and is reflected on the dichroic mirror which transmits
the dipole trap wavelength and allows for the parallel adjustments of both beams. The
lattice beam is coupled into the cryostat via an identical second telescope. Both the
mirrors in front of the glass cell and the telescope are equipped with micrometer screws
to allow for precise alignment. The back-reflex from the fiber cavity is monitored on
the lattice back-reflex PD. This signal is used for the cavity alignment, for optimization
of the incoupling into the cryostat and to adjust the polarization of the reflected light.
Due to losses along the path between the atoms and the resonator and because of the
finite reflectivity on resonance of the cavity, the back-reflected beam has only 25% - 30
% of the incident power (dependent on the cavity alignment) [62, 63]. Thus, the 1D
lattice is pumped asymmetrically, which is an inherent property of our system. This
leads to dynamic instabilities in the coupling in regimes with high atomic densities.

9For the PAC experiments an additional compensation beam was introduced. For details refer to
Appendix A.2 and Ref. [63].
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This effect and the efforts we undertook to compensate it are described in more detail
in Chapter 3.2.
For the hybrid experiments coupling and detection light has to enter the cavity simulta-
neously while any crosstalk between both breams is minimized. Via a PBS, homodyne
light is coupled into the same fiber at a perpendicular polarization10.

Coupling between both constituents takes place, if the resonance condition ωat = ωm
is fulfilled. While the resonators ground mode frequency is fixed at ωm ≈ 2π · 154 kHz
(depending on temperature and alignment), the trapping frequency of the atoms is
dependent on the coupling lattices trapping potential depth. Assuming a harmonic
potential the trapping frequency is related to the potential depth via [96]:

ωat =
√

2Vlatk2
lat

mRb
(2.1)

Here Vlat denotes the lattice depth given in units of the recoil energy Erec with the
lattice k-vector klat and the mass of one rubidium atom mRb [92]:

Erec = ℏ2k2
lat

2mRb
(2.2)

Solving for Vlat leads to a required lattice depth of Vlat = 441Erec to fulfill the reso-
nance condition. The lattice depth scales like Vlat ∝ Ilat/∆at,L. While most experiments
operate in a far detuned regime with relatively high lattice powers to reduce scattering
losses, the high sensitivity of the micromechanical resonator to laser induced heat-
ing, requires working in a near detuned (∆at,L < 1 GHz) regime at low lattice powers
Plat < 1 mW. As discussed in Chapter 3, the upgrade of the fiber cavity finesse to
Fempty = 785 further restricts this requirement and the highest cooperativities are
achieved for Plat < 25µW requiring lattice detunings of ∆at,L < 200 MHz. Meaningful
measurements require the use of the transfer lock, to avoid frequency drifts. To achieve
high intensities at the position of the atoms at moderate powers the coupling lattice
beam is focused to a small waist size of wcoupl = 76µm.

2.2.1.2 Lattice alignment

For the coupling experiments it is crucial that the atoms are illuminated by the coupling
lattice beam precisely. Thus, we align the coupling beam to match the position of the
crossed dipole trap. This is done by setting the coupling lattice beam far red detuned
with ∆2,1 = −250 GHz at Plat = 3 mW and blocking the coupling lattice back-reflex
beam. At this setting, the beam attracts the BEC without destroying it due to scat-
tering. This dragging effect is used to pull the BEC out of its equilibrium position and
align the beam such that it coincides with the crossed dipole trap. The experimental
sequence for this alignment is similar to the dipole trap BEC sequence depicted in Fig.
2.2. After the evaporation in the dipole trap, all optical potentials except to coupling
beam are turned off. The coupling beam is turned on for 2 ms. The atoms are dragged

10While for the PAC experiments, this is done in a free space setup as depicted in Fig. A.1, all
coupling experiments with the new cavities rely on a fiber based PBS.
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towards the coupling beam and imaged after 21.5 ms TOF. For bad initial alignments,
the detuning can be reduced to increase the dragging effect.
After the alignment of the incident beam, the back-reflex beam is unblocked. Maxi-
mizing the back-reflex beam power usually already yields a well aligned system, since
the incoupling to the cryostat fiber requires and excellent mode match between the
fiber and the incident beam mode. Fine adjustments are made using the Kapitza-Dirac
diffraction pattern of a pulsed optical 1D lattice and maximizing the lattice depth at a
fixed parameter set. The theory of Kapitza-Dirac diffraction [97] is described in detail
in previous theses [57] and shall be outlined in most brevity here.

2.2.1.3 Lattice calibration via Kapitza-Dirac diffraction

Starting with a BEC in the dipole trap sequence, a short coupling lattice pulse of
1µs − 56µs is applied to the BEC after the evaporation in the dipole trap. Thereafter
the optical potentials are turned off and a TOF image is taken. While the coupling
lattice is on, a momentum transfer between the light field and the atoms occurs. Along
the lattice axis this redistribution of photons can either lead to an effective momen-
tum transfer of zero or ±2nℏklat (n = 1, 2, 3, ...). The atoms undergo Rabi-oscillations
between these momentum orders at a lattice depth dependent frequency. For deeper
lattices, higher order processes become relevant, leading to interference between the
different momentum order oscillations. These oscillations are described by the solution
of the time dependent Schrödinger equation of the system. Measuring the population of
the momentum orders for different pulse durations allows to numerically calculate the
time dependent Schrödinger equation for a BEC in a periodic potential and determine
the lattice potential depth [98, 99]. A measurement example is depicted in Fig. 2.6.
The determined lattice depth is compared to the theoretically expected lattice depth,
to acquire a calibration factor ccal. For our system of two co-propagating lattice beams
with different powers and waists (Pinc,winc and Pref ,wref) the expected potential is
[86, 92, 99]:

Vlat = 4c2√
PincPref

wincwref

[
ΓD1

ω3
D1

1
∆D1

+ 2ΓD2

ω3
D2

(
1

20∆D2,F′=1
+ 1

4∆D2,F′=2
+ 7

10∆D2,F′=3

)]
(2.3)

Here ΓD1 denotes the linewidth of the 87Rb D1 transition, ωD1 the corresponding optical
frequency and ∆D1 the detuning of the lattice light relative to the D1 transition. Note
that hyperfine structure contributions are omitted in this term due to the large detuning
(∆D1 ≈ 7 THz) of the coupling lattice light to this transition. The second term accounts
for the coupling of the lattice light ot the 87Rb D2 transition. Here it is necessary to take
the individual transition strengths into account [92]. ∆D2,F′=X denotes the detuning of
the coupling lattice relative to the |52S1/2, F = 2⟩ → |52P3/2, F

′ = X⟩ transition. When
referenced to the M1 cooling laser via the transfer lock, the TiSa laser is blue detuned
from the |52S1/2, F = 2⟩ → |52P3/2, F

′ = 3⟩ by 2 × 71 MHz. Together with the AOM in
the coupling lattice and the additional double pass AOM in the transfer lock branch,



18 The atom-optomechanical hybrid system

the coupling lattice can be set precisely to any of the following values:
ωlat
2π = ω2,3

2π + 2 × 71 MHz + 120 MHz + nFSR × FSR

− 2 × (40 ... 120) MHz
(2.4)

The modified transfer lock covers a range of 162 MHz11:

∆D2,F′=3 = (22 − 182) MHz (2.5)

For the Kapitza-Dirac lattice calibration, the TiSa is transfer locked to the M1-cooling
laser and the displayed wavelength on the wavemeter is acquired. This allows for an
absolute calibration of the displayed wavelength which is used to determine the theo-
retically expected lattice depth at a set wavelength and lattice power.
Comparing this result with the measured lattice depth yields the lattice calibration
factor:

ccal = Vmeas
Vtheo

(2.6)

This calibration is very sensitive to slight misalignment of both incident and back-reflex
beam. Thus, it is measured on a daily basis.

Figure 2.6: Kapitza-Dirac momentum order oscillations: The upper panel depicts the
distribution of the atoms in the momentum orders 0 ℏk and ±2 ℏk in the TOF-image that
corresponds to the respective lattice pulse duration depicted on the x-axis of the lower graphic.
The blue datapoints show the measured relative occupation of the 0th momentum order while
the red datapoints show the occupation of the ±1st momentum orders. Every datapoint is
averaged over four measurements. The numerical solution of the time dependent Schrödinger-
equation is fitted [57, 99] (blue and red lines) on the momentum oscillations with the lattice
potential V0 as fit parameter. For the lattice alignment depicted here ccal = (90 ± 0.5)% at a
lattice depth of V0 = (58.3 ± 0.3)Erec. Values between 80 % and 90 % are regularly achieved.

11To cover this range we operate the double pass AOM far from its center frequency. While this
yields very small diffraction efficiencies, the signal is strong enough to derive a sufficiently large error
signal for the PDH lock.
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2.3 Optomechanical setup

The optomechanical part of the hybrid system consists of a micromechanical resonator
that is placed in a plano-concave fiber Fabry-Pérot-cavity (FFPC) in the MiM configu-
ration. The hybrid coupling scheme imposes special requirements on the optomechanical
system. For bidirectional coupling, the light has to be reflected back to the atoms af-
ter interaction with the resonator. This requires for an asymmetric cavity where the
reflectivity of the cavities incoupling mirror R1 is smaller than the reflectivity of the
outcoupling side R2. This yields a non-zero reflectivity on resonance. Additionally, the
cavity mirror profiles have to be designed such that most of the light coupled into the
cavity mode is reflected back into the incoupling fiber mode. Thus, the cavity is built
in a plano-concave configuration where the profile of the concave mirror is fabricated
according to the mode field diameter of the incoupling fiber. The production of fiber
cavities is described in detail in Ref. [67, 100]. For the experiments in this thesis two
new fiber cavities at higher finesses were implemented at the experimental setup12.
The experiments require positioning of the cavity mirrors and the mechanical resonator
inside the cavity with a transversal accuracy of 200 nm [57]. While the old setup with
Fempty = 60, required a longitudinal accuracy of a few nanometers, the high finesse
cavities (particularly at F = 14500) require for a precision of a few tens of picome-
ters due to their narrow linewidth. Thus, the high finesse system benefits from the
high passive stability only at cryogenic temperatures. The fiber cavities are aligned
to a length between 12µm to 24µm. Here the planar fiber is aligned closely to the
resonator (d ≈ 5µm) to acquire better mode match in the planar-planar sub cavity.
The distance of the curved fiber differs (dependent on the experiment) between 17µm
(Fempty = 60) and 6µm (Fempty = 785, Fempty = 14500). The necessary precision in
alignment is realized via a 5-axis goniometer (Fig. 2.7) that was designed and manufac-
tured in Ref. [60, 61]. A slip-stick piezo design allows to roughly align both fibers with
sub-micrometer precision while offering a large travel range of multiple millimeters.
The fibers are mounted into piezo tubes that allow to move them continuously with
picometer precision.
Both the coupling and the pulsed experiments require the mechanical resonator to op-
erate in the quantum coherent oscillation regime [95] to access the ground state. The
resonators quality factor Q and linewidth Γm depend on the bath temperature. Thus,
the whole system is attached to a He3/He4 dilution refrigerator that allows to cool the
system to a base temperature of Tbase = 500 mK. Beginning in Ref. [63] there were
severe issues with our dilution unit ranging from impure He4 that clogged the systems
needle valve and disallowed operation of the system 1K-pot, which is crucial for a proper
mixture circulation. Furthermore, blockages occurred during operation indicating leaks
in the dilution unit itself. During this thesis we conducted a thorough checkup of the
whole system. Multiple leaks were identified and fixed13. Even though this allowed to
conduct the measurements presented in Chapter 4 at stable, cryogenic temperatures,
recurring issues in the liquification process and helium supply required us to conduct
the measurements on hybrid coupling at room temperature.

12The production and characterization of theses cavities is briefly discussed in Section 2.5 and in
Appendix B.5.

13An overview over these procedures is presented in Appendix E.
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Figure 2.7: Schematic of the MiM setup: The trampoline resonator is placed in the fiber
cavity. The coated glas fibers are glued into ceramic ferrules that are mounted to piezo tubes
which allow for z-alignment with picometer precision and that can be scanned over a distance
of multiple λ, dependent on the system temperature. The piezo tubes are mounted in a 5-axis
goniometer that allows positional and angular alignment with sub-micrometer precision. Figure
adapted from Ref. [105].

2.3.1 High stress SiN trampoline resonator

From the initial use of high stress SiN membranes for hybrid experiments [101][102] the
capabilities and variety of new designs evolved rapidly. In recent years the mechanical
quality factor and resonant frequency continuously increased rendering new coupling
mechanisms and even ground state preparation at room temperature possible [103].
The MiM configuration comes at an advantage that the optical and mechanical com-
ponents of the system can be dimensioned independently. This allows us to modify the
mechanical properties of the system (e.g. resonator frequency) while leaving the opti-
cal properties largely untouched. Due to the small thickness of the resonator material
d = 50 nm ≪ λ scattering effects only appear in well defined directions such that MiM
configurations with high finesses are realizable with such systems. The positioning of
the resonator at a node/antinode of the intracavity field leads to either linear ∼ xm or
quadratic ∼ x2

m dispersive coupling with the light field allowing for accurate displace-
ment [102] or direct energy measurements [104].

Our system uses a high Q trampoline resonator in a MiM configuration as mechanical
hybrid partner. Initially introduced in Refs. [87, 88] they were designed to “enter the
quantum regime at room temperature” [87]. Trampoline resonators are tethered high
stress, thin silicon-nitride (Si3N4) membranes with that yield Q factors on the order of
Q = ωm/Γm ≈ 108 and low effective masses. Imprinting photonic crystal structures on
the central membrane allows to achieve high field reflectivities while maintaining the
excellent mechanical quality. These properties promote a very low thermal force noise
which is expressed by [95]:

Sth
F = 4kBTbathΓmmeff (2.7)
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Figure 2.8: Trampoline mode spectrum: Mode spectrum of the trampoline resonator
recorded with a spectrum analyzer (Rohde & Schwarz FSP) at a resolution bandwidth of
RBW = 100 Hz. Red dashed lines indicate contributions to the spectrum from the etalon lock
of the TiSa-laser. Black dashed lines show the different oscillation modes of the resonator where
“s” indicated a symmetric (s)-mode, “t” a torsional (t)-mode and “a” an asymmetric (a-mode).
The COMSOL simulation results for the first two (s)- and (t) mode are depicted on the top.
Simulation written by H. Zhong. Figure from Ref. [63].

To prepare the system in a quantum state, the system has to operate in the quantum-
coherent-oscillation-regime (QCO). In this regime the thermal noise introduced to the
system during one oscillation period does not exceed the energy of one additional
phonon entering the system. This is equivalent to the condition, that the amplitude
fluctuation of the resonator due to white noise does not exceed one zero-point motion
(xzpm =

√
ℏ/meffωm) within one period. Thus, the condition for reaching the QCO can

be derived to be:

Q · ωm ≥ nth = kBTbath
ℏ

(2.8)

Assuming a thermal decoherence rate Γth = nthΓm from coupling to the thermal bath
one can calculate the number of coherent oscillations the system undergoes at a given
bath temperature until an additional phonon enters the system using equation 2.9:

NQCO = ωm
Γth

= Qωmℏ
kBTbath

(2.9)

Because we operate the system at different temperatures, this condition is not always
fulfilled. Particularly measurements at room temperature are conducted outside the
QCO regime. To access the ground state, be it in a pulsed protocol or with continuous
cooling schemes, the system has to be in the QCO regime. Table 2.1 compares the me-
chanical properties at the most common parameters used for our experiments. Unless
stated otherwise, these values hold for the measurements conducted in this thesis. The
trampoline resonator used in this thesis was designed by H. Zhong [61] using a finite
elements simulation and fabricated by Norcada. The design aimed for a low effective
mass, a high Qωm-product and high transmission at λ = 780 nm.
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T ωm Q Γm Nosc
0.5 K 2π · 153.98 kHz (8.987 ± 0.001) · 107 2π · (1.7 ± 0.4) mHz 1329
10 K 2π · 152.36 kHz (6.832 ± 0.001) · 107 2π · (2.2 ± 0.5) mHz 50
293 K 2π · 154.42 kHz (6.662 ± 0.004) · 106 2π · (23.2 ± 0.8) mHz < 1

Table 2.1: Temperature dependent MiM parameters:
The resonators frequency and Q-factor are temperature dependent. While the QCO is not
reached at room temperature, it is accessible at 10 K and at base temperature. The Q-factor
is determined by ring-down measurements of the excited resonator. The measurements were
taken with the low finesse (F = 140) cavity. Since the resonator experiences optomechanical
heating and cooling dependent on the alignment the displayed quality factor is the harmonic
mean Q = 2QcoolQheat/(Qcool +Qheat). Table from Ref. [63].

The final resonator is made from high-stress (800 MPa), d = 50 nm thick Si3N4. The
central pad is suspended by 4 tethers and has a size of 115×115±10µm. The resonator
is mounted inside a 1 mm × 1 mm window of a rigid silicon frame. The frame has outer
dimensions of 5 mm × 5 mm and a thickness of 500 ± 25µm. It is placed in a copper
shuttle under its own weight [63] which allows to exchange the resonator while the
experiment is running. Simulations of the trampoline resonator calculate an effective
mass of meff = 3 ng at an eigenfrequency of ωm = 2π · 154 kHz for the first symmetric
ground mode (s1) which is in good agreement with the measurements.

For most hybrid measurements, the s1-mode is the only relevant mode that is in-
vestigated. Higher modes usually do not contribute to the coupling due to the small
mechanical linewidths and the large distance of over 350 kHz to the ground mode. In
the scenario of pulsed measurements, this is different and as a short pulse contains
frequency contributions along the whole mode spectrum of the trampoline. Thus, also
higher modes can get excited that broaden the final outcome of a pulsed measurement
protocol. The mode spectrum of the resonator is depicted in Fig. 2.8. Besides the s1
mode, the second symmetric mode (s2) is a large contributor to the spectrum for pulsed
experiments [63].

2.3.2 Cavity optomechanics of the system

Placing the mechanical resonator inside the cavity creates a coupled system of two
harmonic oscillators with eigenfrequencies ωcav and ωm that couple via the intra-cavity
light field. In a quantum mechanical picture the energy exchange is described via the
optomechanical interaction Hamiltonian Ĥ0 [102]:

Ĥ0 = ℏωcavâ
†â+ ℏωmb̂

†b̂ (2.10)

Here â†(â) are the photonic creation (annihilation) operators of the cavity light field
and b̂†(b̂) the respective operators of the resonators mechanical motion. Similar to the
“textbook” quantum mechanical harmonic oscillator, we can solve the Schrödinger
equation of the mechanical subsystem [106]. The mean phonon occupation of the res-
onator is given by n̄m = ⟨b̂†b̂⟩ with the allowed energies [106] Enm = ℏωm (nm + 1/2).
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From the solution of the time independent Schrödinger equation and the so acquired
normalization constant we get the zero point motion of the mechanical vacuum state
|0⟩ to be:

xzpm =
√

ℏ
2meffωm

(2.11)

The zero-point motion describes the amplitude fluctuation of the resonator due to
the occupation with one phonon. In this description of the system, the position and
momentum operators x̂ and p̂ can be expressed by:

x̂ = xzpm
(
b̂† + b̂

)
and p̂ = −imeffωmxzpm

(
b̂† − b̂

)
(2.12)

The coupling between both systems affects the cavity resonance frequency. A Taylor
expansion of ωcav(x) at xm = 0 yields the following dispersion relation:

ωcav(xm) = ωcav + xm
∂ωcav
∂xm

+ ... (2.13)

This expression contains terms for linear and quadratic coupling to the resonator. Both
linear and quadratic coupling can be realized in our system, dependent on the posi-
tioning of the resonator in the intra-cavity field. For our experiments, we are interested
in the phase of the interacting light which changes linearly with xm. Thus, we omit
higher order terms in the following description. The term G = ∂ωcav/∂xm describes the
cavity resonance frequency change upon a mechanical displacement xm and is called
the optomechanical coupling of the system. Using expression 2.13 together with 2.10
we obtain a new expression for the systems hamiltonian:

Ĥ0 = ℏωcavâ
†â+ ℏωmb̂

†b̂− ℏg0â
†â(b̂† + b̂) (2.14)

g0 = Gxzpf corresponds to the cavity frequency shift if the resonator moves by one
zero-point-motion xzpm. Since this is equivalent to one photon entering the cavity and
coupling to the resonator, this term is called the single photon coupling strength.
The most simple design for such a system would be a moving end mirror Fabry-Pérot
cavity. This system yields the simple resonance condition Lres = 1/2 · nλ (n ∈ N) and
has a resonance frequency of [107] ωcav = nπc/L, where L denotes the cavity length,
and c the speed of light. If one mirror is displaced by a small amount xm the frequency
changes by:

ωcav(xm) = nπc

L+ xm
≈ ωcav

(
1 − xm

L

)
= ωcav − xm

ωcav
L

(2.15)

Like in equation 2.13 we use a Taylor expansion at xm = 0. Deriving this term yields
the frequency shift per displacement G = −ωcav/L [107].

The system with a MiM geometry behaves differently. The membrane can be treated
as a semi-transparent third mirror that divides the cavity into two subcavities. Depen-
dent on the exact position in the intracavity field either one of the two subcavities is
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resonantly enhanced. The implications for the optomechanical properties of the system
have been investigated in previous publications [107, 108]. Most relevant are the posi-
tion dependent change in the reflectivity on resonance and the influence on the cavity
linewidth and thus the finesse. Figure 2.9 shows a simulation of the cavity detuning
dependent transmission for different positions of the membrane in the intra-cavity field.
The slope of the curve corresponds to the optomechanical coupling. While for a central
placement (MiM) of the resonator the slopes are symmetric, they develop an asymme-
try when the resonator is moved closely to the cavity edge [104, 107].
The optomechanical coupling becomes dependent on the choice of the slope and can
be further increased by placing the membrane at the edge (MATE) of the cavity. This
setting was investigated in Ref. [104]. For both geometries, the cavity resonance fre-
quency dependent on the resonators intra cavity position xm behaves differently. The
respective cases are described by the following equations [104, 107]:

ωMiM(xm) = NωFSR + ωFSR
π

(
acos

[
(−1)N+1|rm|cos(2kNxm)

]
− ϕr

)
(2.16)

ωMATE(xm) = NωFSR + ωFSR
π

atan
(cos(ϕr) + |rm|cos(2kNxm)

sin(ϕr) − |rm|cos(2kNxm)

)
(2.17)

Figure 2.9: Cavity resonance modulation for different membrane positions: Simula-
tion of the cavity resonance modulation for the system with Fempty = 785 and Lcav = 12.9µm.
We assume R1 = 99.97% and R2 = 99.25% and a resonators field reflectivity of rm = 0.57. The
slope of the curve at the resonator position zm resembles the optomechanical coupling strength.
(a) Bringing the membrane close to the low reflective mirror causes an asymmetry between
the slopes. (b) Resonance modulation with the membrane in the center. The slopes have a
symmetric shape. (c) Simulation over the whole cavity length. Darker shades indicate higher
transmission. The individual surface profiles of the cavity mirrors are not taken into account in
this simulation.
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Here N is the cavity resonance number, ωFSR = πc/L the free spectral range, rm the
resonators field reflectivity and kN = πN/L the N − th cavity resonance [104]. The
phase shift of the light by reflection off the membrane is described by ϕr. Figure 2.10
shows plots of both equations 2.16 and 2.17 for different rm. It is beneficial to align the
system to this regime to increase the optomechanical coupling.
The MATE geometry presented in Ref. [104] resembles an extreme case because the
distance between the membrane and and the cavity mirror is only 1.64 ± 0.78µm in
the publication. While the system is in principle stable enough, to operate at these pa-
rameters, it comes with a large risk of damaging the resonator since the fibers can slip
during the alignment process and the error of the length measurements after alignment
is on the same order as the proposed distance [104]. Thus, we choose to position the
resonator off center but at a slightly larger distance of d ≈ 4.5µm. Here the asymme-
try on the cavity resonances is still prominent but not as pronounced as described by
equation 2.17.
The optomechanical coupling is determined by measuring the cavity resonance fre-
quency for varying xm. Previously this measurement came with some technical difficul-
ties, that required a special evaluation method that is described in Refs. [57, 62, 63].
Due to the large linewidth of the cavity (multiple GHz, except for Fempty = 14500), it is
not possible to scan the laser frequency over the resonance. At the same time, the travel
range of the upper fiber piezo in the system was too small to scan over one FSR when
the system was operated at base temperature disallowing for a direct measurement of
the piezo calibration. For the experiments at room temperature these limitations do
not exist and the optomechanical coupling of the MiM system gm can be measured
directly with a new method presented in this section.

Figure 2.10: Cavity resonances for different geometries:
(a) Resonance behavior and cavity linewidth normalized to the empty cavity for the MATE
system according to equation 2.17. The different shades indicate different field reflectivities rm.
Close to the edge, the optomechanical coupling is strongly enhanced when choosing the falling
slope. (b) Same quantities plotted for the MiM system according to equation 2.16 for different
field reflectivities. Figure adapted from Ref. [104].
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Additionally, the piezo moving the upper fiber had to be replaced in the last months
of this thesis due to a malfunction. The replacement piezo showed a calibration similar
to the lower fiber piezo such that the method described here, was also applied at base
temperature. The measurement described in the following section was done for the
cavity with Fempty = 78514 15 .
The optomechanical coupling of the system can be derived from G = −ωcav/L =
187 GHz/nm of the empty cavity via the relation [107]:

gm
G

= ∂Lres
∂xm

(2.18)

This quantity can be measured by symmetrically scanning both fibers around the res-
onator (emulating a movement of xm) while slowly changing the cavity length by ∆L.
This requires accurate knowledge of the piezo calibration ccal = ∂x/∂U and a travel
range of at least one λ to properly resolve both slopes of the cavity resonance. We de-
termine the piezo calibration by scanning each piezo over at least one FSR which yields
a distance of λ/2 and measure the required voltage to cover this range. These measure-
ments are 10 times averaged and the acquired mean defines the piezo calibration. The
calibration values determined with this method are consistent with old measurements
[62, 63] but can be acquired much faster.
An overview about the piezo calibrations for different temperatures and the exchanged
upper piezo is presented in Appendix B.4. For the setup discussed here, the piezo cal-
ibration at room temperature yields cup,293K = (2.37 ± 0.01) nm/V and clow,293K =
(2.95 ± 0.01) nm/V. This calibration is also relevant for the homodyne calibration pre-
sented in Section 2.4.
We measure ∂Lres/∂xm by applying the scheme presented in Fig. 2.11. According to the
piezo calibration, a 20 Hz triangular scanning ramp is applied to each fiber such that
both fibers move synchronously and in phase by a distance x(t) in the same direction16.
This yields an effective change of xm in the intra-cavity field. Additionally, the cavity
detuning is varied by applying an additional offset scan ∆L(t) to one of the fibers. This
scan is slow (10 mHz) compared to the symmetric scan. The slow movement of the
fiber changes the resonance frequency of the cavity which influences the xm-dependent
transmission signal. Along each ramp of the fast, symmetric scan, the transmission
signal is recorded.

Figure 2.11: Sketch of gm measurement
Both cavity mirrors are scanned symmetri-
cally and in phase around the resonator at a
frequency of 20 Hz and undergo a movement
x(t). One cavity mirror is slowly (10 mHz)
scanned with an additional offset to change
the cavity length. At each slope of x(t) the
transmission dependent on ∆L is measured.

14We use Lcav = 12.9 (5) µm, ωcav = 2π · 384 THz and λ = 780.24 nm.
15For the measurements for the low finesse cavity used for PAC, refer to Ref. [63]. For more infor-

mation about the system parameters at F = 14500 refer to the respective Chapter 4.
16The signal is generated by a 4 channel AWG (TGA 12100) that allows for frequency and phase

synchronization between the channels. The output signal is amplified by a factor 50.
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The outcome is presented in Fig. 2.1217. Each horizontal line corresponds to a scan of
xm over a distance of lambda at a set cavity detuning ∆L(t). This data requires no
additional postprocessing and the optomechanical coupling can be directly extracted
from linear fits to the individual slopes. For the hybrid experiments we operate the
system at any of these slopes to tune the finesse and optomechanical coupling strength.
We find for the configuration with Fempty = 785:

gm,high
G

= −1.6 ± 0.1 and gm,low
G

= 0.58 ± 0.01 (2.19)

.

Figure 2.12: Measurement of
gm:
(a) Raw data of the cavity trans-
mission signal for a symmetric scan
of both fibers around the resonator
with a slow modulation of the cav-
ity detuning. The red shades indi-
cate the cavity transmission (dark
corresponds to high transmission)
at a resonator position xm. (b) Ex-
tracted resonance curve from up-
per plot by identifying the points of
highest transmission. The optome-
chanical coupling at each slope is
determined by a linear fit (dashed
blue lines) through the individual
turning points.

17The data was recorded with a RTO (Rohde & Schwarz): The total measurement time is 40 s at a
length of 20 MSa and a sampling rate of 500 kSa/s.
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2.3.3 Optical spring effect

In the sections before, we neglected that the resonator position xm in the intra-cavity
field is a dynamic quantity itself [102, 109]. While the resonator motion modulates the
cavity frequency with the optomechanical coupling strength ∂ωcav/∂xm, pumping the
system with a laser that is detuned to the cavity resonance [109] shifts the resonators
frequency by ∆ωm. This shift, widely referred to as optical spring effect (OSE), is a
consequence of dynamical backaction of the resonator onto itself via the optomechan-
ical coupling gm. Mathematically the process can be described similarly to feedback
cooling18. The intra-cavity radiation pressure force influences the susceptibility χeff of
the resonator yields an altered effective spring constant k′

m = mω′2
m = m(ωm + ∆ωm)2

[109]. This frequency shift is linked to a change in the resonators mechanical damping
rate by the optomechanical damping rate Γopt such that Γ′

m = Γm + Γopt. Dependent
on the laser detuning relative to the cavity, Γopt can take positive or negative values
which comes with optomechanical heating or damping of the resonator. To measure
the optical spring effect we tune the cavity close to resonance with the piezo tubes
and observe mechanical displacement PSD via lock in detection with our homodyne
detection setup (Sec. 2.4). We use the manual scan of our TiSa laser to tune the laser
frequency ∆ = ωcav − ωTiSa over a range of up to 40 GHz. For each detuning we mea-
sure the frequency shift of the resonator relative to its eigenfrequency and the cavity
transmission signal. The transmission curve resembles the resonance of the cavity and
is fitted by a Lorentzian curve to determine the cavity linewidth.
The OSE is fitted by equation 2.20 while the optomechanical damping rate can be
calculated from equation 2.21 [109]:

∆ωm = n̄cavg
2
0

( ∆ + ωm
(∆ + ωm)2 + κ2/4 + ∆ − ωm

(∆ − ωm)2 + κ2/4

)
(2.20)

Γopt = n̄cavg
2
0

(
κ

(∆ + ωm)2 + κ2/4 − κ

(∆ − ωm)2 + κ2/4

)
(2.21)

Both quantities scale with the number of intra-cavity photons n̄cav and the full width at
half maximum (FWHM) cavity linewidth κ. The intra-cavity photon number dependent
on the resonator position is expressed by:

n̄cav(xm) = n̄max
cav

1 + [2(Gxm + ∆)/κ]2
(2.22)

where n̄cav(xm) is the maximum number of photons circulating in the cavity. This
implies that the above described effect becomes increasingly relevant for higher finesse
optomechanical systems where Γopt can exhibit multiple Hz exceeding the mechanical
linewidth of the resonator by orders of magnitude. Figure 2.13 shows measurements of
the OSE and linewidth for the system with Fempty = 785 measured at the point of high
and low optomechanical coupling19. Since the position of the resonator in the cavity

18The theory of feedback cooling is described in very detail in previous theses. Thus, it is omitted in
this chapter to reduce redundancy. For a detailed description refer to Appendix C and [62, 63, 76].

19The corresponding measurement for Fempty = 60 is presented in Ref.[63].
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Figure 2.13: Measurement of the optical spring effect:
(a,b) Measurement of the transmission (blue markers) and optical spring effect (red markers)
for varying laser-cavity detunings ∆. The transmission curves are fitted with a Lorentzian fit
(blue line) while the frequency shifts are fitted with equation 2.20 (red lines). The red dashed
lines show the behavior for a constant intra cavity power. The blue dashed line denotes the
FWHM of the cavity transmission. (a) Measurement with the resonator aligned to the point of
low optomechanical coupling which corresponds to the low finesse adjustment of the cavity. (b)
Measurement for the point of high optomechanical coupling.
(c,d) Calculated optomechanical damping rates according to equations 2.21 and 2.25 due to the
signal light from the homodyne detection (grey shaded) and for different coupling lattice powers
(colored). The measurement for (a,c) was done at (2.5±0.5)µW signal light. The measurement
for (b,d) at (0.8 ± 0.2)µW. The lighter shades show the 2σ confidence bounds to the fits.

has an influence on the linewidth [104], both working points have a different finesse.
From the linewidth measurement and we can determine the systems finesse at a cavity
length of (13.3 ± 5)µm to [107]:

F = ωFSR
κ

= πc

κL
with Flow = 650 ± 50 and Fhigh = 1500 ± 100 (2.23)

with

κlow = 17.5 ± 0.7 GHz and κhigh = 7.6 ± 0.2 GHz (2.24)
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The optomechanical cooling rate for the system at a given lattice power Plat can be
calculated from the previously introduced equations 2.21 and 2.20 by measurement of
the optical spring effect20. We can use the relation:

Γopt,Plat

Γopt,PHD

= ∆ωopt,Plat

∆ωopt,PHD

⇒ Γopt,Plat = Γopt,PHD

∆ωopt,Plat

∆ωopt,PHD

(2.25)

In comparison to the old cavity, the optomechanical damping is much stronger. Because
of the linear dependency of the optical spring frequency shift upon an incident light
power it is possible to extrapolate the optomechanical damping rate of the system for
different powers of light that couples into the cavity. While for a light power of 24µW
[63] the damping rate in the old system was 2π · 1.1 mHz its equivalent for the new
configuration at F = 650 is 2π · 640 ± 50 mHz. This not only requires us to operate
the system on the optomechanical cooling side at any time, it is also very relevant for
hybrid coupling experiments. Because the additional optical damping can be on the
same order of magnitude as the sympathetic cooling rate, it has to be accounted for to
get comparable measurements of the hybrid cooperativity. According to [101] we can
determine a reduced mode temperature of the resonator for an additional damping Γopt
to:

Tmode,opt = Tbath
Γm

Γm + Γopt
(2.26)

where Tbath denotes the effective bath temperature of the system. This also lead to a
reduced initial phonon occupation n̄ of the resonator.

n̄ = kBTmode
ℏωm

(2.27)

Most of the sympathetic cooling experiments at high coupling lattice powers in Chapter
3 require to operate the system at the point of maximum optomechanical damping. In
these measurements we account for the additional damping by using the mode temper-
ature calculated from equation 2.26 as initial system temperature. The optical damping
rates for the coupling lattice powers used in Section 3.3 were calculated from the optical
spring measurements and are presented in Fig. 2.13 (c,d).

Use of the optical spring lock:
In Ref. [110] the optical spring lock was introduced as a locking scheme to actively
stabilize the cavity length in systems with large linewidths. This lock was used for the
PAC measurements but not for the hybrid coupling experiments with the cavity pre-
sented here since we worked at the point of maximum optomechanical damping, where
the slope of the derived error signal is small and the lock unstable.

20Assuming a known linewidth κ, detuning ∆ and eigenfrequency ωm.
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2.4 Detection system

To detect the resonator motion on the quantum level the detection is required to be
shot-noise limited and has to offer an exceptionally high signal-to-noise ratio (SNR)
[95]. We meet these requirements with coherent, balanced homodyne detection. While
conventional optical detection schemes usually acquire information from intensity mea-
surements, coherent detection schemes utilize the mixing of a signal beam with a fixed
frequency reference beam (referred to as local oscillator (LO)) to access amplitude and
phase quadrature information of the measured signal. The main noise source in these
systems is shot-noise introduced by the - usually strong - local oscillator [111] on the
photodiode. Furthermore, balanced homodyne detection is insensitive to common-mode
noise contributions. Figure 2.14 shows a schematic of the homodyne detection scheme.
The signal and LO beams are described by complex field vectors [111], with the real
amplitudes ASIG, ALO, their phases ϕSIG, ϕLO and their respective optical frequencies
ωSIG, ωLO:

E⃗SIG = A⃗SIG(t)exp [−i(ωSIGt+ ϕSIG(t))] (2.28)

E⃗LO = A⃗LO(t)exp [−i(ωLOt+ ϕLO(t))] (2.29)

Both field vectors are mixed with a 2x2 beam splitter resulting in the output fields
E⃗1(t) and E⃗2(t). These fields can be calculated from the input fields by the optical
transfer function of the splitter with the power-coupling coefficient ϵ [111]:[

E⃗1
E⃗2

]
=
[√

1 − ϵ i
√
ϵ

i
√
ϵ

√
1 − ϵ

] [
E⃗SIG
E⃗LO

]
(2.30)

Figure 2.14: Schematic of balanced homodyne detection: A signal beam and a local
oscillator beam with the field ESIG(t) and ELO(t) are overlapped with a 50/50 beamsplitter.
The resulting fields E1,2(t) are directed onto a balanced photoreceiver. Amplitude and phase
information are converted into the photodiode currents i1,2(t) that are added to result in the
output current ∆i(t). This current omits direct detection and mixed frequency terms as well as
common-mode noise contributions that would occur on a single photodiode coherent detection
scheme. Figure based on Ref. [111].
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The electronic signal of an interference signal on a single photodiode with responsivity
R is then described by [111]:

i(t) = R
∣∣∣E⃗1

∣∣∣2
= R

[
(1 − ϵ) |ASIG(t)|2 + ϵ |ALO|2 + 2

√
ϵ(1 − ϵ)A⃗SIGA⃗LOcos(ωIFt+ ∆ϕ(t))

]
(2.31)

Here ωIF = ωLO−ωSIG is the frequency difference between the signal and LO beam. The
first two terms describe direct detection components. These components are propor-
tional to the power of the respective beams. The third term arises due to the coherent
mixing of both beams. Assuming |ASIG|2 ≪ |ASIGALO| and no LO intensity noise the
signal term becomes negligible and the information is contained in the last term which
allows to simplify the expression to [111]:

i(t) ≈ 2R
√
ϵ(1 − ϵ)cos(θ)

√
PSIG · PLOcos(ωIFt+ ∆ϕ(t)) (2.32)

where we used A =
√
P . The term cos(θ) arises from the scalar product of the field

amplitudes and describes the relative polarization between both fields. The signal i(t)
is maximized if cos(θ) = 1 and the term 2

√
ϵ(1 − ϵ) is at its maximum. As such, the

photo current of the detector is maximized if ϵ = 1/2 and if the polarization between
both beam is matched. Under this condition the expression can be further simplified
to:

i(t) = R
√
PSIG(t)PLOcos(ωIFt+ ∆ϕ(t)) (2.33)

In the case of homodyne detection, the signal and LO beam have identical frequencies
and ωIF = 0. Thus, for constant beam powers, the signal becomes purely dependent on
the relative phase between both beams.

2.4.1 Noise in homodyne detection

The homodyne detection scheme allows for a phase sensitive low noise measurement of
the optomechanical system [93, 112]. The SNR of this detection scheme is dependent
on the local oscillator being strong compared to the signal and any other source of
noise [93]. The SNR on a single photodiode port relates the received signal ⟨i2(t)⟩ to
the thermal ⟨i2th⟩ and shot noise ⟨i2sn⟩ contributions [111]:

SNR = ⟨i2(t)⟩
⟨i2sn⟩ + ⟨i2th⟩

(2.34)

where we use [111]:

⟨i2th⟩ = 4kBTBe
RL

and ⟨i2sn⟩ = 2R
(
PSIG(t)

2 + PLO

)
Bee (2.35)

Here e is the elementary charge, Be the electronic bandwidth RL the load resistance
and T the detection systems temperature. By using these expressions together with



Detection system 33

Figure 2.15: SNR in balanced homodyne detection according to equation 2.36:
(a) SNR of the homodyne detection dependent on the LO power. The blue lines show the SNR
at different signal beam powers for the 1 MHz FEMTO HCA-S that was used for all coupling
experiments. The red lines depict the corresponding SNR for the 500 MHz FEMTO HBPR
which was used for the coupling experiments. (b) SNR of the detection for different ratios
between LO and signal beam.
For both simulations the individual quantum efficiencies of the photodiodes ηHCA−S = 0.86 and
ηHBPR = 0.81 as well as a load resistance of RL = 50 Ω and a temperature of T = 295 K were
used. The simulation neglects polarization fluctuations and assumes a fixed phase relation at
∆ϕ = π between both beams and a shot noise limited detection.

equation 2.33 and inserting them into equation 2.34 we obtain the SNR for an optical
homodyne detection setup:

SNRHD = 1
Be

· RL
4kBT

· R2PSIG(t)PLO
2eR(PSIG/2 + PLO) (2.36)

This expression allows for an estimation of the necessary detection setup parameters
for the different experiments that are presented in this thesis. While the coupling ex-
periments in Chapter 3 were conducted with a 1 MHz balanced photoreceiver21, the
pulsed experiments require for much larger bandwidths which made the use of a 500
MHz balanced photoreceiver22 necessary. Figure 2.15 depicts an overview plot for the
detection SNR for the different detector configurations. Due to the much higher band-
width and lower quantum efficiency, the SNR of the 500 MHz detection setup is 27 dB
lower that the 1 MHz setup when using the same operating parameters. Both systems
benefit from a large ratio between the LO and signal beam power. For most of the con-
figurations, the SNR is barely improving for ratios above 2000:1. While for the HCA-S

21FEMTO HCA-S
22FEMTO HBPR-500-FST
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configuration, in principle every simulated combination exhibits SNR > 1, the setup
using the HBPR-500 requires at least a ratio of 300:1 at 100 nW signal beam power to
fulfill this requirement. The maximum possible ratio is limited by the damage threshold
of the used photodetectors. Thus, the set LO:SIG ratios in the presented experiments
differ between 2000:1 and 15000:1.

Balanced homodyne detection:
In the previous section we assumed the direct detection components to be negligible
and the LO to be free of intensity noise. In a real experiment, this assumption does
not hold. Large LO powers can be linked to intensity fluctuations that introduce noise
to the system and the direct detection components can overlap and interfere with the
coherent detection of the system. To overcome these limitations and reduce the noise
further, the homodyne detection is balanced as depicted in Fig. 2.14. Assuming an
optimal configuration with ϵ = 1/2, ωIF = 0 and equal polarization, the beams can be
described by their respective field amplitudes [112]:

ASIG(t) = ASIG + δQSIG(t) + iδPSIG(t) (2.37)

ALO(t) = [ALO + δQLO(t) + iδPLO(t)] eiϕLO (2.38)

where δQ and δP describe the amplitude and phase quadrature. As discussed in the
previous section, the detection benefits from large power ratios. Assuming A2

LO ≫ A2
SIG

the intensities on both detectors can be treated as equal:

A1 =
√

1
2ALO(t) +

√
1
2ASIG(t)

A2 =
√

1
2ALO(t) −

√
1
2ASIG(t)

(2.39)

From this representation we calculate the resulting photocurrents i1(t) and i2(t) on the
detectors

i1(t) = |A1|2 = 1
2
(
|ALO(t)|2 + |ASIG(t)|2 +ALO(t)A∗

SIG(t) +A∗
LO(t)ASIG(t)

)
(2.40)

i2(t) = |A2|2 = 1
2
(
|ALO(t)|2 + |ASIG(t)|2 −ALO(t)A∗

SIG(t) −A∗
LO(t)ASIG(t)

)
(2.41)

The resulting balanced detector signal is:

∆i(t) = i2(t) − i1(t) = 1
2 (−2ALO(t)A∗

SIG(t) − 2A∗
LO(t)ASIG(t)) (2.42)

Using the expressions 2.37, 2.38 and omitting terms similar to ALOA
∗
SIG and ASIGδQ

∗

these equations transform to [112]:

∆i(t) ≈ 2ALO (δQSIG(t)cos(ϕLO) + iδPSIG(t)sin(ϕLO)) (2.43)
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This detection scheme omits the direct detection terms since they are common mode
on both photodiodes. The mixed term becomes dominant. Expression 2.43 shows the
remaining contributions to the overall homodyne signal. Besides a term that originates
from the mixing of signal and LO, it is mainly dependent on the strength of the LO
beam ALO and the amplitude or phase quadrature of the signal beam. Which of these
components is measured depends on the chosen phase ∆ϕ. In our experiment, the res-
onator modulates the phase quadrature δPSIG. Thus, according to equation 2.43 the
phase is locked at ∆ϕ = π/2.

The measurements conducted on the resonator separate into weak, continuous and
strong, projective measurements. For weak measurements the disturbance of the sys-
tem due to the measurement is minimal at the cost of a lower information gain about
the system state [113]. Strong projective measurements allow for an almost arbitrarily
precise measurement of one system observable at the cost of the state destruction [113].
The effects of introducing back-action noise into the system by a strong measurement
opposed to the increase of imprecision noise by a weak measurement form the SQL as
depicted in Fig. 2.16. For continuous measurements, an optimum in detection accuracy
can be reached if the combination of imprecision noise and backaction noise is mini-
mized. The SQL is a direct consequence of the fundamental Heisenberg limit [114]. In
Chapter 4 we present a back-action evading QND measurement technique [59, 72, 114]
that allows to surpass the SQL by utilizing very short, intense measurement pulses on
the timescale of the cavity linewidth. This technique maximizes the ratio between the
information gain of a single measurement and the introduced back-action noise. For
these considerations to hold the detection has to be shot-noise limited.

Figure 2.16: The SQL of displacement
sensing:
Noise PSD Stot

x (ωm) of a mechanical oscilla-
tor with eigenfrequency ωm.
The standard quantum limit is defined at
the point where the introduced imprecision
noise at low detection powers is equal to the
backaction noise that arises from the mea-
surement itself. The backaction noise can be
minimized in a pulsed measurement scheme
which allows to beat the SQL.
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θ

Figure 2.17: Sketch of the modified homodyne detection setup for hybrid coupling
experiments: Light from the homodyne detection branch (HD) is coupled into a variable fiber
beamsplitter (Evanescent Optics Model-905-SM ) that splits the light into an LO (port X) and
signal branch (port Y) at a ratio between 2000:1 and 15000:1. The power in both branches is
monitored by a photodiode (Thorlabs PD36A) where the LO branch PD is used for intensity
regulation. This allows us to set the splitting ratio independently of the set LO power. The
signal beam is coupled into the cavity with perpendicular polarization to the coupling beam.
It is reflected from the cavity travelling the same path backwards and is outcoupled at port B.
Here the losses at the beamsplitters are small due to the large splitting ratios (Rloss ≈ 1%).
The LO beam is delayed by a fiber that compensates for the path length difference between
the two branches and a home-built fiber stretcher that is used as a high bandwidth phase-
lock. The polarization of both signal and LO beam is cleaned by a PBS. Both beams are
overlapped at perpendicular polarization and directed onto a balanced photoreceiver through
a λ/2 waveplate in a high precision rotation mount and a 20◦ Wollaston prism. The respective
polarization states are shown in the sketch. To achieve excellent mode match, both outcouplers
(Schäfter & Kirchhoff FC60-4-M12-37 ) are of the same production batch. FPCs are placed in
front of every polarization selective element. Splices are omitted in this figure.

2.4.2 Fiber based homodyne detection setup

The considerations made above define the requirements on the detection. Particularly
for the pulsed measurements it is necessary to work at high power ratios between sig-
nal and LO beam (refer to Fig. 2.15). Furthermore, an excellent mode match between
both beams, spatially and in the time domain, is required. The continuous operation at
higher cavity finesses requires working with much lower signal beam powers while the
detection has to remain shot-noise limited. Based on these considerations and experi-
ences in other groups [115], we set up a new detection system design using a mainly
fiber components. A setup sketch for hybrid coupling experiments is depicted in Fig.
2.1723. The use of free space components was heavily reduced compared to the previous
setup [63]24. This comes at an advantage of a much higher passive stability once the
system is set up. The use of a variable fiber splitter allows to set the ratio between
the LO and signal branch arbitrarily high without requiring for any re-coupling. The
pathlength compensation is seamlessly integrated in the LO branch.

23The version modified for pulsed experiments is introduced in Chapter 4.
24For details on the previous setup refer to Appendix A.1.
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Detection system ηHD ηdet,780 Total losses ηloss V2 [%]
Free space HCA-S (old, hybrid) 0.56-0.6 0.86 0.72 95-99
Free space HBPR 500 (old, pulsed) 0.53-0.57 0.81 0.72 95-99
Fiber based HCA-S (hybrid) >0.47 0.86 0.56 >99
Fiber based HBPR 500 (pulsed) >0.52 0.81 0.66 >99

Table 2.2: Detection efficiency for different setups:
Comparison of the detection properties for the setups used in this thesis regarding losses,
quantum efficiency and visibility. The total losses ηtot are the accumulated losses on the path
between the cavity and the last PBS in front of the detector. ηHD,780 denotes the quantum
efficiency of the detector at 780 nm. And ηHD = V2ηdet,780ηloss the detection efficiency.

It can be accurately dimensioned by choosing the according fiber length which re-
duces the losses in this branch over the previous setup by 25%. A home-built fiber
stretcher phaselock allows for an estimated 40 times higher bandwidth than in the pre-
vious setup (BFS = 4 kHz, refer to Appendix B.2) and can be operated at low voltages
(Ulock ≈ 1VPP). Since the used outcouplers and corresponding fibers are of the same
type and batch, the mode match between both branches is inherently optimized yield-
ing a constantly high visibility of V > 99%25.

The new detection setup is shot-noise limited over the full range of feasible measure-
ment parameters. Beginning at a LO power of 20 mW (recommended maximum optical
power) and a splitting ratio of 5000:1 (PSIG = 4µW) we measure the detection noise
floor in the range between 150 and 160 kHz for varying LO powers. Figure 2.18 shows
the noise floor averaged over 10 traces for the respective signal and LO powers. The old
setup showed classical effects to be dominant above an LO power of 11 mW [62]. The
new system allows for operating the detection at higher LO powers which improves the
SNR.

Figure 2.18: Noisefloor dependent on
LO power for FEMTO HCA-S:
Noise floor power spectral density (PSD)
for different LO powers at a LO:SIG beam
power ratio of 5000:1. For a locked phase at
∆ϕ = π/2, the noise floor PSD between 150
kHz and 160 kHz was measured via lock-in
detection. Each datapoint consists of a 10
times averaged spectrum. The optomechan-
ical system was kept off-resonant.
The PSD is linearly dependent on the LO
power over the whole range of chosen powers
(PLO,min = 74µW − PLO,max = 20.5 mW).
This indicates a shot noise limited detection
for all LO powers at this ratio.

25Here we use the definition V = V ISmeas
V IStheo

with V ISmeas = Imax−Imin
Imax+Imin

and V IStheo = 2
√

ISIGILO
ISIG+ILO

.
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A comparison between the individual detection efficiencies and interference contrasts
(visibilities) is presented in Table 2.2. Although we find advantages to this new setup,
there are drawbacks regarding the detection efficiency. This can be accounted to losses
in the splices of the fiber optical components, some of which were only available with
specific fiber types, and the need of additional polarization filter optics to compensate
for noise arising due to the long fiber lengths. Nonetheless, the improvements outweigh
the disadvantages, particularly for the pulsed experiments26.

2.4.3 Homodyne calibration

The homodyne detection output is a voltage signal UHD that relates to the resonator
displacement xm via a calibration factor cHD = ∂UHD/∂xm. This quantity is dependent
on the alignment of the optomechanical system and the cavity linewidth [57]:

cHD = ∂UHD
∂xm

= ∂ωcav
∂xm

∂ϕx
∂ωcav︸ ︷︷ ︸

(A)

∂UHD
∂ϕx︸ ︷︷ ︸
(B)

(2.44)

Expression (A) is determined by effectively changing the resonator position xm in the
intra-cavity field and recording the frequency response. Both cavity mirrors are scanned
symmetrically and in phase around the resonator. The intensity of the reflection signal
from the cavity is recorded and fitted with the relation for the cavity resonance with
the cavity mirror reflectivities R1 and R2 as free fit parameters [57]:

Iref,norm(xm) =
∣∣∣∣∣
√
R1 − e4πixm

√
R2

1 − e4πixm
√
R1R2

∣∣∣∣∣
2

(2.45)

The determined reflectivities are used to calculate the phase response ϕx:

ϕx = Im
(√

R1
e4πixm(1 −R1)

√
R2

e4πixm
√
R1R2 − 1

)
(2.46)

The global maximum of the derivative of this expression yields the calibration factor
∂ϕx/∂xm. Measurements of this quantity are depicted in Fig. 2.19 for all used ex-
perimental configurations in this thesis. Towards higher finesses the calibration factor
increases due to the reduction of the cavity linewidth. Furthermore, the position of the
resonator inside the cavity has a large impact on the calibration since it also influences
the cavity linewidth.

F σon cHD,F /
rad
nm

140 0.53 ± 0.01 0.56 ± 0.01
650 0.82 ± 0.02 4.4 ± 0.2
1500 0.65 ± 0.01 12.2 ± 0.5
14500 0.20 ± 0.04 170 ± 40

Table 2.3: Homodyne calibration for
different fiber cavities:
Overview of the reflectivity on resonance
and homodyne calibration factor. The
small reflectivity on resonance of the high
finesse cavity is discussed in more detail in
Chapter 4.

26The modified setup for the pulsed measurements is discussed in Section 4.2.3.
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It is worth noting that the properties of the higher finesse cavities are much more sen-
sitive to slight deviations in alignment.
Most of the measurements in this thesis are conducted at room temperature. Thus,
the quantity ∂ϕx/∂xm cannot be considered as a fixed quantity and is determined on
a daily basis. Expression (B) in equation 2.44 is determined by scanning the LO phase
relative to the signal beam. This creates a sinusoidal signal with a peak-to-peak voltage
UPP where the slope at the turning points of the signal is given via ∂UHD/∂ϕx = UPP/2.
This signal critically depends on the mode match between signal and LO beam, the
general alignment and the used detector. Like the previous quantity, this signal is opti-
mized and measured on a daily basis. Using this expression, the homodyne calibration
yields:

∂UHD
∂xm

= ∂ϕx
∂xm

· UPP
2 (2.47)

Additionally, we measure the reflectivity on resonance of the system. The properties
and resulting calibration factors of each system are presented in Table 2.327. .

Figure 2.19: Calibration measurements for different cavity configurations: (a) Nor-
malized reflection signal for a symmetric scan of the cavity mirrors around the membrane. The
solid lines show the fit of equation 2.45 with the reflectivities R1 and R2 as free fit parameters.
(b) Calculated phase ϕx from the previously acquired reflectivities according to equation 2.46.
(c) Derivative ∂ϕx/∂xm. The global maximum yields the phase change per membrane displace-
ment at the turning point and determines the homodyne calibration. The red (F = 650) and
blue (F = 1500) curves are measured for the same cavity but at different positions of the res-
onator in the intra-cavity field. The calibration curve of the cavity at F = 14500 is omitted
for better overview and yields cHD,15k = (170 ± 40) rad

nm . A comparison between all systems is
concluded in Table 2.3.

27The shown values are examples in that they have the correct order of magnitude. Due to daily
drifts of the system they differ between the individual measurements presented in this thesis.
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Overview over the different experimental systems

During this thesis experiments with three different cavities were conducted:

• The cavity with Fempty = 60 from Ref. [57] was used for experiments on pump-
asymmetry-compensation (PAC).

• The cavity with Fempty = 785 was used for new hybrid coupling experiments
where the positioning of the resonator in the intra-cavity field allowed for opera-
tion at two different finesses.

• The cavity with Fempty = 14500 was exclusively used for pulsed measurements
and operated at cryogenic temperatures.

Further optomechanical properties of the systems are concluded in Appendix B.1.

2.5 Production and characterization of high finesse fiber
cavities

The cavities used in this thesis were produced at this experiment and coated externally
dependent on the needed cavity properties. The cavities at Fempty = 785 were pro-
duced during Ref. [67]. The pulsed measurements require for an even for higher finesse.
Thus, we produced another batch of fiber cavities while aiming for the highest finesse
(Fempty = 14500) that is technically feasible in this configuration. The setup used for
the cavity production is described in Refs. [67, 100]. When starting the production
of the new cavities the previously used CO2 laser28 malfunctioned due to degradation
of the laser-medium gas29. This chapter focuses on the design considerations and the
characterization of the produced cavities.
We require a high finesse at a high reflectivity on resonance, to get as much informa-
tion from a single measurement of the resonator as possible. Both the finesse F and
the field reflectivity on resonance ρ̄ of the system30 can be defined by the total losses
in the system. Assuming these losses to be only caused by the finite reflectivities of the
cavity mirrors, they can be calculated to [116]:

F = π(R1R2)1/4

1 −
√
R1R2

(2.48)

ρ̄ =
√
R1 −

√
R2

1 −
√
R1R2

ρ̄ ∈ [−1, 1] (2.49)

Modern coating techniques allow for excellent reflectivities at losses below 10 ppm [117],
given the right surface conditions. The most demanding task for our configuration is
achieving a good mode match between the fiber guided light mode and the cavity
mode [118, 119]. Since there are no additional optics available, the parameters of the

28Access Laser AL30
29For a characterization the replacement laser (Coherent Diamond C20 ) refer to Appendix B.5.
30The quantity ρ̄ is not to be confused with the reflectivity on resonance ρ = |ρ̄|2.
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outcoupling concave fiber mirror have to be optimized to recouple into the fiber mode
with high efficiency. The influence of the mode match onto the reflectivity on resonance
is critical and has been investigated thoroughly in Ref. [119]. Assume a light field ψi in
a glass fiber. This field consists of a part that is mode matched with the cavity mode
ψmm and a part ψnm that is not, according to the coefficients β1,2:

ψi = β1ψmm + β2ψnm with
∑

i
βi = 1 (2.50)

The overlap integral yields the mode match parameter β [119]:

β = |β̄1| = |β̄2| − 1 β ∈ [0, 1] (2.51)

Perfect mode match corresponds to β = |β̄| = 1. For a real system the mode match
will always be β < 1 due to the tolerance in the production of concave profiles and
in alignment. A smaller mode match leads to interference effects between the different
field components in the cavity thus reducing the reflected signal of the cavity σ:

σ = |1 − β + ρ̄β|2 (2.52)

In the other chapters the reflected signal from the cavity σ is referred to as the “reflec-
tivity on resonance”. This quantity includes the influence of the reduced mode match
parameter β. The parameter ρ describes the reflectivity on resonance for an idealized
system with β = 1.

Optimizing the mode match

The mode match for a plano-concave cavity with length L and a curved mirror ra-
dius of curvature r2 is maximized, if the mode-field diameters of the fiber and the
cavity mode perfectly overlap at the surface of the incoupling fiber. This condition can
be expressed via [119]:

βPC = β(L, r2) = 4
w0(L, r2)/wf + wf/w0(L, r2) (2.53)

where wf is the mode-field radius of the fiber and w0(L, r2) the diameter of the cavity
mode at the incoupling mirror. They are calculated via [119]:

w0(L, r2) =
√
r2λ

π

[
L

r2

(
1 − L

r2

)]1/4
(2.54)

The mode-field radius of the used fibers31 is wf = (2.85 ± 5)µm. From the condition
wf = w0 we can deduct the optimum radius of curvature for the concave fiber mirror
which is [119]:

r2 = w2
f
2π
λ

which yields r2,opt = (65.4 ± 1.5)µm (2.55)

31We use copper coated CU800 fibers from IVG fibers. These fibers are well suited for low loss coatings
which require to use materials that do not gas out in the coating facilities.
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Figure 2.20: Calculations on optimal mode match:
(a) Mode match dependent on the cavity length (Eq. 2.53) for different radii of curvature r2. (b)
Mode-field radius of the cavity mode w0(L, r2) (Eq. 2.54) for different cavity lengths in units
of r2. Optimal mode match is achieved if wf = w0. The blue lines denote radius of curvature
below (dark shade) and above (light shade) the optimal value. The red curve shows the optimal
ROC for this system. The dashed red line always marks the point where β = 1.

It is a property of the used fiber and can be determined by measuring the divergence of
the outcoupled light in the far-field. Figure 2.20 shows the impact of the right choice of
r2 and the cavity length L on the mode match. While a too small r2 makes it theoreti-
cally impossible to achieve β = 1, hitting the optimal ROC yields perfect mode match
of the whole possible range of cavity lengths. Furthermore, Fig. 2.20(b) shows that the
change of the cavity mode-field radius dependent on the length at an optimum ROC is
lowest for L = r2/2. Setting the cavity to this length yields the highest stability. The
considerations made above assume a spherical concave cavity mirror profile.

As discussed in Refs. [91, 100], this assumption does not hold for the profiles made
at this experiment. Due to the use of a CO2 laser that is focused on the fiber end to
ablate material, the shape of the profiles resembles a Gaussian curve. The Gaussian
geometry influences the mode match of the system. In Refs. [91, 100] the Fourier trans-
form code OSCAR, which allows to simulate the propagation of arbitrary light fields
and effects of optical components, was used to investigate the effect of the Gaussian
geometry on the mode match. It was found that deep profiles of multiple micrometer
benefit a higher mode match. The geometry of the Gaussian profile in the center region
is close to a spherical profile. Thus, r2 is defined by the ratio between the profile width
b and the depth a [118]:

r2 = b2

4a (2.56)

For deeper profiles this region is larger. Thus, we aim for deep profiles with a > 1.5µm
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The influence of surface roughness

Another parameter to consider when designing high finesse cavities is the surface rough-
ness σrms of a processed fiber which limits the maximum achievable reflectivity of a
coating. A high surface roughness leads to losses due to stray light at the contact
region between the fiber surface and the coating. The relation between a minimum
achievable transmission losses T (σrms) and the surface roughness has been investigated
in Ref. [120] and holds:

T (σrms) = 1 − exp
[

−4πσ2
rms

λ2

]
(2.57)

The surface roughness of a processed fiber limits the maximum achievable reflectivity
and thus the maximum achievable finesse. We consistently achieve roughness values of
σrms < 0.3 nm. Figure 2.21 shows the requirements on the surface roughness to achieve
certain reflectivities. The roughness of the processed cavities allows for for a low loss
coating with T = 30 ppm which corresponds to R = 99.997 %. Aiming for a reflectivity
on resonance of ρ > 0.85 we can use equations 2.48 and 2.49 to calculate the necessary
reflectivities R1, R2 and the resulting finesse F of the new cavity to:

Rhigh = 99.997 % Rlow = 99.96 % and F ≈ 15000 (2.58)

Figure 2.21: Influence of surface
roughness:
Plot of the maximum achievable coating
transmission in ppm dependent on the
surface roughness according to equation
2.57. The dashed vertical lines show the
surface roughness requirements for the high
reflective coatings of the different cavities
used throughout this thesis. The red dashed
line corresponds to the surface roughness we
measured with an AFM during Ref. [67] on
a fiber that was processed by multiple laser
pulses.
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Characterization of the new cavities

In this thesis two newly produced fiber cavities were used. Based on the considerations
made before, we aimed for deep profiles (a > 1.5µm) with good circular symmetry and
a radius of curvature close to the theoretical optimum. In Ref. [67] 12 curved fiber mir-
rors and 7 plane fiber mirrors were produced and coated32. In this thesis we produced
18 curved fibers mirrors and 15 plane mirrors33. For all single mode fibers the CU800
from IVG fibers was used.

To achieve higher cavity transmission for the pulsed experiments we also produced
5 of the curved profiles with multi-mode fibers (IVG fibers CU 100/110). A complete
overview of the achieved reflectivities on resonance and finesses can be seen in Appendix
B.5. Within one batch the achieved cavity finesses and reflectivities on resonance (all 18
curved fibers were paired with the same plane fiber) between the individual fibers differ
by up to 6 %. These differences are likely not caused by different reflection properties
of the coatings but due to varying mode match of the different cavities that occurs
due to the tolerances (e.g. pulse power, alignment) during the manufacturing process.
We choose the combination of plane and curved fiber mirrors that exhibits the highest
reflectivity on resonance for both cavities for our experiments. The measurements pre-
sented in this chapter refer to these cavities.

Figure 2.22 shows an interferogram of the fiber facet, where one fringe corresponds
to a height difference of 325 nm.

Figure 2.22: Profile analysis of a curved cavity fiber:
(a) Interferogram of a fiber facet that was prepared by multiple CO2 laser pulses. One in-
terference fringe (black to black) corresponds to a height difference of 325 nm. (b) Profile
evaluation using a phase shifting interferometry (PSI) algorithm. The plot shows a 2D Gaus-
sian fit onto the profile depicted in (a). The image and the analysis are from the curved mirror
of the Femtpy = 785 cavity used for the new coupling experiments. r2 = 67.5µm is close to
ropt = 69.5µm. The image for the Femtpy = 14500 cavity is presented in Appendix B.5.

32Coating by LASEROPTIK with Rhigh = 0.9997 and Rlow = 0.9925.
33Coating by LAYERTEC with Rhigh = 0.99997 and Rlow = 0.9996.
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Figure 2.23: Measurement of F and σ:
(a) Normalized cavity signal in reflection
(light blue) and transmission (light red) for
a triangular length scan of the plane fiber.
The distance between to peaks yields the
FSR. (b) Zoom into one resonance peak. The
FWHM corresponds to δν. The minimum in
reflection yields the reflectivity on resonance.
To determine both parameters we average
over 1000 scan ramps at a scan frequency
of 20 Hz.

We measure the geometric properties of the fiber mirrors by phase shifting interfer-
ometry (PSI) of the fiber facet. The used evaluation algorithm is described in detail in
Ref. [91].
The depicted fiber is part of the cavity that is used in the hybrid coupling experiments
presented in Chapter 3 and has a finesse of Femtpy = 785. The profile has a depth of
a = (2.63 ± 0.1)µm and deviates from the optimal ropt = 69.5µm for this fiber by 3 %.
The corresponding evaluation for the finesse of Femtpy = 14500 is presented in Ap-
pendix B.5. This profile has a depth of a = (1.57 ± 0.1)µm and r2 = (67.4 ± 1)µm and
deviates from the optimal ropt = 65.4µm for this fiber by 5 %.

The finesse and the reflectivity on resonance are measured by scanning the cavity over
multiple resonances using the piezo tubes in the goniometer while using the definition
of the finesse:

F = FSR

δν
= ∆L

δL
(2.59)

Figure 2.23 shows a measurement over two resonances. Since F and σ are length de-
pendent a full characterization of the cavity requires to repeat this measurement for
multiple cavity lengths. Figure 2.24 shows F and σ dependent on the cavity length for
the Femtpy = 785 cavity. While the finesse remains constant over the whole length of
the cavity, σ experiences a maximum at a length of approximately 13µm. This is likely
due to improved mode match in a shorter cavity since the intra cavity light field only
hits the center of the gaussian mirror profile.

The evaluation yields a finesse of Femtpy = 785 ± 15 and a reflectivity on resonance of
σ = 0.82 ± 0.01 at this length. For the Femtpy = 14500 ± 1500 cavity we measure a
reflectivity on resonance of σ = 0.62 ± 0.02 at a cavity length of 14µm.
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Figure 2.24: Finesse and reflectivity on resonance at different cavity lengths:
Each datapoint is the result of 1000 times averaged measurements as shown in Fig. 2.23. The
blue datapoints show the finesse the red data points the reflectivity on resonance. The grey
dashed line indicates the point where the cavity length is equal to the radius of curvature. The
averaged finesse over the whole cavity length (while excluding data points at L > r2) is shown
as blue dashed line with the lighter shades indicating the 1σ confidence bounds. The highest
reflectivity on resonance is found at a length of 12.8µm (red dashed line).

spacer spacer



Chapter 3

Towards a strongly coupled
atom-optomechanical hybrid
system

In this chapter we report on our efforts to enter the strong coupling regime
with the hybrid system. As with any other quantum system, the limiting
factor in achieving “quantumness” is decoherence. In our particular case,
the most impactful parameters that can be optimized are the number of atoms
that participate in the coupling and the number of photons that mediate the
coupling between the atoms and the MiM system. Both parameters were
optimized by implementing a new pump asymmetry compensated coupling
lattice and by increasing the finesse of the fiber cavity. The new lattice opened
up a parameter space of operation that rendered hybrid coupling possible in
the previously inaccessible, red-detuned regime. The exchange of the fiber
cavity provided a significant increase in coupling strength, while showing a
fundamental, back-action induced limit to this coupling scheme.

3.1 Sympathetic cooling

The first experimental realization of sympathetic cooling was published in 1986 by D.J.
Larson et al.: “198Hg+ ions were confined in a Penning ion trap with laser-cooled 9Be+

ions.”, [121] and sympathetically cooled to temperatures below 1K [121]. From then
on, sympathetic cooling has been realized with many different systems such as neutral
atoms [122–125], ions [121], varieties of Bose-Fermi systems [126], hybrid systems [127]
and even molecules [128, 129].
In general, it describes the cooling of one component of a mixed system by transferring
its energy to another component that serves as a thermal bath [76, 101]. For our system,
this is realized by the resonant coupling of the micromechanical resonator to a cloud of
(ultra-) cold atoms.
The strength of the coupling is quantified via the cooperativity Chybrid of the system.
It can be acquired by a measurement of the sympathetic cooling rate Γsym, which is
proportional to the cooperativity Chybrid ∝ Γsym.
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Since this parameter is of fundamental interest to investigate the nature of the hybrid
coupling and serves as a benchmark for all experiments presented in this chapter. We
give a brief introduction to the underlying theory of sympathetic cooling in the fol-
lowing section oriented along the detailed description that has been done in previous
theses [57, 63]. While a conceptual understanding can be established in the classical
frame, the case of ground state cooling requires a quantized model of the process. Thus,
we will introduce sympathetic cooling in a classical picture first, and use the quantized
model to explain the behavior in the limiting case of the system being near its quantum
ground state.

3.1.1 Sympathetic cooling in a classical picture

The coupling in our system is mediated via monochromatic, coherent light, which can
be modulated regarding its amplitude, phase or polarization. Polarization modulation
has been proven to be a powerful tool to mediate coupling between atomic spin states
and a phononic shield resonator [38]. Here, spin state-dependent polarization rotation
of the light that interacts with the atoms is translated into an intensity modulation of
the light incident on the resonator. The coupling scheme to motional degrees of freedom
that we use in our experiment utilizes amplitude and phase modulation of the coupling
light [52]. Figure 3.1 shows a schematic of the underlying coupling mechanism.

Figure 3.1: Sketch of the sympathetic cooling mechanism: The 1D coupling lattice is
created from an incident lattice beam that is reflected by the fiber-Fabry-Pérot cavity (FFPC)
containing the mechanical resonator. The motion of the atoms modulates the intensity of the
light incident on the resonator with ωat. If the resonance condition ωat = ωm is fulfilled, the
atoms couple to the resonator. The resonator motion modulates the phase of the reflected light
and spatially shifts the trapping potential of the atoms. The transferred energy is dissipated
via laser cooling. Sketch based on Ref. [52].

We consider an atom in a harmonic trap, formed by the coupling lattice. Any dis-
placement from the trap equilibrium position xat will result in an optical dipole force
Fd = −matxatω

2
at, pointing towards the trap center. Consequently, a spatial shift of

the optical lattice δxlat acts on an atom cloud with atom number Nat with Fat =
Natmatδxlatω

2
at. This force is realized by resonant absorption and emission of photons
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along the coupling lattice direction [52, 130] and a subsequent momentum transfer to-
wards the location of the highest (red-detuned lattice) or lowest (blue-detuned lattice)
field strength.
A collective spatial shift of the lattice introduces an asymmetry in the number of left-
ward and rightward scattered photons, which yields a modulation of the light transmit-
ted through the atom cloud at the trapping frequency of the atoms [58]. This causes
a variation of the radiation pressure force δFrad on the resonator dependent on the
motional state of the atoms. Assuming a momentum-kick of ±2ℏkL per absorption
or emission event [58], δFrad can be derived starting from the photon redistribution
rate ṅ = NatFd/(2ℏklat)[58]. The redistribution of photons yields a power modulation
δPlat = ṅℏωlat. Under the assumption that a photon has an intra-cavity lifetime of
τcav ≈ 1/κ, this modulation corresponds to a change of the intra-cavity photon number
by n̄cav = 4βt2δPlat/(ℏωlatκ), where β is the cavity incoupling efficiency and t is the
one-way transmission on the path of the coupling light.
Assuming that each intra-cavity photon couples to the resonator with its optomechan-
ical coupling strength gm, this yields a force Frad = ℏgmṅ on the resonator. Inserting
the expressions for ṅ, δPlat and Fd found above, it can be rewritten in the following
form [58]:

Frad = ℏgmṅ = βt2
2gm
klatκ

Natω
2
at︸ ︷︷ ︸

:=K

xat = −βt2Kxat (3.1)

The constant K takes the form of a spring constant [52, 53, 82]. In the case of small
displacements of the atoms from their equilibrium position, a linear dependency be-
tween the restoring force and the displacement can be assumed. Within this limit, the
mediated force per displacement, and thus the coupling strength itself, depends on the
transmission and mode match between the two systems as well as on the atom number
Nat and the cavity linewidth κ. As we will discuss later in this chapter, increasing Nat
(Sec. 3.2.2) or decreasing κ (Sec. 3.3.3) is only possible up to a certain limit, beyond
which the assumptions made above do not hold anymore.

The trampoline resonator is placed in a high finesse FFPC. It divides the cavity into two
subcavities whose resonance conditions depend on the motional state of the resonator.
This yields a motional state-dependent modulation of the cavity resonance frequency,
which translates to a phase modulation of the back-reflected light at the resonator
eigenfrequency [52].
The displacement dependent phase modulation δϕ(xm) [102] of the resonator is mainly
affected by the cavity linewidth δϕm = (4/κ)gmxm

34. This causes a shift of the optical
lattice potential by δxlat = −δϕm/(2klat) = 2gmxm/(κklat). Inserting the expression

34The factor 4/κ originates from the assumption that the cavity detuning due to the membrane
motion is much smaller than its linewidth | ∆cav |≪ κ. For a detailed derivation, refer to [63].
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found for δxlat into the expression for Fat yields [58]:

Fat = Natmatω
2
atδxlat = Natmatω

2
at

2gm
κklat

xm = −Kxm (3.2)

Note that K is the same spring constant that is derived in equation 3.1. In a classical
picture, the joint system behaves like two coupled harmonic oscillators. This allows the
derivation of the equations of motion from the acquired force terms [53, 58]:

meff ẍm = −Γmmeff ẋm −meffω
2
mxm − βt2Kxat + Fth (3.3)

Natmatẍat = −ΓatNatmatẋat −Natmatω
2
atxat −Kxm (3.4)

Both equations describe damped harmonic oscillators with the respective atomic (me-
chanical) damping rates Γat (Γm). The coupling is realized via the individual coupling
terms −Kxm (−βt2Kxat). The thermal force noise Fth describes the coupling of the
resonator to its thermal bath [58] via the Langevin equations and is the main contrib-
utor to decoherence.
By applying the Fourier transformation to both equations, they are translated into
algebraic equations [58]:

−meffω
2Xm(ω) − imeffΓmωXm(ω) +meffω

2
mXm(ω) = F̃th − βt2KXat(ω) (3.5)

−Natmatω
2Xat(ω) − iNatmatΓatωXat(ω) +Natmatω

2
atXat(ω) = −KXm(ω) (3.6)

The prefactors of Xm(ω) and Xat(ω)35 can be summarized in the susceptibilities χm(ω)
and χat(ω). Since the relevant coupling dynamics occur near the systems resonance
(ω ≈ ωat/m), the susceptibilities can be further approximated by a Taylor expansion
around ωat/m:

χm(ω) = meff
(
ω2

m − ω2 − iΓmω
)

≈ 2meffωm (ωm − ω − iΓm/2) (3.7)

χat(ω) = Natmat
(
ω2

at − ω2 − iΓatω
)

≈ 2Natmatωat (ωat − ω − iΓat/2) (3.8)

This leads to the equations of motion in the frequency domain:

χm(ω)Xm(ω) = F̃th − βt2KXat(ω) (3.9)

χat(ω)Xat(ω) = −KXm(ω) (3.10)

Both equations describe the amplitude response of both constituents of the hybrid
system to mutual coupling. The extent to which the subsystems respond to any force
exerted by their hybrid partner is described by their individual susceptibilities. By
inserting equation 3.10 into 3.9 we merge both systems and obtain a single equation to

35Here Xm(ω) and Xat(ω) denote the Fourier transformation of xm and xat.



Sympathetic cooling 51

describe the hybrid system [58]:χm(ω) − βt2K2χ−1
at (ω)︸ ︷︷ ︸

χsym(ω)

Xm(ω) = χeff(ω)Xm(ω) = Fth (3.11)

Here we introduce χsym(ω) as the sympathetic susceptibility. Expanding the expression
with (ωat − ω + iΓat/2) and using the previously introduced definition of K (Eq. 3.1)
yields:

χsym(ω) = 2βt2g2
mNatω

3

matklatκ2
ωat − ω + iΓat/2

(ωat − ω)2 + (Γat/2)2 (3.12)

This description shows the dependency of the coupling on the fulfillment of the res-
onance condition (ωat = ωm). Furthermore, it contains an effective increase of the
mechanical damping rate Γm within the imaginary part of χsym. The expression found
in equation 3.12 inserted into 3.11 yields the effective susceptibility χeff(ω) of the hybrid
system [53, 101], where we introduce the single-phonon coupling rate gN:

χeff(ω) = 2meffωm

(
ωm − ω − iΓm/2 − 2βt2g2

N (ωat − ω + iΓat/2)
(ωat − ω)2 + (Γat/2)2

)
(3.13)

gN =| rm | ωat

√
Natmatωat
meffωm

2F
π

G

Gmax
(3.14)

The single-phonon coupling rate is a property of the mechanical resonator. It describes
the frequency shift of the resonator upon coupling to a single phonon and has a signifi-
cant influence on the coupling strength. The most influential parameter to be optimized
is the finesse F as will be discussed in section 3.3.
Since the atomic damping rate exceeds the mechanical damping rate by orders of mag-
nitude (Γat ≫ Γm, gm), contributions to χsym aside from the mechanical resonator are
suppressed such that we can assume ω → ωm in the following [58]. Equation 3.13
can be rewritten and the prefactors and resonance condition are summarized in the
sympathetic cooling rate Γsym:

χeff(ω) = 2meffωm

(
ω′

m − ω − i

2 Γm

(
1 + Γsym

Γat

))
(3.15)

with

ω′
m = ωm + (ωm − ωat)

Γsym
Γat

(3.16)

and

Γ′
m = Γm

(
1 + Γsym

Γm

)
= Γm(1 + gsym) (3.17)
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This leads to the expression for the sympathetic cooling rate Γsym which is a benchmark
for the hybrid coupling strength in our system:

Γsym = βt2g2
NΓat

(ωat − ωm)2 + (Γat/2)2
(3.18)

Equations 3.16 and 3.17 show two properties of sympathetic cooling. Firstly, it shifts
the mechanical frequency of the resonator 36. Since the sympathetic cooling rate is
small compared to the atomic damping rate (Γat ≫ Γsym), this effect is negligible.
Analogously, the increase of the mechanical damping rate by the sympathetic cooling
gain gsym is a velocity dependent feedback effect and linked to the mode temperature
of the resonator via [58]:

Tmode = Tbath
1 + gsym

= Tbath
Γm

Γm + Γsym
(3.19)

Hence, Γsym can be directly determined from the mode temperature reached by sym-
pathetic cooling.

Ensemble-integrated sympathetic cooling rate

The description of sympathetic cooling found above holds for an idealized system of
atoms and resonator in which the atom number density and the atomic trapping poten-
tial are constant throughout the coupling lattice volume. While it is feasible to assume
a constant atom number density, because of the large extent of the MOT compared
to the coupling lattice waist (Rat ≫ wlat), the trapping potential can be considered
constant only along the axial direction of the coupling lattice due to its large Rayleigh
range zr = πw2

lat/λ ≈ 2 cm [63]. Radially, we have to take into account the Gaussian
intensity profile of the lattice beam, which causes a reduction of the trapping frequency
as ωat,r(r) = ωat,0e

−r2/w2
lat . This is accounted for by integrating expression 3.18 along

the radial beam profile [58] in radial coordinates:

Γint
sym(Rat) = 2Ratnat

∫ Rat

0
2πr Γsym (N = 1, ωat(r)) dr (3.20)

By using the expression for the radial frequency dependency of ωat,r, equation 3.20
is converted to an integral over the frequency with the integral prefactor Nlat =
2πRatw2

atnat:

Γint
sym(ωat,0) = Nlat

∫ ωat,0

ωat(Rat)

Γ [N = 1, ωat]
ωat

dωat

= |rm|2 βt2matNlatΓat
meffωm

(2F
π

)2 ∫ ωat,0

ωat(Rat)

ω2
at

(ωat − ωm)2 + (Γat/2)2

(3.21)

The atom cloud is much larger than the waist of the coupling beam in our experiment
Rat ≫ wlat such that the lower integration limit yields ωat(R) → 0. Equation 3.21

36This is a displacement dependent effect and similar to the displacement dependent feedback cooling
presented in Appendix C.
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Figure 3.2: Ensemble-integrated sym-
pathetic cooling rate Γint

sym for varying
Γat:

Plot of Sres (Eq. 3.23) in dependence
of the coupling lattice trapping frequency.
While for Γat/ωm ≪ 1 (blue) the coupling
increases rapidly at ωat,0/ωm ≈ 1, the
diverging properties become dominant
with increasing Γat (red). Here we assume
a constant atom number density in the
system. Figure adapted from Ref. [63].

transforms to [58]:

Γint
sym(ωat,0) = 2 |rm|2 βt2matNlatωm

meff

(2F
π

)2
Sres(ωat,0) (3.22)

where Sres(ωat,0) is defined via [58]:

Sres(ωat,0) :=
(

1 − Γ2
at

4ω2
m

)(
atan

[2ωm
Γat

]
+ atan

[2(ωat,0 − ωm)
Γat

])

+ Γat
2ω2

m

(
ωat,0 + ωmln

[
Γ2

at + 4(ωat,0 − ωm)2

Γ2
at + ω2

m

]) (3.23)

The ensemble integrated sympathetic cooling rate (Eq. 3.22) as a function of the trap-
ping frequency is depicted in Fig. 3.2. For Γat → ωm it gradually grows and diverges.
Experimentally, this growth is limited by the finite size of the MOT. In the limit of
small atomic damping rates Γat ≪ ωm, it becomes a step-like function. This behavior
arises from the small linewidth of Γat which suppresses the diverging term in equation
3.23. As such, the step width is given by Γat. As we will see for the conducted coupling
experiments, the effect described in this chapter is experimentally relevant.

3.1.2 Sympathetic cooling in a quantum mechanical picture

While the classical approach allows for an intuitive understanding of the sympathetic
cooling mechanism, it is not sufficient to describe the system behavior in the quantum
regime. This can be seen by noting that equation 3.19 allows for an arbitrarily low
mode temperature if Γsym is sufficiently high. To account for quantum effects such as
shot noise and photon scattering, we have to move to a quantized model of the system
that was developed by B. Vogell et al. in Ref. [52]. In a quantized picture, the hybrid
coupling yields an energy exchange between the mechanical and the atomic mode that is
mediated by the creation and annihilation of the respective mode quanta. This process
can be described by the interaction Hamiltonian of the system [52]:

Ĥint = ℏgN
(
âm + â†

m

) (
âat + â†

at

)
(3.24)
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Here â†
m/âm (â†

at/âat) are the creation and annihilation operators for phonons (photons)
in the mechanical (atomic) mode of the system. The quantum mechanical description
introduces additional decoherence effects that become relevant for low phonon occupa-
tions and near the strong coupling regime.
On the mechanical side, the quantized model leads to heating of the resonator by shot
noise of the intra-cavity photons [52]. This effect is described by the mechanical mo-
mentum diffusion rate [52]:

Γdiff
m = |rm|2 4Pinωcav

meffc2ωm

(2F
π

)2
(3.25)

Additionally, the coupling of the resonator to the thermal bath adds to the thermal
decoherence rate Γth

m :

Γth
m = Γm

kBTbath
ℏωm

= Γmn̄th (3.26)

The atomic component of the system experiences photon scattering effects that lead to
the atomic momentum diffusion rate Γdiff

at :

Γdiff
at = Γsc

(
klatx

at
lat

)2
=
(
klatx

at
lat
)2 ΓatVlat

ℏ∆at,L
(3.27)

The decoherence rates found in equations 3.25 - 3.27 add up to the total decoherence
rate Γ in the system. To couple coherently and be described as a true hybrid quantum
system, the strong coupling condition must be satisfied:

gN ≫ Γ with Γ = Γth
m + Γdiff

m + Γdiff
at (3.28)

While the coupling conditions for the thermal decoherence rate (Γth
m/gN) and the atomic

diffusion rate (Γdiff
at /gN) scale with 1/F and suggest a higher finesse to be beneficial

to enter the strong coupling regime, the mechanical diffusion rate (Γdiff
m /gN) is propor-

tional to F2.
Figure 3.3 shows the contributions of the individual decoherence rates, calculated with
the parameters presented in Appendix B.1. The point at which all effects are balanced
leads to the optimal finesse for our system F ≈ 600 37.

The decoherence rates allow for the calculation of the steady state phonon occupation
n̄ss that can be acquired by sympathetic cooling [64].

n̄ss = Γth
m

Γm + Γsym
+ Γdiff

m
Γm + Γsym

+ Γdiff
at

Γat
+
( Γat

4ωat

)2
(3.29)

37Assuming Tbath = 4 K and Q = 8.9 · 107. The case Tbath = 293 K and Q = 6.8 · 106 is also depicted
in Fig. 3.3.
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Figure 3.3: Fulfillment of the strong coupling condition dependent on the finesse:
Taking the atomic and mechanical diffusion rates (Γdiff

at , Γdiff
m ) as well as the resonator coupling to

the thermal bath (Γth
m ) into account, the strong coupling condition (Γ/gN) exhibits a minimum

at F ≈ 600. The green shaded areas show the regimes that are accessible with the fiber cavities,
that were built at this experiment. While all experiments in the past (including the PAC
experiments in section 3.2) were conducted with the first generation of fiber cavities, the most
recent coupling experiments that are described in section 3.3, used the second generation.
The third generation of fiber cavities is used for the pulsed preparation experiments that are
documented in Chapter 4. The values used for calculation are listed in Appendix B.1.

For resonant coupling ωm ≈ ωat, the first two terms can be simplified under the as-
sumptions Γsym ≫ Γm and Γth

m ≫ Γdiff
m to [53, 64]

Γth
m + Γdiff

m
Γm + Γsym

≈ Γth
m

Γsym
= n̄th
Chybrid

(3.30)

with the hybrid cooperativity

Chybrid = 4βt2g2
N

ΓatΓm
= Γsym

Γm
(3.31)

Measuring the hybrid cooperativity is an important benchmark of the coupling strength.
According to equation 3.30 strong coupling requires Chybrid ≫ n̄th.

To meet this condition, the system was optimized regarding the losses due to the intra-
cavity mode match β and the overall losses t2 on the path between both constituents
[76]. Furthermore, Chybrid benefits from a small mechanical linewidth Γm due to the
reduced coupling to the thermal bath, and a large single-phonon coupling rate gN.
The mechanical properties of the system were optimized by exchanging the initially
used membrane design by a trampoline resonator which lead to a significantly re-
duced effective mass (meff,Mem/meff,Tramp ≈ 25) and a smaller mechanical linewidth
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(Γm,Mem/Γm,Tramp ≈ 14) [62]. Together with a cavity finesse of F ≈ 140, this system
reached a hybrid cooperativity of Chybrid = 151 ± 9. At Tbath = 5 K, we miss the strong
coupling condition by four orders of magnitude (n̄th/Chybrid = 3.95 · 106/151 ≈ 26000).

In this thesis, we optimized two parameters to increase the single-phonon coupling
rate further38:

• Since gN scales with the number of atoms that participate in the coupling by
gN ∝

√
Nat, we tried to increase Nat by using a red-detuned coupling lattice. As

discussed in more detail in Section 3.2, this regime was previously inaccessible due
to a dynamic instability that arises for high atomic densities in the lattice volume.

• We exchanged the cavity of our system for a new cavity with an empty cavity
finesse of F2,empty = 785 ± 15 39 (previously F1,empty = 60 ± 2) which yields an
increase in finesse by a factor of 13. This made the previously calculated regime
of the highest optomechanical coupling accessible. The results are discussed in
Section 3.3 of this chapter.

38The experimental parameters of the individual systems are summarized in Appendix B.1.
39This cavity was produced at the NanoBEC experiment during Ref. [67].



Pump asymmetry compensation 57

3.2 Pump asymmetry compensation

Increasing the number of atoms that participate in the coupling can be achieved in
different ways. While the initial design of the system already allows for large atom
numbers in MOT and BEC due to its two-staged MOT setup, the number of atoms in
the lattice volume can be increased further by choosing an attractive (i.e., red-detuned)
coupling lattice potential.
Previous experiments [64, 76, 131] that tried to operate in this regime discovered an
instability in the hybrid system that emerged for small, red atom-light detunings ∆at,L.
This instability causes sympathetic cooling in the system to turn into heating [76, 131],
eventually driving the resonator into limit cycle oscillations. The effect was initially
discovered in the group of P. Treutlein where it was experimentally investigated by A.
Vochezer [64, 131]. They found the instability to be an effect that arises in asymmetri-
cally pumped lattices which can be explained by an asymmetry induced phase delay in
the coupling. The delay is likely to originate from density waves that emerge in the cou-
pling lattice. This creation of density waves in asymmetrically pumped optical lattices
was theoretically predicted and simulated by J.K. Asboth [65, 66]. The asymmetry in
the coupling lattice is an intrinsic property in atom-optomechanical hybrid systems.
Due to losses in the path between the atoms and the resonator, as well as the finite
reflectivity on resonance cavity, reaching a balanced coupling lattice is impossible. As
such, the effect of the hybrid instability can be observed in our experiment.

Figure 3.4(a) [57] shows a hybrid coupling measurement where the resonator mode tem-
perature Tmode is plotted against different coupling lattice frequencies ωat. While for a
blue-detuned lattice, sympathetic cooling is observed for all lattice depths, the mode
temperature rapidly increases for a red-detuned coupling lattice at ωat = 1.25ωm. The
heating effect due to the lattice asymmetry can also be observed in the blue-detuned
lattice as depicted in Fig. 3.4(b) [62]. Here the pump asymmetry A (Eq. 3.32) was
artificially increased by dumping part of the back-reflected coupling beam from the
resonator and the mode temperature was measured as a function of pump asymmetry
A. While for A < 2.4, sympathetic cooling could still be observed, it quickly turned
into heating for higher asymmetries.
The observations made from our experiment and in Ref. [64] identify the pump asym-
metry as the main cause for hybrid instability. In the following section we will describe
the static and dynamic effects of the pump asymmetry in the framework of beamsplitter
matrices and investigate the feasibility of compensating for the asymmetric pumping by
introducing an auxiliary compensation beam. Due to the thematic similarity to Refs.
[63, 66, 131], this chapter is structurally oriented along these works.

3.2.1 Theoretical description

Hybrid quantum systems as described in this thesis and in Ref. [58, 64] have experi-
mental constraints that favor the emergence of hybrid instability. The creation of the
coupling lattice by retro-reflecting the coupling beam comes with an intrinsic pump
asymmetry due to losses along the optical path [76]. Furthermore, the coupling is me-
diated by the laser light that is used to create the coupling lattice potential. Since high
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laser powers lead to heating of the resonator we are limited to use low coupling lattice
powers (typically on the order of 100µW). To fulfill the resonance condition nonethe-
less, the laser-atom detuning has to be small (∆at,L < 1 GHz). In this near detuned
regime, the back-action of the atomic motion on the laser light is not negligible any-
more, in contrast to far detuned lattices usually used in cold atom experiments. This
requires us to treat the atoms as a dynamic system of semi-transparent beamsplitters.
The idea to this description was first introduced by J.K. Asboth et al. in Refs. [65, 66]
where they found the emergence of density waves in an asymmetric, near detuned lat-
tice in a numerical simulation. This simulation was adapted by A. Vochezer in Ref.
[64] to calculate the phase shift in the coupling between cold atoms and a mechanical
resonator coupled by an asymmetric optical lattice. In Ref. [64] they could verify ex-
perimentally and via a simulation that the emergence of density waves led to a phase
delay in the coupling that can be large enough to introduce positive feedback between
the atoms and the resonator, leading to the hybrid instability.
To access the red-detuned coupling lattice regime nonetheless we introduce an addi-
tional auxiliary beam that is phase-locked and mode-matched with the coupling lattice
back-reflex beam. We evaluated the feasibility of this approach by reproducing the sim-
ulation from Ref. [131], adding an additional pump asymmetry compensation beam
and studying its effect on the phase delay in the coupling. The creation of a proper
model and the results of the simulation are discussed in the following section.

Figure 3.4: Hybrid instability in an asymmetric coupling lattice:
(a) Measurement of the mode temperature for different trapping frequencies in a blue-detuned
(blue points) and red-detuned (red points) coupling lattice. For ωat < 1.25ωm sympathetic
cooling occurs in both configurations. For higher trapping frequencies, the hybrid instability
emerges in the red-detuned lattice and the resonator is driven into limit cycles. The trapping
frequency is varied by a power sweep of the coupling lattice beam. Blue detuning (∆2,3 > 0)
refers to the |F = 2 → F ′ = 3⟩ transition of the Rb D2-line. Red detuning (∆2,1 < 0)
refers to the |F = 2 → F ′ = 1⟩ transition of the Rb D2-line. Plot adapted from Ref. [76].
(b) Measurement of the mode temperature in the blue-detuned coupling lattice for different
asymmetries A = (Iinc − Iback)/

√
IincIback. The pump asymmetry is introduced by partially

dumping the beam that is reflected from the cavity. For A > 2.5, the pump asymmetry causes
heating in the blue-detuned lattice. The dashed lines indicate the bath temperature of the
system before the hybrid coupling takes place. Plot adapted from Refs. [62, 63].
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3.2.1.1 Static model of the 1D coupling lattice

The coupling lattice is a standing wave that is created from a beam incident on the
atoms with intensity Iinc and a beam back-reflected from the MiM-system with intensity
Iback. Figure 3.5 shows an illustration of the 1D lattice model. Both beams are related
by the losses R that occur on the path between the atoms and the MiM-system such
that Iback = RIinc. In the 1D lattice potential, the trapped atoms form disk-shaped
clouds at the intensity maxima (red detuning) or minima (blue detuning) that are
separated by the distance dj. Each atom cloud experiences dipole and radiation pressure
forces based on the respective in- and outgoing field amplitudes Aj, Bj, Cj and Dj
[132]. The clouds themselves can be described as thin beamsplitters at position xj. The
two counter-propagating fields are expressed via Eleft(x) = Eince

−ikx (for the incident
beam propagating to the left) and Eright(x) = Ebacke

ikx (for the backreflected beam
propagating to the right)40. From the electric field amplitudes, the intensities of the
beams are calculated via Iinc,ref = 1

2ϵ0c|Einc,ref |2.
We define the asymmetry of the system by the imbalance between Iinc and Iback to [66]:

A = |Iinc − Iback|√
IincIback

(3.32)

A is a dimensionless parameter. The system is balanced if A = 0.
Based on this model we investigate the influence of an asymmetric lattice on the

system. It can be divided into two effects that are described in more detail in the
following section.

• A static contraction of the lattice due to a modified refractive index of the atomic
cloud at small detunings.

• A dynamic emergence of collective density oscillations in the system.

Static effects of pump asymmetry

In near red-detuned lattices, the interaction between the light and the atoms leads
to a static contraction of the lattice. This was observed in Refs. [133, 134] and theo-
retically described by Deutsch et al. in Ref. [132]. If the detuning is small, the atoms
can be treated as a medium with a high refractive index, which alters the wavelength
of the transmitted light. This effect can only occur in the red-detuned regime because
here, the atoms gather at the intensity maxima of the light field. In the blue-detuned
regime, most of the atoms are trapped in the dark parts of the lattice where the in-
tensity reaches its minimum, thus leaving the light field unaffected. Introducing any
asymmetry to the lattice changes these properties. Since in an asymmetric lattice the
interference between the counter propagating beams cannot be fully destructive, there
are no dark spots anymore. As such, the contraction effect becomes relevant in the
blue-detuned lattice and is intensified even more in the red-detuned case [132].

40The propagation direction of the beams is chosen to be as in Fig. 3.5. The choice is arbitrary and
does not have an influence on the outcome of the simulation.
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Figure 3.5: Beam splitter model of a 1D lattice for cold atoms:
The atoms in the optical 1D lattice are described by an array of N semi-transparent beam-
splitters at the positions xj, separated by the distance dj ≈ λ/2. Each beamsplitter is acted on
by the fields Aj, Bj, Cj and Dj. Dependent on the chosen detuning, the atoms gather at the
intensity maxima (∆at,L < 0) or minima (∆at,L > 0). Because the waists of the beams are much
larger than the lattice constant (winc ≈ 69µm ≫ dlat ≈ 390 nm) we assume planar wavefronts
incident on the atoms. Figure adapted from Ref. [105].

Using the model presented in Fig. 3.5 the effect of lattice contraction can be investi-
gated on an array of infinitely thin beamsplitters [66], each consisting of an atom cloud
with Nj atoms. Since we assume planar wavefronts, we can determine the cloud area
to σL = πw2

lat/2. From this, the areal density of one beamsplitter can be calculated to
η = Nj/σL. The interaction of each atomic beamsplitter with the light depends on the
number of atoms in each beamsplitter and the detuning between the atomic resonance
and the coupling lattice light. These properties are summarized in the polarizability of
the cloud, which quantifies the influence of one beamsplitter on an incident light field
[131]:

ζj = Nj
4σL

σ0Γat
(∆at,L + iΓat/2) (3.33)

Here Γat is the atomic linewidth and σ0 = 3λ2/2π the scattering cross-section. The
polarizability contains a real and an imaginary part. While the real part accounts for
dispersive coupling between the atoms and the light field, the imaginary part describes
absorption and scattering losses and becomes relevant when ∆at,L → Γat. This scenario
is not relevant for the PAC experiments since we operate at least 224 MHz away from the
atomic resonance while Γat ≈ 6 MHz. Referring to Ref. [132] we can use expression 3.33
to describe the interaction of the light with N atomic disks using the scalar Helmholtz
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equation [132]:

(
∂2

x + k2
)
E(x) = −2kE(x)

N∑
j=1

ζδ(x− xj) (3.34)

The solution of this equation for the field between two beamsplitters at position j is a
superposition of plane waves with the respective field amplitudes (Aj, Bj, Cj−1, Dj−1)
[66, 132]:

E(xj−1 < x < xj) = Aje
−ik(x−xj) +Bje

ik(x−xj)

= Cj−1e
−ik(x−xj−1) +Dj−1e

−ik(x−xj−1) (3.35)

which has to fulfill boundary conditions for the leftward E(xj,−) and rightward E(xi,+)
propagating fields at position j [66]:

E(xj,−) = E(xj,+) and ∂xE(xj,−) = ∂xE(xj,+) + 2kζE(xj) (3.36)

Using the boundary conditions in equation 3.35 leads to the equations for the field
amplitudes incident on an atomic cloud [66]:

Aj = rBj + tCj

Dj = tBj + rCj
(3.37)

These expressions are similar to beamsplitter relations with the only difference being
that the coefficients r and t are quantities that depend on the atomic beamsplitter-
and lattice light properties[66]:

r = iζ

1 − iζ
and t = 1

1 − iζ
with ζ = −irt (3.38)

The expressions found above allow for a description of the effects that asymmetric
pumping has on the coupling lattice. The atomic beamsplitters experience an optical
force by the electromagnetic field. This force can be calculated from the momentum
transfer rate of the electromagnetic field by integration of the momentum flux over the
Volume V = σLdL [135], which leads to the following expression for the optical force:

F = ϵ0
2
(
|A|2 + |B|2 − |C|2 − |D|2

)
(3.39)

By introducing the field amplitudes from the incident and back-reflected beam B(x) =
Ebacke

ikx and C(x) = Eince
−ikx and using equation 3.37 this expression can be trans-

formed to [66]:

F (x) = − 4
√
IincIback
c

Re(ζ)
|1 − iζ|2

sin(2kx+ ϕ)︸ ︷︷ ︸
(A)

+2Iinc − Iback
c

 Im(ζ)
|1 − iζ|2︸ ︷︷ ︸

(B)

+ |ζ|2

|1 − iζ|2︸ ︷︷ ︸
(C)


(3.40)
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Figure 3.6: Trapping potential
in an asymmetric lattice:
Potential V (x) calculated from
equation 3.40 via

∫ x

0 F (x)dx for
different asymmetries for a single
atom cloud. Blue shades indicate
the fulfillment of the stability crite-
rion while red shades indicate that
the critical asymmetry is exceeded.
For A = 0, V (x) resembles a sym-
metric, harmonic 1D-lattice poten-
tial. For A > A0, the potential
is tilted and globally translated on
the x-axis due to radiation pres-
sure imbalance. For A >= Acrit,
the system collapses since the po-
tential has no local minima to trap
the atoms.

The force on an atomic cloud can be separated into three contributions:

(A) describes the dipole force on the atom cloud that arises due to interference be-
tween the transmitted and reflected light.

(B) accounts for the radiation pressure force due to absorption and moves the system
towards the beam with lower power.

(C) accounts for incoherent reflection processes. These do not interfere and are more
likely for higher polarizabilities. For high atomic densities, this term can become
dominant and (in combination with (A) and (B)) eventually leads to a significant
“tilt” in the optical trapping potential V (x) =

∫ x
0 F (x)dx.

Figure 3.6 shows the optical trapping potential calculated from equation 3.40 for dif-
ferent asymmetries. It provides an intuitive understanding of the critical asymmetry
upon which the lattice would collapse. This happens when there are effectively no local
potential minima available in which the atoms can gather.
As such the requirement for stability is F (x) > 0 ∀x. From this requirement a condi-
tion for the critical asymmetry in the system can be derived according to Ref. [66]:

A < Acrit = 2
∣∣∣∣ Re(ζ)
|ζ|2 + Im(ζ)

∣∣∣∣ (3.41)

which simplifies in the purely dispersive case to:

Acrit = 2
ζ

⇔ ζcrit = 2
A

(3.42)

As long as this condition is fulfilled, the outgoing fields are strong enough to counter-
act the radiation pressure force towards the weaker pumping beam. Thus, the system
reaches a stable equilibrium configuration in spite of asymmetric pumping. The new
steady state configuration becomes dependent on the polarizability and the asymmetry
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Figure 3.7: Static lattice contraction in an asymmetric coupling lattice
The lattice contraction for different polarizabilities is plotted as a function of the pump asym-
metry. The shaded areas show the region of instability described by equation 3.44a. The gray
dashed line denotes the asymmetry of our setup (A = 1.7). The green line and the green circle
show the parameters that we calculated for the case of Nat = 5.5 · 107. For this atom number
the hybrid instability begins to emerge in the numerical simulation of the lattice dynamics
(Fig. 3.8). (a) Lattice contraction for the blue-detuned lattice. (b) Lattice contraction for the
red-detuned lattice. Figure based on Ref. [66].

in the system. Propagation of the lattice light through the atom clouds causes a phase
delay χ with [66]:

χ± = arcsin
(
ζ
√

4 + A ± ζ
√

4 − ζ2A2

2(1 + ζ2)

)
(3.43)

This yields a reduced lattice constant dependent on the detuning and the asymmetry
[66]:

dred(ζ,A) = λ

2

(
1 − χ+(ζ,A)

π

)
for ζ > 0 (3.44a)

dblue(ζ,A) = λ

2

(
1 −

∣∣∣∣∣χ−(ζ,A)
π

∣∣∣∣∣
)

for ζ < 0 (3.44b)

Figure 3.7 depicts and overview of the lattice contraction and the stability criterion (Eq.
3.44a) dependent on the pump asymmetry for different detunings and polarizabilities
and shows the placement of our system within these parameters. The static effect
of lattice contraction is weak in both the red-detuned and blue-detuned regime and
masked by the much more dominant effect of the dynamic instability [76, 131]. It has
to be considered nonetheless in the numerical simulation that is described in the next
section.
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3.2.2 Model of the 1D lattice dynamics

The model introduced in Fig. 3.5, allowed for a description of the static effects asym-
metric pumping has on the 1D coupling lattice. Based on these findings, we want to
investigate the dynamic effects the pump asymmetry has on the lattice and, more im-
portantly, if it is feasible to compensate for these effects by introducing a third pump
asymmetry compensation beam. Based on [131] we set up a simulation to model the
systems behavior, verify the dynamic instability and try to compensate for it. The re-
sults presented in this section were acquired together with J. Butlewski [63].

Modeling the system as an array of beamsplitters comes at an advantage that we
can use simple matrix multiplication to describe the system in its whole complexity.
Each atom cloud is modeled as a beamsplitter with the beamsplitter matrix MBS [66]:

MBS = 1
t

[
t2 − r2 r

−r 1

]
(3.38)=

[
1 + iζ iζ

−iζ 1 − iζ

]
(3.45)

Each cloud is separated by a distance dj. The propagation of the light field as well as
interference effects between the individual reflected and transmitted fields are accounted
for by the corresponding propagation matrices

Mprop,i =
[
eikdj 0

0 e−ikdj

]
(3.46)

The evolution of the light field passing through an array of beamsplitters is then de-
scribed by the product of the matrices 3.45 and 3.46. Considering a system of N atomic
beamsplitters, the fields Aj and Bj at any site j can be calculated from the fields CN
and DN at the outermost lattice site N by:[

Aj
Bj

]
= MBS ·

N∏
j
Mprop,i ·MBS︸ ︷︷ ︸

Msys,i

[
CN
DN

]
(3.47)

Here we introduce the system matrix Msys,i which is the product of all beamsplitter
and propagation matrices between the lattice site j and the outermost beamsplitter of
the system. This representation is very powerful as we can calculate the fields at any
position from only the two input field amplitudes B1 and CN. This becomes apparent
when calculating equation 3.47 for the whole system:[

A1
B1

]
= Msys,1

[
CN
DN

]
=
[
M11 M12
M21 M22

] [
CN
DN

]
⇒ DN = B1 −M21CN

M22
(3.48)

Equation 3.48 shows that DN can be expressed in terms of both input fields.
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The mechanical resonator modulates the phase of the back-reflected light with the
eigenfrequency ωm. Thus, its influence can be included in the model by adding a phase
term Φ(t) = Φ0cos(ωt) to the back-reflected field such that B1 = Ebacke

ikx+iΦ(t). The
back-action of the atoms onto the resonator, including effects of the dynamic instability
of the system, is contained in the outgoing field A1.

The dynamic of the system is described by a set of coupled differential equations
each of which describe an atomic cloud trapped in a harmonic potential. Since any
motion of one atom could yields a change of the reflected and transmitted light fields,
it influences the whole system. While for specific cases (e.g., small perturbations near
the lattice equilibrium), a fully analytic description of the system is possible (refer to
[65, 66]), describing the system in its whole complexity requires a numerical solution.

We set up the simulation at (t = 0). All atomic beamsplitters are located at their
lattice sites j and slightly shifted from their steady state equilibrium positions xss

j by
their initial displacement ξj(t = 0). The initial displacement is generated by a random
number generator41 between the values [−ξini, ξini] with ξini = 5 × 10−4λ. At t=0 the
system then reads [131]

xj(t = 0) = xss
j + ξj(t = 0) = xss

1 + (j − 1)dred,blue + ξj(t = 0) (3.49)

xss
1 accounts for the spatial shift of the potential due to the asymmetric radiation pres-

sure as depicted in Fig. 3.6 and for the relative phases between the lattice beams. In
this model the detuning only has an influence via the chosen lattice constant d. The
force on each beamsplitter Fj in this system can be calculated from the respective
field amplitudes using equation 3.39. Starting from equation 3.49, the system evolu-
tion is calculated by numerically solving the corresponding system of coupled ordinary
differential equations (ODEs) [131]:

mBSẍj = −mBSΓatẋj + Fj(x1, .., xN) (3.50)

These ODEs represent a system of coupled, damped harmonic oscillators with (beam-
plitter) mass mBS = Nat,BSmRb and (atomic) damping rate Γat. Note that Fj depends
on the individual position of all beamplitters in the system, which is automatically
accounted for by using the transfer matrix formalism introduced before.
We use the MATLAB ordinary differential equation solver ode45 to simulate the sys-
tem with the initial positions defined as in equation 3.49 and the initial velocities
ẋj(t = 0) = ωξj(t = 0)42. We simulate over 40 oscillation periods with τosc = 2π/ω.
ode45 is a numerical ODE solver that implements a Runge-Kutta method to solve the
system for each time step. After every run, the newly acquired values for xj and ẋj are
used as initial conditions for the next iteration. Precise knowledge about the parame-
ters allows us to calculate the individual fields and beamsplitter dynamic in the system

41MATLAB function randn()
42We took this choice out of convenience as it leads to the correct order of magnitude for the velocities

while being aware that this choice does not resemble the ICs in a real system. Because the dynamic is
investigated for a strongly damped system after the transient time Ttrans > 1/Γat, the influence on the
dynamic is negligible. This was verified for other initial velocities that lead to similar results.
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at any given time. Since the system requires the transient time Ttrans = 1/Γat to reach
an equilibrium state, we consider only results after Ttrans. The coupling is mediated
via radiation pressure on the resonator. Thus, the quantity of interest is the leftwards
outgoing power modulation of the system Pleft = ϵ0cπw2

lat|A1|2/4 and the phase of
this modulation relative to the ingoing phase from the resonator Φ(t) [131]. The phase
difference can be assumed to be directly linked to the stability of the system since it
dictates, if the resonator experiences positive or negative feedback from the atoms.

3.2.3 Simulation results

We simulate the behavior for our system parameters and asymmetry at different modu-
lation frequencies 5 kHz < ω < 500 kHz and for different atom numbers Nat. The lattice
power Pinc, and detuning ∆at,L are chosen such that ω = ωm = ωat fulfills the reso-
nance condition of the system. For each frequency step, the ODE for the whole system
as described above is solved. The relative amplitude Arel = (Pleft − ⟨Pleft)/⟨Pleft⟩43 and
phase44 of the leftward propagating field is calculated after the transient time. Figure
3.8 shows the simulation results for a symmetric (R = Iback/Iinc = 1) coupling lattice
in direct comparison to our asymmetric lattice (i.e. R = 0.22).

Notably the simulation for the balanced lattice differs from the naive theoretical ex-
pectation in that the phase is already delayed by ∆Φ = −90◦ [63] for low modulation
frequencies. This effect occurs due to the high atomic damping rate Γat = 0.3ωm that
is assumed based on the findings in previous experiments [62, 76]45. For the symmet-
ric case the system response can be intuitively understood. The phase modulation of
the back-reflected beam moves the trapping potential wells at the frequency ω. For
frequencies that are low compared to the trapping frequency, the atoms adiabatically
follow the motion of the potential. For higher driving frequencies the response gradually
increases until it hits the maximum at the systems resonance frequency after which it
decreases since the atoms cannot follow the modulation of the potential anymore and
settle at the time averaged potential minimum. The phase delay in this configuration
never exceeds ∆Φ = −180◦. This is the condition for the hybrid system to remain
stable as illustrated in Fig. 3.9. A phase delay of ∆Φ = −180◦ corresponds to the case
where the maximum deflection of the resonator coincides with the atomic beamsplitter
located at the trapping potential minimum. Here two scenarios can be distinguished:

• ∆Φ < −180◦: The atom emits photons in phase of with the resonator motion,
thus driving it.

• ∆Φ > −180◦: The atom emits photons out of phase with the resonator motion
effectively reducing its phonon occupation and cooling it.

43⟨Pleft⟩ describes the mean value of Pleft.
44Relative to the ingoing field Φ(t).
45Reducing Γat yields an amplitude and phase response as depicted in the inset of Fig. 3.8 which

resembles the response of a driven harmonic oscillator again.
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Figure 3.8: Response of the coupling lattice for different atom numbers Nat:
Simulation of the relative amplitude Arel and phase response of the outgoing modulated beam
dependent on the modulation frequency ω with the phase referenced to the ingoing field modula-
tion Φ(t). Our systems resonance frequency ωm = 154 kHz is marked by the vertical dotted line.
The dashed lines show the response for a single beamsplitter. Sympathetic cooling occurs within
the grey shaded areas. We simulate a system size of NBS = 10 beamsplitters. (a,b): Expected re-
sponse for a balanced lattice (R = 1). We use the parameters Pinc = πw2

latIinc/2 = 100µW and
∆at,L = −9.6 GHz. (c,d): Expected response for a unbalanced lattice (R = 0.22). We assume
the same lattice incident power and ∆at,L = −4.55 GHz. For both cases we use wlat = 70µm, a
driving amplitude of Φ0 = 2π · 10−3 and Γat = 0.3ωm = 290 kHz. Inset: Response at a reduced
atomic damping rate for a single atom beamsplitter of Γat = 0.06ωm with Nat,BS = 0.4 · 107

atoms. Figure from Ref. [63].
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Figure 3.9: Coupling scenario
for different ∆Φ
The resonator experiences a restor-
ing force F⃗rest towards the po-
tential minimum. The atoms emit
photons in either direction of the
light field dependent on their dis-
placement, resulting in a radiation
pressure force F⃗rad. For ∆Φ =
−90◦, the atoms are located in the
trapping potential relative to the
resonator such that the resulting
radiation pressure force F⃗rad coun-
teracts the restoring force F⃗rest. For
phases ∆Φ <= −180◦, the delay is
so large that F⃗rad and F⃗rest always
point in the same direction, leading
to heating. The light shaded dots
indicate the movement direction in
the respective potentials.

The simulation verifies that for a symmetric lattice, the stability condition is fulfilled at
all times for our system parameters. For the asymmetric configuration, the simulation
shows a different behavior. For atom numbers Nat > 5.5 · 107 the stability condition
is not fulfilled when approaching resonance (ω → ωm). This effect intensifies for larger
atom numbers until the phase lag approaches ∆Φ → −360◦ for Nat > 14.8 · 107. The
large phase shift can be explained by density waves arising in the system that lead
to accumulation of an additional phase lag between the input and output fields. As
mentioned before. The simulation does not distinguish whether the lattice is in the red-
detuned or blue-detuned regime, other than by the reduced lattice constant. It clearly
shows a dependence on the number of atoms that are contributing to the coupling.
Thus, we can conclude that the observed effect of hybrid instability in red-detuned
lattices mainly arises due to the higher atomic densities.

These results raise the question whether it is feasible to compensate for the asym-
metry by introducing an auxiliary beam that adds to the intensity of the back-reflected
beam such that Iaux + Iback = Iinc. This beam would have to be of the same mode
as the back-reflex beam while maintaining a fixed phase relation. Assuming a rela-
tive phase of ϕaux,back we can simply add this beam to the simulation by rewriting
B1 = Ebacke

ikx+iΦ(t)+Ebacke
ikx+iϕaux,back with Eaux =

√
(1 −R)Einc. Using this expres-

sion on the simulation allows to predict the system behavior with a pump asymmetry
compensated lattice. The result is presented in Fig. 3.10.
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Figure 3.10: Response of the PAC lattice for different atom numbers Nat:
Simulation of the relative amplitude Arel and phase response of the outgoing modulated beam
dependent on the modulation frequency ω with the phase referenced to the ingoing field mod-
ulation Φ(t) for a pump asymmetry compensated lattice. We introduce an auxiliary beam
to the simulation with intensity Iaux = 0.78Iinc locked to the back-reflex beam at the phase
ϕaux,back = π/2. This yields a compensation of the lacking back-reflex intensity and an inten-
sity balancing of the lattice. The dashed line is the simulated behavior for a single beamsplitter
and the grey shaded area the region in which sympathetic cooling takes place. The simulation
parameters are equivalent to the parameters in Fig. 3.8. The detuning is ∆at,L = −9.6 GHz.
Figure adapted from Ref. [63].

The simulation suggests the use of an auxiliary beam to compensate for the asymmetry
to be feasible. The stability criterion is fulfilled for all configurations. The most promi-
nent difference to the balanced case is the reduced amplitude modulation which can be
explained by the much weaker modulation Φ(t) from the back-reflected beam.

Conclusion

Applying the model from Ref. [66] onto our system and numerically simulating the
system dynamic based on Ref. [131] allowed for a better understanding of the coupling
lattice dynamics in the red-detuned regime and the boundary at which the dynamic
instability occurs. The simulation results are consistent with our own and other group’s
experimental observations and suggest that it is possible to overcome the detrimental
effect of pump asymmetry by introducing an auxiliary beam that compensates the
imbalance. The observed effects are summarized to [63]:

• Low laser atom detunings ∆at,L yield higher atomic polarizabilities which benefit
the emergence of collective effects.

• In an asymmetric lattice, collective effects are strongly dependent on the number
of atoms participating in the coupling. The more atoms participate in the cou-
pling, the lower the critical asymmetry upon which collective oscillations arise.

• The sign of the detuning does not have a direct effect on the dynamics. The
observed instability in the red-detuned regime likely arises due to the attractive
potential and the consequently higher atom numbers in the system.
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3.2.4 Coupling experiments in the PAC lattice

Motivated by the findings in Chapter 3.2.2 we decided to implement a pump-asymmetry-
compensation (PAC) beam to the experimental setup. The PAC beam requires to be
excellently mode matched with the back-reflected beam from the cavity while also being
locked to its phase. We achieve this by deriving the auxiliary beam from the coupling
lattice incident beam. We adjust this beams shape to meet the geometry of the back-
reflected beam and implemented a two-component phase lock with a low-bandwidth
and high capture range piezo-lock and a free space EOM to account for fast frequency
drifts. The results of these efforts and the influence on the hybrid coupling are presented
in this chapter. The experimental setup and all measurements were done together with
J. Butlewski46 [63].

We investigate the influence of PAC on the hybrid system by measuring the sympa-
thetic cooling rate of the oscillator Γsym. As introduced in equation 3.31, this parameter
allows to directly deduct the hybrid cooperativity Chybrid. As depicted in Fig. 3.2 the
sympathetic cooling rate shows a specific resonance behavior dependent on the atomic
trapping frequency ωat relative to the resonator frequency ωm. To investigate this be-
havior, particularly with respect to different asymmetries, we sweeped ωat to obtain
the lattice depth dependent sympathetic cooling rate Γsym(ωat). Since Vlat ∝ Ilat/∆at,L
this sweep can either be achieved by changing the lattice power Plat or the detuning to
the atomic resonance ∆at,L. Both methods affect the system differently. While changing
the detuning mostly has an effect on the atomic part of the system, by higher scatter-
ing losses for near detunings, the change in coupling lattice power mainly effects the
optomechanical part of the system by heating of the resonator and introducing thermal
drifts of the cavity. For most of the experiments in this chapter we sweep the lattice
detuning at a constant lattice power Plat ≈ 100µW. This comes at an advantage of
high controllability. The detuning can be accurately set using the TiSa transfer-lock
and the cavity length can be actively stabilized at the used lattice power using the
optical spring lock [110].

The experiments presented here were conducted at room temperature, since it was not
possible to cool down the cryostat (Appendix E). While this has no qualitative effect on
the observed physics, it influences the system parameters. The optomechanical damping
rate Γm is increased, such that the mechanical linewidth exceeds the optomechanical
heating rate. Consequently, the system is more stable, less susceptible to optomechanical
heating and does not require for additional radiation pressure cooling 47. Furthermore,
a higher bath temperature yields a higher acquired final mode temperature of the sys-
tem. Because the system operates far from the quantum-coherent-oscillation regime,
ground state cooling is not possible at room temperature.

46A detailed description and characterization of the setup used for PAC is presented in Ref. [63] and
omitted in this thesis. A sketch of the PAC setup is depicted in Appendix A.2.

47This is a significant difference to the operation at base temperature where the high Q-factor and
low mechanical linewidth require constant radiation pressure cooling to keep the system stable.
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3.2.4.1 Experimental sequence

The coupling experiments were conducted with a compressed highly optically dense
MOT (high-OD-MOT) as introduced in Ref. [76]. In previous experiments we found
this configuration to yield the highest cooperativities. A sketch of the experimental se-
quence is presented in Fig. 3.11. The high-OD-MOT is created from the uncompressed
MOT. After loading the uncompressed 3D-MOT from the 2D-MOT for 5 s with opti-
mized loading parameters, the pushing beam is rapidly switched off and the trapping
parameters are linearly ramped within 500 ms to a configuration that benefits high
ODs. This yields:

• A strong increase of the magnetic field gradient
(5 G/cm → 45 G/cm)

• Reducing the cooling light intensity
(I0 = 31.5 Isat = 52.6 mW/cm2 → I0 = 2.25 Isat = 3.8 mW/cm2)

• Increasing the cooling-light detuning
(∆MOT = 17.8 MHz (2.9 ΓD2) → ∆MOT = 37.8 MHz (6.2 ΓD2)).

After reaching the final parameters, the coupling lattice is ramped up to its final power
within 1 ms, and kept at a constant power for 3 s during which the coupling experi-
ments take place. In case of the PAC experiments the auxiliary beam is phase stabilized
within the first 50 ms after the lattice is ramped up. After the coupling experiment took
place, the lattice is rapidly ramped down within 10 ms and the system re-thermalizes
for 5 s after which the sequence starts over again.

The sympathetic cooling rate is derived from measurements of the mode temperature
of the resonator Tmode. The mode temperature is acquired from the homodyne de-
tection by measuring the power spectral density Sy(ω) with a lock-in amplifier that

Figure 3.11: High-OD MOT sequence for sympathetic cooling:
(a): Sketch of the high OD MOT sequence. The red line denotes the OD of the MOT, the
blue line the coupling lattice power. After loading the MOT for 5 seconds, the parameters are
switched to high OD settings within 500 ms and the lattice power is ramped up to 100 µW
within 1 ms. Coupling takes place in a 3 s time frame before the lattice power is ramped down
within 10 ms. (b) Time trace of the resonator mode temperature. The mode temperature of a
single cycle is acquired from the average temperature (red dashed line) of the blue shaded area.
The final mode temperature is acquired from the average of 15 cycles. Figure (a) based on Ref.
[76].
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demodulates the signal at ω = ωm to acquire the demodulator output Vd(t). For a
sufficiently high SNR where the displacement PSD is higher than the detection im-
precision noise Sx(ωm) ≫ Simp

x , Vd(t) is proportional to the integrated PSD and the
mode temperature ⟨x2(t)⟩ ∝ Tmode. To avoid optomechanical heating the cavity is
stabilized in the red-detuned regime where the resonator experiences moderate op-
tomechanical cooling. The homodyne calibration for the presented PAC measurements
is |∂ϕx/∂xm| = (0.74 ± 1) rad/nm.
Figure 3.11 shows a time trace of the resonator mode temperature during the experi-
mental sequence. At t=0 the lattice is ramped up, followed by sympathetic cooling of
the resonator. The final mode temperature, which is also used for calculation of the
hybrid cooperativity is determined after 1 second in a window of 1.4 seconds (indicated
as shaded area). After 3 seconds the lattice is switched off and the mode temperature
rises during re-thermalization.
During the coupling, we require both the auxiliary phase lock and the active length
stabilization of the cavity to hold. Due to the rapid ramp up of the coupling lattice and
the sudden rise in the intra-cavity power accompanied by a fast increase of the optical
spring of the resonator, we sometimes observe destabilization of either lock component.
This becomes apparent in a reduced transmission of the cavity (i.e., the length stabi-
lization lock breaks) or in a random relative phase signal between the auxiliary and
back-reflected beam (i.e., the auxiliary phase lock breaks). The transmission and error
signal of the phase lock are recorded for each measurement. Measurements that do not
fulfill the stability requirements are omitted in the evaluation.

3.2.4.2 Pump asymmetry compensation in the red-detuned lattice

The asymmetric lattice showed the most detrimental effects on the hybrid system in the
red-detuned coupling lattice regime only allowing for coupling experiments with atoms
in an optical molasses at low atomic densities in comparison to a MOT [76]. We want to
investigate whether alleviating the asymmetry allows to access new parameter regimes
for sympathetic cooling, that were not possible before as predicted by the simulation
presented in Section 3.2.2.
We determined the asymmetry with the cavity on resonance to R = Pback/Pinc =
0.22 ± 0.01 [63]. If we lock the phase between the auxiliary and back-reflected beam at
ϕaux,back = π/2, the lattice is balanced if Paux = Pinc − Pback and the error signal of
the lock exhibits a large slope. To determine the needed auxiliary power accurately we
measure the incident and back-reflected beam powers and derive the respective light
power incident on the atoms by taking into account all losses in the optical setup. The
powers that are mentioned in the presented measurements already take losses in the
system into account and refer to the powers at the site of the atoms.
To investigate the sympathetic cooling performance in a balanced red-detuned lattice
we set the incident beam power to Pinc = (103 ± 1)µW and the auxiliary beam power
is set to Paux = 0.78Pinc = (81 ± 1)µW. To investigate the resonance behavior, the
lattice detuning is swept between ∆2,1 = −2.5 GHz and ∆2,1 = −184 MHz48.

48We refer to blue-detuning by ∆2,3 which describes the detuning relative to the |F = 2 → F ′ = 3⟩
transition and to red-detuning by ∆2,1 which describes the detuning relative to the |F = 2 → F ′ = 1⟩
transition.
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Figure 3.12: Hybrid coupling in the red-detuned PAC lattice:
Hybrid coupling experiments in a high-OD MOT for an uncompensated red-detuned lattice
(light red) and a pump asymmetry compensated lattice (dark red). The lattice depth is varied
by a detuning sweep of ∆2,1. (a) Resonator mode temperature measured for different detunings
∆2,1. (b) Resonator mode temperature dependent on the trapping frequency ωat. The dashed
line denotes the bath temperature of 293 K. All measurements were conducted at an incident
coupling lattice beam power of Pinc = 103µW with Paux = 81µW, Pback = 21µW and at a
relative phase of ϕauc,back = 0.78π. Figure from Ref. [63].

Figure 3.12 shows the mode temperature of the resonator in this configuration for dif-
ferent detunings and lattice depths in comparison to the case where the lattice is not
pump asymmetry compensated. While the system with the unbalanced lattice shows
the same behavior as in previous experiments (i.e., the resonator is driven into limit
cycles if the resonance condition is fulfilled), the compensated lattice actually shows
significant, sympathetic cooling in the previously inaccessible, red-detuned regime with
a final mode temperature of Tmode = (8 ± 2) K.

This observation further supports the theory, that pump asymmetry is the main cause
for the hybrid instability and shows, that its effects can be compensated. Interestingly,
we observed sympathetic cooling to occur not in the balanced case at a relative auxil-
iary, back-reflex phase of ϕaux,back = π/2 but at a relative phase of ϕaux,back = 0.78π.
At this phase both beams destructively interfere which yields a reduced power of the
compensated back-reflex beam of Pref,tot = 38.5µW. This is an unexpected result.
Although, PAC makes it possible to work in the red-detuned regime, it requires the
relative phases between auxiliary and back-reflex beam to be set such that the new
lattice is still imbalanced. At the same time a configuration in which the lattice is theo-
retically balanced still shows hybrid instability. This result motivated us to investigate
the parameters, for which PAC works, more closely.
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3.2.4.3 Optimization of PAC parameters

The findings of the previous section require to further investigate the parameter regime
in which PAC works. A balanced lattice can be acquired from different combinations of
auxiliary beam powers Paux and relative phases ϕaux,back. To find the best parameters
of the compensated lattice we tuned both parameters and swept the relative phase
ϕaux,back for different ratios Paux/Pinc. The results are depicted in Fig. 3.13.

Figure 3.13: Hybrid coupling in the red-detuned PAC lattice at different auxiliary
beam settings:
To identify the parameters in the compensated lattice that yield the highest cooperativities,
we investigate the sympathetic cooling for different power ratios Paux/Pinc. Each color yields a
different power ratio. For each ratio the compensated back-reflex beam power Pref,tot is varied by
changing the relative phase ϕaux,back. For each power ratio, ϕaux,back is varied until sympathetic
cooling is not possible anymore to cover the whole parameter space in which cooling occurs. (a)
Mode temperature dependent on the compensated back-reflex beam power Pref,tot. The grey
dashed line shows the power at which the lattice would be balanced. (b) Mode temperature
over the corresponding trapping frequency in units of the resonance frequency ωm. (c) Mode
temperature dependent on the systems asymmetry (equation 3.32). The lowest temperature is
achieved at A = 1 and rises towards A → 0. (d) Total power of back-reflex and auxiliary beam
dependent on their relative phase. The lines resemble the two-beam interference signal for the
phase ϕaux,back. The colored dots indicate the lock points on the slopes at which the individual
measurements from (a-c) were conducted. Note that except for the traces with Paux/Pinc <=
0.42 the lowest mode temperatures were acquired at the highest ϕaux,back at the bottom of the
interference signal. Experimental parameters: Pinc = (103 ± 1)µW, Pback = (21.4 ± 0.5)µW
and ∆2,1 = −475 MHz. Figure from Ref. [63].
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All measurements were done at an incident power of Pinc = (103 ± 1)µW. Each color
corresponds to one power ratio between auxiliary and incident beam. The compensated
back-reflected beam power is adjusted Pref,tot via the relative phase ϕaux,back which is
depicted in Fig. 3.13(c). Notably, cooling only occurs for phase settings ϕaux,back > 0.6π
which corresponds to a lock point at the bottom of the interference signal. For low aux-
iliary powers (Paux < 0.42Pinc), the mode temperature dependent on Pref,tot exhibits
local minima which suggests, that an optimal phase setting exists for these configura-
tions. For higher auxiliary lattice powers such a minimum is not observable and the
point of strongest sympathetic cooling corresponds to the maximum possible value of
ϕaux,back (which is limited by the stability of the lock near the anti-node of the in-
terference signal.). This point also corresponds to the point of maximum destructive
interference between both beams and thus still yields an asymmetric lattice configura-
tion for most beam settings.
More surprisingly the measurements suggest, that the lowest mode temperature is

achieved for a ratio Paux : Pinc = (0.85 : 1) and (1 : 1) at a configuration where
the asymmetry is A = 1. For A → 0 the cooling performance even slightly decreases.
Also, this balanced configuration can be achieved only for power ratios Paux : Pinc >

(1.5 : 1). To further investigate the previously found optimal PAC-lattice configu-
rations, we measure the resonance behavior of the system for the cases of strongest
sympathetic cooling and for the balanced lattice. We set the power ratios and the rel-

Figure 3.14: Hybrid coupling in the red-detuned PAC for optimized settings:
Hybrid coupling experiments in a high-OD MOT for a PAC compensated red-detuned lattice
dependent on the resonant lattice depth for the parameters with the lowest mode temperature
(blue shades) and a compensated lattice (magenta). The lattice depth is varied by a detuning
sweep of ∆2,3. (a): Resonator mode temperature measured for different detunings ∆2,1. (b):
Resonator mode temperature dependent on the trapping frequency ωat. The dashed line denotes
the bath temperature of 293 K. All measurements were conducted at a incident coupling lattice
beam power of Pinc = (103 ± 1)µW and Pback = (21 ± 0.5)µW. The relative phases are
ϕaux,back,0.85:1 = 0.76π, ϕaux,back,1:1 = 0.81π and ϕaux,back,1.5:1 = 0.57π. At these settings
we acquire the mode temperatures: Tmin,0.85:1 = (3.2 ± 0.8) K, Tmin,1:1 = (2.9 ± 0.7) K and
Tmin,0.1.5:1 = (17 ± 4) K. Figure from Ref. [63].



76 Towards a strongly coupled atom-optomechanical hybrid system

ative phase to the optimal values found in the previous measurement and sweep the
lattice detuning ∆2,3. The acquired mode temperatures dependent on the detuning
and the derived trapping frequencies are depicted in Fig. 3.14. The cooling curve for
Paux : Pinc = (0.85 : 1) and (1 : 1) (A ≈ 1) qualitatively resembles the same behavior
as for an unbalanced, blue-detuned lattice (Fig. 3.16) with the minimal mode temper-
atures (Tmin,0:85:1 = (3.2 ± 0.8) K, Tmin,1:1 = (2.9 ± 0.7) K) acquired at ωat ≈ 2ωm

49.
For the configuration with Paux : Pinc = (1.5 : 1) (A ≈ 0) this minimum is slightly
shifted and the region in which cooling is observed is broader. There is a significant
difference in the final mode temperature since the balanced configuration only reaches
Tmin,1:1 = (17 ± 4) K. The measurements of the trapping frequency dependent final
mode temperature allow to determine the sympathetic cooling rate and the hybrid co-
operativity of the balanced system. Using equation 3.23 we calculate the sympathetic
cooling rate Γsym at the respective trapping frequencies ωat. We can expect a reso-
nance behavior according to the model of the ensemble integrated sympathetic cooling
rate presented in Section 3.1.1 and deduct Γsym,max and the hybrid cooperativity. The
results are presented in Fig. 3.15. The hybrid cooperativities for the individual PAC
lattice configurations are:

CnoPAC
hybrid,0.85:1 = 90 ± 20 CPAC

hybrid,1:1 = 100 ± 20 and CPAC
hybrid,1.5:1 = 17 ± 4 (3.51)

The resulting cooperativities are lower than in the unbalanced blue-detuned case that
is presented in the next Section 3.2.4.450.

Figure 3.15: Sympathetic
cooling rates in the red-
detuned PAC lattice
Γsym calculated from equation 3.19
using the in Fig. 3.14 acquired
mode and bath temperatures. The
data are fitted with expression
3.23. The x-axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths are
omitted. Figure adapted from Ref.
[63].

49The observed cooling at multiple ωm comes from the Gaussian intensity profile of the beam that is
not accounted for in the lattice depth calibration. It is accounted for in the calculation of the ensemble
integrated sympathetic cooling rate that is used to determine Chybrid.

50A parameter that remained undiscussed in this section is the incident beam power. Measurements
where Pinc was swept at the optimized PAC settings, suggest a optimal beam power at Pinc = 65 µW
[63]. However, the improvement turned out to be insignificant compared to the performance in the
blue-detuned lattice.
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Figure 3.16: Hybrid coupling in the blue-detuned lattice without PAC and for
optimized PAC settings:
Hybrid coupling experiments in a high-OD MOT for an uncompensated blue-detuned lattice
and a PAC lattice with optimized parameters found in Section 3.2.4.3. The lattice depth is
varied by a detuning sweep of ∆2,3. (a) Resonator mode temperature measured for different
detunings ∆2,3. (b) Resonator mode temperature dependent on the trapping frequency ωat.
The dashed line denotes the bath temperature of 293 K. All measurements were conducted at a
incident coupling lattice beam power of Pinc = 103µW and Pback = 21µW. The relative phases
for the PAC case is ϕaux,back,1.5:1 = 0.57π. At these settings we acquire the mode temperatures:
Tmin,noPAC = (1.5 ± 0.3) K and Tmin,PAC = (2.9 ± 0.7) K. Figure from Ref. [63].

3.2.4.4 Pump asymmetry compensation in the blue-detuned lattice

Previous experiments showed the highest cooperativities to occur in the blue-detuned
regime [62, 63] where no hybrid instability was observed. Thus, we investigate the im-
pact of a PAC lattice in this regime at the previously found optimal parameter sets.
We set the incident beam power to Pinc = (103 ± 1)µW and the auxiliary beam power
to Paux = 0.78Pinc = (81 ± 1)µW. The lattice detuning is swept between ∆2,3 = 5 GHz
and ∆2,3 = 50 MHz.
Figure 3.16 shows the resonance behavior of the mode temperature for different de-

tunings and lattice depths comparing the PAC case with the uncompensated lattice.
Clearly it is possible to sympathetically cool in the blue-detuned regime in a compen-
sated lattice and it is possible to cool the resonator from room temperature to a final
mode temperature of Tmode = 3 K. The region, in which the PAC lattice can be operated
is very narrow and the relative phase has to be set around ϕaux,back = 0.5π to observe
sympathetic cooling in contrast to the red-detuned case. In the uncompensated lattice
the minimal mode temperature achieved is Tmin,mode = (1.5 ± 0.3) K. For the PAC
lattice the temperature is higher (Tmin,mode = (2.9 ± 0.7) K) and shifted with respect to
the resonance condition as it is acquired at ωat ≈ 4ωm. Determining the sympathetic
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Figure 3.17: Sympathetic
cooling rates in the blue-
detuned lattice
Γsym calculated from equation 3.19
using the in Fig. 3.16 acquired
mode and bath temperatures.
Expression 3.23 is fitted onto the
data. The x axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths are
omitted. Notably the PAC lattice
yields much lower cooperativities
than the lattice without PAC.
Figure adapted from Ref. [63].

cooling rates (Fig. 3.17) and the hybrid cooperativities leads to the following results:

CnoPAC
hybrid = 190 ± 40 and CPAC

hybrid = 100 ± 20 (3.52)

While PAC works in the blue-detuned regime the resulting cooperativities are signifi-
cantly inferior to the uncompensated blue-detuned case. The worse cooling performance
in the compensated blue-detuned lattice might be explained by increased scattering
losses. Previous experiments on the system in the blue-detuned regime showed similar
behavior when increasing the lattice power. P. Christoph observed in Ref. [76] that
the minimal achieved mode temperature increased by a factor of 1.6 (in our case a
factor of 1.9) for a lattice power increase by a factor of 4. Another possible explanation,
although not experimentally verified, would be additional noise introduced to to the
system by the auxiliary beam such as residual phase noise or small local disturbances
in the combined mode profile of the compensated beam.

3.2.4.5 Conclusion

Performing coupling experiments with a red-detuned coupling lattice was a promising
idea but did not show the anticipated improvements. To understand the underlying
mechanisms of the hybrid instability, that is an intrinsic property of systems like ours,
we took a close look on the effects pump asymmetry has on a 1D coupling lattice and
discussed the emerging static and dynamic effects. We simulated the dynamics of our
system with a numerical simulation based on Ref. [131] and could not only verify the
emergence of the hybrid instability in our system, but also extend the model to predict
the effects of introducing an auxiliary compensation beam to alleviate the asymmetry.
Based on this finding we implemented a pump-asymmetry-compensation lattice and
investigated the performance in both the blue and red-detuned regime and for different
power ratios. The measurements in the PAC lattice showed, that the destabilizing ef-
fect of pump asymmetry can be alleviated which allows to operate the hybrid system in
new parameter spaces. We observe sympathetic cooling in the previously inaccessible,
red-detuned regime. Surprisingly, the highest cooperativities are not achieved for the
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balanced configuration but for an asymmetry of A = 1 at Paux = Pinc. Overall, the
highest achieved cooperativity in the red-detuned regime is by a factor 2 smaller than
for the unbalanced blue-detuned coupling lattice.
While the experiments showed PAC to also work in the blue-detuned regime, the re-
quirements for it to work differ from the red-detuned regime. Cooling the blue lattice
could only be observed for a balanced configuration (A ≈ 0). Other configurations
exhibited heating of the resonator. The maximum cooperativities in the PAC lattice
were inferior to the uncompensated configuration. An overview of the highest achieved
cooperativities in the respective configurations shows:

Blue lattice Tmode
min Γmax

sym Chybrid
without PAC 1.5 ± 0.3 K 28 ± 6 Hz 190 ± 40

with PAC 2.9 ± 0.7 K 15 ± 4 Hz 100 ± 25
Red lattice

with PAC 2.9 ± 0.7 K 14.5 ± 3.5 Hz 100 ± 25

Here it becomes apparent, that the highest cooperativities for the PAC experiments
in the red and blue-detuned regime are similar. This observation suggests that the use
of PAC cannot increase the coupling strength, although it makes sympathetic cooling
possible in both red- and blue- detuned lattices.
We conclude that PAC is not a viable option to increase the system cooperativity and
that other approaches have to be pursed. Another parameter that significantly can
improve the cooperativity is the cavity finesse. In Section 3.1.1 we found a finesse of
F = 600 to yield the highest improvement in cooperativity. In the next chapter we will
enter this regime with the new cavities from Ref. [67] and investigate their influence on
the hybrid coupling.
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3.3 High finesse cavities for enhanced coupling strength

In Section 3.1.2 we derived the impact of the cavity finesse on the optomechanical
coupling and determined the optimal finesse for the system to F4K = 600 and F293K =
3300. The new cavities from [67] allow to be adjusted to values of Flow = (650 ± 50)
and Fhigh = (1500 ± 100). In contrast to the experiments that were conducted at lower
finesses, the new system exhibits a much higher optical spring effect and thus significant
optomechanical cooling rates. Figure 3.18 shows the optomechanical damping rates at
a lattice power Plat

51 acquired from the optical spring measurements in Section 2.3.3.
Fitting a linear function allows to calculate the power dependence of the optomechanical
damping rate ∂Γopt/∂Plat if the system is aligned to experience maximum optical spring:

∂Γopt,F=650
∂Plat

= 18.1 ± 0.4 mHz
µW and ∂Γopt,F=1500

∂Plat
= 174 ± 12 mHz

µW (3.53)

The high damping rates have implications for the measurements conducted in this sys-
tem. Already at lattice powers of 1µW the optomechanical cooling is similar to the
mechanical damping rate of the system (Tbl. 2.1). This makes the system very sen-
sitive and unstable when switching on the coupling lattice coupling lattice which is
usually operated in the range of 10 − 100µW. If the system is not continuously cooled
(e.g., by sympathetic or radiation pressure cooling) and brought on resonance such that
∆ = ωcav − ωTiSa = 0, even small drifts of the resonator towards the side of optome-
chanical heating, drive the system into limit cycles.
For experiments that require cycled runs, e.g., coupling experiments with the com-
pressed MOT, this unstable behavior renders it impossible to operate the system at
a detuning of ∆ → 0. One option to counteract this behavior would be continuous
radiation pressure cooling [62, 136, 137]. Although the feedback cooling scheme was
implemented in the new system, and allowed cooling to similar final mode tempera-
tures (Appendix C) as in Ref. [62], it is not fully applicable to cycled experiments as it
requires for continuous measurement of the resonator state.

Figure 3.18: Optomechanical
cooling dependent on finesse
and lattice power:
Γopt determined from the optical
spring measurements in Fig. 2.13
for different coupling lattice pow-
ers Plat. For a set lattice power, the
maximum optical spring was deter-
mined to calculate Γopt using equa-
tion 2.21. Green data points de-
note measurements at F = 1500,
red data points measurements at
F = 650. The dark lines are linear
fits f(x) = m·x. The lighter shades
denote the 2σ confidence bounds of
the fits.

51Measured in front of the glass cell.
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Due to the 30 times larger optical spring52 that the resonator experiences when the
coupling lattice is ramped up, the change in ωm in combination with slight drifts of
the cavity on the optomechanical heating side regularly lead to limit cycle oscillations
despite active radiation pressure cooling.

Another option is choosing the detuning of the optomechanical system such that the
resonator always experiences optomechanical cooling (i.e., at the point of maximum
optical spring). Here we can calculate the optomechanical cooling rate according to
equation 3.53. During the experiments we found this option to be favorable as it yielded
the highest stability and showed reproducible results.
We conducted hybrid coupling experiments both with a continuously loaded, uncom-
pressed MOT and a high OD MOT in a cycled experiment. Based on the findings in
the previous section we decided to only work with the blue-detuned coupling lattice.
Because of persisting issues with the cryostat, the measurements presented here were
conducted at room temperature. Since the optomechanical properties of the new sys-
tem are more sensitive to slight misalignment, the system has to be characterized on a
daily basis when operated at room temperature. Thus, the homodyne calibration and
the reflectivity on resonance vary slightly between the measurements. The averaged
value of both quantities for the individual measurements is denoted by subscripts in
the respective figures.

3.3.1 Coupling experiments with a MOT

The uncompressed MOT is continuously loaded from the 2D-MOT with the settings
described in section 3.2.4.1. During the experiments, the coupling lattice is constantly
switched on. This allows to align the system close to ∆ = 0 ± 1 GHz without the
system getting unstable as long as the sympathetic cooling rate is large enough. Thus,
we assume the bath temperature to be equal to room temperature Tbath = 293 K
and that there is no reduction in the initial phonon occupation of the resonator by
additional optomechanical cooling. By choosing the proper alignment we adjust the
system to operate in the high and low finesse configuration to investigate the influence
of the finesse on the hybrid cooperativity.

Low finesse configuration

The low finesse configuration of Flow = (650 ± 50) with a continuously loaded MOT
exhibits strong sympathetic cooling. Figure 3.19 shows the acquired minimal mode
temperature for different coupling lattice incident beam powers Pinc.
Fig. 3.19(a) shows the resonance behavior of the system and the acquired mode tem-
perature dependent on the atomic trapping frequency ωat. Fig. 3.19(b) depicts the
mode temperature dependent on the laser-atom detuning ∆2,3. Qualitatively we ob-
serve a similar behavior as already observed in Ref. [76]. The minimal acquired mode
temperature decreases for lower coupling lattice powers. For higher lattice powers
(Plat > 50µW) the resonance behavior shows a minimum in mode temperature around
ωat = 3ωm.

52That is for the F = 1500 configuration.
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Figure 3.19: Hybrid coupling with an uncompressed MOT for F = 650:
Hybrid coupling experiments at the low finesse configuration in a blue-detuned coupling lattice
for different coupling lattice powers Plat. (a) Resonance behavior of the mode temperature Tmode
dependent on the trapping frequency in units of ωm. The lattice depth is varied by sweeping the
detuning ∆2,3. (b) Acquired mode temperature dependent on the detuning ∆2,3. Inset: Zoom
into the resonance behavior for small detunings (0 − 200 MHz). The detuning of the 12.5µW
lattice is varied from 22 MHz to 162 MHz in steps of 10 MHz using the improved transfer
lock. The dashed line denotes the bath temperature Tbath = 293 K. The mode temperature is
determined by averaging over five 10 s time traces of the of the integrated PSD. The homodyne
calibration for these measurements is | ∂Φ

∂xm
| = (4.0 ± 0.3) rad

nm . The reflectivity on resonance was
σ = (0.8 ± 0.02)

The mode temperature shows a constant decrease for ∆2,3 → 0 and higher lattice
depths until it suddenly rises when hitting the atomic resonance. This behavior can be
interpreted as the vanishing of the optical lattice due to the high OD of the atomic
cloud near resonance and for low lattice powers53. Conducting coupling experiments
at 12.5µW power requires very accurate control of the lattice detuning to get mean-
ingful results. The resonance condition is only fulfilled for detunings ∆2,3 < 100 MHz.
The newly tunable transfer lock allows for accurate54 measurements in the very near
detuned regime. We reach a minimal mode temperatures of Tmode,100 = (1.3 ± 0.4) K,
Tmode,50 = (0.7±0.2) K, Tmode,25 = (0.6±0.1) K and Tmode,12.5 = (0.5±0.1) K. Here we
see an improvement over the old system. As presented in Fig. 3.16, the minimal mode
temperature with a blue-detuned lattice for Tbath = 293 K was Tmode

min = (1.5 ± 0.3) K.
This yields a factor of three lower mode temperature and indicates the stronger cou-
pling that can be achieved with the higher finesse.
We use the acquired mode temperatures to determine the sympathetic cooling rate

and thus, the hybrid cooperativity of the system. The results are presented in Fig.
3.20. While there is a significant improvement in cooperativity between the 100 µW
and 50 µW coupling lattice, the highest reached cooperativities for the lattice settings

53This phenomenon is investigated in detail in Section 3.3.3 and shows to pose a limit on the coop-
erativity the system can reach.

54We tune the coupling lattice in steps of 10 MHz.



High finesse cavities for enhanced coupling strength 83

Figure 3.20: Sympathetic
cooling rates for an uncom-
pressed MOT at F = 650:
Γsym calculated from equation
3.19 using the mode and bath
temperatures from Fig. 3.19.
Expression 3.23 is fitted onto the
data. The x axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths
are omitted. Inset: Γsym with the
according fits for Plat = 12.5µW.
Since this plot intersects with the
others it was plotted separately for
a better overview.

Plat < 100µW are roughly similar within the determined error margins. Notably, the
shape of the 12.5µW curve differs from the curves of higher lattice powers, indicating a
higher atomic damping rate Γat. In this configuration the system reaches the following
cooperativities:

Plat,inc 100µW 50µW 25µW 12.5µW
Chybrid 220 ± 70 430 ± 110 520 ± 120 550 ± 130

The highest cooperativity is a factor 2.5 higher than the previously acquired cooperativ-
ity in the uncompensated blue-detuned lattice (Chybrid = 190±20) at room temperature
and even a factor 1.5 higher than in the cooperativity we reached in an uncompensated,
blue-detuned lattice at base temperature (Chybrid = 350 ± 70).

High finesse configuration

When aligned to the high finesse configuration, the parameter space in which the sys-
tem can operate becomes narrower. At lattice powers of 25µW the system behaves very
unstable and spontaneous heating of the resonator can occur for any alignment as far
as no additional cooling is introduced. This behavior was previously not observed in
our system because it was operated in a semi-stable regime where the cavity linewidth
exceeded the frequency shift ωcav(xm) introduced by the resonator by orders of magni-
tude. For the high finesse configuration we enter a new regime of operation. Here the
cavity linewidth is only κhigh = (7.6 ± 0.2) GHz and comparable with the frequency
shift the resonator can cause. The expected frequency shift at a given lattice power can
be calculated. Assuming a intra-cavity photon lifetime of τcav = 1/κ ≈ 130 ps we can
calculate the number of intra-cavity photons for a lattice power of 25 µW and the cavity
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frequency shift it causes at a given single photon coupling rate g0,high = 2π · 204 kHz:

NF=1500,25 = 25µW · τcav
ℏωTiSa

≈ 13000 ⇒ ∆ωcav = g0,high ·NF=1500,25 ≈ 2.7 GHz

(3.54)

Comparing this to the system at F = 650 with 25 µW, κlow = (17.5 ± 0.7) GHz and
τcav = 1/κ ≈ 60 ps the cavity frequency shift at a given single photon coupling rate
g0,low = 2π · 72 kHz yields:

NF=650,25 = 25µW · τcav
ℏωTiSa

≈ 5600 ⇒ ∆ωcav = g0,low ·NF=650,25 ≈ 0.4 GHz (3.55)

If the finesse is sufficiently high, the resonator can shift the cavity resonance frequency
on the order of the cavity linewidth. This leads to an unpredictable behavior on res-
onance, as large amplitudes can arbitrarily shift the system from the side of optome-
chanical cooling to the side of optomechanical heating. At high lattice powers these
spontaneous heating events are regularly observed, even at high sympathetic cooling
rates55. They manifest as short spikes in the time-dependent, integrated PSD signal.
We omit regions in the PSD traces that show these features, as they do not resemble
the resonant hybrid system.

Figure 3.21: Hybrid coupling with an uncompressed MOT for F = 1500:
Hybrid coupling experiments at the high finesse configuration in a blue-detuned coupling lattice
for different coupling lattice powers Plat. (a) Resonance behavior of the mode temperature Tmode
dependent on the trapping frequency in units of ωm. The lattice depth is varied by sweeping the
detuning ∆2,3. (b) Mode temperature dependent on the detuning ∆2,3. The dashed line denotes
the bath temperature Tbath = 293 K. The mode temperature is determined by averaging over
five 10 s time traces of the integrated PSD. The homodyne calibration for these measurements
is | ∂Φ

∂xm
| = (10 ± 1) rad

nm . The reflectivity on resonance was (σ = 0.60 ± 0.02).

55This can happen due to fluctuations of the laser frequency, optical density fluctuations in the MOT
or power fluctuations.
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Figure 3.21 shows the resonance behavior of the resonator mode temperature for
Pinc = 25µW and 12.5µW. As in the previous measurement, the minimal mode temper-
ature decreases with lower coupling lattice powers. A key difference is that the region,
in which cooling can be observed, is much smaller and meaningful results are only ob-
tained for detunings from 10 − 200 MHz. Like in the previous measurement, the lowest
mode temperatures are acquired at low detunings (as depicted in Fig. 3.21(b)) with the
minimal mode temperatures being Tmode,25 = (0.5 ± 0.2) K for the 25µW lattice and
Tmode,12.5 = (0.20 ± 0.05) K for the 12.5µW lattice.

This mode temperature is equal to the minimal mode temperature acquired at base
temperature in Ref. [63]56. This is a significant improvement over the old setup and
yields a higher cooperativity than in the previous measurement. The analysis of the
sympathetic cooling rate is presented in Fig. 3.22. We reach the highest cooperativity
measured at this experiment yet at a lattice power of 12.5 µW57:

Plat,inc 25µW 12.5µW
Chybrid 500 ± 200 1400 ± 300

The coupling experiments at room temperature with an uncompressed MOT support
the model by Ref. [52] presented in Fig. 3.3. We observe an increased coupling strength
for higher finesses. Yet we also see hints of a fundamental limit in cooperativity arising
due to instability of the system when the optomechanical coupling is strong enough to
modulate the cavity frequency on the order of κ.

Figure 3.22: Sympathetic
cooling rates for an uncom-
pressed MOT at F = 1500:
Γsym calculated from equation 3.19
using the in Fig. 3.21 acquired
mode and bath temperatures.
Data are fitted using expression
3.23. The x-axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths are
omitted.

56Here a compressed MOT at a coupling lattice power of 100 µW was used to acquire Tmin = (0.21 ±
0.04) K at base temperature.

57We acknowledge that in Ref. [62] a cooperativity of 3800 was reported. This value was reached by
feedback assisted cooling, thus not resembling the definition in equation 3.31 or 3.56.
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3.3.2 Coupling experiments with a high-OD MOT

Since the hybrid cooperativity scales with the number of atoms that participate in the
coupling (Eq. 3.31) we conducted coupling experiments also with the high-OD MOT
that has been introduced in Section 3.2.4.1. As the compressed MOT requires a cy-
cled experiment sequence, we need to operate the system at the point of maximum
optomechanical cooling (i.e. maximum optical spring) at all time58 to prevent optome-
chanical heating due to random drifts on resonance. Working in a regime with strong
optomechanical cooling was investigated in Ref. [58]. We account for the additional
optomechanical damping of the resonator Γtot = Γm + Γsym + Γopt by calculating Γsym
via [58]:

Γsym = Γm

(
Tbath
Tsym

− Tbath
Topt

)
with Topt = Tbath

Γm
Γm + Γopt

(3.56)

We calculate Topt from the optical spring measurements and the derived optomechanical
damping rates Γopt presented in Fig. 3.18. For the calculation of the hybrid coopera-
tivity Chybrid = Γsym/Γm use the definition of Γsym that is introduced in equation 3.56.

Figure 3.23: Hybrid coupling with a compressed MOT for F = 650:
Hybrid coupling experiments at the low finesse configuration in a blue-detuned coupling lattice
for different coupling lattice powers Plat. (a) Resonance behavior of the mode temperature Tmode
dependent on the trapping frequency in units of ωm. The lattice depth is varied by sweeping
the detuning ∆2,3. The dashed lines denote the respective mode temperatures Topt achieved by
optomechanical cooling (b) Acquired mode temperature dependent on the detuning ∆2,3. The
light blue dashed line denotes the bath temperature Tbath = 293 K. The mode temperature is
determined by averaging over 10 traces of the of the integrated PSD as shown in Fig. 3.11. The
homodyne calibration for these measurements yields | ∂Φ

∂xm
| = (4.0 ± 0.2) rad

nm . The reflectivity on
resonance is σ = (0.80 ± 0.02).

58The optical-spring-lock [110] cannot be used in this regime, thus the cavity is tuned to this setting
manually using the offset output of the lock-in amplifier.
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Low finesse configuration

Figure 3.23 shows the resonant behavior of the mode temperature for different lattice
powers with a compressed MOT. It becomes apparent, that the minimal temperature
is consistently reached for ωat ≈ 2ωm (Fig. 3.23(a)). This can be accounted to the
much higher atomic densities and a roughly similar number of coupling atoms for all
lattice power settings. Except for the lattice power Plat = 100µW the reached mode
temperature is one order of magnitude smaller than for the uncompressed MOT with
Tmode,100 = (0.40 ± 0.15) K, Tmode,50 = (0.09 ± 0.02) K, Tmode,25 = (0.05 ± 0.01) K and
Tmode,12.5 = (0.07 ± 0.02) K.
The mode temperatures Topt reached due to optomechanical cooling are denoted by the
dashed lines in the respective colors59. The assumed bath temperature is Tbath = 293 K.
Figure 3.24 shows the calculated sympathetic cooling rates and hybrid cooperativities.
The cooperativities are further increased compared to both measurements with the
uncompressed MOT reaching a maximum of Chybrid = (5900 ± 1300) at a lattice power
of Plat = 25µW. Overall, we reach the following cooperativities:

Plat,inc 100µW 50µW 25µW 12.5µW
Chybrid 710 ± 260 3400 ± 750 5900 ± 1300 4100 ± 900

Although very large, the increase in cooperativity by a factor of roughly (30 ± 5)
is reasonable considering that the finesse was increased by a factor of Fnew/Fold =
650/140 ≈ 4.6 and that Γsym scales with F2 according to equation 3.22 60.

Figure 3.24: Sympathetic
cooling rates for a compressed
MOT at F = 650:
Γsym calculated from equation 3.56
using the in Fig. 3.23 acquired
mode and bath temperatures.
Data are fitted with expression
3.23. The x-axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths
are omitted. Inset: Γsym with the
according fits for Plat = 12.5µW.
Since this plot intersects with the
others it was plotted separately for
a better overview.

59Except for Plat = 50 µW the theoretical temperature Topt is not reached because the optomechanical
cooling was the dominant effect in the depicted measurements.

60That is, until the optimal finesse according to Fig. 3.3 is reached.
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High finesse configuration

For the coupling experiments with the compressed MOT at F = 1500 the same chal-
lenges arise as for the experiments at this finesse with the uncompressed MOT. Further-
more, the rapid ramping of the lattice introduces undesired excitation to the system
and as in the case with the uncompressed MOT short events of spontaneous heating
can occur, even while cooling in the system takes place. Thus, the quality of the data
is worse compared to the measurements that were conducted before.

Figure 3.25 shows the resonance behavior of the mode temperature dependent on the
lattice depth (Fig. 3.25(a)) and the laser-atom detuning (Fig. 3.25(b)).
The strong optomechanical cooling in this configuration leads to lower initial tem-
peratures Topt that are denoted by the dashed green lines for the respective lattice
powers. Here, the measured and theoretically calculated values match within one stan-
dard deviation. For a lattice power of 12.5µW the resonance behavior is similar to
measurements at the lower finesse configuration and the minimal mode temperature of
Tmode,12.5 = (0.15 ± 0.05) K. At 25µW lattice power the system behaves much more
unstable and getting reproducible results, even for the same measurement parameters,
is challenging. We observe significant cooling effect, reaching the same minimal mode
temperature of Tmode,25 = (0.15 ± 0.05) K as in the weaker lattice.

Figure 3.25: Hybrid coupling with a compressed MOT for F = 1500:
Hybrid coupling experiments at the low finesse configuration in a blue-detuned coupling lat-
tice for different coupling lattice powers Plat. (a) Resonance behavior of the mode temperature
Tmode dependent on the trapping frequency in units of ωm. The lattice depth is varied by sweep-
ing the detuning ∆2,3. (b) Acquired mode temperature dependent on the detuning ∆2,3. The
dashed lines denote mode temperatures Topt achieved by optomechanical cooling (b) Acquired
mode temperature dependent on the detuning ∆2,3. The light blue dashed line denotes the
bath temperature Tbath = 293 K. The mode temperature is determined by averaging over 10
traces of the of the integrated PSD as shown in Fig. 3.11. The homodyne calibration for these
measurements yields | ∂Φ

∂xm
| = (11 ± 1) rad

nm . The reflectivity on resonance is σ = (0.60 ± 0.02).
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The data for this configuration does not allow for a meaningful analysis of the ensemble
integrated sympathetic cooling rate as is does not follow the characteristic resonance
behavior described by equation 3.20.
The calculated sympathetic cooling rates for the 12.5µW lattice are depicted in Fig.
3.26. We observe a characteristic resonance behavior and reach a maximum sympa-
thetic cooling rate of Γsym = (330 ± 100) Hz. Although not depicted in this figure, we
can calculate the maximum achieved cooperativity for the 25µW lattice from the min-
imal mode temperature. This results in the cooperativities of the high finesse system
with a compressed MOT:

Plat,inc 25µW 12.5µW
Chybrid 2100 ± 600 2100 ± 500

Both configurations yield the same cooperativity within the error margins. Based on
the findings in the previous measurements we can assume that higher cooperativities
are to be expected for lower lattice powers and that the found cooperativities might be
limited by heating effects and back-action (Eqs. 3.55, 4.33), the resonator experiences
in this configuration.

A further reduction of the lattice power might increase the cooperativity but requires for
smaller laser-atom detunings to fulfill the resonance condition. Close to resonance new
effects in the atom-light interaction become relevant. Thus, we decided to investigate
this regime of very low lattice powers and small detunings in more detail.

Figure 3.26: Sympathetic
cooling rates for a com-
pressed MOT at F = 1500 and
Plat = 12.5µW:
Γsym calculated from equation 3.56
using the in Fig. 3.25 acquired
mode and bath temperatures.
Data are fitted using expression
3.23. The x-axis is rescaled to
fulfill the resonance condition. The
light shaded areas denote the 2σ
confidence bounds of the fits. Data
points that show a decreasing
Γsym for higher lattice depths are
omitted.
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3.3.3 Destructive effects in the limit of near detunings

The findings in Section 3.3.1 and 3.3.2 motivate us to investigate the regime of low
lattice powers and near detunings more closely. The highest cooperativities in the un-
compressed MOT measurements were achieved at the lowest lattice powers. For the
compressed MOT we observe the highest cooperativities at a lattice power of 25µW at
a finesse of F = 650. Figure 3.27 shows a sweep of the lattice power at a constant lattice
depth of ωat = 2ωm. It becomes apparent, that the cooperativity rapidly decreases for
lattice powers below 15µW. Because of the small detunings used to fulfill the resonance
condition and the high atomic densities, it is possible that this decrease in cooperativity
is caused by absorption effects in the lattice due to a high optical density (OD) of the
MOT. The optical density can be expressed via [76]:

OD = ODres
1 + (2∆2,3/Γat)2 with ODres = σ0

∫
ρxdx (3.57)

Here ODres is the resonant optical depth at zero detuning that is calculated by integrat-
ing the atomic density ρx along the lattice axis and multiplying it with the scattering
cross section σ0. For small detunings the OD can reach high values that lead to a
significant amount of light being absorbed according to [76]:

Iabs = Ilate
−OD (3.58)

OD measurements of the MOT have been conducted previously at our experiment [76]
using a detection beam that was separately set up to transmit through the MOT. Since
we are only interested in the effect a high OD might have on the coupling to the res-
onator, we utilize the resonator itself to qualitatively assess when a high OD becomes
relevant to the coupling.
This is done by recording the optical spring which is proportional to the light intensity
entering the cavity. We expect the optical spring effect at a given lattice power to be

Figure 3.27: Mode tempera-
ture and cooperativity for dif-
ferent lattice powers:
Sweep of the lattice power from
2µW to 100µW and the detun-
ing to obtain a constant lattice
depth of ωat = 2ωm (where the
strongest cooling was observed)
with a compressed MOT. The blue
data points show the measured
mode temperature (left axis) and
the red data points the calculated
cooperativity (right axis) The sys-
tem is aligned to F = 650. We
measured a homodyne calibration
of | ∂Φ

∂xm
| = (4.0 ± 0.1) rad

nm and a
reflectivity on resonance of σ =
(0.80 ± 0.02).
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reduced close to resonance as less photons transmit through the MOT. Because the
system behaves most stable at F = 650 we conduct the measurement at this setting
at a lattice power of 12.5µW where we sweep the detuning and measure the maximum
optical spring effect the resonator experiences. We use the data acquisition unit of the
lock-in amplifier to get a time resolved 2D image of the mechanical spectrum to deter-
mine the time dependent optical spring.

Figure 3.28(a,b) shows images of the time resolved spectrum at a detuning of ∆2,3 =
130 MHz (a) and ∆2,3 = 20 MHz (b). The y-axis shows the resonator frequency and
the colorbar indicates the displacement spectral density of the resonator. The resonator
eigenfrequency is denoted by the orange dashed line61. The coupling lattice is ramped
up and the coupling takes place in the red shaded area.

Figure 3.28: OD measurement of the compressed MOT at Plat = 12.5µW:
(a,b) Time trace of the resonator displacement spectral density (SD) for different detunings
∆2,3 = 130 MHz (a) and ∆2,3 = 20 MHz (b). Dark red shades correspond to a high mode
temperature. The unshifted eigenfrequency ωm is denoted by the dashed orange line. The dotted
grey lines denote the position of the SD peak. The coupling lattice is switched on at 4 s and
coupling takes place over a 3 s interval (red shaded area). After the lattice is switched off, the
system re-thermalizes. (c) Averaged frequency shift ∆ωm acquired by averaging 10 SD time
traces (as depicted in (a,b)) and determining the maximum optical spring while the coupling
takes place. The red data points correspond to the detunings at which the measurements of (a)
and (b) were conducted. The blue line fits equation 3.58 on the data points with the OD as free
fit parameter. The light shades denote the 2σ confidence bounds of the fit.

61The initial offset in ωm can be accounted to the optical spring shift caused by the homodyne
detection light that is permanently switched on.



92 Towards a strongly coupled atom-optomechanical hybrid system

In case (a) we observe a significant shift in the resonator frequency by ∆ωm ≈ 500 Hz
as soon as the lattice is switched on (at 4 s), followed by a decrease in the displace-
ment spectral density indicating sympathetic cooling. For small detunings this behavior
changes as depicted in (b). Here the optical spring effect is much smaller, and the dis-
placement spectral density remains constant, indicating that no cooling takes place. In
Fig. 3.28(c) we measured the optical spring over the detuning ∆2,3.

For the 12.5µW lattice we observe a rapid increase in the OD at detunings ∆2,3 <

50 MHz. The measurements clearly show a decrease in the optical spring and sympa-
thetic cooling, indicating that the coupling lattice vanishes due to the high OD of the
MOT. Since the lattice depth scales with V0 ∝ Iinc/∆2,3, reducing the power would
require to reduce the detuning by the same amount to stay resonant. Since the maxi-
mum cooperativity with the 12.5µW coupling lattice was achieved for ∆2,3 ≈ 120 MHz
a further reduction of the lattice power (e.g., to 6µW) is not feasible. This also applies
to the experiments with the compressed MOT at F = 1500.

The OD measurements described above show, that there is a fundamental limit to
the achievable cooperativity with this system. While for the F = 650 configuration,
the optimal cooperativity can be reached at 25µW lattice power, the higher finesse
configuration would require lower coupling lattice powers, to improve the cooperativity
further. This requires low detunings, such that we enter a regime where the OD of the
MOT is so high that no coupling lattice is created. spacer
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3.4 Conclusion

Reaching the strong coupling regime has been a primary goal of this experiment since its
beginning. In this chapter, we have investigated the influence of previously unchanged
parameters by implementing a PAC lattice to operate in the red-detuned lattice regime
as well as by exchanging the fiber cavity and operating the system at the theoretically
proposed [52] optimal finesses.

We created a model of the asymmetrically pumped coupling lattice to investigate the
lattice dynamics and gain a better understanding of the hybrid instability in our system.
Based on the finding we implemented a PAC lattice to compensate for the asymmetry
which enabled us to operate in the red-detuned coupling lattice regime. Here we found
the PAC lattice to bring no improvement in the overall cooperativity of the system,
even though it suppressed the emergence of a hybrid instability.

The exchange of the fiber cavity showed a significant improvement in cooperativity
over the old system for every configuration that was investigated. The highest cooper-
ativities we reached in the respective configurations are listed in the table below:

Uncompressed MOT F = 650 /Plat = 12.5µW F = 1500 /Plat = 12.5µW
Chyb,max 550 ± 130 1400 ± 300

Compressed MOT F = 650 /Plat = 25µW F = 1500 /Plat = 25µW
Chyb,max 5900 ± 1300 2100 ± 500

Coupling experiments with an uncompressed MOT showed the highest cooperativities
at the high finesse configuration F = 1500 at the lowest possible lattice powers. This
is consistent with the theoretical prediction presented in Fig. 3.3.

With a compressed MOT we reached the highest cooperativity at a finesse of F = 650
and 25 µW lattice power. We found the system to behave very unstable at F = 1500
which we account to the strong optomechanical coupling that can lead to a modulation
of ωcav on the order of the cavity linewidth. We investigated the feasibility of working
at even lower coupling lattice powers in this regime to improve the cooperativity. Here
we found in an OD measurement, where we used the optical spring effect as indicator
for the OD of the MOT, that the coupling lattice vanishes for powers of Plat < 12.5µW
and detunings ∆2,3 < 50 MHz.
The vanishing of the lattice at low lattice powers poses a fundamental limit on the
achievable cooperativity of the system and indicates that the best overall achievable
cooperativity of the system has been reached at:

F = 650 ± 50, Plat = 25 ± 1µW and Chyb,max = 5900 ± 1300 (3.59)
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Here, we have to consider that the experiments were conducted at room temperature.
If we assume operation at the cryostat base temperature resulting in Tbath = 4 K62 the
quality factor of the resonator would increase by a factor of ∼ 10 and thus its mechan-
ical linewidth would decrease to Γm ≈ 2 mHz. In this case the expected cooperativity
would yield Cmax,base ≈ 59000. At 4 K bath temperature the resonator is occupied with
n̄th,4K = 5.4 · 105 phonons. In this case we miss the strong coupling condition only by
a factor of 9.

Even though the cooperativity is much higher than in any setup used before, reach-
ing the strong coupling regime without intense modifications is likely still not possible
in this configuration. Due to the higher intra-cavity photon number and the stronger
optomechanical coupling it is likely, that the bath temperature is further increased in
comparison to the measurements in Ref. [76] as the system is more sensitive to radiation
pressure noise. To reach the strong coupling regime we would need a bath temperature
of Tbath ≈ 500 mK. While the cryostat is technically capable of reaching this temper-
ature63, it would require additional thermal shielding (e.g., the implementation of a
mixing chamber shield) which would involve a redesign of the goniometer.

62This is the measured bath temperature for Tcryo = 500 mK, discussed in Ref. [76].
63Oxford Instruments specifies the base temperature of the dilution unit to Tbase = 30 mK. We do

not reach this temperature due to a missing mixing chamber shield. This decision was made to allow
for better optical access.



Chapter 4

Rapid state preparation using
QND measurement techniques

In the previous chapter we introduced different experimental modifications to
enter the strong coupling regime and prepare the resonator in its quantum-
mechanical ground state. We found a significant increase in cooperativity
but had to acknowledge that it is not possible to reach the strong coupling
regime without major modifications to the experimental hardware. Never-
theless we found a new semi-stable regime of optomechanical coupling in
which the resonator can modulate the cavity frequency on the order of its
linewidth. This comes with a high information gain for any measurements
conducted on the system at the cost of its stability. The observed regime
represents a limit beyond which a careful balancing between the informa-
tion gain per measurement and the introduced back-action is necessary to
gather meaningful results. This allows to enter the field of quantum-non-
demolition (QND) measurements. In this chapter we use the versatility of
our experimental platform and implement a QND measurement technique
to rapidly prepare the resonator close to its quantum ground state. Specifi-
cally for this task, we implemented a high finesse cavity F = 14500 to our
system and modified the detection setup further which enabled us to resolve
the resonator motion with a precision of (16 ± 1 ) xzpm.

The most fundamental property of quantum objects is described by the Heisenberg un-
certainty principle ∆x∆p > ℏ/2. The uncertainty principle expresses the link between
gained knowledge over a quantum system and the destructive nature of acquiring this
knowledge. It rises from the fact that any kind of measurement requires some kind of
interaction between the probe and the measured quantum object thus leading to a col-
lapse of its initial wave function. At the same time, the uncertainty principle does not
prohibit the measurement of one of its relevant quantities with arbitrary accuracy (e.g.
∆x) as long as there is no information gained about its complementary part (∆p)[114].
This consideration introduced the idea of quantum non-demolition (QND) measure-
ments which was first proposed in a theory paper by Braginsky and Vorontsov in Ref.
[138]. Based on their findings the idea was further developed64 [114, 139, 140] and

64Back then with a strong focus on mechanical resonators which were used for gravity wave detection.
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implemented for precise detection of e.g., optical quadratures [141–143], atomic spin
measurements [144–148] and mechanical motion [149–155].
With the creation of micromechanical resonators and the prospect to measure non-
classical states of these devices [77, 156] the field of QND measurements gained further
importance. Since most optomechanical experiments utilize the coupling of the res-
onator to an electromagnetic field, they often make use of optical cavities to enhance
the coupling strength [157] and use highly sensitive continuous measurement schemes
to detect the mechanical motion [158, 159]. All these methods have in common that
the back-action imparted on the system [72] prohibits achieving a measurement pre-
cision any higher than defined by the standard-quantum-limit (SQL) [160, 161] thus
defying any measurements of non-classical features below the zero-point motion of the
resonator. QND measurements pose a possible solution, to enter this regime by ac-
curately observing one QND observable of the system, while transferring the induced
uncertainty to the other. Yet there are constraints on the observables and systems, this
method can be applied to. Not all observables allow for QND measurements and not
all QND observables, allow for back-action evading measurements. A very thorough
introduction can be found in Ref. [162]. To provide the basic understanding, the most
relevant contents will be presented in the following section.

4.1 QND measurements of mechanical resonators

To understand the idea behind QND techniques and how they work, it is helpful to
recall the motivation that led to their development. QND techniques were introduced
to measure the influence of very weak forces onto an otherwise well defined physi-
cal system. One of the original motives was the detection of gravitational waves. A
popular approach65 was the use of resonant detectors. Heavy aluminum cylinders were
suspended in a vacuum and dimensioned to fulfill the resonance condition of an incident
gravitational wave. Gravitational waves were supposed to excite the normal oscillation
modes of the cylinder above the thermal noise level upon arrival [163]. These setups
required accurate length measurements of the masses below the SQL. A QND mea-
surement requires knowledge about the system such that it is possible to predict the
outcome of system observable at some time t2 after the initial measurement at t1 was
made. If a second measurement is made at t2, with the exact outcome as the first mea-
surement, the system remained undisturbed but if the outcome changed, this would
indicate the action of an external force. If the observables of the system are chosen
accordingly (i.e., such that the measurement induced uncertainty has no back-action
on the observable of interest), this type of back-action evading measurement can have
sub-SQL precision.

65Before the use of interferometric detectors.



QND measurements of mechanical resonators 97

We introduce the idea of QND measurements using the quantum mechanical oscillator
as example which is described by the Hamiltonian:

Ĥosc = p̂2

2m + 1
2mω

2x̂2 (4.1)

Investigating the time evolution of the system upon a measurement can be done most
conveniently by describing the system via the complex amplitude X̂M+iP̂M in a rotating
frame [56, 162]:

x̂+ ip̂

mωm
=
(
X̂M + iP̂M

)
e−iωmt with the commutator

[
X̂M, P̂M

]
= iℏ
mωm

(4.2)

This allows to write x̂ and p̂ via the quadrature components of the complex amplitude:

x̂ = X̂M cos(ωmt) + P̂Msin(ωmt) (4.3)
p̂

mωm
= −X̂M sin(ωmt) + P̂Mcos(ωmt) (4.4)

Equation 4.3 can be rewritten to express X̂M and P̂M in terms of x̂ and p̂:

X̂M = x̂ cos(ωmt) − p̂

mω
sin(ωmt) (4.5)

P̂M = x̂ sin(ωmt) + p̂

mω
cos(ωmt) (4.6)

X̂M and P̂M differ from x̂ and p̂ in that they are time independent constants of motion.
Using the commutator relation [x̂, p̂] = iℏ they fulfill the uncertainty principle via:

∆XM∆PM ≥ 1
2 |⟨[X̂M, P̂M]⟩| = ℏ

2mωm
= x2

zpm (4.7)

where xzpm denotes the zero-point motion of the system. This expression resembles the
SQL of measurement accuracy and is a direct consequence of the Heisenberg uncertainty
principle.

Back-action evasion

Despite its fundamental nature, the SQL does not pose a limit to the maximum achiev-
able measurement resolution given the measurement technique is chosen accordingly.
Surpassing the SQL requires to measure one component of the complex amplitude
with an accuracy ∆XM ≪

√
ℏ/(2mωm), at the cost of an increased uncertainty in

∆PM = ℏ/(mωm∆XM).

The concept of back-action evasion poses special requirements on the systems ob-
servables and the measurement interaction Hamiltonian. In this context, the complex-
amplitude quadratures X̂M and P̂M play a special role as they exhibit no mutual back-
action dependence provided the measurement technique is chosen appropriately66. This

66In that they differ from x̂ and p̂



98 Rapid state preparation using QND measurement techniques

can be understood, if we look at the influence of a measurement on these observables.
An illustration of the described scenarios is depicted in Fig. 4.1.
In the following considerations the description of the system benefits from the use of
the Heisenberg picture. This implies that, given a system Hamiltonian Ĥ, the operators
fulfill the Heisenberg equation of motion [164]:

dÔ
dt = − i

ℏ

[
Ô, Ĥ

]
+ ∂Ô

∂t
(4.8)

We assume a harmonic oscillator with Hamiltonian Ĥosc that is exposed to an exter-
nal, classical force F (t). When performing an accurate measurement of x̂ by linearly
coupling to this observable the action of the measurement can be described by an
interaction Hamiltonian Ĥint = Kx̂Q̂. Here we define Q̂ as the introduced quantum-
mechanical uncertainty from the measurement apparatus that couples to the system via
the coupling strength K. The measurement apparatus itself is described by a Hamil-
tonian ĤM and is important with respect to the readout observable R̂ which describes
the outcome of the measurement. The resulting total Hamiltonian reads [162]:

Ĥ = Ĥosc − x̂F (t) +Kx̂Q̂︸ ︷︷ ︸
Ĥint

+ĤM (4.9)

If a measurement of x̂ is conducted and we assume that the readout observable R̂ is only
affects the measurement interaction Ĥint and the detection apparatus ĤM it changes
according to:

dR̂

dt
= − i

ℏ

[
R̂, ĤM

]
− i

ℏ
Kx̂

[
R̂, Q̂

]
(4.10)

Information about x̂ can only be acquired if R̂ does not commute with the quantum
noise introduced by the measurement [R̂, Q̂] ̸= 0. This implies a gain of information
about X̂M and P̂M but also an increase of uncertainty for both quadratures. If we recall
equations 4.2 and 4.8 the evolution of the complex amplitude for the new system yields
[162]:

d(X̂M + iP̂M)
dt

= − i

ℏ

[
(X̂M + iP̂M), Ĥ

]
= i

(
F (t) −KQ̂

) eiωmt

mωm
(4.11)

The measurement of x̂ mediated by Ĥint disturbs both the X̂M and P̂M quadrature via
the measurement induced uncertainty Q̂. According to equation 4.3 this uncertainty
feeds back into x̂ and p̂ during the free evolution of the oscillator. x̂ is not a back-action
evading observable. Thus, the accuracy of this measurement is limited by the SQL de-
scribed by equation 4.7.

A backaction-evading measurement becomes possible, if the measurement apparatus
is capable of coupling linearly to the system constants of motion X̂M or P̂M. Consider-
ing the interaction Hamiltonian Ĥint = KX̂MQ̂ = K[x̂ cos(ωmt) − (p̂/mωm) sin(ωmt)]Q̂
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we can write the Hamiltonian of the measured system as [162]

Ĥ = Ĥosc − x̂F (t) +KX̂MQ̂︸ ︷︷ ︸
Ĥint

+ĤM (4.12)

The measurement operator commutes with the measured observable [Ĥint, X̂M] = 0.
Thus, the contribution due to the measurement interaction vanishes and the equation
of motion yields [162]:

dX̂M
dt

= − i

ℏ

[
X̂M, Ĥ

]
= − F (t)

mωm
sin(ωmt) (4.13)

By writing down the corresponding equations of motion, the property of back-action
evasion becomes visible. The time-evolution of X̂M is solely governed by the classi-
cal external force we introduced in the beginning and not by the measurement itself.
The uncertainty due to the measurement is completely fed into P̂M according to the
commutator [X̂M, P̂M] = iℏ/mωm (Eq. 4.2):

dP̂M
dt

= − i

ℏ

[
P̂M, Ĥ

]
= − F (t)

mωm
cos(ωmt) − K

mωm
Q̂ (4.14)

We can write down the time evolution of the measurement readout R̂ to be:

dR̂

dt
= − i

ℏ

[
R̂, ĤM

]
− i

ℏ
K̂X̂M

[
R̂, Q̂

]
(4.15)

Equations 4.13 and 4.14 show the core characteristics of back-action evading QND ob-
servables. Despite the fact that we conducted a measurement of X̂M, the back-action
related uncertainty is completely transferred into P̂M. Furthermore, P̂M leaves X̂M
undisturbed even after an in principle arbitrarily long time evolution. This allows for
arbitrarily accurate measurements of X̂M as long as no information about P̂M is gained
by the measurement which poses the main advantage of backaction-evading QND mea-
surements. Thus, X̂M and P̂M are referred to as back-action evading QND observables.
The X̂M signal in R̂ has contributions from two noise sources: A contribution ∆R due
to the uncertainty in X̂M and a contribution ∆R from the free evolution of R̂ [162].

To transfer the findings above into an experimental context, we find the following re-
quirements that have to be fulfilled to realize a back-action evading QND measurement
on a mechanical resonator:

• The interaction Hamiltonian of the measurement device has to couple linearly to
the X̂M quadrature of the mechanical motion.

• The measurement device has to solely measure the X̂M quadrature to maintain
the back-action evading character of the measurement.

• The noise contributions from ∆XM and from the free evolution of R̂ to the mea-
surement uncertainty ∆R should be minimized.
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Figure 4.1: Back-action evading measurement:
Illustration of the evolution of a back-action evading QND observable in time. The red cir-
cle indicates a coherent state. The distributions on the axes show the projection of the state
to the respective phase space quadratures. A coherent state before being measured (t<0) re-
sembles a gaussian distribution in phase space at the coordinate (x̂, p̂/mωm) with a radius
∆x = ∆p/mωm =

√
ℏ/2mωm. If a precise measurement in X̂ is conducted at t=0, the state

is squeezed in X̂ while experiencing anti-squeezing in P̂ . After the measurement, the state
evolves in time yielding a rotation in phase space of ωmt. While the ellipse rotates relative to
the x̂ / (p̂/mωm) axes, it remains stationary in the X̂ / P̂ frame. X̂ acts on P̂ but evades any
back-action from P̂ . This is not the case for x̂ and p̂ where the increased uncertainty in p̂ feeds
back into x̂ due to the rotation of the ellipse in phase space. Figure adapted from Ref. [162].

A measurement technique particularly suited for this task is balanced homodyne detec-
tion. This detection scheme allows to access only one complex amplitude quadrature by
choosing the relative phase between the signal and LO beam accordingly. In our case
we operate at ϕLO = π/2 to couple linearly to the XM quadrature of the resonator.
Preventing the detection from measuring contributions of P̂M can be realized by the
application of very short pulses at well defined homodyne phase angles ϕLO.
Lastly the minimization of measurement noise ∆R requires us to have a measurement
system in which the X̂M signal is large compared to ∆R. This requires high intensity
measurement pulses and a large coupling constantK, which is experimentally resembled
by the cavities finesse. ∆R can be further reduced by maximizing the common-mode-
rejection of the detection and working with high signal to LO beam power ratios.
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4.1.1 Back-action evading measurements with fast light pulses

If we want to apply a QND measurement on an optomechanical system the quadrature
information is acquired via interaction of the system with a light field. This additional
step in information transfer has to be taken into account when describing QND mea-
surements in these systems.
Suppose we find the system in an unknown state and apply a single light pulse. Due
to the optomechanical coupling the information from the mechanical quadrature XM
is imprinted on the measured phase quadrature of the light field PL

67. For Gaussian
optical states it can be assigned the mean and variance [59]:

⟨PL⟩ = χ⟨X in
M⟩ σ2

PL = σ2
P in

L
+ χ2σ2

Xin
M

(4.16)

The quantity X in
M describes the mechanical position quadrature before the interaction

with the light field and P in
L denotes the input phase quadrature of the light. Also, we in-

troduce the measurement strength parameter χ that quantifies the information transfer
from the mechanical position quadrature onto the light field. For χ = 1 the measure-
ment outcome PL would be equivalent to the mechanical quadrature X in

M, resembling a
“perfect” measurement of XM. Since this parameter is of experimental importance, we
discuss it in very detail in Section 4.1.3.
Describing the interaction of the pulses with the system requires to introduce a nonuni-
tary measurement operator Υ that allows to calculate the mechanical state of the system
after the pulse interaction via ρout

M ∝ Υ†ρin
MΥ[59]. In the context of QND measurements

the operator Υ is required to be similar to the interaction operator Ĥint in that it is
mechanical state independent and commutes with the mechanical position quadrature
[XM,Υ] = 0. In previous works in this field, it was found to be of the following form
[59]:

Υ = 1
4
√

2πσ2
P in

L

exp

iΩXM − (PL − χXM)2

4σ2
P in

L

 (4.17)

If we assume a coherent probing field (i.e., σP in
L

= 1/2) it can be further simplified to

Υ = 1
4
√
π

exp
[
iΩXM − (PL − χXM)2

2

]
(4.18)

The action of this operator onto a mechanical state can be dissected into two compo-
nents. The first term of the exponent denotes a momentum transfer Ω which is propor-
tional to the pulse photon number NP. It yields a displacement of the mechanical state
in phase space. The second term yields a narrowing of the mechanical position wave
function proportional to χ−2 located around the measurement outcome PL

68. Thus, Υ
can be understood as a combination of a displacement and a squeezing operator acting
onto the system.

67In our case, PL resembles a resonator displacement dependent voltage.
68Recalling the consideration in the previous section points out the similarity between χ and the

previously used coupling constant K.
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The fact the [PM,Υ] ̸= 0 further implies that the measurement induced uncertainty is
transferred solely into the PM quadrature of the system.
The influence of Υ on the measurement outcome requires to calculate the trace [59]:

Pr(PL) = TrM(Υ†Υρin
M) =

∫
dXM√
π
e−(PL−χXM)2︸ ︷︷ ︸

conv. kernel

⟨XM|ρin
M|XM⟩︸ ︷︷ ︸

mech. state

(4.19)

where Pr(PL) denotes the distribution expected for multiple measurements PL. We see
that the momentum dependent term vanishes such that the measured state solely de-
pends on the measurement strength parameter χ. Mathematically Υ now acquires the
role of a convolution kernel with width χ−2. Expression 4.19 resembles the convolu-
tion between the mechanical state quadrature XM and the measurement operator. For
small χ ≪ 1 the kernel yields a large width, thus a convolution with a mechanical
(ground-) state yields a broadened measurement outcome of the state. For a measure-
ment strength χ = 1 the kernel becomes narrow enough to resolve the mechanical
ground state of the system. If χ > 1 the convolution kernel is smaller than the mechan-
ical ground state width. In this regime the measurement strength is strong enough to
resolve non-classical features below the SQL. In this picture the measurement strength
can also be regarded as a measure of the achievable resolution in the system.

In the experimental realization the only quantity which is accessible by measurement
is PL. Thus, the right side of equation 4.19 is implicitly measured if enough statistics
about PL are acquired. The width of Pr(PL) gives a direct insight about the parameter
χ in that [59] 69:

⟨Xout
M ⟩ ≈ PL

χ
and σ2

Xout
M

≈ 1
2χ2 (4.20)

4.1.2 Pulsed back-action evading state tomography

In the previous sections we introduced the idea of back-action evading QND measure-
ment techniques to measure the resonators mechanical state with sub-SQL precision
and defined the requirements to perform such measurements in our system. One topic
that we left unaddressed until now is the full reconstruction of the resonator state
in phase space while only having access to one QND observable. This limitation can
be overcome by an appropriate timing of the individual measurements which becomes
apparent when remembering equations 4.3 and 4.5 [56, 162]:

x̂(t) = X̂Mcos(ωmt) + P̂Msin(ωmt) (4.21)

p̂(t)
mωm

= X̂Msin(ωmt) + P̂Mcos(ωmt) (4.22)

From equation 4.21 and 4.22 we derive the times at which a back-action evading mea-
surement of x̂ and p̂ can be conducted. This is the case when the contribution of the

69This relation can be deducted from the action of equation 4.19 onto a mechanical state. A brief
outline of this calculation is presented in Appendix D.3.
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disturbed quadrature P̂M , after an initial measurement at t = 0, vanishes which hap-
pens at t = nπ/ω for x̂ and at t = (n+ 1/2)π/ω for p̂.
Like in the theoretical description in Section 4.1 we assume XM and PM to be constants
of motion. Experimentally, both quadratures vary in time dependent on the Brownian
motion of the resonator. For the concept of back-action evasion to work, we require the
system to operate in the QCO regime such that both quadratures remain unchanged
within one oscillation period. This requires the Brownian motion of the resonator to
be negligible during one oscillation period which is equivalent to the thermal coherence
time fulfilling τcoh = 1/(Γmnth) ≥ 2π/ωm.
If this condition is fulfilled, we can use a QND measurement to determine the motional
state of the resonator with an accuracy better than the zero-point motion. An applica-
ble pulsed protocol using back-action evading techniques was introduced by M. Vanner
[59, 72] and shall be outlined in the following.

Suppose we find the resonator in an unknown thermal state such that it operates in
the QCO regime. An initial measurement P (1)

L of X̂M,1
70 at t=0 in principle allows for

an arbitrarily precise measurement of x̂(t = 0). According to equation 4.22, we can
gather the information about p̂ without back-action from the initial measurement for
t = π/2ωm

71. A measurement P (2)
L of X̂M,2 at that time yields an accurate value for

p̂(t = π/2ωm).
This technique allows us to measure two non-commuting observables with sub-SQL
precision by only acquiring one back-action evading QND observable.
Although these two measurements in principle allow for a full description of the me-
chanical state, there is no measure to determine their absolute accuracy. For this, a
third “readout” measurement P (r)

L has to be conducted that is compared to the pre-
dicted system evolution based on the first two measurements. From the measurements
P

(1)
L and P (2)

L we can anticipate the resonator motion at any given time t since X̂M,r is
determined through:

X̂M,r = x̂(0)cos(ωt) − p̂(π/2ωm)
mω

sin(ωt) ⇔ X̂M,r = X̂M,1cos(ωt) − X̂M,2sin(ωt) (4.23)

In a perfect QND measurement, the measurement P (r)
L of X̂M,r would remain constant

the whole time such that:

P
(r)
L −

(
P

(1)
L cos(ωt) + P

(2)
L sin(ωt)

)
= 0 ∀t < τcoh (4.24)

Since we have real world conditions, equation 4.24 is not entirely fulfilled. Ever so slight
disturbances of the system yield different results between the measurements of P (1)

L ,
P

(2)
L and P

(r)
L . These differences define the overall accuracy of the measurement. The

system has to be prepared in a well defined state by the measurements P (1)
L and P

(2)
L .

70We use the definitions from Eq. 4.5. We refer to the mechanical position quadrature by XM and to
the measured quadrature by PL. PL couples to XM via the measurement strength χ.

71Here it is important to once more point out the difference between x̂ and X̂M. X̂M can be measured
with arbitrary precision at any time due to the back-action evading nature. x̂, p̂ only share this property
at specific times where the contribution from P̂M vanishes.
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Figure 4.2: Pulsed QND state preparation and tomography:
(a) Phase space distributions during application of a pulsed QND protocol. The grey dashed
circle indicates the width of the initial thermal state (a1) with a phonon occupation of nth = 40,
the black dashed circle denotes the ground state width and the red dashed lines denote squeezed
states. The first measurement P (1)

L (a2) yields strong squeezing in the XM quadrature and
accurate knowledge x̂ = X̂M,1 is acquired. The system now evolves freely which yields a rotation
of the state in phase space. After t = π/2ω (a3) the system evolves to a state of maximum
uncertainty in x̂ and a second measurement P (2)

L is applied. The second measurement again
yields strong squeezing in the X̂M quadrature this time providing accurate knowledge about
p̂/mω = X̂M,2. We obtain a highly purified state (a4). The degree of squeezing depends on
the measurement strength χ. For χ > 1 the state width can be reduced below the zero-point
motion xzpm. Note that we omitted the influence of the coherent momentum transfer ΩL, since
it has no direct effect on the squeezing. (b) Sketch of the pulsed measurement sequence with two
preparation pulses and multiple tomography pulses at varying angles θt and the subsequently
reduced uncertainty of the mechanical state that evolves according to equation 4.3. Figure
adapted from Ref. [63].

The outcome of these measurements is compared with the results after a third mea-
surement (P (r)

L ) via equation 4.24 (left side) to determine the accuracy with which the
mechanical state can be measured. This is the reason for the regularly used term “con-
ditional” state preparation [165, 166]. While the measurements on their own do not
allow for a full state description, their relation via the equations of motion does. As such
the measurement outcome is conditioned on the results of previous measurements. One
has to be aware that being able to conduct a back-action evading measurement with
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sub-SQL precision is a property of the observable. But gaining the knowledge about
the precision comes from the application of a QND measurement technique.
The reduction of the state entropy can be treated like an effective reduction of the res-
onators phonon occupation which motivates the term “cooling by measurement” [72].
Since this measurement takes place within one oscillation period it is insensitive to
external influences that act on larger timescales as long as the system is in the QCO
regime. However, it is notable that the real thermal phonon occupation is not reduced
and the term “cooling” solely refers to the state width reduction in phase space.
The acquired conditional state can be mapped out in phase space by a tomographic
measurement. By varying the time between the third measurement pulse, and the ini-
tial two preparation pulses, the conditional state undergoes a rotation in phase space
according to θt = ωmt. When conducting multiple measurements PL at one tomogra-
phy angle θ the phase space probability distribution of the quadrature contributions
x̂ and p̂ is projected onto PL. Conducting multiple measurements of equally prepared
conditional states gathers the necessary statistics that eventually resemble the proba-
bility distribution Pr(PL)[59] at a given tomography angle. The probability distribution
Pr(PL) is also referred to as marginal of the mechanical state. If the marginals are ac-
quired for sufficiently many tomography angles (i.e., θt = 0◦ ... 90◦ for a squeezed, but
axes-symmetric state) they allow for full state reconstruction in phase space by apply-
ing the inverse radon transformation [72, 167, 168]. This method of state reconstruction
is experimentally realized and presented in Section 4.3.

4.1.3 Achieving sub-SQL resolution

Until now, we omitted detailed discussions on the measurement strength and the exper-
imental requirements to achieve χ > 1. In the context of cavity optomechanical systems
the measurement strength relates the information gained by the coupling of N̄ photons
to the resonator with the single photon coupling rate g0, to the shot noise

√
N̄ . It also

takes into account optical losses in the system via the factor η. For pulse lengths that
exceed the intra-cavity photon lifetime this results in the expression [72, 166] 72:

χ =
8g0

√
ηN̄

κ
(4.25)

To observe the systems zero-point motion, the system needs to resolve the phase shift
δϕr = 4gmδXM/κ that is caused by one zero-point motion of the resonator. Using the
number-phase uncertainty relationship δϕδN ≥ 1/2 [169] where δN is given via the
shot noise ∝

√
N̄ and assuming δXM = xzpm we arrive at the requirement [59]:√

N̄ ≥ κ

8g0
⇒ χ ≥ 1 (4.26)

Previous experiments that implemented the aforementioned measurement scheme reached
measurement strengths of χVanner = 2.1 · 10−4 [72] and χMuhonen = 0.079 [73]. During
the first implementation of pulsed measurements in our experiment presented in Ref.

72We present a detailed derivation of this expression in Appendix D.4.
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[63], we reached a measurement strength of χ ≈ 0.00273.

The measurement strength crucially depends on the number of intra-cavity photons
N̄ that couple to the resonator. This number is proportional on the signal light power
PSIG and the lifetime of the photons in the cavity τcav ≈ 1/κ. The intra-cavity photon
number can be calculated to:

N̄ = PSIG · τcav
ℏωTiSa

= PSIG
ℏωTiSaκ

(4.27)

Here it becomes apparent that any pulse, that lasts longer than τcav, does not yield
any gain in information, yet it transfers a way larger momentum to the resonator than
a pulse of optimal duration would. the full momentum ∝ N̄ to the resonator. Thus,
we aim for the pulses to be as short as technically possible due to the very small τcav
of our system. Using expression 4.27 together with equation 4.25, we can calculate the
necessary signal beam powers to reach χ > 1 for different κ74:

χ = 8g0
κ

√
ηN̄ = 8g0

κ
3
2

√
ηPSIG
ℏω

(4.28)

An overview of χ for different finesses and signal beam powers is depicted in Fig. 4.3. It
is notable that the cavity finesse is the most influential parameter on the measurement
strength since χ ∝ 1/κ3/2 ∝ F3/2. An increase in finesse by a factor of 10 yields an
increase in χ by a factor of 30. To achieve a measurement strength at reasonable signal
beam powers75 we calculate the necessary finesse to F ≈ 15000.

For high finesse systems where pulse lengths can be on the on the order of the intra
cavity photon lifetime, the measurement strength can be further increased by optimizing
the shape of the measurement pulse. This only becomes relevant if the pulse width is
of the same order of magnitude as the cavity ringdown time tpulse → τcav. In this case,
the cavity response has a significant effect on the signal P out

L . Because this scenario is
relevant for the newly built high finesse cavities, a detailed derivation of the optimal
pulse shape is presented in Appendix D.4 where we find the optimal pulse envelope to
fulfill:

αin(t) =
√
κe−κ|t| which yields χopt = 4

√
5g0
κ

√
N̄ (4.29)

73That is the value acquired from the conditional state widths found in Ref. [63]. It differs from the
stated value of χ = 0.011 in Ref. [63] which refers to the measurement resolution for the off-resonant
system. We abide by the definition of other publications in this field and define χ for the on-resonant
conditional state width in this thesis.

74Note that 1/κ ∝ F via equation 2.23.
75Resonable in the sense that we still can assume the system to couple linearly to the light field at

all times. For lattice powers of Plat > 25 µW at F = 1500, this already turned out to not be the case
as described in Section 3.3.1.
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Figure 4.3: Measurement
strength for different finesses:
Achievable measurement strength
χ according to equation 4.28 as
a function of the signal beam
power. The calculations show
a finesse of F = 15000 to be
necessary to acquire χ > 1. For
F = 140 and F = 1500, the
linewidths κ140 = 48 GHz and
κ1500 = 7.6 GHz were obtained
from optical spring measurements
(Sec. 2.3.3). For F = 15000 we
calculated κ ≈ 750 MHz assuming
the same cavity alignment as for
the other configurations. We only
calculate χ for PSIG < 20µW
where the system couples linearly
to the light.

4.2 Pulsed state preparation in a high finesse optome-
chanical system

Based on the previous considerations we can deduce the requirements that an exper-
imental platform would need to resolve the ground state of the resonator in a pulsed
QND measurement. Extracting only one quadrature with sub-SQL precision requires
a very short and intense interaction between the probing field and the resonator such
that τpulse ≪ Tm (with Tm = 6.5µs) and PSIG > 4µW (N̄ > 21000) where Tm is
the oscillation period of the resonator. Furthermore, we want to disturb the system
as little as possible while gaining maximal information about the state. The acquired
information at a given probing beam power is limited by the lifetime of the photons
in the cavity τcav = 1/κ. Any pulses that exceed the intra-cavity lifetime more than
necessary transfer momentum to the system, thus broadening the orthogonal QND
quadrature76. For ideal measurement conditions we generate high intensity pulses with
2π/ω ≫ τpulse ≈ τcav. In the previous experimental setup, fulfilling both requirements
was not possible due to the large cavity linewidth of 48 GHz ⇒ τcav ≈ 20 ps. The
new system yields an optical finesse of F = 14500. Considering a cavity length of
Lcav = 14.0 (5)µm and using equation 2.23 this yields a lifetime of τcav = 1.3 (2) ns.
Here, it is possible to apply pulses with lengths on the same order of magnitude as
the inverse linewidth which allows to further increase the measurement strength by
choosing a pulse shape presented in equation 4.29.
We require the detection to be quantum noise limited at all times and capable of re-

76While this has no impact on the observed quadrature in theory, in reality it can excite higher
vibrational modes of the resonator. These feed back into both observable, destroying the QND property
of the system.
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solving pulses with a length of a few nanoseconds. Furthermore, it has to exclusively
detect the XM quadrature of the resonator to allow for a true back-action evading QND
measurement.
While the experimental setup and measurements presented here are new to this ex-
periment, the presented evaluation methods as well as the programming of the devices
have been carried out together with J. Butlewski. The first implementation of pulsed
measurements in the old setup at F = 140 are presented in his thesis [63]. The mea-
surements presented here were conducted at a finesse of F = 1500 and F = 14500. The
details regarding the experimental setup, outlined in the following section, will focus
to the experiment configuration at F = 14500. Measurements at F = 1500 differ in the
choosen pulselengths and beam powers but were conducted with a same experimental
setup.

4.2.1 Generating short pulses

Our measurement scheme requires the fast generation and measurement of multiple
pulse trains with nanosecond pulses of arbitrary shape. Both the pulse signal genera-
tor and the optical actuator have to be capable to operate at these timescales. Since
the necessary statistics emerge from multiple repetitions of a pulsed sequence, a high
measurement bandwidth and sufficient memory to maximize the possible measurement
repetition rate are required.
For the driving signal generation and the data acquisition we use the UHF-AWG with
integrated digitizer from Zurich Instruments. It allows for arbitrary pulse generation
at 14-bit vertical resolution at a maximum sampling rate of 1.8 GSa/s with a specified
rise-time (10%-90%) of only 700 ps. Thus, the device is capable of producing sufficiently
resolved pulses of arbitrary shape on the order of the cavity linewidth. The same device
allows for lock-in detection of frequencies up to 600 MHz and rapid data acquisition
using a 1.8 GSa/s digitizer with an internal memory of 125 MSa and 12-bit vertical
resolution77. Figure 4.4(a) shows an exemplary pulse train for the conditional prepara-
tion of the resonator after two pulses at a distance of π/2 = 90◦, the third pulse can be
applied at distances from θt = 3◦ − 90◦. Each of these trains were repeated 20000 times
per angle θt at a repetition rate of 50 Hz. The high bandwidth and fast switching times
of the AWG come at the cost of relatively low output amplitudes (VAWG,max = ±1.5V ).
This introduces further constraints on the optical modulator.
We found a fiber based amplitude modulating EOM (Jenoptik AM785b) to be the best
option to exploit the full capability of the pulse generator. Its small dimensions and
electrode distances render it capable of reaching modulation bandwidths in the GHz
range with the half-wave-voltage Vλ/2 being in the range of a few volts. The perfor-
mance is highly wavelength dependent and while modulators designed for the infrared
(e.g. λ = 1064 nm) can be operated at Pin = 300 mW input power, current designs
that operate at λ = 780 nm yield high insertion losses of (5 − 6) dB and only allow for
operation up to Pin = 30 mW input power.
Our fiber EOM has a half wave voltage of Vλ/2 = 2.02 V and an insertion loss of 4.9 dB

77Assuming one measurement acquires half an oscillation period. The corresponding trace would
yields a sample length of Tacq · 1.8 GSa/s = 8192 Sa. The internal memory would then allow to measure
N ≈ 150000 traces within one run.



Pulsed state preparation in a high finesse optomechanical system 109

Figure 4.4: Pulse train for conditional state preparation:
(a) Time trace of a pulse train for state preparation. Two pulses separated by π/2 prepare the
resonator in a squeezed state. A third pulse after a variable separation time is applied to map out
the state at different tomography angles θt. For each angle 20000 traces are recorded to acquire
sufficient statistics. The grey shades denote the delay between pulse generation and detection.
(b) Optimized pulse shape according to equation 4.29. The minimal properly resolvable width
(FHWM) is τpulse = 8 ns. The blue lines denote the AWG output signal, the red lines the signal
measured with the PD. Dashed lines denote fits of equation 4.29 to the data. Figure (b) depicts
19 overlapped traces.

(specified by the manufacturer). Its optical rise time is 200 ps. To optimize the compat-
ibility of our EOM with the detection system, it was custom made with an HP780PM
fiber at the input and a HP780SM fiber at the output to allow for optimal mode match
when spliced to the rest of the setup. To circumvent limitations due to the low power
transmission and to prevent being limited by the usable LO power, the fiber EOM was
installed solely in the signal branch as discussed later in Section 4.6. Figure 4.4(b) shows
19 time traces of the generation (blue) and detection (red) of 8 ns short light pulses
with an optimized pulse shape described by equation 4.29 using the AWG and the fiber
EOM. The dashed grey lines show a theoretical fit of equation 4.29 to the data. We
found a pulse length of 8 ns to be the shortest time at which the pulse features were
still sufficiently resolved.

4.2.2 Pulse detection

We conduct a phase sensitive measurement of the mechanical quadrature by employing
a balanced homodyne detection scheme. The detection has to be shot noise limited over
the whole range of operating powers while being fast and offering an excellent signal-
to-noise ratio. For sufficiently fast detection we use the balanced detector HBPR-500M-
FST78 from FEMTO which is capable of operating in a frequency range up 500 MHz.
This high bandwidth naturally comes at the cost of lower gain and worse signal-to-noise
ratios [94] requiring for overall larger signal powers or a higher SIG:LO power ratio. In
Section 2.4.1 we calculated the power dependent SNR and found the SNR to saturate
for most operation scenarios at a ratio of SIG:LO=1:2000. The new detection system
is optimized to achieve almost arbitrary power ratios, much higher than theoretically
required.

78HBPR-500M-FST: DC...500 MHz, gain: 2.55-5.1 kV/W, NEPmax = 60 pW/
√

Hz
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A big advantage in the applied detection scheme arises from the common-mode re-
jection of the detector which is specified by the manufacturer to CMRR = 45 dB. In
Ref. [63] the electronic properties and the CMRR were investigated and the shot noise
limitation was verified for the new setup. The results are presented in Appendix D.1.
Besides the necessary electronic capabilities, achieving a high CMRR requires spatial
and temporal overlap between the signal and LO beam. While the spatial mode-match
is optimized due to the use of similar glasfibers and identical fiber couplers, the in-
creased refractive index (n ≈ 2) of the fibers yields a stronger influence of path-length
differences between the signal and LO branch on the temporal mode-match. A length
difference of 1 m yields a time difference of 5 ns between the signal and LO branch
which can be detected by the photodiode and diminishes the CMRR capability of the
setup. Thus, the path length between both branches is carefully matched. We set both
signal and LO beam to be equally strong and adjust the respective polarization such
that each beam hits one of the photodiode detection ports.
We use an AOM connected to an RF-switch to generate a 5µs rectangular pulse and
measure the differential photodiode signal during the pulse. The result is depicted in
Fig. 4.5. Due to the mismatched path lengths, one beam arrives on the photodiode
earlier leading to a spike in the differential signal (dark blue) with a width proportional
to the path length difference. By splicing additional fiber into the LO branch, the width
of the spike is reduced (light blue) until it is not noticeable anymore for a balanced
setup (red).

Figure 4.5: Time delay due to different
branch lengths:
Signal of a 5µs rectangular pulse light pulse
for different stages of path length compensa-
tion. The signal and LO beam are equally
strong and each beam is incident on one
PD port. The delay causes an imbalance in
power between both ports at the beginning
and end of the pulse (blue shaded area) yield-
ing a spike in the signal. Upon reduction of
the path length difference (blue curves) the
width of this spike decreases until it is not
noticeable anymore (red curve). The modu-
lation on the pulse was found to be caused
by slight misalignment of the AOM. Realign-
ment of the respective branch made the mod-
ulation go away.
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θ

Figure 4.6: Experimental setup for pulsed optomechanics:
Sketch of the fiber based experimental setup. Light is split up by a variable fiber splitter into
the signal and LO beam branch. The power at the beamsplitter outputs, is monitored by two
photodiodes that are connected via a 99:1 beamsplitter. The photodiode in the LO branch is
used for intensity regulation. To compensate for path length differences between both branches
an additional delay fiber is spliced into the LO path. A fiber stretcher allows for phase locking
between the LO and signal beam for continuous measurements. The signal beam branch contains
the fiber EOM for generation of arbitrary shaped pulses. It is connected directly to the cavity
via a fiber PBS. The polarization of the light reflected from the cavity is rotated such that it is
transmitted through the PBS port orthogonal to the EOM port. Both beams are overlapped in
a free space homodyne detection setup and detected via a balanced PD. The little red arrows
indicate the polarization state of both beams in the detection.

4.2.3 Fiber based setup for pulsed state preparation

The first proof of principle experiments towards pulsed state preparation at our ex-
periment [63] were mainly limited by the cavity finesse and by the maximum appli-
cable pulse power. This was due to the fact that LO and signal beam were transmit-
ted through the same fiber EOM which limited the overall power in the setup to the
maximum transmission of the EOM within its damage threshold Pin,max = 30 mW ⇒
Ptrans,max ≈ 5.5 mW. In Fig. 4.3 we calculated the necessary signal power to resolve the
zero-point motion at a finesse F = 15000 to PSIG = 4µW. At the same time, we want
to maximize the SIG:LO ratio to achieve the highest optical gain and best possible
SNR. This requires us to operate at LO powers of 20 mW79.
Taking these requirements into account we rebuilt the homodyne detection using mostly
fiber optical components and separated the signal path including pulse generation from
the LO branch. This allowed for a seamless integration of the fiber cavity and the EOM
into the setup.
In contrast to the previous setup, the EOM is implemented directly into the signal
beam branch. This allows to independently set the power of the LO and signal beam
and enables higher signal beam powers80. The EOM is connected to the fiber cavity
via a fiber PBS. Differently to previous setups, the cavity features an HR coated multi-

79At this power 10 mW LO light are incident on each photodetector. This is slightly below the damage
threshold of the photodiode.

80In principle up to Ptrans,max ≈ 7.5 mW at an LO power of 13.5 mW. Limited by the damage
threshold of the PD.
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mode fiber on the higher reflective, curved side81. Upon reflection from the cavity the
polarization of the light is turned such that it transmits through the PBS port orthog-
onal to the EOM input port. Both signal and LO beam are then superimposed and
directed onto the 500 MHz balanced photo-receiver in a free space setup. In front of
every polarization sensitive optical element, fiber based polarization controllers are im-
plemented. Taking all losses due to splices and transmission through optical elements
into account, the overall detection efficiency of the system of a pulse that leaves the
cavity and is incident on the detector is ηdet = (0.52±0.02) at a visibility of V2 > 99%.
While ηdet remains comparable to the old setup, the much higher pulse powers, the
flexible adjustment of high signal to LO power ratios and the superior stability yield a
significant improvement over the old system.

81This was done to achieve higher transmission and gain more information about the system from a
single measurement.
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4.3 Experimental results

Experiments were conducted at two cavity configurations at a finesse of F = 1500 and
F = 14500. While we optimized the pulse envelope and experimental setup particularly
for the high finesse configuration, because this configuration is capable of reaching the
measurement strength χ > 1, measurements at F = 1500 were performed to determine
the scaling of the measurement strength with the finesse. Thus, the latter measure-
ments were conducted at room temperature. Since the system at F = 1500 allows
for continuous displacement measurements, it exhibits a much higher degree of control
and can be characterized accurately as done in Section 2.3.2 whereas the system at
F = 14500 behaves fundamentally different. Here, new measurement strategies had to
be developed to gather meaningful results. The largest uncertainty in the determined
state widths and effective temperature comes from the uncertainty of the homodyne
calibration (cHD,1500 = (8.9±0.8) rad

nm and cHD,15000 = (170±40) rad
nm ). For better readabil-

ity of the plots, we decide to plot the data only using the mean value of the calibration.
Yet when calculating the state widths and mode temperature errors, we take the error
due to the calibration explicitly into account.

4.3.1 Pulsed state preparation at F = 1500

For F = 1500 the increased stability of the system compared to the high finesse con-
figuration allows for a careful adjustment on resonance without driving it into limit
cycles82. Due to the high initial phonon occupation, we can neglect the influence by
the probe pulse momentum transfer Ω and do not need additional cooling techniques
in between the measurements. The possibility to trigger the AWG dependent on the
input signal level, allows to apply pulse-trains at the zero crossing of the homodyne
signal. Thus, we omit a phase-lock which renders the experimental sequence very simple.

For the experiments presented here we used an LO power of 4 mW and adjusted the
system such that we measure a signal power of 4µW at the outcoupling fiber of the
signal branch, if the AWG applies the maximum possible output signal to the EOM.
At the beginning of each sequence, the EOM is in a state of minimal transmission.
Nonetheless, residual light that transmits though the EOM is sufficient to provide a
small phase dependent homodyne signal on the order of (100 mV). Upon receiving a
high TTL input, the AWG initializes the pulse sequence and waits for a zero crossing of
the differential homodyne signal to occur which indicates ϕLO = π/283. If this condition
is fulfilled, the AWG applies a pulse train of three pulses with two preparation pulses
P

(1)
L , P (2)

L and one tomography pulse P (3)
L that is varied for multiple tomography angles.

Here, P (1,2,3)
L denotes the averaged amplitude of each pulse. The conditional state is

calculated as derived in equation 4.24:

C(θt) = P
(3)
L −

(
P

(2)
L cos(θt) + P

(1)
L sin(θt)

)
(4.30)

82That is, if its adjusted to the side of optomechanical cooling.
83We note that there is also a modulation from the resonator that can cause a zero crossing. This is

accounted for in the later evaluation by correction of the determined phase offset.
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Figure 4.7: Measured pulse train and phase offset correction:
(a) Homodyne signal of a pulse train at θt = 30◦ with the cavity tuned on resonance with tpulse =
90 ns. The measurement outcome PL is determined via the averaged pulse amplitudes (blue
points). We fit a sinusoidal oscillation (dashed blue line) with the resonators eigenfrequency
to the pulse amplitude to determine the homodyne phase offset (blue line). (b) Histograms of
the measurement outcomes for each pulse at θt = 30◦ with fitted Gaussian distributions prior
(violet) and after (blue) postselection. The red shaded area shows the region of acceptance for
homodyne phase offset values. The homodyne signal is converted to the displacement via the
homodyne calibration which is cHD,1500 = (8.9 ± 0.8) rad

nm in this configuration.

We measured five tomography angles (θt = 10◦, 30◦, 50◦, 70◦, 90◦) with 2000 pulse
trains per measurement sequence at a measurement rate of 10 Hz. The pulses are of
rectangular shape and have a length of 90 ns. The AWG and the digitizer operate at a
resolution of 450 MSa/s. Figure 4.7(a) shows an example measurement of such a pulse
train for a tomography angle of θt = 30◦.
We only take data into account that was recorded in the linear region of the homodyne
signal and that predominately measures the XM quadrature of the system. This is cru-
cial to maintain the QND-property of the measurement. Since the homodyne phase is
freely drifting we have to post-select the data that can be used for state tomography in
two steps. The first step is visualized in Fig. 4.8. From the off-resonant peak-to-peak
signal VPP,offres of the homodyne detection, obtained by scanning the phase ϕLO, we can
derive the signal VPP,onres from the reflectivity on resonance σ. We define the range of
usable data as the range where the homodyne scan signal does not differ from a linear



Experimental results 115

Figure 4.8: Postselection of acquired
traces:
Visualization of the postselection criterium
for pulsed measurements. We determine the
expected homodyne peak-to-peak voltage
(red line) and determine the slope of the sig-
nal at its turning point (blue line). The range
within which the signal does differ by less
than 5% from the linear slope (grey dashed
line), is considered to be usable for evalua-
tion. From this region a cutoff voltage (red
dashed line) is derived. If any pulse in a pulse
train exceeds the cutoff voltage, the whole
pulse-train is excluded from further evalua-
tion.

fit through turning point of the signal by more than 5 percent.
From this condition we can derive a cutoff voltage range VPP,cutoff . For the conditional
state preparation we only take data into account for which all three measurements of one
pulse train P (1,2,3)

L are within the cutoff voltage range. The second criterium is applied
after the initial postselection took place. Even though we trigger onto a zero crossing
before the pulses are applied, this condition is not very accurate due to the small signal
beam power prior to the pulses. To determine the phase offset more accurately we fit a
sinusoidal function at the resonators eigenfrequency ωm through the pulses as depicted
in Fig. 4.7(a). From the fit we define the actual phase offset which is subtracted for
further evaluation. In addition, we exclude pulse trains for which the calculated offsets
are greater than |Voffset| > 0.2 V. This condition enforces only measurements with large
XM contributions to be considered. While theoretically the exclusion boundary should
be set as narrow as possible to minimize influences from PM, it still has to yield suf-
ficient amounts of data for the statistical evaluation. Figure 4.7(b) shows the data set
before (violet) and after (blue) all post-selection criteria described above are applied.
The blue histograms depict the data that is used for further evaluation.

The post-processed data allows for reconstruction of the conditional mechanical state
by applying equation 4.30 to the measurement outcomes of each pulse train. The re-
sults are depicted in Fig. 4.9. By mapping out the measurement outcomes of the first
pulse P (1)

L we acquire the initial state width of the resonator with σini = (11 ± 4) pm =
(2600 ± 1000)xzpm. By calculating the conditional variance, we achieve strong squeez-
ing of the state and acquire a state width of σθt=0◦

cond = (70 ± 4) fm = (16 ± 1)xzpm and
σθt=90◦

cond = (225 ± 20) fm = (53 ± 5)xzpm. The corresponding conditional state variances
are denoted by the dark red histograms. The histograms represent the projection of
the mechanical sate onto the XM axis in phase space. They are equivalent to the me-
chanical marginals introduced in Section 4.1.2. We determine the width of the state by
applying a Gaussian fit to the histograms. From the theory discussed in Section 4.1 we
expect a constant width of the thermal state for all tomography angles and a broader
distribution of the conditional state in the PM quadrature due to the back-action from
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Figure 4.9: Marginal distributions at different tomography angles:
(a) Mechanical marginals at different tomography angles as determined in Fig. 4.7 (blue his-
tograms) with a gaussian fit to determine the state width. The conditional state (red his-
tograms) calculated by equation 4.30 is strongly squeezed in comparison to the initial distri-
bution. (b) Zoom into the conditional state histogram. The minimal acquired state width is
σcond = (16 ± 1)xzpm. Towards higher tomography angles the state width increases.

XM onto PM. This holds true for the conditional state which shows a slight increase
in width towards higher tomography angles. Due to the high phonon occupation at
room temperature we can assume the pollution of PM due to the measurement to be
small, thus not changing significantly for different tomography angles. The large error
of the initial state σini can be accounted to the Brownian motion of the resonator by
coupling to the thermal bath which, due to the small mechanical linewidth, varies the
oscillation amplitudes on the order of minutes [101]. Furthermore, the alignment of
the cavity to the side of optomechanical cooling reduces the mode temperature. An
additional systematic error originates from the postselection of the data combined with
the large phase shift the resonator generates. In our particular case a state width of a
293 K warm thermal state (σth ≈ 9000xzpm) produces a signal amplitude outside the
linear region of the homodyne signal which leads to the data set being rejected during
post-selection. Although we lose information about the initial state, this is necessary
to ensure to QND properties of the measurements. Thus, we refer to the measurement
outcome of the first pulse as “initial” and not as “thermal” state.
From the acquired state widths, we can calculate the effective state temperatures to
[72]

T ini
eff = meffω

2
mσ̄

2
ini

kB
and T cond

eff = meffω
2
mσ

θt=10◦

cond σθt=90◦

cond
kB

(4.31)

The representation of the thermal and conditional states in phase space is acquired by
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Figure 4.10: State reconstruction in phase space:
(a) Reconstruction of the initial state by evaluation of the first pulse of each pulse train. We
apply the inverse radon transform on the acquired marginals. The blue circle denotes the 2σ
radius of the respective initial distributions at the different tomography angles. The squeezing
is attributed to long term amplitude fluctuations of the system and the possibility of optome-
chanical cooling. (b) Reconstruction of the conditional state in phase space. The state exhibits
only a slight asymmetry, indicating the back-action from the measurement on the system to
be negligible against the large thermal phonon occupation. We calculate the effective temper-
atures according to equation 4.31. The pulsed measurement sequences to acquire the data are
illustrated above the plots. Note that the axis scaling in (a) is by a factor 100 larger than in
(b).

applying the inverse radon transformation to the mechanical marginals. The results are
depicted in Fig. 4.10. Based on equation 4.31 we calculate the effective mode temper-
ature of the resonator to T cond

eff = (3.1 ± 0.5) mK. From the mean squeezed state width
σ̄mean

cond,1500 = (33 ± 12)xzpm we can calculate the measurement strength of the system in
this configuration by using equation 4.20 [59]:

χ1500 ≈ 1√
2σcond

= 0.021 (+0.012 / − 0.005) (4.32)

This result aligns with the theoretical prediction presented in Fig. 4.3. Furthermore, the
state width of 16xzpm is close to a fundamental limit arising from amplitude fluctuations
due to the Brownian motion of the resonator at room temperature. If we compare
this result with the mean conditional variance of the system at F = 140 we find
σ̄mean

cond,140 = (400±200)xzpf and χ140 = 0.002 (+0.002 / −0.001). Thus, we can conclude,
that the increase of the finesse by a factor of 10 yields an increase of a measurement
strength by a factor of 10 (+20 / −6). The increase in measurement strength aligns with
the theoretically expected value of 30 within the error margins. This further motivates
the implementation of a high finesse cavity to beat the condition χ > 1.
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4.3.2 Pulsed state preparation at F = 14500

The operation of the experiment at F = 14500 is incomparable with previous setups.
Experiments in this regime have been conducted by Leijssen et al. [170]. They found a
regime where the optomechanical coupling between the cavity photons and the Brow-
nian motion of the mechanical resonator “induces optical frequency fluctuations larger
than the intrinsic optical linewidth” [170]. This leads to non-linear effects in the sys-
tem which disallows continuous optical access without putting the system into a highly
non-linear state. The results in this section are the first results measured with the new
cavity and can be regarded as a preliminary assessment of the experimental parameters
that need further improvement to use the system to its full capability.

The emergence of non-linear dynamics implies, that we cannot apply continuous mea-
surement schemes to characterize the system (as done in the previous chapters) and
that active cooling techniques (e.g., radiation pressure cooling) are not applicable. First
hints of this phenomenon were already observed during the sympathetic cooling mea-
surements presented in Section 3.3.2. For the current system, this property does not
allow any kind of continuous measurement, even if the beam exhibits only a few 100 nW
of power. For a single photon coupling rate of g0 = 2π · 204 kHz we find:

N25 µW = 100nW · τcav
ℏωTiSa

≈ 510 ⇒ ∆ωcav = g0,high ·N100 nW ≈ 100 MHz (4.33)

which is on the same order of magnitude as the cavity linewidth of κ = 740 MHz. This
effect can be strong enough to modulate the reflection signal that is acquired during
a homodyne calibration scan at a frequency 2ωm (a qualitative analysis of this be-
havior can be found in Appendix D.2) defying a proper calibration measurement. The
effect can be circumvented by using small beam powers and high scanning frequencies
of ≈ 100 Hz for both cavity piezos. At the same time, the resonance is very narrow,
requiring for a high bandwidth photo detector to accurately resolve the feature. This
leads to a significant variance in the calibration measurements and consequently a rel-
atively large error on the homodyne calibration which is cHD,15k = (170 ± 40) rad

nm .

Another issue is the increased sensitivity of the cavity to angular misalignment. We
pre-aligned the cavity at room temperature achieving a reflectivity on resonance of σ =
(0.62±0.02). The experiments presented in this section were conducted at TMiM = 11 K
after the dilution unit was repaired84. After cooldown we found a change in angular
alignment which reduced the reflectivity on resonance due to worse mode match to
σ = (0.20 ± 0.04). We tried to compensate the angular misalignment with the angular
goniometer stepper motors but found them to be non functional85. Since active cooling
techniques cannot be applied, we have to rely on passive effects that cool the resonator
in between the individual measurements.

84Even though the dilution unit was fully functional, pollution of the liquid Helium disallowed proper
operation of the 1K-pot.

85The angular positioners have to be adjusted with the tightest tolerances. Due to the multiple warm
up cycles and the required disassembly of the goniometer for the cavity exchange, the pre-tension of
the goniometer springs was likely too high. Since readjustment requires full disassembly of the system,
which was not feasible in the short time, we decided to measure in this configuration nonetheless.
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Figure 4.11: Mechanical PSD when ap-
proaching the cavity resonance:
The plots show qualitatively the systems be-
havior when approaching resonance. (Dark
blue) Far off-resonant configuration. (Light
grey) Close to resonance from the side of op-
tomechanical cooling. The mechanical PSD
of the resonator begins to develop an asym-
metric shape and modulates the noise floor.
This can be attributed to nonlinear effects
arising in the resonator-lightfield interaction
[170]. (Red) On resonance, the resonator
modulates the cavity on the order of its op-
tical linewidth. This lifts the noise floor until
the resonator peak vanishes.

Pulsed state tomography in this regime requires many measurements to acquire the
necessary statistics such that the repetition rate of the pulse trains has to be carefully
balanced. Choosing a too high repetition rate leads to heating in between the pulse
trains, disallowing for meaningful results. We worked at a measurement rate of 50 Hz
and recorded 20000 pulse-trains traces per angle θt. The AWG and digitzer operate at
the maximum resolution of 1.8 GSa/s.
Another difference to previous pulsed measurements is that it is not possible to tune
the system on resonance in a continuous measurement. This is depicted in Fig. 4.11.
It shows the PSD of the mechanical resonator with the cavity far off-resonant, close to
resonance on the cooling side and on resonance. If tuned on resonance, the resonator
starts to modulate the cavity frequency and thus periodically tuning it on- and off-
resonant which leads to a rise in the noise floor that eventually buries the resonator
PSD signal. This can be observed for signal beam powers as low as 100 nW.
To conduct measurements, we tune the system close to resonance using the piezo tubes
until we observe the mechanical resonance peak of the oscillator in a PSD measurement
behaving like in Fig. 4.11 (light blue spectrum). From here on the light is switched off
by applying a bias voltage to the fiber EOM to minimize the signal beam transmis-
sion. According to the previously determined piezo calibration86 we apply an additional
offset to the fiber and “blindly” tune the system on resonance. In this configuration
the pulse trains are applied. Due to the small pulse width, we can resolve the state
much finer. Since the excitation of higher vibrational modes of the resonator feeds back
into both quadratures we expect the highest resolution with the least back-action in-
duced broadening for low tomography angles. Thus, we measure the region of small
angles with fine resolution (θt = 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦) followed by a coarser
spacing (θt = 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦). The presented measurements were
conducted at a signal beam power of 14µW and an LO power of 20 mW at repetition
rate of 50 Hz. For each tomography angle 20000 traces were measured.

86cupper = (1.50 ± 0.01) nm
V and clower = (1.42 ± 0.01) nm

V . These values were acquired at a system
temperature of 4 K. The calibration for the upper fiber is different from previous theses because the
piezo had to be exchanged shortly before the measurements were conducted.
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Figure 4.12: Different measurement scenarios at F = 14500:
(a1) Measured signal of a pulse train when the cavity is off-resonant. (a2) Variance of the
baseline of the signal measured within the blue shaded area. (b1,b2) Measured pulse train
signal and variance for an on-resonant cavity. (c1,c2) The system is partly on-resonant but is
tuned off-resonant during the measurements. Only the scenario depicted in (b1) is used for
evaluation.

Evaluation of measurement data

The non-linearity of the system requires us to perform a more elaborate post-selection of
the acquired data. In contrast to the previous configuration, the phase modulation from
the resonator is strong enough to tune the cavity on- and off-resonant at a modulation
frequency of 2ωm

87. During the first measurements we tried to use the transmission
signal of the cavity, which is enhanced due to the use of a multi-mode fiber, as indicator
whether the system is resonant during a pulse train. Nevertheless, the signal showed
to be of insufficient strength to qualify as a selection criterion. Instead, we found the
baseline of the recorded pulse trains to be a good measure.

87This behavior can also be qualitatively observed when slowly scanning over the cavity resonance.
A corresponding measurement is depicted in Appendix D.2.
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Figure 4.13: Postselection of data for F = 14500:
(Histograms of the measurement outcomes for each pulse at θt = 80◦ prior (violet) and after
(blue) postselection. Inset: Zoom into the post selected data sets after applying all selection
criteria. The homodyne signal is converted to the displacement via the homodyne calibration
which is cHD,15k = (170 ± 40) rad

nm in this configuration.

Suppose we find the system in an unknown state and apply a pulse train. Then we
can distinguish between three different measurement scenarios that are also depicted
in Fig. 4.12:

• Scenario 1: The system is off-resonant (Fig. 4.12(a1,a2)). In this case the signal
baseline is flat due to the high CMRR of the homodyne detection. This is the
most common scenario to find during a measurement.

• Scenario 2: The system is on resonance (Fig. 4.12(b1,b2)) and the baseline signif-
icantly varies due to the modulation by the resonator.

• Scenario 3: The system is partly on resonance (Fig. 4.12(c1,c2)) and is shifted
off-resonant during the measurement.

We want to only consider data as described by scenario 2. For this we determine the
variance of the baseline between the first and the second pulse and during the last 500
ns of the pulse train. Based on the average variance of all measurements σ = (8±2) mV
we require the variance in both regions to exceed σ > 10 mV to be considered in the
further evaluation. Together with the requirement that all data points are within the
linear range of the homodyne signal, an average of 160 usable traces (0.8%) remains
from initially 20000.
We further impose the requirement for the data to contain only information about the
XM quadrature by using the method presented in Fig. 4.8 of the previous evaluation.
This results in a further reduction to an average of 50 (0.25%) data sets that qualify
for quantum state tomography. A comparison between the data sets prior and after the
post-selection is depicted in Fig. 4.13. Due to the selection criteria some tomography
angles contain only a single-digit amount of data. We depict the histograms for the
angles θ = 5◦, θ = 60◦ and θ = 80◦ as an example in Fig. 4.14. Due to the small
number the data sets do not qualify for a evaluation via the fit of a statistical function
as in the previous section. Instead, we determine the variance σN of the calculated
conditional states for each measurement.
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Figure 4.14: Marginal distributions at different tomography angles:
(a) Mechanical marginals at different tomography angles as determined in 4.13 (blue histograms)
The conditional state (red histograms) calculated by equation 4.30 does not resemble a thermal
state. Likely due to insufficient statistics. (b) Zoom into the conditional state histogram with
the calculated variance of the conditional state widths.

The only data set that hints towards a normal distribution could be identified at θ = 60◦

where σN = (6.4±2)xzpm. The results at low tomography angles suggest that the system
is in principle capable of resolving the ground state with sub-SQL precision. Nonetheless
more data would be necessary to assess this property with statistical significance88.

4.3.3 Conclusion

In this chapter we implemented a QND measurement technique to realize rapid state
tomography of our resonator. We investigated the degree of state-squeezing dependent
on the cavity finesse.
With the medium finesse cavity, we reached a minimum state width of σ = (16±1)xzpm
at a measurement strength of χ = 0.021 (+0.012 / − 0.005). Compared to the acquired
measurement strength at F = 140 (χ140 = 0.002 (+0.002 / −0.001)) this results verified
that the measurement strength scales with the finesse according to theory within the
error margins.
Experiments with the high-finesse cavity put the system into a regime where the res-
onator motion tuned the cavity off-resonant at twice its eigenfrequency. This required
for the introduction of new postselection techniques and rendered the overwhelming
part of the data unusable. The data that qualified for further evaluation hints that the
system is capable to resolve the state with sub-SQL precision. Nevertheless, the statis-

88Similar measurements were conducted at signal beam powers of (PSIG = 0.9 µW, PSIG = 7 µW,
PSIG = 20 µW, PSIG = 30 µW, PSIG = 150 µW). All show a similar behavior due to the large number
of rejections.
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tics were insufficient to deduct a measurement strength with statistical significance.
The current results indicate, that the measurement procedure has to be further opti-
mized. Without further modifications on the current setup this could be realized by the
following measures:

• Acquisition of more data. Assuming that 0.25% of the data are usable we would
require for at least 100 000 traces to acquire an average of 250 usable data sets.
This is possible with the used UHF AWG but inefficient as it leads to large
amounts of data (for 20000 traces a full state tomography produces approx. 40-60
GB data).

• Taking into account the higher vibrational modes of the oscillator. The pulses can
excite higher incommensurate vibrational modes that broaden the conditional dis-
tribution. To account for these modes, optimal-state-estimation methods could be
implemented. A promising approach are Kalman-filters [171] that were applied on
optomechanical systems before during Refs. [71, 172, 173] and lead to realizations
of feedback control loops on the quantum level. These methods would require for
enhanced knowledge over the excited modes and thus for different preparation
protocols.

Possible experimental modifications are:

• Enhancement of the measurement efficiency. The low reflectivity on resonance
due to angular misalignment poses a reduction in measurement efficiency by a
factor of 3 when compared to the empty cavity value. This makes a readjustment
of the angular piezo motors of the goniometer necessary to control the cavity to
its full extent.

• Furthermore, an additional length stabilization of the system could allow for more
accurate alignment of the cavity on resonance. Since we cannot apply continuous
measurements in the MiM system, such a stabilization would require for a second,
empty high finesse fiber cavity which is connected to the MiM-cavity. This cavity
could be stabilized via a PDH signal, allowing for a more accurate alignment and
better knowledge of the system.



Conclusion and Outlook

Since its beginning, the NanoBEC project aimed for the ambitious and technically
demanding goal of realizing strong hybrid coupling between two fundamentally differ-
ent constituents. In the past years multiple endeavors, provided more insights into the
physics and significant technical improvements to the system. In this thesis we pushed
the technical boundaries further, by implementing optimized finesse cavities, bringing
back the full functionality of the cryostat and conducting measurements in a high fi-
nesse regime that was not investigated before.

This led to an improvement of the hybrid cooperativity to Chybrid ≈ 5900. We sur-
passed the former technical limitations and found a physical boundary in the maximal
achievable cooperativity of this system caused by the high OD of the atomic cloud at
low lattice powers and detunings that leads to the vanishing of the coupling lattice. Mo-
tivated by the acquired knowledge we shifted gears to use the benefits of the excellent
experimental conditions the system provides for solely optomechanical experiments.
We realized a QND rapid state preparation protocol for full quantum state tomogra-
phy of the resonator and investigated the scaling of the measurement strength with
the finesse. This modification allowed for rapid state preparation of the resonator to
an effective mode temperature of 3.1 ± 0.5 mK starting from room temperature which
is in agreement with theoretical predictions. Motivated by this result we implemented
a high finesse cavity with F = 14500 to enable state squeezing below the zero-point
motion. In this regime the resonator modulated the cavity resonance such that most of
the acquired data was not usable for evaluation. Yet this does not diminish the capa-
bility of the system to reach the desired sub-SQL precision if the data acquisition and
evaluation are further optimized.

The research on hybridization of quantum systems remains relevant and their real-
ization will have a crucial influence on the development of complex quantum systems
in the future. It is the fundamental researchers’ privilege to try out the most various
and exotic physical models and systems for the sake of “just” gaining knowledge. We
used this privilege to find the physical boundaries of this experiment. Future perspec-
tives beyond the improvements on pulsed state preparation require a redesign of the
experiment, utilizing the individual strengths, the system provides and investigating
new coupling mechanisms with different constituents. This could imply using an all
fiber based setup where both constituents (i.e., atoms and oscillator) live in a fiber
cavity or switching from nanomechanical resonators to levitated nanoparticles [174]89.

89A field that emerged recently and already shows impressive capabilities regarding ground-state
preparation and controllability.
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Old experimental setups

A.1 Free space detection setup

For the experiments on pump-asymmetry-compensation (PAC) and for the pulsed ex-
periments at F = 140 and free-space homodyne detection setup was used. The setup
for the experiments on PAC is depicted in Fig. A.1 90.

from laser system

homodyne
detection PD

to cryostat
f = 200 mm

int.
control
PD

PBS

/2 waveplate

/4 waveplate

50/50 BS
PBS1

PBS2

PBS3

piezo mirror

90%

10%

coupling lattice beam

Figure A.1: Detection light from the homodyne branch of the laser system is collimated by
a fiber collimator (Schäfter & Kirchoff 60FC-L-4-M20L-02 ) to a beam diameter of dbeam =
3.6 mm and split of by a 50/50 beamsplitter into a signal and LO branch. The LO beam trans-
mits through PBS2 and gets back-reflected at the piezo mirror (Piezomechanik HPSt 150/14-
10/12 ) that is used for the phase adjustment between the signal and LO beam. The back-reflex
is guided to PBS3 where it is overlapped with the signal beam. The signal beam goes through
PBS1 where a fraction of the signal beam is split off and directed on a PD used for intensity
control. The remaining signal light is guided to the coupling lattice telescope where a fraction of
10% is coupled together with the coupling lattice beam into the cryostat-fiber. After interaction
with the resonator, the signal light is guided to PBS3 where it is superimposed with the LO
beam. Both spatially overlapped beams are split to equal parts and sent to the balanced pho-
toreceiver (FEMTO HCA-S, DC ... 1 MHz, gain 28.5 kV/W, NEP 1.1 pW/

√
Hz). The signal

is evaluated via lock-in detection. Figure from Ref. [63].

90The version for pulsed experiments featured an additional branch to compensate the path length
difference between signal and LO branch and a 500 MHz balanced photoreceiver. Since no pulsed
measurements were conducted with this setup in this thesis it is omitted here.
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A.2 PAC setup

The experiments on PAC featured a special coupling lattice setup with an additional
auxiliary beam to compensate for the pump-imbalance. The coupling lattice setup for
PAC is depicted in Fig. A.2.
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Figure A.2: The modified coupling lattice setup features an auxiliary beam that is split off
from the coupling lattice beam via a PBS in the coupling lattice telescope. The auxiliary beam
transmits through a PBS at which its power can be adjusted by a fine tunable λ/2-waveplate. It
is guided through the telescopes T2 and T3 that adjust beam diameter to pass through the free
space EOM (Linos LM0202, 0.1W KD*P 3x3 400-850 nm) and is incident on a piezo mounted
mirror (Noliac NAC2121 ring piezo). Together the piezo and the EOM realize the auxiliary
beam phase lock. The auxiliary beam is shaped by telescope T1 to acquire optimal mode match
with the back-reflected beam from the cavity. Telescope T1 is mounted on a translation stage
that allows to adjust the focus position of the auxiliary beam with micrometer precision. The
auxiliary beam is superimposed with the back-reflected beam on substrate S2. Their interference
signal and the spatial mode match can be monitored via an out-of-plane reflection of both beams
at pellicle P1 in the near-field and at pellicle P2 in the far-field. Figure from Ref. [63].



Appendix B

Hybrid system

B.1 Overview over the optomechanical properties of the
used systems

During this thesis, experiments were conducted at three different optomechanical sys-
tems at different temperatures. The tables presented here conclude the optomechanical
properties for all systems used during this thesis:

• Table B.1 shows the properties of the optomechanical system used for the PAC
experiments at room temperature.

• Table B.2 shows the properties of the optomechanical system used for the hybrid
coupling experiments at F = 650 and F = 1500 at room temperature.

• Table B.3 shows the properties of the optomechanical system used for the pulsed
experiments at F = 14500 at a experiment temperature of TMiM = (11 ± 1) K.
Although the dilution unit was fixed, impurities in the liquid Helium disallowed
proper operation of the 1K-pot such that the temperature of the experiment
stayed at 11 K during the measurements.

Optomechanical properties at Fempty = (60 ± 2)
ωm 2π · 154.42 kHz ωcav 2π · 384 THz
Q (6.662 ± 0.004) × 106 Lcav (21.1 ± 0.1)µm
Γm 2π · (23 ± 1) mHz κmax 2π · (50.2 ± 0.5) GHz
meff 3 ng xzpf 4.28 fm
Fmax (140 ± 10) G (111 ± 1) GHz/nm
gm (98 ± 0.5) GHz/nm g0 2π · (66.8 ± 0.3) kHz

Table B.1: Properties of the optomechanical system at room temperature for the cavity with
Fempty = (60 ± 2). The data is from Ref. [63].
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Optomechanical properties at Fempty = (785 ± 15)
ωm 2π · 154.41 kHz ωcav 2π · 384 THz
Q (6.662 ± 0.004) × 106 Lcav (12.9 ± 0.5)µm
Γm 2π · (23 ± 1) mHz κ 2π · (7.6 ± 0.2) ... (17.5 ± 0.7) GHz
meff 3 ng xzpf 4.28 fm
F (650 ± 50) ... (1500 ± 100) G (187 ± 7) GHz/nm
gm (108 ± 4)...(300 ± 10) GHz/nm g0 2π · (73 ± 3) ... (204 ± 7) kHz

Table B.2: Properties of the optomechanical system at room temperature for the cavity with
Fempty = (785 ± 15).

Optomechanical properties at Fempty = (14500 ± 1500)
ωm 2π · 153.37 kHz ωcav 2π · 384 THz
Q (2.5 ± 0.2) × 107 Lcav (14 ± 0.5)µm
Γm 2π · (6.1 ± 0.1) mHz κ 2π · (740 ± 80) MHz
meff 3 ng xzpf 4.28 fm
Fempty (14500 ± 1500) G (172 ± 6) GHz/nm
gm (90 ± 10)...(290 ± 40) GHz/nm g0 2π · (61 ± 7) ... (200 ± 30) kHz

Table B.3: Properties of the optomechanical system at TMiM = 11 K for the Fempty = (14500±
1500) configuration. The optomechanical coupling gm/G is determined from Fig. B.3. Since the
system allows for no continuous optical access the linewidth had to be estimated according to
equation 2.23 and could not be measured directly. Furthermore, we can only state the empty
cavity finesse. We had to exchange the trampoline resonator for this system. Thus, a new quality
factor was determined for the system which differs from previously stated values.

B.2 Homodyne phase-lock bandwidth estimation

To implement a phase-lock into the fiber-based homodyne detection setup we built a
fiber stretcher by winding 10 m of glas-fiber91 around a large diameter piezo ceramic
cylinder92 and implemented it into the LO branch. This system is supposed to have a
high bandwidth and can be operated at low voltages.
A thorough characterization of the lock bandwidth required for a phase modulating
fiber EOM that was not available at that time. Thus, we estimate the lock- bandwidth
by measurement of the optical path displacement (OPD) the fiber stretcher causes at a
given modulation frequency and by measurement of the amplitude response of driving
signal.
The measurement of the modulation frequency dependent OPD is depicted in Fig. B.1.
We set up a Mach-Zehnder interferometer with the fiber stretcher placed in one branch
and observe the interference signal at one interferometer port with a photodiode93. We
apply a sinusoidal94 voltage to the fiber stretcher and measure the distance between
the interference signal minima in the linear range of the scan signal. This allows to
determine the optical path displacement per volt. Up to a modulation frequency of 4

91Thorlabs HP780SM
92STEMINC SMC4037T50111 with d = 40 mm.
93Thorlabs PDA36
94We use a sinusoidal signal as the high capacity of the piezo leads to delayed discharge effects when

using a triangular scan ramp at frequencies in the kHz regime.



Homodyne phase-lock bandwidth estimation 129

Figure B.1: (a) Interference signal (red) on the measurement PD for a sinusoidal scan signal
(blue) of VPP = 3 V at 500 Hz. The dashed lines denote sinusoidal fits to the data. Within
the linear region of the scan signal (grey dashed vertical lines) the distance between the inter-
ference fringes is measured to determine the OPD per volt. (b) OPD for different modulation
frequencies. The grey dashed line denotes the modulation frequency of 4 kHz after which the
OPD significantly increases.

kHz the OPD stays constant at (570 ± 10) nm/V. We recognize a significant increase
in the OPD for higher frequencies up to 15 kHz which suggests a resonance of the
system in this region. At frequencies above 15 kHz we observe a nonlinear response
that renders it impossible to assign an OPD. To investigate the resonance behavior
for higher frequencies, we measure the amplitude of the driving signal of the piezo for
different modulation frequencies up to a modulation frequency of 90 kHz. The results
are depicted in Fig. B.2.
The measurement confirms the nonlinear behavior and shows a suppression of the
driving amplitude of −18 dB at a modulation frequency of 30 kHz. The measurements
suggest a linear response of the system for drive voltages of 3 V up to 4 kHz.

Figure B.2: Amplitude response of the
fiber stretcher. The peak-to-peak signal of
the driving voltage is measured for modu-
lation frequencies up to 90 kHz. The initial
signal has VPP = 3 V. The grey dashed line
denotes a modulation frequency of 22 kHz
where the amplitude is reduced by 3 dB.
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B.3 gm measurements for F = 14500
We conducted a measurement of gm with the high finesse cavity at an experiment
temperature of TMiM = (11 ± 1) K with the method described in Chapter 2.3.2. This
became possible after the exchange of the piezo that held the upper fiber because it had
a much larger travel range than the old model. Nevertheless, the scan range is smaller
at low temperatures such that it was only possible to scan the piezos over one FSR of
the cavity resonance. The measurement is depicted in Fig. B.3.

Figure B.3: (a) Raw data of the cavity
transmission signal for a symmetric scan of
both fibers around the resonator with a slow
modulation of the cavity detuning. The red
shades indicate the cavity transmission (dark
corresponds to high transmission) at a res-
onator position xm. (b) Extracted resonance
curve from upper plot by identifying the
points of highest transmission. The optome-
chanical coupling at each slope is determined
by a linear fit (dashed blue lines) through the
individual turning points.
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B.4 Piezo calibration

Previously the piezos that were used to move the upper and lower fibers of the cavity
had significantly different calibration factors. Prior to the pulsed measurements the
upper fiber piezo broke and had to be replaced. After the replacement we observed
both calibrations to be more similar. The piezo calibration was acquired by scanning
the cavity over as many FSR as possible and subsequent measurement of the distances
of the cavity resonances. Since the resonances are a distance λ/2 apart, the piezo travel
range per volt can be deducted. Figure B.4 shows the calibration measurement for
configuration with the old (Figure B.4(a)) and new piezo configuration (Figure B.4(b))
.

Figure B.4: (a) Piezo calibration measurement at room temperature before the upper piezo
was exchanged. Each datapoint is determined from the averaged distances of multiple FSR.
(b) Piezo calibration measurement at TMiM = 11 K after the upper piezo was exchanged. Due
to the low temperature the calibration constants are lower which allowed to only scan over a
distance of one FSR.

B.5 Production of high finesse fiber cavities

B.5.1 CO2 laser characterization

During this thesis we produced new fiber cavities at a finesse of F = 14500. Our
facilities allow for the production of fiber cavities with concave profiles. The setup for
fiber cavity production was initially set up during Ref. [175] and further improved in
Ref. [100]. When starting the production of the new cavities we found that the CO2
laser95 malfunctioned due to degradation of the laser-medium gas and replaced it with
a new CO2 laser96. The new laser has a operating wavelength of λ = 10.2µm and is
specified for a maximum output power of 20 W with a relative power stability of ±10%.

95Access Laser AL30
96Coherent Diamond C20
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Figure B.5: Output power of the laser at different duty cycles for a repetition rate of 200
kHz. For higher duty cycles the modulation of the laser power from the switching of the laser
gets less pronounced.

It can operate at repetition rates between 25 and 200 kHz. We characterized the laser
to assess whether it fulfills these specifications and to find a regime where it operates
most stable. This is important to get reproducible results in the manufacturing process.

The laser power is regulated by a TTL pulse-width-modulation (PWM) signal. This
signal gates the RF-source that excites the laser. By operating the laser at different
duty cycles (DC)97 the output power can be adjusted. Figure B.5 shows the measured
output power of the laser for different DCs on the order of the TTL signal time. The
output power was measured with a high-speed IR photodiode98. We measured the abso-
lute power and the relative power stability of the laser over a time of 20 s for different
repetition rates and duty cycles. Figure B.6 depicts an overview over the power at
different DCs and repetition rates. We observe a similar relation between the output
power of the laser and the applied DC for all repetition rates. Furthermore, the laser
reaches output powers above 20 W for DCs above 50%. Except for the DC of 10% the
relative power fluctuations fulfill the manufacturers specifications. For DCs above 50%
the relative power fluctuations are below 5% which is better than specified.

Figure B.6: (a) Output
power for different rep-
etition rates as a func-
tion of the DC. Each data
point depicts the average
value of a 20 s power
measurement. (b) Rela-
tive power stability ac-
quired from the data de-
picted in (a).

97The duty cycle denotes the ratio between the TTL-high and the TTL-low signal.
98VIGO PVM-10.6
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For the processing of the fibers, we apply pulses on the with pulse lengths between 5 and
40 ms. To determine the stability of the laser between individual pulses we measured
the power fluctuations between multiple pulses at different DCs and repetition rates.
The results are depicted in Fig. B.7. In contrast to the long-term power fluctuations
there are notable differences between the individual settings of operation. The highest
overall stability can be observed for a repetition rate of 200 kHz at a DC of 60 %. For
the cavity production we operate in this regime.

Figure B.7: Shot-to-shot fluctuations for 40 ms pulses at different DCs and repetition rates.
For each setting the single pulse variance and the variance between 10 pulses is depicted. For
all applied settings the laser fulfills the manufacturers specifications. In most cases the power
stability is better than specified.
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B.5.2 Properties of the new high finesse cavities

We produced 17 curved fiber profiles in this thesis and prepared 15 plane fibers. The
reflectivity on resonance and the finesse are dependent on the reflectivities of the in-
dividual mirrors an on the quality of the curved profiles. For each curved fiber we
determined the finesse and the reflectivity on resonance by measurement of the reso-
nance peak width and the FSR. The corresponding signal is depicted in Fig. B.8.

Figure B.8: (a) Normalized cav-
ity signal in reflection (light blue)
and transmission (light red) for a
triangular length scan of the plane
fiber. The distance between two
peaks yields the FSR. (b) Zoom
into one resonance peak. The mini-
mum in reflection yields the reflec-
tivity on resonance.

Figure B.9 shows an overview over the measured finesses and reflectivities on resonance
for all produced fibers. For each measurement we adjusted the cavity to the length
which had the highest reflectivity on resonance (between 12µm and 16µm).

Figure B.9: Overview over the finesse (left) and reflectivity on resonance (right) of the
produced fiber cavities for the pulsed experiments. The prefix “S” denotes single-mode fibers,
the prefix “M” denotes multi-mode fibers. The dashed lines show the average values of the
achieved finesses and reflectivities on resonance while the lighter shades depict the variance.
For the pulsed experiments we used fiber M4 (black dashed line) since it showed the highest
reflectivity on resonance σ = (0.62 ± 0.02) at a finesse of F = (14500 ± 1500). Each datapoint
is created from the average of 1000 scans over one FSR at a scan frequency of 20 Hz.
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B.5.3 Profile analysis of the high finesse cavity

Figure B.10 depicts the profile analysis of the fiber M4 used for the cavity in the pulsed
experiments.

Figure B.10: (a) Interferogram of a fiber facet that was prepared by multiple CO2 laser pulses.
One interference fringe (black to black) corresponds to a height difference of 325 nm. (b) Profile
evaluation using a phase shifting interferometry (PSI) algorithm. The plot shows a 2D Gaussian
fit onto the profile depicted in (a). The image and the analysis are from the curved mirror of
the Fempty = 14500 cavity used for the new coupling experiments. r2 = 68.6µm differs from
ropt = 65.4µm by 5%.



Appendix C

Feedback cooling

Feedback cooling is a powerful technique to control systems[95] on the quantum level
and has been investigated in numerous experiments [176–180]. It is often referred to
throughout this thesis and was used during the measurements on pump-asymmetry-
compensation. Since its performance is strongly dependent on the signal-to-noise ratio
and the bath temperature, we wanted to use the advantages of the new detection system
and the repaired cryostat to measure the feedback cooling performance for the system
with the new cavity at F = 650 and possibly reach the ground state. The benchmark is
the formerly measured lowest phonon occupation by T. Wagner in [62] of nm = 3.8±0.1
phonons.
Because referenced in the main chapters, we will briefly introduce the theory of feedback
cooling alongside the description in previous theses [57, 62, 63] and present the feedback
cooling performance with the new system at base temperature.

C.1 Theory of radiation pressure cooling

We start from the vibrational ground mode of the resonator with the mechanical
linewidth Γm = ωm/Q and effective mass meff and consider the application of a feed-
back force Ffb. The dynamics of the system can then be described by the Langevin
equation with the stochastic thermal forces Fth and the back-action force Fba [95]:

meff(ẍ+ Γmẋ+ ω2
mx) = Fth + Fba + Ffb (C.1)

F T⇒ meff(ω2
m − ω2 − iωΓm)︸ ︷︷ ︸
:=χm(ω)−1

x̃ = F̃th + F̃ba + F̃fb (C.2)

The Fourier transform (FT) of equation C.1 yields an expression in the frequency
domain with the mechanical susceptibility χm(ω). In Fourier space the back-action and
feedback force acquire the following form [95]:

F̃ba = −χba(ω)−1x̃+ F̃ba,th (C.3)
F̃fb = −χfb(ω)−1ỹ + F̃fb,th (C.4)

Both forces include a thermal and a dynamical contribution. In case of the back-
action force, the dynamical contributions χba(ω)−1x̃ are the previously introduced phe-
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nomenons of cold damping and the optical spring effect99. If we assume operation on
resonance (∆cav,laser = 0) this contribution can be neglected. The dynamical quantity
of the feedback force acts like a filter that affects the measured position ỹ = x̃ + x̃imp
relative to the real position x̃. Here x̃imp denotes measurement imprecision added by
the detection. When combining C.3 and C.4 with expression C.2, x̃ and ỹ yield [179]:(

χ−1
m + χ−1

fb

)
x̃ = F̃th + F̃ba,th + F̃fb,th − χ−1

fb x̃imp (C.5)(
χ−1

m + χ−1
fb

)
︸ ︷︷ ︸

χ−1
eff

ỹ = F̃th + F̃ba,th + F̃fb,th︸ ︷︷ ︸
:=F̃tot

−χ−1
m x̃imp (C.6)

where we introduce the inverse mechanical susceptibility χ−1
eff . It describes the change

of the resonator susceptibility χm due to the influence of feedback cooling. From this
the change of the mechanical properties of the resonator of χ−1

fb can be derived from
the real and imaginary parts. For the resonator spring constant km = meffω

2
m we find

[95]:

k′
m = km

(
1 + Re[χ−1

fb ]
km

)
= km(1 + gd) (C.7)

This is a resonator displacement dependent effect where the strength of the influence
on k is proportional to the displacement dependent feedback gain gd The damping rate
of the resonator with applied feedback cooling yields:

Γ′
m = Γm

(
1 + Im[χ−1

fb ]
Γmmeffω

)
= Γm(1 + gv) (C.8)

The influence of feedback cooling on Γm is proportional to the velocity dependent
feedback gain gv. Overall, the feedback filter function can be expressed in terms of the
respective feedback gains via [95]:

χ−1
fb = kmgd − imeffΓmgv (C.9)

The previously found expressions allow to describe the complete control system which
is depicted in Fig. C.1. We can calculate the single-sided power spectral density (PSD)
Sx(ω) = ⟨x̃(ω)x̃∗(ω)⟩ of the real resonator displacement x̃. Here we use equations C.5
and C.6 and the definition of χ−1

eff and F̃tot to acquire[95]:

Sx(ω) = ⟨x̃(ω)x̃∗(ω)⟩

= |χeff(ω)|2
(
⟨F̃tot(ω)F̃ ∗

tot(ω)⟩ + |χfb(ω)|−2⟨x̃imp(ω)x̃∗
imp(ω)⟩

)
= |χeff(ω)|2

(
Stot

F (ω) + |χfb(ω)|−2Simp
x (ω)

)
(C.10)

99That is, if we consider a high Q resonator (Γm ≪ ωm) in the bad cavity regime (κ ≫ ωm).
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Figure C.1: Schematic of the feedback cooling mechanism. We consider a thermal force noise
F̃th coupling to the system. According to its susceptibility χm it is converted into a displace-
ment x̃. The detector measures x̃ adding imprecision noise x̃imp which results in the measured
displacement ỹ = x̃+ x̃imp and in a back-action force F̃ba which feeds back onto the resonator.
The signal ỹ is used by the feedback filter to derive a feedback force dependent on χ−1

fb . All
three forces yield the total force F̃tot which acts on the resonator. Figure adapted from Ref.
[57].

Equation C.10 shows the dependency of resonator displacement PSD on the thermal
force noise Stot

F (ω) and on the detection induced imprecision noise Simp
x . Using the same

relations as for C.10, we can calculate the ỹ displacement PSD to [95]:

Sy(ω) = |χeff(ω)|2
(
Stot

F (ω) + |χm(ω)|−2Simp
x (ω)

)
(C.11)

The derived expressions for Sx and Sy allow to describe the influence of feedback cooling
on the acquired mode temperature. Using equation C.9 we arrive at [95]:

|χfb(ω)|−2 = (kmgd)2 + (meffωΓmgv)2 (C.12)

|χeff(ω)|2 = 1
m2

eff [(ω2
m(1 + gd) − ω2)2 + (ωΓm(1 + gv))2] (C.13)

By using the equipartition theorem from [95]:

Tmode = meffω
2
m

kB
⟨x2

m⟩ = meffω
2
m

kB
· 1

2π

∫ ∞

0
Sx(ω)dω (C.14)

and substitute Sx with the expressions found in the equations C.10, C.12 and C.13 this
expression yields [95]:

Tmode = ω2
m

2πmeffkB
Stot

F

∫ ∞

0

1
(ω′2

m − ω2)2 + (ωΓ′
m)2 dω (C.15)

+ ω2
m

2πmeffkB
Simp

x

∫ ∞

0

g2
dk

2
m + g2

v(mωΓm)2

(ω′2
m − ω2)2 + (ωΓ′

m)2 dω (C.16)

The quantities ω′
m = ωm

√
1 + gd and Γ′

m = Γm(1+gv) are the feedback gain dependent
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resonator frequency and linewidth. The spectral densities Sx and Stot can be assumed
as constant for our resonator parameters. The integral in equation C.15 can be solved
to arrive at the final expression for the mode temperature [95]:

Tmode = Tbath
(1 + gd)(1 + gv)︸ ︷︷ ︸
cold spring/damping

+

kmωmQ

4kB

g2
d

(1 + gd)(1 + gv)︸ ︷︷ ︸
T ∝gd

+ kmωm
4kBQ

g2
v

1 + gv︸ ︷︷ ︸
T ∝gv

Simp
x (C.17)

The first term of equation C.17 yields the reduction of the mode temperature depen-
dent on the feedback gains and the bath temperature. When it approaches zero for
large feedback gains, the two terms in the brackets proportional to g2

d and g2
v become

dominant and cause an increase in temperature due to detection noise entering the
feedback loop. Thus, the mode temperature achievable with feedback cooling exhibits
a lower limit.
In Ref. [57] it was found that the displacement proportional feedback term introduces a
parasitic heating effect to our system. Thus, we aim to perform solely velocity dependent
feedback cooling which corresponds to a feedback phase of ϕfb = π/2. Experimentally
we have to account for additional phase delays in the system due to capacities in the
loop. These can be measured and compensated when adjusting the feedback loop phase
in the lock in amplifier.
Assuming gd = 0 we can calculate the minimal mode temperature that we can achieve
with velocity dependent feedback cooling to:

∂Tmode
∂gv

= 0 → gv,opt ≈
√

4kBQTbath

kmωmS
imp
x

(C.18)

and arrive at the final expression:

Tmode(gv,opt) ≈ 2Tbath
gv,opt

= ωm

√
meffΓmS

imp
x

kB
(C.19)

This equation supports the use of high Q low effective mass resonators for feedback
cooling. It furthermore shows the requirement of low detection noise. The modifica-
tions made on the system and the new fiber cavity motivated us to repeat feedback
measurements at the new system. The results are discussed briefly in the following
section.

C.2 Feedback cooling experiments with F = 650

The experimental details on feedback cooling are described in very detail in the theses of
P. Christoph [57] and T.Wagner [62]. We want to concentrate to the results with the new
cavity after the repair of the cryostat at TMiM = 4 K and will not discuss experimental
details. For the measurements conducted we determined the system phase delay by
performing feedback cooling at a fixed gain while varying the feedback loop phase ∆Φ.
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Figure C.2: Acquired mode temper-
atures at different feedback phase set-
tings ∆Φ. Each data point is acquired
by averaging over a one minute zero
span trace of the displacement PSD.
The red line is a fit of equation C.20
to the data. We determine the optimal
feedback phase to ∆Φopt = 30◦ ± 5◦.

The phase dependent minimal mode temperature can be found to fulfill [57]:

Tmode(∆Φ) = Tbath
1 + gmax

v sin(ϕ0 + ∆Φ) (C.20)

The quantity ϕ0 is the of all phase delays in the feedback loop. It changes for any
modification on the feedback setup. Figure C.2 shows the measurement to determine
the optimal feedback phase. The measurements presented in this section were conducted
at a feedback phase ∆Φ = 30◦. We operate the system at a signal/LO ratio of 10000:1
and investigate LO powers of 2.5 mW, 5 mW and 10 mW. Because it yielded the best
cooling performance, we present the data for 5 mW LO power. We acquire the feedback
gain and the mode temperature by measuring the spectra Sy(f) for different P-gains100

and fitting expression C.11 to determine the in-loop displacement PSD.

Figure C.3: (a) Measured in loop displacement spectra Sy(f) for different P-gains with fits of
expression C.11. Each trace consists of 50 averaged spectra and was acquired at a demodulator
frequency of 153.157 kHz and at a demodulator bandwidth of 1.6 kHz with a measurement
resolution of 432 mHz. (b) Feedback gains obtained from the fits in (a) for different P-gains.

100The P-gain is the electronic loop gain set in the lock-in amplifier. It is an arbitrary quantity in the
context of feedback cooling has no physical meaning on its own.
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Using expression C.17 it is then possible to acquire the respective mode temperatures.
Figure C.3 shows the measured in-loop displacement PSD with the respective fits (Fig.
C.3(a)) and the derived velocity dependent feedback gain gv (Fig. C.3(b)).
For high gains the spectra show noise squashing, a regime in which the detector noise
gets canceled by the feedback loop [109]. Using equation C.19 we can calculate the mode
temperatures and the effective phonon occupation of the resonator from the acquired
gains. The result is presented in Fig. C.4. With the new setup we reach a final minimal
mode temperature of Tmode,min = 27 ± 1µK which corresponds to a phonon occupation
of nmin,5 = 3.2 ± 0.1. This yields only a slight improvement over the former minimal
value nmin,old = 3.8 ± 0.1.
This indicates slightly better noise properties of the new system over the old setup.
Experiments at 10 mW (2.5 mW) LO power showed inferior cooling performance and
yield a minimal phonon occupation of nmin,10 = 4.7 (nmin,2.5 = 30) phonons.

Figure C.4: Mode temperatures (blue
points) at different feedback gains acquired
from the fits of equation C.11 onto the spec-
tra in Fig. C.3 with a fit of equation C.19
(red line). We reach a minimal mode temper-
ature of Tmode,min = 27±1µK corresponding
to a phonon occupation of nmin = 3.2 ± 0.1.



Appendix D

Pulsed state preparation

D.1 Verification of shot-noise limited detection

Figure D.1 (a) depicts the frequency dependent common-mode-rejection-ratio (CMRR)
of the used detector. The frequency response was measured with the LO beam (PLO =
200µW) which was modulated via a fiber EOM at a modulation depth of Vπ/20 to sim-
ulate noise. The detector shows a CMRR > 45 dB on the differential output compared
to individual detector port outputs for frequencies up to 10 MHz. At higher frequencies
it decreases to a minimum value of 20 dB at 500 MHz101.
In Fig. D.1 (b) the linear increase in noise variance for LO powers up to 20 mW is
presented which verifies the detection to be shot noise limited.

Figure D.1: (a) Frequency response of the balanced photo receiver used for the pulsed exper-
iments (FEMTO HBPR500-FST ). We measure a common-mode-rejection-ratio (CMRR) over
45 dB for frequencies up to 10 MHz. For frequencies above 10 MHz the CMRR decreases to a
minimum value of 20 dB at 500 MHz. Subfigure from Ref. [63]. (b) Measurement of the noise
variance for LO powers from 0.5 to 20 mW. The LO noise variance scales linearly over the whole
range of applicable LO powers which shows that the detection is shot-noise limited.

101The decrease can likely be accounted by the decreasing intensity modulation depth of the EOM at
these frequencies and is not to a property of the detector itself. This was verified by the manufacturer,
However, this assumption could not be tested independently.
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D.2 Cavity frequency modulation at high finesses

The strong effect the resonator has on the cavity frequency, modulating it on the order
of the cavity linewidth can be observed when slowly scanning over the cavity resonance
while observing the cavity reflection signal. Dependent on the chosen scan ramp the
cavity resonance is approached from the side of optomechanical heating or cooling.
When approaching from the side of optomechanical heating, even small amounts of
light suffice to observe the cavity frequency modulation by the resonator which causes
a modulation of the reflection signal intensity with twice the resonators eigenfrequency
ωmod = 2ωm. This effect is depicted in Fig. D.2. A Fourier analysis of this signal reveals
the modulation frequency to be the doubled resonator eigenfrequency.

Figure D.2: (a) Reflection signal when scanning over the cavity resonance. When approaching
from the side of optomechanical heating (red shaded area) the resonator modulates the reflected
signal until the modulation rapidly stops once the system reaches the side of optomechanical
cooling. Inset: Zoom into the modulation of the reflection signal. (b) FFT of 5 scans over the
cavity resonance all starting from the side of optomechanical heating. The FFT shows the
modulation in (a) to have a frequency of approximately 2ωm.
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D.3 Influence of the measurement on the resonator state

Suppose we find the resonator in an initial thermal state at a bath temperature Tbath.
The position and momentum distribution resembles a Gaussian profile [59]:

σ2
x = ℏ

meffωm

(
n+ 1

2

)
= kBTbath
meffω2

m
= 2nthx

2
zpm (D.1)

σ2
p = ℏmeffωm

(
n+ 1

2

)
= meffkBTbath = ℏ2nth

2x2
zpm

(D.2)

According to [59] the interaction between the light pulse and the mechanical resonator
can be described in terms of non-unitary Kraus-operators Υ that selectively narrow the
wavefunction of a mechanical state in dependence of χ−2. When acting on a thermal
gaussian state, they create the marginal distribution [59]:

⟨XM|ρin
M(θt)|xM⟩ ∝ exp

[
−(XM − ⟨Xθt

M⟩)2

2σ2
θt

]
(D.3)

with the mean of the resulting conditional state ⟨Xθt
M⟩, its variance σ2

θt
and the trans-

ferred momentum ΩL [59]:

⟨Xθt
M⟩ = χPL

χ2 + 1
1+2nth

cos(θt) − ΩL sin(θt) (D.4)

σ2
θt = 1

2
cos2(θt)

χ2 + 1
1+2nth

+ 1
2
(
χ2 + 1 + 2nth

)
sin2(θt) (D.5)

Equation D.5 contains the property of the state squeezing dependent on the tomography
angle. For small θt, the first term proportional to cos(θt) becomes dominant and shows
squeezing of the state proportional to χ−2 at the cost of anti-squeezing proportional to
χ2 for θt → π/2.
For large initial phonon occupations, which we can assume for our system even at base
temperature, both expressions simplify to [59]:

θt = 0 → ⟨Xout
M ⟩ ≈ PL

χ
and σ2

Xout
M

≈ 1
2χ2

θt = π

2 → ⟨P out
M ⟩ = ΩL and σ2

P out
M

≈ χ2 + 1 + 2nth
2

(D.6)

The found expressions show that the ground state can be resolved for χ → 1 and that
the measurement drastically reduces the state width in XM while the momentum and
the measurement induced uncertainty get completely transferred into PM. It is further
notable, that ground state squeezing can be achieved regardless of the initial phonon
occupation, as long as XM qualifies as back-action evading QND observable.
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D.4 Calculations on the optimal pulse shape for pulsed
measurements

In Section 4.1.3 we introduced the measurement strength χ and distinguished between
two measurement scenarios in which the probing pulse time is on the order of the
cavity linewidth, or much longer. For both scenarios we introduced different measure-
ment strengths and claimed an optimal pulse shape for pulses on the timescales of the
cavity linewidth. The expression for the measurement strength can be derived for dif-
ferent scenarios when investigating the cavity-lightfield interaction. This derivation was
outlined in the original publication by Vanner et al. [59]. To gain a profound under-
standing about the quantity of the measurement strength χ and to verify the influence
of the pulse shape on the measurement strength, we conducted a detailed theoretical
derivation of the relevant quantities alongside the outline presented in [59]. This will
be presented in the following section, starting from a fundamental description of the
cavity-light interaction.

Derivation of the parameter χ

We start with the intra-cavity optomechanical Hamiltonian in the rotating frame at
the cavity frequency ωcav [59]:

H = ℏωMb
†b− ℏg0a

†a(b+ b†) (D.7)

a is the optical field operator. b is the mechanical field operator. κ describes the cavity
decay rate and ain the optical input drive. The cavity field dynamics are described by
[59]:

da

dt
= ig0(b+ b†)a− κa+

√
2κain (D.8)

We assume κ−1 ≪ ω−1
M thus the mechanical position is treated as constant during the

interaction [59]:

db

dt
≃ ig0a

†a (D.9)

This means that the mechanical evolution at t is fully described by the cavity light field
and its single photon coupling rate. The mechanical motion is completely neglected. All
following considerations are done at timescales of the cavity linewidth κ (in our system
κ = 2π · 750 MHz).

We separate the individual optical cavity field operators into one part that describes
the pulse shape (envelope denoted as α(t)) and a second part that describes the cavity
field (using an adapted operator ã(t)). Thereby we require for normalization reasons∫
dt α2

in = 1 [59]:

ain(t) =
√
Npαin(t) + ãin(t) a(t) =

√
Npα(t) + ã(t) (D.10)

Since the interaction of the cavity light field is very fast with respect to the mechanical
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evolution, interactions that describe an exchange between the systems are neglected.
We can assume ig0(b+ b†)ã → 0.

We plug in equation D.10 into equation D.8:

d

dt

(√
Npα(t) + ã(t)

)
= ig0(b+ b†)

(√
Npα(t) + ã(t)

)
− κ

(√
Npα(t) + ã(t)

)
+

√
2κ
(√

Npαin(t) + ãin(t)
)

= ig0(b+ b†)
√
Npα(t) + ig0(b+ b†)ã(t) − κ

√
Npα(t) − κã(t)

+
√

2κNpαin(t) +
√

2κãin(t)

(D.11)

We sort the equation such that operators and pulse envelopes are located together:√
Np

d

dt
α(t) + d

dt
ã(t) =

√
Np

(
−κα(t) +

√
2καin(t)

)
(D.12)

×
(
ig0
√
Np(b+ b†)α(t) − κã(t) +

√
2κãin(t)

)
The separation of both equations leads to [59]:√

Np
d

dt
α(t) =

√
Np

(
−κα(t) +

√
2καin(t)

)
⇐⇒ dα

dt
=

√
2καin(t) − κα(t) (D.13)

d

dt
ã(t) = ig0

√
Np(b+ b†)α(t) +

√
2κãin(t) − κã(t) (D.14)

Equation D.12 and D.13 are the equations of motion that describe the dynamics of
the interaction of the cavity field with a input light field with pulse shape αin(t). For
a complete description we have to solve both equations. Since α(t) is used in equation
D.13 we solve equation D.12 first, by using an appropriate integration factor µ(t) and
the separation of variables:

dα

dt
=

√
2καin(t) − κα(t) ⇐⇒ dα

dt
+ κα(t) =

√
2καin(t) (D.15)

µ(t)dα(t)
dt

+ µ(t)κα(t) = µ(t)
√

2καin(t) (D.16)

We find a similarity of this equation with the differential d/dt(µ(t)α(t)):

d(µ(t)α(t))
dt

= µ(t)dα(t)
dt

+ α(t)dµ(t)
dt

(D.17)

Now we set the left side of equation D.15 equal to the right side of equation D.16:

µ(t)dα(t)
dt

+ µ(t)κα(t) = µ(t)dα(t)
dt

+ α(t)dµ(t)
dt

(D.18)
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=⇒ dµ(t)
dt

= κµ(t) ⇐⇒ µ(t) = eκt (D.19)

We use the integration factor from equation D.19 in equation D.15 and obtain:

eκtdα(t)
dt

+ eκtκα(t) = eκt
√

2καin(t) ⇐⇒ d(eκtα(t))
dt

= eκt
√

2καin(t) (D.20)

Now, we can use the separation of variables:

d(eκtα(t)) = eκt
√

2καin(t)dt

eκtα(t) =
√

2κ
∫
eκt

′
αin(t′)dt′ + C1 (D.21)

Since we want to learn something about the time evolution of the system we integrate
from the start (t → −∞) of the evolution to t and omit the integration constant:

eκtα(t) =
√

2κ
∫ t

−∞
eκt

′
αin(t′)dt′

α(t) =
√

2κe−κt
∫ t

−∞
eκt

′
αin(t′)dt′ (D.22)

We solve equation D.13 using the same approach. Since the equation is of a similar
form we can use the same steps as shown from equations D.14 - D.18. Then we receive:

eκtdã(t)
dt

+ eκtκã(t) = eκtig0
√

2
√
Np(b+ b†)α(t) − eκt

√
2κãin(t) (D.23)

d(eκtã(t)) = eκt
(
ig0

√
2
√
Np(b+ b†)α(t) −

√
2κãin(t)

)
dt (D.24)

Integrate both sides of equation D.23. We now use the relation X in
M = (b+ b†)/

√
2 and

receive:

eκtã(t) = ig02
√
NpX

in
M

∫
eκt

′
α(t′)dt′ −

√
2κ
∫
eκt

′
ãin(t′)dt′ + C1 (D.25)

This yields an expression for ã(t):

ã(t) = ig02
√
NpX

in
Me

−κt
∫
eκt

′
α(t′)dt′ −

√
2κe−κt

∫
eκt

′
ãin(t′)dt′ + C1 (D.26)

We simplify the first part of equation D.25 by using the following definition [59]:

ϕ(t) = e−κt
∫ t

−∞
eκt

′
α(t′)dt′ (D.27)

This leads to:

ã(t) = ig02
√
Npϕ(t)X in

M −
√

2κe−κt
∫
eκt

′
ãin(t′)dt′ + C1 (D.28)
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Use the definition of the output field ãout =
√

2κã− ãin to get P out
L :

ãout =
√

2κã(t)−ãin = ig02
3
2
√
κ
√
Npϕ(t)X in

M−2κe−κt
∫ t

−∞
eκt

′
ãin(t′)dt′ −ãin(t) (D.29)

While using
√
κ = κ

3
2

κ we define φ(t) = (2κ) 3
2ϕ(t) and get [59]:

P out
L = g0

κ

√
Npφ(t)X in

M − 2κe−κt
∫ t

−∞
eκt

′
P in

L (t′)dt′ − P in
L (t) (D.30)

Equation D.29 describes the output phase quadrature from the cavity. It is very de-
pendent on the pulse shape (αin(t)) and the cavity linewidth κ. Note that this is not
necessarily equivalent to the measured quadrature (PL). The measured quadrature de-
pends on the overlap between the signal and the local oscillator beam which we will
consider in the following. Overall, the goal is to maximize the overlap between the
cavity output field shape and the LO shape. Assume the LO pulse has an envelope of
the form αLO(t). The measured cavity field PL is the convolution between αLO(t) and
P out

L [59]:
PL =

√
2
∫
αLO(t)P out

L dt (D.31)

Since φ(t) ∝
∫
eκtα(t)dt describes the shape of the pulse coming out of the cavity for

a certain αin(t) we choose αLO(t) with a similar shape upon a certain normalization
factor 1/Nφ [59]:

αLO(t) = Nφφ(t) (D.32)

We plug equation D.31 into expression D.30 and only look at the mechanical component
of P out

L ∝ X in
M:

PL =
√

2g0
κ

√
NpX

in
M

∫
Nφφ(t)2dt (D.33)

Using the relation N−2
φ =

∫
φ(t)2dt we get [59]:

PL =
√

2 1
Nφ

g0
κ

√
Np︸ ︷︷ ︸

χ

X in
M ⇐⇒ PL = χX in

M (D.34)

This aligns with the calculations of Vanner et al. and explains the definition of χ which
is the contribution of X in

M to the signal P out
L .

Optimizing χ for short pulses

One can now look at different αin(t) and αLO(t) and calculate the reaction of the system
for different signal/LO pulse shapes. When the optimal drive is applied, we expect this
to result in the optimal achievable strength χopt. Vanner et al. propose the optimal
input drive to have a Lorentzian spectrum. We assume the input drive to be [59]:

αin(t) =
√
κe−κ|t| (D.35)
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As we Fourier-transform this expression we see that is has Lorentzian spectrum.

FT [αin(t)] =
∫ ∞

−∞

√
κe−κ|t|eiωxdx =

√
2
πκ

3
2

κ2 + ω2 (D.36)

We recall equation D.21 and plug it into equation D.34. We get an expression for α(t):

α(t) =
√

2κe−κt
∫
eκt

′ √
κe−κ|t′ |dt

′ (D.37)

α(t) =
√

2κe−κt

(
1 + 2κt+ e2κt + (2κt− e2κt + 1)sgn(t)

4
√
κ

)
(D.38)

The shapes of α(t) and αin(t) are depicted in Fig. D.3. These are the basic shapes that
occur in the system if we apply optimized pulses at timescales of κ.

To understand why this pulse shape yields the optimal measurement strength we cal-
culate χ for the assumption that αin(t) is described by equation D.34. Using equation
D.37 we calculate φ(t).

φ(t) = (2κ)
3
2 e−κt

∫ t

−∞
eκt

′
α(t′)dt′

= (2κ)
3
2 e−κt

∫ t

−∞
eκt

′ √
2κe−κt

′ ∫ t
′

−∞
eκt

′′ √
κe−κ|t′′ |dt

′′
dt

′

= (2κ)3/2e−κt
∫ t

−∞

√
2κ
∫ t

′

−∞

√
κeκt

′′ −κ|t′′ | dt
′′
dt

′ (D.39)

We use the definition N−2
φ =

∫∞
−∞ dtφ(t)2 and get a general form for Nφ.

1
N2

φ

=
∫ ∞

−∞
8k3e−2κt

(∫ t

−∞

√
2κ
∫ t

′

−∞
αin(t)eκt

′′
dt

′′
dt

′
)2

dt (D.40)

Figure D.3: (a) Input drive αin(t) according to equation D.35. (b) Spectrum FFT(αin(t))
according to equation D.36. The input pulse has a Lorentzian spectrum. (c) After interaction
with the cavity, the output pulse has an envelope described by equation D.38. The traces are
examples that just resemble the shape of the applied light fields for visualization.
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In our particular case this yields:

1
N2

φ

=
∫ ∞

−∞

(
(2κ)3/2e−κt

∫ t

−∞

√
2κ
∫ t

′

−∞

√
κeκt

′′ −κ|t′′ | dt
′′
dt

′
)2

dt

=
∫ ∞

−∞
8k3e−2κt

(∫ t

−∞

√
2κ
∫ t

′

−∞

√
κekt

′′ −κ|t′′ | dt
′′
dt

′
)2

dt

(D.41)

This integral can be solved numerically. Independent of a chosen κ its result is [59]:

1
N2

φ

= 10 ⇐⇒ 1
Nφ

=
√

10 (D.42)

By plugging this result into the definition of χ in equation D.33 we get:

χ =
√

2 1
Nφ

g0
κ

√
Np =

√
2
√

10g0
κ

√
Np =⇒ χopt = 2

√
5g0
κ

√
Np (D.43)

This is similar to the expression we introduced in Section 4.1.3.

χ for short rectangular pulses

Considering these calculations, we now investigate how system behaves if we apply
rectangular pulses with tpulse ≈ 1/κ. We assume a rectangular pulse αin(t) with a
length of 10κ.

αin(t) = 1
Nα

Π
(10t
κ

)
(D.44)

Here Nα ensures normalization and (since
∫
dt α2

in = 1) can be calculated via:

Nα =
√∫ ∞

−∞
αin(t)2dt (D.45)

We plug these relations into equation D.21 to receive α(t):

Figure D.4: (a) Input drive αin(t) according to equation D.44. (b) Spectrum FFT(αin(t)) of
the input pulse. (c) After interaction with the cavity, the output pulse has an envelope described
by equation D.46. The traces are examples that just resemble the shape of the applied light
fields for visualization.
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α(t) =
√

2κ
Nα

e−κt
∫ t

−∞
Π
(

10′

κ

)
eκt

′
dt

′ (D.46)

As done in equation D.38 we can calculate φ(t):

φ(t) = (2κ)
3
2 e−κt

∫ t

−∞

√
2κ
Nα

e−κt′
∫ t

′

−∞
Π
(

10′′

κ

)
eκt

′′
dt

′′
dt

′ (D.47)

And from φ(t) we get Nφ:

1
N2

φ

=
∫ ∞

−∞

(
(2κ)

3
2 e−κt

∫ t

−∞

√
2κ
Nα

e−κt′
∫ t

′

−∞
Π
(

10′′

κ

)
eκt

′′
dt

′′
dt

′
)
dt (D.48)

This integral converges to a fixed value when choosing high κ. As a result, we receive
as long as κ ≫ 1:

1
N2

φ

= 68
5

(
+ 52

5e10

)
=⇒ 1

Nφ
=
√

68
5 ≃ 3.69 (D.49)

We can calculate a maximum χ now and compare rectangular pulses with the pulses
proposed by Vanner et al. [59]. Here we assume PSIG = 4µW, g0 = 2π · 204 kHz and
κ = 2π · 750 MHz:

χLorentz
opt = 2

√
5g0
κ

√
Np ≃ 1.11 χRect

opt = 3.69g0
κ

√
Np ≃ 0.92 (D.50)

This means we achieve an approximately 10 percent higher χopt when choosing an op-
timized high-power Lorentzian pulse. However, this only applies in a regime of very
short pulses.

If we assume the pulse to be very long (i.e. t → ∞) we observe 1/Nφ → 4. This is
the case for rectangular pulses and pulses with Lorentzian spectrum. This means the
maximum χ we can achieve in a long pulse regime is independent on the pulse shape
and yields:

χlong = 4g0
κ

√
Np ≃ 1 (D.51)



Appendix E

Leak detection and repair of the
cryostat

Figure E.1: Simplified sketch of the
dilution refrigerator in operation. The
He3/He4 mixture is circulated clock-
wise by a high-power rotary pump
(Pfeiffer Duos 62 ). The valve V6 and
V12A can be gradually opened. During
normal operation both valves are fully
opened. The valves V9 and V13A al-
low to stop the circulation and guide
the mixture into the dump. G1 and
G2 are pressure gauges. The dilution
unit is placed inside the inner vacuum
chamber (IVC) inside a bath of liq-
uid helium. The red circles denote mal-
functioning parts or leaks that were
identified and repaired during this the-
sis. The valves and pressure gauges are
named according to the original tech-
nical drawings for comparability.

Beginning in October 2023, we started an extensive investigation on the state of the
dilution refrigerator. In the past, the system showed regular blockages occurring after
only hours of operation. This forced us to stop its operation end of 2022 and store
the mixture safely in the systems dump. Beginning in this state, the leak checks were
conducted. Prior to any venting we cryo-pumped the whole system. To reduce the vol-
ume to check and reduce the chance of measuring virtual leaks, we disconnected the
individual parts of the system and checked complex components separately.
The most prominent leak was found at valve V12A. With the intelligent gas handling
system (IGH) separated from the other parts of the system we recognize a rapid in-
crease in pressure starting from an evacuated system. This is presented in Fig. E.2
where a rapid increase in G1 of 300 mbar in under 10 minutes indicates a leak in this
branch of the IGH.
Although very large, this leak remained undetected for a long time because its effect is
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Figure E.2: Rapid increase in G1 af-
ter the system was evacuated. The in-
telligent gas handling system (IGH) is
detached from the remaining pipe sys-
tem and sealed on its outlets, thus hav-
ing a very small volume. V12A is fully
closed in this system configuration.

not as visible during normal operation. With fully operational cold traps, and attached
to the large volume of the whole system the pressure increase is much less prominent.
Furthermore, it is dependent on the opening state of the valve V12A. The exact local-
ization of the leak turned out to be challenging due to the very high leak rates that
defied the use of a leak detector. Application of local sealant on the suspected part
verified the localization at V12A. In the context of regular blockages this leak might
have been most influential, and prevented any long-term operation. After consultation
with Oxford Instruments we found this valve to regularly malfunction due to carbon
deposits from the LN cold-trap. During a field service the valve was removed.
A manual valve behind the LN cold trap was installed to fulfill role of the valve during
condensation of the mixture. In the near future the installation of a new valve could
increase the degree of automation again. The taken measures are shown in Fig. E.3.

Figure E.3: Localization of the leak in the intelligent gas handling system (IGH). V12A is a
magnetic valve that can be opened gradually. It is included between two 15 micron filters that
are installed to prevent carbon from the LN cold trap to enter the system. Sealing the valve
with high vacuum epoxy (VacSeal) did not yield a permanent repair due to the moving parts
in place. During a field service by Oxford Instruments the valve was removed.

After the localization of the leak in V12A, we leak checked the remaining system and
found a second leak in the insert that contains the He3/He4 dilution unit. This part is
particularly delicate to repair as it is submerged in liquid He4 during normal operation.
For an exact localization of the leak, we disassembled the whole dilution unit and iden-
tified a leak at the bottom of a hard solder joint in the condenser line that exhibited
a leak rate of QL > 1 · 10−5 mbar l/s. Although smaller than the leak on V12A, it di-
rectly allows He4 and other gases to enter the dilution unit which operates at an under
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pressure and thus changing or polluting the mixture, diminishing the overall cooling
performance or leading to a blockage.
The repair of this joint turned out to be technically demanding due to the location at
the bottom of the joint and the requirement of using hard solder102. This posed the risk
of solder flowing down the condenser line and widen the leak. Since further disassembly
came at the high risk of damaging the dilution unit, we mounted a plate below the
joint and could seal the system after a third repair attempt. The proceeding is depicted
in Fig. E.4. Leak rate measurements on the whole system after the repairs at insert

Figure E.4: Localization of the leak on the condenser line of the insert. The leak was located
at the bottom of a hard solder joint which connects the straight part of the condenser line
with a part winded around the still. It is submerged in liquid He4. After consultation with
the mechanical workshop we mounted a disk below the joint to prevent hard solder flowing
downwards. To prevent solder to clog or oxidize the condenser line a slight overpressure with
Helium gas was applied to the vessel. The hard soldering was done by the mechanical workshop
using an oxygen-acetylene mixture. The result after cleaning is depicted on in the right side.

temperatures of 4K verified the success of the repairs as we measured overall leak rates
of103:

QL,all ≈ 5 · 10−8 (+1/−0) mbar l
s and QL,insert ≈ 5 · 10−10 (+1/−0) mbar l

s (E.1)

Here the sub-index “all” refers to the complete line system (insert, lines, and IGH) while
“insert” refers only to the dilution unit. The leak rates match with the specifications
Oxford guarantees upon delivery of a new system.
Lastly we found a malfunction during the initialization of the mixture circulation due
to degraded lubricant in the valve V6. Due to the large circulation flow in the system
V6 is a large area valve that is moved by a 50 mNm motor via a 1:100 gear. The
motor showed to produce considerable amount of heat, which lead to the hardening of
the gears lubricant. Cleaning the gear using and ultrasound bath and application of
new lubricant solved the issue as depicted in Fig. E.5. After these repairs we cooled

102In total two attempts, one of which executed during an Oxford field service, failed. Measuring
the insert leak rate during cooldown showed the leaks to break open around LN2 temperature. Each
attempt requires a complete dis- and reassembly of the system.

103During this time a malfunction of the leak-detector required us to operate it in an uncalibrated
mode. A field service by Pfeiffer revealed afterwards that the measured leak rates were inaccurate on
one order of magnitude.
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Figure E.5: Malfunction of valve V6 which regulates the circulation of the mixture. A 50 mNm
motor is connected to a 1:100 gear that turns the valve. The lubricant in the gear degraded
over the years. Cleaning it in an ultrasound bath and application of new lubricant resolved the
malfunction.

down the system to base temperature and observe the temperature stability and the
final mixing chamber temperature. We found the system to operate at mixing chamber
temperatures between 100 mK and 300 mK (dependent on the still heater power) which
is similar to the values acquired in the previous years. The high temperature compared
to the specification of 30 mK can be explained by the large thermal load of the attached
experiment, that is not shielded to the full possible extent. We were able to operate
the system at stable temperatures for multiple days and were limited by the supply of
liquid He4.
To assess whether any mixture got lost in the past years we conducted a single shot
measurement. During operation the main circulating gas in the system is He3. This
property can be used to do a rough measurement of the amount of He3 in the system
by rapidly stopping the circulation (by closing V13A) and guiding all the mixture into
the dump (by opening V9). Upon the point where all He3 has left the system, the
warmup behavior and the pressure increase in the dump is suspected to change. This
is shown in Fig. E.6 where we find roughly 10.5 L of He3 remaining in the mixture.

Figure E.6: Single shot measurement to as-
sess the amount of He3 in the mixture with
the mixing chamber (light red) and experi-
ment (dark red) temperature on the left axis
and the pressure readings on G1 (light blue)
and G2 (dark blue) on the right axis. The
point of transition in warm-up behavior and
dump pressure change is marked by the grey
dashed lines. At a dump volume of 100 L we
can guess roughly 10.5 L of He3 to be still in
the system of formerly 15 L. Note that this
measurement yields only a rough estimate of
the amount of He3.
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