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Abstract

Throughout recent decades, positive definite kernel functions have turned out to be powerful and flexi-
ble approximation tools for several mathematical problems and their associated real-world applications.
Besides the interpolation of Lagrangian data, kernel functions are well-suited to solve more general
interpolation problems concerning the evaluation of arbitrary functionals, also known as generalized in-
terpolation. Although the treatment of the generalized case is straightforward in many aspects, it has not
gained the same attention as the standard interpolation case yet. So far, the research on this topic has
mainly focused on the solution of partial differential equations, and further applications such as medical
imaging are rather exotic.
In 2018, the authors De Marchi, Iske and Santin proposed the application of generalized interpolation

to the field of computerized tomography in combination with weighted kernel functions. Inspired by
this work, the objective of this thesis is to further elaborate the concept of generalized interpolation
and investigate its utility for the reconstruction of images from scattered Radon data. To this end,
we derive an extensive framework for treating generalized interpolation problems in the first part of this
thesis, which includes data-dependent orthonormal systems, greedy data selection algorithms and suitable
regularization methods. We provide convergence results under mild assumptions on the considered kernel
and translate several results from standard Lagrangian interpolation to the generalized case.
The derived framework is then applied to the problem of computerized tomography in the second

part, where we derive useful properties of weighted kernel functions. By choosing suitable kernels, we
can guarantee the well-posedness of the reconstruction method and therefore make use of our general
theoretical results from the first part. Moreover, we provide theoretical and numerical comparisons to
other well-established reconstruction methods to demonstrate the advantages of kernel-based generalized
interpolation in the field of computerized tomography.



Kurzfassung

Im Laufe der letzten Jahrzehnte haben sich positiv-definite Kernfunktionen als überaus nützlich her-
ausgestellt für verschiedenste mathematische Probleme und die zugehörigen praktischen Anwendungen.
Neben der Interpolation von gewöhnlichen Lagrange-Daten sind Kernfunktionen ebenfalls prädestiniert
für die Interpolation bezüglich der Auswertung von beliebigen Funktionalen, auch bekannt als verallge-
meinerte Interpolation. Auch wenn sich die Analyse des verallgemeinerten Problems in vielen Punkten
nicht vom Standardfall unterscheidet, hat dieses Forschungsthema bisher noch keine große Aufmerk-
samkeit erlangt. Während sich der Großteil der zugehörigen Forschung mit der Lösung von partiellen
Differentialgleichungen beschäftigt, existieren nur wenige Arbeiten über andere Anwendungsfelder wie
die medizinische Bildgebung.
Eines dieser seltenen Anwendungsbeispiele ist Computertomographie, genauer gesagt die Rekonstruk-

tion von Bildern mittels gewichteter Kernfunktionen, welches aus einer Publikation von den Autoren
De Marchi, Iske und Santin von 2018 hervorging. Ausgehend von diesem Forschungsartikel ist es
das Ziel dieser Doktorarbeit, das Konzept der Kern-basierten verallgemeinerten Interpolation weiter zu
analysieren und die Nützlichkeit bezüglich der Rekonstruktion anhand verstreuter Radon-Daten weiter zu
untersuchen. Dazu leiten wir im ersten Teil dieser Arbeit ein umfangreiches Grundgerüst für die Lösung
von verallgemeinerten Interpolationsproblemen mittels positiv-definiter Kernfunktionen her, bestehend
aus Daten-abhängigen Orthonormalsystemen, Greedy-Algorithmen zur Auswahl von Interpolationspunk-
ten und geeigneten Regularisierungsmethoden. Wir beweisen die Konvergenz der Interpolationsmethode
unter milden Voraussetzungen an die Kernfunktion und verallgemeinern diverse Resultate aus der Stan-
dardtheorie.
Im zweiten Teil dieser Arbeit wenden wir dieses Grundgerüst auf das zugrundeliegende mathematische

Problem der Computertomographie an. Wir beweisen essenzielle Eigenschaften von gewichteten Kern-
funktionen, welche die Wohldefiniertheit der Rekonstruktionsmethode sicherstellen. Insbesondere wird
sichergestellt, dass wir die Resultate aus dem ersten Teil dieser Arbeit anwenden können. Darüber hinaus
stellen wir einen theoretischen und numerischen Vergleich mit anderen etablierten Rekonstruktionsmeth-
oden an, um die Vorteile der Kern-basierten verallgemeinerten Interpolation zu demonstrieren.
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1. Introduction

Positive (semi-)definite kernel functions (in short: kernel functions or kernels) are powerful and flexible
tools for multivariate approximation problems. Regarding their mathematical theory, kernel functions
were already investigated in the early 1900s in the context of integral operators. A prominent example
of this time is Mercer’s theorem (cf. [94]), which guarantees a representation of a kernel in terms of
the eigenvalues and eigenfunctions of its associated integral operator. Nearly three decades later, the
construction of translation-invariant kernels was investigated by Salomon Bochner in the 1930s (cf. [23],
[24]), followed by a characterization of radial symmetric kernels due to the work of Isaac J. Schoenberg
(cf. [121]). Another milestone in kernel-based theory is given by the Moore-Aronszajn theorem, which
established the one-to-one correspondence between kernel functions and reproducing kernel Hilbert spaces
that have useful additional properties in comparison to general Hilbert spaces. Based on the work of
Eliakim H. Moore (cf. [96], [97]), the theorem was stated and proven by Nachman Aronszajn in his
pioneering papers [11], [12]. The aforementioned theoretical breakthroughs have led to the development
of various kernel-based approximation methods over the last decades. As a consequence, kernel functions
have gained popularity in numerous mathematical fields, e.g. partial differential equations (cf. [47], [79],
[136], [146]), statistics (cf. [22], [137]) and machine learning (cf. [26], [123], [132]).
One of the best-known applications of kernel functions is the interpolation of multivariate functions on

scattered interpolation point sets. Here, the term scattered means that we do not assume any structure
on the set of interpolation points, e.g. the points do not necessarily lie on a grid. The traditional idea
of interpolation can be described in the following way: Given samples f(x) of a function f ∈ F at
points x ∈ X ⊂ Ω, where F is a normed space of real-valued functions on Ω ⊂ Rd, d ∈ N, we wish to
approximately reconstruct the function f on its whole domain Ω. To treat this problem, it is common to
fix a suitable space S ⊂ F as the search space for the reconstruction and solve for an element s ∈ S that
satisfies

f(x) = s(x) for all x ∈ X. (1.1)

Kernel-based solution methods for the interpolation problem (1.1) have been studied extensively in the
past decades, and there is plenty of literature available (see, e.g., [27], [32], [70], [143]). However, there is
a generalization to this interpolation problem that has not gained the same attention yet. If δx denotes
the point evaluation functional with respect to a point x ∈ Ω on F , i.e.

δx : F → R, f 7→ f(x) for x ∈ Ω,

the problem (1.1) can be rewritten as

δx(f) = δx(s) for all x ∈ X.

Hence, the previously stated interpolation problem, which we call standard interpolation problem, consists
of interpolating the evaluations of f with respect to the point evaluation functionals {δx | x ∈ X}. With
that, we can think about substituting the point evaluation functionals with other linear functionals

λi : F → R i = 1, ..., n, n ∈ N,

leading to the main subject of this thesis, the generalized interpolation problem

λi(f) = λi(s) for i = 1, ..., n.

There has already been some research on this topic, where most of it is motivated by solving partial
differential equations via collocation (cf. [47], [53], [54], [118], [146]). To this end, the involved differential
operator is discretized, leading to a finite collection of functionals in the dual space. However, this
generalized interpolation approach can also be applied to other types of linear operators. Only recently,
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there have been some advances in the field of tomography (cf. [38], [39], [126], [148]). In particular,
the authors of [38] proposed a novel kernel-based reconstruction method for computerized tomography.
Similar to other kernel-based methods, this reconstruction method, which can be classified as an algebraic
reconstruction method, is characterized by its high flexibility, as it is well-suited to process scattered
Radon data. This could be advantageous in situations with severe data limitations that occur in practical
applications of computerized tomography (cf. [38, page 4]).

The paper [38] has mainly motivated the content of this thesis and its three superordinate goals, which
can be summarized as follows:

(1) Generalization: The book chapter [143, Chapter 16] provides a good initial discussion on kernel-
based generalized interpolation, where it is pointed out that the generalized interpolation case
can be treated in nearly the same way as the standard interpolation case (cf. [143, page 306]).
Despite that, many theoretical results from standard interpolation have not been

”
translated“ to

the generalized case yet. This mainly involves convergence criteria and stability estimates, where
we want to work with generalized versions of the well-known fill distance and power function (cf.
[116]). We aim to close as many of these gaps as possible so that standard interpolation can indeed
be interpreted as just a special case of generalized interpolation. Moreover, we aim at providing a
generalized discussion on data-dependent bases such as the Newton basis (cf. [98], [99], [104], [105]
for the standard interpolation case) and greedy data selection algorithms (cf. [41], [43], [119], [145]
for the standard case), which has already been done in [118], [146] to some degree. Here, data-
dependent means that the basis depends on the considered set of functionals for the interpolation
problem. Note that the generalization of data-dependent bases has been teased in [104, page 34,
line 5-6], representing the main idea behind the first part of this thesis:

”
There is a generalization of this chapter to interpolation of this form,

but we leave this for future work.“

We want to verify this claim, which applies to many other parts of standard interpolation theory
as well, and thus take on the declared future work.

(2) Unification: In addition to the idea of generalization, the first part of this thesis aims to provide a
broad list of tools for kernel-based interpolation that have been developed in the last two decades,
such as the aforementioned data-dependent bases and greedy selection algorithms. For the analysis
of these tools, we do not want to restrict to a special type of kernel or setting and rather discuss
the generalized interpolation method on a meta-level with very general assumptions on the kernels
and the interpolation domains. Of course, these assumptions later have to be verified for a given
application in order to apply our developed theory. The ultimate goal of the first part is to provide
an extensive framework for kernel-based generalized interpolation, which can be applied directly to
many different problems.

(3) Application to computerized tomography: The content of the first part is primarily moti-
vated by the main application in this thesis, which is the application of kernel-based generalized
interpolation to computerized tomography as proposed in [38]. Although the main focus of this
reconstruction method was rather laid on its flexibility, it yielded competitive results in comparison
with the well-known method of filtered back projection on regular line distributions, see [38, Section
5.2]. But, in contrast to the promising numerical part, the theoretical part of this paper did not
properly explain how this method fits into the setting of kernel-based generalized interpolation. In
our work, we highlight and try to correct these critical points to show the well-posedness of this
reconstruction method. Moreover, we want to extend this method by the framework provided in the
first part of this thesis, see point (2) above. For example, the incorporation of greedy data selection
algorithms would allow us to filter out the most relevant Radon data for the reconstruction process.
We want to show that our derived theory is applicable to this reconstruction method and pro-
vide an extended numerical investigation so that we can evaluate its practical use in computerized
tomography.
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Outline

To follow along these goals, the thesis is divided into two parts. While the first part explains the general
framework of kernel-based generalized interpolation, the second part describes the application of the
derived framework to computerized tomography and provides numerical examples. The separation of
the two parts is crucial in our eyes since it underlines the fact that the derived framework is not only
applicable to computerized tomography but also to other linear operator equations. We stress this fact
throughout the first part by providing other short examples of applications.

Within these two parts, the thesis is organized as follows:

In Chapter 2, we introduce positive (semi-)definite kernel functions, which build the core of kernel-
based approximation theory. We list relevant theoretical properties and, most importantly, describe how
these functions can be constructed. In addition to the characterizations of Bochner and Schoenberg,
we discuss two special examples that demonstrate the wide range of kernel functions, i.e. Wendland’s
compactly supported kernels and product kernels.

As we have already pointed out in the introductory text, one important component of kernel-based
approximation theory is the fact that each kernel function is associated with a unique reproducing kernel
Hilbert space, also called the native space of the considered kernel (cf. [117]). Therefore, we explain the
construction of the native space and highlight its special structural properties in Chapter 3. Concerning
generalized interpolation problems, we show how to determine the Riesz representers of linear bounded
functionals and explain how properties of the considered kernel are inherited by the functions of its native
space.

With these theoretical insights, we can properly introduce the concept of kernel-based generalized
interpolation in Chapter 4, where we highlight the main advantages over the general Hilbert space setting.
To ensure the well-posedness of these interpolation problems, it is required that the considered functionals
are linearly independent. Hence, we discuss the linear independence for some specific settings that have
already occurred in the literature. Under the assumption that the considered set of functionals is linearly
independent, we proceed to prove the most relevant properties of the resulting interpolation operator.

In Chapter 5, we analyze the convergence of the generalized interpolation method when successively
adding new functionals to the interpolation problem. To this end, we introduce the generalized version of
the power function and fill distance, which are well-established error measurements in standard interpo-
lation theory. We derive convergence criteria regarding these two measurements and, by introducing the
concept of parametrizations, link these results to basic convergence results from standard interpolation
theory.

In the standard interpolation setting, it is well-known that naively using the standard basis, which
consists of the Riesz representers of the considered functionals, brings along numerical problems, i.e.
ill-conditioning and a lack of update formulas for the interpolation process. Therefore, we discuss the
construction of alternative bases in Chapter 6 that can diminish these weaknesses. Most importantly,
we analyze a generalized version of the Newton basis, which was initially developed for the standard
interpolation case (cf. [99], [105]) and yields a more stable and efficient interpolation process.

Another critical aspect of kernel-based interpolation is the choice of functionals, also referred to as data
points, which we discuss in Chapter 7. In [145], the authors were able to unify several known greedy data
selection algorithms from standard interpolation with the concept of β-greedy algorithms, which was then
translated to the generalized case in [146]. We prove the convergence of these algorithms under rather
mild assumptions and analyze generalized geometric approaches for the selection of new data points. One
practical application of these greedy algorithms is to thin out large, redundant sets of functionals. We
show how this idea can be combined with regularization tools from kernel-based approximation.

The second part of this thesis starts with an introduction to computerized tomography in Chapter 8,
where we formulate the underlying mathematical problem and its main mathematical operator, the Radon
transform. We explain the explicit reconstruction formula, known as the filtered back projection (FBP)
formula, and highlight its practical limitations. Regarding the stability, we briefly discuss the ill-posedness
of the reconstruction problem as well.

Due to its limitations, the FBP formula cannot be applied directly in practice, which means that
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approximation methods are required. In Chapter 9, we discuss suitable methods for the reconstruction
from finitely many Radon values. Our focus mainly lies on the method of filtered back projection and
algebraic reconstruction methods, which are two well-established methods in the field of computerized
tomography. To round out this chapter, we provide a list of further reconstruction methods that have
been developed in the more recent past.

In Chapter 10, we finally discuss the interpolation of Radon data. As proposed in [38], we introduce and
analyze weighted kernel functions, which enable us to apply the framework of kernel-based generalized
interpolation. Our analysis results in conditions on the weight function that guarantee the well-posedness
of the reconstruction method. In particular, we can apply the convergence results and interpolation tools
to this particular reconstruction problem for suitable weight functions. As a further reference for our
numerical tests, we briefly describe a non-symmetric reconstruction approach using standard translation-
invariant kernels.

To get an impression of its performance, we describe and evaluate numerical tests regarding the kernel-
based reconstruction method in Chapter 11. On the one hand, we compare the different greedy selection
strategies in terms of approximation quality and stability. This comparison gives an insight into which
selection algorithms are well-suited for the selection of significant data points for the reconstruction. On
the other hand, we compare the generalized interpolation method to the FBP method, where we mainly
focus on the number of data measurements required to obtain a suitable reconstruction. In addition
to the numerical comparisons, we demonstrate the effect of regularization tools on the reconstruction
quality.

Lastly, we summarize the ideas and results of this thesis in Chapter 12. This results in an outlook on
real-world applications of the derived kernel-based reconstruction method for computerized tomography
and possible applications to other linear inverse problems. We end the final chapter by listing the
remaining open problems of our investigations.

As a supplement to the main parts of this thesis, we provide further details on mathematical tools in
Appendix A that we used in our analysis. These include the theory of Fourier transforms, distributions
and Sobolev spaces. Since most of the presented content is well-known, we only state relevant theorems
and refer to other works for respective proofs.

Conventions and notations

For this thesis, we expect the reader to have fundamental knowledge in real and complex analysis, linear
algebra, numerical analysis and functional analysis. Before we start our analysis, we want to declare
some basic notations and comment on conventions that we follow in our work:

• Let (Z, dZ) be a metric space. For given center a ∈ Z and radius R > 0, we define the corresponding
open ball as

BR(a) := {z ∈ Z | dZ(z, a) < R}.

We denote the closure of a subset A ⊂ Z as A and its interior as Å.

• For the canonical space Rd with dimension d ∈ N, we denote the standard (Euclidean) norm as

∥x∥2 :=

(
d∑

i=1

x2i

)1/2

for x = (x1, ..., xd) ∈ Rd,

which is induced by the standard inner product

⟨x, y⟩2 :=

d∑
i=1

xi · yi for x, y ∈ Rd.

• Let Ω ⊂ Rd be open. For k ∈ N0, the space of k-times continuously differentiable

functions on Ω is defined as

C k(Ω) :=

{
f : Ω → R

∣∣∣ ∂|α|f

∂xα1
1 . . . ∂xαd

d

exists and is continuous for all α ∈ Nd
0 with |α| ≤ k

}
,
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where |α| :=
∑d

i=1 αi for α ∈ Nd
0. For d = 1, we use f (k) to denote the k-th derivative of f . The

space of infinitely differentiable functions is denoted as

C∞(Ω) :=
⋂

k∈N0

C k(Ω).

• Let Ω ⊂ Rd and p ∈ [1,∞]. The Lebesgue space of p-integrable functions is given by

Lp(Ω) =
{
[f : Ω → R]

∣∣∣ f is measurable on Ω and ∥f∥p <∞
}

Formally, this space consists of equivalence classes, where two functions are equivalent if they
coincide almost everywhere on Ω and the norm is given by

∥f∥p :=


( ∫

Ω

|f(x)|p dx
)1/p

, for p ∈ [1,∞)

inf
N⊂Ω

µ(N)=0

sup
x∈Ω\N

|f(x)|, for p = ∞,

where the integral/infimum is taken with respect to the Lebesgue measure µ. The essential

support of a function f ∈ Lp(Ω) is given by

ess supp(f) := Ω \
⋃{

N ⊂ Ω
∣∣∣ N is open and f(x) = 0 for almost every x ∈ N

}
.

If f is continuous, this coincides with the usual definition of the support, i.e.

supp(f) :=
{
x ∈ Ω

∣∣∣ f(x) ̸= 0
}
,

so that we will only write supp(f) instead of ess supp(f) for f ∈ Lp(Ω) as well.

• In the literature, one can find different notations for the native space of a positive semi-definite
kernel function (cf. Chapter 3). For example, the book [143] uses the notation NΦ(Rd), whereas
[70] uses F . In our work, we follow the Hilbert space notation of [22] and denote the native space as
HK for a given kernel function K. Moreover, there is no complete agreement on the terminology of
positive (semi-)definite functions. While our definition (cf. Definition 2.5) aligns with the respective
definitions for matrices, other authors refer to these functions as positive type functions (cf. [22,
Definition 2]) or (strictly) positive definite functions [32, Chapter 12 & 13]. In the latter case, one
has to be cautious when comparing the results of different works.

• Throughout our work, we deal with interpolation point sets such as

X = {x1, ..., xn} ⊂ Rd.

The numbering of the elements indicates that we care about the ordering within the sets, e.g. when
defining the interpolation matrix with respect to a given point set (cf. Definition 2.5). Moreover, we
care about duplicates in the sets, i.e. whether the points are pairwise distinct. These considerations
are rather untypical for sets, as the order of the elements or the number of occurrences usually does
not matter in set theory. Instead, one should rather interpret the sets as tuples, i.e.

X = (x1, ..., xn) ∈ Rd × ...× Rd.

However, since this slight abuse of notation should not cause any confusion and we want to use
common operations for sets, we stick to the set notation as it is done in the literature.

• Based on the book chapter [143, Chapter 16], we call interpolation with respect to arbitrary func-
tionals from the dual space generalized interpolation. In other works, this problem is also referred
to as generalized Hermite-Birkhoff interpolation, e.g. in [68]. This name is derived from the term
Hermite-Birkhoff interpolation, which usually stands for the interpolation with respect to point
evaluations and partial derivatives (see, e.g., [151]).
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Contributions to the research field

Before we start with the main part, we want to highlight the results of this thesis that represent new
contributions to the research field of kernel-based approximation. In this way, we avoid meta-discussions
on these results within our analysis that would interrupt the flow of reading in many cases.

• Product kernels: Initially, we wish to point out that the work on product kernels is a collaboration
with Juliane Entzian and Armin Iske. The main new result is Theorem 2.20, where we show that
the product of positive definite functions on lower-dimensional spaces is again positive definite. As
we remark in the text before the theorem, this result was already proven for translation-invariant
kernels using Bochner’s characterization in [143, Proposition 6.25]. In this case, one can simply use
that the Fourier transform of the generating function is the product of lower-dimensional Fourier
transforms. However, the general case of arbitrary positive definite kernels is more complicated. To
solve this problem, we make use of grid-like data point sets. This concept provides a workaround to
prove the positive definiteness of the resulting product kernel (cf. Theorem 2.18, Corollary 2.19),
which is essential for the well-posedness of interpolation problems. In addition, we provide a more
up-to-date analysis of the native spaces of product kernels in Section 3.3. A comparison with the
earlier works [12, Chapter I.8] of Aronszajn and [103, Chapter VI] of Neveu is given in Remark
3.21. Note that the joint work on product kernels has already been uploaded as the preprint

[6] K. Albrecht, J. Entzian and A. Iske. Product kernels are efficient and flexible tools for high-
dimensional scattered interpolation. arXiv preprint: 2312.09949, 2023,

which also elaborates further computational advantages in comparison to standard kernels when
dealing with grid-like data sets.

• Linear independence: Our discussion on the linear independence of functionals in Section 4.1
is based on the works [68] and [151], where the authors derived useful integral representations of
the inner product in the native dual space for translation-invariant kernels. We provide a more
detailed verification of this integral representation for compactly supported distributions in this
thesis. In particular, we demonstrate how this representation links to the setting of generalized
interpolation as introduced in Chapter 4 under suitable conditions, see Lemma 4.4. Thus, we can
shift the analysis to the well-known space of distributions (cf. Theorem 4.5), which was already
stated in [68, Theorem 6.2]. We provide a new linear independence result for cell average functionals
under suitable conditions in Theorem 4.7. In particular, our unified analysis covers the positive
definiteness results of [129, Chapter 7]. Due to our result, linear independence assumptions as in
[1, Section 3] can be omitted.

• Convergence criteria: For our convergence analysis, we focus on generalized versions of the power
function and the fill distance. Note that the generalized version of the power function was already
introduced and analyzed in [53], [54]. Given a fixed set of considered functionals, we prove in
Theorem 5.6 that the generalized interpolation method converges on the whole induced subspace if
and only if the power function converges pointwise to zero. Moreover, we show that the generalized
interpolation method converges if the fill distance with respect to the dual space norm converges to
zero, see Theorem 5.9. In order to build a connection to the convergence analysis for the standard
interpolation case, we introduce the notion of parametrizations for subsets of functionals in Section
5.3. With that, standard convergence results such as [70, Theorem 8.37] can easily be derived from
our theory. Parametrizations facilitate the convergence analysis and therefore play a key role in
our analysis of the kernel-based reconstruction method for computerized tomography in Subsection
10.2.2. Large parts of the aforementioned results are included in the preprint

[8] K. Albrecht and A. Iske. On the convergence of generalized kernel-based interpolation by
greedy data selection algorithms. arXiv preprint: 2407.03840, 2024.

• Data-dependent bases: The content of Chapter 6 is basically a translation of [70, Subsection
8.1.2 & 8.2.1], [99] and [105] to the generalized interpolation case. Although the generalization is
straightforward and, in our eyes, does not deserve a lot of credit, it has to be verified that well-
known data-dependent bases can be used in the generalized case as well. In particular, the analysis
of the (generalized) Newton basis rounds out the framework for generalized interpolation derived in
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the first part of this thesis. We want to point out here that the generalized version of the Newton
basis was already used in [118] and [146], but the authors only provided brief explanations.

• Greedy algorithms: In Subsection 7.2.1, we introduce the geometric greedy algorithm in the dual
and parameter space, which are generalizations of the geometric approach in [37]. The convergence
of the two algorithms is proven in Theorem 7.11 and Theorem 7.15 for totally bounded domains.
Note that this assumption on the interpolation domain is motivated by Proposition 7.6. At this
point, we have to admit that identifying totally bounded sets of functionals is not a trivial task
in general. However, auxiliary results can simplify the identification (cf. Lemma A.4). It turns
out that we mostly deal with totally bounded domains in applications, see e.g. Example 5.15 or
Subsection 10.2.2. In addition to the geometric approaches, we prove convergence results for the β-
greedy algorithms that were introduced in [145] and generalized in [146]. The normwise convergence
of these algorithms and their vectorial versions (cf. Subsection 7.2.4) is proven in Theorem 7.19
and Theorem 7.21 for totally bounded domains. We remark that, in contrast to our analysis, the
works [145], [146] provide convergence rates for the single-target β-greedy algorithms, but in a more
restrictive setting. Since the underlying mathematical problem of our main application computerized
tomography is ill-posed (cf. Section 8.3), we add some basic regularization tools to our framework
for generalized interpolation. More precisely, we provide a generalization of [70, Section 8.6], where
we substitute the native space norm regularization with more general regularization functionals
from the dual space. Initial applications of greedy algorithms to computerized tomography without
further analysis have been published in

[7] K. Albrecht and A. Iske. Greedy algorithms for image approximation from scattered Radon
data. PAMM, 21(1):e202100223, 2021.

Further numerical examples as well as the convergence proofs for the greedy algorithms are included
in the preprint [8]. Moreover, the present author has contributed to the proceedings paper

[5] K. Albrecht, J. Entzian, and A. Iske. Anisotropic Kernels for Particle Flow Simulation. In A.
Iske and T. Rung, editors, Modeling, Simulation and Optimization of Fluid Dynamic Appli-
cations, Lecture Notes in Computational Science and Engineering: Volume 148, pages 57–76.
Springer, 2023

by applying greedy algorithms to the respective standard interpolation problems (cf. [5, Section
4.6.2]) for the numerical comparison in [5, Section 4.6.4].

• Kernel-based computerized tomography: The most notable contributions are given in Chap-
ter 10, where we analyze the kernel-based reconstruction method for computerized tomography
proposed in [38]. To establish the well-posedness of the method, the authors introduced weighted
kernel functions, which were further analyzed in the master thesis [57]. In our analysis of weighted
kernel functions, we add to the results of [57]. For example, we improve the characterization of the
native space (cf. [57, Theorem 3.4], Theorem 10.7) and provide conversion formulas for the Newton
basis in the standard interpolation case (cf. Proposition 10.11). Due to our results on weighted
kernels, we can prove that the functionals associated with the image reconstruction problem are
indeed elements of the native dual space, see Proposition 10.15. Note that this has not been proven
properly in [38] (cf. introduction of Chapter 10). Throughout Section 10.2, we demonstrate that
the reconstruction method benefits from our derived framework for generalized interpolation, in
particular from the convergence analysis and the interpolation tools. Furthermore, we add some
ideas in Section 10.3 that are specifically adapted to computerized tomography.

Finally, we remark that the present author has already investigated data-dependent bases and greedy
selection algorithms for the standard interpolation case in the master thesis

[4] K. Albrecht. Orthogonalsysteme in kernbasierten Approximationsräumen. Master’s thesis, Univer-
sität Hamburg, 2019,

which has inspired the content of Chapter 5, 6 & 7.



Part I.

Generalized Interpolation in
Reproducing Kernel Hilbert Spaces

In the first part, we explain and analyze the concept of generalized interpolation using positive semi-
definite kernel functions, which bring along several advantages in comparison to the general Hilbert space
setting due to their native reproducing kernel Hilbert space. For the introduction, we want to provide a
timeline of previous research on this topic that summarizes the developments. Of course, this timeline is
not complete.
One of the earlier works on partial differential equations in the context of kernel-based approximation is

given by the paper [79] of Kansa, which introduced an unsymmetric approach by modeling the interpolant
via the usual basis functions known from standard interpolation, also known as Kansa’s method. In [151],
Wu analyzed the well-posedness of Hermite-Birkhoff interpolation using kernel functions, where the basis
functions were chosen as the Riesz representers of the considered functionals, and thus adapted to the
given problem. The dependence of the basis functions on the differential operator leads to symmetric,
positive definite interpolation matrices that ensure unique solutions to the interpolation problem. Based
on this symmetric approach, Fasshauer proposed a solution method for partial differential equations via
collocation in [47], which was later analyzed by Franke and Schaback (cf. [53], [54]). The analysis relies
on a transformed version of the kernel due to the application of the considered differential operator that
allows one to interpret the problem as a standard interpolation problem.
Besides the particular treatment of differential operators, there are some works on the interpolation with

respect to more general subspaces of compactly supported distributions. In [100], Narcowich and Ward
analyzed the interpolation setting for matrix-valued kernel functions to reconstruct vector fields, where
the considered functionals were induced by certain multi-component distributions with compact support.
The last part of this paper is mainly focused on differential operators again. Moreover, Iske discussed the
topologization of the space of compactly supported distributions with order less or equal to a fixed l ∈ N
in the kernel setting (cf. [68]), resulting in an integral representation of the native inner product that
simplifies the identification of linearly independent functionals. This integral representation was already
stated in [151] and is also found in [143, Theorem 16.4] for the special case of partial differential operators.
Generally, the chapter [143, Chapter 16] of Wendland’s prominent book Scattered Data Approximation
provides a good initial discussion on the generalized interpolation problem and further elaborates the
analysis of [53].
Another application of kernel-based generalized interpolation is given by the interpolation with respect

to cell average functionals. In [128], Sonar explained how this type of functional occurs in finite volume
methods for hyperbolic conservation laws and proposed the use of thin-plate splines for optimal recovery
within an ENO approach. As a follow-up, the utility of kernel functions in this specific setting was further
elaborated in [71] by Iske and Sonar as well as in the paper [130] by Sonar. Missing convergence rates
were later provided by Wendland in the paper [142] for Sobolev kernels and thin-plate splines. Moreover,
the authors Aboiyar, Georgoulis and Iske discussed a kernel-based WENO approach in [1], which yields
a weighted overall reconstruction from cell average values.
Although the research on generalized interpolation has mainly focused on partial differential equations

so far, there have been a few advances in the field of tomography. In his master thesis [126], Sironi
discussed the kernel-based reconstruction from scattered Radon data. There, it was already observed that
a naive application of the Radon transform to a Gaussian kernel leads to non-finite diagonal entries in
the interpolation matrix. To circumvent this problem, the second application of the Radon transform
was modified by multiplication with a weight function to ensure the integrability, see also [39]. The
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modification leads to unsymmetric interpolation matrices, similar to the aforementioned method of Kansa,
and therefore does not fit into the usual concept of kernel-based generalized interpolation. The problems
were ultimately fixed in [38] with the introduction of weighted kernel functions by De Marchi, Iske and
Santin, which is a symmetric application of the weight function to both sides of a given kernel. In
addition to this application in computerized tomography, the master thesis [148] discussed the kernel-
based reconstruction from spherical Radon data in photoacoustic tomography. It was pointed out by
the author Wiatkowski that the computation of the Riesz representers and the inner products in the
dual space is very tricky for those types of operators (cf. [148, page 23]). As a consequence, only the
unsymmetric approach was numerically investigated.
The above-mentioned works regarding tomography have in common that none of them incorporated

further tools known from standard interpolation such as data-dependent bases, greedy data selection
algorithms or regularization tools, although most of these concepts can be transferred to the generalized
case straightforward. A generalization of the well-known P-greedy algorithm (cf. [37], [41] for the standard
case) was proposed in the preprint [118] by Schaback, which was recently followed by the preprint [146]
of Wenzel, Winkle, Santin and Haasdonk on a larger class of greedy algorithms, the so-called β-greedy
algorithms. Similar to the ideas of [118], the paper [146] yielded convergence results in terms of the
L∞-norm for second-order elliptic boundary value problems for Sobolev kernels. Moreover, both works
shortly described the generalization of the Newton basis from the standard interpolation case (cf. [99],
[105]).
Based on the previous research on this topic, the main objective of this part is to provide an extensive

framework for generalized interpolation in reproducing kernel Hilbert spaces that brings together relevant
theoretical results and useful tools to improve the reconstruction method. To this end, we want to keep
our discussion and results as general as possible, so that the framework can be applied directly to many
different problems. In particular, this is important in the second part of this thesis when we apply
this framework in the context of computerized tomography, which is the main application in this work.
Although our main focus lies on computerized tomography, we provide some examples that demonstrate
how our derived theory links to the other applications mentioned before.



2. Positive (Semi-)Definite Kernel Functions

We begin this part with the introduction of positive (semi-)definite kernel functions, or in short, kernel
functions. Since these functions build the core of our approximation algorithms later on, we give a
summary of their construction in Section 2.1 including several examples. Further basic properties are
stated in Section 2.2. For a more detailed treatment of this topic, we refer to the books [32], [70] and [143],
where most of the presented results can be found. Moreover, the book [50] provides a great overview of
kernel functions and their applications.
In order to motivate the use of kernel functions, we consider the standard problem of scattered data

interpolation. Therefore, let Ω ⊂ Rd for d ∈ N. For a given point set X = {x1, ..., xn} ⊂ Ω of length
n ∈ N and corresponding data values {f1, ..., fn} ⊂ R, we aim to find a function s : Ω → R that satisfies
the interpolation condition

s(xi) = fi for all i ∈ {1, ..., n}. (2.1)

A common approach for this problem is to fix a set of n basis functions B = {b1, ..., bn}, where bi : Ω → R
for all i ∈ {1, ..., n}, and restrict the interpolant to

s =

n∑
i=1

ci · bi ∈ spanR{b1, ..., bn}. (2.2)

If we insert the restriction (2.2) into the interpolation condition (2.1), we get the equivalent linear systemb1(x1) . . . bn(x1)
...

. . .
...

b1(xn) . . . bn(xn)

 ·

c1...
cn

 =

f1...
fn

 . (2.3)

It is well-known from linear algebra that the system (2.3) has a unique solution for all sets of values
{f1, ..., fn} ⊂ R if and only if the Vandermonde matrix VB,X = (bi(xj))1≤i,j≤n is regular. The regularity

of this matrix is guaranteed if B is a Haar system (cf. [58], [143, Definition 2.1]).

Definition 2.1. Let S ⊂ C (Ω) be a linear space of continuous real-valued functions on a domain Ω ⊂ Rd

with dimension dim(S) = n ∈ N. Then S is called a Haar space on Ω if any s ∈ S \ {0} has at most
n− 1 zeros in the domain Ω. A basis B of a Haar space on Ω is called Haar system on Ω.

Example 2.2. We want to provide some examples of Haar systems for the case Ω = R.

(i) For any n ∈ N, the set

Pn =
{
p : R → R

∣∣∣ p(x) = k∑
i=0

ai · xi for all x ∈ R, where 0 ≤ k ≤ n and a0, ..., ak ∈ R
}

of (algebraic) polynomial functions with degree less than n + 1 form a Haar space of dimension
n+ 1, see [70, Example 5.26].

(ii) For ν ∈ R, consider the exponential function

fν(x) := eν·x for all x ∈ R.

If ν1, ..., νn ∈ R are pairwise distinct parameters, then B = {fν1 , ..., fνn} is a Haar system on R, see
[70, Example 5.28].
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(iii) Given a fixed parameter ν > 0 and nodes Z = {z1, ..., zn} ⊂ R, the respective scaled / shifted
Gaussian functions are given by

Gν,zi(x) := e−ν·(x−zi)
2

for all x ∈ R, i ∈ {1, ..., n}.

If Z contains pairwise distinct points, Bν,Z = {Gν,z1 , ..., Gν,zn} is a Haar system. To see this, we
rewrite a linear combination s of the functions Bν,Z as

s(x) =

n∑
i=1

ci ·Gν,zi(x) = e−ν·x2

·
n∑

i=1

cie
−νz2

i · e2zi·x for all x ∈ R,

with coefficients c1, ..., cn ∈ R. Now assume that s has at least n zeros in R. Since the exponential
function is strictly positive on R, this implies that the exponential sum

s̃(x) =

n∑
i=1

cie
−νz2

i · e2zi·x for all x ∈ R

has at least n zeros in R. But the parameters of the exponential functions are pairwise distinct, so
that the coefficients of s̃, and therefore all ci, i = 1, ..., n, have to vanish according to part (ii). The
result can also be found in [3, Theorem 3.5]. We come back to this example when we talk about
kernel functions in Section 2.1.

If we assume that B is a Haar system, the kernel of the Vandermonde matrix VB,X is trivial for any
X ⊂ Ω with |X| = n, which directly implies the regularity of VB,X . Hence, the interpolation problem
(2.1) has a unique solution.
Unfortunately, Haar systems suffer from severe limitations. Note that the domain of the functions from

Example 2.2 is only one-dimensional. In fact, there are no Haar systems on relevant domains in the case
d ≥ 2. This is the result of the famous Mairhuber-Curtis Theorem [35], [91]. Here, we state the version
from [143, Theorem 2.3].

Theorem 2.3 (Mairhuber-Curtis). Let Ω ⊂ Rd with d ≥ 2. If Ω contains an interior point, then there
is no Haar space of dimension n ≥ 2 on Ω.

Remark 2.4. Although there are no Haar spaces in the multivariate case, unique interpolation might
still be possible, e.g. in the case of multivariate polynomial interpolation on a grid (cf. [143, Lemma
2.8]). However, we want to focus on scattered data interpolation, where we don’t make any assumptions
on the structure of X.

Due to the Mairhuber-Curtis Theorem, a workaround is required in the case of multivariate interpola-
tion on scattered data. One possible approach for this problem is to make the basis functions depend on
the data sites, i.e. bi ≡ bxi for all i ∈ {1, ..., n}. To this end, we consider a (kernel) function

K : Rd × Rd → R

and define the basis functions

bi(x) := K(x, xi) for all x ∈ Rd, i ∈ {1, ..., n}.

If we insert this definition into (2.3), we get the following linear system:K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)

 ·

c1...
cn

 =

f1...
fn


Again, the regularity of the system matrix determines whether the system is well-posed or not. This
leads us to the definition of positive (semi-)definite kernel functions (cf. [143, Definition 6.1]).
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Definition 2.5. Let K : Rd ×Rd → R. We call K a positive (semi-)definite kernel function, if
K is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈ Rd, and for any finite set X = {x1, ..., xn} ⊂ Rd of
pairwise distinct points, the corresponding interpolation matrix

AK,X :=

K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)


is positive (semi-)definite.

Our previous discussion shows that positive definite kernels, which are most relevant to our work, lead
to well-posed interpolation problems. So far, it has not been important that the system matrices AK,X

are not only regular but also symmetric and positive definite. In the next chapter, we make use of that
when we dive deeper into the theory of kernel-based approximation.

Remark 2.6. Besides positive (semi-)definite kernels, there is also the concept of conditionally positive
(semi-)definite functions, where the interpolant consists of a kernel part and a polynomial part. We do
not cover these functions in this thesis but refer to [48, Chapter 7 ff.] and [143, Chapter 8 ff.] for detailed
information.

2.1. Construction of positive definite kernel functions

The task of finding positive definite kernels is not trivial, as the requirement of AK,X being positive definite
for all finite sets X ⊂ Rd seems to be very strong. Hence, we give a short overview of the construction
of positive definite kernels. These include translation-invariant kernels, radial basis functions and more
recent kernels that have been derived from the previous two classes.
We omit most of the proofs in this subsection since this is not the focus of this thesis and the respective

proofs are very technical. More details and proofs can be found in [32, Chapter 12-16] and [143, Chapter
6-9].

2.1.1. Translation-invariant kernels

The first class of kernels that we want to present are translation-invariant kernels. Here, translation-
invariant means that there is an even function Φ : Rd → R such that

K(x, y) = Φ(x− y) for all x, y ∈ Rd.

Note that for every translation-invariant kernel K and any fixed z ∈ Rd, we have

K(x− z, y − z) = K(x, y) for all x, y ∈ Rd,

which should explain the term ’translation-invariant’ in this context. The analysis of multivariate
translation-invariant kernels dates back to Bochner in the 1930s (cf. [23], [24]), who linked these kernels
to the non-negativity of their Fourier transforms. Details on the Fourier transform are provided in Section
A.3. We state the L1-version of Bochner’s characterization here (cf. [143, Theorem 6.11]).

Theorem 2.7 (Bochner’s theorem). Let Φ ∈ L1(Rd) ∩ C (Rd). Then K : Rd × Rd → R defined by

K(x, y) := Φ(x− y) for all x, y ∈ Rd

is a positive definite kernel function if and only if Φ is bounded and its Fourier transform FΦ is non-
negative and non-vanishing.

Example 2.8. Due to Bochner’s theorem, the following kernels are positive definite:

(i) For every shape parameter ν > 0, the respective Gaussian kernel (cf. Figure 2.1)

K(x, y) := e−ν·∥x−y∥2
2 for all x, y ∈ Rd,
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where ∥x∥2 denotes the standard euclidean norm, is positive definite on Rd for all dimensions d ∈ N.
This is due to the fact that the Fourier transform of the Gaussian function

Φ(x) := e−ν·∥x∥2
2 for all x ∈ Rd

is again a Gaussian function (cf. Example A.12), and therefore positive on the whole domain. Note
that we have already seen this function in Example 2.2 for d = 1, but this time, the nodes coincide
with the interpolation points.
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Figure 2.1.: Plot of two-dimensional Gaussian with shape parameter ν = 5 (left) and ν = 50 (right)

(ii) The radial characteristic kernel of Askey (cf. [13]), defined by

K(x, y) := (1− ∥x− y∥2)l+ :=

{
(1− ∥x− y∥2)l, for ∥x− y∥2 ≤ 1

0, otherwise,

is positive definite on Rd for l ≥ ⌊d/2⌋+ 1 (cf. [143, Theorem 6.20]).

2.1.2. Radial basis functions

Another popular class of kernels is formed by rotation-invariant kernels. We call the function K a radial
kernel, if there is a univariate function ϕ : [0,∞) → R, such that

K(x, y) = ϕ(∥x− y∥2) for all x, y ∈ Rd.

The function ϕ is often called radial basis function. Note that all functions from Example 2.8 belong to
this class, and every radial kernel is also translation-invariant. Furthermore, if Q ∈ Rd×d is an orthogonal
matrix, we have the equation

K(Q · x,Q · y) = K(x, y) for all x, y ∈ Rd.

A characterization of functions ϕ that generate kernels in every dimension d ∈ N was given by Schoenberg
in 1938 (cf. [121]). This characterization associates radial basis functions with completely monotone
functions (cf. [143, Definition 7.1 & Theorem 7.14]).

Definition 2.9. Let ϕ : [0,∞) → R be a univariate function. We call ϕ completely monotone on [0,∞),
if ϕ ∈ C ([0,∞)) ∩ C∞((0,∞)) and

(−1)l · ϕ(l)(r) ≥ 0 for all r ∈ (0,∞) , l ∈ N0,

where ϕ(l) denotes the l-th derivative of ϕ.
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Theorem 2.10 (Schoenberg). For ϕ : [0,∞) → R, the following two properties are equivalent:

(i) For every dimension d ∈ N, the kernel function

K(x, y) := ϕ(∥x− y∥2) for all x, y ∈ Rd

is positive definite on Rd.

(ii) The function

ϕ̃ : [0,∞) → R, r 7→ ϕ
(√
r
)

is completely monotone and not constant on [0,∞).

Example 2.11. For fixed ν > 0, consider the inverse multiquadrics

ϕ(r) := (1 + r2)−ν for all r ∈ [0,∞) .

Due to the estimate

(−1)l · ϕ̃(l)(r) = (−1)2l ·
l−1∏
k=1

(ν + k) · (1 + r)−ν−l ≥ 0

for any r ∈ [0,∞) (cf. [143, Theorem 7.15]), the kernel

K(x, y) := (1 + ∥x− y∥22)−ν for all x, y ∈ Rd

is positive definite on Rd for any dimension d ∈ N according to Theorem 2.10.

2.1.3. Other kernels

Of course, we are not able to cover all types of kernels in this thesis. A broad list of positive definite
kernel functions is provided in the book [50]. Instead, we want to give two more examples to briefly
demonstrate the wide range and versatility of kernels.

Wendland’s compactly supported functions

From the computational point of view, it is desirable to use radial basis functions with compact support,
as these lead to sparse interpolation matrices if there is sufficient separation between the interpolation
points. Some examples are given by the radial characteristic kernels from Example 2.8 (ii), which are
generated by the functions

ϕl(r) := (1− |r|)l+ :=

{
(1− |r|)l for |r| ≤ 1

0, otherwise
for l ∈ N, (2.4)

where we evenly extended the original functions to the whole real line. Note that we had to make the
restriction l ≥ ⌊d/2⌋+ 1 to guarantee that the resulting kernel is positive definite on Rd. In contrast to
functions like the Gaussians or the inverse multiquadrics, there are no continuous radial basis functions
that have compact support and generate a positive definite kernel on Rd for every dimension d ∈ N (cf.
[143, Theorem 9.2]). Hence, the construction of these functions is always dependent on the considered
dimension.
As desired, the functions ϕl for l ∈ N have compact support, but they are not differentiable at the

origin r = 0. This means that the basis functions K(·, x) for x ∈ Rd of the resulting kernel, and therefore
all resulting interpolants are not differentiable as well, see Figure 2.2. However, regularity assumptions
like differentiability are usually required in approximation theory to achieve high-order convergence. As
a possible solution, Wendland constructed compactly supported functions with arbitrary smoothness in
[140], often called Wendland’s functions.
These functions are even piecewise polynomial functions of the form

ϕ(r) :=

{
p(|r|), for |r| ≤ 1

0, otherwise,
(2.5)
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Figure 2.2.: Plot of generating functions ϕl for l = 2, 5, 10 (left) and resulting basis function ϕ2(∥ · ∥2) on
the two-dimensional domain R2 (right)

where p : R → R is a univariate polynomial. To optimize the computational costs, the degree of the
polynomial p should be reduced to a minimum, such that the desired smoothness is still attained. In the
following, we summarize the construction of Wendland’s functions. Further explanations and proofs can
be found in [143, Chapter 9].
The construction is based on the integral operator I defined as

(Iϕ)(r) =
∞∫

|r|

t · ϕ(t) dt for r ∈ R

for functions ϕ : R → R such that the mapping t 7→ t · ϕ(t) is in L1([0,∞)) (cf. [143, Definition 9.4]). If
ϕ has the form (2.5), then Iϕ has the same form, but the degree of the polynomial and the number of
continuous derivatives is increased by 2 (cf. [143, Lemma 9.8]). With this, we define the functions

ϕd,k = Ikϕ⌊d/2⌋+k+1 for d, k ∈ N, (2.6)

where I is applied iteratively k times to the function ϕ⌊d/2⌋+k+1 defined in (2.4). Hence, the function
ϕd,k is piecewise polynomial with degree ⌊d/2⌋+3k+1 and 2k continuous derivatives. Due to the Fourier
properties of I, ϕd,k generates a positive definite kernel on Rd, and it turns out that ⌊d/2⌋+3k+1 is the
minimal degree for a generating function of the form (2.5) to possess at least 2k continuous derivatives
(cf. [143, Theorem 9.13]).

Theorem 2.12. Let d, k ∈ N and ϕd,k be defined as in (2.6). Then, the induced function

K(x, y) := ϕd,k(∥x− y∥2) for x, y ∈ Rd

is a positive definite kernel on Rd. Moreover, we have ϕd,k ∈ C 2k(R), and ϕd,k has the form

ϕd,k(r) =

{
pd,k(|r|), for |r| ≤ 1

0, otherwise,

where pd,k is a univariate polynomial of degree ⌊d/2⌋+ 3k + 1. If ϕ ∈ C 2k(R) is another function of the
form (2.5) that generates a positive definite kernel on Rd, then we have ϕ = c · ϕd,k for a constant c > 0.
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Example 2.13. For d = 2, the first three Wendland functions are given by

ϕ2,0(r) = (1− |r|)2+
ϕ2,1(r) = (1− |r|)4+ · (4 · |r|+ 1)

ϕ2,2(r) = (1− |r|)6+ ·
(
35 · |r|2 + 18 · |r|+ 3

)
for r ∈ R, see [143, Corollary 9.14]. A visualization of the functions and the resulting smooth kernel is
given in Figure 2.3.
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Figure 2.3.: Plot of Wendland functions (left) and plot of basis function ϕ2,1(∥ · ∥2) (right)

Anisotropic product kernels

We can even use common kernel functions to construct new kernels via elementary operations. Here, we
want to discuss the concept of product kernels, which was already introduced in the works [12, Section
I.8], [103, Chapter VI]. In particular, we present the results of the preprint [6], which further elaborates
on the properties of product kernels and their computational advantages.
The main idea of anisotropic product kernels is to separate the domain Rd into several axes and equip

each axis with an individual kernel. In mathematical terms, we write

Rd ≃ Rd1 × ...× RdM

to split Rd into M ∈ N axes Rdi , where di ∈ N for i = 1, ...,M and d =
∑M

i=1 di. In this context, we
denote the projection onto the i-th axis as

pi : Rd ≃ Rd1 × ...× RdM → Rdi , x =
(
x(1), ..., x(M)

)
7→ x(i)

for every i ∈ {1, ...,M}. If the functions Ki : Rdi × Rdi → R are positive semi-definite kernels on their
respective axis, the product is a positive semi-definite kernel function on Rd. This is a simple consequence
of the Schur product theorem (see, e.g., [64, Theorem 5.2.1]).

Theorem 2.14. Let Ki : Rdi × Rdi → R be positive semi-definite on Rdi for i = 1, ...,M , where di ∈ N.
Set d =

∑M
i=1 di and define the function

K : Rd × Rd → R, (x, y) 7→
M∏
i=1

Ki(pi(x), pi(y)). (2.7)

Then K is a positive semi-definite kernel function on Rd.
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The previous theorem motivates the definition of product kernels.

Definition 2.15. In the setting of Theorem 2.14, we call the function K defined in (2.7) the product

kernel of the Ki, i = 1, ...,M , and use the notation K =
∏M

i=1Ki. The kernel functions Ki are called
the components of K.

Example 2.16. Consider the one-dimensional Wendland kernels

K1(x, y) := (1− |x− y|)+
K2(x, y) := (1− |x− y|)3+ · (3 · |x− y|+ 1)

for x, y ∈ R with different smoothness properties (cf. [143, Corollary 9.14]). The respective product
kernel on R2 is given by

K(x, y) := (1− |p1(x)− p1(y)|)+ · (1− |p2(x)− p2(y)|)3+ · (3 · |p2(x)− p2(y)|+ 1) for x, y ∈ R2.

As already pointed out, the main motivation of product kernels is the possibility to equip each axis with
an individual kernel, depending on the application and its underlying data point set. In this example,
the smoothness of the kernel varies for each axis of the domain. The one-dimensional kernels K1,K2 and
the resulting product kernel K are visualized in Figure 2.4.
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Figure 2.4.: Plot of basis functions K1(·, x), K2(·, x) for one-dimensional Wendland kernels with different
smoothness at x = 0 (left) and contour plot of the respective product (right)

If K =
∏M

i=1Ki is a product kernel on Rd and X = {x1, ..., xn} ⊂ Rd, the interpolation matrix AK,X

is given by the Hadamard product (see, e.g., [64, Chapter 5]) of the components’ interpolation matrices
AKi,X(i) , where

X(i) = {pi(x1), ..., pi(xn)} ⊂ Rdi for i = 1, ...,M.

Even if the set X consists of pairwise distinct points, it is not guaranteed that the projected sets X(i)

consist of pairwise distinct points as well. A simple counterexample is given by a finite grid in Rd. Hence,
the matrices do not have to be positive definite for positive definite Ki, which means that the Hadamard
product is not suitable to show that the product kernel of positive definite components is again positive
definite. In order to prove this assertion, we provide a workaround involving grid-like point sets and the
Kronecker product for matrices (see, e.g., [64, Chapter 4.2]).
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Definition 2.17. Let X ⊂ Rd ≃ Rd1 × ... × RdM be finite. We call X a grid-like point set, if the
set equality

X = p1(X)× ...× pM (X)

holds, i.e. X can be written as a Cartesian product of lower-dimensional subsets.

In the case of a grid-like point set, the matrix AK,X can be written as the Kronecker product of
the component interpolation matrices. This result was already stated in [112, Section 5.2], but without
precise proof.

Theorem 2.18. Let K =
∏M

i=1Ki be a product kernel on Rd ≃ Rd1 × ...×RdM and X ⊂ Rd be a grid-like
point set of pairwise distinct points. Then we have

AK,X =

M⊗
i=1

AKi,pi(X), (2.8)

where
⊗

denotes the Kronecker product and pi(X) only contains pairwise distinct points for i = 1, ...,M .

Proof. Let Ni := |pi(X)| for i = 1, ...,M and N :=
∏M

i=1Ni. We prove the statement via induction on
the number of components M .

M = 2: Let p1(X) =
{
x
(1)
1 , ..., x

(1)
N1

}
and p2(X) =

{
x
(2)
1 , ..., x

(2)
N2

}
. For k ∈ {1, ..., N}, we set

xk =
(
x
(1)
⌈k/N2⌉, x

(2)
(k−1) mod N2+1

)
∈ X ⊂ Rd,

where ⌈·⌉ denotes the ceiling function and mod denotes the remainder after division. This leads to an
ordering X = p1(X)× p2(X) = {xk | k = 1, ..., N} that results in

(AK,X)j,k = K
((
x
(1)
⌈j/N2⌉, x

(2)
(j−1) mod N2+1

)
,
(
x
(1)
⌈k/N2⌉, x

(2)
(k−1) mod N2+1

))
= K1

(
x
(1)
⌈j/N2⌉, x

(1)
⌈k/N2⌉

)
· K2

(
x
(2)
(j−1) mod N2+1, x

(2)
(k−1) mod N2+1

)
=
(
AK1,p1(X)

)
⌈j/N2⌉, ⌈k/N2⌉

·
(
AK2,p2(X)

)
(j−1) mod N2+1, (k−1) mod N2+1

=
(
AK,p1(X) ⊗AK,p2(X)

)
j,k

for any j, k ∈ {1, . . . , N}. Hence, the equation AK,X = AK1,p1(X) ⊗AK2,p2(X) holds.

M →M + 1: Set X̃ = p1(X) × ... × pM (X), K̃ =
∏M

i=1Ki and Ñ =
∏M

i=1Ni. Due to the induction

hypothesis, there is an ordering X̃ = {x̃l | l = 1, ..., Ñ} such that the equation

AK̃,X̃ =

M⊗
i=1

AKi,pi(X)

holds. As in the case M = 2, we can order X = X̃ × pM+1(X) to get

AK,X = AK̃,X̃ ⊗AKM+1,pM+1(X).

In total, we conclude

AK,X =

M+1⊗
i=1

AKi,pi(X).

Corollary 2.19. In the setting of Theorem 2.18, let Ki be positive definite on Rdi for i = 1, ...,M . Then
AK,X is positive definite.
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Proof. This directly follows from Theorem 2.18, as the Kronecker product of positive definite matrices is
again positive definite (see, e.g., [64, Theorem 4.2.12]).

With the previous two results, we are able to show that a product kernel inherits the positive definiteness
of its components. Note that this result was already proven in [143, Proposition 6.25] for translation-
invariant kernels, but not for general kernel functions.

Theorem 2.20. Let K =
∏M

i=1Ki be a product kernel on Rd ≃ Rd1 × ...×RdM such that Ki is positive
definite on Rdi for i = 1, ...,M . Then K is positive definite on Rd.

Proof. Let X ⊂ Rd be a finite set of pairwise distinct points. We have

X ⊂ Y := p1(X)× ...× pM (X),

where we assume that pi(X) ⊂ Rdi consists of pairwise distinct points for i = 1, ...,M . According to
Corollary 2.19, the matrix AK,Y is positive definite. Since AK,X is a submatrix of AK,Y , it is also positive
definite.

Remark 2.21. Consider Gaussian components

Ki(pi(x), pi(y)) = e−νi·∥pi(x)−pi(y)∥2
2 for x, y ∈ Rd

with shape parameters νi > 0 for i = 1, ...,M . The respective product kernel is given by

K(x, y) =

M∏
i=1

e−νi·∥pi(x)−pi(y)∥2
2 = e

−
M∑
i=1

νi·∥pi(x)−pi(y)∥2
2

= e−(x−y)T ·D·(x−y) for x, y ∈ Rd,

where

D =

D1 0
. . .

0 DM

 ∈ Rd×d with Di =

νi 0
. . .

0 νi

 ∈ Rdi×di for i = 1, ..., M

is a diagonal matrix with the shape parameters on its diagonal (cf. [49, Example 2.5]). Hence, the
resulting product kernel exchanges the standard Euclidean norm ∥ · ∥2 with the anisotropic norm

∥ · ∥D : Rd → R, x 7→
√
xT ·D · x

inside the standard Gaussian kernel with shape parameter ν = 1. We want to point out that the
multiplication of lower-dimensional Gaussian kernels builds a bridge between product kernels and the
insertion of anisotropic norms. The effects of exchanging the standard Euclidean norm with an anisotropic
norm inside radial basis functions have been investigated in [5], [16], [30].

2.2. Basic properties

We close this chapter with some basic properties of kernel functions (cf. [70, page 279]) that we use
throughout our analysis.

Proposition 2.22. Let K be positive semi-definite on Rd. The following statements hold:

(1) For any x ∈ Rd, we have K(x, x) ≥ 0. If K is positive definite, then K(x, x) > 0.

(2) Given x, y ∈ Rd, we can estimate K(x, y)2 ≤ K(x, x) ·K(y, y).

(3) K is bounded on Rd × Rd if and only if K is bounded on the diagonal

D =
{
(x, x) | x ∈ Rd

}
⊂ Rd × Rd.
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Proof. For (1), we set X = {x} for a given x ∈ Rd. Then we have AK,X = (K(x, x)) so that the desired
inequality follows from Definition 2.5. Similarly, we set X = {x, y} for given x, y ∈ Rd. Inequality (2)
then follows from

0 ≤ det(AK,X) = K(x, x) ·K(y, y)−K(x, y)2.

Part (3) is a consequence of (2).

Corollary 2.23. If K is a translation-invariant kernel, then K is bounded on Rd × Rd.

Proof. In this case, we have K(x, y) = Φ(x− y) for x, y ∈ Rd and a function Φ : Rd → R. This leads to

K(x, x) = Φ(x− x) = Φ(0) <∞ for all x ∈ Rd,

which proves the claim according to part (3) of Proposition 2.22.

Corollary 2.24. If K is positive semi-definite on Rd and K(x, x) = 0 for all x ∈ Rd, then we have
K(x, y) = 0 for all x, y ∈ Rd as well.

Proof. This immediately follows from part (2) of Proposition 2.22:

0 ≤ K(x, y)2 ≤ K(x, x) ·K(y, y) = 0 for all x, y ∈ Rd.



3. Reproducing Kernel Hilbert Spaces

In this chapter, we dive deeper into the theory of kernel-based approximation. So far, we have shown
how to solve multivariate interpolation problems using positive definite functions, where the unique
interpolants belonged to the spaces

SK,X := spanR

{
K(·, x1), ...,K(·, xn)

}
(3.1)

for given point sets X = {x1, ..., xn} ⊂ Rd. Our goal now is to construct a complete linear space H
that is a superset of all spaces of type (3.1). This construction leads to special Hilbert spaces, so-called
reproducing kernel Hilbert spaces, which have many useful properties. We explain these properties in
detail throughout the next sections, which are based on [22, Chapter 1], [143, Chapter 10].
The first rigorous analysis of reproducing kernel Hilbert spaces in its modern terminology was published

by Aronszajn in 1943/1950, see [11], [12]. Amongst many other results, the papers explain the one-to-one
correspondence between positive (semi-)definite functions and reproducing kernels. Due to the earlier
work of Moore (cf. [96], [97]), this result is called the Moore-Aronszajn Theorem, which is explained in
Section 3.1. In addition, we discuss how the kernel inherits properties like differentiability or integrability
to the functions of the associated Hilbert space of functions. To demonstrate the relevance of reproducing
kernel Hilbert spaces, we list further characterization of the native space in Section 3.2 that build a
connection to Sobolev spaces. In Section 3.3, we end this chapter with an excursion about the native
spaces of product kernels, where we show that the native space even inherits the structure of the kernel.
Although our treatment of this topic might seem excessive to some experienced readers, we mostly

provide detailed explanations throughout the chapter, even for well-known results. In order to analyze
generalized interpolation problems, it is essential to have an in-depth understanding of reproducing kernel
Hilbert spaces, in particular of its distinctive properties such as the simplified determination of Riesz
representers of a linear bounded functional, which is explained in Theorem 3.12 and the following. We
start this chapter with the basic terminology (cf. [143, Definition 10.1]).

Definition 3.1. Let H =̂ (H, ⟨·, ·⟩H) be a Hilbert space of real functions f : Rd → R. We call H a
reproducing kernel Hilbert space, if there is a function K : Rd×Rd → R that satisfies the following
two properties:

(i) For all x ∈ Rd, we have K(·, x) ∈ H.

(ii) We have the reproduction property

f(x) = ⟨f,K(·, x)⟩H for all f ∈ H, x ∈ Rd. (3.2)

The function K is called reproducing kernel of H. If H is a reproducing kernel Hilbert space, we use
the notation H ≡ HK to indicate that H has the reproducing kernel K.

At first glance, it might not be clear whether a Hilbert space H possesses a reproducing kernel or
not. But there is a connection between the existence of a reproducing kernel and the point evaluation
functionals in H. For every x ∈ Rd, the respective point evaluation functional or Dirac functional δx is
given by

δx : H → R, f 7→ f(x).

A necessary and sufficient criterion for the existence of a reproducing kernel is the continuity of the
point evaluation functionals (cf. [143, Theorem 10.2]). The result is based on an important theorem
from functional analysis, the Fréchet-Riesz representation theorem, which plays a key role in generalized
interpolation, see Chapter 4. For convenience, we state the representation theorem here. A proof can be
found in [76, Theorem 2.3.1] for example.
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Theorem 3.2 (Fréchet-Riesz representation theorem). Let (H, ⟨·, ·⟩H) be a real Hilbert space and H∗

denote its dual space. Then, the mapping

φ : H → H∗, v 7→ ⟨·, v⟩H

is an isometric isomorphism.

Theorem 3.3. Let H be a Hilbert space of real functions on Rd. Then H is a reproducing kernel Hilbert
space if and only if δx is continuous on H for all x ∈ Rd.

Proof. Let H have a reproducing kernel K. With the Cauchy-Schwarz inequality, we get the estimate

|δx(f)| = |f(x)| = |⟨f,K(·, x)⟩H| ≤ ∥f∥H · ∥K(·, x)∥H for all f ∈ H, x ∈ Rd.

Hence, δx is continuous for all x ∈ Rd. Conversely, let δx be continuous for every x ∈ Rd. Due to Theorem
3.2 , there exist functions kx ∈ H, x ∈ Rd, that satisfy

f(x) = δx(f) = ⟨f, kx⟩H for all f ∈ H, x ∈ Rd.

By construction, the function K(x, y) := ky(x) for x, y ∈ Rd is a reproducing kernel of H.

Remark 3.4. Note that the point evaluation functionals are not well-defined for any Hilbert space H.
One example is the space L2(Rd), which consists of equivalence classes. Hence, we exclude these spaces
from our following discussion or restrict ourselves to the continuous representatives of the equivalence
classes.

Example 3.5. As a first example of a reproducing kernel Hilbert space, we consider the space

HL =
{
f ∈ C (R) ∩ L2(R)

∣∣∣ supp (Ff) ⊂ [−L,L]
}

of square integrable functions with bandwidth L > 0 (cf. [153]). Here, F denotes the Fourier transform
on L2(R). We equip this space with the standard inner product on L2(R). For every f ∈ HL, we have
Ff ∈ L2(R). Due to the compact support of Ff , we also have Ff ∈ L1(R), so that the Fourier inversion
formula from Theorem A.15 in combination with isometry property from Theorem A.16 yields

f(x) = (2π)−1/2 ·
L∫

−L

Ff(ω) · eiωx dω =
〈
f, (2π)−1/2 · F−1

[
χ[−L,L](·) · e−i(·)x

] 〉
L2(R)

for all x ∈ Rd,

where χ[−L,L] denotes the characteristic function on [−L,L]. The reproducing kernel is then given by

K(x, y) = (2π)−1/2 · F−1
[
χ[−L,L](·) · e−i(·)y

]
(x) =

sin(L · (x− y))

π · (x− y)
for x, y ∈ R,

where the evaluation for the case x = y is interpreted as a limit. Further examples of reproducing kernels
and their respective Hilbert spaces can be found in [22, Section 6.4].

We want to collect some general properties of reproducing kernels and their respective Hilbert spaces,
see also [22, Section 1.2].

Proposition 3.6. Let HK be a reproducing kernel Hilbert space. Then, the following statements hold:

(1) The reproducing kernel K is positive semi-definite on Rd.

(2) K is positive definite if and only if the functionals {δx | x ∈ Rd} are linearly independent.

(3) The set

SK := spanR

{
K(·, x)

∣∣∣ x ∈ Rd
}

(3.3)

is dense in HK .
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(4) The dual set

S(∗)
K := spanR

{
δx

∣∣∣ x ∈ Rd
}

is dense in the dual space H∗
K .

(5) If (fn)n∈N ⊂ HK converges normwise to f ∈ HK , then (fn)n∈N converges pointwise to f .

Proof. The proof of the statements mainly relies on the reproduction property (ii) from Definition 3.1:

(1) The symmetry of K follows from

K(x, y) = ⟨K(·, y),K(·, x)⟩HK
= ⟨K(·, x),K(·, y)⟩HK

= K(y, x) for all x, y ∈ Rd,

where we used the symmetry of the inner product. To prove the second part of the definition, let
X = {x1, ..., xn} ⊂ Rd and c = (c1, ..., cn)

T ∈ Rn. Then we have

cT ·AK,X · c =
n∑

i=1

n∑
j=1

ci · cj ·K(xi, xj)

=

n∑
i=1

n∑
j=1

ci · cj · ⟨K(·, xi),K(·, xj)⟩HK

=

∥∥∥∥∥
n∑

i=1

ci ·K(·, xi)

∥∥∥∥∥
2

HK

≥ 0.

Hence, K is positive semi-definite on Rd.

(2) Due to our previous computations and Theorem 3.2, we have the identity

AK,X = (⟨K(·, xi),K(·, xj)⟩HK
)1≤i,j≤n =

(
⟨δxi

, δxj
⟩H∗

K

)
1≤i,j≤n

,

since δxi
is the Riesz representer of K(·, xi) for all i ∈ {1, ..., n}. Hence, K is positive definite on

Rd if and only if the Gram matrices AK,X are positive definite for all finite sets X ⊂ Rd of pairwise
distinct points, which is equivalent to the linear independence of all point evaluation functionals.

(3) Due to Theorem A.9 part (2), we can write the space HK as the orthogonal sum

HK = SK ⊕ SK
⊥
,

where SK
⊥

is the orthogonal complement of SK . For every f ∈ SK
⊥
, we have

f(x) = ⟨f,K(·, x)⟩HK
= 0 for all x ∈ Rd,

as K(·, x) ∈ SK . Thus, we can conclude SK
⊥
= {0} and SK = HK .

(4) Let φ denote the mapping from Theorem 3.2, i.e.

φ : HK → H∗
K , f 7→ ⟨·, f⟩HK

.

Note that we have φ(SK) = S(∗)
K and φ(HK) = H∗

K . Since φ is an isometric isomorphism, the
density follows from part (3).

(5) Let (fn)n∈N ⊂ HK converge normwise to f ∈ HK , i.e.

∥fn − f∥HK
−→ 0 for n→ ∞.

For fixed x ∈ Rd, this implies

|fn(x)− f(x)| = |⟨fn − f,K(·, x)⟩HK
| ≤ ∥fn − f∥HK

· ∥K(·, x)∥HK
−→ 0 for n→ ∞.

Hence, (fn)n∈N converges pointwise to f .
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Remark 3.7. If K is bounded, i.e. |K(x, y)| ≤ C for a constant C > 0 and all x, y ∈ Rd, we can make
the estimate

|f(x)| = |⟨f,K(·, x)⟩|HK
≤ ∥K(·, x)∥HK

· ∥f∥HK
=
√
K(x, x) · ∥f∥HK

≤
√
C · ∥f∥HK

for x ∈ Rd.

In this case, every function f ∈ HK is bounded with the estimate

∥f∥∞ = sup
x∈Rd

|f(x)| ≤
√
C · ∥f∥HK

,

so that normwise convergence implies uniform convergence (cf. [12, Section 1.2(5)]).

Before we continue with the construction of reproducing kernel Hilbert spaces for given positive semi-
definite kernels, we want to answer the question of whether reproducing kernels and their respective
Hilbert spaces are unique, see also [70, Remark 8.23] and [143, Theorem 10.11].

Theorem 3.8. For reproducing kernel Hilbert spaces, we have the following uniqueness properties:

(1) Let K be a reproducing kernel of two Hilbert spaces G and H. Then we have G = H and the inner
products coincide.

(2) Let K1 and K2 be reproducing kernels of the Hilbert space H. Then K1 = K2 holds.

Proof. Throughout this proof, we make use of the results from Theorem 3.6.

(1) We notice that the set SK from (3.3) must be included in G and H. Additionally, we have

⟨K(·, x),K(·, y)⟩G = K(x, y) = ⟨K(·, x),K(·, y)⟩H for all x, y ∈ Rd,

so that the inner products ⟨·, ·⟩G and ⟨·, ·⟩H coincide on SK . Given an arbitrary f ∈ G, there is a
sequence

(sn)n∈N ⊂ SK such that ∥f − sn∥G −→ 0 for n→ ∞.

The sequence is a Cauchy sequence with respect to ∥ · ∥G , and due to

∥sm − sn∥G = ∥sm − sn∥H for all m,n ∈ N,

it is also a Cauchy sequence with respect to ∥ · ∥H. This means that there is g ∈ H with

∥g − sn∥H −→ 0 for n→ ∞.

Since normwise convergence implies pointwise convergence, we get

f(x) = lim
n→∞

sn(x) = g(x) for all x ∈ Rd,

so that f = g holds. Moreover, we get

∥f∥G = lim
n→∞

∥sn∥G = lim
n→∞

∥sn∥H = ∥f∥H.

In total, we have G ⊂ H and the two norms coincide on G. Analogously, we can show that H ⊂ G
and ∥f∥H = ∥f∥G for f ∈ H. The polarization identity for inner product spaces (see, e.g., [70,
Theorem 3.9]) then implies that the inner products coincide on G = H as well.

(2) In order to prove part (2) of this theorem, we use the reproduction property to compute

∥K1(·, x)−K2(·, x)∥2H = K1(x, x)−K1(x, x)−K2(x, x) +K2(x, x) = 0 for x ∈ Rd.

This implies K1(·, x) = K2(·, x) for all x ∈ Rd and therefore K1 = K2.
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3.1. Construction of the native space

As we have seen in Proposition 3.6, every reproducing kernel K of a Hilbert space is positive semi-
definite. But in practical cases, one usually starts with a positive (semi-)definite kernel. Hence, we go
the other way round in this section and construct a reproducing kernel Hilbert space HK for a given
positive semi-definite kernel function K, called the native space of K. This means that we can base the
resulting algorithms on positive (semi-)definite kernel functions and still take advantage of the theory of
reproducing kernel Hilbert spaces. For the construction of the native space, we follow along [22, Section
1.3].
Let K : Rd × Rd → R be positive definite. The construction starts with the set

SK = spanR {K(·, x) | x ∈ Rd}

from part (3) of Theorem 3.6. For elements

f =

M∑
i=1

ci ·K(·, xi) and g =

N∑
j=1

dj ·K(·, yj) (3.4)

in SK , we define

⟨f, g⟩K :=

M∑
i=1

N∑
j=1

ci · dj ·K(xi, yj). (3.5)

Initially, it is not clear that (3.5) induces a well-defined map

⟨·, ·⟩K : SK × SK → R.

But if f and g from (3.4) have alternative representations

f =

M̃∑
i=1

c̃i ·K(·, x̃i) and g =

Ñ∑
j=1

d̃j ·K(·, ỹj),

we get the equality

M∑
i=1

N∑
j=1

ci · dj ·K(xi, yj) =

M∑
i=1

ci · g(xi) =
M∑
i=1

Ñ∑
j=1

ci · d̃j ·K(xi, ỹj) =

Ñ∑
j=1

d̃i · f(ỹj)

=

M̃∑
i=1

Ñ∑
j=1

c̃i · d̃j ·K(x̃i, ỹj).

It is easy to see that ⟨·, ·⟩K is bilinear, symmetric and positive semi-definite. For the positive definiteness,
let f ∈ SK satisfy ⟨f, f⟩K = 0. The Cauchy-Schwarz inequality yields

0 ≤ |f(x)|2 = |⟨f,K(·, x)⟩K |2 ≤ ⟨f, f⟩K ·K(x, x) = 0 for all x ∈ Rd,

which implies f = 0. We summarize our results in the next proposition (cf. [22, Theorem 3]).

Proposition 3.9. For a given positive semi-definite kernel K, define (SK , ⟨·, ·⟩K) as done in (3.3) and
(3.5). Then SK is a pre-Hilbert space.

By definition of the inner product, we directly get the reproduction property

s(x) = ⟨s,K(·, x)⟩K for all s ∈ SK , x ∈ Rd. (3.6)

In general, SK is not complete, so we need to complete the space with respect to the inner product. From
functional analysis, it is well-known that any pre-Hilbert space can be densely embedded into a Hilbert
space, see e.g. [76, Theorem 1.5.1 & Proposition 2.1.6]. But the elements of this space might not be
functions again, which means that another step is required to convert these elements into functions, see
[143, Section 10.2]. We follow a more direct approach here, which merges the two steps (cf. [22, Theorem
2 ff.]). This approach uses the following lemma:
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Lemma 3.10. Let (sn)n∈N ⊂ SK be a Cauchy sequence that converges pointwise to the zero function,
i.e.

lim
n→∞

sn(x) = 0 for all x ∈ Rd.

Then we have the normwise convergence ∥sn∥K
n→∞−−−−→ 0.

Proof. Given m,n ∈ N, we can rewrite the term ∥sn∥2K as

∥sn∥2K = ⟨sn, sn⟩K = ⟨sn − sm, sn⟩K + ⟨sm, sn⟩K . (3.7)

Now let ε > 0. Since Cauchy sequences are automatically bounded, we find C > 0 such that ∥sn∥K ≤ C
for all n ∈ N and choose N1 ∈ N such that

∥sm − sn∥K <
ε

2C
for m,n ≥ N1.

Moreover, we can write sN1 as

sN1
=

M∑
i=1

ci ·K(·, xi).

Using the reproduction property (3.6) on SK , we derive

⟨sn, sN1
⟩K =

M∑
i=1

ci · sn(xi)
n→∞−−−−→ 0

due to our assumptions. Hence, we can find N2 ∈ N such that

⟨sn, sN1
⟩K ≤ ε

2
for all n ≥ N2.

Setting N = max{N1, N2}, we can use the identity (3.7) to get

∥sn∥2K ≤ ∥sN1 − sn∥K · ∥sn∥K + ⟨sN1 , sn⟩K < ε for n ≥ N,

which proves the assertion.

Theorem 3.11 (Moore-Aronszajn). Under the assumptions of Proposition 3.9, let

HK :=
{
f : Rd → R

∣∣∣ there is a Cauchy sequence (sn)n∈N ⊂ SK that converges pointwise to f
}
.

Moreover, we equip HK with the bilinear form

⟨f, g⟩K := lim
n→∞

⟨sn, tn⟩K for f, g ∈ HK , (3.8)

where (sn)n∈N and (tn)n∈N are Cauchy sequences in SK that converge pointwise to f and g. Then
(HK , ⟨·, ·⟩K) is a Hilbert space with reproducing kernel K.

Proof. HK is a vector space, as the set of Cauchy sequences in SK is closed under componentwise addition
and scalar multiplication. The proof is divided into six steps:

(i) Well-definedness I: Let (sn)n∈N and (tn)n∈N be Cauchy sequences in SK . Due to the inequality

|⟨sm, tm⟩K − ⟨sn, tn⟩K | ≤ ∥sm − sn∥K · ∥tm∥K + ∥sn∥K · ∥tm − tn∥K for all m,n ∈ N,

the sequence (⟨sn, tn⟩K)n∈N is a Cauchy sequence in R and therefore convergent. Hence, the term

lim
n→∞

⟨sn, tn⟩K

is well-defined.
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(ii) Well-definedness II: Let f, g ∈ HK and (sn)n∈N, (s̃n)n∈N, (tn)n∈N, (t̃n)n∈N be Cauchy sequences
in SK such that (sn)n∈N, (s̃n)n∈N converge pointwise to f and (tn)n∈N, (t̃n)n∈N converge pointwise
to g. Due to Lemma 3.10, we have the convergence

∥sn − s̃n∥K , ∥tn − t̃n∥K
n→∞−−−−→ 0.

Similar to part (i), we get

|⟨sn, tn⟩K − ⟨s̃n, t̃n⟩K | ≤ ∥sn − s̃n∥K · ∥tn∥K + ∥s̃n∥K · ∥tn − t̃n∥K
n→∞−−−−→ 0,

which implies

lim
n→∞

⟨sn, tn⟩K = lim
n→∞

⟨s̃n, t̃n⟩K .

This means that (3.8) induces a well-defined mapping. Moreover, we have SK ⊂ HK , so that
⟨·, ·⟩K : HK ×HK → R is an extension of the previously defined inner product (3.5) on SK .

(iii) Inner product: It is clear that ⟨·, ·⟩K is bilinear and symmetric on HK × HK . For f ∈ HK ,
consider a Cauchy sequence (sn)n∈N that converges pointwise to f . By definition (3.5), we get

⟨f, f⟩K = lim
n→∞

⟨sn, sn⟩K = lim
n→∞

∥sn∥2K ≥ 0.

Suppose that ⟨f, f⟩K = 0. With the reproduction property on SK , we can make the estimate

|sn(x)|2 = |⟨sn,K(·, x)⟩K |2 ≤ ⟨sn, sn⟩K ·K(x, x)
n→∞−−−−→ ⟨f, f⟩K ·K(x, x) = 0 for all x ∈ Rd.

This yields

f(x) = lim
n→∞

sn(x) = 0 for all x ∈ Rd,

which is equivalent to f = 0. Hence, ⟨·, ·⟩K is an inner product on HK .

(iv) Completeness I: Let (sn)n∈N be a Cauchy sequence in SK . Due to the estimate

|sm(x)− sn(x)|2 = |⟨sm − sn,K(·, x)⟩K |2 ≤ ∥sm − sn∥2K ·K(x, x) for all x ∈ Rd,

the sequence (sn(x))n∈N is a Cauchy sequence in R for every point x ∈ Rd. Define the function

f : Rd → R via

f(x) := lim
n→∞

sn(x) for all x ∈ Rd.

Then we have f ∈ HK and

∥f − sn∥2K = ⟨f − sn, f − sn⟩K = lim
m→∞

⟨sm − sn, sm − sn⟩K = lim
m→∞

∥sm − sn∥2K for all n ∈ N.

Now let ε > 0. We choose N ∈ N such that ∥sm − sn∥2K < ε for all m,n ≥ N . This results in

∥f − sn∥2K = lim
m→∞

∥sm − sn∥2K ≤ ε for n ≥ N

which proves that (sn)n∈N converges normwise to f . Moreover, this argument shows that SK is
dense in HK .

(v) Completeness II: Let (fn)n∈N be a Cauchy sequence in HK . Since SK is dense in HK (see part
(iv)), we can find a sequence (sn)n∈N in SK with

∥fn − sn∥K <
1

n
for all n ∈ N.

Due to the estimate

∥sm − sn∥K ≤ ∥fm − sm∥K + ∥fm − fn∥K + ∥fn − sn∥K <
1

m
+

1

n
+ ∥fm − fn∥K ,
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the sequence (sn)n∈N is a Cauchy sequence as well. With part (iv), we can conclude that

f = lim
n→∞

sn ∈ HK

exists. But f is also the limit of the initial sequence (fn)n∈N, as we have

∥f − fn∥K ≤ ∥f − sn∥K + ∥sn − fn∥ < ∥f − sn∥K +
1

n

n→∞−−−−→ 0.

(vi) Reproduction property: Let f ∈ HK and choose a Cauchy sequence (sn)n∈N that converges
pointwise to f . For every x ∈ Rd, we get

f(x) = lim
n→∞

sn(x) = lim
n→∞

⟨sn,K(·, x)⟩K = ⟨f,K(·, x)⟩K

by definition of the inner product.

In total, (HK , ⟨·, ·⟩K) is a Hilbert space with reproducing kernel K.

From now on, HK always denotes the native reproducing kernel Hilbert space of the kernel K which
we constructed in Theorem 3.11.
Since the evaluation of linear functionals from the dual space H∗

K plays a key role in the next chapters,
we want to derive a generalized reproduction property that holds for all elements in the dual space, not
only for point evaluation functionals. The result below can be found in [143, Theorem 16.7] and in [70,
Theorem 8.24], where it is called Madych-Nelson Theorem, referring to the work of Madych and Nelson
(cf. [87], [88], [89]).

Theorem 3.12 (Madych-Nelson). Let K be positive semi-definite on Rd and HK be the respective native
space. Then, the following two statements hold:

(1) For every λ ∈ H∗
K , the function λyK(·, y) : Rd → R, defined by

λyK(x, y) := λ(K(·, x)) = λ(K(x, ·)) for all x ∈ Rd,

is an element of the native space, i.e. λyK(·, y) ∈ HK .

(2) We have the generalized reproduction property

λ(f) = ⟨f, λyK(·, y)⟩K for all f ∈ HK , λ ∈ H∗
K .

Proof. Let gλ ∈ HK be the Riesz representer of λ ∈ H∗
K , i.e.

λ(f) = ⟨f, gλ⟩K for all f ∈ HK .

Then we have λyK(·, y) = gλ, as the equation

λyK(x, y) = λ(K(·, x)) = ⟨K(·, x), gλ⟩K = gλ(x)

holds for all x ∈ R. This proves (1) and (2).

Remark 3.13. Note that Theorem 3.12 presents an important advantage of reproducing kernel Hilbert
spaces, as we can explicitly compute the Riesz representers of functionals via the mapping

φ−1 : H∗
K → HK , λ 7→ λyK(·, y).

This advantage is highly relevant for the implementation of kernel-based algorithms for generalized in-
terpolation problems, see Chapter 4 and 10.

In order to determine whether well-known functionals (e.g. distributions) are elements of the dual
native space, we have a look at the regularity of functions from the native space. As the construction of
the native space is solely based on the given kernel, the functions of the native space inherit the regularity
of the kernel function. We state some basic inclusions (cf. [70, Corollary 8.27], [132, Theorem 4.26], [143,
Theorem 10.45]).
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Proposition 3.14. Let K be a positive semi-definite kernel function and HK be the respective native
space.

(1) Let K be bounded. Then any function f ∈ HK is bounded by

∥f∥∞ ≤ sup
x∈Rd

√
K(x, x) · ∥f∥K <∞.

(2) If K ∈ C (Rd × Rd), then HK ⊂ C (Rd) holds.

(3) Let p ∈ [1,∞) and K ∈ C (Rd × Rd) satisfy∫
Rd

K(x, x)p/2 dx <∞.

Then we have HK ⊂ Lp(Rd) and the norm inequality

∥f∥Lp(Rd) ≤

 ∫
Rd

K(x, x)p/2 dx

1/p

· ∥f∥K <∞ for all f ∈ HK .

(4) Suppose that K ∈ C 2k(Rd × Rd) for k ∈ N0. Then we have HK ⊂ Ck(Rd). Moreover, we have

λx,α := δx ◦Dα ∈ H∗
K for x ∈ Rd

and multi-indices α ∈ Nd
0 with |α| ≤ k. Here, Dα denotes the partial derivative operator

Dα(f) :=
∂|α|f

∂xα1
1 . . . ∂xαd

d

for all f ∈ Ck(Rd).

Proof. The proof of the stated inclusions mainly relies on the reproduction property (3.2):

(1) This is already proven in Remark 3.7.

(2) Let f ∈ HK and x ∈ Rd. Choose a sequence (xn)n∈N ⊂ Rd that converges to x. We can make the
estimate

|f(x)− f(xn)| = |⟨f,K(·, x)−K(·, xn)⟩K | ≤ ∥f∥K · ∥K(·, x)−K(·, xn)∥K . (3.9)

Since K is continuous, we have

∥K(·, x)−K(·, xn)∥2K = K(x, x)− 2 ·K(x, xn) +K(xn, xn)
n→∞−−−−→ 2 · (K(x, x)−K(x, x)) = 0,

and therefore |f(x)− f(xn)|
n→∞−−−−→ 0 according to (3.9). Hence, f is continuous on Rd.

(3) From part (1), we know that HK ⊂ C (Rd). This implies that every function f ∈ HK is measurable.
For the norm estimate, we compute∫
Rd

|f(x)|p dx =

∫
Rd

|⟨f,K(·, x)⟩K |p dx ≤ ∥f∥pK ·
∫
Rd

∥K(·, x)∥pK dx = ∥f∥pK ·
∫
Rd

K(x, x)p/2 dx <∞

for f ∈ HK . This proves the norm inequality and the desired inclusion.

(4) We prove the assertion via induction on k ∈ N0. For k = 0, the statements follow from part (2) of this
proposition and Theorem 3.3. Assuming that the assertion holds for k ∈ N0, letK ∈ C 2k+2(Rd×Rd)
and

α = (α1, ..., αd) ∈ Nd
0 with |α| ≤ k + 1.

If |α| < k + 1 holds, the statements follow from the induction hypothesis due to the inclusion
C 2k+2(Rd × Rd) ⊂ C 2k(Rd × Rd). Hence, we focus on the case |α| = k + 1. Divided into several
steps, we show that λx,α is well-defined and bounded on HK for all x ∈ Rd:
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(i) Select the minimal i ∈ {1, ..., d} with αi ̸= 0 and set

α̃ = (α1, ..., αi − 1, ..., αd) .

Then we have α̃ ∈ Nd
0 with |α̃| = k, and the induction hypothesis in combination with Theorem

3.12 implies

λx,α̃(f) = ⟨f, λyx,α̃K(·, y)⟩HK
for f ∈ HK , x ∈ Rd. (3.10)

Here, λyx,α̃K(·, y) is given by

λyx,α̃K(z, y) = Dα̃
2K(z, x) for z ∈ Rd,

where Dα̃
2 denotes that the differential operator Dα̃ for differentiable functions on Rd acts with

respect to the second d-dimensional argument of K. The operator Dα̃
1 is defined analogously.

With (3.10), we get

Dα̃f(x+ h · e(i))−Dα̃f(x)

h
=

〈
f,

λy
x+h·e(i),α̃K(·, y)− λyx,α̃K(·, y)

h

〉
K

(3.11)

for all f ∈ HK , x ∈ Rd and h ̸= 0, where e(i) ∈ Rd denotes the i-th standard basis vector.

(ii) Given x ∈ Rd, we define the functions

gx,h :=
λy
x+h·e(i),α̃K(·, y)− λyx,α̃K(·, y)

h
∈ HK for h ̸= 0.

Note that the corresponding functionals in the dual space are given by

⟨f, gx,h⟩K =
(
δx ◦∆e(i)

h

)
(Dα̃f) for all f ∈ HK , x ∈ Rd, h ̸= 0,

where we interpret the vector e(i) as a multi-index and ∆e(i)

h is the forward difference operator

from Definition A.7. Again, we denote the application of ∆e(i)

h with respect to the first and

second d-dimensional argument of K as ∆e(i)

h,1 and ∆e(i)

h,2 . In order to justify the differentiability,
we show that

lim
h→0

gx,h

exists in HK .

(iii) Let (hn)n∈N be a null sequence in R \ {0}. For m,n ∈ N, we have

∥gx,hm − gx,hn∥2K = ∆e(i)

hm,1∆
e(i)

hm,2

[
Dα̃

1D
α̃
2K
]
(x, x)−∆e(i)

hm,1∆
e(i)

hn,2

[
Dα̃

1D
α̃
2K
]
(x, x)

−∆e(i)

hn,1∆
e(i)

hm,2

[
Dα̃

1D
α̃
2K
]
(x, x) + ∆e(i)

hn,1∆
e(i)

hn,2

[
Dα̃

1D
α̃
2K
]
(x, x).

Due to Theorem A.8 part (2), we can find points

ζ
(m,n)
1,1 , ζ

(m,n)
1,2 , ζ

(m,n)
2,1 , ζ

(m,n)
3,2 ∈

[
x, x+ hm · e(i)

]
and

ζ
(m,n)
2,2 , ζ

(m,n)
3,1 , ζ

(m,n)
4,1 , ζ

(m,n)
4,2 ∈

[
x, x+ hn · e(i)

]
for m,n ∈ N, where[

x, x+ h · e(i)
]
:=
{
x+ t · e(i)

∣∣∣ min (0, h) ≤ t ≤ max (0, h)
}

for x ∈ Rd, h ̸= 0,
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such that

∥gx,hm
− gx,hn

∥2K = Dα
1D

α
2K(ζ

(m,n)
1,1 , ζ

(m,n)
1,2 )−Dα

1D
α
2K(ζ

(m,n)
2,1 , ζ

(m,n)
2,2 )

−Dα
1D

α
2K(ζ

(m,n)
3,1 , ζ

(m,n)
3,2 ) +Dα

1D
α
2K(ζ

(m,n)
4,1 , ζ

(m,n)
4,2 ).

Given ε > 0, we can find δ > 0 such that∣∣∣Dα
1D

α
2K(y, z)−Dα

1D
α
2K(x, x)

∣∣∣ < ε

4
for ∥ (y, z)− (x, x) ∥2 < δ

since Dα
1D

α
2K is continuous. Now choose N ∈ N such that |hn| < δ/

√
2 for n ≥ N . Then we

have ∥∥∥(ζ(m,n)
j,1 , ζ

(m,n)
j,2 )− (x, x)

∥∥∥
2
< δ for m,n ≥ N, j = 1, ..., 4,

and therefore

∥gx,hm
− gx,hn

∥2K ≤ |Dα
1D

α
2K(ζ

(m,n)
1,1 , ζ

(m,n)
1,2 )−Dα

1D
α
2K(x, x)|

+ |Dα
1D

α
2K(ζ

(m,n)
2,1 , ζ

(m,n)
2,2 )−Dα

1D
α
2K(x, x)|

+ |Dα
1D

α
2K(ζ

(m,n)
3,1 , ζ

(m,n)
3,2 )−Dα

1D
α
2K(x, x)|

+ |Dα
1D

α
2K(ζ

(m,n)
4,1 , ζ

(m,n)
4,2 )−Dα

1D
α
2K(x, x)|

< ε.

Hence, the sequence (gx,hn)n∈N is a Cauchy sequence in HK , so that

gx := lim
n→∞

gx,hn ∈ HK (3.12)

exists.

(iv) Since normwise convergence implies pointwise convergence in the native space, the limit func-
tion in (3.12) is given by

gx(z) = lim
n→∞

gx,hn
(z) = DαK(z, x) = λyx,αK(z, y) for all z ∈ Rd.

Note that the limit function λyx,αK(·, y) does not depend on the chosen sequence (hn)n∈N. In
total, we get

lim
h→0
h̸=0

gx,h = λyx,αK(·, y) ∈ HK .

(v) As a consequence of (iv), we can let h→ 0 in (3.11) to get

λx,α(f) = Dαf(x) = lim
h→0

Dα̃f(x+ h · e(i))−Dα̃f(x)

h
=
〈
f, λyx,αK(·, y)

〉
K
,

so that Dαf(x) exists for all f ∈ HK , x ∈ Rd. Moreover, this proves λx,α ∈ H∗
K . Similar to

the proof of part (2), we estimate

|Dαf(x)−Dαf(z)| ≤ ∥f∥K · ∥λyx,αK(·, y)− λyz,αK(·, y)∥K
= ∥f∥K · (Dα

1D
α
2K(x, x)−Dα

1D
α
2K(z, x)−Dα

1D
α
2K(x, z) +Dα

1D
α
2K(z, z))

1/2

for f ∈ HK and x, z ∈ Rd. With the assumption K ∈ C 2k+2(Rd × Rd), we can conclude
that the derivative Dαf is continuous on Rd for each f ∈ HK . For k > 0, an application of
Schwarz’s theorem for partial derivatives in combination with the induction hypothesis shows
that the order of differentiation does not matter.

Since α was chosen arbitrarily, we have HK ⊂ C k+1(Rd), and the respective partial differential
operators are elements of the dual space.
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Corollary 3.15. Let K ∈ C (Rd × Rd) be a bounded positive semi-definite function and satisfy the
condition

∫
Rd

K(x, x)1/2 dx <∞. Then we have∫
Rd

K(x, x)p/2 dx <∞ for all p ∈ [1,∞) ,

so that the statements of Proposition (3.14) part (3) hold for every p ∈ [1,∞).

Proof. We can estimate∫
Rd

K(x, x)p/2 dx ≤
(
max
x∈Rd

K(x, x)

)(p−1)/2

·
∫
Rd

K(x, x)1/2 dx <∞ for p ∈ [1,∞) .

Remark 3.16. The results from Proposition 3.14 and Corollary 3.15 are helpful when restricting oper-
ators to a native space. For example, consider a bounded linear operator A : Lp(Rd) → Y , where Y is a
normed space. Part (3) of Proposition 3.14 then implies that A induces a bounded linear operator from
(HK , ∥ · ∥K) to Y via the restriction

A|HK
: (HK , ∥ · ∥K) → Y, f 7→ A(f).

We use these ideas later in the context of computerized tomography, see Chapter 10.

3.2. Alternative characterizations of native spaces

Besides the construction in Theorem 3.11, native spaces can be expressed in other terms, which can be
useful for theoretical considerations. We state two alternative characterizations here without proof. For
more details and proofs, we refer to [143, Section 10.2, 10.4].

The first alternative characterization is based on the dual set S(∗)
K from Proposition 3.6, given by

S(∗)
K = spanR {δx | x ∈ Rd} ⊂ H∗

K .

In this notation, the native space HK consists of all functions f : Rd → R, such that the evaluations of

all λ ∈ S(∗)
K in f are uniformly bounded (cf. [143, Theorem 10.22]).

Theorem 3.17. Let K be positive semi-definite. We set

G :=
{
f : Rd → R

∣∣∣ there is Cf > 0 such that |λ(f)| ≤ Cf · ∥λ∥K for all λ ∈ S(∗)
K

}
and equip G with the functional

∥f∥G := sup
λ∈S(∗)

K \{0}

|λ(f)|
∥λ∥K

for all f ∈ G.

Then G = HK and ∥ · ∥G = ∥ · ∥K hold.

The second characterization of native spaces is restricted to translation-invariant kernels, which we
introduced in Subsection 2.1.1. Under suitable conditions, the inner product ⟨·, ·⟩K can then be expressed
with an integral formula (cf. [143, Theorem 10.12]).

Theorem 3.18. Let K(·, ·) = Φ(· − ·) be positive definite, where Φ ∈ C (Rd)∩L1(Rd). Moreover, let the
Fourier transform FΦ of Φ be strictly positive on Rd. We define

G :=
{
f ∈ C (Rd) ∩ L2(Rd)

∣∣∣ Ff · FΦ−1/2 ∈ L2(R)
}
,

where Ff denotes the L2-Fourier transform of f , and equip G with the bilinear form

⟨f, g⟩G := (2π)−d/2 ·
∫
Rd

Ff(ω) · Fg(ω)
FΦ(ω)

dω for all f, g ∈ G.

Then (G, ⟨·, ·⟩G) coincides with the native space (HK , ⟨·, ·⟩K) of K.
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This characterization is of importance as it builds a connection to Sobolev spaces (see Section A.5) and
their underlying properties (cf. [143, Corollary 10.13]).

Corollary 3.19. Under the assumptions of Theorem 3.18, let FΦ satisfy the estimate

C1 ·
(
1 + ∥ω∥22

)−a ≤ FΦ(ω) ≤ C2 ·
(
1 + ∥ω∥22

)−a
for all ω ∈ Rd

for constants C1, C2 > 0 and a > d/2. Then HK coincides with the Sobolev space Ha(Rd) and the norm
∥ · ∥K is equivalent to the respective Sobolev norm.

It was shown in [141] that Wendland’s kernels from Subsection 2.1.3 satisfy the conditions of Corollary
3.19 for suitable constants.

3.3. Native spaces of product kernels

In addition to the results of Proposition 3.14, the native space usually inherits the structure of the kernel
in special cases. One example of structure preservation is given by product kernels, which were introduced
in Subsection 2.1.3 of this thesis. Given x ∈ Rd ≃ Rd1 × ... × RdM and a product kernel K =

∏M
i=1Ki,

the respective standard basis function

K(·, x) = K1(p1(·), p1(x)) · ... ·KM (pM (·), pM (x)) ∈ HK (3.13)

is the product of the standard basis functions Ki(pi(·), pi(x)), i = 1, ...,M . Regarding the inner product,
we get the identity

⟨K(·, x),K(·, y)⟩K =

M∏
i=1

Ki(pi(x), pi(y)) =

M∏
i=1

⟨Ki(·, pi(x)),Ki(·, pi(y))⟩Ki for all x, y ∈ Rd. (3.14)

By linear continuation of (3.13) and (3.14), we conclude that

ΠK : SK1
× ...× SKM

→ HK , (s1, ...., sM ) 7→
M∏
i=1

si = s1 · ... · sM (3.15)

is a well-defined multilinear mapping that satisfies

〈
ΠK(s1, ..., sM ),ΠK(s̃1, ..., s̃M )

〉
K

=

M∏
i=1

⟨si, s̃i⟩Ki
for all si, s̃i ∈ SKi

, i = 1, ...,M, (3.16)

where
∏M

i=1 si denotes the mapping

M∏
i=1

si : Rd ≃ Rd1 × ...× RdM → R, x 7→
M∏
i=1

si(pi(x))

for si ∈ SKi
, i = 1, ...,M . In [12, Chapter I.8], [103, Chapter VI], it was already shown that the mapping

ΠK from (3.15) and the property (3.16) can be extended to HK1
× ... × HKM

for the case M = 2. We
provide an extended proof for all M ∈ N.

Theorem 3.20. Let K =
∏M

i=1Ki be a product kernel on Rd ≃ Rd ≃ Rd1 × ...× RdM . Then

ΠK : HK1 × ...×HKM
→ HK , (f1, ...., fM ) 7→

M∏
i=1

fi (3.17)

is a well-defined multilinear mapping. Moreover, the linear space spanR(ΠK(HK1
× ...×HKM

)) is dense
in HK and we have

〈
ΠK(f1, ..., fM ),ΠK(g1, ..., gM )

〉
K

=

M∏
i=1

⟨fi, gi⟩Ki
for all fi, gi ∈ HKi

, i = 1, ...,M. (3.18)
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Proof. If M = 1, there is nothing to show. For M ≥ 2, we prove the proposed statements via induction
on M .

M = 2: We start with the well-definedness of ΠK . Therefore, let f1 ∈ HK1
and f2 ∈ HK2

. We can find
convergent sequences(

s(1)n

)
n∈N

⊂ SK1
,
(
s(2)n

)
n∈N

⊂ SK2
with lim

n→∞
s(1)n = f1, lim

n→∞
s(2)n = f2.

Due to (3.16),the estimate

∥s(1)m · s(2)m − s(1)n · s(2)n ∥K =
∥∥∥(s(1)m − s(1)n

)
· s(2)m + s(1)n ·

(
s(2)m − s(2)n

)∥∥∥
K

≤ ∥s(1)m − s(1)n ∥K1 · ∥s(2)m ∥K2 + ∥s(1)n ∥K1 · ∥s(2)m − s(2)n ∥K2

holds, so that
(
s
(1)
n · s(2)n

)
n∈N

is a Cauchy sequence in HK,Ω and therefore attains a limit

HK ∋ f = lim
n→∞

s(1)n · s(2)n .

As norm convergence implies pointwise convergence (cf. Proposition 3.6 part (5)), we have

f(x) = lim
n→∞

s(1)n (p1(x)) · s(2)n (p2(x))

for any x ∈ Rd. But we also have

lim
n→∞

s(1)n (p1(x)) · s(2)n (p2(x)) = lim
n→∞

s(1)n (p1(x)) · lim
n→∞

s(2)n (p2(x)) = f1(p1(x)) · f2(p2(x))

by applying the same argument with respect to the norm convergence in the spaces HK1
and HK2

. This
implies

f1 · f2 = f ∈ HK ,

which means that ΠK is indeed a well-defined, bilinear mapping onHK1
×HK2

. Given additional elements
g1 ∈ HK1 and g2 ∈ HK2 , we can approximate these with convergent sequences(

s̃(1)n

)
n∈N

⊂ SK1
,
(
s̃(2)n

)
n∈N

⊂ SK2

as well. The continuity of inner products and (3.16) then lead to the desired identity

⟨f1 · f2, g1 · g2⟩K = lim
n→∞

〈
s(1)n · s(2)n , s̃(1)n · s̃(2)n

〉
K

= lim
n→∞

〈
s(1)n , s̃(1)n

〉
K1

·
〈
s(2)n , s̃(2)n

〉
K2

= ⟨f1, g1⟩K1 · ⟨f2, g2⟩K2 .

As a consequence of (3.13), we get

SK ⊂ spanR (ΠK (HK1 ×HK2)) ,

which yields the density in HK .

M →M + 1: Set K̃ =
∏M

i=1Ki. Due to the induction basis and hypothesis, the mappings

ΠK̃ : HK1
× ...×HKM

→ HK̃ , (f1, ..., fM ) 7→
M∏
i=1

fi

and

Π2 : HK̃ ×HKM+1
→ HK ,

(
f̃ , fM+1

)
7→ f̃ · fM+1
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are well-defined multilinear mappings that satisfy the property (3.18) on their respective domains. Since

M+1∏
i=1

fi = Π2(ΠK̃(f1, ..., fM ), fM+1)

holds for (f1, ..., fM+1) ∈ HK1
× ...×HKM+1

, the mapping

ΠK : HK1
× ...×HKM+1

→ HK,Ω, (f1, ..., fM+1) 7→
M+1∏
i=1

fi

is well-defined and multilinear. For elements

f = (f1, ..., fM+1), g = (g1, ..., gM+1) ∈ HK1 × ...×HKM+1
,

we have

⟨ΠK(f),ΠK(g)⟩K = ⟨Π2(ΠK̃(f1, ..., fM ), fM+1),Π2(ΠK̃(g1, ..., gM ), gM+1)⟩K
= ⟨ΠK̃(f1, ..., fM ),ΠK̃(g1, ..., gM )⟩K̃ · ⟨fM+1, gM+1⟩KM+1

=

M∏
i=1

⟨fi, gi⟩Ki
· ⟨fM+1, gM+1⟩KM+1

=

M+1∏
i=1

⟨fi, gi⟩Ki
,

which proves (3.18). A similar argument as in the caseM = 2 shows that spanR(ΠK(HK1 × ...×HKM+1
))

is dense in HK .

In general, the mapping ΠK from (3.17) is neither injective nor surjective, which means that the
Cartesian product HK1

× ... × HKM
is not sufficient to describe the native space HK of the product

kernel K. Instead, we need to use the tensor product to derive a representation of the native space HK

in terms of the native spaces HKi
, i = 1, ...,M . Since the standard tensor product of Hilbert spaces is

not necessarily a Hilbert space again, we make use of a special version of the tensor product, the Hilbert
tensor product.

Remark 3.21. In [12, Chapter I.8], the native space of the product kernel is constructed via the com-
pletion of the space of functions

spanR(ΠK(HK1 × ...×HKM
))

with respect to the inner product defined by the linear continuation of (3.18). However, we can skip
this procedure in our approach, as we already know that the product kernel generates a Hilbert space
of functions and by now, the existence of the Hilbert tensor product as well as its properties have been
extensively studied for arbitrary Hilbert spaces. We just have to connect the dots here, similar to the
approach in [103, Chapter VI]. But, in contrast to [103, Proposition 6.7], we do not have to convert the
abstract elements of the constructed Hilbert tensor product into functions due to our preliminaries.

For the definition of the Hilbert tensor product, we introduce further terminology (cf. [76, Definition
2.6.3]).

Definition 3.22. Let H1, ...,HM , Z be real Hilbert spaces and

Π : H1 × ...×HM → Z

be a multilinear function on the standard Cartesian product of H1, ...,HM .

(i) The multilinear function Π is called bounded if there is a constant c > 0 such that

∥Π(x1, ..., xM )∥Z ≤ c ·
M∏
i=1

∥xi∥Hi

holds for all (x1, ..., xM ) ∈ H1 × ...×HM .
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(ii) We call Π a weak Hilbert-Schmidt mapping if it is bounded and there is a constant C > 0 such
that the estimate ∑

b1∈B1

. . .
∑

bM∈BM

|⟨φ(b1, ..., bn), z⟩Z |2 ≤ C2 · ∥z∥2Z

holds for any orthonormal bases B1 ⊂ H1, ..., BM ⊂ HM and z ∈ Z.

The Hilbert tensor product of Hilbert spaces H1, ...,HM is a pair (H,Π) consisting of a Hilbert space
H and a weak Hilbert-Schmidt mapping Π : H1 × ...×HM → H that matches the properties of ΠK from
Proposition 3.20. We guarantee the existence with the following theorem, which is a slight modification
of [76, Theorem 2.6.4] and provides an alternative characterization in the form of a universal property.

Theorem 3.23. Let H1, ...,HM be real Hilbert spaces.

(1) There exists a Hilbert space H and a multilinear mapping Π : H1 × ...×HM → H such that

⟨Π(x1, ..., xM ),Π(y1, ..., yM )⟩H =

M∏
i=1

⟨xi, yi⟩Hi

holds for any (x1, ..., xM ), (y1, ..., yM ) ∈ H1 × ...×HM and

H0 := spanR{Π(H1 × ...×HM )}

is dense in H.

(2) The mapping Π from part (1) is a weak Hilbert-Schmidt mapping and satisfies the following universal
property: If Z is a Hilbert space and Π̃ : H1 × ... × HM → Z is a weak Hilbert-Schmidt mapping,
there is a unique bounded linear map T : H → Z such that Π̃ = T ◦Π.

(3) Let H̃ be a Hilbert space and Π̃ : H1×...×HM → H̃ be a weak Hilbert-Schmidt mapping that satisfies
the universal property from part (2). Then, there exists an isometric isomorphism U : H → H̃ with
U ◦Π = Π̃. Hence, the pair (H̃, Π̃) satisfies the properties of part (1).

(4) If (H̃, Π̃) satisfies the properties from part (1), there exists an isometric isomorphism U : H → H̃
with U ◦ φ = φ̃.

Definition 3.24. Let H1, ...,HM be Hilbert spaces and (H,Π) satisfy the properties from Theorem 3.23
part (1). Then (H,Π) is called the Hilbert tensor product of H1, ...,HM , denoted by

(H,Π) ≃
M⊗
i=1

Hi, or in short, H ≃
M⊗
i=1

Hi.

We remark that the sign ≃ in Definition 3.24 shall indicate that the Hilbert tensor product is unique
up to isometric isomorphy. For further reading on the Hilbert tensor product in general, we refer to [76,
Section 2.6]. If we compare the results of Proposition 3.20 with Theorem 3.23 and Definition 3.24, we
can deduce the relation between HK and the native spaces HKi

immediately. We recall from Remark
3.21 that this result was already stated and proven in [103, Proposition 6.7].

Theorem 3.25. Let K =
∏M

i=1Ki be a product kernel on Rd ≃ Rd ≃ Rd1 × ...× RdM . Then (HK ,ΠK)
is the Hilbert tensor product of HKi

, i = 1, ...,M , i.e.

HK ≃
M⊗
i=1

HKi
.

To end this section, we want to point out that the structure of the Hilbert tensor product can be used
to improve the efficiency of standard interpolation with product kernels. For example, the structure of
the inner product simplifies the construction of orthonormal systems. Details on this as well as numerical
examples are given in [6, Section 4-7]. A numerical investigation of product kernels can also be found in
[112, Chapter 5].



4. Generalized Interpolation

With the theoretical insights of the previous chapter, we can start our analysis on the main subject of this
thesis, which is the generalized interpolation in reproducing kernel Hilbert spaces. For the introduction
to generalized interpolation, we discuss the general Hilbert space setting first. Thereby, it becomes clear
that especially those Hilbert spaces that possess a reproducing kernel are well-suited to treat this kind of
interpolation problem. Note that a similar discussion can be found in [143, Section 16.1]. We show that
the well-posedness of these problems is linked to the linear independence of the considered functionals
by modeling the interpolant as a linear combination of the associated Riesz representers. However,
determining the linear independence of functionals is quite complicated in the native dual space, since we
do not know the native space of a kernel function in general. In Section 4.1, we build on [68] and [151] to
prove that the discussion about linear independence for compactly supported distributions can be shifted
to the space of distributions. This setting covers most of the applications stated in the introductory text
of the first part of this thesis, and we provide two examples that demonstrate the relevance of the derived
linear independence result. Throughout Section 4.2, we assume linear independence of the considered
functionals and discuss the basic properties of the resulting, well-defined interpolation operator, which
turn out to be the same as in the standard interpolation case.
As a starting point of our analysis, letH be a real Hilbert space. Furthermore, let Λ = {λ1, ..., λn} ⊂ H∗

be a set of bounded linear functionals and f = (f1, ..., fn)
T ∈ Rn be an array of given data values. The

generalized interpolation problem then consists of finding an element s ∈ H such that the generalized
interpolation conditions

λi(s) = fi for all i ∈ {1, ..., n} (4.1)

are fulfilled. As in the standard interpolation case (cf. Chapter 2), we have to restrict ourselves to a
suitable subset SΛ ⊂ H, if the problem (4.1) is supposed to have a unique solution. For every i ∈ {1, ..., n},
let vi ∈ H denote the Riesz representer of λi, i.e.

λi(g) = ⟨g, vi⟩H for all g ∈ H, i ∈ {1, ..., n},

and define SΛ as the span of all the Riesz representers:

SΛ := spanR {v1, ..., vn} (4.2)

If we assume s =
∑n

i=1 ci · vi ∈ SΛ, the generalized interpolation problem (4.1) leads to the linear system

A · c = f, (4.3)

where the system matrix A is given by

A =

λ1(v1) . . . λ1(vn)
...

. . .
...

λn(v1) . . . λn(vn)

 ∈ Rn×n.

Due to our choice of the basis functions vi, i ∈ {1, ..., n}, we can write A as

A =

⟨v1, v1⟩H . . . ⟨v1, vn⟩H
...

. . .
...

⟨vn, v1⟩H . . . ⟨vn, vn⟩H

 =

⟨λ1, λ1⟩H∗ . . . ⟨λ1, λn⟩H∗

...
. . .

...
⟨λn, λ1⟩H∗ . . . ⟨λn, λn⟩H∗

 ,

so that A is the Gram matrix of Λ with respect to ⟨·, ·⟩H∗ . Hence, A is regular if and only if Λ is linearly
independent. In this case, the problem (4.1) restricted to SΛ is well-posed, so that we can find a unique
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element s =
∑n

i=1 ci · vi ∈ SΛ that matches the desired evaluations on Λ in theory. But, even if the Gram
matrix can be computed quite efficiently, we need to determine the Riesz representers vi, i ∈ {1, ..., n},
in order to make further computations with the interpolant s. This is a major problem in the general
Hilbert space setting since the determination of the Riesz representers is very difficult.
However, in reproducing kernel spaces HK , we have already shown that the correspondence between

linear functionals and their Riesz representers is described by the mapping

φ−1 : H∗
K → HK , λ 7→ λyK(·, y), (4.4)

see Theorem 3.12 and Remark 3.13. This means that the determination of the Riesz representers is
relatively easy in this special setting, so we restrict our theoretical analysis to reproducing kernel Hilbert
spaces in this thesis, although large parts of the results could be transferred to the general Hilbert space
setting.
In the setting of a reproducing kernel Hilbert space HK , we denote the space of interpolants from (4.2)

as

SK,Λ := spanR {λy1K(·, y), ..., λynK(·, y)} ⊂ HK

and the respective system matrix from (4.3) as

AK,Λ :=

λ1(λ
y
1K(·, y)) . . . λ1(λ

y
nK(·, y))

...
. . .

...
λn(λ

y
1K(·, y)) . . . λn(λ

y
nK(·, y))


for a given set Λ = {λ1, ..., λn} ⊂ H∗

K of functionals. We summarize our previous discussion in the
following theorem (cf. [143, Theorem 16.1]).

Theorem 4.1. Let HK be a reproducing kernel Hilbert space. Moreover, let Λ = {λ1, ..., λn} ⊂ H∗
K and

f1, ..., fn ∈ R. If Λ is linearly independent, there is a unique s ∈ SK,Λ that satisfies the interpolation
conditions (4.1).

Remark 4.2. The generalized interpolation problem has also been investigated for a more general Banach
space setting in [86]. However, the numerical tests in this paper only consider the Hilbert space setting,
where the function spaces are chosen as L2(Ω) or the Sobolev space H1(Ω) for suitable domains Ω ⊂ Rd.

4.1. Linear independence

In order to have a unique solution to the generalized interpolation problem (4.1), it is essential that the
considered set of functionals Λ ⊂ H∗

K is linearly independent. For example, if the kernel K is positive
definite, part (2) of Proposition 3.6 ensures that the set{

δx1
, ..., δxn

}
⊂ H∗

K

of point evaluation functions is linearly independent for any finite set X = {x1, ..., xn} ⊂ Rd of pairwise
distinct points. Given other functionals, it is not a trivial task to decide whether Λ is linearly independent
or not. In general, we do not know the native space explicitly, which means that the analysis in the dual
space H∗

K is limited. Instead, one tries to shift the discussion about linear independence to better-known
spaces.
Here, we follow the ideas of [68], [151] and discuss the case that Λ consists of distributions with compact

support. The space E ′(Rd) of compactly supported distributions is a large class of functionals and, to our
advantage, there is a large number of theoretical results and analytical tools available, see Section A.4.
For the following discussion, the intersection

H∗
K ∩ E ′(Rd)

denotes the set of all functionals λ ∈ H∗
K that are also well-defined and continuous on the space D(Rd)

of test functions (cf. Definition A.17) and compactly supported. Note that we have

S(∗)
K = spanR {δx | x ∈ Rd} ⊂ H∗

K ∩ E ′(Rd). (4.5)
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Our first goal is to find an alternative representation of the inner product ⟨·, ·⟩K onH∗
K∩E ′(Rd) that builds

a bridge between the two spaces of functionals. To this end, we restrict to translation-invariant kernels,
as introduced in Subsection 2.1.1, and borrow the ideas from Bochner’s theorem (cf. [143, Section 6.2]) to
derive a suitable integral representation. Throughout the next steps, we use that the Fourier transform
of the generating function is integrable under the assumptions of Theorem 2.7 (cf. [143, Corollary 6.12]).

Proposition 4.3. Let Φ ∈ C (Rd) ∩ L1(Rd) such that K = Φ(· − ·) is positive definite on Rd. Then
FΦ ∈ L1(Rd) holds.

In the setting of Proposition 4.3, we can use the Fourier inversion formula (cf. Theorem A.15) to derive

⟨δx, δy⟩K = Φ(x− y) = (2π)
−d/2 ·

∫
Rd

ei·⟨x−y,ω⟩2 · FΦ(ω) dω

= (2π)
−d/2 ·

∫
Rd

ei·⟨x,ω⟩2 · e−i·⟨y,ω⟩2 · FΦ(ω) dω

= (2π)
d/2 ·

∫
Rd

FE ′δx(ω) · FE ′δy(ω) · FΦ(ω) dω

for x, y ∈ Rd, where FE ′ is the Fourier-Laplace transform on E ′(Rd), see Definition A.22 and Example

A.23. By multilinear continuation, we extend this representation to S(⋆)
K from (4.5), which results in

⟨λ, µ⟩K = (2π)
d/2 ·

∫
Rd

FE ′λ(ω) · FE ′µ(ω) · FΦ(ω) dω for all λ, µ ∈ S(⋆)
K . (4.6)

To further extend the domain of (4.6), we assume that the considered functionals can be approximated

by elements from S(∗)
K in H∗

K and E ′(Rd) simultaneously.

Lemma 4.4. Let λ, µ ∈ H∗
K ∩ E ′(Rd). Assume that there are sequences (λn)n∈N , (µn)N in S(∗)

K that
satisfy the following conditions:

(i) We have ∥λn − λ∥K
n→∞−−−−→ 0 and ∥µn − µ∥K

n→∞−−−−→ 0.

(ii) The convergence λn
n→∞−−−−→ λ and µn

n→∞−−−−→ µ holds in the sense of distributions.

(iii) There are constants Cλ, Cµ > 0 such that

|FE ′λn(ω)| ≤ Cλ, |FE ′µn(ω)| ≤ Cµ for all n ∈ N, ω ∈ Rd.

Then we have

⟨λ, µ⟩K = (2π)
d/2 ·

∫
Rd

FE ′λ(ω) · FE ′µ(ω) · FΦ(ω) dω.

Proof. Due to condition (ii) and Lemma A.25 part (2), we have

FE ′λn(ω)
n→∞−−−−→ FE ′λ(ω), FE ′µn(ω)

n→∞−−−−→ FE ′µ(ω) for all ω ∈ Rd.

Moreover, we use (iii) to estimate

|FE ′λn(ω) · FE ′µn(ω) · FΦ(ω)| ≤ Cλ · Cµ · FΦ(ω) for all n ∈ N, ω ∈ Rd,

where Proposition 4.3 ensures that Cλ · Cµ · Φ ∈ L1(Rd). The representation (4.6) in combination with
Lebesgue’s dominated convergence theorem then yields

⟨λ, µ⟩K = lim
n→∞

⟨λn, µn⟩K = lim
n→∞

(2π)
d/2 ·

∫
Rd

FE ′λn(ω) · FE ′µn(ω) · FΦ(ω) dω

= (2π)
d/2 ·

∫
Rd

FE ′λ(ω) · FE ′µ(ω) · FΦ(ω) dω.
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Under the previous assumptions, we can shift the discussion about linear independence to the space of
distributions.

Theorem 4.5. Let K = Φ(· − ·) be a translation-invariant positive definite kernel function with Φ ∈
C (Rd) ∩ L1(Rd) and let Λ = {λ1, ..., λn} ⊂ H∗

K ∩ E ′(Rd), such that every functional in Λ satisfies the
conditions of Lemma 4.4. Then Λ is linearly independent in H∗

K if and only if Λ is linearly independent
in E ′(Rd).

Proof. For c = (c1, ..., cn)
T ∈ Rn, we use the inner product representation of Lemma 4.4 to get

cT ·AK,Λ · c = (2π)
d/2 ·

∫
Rd

∣∣∣ n∑
i=1

ci · FE ′λi(ω)
∣∣∣2 · FΦ(ω) dω.

According to Theorem 2.7, FΦ is non-negative and non-vanishing. Hence, there is an open set U ⊂ Rd

such that FΦ(ω) > 0 for ω ∈ U . If cT ·AK,Λ · c = 0, which is equivalent to

n∑
i=1

ci · λi = 0 (4.7)

in H∗
K , this implies that the function

n∑
i=1

ci · FE ′λi,

which is an entire function according to Theorem A.24, vanishes on U . By applying the identity theorem
for holomorphic functions, we see that it must vanish on the whole space Cd, so that (4.7) also holds in the
sense of distributions due to Lemma A.25 part (1). If Λ is linearly independent as a set of distributions,
we must have c = 0, so that Λ is linearly independent in H∗

K as well. For the reverse implication, we can
simply backtrack the previous steps.

The main advantage of this approach is that we can now make use of the well-known space of test
functions in our analysis. The next application demonstrates the utility of Theorem 4.5.

Cell average functionals

Given a compact set E ⊂ Rd with Lebesgue measure vol(E) > 0, we define the respective cell average
functional as

λE(f) :=
1

vol(E)
·
∫
E

f(x) dx for f ∈ D(Rd), (4.8)

which is a distribution with compact support. If K ∈ C (Rd × Rd), we have the inclusion HK ⊂ C (Rd)
due to Proposition 3.14 part (2), so that λE is well-defined on HK . Moreover, the estimate

|λE(f)| ≤
1

vol(E)
·
∫
E

|f(x)| dx =
1

vol(E)
·
∫
E

|⟨f,K(·, x)⟩K | dx ≤ max
x∈E

√
K(x, x) · ∥f∥K for all f ∈ HK

shows that λE ∈ H∗
K holds as well. We construct an approximating sequence in S(∗)

K as follows: For
n ∈ N, there exist points

x
(n)
1 , ..., x

(n)
Mn

∈ E such that E ⊂
Mn⋃
j=1

B1/n

(
x
(n)
j

)
, (4.9)

i.e. E is covered by open balls with radius 1/n. Then, the modified sets

E
(n)
1 := B1/n

(
x
(n)
1

)
∩ E, E

(n)
j :=

(
B1/n

(
x
(n)
j

)
∩ E

)
\

j−1⋃
j=1

E
(n)
j for j = 2, ...,Mn
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decompose E into measurable subsets. To make sure that each subset is non-empty, we assume that Mn

is the minimal natural number such that (4.9) can hold. The resulting sequence of functionals is then
given by

λn :=

Mn∑
j=1

vol(E
(n)
j )

vol(E)
· δ

x
(n)
j

∈ S(∗)
K for n ∈ N. (4.10)

We show that (λn)n∈N has the desired properties.

Lemma 4.6. Let K ∈ C (Rd × Rd) and E ⊂ Rd be compact with vol(E) > 0. Then λE, as defined in
(4.8), satisfies the conditions of Lemma 4.4.

Proof. Define λn as in (4.10) for n ∈ N.

(i) Since K ∈ C (Rd × Rd), the mapping x 7→ K(·, x) is uniformly continuous on E. Given ε > 0, we
can find δ > 0 such that

∥K(·, x)−K(·, y)∥K < ε for x, y ∈ E with ∥x− y∥2 < δ.

Now choose N ∈ N such that 1/N < δ. Then we have

|λn(f)− λE(f)| =
1

vol(E)
·

∣∣∣∣∣
Mn∑
j=1

vol(E
(n)
j ) · f(x(n)j )−

∫
E

f(x) dx

∣∣∣∣∣
≤ 1

vol(E)
·
Mn∑
j=1

∫
E

(n)
j

|f(x(n)j )− f(x)| dx

≤ 1

vol(E)
·
Mn∑
j=1

∫
E

(n)
j

∥K(·, x(n)j )−K(·, x)∥K dx · ∥f∥K

< ε · ∥f∥K

for all f ∈ HK , n ≥ N .

(ii) We can use the same arguments as in part (i) to show that

λn(f)
n→∞−−−−→ λE(f) for all f ∈ D(Rd).

(iii) For n ∈ N and ω ∈ Rd, we have

|FE ′λn(ω)| =

∣∣∣∣∣
Mn∑
j=1

vol(E
(n)
j )

vol(E)
· e−i·⟨x(n)

j , ω⟩2

∣∣∣∣∣ ≤
Mn∑
j=1

vol(E
(n)
j )

vol(E)
= 1.

With this, we can formulate a feasible criterion that ensures linear independence of the cell average
functionals based on the interior of the considered sets.

Theorem 4.7. Let K = Φ(· − ·) with Φ ∈ C (Rd) ∩ L1(Rd) and let E1, ..., En ⊂ Rd be compact subsets
with positive Lebesgue measure, such that

E̊i \
⋃
i ̸=k

Ek ̸= ∅ for i = 1, ..., n.

Then Λ = {λE1
, ..., λEn

} is linearly independent in H∗
K .
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Proof. Due to Lemma 4.6 and Theorem 4.5, it suffices to show that Λ is linearly independent in the sense
of distributions. For every i ∈ {1, ..., n}, we can find xi ∈ Ei and ri > 0, such that

Bri(xi) ⊂ Ei \
⋃
i ̸=k

Ek.

Choose ε < min
i=1,...,n

ri and define the functions

fi(x) := vol(Ei) · gε(x− xi) for x ∈ Rd, i = 1, ..., n,

where gε is the L1-normalized function defined in Example A.18. By construction, we then have

λEi
(fj) =

{
1, if i = j

0, if i ̸= j.

If
∑n

i=1 ci · λEi
= 0 with ci ∈ R holds in E ′(Rd), we get

0 =

n∑
i=1

ci · λEi
(fj) = cj for j = 1, ..., n,

so that Λ is linearly independent in E ′(Rd).

For example, cell average functionals occur in finite volume methods, where the solution is recon-
structed from its cell average values that are estimated for certain time steps (cf. [71], [128]). In [1],
the computational domain Ω ⊂ R2 is decomposed into conforming triangulations. Given a finite point
set X ⊂ Ω, this can be done via the Delauney triangulation (cf. [69, Section 2.2]), see Figure 4.1. Note
that the corresponding triangles satisfy the conditions of Theorem 4.7. A convergence analysis for this
interpolation setting can be found in [142].
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Scattered point set
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0.8

1.0
Delauney triangulation

Figure 4.1.: Scattered point set in the domain [0, 1]
2
(left) and its Delauney triangulation (right)

4.2. Interpolation operator

For our further analysis, we assume that Λ = {λ1, ..., λn} ⊂ H∗
K is linearly independent. Then, Theorem

4.1 states that for given data values f1, ..., fn ∈ R, there is a unique interpolant s ∈ SK,Λ that satisfies
the interpolation conditions (4.1). In applications, the given data values are usually not some arbitrary
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numbers but rather come from a function we want to interpolate. More precisely, we assume that there
is a function f ∈ HK such that

fi = λi(f) for all i ∈ {1, ..., n}.

Under these assumptions, s is called the (unique) interpolant to f on Λ and denoted by s ≡ sf,Λ. Thus,
we can define a (generalized) interpolation operator on the whole space HK .

Definition 4.8. Let Λ = {λ1, ..., λn} ⊂ H∗
K be a linearly independent set of functionals. We define the

respective interpolation operator on HK as

IK,Λ : HK → SK,Λ, f 7→ sf,Λ

that maps every function f ∈ HK to its unique interpolant sf,Λ on Λ.

It is clear that IK,Λ is a linear operator. The next lemma allows the identification as a projection
operator (cf. [70, Corollary 8.28 & 8.29]).

Lemma 4.9. Given Λ = {λ1, ..., λn} ⊂ H∗
K , where Λ is not necessarily linearly independent, we can

write the orthogonal complement S⊥
K,Λ of SK,Λ as

S⊥
K,Λ = {f ∈ HK | λi(f) = 0 for all i ∈ {1, ..., n} }.

Proof. We have f ∈ S⊥
K,Λ if and only if f is orthogonal to the elements λyiK(·, y) for all i ∈ {1, ..., n}.

Due to the generalized reproduction property from Theorem 3.12, this can be rewritten as

0 = ⟨f, λyiK(·, y)⟩HK
= λi(f) for all i ∈ {1, ..., n}.

Theorem 4.10. Let Λ = {λ1, ..., λn} ⊂ H∗
K be linearly independent. Moreover, let PSK,Λ

denote the
orthogonal projection operator onto SK,Λ, defined in Definition A.10. Then we have the operator equality
PSK,Λ

= IK,Λ. In particular, IK,Λ(f) is the unique best approximation to f from SK,Λ, i.e.

∥f − IK,Λ(f)∥K = inf
s∈SK,Λ

∥f − s∥K for all f ∈ HK ,

and IK,Λ is a bounded operator with operator norm

∥IK,Λ∥K = sup
f∈HK\{0}

∥IK,Λ(f)∥K
∥f∥K

= 1.

Proof. Let f ∈ HK . By Definition 4.8, we have

λi(f − IK,Λ(f)) = λi(f)− λi(IK,Λ(f)) = 0 for all i ∈ {1, ..., n}.

Due to Lemma 4.9, this implies f − IK,Λ(f) ∈ S⊥
K,Λ. The assertion now follows from Theorem A.9 part

(1).

This characterization of the interpolation operator simplifies our further analysis, as projection op-
erators in Hilbert spaces have already been well-investigated. For example, if B = {b1, ..., bn} is an
orthonormal basis of SK,Λ, the interpolant can be written as

IK,Λ(f) =

n∑
i=1

⟨f, bi⟩K · bi for all f ∈ HK , (4.11)

see Theorem A.9 part (3). Hence, the computation of orthonormal bases also plays an important role in
our approximation algorithms. We discuss the construction of orthonormal systems in Chapter 6.
Another implication of Theorem 4.10 is that, given f ∈ HK , the element IK,Λ(f) minimizes the native

space norm amongst all possible interpolants to f from HK (cf. [70, Corollary 8.30]). This property is
often referred to as optimal recovery (cf. [143, Theorem 16.1]).
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Corollary 4.11. Let Λ = {λ1, ..., λn} ⊂ H∗
K be linearly independent. For f ∈ HK , define the set of all

possible interpolants on Λ as

If,Λ := {g ∈ HK | λi(f) = λi(g) for all i ∈ {1, ..., n} } ⊂ HK .

Then IK,Λ(f) minimizes the native space norm on If,Λ, i.e.

∥IK,Λ(f)∥K < ∥g∥K for all g ∈ If,Λ \ {IK,Λ(f)}.

Proof. If g ∈ If,Λ \ {IK,Λ(f)}, we must have

IK,Λ(f) = IK,Λ(g),

and therefore g − IK,Λ(f) ∈ S⊥
K,Λ \ {0}. Then Pythagoras’ theorem gives

∥g∥2K = ∥g − IK,Λ(f)∥2K + ∥IK,Λ(f)∥2K > ∥IK,Λ(f)∥2K .

Note that the proof of Corollary 4.11 also shows that

If,Λ = IK,Λ(f) + S⊥
K,Λ :=

{
IK,Λ(f) + s

∣∣∣ s ∈ S⊥
K,Λ

}
for all f ∈ HK .

Hence, the previous corollary can be interpreted in the following way: For our interpolation problem,
which just consists of matching the evaluation of the functionals in Λ with respect to a certain function
f ∈ HK , it is sufficient to restrict to the set SK,Λ. Every other interpolant g ∈ If,Λ \ {IK,Λ(f)} contains
some additional information, which is unnecessary for the interpolation process and increases the norm
in comparison to IK,Λ(f).



5. Convergence of the Interpolation Method

In the previous chapter, we have discussed the generalized interpolation problem with respect to a given
fixed set Λ ⊂ H∗

K of linearly independent functions. However, the interpolation method often is a dynamic
process, where we successively increase the number of interpolation points to improve the approximation
quality. Motivated by this setting, we want to derive a class of functions and respective convergence
criteria, such that the contained functions can be approximated arbitrarily well by the interpolation
method. In kernel-based approximation theory, it is common to derive error estimates in terms of the
power function or fill distance. For the standard interpolation problem, such error estimates have been
derived for popular kernels in [90],[152], an overview is given in the book chapter [143, Chapter 11]. Here,
we provide generalizations of these two error indicators and derive corresponding convergence criteria for
the generalized interpolation method in Section 5.1 & 5.2. Note that the generalized version of the power
function was already introduced in [53], [54]. In order to build a stronger connection to the standard
interpolation theory, we introduce the notion of parametrizations for subsets of functionals in Section
5.3, which simplifies the analysis and results in known convergence results for the standard interpolation
case. Ultimately, the results of this chapter serve as a foundation for Chapter 7, where we discuss suitable
point selection strategies that guarantee the convergence of the interpolation method.
For our analysis, let Γ ⊂ H∗

K be a fixed set of functionals, which serves as the domain for the selection
of the interpolation functionals. We consider nested sequences (Λn)n∈N of finite linearly independent
subsets of Γ, i.e.

(i) Λn ⊂ Γ is finite and linearly independent for all n ∈ N

(ii) Λn ⊂ Λn+1 for all n ∈ N.

In this setting, we analyze the corresponding sequence of interpolants

(IK,Λn
(f))n∈N , (5.1)

to f ∈ HK , which is a subset of the closed subspace

HK,Γ := spanR {λyK(·, y) | λ ∈ Γ} ⊂ HK .

Hence, if the sequence (5.1) converges, the limit is an element of HK,Γ as well. Naturally, we wish to
have the convergence

∥f − IK,Λn(f)∥K
n→∞−−−−→ 0,

which means that we have to restrict our convergence analysis to the case f ∈ HK,Γ. In the following,
we derive conditions on Γ and (Λn)n∈N that guarantee convergence in HK,Γ.

Remark 5.1. Before we continue, we remark that most of the results from this chapter do not rely on
the assumptions (ii) that the subsets are nested. However, we want to introduce this notion right from
the start of our convergence analysis, as we only deal with nested sequences in the later parts of this
thesis. In practical cases, nested sequences are favorable, since we can use pre-computed information with
the help of suitable update strategies. More details on update strategies for the generalized interpolation
method are given in Section 6.3.

5.1. Power function

For the first convergence criterion, we initially consider a finite linearly independent set Λ ⊂ H∗
K . For

any λ ∈ H∗
K , we can define the pointwise error functional εΛ,λ (cf. [70, Subsection 8.3.2]) as

εΛ,λ : HK → R, f 7→ λ(f)− λ(IK,Λ(f)).
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Since IK,Λ is a bounded operator, we have εΛ,λ ∈ H∗
K , and therefore

∥εΛ,λ∥K = sup
f∈HK\{0}

|εΛ,λ(f)|
∥f∥K

<∞ for all λ ∈ H∗
K .

By definition, we have

|λ(f)− λ(IK,Λ)(f)| ≤ ∥εΛ,λ∥K · ∥f∥K for all f ∈ HK , λ ∈ H∗
K , (5.2)

so that these operator norms are useful to estimate the pointwise error of the interpolation method. We
collect the norm values as a function of λ ∈ H∗

K , the so-called power function (cf. [114, Section 1]).

Definition 5.2. Let Λ ⊂ H∗
K be finite and linearly independent. We define the power function with

respect to Λ as

PΛ(λ) := ∥εΛ,λ∥K for all λ ∈ H∗
K .

In the format of Definition 5.2, the power function is quite unhandily. For our analysis and later
implementations, we use a different representation (cf. [114, Lemma 2.3]).

Lemma 5.3. The power function w.r.t Λ ⊂ H∗
K can be written as

PΛ(λ) = ∥λyK(·, y)− IK,Λ(λ
yK(·, y))∥K for all λ ∈ H∗

K .

Proof. We set n = |Λ|. Let λ ∈ H∗
K and B = {b1, ..., bn} be an orthonormal basis of SK,Λ. According to

formula (4.11), we can write

IK,Λ(f) =

n∑
i=1

⟨f, bi⟩K · bi for all f ∈ HK .

We can use this identity and the generalized reproduction property from Theorem 3.12 to get

εΛ,λ(f) = λ(f)− λ

(
n∑

i=1

⟨f, bi⟩K · bi

)

= ⟨f, λyK(·, y)⟩K −
n∑

i=1

⟨f, bi⟩K · ⟨λyK(·, y), bi⟩K

=
〈
f, λyK(·, y)−

n∑
i=1

⟨λyK(·, y), bi⟩K · bi
〉
K

= ⟨f, λyK(·, y)− IK,Λ(λ
yK(·, y))⟩K

for all f ∈ HK . Hence, λyK(·, y)− IK,Λ(λ
yK(·, y)) is the Riesz representer of εΛ,λ, which directly implies

∥εΛ,λ∥K = ∥λyK(·, y)− IK,Λ(λ
yK(·, y))∥K .

According to Lemma 5.3, the term PΛ(λ) measures the distance, and therefore the approximation
quality between λyK(·, y) and the subspace SK,Λ for each λ ∈ HK . Due to the representation theorem,
this is the same as the distance between λ and the span of Λ. With this representation of the power
function, we can derive some basic properties, see also [104, Definition 2.1.3 ff.].

Corollary 5.4. Let Λ = {λ1, ..., λn} ⊂ H∗
K be a linearly independent set of functionals. Then PΛ satisfies

the following properties:

(1) The power function PΛ is Lipschitz continuous on H∗
K .

(2) For every λ ∈ H∗
K , we have PΛ(λ) = 0 if and only if λ ∈ spanR {λ1, ..., λn}.
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(3) If Λ̃ ⊂ HK is another finite linearly independent set with Λ ⊂ Λ̃, then we can estimate

PΛ̃(λ) ≤ PΛ(λ) for all λ ∈ H∗
K .

(4) Given an orthonormal basis B = {b1, ..., bn} of SK,Λ, we can compute the power function via the
formula

PΛ(λ)
2 = ⟨λ, λ⟩K −

n∑
i=1

λ(bi)
2 for all λ ∈ H∗

K .

Proof. We use the representation from Lemma 5.3:

(1) In the notation of Definition A.1, we have

PΛ(λ) = ∥λyK(·, y)− IK,Λ(λ
yK(·, y))∥K = inf

s∈SK,Λ

∥λyK(·, y)− s∥K = dist(λyK(·, y), SK,Λ)

for λ ∈ H∗
K . Since the mapping from (4.4) is an isometric isomorphism, we can further write

PΛ(λ) = dist(λyK(·, y), SK,Λ) = dist(λ, spanR {λ1, ..., λn}). (5.3)

Now Lemma A.2 part (1) implies that PΛ is Lipschitz continuous with Lipschitz constant 1.

(2) Let λ ∈ H∗
K . With the representation (5.3) and Lemma A.2 part (2), we get

0 = PΛ(λ) = dist(λ, spanR {λ1, ..., λn}) ⇐⇒ λ ∈ spanR {λ1, ..., λn},

as spanR {λ1, ..., λn} is a closed subspace.

(3) If Λ ⊂ Λ̃, then SK,Λ ⊂ SK,Λ̃. This immediately leads to

PΛ(λ) = inf
s∈SK,Λ

∥λyK(·, y)− s∥K ≥ inf
s∈SK,Λ̃

∥λyK(·, y)− s∥K = PΛ̃(λ)

for every λ ∈ H∗
K .

(4) With part (3) of Theorem A.9 and the generalized reproduction property from Theorem 3.12, we
get

PΛ(λ)
2 = ∥λyK(·, y)− IK,Λ(λ

yK(·, y))∥2K = ⟨λ, λ⟩K −
n∑

i=1

⟨λyK(·, y), bi⟩2K = ⟨λ, λ⟩K −
n∑

i=1

λ(bi)
2

for all λ ∈ H∗
K , provided that B = {b1, ..., bn} is an orthonormal basis of SK,Λ.

Remark 5.5. Note that the power function PΛ provides a practical method for identifying linear de-
pendencies between functionals. Due to part (4) of Corollary 5.4, we can evaluate the power function
numerically. Then, part (2) of the same corollary states that the updated set Λ∪ {λ} is (nearly) linearly
dependent if PΛ(λ) is (nearly) equal to zero.

With this knowledge, we can derive the first convergence criterion. So let (Λn)n∈N be a nested sequence
of linearly independent subsets of Γ ⊂ H∗

K . In order to have convergence on HK,Γ, we must at least have

PΛn(λ) = ∥λyK(·, y)− IK,Λn(λ
yK(·, y))∥K

n→∞−−−−→ 0 for all λ ∈ Γ.

Since the basis functions λyK(·, y) for λ ∈ Γ span a dense subset by construction, the pointwise conver-
gence of the power function towards zero is also sufficient for the convergence of the interpolation method
on the whole space HK,Λ.
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Theorem 5.6. Let Γ ⊂ H∗
K and (Λn)n∈N be a nested sequence of finite linearly independent subsets of

Γ. Then, the generalized interpolation method converges on HK,Γ, i.e.

∥f − IK,Λn
(f)∥K

n→∞−−−−→ 0 for all f ∈ HK,Γ,

if and only if the power function converges pointwise to zero on Γ, i.e.

PΛn(λ)
n→∞−−−−→ 0 for all λ ∈ Γ.

Proof. Due to the previous discussion, we only have to prove that the convergence of the power function
implies convergence of the interpolation method. We begin with an arbitrary element

s =

N∑
i=1

ci · µy
iK(·, y) ∈ spanR {λyK(·, y) | λ ∈ Γ} =: SK,Γ.

Since IK,Λn
is a linear operator for each n ∈ N, we get the convergence

∥s− IK,Λn(s)∥K =

∥∥∥∥∥
N∑
i=1

ci ·
(
µy
iK(·, y)− IK,Λn(µ

y
iK(·, y))

)∥∥∥∥∥
K

≤
N∑
i=1

|ci| · PΛn(µi)
n→∞−−−−→ 0.

Hence, the interpolation method converges on SK,Γ. Now let f ∈ HK,Γ be arbitrary and ε > 0. Since
SK,Γ is dense in HK,Γ, we can find s ∈ SK,Λ with

∥f − s∥K <
ε

3
.

We can choose N ∈ N, such that

∥s− IK,Λn
(s)∥K <

ε

3
for all n ≥ N,

due to the previously shown convergence on SK,Γ. From Theorem 4.10, we also know that ∥IK,Λn
∥K = 1

for all n ∈ N. In total, we get

∥f − IK,Λn
(f)∥K ≤ ∥f − s∥K + ∥s− IK,Λn

(s)∥K + ∥IK,Λn
∥K · ∥f − s∥K < ε for all n ≥ N.

Remark 5.7. According to Theorem 5.6, the interpolation method converges normwise on HK,Γ if the
power function converges pointwise to zero on Γ ⊂ H∗

K . By definition of the power function, this also
implies the convergence

|λ(f)− λ(IK,Λn
(f))| ≤ PΛn

(λ) · ∥f∥K
n→∞−−−−→ 0 for all λ ∈ Γ, f ∈ HK .

If the superset Γ is compact and the power function converges pointwise to zero, then Dini’s theorem
implies that the power function also converges uniformly to zero on Γ. Note that Corollary 5.4 shows
that the requirements of Dini’s Theorem are fulfilled.

5.2. Fill distance

Another indicator for the approximation quality of the interpolation method is the fill distance (cf. [143,
Definition 1.4]), which is based on the distance function defined in Definition A.1.

Definition 5.8. Let (Z, dZ) be a metric space and A ⊂ Z. We define the fill distance hA,Z of A in
Z as the supremum of all distances to the subset A, i.e.

hA,Z = sup
z∈Z

dist(z,A).
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hA, Z

Z

Figure 5.1.: Fill distance of a scattered data point set A (blue) inside a rectangular domain Z ⊂ R2

In other words, the fill distance is the radius of the largest ball in Z that does not include an element of
A, see Figure 5.1. For our generalized interpolation problem, we are interested in the fill distances hΛn,Γ,
where Γ ⊂ H∗

K is the given superset of functionals and (Λn)n∈N is again a nested sequence of linearly
independent subsets of Γ.
Similar to the properties of the power function, the inequality hΛm,X ≤ hΛn,X holds for m ≥ n. Note

that the distance function dist(·,Λn), and therefore the fill distance hΛn,Γ gives an upper bound for the
power function PΛn

via

PΛn(λ) = dist(λ, spanR(Λn)) ≤ dist(λ,Λn) ≤ hΛn,Γ for all n ∈ N, (5.4)

as we have Λn ⊂ spanR(Λn). Hence, if the sequence of fill distances (hΛn,Γ)n∈N converges to zero, the
interpolation method converges on HK,Γ.

Theorem 5.9. Let Γ ⊂ H∗
K and (Λn)n∈N be a nested sequence of finite linearly independent subsets of

Γ that satisfies

hΛn,Γ
n→∞−−−−→ 0.

Then we have

∥f − IK,Λn
(f)∥K

n→∞−−−−→ 0 for all f ∈ HK,Γ.

Proof. Due to the inequality (5.4), we immediately get

PΛn
(λ) ≤ hΛn,Γ

n→∞−−−−→ 0 for all λ ∈ Γ.

With Theorem 5.6, we conclude

∥f − IK,Λn(f)∥K
n→∞−−−−→ 0 for all f ∈ HK,Γ.

With the inequality (5.4) and Remark 5.7, we also obtain an estimate for the pointwise error on the
superset Γ.

Corollary 5.10. For every n ∈ N, we have the pointwise error estimate

|λ(f)− λ(IK,Λn)(f)| ≤ hΛn,Γ · ∥f∥K for all λ ∈ Γ, f ∈ HK .
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5.3. Parametrization

In many cases, the set Γ ⊂ H∗
K can be parametrized by another well-known set. For example, the set of

all point evaluation functionals is parametrized by the (standard) mapping

ϱ : Rd → {δx | x ∈ Rd}, x 7→ δx.

This parametrization allows us to shift our convergence analysis to the parameter space Rd under a
certain regularity of the mapping ϱ. But, before we get into detail, we want to clarify what we exactly
mean by the term parametrization.

Definition 5.11. Let Γ ⊂ H∗
K . Moreover, let Ω be a set and ϱ : Ω → Γ. We call the tuple (Ω, ϱ) a

parametrization of Γ, if the mapping ϱ is surjective. In short, we also say that Γ is parametrized by Ω
or that Γ is parametrized by the mapping ϱ and Ω is called the parameter space.

Example 5.12. Consider a kernel function K ∈ C2k(Rd × Rd) with k ∈ N and the set

Γ = {λx,α = δx ◦Dα | x ∈ Rd, α ∈ Nd
0 with |α| ≤ k} ⊂ H∗

K ,

see Proposition 3.14. Then, the mapping

ϱ : Rd × {α ∈ Nd
0 | |α| ≤ k} → Γ, (x, α) 7→ λx,α

yields a parametrization of Γ.

The main advantage of parametrizations is that, in most cases, the analysis of the parameter space is
much simpler and computations are less costly. Hence, it is desirable to transfer the previous convergence
results to the parameter space Ω.
This idea is mainly relevant for the fill distance approach, since a parametrization (Ω, ϱ) of Γ ⊂ H∗

K

only leads to a reformulated power function on Ω, i.e.

PX(x) := Pϱ(X)(ϱ(x)) for all x ∈ Ω (5.5)

and for finite X ⊂ Ω, provided that ϱ(X) is linearly independent. Usually, the reformulation (5.5) does
not lead to a simplified version of the power function.
In contrast, the concept of the fill distance can be used to derive a convergence criterion in Ω similar to

Theorem 5.9 under suitable assumptions on Ω and ϱ. As the metric space (Ω, dΩ) is usually well-known,
it is easier to find sequences of subsets Xn ⊂ Ω, n ∈ N, such that the sequence of fill distances in Ω
converges to zero.

Theorem 5.13. Let Γ ⊂ H∗
K and (Ω, ϱ) be a parametrization of Γ, such that Ω is a metric space and

ϱ is uniformly continuous. Moreover, let (Xn)n∈N be a nested sequence of finite subsets in Ω, such that
ϱ(Xn) ⊂ H∗

K is linearly independent for all n ∈ N and

hXn,Ω
n→∞−−−−→ 0.

Then, the induced generalized interpolation method converges on HK,Γ, i.e.

∥f − IK,ϱ(Xn)(f)∥K
n→∞−−−−→ 0 for all f ∈ HK,Γ.

Proof. For n ∈ N, we set Λn = ϱ(Xn). With Theorem 5.9, it is sufficient to show that

hΛn,Γ
n→∞−−−−→ 0.

To this end, let ε > 0. Since ϱ is uniformly continuous on Ω, there is δ > 0 such that

∥ϱ(x)− ϱ(y)∥K < ε for dΩ(x, y) < δ.

Now choose N ∈ N, such that hXN ,Ω < δ and write XN = {x1, ..., xm}, m = |XN |. For any λ ∈ Γ, there is
xλ ∈ Ω with λ = ϱ(xλ), since (Ω, ϱ) is a parametrization of Γ. Moreover, there is an index iλ ∈ {1, ...,m}
that satisfies

dΩ(xλ, xiλ) = inf
j∈{1,...,M}

dΩ(xλ, xj) = dist(xλ, XN ).
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Then we have

dist(λ, ϱ(XN )) ≤ ∥λ− ϱ(xiλ)∥K = ∥ϱ(xλ)− ϱ(xiλ)∥K < ε for all λ ∈ Γ,

as the inequality

dΩ(xλ, xiλ) = dist(xλ, XN ) ≤ hXN ,Ω < δ

holds. Therefore, we get

hΛn,Γ ≤ hΛN ,Γ ≤ ε for all n ≥ N.

If the mapping ϱ is Hölder continuous, we can derive an estimate for the pointwise interpolation error
in dependence of the fill distance in the parameter space, which is a generalization of [70, Exercise 8.66].

Corollary 5.14. Under the assumptions of Theorem 5.13, let ϱ be Hölder continuous with exponent
a ∈ (0, 1], i.e. there is C > 0 such that

∥ϱ(x)− ϱ(y)∥K ≤ C · dΩ(x, y)a for all x, y ∈ Ω.

Then, we have the pointwise error estimate

|λ(f)− λ(IK,Λn
)(f)| ≤ C · haXn,Ω · ∥f∥K for all λ ∈ Γ, f ∈ HK .

Proof. Again, for any λ ∈ Γ, there exists xλ ∈ Ω such that ϱ(xλ) = λ. Using the Hölder continuity of ϱ,
we can estimate

dist(λ, ϱ(Xn)) = inf
x∈Xn

∥ϱ(xλ)− ϱ(x)∥K ≤ C · inf
x∈Xn

dΩ(xλ, x)
a ≤ C · haXn,Ω for all λ ∈ Γ,

and therefore

hϱ(Xn),Γ ≤ C · haXn,Ω.

By Corollary 5.10, we get

|λ(f)− λ(IK,Λn
)(f)| ≤ hϱ(Xn),Γ · ∥f∥K ≤ C · haXn,Ω · ∥f∥K for all λ ∈ Γ, f ∈ HK .

Thus, we can shift our convergence analysis to the parameter space, if the requirements of Theorem
5.13 and Corollary 5.14 are fulfilled.

Example 5.15. If Ω ⊂ Rd is compact and K ∈ C (Rd ×Rd) is positive definite, then K is automatically
uniformly continuous on the compact set Ω× Ω. Due to the equation

∥δx − δy∥2K = ∥K(·, x)−K(·, y)∥2K = K(x, x)− 2 ·K(x, y) +K(y, y) for all x, y ∈ Ω,

the mapping

ϱ : Ω → {δx | x ∈ Ω}, x 7→ δx

is uniformly continuous, so that the resulting interpolation method converges according to Theorem 5.13
for suitable sequences of subsets of Ω. Similar convergence results for the standard interpolation were
proven in [70, Section 8.4.2].

Remark 5.16. If Γ ⊂ H∗
K is linearly independent, we can use the parametrization (Ω, ϱ) of Γ to define

a positive definite kernel function on Ω via

K̃(x, y) := ⟨ϱ(x), ϱ(y)⟩K for all x, y ∈ Ω,
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see also [143, Theorem 16.8]. The resulting kernel function is positive definite on Ω, as we have

cT ·AK̃,X · c =
n∑

i=1

n∑
j=1

ci · cj · K̃(xi, xj) =

∥∥∥∥∥
n∑

i=1

ci · ϱ(xi)

∥∥∥∥∥
2

K

> 0

for any finite set X = {x1, ..., xn} ⊂ Ω of pairwise distinct points and any vector c = (c1, ..., cn) ∈ Rn\{0},
as we assumed that Γ is linearly independent. In [53], [54] and [143, Section 16.3], the new kernel K̃ is
used to interpret the generalized interpolation problem as a standard interpolation problem.

Throughout this chapter, we have shown that the decay of the power function or the fill distance leads
to convergence of the interpolation method. But we can also show that the convergence can be arbitrarily
slow on HK,Γ. We provide a generalized version of [70, Exercise 8.64] to close out this chapter.

Theorem 5.17. Let Γ ⊂ H∗
K and (Λn)n∈N be a nested sequence of finite linearly independent subsets

from Γ with strictly increasing cardinality, i.e. |Λn| < |Λn+1| for all n ∈ N. For any monotonically
decreasing null sequence (ηn)n∈N in R≥0, there exists a function f ∈ HK,Γ such that

∥f − IK,Λn
(f)∥K ≥ ηn for all n ∈ N.

Proof. Due to our assumptions, we can find an orthonormal sequence (bn)n∈N in HK,Γ, i.e.

⟨bi, bj⟩K =

{
1, if i = j

0, if i ̸= j,

such that

bi+1 ∈ SK,Λi+1 ∩ S⊥
K,Λi

for all n ∈ N.

Moreover, we define the coefficients ci via

c2i :=

{
0 for i = 1

η2i−1 − η2i for i ≥ 2

and set

sn =

n∑
i=1

ci · bi for all n ∈ N.

The resulting sequence (sn)n∈N is a Cauchy sequence in HK,Γ, as we have

∥sm − sn∥2K =

m∑
i=n+1

c2i = η2n − η2m for m ≥ n.

Since HK,Γ is complete, there exists

f = lim
n→∞

sn =

∞∑
i=1

ci · bi ∈ HK,Γ.

By construction of f and the basis elements bi, i ∈ N, we have IK,Λn
(f) = sn and therefore

∥f − IK,Λn
(f)∥2K = lim

m→∞
∥sm − sn∥2K = lim

m→∞
η2n − η2m = η2n

for every n ∈ N.
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In Chapter 4, we discussed the construction of a generalized interpolant in terms of the Riesz representers
of Λ. More precisely, given a linearly independent set Λ = {λ1, ..., λn} ⊂ H∗

K and a function f ∈ HK , we
can compute the interpolant IK,Λ(f) by solving the linear system

AK,Λ · c = fΛ,

where fΛ = (λ1(f), ..., λn(f))
T ∈ Rn. The solution c ∈ Rn of this linear system is then used to write the

interpolant as

IK,Λ(f) =

n∑
i=1

ci · λyiK(·, y).

In the case of standard interpolation, it is well-known that the standard basis

B =
{
λy1K(·, y), ..., λynK(·, y)

}
(6.1)

can lead to severe numerical problems like high condition numbers of AK,Λ, see e.g. [25]. Moreover, this
basis is quite inefficient in a situation where we successively increase the number of interpolation points
and need to update the interpolant. Hence, we are interested in alternative data-dependent bases, i.e.
bases whose construction depends on the considered set of functionals Λ, that improve the stability of
the interpolation method and can be updated easily when adding new functionals.
First, we introduce a generalized Lagrangian basis in Section 6.1, which leads to a simple representation

of the interpolant and is therefore useful for theoretical concerns. However, this basis does not come with
an update formula, so we only use it to derive stability estimates in Section 7.1. Second, we discuss
the construction of orthonormal bases via matrix decompositions in Section 6.2, which generalizes [105,
Theorem 6.1 ff.]. As in the standard interpolation case, this approach results in the (generalized) Newton
basis, initially introduced in [99]. We translate relevant properties of the Newton basis (cf. [98, Section
4 & 5]) to the generalized case. In Section 6.3, we provide update formulas for the Newton basis that
are derived from the standard case (cf. [105, Section 10]). The utility of the Newton basis is further
demonstrated in Chapter 7, where it is supplemented with suitable point selection strategies.

Remark 6.1. Besides the construction of data-dependent (orthonormal) bases, there are numerous other
stabilization methods that use a series expansion of the considered kernel function. A list of such methods
can be found in [81, Section 1]. One example is given in [51], where Mercer’s theorem is used to rewrite
the kernel in terms of the eigenvalues and orthonormal eigenfunctions of the associated integral operator.
An application of this approach to fractional derivative interpolation can be found in [46].

6.1. Lagrangian basis

The first basis we discuss here is the Lagrangian basis, which is a popular concept from polynomial
interpolation (cf. [70, Section 2.3]). It is uniquely characterized by the equations

λi(lj) =

{
1, if i = j

0, if i ̸= j,
(6.2)

where L = {l1, ..., ln} ⊂ SK,Λ denotes the Lagrangian basis with respect to Λ = {λ1, ..., λn}. Note that
solving for the j-th Lagrangian basis element lj in the standard basis representation is equivalent to
solving the linear system

AK,Λ · c(j) = e(j), (6.3)
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with c(j) ∈ Rn and e(j) being the j-th standard basis vector in Rn. As AK,Λ is regular for the linearly
independent set Λ ⊂ H∗

K (cf. Chapter 4), there is indeed a unique coefficient vector c(j) ∈ Rd such that

lj =

n∑
i=1

c
(j)
i · λyiK(·, y) ∈ SK,Λ

satisfies the equations (6.2) for each j ∈ {1, ..., n}. By construction of this basis, the interpolant to a
function f ∈ HK can simply be written as

IK,Λ(f) =

n∑
j=1

λj(f) · lj , (6.4)

since we have

λi

 n∑
j=1

λj(f) · lj

 =

n∑
j=1

λj(f) · λi(lj) = λi(f) for all i ∈ {1, ..., n}.

In other words, the interpolation matrix with respect to the Lagrangian basis is the n × n identity
matrix, which means that no computations are necessary to identify the coefficients of the interpolant in
the Lagrangian basis representation. We summarize the previous discussion in the following theorem (cf.
[1, Section 3.2], [70, Proposition 8.4]).

Theorem 6.2. Let Λ = {λ1, ..., λn} ⊂ H∗
K be a linearly independent set of functionals. Then, there is a

Lagrangian basis L = {l1, ..., ln} ⊂ SK,Λ that satisfies the conditions (6.2). For each f ∈ HK , the unique
interpolant to f on Λ can be written as

IK,Λ(f) =

n∑
j=1

λj(f) · lj .

Similar to the case of (univariate) polynomial interpolation, the Lagrangian basis is not very useful in
practical cases, as its computation requires the solution of the n linear systems (6.3). But, due to the
simplicity of the representation (6.4), it is useful in the theoretical analysis of the interpolation method.
For example, the Lagrangian basis can be used to derive another representation of the power function
from Section 5.1. To this end, we need to evaluate the inner products between the Lagrangian basis
functions (cf. [70, Proposition 8.14 ff.]).

Lemma 6.3. Let Λ ⊂ H∗
K be finite and linearly independent. We define the inner product ⟨·, ·⟩AK,Λ

via

⟨c, d⟩AK,Λ
:= cT ·AK,Λ · d for c, d ∈ Rn.

Then, the mapping

GΛ : Rn → SK,Λ, (c1, ..., cn)
T 7→

n∑
i=1

ci · λyiK(·, y)

is an isometric isomorphism between the spaces
(
Rn, ⟨·, ·⟩AK,Λ

)
and (SK,Λ, ⟨·, ·⟩K). Moreover, we have

⟨li, lj⟩K = e(i)
T
·A−1

K,Λ · e(j) for all i, j ∈ {1, ..., n},

which means that A−1
K,Λ is the Gram matrix of L with respect to the inner product ⟨·, ·⟩K .

Proof. By definition of SK,Λ, GΛ is an isomorphism. For given c = (c1, ..., cn)
T
, d = (d1, ..., dn)

T ∈ Rn,
we compute

⟨GΛ(c), GΛ(d)⟩K =
〈 n∑

i=1

ci · λyiK(·, y),
n∑

j=1

dj · λyjK(·, y)
〉
K

=

n∑
i=1

n∑
j=1

ci · dj · ⟨λi, λj⟩K = cT ·AK,Λ · d.
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Hence, GΛ is also isometric. From equation (6.3), we know that the coefficient vectors of the Lagrangian
basis functions are given by c(i) = A−1

K,Λ · e(i) for i = 1, ..., n. Using the first part, this leads to

⟨li, lj⟩K = e(i)
T
·A−1

K,Λ ·AK,Λ ·A−1
K,Λ · e(j) = e(i)

T
·A−1

K,Λ · e(j) for all i, j ∈ {1, ..., n}.

Corollary 6.4. The power function with respect to Λ can be expressed as

PΛ(λ)
2 = ⟨λ, λ⟩K −RT ·A−1

K,Λ ·R = ⟨λ, λ⟩K − lT ·AK,Λ · l for all λ ∈ H∗
K ,

where R = (⟨λ, λ1⟩K , ..., ⟨λ, λn⟩K)
T
and l = (λ(l1), ..., λ(ln))

T
.

Proof. According to Lemma 5.3, we can write

PΛ(λ)
2 = ∥λyK(·, y)− IK,Λ(λ

yK(·, y))∥2K = ⟨λyK(·, y)− IK,Λ(λ
yK(·, y)), λyK(·, y)− IK,Λ(λ

yK(·, y))⟩K

for a given λ ∈ H∗
K . Inserting the representation (6.4) for the interpolant IK,Λ(λ

yK(·, y)) leads to

PΛ(λ)
2 = ⟨λ, λ⟩K − 2 ·

n∑
i=1

⟨λ, λi⟩K · λ(lj) +
n∑

i=1

n∑
j=1

⟨λ, λi⟩K · ⟨λ, λj⟩K · ⟨li, lj⟩K

= ⟨λ, λ⟩K − 2 ·RT · l +RT ·A−1
K,Λ ·R,

where we used the second part of Lemma 6.3. Note that we have the relation

λ(lj) = λ

(
n∑

i=1

c
(j)
i · λyiK(·, y)

)
= e(i)

T
·A−1

K,Λ ·R for all j ∈ {1, ..., n},

or in other words, l = A−1
K,Λ ·R. In conlcusion, we get

PΛ(λ)
2 = ⟨λ, λ⟩K − 2 ·RT · l +RT ·A−1

K,Λ ·R =

{
⟨λ, λ⟩K −RT ·A−1

K,Λ ·R
⟨λ, λ⟩K − lT ·AK,Λ · l.

6.2. Orthonormal bases

We observed in Section 4.2 that the interpolant to a function f ∈ HK coincides with its orthogonal
projection onto the space SK,Λ so that we can make use of the orthogonal projection formula (4.11).
Note that the coefficients of this representation satisfy the (stability) estimate

|⟨f, bi⟩K | ≤ ∥f∥K for i ∈ {1, ..., n}.

As we stated in the introduction of this chapter, the construction of orthonormal bases of SK,Λ has
already been discussed for the standard interpolation setting (cf. [98], [99], [104], [105]). In particular,
an efficient Newton basis was introduced in [99], inspired by the properties of the Newton basis known
from univariate polynomial interpolation (see, e.g., [70, Section 2.4]).
Analogously to the results of Chapter 4, the Newton basis can be transferred to the setting of generalized

interpolation. But, before we get into detail, we give a characterization that identifies the construction
of orthonormal bases of SK,Λ with symmetric matrix decompositions of the interpolation matrix AK,Λ

(cf. [105, Theorem 6.1]).

Theorem 6.5. Under the assumptions of Lemma 6.3, let B = {b1, ..., bn} be a set of functions of SK,Λ.
We set c(i) = G−1

Λ (bi) for i = 1, ..., n and define the coefficient matrix CB as

CB :=
(
c(1) . . . c(n)

)
∈ Rn×n

containing the coefficient vectors as columns. Then B is an orthonormal basis of SK,Λ if and only if

AK,Λ = C−1
B

T · C−1
B .
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Proof. With the result from Lemma 6.3, we get that B is an orthonormal basis of SK,Λ if and only if CB

is invertible and

CT
B ·AK,Λ · CB = In

holds, where In is the n× n identity matrix. Due to the invertibility of CB , this is equivalent to

AK,Λ = C−1
B

T · C−1
B .

The previous theorem now enables us to construct orthonormal bases with the help of suitable matrix
decompositions. If C ∈ Rn×n is a regular matrix satisfying AK,Λ = CT · C, we can set bi = GΛ(c

(i))
for i = 1, ..., n, where c(i) denotes the i-th column of C−1. Then, Theorem 6.5 guarantees that the
set B = {b1, ..., bn} is an orthonormal system in SK,Λ. We discuss two different symmetric matrix
decompositions here:

• Eigenvalue decomposition: Since AK,Λ is symmetric positive definite, there is an eigenvalue
decomposition

AK,Λ = QT ·D ·Q,

where Q ∈ Rn×n is an orthogonal matrix and

D =

σ1 . . . 0
...

. . .
...

0 . . . σn


is a diagonal matrix containing the positive eigenvalues of AK,Λ. If we set

D1/2 :=


√
σ1 . . . 0
...

. . .
...

0 . . .
√
σn


and C := D1/2 · Q, we obtain a symmetric decomposition of AK,Λ. Hence, the inverse matrix

C−1 = QT ·D1/2−1
contains the coefficients of an orthonormal basis of SK,Λ (cf. [70, Proposition

8.35]). However, it is not feasible to use the eigenvalue decomposition, since the computation of the
eigenvalues and orthogonal eigenvectors is very costly, especially for large matrices. In general, the
eigenvalue decomposition of the interpolation matrices cannot be updated efficiently if the number
of interpolation points increases throughout the interpolation process.

• Cholesky decomposition: Again, due to the positive definiteness of AK,Λ, there is a Cholesky
decomposition

AK,Λ = L · LT ,

where

L =

l1,1 . . . 0
...

. . .
...

∗ . . . ln,n


is a lower triangular matrix containing positive entries on the diagonal. Hence, the matrix LT−1

also contains the coefficients of an orthonormal basis. In contrast to the eigenvalue decomposition,
there is an efficient update formula for the Cholesky decomposition and its inverse factor. We
explain the details of this update strategy in Section 6.3.

Due to the aforementioned reasons, we restrict ourselves to the Cholesky decomposition of the inter-
polation matrix for the computation of an orthonormal system. This particular basis coincides with a
normalized version of the Newton basis from [99].
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Theorem 6.6. Let L be the Cholesky factor of the interpolation matrix AK,Λ, i.e. AK,Λ = L · LT . We
define the functions

ni = GΛ(L
T−1 · e(i)) for i = 1, ..., n,

where e(i) ∈ Rn denotes the i-th standard basis vector. Then N = {n1, ..., nn} is an orthonormal basis of
SK,Λ that satisfies the following properties:

(1) We have spanR {n1, ..., ni} = SK,Λi
for each i ∈ {1, ..., n} , where Λi = {λ1, ..., λi}.

(2) The basis functions satisfy the Newton basis condition

λi(nj) = 0 for i < j.

Proof. According to Theorem 6.5 and our previous discussion, N is an orthonormal basis of SK,Λ. Due

to the upper triangular structure of LT−1
, we have nj ∈ SK,Λi

for j ≤ i. Part (1) follows from

dim (spanR {n1, ..., ni}) = i = dim (SK,Λi
) .

If j > i, we have nj ⊥ spanR {n1, ..., ni} = SK,Λi and therefore

0 = ⟨nj , λyiK(·, y)⟩K = λi(nj).

From now on, we call the basisN in Theorem 6.6 the Newton basis of SK,Λ. It should be mentioned here
that, due to the structure of the Cholesky factor L, an application of the Gram-Schmidt orthogonalization
process to the standard basis of SK,Λ results in the constructed Newton basis as well. Nevertheless, the
characterization of orthonormal bases via matrix decompositions is still an important result, as it leaves
room for further bases.

Remark 6.7. Since the coefficients of the Newton basis elements n1, ..., nn with respect to the standard

basis of SK,Λ are given by the columns of the transposed inverse Cholesky factor L−1T of AK,Λ, the
generalized Vandermonde matrix of the Newton basis and Λ is given by the Cholesky factor L of AK,Λ,
i.e. λ1(n1) . . . λ1(nn)

...
. . .

...
λn(n1) . . . λn(nn)

 = AK,Λ · L−1T = L.

It is possible to link the Newton basis to the Lagrangian basis of the previous section (cf. [70, Theorem
8.41]).

Corollary 6.8. Let L(i) = {l(i)1 , ..., l
(i)
i } denote the Lagrangian basis of SK,Λi

for each i ∈ {1, ..., n},
where Λi = {λ1, ..., λi}. Then we have

l
(i)
i = λi(ni)

−1 · ni for i = 1, ..., n.

Proof. First, we need to verify that λi(ni) ̸= 0. If this is not the case, we have

λj(ni) = 0 for each j ∈ {1, ..., i}.

Since ni ∈ SK,Λ, this implies ni = 0, as the interpolation with respect to Λi is uniquely solvable. But this
cannot hold for an element of a vector space basis. With part (2) of Theorem 6.6, we get

λj(l
(i)
i ) = λj(λi(ni)

−1 · ni) for j ≤ i.

Again, due to unique interpolation on SK,Λi , we must have l
(i)
i = λi(ni)

−1 · ni.
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6.3. Update strategies

One of the biggest advantages of the Newton basis is the possibility to update efficiently. More precisely,
if we add a new functional λn+1 /∈ spanR(Λ), we update the current set of Newton basis functions
N = {n1, ..., nn} to the Newton basis Ñ = {ñ1, ..., ñn+1} of SK,Λ̃, where Λ̃ = Λ ∪ {λn+1}. The update

formula for the Newton basis Ñ can be derived by updating the inverse Cholesky factor of the interpolation
matrix AK,Λ (cf. [70, Theorem 8.45]).

Lemma 6.9. Let L be the Cholesky factor of AK,Λ. Moreover, let λn+1 /∈ spanR(Λ) and Λ̃ = Λ∪{λn+1}.
Then, the Cholesky factor of AK,Λ̃ is given by the block matrix

L̃ =

(
L 0

(L−1 ·R)T PΛ(λn+1)

)
,

where R = (⟨λ1, λn+1⟩K , ..., ⟨λn, λn+1⟩K)
T ∈ Rn. Consequently, the inverse Cholesky factor is given by

L̃−1 =

(
L−1 0

−PΛ(λn+1)
−1 · lT PΛ(λn+1)

−1

)
,

where l = (λn+1(l1), ..., λn+1(ln))
T
= A−1

K,Λ ·R = L−1T · L−1 ·R, see also Corollary 6.4.

Proof. Due to our assumptions and part (2) of Corollary 5.4, we must have PΛ(λn+1) > 0. We can
compute

L̃ · L̃T =

(
L · LT L · L−1 ·R

RT · LT−1 · LT ∥L−1 ·R∥22 + PΛ(λn+1)
2

)
=

(
AK,Λ R
RT ∥L−1 ·R∥22 + PΛ(λn+1)

2

)
.

The desired equality follows from Corollary 6.4, as we have

∥L−1 ·R∥22 + PΛ(λn+1)
2 = RT ·A−1

K,Λ ·R+ PΛ(λn+1)
2 = ⟨λn+1, λn+1⟩K .

The second part can be verified via basic matrix multiplication as well.

Recall that we can evaluate the power function with the Newton basis and the formula from Corollary
5.4, part (4). Due to the structure of the updated (inverse) Cholesky factor from Lemma 6.9, we can
make the following conclusions:

(i) To update the Newton basis, we can keep the current set of basis functions and compute an ad-
ditional basis element. This leads to an efficient recursive computation of the Newton basis. As a
consequence, we can write Ñ = {n1, ..., nn+1} instead of Ñ = {ñ1, ..., ñn+1}.

(ii) The generalized Vandermonde matrix of the updated basis set Ñ = {n1, ..., nn+1} is given by λ1(n1) . . . λ1(nn+1)
...

. . .
...

λn+1(n1) . . . λn+1(nn+1)

 = L̃ =

(
L 0

(L−1 ·R)T PΛ(λn+1)

)
,

see Remark 6.7. Hence, we get the following equation (see also [98, Korollar 5.1.1]):

λn+1(nn+1) = PΛ(λn+1) (6.5)

(iii) During the update of Lemma 6.9, we need to divide by the term PΛ(λn+1), which represents the
normalization factor in the Gram-Schmidt orthogonalization process. In order to avoid numeri-
cal problems, the power function value needs to be rather high, as dividing by values near zero
leads to severe instabilities. Generally, the power function value affects the overall stability of the
interpolation method. More details follow in Section 7.1.

Finally, we are in the position to efficiently update the new interpolant with respect to the updated
set Λ̃ = Λ ∪ {λn+1} (cf. [99, Lemma 5]).
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Corollary 6.10. Under the assumptions of Lemma 6.9, let f ∈ HK and N = {n1, ..., nn+1} denote the
updated Newton basis of SK,Λ̃. Then, we can write the updated interpolant as

IK,Λ̃(f) = IK,Λ(f) +
λn+1(f)− λn+1(IK,Λ(f))

PΛ(λn+1)
· nn+1.

Proof. It is clear that we have

s := IK,Λ(f) +
λn+1(f)− λn+1(IK,Λ(f))

PΛ(λn+1)
· nn+1 ∈ SK,Λ̃.

We verify that s interpolates f on Λ̃. For 1 ≤ i < n+ 1, we have λi(nn+1) = 0 due to Theorem 6.6 part
(2) and therefore

λi(s) = λi(IK,Λ(f)) = λi(f).

For i = n+ 1, we can use equation (6.5) to get

λn+1(s) = λn+1(IK,Λ(f)) +
λn+1(f)− λn+1(IK,Λ(f))

PΛ(λn+1)
· λn+1(nn+1)

= λn+1(IK,Λ(f)) +
λn+1(f)− λn+1(IK,Λ(f))

PΛ(λn+1)
· PΛ(λn+1)

= λn+1(f).

Since the interpolation problem is uniquely solveable in SK,Λ̃, we must have

IK,Λ̃(f) = IK,Λ(f) +
λn+1(f)− λn+1(IK,Λ(f))

PΛ(λn+1)
· nn+1.

In total, the previous discussion delivers a recursive algorithm to compute the interpolant as

IK,Λn+1
(f) = IK,Λ1

(f) +

n+1∑
i=2

λi(f)− λi(IK,Λi−1(f))

PΛi−1
(λi)

· ni, (6.6)

where Λi = {λ1, ..., λi} for i = 1, ..., n+ 1 and the initial interpolant is given by

IK,Λ1
(f) =

λ1(f)

∥λ1∥K
· n1.

Recall that the power function can be computed recursively using the formula

PΛi+1
(λ)2 = ⟨λ, λ⟩K −

i+1∑
j=1

λ(nj)
2 = PΛi

(λ)2 − λ(ni+1)
2 for all λ ∈ H∗

K (6.7)

and i = 1, ..., n, see Corollary 5.4, part (4). As it was shown in [105], the algorithm can be implemented
more efficiently such that it only stores the evaluations

λ(ni) for i = 1, ..., n+ 1

for a certain subset of functionals λ ∈ H∗
K in order to compute the interpolant, without storing the

coefficients of the Newton basis in the representation of the standard basis. This implementation is based
on the following update formula (cf. [105, Section 10]).

Theorem 6.11. In the setting of Corollary 6.10, we have the update formula

λ(nn+1) = PΛ(λn+1)
−1 ·

(
⟨λ, λn+1⟩K −

n∑
i=1

λ(ni) · λn+1(ni)

)
for all λ ∈ H∗

K . (6.8)
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Proof. As we have already discussed after the proof of Theorem 6.6, we can also compute the basis ele-
ment nn+1 via the update formula from the Gram-Schmidt orthogonalization process with the additional
element λyn+1K(·, y):

nn+1 =
1

∥λyn+1K(·, y)− IK,Λ(λ
y
n+1K(·, y))∥K

·

(
λyn+1K(·, y)−

n∑
i=1

⟨λyn+1K(·, y), ni⟩K · ni

)

= PΛ(λn+1)
−1 ·

(
λyn+1K(·, y)−

n∑
i=1

λn+1(ni) · ni

)
.

Inserting this representation into λ ∈ H∗
K yields the desired update formula (6.8).

Remark 6.12. The update formula leads to a more efficient algorithm in terms of storage and compu-
tational complexity, as it can easily be vectorized to treat large sets of data. However, there remains
a huge drawback in this recursion. Note that the computation of the new basis element nn+1 and its
evaluations depend on all previous basis elements of the Newton basis. Thus, the update formula (6.8)
gets more costly as the number of data points grows larger. Until now, no general improvement is known
to avoid the quadratic growth of the cost for evaluating a fixed functional in all Newton basis functions.
For example, a concept like a 3-term-recursion as known from univariate orthogonal polynomials (see,
e.g., [70, Section 4.4]) would significantly improve the computational efficiency.

We close this chapter with a result regarding the expansion of functions into orthogonal series. Under
the convergence conditions from Chapter 5, the recursively constructed Newton basis forms a complete
orthonormal system in the restricted space HK,Γ (cf. [98, Korollar 4.4.3 & 4.4.5]).

Theorem 6.13. Let Γ ⊂ H∗
K and (Λn)n∈N be a nested sequence of finite linearly independent subsets of

Γ with |Λn| = n for all n ∈ N that satisfies the property

PΛn(λ)
n→∞−−−−→ 0 for all λ ∈ Γ or hΛn,Γ

n→∞−−−−→ 0.

Moreover, let N = {ni | i ∈ N} denote the respective set of Newton basis functions. Then, every function
f ∈ HK,Γ can be written as

f =

∞∑
i=1

⟨f, ni⟩K · ni =
λ1(f)

∥λ1∥K
· n1 +

∞∑
i=2

λi(f)− λi(IK,Λi−1
(f))

PΛi−1
(λi)

· ni.

In particular, we then have

λyK(·, y) =
∞∑
i=1

λ(ni) · ni and ⟨λ, λ̃⟩K =

∞∑
i=1

λ(ni) · λ̃(ni) for all λ, λ̃ ∈ Γ.

Proof. The first equality follows from Theorem 5.6, 5.9 and the representation (6.6). If f = λyK(·.y) for
a functional λ ∈ Γ, we get

λyK(·.y) =
∞∑
i=1

⟨λyK(·.y), ni⟩K · ni =
∞∑
i=1

λ(ni) · ni.

Given another λ̃ ∈ Γ, we use its continuity on HK to derive

⟨λ, λ̃⟩K = λ̃(λyK(·.y)) = λ̃

( ∞∑
i=1

λ(ni) · ni

)
=

∞∑
i=1

λ(ni) · λ̃(ni).

Remark 6.14. Even if the previously assumed convergence conditions do not hold, we still have(
λ1(f)

∥λ1∥K

)2

+

∞∑
i=2

(
λi(f)− λi(IK,Λi−1(f))

PΛi−1(λi)

)2

=

∞∑
i=1

⟨f, ni⟩2K = lim
n→∞

∥IK,Λn∥2K ≤ ∥f∥2K
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for each f ∈ HK,Γ. Hence,

λn+1(f)− λn+1(IK,Λn(f))

PΛn
(λn+1)

n→∞−−−−→ 0.

This shows that the interpolation error at the update functional decays faster than the respective power
function value, both with respect to the previously selected functionals. We use this fact later in the
proof of Theorem 7.19.
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Throughout the last chapter, we have assumed that the new functional λn+1 is always given and we just
have to proceed with the update of the orthogonal basis and the interpolant. But this is not a realistic
scenario, as we are usually confronted with a mathematical problem, e.g. a partial differential equation,
and need to choose the data points on our own. To get an idea of how to choose well-suited data points
for the interpolation process, we generalize stability estimates from standard interpolation and explain
the uncertainty relation in the context of generalized interpolation in Section 7.1. With our general
convergence results from Chapter 5, we can then derive generalized versions of greedy algorithms known
from the standard case (cf. [41], [43], [119], [145]) in Section 7.2. Most of these greedy algorithms for
generalized interpolation were already introduced and analyzed in [146]. We build on that work and prove
convergence for the so-called β-greedy algorithms under rather mild assumptions on the kernel and the
interpolation domain. Besides the β-greedy approach, we analyze generalized geometric approaches that
rely on the distance function within the dual space or the parameter space in case a parametrization of the
functional set exists (cf. Section 5.3). However, one has to keep in mind that we only deal with finite data
in practice. As an outlook, we mention the concept of data thinning and discuss how greedy algorithms
can help to thin out large, redundant data point sets to improve the computational stability and efficiency
of the reconstruction method. In particular, this idea can be combined with known regularization tools
from kernel-based approximation, which we discuss in Section 7.3. To this end, the penalization of the
native space norm is generalized by penalizing the evaluation of certain regularizing functionals from the
native dual space. We close the first part of this thesis with a pseudo code that summarizes the derived
framework for kernel-based generalized interpolation.
Following Chapter 5, we select the data points from a given superset Γ ⊂ H∗

K that depends on the
problem we want to solve. This results in nested sequences of subsets from Γ. It is well-known that
the choice of data points has a strong effect on the accuracy and numerical stability of the interpolation
method, see e.g. [37]. Hence, we are interested in suitable selection strategies for new data points that
focus on at least one of these two properties. Concerning the numerical stability, we are particularly
interested in limiting the growth of the spectral condition numbers

cond2 (AK,Λn
) =

σmax(AK,Λn)

σmin(AK,Λn
)

for n ∈ N, (7.1)

where σmin and σmax denote the lowest and highest singular values. If the condition number is too high,
the reconstruction gets highly sensitive to noise and therefore useless for practical applications.

7.1. Uncertainty relation

For the stability analysis, we want to derive estimates for the smallest and highest eigenvalues of the
updated interpolation matrix depending on the newly added functional. This gives an insight into how
to select new functionals in order to obtain a sufficiently high numerical stability.
We start this section with a general result on the behavior of the condition numbers, which is a direct

consequence of Cauchy’s interlacing theorem (see, e.g., [65, Theorem 4.3.17]).

Theorem 7.1. Let Λn ⊂ H∗
K be linearly independent and λn+1 ∈ H∗

K \ Λn. Set Λn+1 = Λn ∪ {λn+1},
then we have

σmin(AK,Λn+1) ≤ σmin(AK,Λn) and σmax(AK,Λn+1) ≥ σmax(AK,Λn).

In combination with the formula (7.1), Theorem 7.1 shows that the sequence of condition numbers
is increasing. Hence, adding new functionals always decreases the numerical stability to some degree.
Similar to the standard interpolation case (cf. [143, Chapter 12]), the highest singular value grows at
most linearly depending on the number of data points if the underlying set of functionals is bounded.



7. Greedy Data Selection Algorithms 63

Proposition 7.2. Let Γ ⊂ H∗
K be bounded and Λn = {λ1, ..., λn} ⊂ Γ be linearly independent. Then,

there is a constant C > 0, independent of n, such that the highest singular value of the interpolation
matrix can be bounded by

σmax(AK,Λn
) ≤ C · n.

Proof. Since Γ is bounded, we have

C := sup
λ∈Γ

∥λ∥2K <∞.

Due to the Gershgorin circle theorem (see, e.g., [65, Theorem 6.1.1]), there is i ∈ {1, ..., n} with

σmax(AK,Λn)− ⟨λi, λi⟩K ≤ |σmax(AK,Λn)− ⟨λi, λi⟩K | ≤
∑
i ̸=j

|⟨λi, λj⟩K |.

Note that, due to Cauchy’s inequality, we also have

|⟨λi, λj⟩K | ≤ ∥λi∥K · ∥λj∥K ≤ C for i ̸= j,

and therefore

σmax(AK,Λn) ≤ ⟨λi, λi⟩K +
∑
i̸=j

|⟨λi, λj⟩K | ≤ C · n.

Additionally, we can find an upper bound for the smallest singular value of the updated interpolation
matrix to estimate its decay. This upper bound mainly involves the power function value at the additional
functional, see [143, Theorem 12.1] for the standard interpolation case.

Theorem 7.3. Under the assumptions of Theorem 7.1 with Λn = {λ1, ..., λn}, we have the estimate

σmin(AK,Λn+1
) ≤ PΛn

(λn+1)
2 ·

1 +

n∑
j=1

λn+1(lj)
2

−1

,

where L = {l1, ..., ln} denotes the Lagrangian basis of SK,Λn
.

Proof. From Corollary 6.4, we know that

PΛn
(λn+1)

2 = ⟨λn+1, λn+1⟩K − lT ·AK,Λn
· l,

where l = (λn+1(l1), ..., λn+1(ln))
T
. Setting z = (−l, 1)T ∈ Rn+1, we can use the identity

AK,Λn
· l = R = (⟨λ1, λn+1⟩K , ..., ⟨λn, λn+1⟩K)

T

to compute

zT ·AK,Λn+1
· z = lT ·AK,Λn

· l − 2 ·RT · l + ⟨λ, λ⟩K = ⟨λ, λ⟩K − lT ·AK,Λn
· l = PΛn

(λ)2.

By applying the Courant-Fischer theorem (see, e.g., [65, Theorem 4.2.6]), we get the desired result

σmin(AK,Λn+1
) ≤

zT ·AK,Λn+1
· z

zT · z
= PΛn

(λn+1)
2 ·

1 +

n∑
j=1

λn+1(lj)
2

−1

.
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Remark 7.4. According to Proposition 7.2, the largest eigenvalue of the interpolation matrix grows at
most at a linear rate, which means that it is rather unproblematic for the numerical stability. In contrast,
the smallest eigenvalue usually causes numerical instabilities, as it is bounded by the power function value
due to Theorem 7.3. Depending on the regularity of the kernel, the power function value can decay very
fast, which then translates to the smallest eigenvalue. In the context of standard interpolation, upper
bounds for the power function of specific kernels can be found in [143, Table 11.1], whereas lower bounds
for the smallest eigenvalue in terms of the separation distance are given in [143, Table 12.1].
Moreover, we want to remark that the estimate from Theorem 7.3 matches with Remark 5.5, where

we observed that the power function measures the linear dependence of given functionals. If the power
function value is small, the set of functionals is nearly linearly dependent, which means that the columns
of the interpolation matrix are nearly linearly dependent. Therefore, the interpolation matrix is almost
singular and its smallest eigenvalue is close to zero.

For the sake of numerical stability, we want the power function values PΛn
(λ) to be large, as this leads

to a large upper bound in Theorem 7.3. A large power function value also stabilizes the update formulas
from Corollary 6.10 and Theorem 6.11. But, if we focus on the approximation quality, a fast decay of the
power function is desirable to ensure fast (pointwise) convergence, see Theorem 5.6 and Remark 5.7. This
tradeoff between approximation quality and stability is called the uncertainty principle in kernel-based
approximation (cf. [116]), and we cannot have arbitrarily good approximation quality and arbitrarily
good stability at the same time within this approach.

7.2. Greedy algorithms

In the following, we discuss generalizations of single-point selection algorithms for kernel-based interpo-
lation methods that have been developed in the last two decades. These algorithms belong to the class
of greedy algorithms (cf. [135]), which solve a specific optimization problem in each step. In our case, we
select the new functional as a maximizer of a given error functional η : Γ → R, i.e. we apply the selection
rule

η(λn+1) = sup
λ∈Γ

η(λ).

The idea of this selection rule is to select a new data point from an area where the error is still large
so that the error around this new data point significantly decreases with the update of the interpolant.
Usually, the error functional η ≡ ηf,Λn

depends on the currently selected data set Λn and the function f
that we want to interpolate. Thus, it adapts to the current state of the interpolation process. Of course,
there are several choices for the selection rule η, which are motivated by the wishes and needs of the
particular problem.

Remark 7.5. In most cases, the error functional η is bounded and depends continuously on the input
argument λ. But this does not guarantee that η attains a maximum on Γ, as Γ does not have to be
compact in general. This problem can be fixed (theoretically) by introducing a parameter γ ∈ (0, 1) and
changing the selection rule to

η(λn+1) ≥ γ · sup
λ∈Γ

η(λ)

see also [42]. Note that these methods lead to an iterative point selection, where we usually have to
choose an initial value λ0 ∈ Γ. Since the analysis of the greedy methods (e.g. convergence results) does
not depend on the initial value, we ignore this initial selection throughout this chapter. We just have to
keep in mind that we have to make an initial choice if we implement the algorithms.

According to the convergence results from Chapter 5, we aim to construct sequences of nested subsets
that satisfy

PΛn
(λ)

n→∞−−−−→ 0 for all λ ∈ Γ or hΛn,Γ
n→∞−−−−→ 0.

To this end, we restrict ourselves to the case that the superset Γ is totally bounded (cf. Definition A.3),
as the notion of the fill distance is closely related to this kind of set. In fact, the geometric convergence
criterion can only be satisfied for totally bounded sets.
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Proposition 7.6. Let (Z, dZ) be a metric space. There is a nested sequence of finite subsets (An)n∈N of
Z with

hAn,Z
n→∞−−−−→ 0 (7.2)

if and only if Z is totally bounded.

Proof. Let ε > 0 and (An)n∈N be a nested sequence of finite subsets satisfying (7.2). Then we can find
N ∈ N with

sup
z∈Z

dist(z,AN ) = hAN ,Z < ε,

where AN is finite. This immediately gives

Z ⊂
⋃

a∈AN

Bε(a),

so that Z is totally bounded. Conversely, let Z be totally bounded. For every n ∈ N, we can find a finite
set Ãn with

Z ⊂
⋃

a∈Ãn

B1/n(a),

or equivalently, hÃn,Z
≤ 1/n. Set An :=

⋃n
i=1 Ãi for each n ∈ N, then (An)n∈N is a nested sequence of

finite subsets that satisfies

hAn,Z ≤ hÃn,Z
≤ 1/n

n→∞−−−−→ 0.

Remark 7.7. For given supersets Γ ⊂ H∗
K , it is not a trivial task to decide whether it is totally bounded

or not. But, if Γ can be parametrized by the pair (Ω, ϱ) (cf. Section 5.3), where Ω is totally bounded
and ϱ is uniformly continuous, Lemma A.4 assures that Γ is also totally bounded. If Ω is even compact,
the requirements can be lowered to ϱ being continuous, so that Γ is compact as well.

Our further analysis relies on the decay of the separation terms PΛn
(λn+1) and dist(λn+1,Λn) for

n ∈ N. Due to the assumption that Γ is totally bounded, the additional functional λn+1 cannot be
separated from the set Λn as n→ ∞.

Lemma 7.8. Let (Z, dZ) be totally bounded and (an)n∈N be a sequence in Z. Set An = {a1, ..., an} for
n ∈ N, then we have the convergence

dist(an+1, An)
n→∞−−−−→ 0.

In the special case that Z = Γ ⊂ H∗
K and An = Λn = {λ1, ..., λn} is linearly independent for each n ∈ N,

we have

PΛn(λn+1)
n→∞−−−−→ 0.

Proof. Given ε > 0, we can find z1, ..., zM ∈ Z such that

Z ⊂
M⋃
j=1

Bε/2(zj).

We set

Ij = {n ∈ N | an ∈ Bε/2(zj)} for j = 1, ...,M

and

Nj =

{
min(Ij) if Ij ̸= ∅
0 if Ij = ∅

for j = 1, ...,M.



7. Greedy Data Selection Algorithms 66

For N = max{Nj | j = 1, ...,M} and n > N , there is 1 ≤ j ≤M and a ∈ AN such that

an, a ∈ Bε/2(zj)

due to the choice of N . Using the triangle inequality, this implies

dist(an, An−1) ≤ dist(an, AN ) ≤ dZ(an, a) ≤ dZ(an, zj) + dZ(zj , a) < ε.

The second part follows from the estimate

PΛn
(λn+1) ≤ dist(λn+1,Λn) for all n ∈ N.

Besides the pointwise convergence with respect to Γ, we are also interested in showing convergence
with respect to the native space norm. In general, weak convergence in HK,Γ does not necessarily result
in normwise convergence in infinite-dimensional Hilbert spaces. But, in the case that we have a sequence
of projections, the sequence must have a normwise limit, so that weak convergence with respect to Γ is
sufficient.

Lemma 7.9. Let Γ ⊂ H∗
K . For f, g ∈ HK,Γ, we have the equivalence

f = g ⇐⇒ λ(f) = λ(g) for all λ ∈ Γ.

Moreover, if (Λn)n∈N is a nested sequence of finite linearly independent subsets of Γ satisfying

λ(IK,Λn(f))
n→∞−−−−→ λ(f) for all λ ∈ Γ,

and a fixed f ∈ HK,Γ, we also have normwise convergence

∥f − IK,Λn
(f)∥K

n→∞−−−−→ 0.

Proof. For the first part, notice that we have

λ(f) = λ(g) for all λ ∈ Γ ⇐⇒ f − g ⊥ spanR {λyK(·, y) | λ ∈ Γ}

for f, g ∈ HK,Γ due to the generalized reproduction property from Theorem 3.12. With the continuity
of the inner product, this is equivalent to f − g ⊥ HK,Γ and f = g. For the second part, consider the
sequence (

∥IK,Λn(f)∥2K
)
n∈N

for a fixed f ∈ HK,Γ. Due to the properties

IK,Λn
(IK,Λm

(f)) = IK,Λn
(f) for m > n and ∥IK,Λn

(f)∥K ≤ ∥f∥K for m,n ∈ N,

this sequence is bounded and monotonically increasing. Hence, it is convergent and a Cauchy sequence.
Using the projection properties

∥IK,Λm
(f)∥2K = ∥IK,Λm

(f)− IK,Λn
(IK,Λm

(f))∥2K + ∥IK,Λn
(IK,Λm

(f))∥2K
= ∥IK,Λm

(f)− IK,Λn
(f)∥2K + ∥IK,Λn

(f)∥2K ,

of the interpolation operator, we get the identity

∥IK,Λm
(f)− IK,Λn

(f)∥2K = ∥IK,Λm
(f)∥2K − ∥IK,Λn

(f)∥2K

for m > n, so that (IK,Λn(f))n∈N ⊂ HK,Γ is a Cauchy sequence as well. Since HK,Γ is complete, it has a
normwise limit g ∈ HK,Γ. Then g is also the weak limit of this sequence so that we get

λ(g) = lim
n→∞

λ(IK,Λn(f)) = λ(f) for all λ ∈ Γ.

due to our assumptions. The assertion now follows from the first part.
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For the introduction of the greedy selection strategies, we distinguish between target-independent and
target-dependent algorithms. Large parts of the convergence analysis are shifted to Subsection 7.2.3,
which unifies several approaches. Note that these selection rules only perform an infinite number of steps
if the superset Γ contains an infinite linearly independent subset. Otherwise, the algorithms terminate
after a finite number of iteration steps, as no more information can be added to the interpolation process.
In our theoretical analysis, we always assume that the algorithms perform an infinite number of iteration
steps, which of course does not apply in practical cases. We discuss a realistic use case in Subsection
7.2.5.

7.2.1. Target-independent algorithms

We start our discussion on greedy algorithms with the target-independent approaches. Here, the term
target-independent means that the selection rule depends solely on the chosen kernel K, the superset Γ
and the current data set Λn in the n-th iteration step, n ∈ N. It does not depend on the given data values
of the considered target function f ∈ HK,Γ so that we can reuse the selected points when approximating
different target functions. These methods mainly aim to maintain high numerical stability throughout
the interpolation process while keeping sufficient approximation quality.
In Theorem 7.3, we deduced that the decay of the power function is a good indicator for the numerical

stability of the reconstruction method. Moreover, the power function value represents the normalization
factor in the Gram-Schmidt process and could therefore cause severe numerical problems in the orthog-
onalization process. Hence, a reasonable approach is to maximize the power function in each iteration
step to optimize the upper bound of the smallest eigenvalue. This selection rule, which is given by

PΛn(λn+1) = sup
λ∈Γ

PΛn(λ) =: ∥PΛn∥∞,Γ for n ∈ N, (7.3)

is called the P -greedy algorithm (cf. [37], [41], [118]). In other words, we select the functional that has
the largest distance to the span of the current data point set and therefore has the worst approximation
error in terms of the native space norm. We can immediately observe that the sequence

(∥PΛn
∥∞,Γ)n∈N = (PΛn

(λn+1))n∈N

is monotonically decreasing, as we have

∥PΛn+1
∥∞,Γ = PΛn+1

(λn+2) ≤ PΛn
(λn+2) ≤ ∥PΛn

∥∞,Γ = PΛn
(λn+1).

Moreover, if λn+1 is chosen via the P -greedy selection rule, it maximizes the evaluation at the updated
Newton basis element (cf. [98, Korollar 5.2.1]).

Proposition 7.10. Let λn+1 /∈ spanR(Λn) be chosen via the P -greedy algorithm (7.3) and nn+1 be the
additional basis element of the updated Newton basis, see Lemma 6.9. Then we have

|λ(nn+1)| ≤ λn+1(nn+1) = ∥PΛn
∥∞,Γ for all λ ∈ Γ.

Proof. With equation (6.7), we have

λ(nn+1)
2 = PΛn

(λ)2 − PΛn+1
(λ)2 ≤ PΛn

(λ)2 ≤ ∥PΛn
∥2∞,Γ for all λ ∈ Γ.

The claim follows from equation (6.5) combined with the selection criterion

λn+1(nn+1) = PΛn(λn+1) = ∥PΛn,Γ∥∞,Γ.

Another geometric approach is given by the geometric greedy algorithm, which selects the new functional
via

dist(λn+1,Λn) = sup
λ∈Γ

dist(λ,Λn) = hΛn,Γ for n ∈ N (7.4)
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to create an optimal separation between the new functional and the current data set (cf. [37, Section
3.1]). This selection rule can be viewed as a simplified version of the P -greedy algorithm, as we try to
maintain numerical stability by the separation with less computational complexity within the selection
rule.
Since the geometric greedy selection only depends on the distance function dist(·,Λn), it does not

include any information about the linear dependence of the functionals. Hence, we have to make sure that
the superset Γ is already linearly independent so that we cannot choose linearly dependent functionals.
If Γ is totally bounded, the geometric greedy selection induces a convergent interpolation method.

Theorem 7.11. Let Γ ⊂ H∗
K be totally bounded and linearly independent. Moreover, let (Λn)n∈N be

chosen via the geometric greedy algorithm (7.4). Then we have hΛn,Γ
n→∞−−−−→ 0 and the convergence

∥f − IK,Λn
(f)∥K

n→∞−−−−→ 0 for all f ∈ HK,Γ.

Proof. With the result of Lemma 7.8, we conclude

hΛn,Γ = dist(λn+1,Λn)
n→∞−−−−→ 0.

The convergence of the interpolation method then follows from Theorem 5.9.

Not only does the geometric greedy selection lead to a convergent interpolation method, but it also
produces quasi-uniform data point sets in Γ (cf. [41, Lemma 5.1]).

Definition 7.12. Let (Z, dZ) be a metric space and A ⊂ Z with |A| ≥ 2. The separation distance of
A is given by

qA :=
1

2
inf

x,y∈A
x̸=y

dZ(x, y).

Moreover, we call A quasi-uniform if there is a constant c > 0 such that

hA,Z ≤ c · qA.

Lemma 7.13. In the setting of Theorem 7.11, we have

2 · qΛn
= hΛn−1,Γ ≥ hΛn,Γ for n ≥ 2.

Proof. It is clear that hΛn−1,Γ ≥ hΛn,Γ holds for all n ≥ 2. We prove the remaining equality via induction.
For the initial value n = 2, we have

2 · qΛ2
= ∥λ1 − λ2∥K = dist(λ2,Λ1) = hΛ1,Γ

due to the geometric greedy choice. Assuming that 2 · qΛn
= hΛn−1,Γ holds for a fixed n ∈ N, we have

2 · qΛn+1 = min (2 · qΛn ,dist(λn+1,Λn))

= min
(
hΛn−1,Γ, hΛn,Γ

)
= hΛn,Γ,

where we used the monotonicity of the fill distance again.

Note that the constant for the quasi-uniformity of Λn does not depend on the iteration step n ∈ N.
This is particularly useful if we want to derive error estimates for the interpolation method.

Remark 7.14. If a metric space (Z, dZ) is connected, we can also show that

qA ≤ hA,Z (7.5)

holds for A = {a1, ..., an} ⊂ Z with n ≥ 2 (cf. [107, Section 1]). By definition of qA, the open balls

BqA(ai) = {z ∈ Z | dZ(z, ai) < qA} i = 1, ..., n
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are disjoint, and since Z is connected, these sets cannot cover Z. Hence, there is z ∈ Z which is not an
element of the union of the balls with radius qA so that we get

hA,Z ≥ dist(z,A) ≥ qA.

The inequality (7.5) can also be proven if Z satisfies an interior cone condition, see also [143, Section
14.1].

Following the idea of Section 5.3, we can also perform a geometric greedy selection in the parameter
space. If Γ is parametrized by (Ω, ϱ), where (Ω, dΩ) is a metric space, we can apply the selection rule

dist(xn+1, Xn) = sup
x∈Ω

dist(x,Xn) = hXn,Ω for n ∈ N. (7.6)

Under certain regularities of the mapping ϱ, the distances in the parameter space Ω reflect the distances
in Γ. Recall that, in most cases, the treatment of the parameter space is much easier and less costly in
comparison to the dual space. The convergence of this algorithm for totally bounded sets Ω is a direct
conclusion of Lemma 7.8 and Theorem 5.13, where we assumed ϱ to be uniformly continuous.

Theorem 7.15. Let (Ω, ϱ) be a uniformly continuous parametrization of Γ ⊂ H∗
K , where Ω is totally

bounded and Γ is linearly independent. Moreover, let (Xn)n∈N be chosen via the selection rule (7.6).

Then we have hXn,Ω
n→∞−−−−→ 0 and the convergence

∥f − IK,ϱ(Xn)(f)∥K
n→∞−−−−→ 0 for all f ∈ HK,Γ.

In the special case that Ω ⊂ Rm, m ∈ N, we can even state decay rates for the fill distances hXn,Ω in
dependence of the dimension m ∈ N (cf. [143, Proposition 14.1]). The result is based on the fact that
the geometric greedy algorithm produces quasi-uniform data sets.

Lemma 7.16. In the setting of Theorem 7.15, let Ω ⊂ Rm be measurable and bounded with positive
Lebesgue measure vol(Ω) > 0. Then we can find constants C1, C2 > 0 such that

C1 · n−1/m ≤ hXn,Ω ≤ C2 · n−1/m for n ≥ 2.

We can combine the results for this special case with our findings from Corollary 5.14 to derive the
following estimate for the interpolation error.

Corollary 7.17. Under the assumptions of Corollary 5.14 and Lemma 7.16, there is a constant C > 0
such that we can estimate

|λ(f)− λ(IK,ϱ(Xn)(f))| ≤ C · n−a/m · ∥f∥K for all f ∈ HK,Γ, λ ∈ Γ, n ≥ 2,

where a ∈ (0, 1] is the Hölder exponent of the parametrization mapping ϱ.

To end the theoretical discussion about this geometric approach, we remark that the decay rate n−a/m

of the upper bound is not optimal to describe the decay of the interpolation error in most cases, as it
does not take into account the regularity of the kernel. In particular, the upper bound decays very slowly
for large dimensions m ∈ N. Nevertheless, this approach provides an error estimate under rather mild
assumptions.

7.2.2. Target-dependent algorithms

Contrary to the target-independent algorithms, we can incorporate the target function f ∈ HK,Γ into
the selection rule. The most obvious algorithm might be to choose the functional that has the largest
pointwise interpolation error regarding f , as we want to select data points in areas where we do not have
high interpolation accuracy in terms of functional evaluation. Hence, we select the new functional via

|λn+1(f)− λn+1(IK,Λn
(f))| = sup

λ∈Γ
|λ(f)− λ(IK,Λn

(f))| for n ∈ N, (7.7)

which is known as the f -greedy algorithm (cf. [119]). Recall that Corollary 6.10 and Theorem 6.11 provide
update formulas for the residual terms as the number of data points increases.
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Besides measuring the pointwise error, we can use the native space norm as our primary error indicator.
In particular, we are interested in minimizing the distance to the target function f in each step, i.e.

∥f − IK,Λn∪{λn+1}(f)∥K = inf
λ∈Γ

∥f − IK,Λn∪{λ}(f)∥K for n ∈ N. (7.8)

This approach is called the f/P -greedy algorithm (cf. [98, Definition 3.1.1 ff.], [120, Theorem 6 ff.]).
In the format (7.8), it is not clear how we can solve the minimization problem in each iteration step.
Instead, we can rewrite the updated error into simpler terms for each λ ∈ Γ \ span (Λn):

∥f − IK,Λn(f)∥2K = ∥f − IK,Λn∪{λ}(f) + IK,Λn∪{λ}(f)− IK,Λn(f)∥2K
= ∥f − IK,Λn∪{λ}(f)∥2K + ∥IK,Λn∪{λ}(f)− IK,Λn

(f)∥2K

= ∥f − IK,Λn∪{λ}(f)∥2K +
|λ(f)− λ(IK,Λn

(f))|2

PΛn
(λ)2

,

where we used the update formula from Corollary 6.10. Therefore, minimizing the term

∥f − IK,Λn∪{λ}(f)∥2K = ∥f − IK,Λn(f)∥2K − |λ(f)− λ(IK,Λn(f))|2

PΛn
(λ)2

is equivalent to maximizing the subtrahend on the right side of the equation, so that the selection rule
(7.8) can be rewritten as

|λn+1(f)− λn+1(IK,Λn
(f))|

PΛn
(λn+1)

= sup
λ∈Γ\span(Λn)

|λ(f)− λ(IK,Λn
(f))|

PΛn
(λ)

for n ∈ N. (7.9)

We observe that the power function occurs in the denominator this time, so the selection rule favors
smaller values of the power function. In terms of numerical stability, this leads to bad performances in
practical cases, see e.g. [98, Section 6.5].
Similarly, the f -greedy selection rule neglects the numerical stability of the interpolation process, as it

only takes the pointwise error into account. If we wish to have a good tradeoff between approximation
quality and numerical stability, we could complement the pointwise error with the respective power
function values, which leads to the psr-greedy algorithm (cf. [43])

|λn+1(f)− λn+1(IK,Λn
(f))| · PΛn

(λn+1) = sup
λ∈Γ

|λ(f)− λ(IK,Λn
(f))| · PΛn

(λ) for n ∈ N. (7.10)

Here, the abbreviation psr stands for power-scaled residual. Due to the multiplication, we require both
the pointwise error and the power function value to be sufficiently high. The obvious drawback of the
target-dependent algorithm is that for each f ∈ HK , the sequence of data points has to be computed
individually, whereas the target-independent algorithms generalize to all functions from the native space.
On the other hand, the target-dependent algorithms are expected to deliver better approximation quality,
as the data points are optimized for the given function that we want to approximate.

Remark 7.18. Throughout Chapter 5, we have collected several measurements for the approximation
error and numerical stability. Of course, we can combine these in various other ways. For example, we
could use the pointwise error and the distance function via the selection rule

|λn+1(f)− λn+1(IK,Λn
(f))| · dist(λn+1,Λn) = sup

λ∈Γ
|λ(f)− λ(IK,Λn

(f))| · dist(λ,Λn) for n ∈ N.

7.2.3. Generalization: β-greedy algorithms

In the papers [145] and [146], the authors were able to summarize several approaches from the last
subsection as one special class of greedy algorithms depending on a parameter β ∈ [0,∞). Given this
fixed parameter, the β-greedy algorithm selects the new functional via

|λn+1(f)− λn+1(IK,Λn(f))|β · PΛn(λn+1)
1−β = sup

λ∈Γ\span(Λn)

|λ(f)− λ(IK,Λn(f))|β · PΛn(λ)
1−β (7.11)
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for n ∈ N. It is easy to see that β = 0 leads to the P -greedy algorithm (7.3) and β = 1 yields the f -greedy
algorithm (7.4). For β = 1/2, we get the selection rule

|λn+1(f)− λn+1(IK,Λn
(f))|1/2 · PΛn

(λn+1)
1/2 = sup

λ∈Γ\span(Λn)

|λ(f)− λ(IK,Λn
(f))|1/2 · PΛn

(λ)1/2

for n ∈ N, which is equivalent to the psr-greedy algorithm (7.10). We can even consider the limit case
β → ∞ for the term

|λ(f)− λ(IK,Λn(f))|β · PΛn(λ)
1−β =

(
|λ(f)− λ(IK,Λn(f))|

PΛn
(λ)

)β

· PΛn(λ).

If two functionals λ, µ ∈ Γ \ span(Λn) satisfy

|λ(f)− λ(IK,Λn
(f))|

PΛn(λ)
<

|µ(f)− µ(IK,Λn
(f))|

PΛn(µ)
,

there is β0 > 0 such that

|λ(f)− λ(IK,Λn
(f))|β · PΛn

(λ)1−β < |µ(f)− µ(IK,Λn
(f))|β · PΛn

(µ)1−β for β > β0.

Hence, it makes sense to define the β-greedy algorithm as the f/P -greedy algorithm for β = ∞. We can
prove the convergence of the β-greedy algorithm for every β ∈ [0,∞].

Theorem 7.19. Let β ∈ [0,∞] and Γ ⊂ H∗
K be totally bounded. If f ∈ HK,Γ and (Λn)n∈N is chosen via

the respective β-greedy algorithm, we have the convergence

∥f − IK,Λn
(f)∥K

n→∞−−−−→ 0.

Proof. According to Lemma 7.9, it is sufficient to show pointwise convergence. Therefore, let λ ∈ Γ. If
λ ∈

⋃
n∈N span(Λn) holds, there is n0 ∈ N such that PΛn(λ) = 0 for n ≥ n0. The standard power function

estimate (5.2) then gives

|λ(f)− λ(IK,Λn(f))| ≤ PΛn(λ) · ∥f∥K = 0 for n ≥ n0.

Hence, let us assume that λ /∈
⋃

n∈N span(Λn). We distinguish between several cases regarding the
parameter β:

• β = 0: In this case, we have

PΛn
(λ) ≤ PΛn

(λn+1)
n→∞−−−−→ 0

due to the selection rule and Lemma 7.8. Again, the standard power function estimate gives

|λ(f)− λ(IK,Λn
(f))| ≤ PΛn

(λ) · ∥f∥K
n→∞−−−−→ 0.

• β ∈ (0, 1): Consider the monotonic and bounded sequence

(PΛn
(λ))n∈N and its limit C := lim

n→∞
PΛn

(λ).

If C = 0, we already have pointwise convergence. Otherwise, we have C > 0 and

|λ(f)− λ(IK,Λn
(f))|β = |λ(f)− λ(IK,Λn

(f))|β · PΛn
(λ)1−β · PΛn

(λ)β−1

≤ |λn+1(f)− λn+1(IK,Λn(f))|β · PΛn(λn+1)
1−β · PΛn(λ)

β−1

≤ Cβ−1 · ∥f∥βK · PΛn(λn+1)
n→∞−−−−→ 0.

This yields

|λ(f)− λ(IK,Λn(f))|
n→∞−−−−→ 0.
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• β ∈ [1,∞): Similarly, we can estimate

|λ(f)− λ(IK,Λn
(f))|β ≤ |λn+1(f)− λn+1(IK,Λn

(f))|β · PΛn
(λn+1)

1−β · PΛn
(λ)β−1

≤ ∥λ∥β−1
K · ∥f∥βK · PΛn(λn+1)

n→∞−−−−→ 0.

• β = ∞: From Remark 6.14, we know that

|λn+1(f)− λn+1(IK,Λn(f))|
PΛn

(λn+1)

n→∞−−−−→ 0.

As in the case before, we estimate

|λ(f)− λ(IK,Λn
(f))| ≤ |λn+1(f)− λn+1(IK,Λn

(f))|
PΛn(λn+1)

· ∥λ∥K
n→∞−−−−→ 0.

In total, we have the desired pointwise convergence for every β ∈ [0,∞].

Remark 7.20. In our general convergence analysis, we have not mentioned any convergence rates for
the β-greedy algorithms, as these depend on the set Γ and the regularity of the kernel K. Convergence
rates for the standard interpolation method in the case of a Sobolev kernel can be found in [145], similar
results for linear elliptic differential operators of second order are given in [146].

7.2.4. Vectorial approach

In many cases, we have a set {f1, ..., fM} ⊂ HK of target functions instead of a single target, which
we refer to as a training set, and we want to select a sequence of data points that leads to a good
approximation quality for all target functions simultaneously. Note that a suitable method was already
proposed in [149] that adapts the f/P -greedy algorithm, and we further generalize this approach to derive
weighted vectorial versions of the β-greedy algorithms for all β ∈ [0,∞]. We remark that this approach
can be seen as a special application of interpolation via matrix-valued kernels. For detailed information
on matrix-valued kernels, we refer to [150].
First, we need to find a suitable Hilbert space setting for this simultaneous approximation problem.

We consider the collection of target functions as a vector

f = (f1, ..., fM ) ∈ HM
K = HK × ...×HK .

Given a fixed vector w = (w1, ..., wM )
T ∈ RM with wi > 0 for i = 1, ...,M and

∑M
i=1 wi = 1, we define

an inner product on HM
K by

⟨f, g⟩K,w :=

M∑
i=1

wi · ⟨fi, gi⟩K for f = (f1, ..., fM ) , g = (g1, ..., gM ) ∈ HM
K .

The idea of the weight vector w is to control the influence of the single target functions on the data
selection. If a target function from the training set is considered a good representation of the resulting
application, its weight should be sufficiently high. We can embed the space HK into HM

K via the linear
mapping

i : HK → HM
K , s 7→ (s, ..., s) ,

which satisfies

⟨i(s1), i(s2)⟩K,w =

M∑
i=1

wi · ⟨s1, s2⟩K = ⟨s1, s2⟩K for all s1, s2 ∈ HK . (7.12)

Thus, given a set of functionals Λn = {λ1, ..., λn} ⊂ H∗
K , we consider the embedded space i(SK,Λn

). If
N is the Newton basis of SK,Λn , then i(N ) is again an orthonormal system due to (7.12). Following the
interpolation of a single target function, we define the simultaneous approximation to the target functions
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fi as the orthogonal projection Pi(SK,Λn )f of f = (f1, ..., fM ) onto the space i(SK,Λn
) (cf. Theorem A.9),

which satisfies

∥f − Pi(SK,Λn )f∥2K,w = inf
s∈i(SK,Λn )

∥f − s∥2K,w = inf
s∈SK,Λn

M∑
i=1

wi · ∥fi − s∥2K

and is given by

Pi(SK,Λn )f =

n∑
j=1

⟨f, i(nj)⟩K,w · i(nj) =
n∑

j=1

(
M∑
i=1

wi · ⟨fi, nj⟩K

)
· i(nj)

=

M∑
i=1

wi · i

 n∑
j=1

⟨fi, nj⟩K · nj


= i

(
M∑
i=1

wi · IK,Λn
(fi)

)
.

Hence, the simultaneous reconstruction is the weighted sum of the single interpolants to the target
functions and solves a weighted least squares problem within this approach. This means that we can use
the update formulas from Section 6 for an efficient implementation, and we can parallelize the computation
of the single interpolants. But we still have to find suitable point selection algorithms for this case.
Let λn+1 /∈ span(Λn) and set Λn+1 = Λn ∪ {λn+1}. The discussion about the f/P -greedy algorithms

from Subsection 7.2.2 can be adapted to our setting, since

∥f − Pi(SK,Λn+1
)f∥2K,w =

M∑
i=1

wi · ∥fi − IK,Λn+1
(fi)∥2K

=

M∑
i=1

wi ·
(
∥fi − IK,Λn

(fi)∥2K − |λn+1(fi)− λn+1(IK,Λn(fi))|2

PΛn
(λn+1)2

)

= ∥f − Pi(SK,Λn )f∥2K,w −
M∑
i=1

wi ·
|λn+1(fi)− λn+1(IK,Λn(fi))|2

PΛn
(λn+1)2

holds in the vectorial case (cf. [149, Lemma 2.1]). Given a superset Γ ⊂ H∗
K , we need to choose λn+1

such that

M∑
i=1

wi ·
|λn+1(fi)− λn+1(IK,Λn

(fi))|2

PΛn
(λn+1)2

= sup
λ∈Γ\span(Λn)

M∑
i=1

wi ·
|λ(fi)− λ(IK,Λn

(fi))|2

PΛn
(λ)2

(7.13)

in order to minimize the approximation error in the next iteration, which adapts the f/P -greedy algorithm
to the case of multiple target functions (cf. [149, Algorithm 3]). In the same way, we define the vectorial
β-greedy algorithm for β ∈ [0,∞) as the selection rule(

M∑
i=1

wi · |λn+1(fi)− λn+1(IK,Λn(fi))|2
)β

· PΛn(λn+1)
2−2β

= sup
λ∈Γ\span(Λn)

(
M∑
i=1

wi · |λ(fi)− λ(IK,Λn(fi))|2
)β

· PΛn(λ)
2−2β ,

(7.14)

and for β = ∞ as the selection rule (7.13). For totally bounded domains, the vectorial versions converge
as well.

Theorem 7.21. Let β ∈ [0,∞] and Γ ⊂ H∗
K be totally bounded. If f1, ..., fM ∈ HK,Γ, w ∈ RM with

M∑
i=1

wi = 1, wi > 0 for i = 1, ...,M
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and (Λn)n∈N is chosen via the respective vectorial β-greedy algorithm (7.13, 7.14), we have the convergence

∥fi − IK,Λn
(fi)∥K

n→∞−−−−→ 0 for i = 1, ...,M.

Proof. We can recycle large parts from the proof of Theorem 7.19. Again, it is sufficient to show pointwise
convergence on Γ and we only need to check the case

λ /∈
⋃
n∈N

span(Λn).

• β = 0: This is the same as the single-target P-greedy algorithm, and we have

|λ(fi)− λ(IK,Λn(fi))| ≤ PΛn(λ) · ∥fi∥K ≤ PΛn(λn+1) · ∥fi∥K
n→∞−−−−→ 0 for i = 1, ...M.

• β = ∞: With Remark 6.14, we get

M∑
i=1

wi · |λ(fi)− λ(IK,Λn(fi))|2 =

(
M∑
i=1

wi ·
|λ(fi)− λ(IK,Λn(fi))|2

PΛn(λ)
2

)
· PΛn(λ)

2

≤

(
M∑
i=1

wi ·
|λn+1(fi)− λn+1(IK,Λn(fi))|2

PΛn
(λn+1)2

)
· ∥λ∥2K

n→∞−−−−→ 0.

The desired pointwise convergence then follows from the estimate

|λ(fj)− λ(IK,Λn
(fj))| ≤ w

−1/2
j ·

(
M∑
i=1

wi · |λ(fi)− λ(IK,Λn
(fi))|2

)1/2

for j = 1, ...,M.

• β ∈ (0,∞): We can use the same estimates as in the proof of Theorem 7.19 to derive

(
M∑
i=1

wi · |λ(fi)− λ(IK,Λn(fi))|2
)β

n→∞−−−−→ 0,

which results in pointwise convergence similar to the case before.

7.2.5. Data thinning

As we have already pointed out, we mostly deal with finite supersets Γ ⊂ H∗
K in practical cases, so that

the greedy algorithms only perform a finite number of iteration steps anyways. In this scenario, the
greedy algorithms can be interpreted as a method to thin out the given superset (cf. [44], [69, Chapter
4]). Here, data thinning means that we want to get rid of redundancies within the data set.
For example, the power function value PΛn

(λ) of a functional λ ∈ Γ indicates the approximation
error between λ and span(Λn), and therefore how well λ is already represented in the current data
point set Λn. This implies that functionals with small power function values represent redundant data,
whereas functionals with high power function values contain new information that should be added to the
interpolation process. Hence, the P -greedy algorithm can be used to reduce the full superset to a subset
ΛN ⊂ Γ with |ΛN | = N ≪ |Γ| consisting of the most relevant functionals in terms of linear independence.

Similarly, if the pointwise error at the functional λ ∈ Γ \ span(Λn) is already low, we might not want
to add this functional to our data point set if a further reduction of the pointwise error is not required.
The presented greedy algorithms from this section can be used to remove redundant data in Γ, which
can have significant positive effects on the computational complexity and the numerical stability of the
interpolation process without losing too much information. This process is visualized in Figure 7.1 for the
geometric greedy selection, where the initial scattered point set X ⊂ R2 with |X| = 104 (left) is reduced
to a subset Y ⊂ X with |Y | = 103 (right) by applying 103 − 1 steps of the geometric greedy selection
from (7.6). The selected data points are marked in red.



7. Greedy Data Selection Algorithms 75

Large data set Thinned data set

Figure 7.1.: Visualization of data thinning via geometric greedy selection

7.3. Regularization methods

Instead of simply solving the interpolation equations, we can include a regularization method to enforce
additional properties on the solution of the approximation problem. Regularization methods have become
popular in many applications, as they can help to reduce the effects of overfitting when dealing with large
data sets and stabilize the solution to ill-posed problems (cf. Section 8.3). More details on regularization
methods can be found in [45].
The main idea is to substitute the interpolation equations with a modified error functional

J(s) := D(f, s) + γ ·R(s) for s ∈ HK , (7.15)

where f ∈ HK is the target function, D : HK ×HK → R is a map that measures the data consistency
and R : HK → R is a regularization functional with regularization parameter γ ≥ 0. The approximation
to f is then given by the minimizer s∗ ∈ HK of the functional, i.e.

J(s∗) = inf
s∈HK

J(s).

Popular choices for the data consistency term D are norms on the underlying vector space or least squares
functionals. For our interpolation problem, we use the mean squared error

D(f, s) :=
1

N
·

N∑
i=1

|λi(f)− λi(s)|2 for f, s ∈ HK

on a set Γ = {λ1, ..., λN} ⊂ H∗
K . In the special case that R has the form

R(s) = ∥s∥2K for s ∈ HK

and γ > 0, the optimization problem (7.15) can be reduced to the domain SK,Γ ⊂ HK . This result is a
generalized version of the representer theorem (see, e.g., [122]).

Theorem 7.22 (Generalized representer theorem). Let Γ = {λ1, ..., λN} ⊂ H∗
K and γ > 0. If s∗ ∈ HK

satisfies the optimality condition

1

N
·

N∑
i=1

|λi(f)− λi(s
∗)|2 + γ · ∥s∗∥2K = inf

s∈HK

1

N
·

N∑
i=1

|λi(f)− λi(s)|2 + γ · ∥s∥2K , (7.16)

then we must have s∗ ∈ SK,Γ.
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Proof. Let s∗ satisfy (7.16). There is a unique decomposition

s∗ = s∗1 + s∗2, where s∗1 ∈ SK,Γ and s∗2 ∈ S⊥
K,Γ.

Due to Lemma 4.9, we get the equality

λi(s
∗) = λi(s

∗
1) + λi(s

∗
2) = λi(s

∗
1) + 0 = λi(s

∗
1) for i = 1, ..., N.

If s∗2 ̸= 0, then

∥s∗∥2K = ∥s∗1∥2K + ∥s∗2∥2K > ∥s∗1∥2K

and therefore

1

N
·

N∑
i=1

|λi(f)− λi(s
∗)|2 + γ · ∥s∗∥2K >

1

N
·

N∑
i=1

|λi(f)− λi(s
∗
1)|2 + γ · ∥s∗1∥2K .

But this contradicts (7.16). Hence, we must have s∗ = s∗1 ∈ SK,Γ.

The consequence is that we can substitute the initial infinite-dimensional problem (7.16) with a finite-
dimensional regularized least-squares problem. Further analysis and numerical examples for the resulting
regularized interpolation problem can be found in [115].
Here, we want to extend the problem by the idea of data thinning from Section 7.2.5, where we only

consider a subdomain SK,Λ ⊂ SK,Γ with Λ ⊂ Γ = {λ1, ..., λN} and set n = |Λ|. Moreover, instead of
penalizing the native space norm of a function, we regularize with respect to evaluations of additional
functionals

Ξ = {ξ1, ..., ξM} ⊂ H∗
K .

A possible realization of this approach is the minimization problem

1

N
·

N∑
i=1

|λi(f)− λi(s
∗)|2 + γ ·

M∑
i=1

|ξi(s∗)|2 = inf
s∈SK,Λ

1

N
·

N∑
i=1

|λi(f)− λi(s)|2 + γ ·
M∑
i=1

|ξi(s)|2 (7.17)

for γ ≥ 0. For our analysis, we denote the solution as s(γ) ≡ s∗ for a given regularization parameter γ.
If N = {n1, ..., nn} is the Newton basis of SK,Λ, we have the identity

∥s∥2K =

n∑
i=1

|⟨s, ni⟩K |2 for all s ∈ SK,Λ.

This shows that the native space norm regularization is just a special case of (7.17), where

Ξ ≡ ΞN = {⟨·, ni⟩K | i = 1, ..., n} ⊂ H∗
K .

If Λ is linearly independent, there is a unique solution.

Theorem 7.23. Let Λ ⊂ Γ be linearly independent, f ∈ HK and Ξ ⊂ H∗
K . For any parameter γ ≥ 0,

there is a unique solution s(γ) ∈ SK,Λ to the regularized problem (7.17).

Proof. Without loss of generality, we assume that Λ = {λ1, ..., λn} and write the elements s ∈ SK,Λ in
terms of the standard basis, i.e.

s =

n∑
i=1

ci · λyiK(·, y), with c = (c1, ..., cn)
T ∈ Rn.

In this case, the energy functional can be rewritten as

1

N
·

N∑
i=1

|λi(f)− λi(s)|2 + γ ·
M∑
i=1

|ξi(s)|2 =
1

N
· ∥AK,Γ,Λ · c− fΓ∥22 + γ · ∥BΞ · c∥22, (7.18)
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where the matrices are given by

AK,Γ,Λ := (⟨λi, λj⟩K)1≤i≤N
1≤j≤n

∈ RN×n and BΞ :=
(
ξi(λ

y
jK(·, y))

)
1≤i≤M
1≤j≤n

∈ RM×n.

Note that the right side of (7.18) is a standard Tikhonov regularization problem on Rn (cf. [70, Section
2.2 & Subsection 8.6.1]). It is well-known that c ∈ Rn minimizes the right side of (7.18) if and only if it
solves the resulting normal equations(

1

N
·AT

K,Γ,Λ ·AK,Γ,Λ + γ ·BT
Ξ ·BΞ

)
· c = 1

N
·AT

K,Γ,Λ · fΓ. (7.19)

Since AK,Λ is a regular submatrix of AK,Γ,Λ, the rectangular matrix AK,Γ,Λ must have full rank so that
the system matrix of (7.19) is positive definite for any γ ≥ 0. Consequently, there is exactly one solution
c(γ) ∈ Rn, and

s(γ) =

n∑
i=1

c
(γ)
i · λyiK(·, y)

is the unique solution to (7.17) due to the identity (7.18).

For theoretical purposes, we provide an alternative characterization of the minimizer, which is a gen-
eralization of [70, Theorem 8.54]. To this end, let us recall the notation

sΓ := (λ1(s), ..., λN (s))
T ∈ RN and sΞ := (ξ1(s), ..., ξM (s))

T ∈ RM for all s ∈ SK,Λ.

Lemma 7.24. Under the assumptions of Theorem 7.23, the element s(γ) ∈ SK,Λ solves the minimization
problem (7.17) if and only if it satisfies

1

N
·
〈
fΓ − s

(γ)
Γ , sΓ

〉
2
= γ ·

〈
s
(γ)
Ξ , sΞ

〉
2

for all s ∈ SK,Λ. (7.20)

Proof. Since all expressions within (7.20) are linear in the argument s ∈ SK,Λ, the property is equivalent
to the system of equations

1

N
·
〈
fΓ − s

(γ)
Γ , λyjK(·, y)Γ

〉
2
= γ ·

〈
s
(γ)
Ξ , λyjK(·, y)Ξ

〉
2

for j = 1, ..., n. (7.21)

We write the element s(γ) as

s(γ) =

n∑
i=1

c
(γ)
i · λyiK(·, y)

and compute

1

N
·
〈
fΓ − s

(γ)
Γ , λyjK(·, y)Γ

〉
2
= e(j)

T
·
(

1

N
·AT

K,Γ,Λ · fΓ − 1

N
·AT

K,Γ,Λ ·AK,Γ,Λ · c(γ)
)

and

γ ·
〈
s
(γ)
Ξ , λyjK(·, y)Ξ

〉
2
= e(j)

T
·
(
γ ·BT

Ξ ·BΞ · c(γ)
)

for j = 1, ..., n, where e(j) ∈ Rn is again the j-th standard basis vector. Hence, the system (7.21) is
equivalent to the normal equations (7.19), which proves the assertion.

Remark 7.25. Alternatively, we can prove Lemma 7.24 by considering the Gateaux derivative of

Jγ(s) :=
1

N
· ∥fΓ − sΓ∥22 + γ · ∥sΞ∥22 for s ∈ SK,Λ, γ ≥ 0, (7.22)
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which is given by

DvJγ(s) = lim
t→0

Jγ(s+ t · v)− Jγ(s)

t
= 2 ·

(
γ · ⟨sΞ, vΞ⟩2 −

1

N
· ⟨fΓ − sΓ, vΓ⟩2

)
for all v ∈ SK,Γ \ {0}

and s ∈ SK,Λ. It is well-known from convex analysis that s(γ) ∈ SK,Λ minimizes the convex functional
Jγ if and only if the respective Gateaux derivative vanishes for all directions, i.e.

0 = DsJγ(s
(γ)) = 2 ·

(
γ ·
〈
s
(γ)
Ξ , sΞ

〉
2
− 1

N
·
〈
fΓ − s

(γ)
Γ , sΓ

〉
2

)
for all s ∈ SK,Γ \ {0}.

The equation is also satisfied for s = 0.

It should be mentioned here that finding an optimal regularization parameter γ is a highly non-trivial
task. We shift the discussion about the parameter choice to Chapter 11 and just state some basic results
in this section, which generalizes [70, Subsection 8.6.2].

Theorem 7.26. In the setting of Theorem 7.23, the following statements hold:

(1) For any γ ≥ 0, there is a constant Cγ > 0 independent of f such that

1

N
·
∥∥∥fΓ − s

(γ)
Γ

∥∥∥2
2
+ γ ·

∥∥∥s(γ)Ξ

∥∥∥2
2
≤ Cγ · ∥f∥2K .

(2) If γ1 ≤ γ2, we have ∥∥∥s(γ2)
Ξ

∥∥∥2
2
≤
∥∥∥s(γ1)

Ξ

∥∥∥2
2
.

(3) There is C > 0 such that∥∥∥s(γ1) − s(γ2)
∥∥∥2
K

≤ C · |γ1 − γ2| for all γ1, γ2 ≥ 0.

Proof. For the proof, we use the notation (7.22).

(1) We simply compare with the interpolant IK,Λ(f), i.e.

Jγ(s
(γ)) ≤ Jγ(IK,Λ(f)) =

1

N

N∑
i=1

|λi(f)− λi(IK,Λ(f))|2 + γ ·
M∑
i=1

|ξi(IK,Λ(f))|2

≤ 1

N
·

N∑
i=n+1

PΛ(λi)
2 · ∥f∥2K + γ ·

M∑
i=1

∥ξi∥2K · ∥IK,Λ(f)∥2K

≤

(
1

N
·

N∑
i=n+1

PΛ(λi)
2 + γ ·

M∑
i=1

∥ξi∥2K

)
· ∥f∥2K .

(2) Let γ1 < γ2 and assume that
∥∥∥s(γ2)

Ξ

∥∥∥2
2
>
∥∥∥s(γ1)

Ξ

∥∥∥2
2
. This results in

Jγ2
(s(γ1)) = Jγ1

(s(γ1)) + (γ2 − γ1) ·
∥∥∥s(γ1)

Ξ

∥∥∥2
2
< Jγ1

(s(γ2)) + (γ2 − γ1) ·
∥∥∥s(γ2)

Ξ

∥∥∥2
2
= Jγ2

(s(γ2)),

which is a contradiction to the assumption that s(γ2) minimizes Jγ2 .

(3) Let γ1 ≤ γ2. With Lemma 7.24, we have

1

N
·
〈
fΓ − s

(γ1)
Γ , sΓ

〉
2
= γ1 ·

〈
s
(γ1)
Ξ , sΞ

〉
2
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and

1

N
·
〈
fΓ − s

(γ2)
Γ , sΓ

〉
2
= γ2 ·

〈
s
(γ2)
Ξ , sΞ

〉
2

for all s ∈ SK,Λ.

Subtracting the two equations from one another leads to

1

N
·
〈
s
(γ1)
Γ − s

(γ2)
Γ , sΓ

〉
2
= γ2 ·

〈
s
(γ2)
Ξ , sΞ

〉
2
− γ1 ·

〈
s
(γ1)
Ξ , sΞ

〉
2

for all s ∈ SK,Λ.

For s = s(γ1) − s(γ2) ∈ SK,Λ, we get

1

N
·
∥∥∥s(γ1)

Γ − s
(γ2)
Γ

∥∥∥2
2
= (γ2 + γ1) ·

〈
s
(γ2)
Ξ , s

(γ1)
Ξ

〉
2
− γ2 ·

∥∥∥s(γ2)
Ξ

∥∥∥2
2
− γ1 ·

∥∥∥s(γ1)
Ξ

∥∥∥2
2

≤ (γ2 + γ1) ·
∥∥∥s(γ2)

Ξ

∥∥∥
2
·
∥∥∥s(γ1)

Ξ

∥∥∥
2
− γ2 ·

∥∥∥s(γ2)
Ξ

∥∥∥2
2
− γ1 ·

∥∥∥s(γ1)
Ξ

∥∥∥2
2

=
(
γ2 ·

∥∥∥s(γ2)
Ξ

∥∥∥
2
− γ1 ·

∥∥∥s(γ1)
Ξ

∥∥∥
2

)
·
(∥∥∥s(γ1)

Ξ

∥∥∥
2
−
∥∥∥s(γ2)

Ξ

∥∥∥
2

)
≤ (γ2 − γ1) ·

∥∥∥s(γ1)
Ξ

∥∥∥
2
·
(∥∥∥s(γ1)

Ξ

∥∥∥
2
−
∥∥∥s(γ2)

Ξ

∥∥∥
2

)
≤ (γ2 − γ1) ·

∥∥∥s(0)Ξ

∥∥∥2
2
,

where we used ∥∥∥s(γ2)
Ξ

∥∥∥
2
≤
∥∥∥s(γ1)

Ξ

∥∥∥
2
≤
∥∥∥s(0)Ξ

∥∥∥
2

from part (2) and Cauchy’s inequality. Moreover, the functional

∥ · ∥Γ : SK,Λ → R, s 7→ ∥sΓ∥2
is a norm on SK,Λ, as Λ ⊂ Γ holds and generalized interpolation problems with respect to Λ are
uniquely solveable. Since all norms are equivalent on the finite-dimensional space SK,Λ, there is a
constant c > 0 such that

∥s∥K ≤ c · ∥s∥Γ for all s ∈ SK,Λ.

In combination with our previous estimate, this gives the desired result∥∥∥s(γ1) − s(γ2)
∥∥∥2
K

≤ Nc2 ·
∥∥∥s(0)Ξ

∥∥∥2
2
· (γ2 − γ1) .

The previous theorem provides important insights into this variational approach:

(1) For fixed γ ≥ 0, the evaluation at the minimizer, and therefore the regularized interpolation error
is bounded by

Jγ(s
(γ)) ≤ Cγ · ∥f∥2K for all f ∈ HK ,

where Cγ does not depend on f . Hence, the approximation method is stable with respect to the
choice of the target function.

(2) If we increase the regularization parameter, the standard norm of the evaluation with respect to
the functionals Ξ decreases so that we can enforce additional properties on the solution by choosing
appropriate regularizing functionals.

(3) The mapping γ 7→ s(γ) is Hölder continuous on [0,∞) with exponent 1/2 for fixed f ∈ HK . Note
that the proof also shows the Hölder continuity of the evaluation mapping

γ 7→ s
(γ)
Γ

with respect to Γ. In [70, Theorem 8.58], it is shown that even∥∥∥s(γ)Γ − s
(0)
Γ

∥∥∥2
2
= o(γ) for γ → 0

holds in the case of norm regularization, where o expresses the order of convergence in terms of the
Landau notation. The generalization of this convergence result to our case is straightforward.
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Pseudo-code

In order to close the first part of this thesis, we give a summary of the discussed methods in the form of
a pseudo-code, see Algorithm 1, for treating the generalized interpolation problem with kernel functions.
This includes the Newton basis computation from Chapter 6 and the data selection algorithms from
this chapter. As we see in the second part, problems based on linear operators can be interpreted as
generalized interpolation problems and therefore can be treated with the derived methods.

Remark 7.27. Currently, most of the presented greedy algorithms are only available as single update
algorithms, as they only choose one new functional. It is still an open problem to find multi-update
versions to improve the numerical performance. For example, regarding the P -greedy algorithm, it would
not be sufficient to simply choose several new functionals whose power function values are high, since no
information about the relation between the newly chosen functionals is available. This approach could
lead to severe numerical problems if we choose functionals that are nearly linearly dependent. In [6,
Section 6], a componentwise version of the P-greedy algorithm was proposed for product kernels and
grid-like data point sets, resulting in a multi-update. However, this approach is restricted to a special
setting and cannot be generalized.
Additionally, a multi-selection of new functionals would require a multi-update of the Newton basis

to take full advantage of the increased efficiency. In [4, Subsection 8.2.3], it has already been shown
that a multi-update of the Newton basis needs an efficient Cholesky decomposition of the resulting Schur
complement, which is not available to the best of our knowledge.
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Algorithm 1: Approximation scheme for generalized interpolation problems

Data: Superset Γ ⊂ H∗
K , target values fΓ of the target function f ∈ HK , selection rule η for greedy

selection, max. number of iterations Nmax, tolerance for numerical linear dependence ε,
evaluation set X ⊂ Rd

1 Choose λ1 ∈ Γ and set Λ1 = {λ1};
2 Initialize evaluations at Newton basis elements via

λ(n1) =
⟨λ, λ1⟩K
∥λ1∥K

n1(x) =
λy
1K(x, y)

∥λ1∥K

for all λ ∈ Γ, x ∈ X;
3 Initialize power function values via P 2

Λ1
(λ) = ⟨λ, λ⟩K − λ(n1)

2 for all λ ∈ Γ;
4 Initialize residual and evaluation of interpolant via

λ(f)− λ(IK,Λ1(f)) = λ(f)− λ1(f)

∥λ1∥
· λ(n1) IK,Λ1 [f ](x) =

λ1(f)

∥λ1∥
· n1(x)

for all λ ∈ Γ, x ∈ X;

5 for i = 1, ..., Nmax − 1 do

6 Choose λi+1 such that ηf,Λi(λi+1) = sup
λ∈Γ

ηf,Λi(λ);

7 if PΛi(λi+1) < ε then
8 break;
9 else

10 Set Λi+1 = Λi ∪ {λi+1};
11 end
12 Update Newton basis evaluation at Γ via

λ(ni+1) = PΛi(λi+1)
−1 ·

(
⟨λ, λi+1⟩K −

i∑
j=1

λ(nj) · λi+1(nj)

)

for all λ ∈ Γ;
13 Update residual via

λ(f)− λ(IK,Λi+1(f)) = λ(f)− λ(IK,Λi(f))−
λi+1(f)− λi+1(IK,Λi(f))

PΛi(λi+1)
· λ(ni+1)

for all λ ∈ Γ;
14 Update Newton basis evaluation at X via

ni+1(x) = PΛi(λi+1)
−1 ·

(
λy
i+1K(x, y)−

i∑
j=1

nj(x) · λi+1(nj)

)

for all x ∈ X;
15 Update evaluation of interpolant via

IK,Λi+1 [f ](x) = IK,Λi [f ](x) +
λi+1(f)− λi+1(IK,Λi(f))

PΛi(λi+1)
· ni+1(x)

for all x ∈ X;
16 Update power function via

PΛi+1(λ)
2 = PΛi(λ)

2 − λ(ni+1)
2

for all λ ∈ Γ;

17 end

Result: Approximate reconstruction IK,ΛNmax
(f) evaluated at X



Part II.

Application to Computerized
Tomography

In the second part, we focus on the application of kernel-based generalized interpolation to computerized
(axial) tomography. Over the last 50 years, computerized tomography has become one of the standard
methods for non-invasive diagnosis with applications in medical imaging, material testing and others.
Its history dates back to the discovery of X-radiation (X-rays) by Wilhelm C. Röntgen in 1895, which
earned him the first Nobel Prize in Physics in 1901. X-radiation is a high-energetic form of radiation that
can be used to image the interior of an object. While passing the considered object, the intensity levels
of X-rays decrease in dependence on the underlying material, e.g. bones in a human body. Due to the
work of August Beer (cf. [19]), this loss of intensity is given by a line integral, where we search for the
integrand that describes the structure of the scanned object. As the loss of intensity can be measured in
practice, the inverse problem of computerized tomography consists of reconstructing an object from its
line integral values.
This mathematical problem was solved by Johann Radon, who published the first theoretical recon-

struction formula in his seminal paper [109] from 1917. Nearly 50 years later, Allan M. Cormack
”
re-

discovered“ (cf. [52, page xiii, line 19]) the ideas of Radon in the 1960s and developed reconstruction
algorithms based on Fourier transforms (cf. [33], [34]). Independent of Cormack’s work, Godfrey N.
Hounsfield designed the first operational and commercial scanner in the late 1960s and early 1970s (cf.
[66]). Due to their groundbreaking work, Cormack and Hounsfield jointly received the Nobel Prize for
Medicine and Physiology in 1979. Although the reconstruction problem has been solved in theory for
more than a century, there remain some practical limitations:

• Finite data samples: The inversion formula of Radon assumes that the line integral values for
all possible lines in the plane are available. Of course, this assumption is not satisfied in practical
cases, since we can only perform a finite number of measurements. This means that we need to
derive suitable discretizations for the involved operators to obtain an approximate reconstruction
from finite data samples.

• Noise: In real-world applications, the measured data usually contains additional noise and therefore
does not represent the exact line integral values of the object. Hence, (approximate) reconstruction
methods are required that are not oversensitive to this noise, i.e. small changes in the measured
data should only result in small changes in the reconstruction image. This requirement is associated
with the notion of ill-posed inverse problems (cf. Section 8.3).

• Limited view: In certain applications, we can only measure the integral values for a restricted
subset of all possible lines in the plane due to limitations in the data collection process. For example,
the directions of the lines in the plane can be limited to certain angles, or the distances from the
lines to the origin might be restricted (cf. [108]). These settings require particular care since the
methods and results from the non-restricted case might not be applicable anymore (see, e.g., [102,
Section 6.2]).

• Limiting X-ray dosage: Nowadays, it is well-known that a high dosage of X-rays can severely
harm the human body, e.g. by causing cancer. To reduce the health risks associated with comput-
erized tomography, one is usually interested in keeping the radiation dosage as low as possible, in
particular when scanning very sensitive parts of the body. This requires reconstruction methods
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that are able to obtain a reasonable reconstruction from a small number of measurements. For
further reading, we refer to [29, Chapter 11].

The limitations of the reconstruction formula and the introduction of commercial scanners have led
to a wide research field regarding reconstruction algorithms for computerized tomography. Recently, the
reconstruction via kernel-based generalized interpolation was proposed by Stefano De Marchi, Armin Iske
and Gabriele Santin in [38], which is based on the initial results from the master thesis [126] of Amos
Sironi. The main goal of the second part is to explain and further elaborate the proposed kernel-based
reconstruction method. To this end, we explain the mathematics of computerized tomography and show
that the discretization of the reconstruction problem fits into the framework of the first part for suitable
kernel functions, which allows us to apply all the derived results and tools. Furthermore, we want to make
comparisons with other reconstruction methods to evaluate the utility of the kernel-based reconstruction
method.



8. Computerized Tomography

In this chapter, we introduce the mathematics of computerized tomography, which is the foundation
of the following chapters. We start by formulating the underlying mathematical problem, which leads
to the definition of the main mathematical operator behind computerized tomography in Section 8.1,
the Radon transform. While discussing relevant properties, we provide several examples that are used
in our numerical tests (cf. Chapter 11). The explicit reconstruction formula, known as the filtered
back projection formula, is explained in Section 8.2. Besides its derivation, we highlight the numerical
challenges it brings along in practical implementations. Before we explain suitable reconstruction methods
in Chapter 9, we want to briefly discuss the notion of ill-posed inverse problems in Section 8.3, where we
list two examples that demonstrate the ill-posedness of the reconstruction problem. For further reading
on the fundamentals of computerized tomography, we refer to [18], [52] and [101], which have mainly
inspired this introduction.
To introduce the computerized tomography problem, consider an object in the plane R2, whose photon

absorption, or less precisely, whose density is described by its unknown attenuation (coefficient) function
f : R2 → R. Moreover, we consider a finite line

[xS , xE ] :=

{
xs := xS + s · xE − xS

∥xE − xS∥2

∣∣∣∣∣ 0 ≤ s ≤ ∥xE − xS∥2 =: L

}
⊂ R2

in the plane, where xS , xE ∈ R2 denote the start and end point. The line represents the path of an X-ray
passing through the object, and the behavior of its intensity values along this path is denoted by the
function I : [xS , xE ] → R. In this setting, Beer’s law states that the change of intensity is proportional
to the attenuation coefficient (cf. [19], [52, Section 1.2]).

Assumption 8.1 (Beer’s law). For our analysis of the computerized tomography problem, we assume
that the X-ray beams are monochromatic, non-refractive and have zero width. In this case, Beer’s law

states that the decay of the intensity while passing the object is given by

∂I(xs)

∂s
= −f(xs) · I(xs) for all s ∈ [0, L] . (8.1)

Further details on the physics of computerized tomography can be found in [29, Chapter 2].

Usually, we cannot measure the intensity at each point on the line [xS , xE ], but only at the start and
end point, yielding the intensity values I(xS) and I(xE). With Beer’s law (Assumption 8.1), we get the
identity ∫

[xS ,xE ]

f(x) dx =

∫
[0,L]

f(xs) ds =

∫
[0,L]

−I(xs)−1 · ∂I(xs)
∂s

ds = − [ln(I(xs))]
L
0 = ln

(
I(xS)

I(xE)

)

for the respective line integral of the attenuation function. Hence, we can compute the line integral of
the unknown function f over [xS , xE ] from the total loss of intensity along the line. Note that the start
point and the end point of the line should be chosen such that they lie outside the object in order to
make these measurements possible. In this case, we could also write the line integral as∫

[0,L]

f(xs) ds =

∫
R

f(xs) ds (8.2)

if the infinite version of the line does not hit the object somewhere outside [xS , xE ] and therefore no more
attenuation of the X-ray beam takes place. The goal of computerized tomography is to reconstruct the
function f from all possible line integral values of the form (8.2).
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8.1. Radon transform

Before we continue our analysis, we want to find a suitable, non-redundant parametrization of the set of
all infinite lines (affine geometry) in the plane, denoted by

AG(R2) :=
{
a+ R · b

∣∣∣ a ∈ R2, b ∈ R2 \ {0}
}
,

where

a+ R · b := {a+ s · b | s ∈ R} for a ∈ R2, b ∈ R2 \ {0}.

To this end, we use the orthogonal polar coordinate vectors

nθ :=

(
cos(θ)
sin(θ)

)
and vθ :=

(
− sin(θ)
cos(θ)

)
for θ ∈ [0, π)

to describe the lines in the plane. Note that the directional vectors vθ cover all possible directions up to
multiplication by −1, and nθ then represents the shortest path between the line and the zero vector, see
also [52, Section 1.3].

Proposition 8.2. The following mapping between the parameter space R× [0, π) and AG(R2) is bijective:

ϱ : R× [0, π) → AG(R2), (r, θ) 7→ ℓr,θ := r · nθ + R · vθ

·
ℓr,θ

θ

r
· n

θ

v
θ

Figure 8.1.: X-ray beam ℓr,θ passing through an object described by its attenuation function f : R2 → R

The previous proposition delivers a suitable parametrization of all lines in the plane, which is visualized
in Figure 8.1. With this, we define the main operator behind the problem of computerized tomography,
the Radon tranform (cf. [52, Definition 2.1]).

Definition 8.3 (Radon transform). Let f : R2 → R be a function. The Radon transform of f is then
given by the collection of line integrals

Rf(r, θ) :=
∫

ℓr,θ

f(x) dx =

∫
R

f(r · nθ + s · vθ) ds for (r, θ) ∈ R× [0, π) .
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At this point, it is not yet clear for which class of functions the Radon transform is well-defined. One
possible choice for the domain is the space L1(R2). Given a function f ∈ L1(R2) and an angle θ ∈ [0, π),
we consider the rotation

Tθ : R2 → R2,

(
r
s

)
7→
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(
r
s

)
= r · nθ + s · vθ. (8.3)

Using substitution, we get∫
R2

|f(r · nθ + s · vθ)| d (r, s) =
∫
R2

|f(x)| dx = ∥f∥L1(R2) <∞, (8.4)

which implies that Rf(·, θ) ∈ L1(R) with

∥Rf(·, θ)∥L1(R) =

∫
R

|Rf(r, θ)| dr ≤
∫
R

∫
R

|f(r · nθ + s · vθ)| ds dr = ∥f∥L1(R2) (8.5)

due to the Fubini-Tonelli theorem. In particular, Rf(r, θ) exists and is finite for almost every r ∈ R.
Combining all previous rotations via the continuous, and therefore measurable mapping

T : R2 × [0, π) , (s, r, θ) 7→ Tθ(r, s),

the equality (8.4) leads to∫
[0,π)

∫
R2

|f(T (r, s, θ))| d (r, s) dθ =
∫

[0,π)

∫
R2

|f(Tθ(r, s))| d (r, s) dθ = π · ∥f∥L1(R2) <∞.

Another application of the Fubini-Tonelli theorem finally shows that Rf ∈ L1(R× [0, π)) holds with

∥Rf∥L1(R×[0,π)) ≤ π · ∥f∥L1(R2). (8.6)

Note that inequality (8.6) in combination with the linearity of the operator also shows that Rf = Rg
holds in L1(R× [0, π)) if f = g holds in L1(R2). In total, we get the following result (cf. [18, Proposition
2.2.2]).

Proposition 8.4. The Radon transform R : L1(R2) → L1(R × [0, π)) is a well-defined, bounded linear
operator.

Example 8.5. We give some examples of Radon transforms, which are important for our numerical tests
in Chapter 11. These and more examples can be found in [18, Section 5.2] and [52, Chapter 2].

(i) For given shape parameter ν > 0, consider the Gaussian function

Gν(x) := e−ν·∥x∥2
2 for x ∈ R2.

The Radon value at (r, θ) ∈ R× [0, π) is then given by

RGν(r, θ) =

∫
R

Gν(r · nθ + s · vθ) ds =
∫
R

e−ν·(r2+s2) ds = e−ν·r2 ·
∫
R

e−ν·s2 ds =

√
π

ν
· e−ν·r2 ,

where we used that nθ, vθ are orthonormal. Hence, the Radon transform of a Gaussian is again a
Gaussian, but only with respect to the radial variable. In general, the Radon transform of a radial
symmetric function only depends on the radial variable (see, e.g., [18, Proposition 2.2.8]).

(ii) For a shifted and rotated elliptical region (Figure 8.2)

ER1,R2,y,τ =
{
x ∈ R2

∣∣∣ ((x1 − y1) · cos(τ) + (x2 − y2) · sin(τ))2

R2
1

+
(−(x1 − y1) · sin(τ) + (x2 − y2) · cos(τ))2

R2
2

≤ 1
}
,
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Characteristic function Radon transform

Figure 8.2.: Characteristic function of a rotated elliptical region (left) and its Radon transform (right)

where R1, R2 > 0, y = (y1, y2)
T ∈ R2 and τ ∈ [0, π), the Radon transform is given by

RχER1,R2,y,τ
(r, θ) =

2R1R2 ·
√
R2

2 · sin(θ − τ)2 +R2
1 · cos(θ − τ)2 − (r − y1 · cos(θ)− y2 · sin(θ))2

R2
2 · sin(θ − τ)2 +R2

1 · cos(θ − τ)2

if (r − y1 · cos(θ)− y2 · sin(θ))2 ≤ R2
2 · sin(θ − τ)2 + R2

1 · cos(θ − τ)2 holds for (r, θ) ∈ R × [0, π).
Otherwise, we have RχER1,R2,y,τ

(r, θ) = 0. We do not go further into detail here and refer to [52,
Subsection 2.5.2] for the computations.

(iii) Consider the shifted rectangle

ER1,R2,y = [y1 −R1, y1 +R1]× [y2 −R2, y2 +R2] ⊂ R2

with halved side lengths R1, R2 > 0 and center y = (y1, y2)
T ∈ R2 (cf. Figure 8.3). The Radon

transform of the respective characteristic function is given by

RχER1,R2,y
(r, θ) =


2R2 · χ[−R1,R1](r − y1), for θ = 0, r ∈ R
2R1 · χ[−R2,R2](r − y2), for θ = π/2, r ∈ R
max (min (sV,1, sH,2)−max (sV,2, sH,1) , 0) , for θ ∈ (0, π/2) , r ∈ R
max (min (sV,1, sH,1)−max (sV,2, sH,2) , 0) , for θ ∈ (π/2, π) , r ∈ R,

where the intersection points with the rectangle in dependence of r, θ are given by

sV,1, sV,2 =
r · cos(θ)− y1 ±R1

sin(θ)

sH,1, sH,2 = −r · sin(θ)− y2 ±R2

cos(θ)
,

see also [52, Subsection 2.5.4]. Note that the formula can easily be adapted to the case of (half-)open
rectangles.

(iv) Given a shape parameter ν ≥ 0, we consider the function

fν(x) =

{(
1− ∥x∥22

)ν
, for ∥x∥2 ≤ 1

0, for ∥x∥2 > 1.
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Characteristic function Radon transform

Figure 8.3.: Characteristic function of a rectangular region (left) and its Radon transform (right)

For (r, θ) ∈ R× [0, π), the Radon value is given by

Rfν(r, θ) =

{√
π·Γ(ν+1)

Γ(ν+ 3
2 )

·
(
1− r2

)ν+ 1
2 , if |r| ≤ 1

0, if |r| > 1,

where Γ denotes the gamma function in this particular case (cf. [18, Proposition 5.2.5]). Similar to
the rotated ellipse from (ii), we can modify the function via rotations, shifts and stretching as well,
see Section 11.1. The function fν and its Radon transform are visualized in Figure 8.4 for ν = 3.

Function f3 Radon transform

Figure 8.4.: Visualization of fν (left) and its Radon transform (right) for ν = 3

In the previous example, we have seen that the Radon transform of a Gaussian function is again a
Gaussian function, which only depends on the radial argument r ∈ R. Thus, one is usually interested
in which properties of the function f are inherited by its Radon transform. A discussion regarding the
differentiability can be found in [60, Section 1.2]. Here, we want to focus on the support of the resulting
Radon transform (cf. [18, Proposition 2.2.9]).

Proposition 8.6. Let f ∈ L1(R2) ∩ C (R2) have compact support and R > 0 such that

f(x) = 0 for all x ∈ R2 \BR(0).
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Then Rf is compactly supported with respect to the radial variable, i.e.

Rf(r, θ) = 0 for |r| ≥ R, θ ∈ [0, π) .

Proof. For |r| ≥ R and θ ∈ [0, π), we have

∥r · nθ + s · vθ∥22 = r2 + s2 ≥ r2 ≥ R2 for all s ∈ R,

which already implies that the respective line integral of f must vanish.

With Proposition 8.2 and Definition 8.3, the reconstruction problem can be written as the operator
equation

Rf = g, (8.7)

where g contains the measured Radon data and f is the unknown function that we want to reconstruct.
In order to have a unique solution, the Radon transform is required to be injective. This is a consequence
of the central slice theorem (cf. [52, Theorem 6.1]).

Theorem 8.7 (Central slice theorem). Let Fi denote the Fourier transform on L1(Ri) for i = 1, 2. If
f ∈ L1(R2), we have the equality

F1 [Rf(·, θ)] (S) = (2π)1/2 · F2f(S · cos(θ), S · sin(θ)) for all S ∈ R

and fixed angle θ ∈ [0, π).

Proof. Given θ ∈ [0, π), we have Rf(·, θ) ∈ L1(R) due to (8.5). Hence, we compute

F1 [Rf(·, θ)] (S) = (2π)−1/2 ·
∫
R

Rf(r, θ) · e−iSr dr

= (2π)−1/2 ·
∫
R

∫
R

f(r · nθ + s · vθ) · e−iSr ds dr

= (2π)−1/2 ·
∫
R

∫
R

f(x) · e−iS·(x1·cos(θ)+x2·sin(θ)) dx

= (2π)1/2 · F2f(S · cos(θ), S · sin(θ)),

where we again used the transformation from (8.3).

Corollary 8.8. The Radon transform R : L1(R2) → L1(R× [0, π)) is injective.

Proof. Let f ∈ L1(R2) satisfy Rf = 0. Then we have

0 = ∥Rf∥L1(R×[0,π)) =

π∫
0

∥Rf(·, θ)∥L1(R) dθ,

and therefore Rf(·, θ) = 0 in L1-sense for almost every θ ∈ [0, π). With Theorem 8.7, we conclude that

F2f(S · cos(θ), S · sin(θ)) = 0 for all S ∈ R

holds for almost every θ ∈ [0, π). Since F2f is continuous, this property must hold for all θ ∈ [0, π).
Writing the elements of R2 in polar coordinates gives F2f = 0, and therefore f = 0 due to the injectivity
of the Fourier transform.
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8.2. Filtered back projection formula

Due to Corollary 8.8, there is a unique reconstruction of a function f ∈ L1(R2) from its Radon transform.
Besides the injectivity of the Radon transform, an explicit reconstruction formula is desirable for practical
implementations. Hence, we derive the reconstruction formula in this section, including the numerical
problems and challenges it brings along.
As a first reasonable approach for the reconstruction, we consider the mean Radon value of all lines

that go through a fixed point x = (x1, x2)
T ∈ R2. Note that for any θ ∈ [0, π), we can find exactly one

r ∈ R such that x ∈ ℓr,θ holds. In order to identify the unique radius parameter, we observe that x ∈ ℓr,θ
holds if and only if there is s ∈ R with(

x1
x2

)
= x = r ·

(
cos(θ)
sin(θ)

)
+ s ·

(
− sin(θ)
cos(θ)

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(
r
s

)
.

Applying the inverse matrix and extracting the first entry of the vector shows that the set of all lines
passing through the point x is given by

AG(R2)x :=
{
ℓr,θ

∣∣∣ θ ∈ [0, π) , r = x1 · cos(θ) + x2 · sin(θ)
}
.

Consequently, the mean of all respective Radon values is given by

1

π

π∫
0

Rf(x1 · cos(θ) + x2 · sin(θ), θ) dθ

for all functions f ∈ L1(R2) and points x ∈ R2. The above integral gives rise to the definition of the back
projection (cf. [52, Definition 3.2]).

Definition 8.9 (Back projection). For g : R× [0, π) → R, its back projection is defined as

Bg(x) := 1

π

π∫
0

g(x1 · cos(θ) + x2 · sin(θ), θ) dθ for all x = (x1, x2)
T ∈ R2.

The back projection satisfies the following mapping properties (cf. [18, Proposition 2.2.16 ff.]).

Proposition 8.10. For g ∈ L1(R× [0, π)), its back projection Bg is defined almost everywhere on R2 and
locally integrable, i.e. for any compact set E ⊂ R2, we have Bg ∈ L1(E). Moreover, the back projection

B : L∞(R× [0, π)) → L∞(R2)

is a well-defined, bounded linear operator.

Unlike the Radon transform and Example 8.5, it is not easy to find relevant non-constant functions
whose back projection can be computed explicitly. Some artificial examples are given in [52, Section 3.3].
But one can at least estimate the integrals to show that the back projection does not invert the Radon
transform. Counterexamples are given in [18, Observation 2.2.20] and [52, Example 3.5].
Although the back projection is not the inverse operator, it still plays a key role in the actual recon-

struction formula, where the Radon transform is pre-filtered by the modulus of the radial variable. Due
to this pre-filtering, the formula is known as the filtered back projection formula. Here, we state the
version of [18, Theorem 2.2.22], where we use the result and notation of Theorem 8.7.

Theorem 8.11 (Filtered back projection formula). Let f ∈ L1(R2) ∩ C (R2) such that F2f ∈ L1(R2).
Then, f can be reconstructed via the formula

f(x) =
1

2
· B
[
F−1

1 (| · | · F1 [Rf ])
]
(x) for all x ∈ R2,

where F1 [Rf ] (S, θ) := F1 [Rf(·, θ)] (S) for (S, θ) ∈ R× [0, π).
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Proof. With the Fourier inversion formula from Theorem A.15, the function f can be written as

f(x) = F−1
2 [F2f ](x) =

1

2π
·
∫
R2

F2f(ω) · ei·⟨x,ω⟩2 dω for all x ∈ R2.

Using the polar coordinates diffeomorphism

TP : R \ {0} × (0, π) → R2 \ {(x1, 0) | x1 ∈ R}, (S, θ) 7→ (S · cos(θ), S · sin(θ))

with |det(DTP (S, θ))| = |S| for (S, θ) ∈ R× (0, π), we get

f(x) =
1

2π
·

π∫
0

∫
R

F2f(TP (S, θ)) · ei·⟨x,TP (S,θ)⟩2 · |S| dS dθ

=
1

2π
·

π∫
0

(2π)−1/2 ·
∫
R

|S| · F1[Rf ](S, θ) · eiS·(x1·cos(θ)+x2·sin(θ)) dS dθ

=
1

2
· B
[
F−1

1 (| · | · F1 [Rf ])
]
(x)

for every x ∈ R2, where we used the result from Theorem 8.7 in the second line.

Remark 8.12. The first reconstruction formula from the complete set of line integral values goes back
to Radon and his seminal paper [109] from 1917. In the paper, he proved that f can be reconstructed via

f(x) = − 1

π
·

∞∫
0

F ′
x(q)

q
dq for all x ∈ Rd (8.8)

under suitable regularity assumptions, where F ′
x = ∂Fx/∂q is the derivative of

Fx(q) :=
1

2π
·

2π∫
0

Rf(x1 · cos(θ) + x2 · sin(θ) + q, θ) dθ for x = (x1, x2)
T ∈ R2, q ∈ [0,∞) .

Note that the value Fx(q) is the mean value of the line integrals along all tangents of the closed ball with
center x ∈ R2 and radius q ≥ 0. Alternatively, a derivation of the formula (8.8) using Riesz potentials
and the Hilbert transform can be found in [101, Section II.2].

The filtered back projection formula solves the reconstruction problem in theory but is problematic
when it comes to practical implementations. On the one hand, there is only a finite set of Radon data
measurements available in practical cases. This means that we have to use adequate discretizations of the
occuring operators to avoid large discretization errors. On the other hand, the reconstruction formula
is highly sensitive to noise, since the high-frequency part of Rf , which is usually associated with noise,
is amplified by the filter function | · | (cf. [18, Observation 2.2.24]). Hence, modifications are needed
to improve the stability of the reconstruction. We discuss modifications for the filtered back projection
formula in Section 9.1 that lead to a suitable reconstruction method.

8.3. Ill-posed inverse problems

To close this chapter, we briefly introduce the notion of ill-posed inverse problems and further comment
on the well-posedness of the computerized tomography problem. Recall that, due to equation (8.7), the
reconstruction problem can be interpreted as a linear operator equation. In a more general setting, we
assume that (X, ∥ · ∥X) , (Y, ∥ · ∥Y ) are normed linear spaces and A : X → Y is a bounded linear operator.
According to Hadamard, the linear inverse problem

Ax = y for y ∈ Y (8.9)

is well-posed if the following conditions are satisfied (cf. [45, page 31]):
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(i) The operator A is surjective, i.e. for every y ∈ Y , there is at least one x ∈ X that solves (8.9).

(ii) The operator A is injective, i.e. for every y ∈ Y , there is at most one x ∈ X that solves (8.9).

(iii) The inverse operator A−1 : Y → X is bounded as well, i.e. the solution of (8.9) depends continuously
on y ∈ Y .

The problem (8.9) is called ill-posed if at least one of the conditions (i)-(iii) does not hold. Given an
injective operator like the Radon transform, it is easy to achieve the first property by restricting the
co-domain of A to the image im(A). However, the third property, which is highly relevant in practice
since it reflects the effect of noise on the reconstruction quality, is not satisfied in many cases. A collection
of ill-posed inverse problems is given in [74, Section 3]. In this section, we want to discuss two concepts
that demonstrate the ill-posedness of the computerized tomography problem. The following discussion is
mainly based on [101, Chapter IV].

Singular values and ill-posedness

Let X and Y be Hilbert spaces. A representation of the bounded linear mapping A : X → Y in the form

Ax =
∑
i∈I

σi · ⟨x, xi⟩X · yi for x ∈ X, (8.10)

where Σ := {σi | i ∈ I} ⊂ R are positive real numbers and {xi | i ∈ I} ⊂ X, {yi | i ∈ I} ⊂ Y are
orthonormal, is called a singular value decomposition of A (cf. [101, page 86 ff.]). Moreover, the elements
of Σ are called singular values. The equation (8.10) implies that

AA∗y =
∑
i∈I

σ2
i · ⟨y, yi⟩Y · yi for y ∈ Y,

where A∗ : Y → X is the adjoint operator of A. Hence, the singular values and orthonormal vectors can
be determined with an eigenvalue decomposition of the self-adjoint mapping AA∗ and the relation

xi = σ−1
i ·A∗yi for i ∈ I.

It can be shown that a singular value decomposition exists for certain classes of linear operators, e.g. for
compact operators (see, e.g., [147, Satz VI.3.6]). Given the decomposition (8.10) of an injective operator,
the inverse is given by

A−1y =
∑
i∈I

σ−1
i · ⟨y, yi⟩Y · xi for y ∈ im(A).

In the case of a non-injective operator, the representation holds for the Moore-Penrose generalized inverse
A+ (cf. [101, Theorem IV.1.2]). Due to the equality

∥A−1yi∥X = σ−1
i for i ∈ I,

the inverse operator is unbounded and therefore discontinuous if zero is an accumulation point of Σ.
Consequently, the singular values reflect the stability of the linear operator equation (8.9) in terms of
y ∈ Y . To demonstrate the utility of this theory in the context of computerized tomography, we consider
the Radon transform

R : L2(B1(0)) → L2
w([−1, 1]× [0, π))

between the two Hilbert spaces

L2(B1(0)) ≃
{
f ∈ L2(R2)

∣∣∣ supp(f) ⊂ B1(0)
}

and

L2
w([−1, 1]× [0, π)) ≃

{
[g : R× [0, π) → R]

∣∣∣ supp(g) ⊂ [−1, 1]× [0, π) and ∥g∥L2
w([−1,1]×[0,π)) <∞

}
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with norm

∥g∥L2
w([−1,1]×[0,π)) =

 π∫
0

1∫
−1

|g(r, θ)|2 ·
(
1− r2

)−1/2
dr dθ

1/2

.

This particular version of the Radon transform is a bounded linear operator (cf. [101, Theorem II.1.6])
and its positive singular values are given by

σi =
4π

i+ 1
i ∈ N0.

For the derivation of the singular value decomposition, we refer to [101, Section IV.3]. Since σi
i→∞−−−→ 0,

the (generalized) inverse operator is not bounded according to our previous discussion.

Degree of smoothing

For linear operators between L2-spaces, we can use its smoothing properties to classify the ill-posedness
of the problem (8.9). To this end, let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be suitable domains and assume that

A : L2(Ω1) → L2(Ω2).

We call A a smoothing operator of degree s > 0 if for any a ∈ R and any bounded open subset Ω ⊂ Ω1,
there are constants ca,Ω, Ca,Ω > 0 such that the Sobolev norm estimates

ca,Ω · ∥f∥Ha(Ω1) ≤ ∥Af∥Ha+s(Ω2) ≤ Ca,Ω · ∥f∥Ha(Ω1) for all f ∈ Ha
0 (Ω) (8.11)

hold. Here, Ha
0 (Ω) denotes the subspace

Ha
0 (Ω) :=

{
f ∈ Ha(Ω1)

∣∣∣ supp(f) ⊂ Ω
}
.

Further information on fractional Sobolev spaces is provided in Section A.5. Note that (8.11) implies
that A : Ha

0 (Ω) → Ha+s(Ω2) is an injective, bounded operator and its inverse operator is continuous.
Setting a = −s, we get

c−s,Ω · ∥f∥H−s(Ω1) ≤ ∥Af∥L2(Ω2) ≤ C−s,Ω · ∥f∥H−s(Ω1) for all f ∈ H−s
0 (Ω1). (8.12)

Since −s < 0, the space H−s
0 (Ω) is a Sobolev space of negative order and its norm is (strictly) weaker

than the L2-norm, i.e. there is a constant C > 0 such that

∥f∥H−s(Ω1) ≤ C · ∥f∥L2(Ω1) for all f ∈ L2(Ω)

and a sequence (fn)n∈N ⊂ L2(Ω) such that

∥fn∥L2(Ω1) > n · ∥fn∥H−s(Ω1) for n ∈ N.

In combination with (8.12), this yields

∥fn∥L2(Ω1) > n · C−1
−s,Ω · ∥Afn∥L2(Ω2) for n ∈ N,

so that A−1 is not continuous in the L2-setting (cf. [18, Remark 2.2.29], [85, Section III.B]). The degree of
smoothing can also be used to analyze worst-case errors of the reconstruction, see [101, Theorem IV.1.3].
For the analysis of the Radon transform, we set Ω1 = R2 and Ω2 = R× [0, π). In particular, we set

Ha(R× [0, π)) =
{
[g : R× [0, π) → R]

∣∣∣ g(·, θ) ∈ Ha(R) for all θ ∈ [0, π) and ∥g∥Ha(R×[0,π) <∞
}

for a ∈ R, where the Sobolev norm is defined as

∥g∥Ha(R×[0,π)) :=

 π∫
0

∥g(·, θ)∥2Ha(R) dθ

1/2

.
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Based on [101, Theorem II.5.1], it was shown in [18, Theorem 2.2.28] that the Radon transform is a
smoothing operator of degree s = 1/2, i.e. there are constants ca,Ω, Ca,Ω > 0 such that

ca,Ω · ∥f∥Ha(R2) ≤ ∥Rf∥Ha+1/2(R×[0,π)) ≤ Ca,Ω · ∥f∥Ha(R2) for all f ∈ Ha
0 (Ω) ∩ L1(R2)

given a smoothness level a ∈ R and a bounded open set Ω ⊂ R2. This is a slight modification of (8.11)
due to the intersection with L1(R2), but our previous argumentation still applies. Hence, the Radon
transform does not have a continuous inverse operator in the L2-setting.
The singular values of the Radon transform and its smoothing properties show that the problem of

reconstructing a function from its line integral values is ill-posed. Hence, so-called regularization methods
are usually required for a stable reconstruction (cf. [45]). Common regularization methods are also listed
in [101, pages 86-89], for example.



9. Reconstruction Methods

As we have already pointed out, the filtered back projection formula from Theorem 8.11 is problematic
when it comes to practical implementations due to incomplete data and its sensitivity to noise. Con-
sequently, an exact reconstruction is not possible and approximation methods are needed to produce
a reconstruction that is similar to the original. Over the last decades, several reconstruction methods
have been developed that rely on different simplifications of the reconstruction problem. An overview of
reconstruction methods is given in [21], [61], [78], [102].
Our main focus in this chapter lies on the method of filtered back projection (FBP method) and algebraic

reconstruction methods, which are two of the most popular reconstruction approaches. We explain the
ideas behind the two approaches as well as important theoretical results in Section 9.1 & 9.2 since the
corresponding reconstruction methods serve as a reference for our theoretical discussions in Chapter 10
and numerical comparison in Section 11.3. For the sake of completeness, we provide a selection of more
recent reconstruction methods with brief descriptions in Section 9.3.

9.1. Method of filtered back projection

As the name suggests, the FBP method is based on the filtered back projection formula from Theorem
8.11. Recall that the modulus | · | inside the formula is mainly responsible for its instability since it
amplifies the noise of the Radon data for high values of S ∈ R. The main idea of the FBP method
is to replace the modulus with a compactly supported function A : R → R that imitates the modulus
on a compact domain and cuts off high frequencies. In the language of signal processing, this is called
a low-pass filter, and the function A serves as a filter function. The following section is based on [18,
Chapter 3-5], [52, Chapter 8] and [101, Chapter III].
Let us start with the construction of the filter function A. Usually, it has the form

A(S) = AW,L(S) = |S| ·W (S/L) for S ∈ R, (9.1)

where W ∈ L∞(R) is an even window function with supp(W ) ⊂ [−1, 1] and L > 0 is a given bandwidth.
In the format (9.1), the bandwidth L determines the length of the support, as the support of AL is
contained in [−L,L]. Note that, due to the compact support of AL ∈ L∞(R), we must have AL ∈ Lp(R)
for every p ∈ [1,∞]. Replacing the modulus with AL inside the filtered back projection formula leads to
the approximate reconstruction

fW,L(x) =
1

2
· B
[
F−1

1 (AW,L · F1 [Rf ])
]
(x) =

1

2
· B
[
F−1

1 (| · | ·W (·/L) · F1 [Rf ])
]
(x) for x ∈ R2.

In the original formula, the term F−1
1 (| · | · F1 [Rf ]) cannot be simplified with the convolution property

of the Fourier transform because | · | /∈ Lp(R) for every p ∈ [1,∞]. But with the replacement of the
modulus, we can write this term as a convolution of functions (cf. [18, Theorem 3.2.2]).

Theorem 9.1. Let f ∈ L1(R2) ∩ L2(R2) and W ∈ L∞(R) be even with supp(W ) ⊂ [−1, 1]. For any
bandwidth L > 0, the approximate reconstruction can be written as

fW,L =
1

2
· B (qL ⋆Rf) , (9.2)

where the equality holds almost everywhere on R2. Here, the function qL : R× [0, π) → R is given by

qL(r, θ) := F−1
1 AW,L(r) for (r, θ) ∈ R× [0, π)

and the convolution qL ⋆Rf is defined as the one-dimensional convolution

(qL ⋆Rf) (r, θ) := (qL(·, θ) ∗ Rf(·, θ))(r) =
∫
R

qL(t, θ) · Rf(r − t, θ) dt for (r, θ) ∈ R× [0, π) .
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With this representation, we get rid of the Fourier transform in front of Rf , which is desirable for
implementations, as we are only given finite samples of the Radon data. But we need to determine the
inverse Fourier transform of the filter function AW,L in order to use (9.2).

Example 9.2. We provide two common examples of window functionsW ∈ L∞(R) including the inverse
Fourier transform of the resulting filter functions (cf. [52, Section 8.3]). A visualization is given in Figure
9.1. More examples and a numerical comparison can be found in [31].

(i) The characteristic function

W (S) = χ[−1,1](S) =

{
1, if |S| ≤ 1

0, if |S| > 1
for S ∈ R

generates the Ram-Lak filter (cf. [110])

AL(S) = |S| ·W (S/L) =

{
|S|, if |S| ≤ L

0, if |S| > L
for S ∈ R (9.3)

for given bandwidth L > 0. Its inverse Fourier transform is given by

F−1
1 AL(r) =

L2

2π
·
(
2 · sinc(Lr)− sinc(Lr/2)2

)
for r ∈ R,

where sinc denotes the cardinal sine

sinc(t) :=

{
sin(t)

t , if t ̸= 0

1, if t = 0.

(ii) Consider the window function

W (S) = sinc
(π
2
· S
)
· χ[−1,1](S) =


sin(π

2 ·S)
π
2 ·S , if 0 < |S| ≤ 1

1 if S = 0

0 if |S| > 1

for S ∈ R,

which, given L > 0, yields the Shepp-Logan filter (cf. [124])

AL(S) = |S| · sinc
(
π

2
· S
L

)
· χ[−1,1](S/L) =

{
2L
π ·
∣∣sin (π2 · S

L

)∣∣ , if |S| ≤ L

0, if |S| > L
for S ∈ R.

The respective inverse Fourier transform is given by

F−1
1 AL(r) =

4L2

π2
· π − 2Lr · sin(Lr)

π2 − 4L2r2
for r ∈ R.

Convergence rates

In his doctoral thesis [18], Beckmann analyzed the reconstruction error of the FBP method for target
functions in the fractional Sobolev space

Hα(R2) =
{
f ∈ L2(R2) | ∥f∥Hα(R2) <∞

}
of order α ≥ 0 (cf. Definition A.29), where the respective norm is defined as

∥f∥2Hα(R2) :=

∫
R2

(
1 + ∥ω∥22

)α · |Ff(ω)|2 dω.

Note that H0(R2) = L2(R2) holds (cf. Section A.5). The error analysis in [18] is based on the result that
the approximate reconstruction from Theorem 9.1 can be written as a convolution of the target function
with a band-limited convolution kernel due to the convolution properties of the back projection (cf. [18,
Theorem 3.2.3 & 3.2.5]).
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Figure 9.1.: Visualisation of Ram-Lak filter (left) and Shepp-Logan filter (right) for L ∈ {1, 5, 10}

Theorem 9.3. Let f ∈ L1(R2) ∩ L2(R2) and W ∈ L∞(R) be even with supp(W ) ⊂ [−1, 1]. Then, for
any L > 0, the equality

fW,L = f ∗KL

holds in the L2-sense, where KL = 1
2 · BqL is the inverse Fourier transform of the function

WL(x) :=W

(
∥x∥2
L

)
for x ∈ R2.

Here, we want to give a short overview of the results from [18, Chapter 4]. We start with the error
estimate in terms of the Sobolev norm (cf. [18, Theorem 4.2.3]).

Theorem 9.4. Let f ∈ L1(R2)∩Hα(R2) for α > 0 and let W ∈ L∞(R) be even with supp(W ) ⊂ [−1, 1].
Then, for 0 ≤ σ ≤ α, we have

∥f − fW,L∥Hσ(R2) ≤
(
Φα−σ,W (L)1/2 + Lσ−α

)
· ∥f∥Hα(R2),

where

Φα−σ,W (L) := ess sup
S∈[−1,1]

(1−W (S))
2

(1 + L2S2)
α−σ for L > 0.

In order to prove convergence for L→ ∞ and to determine convergence rates, the functions

Φγ,W (L) := ess sup
S∈[−1,1]

(1−W (S))
2

(1 + L2S2)
γ for L > 0 (9.4)

for γ > 0 need to be analyzed. If W is the window function of the Ram-Lak filter (cf. Example 9.2 (i)),
then Φγ.W (L) = 0 holds for all L > 0 so that it represents the optimal window functions for this type
of estimate. More generally, the expression (9.4) tends to zero for continuous window functions that are
normalized at zero (cf. [18, Theorem 4.2.5]).

Theorem 9.5. LetW ∈ C ([−1, 1]) be even withW (0) = 1. Then, for any γ > 0, we have the convergence

Φγ,W (L)
L→∞−−−−→ 0.
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This in combination with Theorem 9.4 leads to the convergence of the FBP method with respect to
the Hσ-norm for 0 ≤ σ < α (cf. [18, Corollary 4.2.6]).

Corollary 9.6. Let f ∈ L1(R2)∩Hα(R2) for α > 0 and let W ∈ L∞(R) be even with supp(W ) ⊂ [−1, 1],
such that W is continuous on [−1, 1] and W (0) = 1. Then, for 0 ≤ σ < α, we have the convergence

∥f − fW,L∥Hσ(R2)
L→∞−−−−→ 0.

It is even possible to extend the convergence result of Corollary 9.6 to the case σ = α and to the case
that W is only continuous at zero, see [18, Theorem 4.2.7]. Besides these convergence results, Beckmann
provided estimates on Φγ,W (L) for many classes of window functions, see [18, Section 4.3]. Moreover,
[18, Section 4.1] gives an overview of related convergence results.

Discretization

For the implementation of the FBP method, we use the representation

fW,L =
1

2
· B (qL ⋆Rf)

from Theorem 9.1. Recall that we can only measure a finite number of Radon data values in practical
cases. Hence, scanning schemes are required that lead to a suitable discretization of the involved operators.
In our case, we use the parallel beam geometry (cf. [101, page 71]), where we assume that the values

Rf(j · d, k · π/N) j = −M, ...,M, k = 0, ..., N − 1 (9.5)

are available for parameters d > 0 and M,N ∈ N. This scheme corresponds to a scanning machine that
rotates around the target object with stepwidth π/N and sends out 2M + 1 equidistant parallel beams
at each considered angle, yielding a total number of (2M + 1) · N X-rays (cf. Figure 9.2). Within this
approach, we have to determine values for the step width and the number of collected data points.

Emitter

Detector

Object

X-rays

Figure 9.2.: Scanning procedure (left) and respective set of lines (right) for parallel beam geometry with
M = 5, N = 10 and d = 1/5

Remark 9.7. We remark that there are other scanning geometries like the fan beam geometry, which
bring along practical advantages in comparison to the parallel beam geometry. However, these advantages
are not relevant to our numerical tests, so we do not cover these here but refer to [52, Section 8.12] and
[101, Section III.3] for further reading.
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As a starting point, assume that the domain of the index j is unbounded. One possible discrete version
of the continuous convolution (qL ⋆Rf)(·, θ) for fixed θ ∈ [0, π) is then given by

(qL ⋆D Rf)(l · d, θ) := d ·
∑
j∈Z

Rf(j · d, θ) · qL((l − j) · d, θ) for l ∈ Z, (9.6)

see [18, page 104]. Recall that the objects that we want to reconstruct in practice are bounded, so that
the associated attenuation function f has compact support. Hence, we can find a radius R > 0 such that
supp(f) ⊂ BR(0), which implies Rf(r, θ) = 0 if |r| > R (cf. Theorem 8.6). Setting M = ⌊R/d⌋, we can
replace (9.6) with the finite sum

(qL ⋆D Rf)(l · d, θ) := d ·
M∑

j=−M

Rf(j · d, θ) · qL((l − j) · d, θ) for l ∈ Z. (9.7)

Note that the discrete convolution qL ⋆D Rf is also evaluated at the rate d with respect to the radial
variable. Due to the structure of the low-pass filter, we know that the one-dimensional Fourier transform
of (qL ⋆Rf)(·, θ) has compact support for each θ ∈ [0, π), so that (qL ⋆Rf)(·, θ) is band-limited. Hence,
we can make use of the Shannon sampling theorem (see, e.g., [101, Theorem III.1.1]) to derive a suitable
sampling rate for the radial variable.

Theorem 9.8 (Shannon sampling theorem). Let h ∈ L2(R) and L > 0 such that supp(Fh) ⊂ [−L,L],
where F denotes the Fourier transform on L2(R). Then we have

h(t) =
∑
l∈Z

h
(
l · π
L

)
· sinc(Lt− lπ)

for almost every t ∈ R, i.e. h can be reconstructed by the discrete set of values {h(l · π/L) | l ∈ Z}.

Remark 9.9. In Example 3.5, we have already derived that, under the assumptions of Theorem 9.8, the
evaluation of a continuous function h is given by

h(t) =

∫
R

h(s) · sin(L · (s− t))

π · (s− t)
ds =

L

π
·
∫
R

h(s) · sinc(L · (t− s)) ds for all t ∈ R.

Approximating this integral by a Riemannian sum with separation π/L yields

L

π
·
∫
R

h(s) · sinc(L · (t− s)) ds ≈ L

π
·
∑
l∈Z

h
(
l · π
L

)
· sinc(L · (t− l · π/L)) · π

L

=
∑
l∈Z

h
(
l · π
L

)
· sinc(Lt− lπ)

for t ∈ R. It is remarkable that Theorem 9.8 establishes equality in the previous calculation, yielding a
discretized version of the reproduction property.

As a consequence of Theorem 9.8, we choose the sampling rate with respect to the radial variable as
d = π/L in our implementation, where L is the bandwidth of the selected low-pass filter.

Example 9.10. For the computation of the discrete convolution (9.7) with d = π/L, we need to determine
the values

qL

(
j · π

L
, θ
)
= F−1

1 AL

(
j · π

L

)
for j ∈ Z, θ ∈ [0, π)

for the selected low-pass filter. Therefore, we can use the formulas from Example 9.2:

(i) For the Ram-Lak filter, we have

F−1
1 AL

(
j · π

L

)
=


L2

2π , for j = 0

0, for j ̸= 0 even

− 2L2

π3j2 for j odd.
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(ii) In the case of the Shepp-Logan filter, we get

F−1
1 AL

(
j · π

L

)
=

4L2

π3 · (1− 4j2)
for all j ∈ Z.

To discretize the back projection, we use the composite trapezoidal rule

Bg(x) ≈ 1

N
·
N−1∑
k=0

g(x1 · cos(k · π/N) + x2 · sin(k · π/N), k · π/N) for x ∈ R2,

see [18, page 105], [52, Definition 8.25]. For more details on numerical integration algorithms, we refer to
[14, Chapter 5]. Inserting the discretized convolution (9.7) leads to the approximate reconstruction

f
(D)
W,L(x) =

1

2N
·
N−1∑
k=1

(qL ⋆D Rf)(x1 · cos(k · π/N) + x2 · sin(k · π/N), k · π/N) for x ∈ R2. (9.8)

In order to get a good approximation quality within the FBP method, it is recommended to choose
N = ⌈L⌉ (cf. [101, page 84, Table III.1]) for target functions whose support is contained in the unit ball
B1(0), so that we have

d =
π

L
, M = ⌊R · L/π⌋, N = ⌈R · L⌉ (9.9)

as the parameters of our implementation for a given radius R > 0. However, there remains one problem
regarding the formula (9.8). For given angle θ ∈ [0, π), we only evaluate (qL ⋆D Rf)(·, θ) on the grid

{l · d | l ∈ Z} ⊂ R

according to (9.7). In general, the radial input in the integrand within the back projection formula is not
an element of this grid, i.e.

x1 · cos(θ) + x2 · sin(θ) /∈ {l · d | l ∈ Z}

for most x ∈ R2. To avoid this problem, we determine the value

(qL ⋆D Rf)(x1 · cos(θ) + x2 · sin(θ), θ)

via cubic spline interpolation, see [18, page 107]. More details on spline interpolation can be found in
[36]. If x ∈ BR(0) holds, we can use the Cauchy inequality to estimate

|x1 · cos(θ) + x2 · sin(θ)| = |⟨x, nθ⟩2| ≤ ∥x∥2 < R,

which means that we only need the finite set of evaluations{
(qL ⋆D Rf)(l · d, θ)

∣∣∣ l = −⌈R/d⌉, ..., ⌈R/d⌉
}

for the spline interpolation in this case. At last, we want to remark that the discretized FBP method can
be implemented efficiently using appropriate vectorization.

9.2. Algebraic reconstruction methods

In contrast to the FBP method, algebraic reconstruction methods do not rely on an explicit reconstruction
formula. The main idea is to discretize the involved operator from the start, resulting in a finite system
of equations (cf. [52, Section 9.1]). Suppose that we are given finite Radon data{

Rf(ri, θi)
∣∣∣ i = 1, ...,M

}
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of a target function f : R2 → R. The respective discretized version of the inverse problem (8.7) is then
given by the system of equations

Rs(ri, θi) = Rf(ri, θi) for i = 1, ...,M, (9.10)

where s : R2 → R denotes the approximate reconstruction of f . Of course, we have to make some
assumptions on s in order to analyze the system (9.10). As in the case of an interpolation problem, we
fix a set of basis functions

B =
{
bj : R2 → R

∣∣∣ j = 1, ..., N
}

such that the Radon transform is defined everywhere for each basis function and we assume the approx-
imate reconstruction s to have the form

s =

N∑
j=1

cj · bj ∈ spanR(B),

see [62]. Due to the linearity of the Radon transform, this leads to the linear system Rb1(r1, θ1) . . . RbN (r1, θ1)
...

. . .
...

Rb1(rM , θM ) . . . RbN (rM , θM )

 ·

 c1
...
cN

 =

 Rf(r1, θ1)
...

Rf(rM , θM )

 , (9.11)

where the system matrix is not necessarily square. Before we discuss special realizations, we want to refer
to [61, Chapter 11] and [78, Chapter 7] for further reading about algebraic reconstruction methods.
One specific version of this approach is the algebraic reconstruction technique (ART) (cf. [56]), which

uses characteristic functions of pixel squares as basis functions. Assuming that the target object is
contained in the rectangle [−R1, R1]× [−R2, R2] with radii R1, R2 > 0, we choose resolution parameters
N1, N2 ∈ N and divide the domain into the N := N1 ·N2 disjoint, equally sized rectangles

Ej,k =


[−R1 + (j − 1) · h1,−R1 + j · h1)× [−R2 + (k − 1) · h2,−R2 + k · h2) , j < N1, k < N2

[−R1 + (N1 − 1) · h1, R1]× [−R2 + (k − 1) · h2,−R2 + k · h2) , j = N1, k < N2

[−R1 + (j − 1) · h1,−R1 + j · h1)× [−R2 + (N2 − 1) · h2, R2] , j < N1, k = N2

[R1 − h1, R1]× [R2 − h2, R2] , j = N1, k = N2,

where h1 = 2R1/N1 and h2 = 2R2/h2. If s is a linear combination of the characteristic functions, i.e.

s =

N1∑
j=1

N2∑
k=1

cj,k · χEj,k
,

then s is constant on each rectangle with function value ci,j , so that the coefficients equal the pixel value
of the reconstructed image. Note that the matrix entries

RχEj,k
(ri, θi) for 1 ≤ i ≤M, 1 ≤ j ≤ N1, 1 ≤ k ≤ N2

can be computed with the formula from Example 8.5 (iii). Moreover, the resulting matrix is sparse, as
each X-ray only intersects a small percentage of the total pixels.

Remark 9.11. In the following, we focus on the functions χEj,k
, but the theoretical results also hold

for other choices of basis functions. For example, alternative basis functions are given by so-called blob
functions, which were introduced in [83], [84]. These basis functions are translations of a smooth radial
symmetric function with compact support. The main intention of using smooth basis functions is to
generate smoother reconstructions that are potentially more resistant to noise (cf. [61, Section 6.5]).
Numerical examples can be found in [61, Section 11.5], [92]. We come back to this idea in the context of
kernel-based image reconstruction, see Section 10.4.



9. Reconstruction Methods 102

Kaczmarz’s method

In the typical setting of N1 = N2 = 256, the number of pixels highly exceeds the number of measured
Radon values, so that the system (9.11) is heavily underdetermined. To find a solution to this rectangular
system, ART uses Kaczmarz’s method for linear systems, which was introduced in [75]. We explain the
method in the following.
Consider a general linear system

A · x = b, where A =

− aT1 −
...

− aTm −

 ∈ Rm×n, x ∈ Rn, b =

 b1
...
bm

 ∈ Rm. (9.12)

Given an initial guess x0 ∈ Rn and a column index i ∈ {1, ...,m}, we update the initial guess such that
the i-th equation of the linear system is satisfied, or in other words, we project x0 onto the solution space

Si :=
{
x ∈ Rn

∣∣∣ ⟨ai, x⟩2 = bi

}
of the i-th equation. Note that Si is an affine space in Rn, and the projection of x0 onto this space is
given by

x
(i)
0 = x0 −

⟨x0, ai⟩2 − bi
⟨ai, ai⟩2

· ai,

see e.g. [52, Proposition 9.3]. Here, we need to assume that all rows of A are non-zero, which is usually
satisfied in the context of computerized tomography. Since we want to solve the whole system of equations,
one iteration of Kaczmarz’s method consists of applying the projection for each i ∈ {1, ...,m} successively.
So, assuming that we have performed k ∈ N0 steps of the method resulting in the vector xk ∈ Rn, we set

x
(0)
k = xk

and iteratively compute

x
(i)
k = x

(i−1)
k −

⟨x(i−1)
k , ai⟩2 − bi
⟨ai, ai⟩2

· ai for i = 1, ...,m. (9.13)

Then xk+1 = x
(m)
k gives the next approximate solution to the linear system. Within each update step,

a component is only changed if the corresponding component of ai is non-zero. In the context of ART,
this means that the color value of a pixel only changes if the considered X-ray intersects with the pixel.
Note that each update step only requires one row of the entire matrix, which can be computed efficiently.
Hence, it can be beneficial to not store the entire matrix and compute the necessary row in each update
step in order to improve the efficiency of the method. These types of algorithms are also referred to as
row-action methods (cf. [61, Section 11.1]). If we keep track of the non-zero components, we can use the
sparsity of each row to further improve the efficiency.
Under the previous assumptions on the system matrix A, Kaczmarz’s method converges to the least

squares solution of the linear system (cf. [134, Corollary 9]).

Theorem 9.12. Let b ∈ Rm and A ∈ Rm×n with non-zero rows. Set

S =
{
x ∈ Rn

∣∣ ∥b−A · x∥2 = inf
y∈Rn

∥b−A · y∥2
}
,

and define x∗ ∈ S as the unique element in S that satisfies

∥x∗∥2 = inf
x∈S

∥x∥2.

If Pker(A) denotes the orthogonal projection onto the kernel ker(A) ⊂ Rn of A, then for every initial vector
x0 ∈ Rn, the iteration (9.13) is convergent with

xk
k→∞−−−−→ Pker(A)(x0) + x∗.

In particular, the method converges to x∗ if x0 ∈ ker(A)⊥.
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Remark 9.13. One significant drawback of the standard Kaczmarz’s method is that, when applied to
computerized tomography within ART, the resulting reconstruction often suffers from salt-and-pepper-
like artifacts (cf. [61, Section 11.5]), in particular when applied to noisy measurements. The update step
(9.13) can be modified with a relaxation parameter κ > 0, i.e.

x
(i)
k = x

(i−1)
k − κ ·

⟨x(i−1)
k , ai⟩2 − bi
⟨ai, ai⟩2

· ai for i = 1, ...,m. (9.14)

Geometrical interpretations for different relaxation parameters are given in [61, Section 11.2]. For noisy
data, it is recommended to choose κ ≪ 1 at the cost of convergence speed, which is also referred to as
under-relaxation (cf. [61, page 212]). If 0 < κ < 2, the convergence result from Theorem 9.12 holds
as well if the linear system is consistent, see [102, Theorem 5.1]. Moreover, the convergence of the
standard Kaczmarz’s method is rather slow. To improve the rate of convergence, a randomized version
was introduced in [133]. In each iteration, this version randomly chooses a row index and performs the
respective update step, where the probability of each index is proportional to the squared norm of the
respective row vector. The randomization yields an exponential convergence rate for the expected error.

Related methods

As we have already pointed out, ART without a relaxation parameter is known for producing non-smooth
reconstructions in the case of noisy measurements. In each step (9.13), the color values are corrected
such that the corresponding equation of the system is satisfied. But, if the reference value contains noise,
this update step has a negative effect on the reconstruction quality. Therefore, further methods based on
the concept of ART were developed that incorporate the error for each X-ray equation into the update
step in order to reduce the effects of noise. One approach was the simultaneous iterative reconstruction
technique (SIRT) (cf. [55]), which was followed by the simultaneous algebraic reconstruction technique
(SART) (cf. [9]).
Here, we want to focus on the modified iterative solver for the system (9.12) within SART. Given the

current approximate solution xk ∈ Rn, k ∈ N0, the j-th component xk,j of xk is updated via the formula

xk+1,j = xk,j −
1

vj
·

m∑
i=1

ai,j ·
⟨xk, ai⟩2 − bi

wi
for j = 1, ..., n, (9.15)

where A = (ai,j)1≤i≤m
1≤j≤n

denote the matrix entries and

vj :=

m∑
i=1

ai,j for j = 1, ..., n, wi :=

n∑
j=1

ai,j for j = 1, ...,m (9.16)

are the column and row sums of A. In most applications, the expressions (9.16) are non-zero, so that
(9.15) is well-defined. Note that the update term is a weighted sum of the correction terms

⟨xk, ai⟩2 − bi
wi

, (9.17)

where wi,i represents the length of the i-th X-ray beam and ⟨xk, ai⟩2 is the line integral of the current
approximate reconstruction in the context of image reconstruction. Hence, the term (9.17) distributes
the interpolation error uniformly over the i-th X-ray beam. By setting

V =

v1 . . . 0
...

. . .
...

0 . . . vn

 ∈ Rn×n and W =

w
−1
1 . . . 0
...

. . .
...

0 . . . w−1
m

 ∈ Rm×m,

we can write the iteration (9.15) in terms of matrix vector multiplication. As in Remark 9.13, we can
add a relaxation parameter (cf. [10]), which yields the iteration

xk+1 = xk − κ · V −1ATW · (A · xk − b) for k ∈ N0. (9.18)
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For a positive definite matrix B ∈ Rl×l with l ∈ N, we define the respective inner product and resulting
B-norm as

⟨x, y⟩B := xT ·B · y and ∥x∥B :=
√

⟨x, x⟩B for x, y ∈ Rl.

With this notation, we get the following convergence result (cf. [72]).

Theorem 9.14. Let κ ∈ (0, 2), b ∈ Rm and A ∈ Rm×n satisfy the conditions

(i) ai,j ≥ 0 for i = 1, ...,m, j = 1, ..., n,

(ii) vj ̸= 0 for j = 1, ..., n,

(iii) wi ̸= 0 for i = 1, ...,m.

Set

S =
{
x ∈ Rn

∣∣ ∥b−A · x∥W = inf
y∈Rn

∥b−A · y∥W
}
,

and define x∗ ∈ S as the unique element in S that satisfies

∥x∗∥V = inf
x∈S

∥x∥V .

If Pker(A) denotes the orthogonal projection onto the kernel of A with respect to ⟨·, ·⟩V , then for every
initial vector x0 ∈ Rn, the iteration (9.18) is convergent with

xk
k→∞−−−−→ Pker(A)(x0) + x∗.

In particular, the method converges to x∗ if x0 ∈ ker(A)⊥, where the orthogonal complement is again
taken with respect to the modified inner product.

Advantages and disadvantages

Finally, we want to highlight the main advantages and disadvantages of algebraic reconstruction methods
in comparison to the FBP method from Section 9.1. Recall that the discretization of the FBP method
is based on the discrete convolution, composite trapezoidal rule and linear spline interpolation, which
can be implemented efficiently (cf. [61, Section 8.7]). With an appropriate choice of filter function and
bandwidth, we get an accurate reconstruction due to the respective convergence rates. In contrast, the
computational costs of algebraic reconstruction methods are very high, since they involve huge systems
of linear equations for high-resolution images. To solve these linear systems, one usually makes use of
iterative solvers such as Kaczmarz’s method (9.13), which can suffer from slow or even non-convergence.
Moreover, many parameters have to be determined within algebraic methods, e.g. the choice of basis
functions, the initial value for the iterative solver or the number of iterations. The determination of
suitable parameters for the reconstruction is very challenging, as there is no general selection rule available.
Due to these challenges, transform methods such as the FBP method have been preferred in commercial
scanners for a long time (cf. [21, Introduction], [29, Section 6.1-6.4], [52, Section 9.6]).
However, the FBP method relies on large, regularly distributed data sets. As we have already stated in

the introduction to the second part of this thesis, there are situations where regular line distributions like
the parallel beam geometry cannot be applied, e.g. due to angle limitations, or where we need to reduce
the radiation dose significantly. In these settings, the accuracy of the FBP method is no longer given
or it might not be applicable without further modifications. One of the main advantages of algebraic
reconstruction methods is their flexibility, since they allow for all possible distributions of lines in the
plane, even for scattered data sets (cf. [61, page 214]). It has been shown by numerous examples that
algebraic methods are able to outperform the FBP method in certain restricted or low-dose settings, see
e.g. [95]. Moreover, it is easy to incorporate prior (physical) knowledge into the reconstruction process
when using algebraic methods, e.g. by incorporating a regularization term (see, e.g., [21, page 99 & 101]).
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9.3. Other methods

To close this chapter, we provide some further examples of reconstruction methods with brief descriptions,
which demonstrate the wide range of the research field concerning computerized tomography:

• Statistical inversion: Given an inverse problem Ax = y, where A : X → Y is a linear operator,
the involved spaces X,Y are seen as probability spaces with probability distributions pX , pY , and
y is is seen as a realization of Y . Moreover, it is assumed that we know the prior density pX and
the conditional probability distribution

pY (y | x) for x ∈ X,

also referred to as the likelihood function. In this case, Bayes’ theorem (cf. [77, Theorem 3.1]) states
that the converse conditional probability distribution is given by

pX(x | y) = pX(x) · pY (y | x)
pY (y)

for x ∈ X,

where pY (y) can be computed via

pY (y) =

∫
X

pY (y | x) · pX(x) dx.

With this posterior probability distribution, we can then determine an approximate solution to
the inverse problem. One common approach is the maximum a posteriori estimate (MAP), which
determines the reconstruction via

xMAP = max
x∈X

pX(x | y).

When applying this method to computerized tomography, the input space X is typically simplified,
e.g. by using the pixel basis from Section 9.2. The main challenge of statistical inversion methods
is to find good models for the required probability distributions. For further reading, we refer to
[77], [80], [125].

• Interpolation with zonal kernels: In [17], every parameter pair is identified as an element of
the unit sphere S2 = {x ∈ R3 | ∥x∥2} via the injective mapping

ψ : R× [0, π) → S2, (r, θ) 7→ 1√
1 + r2

· (cos(θ), sin(θ), r)T . (9.19)

The image of this mapping is given by the back half of the unit sphere without the north pole
(0, 0, 1)

T
, and the respective set of antipodal points represents the same set of lines in the plane.

Hence, the image is seen as a subset of the projective space

P2 ∼= S2/∼,

where ∼ is the equivalence relation that identifies antipodal points. In contrast to other reconstruc-
tion methods, this approach does not come with a reconstruction model. Instead, given scattered
Radon data, standard interpolation on P2 with zonal kernels, i.e. kernels on manifolds, is used to
approximate the required Radon data of the target function to apply other reconstruction methods
like the FBP method. For the interpolation on P2, a suitable metric on this manifold is required.
We discuss further details in Section 10.3.

• Neural networks: Lastly, artificial neural networks have also found their way into the research
field of tomography. In [73], the authors propose a method that combines the FBP method from
Section 9.1 with a convolutional neural network, called FBPConvNet. The idea is that, given a
limited amount of measurements, the FBP method computes an initial approximate solution which
is then refined by the convolutional network. Another example is given in [15], where the deep
image prior approach is used. But this is just a small glimpse at the wide use of neural networks
in computerized tomography, or more generally, in inverse problems.



10. Image Reconstruction with Weighted
Kernel Functions

With the preparations from the first part of this thesis and Chapter 8 & 9, we are finally able to analyze
and classify the kernel-based reconstruction proposed in [38]. In the introduction of this thesis, we have
already mentioned that the theoretical part of this paper did not properly explain the well-posedness of
the reconstruction method. To verify this claim, we list and explain the critical parts below:

• For the framework of kernel-based generalized interpolation, it is essential that the considered linear
functionals are elements of the dual space. In particular, the boundedness of a functional λ ∈ H∗

K

ensures that the induced basis function λyK(·, y) is a well-defined function and an element of the
native space HK (cf. Theorem 3.12). At best, the sections [38, Section 2-3] explain that all entries of
the resulting interpolation matrix are finite when using weighted versions of common translation-
invariant kernels. In our eyes, this indicates that the incorporation of a weight function results
in the boundedness of the associated functionals, but it does not represent a sufficient proof. We
provide a full proof in Proposition 10.15, where we derive suitable conditions on the weight function
as well.

• As discussed in the introduction of Chapter 4, the generalized interpolation problem has a unique
solution for any given data values if and only if the considered functionals are linearly independent.
To justify the well-posedness of the reconstruction scheme, the authors refer to the paper [68]
(cf. [38, page 11, line 13-14]), which does not make sense. The analysis regarding the linear
independence in [68] is concerned with compactly supported distributions, whereas the line integral
functionals are not compactly supported due to their unbounded integration domain. Thus, we
cannot use the results of [68] in this case. We discuss the linear independence of these functionals
in Subsection 10.2.1, where we recall the practical workaround from Remark 5.5 that makes the
theoretical analysis of the linear independence almost irrelevant.

The unclear points from above give rise to a theoretical reinvestigation of the reconstruction method,
which is the main focus of this chapter. Based on [38, Proposition 1], we explain that commonly used
translation-invariant kernels are not suited for the interpolation of Radon data. Due to this incompatibil-
ity, the authors of [38] introduced the class of weighted kernel functions, which we analyze in Section 10.1.
We explain the underlying concept and useful properties. Following our analysis of weighted kernels, we
demonstrate their utility in the context of Radon data interpolation. We prove that the associated func-
tionals are indeed elements of the native dual space for suitable choices of weight functions, discuss the
linear independence of these functionals and show how we can apply the convergence results and greedy
algorithms from Chapter 5 & 7. Regarding the selection of data points, we provide further approaches
in Section 10.3 that adapt to the particular reconstruction problem, where we take into account the
symmetry of the Radon transform. As an alternative, we briefly explain the non-symmetric version of
this reconstruction method in Section 10.4. Thereby, we use translates of common translation-invariant
kernels to model the reconstruction, as it is done in Kansa’s method (cf. [79]).

Let us start by specifying the interpolation setting for the image reconstruction from (scattered) Radon
data. In this case, the interpolation functionals are given by the line integral operators

Rr,θ(f) :=

∫
ℓr,θ

f(x) dx for (r, θ) ∈ R× [0, π) , f : R2 → R. (10.1)

The functionals from (10.1) are called Radon functionals in the following discussion. It is clear that
the Radon functionals are linear, but, in order to apply the generalized interpolation framework, the
functionals also have to be bounded on a suitable native space. In the initial part of [38], it was shown
that this approach is not compatible with common translation-invariant kernels. For this class of kernels,
the double integrals with respect to a fixed line in the plane diverge (cf. [38, Proposition 1]).
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Proposition 10.1. Let K = Φ(· − ·) be a translation-invariant kernel with Φ ∈ C (R2) ∩ L1(R2) and
(r, θ) ∈ R× [0, π) such that RΦ(0, θ) > 0. Then we have∫

ℓr,θ

∫
ℓr,θ

K(x, y) dy dx = ∞

i.e. the respective double line integral diverges.

Proof. We rewrite the double integral as∫
ℓr,θ

∫
ℓr,θ

K(x, y) dy dx =

∫
R

∫
R

Φ ((t− s) · vθ) ds dt =
∫
R

∫
R

Φ(s · vθ) ds dt =
∫
R

RΦ(0, θ) dt

by using the mass-preserving diffeomorphism Tt : R → R, s 7→ t− s for every t ∈ R. This representation
proves the assertion.

Recall from Theorem 3.12 and Remark 3.13 that for any functional λ ∈ H∗
K from the dual space, its

squared norm is given by

∥λ∥2K = ⟨λ, λ⟩K = λ (λyK(·, y)) . (10.2)

In the case of a Radon functional Rr,θ, the right side of equation (10.2) coincides with the double integral
from Proposition 10.1. But, under the assumptions of the proposition, the double integral diverges and
cannot be the squared norm value of a functional from the dual space. Therefore, we can conclude that
the respective Radon functional is not an element of the dual space.

Corollary 10.2. In the setting of Proposition 10.1, we have Rr,θ /∈ H∗
K .

The consequence of Corollary 10.2 is that we cannot naively use common kernels like the Gaussian
kernel or the radial characteristic kernel (cf. Example 2.8). However, the authors of [38] also provided
a workaround to fix this problem. We can modify standard kernels by multiplying them with a weight
function to enforce desired properties. This construction yields a new class of kernels, called weighted
kernel functions (cf. [38, Section 3]). Note that we could also try to find other non-translation-invariant
kernels, but these are rather rare and the requirement that the Radon functionals have to be elements of
the native dual space further complicates the search. Meanwhile, the theoretical analysis of weighted ker-
nels is simplified due to the connections to the original kernel. By choosing appropriate weight functions,
we can construct suitable kernels for the interpolation of Radon data quite easily, see Section 10.2.

Remark 10.3. The analysis of kernel-based image reconstruction from Radon data via generalized
interpolation dates back to the master thesis of Sironi from 2011, see [126]. There, it was already shown
that the double line integrals diverge for Gaussian kernels. In order to fix this problem, the outer line
integral was replaced by a truncated or weighted version of the Radon functional. A summary of the
theoretical and numerical results from the master thesis was published in [39]. One significant drawback
of these two approaches is the missing symmetry in the interpolation matrices since only one application
of the Radon functional is replaced by a truncated or weighted version. Hence, the reconstruction method
does not fit perfectly in the setting of generalized interpolation, so we cannot use the tools from the first
part of this thesis without further modifications.

10.1. Weighted kernel functions

In the paper [38], the respective authors proposed the use of weighted kernel functions to guarantee that
the double integrals from Proposition 10.1 are finite. We want to collect relevant properties of weighted
kernel functions here, which help us to show the well-posedness of Radon data interpolation with these
types of kernels. Note that weighted kernel functions have already been analyzed in the master thesis
[57], mainly in the context of standard interpolation. We build on that work and extend some of the
theoretical results.
The idea of weighted kernel functions is to symmetrically apply weights to the kernel evaluation via

multiplication.
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Definition 10.4. Let K : Rd ×Rd → R be a positive semi-definite kernel function and w : Rd → R be a
function. The weighted kernel function Kw : Rd × Rd → Rd of K and w is defined as

Kw(x, y) := w(x) ·K(x, y) · w(y) for x, y ∈ Rd.

The function w is called the weight function of Kw.

In general, a weighted kernel is again positive semi-definite on Rd. For interpolation purposes, we wish
to guarantee that the weighted kernel Kw of a positive definite kernel K is again positive definite. The
positive definiteness of the kernel is preserved if and only if the weight function w has no zeros on Rd (cf.
[57, Theorem 3.1]).

Proposition 10.5. Let K be positive semi-definite Rd and w : Rd → R be a function. Then Kw is
again a positive semi-definite kernel. If K is positive definite, then Kw is positive definite if and only if
w(x) ̸= 0 holds for all x ∈ Rd.

Proof. It is clear that Kw is symmetric. Let X = {x1, ..., xn} ⊂ Rd be a finite subset and define the
diagonal matrix

WX :=

w(x1) . . . 0
...

. . .
...

0 . . . w(xn)

 ∈ Rn×n.

The matrix AKw,X is then given by AKw,X =WT
X ·AK,X ·WX , and therefore

cT ·AKw,X · c = (WX · c)T ·AK,X · (WX · c) ≥ 0 for all c ∈ Rn,

since K is positive semi-definite. This proves that Kw is positive semi-definite as well.
For the second part, we first assume that Kw is positive definite. According to part (1) of Proposition

2.22, we have

0 < Kw(x, x) = w(x) ·K(x, x) · w(x) = w(x)2 ·K(x, x) for all x ∈ Rd,

which implies w(x) ̸= 0 for all x ∈ Rd. Conversely, if w(x) ̸= 0 holds for all x ∈ Rd, we have

cT ·AKw,X · c = (WX · c)T ·AK,X · (WX · c) > 0 for all c ∈ Rn \ {0}

for all finite sets X = {x1, ..., xn} ⊂ Rd of pairwise distinct points, as K is positive definite and WX is
regular in this case. Hence, Kw is positive definite on Rd.

Example 10.6. In order to illustrate the effect of the weight function, we consider a Gaussian kernel

K(x, y) := e−ν1·∥x−y∥2
2 for x, y ∈ Rd

with shape parameter ν1 > 0 and a Gaussian weight function

w(x) := e−ν2·∥x∥2
2 for x ∈ Rd.

with parameter ν2 > 0. The kernel K and its weighted version

Kw(x, y) = e−ν2·∥x∥2
2 · e−ν1·∥x−y∥2

2 · e−ν2·∥y∥2
2 for x, y ∈ Rd

are visualised in Figure 10.1 for d = 1. In contrast to the original translation-invariant kernel K, the
weighted kernel Kw is not constant on the diagonal, as the application of the weight function causes a
fast decay. Note that the weighted kernel does not inherit the translation-invariance of the original kernel
in general.
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Figure 10.1.: Plot of Gaussian kernel on R×R with shape parameter ν1 = 1 (left) and plot of the weighted
version with Gaussian weight function and additional shape parameter ν2 = 1 (right)

Due to Proposition 10.5, the weighted kernel Kw again generates a reproducing kernel Hilbert space
HKw with Kw as its reproducing kernel. In the following, we want to investigate the connection between
the reproducing kernel Hilbert space HK of the original kernel K and HKw

. As an initial step, we take
a look at the standard basis functions of the weighted kernel. For x ∈ Rd, the standard basis function
with respect to Kw is given by

Kw(·, x) = w(·) ·K(·, x) · w(x). (10.3)

Note that the right part K(·, x) · w(x) is the Riesz representer of the weighted Dirac functional

δ(w)
x := w(x) · δx ∈ H∗

K ,

and δ
(w)
x , δx are multiples of each other if w(x) ̸= 0. In the case that the weight function w does not have

any zeros on Rd, we can write the dense subset SK from (3.3) as

SK = spanR

{
δ(w)
x

y
K(·, y)

∣∣∣ x ∈ Rd
}
.

With equation (10.3), it follows that the linear mapping

Πw : SK → SKw
, f 7→ w · f (10.4)

is surjective. Moreover, Πw is isometric since we have

⟨Kw(·, x),Kw(·, x̃)⟩Kw
= w(x) ·K(x, x̃) · w(x̃) =

〈
δ(w)
x

y
K(·, y), δ(w)

x̃

y
K(·, y)

〉
K

for x, x̃ ∈ Rd.

By continuous extension of Πw, we can show that HK and HKw are isometrically isomorphic. This
result is a generalized version of [57, Theorem 3.4], where the assertion was proven for the special case of
translation-invariant kernels. Moreover, the kernel K does not have to be positive definite.

Theorem 10.7. Let K be positive semi-definite on Rd and w : Rd → R be a weight function such that
w(x) ̸= 0 for all x ∈ R. Then, the mapping

Πw : HK → HKw , f 7→ w · f

is an isometric isomorphism.
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Proof. Consider the restricted mapping Πw from (10.4). According to our previous discussion, Πw is an
isometric isomorphism between the pre-Hilbert spaces SK and SKw

, which are dense in their respective
native space. Therefore, Πw can be extended continuously to an isometric isomorphism

Π : HK → HKw

that coincides with Πw on SK , i.e.

Π(f) = Πw(f) = w · f for allf ∈ SK .

It remains to show that Πw(f) = w · f holds for all f ∈ HK . So let f ∈ HK be an arbitrary function.
Since SK ⊂ HK is dense, we can find a sequence (sn)n∈N ⊂ SK that converges normwise to f . Due to
Proposition 3.6 part (5), this sequence also converges pointwise to f . Using the same argument and the
continuity of Π, we can conclude that (Π(sn))n∈N converges normwise and pointwise to Π(f). In total,
we get

w(x) · f(x) = lim
n→∞

w(x) · sn(x) = lim
n→∞

Πw[sn](x) = lim
n→∞

Π[sn](x) = Π[f ](x) for all x ∈ Rd,

which proves the assertion.

Corollary 10.8. In the setting of Theorem 10.7, let w̃ be another weight function that satisfies w̃(x) ̸= 0
for all x ∈ Rd. Then, the spaces HKw and HKw̃ are isometrically isomorphic via the mapping

Π : HKw
→ HKw̃

, f 7→ w̃

w
· f.

As a consequence of Theorem 10.7, the dual mapping of Πw is an isometric isomorphism as well. This
means that we can shift the discussion about linear independence of functionals from H∗

Kw
to the original

dual space H∗
K . We come back to this idea when we discuss the Radon data interpolation with weighted

kernels in Section 10.2.
In addition, we can identify the native space of the weighted kernel as a subspace of a Sobolev space

if K satisfies the assumptions of Theorem 3.19 and the weight function w is sufficiently smooth.

Corollary 10.9. Let K(·, ·) = Φ(· − ·) be a translation-invariant kernel on R2 × R2 that satisfies the
assumptions of Corollary 3.19 for a1 > 1. Moreover, let w ∈ Ha2(R2) for a2 ≥ 0 with w(x) ̸= 0 for all
x ∈ R2. Then, for any 0 ≤ σ ≤ min (a1, a2), the inclusion HK,w ⊂ Hσ(R2) holds and there is C > 0 such
that

∥f∥Hσ(R2) ≤ C · ∥f∥Kw for all f ∈ HKw .

Proof. Recall from Corollary 3.19 that HK = Ha1(R2) holds, and there is c1 > 0 such that

∥f∥Ha1 (R2) ≤ c1 · ∥f∥K for all f ∈ HK . (10.5)

Due to Theorem 10.7 and Proposition A.30, we have

HKw
= Πw(HK) = {w · f | f ∈ Ha1(R2)} ⊂ Hσ(R2)

for 0 ≤ σ ≤ min (a1, a2), including

∥Πw(f)∥Hσ(R2) = ∥w · f∥Hσ(R2) ≤ c2 · ∥w∥Ha2 (R2) · ∥f∥Ha1 (R2) for all f ∈ HK (10.6)

for a suitable constant c2 > 0. Given an arbitrary f ∈ HKw
, there is g ∈ HK with f = Πw(g), so that

we can use (10.5), (10.6) and the isometry property of Πw to conclude

∥f∥Hσ(R2) = ∥Πw(g)∥Hσ(R2) ≤ c2 · ∥w∥Ha2 (R2) · ∥g∥Ha1 (R2) ≤ c1c2 · ∥w∥Ha2 (R2) · ∥g∥K
= c1c2 · ∥w∥Ha2 (R2) · ∥f∥Kw

.

This proves the assertion.

Remark 10.10. The previous corollary gives some additional insights on the relation between the consid-
ered native spaces if a2 ≥ a1. In this case, we can choose σ = a1, so that the native space of the weighted
kernel is a subspace of the original kernel’s native space, and the norm of the weighted space is stronger
than the one of the original space. This implies that any bounded linear functional on (HK , ∥ · ∥K) in-
duces a bounded linear functional on (HKw

, ∥ · ∥Kw
), but the converse is not true in general. In Section

10.2, we derive suitable conditions on the weight function, which ensure that the Radon functionals from
(10.1) are elements of the dual space H∗

Kw
, although this does not hold for standard translation-invariant

kernels (cf. Corollary 10.2).
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Conversion formulas for standard interpolation

To demonstrate useful properties of weighted kernels outside the application in computerized tomography,
we derive some conversion formulas for tools like the power function or the Newton basis (cf. Chapter 5,
6) in the case of standard point evaluation functional interpolation. For the sake of simplicity, we set

ΛX :=
{
δx

∣∣∣ x ∈ X
}

for every X ⊂ Rd. In the context of interpolation, X = {x1, ..., xn} is always a finite subset of pairwise
distinct points and K is assumed to be positive definite so that ΛX is linearly independent. We are
interested in the relation between the interpolation spaces SK,ΛX

and SKw,ΛX
as well as their respective

Newton bases. As we show in the following proposition, the Newton basis elements of SKw,ΛX
can be

attained by multiplication with the weight function w. This is again due to the mapping properties of
the isometric isomorphism Πw from Theorem 10.7.

Proposition 10.11. In the setting of Theorem 10.7, let K be positive definite and X = {x1, ..., xn} ⊂ Rd

be a finite subset of pairwise distinct points. Then Πw is an isometric isomorphism between SK,ΛX
and

SKw,ΛX
. If the weight function w is positive on Rd, i.e. w(x) > 0 for all x ∈ Rd, the Newton basis N (w)

of SKw,ΛX
is given by

N (w) =
{
w · n1, ..., w · nn

}
=
{
Πw(n1), ...,Πw(nn)

}
,

where N = {n1, ..., nn} denotes the Newton basis of SK,ΛX
.

Proof. Similar to the discussion before Theorem 10.7, we observe that

SK,ΛX
= spanR

{
δ(w)
xi

y
K(·, y)

∣∣∣ i = 1, ..., n
}
,

so that Πw isometrically maps basis elements of SK,ΛX
to basis elements of SKw,ΛX

, i.e.

Πw

(
δ(w)
xi

y
K(·, y)

)
= δyxi

Kw(·, y)

and 〈
δ(w)
xi

y
K(·, y), δ(w)

xj

y
K(·, y)

〉
K

=
〈
Πw

(
δ(w)
xi

y
K(·, y)

)
,Πw

(
δ(w)
xj

y
K(·, y)

)〉
Kw

for i, j = 1, ..., n. Hence, the restriction of Πw to SK,ΛX
is an isometric isomorphism between the two

interpolation spaces. For the second part, assume that w is positive on Rd. If N = {n1, ..., nn} is the
Newton basis of SK,ΛX

, the image

B =
{
Πw(n1), ...,Πw(nn)

}
of N under Πw is an orthonormal basis in SKw,ΛX

. It remains to show that B is the Newton basis of
SKw,ΛX

. Recall from Remark 6.7 that the evaluations of the Newton basis are given by the Cholesky
factor of the interpolation matrix. If L is the Cholesky factor of AK,ΛX

= AK,X , we have

AKw,ΛX
= AKw,X =WX · L · LT ·WT

X = (WX · L) · (WX · L)T ,

i.e. the triangular matrix L(w) := WX · L is the Cholesky factor of AKw,ΛX
as it only contains positive

entries on the diagonal (cf. [57, Theorem 3.3 (f)]). If N (w) = {n(w)
1 , ..., n

(w)
n } denotes the Newton basis

of SKw,ΛX
, this yields
n
(w)
1 (x1) . . . n

(w)
n (x1)

...
. . .

...

n
(w)
1 (xn) . . . n

(w)
n (xn)

 = L(w) =WX · L =

w(x1) · n1(x1) . . . w(x1) · nn(x1)
...

. . .
...

w(xn) · n1(xn) . . . w(xn) · nn(xn)

 ,

or equivalently,

n
(w)
i (xj) = w(xj) · ni(xj) = Πw[ni](xj) for i, j = 1, ..., n.

Since the elements in SKw,ΛX
are uniquely determined by their evaluation at X, we can conclude that

n
(w)
i = Πw(ni) = w · ni for every i ∈ {1, ..., n} and therefore N (w) = B.
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With the previous results, it is easy to derive a conversion formula for the power function as well (cf.
[57, Theorem 3.3 (c)]).

Corollary 10.12. Under the assumptions of Proposition 10.11, let PΛX
denote the power function with

respect to the kernel K and P
(w)
ΛX

denote the power function with respect to the weighted kernel Kw. In
this case, we have the relation

P
(w)
ΛX

(δx) = |w(x)| · PΛX
(δx) for all x ∈ Rd.

Proof. Let B = {b1, ..., bn} be an orthonormal basis of SK,ΛX
. Then

B̃ =
{
Πw(b1), ...,Πw(bn)

}
is an orthonormal system of SKw,ΛX

according to Proposition 10.11. With part (3) of Corollary 5.4, we
get

P
(w)
Λx

(δx)
2 = Kw(x, x)−

n∑
i=1

δx (Πw(bi))
2
= w(x)2 ·K(x, x)−

n∑
i=1

w(x)2 · bi(x)2 = w(x)2 · PΛX
(δx)

2

for every x ∈ Rd. Taking the square root on both sides leads to the desired conversion formula.

The conversion formulas provide a huge computational advantage if the Newton basis and power
functions have already been computed for the original kernel, as we only have to multiply with the
evaluations of the weight function w. In particular, we can use the conversion formulas to easily switch
between different weight functions for numerical comparisons, cf. Corollary 10.8. For the interpolant
from SKw,X , a similar conversion formula does not exist. But, given function values δx1

(f), ..., δxn
(f) of

a function f ∈ HKw
, the interpolant can be computed efficiently with the update formula from Corollary

6.10, where we can use that PXi(xi+1) = ni+1(xi+1) for i = 1, ..., n− 1 and Xi = {x1, ..., xi}.
Nevertheless, we do not further concentrate on standard interpolation with weighted kernels. Numerical

examples for the standard interpolation case can be found in [57, Chapter 4]. Our main intention for
introducing weighted kernels is to ensure the well-definedness of integral operators and their associated
discretized versions as elements of the dual space.

10.2. Radon data interpolation with weighted kernel functions

In Example 10.6, we have already seen which effect the weight function can have on the original kernel K.
The properties of the weight function w can be used to enforce similar properties on the weighted kernel.
For example, if the kernel K is bounded and the weight function is integrable, then Kw is integrable on
the diagonal of its domain Rd × Rd so that the native space can be embedded into L1(R2).

Proposition 10.13. Let K ∈ C (R2 × R2) be a bounded positive semi-definite kernel and the weight
function satisfy w ∈ C (R2) ∩ L1(R2). Then we have Kw ∈ C (R2 × R2) and∫

Rd

Kw(x, x)
1/2 dx <∞,

so that HKw ⊂ C (R2) ∩ L1(R2).

Proof. It is clear that Kw ∈ C (R2 × R2) holds. Due to our assumptions, we can find C > 0 such that

K(x, x) ≤ C for all x ∈ Rd.

Hence, we can estimate∫
Rd

Kw(x, x)
1/2 dx =

∫
Rd

|w(x)| ·K(x, x)1/2 dx ≤ C1/2 · ∥w∥L1(R2) <∞.

As a consequence of Proposition 3.14 part (2) and (3), we have HKw ⊂ C (R2) ∩ L1(R2).
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Note that Proposition 3.14 also gives the norm estimate

∥f∥L1(Rd) ≤ C1/2 · ∥w∥L1(Rd) · ∥f∥Kw
for all f ∈ HKw

for a suitable constant C > 0 under the assumptions of Lemma 10.13, so that the Radon transform

R : (HKw , ∥ · ∥Kw) → L1(R× [0, π))

is a bounded linear operator, see Remark 3.16. But, this does not prove that the single Radon functionals
from (10.1) are elements of the dual space. For this, we have to extend the assumptions on w minimally,
such that Rw(r, θ) exists and is finite for the considered parameter pair (r, θ) ∈ R× [0, π), as this is not
guaranteed by the condition w ∈ L1(R2). In the proof, we make use of the following lemma.

Lemma 10.14. If K is a bounded positive semi-definite kernel on Rd and w : Rd → R is a function,
there is C > 0 such that

|f(x)| ≤ C1/2 · |w(x)| · ∥f∥Kw
for all f ∈ HKw

, x ∈ Rd

and

∥Kw(·, x)−Kw(·, y)∥Kw
≤ C1/2 · (|w(x)|+ |w(y)|) for all x, y ∈ Rd.

Proof. Let C > 0 satisfy |K(x, y)| ≤ C for all x, y ∈ Rd. For the first property, we estimate

|f(x)| = |⟨f,Kw(·, x)⟩Kw | ≤ ∥Kw(·, x)∥Kw · ∥f∥Kw = |w(x)| ·K(x, x)1/2 · ∥f∥Kw ≤ C1/2 · |w(x)| · ∥f∥Kw

for all f ∈ HKw
and all x ∈ Rd. The second property follows from

∥Kw(·, x)−Kw(·, y)∥2Kw
= w(x)2 ·K(x, x)− 2 · w(x) ·K(x, y) · w(y) + w(y)2 ·K(y, y)

≤ |w(x)|2 ·K(x, x) + 2 · |w(x)| · |K(x, y)| · |w(y)|+ |w(y)|2 ·K(y, y)

≤ C · (|w(x)|+ |w(y)|)2

for all x, y ∈ Rd.

Proposition 10.15. In the setting of Proposition 10.13, where w does not have to be in L1(R2), let
(r, θ) ∈ R× [0, π) satisfy Rw(r, θ) <∞. Then, the respective Radon functional from (10.1) is an element
of the dual space, i.e. Rr,θ ∈ H∗

Kw
.

Proof. Due to the properties of the Lebesgue integral, we also have

R[|w|](r, θ) =
∫

ℓr,θ

|w(x)| dx <∞.

With the first property from Lemma 10.14, we can find C > 0 such that

|Rr,θ(f)| =

∣∣∣∣∣
∫

ℓr,θ

f(x) dx

∣∣∣∣∣ ≤
∫

ℓr,θ

|f(x)| dx ≤ C1/2 · ∥f∥Kw
·
∫

ℓr,θ

|w(x)| dx = C1/2 · R[|w|](r, θ) · ∥f∥Kw

for all f ∈ HKw
, which proves that Rr,θ ∈ H∗

Kw
.

Example 10.16. For the practicability of the reconstruction method, it is important that we can evaluate
the Riesz representers and the inner products of the Radon functionals efficiently. Hence, it is desirable
to develop simpler representations for the line integrals of certain weighted kernel functions, as numerical
integration would slow down our reconstruction process immensely. We want to give one example here,
which is the only known so far: Consider the weighted Gaussian kernel

Kw(x, y) = e−ν2·∥x∥2
2 · e−ν1·∥x−y∥2

2 · e−ν2·∥y∥2
2 for x, y ∈ R2
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with shape parameters ν1, ν2 > 0 from Example 10.6, which satisfies the assumptions of Proposition
10.15. The Riesz representers of the Radon functionals are given by

Ry
r,θKw(x, y) =

√
π

ν1 + ν2
· e

−
[
(ν1+ν2)·(r2+∥x∥2

2)−2ν1r·⟨x,nθ⟩2−
ν2
1

ν1+ν2
·⟨x,vθ⟩2

]
for all x ∈ R2

and for all parameter pairs (r, θ) ∈ R× [0, π). Additionally, we have〈
Rr1,θ1 ,Rr2,θ2

〉
Kw

=
π√

qν1,ν2
(θ1, θ2)

· e−ν2·(2ν1+ν2)·
pν1,ν2

(r1,r2,θ1,θ2)

qν1,ν2 (θ1,θ2)

for (r1, θ1) , (r2, θ2) ∈ R× [0, π), where

pν1,ν2
(r1, r2, θ1, θ2) = (ν1 + ν2) ·

(
r21 + r22

)
− 2ν1r1r2 · cos(θ1 − θ2)

qν1,ν2
(θ1, θ2) = (ν1 + ν2)

2 − ν21 · cos(θ1 − θ2)
2.

We do not prove these representations here and refer to [38, Section 4] for the computations. A visual-
ization of the Riesz representers for this particular kernel is given in Figure 10.2. We can see that the
functions reflect the directions of the considered lines.
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Figure 10.2.: Contour plot of the Riesz representers Ry
0,π/2Kw(·, y) (left) and Ry

0,π/4Kw(·, y) (right) for

a weighted Gaussian kernel with shape parameters ν1 = 50 and ν2 = 1

Remark 10.17. So far, we have only used the continuity of the involved functions to ensure that each
f ∈ HKw is measurable, which is also guaranteed if we assume that Kw(·, x) is measurable for all x ∈ Rd,
and to ensure that the mapping

iL1(R2) : HKw
→ L1(R2), f 7→ [f ]L1(R2) ,

which maps a function from the native space to its function class in L1(R2), is injective. Due to the
injectivity of iL1(R2), the functions in HKw

can also be distinguished in the L1-sense, so that it can be
seen as subspace of L1(R2). Note that this mapping does not always have to be injective. For example,
consider the discontinuous kernel K : R2 × R2 → R

K(x, y) :=

{
1, if x = y

0, if x ̸= y.

The kernel K is bounded and positive definite on R2, but the standard basis function K(·, x) is equivalent
to the zero function in L1(R2) for every x ∈ R2. It could be beneficial to investigate the construction of
discontinuous kernels whose native space can be embedded into L1(Rd) so that the theoretical results of
this chapter can be extended to the discontinuous case.
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Given finite Radon data Rf(r1, θ1), ...,Rf(rn, θn) of a function f : R2 → R, the proposed method
from [38] generates an approximate reconstruction by applying the kernel-based generalized interpolation
method with respect to the Radon functionals

Λ =
{
Rr1,θ1 , ...,Rrn,θn

}
⊂ H∗

Kw

with pairwise distinct parameter pairs

X =
{
(r1, θ1) , ..., (rn, θn)

}
⊂ R× [0, π) .

Overall, the method can be classified as an algebraic reconstruction method, as we finitely discretize the
Radon transform and solve the resulting generalized interpolation problem in the associated reproducing
kernel Hilbert space. This means that it inherits the advantages mentioned at the end of Section 9.2, e.g.
high flexibility regarding the scanning geometry. However, we want to point out two further advantages
of the kernel-based approach in comparison to the usual concept of algebraic reconstruction methods:

• Power function: We can keep track of the power function after each update step, which gives an
estimate for the pointwise interpolation error via (5.2) and is an indicator for the stability of the
reconstruction method according to Section 7.1. Thus, the power function provides a tool for mon-
itoring the reconstruction process. In particular, we can identify numerically linearly independent
Radon functionals, or in other words, numerical redundancies in the given Radon data.

• Greedy data selection algorithms: The greedy algorithms from Chapter 7 can be applied in
this case without further modifications. By applying a fixed greedy selection rule, we establish
a hierarchy within the set of Radon functionals in terms of their relevance for the reconstruction
process. To reduce the number of data points, we can only use a certain percentage of the initial
data consisting of the most relevant Radon functionals. For the algebraic reconstruction technique
from Section 9.2, it is known that a suitable reordering of the lines leads to an improved convergence
speed (cf. [59], [63], [127]), as neighboring lines in the standard ordering might contain very similar
information. The application of the greedy methods within the kernel-based approach can also be
seen as a reordering algorithm for the data points in terms of their relevance, which is immediately
available in the framework of kernel-based generalized interpolation.

Remark 10.18. In [102, Section 5.4], reconstruction methods that rely on the concept of generalized
interpolation as discussed in the introduction of Chapter 4 are called direct algebraic algorithms. An
example of such a method was already given in [28], where the Radon functionals were represented via
the L2 inner product with characteristic functions over X-ray beams, called natural pixels. However,
it remains unclear whether the natural pixel approach can be extended by other models with higher
regularity without losing the accurate representation of the Radon functionals so that it does not yield
the same flexibility as the reconstruction via weighted kernel functions. In the kernel-based approach, we
can simply switch between kernels with different regularities to change the approximation model.

10.2.1. Linear independence of Radon functionals

For the discussion about linear independence, we rely on the idea from Theorem 10.7 and the following
lines, where we proved that, given a weight function w : Rd → R that has no zeros and a positive
semi-definite kernel, the mapping

Πw : HK → HKw
, f 7→ w · f

is an isometric isomorphism. Consider the mappings

φ : HK → H∗
K , f 7→ ⟨·, f⟩K and φw : HKw

→ H∗
Kw
, f 7→ ⟨·, f⟩Kw

and let Π∗
w denote the dual mapping of Πw, i.e.

Π∗
w : H∗

Kw
→ H∗

K , λ 7→ λ ◦Πw.
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Then we obtain the commutative diagram in Figure 10.3, so that Π∗
w is an isometric isomorphism between

the two dual spaces. For the interpolation with respect to Radon functionals Λ = {Rr1,θ1 , ...,Rrn,θn},
which lie in H∗

Kw
under the assumptions of Proposition 10.15, the linear independence of Λ is equivalent

to the linear independence of the functionals

Rri,θi (Πw(f)) =

∫
ℓri,θi

w(x) · f(x) dx for f ∈ HK , i = 1, ..., n (10.7)

in the dual space H∗
K of the original kernel’s native space. Note that the kernel K is usually a well-known

standard kernel so that the analysis in H∗
K is probably easier than the analysis in H∗

Kw
.

HK HKw

H∗
K H∗

Kw

Πw: f 7→ w·f

φ φw

Π∗
w: λ 7→ λ◦Πw

Figure 10.3.: Relation between the native spaces and their dual spaces

Here, we want to make use of the ideas from Section 4.1 for translation-invariant kernels and derive an
integral representation of the quadratic form that is induced by the interpolation matrix AKw,Λ. To this
end, we define the weighted Radon functionals as

R(w)
r,θ (f) :=

∫
ℓr,θ

w(x) · f(x) dx for f ∈ HK

for a given weight function and parameters (r, θ) ∈ R× [0, π) according to (10.7), and approximate these

functionals again with suitable sequences in S
(∗)
K .

Proposition 10.19. Let K = Φ(· − ·) be a translation-invariant positive definite kernel function with
Φ ∈ C (R2) ∩ L1(R2) and let w ∈ C (R2) such that w(x) > 0 for x ∈ R2 and its Radon transform Rw is
finite everywhere on R × [0, π). Given a set of Radon functionals Λ = {Rr1,θ1 , ...,Rrn,θn}, we have the
identity

cT ·AKw,Λ · c = (2π)
d/2 ·

∫
R2

∣∣∣ n∑
k=1

ck ·
∫

ℓrk,θk

w(x) · e−i·⟨x,ω⟩ dx
∣∣∣2 · FΦ(ω) dω for all c ∈ Rn. (10.8)

Proof. We divide the proof into three steps:

(i) Given a parameter pair (r, θ) ∈ R × [0, π), our previous discussion shows that R(w)
r,θ ∈ H∗

K . In
order to approximate the weighted Radon functional, we construct a sequence of functionals in the
following way: For n ∈ N, we can find Rn > 0 such that∫

R\[−Rn,Rn]

w(xs) ds <
1

n
,

where we use the notation

xs := r · nθ + s · vθ for s ∈ R.

We can even assume that Rn ≥ 1 for all n ∈ N and set

εn =
1

nRn
and R̃n =

√
R2

n + r2.
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Since w and the mapping x 7→ K(·, x) are uniformly continuous on the closed ball BR̃n
(0), there is

0 < δn < 1/n such that

|w(xs)− w(xs̃)| < εn and ∥K(·, xs)−K(·, xs̃)∥K < εn for |s− s̃| < δn.

Now choose Mn ∈ N sufficiently large such that

tn :=
Rn

Mn
< δn and set sj = (k + 1/2) · tn for j ∈ Z.

With this, we define a sequence of functionals via

λn =

Mn−1∑
j=−Mn

w(xsj ) · tn · δxsj
∈ S(∗)

K for n ∈ N.

For any f ∈ HK , we can estimate

∣∣∣R(w)
r,θ (f)− λn(f)

∣∣∣ ≤ ∫
R\[−Rn,Rn]

|w(xs) · f(xs)| ds+
Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

|w(xs) · f(xs)− w(xsj ) · f(xsj )| ds.

For the first summand, we can use the boundedness of K = Φ(· − ·) (cf. Corollary 2.23) and the
reproduction property in HK to get∫

R\[−Rn,Rn]

|w(xs) · f(xs)| ds =
∫

R\[−Rn,Rn]

w(xs) · |⟨f,K(·, xs)⟩K | ds

≤ ∥f∥K · Φ(0)1/2 ·
∫

R\[−Rn,Rn]

w(xs) ds

< Φ(0)1/2 · 1/n · ∥f∥K .

For the second summand, we have

Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

|w(x) · f(x)− w(xsj ) · f(xsj )| ds ≤
Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

|w(xs) · f(xs)− w(xs) · f(xsj )| ds

+

Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

|w(xs) · f(xsj )− w(xsj ) · f(xsj )| ds

≤ ∥f∥K · εn ·
Rn∫

−Rn

w(xs) ds+ ∥f∥K · 2RnΦ(0)
1/2 · εn

<
(
Rw(r, θ) + 2Φ(0)1/2

)
· 1/n · ∥f∥K ,

where we used that Rn ≥ 1. In total, we have∥∥∥R(w)
r,θ − λn

∥∥∥
K

≤
(
Rw(r, θ) + 3Φ(0)1/2

)
· 1/n n→∞−−−−→ 0.

Regarding the Fourier-Laplace transform of these functionals (cf. Definition A.22), similar estimates
show that the pointwise convergence

FE ′λn(ω)
n→∞−−−−→

∫
ℓr,θ

w(x) · e−i·⟨x,ω⟩2 dx for all ω ∈ R2 (10.9)

holds, where we make use of the estimate∣∣∣e−i·⟨x,ω⟩2 − e−i·⟨y,ω⟩2
∣∣∣ ≤ |⟨x, ω⟩2 − ⟨y, ω⟩2| ≤ ∥x− y∥2 · ∥ω∥2 for all x, y, ω ∈ R2
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and the convergence δn → 0 for n→ ∞ by construction. Additionally, we have the uniform bound

|FE ′λn(ω)| ≤
Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

w(xsj ) ds

≤
Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

w(xs) ds+

Mn−1∑
j=−Mn

xsj
+tn/2∫

xsj
−tn/2

|w(xs)− w(xsj )| ds

≤ Rw(r, θ) + 2Rn · εn,

which results in

|FE ′λn(ω)| ≤ Rw(r, θ) + 2 for all n ∈ N, ω ∈ R2. (10.10)

(ii) For two weighted Radon functionals λ = R(w)
r,θ , µ = R(w)

r̃,θ̃
∈ H∗

K , we follow part (i) to construct the
sequences

(λn)n∈N , (µn)n∈N

in S(∗)
K which converge to λ, µ. Due to the properties (10.9) and (10.10), we can imitate the steps

in the proof of Lemma 4.4 to get

〈
R(w)

r,θ ,R
(w)

r̃,θ̃

〉
K

= (2π)
d/2 ·

∫
R2

 ∫
ℓr,θ

w(x) · e−i·⟨x,ω⟩2 dx

 ·

 ∫
ℓr̃,θ̃

w(x) · e−i·⟨x,ω⟩2 dx

 · FΦ(ω) dω.

(iii) Set Λ(w) =
{
R(w)

r1,θ1
, ...,R(w)

rn,θn

}
⊂ H∗

K . By multilinear continuation of part (ii), we get

cT ·AKw,Λ · c = cT ·AK,Λ(w) · c = (2π)
d/2 ·

∫
R2

∣∣∣ n∑
k=1

ck ·
∫

ℓrk,θk

w(x) · e−i·⟨x,ω⟩ dx
∣∣∣2 · FΦ(ω) dω

for each coefficient vector c ∈ Rn, where we used that Π∗
w is an isometric isomorphism and

R(w)
rk,θk

= Π∗
w(Rrk,θk) for k = 1, ..., n.

Remark 10.20. If w is continuous and does not have any zeros, the intermediate value theorem implies
that w is either strictly negative or strictly positive on the domain R2. Hence, the requirement that w is
strictly positive does not lead to a loss of generality. The case that w is strictly negative can be handled
in the same way.

Although we get the same integral representation for the Radon functionals, we cannot argue as in
Section 4.1, since the weighted Radon functionals are not compactly supported for strictly positive weight
functions w ∈ C (R2). Hence, we cannot apply the Fourier-Laplace transform on the whole complex space
C2, and it is not guaranteed that the expressions inside the integral representations are holomorphic
functions. Until now, it remains an open problem to find a suitable bridge between our integral represen-
tation and the theory of distributions. In the space of (tempered) distributions, it is again relatively easy
to show that the finite set of Radon functionals is linearly independent for pairwise different parameter
pairs since there is only a finite number of intersection points between the lines.
However, we recall that the power function can be evaluated numerically throughout the reconstruction

process and is an indicator of linear dependence (cf. Remark 5.5). This means that we do not need a
theoretical result that guarantees linear independence in practical cases where we keep track of the power
function, which is highly recommended to monitor the numerical stability (cf. Section 7.1). According
to Theorem 7.3, we already run into numerical trouble for small power function values, which makes a
plain theoretical result on the linear independence even less relevant.
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10.2.2. Convergence of the reconstruction method

For the convergence analysis, we restrict to the case that our data points are successively selected via
the discussed greedy algorithm from Chapter 7. In order to apply the respective convergence results, we
have to find suitable totally bounded subsets of Radon functionals. We follow the idea of Remark 7.7.
By construction of the Radon transform, the mapping

ϱ : R× [0, π) → H∗
Kw
, (r, θ) 7→ Rr,θ (10.11)

is a parametrization of the set of Radon functionals (cf. Section 5.3), if the assumptions of Proposition
10.15 are satisfied. Moreover, if we restrict the radius parameter r ∈ R to a compact interval, we can
show that the resulting restriction of ϱ is uniformly continuous under suitable conditions on the weighted
kernel.

Proposition 10.21. Let K ∈ C (R2 × R2) be a bounded positive semi-definite kernel and let w ∈ C (R2)
satisfy the following condition: There is a function g ∈ L1(R), such that

|w(r · nθ + s · vθ)| ≤ g(s) for all (r, θ) ∈ R× [0, π) , s ∈ R. (10.12)

Then, for any R > 0, the restricted mapping

ϱR : [−R,R]× [0, π) → H∗
Kw
, (r, θ) 7→ Rr,θ (10.13)

is well-defined and uniformly continuous.

Proof. According to Proposition 10.15, it is sufficient to show that Rw(r, θ) <∞ for all (r, θ) ∈ R× [0, π)
in order to guarantee to well-definedness of ϱR for all R > 0. But this follows from (10.12), since

R[|w|](r, θ) =
∫
R

|w(r · nθ + s · vθ)| ds ≤
∫
R

g(s) ds <∞ for all (r, θ) ∈ R× [0, π) .

For the uniform continuity, let R > 0 and ε > 0. Our estimate is divided into several steps:

(i) With Lemma 10.14, we can find C > 0 such that

∥Kw(·, x)−Kw(·, y)∥Kw
≤ C1/2 · (|w(x)|+ |w(y)|) for all x, y ∈ Rd.

(ii) Since g ∈ L1(R), we can find R̃ > 0 such that∫
R\[−R̃,R̃]

g(t) dt <
ε

4C1/2
.

(iii) Set R′ =
√
R2 + R̃2. Due to the continuity of Kw, the mapping

x 7→ Kw(·, x)

is continuous on Rd, and therefore uniformly continuous on the closed ball BR′(0). Hence, we can
find δ̃ > 0 such that

∥Kw(·, x)−Kw(·, y)∥Kw
<

ε

4R̃

for all x, y ∈ BR′(0) with ∥x− y∥2 < δ̃.

(iv) Lastly, we can find δ > 0 such that

sup
s∈[−R̃,R̃]

∥r1 · nθ1 + s · vθ1 − (r2 · nθ2 + s · vθ2) ∥2 < δ̃

for all (r1, θ1) , (r2, θ2) ∈ [−R,R]× [0, π) with∥∥∥ (r1, θ1)T − (r2, θ2)
T
∥∥∥
2
< δ.

This follows from the triangle inequality and the Lipschitz continuity of the mappings

θ 7→ nθ, θ 7→ vθ.
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Given f ∈ HKw
and (r1, θ1) , (r2, θ2) ∈ [−R,R]× [0, π), we can write

|Rr1,θ1(f)−Rr2,θ2(f)| =

∣∣∣∣∣
∫
R

f(r1 · nθ1 + s · vθ1) ds−
∫
R

f(r2 · nθ2 + s · vθ2) ds

∣∣∣∣∣
≤
∫
R

|⟨f,K(·, r1 · nθ1 + s · vθ1)−K(·, r2 · nθ2 + s · vθ2)⟩Kw
| ds

≤ ∥f∥Kw
·
∫
R

∥Kw(·, r1 · nθ1 + s · vθ1)−Kw(·, r2 · nθ2 + s · vθ2)∥Kw
ds.

We split the integration domain into R = R \ [−R̃, R̃] ∪ [−R̃, R̃]. The properties (i) and (ii) lead to∫
R\[−R̃,R̃]

∥Kw(·, r1 · nθ1 + s · vθ1)−Kw(·, r2 · nθ2 + s · vθ2)∥Kw
ds

≤ C1/2 ·
∫

R\[−R̃,R̃]

|w(r1 · nθ1 + s · vθ1)|+ |w(r2 · nθ2 + s · vθ2)| ds

≤ 2C1/2 ·
∫

R\[−R̃,R̃]

g(s) ds

<
ε

2
,

and (iii) in combination with (iv) implies

R̃∫
−R̃

∥Kw(·, r1 · nθ1 + s · vθ1)−Kw(·, r2 · nθ2 + s · vθ2)∥Kw ds < 2R̃ · ε

4R̃
=
ε

2

in the case that ∥∥∥ (r1, θ1)T − (r2, θ2)
T
∥∥∥
2
< δ.

In total, we have

|Rr1,θ1(f)−Rr2, θ2(f)| < ε · ∥f∥Kw ,

and therefore

∥ϱR(r1, θ1)− ϱR(r2, θ2)∥Kw
= ∥Rr1,θ1 −Rr2,θ2∥Kw

≤ ε.

Thus, ϱR is uniformly continuous on [−R,R]× [0, π).

The requirement (10.12) seems to be very restrictive at first sight, but it holds for commonly used
radial symmetric functions like the Gaussian functions.

Corollary 10.22. Let w : R2 → R be radially symmetric, i.e. there is a function w̃ : [0,∞) → R such
that

w(x) = w̃(∥x∥2) for all x ∈ R2.

If w̃ is non-negative, monotonically decreasing and satisfies w̃ ∈ C ([0,∞)) ∩ L1([0,∞)), then w satisfies
the conditions of Proposition 10.21. In particular, for any bounded kernel K ∈ C (R2 × R2) and R > 0,
the mapping ϱR from (10.13) is uniformly continuous.
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Proof. Define the function

g(s) := w̃(|s|) for s ∈ R.

Then, we have ∫
R

g(s) ds = 2 ·
∞∫
0

w̃(s) ds <∞

and

|w(r · nθ + s · vθ)| = w̃(∥r · nθ + s · vθ∥2) = w̃
(√

r2 + s2
)
≤ w̃

(√
s2
)
= g(s)

for all (r, θ) ∈ R× [0, π) , s ∈ R.

Under the assumptions of Proposition 10.21, we can conclude that the restricted set

ΓR := im(ϱR) =
{
Rr,θ

∣∣∣ (r, θ) ∈ [−R,R]× [0, π)
}

of Radon functionals is totally bounded for any R > 0. Consequently, the greedy data selection algorithms
from Chapter 7 lead to a convergent interpolation method, see Theorem 7.11, 7.15 and 7.19.

Theorem 10.23. In the setting of Proposition 10.21, let R > 0 and Γ = ΓR. If (Λn)n∈N is chosen via the
geometric greedy algorithm (7.4), the parameter space geometric greedy algorithm (7.6) or the β-greedy
algorithm for fixed β ∈ [0,∞] (7.11), then we have

∥f − IKw,Λn(f)∥Kw

n→∞−−−−→ 0 for all f ∈ HKw,ΓR
.

Corollary 10.24. In the setting of Theorem 10.23, we can make the following additional conclusions:

(1) If w ∈ C (R2) is bounded, we get convergence with respect to the supremum norm, i.e.

∥f − IKw,Λn
(f)∥∞

n→∞−−−−→ 0 for all f ∈ HKw,ΓR
.

(2) If w ∈ C (R2) ∩ L1(R2) is bounded, we get convergence with respect to the Lp-norm for every
p ∈ [1,∞], i.e.

∥f − IKw,Λn
(f)∥Lp(R2)

n→∞−−−−→ 0 for all f ∈ HKw,ΓR
.

(3) Under the assumptions of Proposition 10.9, we get convergence with respect to the Sobolev norm for
any smoothness level 0 ≤ σ ≤ min(a1, a2), i.e.

∥f − IKw,Λn(f)∥Hσ(R2)
n→∞−−−−→ 0 for all f ∈ HKw,ΓR

.

Proof. The statements follow from Remark 3.7 and Proposition 3.14, 3.15, 10.9 & 10.13.

Hence, under suitable assumptions on the kernel and the weight function, we get convergence to-
wards the target function in terms of more common error measurements. To close out the discussion on
convergence, we want to state two further ideas for future work.

Remark 10.25. As we have already mentioned in Remark 7.20, convergence rates for the β-greedy
algorithms in the case of linear elliptic differential operators of second order and Sobolev kernels have
been derived in [146]. In this preprint, the authors use the concept of Kolmogorov n-widths, which in our
special kernel setting are defined as

dn (Γ) := inf
S⊂H∗

K,Γ

dim(S)=n

sup
λ∈Γ

∥λ− PS(λ)∥K for n ∈ N

for a given kernel K and a superset Γ ⊂ H∗
K , where PS is the orthogonal projection onto S. A general

treatment of Kolmogorov n-widths can be found in [106]. According to [42] and [146], the decay rate
of dn (Γ) translates to the power function, and therefore to the pointwise interpolation error. Hence,
to adopt this approach in the context of Radon functionals, we would need to determine decay rates
for dn(ΓR) in dependence on the regularity of the weighted kernel Kw and fixed R > 0. Recall from
Corollary 10.9 that, under suitable regularity assumptions on the kernel K and the weight function w,
we can guarantee that HKw is contained in a Sobolev space, and make use of their well-known theory.
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Remark 10.26. In our previous analysis, we have only proven the convergence of the interpolation
method for certain subspaces of the native space. Given a fixed maximal radius R > 0 and a function
f ∈ HKw \ HKw,ΓR

, we can consider the decomposition

f − IK,Λn
(f) = f − PHKw,ΓR

(f) + PHKw,ΓR
(f)− IK,Λn

(f)

= f − PHKw,ΓR
(f) + PHKw,ΓR

(f)− IK,Λn

(
PHKw,ΓR

(f)
)

of the interpolation error, where PHKw,ΓR
is the orthogonal projection onto the closed subspace HKw,ΓR

and Λn ⊂ ΓR is the current finite set of Radon functionals for the reconstruction of the target function.
Note that we have used the identity

IK,Λn

(
PHKw,ΓR

(f)
)
= PSK,Λn

(
PHKw,ΓR

(f)
)
= PSK,Λn

(f) = IK,Λn
(f)

in the second line, which holds due to SK,Λn ⊂ HHw,ΓR
. The approximation error∥∥∥PHKw,ΓR

(f)− IK,Λn

(
PHKw,ΓR

(f)
)∥∥∥

Kw

for the component in HKw,ΓR
has already been treated in Theorem 10.23. In order to get convergence

results for the overall interpolation error, an investigation of the complementary operator

I − PHKw,ΓR

in dependence of R could be beneficial, where I is the identity on HKw . Recall that for any f ∈ HKw ,
the property

f − PHKw,ΓR
(f) ∈ H⊥

Kw,ΓR
, and therefore λ

(
f − PHKw,ΓR

(f)
)
= 0 for all λ ∈ ΓR

holds due to the generalized reproduction property from Theorem 3.12. Additionally, by increasing the
parameter R, one has to reconsider the selection of the data sets Λn, as the superset ΓR gets larger as
well. We leave these ideas here for future work.

10.3. Problem-adapted point selection

So far, we have not taken into account the special properties of the Radon transform or the design of the
scanning procedure into the greedy selection algorithms. In the following, we propose two adaptions that
might improve the numerical performance in practical cases.

Periodic geometric greedy selection

Instead of restricting to parameter pairs from R× [0, π), we can also extend the definition of the Radon
transform of a target function f ∈ HKw

on the whole plane R2, i.e.

Rf(r, θ) =
∫

ℓr,θ

f(x) dx for (r, θ) ∈ R2.

Due to the properties of the sine and cosine functions, we have the relation

ℓr,θ = ℓ(−1)j ·r,θ+jπ for all (r, θ) ∈ R2, j ∈ Z, (10.14)

which translates to the Radon transform. This identification, which can be associated with a Möbius
strip of infinite width, raises some concern regarding the geometric greedy selection from (7.4), where
we have relied on the standard Euclidean distance between two parameter pairs from R × [0, π) in the
previous section. As an example, consider the parameter pairs

(0, ε) , (0, π − ε) ∈ R× [0, π)

for small ε > 0. The standard Euclidean distance between these points is given by π−2ε and is therefore
sufficiently large. However, the second line is also represented by ℓ0,−ε, yielding the small distance 2ε.
Thus, naively using the standard norm might not reflect the actual distance between Radon functionals
in the dual space. We give two examples of alternative metrics that take (10.14) into account.
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(i) Consider the bijective, affine-linear mappings

ψj : R2 → R2, (r, θ) 7→
(
(−1)j · r, θ + jπ

)
for j ∈ Z

that preserve Euclidean distances between parameter pairs and satisfy ψj◦ψk = ψj+k for all j, k ∈ Z.
With the help of these functions, we define the equivalence relation

(r, θ) ∼ (r̃, θ̃) :⇐⇒ ∃j ∈ Z : ψj(r, θ) = (r̃, θ̃)

and the metric

dR2/∼

(
[(r, θ)], [(r̃, θ̃)]

)
:= min

j∈Z
∥(r, θ)− ψj(r̃, θ̃)∥2 for [(r, θ)], [(r̃, θ̃)] ∈ R2/∼. (10.15)

Note that each equivalence class has exactly one representative in R× [0, π), so that (10.15) induces
a metric on this restricted space. For the implementation, we make use of

min
j∈Z

∥(r, θ)− ψj(r̃, θ̃)∥2 = min
j∈{−1,0,1}

∥(r, θ)− ψj(r̃, θ̃)∥2 for (r, θ), (r̃, θ̃) ∈ R× [0, π) .

(ii) Recall from Section 9.3 that we can embed the parameter space R× [0, π) into the projective space
P2 ∼= S2/∼ via the mapping (9.19). In [17, Section 3], the respective authors consider the metric

dP2([x], [y]) = min
(
cos−1(⟨x, y⟩2), cos−1 (⟨x,−y⟩2)

)
for x, y ∈ S2. (10.16)

that reflects the symmetry of the Radon transform since antipodal points on the sphere represent
the same line in the plane. In combination with (9.19), this yields a metric on R× [0, π). However,
given a maximum radius R > 0, it is recommended in [17, Subsection 7.1] to use the scaled version

ψs : [−R,R]× [0, π) 7→ P2, (r, θ) 7→

[
1√

1 + (s · r)2
· (cos(θ), sin(θ), s · r)T

]
(10.17)

for the identification in P2, where s > 0 is a scaling parameter that should be chosen as a multiple
of 1/R, and then apply the metric (10.16). The idea of this scaling is to avoid distortion of average
distances between lines within the ball BR(0).

Sequential scanning procedure

The measurement of the Radon data is usually a sequential process, which means that not all mea-
surements are taken at the same time. An example was already given by the parallel beam geometry
in Section 9.1, where the scanner rotates around an object with fixed angular separation and at each
position emits a fixed amount of X-rays. To generalize this situation, let us assume that the set of Radon
functionals Γ is split into the disjoint batches Γj ⊂ Γ, j = 1, ..., N , and each of these batches becomes
available at a different time when the scanner has performed measurements at the respective position.
Assuming that we have measured the data for the batches Γj , j ≥ j0, where 1 ≤ j0 ≤ N , we can already
start the greedy point selection on the subset

Γ(j0) =

j0⋃
j=1

Γj .

Throughout the process, we have to update the power function values and evaluations at the interpolant
for the functionals from Γ\Γ(j0) as well. Once the measurements for batch Γj0+1 are available, we extend
the greedy selection of the next functionals to the set Γ(j0) ∪ Γj0+1, where we can use the pre-computed
information to efficiently evaluate the required error measurements for the selection rule.
In comparison to the previously discussed greedy algorithms, the reconstruction is available earlier,

as we do not have to wait until the end of the scanning process to start with our computations. But,
since we do not have access to the whole data set at all times, we expect that this approach leads to an
inferior data point selection. It needs to be investigated whether there is a significant difference in the
reconstruction quality between the sequential and non-sequential approaches.
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10.4. Non-symmetric approach with standard kernels

Although Proposition 10.1 implies that the generalized interpolation approach with respect to Radon
functionals is not compatible with most standard kernels, we can still develop an ART-like reconstruction
method based on translation-invariant kernels. To this end, we consider a finite set X = {x1, ..., xn} ⊂ R2

and the respective set of basis functions

bj := K(·, xj) = Φ(· − xj) j = 1, ..., n

for a translation-invariant kernel K(·, ·) = Φ(· − ·). Due to the shifting property of the Radon transform
(see, e.g., [18, Proposition 5.21]), the Radon transform of the basis functions can be computed via

Rbj(r, θ) = RΦ(r − ⟨xj , nθ⟩2, θ) for (r, θ) ∈ R× [0, π) , j = 1, ..., n, (10.18)

assuming that RΦ exists everywhere. We can then proceed as in Section 9.2 to derive a reconstruction
of the form

s =

n∑
j=1

cj · Φ(· − xj)

from the given Radon data. This non-symmetric kernel-based approach follows the same idea as the blob
function approach mentioned in Remark 9.11, as we can switch between kernels with different smoothness
properties. But, we need to point out here that we do not have access to the tools of the generalized
interpolation approach within this non-symmetric method. This makes the choice of the center points
X = {x1, ..., xn}, and therefore the choice of basis functions, more difficult as we cannot rely on the
discussed greedy algorithms. Moreover, we cannot use the power function to monitor the reconstruction
process.

Example 10.27. As an example of this approach, we want to state the non-weighted version of Example
10.16. To this end, consider the Gaussian function

Φ(x) = e−ν·∥x∥2
2 for x ∈ R2

with shape parameter ν > 0 that generates a positive definite Gaussian kernel function. According to
Example 8.5 (i) and (10.18), the Radon transforms of the resulting basis functions are given by

R [Φ(· − x)] (r, θ) =

√
π

ν
· e−ν·(r−⟨x,nθ⟩2)2 for all (r, θ) ∈ R× [0, π) , x ∈ R2.



11. Numerical Examples

In this chapter, we want to evaluate the numerical performance of the kernel-based reconstruction method
that was analyzed in Section 10.2. To this end, we ran several numerical tests in Python1. The imple-
mentation of the considered algorithms can be found in the following GitHub2 Repository :

https://github.com/krischi10/KernelCT

Regarding the implementation of the kernel-based method, we want to remark that the repository [113]
served as a valuable inspiration. In Section 11.1, we list the test objects that were used in our numerical
tests. These are mathematical phantoms whose Radon data can be computed efficiently for all radial
and angular parameters. For the considered objects, we compare different greedy selection algorithms
from Chapter 7 and Section 10.3 regarding their stability and approximation quality in Section 11.2.
As proposed in Subsection 7.2.5, we test the algorithms in a data thinning setting. In Section 11.3, we
compare the reconstruction via weighted kernels with the FBP method from Section 9.1. Our main focus
is the number of data points required to obtain a reasonable reconstruction of the given objects. Lastly,
we demonstrate the effect of regularization tools (cf. Section 7.3) on the reconstruction quality in Section
11.4.

11.1. Mathematical phantoms

In our numerical tests, the target objects were given by so-called mathematical phantoms, i.e. mathemat-
ical functions that represent simplified versions of real-world target objects, and whose point evaluations
and line integral values can be computed efficiently. Thus, one can simulate the required measurements
for any scenario and evaluate the reconstruction error. We describe the two considered phantoms in the
following.

Shepp-Logan phantom

In Example 8.5 (ii), we have already described the Radon transform computation for the characteristic
function of a shifted and rotated elliptical region. The Shepp-Logan phantom is a linear combination of
such functions, each of them corresponding to an elliptical region with individual parameters. It was
introduced in [124] and represents a highly simplified cross-section of a human head (cf. Figure 11.1).
Due to the linearity of the Radon transform, we can evaluate its Radon transform, also referred to as
its sinogram, very efficiently. For our tests, we used the high-contrast version of this phantom from [18,
Subsection 5.2.2]. The parameters of the ellipses and the coefficients of the linear combination are listed
in [18, page 118, Table 5.1].

Smooth phantom

Similar to the Shepp-Logan phantom, we can combine modifications of the bump-shaped functions fν
from Example 8.5 (iv) for a fixed smoothness parameter ν ≥ 0. Since fν ∈ Hσ(R2) for all σ < ν + 1/2,
we can generate phantoms of arbitrary smoothness levels within this approach and potentially observe
higher convergence rates in the reconstruction process (cf. [18, Section 5.3], [111, Section 6]). Setting
ν = 0 yields the same regularity as the Shepp-Logan phantom. In total, the smooth phantom is a
linear combination of three rotated, shifted and stretched versions of fν , whose parameters and Radon
transforms are provided in [18, Subsection 5.2.3]. We chose ν = 3 in our numerical tests (cf. Figure 11.2).

1https://www.python.org
2https://github.com

https://github.com/krischi10/KernelCT
https://www.python.org
https://github.com
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Shepp-Logan phantom Sinogram

Figure 11.1.: Visualization of Shepp-Logan phantom (left) and its sinogram (right)

Smooth phantom Sinogram

Figure 11.2.: Visualization of smooth phantom (left) and its sinogram (right) for ν = 3

11.2. Comparison of greedy methods

As the first numerical investigation of the reconstruction method via kernel-based generalized interpola-
tion, we compared different greedy selection algorithms in terms of accuracy and stability. To this end,
we randomly generated 104 parameter pairs from [−1, 1]× [0, π), denoted by Ωrand, which should result
in a scattered parameter set. Consequently, the selection space of the greedy algorithms was given by
the respective set of functionals

Γ = ϱ1(Ωrand),

where ϱ1 is the parametrizing mapping from (10.13) with R = 1. Note that the random number generator
of the package NumPy3, and therefore the precise outcome of the experiment, depends on the input seed.
To ensure the reproducibility of our results, we state the selected seed for each of the described test runs.
In this section, we only provide the results of one specific seed for each experiment. However, we verified
the general trends within the results by varying the input seed.
In total, the greedy algorithms selected up to 2500 functionals. These functionals and their correspond-

3https://numpy.org/doc/stable/reference/random/generator.html, last checked: Tuesday 10th December, 2024

https://numpy.org/doc/stable/reference/random/generator.html


11. Numerical Examples 127

ing Radon values were then used to compute a reconstruction on the 512× 512 pixel center grid

Ipixel =

{
− 1 +

1

512
+ k ·

(
2

511
− 2

512 · 511

) ∣∣∣∣∣ k ∈ {0, ..., 511}

}2

⊂ [−1, 1]
2

(11.1)

via generalized interpolation. We measured the reconstruction accuracy with the root mean squared error
(RMSE) defined as

RMSE(f, s) :=

 1

5122
·
∑

x∈Ipixel

(f(x)− s(x))
2

1/2

(11.2)

for two images f, s : Ipixel → R. Moreover, we measured the interpolation accuracy in the domain of the
Radon transform via the error term 1

1002
·

∑
(r,θ)∈Ipolar

(Rr,θ(f)−Rr,θ(s))
2

1/2

(11.3)

of f, s : R2 → R on the 100× 100 validation grid

Ipolar =

{
− 1 + j · 2

99

∣∣∣∣∣ j ∈ {0, ..., 99}

}
×

{
k · π

100

∣∣∣∣∣ k ∈ {0, ..., 99}

}
⊂ [−1, 1]× [0, π) .

Of course, f and s are set to be the original phantom and the generalized interpolant when computing the
error measurements. In the description of the results, we refer to (11.2) as the reconstruction error and
call (11.3) the validation error. For the evaluation of the stability, we computed the spectral condition
numbers of the resulting interpolation matrices (cf. (7.1)).
As we have pointed out, the weighted Gaussian kernel from Example 10.16 is the only known kernel

that yields an efficient computation of the Riesz representers and the interpolation matrix entries. Thus,
we had to restrict our tests to this kernel model. Similar to the standard interpolation case, the involved
shape parameters influence the accuracy and stability of the reconstruction method and an optimal
choice depends on the target functions and the point selection strategies. For the test runs concerning
the Shepp-Logan phantom, we set the shape parameters of the weighted Gaussian kernel to

ν
(SL)
1 = 2000, ν

(SL)
2 = 2. (11.4)

The shape parameters regarding the smooth phantom were set to

ν
(SP )
1 = 700, ν

(SP )
2 = 3. (11.5)

To avoid bias towards one of the greedy selection algorithms, we determined these parameters via trial
and error on parallel beam geometry data (cf. (9.5)). Note that these parameters can still be optimized
for one specific greedy algorithm, an example is discussed in Section 11.3. For better visibility, we group
the test results by the different types of greedy algorithms.

Remark 11.1. Due to the inefficiency of the Newton basis (cf. 6.12), we did not use the point evaluations
of the Newton basis elements for the point evaluation of the interpolant as suggested in Algorithm 1,
lines 14 & 15. Instead, we made a change of basis and evaluated the interpolant in terms of the standard
basis to compute the pixel values of the reconstruction image.

11.2.1. β-greedy algorithms

Regarding the β-greedy algorithms from Subsection 7.2.3, we tested the following versions and labels:

• P-greedy: This represents the choice β = 0, leading to the selection rule (7.3).

• psr-greedy: The choice β = 1/2 results in the psr-greedy algorithm as discussed in (7.10).
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• f-greedy: The f -greedy selection rule (cf. (7.7)) represents the case β = 1.

• beta2: For the sake of completeness, we also tested the case β = 2, which is not associated with
one of the algorithms from Subsection 7.2.2.

• f/P-greedy: The f/P -greedy selection rule from (7.9) can be interpreted as the limit case β = ∞
as discussed in the introduction of Subsection 7.2.3.

Shepp-Logan phantom

For the Shepp-Logan phantom, we set the seed of the random number generator to

seed = 2155654 (11.6)

and used the weighted Gaussian kernel with the shape parameters from (11.4). The reconstructions after
the final iteration in the case of the aforementioned β-greedy algorithms are visualized in Figure 11.3.
While psr-greedy and f-greedy achieved the best reconstruction images, beta2 and f/P-greedy were
not able to reconstruct the smaller details of the phantom and P-greedy was not even able to reconstruct
the outer oval shape of the phantom. In general, we can see many line artifacts in all reconstruction
images, which diminish the visibility of the phantom at least to some degree.
The visual perception is also supported by Figure 11.4, where we plotted the reconstruction error,

validation error and spectral conditions numbers in dependence on the number of chosen data points.
psr-greedy and f-greedy achieved the lowest reconstruction and validation errors, especially in the early
stage of the iterative selection. In the later stage, psr-greedy achieved the best error measurements.
Regarding the numerical stability, it can be seen that the condition number significantly increases when
increasing the parameter β of the greedy algorithm. The final measurements after selecting 2500 Radon
functionals are provided in Table 11.1.

Method Reconstruction error Validation error Condition number
P-greedy 1.74e-01 6.14e-02 3.00e+03
psr-greedy 7.63e-02 1.26e-02 7.20e+04
f-greedy 8.46e-02 1.54e-02 1.05e+06
beta2 8.53e-02 1.61e-02 2.04e+06
f/P-greedy 8.93e-02 2.21e-02 5.58e+07

Table 11.1.: Final measurements for Shepp-Logan phantom reconstruction via β-greedy methods

Smooth phantom

For the smooth phantom, we set the random number seed to

seed = 4578448 (11.7)

and used the shape parameters from (11.5). In Figure 11.5, we can see that all considered β-greedy
algorithms resulted in accurate reconstructions after the final iteration. The final measurements in
Table 11.2 verify that the average reconstruction quality is much better than the average reconstruction
quality in the test runs concerning the Shepp-Logan phantom. This indicates that the smooth phantom
better matches the smooth weighted Gaussian model, leading to a faster decay of the reconstruction
error. Similar to the Shepp-Logan reconstruction, Figure 11.6 indicates that a larger choice of β leads to
an increase in the condition number and therefore decreases the numerical stability, where f/P-greedy

has by far the worst condition number. However, f-greedy, beta2 and f/P-greedy achieved better
reconstruction and validation errors than psr-greedy. P-greedy again had by far the worst errors.
The previous two tests indicate that, for sufficiently smooth target functions, the parameter β can

be fine-tuned to achieve an optimal tradeoff between approximation quality and numerical stability. In
both tests, psr-greedy provided reasonable performances in accuracy and stability. P-greedy improved
the numerical stability, but it came with a relatively low accuracy due to its independence of the target
function. On the other side of the β-scale, f/P-greedy yielded relatively large condition numbers, but
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Method Reconstruction error Validation error Condition number
P-greedy 3.10e-04 1.35e-04 1.13e+05
psr-greedy 9.05e-05 2.42e-05 2.92e+05
f-greedy 6.43e-05 1.56e-05 5.20e+05
beta2 5.16e-05 1.25e-05 5.85e+06
f/P-greedy 6.97e-05 1.77e-05 8.26e+09

Table 11.2.: Final measurements for smooth phantom reconstruction via β-greedy methods

it also yielded low errors for the smooth phantom. We wish to remark that the stability issues have
been addressed in the paper [144], but it needs to be investigated whether the stabilized versions of the
β-greedy algorithms yield better reconstructions.

11.2.2. Geometric greedy algorithms

In addition, we tested the following geometric greedy algorithms:

• P-greedy: This is again the selection rule from (7.3). Although we already considered this algorithm
in the previous two tests, it was also added to the geometric greedy tests to serve as a reference for
better comparison.

• geoDual: The geometric greedy selection in terms of distances in the dual space is described by the
selection rule (7.4). Recall that we can evaluate distances in the dual space via

∥λ1 − λ2∥2K = ⟨λ1, λ1⟩K − 2 · ⟨λ1, λ2⟩K + ⟨λ2, λ2⟩K for λ1, λ2 ∈ HKw .

For the evaluation of the inner product, we can use the formula from Example 10.16.

• geoParam: For the geometric greedy selection in the parameter space, which is given by the selection
rule (7.6), we use the parametrizing map

ϱ1 : Ωrand → Γ, (r, θ) 7→ λr,θ

and equip the parameter space Ωrand ⊂ [−1, 1]× [0, π) with the standard Euclidean metric.

• geoPeriodic: We follow the approach of geoParam, but instead of using the standard Euclidean
metric in Ωrand, we consider the metric described in (10.15), which takes the periodicity of the
Radon functionals into account.

• geoSphere: Again, we perform the thinning in the parameter space, but we use the metric (10.16)
in combination with the embedding ψs into the projective space P2, see (10.17). In our tests, we
set s = 1.2, which was determined by trial and error.

Shepp-Logan phantom

To ensure comparability, we used the same parameters as in the tests concerning the β-greedy algorithms,
i.e. the shape parameters from (11.4) and the random number seed from (11.6). The reconstructions of
the Shepp-Logan phantom after the final iteration are visualized in Figure 11.7. While P-greedy and
geoDual were not even able to reconstruct the outer oval shape of the phantom, the methods geoParam,
geoPeriodic and geoSphere resulted in reasonable reconstructions. Again, all images contain visible line
artifacts. The error plots in Figure 11.8 verify the visual impression that P-greedy and geoDual provided
significantly inferior reconstruction images. Regarding the numerical stability, the plot of the condition
numbers in the same figure shows that P-greedy yielded the best condition numbers throughout the
test run. In comparison to the target-dependent β-greedy algorithms, the geometric greedy algorithms
yielded better condition numbers while achieving similar accuracy in the best cases, see Table 11.1 &
11.3.
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Method Reconstruction error Validation error Condition number
P-greedy 1.74e-01 6.14e-02 3.00e+03
geoDual 2.02e-01 8.47e-02 8.64e+03
geoParam 8.93e-02 1.59e-02 1.51e+04
geoPeriodic 9.09e-02 1.67e-02 1.55e+04
geoSphere 1.03e-01 2.10e-02 1.03e+04

Table 11.3.: Final measurements for Shepp-Logan phantom reconstruction via geometric greedy methods

Smooth phantom

Again, we used the parameters from the respective β-greedy test run, i.e. the shape parameters from
(11.5) and the random number seed from (11.7), to ensure better comparability. Figure 11.9 shows that
all methods were able to obtain accurate reconstructions of the smooth phantom, which is also supported
by the final error measurements in Table 11.4. Similar to the test runs concerning the β-greedy algorithm,
we can see that the average reconstruction quality is much better in the case of the smooth phantom than
in the case of the Shepp-Logan phantom. The error measurements and condition numbers depending
on the number of selected data points are plotted in Figure 11.10. As in the previous tests, P-greedy
yielded the lowest condition numbers. Moreover, P-greedy and geoSphere yielded the best reconstruction
errors. Comparing the results of Table 11.2 & 11.4, we see that the geometric greedy algorithms did not
necessarily provide more stability, but yielded significantly worse reconstruction errors.
The two conducted tests concerning the geometric greedy algorithms do not show a clear tendency

towards one of the selection strategies. geoDual yielded poor accuracy while not having the best condi-
tion numbers. geoParam and geoPeriodic yielded nearly the same accuracy results with geoPeriodic

yielding lower condition numbers in the early stages of the iteration. Hence, the associated modification
of the standard metric did not have a huge effect. geoSphere achieved a reasonable tradeoff between
accuracy and stability in both test runs, but it was outperformed by P-greedy in the case of the smooth
phantom.
Although the target-dependent β-greedy algorithms yielded significantly higher accuracy in the case of

the smooth phantom, there remain major computational advantages in favor of the geometric algorithms.
First, due to their independence of the target function, we can reuse the thinned data set for other target
functions and thus save computation time in further tests. Second, the thinning in the parameter space
is usually less costly as it does not require the computation of the inner product values in the dual space
and the Newton basis. To end this section, we remark that our test results verify the applicability of the
kernel-based reconstruction method to scattered Radon data.

Method Reconstruction error Validation error Condition number
P-greedy 3.10e-04 1.35e-04 1.13e+05
geoDual 3.62e-03 2.29e-03 5.87e+06
geoParam 1.17e-03 3.19e-04 2.47e+06
geoPeriodic 1.22e-03 3.32e-04 1.98e+06
geoSphere 4.97e-04 1.26e-04 8.55e+05

Table 11.4.: Final measurements for smooth phantom reconstruction via geometric greedy methods

11.3. Comparison with FBP method

For the FBP method from Section 9.1, we used parallel beam geometry data as described in (9.5). Recall
that the sampling parameters of this method are coupled via (9.9). Hence, for given angular sampling
parameter N ∈ N, the remaining parameters are given by

M = ⌊N/π⌋ L = N d =
π

L
,

since the support of the considered phantoms is contained in B1(0). In total, this yields N ·(2 · ⌊N/π⌋+1)
Radon lines. The parameters of the Radon lines were taken from [−1, 1]× [0, π) again. In our numerical
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tests, we varied the number of angular samples N in low-dose settings, i.e. we let

N = 10, 20, ..., 120,

and kept track of the corresponding reconstruction error given by the RMSE (11.2).

Shepp-Logan phantom

For the reconstruction of the Shepp-Logan phantom, we equipped the FBP method with the Shepp-Logan
filter due to the superior visual performance in comparison to the Ram-Lak filter (cf. Example 9.2).
Regarding the kernel-based reconstruction, which we also refer to as Kernel method, we used the weighted
Gaussian kernel with parameters from (11.4). Note that we did not use the Newton basis and thinning
algorithms. Instead, we simply solved the interpolation equations via the linear system (4.3) and evaluated
the interpolant via the Riesz representers of the functional.
The reconstructions for N = 40, 80, 120 are provided in Figure 11.11. In our eyes, the FBP method

yielded slightly better visual results. However, the kernel-based method generated better reconstructions
in terms of the RMSE, see Figure 11.12.

Smooth phantom

In the case of the smooth phantom, we equipped the FBP method with the Ram-Lak filter, which yielded
better reconstruction errors than the Shepp-Logan filter. For the weighted Gaussian kernel, we used the
shape parameters from (11.5) and proceeded as before. The reconstructions for N = 40, 80, 120 are given
in Figure 11.13. For N = 40, which results in 1000 Radon lines, the FBP method provided a significantly
better visual result than the kernel-based method. This is also supported by the plot of the reconstruction
errors in Figure 11.14. For larger N , the kernel-based method achieved better reconstruction results than
the FBP method in terms of the RMSE.

Data thinning on smooth phantom

To end this section, we want to demonstrate the effectiveness of proper data thinning in the context of
computerized tomography. In Figure 11.14, we have seen that the best reconstruction of the smooth
phantom via the FBP method was achieved at N = 110, which results in 7810 Radon lines. We will refer
to the corresponding reconstruction error as FBP reference here. Following the procedure in Section
11.2, we applied the psr-greedy algorithm to the respective set of 7810 Radon functionals and tracked
the reconstruction error depending on the number of the selected data points. As we have mentioned in
the introduction of Section 11.2, optimal shape parameters for the weighted Gaussian kernel depend on
the target function and the considered greedy algorithm. For the psr-greedy algorithm, we determined
by trial and error that

ν1 = 300 ν2 = 5.5 (11.8)

is a good choice, resulting in superior reconstructions compared to the previous shape parameters (11.5).
As a further reference, we repeated the kernel-based reconstruction on parallel beam geometry data for
the weighted Gaussian kernel with shape parameters from (11.8), which we refer to as Kernel PBG. To
this end, we followed the procedure of the previous two tests of this section, but this time for the angular
sample sizes

N = 5, 10, ..., 50.

The comparison results are visualized in Figure 11.15. Note that the error curve of the psr-greedy

algorithm already crosses at approximately 700 selected Radon functionals, which is only a tenth of the
initial data set. Moreover, we see that parallel beam geometry data is in general not optimal for the
kernel-based approach, as the psr-greedy algorithm generated significantly better reconstructions in
terms of the RMSE. This observation underlines the advantage of flexibility regarding the given data
points, which is provided by weighted kernel functions.
In total, our numerical comparisons show that the kernel-based reconstruction method can compete

with the FBP method, or even result in superior reconstructions in certain low-dose scenarios. However,
we need to mention that the FBP method is far more efficient than the current implementation of the
kernel-based method.
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11.4. Regularization

In Section 11.2, the reconstructions of the Shepp-Logan phantom contained several line artifacts, which
diminished the visual reconstruction quality. We want to investigate whether the regularization tools from
Section 7.3 are able to reduce the number or the intensity of these artifacts. Therefore, we considered
the thinned data set Λ = Λ2500 that was selected by the psr-greedy algorithm in Subsection 11.2.1 for
the Shepp-Logan phantom and applied regularization methods based on different penalizing functionals.
Besides the reconstruction error (11.2), we also computed the Structural Similarity (SSIM) Index, which
is implemented in the skimage.metrics submodule4 in Python. The SSIM Index was introduced in [139]
to improve the assessment of perceptual image quality. In total, we tested the following methods:

• Interpolation: This is just the reconstruction from Subsection 11.2.1 via generalized interpolation.

• NormReg: Given a regularization parameter γ > 0, we set Γ = Λ and solve the minimization problem
(7.16) that penalizes the native space norm.

• TVReg: For γ > 0, we solve the problem (7.17), where we again set Γ = Λ and choose the set Ξ of
regularization functionals as the partial differential operators

ΞTV =
{
δx ◦ ∂x1

| x ∈ Ipixel

}
∪
{
δx ◦ ∂x2

| x ∈ Ipixel

}
at the grid points of Ipixel from (11.1). Since the weighted Gaussian kernel is smooth, we have the
inclusion ΞTV ⊂ H∗

Kw
(cf. Proposition 3.14 part (4)). This regularization method is well-known as

total variation (TV) regularization.

The reconstructions for the different methods are provided in Figure 11.16. For NormReg and TVReg,
we provide the results for two different regularization parameters to demonstrate that the parameter has
to be chosen carefully. As in the tests before, the parameters were determined by trial and error. We
can see that, for suitable choices of γ, both regularization methods were able to reduce the intensities of
the line artifacts in comparison to Interpolation. However, we could not get rid of the line artifacts.
For large regularization parameters, NormReg tends to the zero function and TVReg seems to result in a
white blob.

Method Regularization parameter γ Reconstruction error SSIM
Interpolation 7.63e-02 5.92e-01
NormReg 1.00e-06 8.87e-02 6.61e-01
NormReg 1.00e+00 2.47e-01 2.32e-01
TVReg 1.00e-10 9.61e-02 6.00e-01
TVReg 1.00e+00 2.47e-01 6.53e-02

Table 11.5.: Error measurements for Shepp-Logan phantom reconstruction via different regularization
methods

The error measurements for the considered methods are provided in Table 11.5. Both regularization
methods resulted in a worse reconstruction error, but TVReg achieved a similar SSIM index value as
Interpolation while NormReg yielded the best SSIM index value. Note that the SSIM score should be
as close to 1 as possible. Overall, we were able to achieve visual improvements, but we did not end up
with a clear image of the Shepp-Logan phantom. This underlines the impression from Section 11.2 that
the smooth weighted Gaussian model is not the right choice for this type of phantom.

4https://scikit-image.org/docs/stable/api/skimage.metrics.html, last checked: Tuesday 10th December, 2024

https://scikit-image.org/docs/stable/api/skimage.metrics.html
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Original Shepp-Logan phantom P-greedy

psr-greedy f-greedy

beta2 f/P-greedy

Figure 11.3.: Reconstructions of the Shepp-Logan phantom for different β-greedy algorithms
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Figure 11.4.: Error and stability measurements for Shepp-Logan phantom reconstruction via β-greedy
methods
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Original smooth phantom P-greedy

psr-greedy f-greedy

beta2 f/P-greedy

Figure 11.5.: Reconstructions of the smooth phantom for different β-greedy algorithms
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Figure 11.6.: Error and stability measurements for smooth phantom reconstruction via β-greedy methods
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Original Shepp-Logan phantom P-greedy

geoDual geoParam

geoPeriodic geoSphere

Figure 11.7.: Reconstructions of the Shepp-Logan phantom for different geometric greedy algorithms
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Figure 11.8.: Error and stability measurements for Shepp-Logan phantom reconstruction via geometric
greedy methods
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Figure 11.9.: Reconstructions of the smooth phantom for different geometric greedy algorithms
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Figure 11.10.: Error and stability measurements for smooth phantom reconstruction via geometric greedy
methods
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Figure 11.11.: Reconstructions of Shepp-Logan phantom via FBP and kernel method for different angular
sampling rates
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Figure 11.12.: Error decay for Shepp-Logan phantom reconstruction via FBP and kernel method
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Figure 11.13.: Reconstructions of smooth phantom via FBP and kernel method for different angular
sampling rates
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Figure 11.14.: Error decay for smooth phantom reconstruction via FBP and kernel method
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Figure 11.15.: Error decay for psr-greedy algorithm in comparison to FBP reference value and standard
kernel-based method on parallel beam geometry data
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Figure 11.16.: Reconstructions of the Shepp-Logan phantom for different regularization methods



12. Summary and Outlook

Motivated by previous advances in the research field, this thesis aimed to provide an extensive overview
and analysis of generalized interpolation problems in reproducing kernel Hilbert spaces and to further
elaborate the kernel-based image reconstruction from scattered Radon data. Due to the generality of most
theoretical results, we split our work into two parts. While the first part focused on more abstract and
general analysis, the second part contained more practical work driven by the application of generalized
interpolation to computerized tomography. Thus, interested readers with different applications can mostly
focus on the first seven chapters.
In the first part, we discussed the theoretical aspects of generalized interpolation. Besides theoretical

results on the linear independence of functionals and the convergence of the interpolation method, we
explained and analyzed the generalized Newton basis and greedy data selection algorithms. Moreover,
we complemented the greedy algorithms with a simple, flexible regularization approach. The content of
the first part can be seen as a framework for treating generalized interpolation problems that arise when
discretizing linear problems.
The second part of this thesis started with an introduction to the mathematical problem of comput-

erized tomography and a brief overview of reconstruction methods. With these basics, we were able to
discuss the image reconstruction from scattered Radon data via kernel-based generalized interpolation.
Based on [38], we analyzed weighted kernel functions and showed that the Radon functionals are elements
of the native dual space for suitable combinations of kernels and weight functions. Moreover, we showed
that the derived framework of the first part can be applied under suitable conditions. In our numerical
experiments, we demonstrated that the choice of Radon functionals is a critical component of the recon-
struction method. Recall that this was already well-known for standard interpolation applications. In
addition, numerical examples indicated that the kernel-based reconstruction method can compete with
other, well-established reconstruction methods in certain scenarios. The numerical results underline the
importance of flexibility and the effectiveness of the derived tools.
Note that we do not summarize the theoretical results of this thesis in more detail here, since we already

provided a detailed list of our contributions to the research field in the introduction of this thesis. In the
following, we will give an outlook on real-world applications and state remaining open problems.

Real-world applications in computerized tomography

Based on the numerical results of Section 11.3, we want to discuss possible real-world applications for the
kernel-based reconstruction method. As shown in Figure 11.15, the kernel-based method in combination
with proper shape parameters and a suitable greedy algorithm can be used to reduce the number of
data points while maintaining the accuracy of the FBP method in certain settings. For the scanning
procedure, one could still use common scanners that follow a regular scanning scheme like the parallel
beam geometry but only take the measurements for lines that belong to the thinned data set. Figure 12.1
shows a modification of the parallel beam geometry scanning scheme from Figure 9.2, where only a
selection of Radon lines (blue) is considered at each angle. The remaining Radon lines (red) are ignored
in the scanning procedure. Consequently, the performance of the kernel-based methods in practice could
easily be tested in existing systems for computerized tomography.
In medical imaging, the reduction of data points results in lower radiation exposure for patients. How-

ever, the thinning process requires the Radon data for a large set of Radon lines to derive a suitable
representation of the complete Radon data. A lower radiation exposure is only achieved if the thinning
is performed on training data sets prior to the actual examination of patients. To this end, it should
be investigated whether the vectorial greedy approach from Subsection 7.2.4 is able to determine func-
tional sets that generalize well to certain groups of examinations. Moreover, it should be investigated
whether the sequential thinning approach from Section 10.3 yields a similar accuracy as the usual thinning
procedure, since reconstructions are available earlier within the sequential approach.
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Figure 12.1.: Modification of parallel beam geometry scanning procedure from Figure 9.2

Kernel-based methods for linear inverse problems

The main objective of the first part was to derive an extensive framework for solving generalized inter-
polation problems with positive definite kernel functions. These problems usually arise when discretizing
linear inverse problems such as the reconstruction from line integral values, which served as our main
application in the second part of this thesis. Due to the mild assumptions made in the first part, we
were able to apply the derived theory and tools to computerized tomography without further modifica-
tions. Hence, we assume that the derived framework can be applied successfully to many different linear
problems. For the sake of clarity, we want to list the two key requirements for the application of the
kernel-based framework.
To this end, let A : F1(X) → F2(Y ) be a bounded linear operator between two Banach spaces F1(X)

and F2(Y ) consisting of real-valued functions on the domains X and Y . Given a target object f ∈ F1(X),
we can only perform finitely many measurements, i.e. we only have access to the values Af(yi), i = 1, ..., n,
corresponding to a finite point set {y1, ..., yn} ⊂ Y . In the context of generalized interpolation, this leads
to the discretized problem

As(yi) = Af(yi) i = 1, ..., n, (12.1)

where s ∈ F1(X) is the approximation to f . The requirements of the kernel-based framework can then
be described as follows:

(i) The problem (12.1) is a generalized interpolation problem with respect to the functionals δyi ◦ A,
i = 1, ..., n, where δyi

denote the respective Dirac functionals. Hence, we need to choose a kernel
function K such that δy ◦A ∈ H∗

K for all y ∈ Y . Due to the reproduction property, it is rather easy
to find suitable kernels for common problems, see e.g. Proposition 3.14 and Section 4.1. In addition,
one can modify standard kernels to enforce the boundedness of these functionals in certain settings.
For example, weighted kernels as introduced in Section 10.1 represent a simple modification and
guarantee the boundedness of the Radon functionals for appropriate weight functions (cf. Section
10.2).

(ii) For the efficient implementation of the framework, it is essential that the Gram matrix entries〈
δyi

◦A, δyj
◦A
〉
K

i, j = 1, ..., n

can be computed efficiently, since these values are the basis of the whole reconstruction process
(cf. Algorithm 1). To this end, we are mostly interested in deriving analytic expressions for
the evaluation of the inner product. In the case of partial derivative operators, we just have to
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differentiate the chosen kernel. However, integral operators usually require a more careful choice of
the kernel. In [148], the author was not able to derive an analytic expression of the inner product
due to the complexity of the spherical Radon transform. We face the same problem in Section 10.2,
where we have only provided one suitable combination of a kernel and weight function in Example
10.16. Until now, no further combinations are known that deliver suitable analytic expressions.
Hence, this requirement is a critical part of the application to inverse problems.

If the considered operator and the chosen kernel meet the previous two requirements, the framework
including its interpolation tools can be applied efficiently to determine a reconstruction.

Open problems

At last, we want to highlight relevant problems and questions that arose in our analysis and were not
solved. The following list can be used as a guideline for further advances in the research field of kernel-
based (generalized) interpolation.

• Newton basis computation: As stated in Remark 6.12, the computational costs of evaluating
a given functional from the dual space at all Newton basis elements grows quadratically, which
is a significant disadvantage in applications with huge underlying data sets. In Section 11.2, we
restricted ourselves to data sets of order 105 and lower to achieve feasible computation times. For
significantly larger sets, it would take hours to compute a reconstruction with the presented kernel-
based algorithms. Meanwhile, the FBP method is able to compute a reconstruction from millions
of data points in a few seconds on the same hardware. A more efficient computation scheme for the
Newton basis or a similar basis would significantly improve the efficiency of the whole reconstruction
scheme. Recall that the inefficiency of algebraic reconstruction methods is still one of the major
obstacles to their practical use (cf. Section 9.2).

• Discontinuous kernels: In Section 10.2, we assumed the weighted kernels to be continuous to
ensure that their native spaces can be embedded into L1(R2), see Remark 10.17. Since common
kernel functions are usually continuous (cf. Section 2.1), this assumption is not a severe limitation.
However, it could be beneficial to investigate the construction of discontinuous kernels that are
integrable and provide a proper Lp-embedding for their native space. Recall from Chapter 3 that
the smoothness of the kernel determines the smoothness of the functions from the native space.
Thus, selecting a smooth kernel leads to a smooth reconstruction model and we might not be able
to properly reconstruct relevant features like discontinuities of the target function. At the moment,
we are only aware of the approach in [40], where the authors introduced the concept of Variably
Scaled Discontinuous Kernels (VSDK). It remains to be investigated whether this type of kernel is
useful for image reconstruction from scattered Radon data.

• Further examples of weighted kernels: So far, the weighted Gaussian kernel from Example
10.6 is the only known combination of a kernel and weight function that yields an analytic expres-
sion of the Gram matrix entries and the evaluation of the Riesz representers in the case of Radon
functionals. Similar to the standard interpolation with a Gaussian kernel, the stability and accuracy
of the weighted Gaussian model heavily rely on the determination of good shape parameters. More-
over, the smooth weighted Gaussian model is probably not suited for piecewise-constant objects
like the Shepp-Logan phantom, see Section 11.2. To enhance the versatility of the kernel-based
reconstruction method, it is essential to find other suitable weighted kernels that provide a less
smooth and more stable reconstruction model.

• Linear independence of Radon functionals: We were not able to provide a linear independence
result for the Radon functionals from (10.1) in Subsection 10.2.1. Although we ended up with the
integral representation (10.8), which is similar to the representation from 4.4, we could not proceed
as in Section 4.1 due to the non-compact support of the Radon functionals. However, we still
expect that the Radon functionals are linearly independent for pairwise distinct parameter pairs
and suitably weighted kernels, especially since we did not run into major numerical trouble in our
experiments. To prove the linear independence, one would have to take a closer look at the Fourier
theory of non-compactly supported and tempered distributions. As we have already stated several
times before, the linear independence result only has a theoretical value (cf. end of Subsection
10.2.1). In practical cases, we can keep track of the power function to identify linear dependence.
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• Convergence rates: In Remark 10.25 & 10.26, we already stated a few ideas to obtain conver-
gence rates for the image reconstruction from Radon data via weighted kernel functions. For the
convergence analysis of kernel-based interpolation algorithms, it is common to restrict to Sobolev
kernels and make use of the Sobolev space theory (see, e.g., [146] or Section A.5). Our numerical
results from Section 11.2.1 suggest that the order of convergence depends on the Sobolev order of
the weighted kernel. Hence, we assume that corresponding convergence rates can be derived. In
general, it is desirable to derive convergence rates in terms of the native space norm, since this
implies similar convergence in terms of other well-known norms (cf. Corollary 10.24).

• Source condition: For the convergence result concerning the image reconstruction from Radon
data (cf. Theorem 10.23), we assumed that the target function is an element of the restricted space
HKw,ΓR

for given radius R > 0. Since we do not have a simpler representation of this subspace, it
is not clear whether this is a realistic assumption. In the theory of inverse problems, it is a common
source condition to assume that the target functions are elements of (fractional) Sobolev spaces,
see e.g. [18, Chapter 4]. We saw in Corollary 10.9 that, under suitable conditions, the weighted
kernels native space HKw is a subspace of a Sobolev space again. It could be highly beneficial to
investigate special examples of weighted kernels that lead to reasonable source conditions in the
kernel setting.

• Numerical comparison to other algebraic methods: Besides the reconstruction via kernel-
based generalized interpolation, we have discussed alternative algebraic reconstruction methods in
Section 9.2 & 10.4. However, we only compared the theoretical aspects of these different meth-
ods and did not conduct any numerical comparison tests. It should be investigated whether the
framework for kernel-based generalized interpolation results in significant advantages over previ-
ous ART-like approaches with pixel or blob functions. Recall that there is no such tool as greedy
data thinning algorithms for these ART-like approaches. Hence, finding a suitable amount of ba-
sis functions is a challenging task in general and might require significantly more fine-tuning and
computational resources.

• Application to noisy or incomplete data: In our numerical comparison with other recon-
struction methods (cf. Section 11.3), we mainly focused on the number of data points needed to
obtain a reasonable reconstruction. As stated in the introduction of the second part, there are
other scenarios with severe data limitations, e.g. the viewing angle can be limited. It should be
tested whether the kernel-based reconstruction method is able to produce suitable reconstructions
in a large variety of critical scenarios. Additionally, the algorithm needs to be tested on (noisy)
real-world measurements, since we only dealt with simulated data in our numerical tests.



A. Mathematical Tools

In the main part of this thesis, we made use of several well-investigated mathematical tools, e.g. the
Fourier transform and the theory of distributions. We want to use this chapter as a supplement to fix
definitions and notations, which may vary in the literature. Moreover, we list relevant theoretical results
that were used in our analysis.

A.1. Standard Analysis

We start with some basic definitions and results from standard analysis. In this section, we do not include
detailed explanations. Further information can be found in common analysis books. We just state the
relevant statements, and thus try to avoid misconceptions in our analysis.

Distance function

The fill distance (cf. Section 5.2) is based on the distance function, which measures the minimal distance
between a point and a subset.

Definition A.1. Let (Z, dZ) be a metric space and A ⊂ Z. We define the distance to the subset A as

dist (z,A) := inf
a∈A

dZ(z, a) for z ∈ Z,

resulting in the distance function dist(·, A) : Z → R.

In Corollary 5.4, we interpret the power function as a distance to a finite-dimensional linear subspace.
Thus, we can rely on the general properties of the distance function.

Lemma A.2. In the setting of Definition A.1, the following statements hold:

(1) We have

|dist(z,A)− dist(z̃, A)| ≤ dZ(z, z̃) for all z, z̃ ∈ Z,

i.e. the distance function is Lipschitz continuous on Z with Lipschitz constant 1.

(2) The equation dist(z,A) = 0 holds if and only if z ∈ A.

Totally bounded sets

For our convergence analysis regarding the greedy selection algorithms in Section 7.2, we restrict to totally
bounded subsets of the native dual space.

Definition A.3. Let (Z, dZ) be a metric space and A ⊂ Z. We call A totally bounded if for any ε > 0,
there are finitely many points z1, ..., zM ∈ Z such that

A ⊂
M⋃
j=1

Bε(zj).

In other words, totally bounded sets can be covered with a finite amount of ε-balls for any given radius.
Note that A ⊂ Z is totally bounded if and only if it is totally bounded in the metric subspace

(
A, dZ|A

)
,

where dZ|A is the restriction of dZ to A × A, which leads to the equivalent notion of totally bounded

spaces. Similar to the concept of compactness, it is not easy to determine whether a subset is totally
bounded or not just by applying the definition. We state some useful properties that help us to identify
totally bounded subsets.
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Lemma A.4. Let (Z, dZ) be a metric space and A ⊂ Z.

(1) If A is totally bounded and B ⊂ A, then B is totally bounded as well.

(2) If A is compact, then A is totally bounded. Conversely, if A is totally bounded and complete with
respect to dZ , then A is compact.

(3) If (Z, dZ) is complete, then A is totally bounded if and only if it is pre-compact. Hence, if Z is a
finite-dimensional real vector space and dZ is induced by a norm on Z, then A is totally bounded if
and only if A is bounded.

(4) Let (Y, dY ) be another metric space and ϱ : Z → Y be a uniformly continuous mapping. If A is
totally bounded, then its image ϱ(A) is totally bounded in Y .

Forward differences

In Proposition 3.14 part (4), we have used the approximation properties of forward difference operators
regarding partial derivatives. Here, we want to properly introduce these operators starting with the
univariate case. Given a function f : R → R, it is common knowledge that its difference quotient at point
x ∈ R with step width h ̸= 0 is given by

∆hf(x) :=
f(x+ h)− f(x)

h
.

By iterating this formula, we can define forward differences of arbitrarily high orders.

Definition A.5. For f : R → R and k ∈ N0, we define the k-th forward differences as

∆k
hf(x) := h−k ·

k∑
i=0

(−1)k−i ·
(
k

i

)
· f(x+ i · h) for x ∈ R, h ̸= 0. (A.1)

This defines the forward difference operator ∆k
h, which maps a function f to another function ∆k

hf
according to (A.1).

For these forward difference operators, one can prove an extended mean value theorem and the con-
vergence to high-order derivatives for sufficiently smooth functions.

Lemma A.6. Let f : R → R be a function.

(1) For k1, k2 ∈ N0, we have

∆k1

h

[
∆k2

h f
]
= ∆k1+k2

h f for all h ̸= 0.

(2) Suppose that f is k-times differentiable for k ∈ N0. Then, for every x ∈ R and h ̸= 0, there is

ξ ∈ Q
(k)
x,h such that

∆k
hf(x) = f (k)(ξ).

Here, Q
(k)
x,h is defined as the closed interval

Q
(k)
x,h := [x+min(0, k · h), x+max(0, k · h)] . (A.2)

(3) If f ∈ C k(Rd) for k ∈ N0, we have

lim
h→0

∆k
hf(x) = f (k)(x) for all x ∈ R.
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Based on the univariate forward differences, we derive a multivariate version for functions f : Rd → R.
Given an index l ∈ {1, ..., d} and an order k ∈ N0, we can apply the univariate operator to the l-th
component of the input argument, i.e.

∆k
h,lf(x) := h−k ·

k∑
i=0

(−1)k−i ·
(
k

i

)
· f(x+ i · h · e(l)) for x ∈ R, h ̸= 0,

where e(l) ∈ Rd denotes the l-th standard basis vector. By concatenating forward difference operators
acting on the separate components of Rd, we get the multivariate forward difference operators. To simplify
our analysis, we recall the multi-index notation from multivariate calculus. A multi-index is given by an
array

α = (α1, ..., αd) ∈ Nd
0

of non-negative integers. The modulus of a multi-index is defined as

|α| =
d∑

l=1

αl.

Note that, since Nd
0 ⊂ Rd holds, we can perform the usual componentwise addition, subtraction and

scalar multiplication. Moreover, we consider the partial ordering and binomial coefficient

j ≤ α :⇔ jl ≤ αl for all l ∈ {1, ..., d} and

(
α

j

)
:=

d∏
l=1

(
αl

jl

)
for multi-indices α, j ∈ Nd

0.

Definition A.7. Let f : Rd → R and α = (α1, ..., αd) ∈ Nd
0 be a muti-index. We define the respective

forward differences as

∆α
hf(x) := ∆α1

h,1 ◦ ... ◦∆
αd

h,df(x) for x ∈ Rd, h ̸= 0.

As in the univariate case, this defines an operator ∆α
h for each h ̸= 0.

For the multivariate case, one can derive results that are similar to Lemma A.6. To this end, we set

Q
(α)
x,h := Q

(α1)
x1,h

× ...×Q
(αd)
xd,h

⊂ Rd for x = (x1, ..., xd) ∈ Rd, α = (α1, ..., αd) ∈ Nd
0, h ̸= 0, (A.3)

where the components Q
(αl)
xl,h

⊂ R, l = 1, ..., d, are defined as in (A.2).

Lemma A.8. Let f : Rd → R be a multivariate function.

(1) For any multi-index α ∈ Nd
0, we have

∆α
hf(x) = h−|α| ·

∑
j∈Nd

0
j≤α

(−1)|α|−|j| ·
(
α

j

)
· f(x+ h · j) for all x ∈ Rd, h ̸= 0.

(2) Suppose that f ∈ C k(Rd) for k ∈ N0 and α ∈ Nd
0 with |α| ≤ k. Then, given x ∈ Rd and h ̸= 0,

there is ξ ∈ Q
(α)
x,h (cf. (A.3)) such that

∆α
hf(x) = Dαf(ξ).

In particular, we have

lim
h→0

∆α
hf(x) = Dαf(x).
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A.2. Orthogonal Projection

The construction of the native space in Section 3.1 leads to a Hilbert space of functions, where we can
apply various well-known results from functional analysis. For example, we can make use of the Fréchet-
Riesz representation theorem, which was already stated in Theorem 3.2. Here, we want to focus on
the orthogonal projection operators and mainly fix notations. Further explanations can be found in any
standard book on functional analysis.
Let (H, ⟨·, ·⟩H) be a Hilbert space and S ⊂ H be a subspace. Given f ∈ H, we are interested in finding

the best approximation to f from V , i.e. an element sf ∈ S such that

∥f − sf∥H = inf
s∈S

∥f − s∥H. (A.4)

If S is closed, we can guarantee the unique existence of best approximations.

Theorem A.9. Let (H, ⟨·, ·⟩H) be a Hilbert space and S ⊂ H be a closed subspace. Then, the following
statements hold:

(1) For any f ∈ H, there is a unique best approximation sf ∈ S satisfying (A.4). The best approxima-
tion is equivalently characterized by the orthogonality relation

⟨f − sf , s⟩H = 0 for all s ∈ S.

(2) The Hilbert space H can be decomposed via the orthogonal sum

H = S ⊕ S⊥,

where S⊥ denotes the orthogonal complement of S. In particular, we have

∥sf∥H ≤ ∥f∥H,

where equality holds if and only if f ∈ S.

(3) If S is finite-dimensional with orthonormal basis B = {b1, ..., bn}, then sf can be computed via the
orthogonal projection formula

sf =

n∑
i=1

⟨f, bi⟩H · bi.

Moreover, the squared approximation error is given by

∥f − sf∥2H = ∥f∥2H −
n∑

i=1

|⟨f, bi⟩H|2.

Definition A.10. Let S ⊂ H be a closed subspace. According to Theorem A.9, we can define the
respective orthogonal projection operator

PS : H → V, f 7→ sf .

From the previous discussion, it immediately follows that PS is a linear operator with operator norm

∥PS∥H = sup
f∈H\{0}

∥PS(f)∥H
∥f∥H

= 1.

A.3. Fourier Transform

The Fourier transform has been an essential tool in several sections of this thesis, e.g. for Bochner’s
theorem (cf. Theorem 2.7) and the inversion of the Radon transform (cf. Section 8.2). For the reader’s
convenience, we provide relevant definitions and properties that add further explanation to the analysis
of the main part and clarify notations in this section. More details can be found in [131] and [147, Section
V.2]. We start with the definition of the Fourier transform on L1(Rd) (cf. [147, Definition V.2.1]).
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Definition A.11. For f ∈ L1(Rd), we define the Fourier transform FL1f of f as

FL1f(ω) := (2π)−d/2 ·
∫
Rd

f(x) · e−i·⟨x,ω⟩2 dx for all ω ∈ Rd. (A.5)

Here, the factor i denotes the imaginary unit.

Note that the integral (A.5) is well-defined for integrable functions, so that FL1 defines a linear operator
on L1(Rd).

Example A.12. In Example 2.8, we have already stated that the Fourier transform of the Gaussian
function

Gν(x) = e−ν·∥x∥2
2 for x ∈ Rd

with shape parameter ν > 0 is again a Gaussian function. More precisely, its Fourier transform is given
by

FGν(ω) = (2ν)−d/2 · e−
∥ω∥22
4ν for all ω ∈ Rd,

see e.g. [143, Theorem 5.18 ff.] or [147, Lemma V.2.6] for computations. We remark that, due to the
simple relation between a Gaussian function and its Fourier transform, Gaussian mollifiers are popular
tools in Fourier analysis.

In the following, we list relevant properties of the Fourier transform on L1(Rd) (see e.g. [131, Theorem
1.1, 1.2 & 1.4] and [147, Satz V.2.2]).

Proposition A.13. Let f ∈ L1(Rd) be an integrable function.

(1) The Fourier transform FL1f is uniformly continuous on Rd and bounded by

|FL1f(ω)| ≤ (2π)−d/2 · ∥f∥L1(Rd) for all ω ∈ Rd.

Consequently, the Fourier transform

FL1 : L1(Rd) → Cb(Rd), f 7→ FL1f

is a bounded linear operator, where

Cb(Rd) =
{
f ∈ C (Rd)

∣∣∣ ∥f∥∞ = sup
x∈Rd

|f(x)| <∞
}

is the space of bounded continuous functions on Rd.

(2) The Fourier transform decays at infinity, i.e.

FL1f(ω) → 0 for ∥ω∥2 → ∞.

(3) Given another function g ∈ L1(Rd), we have

FL1 [f ∗ g] (ω) = (2π)d/2 · FL1f(ω) · FL1g(ω) for all ω ∈ Rd.

Here, f ∗ g denotes the usual convolution product on L1(Rd), i.e.

(f ∗ g)(x) :=
∫
Rd

f(x− y) · g(y) dy for x ∈ Rd.
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Note that part (2) of the previous theorem is known as the Riemann-Lebesgue lemma and part (3) is
usually called the convolution theorem. An important subspace for the analysis of FL1 is the Schwartz
space, which is given by

S (Rn) =
{
f ∈ C∞(Rn)

∣∣∣ sup
x∈Rn

(1 + ∥x∥m2 ) · |Dαf(x)| <∞ for all m ∈ N0, α ∈ Nd
0

}
.

It can be shown that S (Rd) ⊂ Lp(Rd) for all p ∈ [1,∞] and

FL1 [FL1f ] (x) = f(−x) for all f ∈ S (Rd), x ∈ Rd,

see e.g. [147, Lemma V.2.7]. With that, the inverse Fourier operator can be derived (cf. [131, Corollary
1.21] and [147, Satz V.2.8]).

Definition A.14. For f ∈ L1(Rd), we define the inverse Fourier transform F−1
L1 f of f as

F−1
L1 f(x) := (2π)−d/2 ·

∫
Rd

f(ω) · ei·⟨ω,x⟩2 dω for all x ∈ Rd.

Again, the factor i denotes the imaginary unit.

Theorem A.15. Regarding the inversion of the Fourier transform, we have the following properties:

(1) If f ∈ L1(Rd) and FL1f ∈ L1(Rd), then

F−1
L1 [FL1f ] = f,

where the equality holds in L1-sense. Pointwise equality holds everywhere if f is continuous. In
particular, the Fourier transform FL1 is injective.

(3) The restriction

FL1 : S (Rd) → S (Rd) (A.6)

to the Schwartz space is a well-defined automorphism which satisfies

⟨FL1f,FL1g⟩L2(Rd) = ⟨f, g⟩L2(Rd) for all f, g ∈ S (Rd).

With part (3) of the previous theorem, we can construct the Fourier transform on the L2(R2) to benefit
from the Hilbert space theory. Recall that S (Rd) is dense in L2(Rd), so that we extend (A.6) to an
isometric automorphism (see, e.g., [131, Section I.2] or [147, pages 234-235]).

Theorem A.16. Let FL2 : L2(Rd) → L2(Rd) be the unique continuous extension of (A.6) with respect
to ∥ · ∥L2(Rd) on L2(Rd). Then FL2 is an automorphism and isometric, i.e.

⟨FL2f,FL2g⟩L2(Rd) = ⟨f, g⟩L2(Rd) for all f, g ∈ L2(Rd).

The previous result is known as the Plancherel theorem. Note that for functions f ∈ L1(Rd)∩L2(Rd),
we have the equality

FL1f(ω) = FL2f(ω) for almost every ω ∈ Rd.

Hence, we only denote the Fourier transform as F without any suffix in our analysis. From the context,
it becomes clear which version is considered.



A. Mathematical Tools 156

A.4. Distribution Theory

In Section 4.1, we have derived linear independence results for compactly supported distributions, where
we made use of well-known results from distribution theory. In the following, we list the most relevant
statements and thus provide a very brief and simplified overview. More details can be found in [67], [138]
and [154]. We start with the space of test functions.

Definition A.17. The space of test functions on Rd is defined as

D(Rd) :=
{
f ∈ C∞(Rd)

∣∣∣ f has compact support
}
.

Example A.18. A very common example is the bump function

f(x) :=

{
e−(1−∥x∥2

2)
−1

if ∥x∥22 < 1,

0 otherwise,

whose support is contained in the closed unit ball. Due to the fast decay of the exponential function, f
is infinitely smooth and therefore a test function. In addition, given ε > 0, we can define the modified
version

gε(x) := ε−d · ∥f∥−1
L1(Rd)

· f(x/ε) for x ∈ Rd.

This collection of functions, often referred to as a standard mollifier, has the following useful properties:

(i) gε ∈ D(Rd)

(ii) supp(gε) = Bε(0)

(iii) ∥gε∥L1(Rd) = 1

Regarding convergence in D(Rd), we say that a sequence (fn)n∈N of test functions converges to zero if

there is a compact set E ⊂ Rd such that

supp(fn) ⊂ E for all n ∈ N and sup
x∈E

|Dαf(x)| n→∞−−−−→ 0 for all multi-indices α ∈ Nd
0,

see e.g. [154, Proposition I.1.7]. Accordingly, the sequence converges to f ∈ D(Rd) if fn − f converges
to zero. Using this notion of convergence, a linear functional λ : D(Rd) → R is continuous on D(Rd) if
it satisfies

λ(fn)
n→∞−−−−→ 0 for all (fn)n∈N ⊂ D(Rd) with fn

n→∞−−−−→ 0,

see e.g. [67, Theorem 2.1.4] and [154, Proposition I.8.1 ff.].

Definition A.19. The space of distributions is defined as

D ′(Rd) :=
{
λ : D(Rd) → R

∣∣∣ λ is linear and continuous on D(Rd)
}
.

Example A.20. In the following, we list some examples of distributions that were already mentioned
in Section 4.1:

(i) For x ∈ Rd, the respective Dirac functional given by

δx(f) := f(x) for all f ∈ D(Rd)

is a distribution.

(ii) We have δx ◦ Dα ∈ D ′(Rd) for all x ∈ Rd and α ∈ Nd
0, where D

α denotes the partial differential
operator

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαd

d

for f ∈ D(Rd).
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(iii) Let h ∈ L1
loc(Rd) be locally integrable, i.e. for every compact subset E ⊂ Rd, we have h ∈ L1(E).

Then, the induced functional

Th(f) :=

∫
Rd

f(x) · h(x) dx for f ∈ D(Rd) (A.7)

is a well-defined distribution. Distributions of the form (A.7) are called regular distributions. In
particular, for a compact set E ⊂ Rd with positive Lebesgue measure vol(E) > 0, we can choose
the modified characteristic function h = vol(E)−1 · χE to get the cell average functional

λE(f) = Th(f) =
1

vol(E)
·
∫
E

f(x) dx for f ∈ D(Rd).

In addition to Definition A.19, we say that (λn)n∈N ⊂ D ′(Rd) converges to λ ∈ D ′(Rd) if

λn(f)
n→∞−−−−→ λ(f) for all f ∈ D(Rd),

see e.g. [67, page 38] and [154, Theorem V.1.6].

Distributions with compact support

To make use of the Fourier(-Laplace) transform and its underlying properties, we restrict to the case of
distributions with compact support in our analysis. However, we first need to introduce the support of a
distribution. We say that a distribution λ ∈ D ′(Rd) vanishes on an open subset U ⊂ Rd if

λ(f) = 0 for all f ∈ D(Rd) with supp(f) ⊂ U.

The largest open subset on which λ ∈ D ′(Rd) vanishes is then given by

Uλ =
⋃{

U ⊂ Rd
∣∣∣ U is open and λ vanishes on U

}
, (A.8)

see e.g. [154, Theorem I.13.1], whose complement represents the support.

Definition A.21. Let λ ∈ D ′(Rd) and Uλ defined as in (A.8). The support of λ is defined as

supp(λ) := Rd \ Uλ.

Consequently, we say that λ has compact support if supp(λ) ⊂ Rd is a compact subset. The set of all
compactly supported distributions is denoted by

E ′(Rd) :=
{
λ ∈ D ′(Rd)

∣∣∣ supp(λ) is compact
}
.

Note that all functionals mentioned in Example A.20 have compact support. For compactly supported
distributions λ ∈ E ′(Rd), we can define a special version of the Fourier transform. To this end, let ω ∈ Rd

and consider the corresponding basis function

eω : Rd → C, x 7→ e−i·⟨x,ω⟩2 . (A.9)

The Fourier-Laplace transform is then given by the application of a compactly supported distribution to
the C∞ functions eω, ω ∈ Rd, see e.g. [67, Section 7.3].

Definition A.22. The Fourier-Laplace transform of λ ∈ E ′(Rd) is defined as

FE ′λ(ω) = (2π)−d/2 · λ(eω) for ω ∈ Rd,

where eω is given by (A.9). This results in a function FE ′λ : Rd → C.
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Example A.23. Given x ∈ Rd and its respective Dirac functional δx, the largest open subset on which
δx vanishes is Uδx = Rd \ {x}. Therefore, its support is given by supp(δx) = {x}. The Fourier-Laplace
transform of the Dirac functional is given by

FE ′δx(ω) = (2π)−d/2 · e−i·⟨x,ω⟩2 for all ω ∈ Rd.

One key property of the Fourier-Laplace transform is that it maps distributions with compact support
to entire functions satisfying certain growth conditions. This result is well-known as the Paley-Wiener-
Schwartz theorem. Here, we state a highly simplified version that is sufficient for our analysis. A detailed
version can be found in [67, Theorem 7.3.1], for example.

Theorem A.24. Let λ ∈ E ′(Rd). Then its Fourier-Laplace transform FE ′λ can be defined on the whole
complex space Cd. This extension of FE ′λ is an entire function, i.e. it is holomorphic on Cd.

As a consequence, FE ′λ usually denotes the Fourier-Laplace transform of λ ∈ E ′(Rd) on the whole
domain Cd. To end this section, we list further properties that are relevant to our analysis.

Lemma A.25. The Fourier-Laplace transform satisfies the following additional properties:

(1) Let λ ∈ E ′(Rd) such that FE ′λ has compact support. Then we have λ = 0. In particular, FE ′ is
injective on E ′(Rd).

(2) If (λn)n∈N is a sequence of compactly supported distributions that converges to λ ∈ E ′(Rd), then we
have the pointwise convergence

FE ′λn(ω)
n→∞−−−−→ FE ′λ(ω) for all ω ∈ Rd.

A.5. Sobolev Spaces

In Theorem 3.18 and the following, we discussed the connection between kernel-based approximation
and Sobolev spaces. Moreover, Sobolev spaces play a key role in the theory of inverse problems, see e.g.
Section 8.3 or Section 9.1. Although our analysis did not heavily rely on the theory of Sobolev spaces,
we want to provide a brief overview and highlight respective techniques for the analysis of kernel-based
reconstruction methods. For further reading, we refer to [2].
We start with the definition of weak derivatives (see, e.g., [2, Definition 1.62]), which is one of the

cornerstones of the Sobolev space theory.

Definition A.26. Let f ∈ L1
loc(Rd) be locally integrable and α ∈ Nd

0. A function g ∈ L1
loc(Rd) is the

respective weak derivative of f if the condition∫
Rd

g(x) · h(x) dx = (−1)|α| ·
∫
f(x) ·Dαh(x) dx for all h ∈ D ′(Rd)

holds, where Dα denotes the respective differential operator. In the weak case, we denote the derivative
by g = Dαf as well and call f weakly differentiable.

Note that the fundamental lemma of variational calculus shows that the weak derivative is unique.
For differentiable functions, integration by parts shows that the usual derivative and the weak derivative
coincide. The Sobolev spaces consist of functions whose weak derivatives exist and are integrable up to
a certain order (see, e.g., [2, Definition 3.1 & 3.2]).

Definition A.27. For m ∈ N and p ∈ [1,∞], we define the respective Sobolev space as

Wm,p(Rd) :=
{
f ∈ Lp(Rd)

∣∣∣ Dαf exists and satisfies Dαf ∈ Lp(Rd) for all |α| ≤ m
}

and equip this space with the Sobolev space norm

∥f∥Wm,p(Rd) =


( ∑

|α|≤m

∥Dαf∥p
Lp(Rd)

)1/p

if p <∞,

max
|α|≤m

∥Dαf∥L∞(Rd) if p = ∞.
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The Sobolev spaces for p = 2 are additionally denoted by

Hm(Rd) :=Wm,2(Rd).

We remark that the Sobolev spaces Wm,p(Rd) are Banach spaces in general and Hm(Rd) is a Hilbert
space for each m ∈ N, see e.g. [2, Theorem 3.3]. Moreover, we have the following characterization and
inclusion (see, e.g., [147, Satz V.2.12 & V.2.14]).

Theorem A.28. In the case p = 2, the following statements hold.

(1) For m ∈ N, the respective Sobolev space can be written as

Hm(Rd) =
{
f ∈ L2(Rd)

∣∣∣ (1 + ∥ · ∥22
)m/2 · Ff ∈ L2(Rd)

}
,

where F denotes the Fourier transform. Moreover, the norm ∥ · ∥m defined as

∥f∥m :=
∥∥∥ (1 + ∥ · ∥22

)m/2 · Ff
∥∥∥
L2(Rd)

for f ∈ Hm(Rd)

is equivalent to the Sobolev norm defined in Definition A.27.

(2) If k ∈ N0 and m > k + d/2, then we have the inclusion

Hm(Rd) ⊂ C k(Rd),

i.e. each equivalence class in Hm(Rd) has a representative in C k(Rd).

Note that part (2) of the previous theorem is known as the Sobolev lemma and is usually formulated
for general p ∈ [1,∞), see [2, Chapter 4]. The alternative characterization from part (1) including the
equivalent norm is well-suited to define Sobolev spaces of fractional orders a ≥ 0. However, in order to
define Sobolev spaces for negative orders, we have to consider the space of tempered distributions, which
is denoted by S ′(Rd) (see, e.g., [93, page 75 ff.]).

Definition A.29. Let a ∈ R. The respective Sobolev space of fractional order is defined as the
Hilbert space

Ha(Rd) :=
{
f ∈ S ′(Rd)

∣∣∣ ∥f∥Ha(Rd) <∞
}
,

where the norm is given by

∥f∥2Hα(Rd) :=

∫
Rd

(
1 + ∥ω∥22

)α · |Ff(ω)|2 dω.

From the previous definition, it immediately follows that

∥f∥Ha1 (Rd) ≤ ∥f∥Ha2 (Rd) for all f ∈ Ha2(Rd),

for a1 ≤ a2, so that we have the inclusion Ha2(Rd) ⊂ Ha1(Rd) in this case. In particular, we have

Ha(Rd) ⊂ H0(Rd) = L2(Rd) for all a ≥ 0.

Regarding the multiplication of Sobolev functions, we have used the following result in Corollary 10.9
to show the inclusion of the weighted kernel’s native space into a suitable Sobolev space (cf. [20, Theorem
5.1 & 7.3]).

Proposition A.30. Let a1, a2, σ ∈ R satisfy the following conditions:

(i) 0 ≤ σ ≤ min(a1, a2)

(ii) a1 + a2 − σ > d/2

Then, the bilinear multiplication mapping

Π : Ha1(Rd)×Ha2(Rd) → Hσ(Rd), (f1, f2) 7→ f1 · f2
is well-defined and continuous, i.e. there is a constant C > 0 such that

∥f1 · f2∥Hσ(Rd) ≤ C · ∥f1∥Ha1 (Rd) · ∥f2∥Ha2 (Rd) for all f1 ∈ Ha1(Rd), f2 ∈ Ha2(Rd).

To end this introduction to Sobolev spaces, we remark that the previous definitions and results can be
generalized to more complex domains Ω ⊂ Rd.



A. Mathematical Tools 160

Sampling inequalities

As already pointed out in [146, page 7], one key advantage of Sobolev spaces is the availability of so-
called sampling inequalities. Using these inequalities, the Sobolev norm of the interpolation residual can
be estimated in terms of the fill distance. We follow the discussion in [143, Section 11.6], [146, Section
2.2] here and state an example (cf. [82, Theorem 2.2]).

Theorem A.31. Let Ω ⊂ Rd be a bounded domain that satisfies an interior cone condition and has a
Lipschitz boundary. Moreover, assume that

(i) a = k + s with k ∈ N0, 0 ≤ s < 1

(ii) 1 ≤ p <∞, 1 ≤ q ≤ ∞

(iii) m ∈ N0 with k > m+ d/p if p > 1 or k ≥ m+ d/p if p = 1.

Then, there is C > 0 such that for any discrete set X ⊂ Ω with sufficiently small fill distance hX,Ω, we
have the norm inequality

∥f∥Wm,q(Ω) ≤ C ·
(
h
a−m−d·(1/p−1/q)+
X,Ω · ∥f∥Wa,p(Ω) + h−m

X,Ω · ∥fX∥∞
)

for all f ∈W a,p(Ω), (A.10)

where (1/p− 1/q)+ = max(1/p− 1/q, 0) and fX ∈ R|X| is the restriction of f to X.

If the kernel K satisfies the assumptions of Corollary 3.19 for a > d/2, we have HK = W a,2(Ω) when
restricting the native space to the bounded domain Ω, where the native space and Sobolev norm are
equivalent. Given f ∈ HK and X ⊂ Ω with a sufficiently small fill distance, let IK,ΛX

(f) ∈ SK,ΛX

denote the standard interpolant to f on X. In this case, we can simply plug in the interpolation residual
f − IK,ΛX

(f) ∈W a,2(Ω) into the inequality (A.10) and get

∥f − IK,ΛX
(f)∥Wm,q(Ω) ≤ C ′ · ha−m−d·(1/2−1/q)+

X,Ω · ∥f∥K

for suitable C ′ > 0, where we used that ∥f − IK,ΛX
(f)∥K ≤ ∥f∥K holds due to the orthogonal projection

properties of the interpolation operator, see Theorem 4.10. Note that the last inequality yields estimates
for the L∞ norm in the special case m = 0, q = ∞.
Besides the application of this technique to the standard interpolation case, it was demonstrated in

[146, Section 3] how the norm inequality (A.10) can be used in the context of differential operators.
Lastly, we remark that similar sampling inequalities were used in [101, Theorem IV.2.2] to derive general
L2-error estimates in the context of computerized tomography. It remains to be investigated whether
these inequalities can be adapted to the analysis of the kernel-based reconstruction from scattered Radon
data.
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sität Hamburg, 2019.

[5] K. Albrecht, J. Entzian, and A. Iske. Anisotropic Kernels for Particle Flow Simulation. In A. Iske
and T. Rung, editors, Modeling, Simulation and Optimization of Fluid Dynamic Applications,
Lecture Notes in Computational Science and Engineering: Volume 148, pages 57–76. Springer,
2023.

[6] K. Albrecht, J. Entzian, and A. Iske. Product kernels are efficient and flexible tools for high-
dimensional scattered interpolation. arXiv preprint: 2312.09949, 2023.

[7] K. Albrecht and A. Iske. Greedy algorithms for image approximation from scattered Radon data.
PAMM, 21(1):e202100223, 2021.

[8] K. Albrecht and A. Iske. On the convergence of generalized kernel-based interpolation by greedy
data selection algorithms. arXiv preprint: 2407.03840, 2024.

[9] A. H. Andersen and A. C. Kak. Simultaneous Algebraic Reconstruction Technique (SART): A
superior implementation of the ART algorithm. Ultrasonic Imaging, 6(1):81–94, 1984.

[10] A.H. Andersen. Algebraic Reconstruction in CT from Limited Views. IEEE Transactions on
Medical Imaging, 8(1):50–55, 1989.
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nigfaltigkeiten. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften,
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