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Dr. Nick Bezhanishvili (Zweitgutachter)

Datum der Disputation:

18. Dezember 2024



Eigenanteilserklärung.

I declare that the results presented in this dissertation are entirely my
own research work unless stated otherwise. Critical ideas proposed by others
will be marked or acknowledged. To the best of my knowledge, results at-
tributed to others in the literature will be attributed to the primary sources
or standard references; if the primary source is unknown to me, they will be
attributed to “folklore”.

The results in Chapter 3 are mine, based on the ideas of Inamdar from
[Ina20]. My supervisor assisted with the final text of §3.5 and §3.6. The
content of Chapters 4 and 5 and some related material is the result of col-
laborations as outlined below:

1. The main results of Chapters 4 and 5 were obtained during my visit
to the ILLC at the Universiteit van Amsterdam in collaboration with
Nick Bezhanishvili and Gaëlle Fontaine. In Chapter 4, theorem 4.1.4,
Propositions 4.1.6 and 4.1.7 are conjectures by Bezhanishvili, and the
Lemma 4.2.10 is a joint work with Fontaine. In Chapter 5, one of the
proofs of the main result was obtained together with Bezhanishvili and
Fontaine. However, as was pointed out to me by Bezhanishvili, the
result itself is due to Vincenzo Marra, who announced it at ToLo 2016
(Topological Methods in Logic 2016) in Tbilisi, Georgia.

2. The definition of “spiking” (Definition 3.2.1) is due to Löwe.

The results in Chapter 6 and 7 are mine.

Two joint publications are planned: one with Gaëlle Fontaine containing
some of the material of Chapter 4, and another with Nick Bezhanishvili and
Gaëlle Fontaine including results from Chapter 5. A paper entitled “Modal
and intermediate logics of spiked Boolean algebras” [LX24] contains parts of
Chapter 6 and additional results by Löwe on spikings that are not included
in this thesis. This paper was submitted to a conference proceedings volume.
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I wish to thank Gaëlle Fontaine for the collaboration in Amsterdam,
which was immensely beneficial. I am also grateful to Heike Hanslik for her
thoughtful care and support during my first winter in Germany.

I wish to thank Ingenuin Gasser, Nathan Bowler and Yurii Khomskii for
their contributions as committee members.

I would like to thank my colleagues in the Mathematical Logic group
at the University of Hamburg, especially Raiean Banerjee, Stefan Geschke,
Heike Hanslik, Deborah Kant, Yurii Khomskii, Clara List, Philipp Lücke,
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2. Introduction

2.1. General motivation

Forcing is a powerful tool for constructing models of the set theory, intro-
duced by Paul Cohen around 1962 (see [Coh63, Coh64] for the original work
of Cohen). Forcing was first used to prove that the Continuum Hypothesis
CH does not follow from the axioms of ZFC. Since then, forcing has become a
core technology in set theory and other research areas in mathematical logic.
Hamkins and Löwe have proposed to study the modal logic of the class of
models of set theory with the forcing relation, called “the modal logic of
forcing” [HL08].

This proposal was inspired by provability logic, going back to Gödel’s pa-
per [Göd33] in which he attempted to respond to issues related to Brouwer’s
intuitionistic logic. Provability logic is the modal logic where the ◻ operator
is interpreted as provability; Solovay identified this modal logic in [Sol76,
Theorem 4.6] (cf. also [AB05, Boo95, BV06, JdJ97]). Hamkins and Löwe
aimed to do for forcing what Solovay had done for provability [HL08, § 1]
and gave the following forcing interpretation for the modal operator respec-
tively:

◇ϕ if there exists some forcing extension such that ϕ holds

and
◻ϕ if in every forcing extensions, we have ϕ holds.

They proved that the modal logic of forcing is exactly S4.2 and then continued
to study modal logics of forcing restricted to natural classes of forcings. If Γ
is a class of forcing notions, they defined

◇Γϕ if there exists some forcing extension in Γ such that ϕ holds
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and
◻Γϕ if in every forcing extensions in Γ, we have ϕ holds,

with each forcing class Γ corresponding to a modal logic. Hamkins, Leibman
and Löwe proved that a modal logic called S4.tBa is an upper bound of the
modal logic of ω1-preserving forcing [HLL15, Theorem 36]. The logic S4.tBA
is the least modal companion of a logic known as Medvedev logic Med and
Hamkins, Leibman and Löwe conjectured that it is also an upper bound of
the modal logic of c.c.c. forcing, one of the most important classes of forcing
notions.

Medvedev logic had been studied in entirely different contexts before:
it was introduced in [Med62] by Medvedev for the logic of finite problems
to respond to Kolmogorov’s [Kol32] informal interpretation of sentences of
intuitionistic logic as a logic of problems. One of the most important results
about Med is that Maksimova, Skvortsov and Shehtman proved that it cannot
be finitely axiomatisable.

In his Master’s thesis [Ina13], Inamdar aimed to show the mentioned
conjecture by Hamkins, Leibman and Löwe, but instead of proving that
S4.tBA is an upper bound, he identified a different, but closely related class
of structures that he called spiked Boolean algebras and proved that their
modal logic S4.sBA is an upper bound for the modal logic of c.c.c. forcing
[Ina13, § 5]. Inamdar’s result remains the best-known upper bound for that
modal logic.

In this thesis, we aimed to improve on Inamdar’s upper bound: Van
Benthem, Guram Bezhanishvili and Gehrke introduced another intermediate
logic called Cheq in [vBBG03]; it plays an important role in the modal logics
of different topological spaces because of its interesting spatial logic prop-
erties, and whether it can be finitely axiomatised remains a famous open
problem. The modal logic S4.FPFA is the least modal companion of Cheq
and is contained in both S4.tBA and S4.sBA. If one could show that S4.FPFA
was an upper bound for the modal logic of c.c.c. forcing, this would, in par-
ticular, prove the conjecture of Hamkins, Leibman and Löwe. Towards that
goal, we developed an idea by Inamdar [Ina20], but were only able to show
that S4.FPFA is an upper bound of the modal logic of c.c.c. forcing under an
additional assumption (of which we do not know whether it is true).

The story about the modal logic of c.c.c. forcing recounted above con-
tained three modal logics, S4.tBA, S4.sBA, and S4.FPFA as well as their
corresponding intermediate logics, Med, LS, and Cheq. These six logics will
be the protagonists of this thesis.
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2.2. Overview of the dissertation structure

The rest of Chapter 2 introduces the background for the results of this dis-
sertation: basic notions of modal logic and simple facts of c.c.c. forcing in set
theory, the concepts, as well as results of the modal logic of forcing, intro-
duced in [HL08]. It is worth noting that not all background and notations are
summarized necessary for reading this thesis in this chapter; some from com-
binatorial mathematics (geometric combinatorics and poset topology, graph
theory, etc.) that are needed in Chapter 5 and 7 will be reviewed in the
relevant chapters.

In Chapter 3, we first recall what is known about the upper bounds of the
modal logic of c.c.c forcing so far. Hamkins, Leibman and Löwe conjectured
that S4.tBa is an upper bound in [HLL15, § 5.6] and Inamdar proved that
S4.sBa is an upper bound in [Ina13, § 5]. Inamdar never published his result
since he had an idea to improve on it using gaps instead of Suslin trees.
He wrote up some notes about his ideas in 2020 [Ina20]; based on these
notes, S4.FPFA for finite pre-partial function algebra was conjectured to be
an upper bound in Theorem 3.6.3. We have three different frames tBa,
sBa and FPFA and corresponding logics Med, LS and Cheq, then we give a
comparison of those logics in Corollary 3.4.3, Theorem 3.4.4 and 3.4.6. We
will then give results on Med in Chapter 4 and Chapter 5, arrange results on
the logic of sBa in Chapter 6, and discuss the results of Cheq in Chapter 7.

Chapter 4 gives positive answers to conjectures by Nick Bezhanishvili for
generalized Medvedev logics in Corollary 4.2.2 and Theorem 4.2.12. Bezhan-
ishvili noticed that the result by Maksimova, Skvortsov and Shehtman in
[MSS79] that Med is not finitely axiomatisable is about product of 2-chains
and asked whether the result can be generalized to any chain or any finite
rooted frame with a top. In our proof of the conjecture, Lemma 4.2.10 is
joint work with Fontaine. Besides this, Theorem 4.1.4 also shows that the
logic of the product of any finite rooted frame with a top is exactly the logic
KC (also inspired by Nick Bezhanishvili). At the end of this chapter, it is
proved that there are at least countable many different generalized Medvedev
logics in Theorem 4.3.1 and there is no least such logic in Theorem 4.3.2.

Chapter 5 connects the well-known concept of nerve and Medvedev logic
Med in Theorem 5.2.1. One of the proofs was obtained together with Bezhan-
ishvili and Fontaine. In this chapter, the main result is proved by two dif-
ferent methods. One of them reveals certain geometric aspects of nerves and
simplicial complexes.
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In Chapter 6, we consider the class of finite spiked Boolean algebra and
show that the modal and intermediate logics of it are not finitely axioma-
tisable in Theorem 6.1.5 and Corollary 6.1.7. We prove a lemma called the
bow-tie lemma and use it to show that the logic of finite spiked Boolean al-
gebra is not finitely axiomatisable over Cheq in Theorem 6.3.1. In the proof
of the results in this chapter, we obtained Proposition 6.2.5, which provides
a result concerning the relationship between the generalized Medvedev logic
and Cheq.

Chapter 7 summarizes that the finite partial function algebra FPFA can
be regarded as three different algebraic structures in Theorem 7.2.5, contain-
ing geometrical aspects as the face poset of the n-cube. It also computes
the maximal size of its antichain in Theorems 7.1.12. Following Kuznetsov’s
idea of applying Offner’s edge-coloring result [Off08] to the finite axiomati-
sation of Cheq from his unpublished note, we discuss the two strategies of
Fontaine and Shatrov, as well as Kuznetsov’s alternative solution, for proving
that Cheq is not finitely axiomatisable. Finally, we provide a construction
showing that Cheq is not finitely axiomatisable with five or six variables in
Theorem 7.5.1.

2.3. Intuitionistic logic and intermediate

logics

We first recall the definitions of IPC and intermediate logics. Let L be a
language with

1. countably many propositional variables p0, p1, . . ., which form a set
Prop,

2. logical connectives ∨, ∧ and →,

3. a propositional constant ⊥.

Definition 2.3.1. Intuitionistic propositional calculus IPC is the least set of
formulas together with the following axioms:

1. p0 → (p1 → p0)

2. (p0 → (p1 → p2))→ ((p0 → p1)→ (p0 → p2))
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3. p0 ∧ p1 → p0

4. p0 ∧ p1 → p1

5. p0 → p0 ∨ p1

6. p1 → p0 ∨ p1

7. (p0 → p2)→ ((p1 → p2)→ ((p0 ∨ p1)→ p2))

8. �→ p0

and is closed under the inference rules Modus Ponens

given ϕ and ϕ→ ψ, we obtain ψ (MP)

and Substitution

given ϕ(p1, . . . , pn), we obtain ϕ(ψ1, . . . , ψn). (Subst)

Definition 2.3.2. Classical propositional calculus CPC is the smallest logic
containing both IPC and p ∨ ¬p. An intermediate logic L is a set of formulas
that is closed under the above inference rules, contains IPC and is contained
in CPC.

An intermediate logic L is called finitely axiomatisable if there exists a
finite set of formulas C such that L is the smallest intermediate logic that
contains C. L + ϕ is denoted as the smallest intermediate logic containing
L ∪ {ϕ}.

2.3.1. Posets as Kripke frame

Definition 2.3.3. Given a non-empty set S, if R is a reflexive, transitive
and antisymmetric binary relation on S, then R is called a partial order on
S. We usually write R as ≤, and the set together with ≤ is a partially ordered
set, or simply, a poset.

Definition 2.3.4. An intuitionistic Kripke frame is a partially ordered set
F = ⟨W,≤⟩, and any x ∈ W is called a point or node. If x ≤ y, then y is
accessible from x.
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Definition 2.3.5. An intuitionistic valuation is a map V form Prop to
the power set of W and for each x ∈ V (p), if x ≤ y, then y ∈ V (p). An
intuitionistic Kripke model M = ⟨F , V ⟩ is a pair of an intuitionistic frame F
and an intuitionistic valuation V .

The relation ⊧ between frames (models) and formulas is defined as usual;
see, e.g., [CZ97]. We define a relationM, x ⊧ ϕ, which is read as ϕ is true at
x in M, as follows:

M, x ⊧ p iff x ∈ V (p);
M, x ⊧ ϕ ∧ ψ iff M, x ⊧ ϕ and M, x ⊧ ψ;

M, x ⊧ ϕ ∨ ψ iff M, x ⊧ ϕ or M, x ⊧ ψ;

M, x ⊧ ϕ→ ψ iff ∀y ∈W, (x ≤ y and M, y ⊧ ϕ) implies M, y ⊧ ψ;

M, x ⊭ �.

Definition 2.3.6. A formula ϕ is said to be satisfied in a modelM if there
exists some point x such that M, x ⊧ ϕ and ϕ is said to be true in M if for
any point x, we have M, x ⊧ ϕ, in this case, it is denoted by M ⊧ ϕ.

A formula ϕ is said to be satisfied in frame F if there exists some model
M on F such that ϕ is satisfied in the model M. A formula ϕ is said to be
true at x in F if for all models M on F , it is true at x, in this case, it is
denoted by F , x ⊧ ϕ. The notation F ⊧ ϕ denotes that ϕ is valid in F , if for
all model M on F , M ⊧ ϕ.

Definition 2.3.7. If C is a class of finite frames, let Log(C) be the logic
consisting of all valid formulas on every frame of C. We call it the logic of
C. In this case, we say that C characterizes or determines the logic. Given
a logic L, a frame F is an L-frame if each formula in L is valid in F .

We introduce some general terminology that will be used to describe finite
frames F = ⟨W,≤⟩.

Given a point x, call y is a successor (or predecessor) of x if x ≤ y (or y ≤ x)
and y is proper if x ≠ y and we denote it as x < y (or y < x). Additionally, y
is immediate if y is proper and there is no z ∉ {x, y}, such that z located in
the middle between x and y. The notation x↑ (or x↓) denotes the principal
upset {y ∈W ∶ x ≤ y} (respectively, principal downset {y ∈W ∶ y ≤ x}).

If F has a least element 0̄, an element a of F is an atom if, 0̄ < a and for
every x ∈ F , x ≤ a → x = a or x = 0̄. The point x is called maximal if there
are no y ∈ F such that x < y. An element b is called a coatom if it is not
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maximal and all of its immediate successors are maximal. A top is a point
t such that for all point x ∈ W , we have x ≤ t. We say that F has a top if
there exists a top in F and it is obvious that the top is unique.

If F is transitive, we call a subset C ⊆W a chain if for any distinct points
x, y ∈ C, x ≤ y or y ≤ x holds. The depth of F is the largest number n with
the following property: one can find a n-sized chain in F . We call a subset
A ⊆W an antichain if for any distinct points x, y ∈ A, neither x ≤ y nor y ≤ x
holds. The width of F is the largest number n with the property: one can
find a n-sized antichain in F . The branching degree b(x) of x is the number
of immediate successors of x.

2.3.2. Truth preserving operations

We recall the main operations that preserve truth between frames in this
part. One may find more details in [CZ97, BRV01].

Definition 2.3.8 (Generated subframe). A frame S = ⟨W ′,≤′⟩ is a subframe
of F = ⟨W,≤⟩ if W ′ ⊆ W and ≤′=≤ ↾W ′ . Furthermore, the subframe S is
generated if W ′ is an upward closed subset of W .

Definition 2.3.9. We say that S is generated by the set X if S is a generated
subframe and W ′ is the smallest upward closed subset containing X. If F is
generated by {x}, then it is called rooted and x the root of F . For any point
x, the depth of the subframe generated by it is the depth of x (notation:
d(x)).

Theorem 2.3.10. For any frame F and formula ϕ, the following are equiv-
alent:

1. F ⊧ ϕ;

2. F ′ ⊧ ϕ for every generated subframe F ′ of F ;

3. F ′ ⊧ ϕ for every rooted generated subframe F ′ of F .

Definition 2.3.11 (p-morphisms). Given two frames F and F ′ and a map
f ∶W →W ′, we call f a p-morphism from F to F ′ if:

1. for all x, y ∈W , if x ≤ y, then f(x) ≤′ f(y),

2. if f(x) ≤′ t, then there exists y ∈W , such that x ≤ y and f(y) = t.
13



If f is onto, then we call F ′ a p-morphic image of F .

Theorem 2.3.12 (Folklore). If F ′ is a p-morphic image of F , then for any
formula ϕ,

F ⊧ ϕ implies F ′ ⊧ ϕ.

A class C of frames is closed under rooted generated subframes if each
rooted generated subframe of element in C is isomorphic to an element of C.

Theorem 2.3.13 (Jankov-de Jongh theorem). Given a finite rooted frame
F , there exists a formula χ(F) such that for every frame F ′,

F ′ ⊭ χ(F) iff F is a p-morphic image of a generated subframe of F ′.

Corollary 2.3.14 (Folklore). Given a class of finite frames C that is closed
under rooted generated subframes, for any finite rooted frame F ,

F ⊧ Log(C) iff F is a p-morphic image of element of C.

2.4. Modal logic

In this part, we are going to recall the basic concepts of modal logic. We turn
to the modal language ML as an extension of L with the extra operators ◻
and ◇.

Definition 2.4.1. The modal logic K is the least set containing classical
propositional calculus together with the following axioms:

1. ◻(p0 → p1)→ (◻p0 → ◻p1),

2. ◻p↔ ¬◇ ¬p.

and is closed under the inference rules modus ponens (MP), substitution
(Subst) and Necessitation

Given ϕ, we infer ◻ ϕ (N).

Definition 2.4.2. A modal Kripke frame is F = ⟨W,R⟩, where W is a non-
empty set consisting of points and R is a binary relation on W . A modal
Kripke model is M = ⟨F , V ⟩, where F is a modal Kripke frame and V is a
valuation that maps any propositional variable to some subsets of W .

14



We recursively defineM, x ⊧ ϕ, which means ϕ is true at x in the model
M, as follows:

M, x ⊧ p iff x ∈ V (p);
M, x ⊧ ϕ ∧ ψ iff M, x ⊧ ϕ and M, x ⊧ ψ;

M, x ⊧ ϕ ∨ ψ iff M, x ⊧ ϕ or M, x ⊧ ψ;

M, x ⊧ ϕ→ ψ iff M, x ⊧ ϕ implies M, x ⊧ ψ;

M, x ⊭ �;

M, x ⊧ ◻ϕ iff for all y ∈W such that xRy we have M, y ⊧ ϕ.

and so

M, x ⊧ ¬ϕ iff M, x ⊭ ϕ;

M, x ⊧◇ϕ iff there exists y ∈W such that xRy and M, y ⊧ ϕ.

The definitions of truth and validity in modal frames (models), as well as
truth-preserving operations, are the same as in Definition 2.3.6 and Subsec-
tion 2.3.2.

Definition 2.4.3. If C is a class of finite modal frames, let ML(C) be the
modal logic consisting of all valid modal formulas on every frame of C. We
call it the modal logic of C. In this case, we say that C characterizes or
determines this modal logic. Given a modal logic ML, a frame F is a ML-
frame if each modal formula in ML is valid in F .

We give some examples, and more details can be found in [CZ97, BRV01].

1. K4 = K+(◻p→ ◻◻p), is characterized by the class of transitive frames.

2. S4 = K4 + (◻p→ p), is characterized by the class of pre-orders.

3. Grz = K + ◻(◻(p → ◻p) → p) → p, is characterized by the class of finite
posets.

4. S4.2 = S4 + (◇ ◻ p → ◻ ◇ p), is characterized by the class of directed
pre-orders.

In the 1930s, Gödel suggested a translation T which can embed IPC into
the modal logic S4 in [Göd33].
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Definition 2.4.4. The Gödel-translation T is the map defined as follows:

1. T(�) = �;

2. T(p) = ◻p, where p ∈ Prop;

3. T(ϕ0 ∧ ϕ1) = T(ϕ0) ∧T(ϕ1);

4. T(ϕ0 ∨ ϕ1) = T(ϕ0) ∨T(ϕ1);

5. T(ϕ0 → ϕ1) = ◻(T(ϕ0)→ T(ϕ1)).

In the 1940s, McKinsey and Tarski proved that the Gödel translation
embeds IPC to S4 in [MT48, § 5]. In the 1950s, Dummett and Lemmon extend
this result to intermediate logics and extensions of S4 in [DL59, Theorem
1]. In the 1970s, Esakia [Esa79b, Esa79a] developed the theory of Heyting
algebras; this was independently done by Maksimova and Rybakov [MR74]
and also by Blok [Blo76]. These research works lead to a theory of modal
companions, which will be introduced later.

Definition 2.4.5. A modal logic M ⊇ S4 is called a modal companion of an
intermediate logic L, if

ϕ ∈ L iff T(ϕ) ∈M, for each intuitionistic formula ϕ.

If F0 = ⟨W0,R0⟩ is a finite poset, we say that F = ⟨W,R⟩ is a thickening
of F0 if F is a finite partial pre-order (i.e., R is reflexive and transitive, but
not necessarily anti-symmetric), ∼ is the induced equivalence relation (i.e.,
x ∼ y⇔ xRy and yRx) and F0 = F/∼. The cluster of x, denoted by C(x), is
the ∼ equivalence class containing x, i.e., C(x) = {y ∶ y ∼ x∧ y ∈W}. Given a
class C of finite partial orders, let C● be the class of thickenings of elements
of it; its elements are usually referred to with the prefix “pre-”.

Theorem 2.4.6 (Folklore; cf. [She90, Proposition 7]). For any intermediate
logic L, both the least and the greatest modal companions exist. Let τ(L)
be the least modal companion and

τ(L) = S4 + {T(ϕ) ∶ ϕ ∈ L},

let σ(L) be the greatest modal companion and

σ(L) = Grz + {T(ϕ) ∶ ϕ ∈ L}.
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Theorem 2.4.7. 1. The map τ is an isomorphism of the lattice of inter-
mediate logics into the lattice of extensions of S4.

2. (The Blok-Esakia theorem) The map σ is an isomorphism from the
lattice of intermediate logics onto the lattice of extensions of Grz.

Theorem 2.4.8 (Esakia; cf. [She90, Proposition 9]). For any class C of finite
posets, the modal logic of C is the greatest modal companion of its logic,
that is, ML(C) = σ(Log(C)).

Theorem 2.4.9 (Zakharyaschev; cf. [She90, Proposition 10]). For any class
C of finite posets, the modal logic of C● is the least modal companion of its
logic, that is, ML(C●) = τ(Log(C)).

2.5. Forcing background

In this section, we briefly recall the definitions and some facts of forcing in
the set theory. For further results and details of forcing, one can consult
[Jec03, Kun14].

Assume that M is a countable transitive model of ZFC, the ground model.

Definition 2.5.1. A forcing poset is a triple P = (P,≤,1), where ≤ is a partial
order with separative condition and for every p ∈ P , p ≤ 1. An element p ∈ P
is called forcing condition. We say that p is stronger than q if p ≤ q.

Definition 2.5.2. For a forcing poset P, the conditions p and q are compatible
if there is s such that s ≤ p and s ≤ q; the conditions p and q are incompatible
if they are not compatible. A set A ⊆ P is an antichain if its elements are
pairwise incompatible.

Definition 2.5.3. A set F ⊆ P is a filter on P if

1. 1 ∈ F ;

2. p ≤ q and p ∈ F imply q ∈ F ;

3. if p, q ∈ F , then there exists s ∈ F such that s ≤ p and s ≤ q.

A set G ⊆ P is P-generic over M or M -generic for P or simply, generic, if G
is a filter and for any dense D ⊆ P such that D ∈M , we have G ∩D ≠ ∅.
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We focus on the structure itself in the forcing poset in this work and do
not intend to discuss all facts about the forcing theory. Specifically, we omit
the definitions of names and the semantic and syntactic forcing relations.
The main class of forcings we study here are the c.c.c. forcings.

Definition 2.5.4. A forcing poset P has the countable chain condition or to
have c.c.c., if each antichain is countable.

The Knaster property is stronger than the countable chain condition.

Definition 2.5.5. A forcing poset P is Knaster if every uncountable set A ⊆
P contains an uncountable subset B ⊆ A of pairwise compatible conditions.

Recall the following forcing poset Coh, the set consisting of the finite
partial functions from ω to {0,1} and ordered by the reverse inclusion, it is
the so-called Cohen forcing that adds a Cohen real :

1. for any p ∈ Coh, dom(p) is a finite subset in ω;

2. p is stronger than q if p ⊇ q.
Let G be generic in the Cohen poset and c = ⋃{p ∈ Coh ∶ p ∈ G}, then c is a
function c ∶ ω → {0,1} and called a Cohen real.

Theorem 2.5.6 (Folklore; cf. [Ina13, Theorem 20]). Given two transitive
models of set theory V ⊆ V ′, then CohV = CohV

′
and a Cohen real over V ′ is

also Cohen over V .

Definition 2.5.7. In the model of set theory M , given two forcing posets
P,Q, the product, P×Q, is the forcing poset whose elements are (p, q), where
p ∈ P and q ∈ Q and its order is: (p0, q0) ≤ (p1, q1) iff p0 ≤ p1 and q0 ≤ q1.

Definition 2.5.8. Let {Pi ∶ i ∈ I} be a collection of forcing posets, each
having the greatest element 1. The product P =∏i∈I Pi defined as follows:

1. Every elements p of P is a function such that for any i ∈ I, p(i) ∈ Pi
and the set {i ∈ I ∶ p(i) ≠ 1} is finite.

2. p ≤ q iff p(i) ≤ q(i) for all i ∈ I.

For any p, we say the finite set {i ∈ I ∶ p(i) ≠ 1} the support of p. For
any subset U ⊆ I, p↾U is a function whose support is the intersection of the
support of p and U and for any i ∈ U , p↾U(i) = p(i). Then the projection
of P = ∏i∈I Pi to U (notation: (∏i∈I Pi)↾U) is the sub-poset of P consisting
{p↾U ∶ p ∈ P}. It follows that (∏i∈I Pi)↾U ≅∏i∈U Pi.
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Lemma 2.5.9 (Folklore; cf. [Kun14, p. 328]). If P and Q has the c.c.c, then
the following are equivalent:

1. P ×Q has the c.c.c.;

2. 1P ⊩P Q̇ has the c.c.c.;

3. 1Q ⊩Q Ṗ has the c.c.c.

2.6. Modal logic of forcing

Hamkins and Löwe introduced and developed the area of using modal logic
to describe forcing in set theory in their original paper [HL08]. We will follow
their idea and interpret the modal operator ◻ as “in every forcing extensions”
while ◇ is interpreted as “in some forcing extension”.

Definition 2.6.1. For a statement ϕ in set theory, ◻ϕ means that for each
poset P and condition p in it, p ⊩P ϕ and ◇ϕ means that there exists some
poset P and condition p in it, p ⊩P ϕ.

Definition 2.6.2. Given a modal assertion φ(p1, . . . , pn), if φ(ϕ1, . . . , ϕn)
holds whenever ϕi is an arbitrary sentence in set theory and ◻ and ◇ is
interpreted by the above forcing interpretation, then is said to be a valid
principle of forcing. It is a ZFC-provable principle of forcing if ZFC proves
all substitution instances φ(ϕ1, . . . , ϕn). This naturally generalizes to larger
theories with the notion of a T-provable principle of forcing. For any model
M of set theory, the modal assertion φ(p1, . . . , pn) is a valid principle of
forcing in M if all substitution instances φ(ϕ1, . . . , ϕn) are true in M .

For example, ¬ ◇ p ↔ ◻¬p is a valid principle of forcing, since ϕ is not
forceable iff in every forcing extension, we have ¬ϕ. Hamkins and Löwe’s
provided the following theorem (see [HL08, Main Result 6]).

Theorem 2.6.3. If ZFC is consistent, then the ZFC-provable principles of
forcing are exactly S4.2.

Restricting the class of forcing notions can change the interpretation of
the modal operators, then the modal logic of this new class of forcing raises
different questions. If Γ is a class of forcing notions, then ◇Γϕ means that
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there exists some forcing extension by forcing in Γ such that ϕ holds and
◻Γϕ means that ϕ holds in every forcing extensions by forcing in Γ. A
modal assertion φ(p1, . . . , pn) is said to be a valid principle of Γ-forcing if, for
all substitution instances φ(ϕ1, . . . , ϕn) with arbitrary set-theoretic assertion
ϕi, this modal assertion holds under the Γ-forcing interpretation for modal
operators.

Given a forcing class Γ, each assignment of propositional variables pi
to set-theoretical assertions ϕi can be extended to a Γ forcing translation.
This is a function H from the modal language ML to the first-order lan-
guage of set theory such that H(pi) = ϕi and follows the rules: H(φ ∧ ψ) =
H(φ) ∧ H(ψ), H(¬φ) = ¬H(φ) and H(◻φ) = ◻ΓH(φ). The last case as-
serts in set theory that H(φ) has Boolean value one for every forcing notion
of Γ. The modal logic of Γ forcing over a model of set theory M is the
set: {φ ∈ ML ∶ M ⊧ H(φ) for every Γ forcing translations H}. When we
restrict the classes of forcing to be c.c.c. forcing, then the modal operator
◻ is interpreted as “in every c.c.c. forcing extensions” and ◇ is interpreted
as “in some c.c.c. forcing extension”. The modal logic of c.c.c forcing is de-
noted by MLc.c.c.. According to [HL08], the most interesting open problems
are posed as follows:

Question (Hamkins and Löwe). What is the modal logic of c.c.c. forcing?

In general, like the original method used in [HL08], in the forcing case,
one may need to find or build the upper bound and lower bound for it. In
the case of lower bounds, one may need to study the property of the modal
frame formed by the forcing or c.c.c. forcing.

Theorem 2.6.4. All theorems of S4 are valid principles of MLc.c.c..

Proof. To verify K, suppose that both p0 and p0 → p1 hold in every c.c.c.
extensions, thus in every c.c.c. extensions, we have p1 holds and it is easy
to see that ◻(p0 → p1) → (◻p0 → ◻p1) holds. We have already shown that
¬◇ p↔ ◻¬p as an example. S is obvious. For 4, according to the property
about iteration of c.c.c. forcing, ◻p→ ◻ ◻ p holds.

Finally, MLc.c.c. is closed under those inference rules, moreover, for neces-
sitation, when we already have p in every model, it is obvious that ◻p holds
in each model.

Before discussing the results about the upper bounds of MLc.c.c., we may
recall the method of Hamkins, Leibman and Löwe to determine the upper
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bounds of the modal logic of Γ-forcing when we assume that the forcing
class is Γ-forcing. The follows come from [HLL15, Definition 8] and [HLL15,
Lemma 9].

Definition 2.6.5 (Hamkins, Leibman and Löwe). A Γ-labeling of a frame F
for a model M of set theory is an assignment m ↦ φm, from points in F to
o set-theoretic statements with the following property:

1. The statements φm form a mutually exclusive partition of truth in the
Γ-forcing extensions of M , i.e., given a Γ-extension, it satisfies exactly
one φm.

2. Any Γ-forcing extension with φm true satisfies ◇φu iff m ≤ u.

3. M ⊧ φm0 , if m0 is initial in F .

Theorem 2.6.6 (Hamkins, Leibman and Löwe). Let m ↦ φm be a Γ-
labelling of finite frame F for model M and x0 be initial in F . Then for
any Kripke model M whose frame is F , there exists an assignment p ↦ ψp
from Prop to set-theoretic assertions, and for any ϕ(p1, . . . , pn),

M, x0 ⊧ ϕ(p1, . . . , pn) iff M ⊧ ϕ(ψp1 , . . . , ψpn).

In conclusion, the modal logic of Γ-forcing over M is contained in the modal
logic of assertions valid in F .

Proof. A proof of this theorem can be found in [Ina13, Theorem 57].

The existence of a class of Γ-labellings can be imaginatively or even visu-
ally understood by the construction of statements called buttons and switches
introduced in [HL08, § 2]. A switch in W satisfies that W ⊧ ◻(◇s∧◇¬s). We
call a switch is on in the Γ forcing extension W [G] if W [G] ⊧ s is true and
call a switch is off if W [G] ⊧ ¬s. A button in W satisfies that W ⊧ ◻◇◻b.
It is pushed if ◻b holds and pure if W ⊧ ◻(b→ ◻b). A finite set consisting of
switches and buttons is said to be independent in W if each one of them can
be operated without affecting the others.
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3. The modal logic of c.c.c. forcing
and finite partial function

algebras

This chapter introduces three algebraic structures: tBa, sBa, and FPFA,
and their corresponding intermediate and modal logics. In [HLL15, Theorem
36], it was proved that S4.tBa is an upper bound of the modal logic of ω1-
preserving forcing, and Hamkins, Leibman and Löwe conjectured it to be an
upper bound of MLc.c.c.. Hamkins and Löwe proved that MLc.c.c. does not in-
clude S4.2 by applying a c.c.c.-labeling to a concrete frame, 2-fork1, in [HL08,
Theorem 34] and this frame is a topless Boolean algebra. In [Ina13, Theorem
149], Inamdar proved that the modal logic of c.c.c. forcing is contained in
S4.sBa. Since

S4 ⫋ S4.tBA ⫋ S4.2 ⫋ S4.3

and
S4 ⫋ S4.sBA ⫋ S4.2 ⫋ S4.3,

S4.tBA and S4.sBA occupy similar positions within the landscape of modal
logics, and sBa is also a generalized form of the above 2-fork frame. Finally,
the modal logic S4.FPFA is the least modal companion of the well-known
logic Cheq. By developing an idea from Inamdar [Ina20], we shall show
that S4.FPFA is an upper bound of the modal logic of c.c.c. forcing, under
an additional assumption (of which we do not know whether it is true) in
Theorem 3.6.3. The finite partial function algebraRn ≅ Cn, being the product
of the 2-fork frame and also a generalized form of 2-fork, provides a suitable
motivation for comparing these three structures and their related logics.

1We define the 2-fork as the frame C1 ∶= ⟨W,R⟩, where W = {0,1,2}, all nodes are
R-reflexive, and both 1 and 2 are R-accessible from 0.
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3.1. The logic of finite topless Boolean

algebras

Figure 3.1-1: Medvedev frames

Definition 3.1.1 (Finite Boolean algebra). For a non-empty set with n
elements [n] = {1,2, . . . , n}, let P(n) denote the Kripke frame2:

P(n) = ⟨{X ∶X ⊆ [n]},⊇⟩.

We call P(n) a finite Boolean algebra on n elements.

In 1932, Kolmogorov [Kol32] suggested a constructive interpretation of
intuitionistic logic as a calculus of problems. To make precise the description
proposed by Kolmogorov, Medvedev established the foundational framework
for the logic of finite problems in [Med62]. Inheriting such a tradition on the
frame for logic of finite problems, the order in our Boolean algebra here is
reverse inclusion ⊇. A finite topless Boolean algebra is obtained by removing
the top of a finite Boolean algebra.

Definition 3.1.2 (Finite topless Boolean algebra). For a non-empty set with
n elements [n] = {1,2, . . . , n}, let P0(n) denote the Kripke frame:

P0(n) = ⟨{X ∶X is a non-empty subset of [n]},⊇⟩.

We call P0(n) a finite topless Boolean algebra on n elements or a Medvedev
frame (on n elements).

2In this definition, we denote by P(n) the n-th algebra structure as a poset on the set
[n] = {1,2, . . . , n}, not on the set n = {0,1, . . . , n − 1}.
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Definition 3.1.3. The logic Med is the intermediate logic of all Medvedev
frames, in other words,

Med = Log({P0(n) ∶ n ∈ ω}).

The modal logic tBa is the greatest modal companion of Med, that is

tBa = σ(Med).

The modal logic S4.tBa is the least modal companion of Med, that is

S4.tBa = τ(Med).

Note that P(n) is obtained by the product of the 2-chain, and the Kripke
frame P0(n) is obtained by removing the top, we will study the product of fi-
nite rooted frame with a top and more importantly, the generalized Medvedev
logic in Chapter 4.

3.2. The logic of finite spiked Boolean

algebras

Löwe introduced the following notion and proved results that are included
in [LX24, § 5].

Definition 3.2.1 (Spiking). If P = {P,≤P} is a partial order with a top, we
call S = {S,≤S} a spiking of P if P is a suborder of S, all elements of P have
the same predecessors in S as they do in P, S ∖ P is a finite set of maximal
elements of S (called spikes) that all have only coatoms of P as immediate
predecessors, and each coatom of P has at most one element of S ∖ P as
immediate successor. A spike is called pure if it has exactly one coatom as
immediate predecessor. A poset is said to be a pure spiking if each of the
spikes is pure.

Consider a spiking S as adding spikes to a partial order P, wherein an
additional maximal elements sit as a successor of the coatoms of P. This
arrangement stipulates that each coatom has at most one spike (and coatoms
can share a spike). See Figure 3.2-2 for an illustrative example.
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(a)

(b) (c)

(d) (e)

Figure 3.2-2: A partial order (a) with its five spikings (a) to (e), where (a)
to (d) are pure spikings.

Definition 3.2.2 (Finite spiked Boolean Algebra). A partial order Sn =
{Sn,≤Sn} is called a spiked Boolean algebra on n elements if it is obtained
from a Boolean algebra on n elements P(n) = ⟨{X ∶ X ⊆ [n]},⊇⟩ by adding
precisely one pure spike {js} to each coatom {j}. For an illustrative example,
see Figure 3.2-3.

In other words, for any n ∈ ω, Sn = ⟨Sn,≤Sn⟩ denotes the spiked Boolean
algebra on n elements, where

Sn ∶= {X ∶X ⊆ [n]} ∪ {{1s},{2s}, . . . ,{ns}}

and

x ≤Sn y ∶⇔ x ⊇ y in P(n) or {j} ⊆ x ⊆ [n], y = {js} or x = y = {js}.
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Figure 3.2-3: spiked Boolean algebras

Definition 3.2.3. Let LS denote the intermediate logic3 of all finite spiked
Boolean algebra {Sn}n≥1.

The modal logic sBa is the greatest modal companion of LS, that is

sBa = σ(LS).

The modal logic S4.sBa is the least modal companion of LS, that is

S4.sBa = τ(LS).

3.3. The logic of finite partial function

algebras

Definition 3.3.1 (Finite partial function algebra). A poset Rn is called the
finite partial function algebra on n elements if it consists of partial functions
from [n] to {1,2}. For a, b ∈ Rn, we define a < b ∈ Rn if and only if a =
b↾dom(a). For any point a ∈ Rn, we associate the pair (1a,2a) where 1a =
a−1(1) and 2a = a−1(2).

Recall the 2-fork frame C1, let Cn be the Cartesian product of C1 taken n
times. Then every point a of Cn can be associated with an n-tuple (x0, x1, . . . ,
xn−1), where xi ∈ {0,1,2}. We will see that Cn ≅Rn by Lemma 7.1.6.

Definition 3.3.2. Let Cheq denote the intermediate logic of all frames
in {Cn}n≥1.

3We refer to this logic as Inamdar logic Inam in [LX24].
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Figure 3.3-4: C1 and C2

In fact, Cheq is the intermediate analogue of the well-known modal logic
of chequered subsets of R∞ which was introduced in [vBBG03].

Definition 3.3.3. The modal logic FPFA is the greatest modal companion
of Cheq, that is

FPFA = σ(Cheq).
The modal logic S4.FPFA is the least modal companion of Cheq, that is

S4.FPFA = τ(Cheq).

We summarise in Table 3.1 the three classes of structures and related
intermediate (modal) logics.

Name Frame Intermediate Logic Modal Logic

τ σ

Finite topless Boolean algebra P0(n) Med S4.tBa tBa
Finite spiked Boolean algebra Sn LS S4.sBa sBa
Finite partial function algebra Rn Cheq S4.FPFA FPFA

Table 3.1: Comparison of three classes of structures

3.4. Comparison of the relevant logics

For any node a in a spiked Boolean algebra, if there are two nodes above
a, then a is located in the corresponding Boolean algebra. Let p0 and p1 be
distinct atomic propositions, then define ϕ0 = (p0 ∧ ¬p1) ∧ ◻(p0 ∧ ¬p1) and
ϕ1 = (p1 ∧ ¬p0) ∧ ◻(p1 ∧ ¬p0). Let q0 and q1 be another two different atomic
propositions. Consider the following formula:
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Ψs ∶= (◇ (◻q0 ∧◇ϕ0 ∧◇ϕ1) ∧◇(◻q1 ∧◇ϕ0 ∧◇ϕ1))→◇◻ (q0 ∧ q1).

Lemma 3.4.1. Ψs ∈ S4.sBa, Ψs ∉ S4.FPFA, Ψs ∉ S4.tBa.

Proof. Let S be any finite spiked pre-Boolean algebra and V be a valuation
on S. Assume that a point a ∈ S, a ⊧◇(◻q0∧◇ϕ0∧◇ϕ1)∧◇(◻q1∧◇ϕ0∧◇ϕ1),
then there are two nodes x, y ≥ a and x ⊧ ◻q0∧◇ϕ0∧◇ϕ1, y ⊧ ◻q1∧◇ϕ0∧◇ϕ1,
so there are two points u, v ≥ x, u ⊧ ϕ0 and v ⊧ ϕ1. By the definition of ϕ0

and ϕ1, we have u ≠ v and they belong to two different clusters. In fact,
they don’t have a join. It follows that x is not the spiked one and so does
y. Thus x and y belong to the corresponding Boolean algebra, and then we
have z ∈ S and z ≥ x, y. Since x ⊧ ◻q0 and y ⊧ ◻q1, we have z ⊧ ◻(q0 ∧ q1).
Since a ≤ z, then a ⊧◇◻ (q0 ∧ q1). It follows that Ψs ∈ S4.sBa.

Let R2 be the finite partial function algebra on two elements. V ′ be a
valuation on R2 such that

1. ({1,2},∅) ⊧ ϕ0 ∧ q0 ∧ ¬q1;

2. ({2},{1}) ⊧ ϕ1 ∧ q0 ∧ ¬q1;

3. (∅,{1,2}) ⊧ ϕ1 ∧ ¬q0 ∧ q1;

4. ({1},{2}) ⊧ ϕ0 ∧ ¬q0 ∧ q1.

and

1. ({2},∅) ⊧ q0;

2. (∅,{2}) ⊧ q1.

Then ({2},∅) ⊧ ◻q0 ∧ ◇ϕ0 ∧ ◇ϕ1 and (∅,{2}) ⊧ ◻q1 ∧ ◇ϕ0 ∧ ◇ϕ1. But
(∅,∅) ⊧ ◻◇¬(q0 ∧ q1), thus Ψs ∉ S4.FPFA.

Let P0(4) be the topless Boolean algebra on four elements. V ′′ be a
valuation on P0(4) such that

1. {1} ⊧ ϕ0 ∧ q0 ∧ ¬q1;

2. {2} ⊧ ϕ1 ∧ q0 ∧ ¬q1;

3. {3} ⊧ ϕ1 ∧ ¬q0 ∧ q1;

4. {4} ⊧ ϕ0 ∧ ¬q0 ∧ q1.
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and

1. {1,2} ⊧ q0;

2. {3,4} ⊧ q1.

Then {1,2} ⊧ ◻q0∧◇ϕ0∧◇ϕ1 and {3,4} ⊧ ◻q1∧◇ϕ0∧◇ϕ1. But {1,2,3,4} ⊧
◻◇¬(q0 ∧ q1), thus Ψs ∉ S4.tBa.

Let p0, p1 and p2 be distinct atomic propositions, then for 0 ≤ i ≤ 2, define
φi = (pi⋀j≠i(¬pj)) ∧ ◻(pi⋀j≠i(¬pj)). Consider the following formulas which
are attributed to [HLL15, § 2]:

Ψt ∶= (⋀i=0,1,2◇φi)→◇(◇φ0 ∧◇φ1 ∧ ◻¬φ2).

Lemma 3.4.2. Ψt ∈ S4.tBa, Ψt ∉ S4.FPFA, Ψt ∉ S4.sBa.

Proof. Let P0 be any finite topless pre-Boolean algebra corresponding to
proper subsets of a finite set D and V be a valuation on P0. Assume that a
point a ∈ P0 and a ⊧ ⋀i=0,1,2◇φi, then there are three nodes c0, c1, c2 ≥ a such
that cj ⊧ φj and no two of cj have a join in P0. Thus c0 ∩ c2 = c1 ∩ c2 = ∅, it
follows that a < c0 ∪ c1 ≰ c2. Let c = c0 ∪ c1, then c ⊧ ◇φ0 ∧◇φ1. If c ⊧ ◇φ2,
then c ⊧ ⋀i=0,1,2◇φi, and by the above argument, we can find a new c′ > c,
and c′ ⊧ ◇φ0 ∧◇φ1. Because P0 is finite, we will finally found a node c0 > a
such that c0 ⊧◇φ0 ∧◇φ1 ∧ ◻¬φ2. It follows that Ψt ∈ S4.tBa.

Let R2 be a finite partial function algebra on two elements. V ′ be a
valuation on R2 such that

1. ({1,2},∅) ⊧ φ0;

2. (∅,{1,2}) ⊧ φ1;

3. ({2},{1}) ⊧ φ2;

4. ({1},{2}) ⊧ φ2.

Then (∅,∅) ⊧ ⋀i=0,1,2◇φi. For any node a ∉ {({1,2},∅), (∅,{1,2}), we have
a ⊧◇φ2. For any node a ∈ {({1,2},∅), (∅,{1,2}), we have a ⊧ ¬(◇φ0∧◇φ1).
Therefore, any point dose not have ◇φ0 ∧◇φ1 ∧ ◻¬φ2 and so Ψt ∉ S4.FPFA.

Let S3 be the spiked Boolean algebra on three elements. V ′′ be a valuation
on S3 such that
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1. {1s} ⊧ p0 ∧ ¬p1 ∧ ¬p2 ;

2. {2s} ⊧ ¬p0 ∧ p1 ∧ ¬p2;

3. {3s} ⊧ ¬p0 ∧ ¬p1 ∧ p2;

4. ∅ ⊧ ¬p0 ∧ ¬p1 ∧ p2.

Then {1,2,3} ⊧ ⋀i=0,1,2◇φi. For any node a ∉ {{1s},{2s}}, we have a ⊧◇φ2.
For any node a ∈ {{1s},{2s}}, we have a ⊧ ¬(◇φ0 ∧ ◇φ1). Therefore, any
point dose not have ◇φ0 ∧◇φ1 ∧ ◻¬φ2 and so Ψt ∉ S4.tBa.

Corollary 3.4.3. S4.sBa is not contained in S4.FPFA, and neither is S4.tBa.
S4.tBa and S4.sBa do not contain each other.

Theorem 3.4.4. S4.FPFA is strictly included in S4.tBA.

Proof. Since Ψt ∈ S4.tBa and Ψt ∉ S4.FPFA, it suffices to prove that for any
n ∈ ω, there exists a p-morphism fn from Rn onto P0(n + 1). Define a map
fn from Rn to P0(n + 1) for any a = (1a,2a) as follows:

fn(a) =
⎧⎪⎪⎨⎪⎪⎩

[va] ∖ 1a, if 2a ≠ ∅,
[n + 1] ∖ 1a, if 2a = ∅,

where va = min{v ∶ v ∈ 2a}.
We observe the following results:
1. fn((∅,∅)) = [n + 1].
2. If a = ({u},∅), then fn(a) = [n + 1] ∖ {u}, where 1 ≤ u ≤ n.
3. If a = (∅,{v}), then fn(a) = [v], where 1 ≤ v ≤ n.
For any non-empty subset S of {1,2, . . . , n+ 1}, if n+ 1 ∈ S, then we have

fn(([n + 1] ∖ S,∅)) = S. If n + 1 ∉ S but n ∈ S, then fn(([n] ∖ S,{n})) = S.
More generally, let nS = maxS, then fn(([nS]∖S,{nS})) = S. Thus, for each
non-empty subset of [n + 1], it is the image of some element of Rn, so fn is
onto.

If a ≤ b in Rn and a = (∅,∅), b is an atom of Rn, then fn(a) = [n + 1] ⊇
fn(b), so fn(a) ≤ fn(b) in P0(n + 1).

According to our construction, fn(a) = ⋂ fn(xa), where xa ≤ a and xa is
an atom in Rn. Thus if a ≤ b in Rn, then fn(a) = ⋂ fn(xa) ⊇ ⋂ fn(xb) = fn(b)
and so fn(a) ≤ fn(b) in P0(n + 1).
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On the other hand, if fn(a) ≤ s in P0(n + 1), then s ⊆ fn(a) as a non-
empty subset of [n+1]. We aim to find b in Rn such that a ≤ b and fn(b) = s,
there are three cases:

Case 1. If n + 1 ∈ fn(a) and n + 1 ∈ s, then 2a = ∅ and a = (1a,∅),
fn(a) = [n+1]∖1a. Let 1b = {u ∈ [n] ∶ u ∉ s} and b = (1b,∅). According to our
construction, fn(b) = [n+1]∖1b = s. Since [n+1]∖1b = s ⊆ fn(a) = [n+1]∖1a,
then 1a ⊆ 1b and so a = (1a,∅) ≤ (1b,∅) = b.

Case 2. If n+1 ∈ fn(a) and n+1 ∉ s, then a = (1a,∅) and fn(a) = [n+1]∖1a.
Let 1b = {u ∈ [n] ∶ u ∉ s} and ns = max s. Then 1b ∩ {ns} = ∅ and let
b = (1b,{ns}), so fn(b) = [ns]∖1b = s. Since [ns]∖1b = s ⊆ fn(a) = [n+1]∖1a,
then u ∉ 1b → u ∉ 1a when u ≤ ns and u ∈ 1b when ns < u ≤ n, thus 1a ⊆ 1b.
Therefore, a = (1a,∅) ≤ (1b,{ns}) = b.

Case 3. If n + 1 ∉ fn(a) and n + 1 ∉ s, then 2a ≠ ∅ and a = (1a,2a),
fn(a) = [va] ∖ 1a. Let ns = max s and 1b = {u ∈ [ns] ∶ u ∉ s} ∪ {u ∶ ns < u ≤
n and u ∈ 1a}. Since [ns] ∖ 1b = s ⊆ fn(a) = [va] ∖ 1a, then ns = max s ≤
min{v ∶ v ∈ 2a} = va and u ∉ 1b → u ∉ 1a when u ∈ [ns], thus 1a ⊆ 1b. It is
easy to see that 1b ∩ (2a ∪ {ns}) = (1b ∩ 2a) ∪ (1b ∩ {ns}) where 1b ∩ 2a = ({u ∈
[ns] ∶ u ∉ s} ∩ 2a) ∪ ({u ∶ ns < u ≤ n and u ∈ 1a} ∩ 2a) and 1b ∩ {ns} = ∅. Since
ns ≤ min{v ∶ v ∈ 2a} and ns ∈ u, then {u ∈ [ns] ∶ u ∉ s} ∩ 2a = ∅. Because
{u ∶ ns < u ≤ n and u ∈ 1a}∩2a = ∅, then 1b∩2a = ∅. Thus 1b∩(2a∪{ns}) = ∅
and then we can let b = (1b,2a ∪ {ns}). According to the above argument,
a = (1a,2a) ≤ (1b,2a∪{ns}) = b and fn(b) = [min(2a∪{ns})]∖1b = [ns]∖1b = s.

Thus, fn is a p-morphism from Rn onto P0(n + 1).

Remark 3.4.5. A different construction and proof for a p-morphism between
FPFA and tBa can be found in [Lit04, Theorem 4].

Theorem 3.4.6. S4.FPFA is strictly included in S4.sBA.

Proof. Since Ψs ∈ S4.sBa and Ψs ∉ S4.FPFA, it is sufficient to get the result
by proving that for any n ∈ ω, there exists a p-morphism gn from Rn onto
Sn, where Sn = ⟨Sn,≤Sn⟩ denotes the spiked Boolean algebra on n elements.

We define a map gn from Rn to Sn for any a = (1a,2a) as follows:

gn(a) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[n] ∖ 1a, if 2a = ∅
{js}, if a = ([n] ∖ {j},{j})
⋂j∈2a{j}, otherwise

It is not difficult to calculate the following cases:
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1. gn((∅,∅)) = [n].
2. If a = ({u},∅), then gn(a) = [n] ∖ {u}, where 1 ≤ u ≤ n.
3. If a = (∅,{v}), gn(a) = {v}, where 1 ≤ v ≤ n.
4. If a = ({1,2, ..., n} ∖ {j},{j}), gn(a) = {js}, where 1 ≤ j ≤ n.
For any subset S ⊆ [n], let 1a = {u ∈ [n] ∶ u ∉ S}, then gn((1a,∅)) =

[n] ∖ 1a = S. Together with the fact that gn(([n] ∖ {j},{j})) = {js}, thus gn
is an onto from Rn to Sn.

Case 1. If a ≤ b in Rn and 2b = ∅, then 1a ⊆ 1b and so gn(a) = [n] ∖ 1a ⊇
[n] ∖ 1b = gn(b), that is, gn(a) ≤ gn(b).

Case 2. If a ≤ b in Rn and b = ({1,2, ..., n} ∖ {j},{j}), then a = (1a,∅)
or a = (1a,{j}) where 1a ⊆ 1b. Thus j ∉ 1a and so j ∈ [n] ∖ 1a. Therefore,
gn(a) = [n] ∖ 1a ≤ {j} < {js} = gn(b) if a = (1a,∅) or gn(a) = {j} < {js} =
gn(b) if a = (1a,{j}). So gn(a) ≤ gn(b) in Sn.

Case 3. If a ≤ b in Rn and b ≠ ({1,2, ..., n} ∖ {j},{j}) for any 1 ≤ j ≤ n
and 2b ≠ ∅. So there exists at least a j such that j ∈ 2b. Then j ∉ 1b
and so j ∉ 1a. Thus gn(a) = [n] ∖ 1a ≤ {j} ≤ ⋂i∈2b{i} = gn(b) if 2a = ∅ or
gn(a) = ⋂i∈2a{i} ≤ ⋂i∈2b{i} = gn(b) if 2a ≠ ∅. So gn(a) ≤ gn(b) in Sn.

On the other hand, if gn(a) ≤ s in Sn. We aim to find b in Rn, such that
a ≤ b and gn(b) = s.

If 2a = ∅, then gn(a) = [n]∖ 1a and a = (1a,∅). There are four cases for s
as follows:

Case 1. If s is a non-empty subset of [n] and s ≠ {j} for any 1 ≤ j ≤ n.
Let b = ([n] ∖ s,∅), then gn(b) = s, and since gn(a) = [n] ∖ 1a ⊇ s, then
[n] ∖ s ⊇ 1a, therefore, a = (1a,∅) ≤ ([n] ∖ s,∅) = b.

Case 2. If s = ∅, then let b = ([n],∅). It is not difficult to see gn(b) = ∅ = s
and a = (1a,∅) ≤ ([n],∅) = b.

Case 3. If s = {j}, since [n]∖1a ≤ {j}, then j ∉ 1a. Let b = (1a,{j}), then
gn(b) = {j} = s and a = (1a,∅) ≤ (1a,{j}) = b.

Case 4. If s = {js}, let b = ([n] ∖ {j},{j}). Since [n] ∖ 1a ≤ {js}, then
j ∉ 1a and so 1a ⊆ [n] ∖ {j}. Therefore, a = (1a,∅) ≤ ([n] ∖ {j},{j}) = b and
gn(b) = {js} = s.

When 2a ≠ ∅, we are looking at two obvious cases first. If a = ([n] ∖
{j},{j}), then gn(a) = {js} and so s = {js} and we choose b = a. Another
case is that if ∣2a∣ ≥ 2, then gn(a) = ∅ and so s = ∅, then we choose b = a.

The remaining case is that if 2a = {j} and a ≠ ([n] ∖ {i},{i}) for any
1 ≤ i ≤ n, then gn(a) = {j}. Let a = (1a,{j}).

Case 1. If s = {js}, since 1a ≠ [n] ∖ {j}, then 1a ⊆ [n] ∖ {j} and let b =
([n] ∖ {j},{j}), then gn(b) = {js} = s and a = (1a,{j}) ≤ ([n] ∖ {j},{j}) = b.
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Case 2. If s = ∅, since 1a ≠ [n] ∖ {j}, then there exists u ≠ j such that
u ∈ [n] ∖ 1a, thus 1a ∩ {u, j} = ∅. Let b = (1a,{u, j}), then gn(b) = ∅ = s and
a = (1a,{j}) ≤ (1a,{u, j}) = b.

Thus, gn is a p-morphism from Rn onto Sn.

Corollary 3.4.7. 1. FPFA ⊆ tBA ∩ sBA.

2. Cheq ⊆Med ∩ LS.

3. S4.FPFA ⊆ S4.tBA ∩ S4.sBA.

We already know that Med is not finitely axiomatisable over Cheq in
[Fon06, Theorem 9], we will prove that LS is not finitely axiomatisable over
Cheq in Chapter 6.

3.5. Destructible gaps

In this section, we will give an overview of the basic theory of destructible
gaps following [Yor07, Git11, Bag24].

We write 2ω for the power set of ω. If a ∈ 2ω, we write a(n) for the nth
element of a in increasing enumeration. Given a, b ∈ 2ω, we define that a
is eventually dominated by b, denoted as a <∗ b, if there exist only finitely
many n such that a(n) ≥ b(n). Let A = ⟨aα ∶ α < ω1⟩ and B = ⟨bβ ∶ β < ω1⟩
be sequences in 2ω. The pair (A,B) is called an pregap if for any α < α′ < ω1

and β < β′ < ω1 we have aα <∗ aα′ <∗ bβ′ <∗ bβ.4

For each pregap (A,B), we define

F(A,B) ∶= {σ ∈ [ω1]<ω ∶ if α ≠ β ∈ σ, we have (aα ∩ bβ) ∪ (aβ ∩ bα) ≠ ∅},
S(A,B) ∶= {σ ∈ [ω1]<ω ∶ (⋃

α∈σ
aα) ∩ (⋃

β∈σ
bβ) = ∅}.

Both of these sets can be ordered by reverse inclusion to obtain a poset.
If c ∈ 2ω is such that aα <∗ c <∗ bα for all α < ω1, then we say c separates

the pregap (A,B). If no such c exists, the pregap (A,B) is called a gap. A
gap is called destructible if there exists an ω1-preserving forcing that adds a
real separating it. The gap is called indestructible if it is not destructible.

4Note that this would usually be called an (ω1, ω1)-pregap or (ω1, ω
∗

1)-pregap, depend-
ing on the author, but since we only care about this case and not its generalisations, we
drop the prefix in our notation for the sake of simplicity.
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Theorem 3.5.1. Let (A,B) be a pregap. The following are equivalent:

1. (A,B) is a gap;

2. for all uncountable X ⊆ ω1, there are α ≠ β ∈ X such that (aα ∩ bβ) ∪
(aβ ∩ bα) ≠ ∅;

3. F(A,B) has the c.c.c.

Proof. This result is claimed without proof in [Yor07, Theorem 1.2.1.]. The
equivalence of 1. and 2. is proved in [TF95, Lemma 9.1] or [Git11, Lemma
1.6].

(¬2.⇒ ¬3.): Suppose X is an uncountable subset of ω1 such that for any
α,β ∈ X, (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅. Then X forms an uncountable antichain
in F(A,B), so F(A,B) does not have the c.c.c.

(¬3. ⇒ ¬1.): If F(A,B) does not have the c.c.c., then we can find an
uncountable antichain {σα ∶ α < ω1} which is a ∆-system with max(σα1) <
min(σα2) when α1 < α2.

Furthermore, we may assume that there exists an N < ω, such that for
any α < ω1, let σα = {δα0 , δα1 , . . . , δαn}, then aδα0 ∖N ⊆ aδα1 ∖N ⊆ . . . ⊆ aδαn∖N and
bδα0 ∖N ⊆ bδα1 ∖N ⊆ . . . ⊆ bδαn∖N .

Let cα = aδα0 ∖N and dα = bδα0 ∖N for any α. If there are α ≠ β < ω1,
cα ∩ dβ ≠ ∅, then for any δ ∈ σα and δ′ ∈ σβ, aδ ∩ bδ′ ≠ ∅, hence σα and σβ
is not incompatible. So (cα ∩ dβ) ∪ (cβ ∩ dα) = ∅ for any α ≠ β < ω1. Now
let c ∶= ⋃α<ω1

cα. For any aα, there is β such that α ≤ min(σβ), so aα ≤∗ cβ
and then aα ≤∗ c. For any bα, there is β such that α ≤ min(σβ), then there
is n such that bα∖n ⊆ dβ∖n. Note that dβ ∩ c = dβ ∩ (∪α<ω1cα) = ∅ since
(cα ∩ dβ) ∪ (cβ ∩ dα) = ∅ for any α ≠ β < ω1, then bα ∩ c is finite.

Therefore, c separates (A,B) and so (A,B) is not a gap.

Theorem 3.5.2 (Kunen). Let (A,B) be a gap. The following are equivalent:

1. (A,B) is destructible;

2. for all uncountable X ⊆ ω1, there are α ≠ β ∈ X such that (aα ∩ bβ) ∪
(aβ ∩ bα) = ∅;

3. S(A,B) has the c.c.c.
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Proof. This result is claimed without proof in [Yor07, Theorem 1.2.2]. The
equivalence of 1. and 2. is proved in [Git11, Theorem 3.2].

(3.⇒ 2.): Let pα = {α} be a condition of S(A,B) since aα ∩ bα = ∅. Fix
an uncountable X ⊆ ω1, consider Y = {pα ∶ α ∈ X}. Because S(A,B) has
the c.c.c., there are pα and pβ in Y and pα and pβ are compatible. Now
assume q ∈ [ω1]<ω ∈ S(A,B) be the condition that q ≤ pα and q ≤ pβ, then
(aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.

(¬3. ⇒ ¬2.): Suppose that S(A,B) does not have the c.c.c., fix an un-
countable antichain {σα ∶ α < ω1} in S(A,B). Let {γα}α<ω1 be an increasing
sequence where γα > max(σα). Furthermore, due to the pigeonhole principle,
we may assume there exists n < ω and N < ω, such that

1. ∣σα∣ = n for any α < ω1,

2. all {aδ ∩N ∶ δ ∈ σα} are the same for any α < ω1,

3. all {bδ ∩N ∶ δ ∈ σα} are the same for any α < ω1, and

4. aδ∖N ⊆ aγα and bδ∖N ⊆ bγα for any δ ∈ σα.

For any α ≠ β < ω1, σα and σβ are incompatible, then there are δ ∈ σα
and δ′ ∈ σβ such that we can find N ′ < ω and N ′ ∈ (aδ ∩ bδ′) ∪ (aδ′ ∩ bδ). If
N ′ < N and N ′ ∈ aδ ∩bδ′ , since all {aδ ∩N ∶ δ ∈ σα} are the same, then there is
δ′′ ∈ σβ, N ′ ∈ aδ′′ ∩ bδ′ , but δ′′, δ′ ∈ σβ in S(A,B), a contradiction. N ′ < N and
N ′ ∈ aδ′ ∩ bδ also lead to s contradiction, thus N ′ ≥ N . Because aδ∖N ⊆ aγα
and bδ∖N ⊆ bγα for any δ ∈ σα, N ′ ∈ (aγα ∩ bγβ)∪(aγβ ∩ bγα). It is obvious that
{γα}α<ω1 is uncountable.

The following crucial properties are claimed in [Yor07, p. 130] without
proof.

Theorem 3.5.3. 1. If (A,B) is a destructible gap, then forcing with
S(A,B) separates (A,B).

2. If (A,B) forms a gap, then forcing with F(A,B) makes (A,B) inde-
structible.

Clearly, if (A,B) is a destructible gap, both F(A,B) and S(A,B) are
c.c.c., but their product cannot be, so these forcing notions are not produc-
tively c.c.c. (for definitions, cf. [Bag24, Definition 3.1]). The question of
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what happens with products of forcings for different gaps leads to the next
definitions.

Let I be an index set and G ∶= {(Ai,Bi) ∶ i ∈ I} be a family of destructible
gaps. We call a forcing notion P a G-Yorioka product (or just Yorioka product
if G is clear from the context) if there is a subset J ⊆ I and a sequence {Xj ∶ j ∈
J} such that Xj is either F(Aj,Bj) or S(Aj,Bj) and P =∏j∈J Xj. We call a
family G independent if every G-Yorioka product is c.c.c. By Theorem 3.5.3,
forcing with a Yorioka product will destroy those gaps (Aj,Bj) for which
S(Aj,Bj) occurs in the product and make those gaps (Aj,Bj) indestructible
for which F(Aj,Bj) occurs in the product.

Theorem 3.5.4 (Yorioka). The axiom ♢ implies that there is an infinite
independent family of destructible gaps. In particular, there is one in L.

Proof. Cf. [Yor07, Theorem 2.1].

If G ∶= {(Ai,Bi) ∶ i ∈ I} is a family of destructible gaps, and we go to a
c.c.c. forcing extension, some of the gaps may not be destructible anymore.
We call G stably independent if it is independent and the following holds: in
any c.c.c. generic extension N , define IN ∶= {i ∈ I ∶ (Ai,Bi) is still destruc-
tible in N}; then GN ∶= {(Ai,Bi) ; i ∈ IN} is still an independent family of
destructible gaps in N .

We do not know whether Yorioka’s independent families from Theorem
3.5.4 are stably independent; it could be that families of destructible gaps
produced by Cohen forcing as in [TF95, Theorem 9.3] are stably independent.
In particular, we do not know whether the following statement is consistent:

there is an absolutely definable (without parameters) infinite
stably independent family of destructible gaps.

(�)

3.6. The c.c.c.-labelling

In this section, we shall assume that ZFC + � is consistent and prove that
S4.FPFA is an upper bound for the modal logic of c.c.c. forcing. As mentioned
at the end of § 3.5, we do not know whether ZFC + � is consistent; in the
(unfortunate) case that it is not, we discuss in Remark 3.6.4 that our proof
still gives an upper bound for a modal logic of a rather unnatural forcing
class Γ.
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Working over a model M of ZFC + �, we pick the absolutely definable
stably independent family of destructible gaps G = {(Ai,Bi) ∶ i ∈ ω} that
exists in M by �.

Recall the notion of a Γ-labelling defined by Hamkins, Leibman and Löwe
in 2.6.5. In order to show that S4.FPFA is an upper bound for the modal
logic of c.c.c. forcing, we need to provide c.c.c.-labellings for every thickening
of every finite partial function algebra Rn.

Given one of these finite partial function algebras Rn, we consider the
subfamily Gn ∶= {(Ai,Bi) ∶ i ∈ [n]} which is an independent family of destruc-
tible gaps. The absolute definability means that statements such as “the gap
(Ai,Bi) is separated” or “the gap (Ai,Bi) is indestructible” are sentences in
the language of set theory and can be used as control statements.

If N is any c.c.c. extension of M , we can define its poset label : ifX,Y ⊆ [n]
and X ∩ Y = ∅, then (X,Y ) is the poset label of N if

(a) i ∉X ∪ Y iff (Ai,Bi) is destructible gap in N ;

(b) i ∈X iff (Ai,Bi) is separated in N ;

(c) i ∈ Y iff (Ai,Bi) is indestructible gap in N .

and
(X,Y ) ≤ (X ′, Y ′) iff X ⊆X ′ and Y ⊆ Y ′.

Remember that the elements a ∈Rn are partial functions from [n] to {1,2}.
The map a↦ (a−1(1), a−1(2)) is a bijection between Rn and the set of poset
labels preserving the orders ≤. To each poset label (X,Y ), we assign the
sentence ϕ(X,Y ) of the language of set theory that expressed the conjunction
of the n statements that the label expresses via (a) to (c).

Lemma 3.6.1. If N is a c.c.c. extension of M ⊧ ZFC + � with poset label
(X,Y ) and (X ′, Y ′) is any poset label, then there is a c.c.c. extension of N
with poset label (X ′, Y ′) if and only if X ⊆X ′ and Y ⊆ Y ′.

Proof. (⇒): Assume P is a c.c.c. forcing and N ′ is the extension of N by
forcing with P. If a gap is separated in N , it will be separated in any c.c.c.
extension; similarly, if a gap is indestructible in N , then it is indestructible
in any c.c.c. extension since P is ω1-preserving. Thus, it is clear that X ⊆X ′

and Y ⊆ Y ′.
(⇐): We are working over N where all gaps with index in X are separated

and all gaps with index in Y are indestructible. Since (X ′, Y ′) is a poset
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label, we have Y ′ ∩X ′ = ∅, so the conditions X ⊆ X ′ and Y ⊆ Y ′ imply that
X∩Y ′ =X ′∩Y = ∅. Thus, for all indices i ∈X ′∪Y ′ that are not in X∪Y , the
gap (Ai,Bi) is destructible, so S(Ai,Bi) separates (Ai,Bi) by Theorem 3.5.3
and is c.c.c. by Theorem 3.5.2; and F(Ai,Bi) makes (Ai,Bi) indestructible
by Theorem 3.5.3 and is c.c.c. by Theorem 3.5.1.

It is clear that (X ′∖X) ∩ (Y ′∖Y ) = ∅. By � in M which implies that
Gn is stably independent, we know that Gn is still independent in the c.c.c.
extension N . Consider the following Yorioka product

P = ∏
i∈X′∖X

S(Ai,Bi) × ∏
j∈Y ′∖Y

F(Aj,Bj)

which is c.c.c. by independence of Gn. Therefore, forcing with P over N to
obtain a generic extension N ′ achieves what we want: the gaps with index
in X ′ are separated and the gaps with index in Y ′ are indestructible.

We still need to show that for any k ∉ X ′ ∪ Y ′, the gap (Ak,Bk) remains
a destructible gap in N ′. Both P × F(Ak,Bk) and P × S(Ak,Bk) are Yorioka
products, so by � in M , they are c.c.c. in N and therefore, by Lemma 2.5.9,
F(Ak,Bk) and S(Ak,Bk) remain c.c.c. in N ′. By Theorems 3.5.1 & 3.5.2,
this implies that (Ak,Bk) is a destructible gap in N ′ and, thus, the poset
label of the extension is (X ′, Y ′).

Corollary 3.6.2. If M ⊧ ZFC+�, then for any n there exists a c.c.c.-labelling
of the finite partial function algebra Rn.

Proof. If a ∈Rn, we define (X,Y ) ∶= (a−1(1), a−1(2)) and assign the sentence
ϕa ∶= ϕ(X,Y ) to a. Theorem 3.6.1 implies that this is a c.c.c.-labeling.

Corollary 3.6.2 gives us a c.c.c.-labeling for the skeletons for the relevant
frames. We now need to extend this to thickenings by adding arbitrarily
large finite clusters at each point; we do this by Cohen forcing.

Theorem 3.6.3. If ZFC +� is consistent, then MLc.c.c. ⊆ S4.FPFA.

Proof. We are working over M ⊧ �. For any n, we need to provide a c.c.c.-
labelling for a thickening C of Rn. Corollary 3.6.2 provides us with a c.c.c.-
labeling of the skeleton. Fix m such that the size of the clusters in C is
bounded by 2m. Without loss of generality, we can assume that they all have
precisely size 2m.
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For each ordinal β, we let mβ be its 2m-modulus, i.e., the unique number
` < 2m such that there is a natural number k and a limit ordinal λ with
β = λ + k and k ≡ ` mod 2m.

For any 0 ≤ j <m, let sj be the set-theoretic statement “if the number of
Cohen reals over M is ℵβ, then the jth digit of the binary expansion of mβ

is 1”. Since we can force the value of mβ to be anything by adding Cohen
reals, we can flip each sj on or off without affecting the other statements si
independently. For any regular cardinal κ, the forcing poset Q adding κ-many
Cohen reals is productively c.c.c. In particular, for any Yorioka product P,
the product P ×Q is c.c.c.

Thus, if a ∈Rn and k = ∑i<m bi < 2m be a binary expansion for k < 2m, let
(a, k) represent the kth cluster point in the thickening of Rn and assign the
statement ψa,k ∶= ϕa ∧⋀bi=1 si to the pair (a, k). We have to show that this
is a c.c.c.-labelling of C.

If a /≤ b, and N ⊧ ψa,k, then by Corollary 3.6.2, there cannot be a c.c.c.
extension that satisfies ϕb. Otherwise, a ≤ b, so again by (the proof of)
Corollary 3.6.2, there is a Yorioka product P which is c.c.c. and forcing with
P makes ϕb true. Now to obtain an arbitrary ψb,` find the right product
of Cohen forcing Q that makes ψb,` true. By the above remark, P × Q is
c.c.c.

As mentioned, we do not know whether the assumption of Theorem 3.6.3
is true. In particular, we do not know whether the L-least independent family
of destructible gaps produced by ♢ is stably independent. In case it is not,
the proof still yields some insight.

Remark 3.6.4. Let G = {(Ai,Bi) ∶ i ∈ ω} be the L-least independent infinite
family of destructible gaps. For any model M , we define IM ∶= {i ∈ ω ∶ (Ai,Bi)
is a destructible gap in M}. A model M is called G-stable if {(Ai,Bi) ∶ i ∈ IM}
is an independent family of destructible gaps in M . A forcing P is called G-
stabilising if it is ω1-preserving and preserves the property of being G-stable;
we write ΓG for the class of G-stabilising forcings. Then our proof shows that
the modal logic of ΓG-forcing is contained in S4.FPFA.
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4. Generalized Medvedev logics

This chapter introduces a new generalized form of Medvedev’s logic, derived
by removing the maximal element from the product of finite rooted frames
with a top element. We find that the logic corresponding to the product
of such frames, even before any modification, is essentially the KC logic.
Maksimova, Skvortsov and Shehtman [MSS79] proved the impossibility of
a finite axiomatisation for Medvedev logic. In response, Nick Bezhanishvili
proposed two stronger conjectures. The main result of this chapter is proving
the non-finite axiomatisability of every generalized Medvedev logic, thus giv-
ing positive answers to Nick’s conjectures. Additionally, we examine whether
there are infinitely many generalized Medvedev logics and whether there is
a smallest one.

4.1. Medvedev Logic generalized via

products

Definition 4.1.1. Let P0 = ⟨P0,≤0⟩ and P1 = ⟨P1,≤1⟩ be posets. Let P =
P0 × P1 be the Cartesian product of P0 and P1. A binary relation ≤ on P is
defined as follows:

(x, y) ≤ (x′, y′) iff x ≤0 x
′ and y ≤1 y

′.

We call the poset P = ⟨P,≤⟩ the product of P0 and P1. Given a poset P, P2

denotes the product P × P. Furthermore, Pn denotes the product of Pn−1

and P.

In Section 3.1, we introduce the definitions of Medvedev frames and its
logic Med in Definitions 3.1.2 and 3.1.3, respectively. Since the Medvedev
logic can be regarded as a logic of the topless products of the 2-chains,
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Nick Bezhanishvili proposed two stronger conjectures to extend the notion of
Medvedev logic to arbitrary n-chain and even arbitrary non-singleton, finite,
rooted frame that has a top. At the same time, this raises the question of
whether generalized Medvedev logic is finitely axiomatisable compared to the
non-finite axiomatisability of Med.

Assume F is a finite rooted frame with a top, let Fn be the product of F
on n-times. The simplest example for such F is precisely the n-chain, i.e.,

Definition 4.1.2. For a natural number n ≥ 2, the frame Hn = ⟨[n],≤⟩ is
called the n-chain or finite chain with n points, where [n] = {1,2, . . . , n} and
≤ is the standard order on the natural numbers.

It is obvious that Fn has a top since F has one. For each Fn, let Fnt be
the frame which is obtained from the frame Fn by removing its top element.
It is not difficult to see that every Medvedev frame P0(n) is exactly Fnt when
F is the 2-chain H2.

Definition 4.1.3. Let PF denote the logic characterized by all Fn, where
n ≥ 1, i.e., the logic Log({Fn}n≥1).

Let TLPF denote the logic characterized by all Fnt , where n ≥ 1, i.e., the
logic Log({Fnt }n≥1). We call TLPF a generalized Medvedev logic. A frame is
called a TLPF -frame if all the theorems of the logic TLPF are valid in it.

The following two theorems will give us an approximate picture of PF
and TLPF .

First, the logic characterized by the product of F is the logic of the weak
excluded middle KC = IPC + (¬p ∨ ¬¬p). Indeed, since KC is the logic of
directed intuitionistic frames and is the logic of the product of 2-chains H2

at the same time, the following result is relatively natural. The following
result was conjectured by Nick Bezhanishvili, who suggested it for our study,
and I provided the subsequent proof.

Theorem 4.1.4. PF = KC.

Proof. Because KC is the intermediate logic of all directed frames which
include {Fn}n≥1, it is immediate to obtain that PF ⊇ KC.

Let t be the top of the frame F and H2 be the 2-chain, that is, H2 =
⟨{1,2},≤⟩. We define a map f1 from F to the 2-chain H2 as follows:

f1(x) =
⎧⎪⎪⎨⎪⎪⎩

2, if x = t is the top of F
1, otherwise
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It is easy to check that f1 is a p-morphism from F to the 2-chain and
then define a map fn from Fn to the frame P(n), which is the n product of
the 2-chain, as follows:

fn((x1, x2, . . . , xn)) = (f1(x1), f1(x2), . . . , f1(xn)).

So fn is a p-morphism from Fn to the frame P(n) and thus Log(Fn) ⊆
Log(P(n)). Because KC = ⋂n∈ω Log(P(n)) (see, e.g., [MSS79, Corollary 1]),
in conclusion, PF = ⋂n∈ω Log(Fn) ⊆ ⋂n∈ω Log(P(n)) = KC.

Putting everything together, we have PF = KC.

Figure 4.1-1: Product of the 2-chain

When we remove the top of PF , the well-known logic Med is actually the
greatest generalized Medvedev logic.

Theorem 4.1.5. TLPF ⊆Med.

Proof. We use the construction of fn from the proof of Theorem 4.1.4 and
then f 0

n = fn∖{(t, t, . . . , t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

, (1,1, . . . ,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

} is a p-morphism from Fnt to P0(n),

so TLPF = ⋂n∈ω Log(Fnt ) ⊆ ⋂n∈ω Log(P0(n)) =Med.

The primary focus of this chapter is to answer the two conjectures made
by Nick Bezhanishvili. We will then develop a characterization of generalized
Medvedev logics.

Proposition 4.1.6 (Bezhanishvili’s first conjecture). TLPF is not finitely
axiomatisable if F is an n-chain Hn.
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Proposition 4.1.7 (Bezhanishvili’s second conjecture). TLPF is not finitely
axiomatisable for any non-singleton finite rooted frame F with a top.

In fact, since the Medvedev logic Med is exactly TLPF when F is chosen
to be the 2-chain, the above two conjectures generalize the theorem that
Medvedev logic Med is not finitely axiomatisable; the latter was proved by
Maksimova, Skvortsov and Shehtman in [MSS79, Corollary 5].

4.2. Non-finite axiomatisation of generalized

Medvedev logic

4.2.1. The chain case

We first proceed to deal with the first conjecture, the simpler case.

Theorem 4.2.1. TLPHn =Med for every finite chain Hn.

Proof. For a given number n, let Hn be the n-chain, in other words, Hn =
⟨{1,2, . . . , n},≤⟩, and let P(n) be n product of 2-chain. According to the
definition, TLPH2 =Med. We consider the n-chain for n ≥ 3.

We build a map f̂1 from P(n − 1) to Hn as follows:

f̂1(x) = n + 1 − d(x), where 1 ≤ d(x) ≤ n is the depth of x in P(n − 1).

If x ≤ y in P(n − 1), then d(y) ≤ d(x), and so f̂1(x) = n + 1 − d(x) ≤
n + 1 − d(y) = f̂1(y) in Hn. If f̂1(x) ≤ s in Hn, then it is easy to find a y
such that x ≤ y in P(n − 1) and d(y) = n + 1 − s, thus f̂1(y) = s. Therefore f̂1

is a p-morphism from P(n − 1) to Hn. In addition, only the top element of
P(n− 1) has depth 1 and is sent to n in Hn, which is the top element of Hn.

Then f̂1 can be extended to a p-morphism f̂m from P(n − 1) × . . .P(n − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

to Hn × . . .Hn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

in the following way:

f̂m((x1, . . . , xm)) = (f̂1(x1), . . . , f̂1(xm)).

Note that only the top element of P(n−1)× . . .P(n−1) can be sent to the
top element of Hn × . . .Hn, so there exists a p-morphism from (P(n − 1))mt
to (Hn)mt for every natural number m. In conclusion, TLPP(n−1) ⊆ TLPHn .
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Since P(n − 1) = H2 × . . . ×H2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1

and so Med = TLPH2 ⊆ TLPP(n−1), there-

fore Med ⊆ TLPHn . But according to Theorem 4.1.5, Med is the greatest
generalized Medvedev logic, so TLPHn =Med.

Corollary 4.2.2. TLPHn is not finitely axiomatisable.

4.2.2. Chinese lanterns

In this section, we provide an overview of results by Maksimova, Skvortsov
and Shehtman from [MSS79] and apply them to build a connection between
TLPF -frames and their Chinese lantern frames.

Definition 4.2.3 (Chinese lantern Φ(s, n)). Given integers s and n, the
Chinese lantern Φ(s, n) is the left frame in Figure 4.2-2

{(i, j) ∈ ω × ω ∶
(0 ≤ i ≤ s and 0 ≤ j ≤ 1)
∨(i = s + 1 and 1 ≤ j ≤ n)
∨(i = s + 2 and j = 0)}

equipped with an accessibility relation that is defined as an ordering:

(i0, j0) ≤ (i1, j1) iff i0 > i1 or (i0, j0) = (i1, j1).

Definition 4.2.4 (Chinese lantern Φ′(s, n,m)). Given m ≤ s, let Φ′(s, n,m)
be the right frame in Figure 4.2-2. It is formed by Φ′(s, n,m) = Φ(s, n) ∖
{(m,1)}.

Lemma 4.2.5 (Maksimova, Skvortsov and Shehtman). If F is a finite rooted
frame with a top, then F is a Med-frame.

Proof. A proof of this lemma can be found in [Fon07, Claim 9].

Definition 4.2.6 (Suspension). The suspension F (1) = ⟨F (1),≤(1)⟩ of a frame
F = ⟨F,≤⟩ is defined as follows:

F (1) = F × {0} ∪ {0,1} × {1}

and

(x, a) ≤(1) (y, b) iff (a = b = 0 ∧ x ≤ y) or (a = 0 ∧ b = 1) or (a = b ∧ x = y).
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(s+2, 0)

(s+1, 1) (s+1, n)

(s, 0) (s, 1)

(s-1, 0) (s-1, 1)

(m+1, 0) (m+1, 1)

(m, 0) (m, 1)

(m-1, 0) (m-1, 1)

(1, 0) (1, 1)

(0, 0) (0, 1)

(a)

(s+2, 0)

(s+1, 1) (s+1, n)

(s, 0) (s, 1)

(s-1, 0) (s-1, 1)

(m+1, 0) (m+1, 1)

(m, 0)

(m-1, 0) (m-1, 1)

(1, 0) (1, 1)

(0, 0) (0, 1)

(b)

Figure 4.2-2: The frames Φ(s, n) and Φ′(s, n,m)

The n-th suspension F (n) = ⟨F (n),≤(n)⟩ of F is the suspension of F (n−1),
thus we have

F (n) = F (n−1) × {0} ∪ {0,1} × {1}
and

(x, a) ≤(n) (y, b) iff (a = b = 0 ∧ x ≤(n−1) y) or (a = 0 ∧ b = 1) or (a = b ∧ x = y).

Lemma 4.2.7 (Maksimova, Skvortsov and Shehtman). If F is a finite rooted
frame with a top, then for any n ≥ 0, the n-th suspension F (n) of F is a p-
morphic image of P0(j) for some j.

Proof. If n = 0, then F (n) = F is a finite rooted frame with a top. So by
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Lemma 4.2.5, F is a p-morphic image of P0(j) for some j. We prove the
proposition by induction for n.

Now suppose for n ≥ 1, there exists a p-morphism f from P0(j) to F (n).
We define a map f ′ from P0(j + 1) to F (n+1) as follows:

f ′(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0,1), if x = {j + 1}
(1,1), if x ⊆ [j]
(f(x ∖ {j + 1}),0), otherwise

If x ≤ y in P0(j + 1), then y ⊆ x ⊆ [j + 1]. Consider the following cases:
Case 1. If y = {j + 1}, then j + 1 ∈ x, so f ′(x) ≤ (0,1) and f ′(y) = (0,1).

Thus, f ′(x) ≤ f ′(y) in F (n+1).
Case 2. If {j + 1} ⫋ y, then {j + 1} ⫋ x. Since f is a p-morphism

from P0(j) to F (n), we have f(x ∖ {j + 1}) ≤ f(y ∖ {j + 1}). Therefore,
f ′(x) = (f(x ∖ {j + 1}),0) ≤ (f(y ∖ {j + 1}),0) = f ′(y) in F (n+1).

Case 3. If j + 1 ∉ y and j + 1 ∉ x, then y ⊆ x ⊆ [j], leading to f ′(x) =
f ′(y) = (1,1).

Case 4. if j + 1 ∉ y and j + 1 ∈ x, then y ⊆ [j] and {j + 1} ⫋ x. Thus,
f ′(x) ≤ (1,1) and f ′(y) = (1,1). Therefore, f ′(x) ≤ f ′(y) in F (n+1).

If f ′(x) < t in F (n+1) for some x ∈ P0(j + 1), consider the following cases:
Case 1. If t = (0,1), then {j + 1} ⫋ x. Let y = {j + 1}, so f ′(x) < (0,1) =

f ′(y) and y ⫋ x, which implies x < y.
Case 2. If t = (1,1), then {j + 1} ⫋ x. Let y = x ∖ {j + 1} ⊆ [j], so

f ′(x) < (1,1) = f ′(y), and y ⫋ x, which implies x < y.
Case 3. If t ∉ {(0,1), (1,1)}, since f is a p-morphism from P0(j) to F (n),

there exists y1 ∈ P0(j) such that x ∖ {j + 1} < y1 and f ′(y1 ∪ {j + 1}) = t. Let
y = y1 ∪ {j + 1}, then x < y.

In conclusion, f ′ is a p-morphism from P0(j + 1) to F (n+1). By induction
for n, the statement holds for any n ≥ 0, that is, for any n ≥ 0, F (n) is a
p-morphic image of some P0(j).

Lemma 4.2.8. Let F be a finite rooted frame with a top, then each Φ′(s, n,m)
is a TLPF -frame.

Proof. The downset (m,0)↓ in Φ′(s, n,m) is a finite rooted frame with a top
(m,0). Then Φ′(s, n,m) can be obtained by taking the m-th suspension of
(m,0)↓. In other words, Φ′(s, n,m) = ((m,0)↓)(m) and by applying Lemma
4.2.7, it is obvious that Φ′(s, n,m) is a p-morphic image of some P0(j).
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By Theorem 4.1.5, every generalized Medvedev logic TLPF ⊆Med. Since
every Φ′(s, n,m) is a Med-frame, then each Φ′(s, n,m) is a TLPF -frame.

Proposition 4.2.9 (Maksimova, Skvortsov and Shehtman). For any formula
φ with s variables, there is an m ≤ s such that

Φ(s, n) ⊧ φ iff Φ′(s, n,m) ⊧ φ.
Proof. (⇒) The nodes (m,0) and (m,1) have the same immediate successors
in Φ(s, n), there is a p-morphism gm from Φ(s, n) to Φ′(s, n,m).

gm(x) =
⎧⎪⎪⎨⎪⎪⎩

(m,0), if x ∈ {(m,0), (m,1)}
x, otherwise

If Φ(s, n) ⊧ φ, then Φ′(s, n,m) ⊧ φ for any m ≤ s due to the property of
p-morphism.

(⇐) Now we suppose that Φ(s, n) ⊭ φ, then there exists a valuation
V such that (Φ(s, n), V ) ⊭ φ. Suppose φ is a formula with s proposition
variables p1, . . . , ps. According to the definition, the valuation V (pi) of a
given proposition variable pi is an upset in Φ(s, n), thus if pi is true in x of
Φ(s, n) under the valuation V , then pi is true in all y ≥ x of Φ(s, n) under
the valuation V . So for any pi, it is impossible to have a ≠ b such that

(a,0) and (a,1) do not agree on pi,

and at the same time,

(b,0) and (b,1) do not agree on pi.

In other words, there exists at most one a such that (a,0) and (a,1) do
not agree on pi. We have s proposition variables {pi}1≤i≤s and so there exists
at least one m0 such that (m0,0) and (m0,1) agree on every variable pi.
Then we define a valuation V1 on Φ′(s, n,m0) as follows:

V1(pi) = V (pi) ∖ {(m0,1)}, for any proposition variable pi

Based on this, the above defined gm0 is a map from (Φ(s, n), V ) to
(Φ′(s, n,m0), V1). For every x ≠ (m0,1), gm0(x) = x and then x ∈ V (pi)
iff gm0(x) ∈ V1(pi). For x = (m0,1), x ∈ V (pi) iff gm0(x) = (m0,0) ∈ V1(pi)
since (m0,0) and (m0,1) agree on every pi, so x ∈ V (pi) iff gm0(x) ∈ V1(pi)
for every point x.

Therefore gm0 is a p-morphism from (Φ(s, n), V ) to (Φ′(s, n,m0), V1).
Because Φ(s, n) ⊭ φ, we also obtain a m0 such that Φ′(s, n,m0) ⊭ φ.
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Therefore, Chinese lanterns or similar structures can serve as an effective
tool for measuring the “gap” between certain logics, i.e., whether they differ
in a finite axiomatisation.

4.2.3. The general case

To prove Conjecture 4.1.7, the key point is to prove that for any finite rooted
frame F with a top, we can find a Chinese lantern that is not a TLPF -frame
when F is an arbitrary finite rooted frame with a top. The following lemma
is joint work with Fontaine.

Lemma 4.2.10. Let F be a finite rooted frame and no point in F has a
single immediate successor, A be an arbitrary non-singleton finite rooted
frame with a top and b = max{b(u) ∶ u ∈ A}. If F is a p-morphic image of a
generated subframe of some Amt , then b(x) < b × 2d(x) for any x in F , where
b(x) is the branching degree of x and d(x) is the depth of x.

Proof. Let f be a p-morphism from S to frame F where S is a generated
subframe of Amt . For any point u = (u1, u2, . . . , um) in S, let t be the top of
A, then let #(u) be the cardinality of set {ui ∶ ui ≠ t} and 1 ≤ #(u) ≤m.

We begin with proving that for any point x in F , there is a point ux in
S such that

f(ux) = x and #(ux) < 2d(x)

We prove this by induction on the depth of x in F .
If d(x) = 1, then x is a maximal point in F . According to the property

of p-morphism, there is a point u in S such that f(u) = x, then the maximal
point ux ≥ u will imply f(ux) ≥ f(u). So f(ux) = x and #(ux) = 1 < 2 = 2d(x).

Assume the above proposition holds for d(x) = d. We turn to the case
d(x) = d + 1. Let u be a point in S such that f(u) = x. The frame u↑ in S is
also a generated subframe of Amt , and f is a p-morphism from u↑ to the finite
rooted subframe x↑ of F . According to the induction hypothesis, there are
two distinct points y and z such that y and z are immediate successors of x,
there are points uy and uz such that f(uy) = y and f(uz) = z, #(uy) < 2d(y)

and #(uz) < 2d(z).
Let uy = (y1, y2, . . . , ym) and uz = (z1, z2, . . . , zm) where yi, zi ∈ A, we then

define ux = (x1, x2, . . . , xm) as follows:

xi = min{yi, zi} for any 1 ≤ i ≤m
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So ux ≥ u by its definition and ux = (x1, x2, . . . , xm) < uy, ux < uz. Because
f is a p-morphism, f(ux) ≥ f(u) = x and f(ux) ≤ f(uy) = y, f(ux) ≤ f(uz) =
z. But y and z are both immediate successors of x, thus f(ux) = x.

Then we calculate the number of elements that is not equal to t in ux =
(x1, x2, . . . , xm). If xi is not the top t of A, then at least one of yi and zi is not
the top t of A since xi = min{yi, zi}. Vice versa, once one of yi and zi is not
the top t, then xi is not t. In conclusion, {i ∶ xi ≠ t} = {i ∶ yi ≠ t}∪{i ∶ zi ≠ t}, so
#(ux) = ∣{i ∶ xi ≠ t}∣ = ∣{i ∶ yi ≠ t}∪ {i ∶ zi ≠ t}∣ = ∣{i ∶ yi ≠ t}∣+ ∣{i ∶ zi ≠ t}∣− ∣{i ∶
yi ≠ t} ∩ {i ∶ zi ≠ t}∣ ≤ ∣{i ∶ yi ≠ t}∣ + ∣{i ∶ zi ≠ t}∣ = #(uy) +#(uz) < 2d(y) + 2d(z).
By the hypothesis, d(y) = d(z) = d, so #(ux) < 2d+1 = 2d(x).

This indicates that for a point x in F , there is at least a point ux in S
such that f(ux) = x and #(ux) < 2d(x). Recall that if ux = (x1, x2, . . . , xm),
then the branching degree b(ux) = b(x1) + b(x2) + . . . + b(xm). Furthermore,
due to b = max{b(u) ∶ u ∈ A}, then if xi is not the top element t, its branching
degree b(xi) is bounded by b, b(xi) ≤ b. If xi is the top element t, b(xi) = 0.
Therefore there are at most b ×#(ux) immediate successors of ux and then
the branching degree b(ux) ≤ b ×#(ux) < b × 2d(x).

In order to conclude the proof, we still have to show that b(x) ≤ b(ux) and
we will do so by proving that for any point x in F , since Amt is finite, we can
always choose a maximal element ux such that f(ux) = x and #(ux) < 2d(x).
Then there exists no u′x > ux that meets this requirement. Let y be an
arbitrary immediate successor of x, because f(ux) = x ≤ y and f is a p-
morphism, then there is a uy in S such that f(uy) = y and ux ≤ uy . So there
exists at least one immediate successor u′ that is located between ux and uy,
ux ≤ u′ ≤ uy implies x = f(ux) ≤ f(u′) ≤ f(uy) = y because of the property of
p-morphism. Suppose ux = (x1, x2, . . . , xm) and u′ = (x′1, x′2, . . . , x′m), if x′i is
not the top t, then xi is not the top t since xi ≤ x′i. So #(u′) ≤ #(ux) < 2d(x).
If f(u′) = x, then it would contradict the maximality of the choice of ux.
Therefore f(u′) = y is an immediate successor of x.

So for any immediate successor y of x in F , we can always find an imme-
diate successor u′ of ux in S such that f(u′) = y, thus the branching degree of
x is no more than the branching degree of ux. Together with b(ux) < b×2d(x),
we conclude that b(x) ≤ b(ux) < b × 2d(x).

Corollary 4.2.11. Φ(s, b×2s+3) is not a TLPF -frame if F is a non-singleton
finite rooted frame with a top and b = max{b(u) ∶ u ∈ F}.

Proof. Let x be the root of Φ(s, b × 2s+3), then its depth d(x) = s + 3 and its
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branching degree b(x) = b × 2s+3. By Lemma 4.2.10, Φ(s, b × 2s+3) is not a
p-morphic image of any generated subframe of Fmt .

Let χ be the Jankov-de Jongh formula of Φ(s, b×2s+3), then according to
Jankov-de Jongh theorem, for any integer m,

Fmt ⊭ χ iff Φ(s, b × 2s+3) is p-morphic image of a generated subframe of Fmt .

Thus Fmt ⊧ χ for any m and therefore χ ∈ ⋂m∈ω Log(Fmt ) = TLPF . But it
is clear that Φ(s, b × 2s+3) ⊭ χ, so Φ(s, b × 2s+3) is not a TLPF -frame.

Theorem 4.2.12. TLPF is not finitely axiomatisable for any non-singleton
finite rooted frame F with a top.

Proof. Suppose TLPF is finitely axiomatisable with s variables, we may as-
sume that TLPF is axiomatised by a single formula φ(p1, . . . , ps).

By Proposition 4.2.9, there is an m ≤ s such that

Φ(s, b × 2s+3) ⊧ φ iff Φ′(s, b × 2s+3,m) ⊧ φ.

According to Corollary 4.2.11, Φ(s, b × 2s+3) ⊭ φ, but by Lemma 4.2.8,
Φ′(s, b × 2s+3,m) ⊧ φ for any m ≤ s, a contradiction.

Therefore TLPF is not finitely axiomatisable with s variables. Further-
more, any generalized Medvedev logic TLPF is not finitely axiomatisable.

4.3. Further results on generalized

Medvedev logics

Since any generalized Medvedev logic is not finitely axiomatisable, then many
well-known logics are not generalized Medvedev logics. Together with the fact
that Med is the greatest generalized Medvedev logic and Med ⊆ KC, we give
an approximate description of the “geographic coordinates” of generalized
Medvedev logics, i.e., the generalized Medvedev logics from an island within
these logics.

Theorem 4.3.1. There are at least countably many different generalized
Medvedev logic TLPF .

Proof. We will construct a family of frames {D(i)}i≥1, where every frame
D(i) is a finite rooted frame with a top. We begin with setting D(1) = H3,
where H3 is the 3-chain, then TLPD(1) =Med by Theorem 4.2.1.
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ri

1 2 4i−1

ti

Figure 4.3-3: {D(i)}i≥1

As a next step, we construct D(2) = ⟨D2,R2⟩ as follows:

D2 = {r2,1,2,3,4, t2}

and
R2 = {(r2, x) ∶ x ∈D2} ∪ {(x, t2) ∶ x ∈D2} ∪ {(x,x) ∶ x ∈D2}.

Thus r2 is the root of frame D(2)t, we then consider some parameters
related to the root in D(2)t. It is obvious that the depth of r2 is 2, and
its branching degree is 4. According to Lemma 4.2.10, D(2)t is not a p-
morphic image of a generated subframe of D(1)mt for any natural number m,
so the logic of D(2)t is strictly contained in TLPD(1) =Med. Since TLPD(2) ⊆
Log(D(2)t), it is immediate to obtain that TLPD(2) ≠ TLPD(1).

Following the above approach, we then give the general construction
scheme for D(i) = ⟨Di,Ri⟩:

Di = {ri,1,2, . . . ,4i−1, ti}

and
Ri = {(ri, x) ∶ x ∈Di} ∪ {(x, ti) ∶ x ∈Di} ∪ {(x,x) ∶ x ∈Di}.

It is easy to build a p-morphism fji from D(j) to D(i) when 1 ≤ i < j:

fji(x) =
⎧⎪⎪⎨⎪⎪⎩

4i−1, if x ∈ {4i−1 + 1, . . . ,4j−1}
x, otherwise

.

In addition, only the top ti of D(i) can be sent to the top tj of D(j) via
fji, so when 1 ≤ i < j, we have the relation TLPD(j) ⊆ TLPD(i).

51



CPC

LC

KC

Med

⋮ ⋮⋮

IPC

Infinite

Figure 4.3-4: The red parts from Med down represent the current landscape
of generalized Medvedev logics, all of which are not finitely axiomatisable.

The maximal branching degree of nodes in D(i) is the number of imme-
diate successors of the root ri, which is exactly 4i−1. By applying Lemma
4.2.10, D(j)t can not be a TLPD(i)-frame, since d(rj) = 2 in D(j)t, but
b(rj) = 4j−1 ≥ 2d(rj) ×4i−1. Therefore, TLPD(j) is strictly contained in TLPD(i)
when 1 ≤ i < j, we then obtained countably many different generalized
Medvedev logic {TLPD(i)}i≥1.

Theorem 4.3.2. There is no least generalized Medvedev logic, i.e., the inter-
section of all generalized Medvedev logics is no longer a generalized Medvedev
logic.

Proof. If not, then there is a finite rooted frame F0 with a top, such that
B = TLPF0 and B ⊆ TLPF for every finite rooted frame F that has a top. Let
b0 = max{b(u) ∶ u ∈ F0} be the maximal branching degree of points in the
frame F0. Based on b0, we construct a finite frame D = ⟨D,R⟩:

D = {r,1,2, . . . ,4b0, t
′}

and
R = {(r, x) ∶ x ∈D} ∪ {(x, t′) ∶ x ∈D} ∪ {(x,x) ∶ x ∈D}.
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In the frame Dt, no point has a single immediate successor and r is the
root with its depth d(r) = 2. Since the branching degree of the root is 4b0,
thus B = TLPF0 is not contained in the logic of Dt due to Lemma 4.2.10.

But B ⊆ TLPD = ⋂m∈ω Log(Dmt ) ⊆ Log(Dt), a contradiction.

It should be noted that, since subsequent conclusions are needed for the
proof, we will compare the generalized Medvedev logic with Cheq and provide
Proposition 6.2.5, placing this result in Chapter 6.
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5. Nerves and Medvedev frames

This chapter builds a bridge between the construction of nerves of posets
and Medvedev frames. The main result states that the logic of any dual
nerve is the logic of some Medvedev frame. The presented proof was ob-
tained together with Nick Bezhanishvili and Gaëlle Fontaine. However, as
was pointed out by Nick Bezhanishvili, the result itself is due to Vincenzo
Marra, who announced it at ToLo 2016 (Topological Methods in Logic 2016)
in Tbilisi, Georgia.

To prove this result, we use two different methods. One of them indicates
some geometric aspects of nerves and simplicial complexes.

5.1. Nerves and dual nerves

We give a brief introduction to Alexandrov’s notion of the nerve from [Ale28]
for a poset. For a poset F , its nerve, N (F), is defined as the collection of
finite non-empty chains in F , ordered by inclusion.

Definition 5.1.1. Let F = ⟨W,≤W ⟩ be a poset. The dual nerve of F , denoted
byN d(F), is the set of all finite, non-empty chains in F ordered by the reverse
inclusion relation, that is, for two chains H and H′ in F , we say H ≤ H′ in
N d(F) iff H′ is a subchain of H.

Lemma 5.1.2. Let F be a finite poset. Then there exists a p-morphism
from N (F) to F .

Proof. Let us consider the map fmax ∶ N (F)→ F , which sends a chain to its
maximum element.

Assume H and H′ be two chains of F . Let c and c′ be the maximal
element of the chains H and H′, respectively. If H ≤ H′ in N (F), then
H ⊆ H′ and then fmax(H) = c ≤ c′ = fmax(H′).
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If fmax(H) ≤ c′, let H′ = H ∪ {c′}, then H′ is a chain in F and H ≤ H′ in
N (F). Since c′ is greater than the maximal element of H, then fmax(H′) =
fmax(H ∪ {c′}) = c′.

Therefore the max map fmax is a p-morphism from N (F) to F .

a

b

c d

e

{a, b, c}

{a, c}{b, c}{a, b}

{c} {a}{b}

{a, b, d}

{b, d}{a, d}

{d}

{a, e}

{e}

a b

c d

{a, c}{a, d}{b, c}{b, d}

{a} {c} {d} {b}

Figure 5.1-1: Two frames and their dual nerves

Lemma 5.1.3. Log(P0(m)) ⫋ Log(P0(n)) when n <m.

Proof. For n < m, let E = {n,n + 1, . . . ,m}. We construct a map f from
P0(m) to P0(n) as follows:

f(X) =
⎧⎪⎪⎨⎪⎪⎩

X, X ∩E = ∅
(X ∖E) ∪ {n}, X ∩E ≠ ∅

For any non-empty subset X ⊆ [m], we regard the above set E as a new
element n. We can then study the behavior of P0(m) like P0(n).

If X ≤ Y in P0(m), then Y ⊆X.
Case 1. When X ∩E = ∅, we have Y ∩E = ∅, thus f(Y ) = Y ⊆X = f(X),

f(X) ≤ f(Y ).
Case 2. If X ∩ E ≠ ∅ and Y ∩ E ≠ ∅, then f(Y ) = (Y ∖ E) ∪ {n} ⊆

(X ∖E) ∪ {n} = f(X), f(X) ≤ f(Y ).
Case 3. If X ∩E ≠ ∅ and Y ∩E = ∅, then Y ⊆ X ∖E and so f(Y ) = Y ⊆

(X ∖E) ∪ {n} = f(X), f(X) ≤ f(Y ).
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If f(X) ≤ U in P0(n) and X ∩E = ∅, then U ⊆ f(X) =X and U ∩E = ∅,
thus f(U) = U and X ≤ U in P0(m).

If f(X) ≤ U in P0(n) and X ∩E ≠ ∅, then U ⊆ (X ∖E) ∪ {n}.
Case 1. When n ∈ U , it is easy to see that U ∩E = {n}. Since U ∖ {n} ⊆

X ∖E, then (U ∖ {n}) ∪ (X ∩E) ⊆ X. Therefore f((U ∖ {n}) ∪ (X ∩E)) =
(U ∖ {n}) ∪ {n} = U and X ≤ (U ∖ {n}) ∪ (X ∩E) in P0(m).

Case 2. When n ∉ U , we have U ⊆X∖E and then U ∩E = ∅, so f(U) = U
and X ≤ U in P0(m).

In conclusion, f is a p-morphism from P0(m) to P0(n), so Log(P0(m)) ⊆
Log(P0(n)). Recall that we can bound the width of every rooted subframe
by using the following formula:

bwn =
n

⋁
i=0

(pi →⋁
j≠i
pj), for n ≥ 1.

Since Sperner’s theorem from [Spe28] indicates that the maximal number
of subsets of [n] such that no one contains another is ( n

⌊n/2⌋), then we have

P0(n) ⊧ bw( n
⌊n/2⌋)

and P0(m) ⊭ bw( n
⌊n/2⌋)

.

Putting everything together, Log(P0(m)) ⫋ log(P0(n)).

5.2. The main result

The following theorem is the main result in this chapter and it builds a bridge
between the (dual) nerves and Medvedev logic.

Theorem 5.2.1. N d(F) ⊧Med for any finite frame F .

To prove this theorem, we begin by studying the simplest case: the chain
case.

Lemma 5.2.2. For any integer n ≥ 2, the dual nerve of an n-chain is precisely
the Medvedev frame on n elements, that is, N d(Hn) = P0(n) up to the
isomorphism of posets.

Proof. Let Hn = ⟨{x1, x2, . . . , xn},≤⟩, then every non-empty finite chain H of
the n-chain Hn is, in fact, a subset of {1,2, . . . , n} that ordered by ≤. Thus
it is natural to have the following map f from the non-empty chain H of Hn
to the non-empty subset S of [n]:

f(H) = S, if S = {i ∶ xi ∈ H}.
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The map f is a one-to-one such that sends a subchain to its index set.
Furthermore,

H ≤ H′ in N d(Hn)
⇐⇒ H ⊇ H′

⇐⇒ S = f(H) ⊇ f(H′) = S′

⇐⇒ S ≤ S′ in P0(n).

Therefore, the map f is a poset isomorphism from N d(Hn) to P0(n), thus
N d(Hn) ≅ P0(n).

Proof of Theorem 5.2.1. For an arbitrary finite frame F , N d(F) is the dual
nerve of F . Let u be any point in N d(F), then according to the definition,
u is a finite non-empty chain of F , assume u = Hn, so the rooted generated
subframe of N d(F) which is generated by u is exactly all finite non-empty
chains of Hn, that is, the dual nerve of an n-chain, N d(Hn). By Lemma
5.2.2, N d(Hn) ≅ P0(n), thus the logic Log(N d(Hn)) = Log(P0(n)).

Since the logic of every rooted generated subframe of N d(F) is equal to
the logic of some Medvedev frame, thus the logic Med is valid in any rooted
generated subframe of N d(F), therefore N d(F) ⊧Med.

Corollary 5.2.3. For any finite frame F , there exists m ∈ ω such that the
logic Log(N d(F)) = Log(P0(m)).

Proof. Let the maximal chain of F be Hm, that is, the size of the greatest
chain of F is m.

According to the proof of Theorem 5.2.1, each rooted generated subframe
of N d(F) is a dual nerve of some finite chain, that is, N d(Hn), which is
isomorphic to a Medvedev frame P0(n), where n ≤m.

Thus the logic of N d(F) is the intersection of the logics of some P0(i),
i ≤m. By Lemma 5.1.3, Log(N d(F)) = Log(P0(m)).

5.3. Another proof of the main result

In this section, we consider a given finite frame F and fix the size of its largest
chain to be m. The following definition and lemma are due to Bezhanishvili
[Bez06, Lemma 3.1.6].
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Assume a and b have the same immediate successors in the frame F =
⟨W,≤⟩. Let E be the smallest equivalence relation identifying a and b, with
this equivalence relation, the quotient frame F/E = (W /E,≤′) is a frame
such that

W /E = {E(x) ∶ x ∈W}, where E(x) = {y ∈W ∶ xEy},

and

E(x) ≤′ E(y) iff x′ ≤ y′ for some x′ ∈ E(x) and y′ ∈ E(y).

The β-reduction is a map fE ∶W →W /E which is defined as follows:

fE(x) = E(x).

Lemma 5.3.1. The map fE is a p-morphism.

Proof. Since a and b have the same immediate successors, then a and b are
incomparable.

If x ≤ a in W , then E(x) ≤′ E(a), thus fE(x) ≤′ fE(a).
If a ≤ x in W , following the same argument, fE(a) ≤′ fE(x).
If fE(x) <′ E(a) in W /E, then E(x) <′ E(a), so either x < a or x < b, and

fE(a) = fE(b) = E(a).
If E(a) <′ fE(x) in W /E, then either a < x or b < x. Because the

immediate successors of a and b are the same, no matter whether a or b is
sent to E(a) by fE, we always have a < x and b < x.

For the given finite frame F , it is certain that we can sequentially disen-
tangle each of its maximal (finite) chains from F through a finite number of
steps. Upon collecting these maximal chains, we align their diagrams adja-
cently and regard them as one big diagram to obtain a new poset, which we
call the bunch (denoted by B(F) ). It is not difficult to have the following
lemma.

Lemma 5.3.2. Log(N d(B(F))) = Log(P0(m)).

Proof. From the above construction of B(F), it follows that the bunch is the
disjoint union of a family of maximal chains of the frame F . Let this finite
family of maximal chains be {Hi ∶ i ∈ I} and there exists some Hj = Hm since
the size of the largest chain of F is m.
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By Lemma 5.2.2, after taking the dual nerve, N d(Hi) ≅ P0(ni). As
the disjoint union, N d(B(F)) = ∑i∈I N d(Hi) ≅ ∑i∈I P0(ni), thus its logic
Log(N d(B(F))) = ⋂i∈I Log(P0(ni)). By Lemma 5.1.3, ⋂i∈I Log(P0(ni)) =
Log(P0(m)). Hence, it can be concluded that the logic corresponding to the
bunch is equivalent to the logic of the largest chain of F .
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{e}

Figure 5.3-2: Dual nerve through assembly

Conversely, given the collection of the maximal chains in the bunch B(F)
as components, we engage in a process to reconstruct F . This reconstruction
leverages the points of the bunch as instructions. Specifically, when a com-
mon point is identified across multiple maximal chains within B(F), these
chains are glued together at the shared point. The reconstruction is deemed
complete once there remains no point that needs to be glued. This process,
from the bunch B(F) to F , is called an assembly.

It is noteworthy that, in the process of reconstructing the frame F through
assembly, the same gluing instructions at those share points transform the
bunch’s dual nerve into the dual nerve of F , in fact, constitute β-reductions
from N d(B(F)) to N d(F).

Lemma 5.3.3. Log(N d(B(F))) ⊆ Log(N d(F)).
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Proof. During the process of reconstructing F from its bunch B(F), if two
distinct non-empty finite chains X and Y are mapped to the same point
under the above assembly program instructions, then X and Y were origi-
nally the same chain in the frame F , thus the corresponding subchains of X
and Y will likewise be mapped to the same point during the assembly pro-
cess. This indicates that the execution of the assembly directs some points
in B(F) with the same immediate successors to the same point in F . By
Lemma 5.3.1, there is a p-morphism from N d(B(F)) to N d(F), therefore
Log(N d(B(F))) ⊆ Log(N d(F)).

As a next step, we attempt to horizontally compress F into a chain,
considering Hm as its largest chain with the aim of compressing F into Hm.
A natural approach is gluing points that share the same depth. This process,
from the frame F to its largest chain Hm, where all points with a depth equal
to d are compressed into a new point of the chain, whose depth remains d.
We call this process a consolidation.

In other words, the consolidation is a map f̂ from F to Hm, such that

f̂(x) = d(x), where d(x) is the depth of x.

The consolidation f̂ naturally induces a correspondence fcon from the
non-empty finite chains of F to the non-empty finite chains of Hm:

fcon({x1, x2, . . . , xs}) = {f̂(x1), f̂(x2), . . . , f̂(xs)}

It will soon be proved that fcon is a map from N d(F) to N d(Hm), re-
flecting the β-reductions from the former to the latter. When xi ≠ xj in a

chain X = {x1, x2, . . . , xs}, then d(xi) ≠ d(xj), so f̂(xi) ≠ f̂(xj). Hence, fcon

does not change the size of the chain.

Lemma 5.3.4. Log(N d(F)) ⊆ Log(N d(Hm)).

Proof. For two different nonempty finite chains X and Y of F , we investigate
what will happen when fcon(X) = fcon(Y ). According to the above argument,
the cardinality of X is equal to the cardinality of Y . Let X = {x1, x2, . . . , xs}
and Y = {y1, y2, . . . , ys}, by the definition of fcon, {f̂(x1), f̂(x2), . . . , f̂(xs)} =
fcon(X) = fcon(Y ) = {f̂(y1), f̂(y2), . . . , f̂(ys)}. For any subchain X ′ of X,
fcon(X ′) is a non-empty subset of fcon(X), so fcon(X ′) is also a non-empty
subset of fcon(Y ), e.g., fcon(X ′) = fcon(Y ′) where Y ′ is a subchain of Y .
Furthermore, different subchains of X will correspond to different subchains
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Figure 5.3-3: Dual nerve through consolidation

of Y and vice versa. In particular, fcon(X) and fcon(Y ) have the same
immediate successors. According to Lemma 5.3.1, fcon is a p-morphism from
N d(F) to N d(Hm) and so Log(N d(F)) ⊆ Log(N d(Hm)).

Another Proof of Theorem 5.2.1. By Lemma 5.3.2 and Lemma 5.3.3, the
logic Log(P0(m)) is contained in Log(N d(F)). According to Lemma 5.2.2
and Lemma 5.3.4, the logic Log(N d(F)) is contained Log(P0(m)). There-
fore, Log(N d(F)) = Log(P0(m)) and N d(F) ⊧Med.

5.4. Geometric aspects

5.4.1. Simplices and simplicial complexes

This section will discuss geometric aspects of Theorems 5.2.1, Lemma 5.2.2
and Corollary 5.2.3, as well as the relationship between nerves and barycen-
tric subdivision. To this end, a brief review of the (algebraic and geometric)
content of simplices and simplicial complexes is in order.

Let S = {pi}i∈I be a finite set in the w-dimensional Euclidean space Rw.
For given points of S, their affine combination is a point p = ∑i∈I αipi where

∑i∈I αi = 1. We say an affine combination p = ∑i∈I αipi is a convex combination
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if αi ≥ 0 for all i ∈ I. The convex hull of S, (denote by conv(S)), is the set of
all convex combinations of points in S.

Furthermore, points in S are affinely independent if no point is an affine
combination of other points. We give a definition of the simplex.

Definition 5.4.1. A simplex X is a convex hull of affinely independent
points.

If S = {p1, . . . , pm+1} is an affinely independent set in the w-dimensional
Euclidean space Rw, then X = conv(S) is an m-simplex, its dimension
dim(X ) = m. An m-simplex Xm is an m-dimensional polytope or the sim-
plest kind of m-dimensional polyhedron.

Suppose the m + 1 points p1, . . . , pm+1 are affinely independent, which
means the m vectors p2 −p1, . . . , pm+1 −p1 are linearly independent, and then

X = { ∑
1≤i≤m+1

αipi ∶ ∑
1≤i≤m+1

αi = 1 and αi ≥ 0 for 1 ≤ i ≤m + 1}.

When T ⊆ S is a subset of those affinely independent points, the points
of T are obviously affinely independent. Then Y = conv(T ), the convex hull
of T , is a simplex. In fact, it is not difficult to see

Y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

1≤i≤m+1

αipi ∶
∑

1≤i≤m+1

αi = 1 and αi ≥ 0 for 1 ≤ i ≤m + 1

and αi = 0 for pi ∉ T

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We say the simplex Y is a face of X, denoted as Y ⪯ X. Write Y ≺ X
if Y ⪯ X and Y ≠ X. More specifically, Y = ∅ and Y = X are called the
improper faces and the other faces are called proper faces. When dim(Y ) =
m′ ≤m, we call it an m′-face of X.

The non-empty faces of a simplex X form a poset ordered by the set
inclusion. We call this poset the face poset Q(X) of the simplex X. The
dual of this face poset, denoted as Qd(X), is obtained by reversing the order
in the Q(X).

Definition 5.4.2. A simplicial complex Σ is a finite set of simplices that
satisfies the following conditions:

1. Every face of a simplex from Σ is in Σ.

2. The non-empty intersection of any two simplices X and X ′ from Σ is
a face of both X and X ′.
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The support of Σ is the set ∣Σ∣ = ⋃Σ. We say that Σ is a triangulation of
the polyhedron ∣Σ∣.

Under the above order ⪯, Σ forms a poset Q(Σ), we also call this poset
a face poset of the simplicial complex. Qd(Σ) denotes the dual face poset
of the simplicial complex Σ, which is defined to be the poset of non-empty
faces ordered by reverse inclusion.

For each simplicial complex Σ, its vertex set is the set of all its 0-faces, that
is, V = {Y ∶ Y ∈ Σ and dim(Y ) = 0}. If we only focus on its vertex set, we are
ignoring the geometric property of the simplex and studying its combinatorial
structure. This leads to an important concept in combinatorics, abstract
simplicial complex. If V is a finite set of points and A(Σ) is a collection of
non-empty finite subsets of V , we say that A(Σ) is an abstract simplicial
complex on the finite vertex set V if

1. {v} ∈ A(Σ) for all v ∈ V .

2. X ∈ A(Σ) and Y ⊆X imply Y ∈ A(Σ).
Related concepts can be extended from geometric to abstract simplicial

complex. The elements of A(Σ) are called the faces and the maximal faces
are called facets. The elements of the vertex set are called the vertices and
each face is a finite subset of the vertex set. We say that a face X has
dimension m, that is dim(X) =m, if m = ∣X ∣−1. The dimension dim(A(Σ))
of A(Σ) is defined to be max{dim(X) ∶X ∈ A(Σ)}.

Let Σ be a simplicial complex. We can obtain an abstract simplicial com-
plex A(Σ) by regarding the faces of A(Σ) be the vertex sets of the simplices
of Σ. Each abstract simplicial complex A(Σ) can be constructed in this way.
Although the choice of Σ is not unique, the underlying topological space,
which is formed by taking the union of the simplices in Σ endowed with the
standard topology on Rw, is unique up to homeomorphism. We call this
space the geometric realization of A(Σ).

An abstract simplicial complex A(Σ) together with the set inclusion re-
lation will form a poset, called the abstract simplicial complex poset A =
⟨A(Σ),⊆⟩, then A ≅ Q(Σ).

5.4.2. Face posets and order complexes

To build a bridge between face posets and the complexes, we need the fol-
lowing definitions and facts, which are classical results from the textbook of
poset topology [Wac07, § 1.1].

63



For any poset F , one can associate an abstract simplicial complex with
it, denoted by ∆(F), called the order complex of F . The vertices of ∆(F)
are those points of F and the faces of ∆(F) are those chains of F . Consider
the face poset of ∆(F), it will be the collection of all non-empty faces of the
order complex together with the set inclusion. Thus a non-empty chain in F
is a non-empty face of ∆(F). According to the definition of nerve, the face
poset Q(∆(F)) is obtained by taking the nerve of the original poset, i.e.,
N (F) = Q(∆(F)).

If we start with a simplicial complex Σ, we can then obtain the face
poset Q(Σ) and then take the order complex to get the ∆(Q(Σ)), the final
simplicial complex is known as the barycentric subdivision of Σ, write as
Sd(Σ), that is, Sd(Σ) = ∆(Q(Σ)).
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b c

a d

{b}
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F ∆(F) Q(∆(F)) ∆(Q(∆(F)))

b c

a d

ab ac
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cd
abc

Figure 5.4-4: Nervers and barycentric subdivision

Thus, if we consider either face poset, order complex, or nerve, barycentric
subdivision as operators, then based on the argument above, we get the
following relation:

N = Q ⋅∆
and

Sd = ∆ ⋅Q
Assume we fix a simplicial complex Σ, let its abstract simplicial complex

poset be A, then A = Q(Σ) up to the isomorphism. So

N (A) = Q ⋅∆(A) = Q ⋅∆ ⋅Q(Σ) = Q(Sd(Σ))

and thus N (A) is the abstract simplicial complex poset of Sd(Σ).
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Furthermore, if we write N (m) = N ⋅ N (m−1) and Sd(m) = Sd ⋅ Sd(m−1),
then

N (m)(A) = (Q ⋅∆)⋯(Q ⋅∆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

(Q(Σ))

= Q (∆ ⋅Q)⋯(∆ ⋅Q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

Σ

= Q(Sd(m)(Σ))

and thus N (m)(A) is the abstract simplicial complex poset of Sd(m)(Σ).
Therefore the dual Qd(Sd(m)(Σ)) = N d(N (m−1)(A)) for any integer m,

together with Corollary 5.2.3, we get the following proposition:

Proposition 5.4.3. For any n-dimensional simplicial complex Σ, the logic
of Qd(Sd(m)(Σ)) includes Medvedev logic Med.

Finally, we describe the geometric version of Theorems 5.2.1 and Lemma
5.2.2, i.e., the version with respect to the face poset of simplex and face poset
of simplicial complex.

Theorem 5.4.4. Let Xn be an n-dimensional simplex, then the dual of its
face poset Qd(Xn) ≅ P0(n + 1).

Proof. Let the vertex set of Xn be {x1, x2, . . . , xn+1}, then each Xn’s non-
empty face Y is a non-empty subset of the vertex set. The following map f
sends a face to its vertex set:

f(Y ) = S, if S = {i ∶ xi ∈ Y }.

So f is a one-to-one map from the subset of vertex set to the subset of
[n + 1], and

Y0 ≤ Y1 in Qd(Xn)
⇐⇒ Y1 ⪯ Y0

⇐⇒ S1 = f(Y1) ⊆ f(Y0) = S0

⇐⇒ S0 ≤ S1 in P0(n + 1).

Therefore f is a poset isomorphism and Qd(Xn) ≅ P0(n + 1).
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Figure 5.4-5: assembly and consolidation of Σ

Theorem 5.4.5. Let Σ be an n-dimensional simplicial complex, then

Log(Qd(Σ)) = Log(P0(n + 1)).

Proof. This proof will be organized by following the proof in Section 5.3
and using the result of dual nerve. For a given poset F , its bunch B(F)
reconstructs it via assembly and it will form a chain with n + 1 elements
by consolidation. From a geometric view, the above procedure is gluing the
simplices to reconstruct the simplicial complex and collapse into a simplex,
see Fig. 5.4-5.

Suppose Σ is a set of simplices {X1,X2, . . . ,Xs}, each m-dimensional
simplex X i is the order complex of a chain Hi of m + 1 elements. In the
procedure of simplices {X1,X2, . . . ,Xs} forming the simplicial complex Σ,
if we glue vertices belong to X i and Xj together, then we will glue the
corresponding elements of chains Hi and Hj together. Finally, we will obtain
the poset F via the assembly and Σ is the order complex of F . Recall the
consolidation described in Section 5.3, every vertex of Σ will become a vertex
of a n-dimensional simplex since the dimension of Σ is n, thus consolidation
indicates how to collapse Σ to a n-dimensional simplex and every maximal
chain of F becomes a face of the n-dimensional simplex, at the same time,
F becomes a chain Hn+1.

In the above argument, each simplicial complex in every step is the order
complex of the poset, therefore the face posets of those simplicial complexes
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are the nerves of those poset since N = Q⋅∆. So the discussion about the dual
face poset is about the dual nerves of posets. Because the maximal dimension
of simplices of Σ is n, by Corollary 5.2.3, Log(Qd(Σ)) = Log(P0(n + 1)).
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6. The logic of spiked Boolean
algebras

In this chapter, we consider the intermediate logic and modal logic of finite
spiked Boolean algebras and prove that the modal and intermediate logics
associated to it are not finitely axiomatisable. Furthermore, we prove that
LS is not finitely axiomatisable over Cheq.

6.1. Non-finite axiomatisability of LS, sBa

and S4.sBa

The following lemma is a direct consequence of the suspension Lemma 4.2.7
by Maksimova, Skvortsov and Shehtman.

Lemma 6.1.1. Assume F is a finite rooted frame with a top, then for any
n ≥ 0, the n-th suspension F (n) of F is a p-morphic image of some spiked
Boolean algebra Sj.
Proof. If n = 0, then F (n) = F is a finite rooted frame with a top 1F . So
by Lemma 4.2.5, this frame F is a p-morphic image of P0(j) for some j,
say the p-morphism f0. Since Sj is obtained by adding a top ∅ and spikes
{{is} ∶ 1 ≤ i ≤ j} to P0(j), we then define a map f from Sj = ⟨Sj,≤Sj⟩ to
F = ⟨F,≤⟩ as follows:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1F , if x ∈ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j}
f0(x), otherwise

.

If x ≤Sj y in Sj, then there are three different cases:
Case A1. If x ∈ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j} and y ∈ {∅} ∪ {{is}1 ≤ i ≤ j}, thus

x = y and f(x) = f(y) = 1F .
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Figure 6.1-1: spiked Boolean algebra S3 and P0(3)

Case A2. If x ∉ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j} and y ∈ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j},
thus f(x) = f0(x) and f(y) = 1F , then f(x) ≤ f(y).

Case A3. If x ∉ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j} and y ∉ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j},
thus f(x) = f0(x) and f(y) = f0(y). Because f0 is a p-morphism from P0(j)
to F and x ≤Sj y in Sj, we obtain f(x) ≤ f(y).

If f(x) ≤ t in F for some x ∈ Sj, then there are two different cases:
Case B1. If f(x) ≤ t and t = 1F , then f(∅) = 1F and x ≤Sj ∅.
Case B2. If f(x) ≤ t and t ≠ 1F , then there exists a y such that x ≤Sj y

and f(y) = f0(y) = t since f0 is a p-morphism from P0(j) to F .
In conclusion, f is a p-morphism from Sj to F .
If n = 1, then F (n) = F (1) is a suspension of F , where F is a finite rooted

frame with a top. By Lemma 4.2.7, F is a p-morphic image of P0(j) for
some j, say the map f1. We then define a map f ′ from Sj = ⟨Sj,≤Sj⟩ to
F (1) = ⟨F (1),≤1⟩ as follows:

f ′(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0,1), if x = ∅
(1,1), if x ∈ {{is} ∶ 1 ≤ i ≤ j}
(f1(x),0), otherwise

If x ≤Sj y in Sj, then there are four different cases:
Case C1. If x ∈ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j}, then x = y and f ′(x) = f ′(y).
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Case C2. If y = ∅, then f ′(x) = (f1(x),0) ∈ F × {0} and f ′(y) = (0,1),
thus f ′(x) ≤ f ′(y).

Case C3. If y ∈ {{is} ∶ 1 ≤ i ≤ j}, then f ′(x) = (f1(x),0) ∈ F × {0} and
f ′(y) = (1,1), thus f ′(x) ≤ f ′(y).

Case C4. If x ∉ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j} and y ∉ {∅} ∪ {{is} ∶ 1 ≤ i ≤ j},
then f ′(x) = (f1(x),0) and f ′(y) = (f1(y),0). Because f1 is a p-morphism
from P0(j) to F and x ≤Sj y in Sj, we obtain f ′(x) ≤ f ′(y).

If f ′(x) ≤ t in F (1) for some x ∈ Sj, then there are three different cases:
Case D1. If f ′(x) ≤ t and t = (0,1), then f(∅) = (0,1) and x ≤Sj ∅.

Case D2. If f ′(x) ≤ t and t = (1,1), then there exists 1 ≤ i ≤ j such that
i ∈ x, then x ≤Sj {is} and f ′({is}) = (1,1).

Case D3. If f ′(x) ≤ t and t ∈ F × {0}, then there exists a y such that
x ≤Sj y and f ′(y) = (f1(y),0) = t since f1 is a p-morphism from P0(j) to F .

In conclusion, f ′ is a p-morphism from Sj to F (1).
If n > 1, then F (n) is a suspension of F (n−1), where F (n−1) the n − 1th

suspension of a finite rooted frame with a top. By Lemma 4.2.7, Fn−1 is a
p-morphic image of P0(j) for some j, say the map f2. We then define a map
f ′′ from Sj = ⟨Sj,≤Sj⟩ to F (n) = ⟨F (n),≤n⟩ as follows:

f ′′(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0,1), if x = ∅
(1,1), if x ∈ {{is} ∶ 1 ≤ i ≤ j}
(f2(x),0), otherwise

By the above argument, we have f ′′ is a p-morphism from Sj to F (n) for
n > 1. So for any n ≥ 0, we have F (n) is the p-morphic image of some Sj.

Corollary 6.1.2. Each Chinese lantern Φ′(s, n,m) is a LS-frame.

Proof. It is obvious that the downset (m,0)↓ in Φ′(s, n,m) is a finite rooted
frame with a top (m,0). Then we can obtain Φ′(s, n,m) by taking the m-th
suspension of (m,0)↓ .

In other words, Φ′(s, n,m) = ((m,0)↓)(m) and applying Lemma 6.1.1,
it is obvious that Φ′(s, n,m) is a p-morphic image of some spiked Boolean
algebra.

Lemma 6.1.3. Let Φ(s, n) be a Chinese lantern. If it is a p-morphic image
of some spiked Boolean algebra Sm, then n < 2s+2, that is, the branching
degree of the root is less than 2s+2.
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Proof. Let f be the p-morphism from a finite spiked Boolean algebra Sm to
Φs,n. Let C be the set of coatoms of Sm: we can think of Sm as the power
set of C with additional spikes, i.e., ∅ is the top of the Boolean algebra
corresponding to Sm, the singletons {c} are the coatoms, and C is the root
of Sm. Let P0(m) be the corresponding topless Boolean algebra, i.e., the set
of non-empty subsets of C.

Clearly, both the top of Sm and its spikes have to be sent by f to maximal
elements in Φ(s, n), i.e., either (0,0) or (0,1). Without loss of generality,
the top is mapped to (0,0). This means that at least one spike is mapped to
(0,1). Note furthermore that any element of Sm that is not a spike cannot
be mapped to (0,1) (since it is below ∅). We consider two cases.

Case 1. All spikes are mapped by f to (0,1). Note that the part of Φ(s, n)
that is strictly below (0,1) is just Φ(s−1, n). This means that every coatom
of Sm has a successor mapped to (0,0) and a successor mapped to (0,1), so
it cannot be mapped to either and therefore has to be mapped to an element
of Φ(s− 1, n). Thus, f↾P0(m) is a p-morphism from P0(m) onto Φ(s− 1, n),
so by [MSS79, Lemma 6] or Lemma 4.2.10, we have n < 2(s−1)+3 = 2s+2.

Case 2. Some spikes are mapped by f to (0,0) and some to (0,1). In
this case, let C0 and C1 be the sets of coatoms whose corresponding spikes
are mapped to (0,0) and (0,1), respectively. Both sets are non-empty in this
case. All coatoms in C0 have no successor mapped to (0,1), so they must be
mapped by f to (0,0) as well; similarly, all subsets of C0 must be mapped
to (0,0).

For any X ⊆ C, let X0 ∶= X ∩C0 and X1 ∶= X ∩C1. Note that if X1 ≠ ∅,
then there is some c ∈X1 = C1∩X, so X1 lies below the spike associated with
c which is mapped to (0,1). Thus f(X1) ≠ (0,0). Note that we observed
before that f(X1) ≠ (0,1) for any X ⊆ C.

Claim. For each X ⊆ C, we have f(X) = f(X1).
[We can prove the claim by induction on the size of X. The case of

∣X ∣ = 0, i.e., X =X1 = ∅ is trivial. We deal with two special cases first:

1. If f(X1) = (s + 1,0), i.e., the bottom element of the Chinese lantern,
then f(X) ≤ f(X1) and thus f(X) = (s + 1,0) = f(X1).

2. If X1 = ∅, then X ⊆ C0, so f(X) = f(X1) = f(∅) = (0,0) by the above
remark.

Therefore, without loss of generality, we can assume from now on that f(X1)
is neither (0,0), (0,1), nor (s + 1,0). Suppose that we have f(X) < f(X1)
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for some X. Because of our assumption, we know f(X1) ≠ (s + 1,0). Thus,
there is some x in the Chinese lantern that is incomparable with f(X1) and
f(X) ≤ x. Since the Chinese lantern is the p-morphic image of f , there is
some element of the spiked Boolean algebra mapping to x. Note that by our
assumption (0,0) ≠ x ≠ (0,1) and therefore the preimage of x can neither
be the top nor any spike. So, let Z ⫋ X such that x = f(Z). Since it is a
proper subset, the induction hypothesis applies to Z, so f(Z1) = f(Z). But
Z1 ⊆ X1, and so x = f(Z) = f(Z1) ≥ f(X1) in contradiction to the choice of
x.]

Let P0(m1) be the topless Boolean algebra corresponding to the power
set Boolean algebra of C1. Our claim implies that f↾P0(m1) is a p-morphism
from P0(m1) onto Φ(s−1, n), so by [MSS79, Lemma 6] or Lemma 4.2.10, we
have n < 2(s−1)+3 = 2s+2.

Corollary 6.1.4. For each natural number s ≥ 1, the frame Φ(s,2s+2) is not
a LS-frame.

Proof. By Lemma 6.1.3, Φ(s,2s+2) is not a p-morphic image of any spiked
Boolean algebra Sm.

It is not difficult to see that the spiked Boolean algebra is closed under
rooted generated subframes. Thus, according to Jankov-de Jongh Theorem

Φ(s,2s+2) ⊧ LS iff Φ(s,2s+2) is a p-morphic image of some Sm.

Thus Φ(s,2s+2) is not a LS-frame.

Theorem 6.1.5. The intermediate logic of spiked Boolean algebra LS is not
finitely axiomatisable.

Proof. If not, assume LS = φ(p1, . . . , ps) and φ is a formula with s variables.
Due to Proposition 4.2.9, there is a m ≤ s such that

Φ(s, n) ⊧ φ iff Φ′(s, n,m) ⊧ φ.

In particular, there is a m ≤ s such that

Φ(s,2s+2) ⊧ φ iff Φ′(s,2s+2,m) ⊧ φ.

According to Corollary 6.1.4, Φ(s,2s+2) ⊭ LS. By Corollary 6.1.2, we have
Φ′(s,2s+2,m) is LS-frame. The contradiction means that φ is not axiomatis-
able with s variables for any s ∈ ω and so LS is not finitely axiomatisable.
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Lemma 6.1.6. Let L be an intermediate logic, then L is finitely axiomatis-
able iff σ(L) is finitely axiomatisable.

Proof. This lemma is based on [She90, Corollary 8], which the author con-
tribute it to an observation made by Maksimova. If L is finitely axiomatisable,
then σ(L) is finitely axiomatisable since σ(L) = Grz + {T(ϕ) ∶ ϕ ∈ L}.

If L is not finitely axiomatisable, then it could be the union of an ascending
chain of logics,

L =⋃Li

and
L0 ⫋ L1 ⫋ . . .

But according to Blok-Esakia isomorphism theorem,

σ(L0) ⫋ σ(L1) ⫋ . . .
and σ(L) is the union of this ascending chain, so σ(L) is not finitely axioma-
tisable.

Thus, if we already have τ(L) is finitely axiomatisable, then σ(L) = Grz+
τ(L) is and so L is finitely axiomatisable. As a consequence, it is enough to
show that the intermediate logic L is not finitely axiomatisable in order to
have all three logics L, σ(L), and τ(L) are not finitely axiomatisable.

Corollary 6.1.7. The modal logic of spiked Boolean algebra sBa and the
modal logic of spiked pre-Boolean algebra S4.sBa are not finitely axiomatis-
able.

Proof. Because LS is not finitely axiomatisable, together with sBa = σ(LS)
and S4.sBa = τ(LS), then sBa and S4.sBa are not finitely axiomatisable.

6.2. The bow-tie lemma

Definition 6.2.1 (Linear sum and vertical sum). Let E0 = (E0,≤0) and
E1 = (E1,≤1) be two disjoint partial order sets. The linear sum of E0 and E1,
denoted by E0 ⊕ E1, is the union E0 ∪ E1 equipped with a new order ≤: for
any x, y, we have x ≤ y if and only if (x, y ∈ E0∧x ≤0 y) or (x, y ∈ E1∧x ≤1 y)
or (x ∈ E0 ∧ y ∈ E1).

If E0 has a greatest element 1E0 and E1 has a least element 0E1 , the vertical
sum of E0 and E1, denoted by E0⊕E1, is obtained from E0 ⊕ E1 by identifying
1E0 with 0E1 .
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(a)

⊕ →

(b)

⊕ →

Figure 6.2-2: (a) is an example of a linear sum, while (b) is an example of a
vertical sum.

Lemma 6.2.2. Suppose E0 = (E0,≤0) be a frame with a greatest element,
and E1 = (E1,≤1) forms a frame with a least element. If E0 is a p-morphic
image of Cn and E1 is a p-morphic image of Cm, it follows that the vertical
sum E0⊕E1 is a p-morphic image of Cn+m.

Proof. Let f0 be the p-morphism from Cn onto E0 = (E0,≤0) and f1 be the
p-morphism from Cm onto E1 = (E1,≤1). For any x ∈ Cn+m, assume x =
(x0, x1, . . . , xn−1, xn, . . . , xn+m−1), we then define a map f from Cn+m onto
E0⊕E1 as follows:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

f0(x0, . . . , xn−1) if xn = xn+1 = . . . = xn+m−1 = 0

f1(xn, . . . , xn+m−1) otherwise

It is tedious but not difficult to check that f is a p-morphism from the frame
Cn+m onto the frame E0⊕E1.
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a b

c d

Figure 6.2-3: Bow-tie

We denote by B = ⟨B,R⟩ the bow-lie, i.e., the partial order with four
elements B = {a, b, c, d}, two incomparable minimal elements {a, b} and two
incomparable maximal elements {c, d} such that each maximal element is
above each minimal element; cf. Figure 6.2-3.

Lemma 6.2.3 (Bow-tie lemma). Let A be a finite rooted frame and B be a
bow tie. Then the linear sum A⊕ B is a p-morphic image of some Cn.

Proof. It is obvious that A ⊕ a is a finite rooted frame with the greatest
element a, then A⊕ a is a p-morphic image of some Medvedev frame P0(n)
and we assume this p-morphism is f . Note that P0(n) is exactly the frame

P0(n) = ⟨{(x0, x1, . . . , xn−1) ∶ (xi = 0 ∨ xi = 1) ∧∑
i

xi ≠ n},≤⟩

where

(x0, x1, . . . , xn−1) ≤ (x′0, x′1, . . . , x′n−1) iff xi ≤ x′i for any 0 ≤ i ≤ n − 1.

So f is a p-morphism from P0(n) onto a↓ in A⊕ B.
For the given n, consider the frame Cn. Every node x of Cn could be

associate with an n-tuple (x0, x1, . . . , xn−1) where xi ∈ {0,1,2}, every node of
P0(n) could be ssociate with an n-tuple (x0, x1, . . . , xn−1) where xi ∈ {0,1}
and ∑i xi ≠ n , thus P0(n) is a subframe (not a generated subframe) of Cn.

Now we let M be the set of all maximal (not necessarily greatest) elements
of A, in other words, M = {x is a node of A ∶ the depth of x in A is equal to
1}. We already know that f is a p-morphism from P0(n) to A⊕ a, then let
V denote f−1(M), that is, V = {v is a node of P0(n) ∶ f(v) ∈M}.

In this configuration, for any v = (v0, v1, . . . , vn−1) ∈ V , we construct a
wv = (w0,w1, . . . ,wn−1) as follows:

wi =
⎧⎪⎪⎨⎪⎪⎩

0, if vi = 1

2, if vi = 0
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For any such wv, let wv↑ be the upset of wv in Cn and we obtain a set
of nodes in Cn by collecting all wv↑ and a node (1,1, . . . ,1). So we assume
W = ⋃v∈V wv↑∪ {(1,1, . . . ,1)}.

As a next step, we will construct some set of nodes in Cn via turning to
consider f−1(a). Recall f is a p-morphism from P0(n) to A ⊕ a, now let
X = {x is a node of P0(n) ∶ f(x) = a}.

For any x ∈ X, where x = (x0, x1, . . . , xn−1), let I0 = {i ∶ 0 ≤ i ≤ n −
1 and xi = 0} and I1 = {i ∶ 0 ≤ i ≤ n − 1 and xi = 1}, we construct some
y = (y0, y1, . . . , yn−1) as follows:

If i ∈ I0, then yi ≠ 1 and there is at least one i ∈ I0 such that yi ≠ 0. If
i ∈ I1, then yi = 1.

For all x ∈ X, let Y be the set of all y which is built by those x via the
above procedure. For those nodes that do not occur in Y ∪W nor P0(n), we
collect them and then form a set Z.

We define a map f1 from Cn onto A⊕ B as follows:

f1(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c, if u ∈ Y
d, if u ∈W
f(u), if u is a node in P0(n)
b, if u ∈ Z

Now we start to prove that f1 is a p-morphism from Cn onto A⊕ B.
First, we need to prove Y , W , Z and the set of nodes in P0(n) are

mutually disjoint partitions of nodes in Cn.
According to the procedure to produce Y , for any y = (y0, y1, . . . , yn−1) ∈

Y , together with some I0 which is not empty and there is a yi = 2, so y is not
a node in P0(n). It is obvious that for any w = (w0,w1, . . . ,wn−1) ∈W , there
is a wi = 2 or w = (1,1, . . . ,1), therefore w is not a node in P0(n).

Since a ≥ m for any m ∈ M in A and f is a p-morphism from P0(n) to
A ⊕ a, it is not possible to find a v = (v0, v1, . . . , vn−1) ∈ V in P0(n) and x =
(x0, x1, . . . , xn−1) ∈X in P0(n) such that vi = 0→ xi = 0 for every 0 ≤ i ≤ n−1.
If not, then we can find v′ ≥ x′ in P0(n) and then f(v′) ≥ f(x′) in A ⊕ a.
But according to the definition, f(v′) ∈ M and f(x′) = a, a contradiction.
Therefore, for every v = (v0, v1, . . . , vn−1) ∈ V and x = (x0, x1, . . . , xn−1) ∈ X,
there is a 0 ≤ i ≤ n−1 such that vi = 0 and xi = 1. According to our procedure,
for any w = (w0,w1, . . . ,wn−1) ∈ wv↑, wi = 2 and x will produce some y =
(y0, y1, . . . , yn−1) with yi = 1. Together with the fact that (1,1, . . . ,1) ∈ W
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and (1,1, . . . ,1) ∉ Y , the above argument indicates that for any w ∈ W and
y ∈ Y , there is at least one 0 ≤ i ≤ n − 1, wi ≠ yi and then w ≠ y.

By the definition of Z and putting everything together, Y , W , Z and
nodes in P0(n) are mutually disjoint. Our map f1 is well-defined.

The next step is to prove that u ≤ x implies f1(u) ≤ f1(x).
If u = (u0, u1, . . . , un−1) is a node in P0(n) and u ≤ x, then we consider

the following cases:
Case 1. If x is also a node in P0(n). It is obvious that f1(u) = f(u) ≤

f(x) = f1(x) since f is a p-morphism.
Case 2. If f1(u) = f(u) ≠ a and x is not a node in P0(n), then f1(x) ∈

{b, c, d} and then f1(u) ≤ f1(x).
Case 3. If f1(u) = f(u) = a and x is not a node in P0(n), then u ∈ X. If

x = (1,1, . . . ,1), then f1(u) = a ≤ d = f1(x). Otherwise, there is at least one
0 ≤ i ≤ n−1 such that xi = 2 since x is not in P(n). In u↑ in Cn, those elements
which are not in P(n) will be sent to c via f1. Therefore f1(u) = a ≤ c = f1(x).

If u = (u0, u1, . . . , un−1) is a node in Z and u ≤ x, then there is at least one
ui = 2 and so xi = 2. Thus x is in W , Y or Z and f1(x) ∈ {b, c, d}, we always
have f1(u) = b ≤ f1(x).

If u = (u0, u1, . . . , un−1) is a node in Y and u ≤ x, then we consider the
following cases:

Case 1. If there is no ui = 0, then x = u and so f1(u) = f1(x).
Case 2. Because u ∈ Y , assume t = (t0, t1, . . . , tn−1) ∈ X produce u by the

procedure, then {i ∶ 0 ≤ i ≤ n − 1 and ui ≠ 1} = {i ∶ 0 ≤ i ≤ n − 1 and ti = 0}.
Since u ≤ x, it is obvious that ui ≤ xi, thus {i ∶ 0 ≤ i ≤ n − 1 and xi ≠ 1} ⊆ {i ∶
0 ≤ i ≤ n − 1 and ui ≠ 1}. Suppose I = {i ∶ 0 ≤ i ≤ n − 1 and xi ≠ 1}, we then
construct a element t′ = (t′0, t′1, . . . , t′n−1) such that:

t′i =
⎧⎪⎪⎨⎪⎪⎩

0, if i ∈ I
1, otherwise

Since there at least one ui = 2, so xi = 2 and then t′i = 0, t ≠ (1,1, . . . ,1).
Therefore t′ is a node in P0(n). Since {i ∶ 0 ≤ i ≤ n − 1 and t′i = 0} = I ⊆ {i ∶
0 ≤ i ≤ n − 1 and ui ≠ 1} = {i ∶ 0 ≤ i ≤ n − 1 and ti = 0}, then it is obvious
that ti ≤ t′i for any 0 ≤ i ≤ n − 1. In conclusion, t ≤ t′ and a = f(t) ≤ f(t′),
thus f(t′) = a and t′ ∈ X. Due to our construction, we have t′ produces
x by the procedure from X to Y , so x ∈ Y . Putting everything together,
f1(u) = c = f1(x).
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If u = (u0, u1, . . . , un−1) is a node in W and u ≤ x, then we consider the
following cases:

Case 1. If u = (1,1, . . . ,1), then x = (1,1, . . . ,1) and so f1(u) = f1(x).
Case 2. If u ∈ wv↑ for some v ∈ V , then x ≥ u will also be an element in

wv↑, thus x ∈W and f1(u) = d = f1(x).
The final step is to finish the proof of p-morphism. Since f1(X) = a,

f1(Z) = b, f1(Y ) = c, f1(W ) = d and f1(V ) =M , what we need to figure out
are the following non-trivial cases:

Case 1. If f1(u) ≤ s in A ⊕ a, then there is a x in P0(n) such that
f1(x) = f(x) = s and u ≤ x since f is a p-morphism from P0(n) to A⊕ a.

Case 2. If f1(u) ≤ b and f1(u) ∈ M , because every node with only one
digit is 0 in P0(n) will be sent to a via f , then u has at least two digits
ui = uj = 0, where i ≤ j. Let x = (x0, x1, . . . , xn−1) be a node defined as
follows:

xm =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

um, if m ∉ {i, j}
0, if m = i
2, if m = j

It is obvious that um ≤ xm for any 0 ≤ m ≤ n − 1 and then u ≤ x. Since
f(u) ∈ M , u is not an element of X, thus x is not an element of Y . In the
meantime, every node of V will have at least two digits that are 0, so every
node of W except (1,1, . . . ,1) will have at least two digits that are 2. Since
x has exactly one digit xj which is 2, therefore x ∉ wv↑ for any v ∈ V and
x ≠ (1,1, . . . ,1), then x is not an element of W . It is not difficult to see x ∈ Z.
In conclusion, u ≤ x and f1(x) = b.

Case 3. f1(u) = a ≤ c, then u ∈X, x = (x0, x1, . . . , xn−1) be a node defined
as follows:

xi =
⎧⎪⎪⎨⎪⎪⎩

1, if ui = 1

2, if ui = 0

Then x is produced from u and we have u ≤ x and x ∈ Y , f1(x) = c.
Case 4. In this case, f1(u) = a ≤ d, then let x = (1,1, . . . ,1), then f1(x) = d

and u ≤ x.
Case 5. f1(u) = b ≤ c, we need to find a x such that f1(x) = c, that is,

x ∈ Y , and u ≤ x.

78



Because u ∈ Z, there is at least one ui = 2 and at least one uj ≠ 2. We
build a t = (t0, t1, . . . , tn−1) as follows:

tm =
⎧⎪⎪⎨⎪⎪⎩

0, if um = 2

1, if um ≠ 2

If t ∉ X ∪ V , then there is a s ∈ M such that f(t) ≤ s. Since f is a
p-morphism, there is a t′ ∈ V such that f(t′) = s ∈M and t ≤ t′. We construct
w = (w0, x1, . . . ,wn−1) as follows:

wm =
⎧⎪⎪⎨⎪⎪⎩

0, if t′m = 1

2, if t′m = 0

Then wm = 2 implies t′m = 0, and then tm = 0 since t ≤ t′, and so um = 2
by the definition. Therefore wm ≤ um for any 0 ≤ m ≤ n − 1 and so w ≤ u.
Since t′ ∈ V , we have w ∈W due to our construction. In particular, u ∈W , a
contradiction.

If t ∈ V , then u ∈ wt↑ and so u ∈W , a contradiction.
If t ∈X, then we consider x = (x0, x1, . . . , xn−1) as follows:

xm =
⎧⎪⎪⎨⎪⎪⎩

2, if tm = 0

1, if tm = 1

Then x is produced from t and so x ∈ Y , it is obvious that um ≤ xm and
so u ≤ x.

In conclusion, t ∈X and we have x ∈ Y and u ≤ x.
Case 6. In this case, f1(u) = b ≤ d, we need to find a x such that f1(x) = d,

that is, x ∈ W and u ≤ x. Because u ∈ Z, there is at least one ui = 2 and at
least one uj ≠ 2. We build a t = (t0, t1, . . . , tn−1) as follows:

tm =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if um = 2

1, if um = 1

0, if um = 0

If t ∉ X ∪ V , then there is a s ∈ M such that f(t) ≤ s. Since f is a
p-morphism, there is a t′ ∈ V such that f(t′) = s ∈M and t ≤ t′.
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We construct w = (w0, x1, . . . ,wn−1) and x = (x0, x1, . . . , xn−1) as follows:

wm =
⎧⎪⎪⎨⎪⎪⎩

0, if t′m = 1

2, if t′m = 0

and

xm =
⎧⎪⎪⎨⎪⎪⎩

1, if t′m = 1 and tm = 1

2, otherwise

Then um = 1 indicates tm = 1, since t ≤ t′, t′m = 1, so xm = 1. If um ≠ 1,
then tm = 0 and then xm = 2. Therefore um ≤ xm for 0 ≤ m ≤ n − 1. In
conclusion, u ≤ x.

Note that wm = 2 implies t′m = 0, and then xm = 2. Thus x ∈ w↑. Since
t′ ∈ V , according to the definition of w, w ∈W and thus x ∈W .

If t ∈ X, then tm = 1 implies um = 1 and tm = 0 implies tm ≤ um. Thus
u is produced from t by the procedure from X to Y , and then u ∈ Y , a
contradiction.

If t ∈ V , then consider the following x = (x0, x1, . . . , xn−1):

xm =
⎧⎪⎪⎨⎪⎪⎩

1, if tm = 1

2, if tm = 0

then um ≤ xm due to our construction and then u ≤ x and x ∈ W since
x ∈ wt↑.

In conclusion, t ∉X and we always have x ∈W and u ≤ x.
So far we have proved that f1 is a p-morphism from Cn onto A⊕ B.

We will use the bow-tie lemma to prove that LS is not finitely axioma-
tisable over Cheq. Recall the Chinese lanterns Φ(s, n) and Φ′(s, n,m) from
Chapter 4. We will see that:

Corollary 6.2.4. Φ(s, n) and Φ′(s, n,m) are Cheq-frames.

Proof. Each Φ(s, n) is a linear sum of a finite rooted frame and a bow-tie.
Thus it is a Cheq-frame according to the bow-tie Lemma 6.2.3. For m ≥ 0,
(m,0)↑ in Φ′(s, n,m) depends on m. When m ≥ 2, it is a linear sum of a
finite rooted frame and the bow-tie. When m = 1, it is C1 itself. When m = 0,
it is a singleton point. In conclusion, the frame (m,0)↑ is a Cheq-frame by
the bow-tie Lemma 6.2.3.
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Because (m,0)↓ is a finite rooted frame with a top, it is a Med-frame.
Since Cheq ⊆Med and so (m,0)↓ is a Cheq-frame.

Because Φ′(s, n,m) is the vertical sum of (m,0)↓ and (m,0)↑, that is,

Φ′(s, n,m) = (m,0)↓⊕(m,0)↑.

By Lemma 6.2.2 and putting everything together, Φ′(s, n,m) is always a
Cheq-frame.

The bow-tie lemma enriches the properties of Cheq-frames and proves
that a particular class of frames are all Cheq-frames.

It is useful for addressing and resolving Cheq-frame problems. One ap-
plication is that, given Cheq ⊆ TLPF , to demonstrate that TLPF is not
finitely axiomatisable over Cheq, we must ensure that both the Chinese
lanterns Φ(s, n) and Φ′(s, n,m) are Cheq-frames, as established by Corol-
lary 6.2.4. Following the method in Section 4.2, we arrive at a generalization
of Fontaine’s result:

Proposition 6.2.5. If TLPF includes Cheq, then TLPF is not finitely ax-
iomatisable over Cheq.

Since Med = TLPH2 and Cheq ⊆ Med, it follows that Med is not finitely
axiomatisable over Cheq, as shown in [Fon06, Theorem 9]. Proposition 6.2.5
generalizes this theorem.

6.3. LS is not finitely axiomatisable over Cheq

Theorem 6.3.1. The intermediate logic of spiked Boolean algebra LS is not
finitely axiomatisable over Cheq.

Proof. Since Cheq ⊆ LS, if LS is finitely axiomatisable over Cheq, then let us
assume LS = Cheq+φ(p1, . . . , ps) and φ is a formula with s variables. Due to
proposition 4.2.9, there is a m ≤ s such that

Φ(s, n) ⊧ φ iff Φ′(s, n,m) ⊧ φ.

In particular, there is a m ≤ s such that

Φ(s,2s+2) ⊧ φ iff Φ′(s,2s+2,m) ⊧ φ.
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By Corollary 6.2.4, Φ(s, n) and Φ′(s, n,m) are Cheq-frames. So it is
impossible that one of Φ(s,2s+2) and Φ′(s,2s+2,m) is a LS-frame and the
other is not.

According to Corollary 6.1.2, Φ′(s,2s+2,m) ⊧ LS while Φ(s,2s+2) ⊭ LS by
Corollary 6.1.4. The contradiction means that φ is not axiomatisable with s
variables for any s ∈ ω and so LS is not finitely axiomatisable over Cheq.
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7. The axiomatisation of Cheq and
related modal logics

This chapter first investigates the modal logic ML(Cn), the modal logic of
the Cartesian product of the 2-fork frame C1. We prove that the frame Cn is
isomorphic to:

1. The finite partial function algebra Rn on n elements;
2. The dual face poset of n-cube.
Additionally, we prove that Cn ⊧ Grz + bws(n) + bdn+1, since the largest

antichain in Cn has a size of s(n) = ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋.

Kuznetsov [Kuz19] suggested using the edge-coloring result of Offner
[Off08, Theorem 2] to discuss the strategies of Fontaine and Shatrov for
proving that Cheq is not finitely axiomatisable. We introduce Kuznetsov’s
work and then discuss his alternative solution by bow-tie lemma.

Finally, we prove that Cheq is not finitely axiomatisable with five or six
variables.

7.1. The logic of cartesian products of

2-fork frame

Recall the 2-fork frame C1 and its Cartesian product Cn. Each point x of Cn
can be associated with an n-tuple (x0, x1, . . . , xn−1), where xi ∈ {0,1,2}. For
ease of notation, we may sometimes write (x0, x1, . . . , xn−1) directly as the
string x0x1 . . . xn−1.

Definition 7.1.1. Let ML(C1) be the modal logic characterized by the 2-fork
frame C1, and let ML(Cn) be the modal logic characterized by the frame Cn.

Theorem 7.1.2. The logics {ML(Ci)}i≥1 form a descending chain, that is,
ML(C1) ⊇ML(C2) ⊇ . . . ⊇ML(Cn) ⊇ . . .
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Proof. We begin with proving ML(C1) ⊇ML(C2) by providing a p-morphism.
Assuming C1 = ⟨W1,R1⟩ and C2 = ⟨W2,R2⟩, where W1 = {0,1,2} and W2 =
{00,01,02,10,20,11,12,21,22}. We define a map f1 from C2 onto C1 as fol-
lows:

f1(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x ∈ {00,01,02,10,20}
1, x ∈ {11,22}
2, x ∈ {12,21}

.

To check f1 is a p-morphism, if x1 < x2, then f1(x1) = 0 and it is obvious
that f1(x1) < f1(x2). For any x1 ∈W2 and f1(x1) < y, it means that f1(x1) = 0
and we can choose x2 = 11 or 22 when y = 1, choose x2 = 12 or 21 when y = 2.
It guarantees that we always have a x2 ∈W2 such that f1(x2) = y and x1 < x2.
So f1 is a p-morphism from C2 onto C1 and then ML(C2) ⊆ML(C1).

Now we begin to prove that ML(Cn) ⊇ ML(Cn+1) for n ≥ 2 by construct-
ing a p-morphism fn from Cn+1 onto Cn. Assuming Cn = ⟨Wn,Rn⟩ and
Cn+1 = ⟨Wn+1,Rn+1⟩, for any x ∈ Wn+1, x is associated with an n + 1-tuple
(x0, x1, ..., xn) where xi ∈ {0,1,2}. We can regard (x0, x1) as an element of
C2, and let

x01 ∶= f1((x0, x1)).
Then y = (x01, x2, ..., xn) is an n-tuple of {0,1,2}, thus an element of Wn.
According to the above discussion, we define a map from Cn+1 onto Cn as
follows:

fn(x) = y, where x = (x0, x1, ..., xn) and y = (x01, x2, ..., xn).

If s ≤ t in Cn+1 where s = (s0, s1, ..., sn) and t = (t0, t1, ..., tn), then (s0, s1) ≤
(t0, t1) in C2 and (s2, ..., sn) ≤ (t2, ..., tn) in Cn−1. We have s01 = f1((s0, s1)) ≤
f1((t0, t1)) = t01 since f1 is a p-morphism from C2 to C1. Thus fn(s) =
(s01, s2, ..., sn) ≤ (t01, t2..., tn) = fn(t).

If for any x ∈ Cn+1, fn(x) ≤ y, assuming x = (x0, x1, ..., xn), fn(x) =
(x01, x2, ..., xn) and y = (y1, y2, ..., yn), then f1((x0, x1)) = x01 ≤ y1 and (x2, ...,
xn) ≤ (y2, ..., yn). Since f1 is a p-morphism from C2 to C1, there is a (y′0, y′1) ∈
C2 such that (x0, x1) ≤ (y′0, y′1) and f1((y′0, y′1)) = y1. So y′ = (y′0, y′1, y2, ..., yn) ≥
x in Cn+1 and fn(y′) = (y1, y2, ..., yn) = y according to the construction of fn.
Therefore fn is a p-morphism from Cn+1 onto Cn and then ML(Cn+1) ⊆ML(Cn).

In conclusion, {ML(Cn)}n≥1 forms a descending chain.

We will prove that ML(Cn+1) ⫋ ML(Cn), i.e., the containment relation is
strict in Theorem 7.1.10.
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We introduce the following three classes of formulas:

grz = ◻(◻(p→ ◻p)→ p)→ p.

bdn+1 = pn+1 → ◻(◇pn+1 ∨ bdn) and bd1 = p1 → ◻◇ p1.

For n ≥ 1, bwn = ⋀ni=0◇pi → ⋁0≤i≠j≤n◇(pi ∧ (pj ∨◇pj)).

Regarding these formulas, we have the following three classic results de-
scribing frames:

Proposition 7.1.3 (Folklore; cf. [CZ97, Proposition 3.48]). A frame F val-
idates grz iff it is a Noetherian1 partial order.

Proposition 7.1.4 (Folklore; cf. [CZ97, Proposition 3.44]). A transitive
frame F validates bdn iff the depth of the frame d(F) ≤ n.

Proposition 7.1.5 (Folklore; cf. [CZ97, Corollary 3.43]). A transitive frame
F validates bwn iff the width of each rooted subframe of F is at most n.

Recall that we are defining the modal logic ML(Cn) by the n-product
of 2-fork frame C1. We turn to consider another structure, the finite par-
tial function algebra Rn. This allows us, for each concrete Cn, to consider
the relevant property or problem as a whole, through another well-defined
structure.

Lemma 7.1.6. The frame Cn is isomorphic to the finite partial function
algebra Rn on n elements.

Proof. The finite partial function algebra Rn is a poset of partial functions
from [n] to {1,2} and for any a ∈Rn, we correspond (1a,2a) where 1a = a−1(1)
and 2a = a−1(2). Definite a map f from Rn to Cn as follows:

f(a) = x and xi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, i ∉ dom(a)
1, i ∈ 1a

2, i ∈ 2a

, for 1 ≤ i ≤ n.

If a ≤ b in Rn and assume f(a) = x = (x1, x2, . . . , xn), f(b) = y =
(y1, y2, . . . , yn), then xi ≤ yi since a = b↾dom(a), then f(a) ≤ f(b) in Cn.
Because f is one-to-one from Rn to Cn, then f is an isomorphism from Rn to
Cn, thus Rn ≅ Cn for any n ∈ ω and it is obvious that ML(Cn) =ML(Rn).

1It means that there are no infinite ascending chains of distinct points.
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The relation between points in Cn and elements in the finite partial func-
tion algebra Rn is established through the defined isomorphism. This per-
spective can offer deeper insights into problems related to modal logics of Cn.

Lemma 7.1.7. The size of the largest antichain in Cn is ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋.

Proof. We begin with proving in Rn. Define a function wn(d) as the number
of points in Rn with depth equal to d. Note that ∣Rn∣ = 3n = (1 + 2)n =
∑n
s=0 (ns) × 2s, where 1 in 1 + 2 indicates an index i that is still not included

in the domain of the function, 2 in 1 + 2 indicates the number of choices for
the function from i to {1,2}.

Thus, the number of points of depth n + 1 − s is (n
s
) × 2s. Comparing

(n
s
)×2s and ( n

s+1
)×2s+1, we have (n

s
)×2s ≤ ( n

s+1
)×2s+1 iff s ≤ 2n−1

3 . Since s ∈ Z,

then (n
s
)× 2s is maximal when s = ⌊2n−1

3
⌋+ 1. Because ⌊2n−1

3
⌋+ 1+ ⌊n

3
⌋ = n, we

obtain that wn(d)max = wn (⌊n3 ⌋ + 1) = ( n
⌊ 2n−1

3
⌋+1

) × 2⌊ 2n−1
3

⌋+1 = ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋.

In conclusion, the points in Rn with depth ⌊n
3
⌋ + 1 form an antichain of

size ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋.

We then prove that the above is indeed the largest antichain by returning
to study the frame Cn, which is easier to compute. First, we prove that Cn
has (2n)!! maximal chains by induction, where (2n)!! is the double factorial
of 2n.

When n = 1, the 2-fork frame C1 has 2 maximal chains.
Suppose that the proposition holds for n = s, then for n = s + 1, then the

atoms of the root (0,0, . . . ,0) has 2×(s+1) many choices. Then for any atom
x of Cs+1, since the proposition holds for s and so x↑ has (2s)!! many maximal
chains. Therefore, there are (2s+2)×(2s)!! = (2s+2)!! many maximal chains
in Cs+1. By the induction, Cn has (2n)!! many maximal chains.

For any x as a point of Cn, let #(x) be the number of 0s in x. Following
the same argument, we obtain that x↑ has (2×#(x))!! maximal chains. Since
there are (n−#(x))! path choices from the root to x, then number of maximal
chains of Cn contain x is (2×#(x))!!×(n−#(x))! = #(x)!×(n−#(x))!×2#(x).

Let A be an antichain. Since any maximal chain intersects with at most
one element of A, then ∑x∈A#(x)! × (n − #(x))! × 2#(x) ≤ (2n)!! and then

∑x∈A#(x)! × (n −#(x))! × 2#(x) ≤ n! × 2n.

Divide by n! × 2n, we have ∑x∈A
#(x)!×(n−#(x))!

n! × 2#(x)−n ≤ 1 and thus

∑x∈A
1

( n
#(x))×2n−#(x) ≤ 1.
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By the above argument, ( n
#(x)) × 2n−#(x) is maximal when #(x) = ⌊n

3
⌋.

Therefore ∑x∈A
1

( n

⌊n3 ⌋)×2
n−⌊n3 ⌋ ≤ 1 and so ∣A∣ ≤ ( n

⌊n
3
⌋) × 2n−⌊

n
3
⌋.

Corollary 7.1.8. For ease of writing, assuming s(n) = ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋, then

the width of Cn (or Rn) is s(n) and so Cn ⊧ bws(n) and Cn ⊭ bws(n−1).

Proof. One can immediately conclude that the size of the largest antichain
Cn (or Rn) is equal to s(n) = ( n

⌊n
3
⌋)×2n−⌊

n
3
⌋ by Lemma 7.1, and then the width

of Cn (or Rn) is s(n) according to the definition of width of a frame.

Since the width of Cn is s(n) and s(n) = ( n
⌊n
3
⌋)×2n−⌊

n
3
⌋ is strictly increasing,

thus Cn ⊧ bws(n). According to Proposition 7.1.5, Cn ⊭ bws(n)−1 and Cn ⊭
bws(n−1).

Proposition 7.1.9. The depth of Cn is n + 1, so Cn ⊧ bdn+1 and Cn ⊭ bdn.

Proof. Let xi = (1,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i

,0, . . . ,0) be a point in Cn, then x0 < x1 < . . . < xn

is a chain of size n + 1. Suppose that if there is a chain y0 < y1 < . . . < yn+1

in Cn, then we can find distinct points yi and yj such that the number of
0s in yi is equal to it in yj, thus it is impossible to have yi < yj or yj < yi.
Therefore, the depth of Cn is n + 1.

Therefore Cn ⊧ bdn+1 and Cn ⊭ bdn by Proposition 7.1.4.

Theorem 7.1.10. The logics {ML(Ci)}i≥1 form a strict descending chain,
that is, ML(C1) ⫌ML(C2) ⫌ . . . ⊋ML(Cn) ⫌ . . ..

Proof. Since Cn ⊧ bws(n) but Cn+1 ⊭ bws(n), then bws(n) ∈ ML(Cn) and bws(n) ∉
ML(Cn+1). Together with ML(Cn) ⊇ML(Cn+1), we conclude that the contain-
ment is strict.

Remark 7.1.11. The above theorem is from a statement in [vBB07, p. 255].

Theorem 7.1.12. Cn ⊧ Grz + bws(n) + bdn+1, where s(n) = ( n
⌊n
3
⌋) × 2n−⌊

n
3
⌋.

Proof. Cn ⊧ grz since Cn is a Noetherian partial order and by Proposition
7.1.3. Together with Corollary 7.1.8 and Proposition 7.1.9, Cn ⊧ bws(n)+bdn+1.
In conclusion, Cn ⊧ Grz + bws(n) + bdn+1.
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The following corollary is exact [AvBB03, Theorem 6.9], which is obtained
from a topological viewpoint. We apply Theorem 7.1.12 to get it as the
axiomatisation of C1.

Corollary 7.1.13. ML(C1) = Grz + bw2 + bd2.

Proof. Since s(1) = ( 1
⌊ 1
3
⌋) × 21−⌊ 1

3
⌋ = 2, by applying Theorem 7.1.12, we get

C1 ⊧ Grz + bw2 + bd2. Assume that L = Grz + bw2 + bd2, then for any rooted
L-frame F , there is a p-morphism from C1 to F . Therefore, the modal logic
of the 2-fork frame C1 is Grz + bw2 + bd2.

For any n, what ML(Cn) specifically is remains an open question. Due to
Lemma 7.1.6, their intersection is the modal logic FPFA, which is the greatest
modal companion of Cheq. Whether Cheq is finitely axiomatisable is also a
well-known open question, which we will discuss in the final two sections of
this chapter.

7.2. The logic of the dual face poset of

n-cube

Recall that we have already given two equivalent definitions of the frame Cn:
the n-product of 2-fork frame C1 and the finite partial function algebra Rn
on [n] by Lemma 7.1.6. We provide an additional description of this frame,
the dual face poset of the n-cube. Recall that we introduce the notion of face
poset in Chapter 5. Specifically, for a simplicial complex Σ,

Y ⪯X iff Y is a face of X

and Σ forms a poset Q(Σ) under the order ⪯. We consider the dual of the
face poset when ordered by the reverse ⪯ and proved that if Xn is an n-
dimensional simplex, then the dual of its face poset Qd(Xn) ≅ P0(n + 1).
In this section, we restrict our discussing on the n-cube Qn and prove that
Qd(Qn) ≅ Cn.

We first introduce some concepts of lattice theory.

Definition 7.2.1 (Lattice). Let P = (P,≤) be a partially ordered set. If for
any x, y ∈ P, inf{x, y} ∈ P and sup{x, y} ∈ P, then we call P a lattice. Then
x∧ y denotes inf{x, y} and x∨ y denotes sup{x, y}. If there exists a maximal
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Figure 7.2-1: Cube and its face lattice

element 1̄ and a minimal element 0̄ in P, then we call P a bounded lattice.
An atom x in P if x is not 0̄ and there is no y such that 0 < y < x. Let ∣at(P)∣
be the cardinality of the atoms in P. A lattice is atomistic if every element
is a join of atoms.

Definition 7.2.2 (The dual face poset). Assuming X is a polytope in Rn,
a hyperplane c of Rn is supporting X if one of the two closed half-spaces of
c contains X. A subset F of X is called a face of X if it is either ∅, X itself
or the intersection of X with a supporting hyperplane c.

The empty set ∅ and the X itself are defined to be trivial faces. Other-
wise, the face is called proper. The maximal proper face under the inclusion
is called facet while the minimal proper face is called vertex.

The dual face poset Qd(X) is the poset of non-empty faces of X, ordered
by reverse inclusion:

F0 ≤ F1 iff F0 ⊇ F1.

If we add the top ∅ to Qd(X), then it forms a bound lattice Qd
1(X) since

F0 ∨ F1 = F0 ∩ F1 and F0 ∧ F1 = ⋂(F0∪F1)⊆F F . We call Qd
1(X) the face lattice

of X.
Note that, in the lattice theory, the face lattice of X is the opposite lattice

of Qd
1(X), however, we will continue to use our terminology, and this should

not cause any confusion.
For the convenience of the discussion, we use the coordinate system to

give a definition of the n-cube Qn and adjust the coordinates to match our
previous definition of the frame Cn.
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Definition 7.2.3. An n-cube Qn is the set {(x1, ..., xn) ∈ Rn ∶ 1 ≤ xi ≤
2 for 1 ≤ i ≤ n}.

[Ben82, Theorem 2.1] provided a description of the face lattice and we
state the result below.

Theorem 7.2.4. A lattice F is the face lattice of Qn iff ∣F ∣ = 3n+1, ∣at(F)∣ =
2n, F is atomistic and for each atom a, there exists a unique atom a′ with
a ∨ a′ = 1̄.

Proof. (⇒) Let F = Qd
1(Qn) be the face lattice of the n-cube Qn. For any

face F in Qn and every x ∈ F , x = (x1, . . . , xn) is in the coordinate system. If
(x1, . . . , xn) satisfies that each xi is equal to 0, 1 or 2, we then call (x1, . . . , xn)
is good.

For every face F in Qn, let π1(F ) denote the set {i ∶ for all x ∈ F, xi =
1} and π2(F ) denote {i ∶ for all x ∈ F, xi = 2} and then define π(F ) ∶=
(x1, . . . , xn) as follows:

xi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, i ∈ π1(F )
2, i ∈ π2(F )
0, otherwise

, for 1 ≤ i ≤ n.

Thus π(F ) is good. In fact, π(F ) is a projection of F and every face F , except
the empty face, corresponds to a good π(F ) = (x1, . . . , xn). Furthermore,
π(F0) = π(F1) implies F0 = F1. For any good x = (x1, . . . , xn), let π−1

1 (x) ∶=
{i ∶ xi = 1 in x} and π−1

2 (x) ∶= {i ∶ xi = 2 in x}, then there exists a face
F = {(y1, ..., yn) ∶ 1 ≤ yi ≤ 2} such that yi = 1 iff i ∈ π−1

1 (x), yi = 2 iff
i ∈ π−1

2 (x) and 1 < yi < 2 iff i ∉ π−1
1 (x) ∪ π−1

2 (x) in the coordinate system and
π(F ) = (x1, . . . , xn).

Therefore π is a one-to-one map from the non-empty face F of Qn to a
good x = (x1, . . . , xn). Since for any xi of good x, it has three choices 0, 1
and 2, then there are 3n good x = (x1, . . . , xn), together with an empty one,
the cardinality of F = Qd

1(Qn) is equal to 3n + 1.
The atoms of Qd

1(Qn) are exactly the facets of Qn, then the cardinal-
ity of atoms is 2n. The 2n facets are {xi}1≤i≤n and {yi}1≤i≤n where xi =
(0, . . . ,0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

i−1

,1,0, . . . ,0) and yi = (0, . . . ,0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

i−1

,2,0, . . . ,0). Because any face F which

is not Qn itself of the n-cube is the intersection of the facets containing F ,
we have Qd

1(Qn) atomistic.
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For any 1 ≤ i ≤ n, xi ∨ yi = 1̄ and for i ≠ j. When 1 ≤ i ≠ j ≤ n, xi ∨ yj =
(z1, ..., zn) where zi = 1, zj = 2 and zs = 0 for s ∉ {i, j}, xi ∨ xj = (z1, ..., zn)
where zi = zj = 1 and zs = 0 for s ∉ {i, j}, yi ∨ yj = (z1, ..., zn) where zi = zj = 2
and zs = 0 for s ∉ {i, j}.

(⇐) Suppose F has the above property in the theorem. Let the 2n atoms
be {x̄i}1≤i≤n and {ȳi}1≤i≤n where x̄i ∨ ȳi = 1̄. Since F is atomistic, every
element x̄ except the top in F will be of the form (⋁ x̄j)∨(⋁ ȳi) while x̄i and
ȳi cannot occur at the same time for 1 ≤ i ≤ n because x̄i ∨ ȳi = 1̄. The choice
of such form is at most ∑n

t=0 (nt) × 2t = (2 + 1)n = 3n, hence the cardinality of
elements of F together with the top is less than or equal to 3n + 1. Because
the cardinality of F is exactly 3n+1, to attain equality, any element x̄, except
the top, is uniquely expressed in the form (⋁ x̄j) ∨ (⋁ ȳi). Let f0 be a map
from x̄ to its choice function f0(x̄) = cx̄ and cx̄ = (cx̄(1), . . . , cx̄(n)) is defined
as follows:

cx̄(i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x̄i occurs in the form of x̄

2, ȳi occurs in the form of x̄

0, otherwise

, for 1 ≤ i ≤ n.

Then cx̄ is a finite partial function and we have x̄ ≤ ȳ in F iff cȳ(i) = cx̄(i)
for any i with cx̄(i) ≠ 0 and we add a greatest one c1̄ among all cx̄ which
is send from the top 1̄ of F by f0. We then prove that the lattice F is
isomorphic to the face lattice Qd

1(Qn).
Let F be any non-empty face in Qd

1(Qn) and π(F ) is defined as above.
Then π(F ) = (x1, . . . , xn) = x could be regarded as a finite partial function
on {1, . . . , n}. The above discussion shows that π is a one-to-one map from
the non-empty face F of Qn to a good x, and then to a cx̄ with cx̄(i) = xi for
1 ≤ i ≤ n and f0 is a one-to-one map from any x̄ in F to cx̄. Let the empty
face in Qn correspond to 1̄ in F , then F is isomorphism to Qd

1(X).

Theorem 7.2.5. Cn =Rn ≅ Qd(Qn), the dual face poset of n-cube.

Proof. Let C′n be a frame obtained by adding a top 1̄ to C′n. The cardi-
nality of C′n is 3n + 1 and C′n has 2n atoms {xi}1≤i≤n and {yi}1≤i≤n where
xi = (0, . . . ,0

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
i−1

,1,0, . . . ,0) and yi = (0, . . . ,0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

i−1

,2,0, . . . ,0). For any 1 ≤ i ≠ j ≤ n,

it is easy to see xi∨yi = 1̄. Since xi∨yj, xi∨xj and yi∨yj are all in Cn, thus not
1̄. For any point a ≠ 1̄ in C′n, let a = (a1, . . . , an), then a = (⋁i∈π1 xi)∨(⋁j∈π2 yj),
where π1 = {i ∶ ai = 1} and π2 = {i ∶ ai = 2}.
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Figure 7.2-2: Qd(Q3) or C3

Therefore C′n ≅ Qd
1(Qn) by Theorem 7.2.4. By removing the top 1̄, Cn is

exactly the frame Qd(Qn).

In conclusion, the modal logic ML(Cn) is the modal logic of the dual face
poset of the n-cube.

In [MR78a, § 3], it is proved that the face lattice of an n-cube is Sperner2

and the largest antichain within this lattice has a size of s(n) = ( n
⌊n
3
⌋)×2n−⌊

n
3
⌋.

In conclusion, we have Cn ⊧ bws(n) ∧ bws(n)−1.

7.3. Polychromatic colorings of n-cube

The n-dimensional hypercube Qn is the graph whose vertex set is {1,2}n.
Let En denote the set of all edges in Qn. The two vertices v and w of an
edge e of the hypercube differ in exactly one coordinate, thus we represent
the edge e ∈ En by a n-vector (e1, e2, . . . , en) with

ei =
⎧⎪⎪⎨⎪⎪⎩

0, if v and w differ in i-th coordinate

vi, if vi = wi
2A graded poset is said to be Sperner if no antichain within it has a larger size than

the largest level.
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Let G0 and G1 be two graphs. A subgraph of G0 isomorphic to G1 is
called an embedding of G1 in G0. Furthermore, an embedding of Qd in Qn

(as a subcube) is a n-vector with d coordinates set to 0.
Fix a set P of p colors. An edge-coloring µ of a graph G with p colors is

a surjective function
µ ∶ E(G)→ P

which associate every edge of G with a color in P .
For a given hypercube Qn and a fixed subgraph G, an edge-coloring µ

of a hypercube with p colors is called a G-polychromatic p-coloring of Qn if
every embedding of G in Qn contains every color. Let p(G) be the maximum
number of colors for which a G-polychromatic coloring is possible for the
edges of any hypercube (containing G). p(G) is called the polychromatic
number of G.

The case G = Qd, a sub-hypercube in Qn, was introduced by Alon, Krech
and Szabó in [AKS07, Theorem 4].

Theorem 7.3.1 (Alon, Krech and Szabó).

(d + 1

2
) ≥ p(Qd) ≥ ⌊(d + 1)2

4
⌋

Offner gave the exact value of the polychromatic number of Qd in [Off08,
Theorem 2].

Theorem 7.3.2 (Offner).

p(Qd) = ⌊(d + 1)2

4
⌋

Consider an edge e of the hypercube Qn. Let `(e) denote the number of
1’s to the left of the 0 in e, and r(e) as the count of 1’s to the right of the 0.

Recall that an edge-coloring µ of a hypercube Qn is a function whose
domain is the set of all edges En of the hypercube. We call the coloring µ is
simple if µ(e) is determined by the value of `(e) and r(e) for every edge e.

The following lemma, which can be found in [Off08, Lemma 4] or [GLM+18,
Lemma 3], indicates that it is sufficient to only consider simple colorings on
the polychromatic coloring of the hypercube.
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Lemma 7.3.3. Let G be a subgraph of Qn and its polychromatic number
p(G) = s. Then there exists a G-polychromatic s-coloring µ on Qn, such that
µ is simple.

Proof. A proof of this lemma can be found in [Off08, Lemma 4].

Since the above lemma allows us to only study the simple coloring, we
can assign the color of each edge e with (`(e), r(e)), which accounting the
number of 1’s in e. For example, the edge 121021 can be identified with
(2,1), and (2,1) indicates the color of the edge 121021. Since each edge e
is arranged to a color class (`(e), r(e)) belonging to N ×N, we set all color
classes to a triangular array, with the ith row consisting all color classes (x, y)
such that x+ y = i, and the jth diagonal containing all color classes with the
form (j, y), where i, j ≥ 0, see Figure 7.3-3.

. . . . . ....
...

Figure 7.3-3: A triangular array of color classes

Define the region O as the color classes that lie in some consecutive rows
and diagonals. The width of the region w(O) is the number of the diagonals
of O and the height of the region h(O) is the number of the rows of O.

A cover Cov is a finite set of the form (x, y), that is, Cov = {(x1, y1), . . . ,
(xk, yk)}. We call a cover Cov is located at d-th diagonal if min1≤j≤k{xj} = d
and say d is the spot number of Cov. The width of the cover w(Cov) =
max1≤i,j≤k∣xi − xj ∣ + 1.

A cover sequence Seq is defined as a finite sequence of covers {Cov1, . . . ,
Covs} that the spot number of Covi is less than or equal to the spot number of
Covj whenever i < j. The width of the cover sequence w(Seq) = max∣xi−xj ∣+1
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and the height of the cover sequence h(Seq) = max∣(xi + yi) − (xj + yj)∣ + 1,
where (xi, yi) and (xj, yj) are come from some covers of Seq. We say a
cover Cov′ = {(x′j, y′j) ∶ 1 ≤ j ≤ k} is a translation copy of a cover Cov, if
there exists a (tx, ty) ∈ Z × Z, such that (x′j, y′j) = (xj, yj) + (tx, ty) for every
1 ≤ j ≤ k, then call two cover sequences Seq and Seq′ are equivariant if
Seq′ = {Cov′1,Cov′2, . . . ,Cov′s} and every cover Cov′j of Seq′ is a translation
copy of the corresponding cover Covj of Seq.

. . . . . ....
...

Figure 7.3-4: A cover sequence

We set some configurations for a region O, its rows are (i+ 1)-th, (i+ 2)-
th, . . . , (i + h(O))-th rows of the triangular array for some i. For a given
cover sequence Seq, assume the height of the region h(O) = h(Seq) and the
width of the region w(O) ≥ w(Seq). It guarantees that we can study the
cover sequence Seq in region O.

For a cover Covj in Seq, let vjm denote the number of elements of Covj
in the (i+m)-th row, then we can translate the cover Covj to a cover vector
Ð→
vj = (vj1, v

j
2, . . . , v

j
h(O)). In particular, a vector called maxiamal cover vector

ÐÐ→
vSeq = (vSeq

1 , vSeq
2 , . . . , vSeq

h(O)) if

vSeq
m = max1≤j≤s{vjm}.

Let ∥
ÐÐ→
vSeq∥

1

= ∑h(O)
m=1 v

Seq
m be the 1-norm of the maximal cover vector.

For the given cover sequence Seq, a simple coloring µ of a triangular array
with p colors is called a Seq-polychromatic p-coloring if every cover sequence
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Seq′ contains every color when Seq′ and Seq are equivariant. Let p(Seq)
be the maximum number of colors for which a Seq-polychromatic coloring
is possible for any triangular array. This p(Seq) is called the polychromatic
number of Seq.

So for a simple coloring µ, every (x, y) in the region O is correspond-
ing to a color t ∈ {1,2, . . . , p(Seq)}. For a color t of {1,2, . . . , p(Seq)}, let
utm denote the number of color t in the (i +m)-th row, then we can trans-

late the color t to a color vector
Ð→
ut = (ut1, ut2, . . . , uth(O)) and ∑p(Seq)

t=1

Ð→
ut =

(w(O),w(O), . . . ,w(O)) = w(O)Ð→e , where Ð→e = (1,1, . . . ,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

h(O)

.

For the cover sequence Seq, the following proposition from [GLM+18,
Lemma 5] provides an upper bound for its polychromatic number p(Seq).

Proposition 7.3.4.

p(Seq) ≤ ∥
ÐÐ→
vSeq∥

1

.

To prove this result, we need a lemma that provides a special region with
a nice coloring property, as referenced in [Off08, Theorem 2].

Lemma 7.3.5. Given the cover sequence Seq and the region O with the
Seq-polychromatic p(Seq)-coloring, there is a region O′ as a subset of O with
the same height h(O′) = h(Seq), for any given color t, there exists a cover
Covj(t) in the cover sequence Seq such that every horizontal translation copy
of the cover Covj(t) would contain the color t.

Proof. Assume the coloring assigns every (x, y) to a color of {1,2, . . . , p(Seq)},
the the diagonals of region O are {1,2, . . . ,w(O)}.

To start with the diagonal 1, we look for the first diagonal d1
1 which is the

first diagonal such that a horizontal translation copy of cover Cov1 with the
spot number d1

1 does not have the color 1. After that, we start to search the
smallest d1

2 ≥ d1
1 such that a copy of Cov2 with the spot number d1

2 does not
have the color 1. In general, if we already have d1

m, what we need to do is to
find the smallest d1

m+1 ≥ d1
m such that a copy of Covm+1 with the spot number

d1
m+1 does not have the color 1. One thing we should pay attention to is that if

we can’t find such d1
m+1 till diagonal w(O), which means every Covm+1 to the

right of d1
m contains color 1, then we would stop the program of color 1. The

program of color 1 will stop because if we already have d1
1, d

1
2, . . . , d

1
s−1, where
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the corresponding covers Cov1,Cov2, . . . ,Covs−1 with those spot numbers do
not contain the color 1, then every Covs with spot number ≥ d1

s−1 must contain
color 1. The reason is that Seq = {Cov1,Cov2, . . . ,Covs} contain every color
since it is a Seq-polychromatic p(Seq)-coloring.

We execute the program for color 1,2, . . . , p(Seq), and every program for
color m returns a finite set of spot numbers Im. We then use those spot
numbers in I1, I2, . . . , Ip(Seq) to divide the region O into finite parts and each
part is a region. For any region O′ and any color t, recall the program for
color t, O′ is located between two diagonals dtm and dtm+1, then all copies of
Covm+1 located at O′ will contain color t.

Note that we can extend the width w(O) as large as we want, and then
there exists a region O′ with its width w(O′) as large as we want.

Proof of Proposition 7.3.4. According to Lemma 7.3.5, in the region O′, for
any given color t, there exists a cover Covj(t) in the cover sequence Seq such
that every horizontal translation copy of the cover Covj(t) would contain the
color t.

Assume
Ð→
ut = (ut1, ut2, . . . , uth(O)) is a color vector of color t and

ÐÐ→
vj(t) =

(vj(t)1 , v
j(t)
2 , . . . , v

j(t)
h(O)) is a cover vector of the cover Covj(t), the inner product

of them is ⟨Ð→ut ,
ÐÐ→
vj(t)⟩ = ∑h(O)

i=1 utiv
j(t)
i .

We now regard the horizontal translation copies of the cover Covj(t) as a
horizontal movement of Covj(t). During the movement, we count the number
when an element of Covj(t) passes through a point with color t in the region
and let #(t) be this number of the appearance of the color t in Covj(t)’s.
So the inner product is, in fact, the upper bound of #(t), in other words,

#(t) ≤ ⟨Ð→ut ,
ÐÐ→
vj(t)⟩.

Since each copy of Covj(t) contains at least one t color and there are
w(O′) − w(Covj(t)) + 1 copies of Covj(t) in the region O′, thus we obtain a
lower bound of #(t), that is, w(O′) − w(Covj(t)) + 1 ≤ #(t). Let wSeq =
max1≤j≤s{w(Covj) − 1} and add the number #(t) for all color, then we have

p(Seq)(w(O′) −wSeq) ≤ ∑p(Seq)
t=1 #(t) ≤ ∑p(Seq)

t=1 ⟨Ð→ut ,
ÐÐ→
vj(t)⟩.

On the other hand, we already construct a maximal cover vector
ÐÐ→
vSeq,

by its definition, we get that ⟨Ð→ut ,
ÐÐ→
vj(t)⟩ ≤ ⟨Ð→ut ,

ÐÐ→
vSeq⟩. Consider inner prod-

uct ⟨Ð→ut ,
ÐÐ→
vSeq⟩ for all color 1 ≤ t ≤ p(Seq) and add up those inner products,

then ∑p(Seq)
t=1 ⟨Ð→ut ,

ÐÐ→
vSeq⟩ = ⟨∑p(Seq)

t=1

Ð→
ut ,
ÐÐ→
vSeq⟩. It is easy to see that ∑p(Seq)

t=1

Ð→
ut =
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(w(O′),w(O′), . . . ,w(O′)) = w(O′)Ð→e , so ⟨∑p(Seq)
t=1

Ð→
ut ,
ÐÐ→
vSeq⟩ = w(O′)⟨Ð→e ,

ÐÐ→
vSeq⟩ =

w(O′)∑h(O)
m=1 v

Seq
m = w(O′) ∥

ÐÐ→
vSeq∥

1

and so ∑p(Seq)
t=1 ⟨Ð→ut ,

ÐÐ→
vj(t)⟩ ≤ ∑p(Seq)

t=1 ⟨Ð→ut ,
ÐÐ→
vSeq⟩ =

w(O′) ∥
ÐÐ→
vSeq∥

1

. Therefore, p(Seq)(w(O′) − wSeq) ≤ w(O′) ∥
ÐÐ→
vSeq∥

1

. In conclu-

sion, p(Seq) ≤ w(O′)
w(O′)−wSeq

∥
ÐÐ→
vSeq∥

1

.

Recall in the proof of Lemma 7.3.5, we could ask the width w(O′) as

large as we want, wSeq is a constant, so p(Seq) ≤ ∥
ÐÐ→
vSeq∥

1

.

Figure 7.3-5: One copy of a cover for red color in the region O′

Proof of Theorem 7.3.2. We first build a simple edge-coloring µ, for any edge
e of the hypercube Qn, we have µ(e) = (`(e) mod ⌊d+1

2
⌋ , r(e) mod ⌈d+1

2
⌉),

where Cl = {(x, y) ∶ 0 ≤ x ≤ ⌊d+1
2

⌋ − 1 and 0 ≤ y ≤ ⌈d+1
2

⌉ − 1} represents the set

of ⌊ (d+1)2
4 ⌋ different colors.

For any subcube Qd of Qn, there are exactly d coordinates {xq1 , . . . , xqd}
of Qd such that those coordinates xqi = 0. Let E be the subset of edges of this
Qd such that only the q⌊ d+1

2
⌋-th coordinate is 0, that is, E = {(x1, x2, . . . , xn) ∶

xq⌊ d+12 ⌋
= 0 and (x1, x2, . . . , xn) is an edge of Qd}.

For any e ∈ E, there are at most ⌊d+1
2

⌋ − 1 many 1’s to the left of xq⌊ d+12 ⌋

and at most ⌈d+1
2

⌉−1 many 1’s to the right, thus E as a subset of edges of Qd

contains all ⌊ (d+1)2
4 ⌋ different colors of the set {(x, y) ∶ 0 ≤ x ≤ ⌊d+1

2
⌋−1 and 0 ≤

y ≤ ⌈d+1
2

⌉ − 1}.
For any edge e of Qd but e ∉ E, µ(e) is a color of Cl, so µ is a Qd-

polychromatic ⌊ (d+1)2
4 ⌋-coloring on any hypercube Qn containing Qd. By the

definition, p(Qd) ≥ ⌊ (d+1)2
4 ⌋.
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Then we prove p(Qd) ≤ ⌊ (d+1)2
4 ⌋ by building a bridge between the Qd-

polychromatic coloring of edges and SeqQd-polychromatic coloring of trian-
gular array.

According to Lemma 7.3.3, it suffices to consider a Qd-polychromatic
p(Qd)-coloring µ on a sufficiently large hypercube and µ is a simple coloring.
We now describe the cover sequence SeqQd for every embedding of Qd in Qn.

Assume in Qd, the d coordinates {xq1 , xq2 , . . . , xqd} be those coordinates
xqi = 0. Let E1 be the set of all edges of Qd such that the first coordinate
xq1 = 0, then for any edge e ∈ E1, we have `(e) =m0 and m1 ≤ r(e) ≤m1+d−1,
where m0 indicates how many 1’s appear to the left of xq1 in Qd, and m1

indicates how many 1’s appear to the right. Thus µ(e) = (m0, y), where m1 ≤
y ≤m1 + d − 1 and µ(E1) = {(m0,m1), (m0,m1 + 1), . . . , (m0,m1 + d − 1)}.

Thus µ(E1) forms the cover Cov1 of SeqQd , geometrically speaking, Cov1

is a d × 1 rectangle whose spot number is m0.
In general, Let Ei be the set of all edges of Qd such that the first coor-

dinate xqi = 0, then for any edge e ∈ Ei, we have mi
0 ≤ `(e) ≤ mi

0 + i − 1 and
m0 +m1 −mi

0 ≤ r(e) ≤m0 +m1 −mi
0 + d− i, where mi

0 indicates how many 1’s
appear to the left of xqi in Qd, so mi

0 ≤m
j
0 when i < j. It is easy to see that

m0 +m1 −mi
0 indicates how many 1’s appear to the right of xqi in Qd. Thus

µ(e) = (x, y), where mi
0 ≤ x ≤ mi

0 + i − 1 and m0 +m1 −mi
0 ≤ y ≤ m0 +m1 −

mi
0 +d− i and µ(Ei) = {(mi

0 +α,m0 +m1 −mi
0 +β) ∶ 0 ≤ α ≤ i− 1,0 ≤ β ≤ d− i}

Thus µ(Ei) forms the cover Covi of SeqQd , geometrically speaking, Covi
is a (d+1− i)× i rectangle whose spot number is mi

0. For any i, the height of
Covi is d. Since (mi

0,m0 +m1 −mi
0) is at the row (m0 +m1), all Covi occupy

the same rows in the triangular array.
Therefore, the cover sequence SeqQd = {Cov1,Cov2, . . . ,Covd}, where Covi

is a (d + 1 − i) × i rectangle whose spot number is mi
0 and occupies from

(m0 +m1) row to (m0 +m1 + d − 1) row, and m0 = m1
0 ≤ m2

0 ≤ . . . ≤ md
0. See

Figure 7.3-4 for an example of a cover sequence for Q3. From the viewpoint
of the cover vector,

ÐÐÐ→
vSeqQd =

⎧⎪⎪⎨⎪⎪⎩

(1,2, . . . , d2 , d2 , . . . ,2,1), if d is even

(1,2, . . . , d+1
2 , . . . ,2,1), if d is odd

It is easy to see that ∥
ÐÐÐ→
vSeqQd∥

1

= ⌊ (d+1)2
4 ⌋, in conclusion, p(Qd) = p(Seq) ≤

∥
ÐÐÐ→
vSeqQd∥

1

= ⌊ (d+1)2
4 ⌋. Putting everything together, p(Qd) = ⌊ (d+1)2

4 ⌋.
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In the next section, we will see an application of Theorem 7.3.2 in a
completely different area.

7.4. Three strategies for proving non-finite

axiomatisability

By using Offner’s result 7.3.2, Kuznetsov in [Kuz19] discussed the two strate-
gies belonging to Fontaine and Shatrov for proving that Cheq is not finitely
axiomatisable, respectively. He also presented an alternative solution as an
open problem for proving the non-finitely axiomatisability of Cheq.

7.4.1. Fontaine’s structures and Shatrov’s structures

Recall that Maksimova, Skvortsov and Shehtman provided a method to prove
that Med is not finitely axiomatisable in [MSS79, Corollary 5] by showing Chi-
nese lantern Φ(s,2s+3) is not Med-frame while Chinese lantern Φ′(s,2s+3,m)
is Med-frame for any s ≥ 1.

In [Fon07, § 5], Fontaine gave two kinds of structures Ω(s) and Ω′(s,m) as
frames depicted in Figure 7.4-6. As we did in § 4.2.2, using similar structures
and results by Maksimova, Skvortsov and Shehtman, Fontaine proved that
Ω(s) is not a Cheq-frame for any s ≥ 1 and want to prove that Ω′(s,m) is a
Cheq-frame. Lemma 6.2.2 gives us a motivation of focusing on the (m,0)↑ in
Ω′(s,m) since (m,0)↓ is already a Cheq-frame. Let Gm be the frame (m,0)↑,
then Fontaine provided the following proposition.

Proposition 7.4.1. If Gm is Cheq-frame for any m, then Cheq is not finitely
axiomatisable.

Proof. Suppose Cheq is finitely axiomatisable with s variables, we may as-
sume that Cheq is axiomatised by a single formula φ(p1, . . . , ps).

As in the proof of Proposition 4.2.9, there is an m ≤ s such that

Ω(s) ⊧ φ iff Ω′(s,m) ⊧ φ.

Since (m,0)↓ in Ω′(s,m) is a finite rooted frame with a top, then it is a
Med-frame and so a Cheq-frame. Since Gm is a Cheq-frame, thus Ω′(s,m),
as the vertical sum of the above frames, is a Cheq-frame by Lemma 6.2.2.
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(s+2,0)

(s+1,0) (s+1,2 × 3s+2)

(s,0) (s,2)

(s-1,0) (s-1,2)

(m+1,0) (m+1,2)

(m,0) (m,2)

(m-1,0) (m-1,2)

(3,0) (3,2)

(2,0) (2,2)

(1,0) (1,2)

(0,0) (0,1)

(s+2,0)

(s+1,0) (s+1,2 × 3s+2)

(s,0) (s,2)

(s-1,0) (s-1,2)

(m+1,0) (m+1,2)

(m-1,0) (m-1,2)

(3,0) (3,2)

(2,0) (2,2)

(1,0) (1,2)

(0,0) (0,1)

(m,0)

Figure 7.4-6: The frames Ω(s) and Ω′(s,m)

According to [Fon07, Claim 16], the frame Ω(s) is not a Cheq-frame, a con-
tradiction.

Therefore if Gm is Cheq-frame for any m, then Cheq is not finitely ax-
iomatisable with s variables for any natural number s.

Definition 7.4.2. A collection {X0, . . . ,Xn−1} is called a full n-partition of
X with respect to Y if:

1. X = ⋃n−1
i=0 Xi,

2. Xi ∩Xj = ∅ for 0 ≤ i ≠ j ≤ n − 1,

3. for each i and for every y ∈ Y , there exists xi ∈Xi satisfying y ≤ xi.

Consider the set D(i, j), consisting of all x in the frame Ci, where the
depth d(x) equals j + 1 (the number of 0 that occur in x is equal to j).
Fontaine showed that if, for every i > 1, a 3-full partition of D(i,1) with
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(s+2,0)

(s+1,0) (s+1,2s+3)

(s,0) (s,3)

(s-1,0) (s-1,3)

(m+1,0) (m+1,3)

(m,0) (m,3)

(m-1,0) (m-1,3)

(2,0) (2,3)

(1,0) (1,3)

(0,0) (0,1)

(s+2,0)

(s+1,0) (s+1,2s+3)

(s,0) (s,3)

(s-1,0) (s-1,3)

(m+1,0) (m+1,3)

(m-1,0) (m-1,3)

(2,0) (2,3)

(1,0) (1,3)

(0,0) (0,1)

(m,0)

Figure 7.4-7: The frames Ψ(s) and Ψ′(s,m)

respect to D(i,2) exists, then it is possible to construct a 3-full partition
of D(i, j) with respect to D(i, j + 1) for any j > 1. Consequently, Fontaine
suggests the following proposition in [Fon07, Proposition 22].

Proposition 7.4.3. If for each i > 1, a 3-full partition of D(i,1) with respect
to D(i,2) exists, then Gm is a Cheq-frame for any m and so Cheq is not finitely
axiomatisable.

According to Theorem 7.2.5, each Ci can be regarded as the dual face
poset of hypercube Qi. Then D(i,1) is the set of edges of Qi, and D(i,2) is
the set of faces of Qi. The assumption of Proposition 7.4.3 is to ask to have
edge-coloring µ of any hypercube Qi with 3 colors and µ is Q2-polychromatic
3-coloring of Qi since every face of Qi contains every color. But by Theorem
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(m-1,0) (m-1,2)

(3,0) (3,2)

(2,0) (2,2)

(1,0) (1,2)

(0,0) (0,1)

(m,0)

(m-1,0) (m-1,3)

(2,0) (2,3)

(1,0) (1,3)

(0,0) (0,1)

(m,0)

Figure 7.4-8: The frames Gm and Vm

7.3.2, the polychromatic number of Q2

p(Q2) = ⌊(2 + 1)2

4
⌋ = 2

Thus for a sufficiently large integer N , the hypercube QN can not allow a
Q2-polychromatic 3-coloring, then the assumption of Proposition 7.4.3 fails.

Shatrov claimed to prove the non-finitely axiomatisability of Cheq at
the conference Algebraic and Topological Methods in Non-Classical Logics
(TANCL 07) in Oxford by showing that Ψ′(s,m) is a Cheq-frame while Ψ(s)
is not, where Ψ(s) and Ψ′(s,m) are frames depicted in Figure 7.4-7.

Shatrov’s strategy involves proving that each frame Vm, which is (m,0)↑
in Ψ′(s,m), is a Cheq-frame. If we consider the possibility of a 4-full partition
of D(i,1) with respect to D(i,2) to achieve this goal, it fails due to p(Q2) = 2.
However, since Shatrov has not published his proof, we do not know his
concrete assumptions for proving that Vm ⊧ Cheq.

7.4.2. Kuznetsov’s alternative

After briefly describing the infeasibility of the above schemes to prove that
Cheq is not finitely axiomatisable, Kuznetsov provided his strategy by build-
ing the following alternative structure in [Kuz19].
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(s+2,0)

(s+1,0) (s+1,2 × 3s+2)

(s,0) (s,2)

(s-1,0) (s-1,2)

(m+1,0) (m+1,2)

(m,0) (m,2)

(m-1,0) (m-1,2)

(3,0) (3,2)

(2,0) (2,2)

(1,0) (1,2)

(0,0) (0,2)

Figure 7.4-9: The frame K(s)

Definition 7.4.4. We define the Kuznetsov frame K(s) to be the frame
shown in Figure 7.4-9.

The result of the polychromatic number of Q2 can not directly negate
the Kuznetsov frame K(s). Kuznetsov aimed to prove that each Kuznetsov
frame K(s) is not a Cheq-frame as the key step to follow the established
method of proving that Cheq is not finitely axiomatisable. But we have the
following proposition:

Proposition 7.4.5. K(s) is a Cheq-frame.

Proof. Each K(s) is a linear sum of a finite rooted frame and the bow-tie
frame. By the bow-tie Lemma 6.2.3, every Kuznetsov frame K(s) is a Cheq-
frame.
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7.5. Cheq is not axiomatisable with 5 or 6

variables

In [Fon07, Proposition 22], Fontaine proved that if one can construct a 3-full
partition of D(i,1) with respect to D(i,2), then Cheq is not axiomatisable
with i variables, and Fontaine provided a case for i = 4: A(4,1), B(4,1) and
C(4,1) where

A(4,1) ={(0,1,1,1), (1,2,1,0), (2,0,1,2), (0,2,2,2), (2,2,0,2),
(2,1,0,1), (2,0,2,1), (1,1,2,0), (1,2,0,1), (1,0,1,2),
(0,1,2,2)};

B(4,1) ={(1,0,1,1), (2,1,1,0), (0,2,1,2), (1,2,2,0), (2,2,0,1),
(2,0,2,2), (0,1,2,1), (1,1,0,2), (0,2,1,1), (1,0,2,1)};

C(4,1) ={(2,0,1,1), (1,1,1,0), (2,2,1,0), (1,2,0,2), (2,2,2,0),
(2,1,2,0), (1,1,0,1), (1,0,2,2), (2,1,0,2), (0,2,2,1),
(0,1,1,2)}.

In conclusion, Cheq is not axiomatisable with four variables. Fontaine
raised the question of whether there is a 3-full partition for i = 5.

In the following, I construct a new algorithm which can give a 3-full
partition for n = 5,6 cases:

Step 1. Construct A(n,1). There are n possible positions where 0 can
occur. Choose any four numbers from {1,2, . . . , n}, denoted as n1, n2, n3,
n4. For those x = (x1, x2, . . . , xn) in A(n,1) where xn1 is 0, construct 2n−4

elements such that xn2 = a, xn3 = b, where a, b ∈ {1,2}, and the total number
of 1s in the other xi is odd; the other 2n−4 with xn2 = 3−a, xn3 = 3−b and the
total number of 1 in other xi is even. There are 2n−3 elements x in A(n,1)
with xn1 = 0;

Step 2. Construct x = (x1, x2, . . . , xn) in A(n,1) where xn2 = 0. For all x
constructed in Step 1, let its xn2 = 0, yielding 2n−3 distinct elements, forming
set A. There are 2n−2 elements y in total such that yn1 = yn2 = 0, forming
set B. For any x ∈ B but x ∉ A, then xn1 = xn2 = 0. Then we obtain a new
element c associate with above x ∈ B and x ∉ A, when cn1 = cx and ci = xi
otherwise, where cx ∈ {1,2}. The set of all such c is precisely those elements
in A(n,1) where xn2 = 0, where cx is to be determined for each x;
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Step 3. Repeat Step 2 to construct x = (x1, x2, . . . , xn) in A(n,1) when
set xn3 = 0;

Step 4. Repeat Step 2 to construct x = (x1, x2, . . . , xn) in A(n,1) when
set xn4 = 0;

Step 5. For any elements x obtained in Step 2, let xn3 = 0 to get an
element xn2,n3 , and let xn4 = 0 to get an element xn2,n4 . For any elements y
obtained in Step 3, let yn2 = 0 to get an element yn2,n3 , and let yn4 = 0 to
get an elemet yn3,n4 . For any elements z obtained in Step 4 and any n ≠ n1,
let zn = 0 to get an element zn,n4 . Require all these elements to be distinct
so that the unknown variables to be determined in Steps 2 to 4 are solvable.
There are two sets of solutions: the first of which is, for c in Step 2, we have
cn1 = cx = cn4 and for c in Step 3, we have cn1 = cx = 3 − cn4 ; another solution
is, for c in Step 2, we have cn1 = cx = 3 − cn4 and for c in Step 3, we have
cn1 = cx = cn4 ;

Step 6. Each Step of 1 to 4 yields 2n−3 elements respectively. For all
x = (x1, . . . , xn) constructed in Step 1, fix ns ∉ {n1, n2, n3, n4}, let xns = 0,
obtaining 2n−3 distinct elements, forming set E. For all y = (y1, . . . , yn)
constructed in Step 2, let yns = 0, obtaining 2n−3 distinct elements, forming
set F . Then for any x ∈ E, there exists y− not in F and y−n2

= y−ns = 0, such
that there exists a unique t with tns = 0, such that we can obtain x when
tn1 = 0 and obtain y− when tn2 = 0. For any y ∈ F , there exists x− ∉ E and
x−n1

= x−ns = 0, such that there exists a unique t with tns = 0, such that we can
obtain x− when tn1 = 0 and obtain y when tn2 = 0. All these 2n−2 ts form the
set of elements in A(n,1) where the ns-th digit is 0;

Step 7. Repeat Step 6 to obtain the set of elements in A(n,1) where the
nt-th digit is 0, completing the construction of A(n,1);

Step 8. When n ≤ 6, we can check that after A(n,1) is constructed as
above, the remaining elements of D(n,1) can be evenly divided into two
parts B(n,1) and C(n,1) that satisfy the condition.

When n = 6, a = 1, b = 2, n1 = 1, n2 = 2, n3 = 3 and n4 = 6, selecting the
first set of solutions in Step 5, we obtain a 3-full partition for n = 6 by the
above algorithm:

A(6,1) ={(0,1,2,2,1,2), (0,1,2,1,2,2), (0,2,1,1,1,2), (0,1,2,1,1,1),
(0,2,1,1,2,1), (0,1,2,2,2,1), (0,2,1,2,1,1), (1,0,1,1,1,1),
(0,2,1,2,2,2), (1,0,1,2,2,1), (1,0,2,2,1,1), (1,0,2,1,2,1),
(2,0,1,1,2,2), (2,0,2,1,1,2), (2,0,2,2,2,2), (2,0,1,2,1,2),
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(1,1,0,2,2,2), (1,2,0,1,2,2), (1,1,0,1,1,2), (1,2,0,2,1,2),
(2,1,0,2,1,1), (2,2,0,1,1,1), (2,1,0,1,2,1), (1,1,1,0,1,1),
(1,1,1,0,2,1), (2,2,0,2,2,1), (1,1,2,0,1,2), (1,1,2,0,2,2),
(1,2,1,0,2,2), (1,2,1,0,1,2), (1,2,2,0,2,1), (1,2,2,0,1,1),
(2,1,1,0,2,2), (2,1,1,0,1,2), (2,1,2,0,2,1), (2,1,2,0,1,1),
(2,2,1,0,2,1), (2,2,1,0,1,1), (2,2,2,0,2,2), (2,2,2,0,1,2),
(1,1,1,1,0,2), (1,1,2,1,0,1), (1,1,2,2,0,1), (1,1,1,2,0,2),
(1,2,1,2,0,1), (1,2,1,1,0,1), (1,2,2,2,0,2), (1,2,2,1,0,2),
(2,1,1,1,0,1), (2,1,2,1,0,2), (2,1,1,2,0,1), (2,2,1,1,0,2),
(2,1,2,2,0,2), (2,2,2,1,0,1), (2,2,1,2,0,2), (2,2,2,2,0,1),
(1,2,2,1,1,0), (2,2,2,2,1,0), (1,2,2,2,2,0), (2,1,1,2,2,0),
(2,2,2,1,2,0), (2,1,1,1,1,0), (1,1,1,1,2,0), (1,1,1,2,1,0)};

B(6,1) ={(0,1,1,1,2,1), (0,1,1,1,1,2), (0,1,1,2,1,1), (0,1,2,2,1,1),
(0,1,2,2,2,2), (0,1,1,2,2,2), (0,2,1,2,2,1), (0,2,1,2,1,2),
(0,2,2,1,2,2), (0,2,2,1,1,1), (0,2,2,2,2,1), (1,0,1,1,2,1),
(0,2,2,2,1,2), (1,0,1,2,1,2), (1,0,2,1,1,1), (1,0,1,1,2,2),
(1,0,2,1,1,2), (2,0,1,1,1,1), (1,0,2,2,2,2), (2,0,1,1,1,2),
(2,0,1,2,2,1), (2,0,2,1,2,2), (2,0,2,1,2,1), (2,0,2,2,1,1),
(1,1,0,1,1,1), (1,1,0,2,2,1), (1,1,0,2,1,2), (1,2,0,2,1,1),
(1,2,0,1,2,1), (2,1,0,1,2,2), (2,1,0,2,1,2), (1,2,0,2,2,2),
(2,2,0,1,1,2), (2,1,0,2,2,1), (2,2,0,2,1,1), (1,1,1,0,2,2),
(2,2,0,2,2,2), (1,2,1,0,1,1), (1,1,2,0,2,1), (2,1,1,0,1,1),
(1,2,2,0,1,2), (2,1,2,0,1,2), (2,2,2,0,2,1), (2,2,1,0,2,2),
(1,1,2,1,0,2), (1,2,1,1,0,2), (1,1,1,2,0,1), (1,2,2,2,0,1),
(2,1,1,2,0,2), (2,2,1,1,0,1), (2,2,2,2,0,2), (2,1,2,1,0,1),
(1,1,1,1,1,0), (2,2,1,2,1,0), (1,1,2,2,1,0), (1,2,1,2,2,0),
(1,2,2,1,2,0), (1,2,1,1,1,0), (2,1,2,1,1,0), (2,2,2,1,1,0),
(2,2,1,1,2,0), (2,1,2,2,2,0), (1,1,2,1,2,0), (2,1,1,1,2,0)};

C(6,1) ={(0,1,1,1,2,2), (0,1,1,1,1,1), (0,1,1,2,2,1), (0,1,1,2,1,2),
(0,1,2,1,2,1), (0,1,2,1,1,2), (0,2,1,1,2,2), (0,2,1,1,1,1),
(0,2,2,1,2,1), (0,2,2,1,1,2), (0,2,2,2,2,2), (0,2,2,2,1,1),
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(1,0,1,1,1,2), (1,0,1,2,2,2), (1,0,1,2,1,1), (1,0,2,2,1,2),
(1,0,2,1,2,2), (2,0,1,1,2,1), (1,0,2,2,2,1), (2,0,1,2,1,1),
(2,0,1,2,2,2), (2,0,2,2,1,2), (2,0,2,1,1,1), (1,1,0,1,2,1),
(2,0,2,2,2,1), (1,1,0,2,1,1), (1,1,0,1,2,2), (1,2,0,1,1,1),
(1,2,0,2,2,1), (1,2,0,1,1,2), (2,1,0,2,2,2), (2,1,0,1,1,1),
(2,1,0,1,1,2), (2,2,0,1,2,1), (2,2,0,2,1,2), (1,1,1,0,1,2),
(2,2,0,1,2,2), (1,2,1,0,2,1), (1,1,2,0,1,1), (2,1,1,0,2,1),
(1,2,2,0,2,2), (2,2,1,0,1,2), (2,1,2,0,2,2), (1,1,1,1,0,1),
(2,2,2,0,1,1), (1,1,2,2,0,2), (1,2,2,1,0,1), (1,2,1,2,0,2),
(2,1,1,1,0,2), (2,2,1,2,0,1), (2,1,2,2,0,1), (2,2,2,1,0,2),
(2,2,1,2,2,0), (1,1,2,2,2,0), (2,2,2,2,2,0), (1,2,2,2,1,0),
(1,2,1,1,2,0), (1,2,1,2,1,0), (2,1,2,1,2,0), (2,1,1,2,1,0),
(2,2,1,1,1,0), (2,1,2,2,1,0), (1,1,1,2,2,0), (1,1,2,1,1,0)}.

When n = 5, a = 1, b = 2, n1 = 3, n2 = 1, n3 = 2 and n4 = 4, selecting the
second set of solutions in step 5, we obtain a 3-full partition for n = 5 by the
above algorithm:

A(5,1) ={(0,2,2,1,1), (0,1,1,2,1), (0,1,2,1,2), (0,2,1,2,2),
(2,0,2,2,1), (2,0,1,1,2), (1,0,2,2,2), (1,0,1,1,1),
(2,1,0,1,1), (1,2,0,2,1), (2,1,0,2,2), (1,2,0,1,2),
(1,1,1,0,2), (1,1,2,0,1), (2,2,1,0,1), (2,2,2,0,2),
(1,2,2,1,0), (2,1,2,1,0), (2,1,1,2,0), (1,2,1,2,0),
(1,1,2,2,0), (2,2,1,1,0), (2,2,2,2,0), (1,1,1,1,0)};

B(5,1) ={(0,1,1,1,2), (0,1,2,2,2), (0,2,2,2,1), (0,1,2,1,1),
(0,1,1,2,2), (0,2,1,1,1), (1,0,2,1,2), (2,0,1,1,1),
(1,0,2,1,1), (1,0,1,2,1), (2,0,2,2,2), (1,0,1,2,2),
(2,2,0,1,2), (1,1,0,2,1), (2,2,0,2,1), (1,1,0,1,2),
(1,2,0,2,2), (2,1,0,2,1), (2,2,1,0,2), (2,1,2,0,1),
(2,1,2,0,2), (1,2,2,0,1), (1,1,1,0,1), (1,2,2,0,2),
(2,2,2,1,0), (1,2,1,1,0), (2,2,1,2,0), (2,1,1,1,0)};

C(5,1) ={(0,2,2,2,2), (0,2,2,1,2), (0,2,1,1,2), (0,1,1,1,1),
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(0,2,1,2,1), (0,1,2,2,1), (1,0,2,2,1), (2,0,1,2,1),
(2,0,1,2,2), (2,0,2,1,1), (1,0,1,1,2), (2,0,2,1,2),
(1,1,0,1,1), (2,2,0,1,1), (1,1,0,2,2), (2,1,0,1,2),
(2,2,0,2,2), (1,2,0,1,1), (1,2,1,0,2), (1,2,1,0,1),
(2,1,1,0,1), (2,2,2,0,1), (1,1,2,0,2), (2,1,1,0,2),
(1,1,2,1,0), (2,1,2,2,0), (1,2,2,2,0), (1,1,1,2,0)}.

In conclusion, we prove the following theorem:

Theorem 7.5.1. Cheq is not axiomatisable with five or six variables.
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Appendices

A.1. Summary

We investigate three intermediate logics and their modal counterparts that
play an important role in the study of modal logics of forcing classes. Hamkins,
Leibman and Löwe have conjectured that S4.tBA is an upper bound of the
modal logic of c.c.c. forcing; Inamdar has proved that S4.sBA is such an up-
per bound; in Chapter 3 of our thesis, we prove under additional assumptions
that S4.FPFA, a modal logic that is contained in the intersection of the two
other logics, is an upper bound. We do not know whether our additional
assumptions are true; if so, our result proves the conjecture by Hamkins,
Leibman and Löwe.

The remaining chapters of the thesis study the six mentioned logics in
more detail. In Chapter 4, we prove two conjectures by Nick Bezhanishvili
on generalized Medvedev logics; in Chapter 5, we connect the concept of
nerve to Medvedev logic; in Chapter 6, we prove that S4.sBA is not finitely
axiomatisable over Cheq; and finally, in Chapter 7, we prove that Cheq is not
axiomatisable with five or six variables.
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A.2. German Summary

Wir untersuchen drei Zwischenlogiken (Logiken, die zwischen intuitionistis-
cher und klassischer Aussagenlogik liegen) und ihre modalen Gegenstücke,
welche eine wichtige Rolle im Studium der Modallogiken von Erzwingungs-
klassen spielen. Hamkins, Leibman und Löwe vermuteten, daß S4.tBA eine
obere Schranke für die Modallogik der Erzwingungsordnungen mit abzähl-
barer Kettenbedingung ist; Inamdar bewies, daß S4.sBA eine solche obere
Schranke ist; in Kapitel 3 unserer Dissertation beweisen wir unter zusätzlichen
Voraussetzungen, daß S4.FPFA, eine Modallogik, welche im Schnitte der bei-
den anderen Logiken enthalten ist, eine obere Schranke ist. Wir wissen nicht,
ob unsere zusätzlichen Annahmen wahr sind. Falls ja, beweist unser Resultat
die Vermutung von Hamkins, Leibman und Löwe.

Die verbleibenden Kapitel der Dissertation untersuchen die sechs erwähn-
ten Logiken genauer. In Kapitel 4 beweisen wir zwei Vermutungen von
Nick Bezhanishvili über verallgemeinerte Medvedevlogiken; in Kapitel 5 ver-
knüpfen wir den Begriff der Nerven zu Medvedevlogik; in Kapitel 6 beweisen
wir, daß S4.sBA nicht endlich über Cheq axiomatisierbar ist; und schließlich
beweisen wir in Kapitel 7, daß Cheq nicht mit fünf oder sechs Variablen
axiomatisierbar ist.
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