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Abstract
The upcoming high-luminosity upgrade of the LHC requires an increase in simulated data. Due to the high
computational cost of detector simulation, this demand threatens to surpass the computational resources. As a
consequence, it is important to develop faster, less compute intensive alternatives to classical detector simulation
with Markov chain Monte Carlo (MCMC). Generative Deep Learning surrogates are one possible candidate for
speeding up the simulation and are already applied in ATLAS fast simulation tools. However, the quality of
the surrogate data is intrinsically limited by the training statistics.

We demonstrate that the amount of training data poses as an upper limit on the precision of global properties
of observables constructed from the data. Such global properties include for example means or variances.
Nevertheless, the inductive bias of the Neural Network fit allows to surpass the training statistics when analyzing
smaller regions of the data space. We show that the relaxed limit, which still depends on the training data, can
be estimated from uncertainties predicted by Bayesian Neural Networks. To achieve a truthful estimate, the
uncertainty prediction needs to be well calibrated. We show one way to calibrate uncertainties for generative
Bayesian Neural Networks and find that the common variational inference method is hard to calibrate.

We therefore develop a new method based on stochastic gradient MCMC. This method is called AdamMCMC.
It is easy to apply and replaces the stochastic optimization commonly employed in Deep Learning. In contrast
to variational inference, the variance of the uncertainty prediction can be adapted e!ectively through variation
of a single parameter. Diverse predictions indicate out-of-distribution application. Overall, we find that the
stochastic gradient MCMC produces more reliable predictions than variational inference in multiple applications.

Classifier Surrogates are one possible application of generative Machine Learning, where reliable uncertainties
are crucial. This class of surrogates predicts the behavior of jet taggers working on detector data from more
accessible data. Experimental analysis employing such taggers can be reinterpreted without the need for detector
simulation. This cuts computational cost and enables sharing of the analysis outside the collaboration. However,
the uncertainties introduced by the approximation need to be controlled and application to new data spaces
needs to be prevented. We show that Continuous Normalizing Flows, in combination with AdamMCMC, can fulfill
these requirements. Similar surrogates can be of high value for the community and could be implemented with
every jet tagger employed at ATLAS or CMS.
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Zusammenfassung
Das bevorstehenden “High-Luminosity” Upgrade des LHC erfordert eine entsprechende Steigerung der simulierten
Datenmenge. Aufgrund der hohen Rechenkosten der Detektorsimulation könnte diese Nachfrage jedoch die
Rechenressourcen zu übersteigen. Daher müssen schnellere, weniger rechenintensive Alternativen zur klassischen
Detektorsimulation mit Markov Chain Monte Carlo (MCMC) entwickelt werden. So genannte “Surrogates”, die
Methoden der generativen künstlichen Intelligenz anwenden, sind ein möglicher Kandidat für die Beschleunigung
der Simulation. Sie werden bereits im ATLAS-Experiment zur Simulation genutzt. Die Qualität der Daten,
welche von einem Surrogate erstellt werden, ist jedoch von Natur aus durch die Statistik seiner Trainingsdaten
begrenzt.

Wir zeigen, dass die Menge der Trainingsdaten eine Obergrenze für die Präzision globaler Eigenschaften
von aus den Daten konstruierten Observablen darstellt. Mittelwerte oder Varianzen sind ein Beispiel solcher
Eigenschaften. Die Beschränktheit des Funktionsraumes Neuronaler Netzwerke ermöglicht es jedoch, die Train-
ingsdaten bei der Analyse kleinerer Abschnitte der Datenverteilung zu übertre!en. Die durch die Trainingsdaten
definierte Grenze kann auch aus den Unsicherheiten geschätzt werden, welche Bayessche Neuronale Netzwerke
vorhersagen. Um eine wahrheitsgetreue Schätzung der Grenze zu gewährleisten, muss die Unsicherheitsvorher-
sage gut kalibriert sein. Wir zeigen eine Möglichkeit, Unsicherheiten für Bayessche generative Neuronale Netze
zu kalibrieren. Wir demonstieren ebenfalls, dass die weit verbreitete “Variational Inference”-Methode schwer
zu kalibrieren ist.

Wir entwickeln daher unsere eigene Methode basierend auf “stochastic gradient MCMC”. Diese Methode,
AdamMCMC, ist einfach anzuwenden und ersetzt die Methoden der stochastische Optimierung, welche üblicherweise
im maschinellen Lernen eingesetzt werden. Im Gegensatz zu “Variational Inference” kann die Varianz der
Unsicherheitsvorhersage anhand eines einzigen Parameters e!ektiv angepasst werden. Darüber hinaus zeigt die
Methode die Anwendung des Netzes auf unbekannte Daten an, in dem sie hohe Unsicherheiten vorhersagt und
liefert allgemein zuverlässigere Vorhersagen.

“Classifier Surrogates” sind eine mögliche Anwendung des generativen maschinellen Lernens, bei der zu-
verlässige Vorhersage der Unsicherheiten entscheidend ist. Diese Klasse von Modellen sagt das Verhalten von
“Jet-Klassifizierungsmodellen” voraus, die direkt mit Detektordaten arbeiten. Für diese Vorhersage verwen-
den diese besser zugänglichen Daten anstelle der Detektordaten. Experimentelle Analysen, die solche Klas-
sifizierungsmodelle verwenden, können mit Hilfe eines “Classifier Surrogates” neu interpretiert werden, ohne
dass eine weitere Simulation des Detektors notwendig ist. Dadurch sinkt der Rechenaufwand. Die Analyse
kann auch von Forscher weiter genutzt werden, die keinen Zugri! auf die Detektorspezifikationen haben. Damit
solche ein Modell zuverlässig ist, müssen die Unsicherheiten abgeschätzt werden, welche durch die Modellieriung
eingeführt wurden. Darüber hinaus muss vor der Anwendung auf Daten, welche für Klassifizierungsmodell und
Surrogate neu sind, gewarnt werden. Wir zeigen, dass “Continuous Normalizing Flows” in Kombination mit
AdamMCMC diesen Anforderungen genügen. Ein solcher “Classifier Surrogates” stellt einen großen Mehrwert für
die Forschungsgemeinschaft dar und könnte für jeden Jet-Tagger, der bei ATLAS oder CMS eingesetzt wird,
implementiert werden.
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Notation

High-Energy Physics

ω wave function of a fermion
ε wave function of a Higgs boson
ω

→,ω†, ω̄ complex conjugate, Hermitian conjugate, Hermitian adjoint of ω

SU(N), U(N) (special) unitary group of degree N

ϑa partial derivative with respect to dimension a

Da covariant derivative with respect to dimension a
→

s center-of-mass energy
L luminosity
!, ”, ϖ azimuthal and polar angle relative to the beam axis, pseudorapity
Z atomic number of a material
ϱ fine-structure constant
⊋ reduced Planck constant
E0 incident energy of a particle hitting a calorimeter
Ec critical energy of the calorimeter material
c speed of light
eV, MeV, GeV, TeV (mega-/giga-/tera-)electronvolt
cm, m, km (centi-/kilo-)meters
s seconds
Hz, gHz (giga-)Hertz
Mb megabyte
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Machine Learning

ς, fω vector of network parameters, neural network
ς

→ position of the loss minimum
P number of parameters in ς

ε vector of parameters for an auxiliary network or posterior approximation
z vector of parameters and auxiliary variables
L, L̂ loss function, estimator of the total loss function based on batches
ELBO evidence lower bound
ϑa partial derivative with respect to variable a

↑a nabla operator, vector of partial derivatives in all dimensions
ϖ stepsize
Y , X, Z random variable of output data space, input data space, latent space
#A sample space of random variable A

N , M dimensionality of output and input data space
Dn, n training data, number of points in data
Dm, m batch of training data, number of points in a batch
φ > 0 small parameter to prevent nuisance
W (t), ↼ Wiener process, normal distributed noise
p̂X , pX , p

n
X (estimated) probability density of random variable X

p
n
X product probability density of n samples from X

x ↓ pX x drawn from pX

↽̂(ς), ↽(ς), ↽ε(ς | D) (estimated) probability density of network parameter ς, Gibbs posterior
ς ↓ ↽(ς) ς drawn from ↽, in slight abuse of notation the argument is often specified where no

subscript indicates the random variable
⇀ = 1/kBT , kB , T inverse temperature, Boltzmann constant, temperature
o, h, M observables, properties and measurement of distance for amplification
a, A amplification sample size, amplification factor
Î, I (empirical) Fisher information
TV, ↔ · ↔TV total variation distance and norm
ϱ acceptance probability ratio
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General

tr trace operator
diag(a1, ..., an) diagonal matrix with entries a1 to an

1 unit matrix
det(A) determinant of matrix A

A ↗ B the di!erence of both matrices A ↘ B has non-negative eigenvalues
ln, exp logarithm with base e, exponential function with base e

log logarithm with base 10
sin, cos, tan trigonometric functions
max, min maximum, minimum
argmax, argmin parameters that minimize the argument of the operator
var variance
R, R>0, N (positive) real numbers, natural numbers
uniform(·; a, b) probability density of uniform distribution with bounds a and b

N (·; a, b) probability density of normal distribution with mean a and covariance b

a
↑ transpose of vector a

≃, ⇐ element-wise multiplication and division
DKL, DJS, DJS Kullback-Leibler, Jensen-Shannon divergence, histogram approximation of the

Jensen-Shannon divergence
Ex, Ex↓pX

expectation value over x

a ⇒ b(x) = a(b(x)) composition of operators a and b

O order
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Introduction
In high-energy physics (HEP) particle collisions at immense energies are produced at colliders such as the
Large Hadron Collider (LHC) [3]. The aim of such collisions is to observe new physics in the spray of particles
produced. Unknown physics at high energies is assumed to constitute itself in form of new particles, such as the
Higgs [4, 5]. Interactions with these new particles will a!ect the production of stable particles in the collisions
and their energy depositions in the measuring apparatus, also called a detector.

From theory side, these processes are described by the Standard Model of Particle Physics [6–8]. Although
highly successful, the Standard Model cannot explain certain physics phenomena. These include the existence
and nature of dark matter and the imbalance between matter and antimatter in the universe. At this point
in time, clear evidence of such physics beyond the Standard Model has not yet been found at colliders. This
indicates, that either the energies of the collisions or the precision of the measurement are not yet su"cient.
To reach the absolute limit of the LHC in terms of precision, before constructing a stronger accelerator, it is
upgraded to the High-Luminosity LHC (HL-LHC) [9] starting in 2025. This includes installation of detectors
with higher spatial resolution. It also includes an increase of the collision rate by 5-7.5 times to further suppress
the stochastic variance in the measurements of rare processes.

Conclusions on the agreement of theory and experimental observation are drawn by analyzing the agree-
ment between predictions and measurements. To propagate the predictions of the Standard Model to energy
depositions in a detector, costly simulations of the interactions between particles and detector are required.
Similar amounts of simulated and experimental data need to be compared to control the stochastic errors of
the analysis. With the start of operation of the HL-LHC in 2028, the amount of simulation needed threatens to
surpass the computational resources [10]. This motivates the development of simulation alternatives which are
less compute intensive. One prospect for cheaper simulation are Deep Learning surrogates employing generative
Neural Networks (NNs) [11]. NNs can be understood as highly flexible family of functions parameterized by
a huge number of parameters. Due to their structure, such models scale better to the high dimensional data
produced by detectors. The inherent logic of the undertaking is: Take a limited sample of classically simu-
lated points to adapt the NN parameters with stochastic optimization and use the model to generate arbitrary
amounts of data thereafter. As the quality of the predictions of the surrogate is limited by the training statistics,
the data produced this way will never be as precise as the classical simulation. Generation speed is treated for
accuracy. This can be accepted, because the simulation of detector e!ects is applied on top of the simulation
of the collision, which remains untouched and which might include new physics. The detector e!ects merely
constitute a complicated smearing of these initial processes.

However, if the surrogate data cannot improve the simulation beyond the training statistics, this approach
is flawed. We thus need to answer the question: Can an analysis be improved through the addition of artificial
surrogate data? This is the question of data amplification. As there are various possibilities to perform the
analysis, this general phrasing of the question is ill-posed. In Reference [P1, 1], it is thus rephrased on the level
of distributions: Is the approximation of the surrogate closer to the true data distribution than a histogram of
its training data? And how does it compare to other classical density estimation techniques?

To answer these research questions both studies compare the surrogate data to the true data distribution,
which is either known or approximated by a large amount of data held back for this approximation. While this
serves as a nice proof of concept, in practice it defeats the purpose of the surrogate. A much more applicable
setting would be a network that itself predicts its modeling error. Bayesian Neural Networks (BNNs) [12] are
a class of Deep Learning algorithms that predict the uncertainty based in limited data. Instead of optimizing
the values of the NN parameters, such methods infer or sample a distribution of the parameters informed by
the data. Through the width of these distributions, they encode uncertainty on the parameters.

Despite the requirement for well modelled errors in HEP [13], these methods are not yet widely applied
within the field. This might be due to the increased memory-footprint and inference times or due to the relative
complexity of the algorithms themselves. Variational inference (VI) [14] at this point is the only flavor of
BNNs applied in HEP [15–18]. It approximates the true distribution of the weights as an uncorrelated Gaussian
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distribution. The resulting simplification is then used to rephrase the inference of the parameter distribution
as an optimization task. This optimization can then be performed with traditional optimization techniques.
However, the approach has severe drawbacks. First, the joint optimization of the NN and the distribution
of its weights can be unbalanced, need additional fine-tuning and yield worse results than the deterministic
framework. In an environment that competes for the best possible performance, this hinders the acceptance.
Historically, the inference of such distributions is often done with Markov chain Monte Carlo (MCMC) [19].
These methods are notorious for being computationally expensive and scaling bad to high-dimensions. Despite
this reputation, recently developed stochastic gradient MCMCs [20, 21] optimize at speeds comparable to
stochastic optimization methods. The term “stochastic” refers the use of batches of data rather than the
entire data to drastically reduce computational cost. Stochastic gradient MCMCs further do not enforce any
assumption on the shape of the weight distributions. As such, they often produce better calibrated uncertainty
estimates compared to approximations of the weight distribution. In [P2], we propose our own method that
acts as a drop-in replacement for stochastic optimization.

The stochastic nature of the chains however poses a problem. The sampled distribution is not guaranteed
to be correct. This can be solved with a Metropolis-Hastings (M-H) correction. A stochastic phrasing of
the correction again introduces similar issues. Multiple solutions exist. However, they often increase the
computational cost. In Reference [P3], we introduce a cheap correction to the optimization objective. It
guarantees sampling from a distribution with the same properties as the one that would be sampled using the
entire data.

Equipped with these methods, we present a first application of MCMC sampling to generative Machine
Learning for HEP in Reference [P4]. We show that the uncertainty of such a BNN can indeed be connected to
the amplification power of the network [P5]. While this still requires to check the calibration of the uncertainties
against a ground truth, the application is more flexible than the previous e!orts. For example, it includes
splitting the data into areas used for calibration and others for prediction.

The thesis is structured as follows. In Section 1, we introduce the application domain and its Deep Learning
use-cases to argue the need for surrogate models. The basics of Deep Learning are presented in Section 2 and
generative NN are introduced in Section 3. In the later chapters of Section 3 data amplification with generative
Machine Learning is discussed. We introduce the di!erent flavors of Bayesian Machine Learning in Section 4
and debate the intricacies of stochastic M-H corrections, as well as possible solutions in 5. In Section 6, we
apply these methods to HEP problems and connect them to the encompassing theme of amplification.
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1 Particle Physics
Particle physics is the research field related to the search for the most fundamental, indivisible building-blocks
of matter. In the subfield of HEP, collisions of particles at large energies are observed. These collisions serve as
proxies for the high energy density at the start of the expansion of the universe. With this approach information
on the processes that initially formed matter can be inferred from the products of the collisions.

The foundations of this field date back to the discovery of the electron by Thomson in 1897 [22] and the
scattering experiments of Rutherford [23]. Through scattering of ϱ-particles on a gold foil, Rutherford first
showed that matter is made up of nuclei distributed distantly over the volume of a body. In similar collision
experiments he later (1919) found the proton [24]. The particle nature of the photon, proposed by Einstein,
was first experimentally proven by Compton in 1922 [25]. After the discovery of the neutron by Chadwick in
1932 [26], all chemically relevant particles were discovered and after the electron neutrino was experimentally
observed in 1956 [27], the atom model seemed complete.

This assumption proved to wrong when first colliders resolved an internal structure of the proton, so-called
partons, through electron-proton collisions. These observations resulted in the discovery of quarks at the Stan-
ford Linear Accelerator Center (SLAC) [28, 29] and of gluons at DESY (Deutsches Elektronen-Synchrotron) [30].
With increasing collision energies, the heavier mediator particles of the weak interaction, the W

±- and Z-boson
were found in proton-antiproton collisions at CERN in 1983 [31, 32]. With further increasing energies, the
heavy top quark was found at the Tevatron at Fermilab in 1995 [33, 34]. Finally, in 2012 the mass mediating
Higgs boson was found at the LHC at CERN [4, 5].

These discoveries and many more, are theoretically described by the Standard Model of Particle Physics [6–
8]. In Section 1.1, we give an overview on how the Standard Model connects the aforementioned particles.
Section 1.2 quickly explains the shortcomings of the model. We pick up on the experimental facets of particle
colliders and detectors in Section 1.3 and Section 1.4. Calorimeters for measuring particle energies and the
particle showers that develop in these calorimeters are discussed in Section 1.5. The issue of attributing the
energy distribution to an initial particle is shortly brought up in Section 1.6. To understand why the HEP
community is in need for amplified data from fast Deep Learning surrogates, we discuss the current state of
simulating collider events from theory in Section 1.7. For textbooks with more in-depth discussions of particle
physics, see for example Reference [35].

1.1 The Standard Model of Particle Physics

Particle Content

The Standard Model introduces two classes of particles, spin-1/2 fermions which make up the matter content
and spin-1 bosons that mediate the forces between the elementary particles. Fermions can be grouped into two
classes, leptons (Figure 1 lower left) and quarks (Figure 1 upper left). There are three generations of charged
fermions: electrons e

↔, muons µ
↔ and tauons ⇁

↔, increasing in mass, each with a full negative charge. Of
these three, only the electron is stable. In every generation there exists a corresponding, electronically neutral
neutrino νe/µ/ϑ . Within the Standard Model neutrinos are assumed to be massless.

Quarks also admit the three-generations structure. There are three types of up-type and down-type quarks
respectively. The up-type quarks, up u, charm c and top t, have a positive electromagnetic charge of 2/3, while
the down-type quarks, down d, strange s and bottom b, have a negative charge of 1/3. In contrast to leptons,
quarks carry a color-charge. The color-charge can be red, green or blue, where the sum of all three results in a
neutral particle again.

Besides their spin, all fermions share another common feature. All fermions have a corresponding anti-
particle of opposite charge, color-charge and helicity, but equal properties otherwise. The antiparticle to the
electron is the positron e

+. The dynamics of a fermion are described through Quantum Field Theory (QFT)
by a Lagrangian density. For a full introduction to the underlying principles, see for example Reference [37].
Due to the spin-1/2 nature, the Lagrangian of the fermions is specified through Dirac-algebra with γ-matrices
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Figure 1: Diagram of the particles in the Standard Model. Image taken from Reference [36].

γ
µ and Dirac-spinor fields ω(x). With ω̄ the adjoint spinor, the Lagrangian of a fermion of mass mϖ is

Lfermion = ω̄(iγµ
ϑµ ↘ mϖ)ω. (1.1)

The Hermitian adjoint ω̄ = ω
†
γ

0 = (ω→)↑
γ

0 can be understood as the field of an antiparticle to a particle ω.

Interactions

The interactions of particles can be derived by enforcing the Lagrangian to be invariant under transformations
of the local gauge group SU(3)C ⇑ SU(2)L ⇑ U(1)Y . A local transformation M can be written as

ω(x) ⇓ Mω(x) = e
igϱa(x)ta

ω(x) , (1.2)

with the generators of the group t
a, the phase of the rotation ▷a(x) and the coupling strngth g. For SU(N)

there are N
2

↘ 1 generators. Equation (1.1) is not invariant under such transformations as the derivative acts
on the angles ▷a(x). To recover the invariance we introduce the covariant derivative

ϑµ ↘⇓ Dµ = ϑµ + igAµat
a

, (1.3)

with gauge fields Aµa for every generator of the group. By construction the gauge fields transform as

Aµ ⇓ MAµM
† + i

g
(ϑµM)M†

, (1.4)

thus recovering the invariance of the Lagrangian. The resulting gω̄γ
µ
Aµat

a
ω terms describe the interaction of

the fermions with the gauge fields.
The U(1)Y symmetry has only one generator. We choose i

YW

2 , with YW the weak hypercharge quantum
number of the fermion ω. This means, the corresponding gauge field, by design of the model, couples to fermionic
particles with a non-zero weak hypercharge. The weak hypercharge is the di!erence of the electric charge of
the particle and the third component of its weak isospin, itself a spin-like quantum number that distinguishes
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left- and right-handed fermions in the theoretical description.
For the SU(2)L symmetry, we choose the three Pauli matrices as generators. The weak isospin quantum

number determines the coupling of the corresponding three gauge fields. This symmetry describes the weak
force. The weak interaction is not parity conserving, as it only couples to left-handed fermions [38]. To represent
this in theory, we introduce doublets under SU(2) to describe left-handed particles ωL and singlets describing
right-handed ones ωR. Neutrinos only appear as left-handed particles and thus only in lepton doublets.

Both gauge symmetries can be unified description in a single theory with a joint gauge symmetry SU(2)L ⇑

U(1)Y (electroweak unification [8, 39]). It is broken through the Higgs mechanism SU(2)L ⇑ U(1)Y ⇓ U(1)Q

(electroweak symmetry breaking). This symmetry describes the electromagnetic force. The physical gauge boson
for the electromagnetic force is the massless, neutral photon γ that couples to the electromagnetic charge Q.
The remaining, physically observed gauge bosons can be constructed as mixtures of the four gauge bosons. The
weak interaction is mediated through the neutral Z-boson, and the charged W

+- and W
↔-bosons. While for

the other interactions the quark flavor, is conserved, the weak interaction does not respect this conservation.
The third symmetry, SU(3)C , can be generated by the eight Gell-Mann matrices. These give rise to eight

corresponding gauge fields, the gluons g, the mediators of the strong interaction. The gluons couple to the
color charge of a particle. The sub-model only including the strong interaction is aptly called Quantum Chro-
modynamics (QCD). As only quarks and gluons carry such a charge, only they interact strongly. The strong
interaction has two properties, that are highly relevant in collider physics. First, at high energies or small length
scales this interaction is very weak and quarks and gluons move freely. This is called asymptotic freedom [40,
41]. For large distances however, the potential of the interaction between two quarks increases linearly with
the distance. At low energies, the quarks are thus forced together and cannot exist in isolation. As a result,
only color-neutral combinations of quarks, so-called hadrons, exist outside of particle colliders and neutron
stars. This e!ect is referred to as color confinement. The transition from high to low-energy regimes and the
connected creation of composite particles is known as hadronization. The most common hadrons, are either
comprise quark-antiquark pairs (mesons) like pions or kaons, or combinations of three quarks, like protons
(uud) and neutrons (udd), called baryons. Amongst these combinations only protons p are generally stable.

All gauge bosons are spin-1 particles with their dynamics described through a kinetic term

Lkin = ↘
1
2tr FµςF

µς
, (1.5)

with the field strength tensor Fµς = ↘
i
g [Dµ, Dς ].

The Higgs Mechanism

The principles introduced this far, do not explain the masses of both fermions and bosons. The naive mass
term mϖω̄ω = mϖ(ω̄RωL + ω̄LωR) of (1.1) directly connects left- and right particles, doublets and singlets of
SU(2)L, and thus breaks the gauge invariance under this rotation group. Similarly, the naive mass terms of the
gauge bosons are not invariant either.

To add a gauge invariant mass term for these particles. We introduce another auxiliary field, the spin-0
Higgs ε. Its dynamics are described by a Lagrangian with a quartic potential

LHiggs = 1
2(Dµε)†(Dµ

ε) ↘

(
1
2µ

2
ε

†
ε + 1

4⇀(ε†
ε)2

)
(1.6)

and ⇀ > 0 and µ
2

< 0. By expanding the field around one of its non-zero minima v = ±
√

↘µ2/⇀ (vacuum
expectation value), that is ε(x) = v + h(x), the covariant derivative gives rise to mass and interaction terms for
gauge bosons. In fact, this interaction is what allows us to rewrite the gauge bosons as physical combinations
of mass eigenstates in the previous section. This approach is known as spontaneous symmetry breaking, as
expanding Equation 1.6 around the non-zero minimum breaks the invariance of the Lagrangian.

To include interaction terms of fermions with the Higgs we write ε as a SU(2)L doublet. With this choice,
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the fermion interaction terms, so-called Yukawa couplings

gf (ω̄LεωR) , (1.7)

are invariant under the local gauge transformation. By expanding ε around its minimum, the interaction terms
can be written as an invariant mass term and an interaction with the Higgs particle h(x). As the Yukawa
coupling gf appears in the mass term, as well as the interaction term upon expansion, we find the coupling
strength of fermions to the Higgs is proportional to its mass. To gauge the Higgs section in experiment, the
exceptionally heavy top quark is thus especially interesting. This is one reason why techniques distinguishing
the top from the remaining quarks, that is QCD background, are especially relevant for experimental analysis.

The entire derivation of boson and fermion masses via the Higgs potential is commonly referred to as the
Higgs Mechanism and has been postulated in 1964 [42–44]. Because the most likely decay channels of the Higgs
come with large backgrounds, the Higgs boson was not found until 2012 [4, 5].

1.2 Beyond the Standard Model

The Standard Model is an outstandingly successful theory and does explain the fundamental interactions of
matter to high precision. It relies on experimental observations to tune the values of 19 internal parameters.
Similarly, the number of lepton and quark generations is constrained by observation rather than explained from
a more fundamental theory.

While ongoing e!orts try to determine the internal parameters to the highest possible precision, the HEP
community is also searching for physics beyond the Standard Model (BSM) to motivate a more general theory
and explain phenomena that cannot be described in the Standard Model. The unexplained observations include:

• Neutrino masses: The Higgs mechanism only explains masses for fermions and bosons, but not for
neutrinos. It has however been observed that solar neutrinos change flavor. Electron neutrinos convert
to muon and tau neutrinos and vice versa, when propagating through space [45, 46]. Similar observation
have been reported for man-made neutrino beams [47]. This indicates that the physical neutrinos are a
mixture of the mass eigenstates allowing the mixing between the neutrinos. Hence, at least one neutrino
is massive.

The seesaw mechanism [48–51] is one theory to explain the mass of neutrinos. In it one assumes a second,
very heavy, right-handed neutrino. The mass prediction of the second neutrino gets bigger, the smaller
the mass of the Standard Model neutrino. As such heavy neutrinos cannot interact directly via any of the
three forces of the Standard Model, the heavy neutrino also is one candidate for the explanation of dark
matter.

• Dark matter: From astronomical observations of gravitational e!ects such as the radial velocities of
galaxies, gravitational lensing and structure formation in the early universe, we find discrepancies between
the mass predictions and the observed, luminous matter. This indicates that the universe is largely filled
with matter that interacts only weakly with Standard Model particles. Multiple ideas for dark matter
exist within cosmology, such as brown dwarf stars or primordial black holes. Particle physics explanations
usually propose a weakly interacting massive particle, such as the heavy neutrinos or axions.

The visible, baryonic matter of the universe makes up ⇔ 5% of all energy in the universe and dark matter
about ⇔ 25%. The remaining, ⇔ 70%, so-called dark energy, are needed to explain the expansion of the
universe. For a more detailed introduction, see for example Reference [52].

• Baryon asymmetry: The Big Bang model is the assumption that the universe expanded from a singular
point of infinite temperature and density. For this model, the Standard Model predicts the creation of
matter and antimatter in equal proportions. The fact that matter in the universe today is predominantly
matter indicates the incompleteness of our model.
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• Unification: The coupling strengths of the three forces of the Standard Model depend on the energy
through quantum loop corrections. The coupling strength of the weak and strong interactions decrease,
while that of the electromagnetic interaction increases. This brings the coupling of the forces closer
together at high energies. If the coupling were to meet at the same point, a unified theory of all three
forces in SU(5), rather than only the electromagnetic and weak, would be possible [53]. This however
is not the case for the content of the Standard Model. Additional particles are required to correct the
running of the three couplings to meet at a single energy point [35].

• Gravity: Up to this point, we have discussed three of the four fundamental forces of nature: The elec-
tromagnetic, weak and strong force. The fourth fundamental force, gravity, is not part of the Standard
Model. A unified theory of all four forces would truly be a “theory of everything”. The fundamentally
di!erent formulation of QFT (perturbation theory and path integrals) and General Relativity (di!erential
geometry) make their unification especially tricky. Theories that manage to do so, such as string the-
ory, often introduce additional dimensions and large parameter spaces that cannot be constrained from
experiment [54].

• Hierarchy problem: The QFT prediction of the Higgs mass includes quantum loop corrections. These
are quadratic in the highest mass scale of the theory. For a grand unified theory, this scale is on the
order of ⇔ 1016 GeV, while the Planck scale is even higher. As the Higgs mass is at ⇔ 125 GeV, these
corrections need to cancel to a high degree of precision. While such a theory can be constructed, the fine-
tuning required for the corrections to cancel seems unnatural. A supersymmeteric symmetry, in which
all particles are matched with a superparticle which di!ers in spin by 1/2, would naturally introduce this
cancellation, but has not yet been verified experimentally [35].

Supersymmetric models also require a second Higgs doublet introducing 3 additional, heavy Higgs bosons.
As the addition of these particles changes the interaction of the Standard Model Higgs with the fermions,
discrepancies in the Higgs branching ratios are one interesting gauge of BSM physics. This motivates
building future electron-positron colliders that produces Higgs bosons more e"ciently.

1.3 Particle Colliders

In the introduction to this chapter, we have already encountered multiple di!erent particle colliders, each famous
for the discovery of new particles: The Stanford Linear Collider (SLC) at SLAC, the Positron-Electron Tandem
Ring Accelerator (PETRA) at DESY, the Super Proton–Antiproton Synchrotron (Spp̄S) at CERN and the LHC
at CERN.

They di!er in construction, accelerated particle and target. These choices in design determine the maximum
energy released in the collision and the number of collisions observed per time. The former is referred to as
the center-of-mass energy

→
s while the latter is called luminosity L. The center-of-mass energy determines the

processes possible within the collision, as well as their probability.
Of the introduced colliders, only the SLC is constructed as a linear collider accelerating charged particles

through electromagnetic fields along a line. In a linear accelerator, only the strength of the accelerarting fields
and the length of the track limit the center-of-mass energy. The other three colliders are constructed as circular
tracks. In a circular collider, the particles can accelerate for multiple rounds, until the amount of energy
lost to synchrotron radiation (Bremsstrahlung) equals the energy put into the system. As the energy loss to
synchrotron radiation is antiproportional to the fourth power of the mass of the particle, circular colliders are
e!ective for colliding heavier particles, such as protons or ions. As the energy loss is also antiproportional to
the radius, upgrading to a higher energy usually means building a larger accelerator ring. The circular design
also lends itself to the use of multiple bunches of particles to boost the luminosity and collision of bunches
travelling in opposite directions to increase the center-of-mass energy without the need for additional tunnels.
It also allows the construction of multiple interaction points for independent experiments. In linear accelerator
designs, multiple experiments need to share one interaction point.
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The design of the accelerator is usually determined by the type of collision desired. The most common choices
are electron-positron, proton-proton and heavy ion collisions. A notable exception is the Hadron-Electron Ring
Accelerator (HERA) at DESY [55], that used electrons and protons as beam particles. While heavier particles
reach higher center-of-mass energies, the initial states of the process are unknown as the energy within a
hadron is probabilistically distributed amongst its partons, that is quarks and gluons. Furthermore, lepton
colliders prevent QCD background processes. Hadron colliders thus require a higher amount of data cleaning
and classification to filter out the processes of interest. A more detailed report on particle colliders is given in
Reference [56].

The Large Hadron Collider and its High-Luminosity Upgrade

The LHC [3] is the largest particle collider to date. Proton-proton collisions currently reach a center-of-mass
energy of up to 13.6 TeV. The electromagnetic field for the acceleration is provided by 16 superconducting
radio-frequency cavities along a 26.7 km circular beam line. Four large-scale experiments are located at di!er-
ent crossing points of the LHC beams. The general purpose detectors ATLAS [57] and CMS (Compact Muon
Solenoid) [58], as well as the specialized experiments LHCb [59] and ALICE (A Large Ion Collider Experi-
ment) [60]. LHCb is specifically designed for B-meson physics and ALICE specializes in heavy ion collisions.

The LHC was originally designed to for a luminosity of L = 1034 cm↔1s↔1. After the end of LHC Run-3 in
2025, the machine will be updated to increase the luminosity by a factor of 5 to 7.5 to gather more statistics
on rare processes such as Higgs pair production [9]. This project is aptly called the HL-LHC. The increase
in collisions observed per time will be achieved through higher collision rates and stronger focused beams.
Upgrades include stronger superconducting magnets, more precise radio-frequency cavities and more e"cient
links and beam collimators. Simultaneously, updates and replacements to the detectors need to be implemented
to guarantee higher radiation tolerance, faster data processing and higher granularity. For the CMS detector,
these include stronger cooling, new endcaps for the calorimeters, a higher granular tracking, as well as updates
to related readout electronics [61]. On software side, necessary updates are faster triggers, classifying interesting
processes from background at measurement time, and speed-up in theory simulations, to provide comparable
datasets to the increasing amounts of observations. The need for faster simulation motivates the augmentation
of the simulation chain by generative Machine Learning.

Plans for Future Colliders

The main proposals for future colliders include the construction of large scale electron-positron colliders that
e"ciently produce Higgs particles [62]. To this end, a future collider needs to reach energies

→
s ↗ 250 GeV and

thus has to be su"ciently large.

• The Future Circular Collider (FCC) [63] proposes the constructing of a circular collider of ⇔ 100 km
circumference at CERN, that can operate at ⇔ 350 GeV to study top pair production. After the operation
of the FCC as a electron-positron collider, the tunnels could be reused for hadron collisions. Such a
collider could reach energies up to ⇔ 100 TeV. A decision on this project is scheduled for 2027 - 2028 with
constructing beginning in the 2030s

• The Circular Electron Positron Collider (CEPC) [64] is the counterproposal to the FCC in China. Its
design achieves similar center-of-mass energies at a comparable circumference. The project awaits approval
by the Chinese government in 2025 and construction could start as early as 2027.

• Rather than using a circular design, the International Linear Collider (ILC) [65] study suggests the
construction of two opposing linear accelerators in northern Japan. The footprint of the machine has
a total length of about 31km. The linear construction would generate electron-positron collisions at
→

s = 250 GeV up to 1 TeV. Two general detectors are planned at the ILC, the International Large
Detector (ILD) and the Silicon Detector (SiD) [66]. To facilitate high resolution jet reconstruction, both
detectors are designed with high-granular calorimeters.

12



• A similar project, the Compact Linear Collider (CLIC)[67], was proposed for the construction at CERN.
Starting out from a 11 km long collider capable of

→
s = 380 GeV, the study proposes to gradually upgrade

the length of the accelerator ins two steps to 29km (1.5 TeV) and 50km (3 TeV). Following the proposal,
the increased center-of-mass energy over the ILC could be achieved through a novel two-beam setup with
increased accelerator gradients.

1.4 Detectors

In this section, we introduce the general building blocks of particle detectors and their function. General-
purpose detectors, such as the ATLAS and CMS detectors, usually consist of several building blocks. These
always include a tracking system for charged particles, electromagnetic and hadronic calorimeters, a magnet
and muon chambers. They are arranged around the beam crossing in layers.

In a detector, positions are usually indicated in terms of the pseudorapity ϖ, the azimuthal angle ! and a
radial distance. The pseudorapity can be calculated from the angle to the beam axis ” (polar angle) as

ϖ = ↘ ln
[
tan

(
”
2

)]
. (1.8)

The magnet applies a magnetic field parallel to the beam axis. Charged particles thus experience a Lorentz
force orthogonal to the direction of the field and their momentum. The radius of this bend is proportional
to the momentum of the charged particle. From reconstructing the curve of the particle trajectories in the
tracking system, one can thus infer the momentum of the particle and the sign of its charge. If the transverse
momentum of the particle is too high, the trajectory will appear as a curve and the reconstruction fails. The
tracking system itself is designed to record the path of charged particles while impacting the momentum of the
particles as little as possible. This facilitates detailed reconstruction of the primary vertex. While CMS and
ATLAS use silicon strips and pixels to create a high resolution tracking (124 million pixels for CMS), ALICE
uses time projection chambers. The former use the creation of electron-hole pairs in silicon for measurement,
the latter the ionization of a gas, such as xenon or argon. Arranged around the tracking system are calorimeters.
Their purpose is to measure the full energy of the produced particles. A muon system usually encases the three
aforementioned blocks. In contrast to electrons, the heavier muons only deposit a small part of their energy in
the calorimeters. The muon system uses similar designs as the tracker, but scaled to a higher volume. Again,
the bend of the muon tracks enables the reconstruction of the muon momenta.

Usually, the collision rate is dominated by uninteresting, background events. An event is the response of
the detector to a collision. At a collision rate of about 1 gHz at the LHC, an elaborate preselection of the
events is necessary, as the collected data would be too large to handle otherwise. This thinning-out is handled
by multiple layers of triggers. Hardware-based triggers decide which events enter the data pipeline. Subsequent
software-based triggers reduce the data rate by about 6 orders of magnitude and determine which events are
saved. At about 3 Mb per event, this still translates to gigabytes of data per second.

1.5 Showers and Calorimeters

As introduced in the last section, the aim of a calorimeter is to destructively measure the energy of incident
particles produced in the collision. For low energetic charged particles, this is already possible from the curve of
its trajectory in the tracker. For neutral particles, such as photons or neutral pions, we need more specialized
equipment.

In a calorimeter, the incoming particles deposit most of their energy in the calorimeter material. This
happens in a cascade of interactions, each producing new particles. This cascade is called a shower.
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(a) electrons and positrons (b) photons

Figure 2: Processes responsible for the energy loss of electrons and photons in lead. Figure 2a shows the energy
loss per radiation length of an electron as a function of the electron energy. Figure 2b shows the total cross-
section of a photon as a function of its energy. “p.e.” is an abbreviation for the photoelectric e!ect and both
◁ denote the cross-section of pair production in the nuclear and electron field respectively. Figures taken from
Reference [68].

Electromagnetic Showers

Electrons and photons dispense energy in matter through multiple di!erent mechanisms. To understand the
creation of electromagnetic showers, we need to understand the interactions of both with the calorimeter matter.

• Electrons: Depending on their energy, electrons and positrons interact with matter mainly through
ionization, at low energies, and Bremsstrahlung, at high energies.

At high energies (> 10 MeV), the deflection of the electrons through the electromagnetic potential of
the nuclei dominates. During the interaction, the electron emits a photon, so-called Bremsstrahlung that
carries part of the energy of the electron.

Lower energetic electrons (< 1 MeV) transfer their energy to electrons bound in the atoms of the calorime-
ter material. If the transfer is large enough, the receiving electron is freed and leaves behind an ionized
atom. When not enough energy is transferred to ionize the material, the exited bound electron, will fall
back to its original energy level, thereby emitting the energy in form of a photon (scintillation).

Direct scattering of the electrons (Bhabha scattering) or positrons (Møller scattering), as well as electron-
positron annihilation do not contribute significantly to the energy dispersion of electrons in material with
high atomic numbers. The relations of these processes for the energy loss of electrons and positrons in
lead is shown in Figure 2a.

• Photons: Photons dispense their energy in the calorimeter material through the photoelectric e!ect,
Rayleigh and Compton scattering and pair production.

High energetic photons create electron-positron pairs upon interaction with the electric potential of atomic
electrons or nuclei. This process is only available for energies higher than the rest mass of the produced
pair, that is above ⇔ 1 MeV.

For intermediate photon energies (1 ↘ 10 MeV) the Rayleigh and Compton scattering contribute signifi-
cantly to the energy deposition. Both describe scattering of the photon on the electrons of the material.
Rayleigh scattering describes the elastic scattering, where no energy is passed to the electron and the
photon is deflected. Compton scattering describes the inelastic process at higher energies that produces
an unbound electron.
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Figure 3: Schematic of an electromagnetic shower. Figure taken from Reference [35].

Eventually, at low energies (< 1 MeV), photons predominantly are absorbed by electrons bound in an
atom of the calorimeter material. This causes the electron to be emitted from the atom leaving behind a
positive charge.

High energy electrons produce photons through Bremsstrahlung and high energy photons produce electron-
positron pairs through pair creation. As long as the energy of produced particles is high enough, the resulting
photons and electrons again transfer energy through Bremsstrahlung and pair production. The generated
positrons eventually recombine with electrons producing more photons. This cascade is illustrated in Figure 3.
It only stops when the energy of the particles drops below the critical energy Ec, where the ionization loss
equals the electron energy. For solid materials, it can be approximated as [68]

Ec = 610 MeV
Z + 1.24 . (1.9)

Low energy photons ultimately produce electrons through Compton scattering and the photoelectric e!ect. If
the shower is fully contained in the calorimeter, the number of particles created in this shower is proportional
to the energy E0 of the incident particle.

To design a calorimeter that will contain the produced showers, we need to predict the average length of a
shower. The characteristic length of a shower is the radiation length X0. It is defined as the mean distance a
high-energy electron traverses until its energy has reduced to 1/e through Bremsstrahlung. For materials with
atomic number Z > 0, the radiation length can be approximated as [35]

X0 ⇔
1

4ϱnZ2r2
e ln(287 Z↔1/2)

, (1.10)

with n the number density of nuclei, re = 2.8 · 10↔15 m the classical approximation of the radius of an electron
and ϱ the fine-structure constant. The mean free path length of the photons decay via pair production is 7/9·X0

of. As a consequence, the number of particles doubles and the average energy per particle halves after every
radiation length. The maximum depth of a shower for an electron or photon is then approximately

ln(E0/Ec)
ln(2) X0 . (1.11)

The number of particles produced by the cascade of particles in the detector is proportional to E0. These
particles, are amplified and recorded within the calorimeter. To ensure no electrons or photons leave the
calorimeter, the calorimeter material needs to ensure a low radiation length. The CMS detector uses solely lead
tungstate (PbWO4), which is a transparent scintillator with low X0 = 0.83 cm and is hence a homogeneous

15



Figure 4: Mean energy loss of a muon traveling through copper per distance traveled (mass stopping power) over
the momentum. The red (dash-dotted) line shows the modeling of the uncorrected Bethe-Bloch equation (1.12).
Figure taken from Reference [68].

calorimeter. Alternatively, the calorimeter can also be made from alternating layers of passive and active
material. The passive material features a low X0 at low costs, while the active material is used to measure the
ionization by the shower [35]. This is usually referred to as a sampling calorimeter and requires an additional
calibration as only parts of the shower are recorded. This can be done very precisely with Deep Learning [69,
70].

Heavy Charged Particles

Charged particles generally interact with detector matter through the same processes as electrons and positrons.
As the critical energy Ec depends on the mass of the particles, it grows with the square of the mass, heavier
charged particles deposit energy mainly through ionization. The mean energy loss of a charged particle through
ionization per distance traveled, also named mass stopping power, is given by the Bethe-Bloch equation [35]

dE

dx
⇔ ↘4↽⊋2

ϱ
2 nZ

me02

[
ln

(
20

2
γ

2
c

2
me

Ie

)
↘ 0

2
]

. (1.12)

Here, 0 = v/c, ⊋ is the reduced Planck constant, me is the electron rest mass, γ = 1/

√
1 ↘ v2/c2 the Lorentz

factor and Ie the e!ective ionization. For high energies, the mass stopping power depends logarithmically on
the particle momentum squared. The Bethe-Bloch curve of a muon in copper (Figure 4) exhibits a minimum
at around 300 MeV. Particles at this minimum energy are called minimum ionizing particles (MIP). As the
energy loss per interaction is the lowest for the MIP, the number of energy deposits in the calorimeter has a
peak at the MIP energy, also called the MIP peak. Due to its dependence only on material properties, the MIP
peak is often used for calibration. If the particle momentum falls below the MIP peak, it quickly deposits the
remaining energy.

Hadronic Showers

Hadronic particles, can undergo additional interactions with the calorimeter material. These include scattering
interactions with the nuclei of the calorimeter material. For nuclear interactions, the nuclear interaction length
⇀l is roughly proportional to the atomic mass of the nuclei and further dependent on the size of the hadron
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through the interaction cross section. It is always bigger than the radiation length. In the case of iron about
a factor of 10 (⇀l(Fe) ⇔ 17 cm, X0(Fe) ⇔ 1.8 cm) [35]. In contrast to electromagnetic shower (O(10cm)), a
hadronic shower can thus span multiple meters. As hadronic calorimeters in consequence need to include a
much larger volume, they are commonly implemented as sampling calorimeters.

The nuclear interactions can be very diverse and produce multiple di!erent final states. An inelastic scatter-
ing between a hadron and a nucleus (spallation) can produce multiple pions and eject parts of the nucleus. The
neutral pions again decay almost instantaneously into photons causing electromagnetic showers. The remaining
energetically exited nucleus can radiate further parts of the nucleus (fission) or radiation (evaporation). The
produced hadrons again undergo interactions with further nuclei. A hadron shower is thus exhibit a more
variable and complex structure than an electromagnetic shower.

As the ration of hadronic and electromagnetic deposition is unknown, hadronic calorimeters are inherently
less precise. This compounds with the additional losses through the design as a sampling calorimeter.

1.6 Jets

The initial collision, described by the hard process, frequently produces quarks. For hadron colliders, such quarks
or gluons can also be radiated of even before the actual collisions (initial state radiation). These QCD particles
themselves can produce a cascade of quarks and gluons through quark-gluon and triple quark interactions.
At low energies the color-confinement comes into play and the quarks hadronize by generating further quark-
antiquark pairs. The produced hadrons interact with the detector in hadronic showers [71].

This chain can approximately be reversed by jet reconstruction algorithms, to assign sprays of particles to
initial products of the hard process. The particles grouped together by such an algorithm are then called a jet.
These algorithms commonly work by repeatedly summing particles closest in pseudorapidity ϖ and azimuthal
angle ! to mother particles until the closest remaining distance exceeds a cuto! distance, the jet radius.
Di!erent measures of distance define di!erent algorithms such as the kT - [72], the Cambridge/Aachen- [73] or
the anti-kT -algorithm [74].

Classifying the particle type of the initial particle from the jet energy depositions is referred to as jet tagging.
It is another common application for Deep Learning in HEP [75, 76].

1.7 Monte Carlo Simulation

To compare the experimental data to theory prediction, a simulation of the full chain of hard process, QCD
e!ects and detector interaction is needed. Due to the probabilistic nature of the processes, the simulation
generally entails MCMC. This is the highly complex distribution of possible collision results at the detector is
sampled via consecutive random draws. A defining feature of MCMC is, that the next simulation step can only
depend on the results, that is the intermediate particles, of the previous. Treating the generation as a chain of
splitting and interactions occurring with a probability determined by QFT and the Lagrangian of the theory is
an intuitive way to think about the intractable distribution of energy depositions.

This simulation chain is commonly divided into individual, specialized parts:

• Event generation: Initially, the hard process is simulated to generate a sample of particles generated
from the colliding particles, as well as their kinematics. On theory side, calculating probability of certain
particles to be produced can include multiple processes and their interactions, corrections and integration
over momenta of intermediate particles. Common event generators are Madgraph [77], Pythia8 [78],
Herwig [79] and Sherpa [80].

• Parton showers and hadronization: The chain of quark and gluon splittings and pair productions
that lead to hadronized particles, as well as their decay, are commonly simulated as the next step. For
hadronization two competing models exist, the String and the Cluster model. The event generators
Pythia8, Herwig and Sherpa include parton shower and hadronization simulations [78–80].
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• Detector simulation: Lastly, tools like Geant4 [81] are used to simulate the energy deposition in
detectors. This includes calculating the evolution of the particle shower by integrating the possibility of
all available splittings for all particles over discrete steps. The stepsize is limited by the requirement that
a single step cannot cross a calorimeter cell without interacting with the calorimeter material.

The integration is implemented as an integration of the inverse mean free path length over a section of
the trajectory

nε =
∫ x→+s

x→

1
⇀(x)dx (1.13)

Here the mean free path length ⇀(x) by definition gives the distance in which the probability for no
interaction to occur falls to 1/e. The radiation length X0 and the radiation nuclear interaction length
⇀l are examples of interaction lengths of the di!erent processes. Equivalently, the probability for an
interaction to occur between x and x + s is 1 ↘ e

↔nω . A stepsize likely to occur from step x under this
probability, can then be sampled by drawing u ↓ uniform[0, 1] as

s = ↘ log(u) · ⇀(x) . (1.14)

Geant4 executes this calculation for the mean free path lengths of all possible processes and chooses
the smallest s. With the exponentially increasing number of particles in electromagnetic and hadronic
showers, this simulation can get very costly. Every particle needs to be calculated individually without
possibility of parallelization.

With the increase in luminosity with the HL-LHC, the cost of simulation increases by the same amount
(5-7.5⇑), because the amount of simulation should match the number of observations as not to be limited
by Poisson errors. For CMS, the upgrades to the tracker and calorimeter end caps further imply increased
granularity. To increase the precision of the simulation to match the improved spatial resolution, the MCMC
needs to apply smaller steps, adding to the rise in computational cost of the simulation. The computational
need of the LHC experiments is thus predicted to outgrow the resources with the start of HL-LHC data taking
in 2028 [10]. This motivates the development for cheaper, more precise simulation tools.

Multiple approaches for faster detector simulation have been developed [82]. These generally trade accuracy
for faster simulation speed. If the resolution of the detector is known, the detector e!ects can be approximated
by a smearing of the momenta of the incoming particles. As the resolution is energy dependent, the smearing is
parameterized by the particle energy and the magnetic field applied. This approximation is useful for cheaply
generating insights on the e!ect of theory parameters, but does not predict a detector response that can be
compared to experimental results. A popular tool applying this approximation is Delphes [83].

Electromagnetic showers can also be approximated in terms of their longitudinal, radial, and azimuthal
energy distribution marginals. Adaptations for hadronic showers or sampling calorimeters exist. Such shower
parametrizations are included in Geant4 under the name GFlash or in the ATLAS toolkit AtlFast3 as
FastCaloSim [84].

Another, older approach is to use large libraries of precalculated showers. After a simulation of the trajec-
tories of high energetic particles, these shower substitute the costly simulation for the low energetic depositions
that make up the largest part of the shower [85].

Currently, the application of generative Machine Learning models trained on Geant4 simulation is widely
discussed in the HEP community. Pioneered by the early adaption of Generative Adversarial Networks (GANs)
to electromagnetic showers in References [86–88], GANs are now part of the ATLAS fast simulation tools
(FastCaloGAN [82, 84]). Numerous studies have been conducted for the application of di!erent generative
architectures to both electromagnetic and hadronic shower simulations. These architectures include GANs,
Variational Autoencoders (VAEs), Normalizing Flows and methods based on di!erential equations, such as
Continuous Normalizing Flows and Di!usion Models. An exhaustive, regularly updated overview over these
models is provided in Reference [89].
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2 Deep Learning
The term Deep Learning (DL) has become a seemingly mystical set of tools promising of improved accuracy
and seemingly new applications. When applying DL to squeeze the last percent out of a given system, we thus
need to make sure to know its mechanisms and limitations. In HEP, the primary system is the LHC, and we
are searching for every possibility to access any information in the reported data that has not yet been found.
As such, the application of these tools comes with high hopes. We thus need to be very clear about what these
modern tools can achieve. It is important to remember:

1. Deep Learning is applied statistics: Deep Learning, that is the application of Deep Neural Networks,
is a sub-category to Machine Learning (ML) which itself is part of the broader idea of Artificial Intelligence
(AI). All these terms describe statistical methods to make a computer program perform given tasks without
giving specific rules in data space. They do so by iteratively adapting the parameters of a model to the
data.

Over the last 30 years we have seen a change in models driven by the increase in computational power
and availability of ever-larger dataset. Before Large-Language Models were used for summarizing and
classifying text, Latent Dirichlet Allocation was applied. Before (graph-)convolutional NNs were deployed
for classification, much lighter Decision Trees were used. And before we used generative NNs for density
estimation or sampling, histograms, Kernel Density Estimators (KDE) and Pair Copula Constructions
were utilized.

Mostly these methods are just di!erent solutions to a common objective. As such, they share the under-
lying statistical phrasing of the task at hand and are limited to the well-definedness of the task. NNs will
thus not open any groundbreaking paths for data analysis and handling, but rather enable us to apply
statistical insight to bigger datasets and higher dimensional problems by leveraging current hardware
developments.

2. Results are only as good as the data: The term “Artificial Intelligence” is misleading. Methods from
this realm do not generate new insight about a problem. They perform a high dimensional fit to adapt
a model to perform a task in the best possible way. So if the quality or amount of data is limited, the
results will be biased through these limitations as well. And if the data is ambiguous or non-existent in
some region in data space, the model results cannot be trusted at this region. Critically, NNs often still
indicated high levels of certainty on their prediction in such settings.

3. Neural Networks are a black box: In the past, we have employed parametrized models carefully
designed to best fit the task. Using a model that was to simple was detrimental to the performance as
a lacked flexibility to describe the data. Similarly, using a complex model did also decrease performance
through overfitting.

With DL we enter the space of largely over-parametrized fits. This over-parametrization has been shown
to increase performance and generalizability. The functional form of the model does not have to be
specifically chosen for the task. This comes at the cost of interpretability. The output of a network cannot
easily be connected to the input. The interpretation is lost in the number of parameters involved in the
computation.

Thus, to lift the curtain of the black-box, often methods relating the outputs to the inputs are employed,
for example Shapley Values [90]. In Section 4 we advocate for Bayesian Learning as one alternative to
produce more reliable NN applications through incorporating uncertainty in the learning procedure.

We will now introduce our mathematical formulation of NNs in 2.1, optimization objectives in 2.2 and stochastic
optimization in 2.3, before discussing generative architectures in Section 3 and Bayesian NNs in Section 4. In this
thesis, some notations might have di!erent meaning in physics and ML context, for example the pseudorapidity
ϖ and the learning rate ϖt. The distinction will be clear from context.
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2.1 Neural Networks

A NN is a highly flexible family of functions consisting of nested linear functions (neurons) and non-linearities
(activation functions), so-called layers. The family is characterized by the high-dimensional vector of network
parameters ς. The number of parameters can range between hundreds, in small, e"ciency-driven applications,
to trillions for the newest Large-Language Models (as of September 2024 [91]). This large number of parameters
warrants thinking about NNs in terms of non-parametric statistics.

The NN performs a mapping from a, possibly high-dimensional, space #X ↖ RM to a second space #Y ↖ RN

fω(·) : #X ⇓ #Y , x ↙⇓ fω(x) . (2.1)

In general, architectures for dimensionality reduction as well as upscaling exist. Specific implementations
however restrict the dimensions of this mapping, for example to N = M .

The most simple layer architecture is the fully-connected or dense layer. It can be written as a single matrix
multiplication

y
↗
j = fc(x↗

i) :=
∑

i

wjix
↗
i + bj . (2.2)

Both, the weights w ∝ RN →↘M → and the biases b ∝ R
N → are part of the network parameters ς.

By considering the individual dimensions of the function, it can be separated into individual neurons. Broadly
following the biological archetype, this function takes multiple (here M

↗) inputs and transforms them into a
single output variable. In biological neurons an output spike is triggered, once the accumulated inputs reach a
specific threshold. The deep learning analog to this non-linearity is an activation function. Arguably the most
simple, and still widely used, activation function is the Rectified Linear Unit (ReLU)

ReLU(x↗) := max(x↗
, 0) . (2.3)

While it is fast to compute, its derivative is undefined at x
↗ = 0 and 0 for x

↗
< 0. This can lead to vanishing

gradients and stalling optimization. One solution is assigning a small negative slope for negative inputs (leaky
ReLU) or switching to a di!erent activation altogether. The Exponential Linear Unit (ELU)

ELU(x↗) :=
{

ϱ

(
e

x→
↘ 1

)
if x

↗
′ 0

x
↗ if x

↗
> 0

, with ϱ > 0, (2.4)

retains a small gradient for x
↗
< 0 nad is di!erentiable for the default choice of ϱ = 1.

With these tools, a k-layer Multi-Layer Perceptron (MLP) is composed of alternating layers

fω(x) = ELU(k)
⇒ fc(k)

⇒ ... ⇒ ELU(1)
⇒ fc(1)(y) . (2.5)

For k ↗ 3, this is a simple example of a Deep NN, that is a NN with hidden layers that are not immediately
connected to input or output. Early literature on MLPs goes back to the 1950s [92].

Other commonly used layers include convolutional layers, pooling layers and dropout layers. The idea of
concatenating linear and non-linear functions to parametrize a powerful family of functions remains the same,
independent of the adaptation of the architecture to the data.

2.2 Loss Functions

To adapt the NN to a task at hand we need an empirical phrasing of the learning objective. We therefore
consider a n-point dataset Dn of matched events {(xi, yi)}i≃1,...,n or unmatched events {xi}i≃1,...,n and denote
the corresponding loss function

Ln(·) := L( · ; Dn) : #ω ⇓ R, ς ↙⇓ L(ς; Dn) . (2.6)
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This function has to be continuously di!erentiable over the full domain #ω of possible parameter values to
employ optimization using gradient descent (see Section 2.3). Here #ω ↖ RP is a bounded set.

The choice of loss function needs to reflect the task. For classification of C ∝ N classes, traditionally a cross
entropy (CE) loss is employed

CE(ς; Dn) = ↘

n∑

i=1

C∑

c=1
yi,c log (fω(xi)c) . (2.7)

Here we assume yi,c gives the target probability for the result to be of class c and fω(xi)c gives a proba-
bility as well. To allow an interpretation of the ouput as a probability, commonly a softmax-normalization
softmax(fω(xi)c) = exp fω(xi)c/

∑
c exp fω(xi)c is applied in the last layer. For regression, a mean squared error

(MSE)

MSE(ς; Dn) = 1
n

n∑

i=1
(yi ↘ fω(xi))2 (2.8)

often su"ces. And for density estimation often Maximum Likelihood Estimation (MLE) is applied by max-
imizing the joint likelihood p̂(Dn; ς) =

∏n
i=1 p̂(xi; ς) of the data under the model specified by ς. Here, the

NN fω either acts as a parametrization of the likelihood distribution directly or predicts the parameters of a
parametrization. A common parametrization of the likelihood for the latter case is a normal distribution with
the network output defining mean and covariance. To prevent numerical nuisance caused by the large product,
the logarithm of the joint likelihood is often used. Because the logarithm is a monotonic function, the maxima
of the joint likelihood coincide with the minima of the negative log-likelihood (NLL)

NLL(ς; Dn) = ↘

n∑

i=1
log p̂(xi; ς) . (2.9)

In fact, all of the objectives above are closely related to NLL-losses. The CE-loss is the expectation value of
the NLL for

p(xi ∝ c | ς) = fω(xi)c ,

with respect to the actual probability distribution of the data. And the MSE is the NLL of a normal likelihood
parametrization

p(xi, yi | ς) = N (fω(xi); yi, $) = (2↽)↔M/2 det($)↔1/2 exp
(

↘
1
2(yi ↘ fω(xi))↑$↔1(yi ↘ fω(xi))

)
,

with a diagonal covariance of $ = 1, after dropping the constant additive prefactor.
Multiple other loss objectives are employed in deep learning. Not all can be easily related to a likelihood

of the data. We will for example encounter the idea of adversarial losses in Section 3. For the connection to
Bayesian Learning however, the interpretation of the loss as a term derived from the likelihood of the data
under the model is essential.

2.3 Stochastic Optimization

Given the model fω and a continuously di!erentiable loss L( · ; Dn), we can employ gradient descent to try and
find the global minimum

ς
→ := argmin

ω≃!ε

L(ς; Dn) . (2.10)

This parameter setting will result in the best possible estimator f̂ := f(ς→) of the true data generating function
f . In general, for the convergence of the presented optimization algorithms, it is assumed that f ↘ f̂ is a convex
function. This can only be proven for NNs in very specific cases. However, the optimization can usually be
adapted to find a good estimator even for multi-modal distributions.
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The idea of gradient descent is to follow the gradient of the loss landscape towards the minimum by iteratively
performing update steps in this direction

ςt+1 = ςt ↘ bt := ςt ↘ ϖt↑ωLn(ςt) . (2.11)

Here, ϖ > 0 is the learning rate of the optimization. Using a low learning rate might artificially slow down the
convergence and increase the risk of getting stuck in a local minimum of Ln(ς). A large learning rate on the
other hand might hinder convergence by being insensitive to loss modes smaller than the stepsize. A decreasing
learning rate scheduling ϖt ↗ ϖt+1 can combine the advantages of both: Fast exploration after initialization,
stability against small local minima and stable convergence to the minimum of the targeted mode in later parts
of the optimization.

Calculating the gradient over the full batch of data is computationally intensive. Instead, a stochastic
estimator based on random m-point subsets Dm of the full dataset Dn is commonly used to construct an
unbiased estimator L̂m(ς) of the full loss. Usually n/m disjoint subsets called (mini-)batches are constructed
in the beginning of each iteration over Dn. Each iteration over the full dataset is also referred to as one epoch.
Using the gradient of this estimator for the update

ςt+1 = ςt ↘ b̂t := ςt ↘ ϖt↑ωL̂m(ςt) , (2.12)

is also known as stochastic gradient descent (SGD) [93]. The statistical fluctuations of the gradient approxima-
tions help stabilize convergence of the optimization, as local minima vary between the di!erent subsets.

Still, the optimization is susceptible to getting stuck at larger local minima and saddle points of the loss
landscape. The optimization behavior can be further improved by including a running average of the previous
steps

b̂t = γb̂t↔1 + ϖt↑ωL̂m(ςt) , (2.13)

with γ < 1. The additional term is usually called a momentum term. It helps the network build up a direction
of optimization and carry on even if the gradient vanishes at the current parameter configuration.

RMSprob

The e!ective stepsize |ςt+1 ↘ ςt| of SGD (2.12) depends on the gradient. A consistent stepsize is thus hard to
set, making the learning rate parameter hard to interpret. To improve the interpretability of the learning rate
ϖt, one can use a running average of the squared gradient

vt+1 = ϱvt + (1 ↘ ϱ)↑L̂m(ςt)2
, (2.14)

with ϱ regulating the exponential decay of the running average. This running average can be used to normalize
the update steps

ςt+1 = ςt ↘ ϖt↑ωL̂m(ςt)/
(→

vt+1 + φ
)

, with ς0 = 0 (2.15)

initially and φ > a small parameter preventing division by zero. On average, the resulting update steps are
of the same size over the course of opimization. The small constant φ avoids division by zero. The resulting
algorithm is known as RMSprob [94] and works very well with non-stationary schemes, such as learning rate
scheduling. It is a first example of gradient preconditioning and will find its equivalent for the MCMC algorithms
of Section 4.2.
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AdaGrad

By not distinguishing between individual parameter dimensions, the RMSprob algorithm as presented above
struggles with sparse data and gradients that only seldomly generate non-zero updates on a subset of the
weights. The popular AdaGrad algorithm [95] fixes this through the use of an element-wise (!) continuous sum
over squared gradients for v

vt+1 = vt + ↑L̂m(ςt) ≃ ↑L̂m(ςt)

ςt+1 = ςt ↘ ϖt↑ωL̂m(ςt) ⇐
(→

vt+1 + φ
)

.

(2.16)

Here ≃ and ⇐ are element-wise multiplication and division. Sparsely updated parameters now have a larger
e!ective stepsize than ones with regular, sizable parameter updates. However, the e!ective stepsize of AdaGrad
also decreases strongly over time. Algorithms like AdaDelta [96] try to fix this by adapting the learning rate
accordingly.

Current implementations of RMSprob, for example in PyTorch, also use a running average vector rather
than scalar to adapt the learning rate of every parameter dimension individually. Here, no adaptation of the
learning rate is needed as the running average does not accumulate over time. The resulting updates of the
dimension-wise RMSprob depend strongly on the sign of the gradient in the respective direction, rather than
its magnitude.

Adam

The most commonly used tool for stochastic optimization to this point is the Adam algorithm [97]. It combines
the dimension-wise RMSprob with a momentum-like running average of the gradient and handles the bias from
initializing the running average (2.15) at 0. Two parameters, 01 and 02, now control the exponential decay of
the moving averages

mt+1 = 01mt + (1 ↘ 01) ↑L̂m(ςt)

vt+1 = 02vt + (1 ↘ 02) ↑L̂m(ςt) ≃ ↑L̂m(ςt)

ςt+1 = ςt ↘ ϖt
mt+1

1 ↘ 0
t+1
1

⇐

((
vt+1

1 ↘ 0
t+1
2

)1/2
+ φ


.

(2.17)

The division by the decay parameters counteracts the initialization bias and a small parameter φ > 0 prevents
division by zero. For this algorithm vt is an estimate of the uncentered variance of the gradient. It is large,
either if previous updates have been large in the same direction or if the fluctuation in the gradient is high.
Thus two desirable features are achieved. Sparse data is handled through increased learning at low vt and
steps in directions of high variance are limited. Looking forward to Section 4.2, vt can also be understood as
an approximation to the diagonal of the Fisher matrix [98], a popular preconditioner for stochastic gradient
MCMCs.

For Adam, the e!ective stepsize is bounded from above by the learning rate in most cases, making it easy
to set. Sparse data is handled by treating every parameter dimension separately and saddle points do not pose
an issue due to the use of a gradient average.
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3 Generative Modeling
In generative ML, like in density estimation, we try to generate an estimator

p̂X(x; ς) of the unobservable probability density pX(x)

underlying the data of a training set Dn = {xi}i≃1,...,n. Here xi are samples from the data-generating random
variable X. As such, generative methods do not require matched datasets and are considered part of unsu-
pervised learning. While for some methods p̂X is analytically tractable and can be used for training with a
NLL-loss (2.9), for others only samples x

↗
↓ p̂X of the estimate are accessible.

All generative DL methods have in common, that they construct the estimator as a mapping from samples
of a random variable Z to those of X

fω(·) : #Z ⇓ #X , z ↙⇓ x
↗ := fω(z) . (3.1)

The random variable Z is often referred to as a latent variable and its sample space #Z as the latent space of
the model. In most common applications, and all cases presented here, the probability density function of the
latent variable is a standard normal distribution pZ(z) = N (z; 0,1).

In this chapter, we cover the DL architectures relevant for understanding the publications. These include
Generative Adversarial Networks (GANs, Section 3.1), Variational Autoencoders (VAEs, Section 3.2), and Nor-
malizing Flows (NFs, Section 3.3). For completeness, the core concepts of Di!usion Models and Transformers
are explained in Section 3.4. Data amplification is defined in Section 3.5 and discussed for a toy example in
Section 3.6 and on calorimeter data in Section 3.7. The concept is revisited in Section 6.2 in the context of
BNNs.

Note that classical methods for density estimation, such as histograms, KDEs or Pair Copula Constructions,
allow easy sampling from the estimated distribution. They can therefore be understood as generative ML.

Kullback-Leibler and Jensen-Shannon Divergence

Before going into details about the employed architecture, let us quickly discuss how the performance of a
generative network can be assessed. Estimating the quality of a generative network translates to comparing the
similarity between p̂X(x; ς) and pX(x). To fix the notation, let us restrict the introduction to an application
generating calorimeter images and assume X is a continuous random variable.

The Kullback–Leibler divergence (KLD)

DKL(g | q) =
∫

g(x) log g(x)
q(x) dx (3.2)

is one way to measure the similarity of two continuous probability densities g and q. It can be written more
generally in terms of probability measures. However, the important takeaway is that in order for KLD to be
well-defined, g has to vanish wherever q is zero. The KLD is non-negative and 0 only if both distributions are
identical. While this quantity evaluates the similarity of the distributions, it is neither symmetric nor satisfies
the triangle inequality. It thus is not a metric.

To generate a metric based on the KLD, one can consider the square root of the symmetrized term

DJS(g, q) = 1
2DKL

(
g


g + q

2


+ 1

2DKL

(
q


g + q

2


. (3.3)

This term is referred to as the Jensen-Shannon divergence (JSD) and its square root as the Jensen-Shannon
distance. The JSD inherits its lower bound from the KLD but is upper bounded by log(2). As we usually cannot
access both the data distribution pX and its estimator p̂X analytically, the integration in Equation (3.2) cannot
be performed. Instead, we often construct an estimator of the KLD or JSD from histograms of the true and
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generated data by summing over the bins. The quality of this estimate then strongly depends on the number
of samples available.

3.1 Generative Adversarial Networks

One way to have a NN learn input-like data is through adversarial training [99]. The general idea is, to introduce
a second network

dφ(·) : #X ⇓ [0, 1], x ↙⇓ dφ(x) , (3.4)

which classifies input from the data space into generated and real data. This network is referred to as the
discriminator, while the generative network in this setup is also referred to as a generator. For the data subset
Dm, the discriminator is updated to minimize the cross entropy (2.7) of the classification

Ldisc(ς, ε; Dm) := ↘

(
m∑

i=1
log(dφ(xi)) + log(1 ↘ dφ(fω(zi)))


. (3.5)

The generator is then optimized to maximize confusion in the discriminator by producing more data-like samples

Lgen(ς, ε; Dm) := ↘

(
m∑

i=1
log(1 ↘ dφ(fω(zi)))


. (3.6)

Both optimization steps are alternated during training to solve the min-max-problem

min
ω

max
φ

V (ς, ε) := min
ω

max
φ
Ex↓pX

log(dφ(x)) + Ez↓pZ
log(1 ↘ dφ(fω(z))) . (3.7)

Note that, to be in line with literature, the sign of the previous cross entropy losses (3.5) and (3.6) is flipped
here, and so is the minimization and maximization. It can be shown, in the non-parametric limit (infinitely
large networks), given a Neyman-Pearson optimal [100, Theorem 3.87] discriminator

dφ↑(x) := pX(x)
pX(x) + p̂X(x; ς) (3.8)

the minimum of
C(ς) := V (ς, ε

→) = ↘ log(4) + 2DJS(pX(x), p̂X(x; ς)) is reached if and only if pX(x) = p̂X(x; ς). Further-
more, adversarial training is proven to converge, if the discriminator is always updated until optimal according
to Equation (3.8) before alternating to the generator optimization.

While this result seems quite interpretable, we need to bear in mind that an optimal classifier is assumed. In
practice this assumption does not hold for multiple reasons. Most prominently, the non-parametric limit is never
implemented and optimizing the discriminator to optimal performance in every iteration is computationally
infeasible. GANs thus su!er multiple drawbacks. For one, the loss of a GAN is uninformative in practice. If
training is not converging, it is unclear whether the performance of the generator or discriminator is at fault.
Similarly, improvements in generation performance can be found with a simultaneous increase in loss if the
discriminator improves more than the generator. Further, if the discriminator is too strong or to weak, it will
give only small gradients for optimizing the generator. To achieve a stable convergence, the capabilities is both
nets need to be balanced very well. In addition, the generator is not incentivized to learn the full distribution
of pX as the discriminator is only applied to individual samples. GANs thus often only to learn single modes
of the distribution. This is called mode collapse.
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3.2 Variational Autoencoders

While GANs usually expand low-dimensional latent data into high-dimensional output, Autoencoders [101]
pursue the converse strategy: Compress data x into a dimensionality reduced representation z = eφ(x) and use
a simultaneously optimized decompression x

↗ = fω(z) in combination with an estimator of the distribution of
the reduced representation p̂Z to generate new data. Dimensionality reduction here refers to dim #X > dim #Z .
In autoencoding, a common loss determining the distance of the reconstructed sample x

↗ = fω(eφ(x)) from the
original sample x is the MSE (2.8)

LAE(ς, ε; Dm) := MSE(ς, ε; Dm) = 1
m

m∑

i=1
(yi ↘ fω(eφ(xi)))2

. (3.9)

If the encoder eφ and the decoder fω are perfectly aligned, that is fω ⇒ eφ = id, the loss is zero. However, due
to the loss of information in the dimensionality reduction, this value can only be achieved if the sub-manifold
of the data is of the same dimension as the latent space.

VAEs combine the scalability of autoencoding to high dimensions with the idea of Bayesian inference [102].
The aim is, once more, to find the parameters ς

→ that minimize the NLL of the data under the generative part
of the model

∑n
i=1 ↘ log pX(xi; ς). Following Bayes theorem (see Section 4 for an introduction), we understand

the data marginal distribution as a combination of the conditional probabilities of data and continuous latent
variables z

pX(x; ς) = p(x | z; ς) pZ(z)
p(z | x; ς) = p(x, z; ς)

p(z | x; ς) . (3.10)

Subscripts i are omitted for brevity. The NN decoder fω defines the likelihood distribution p(x | z; ς), while
the posterior density p(z | x; ς) is intractable. In the following, we thus approximate this distribution with the
distribution p̂(z | x; ε) imposed by the encoder network eφ. As pX(x; ς) is independent of z and p̂(z | x; ε) by
construction integrates to 1, we can expand the NLL as

↘ log pX(x; ς) = ↘

∫
p̂(z | x; ε) log pX(x; ς) dz

= ↘

∫
p̂(z | x; ε) log p(x, z; ς)

p(z | x; ς) dz

= ↘

∫
p̂(z | x; ε) log p(x, z; ς)

p(z | x; ς)
p̂(z | x; ε)
p̂(z | x; ε) dz

= ↘

∫
p̂(z | x; ε)

[
log p(x, z; ς)

p̂(z | x; ε) + log p̂(z | x; ε)
p(z | x; ς)

]
dz

= ↘

∫
p̂(z | x; ε) log

(
p(x, z; ς)
p̂(z | x; ε)

)
dz

  
=↔DKL(p̂(z|x;φ)|p(x,z;ω))=:ELBO

↘DKL(p̂(z | x; ε) | p(z | x; ς))

(3.11)

where we used Equation (3.10) and multiplied by 1. Because the KLD is non-negative, the first term gives a
lower bound to the log-probability. This term is thus often referred to as the evidence lower bound (ELBO)
and is solely maximized, as the second KLD term is inaccessible. By factoring the joint probability in the lower
bound into the conditionals, it can itself be restructured as

ELBO =
∫

p̂(z | x; ε) log
(

p(z, x; ς)
p̂(z | x; ε)

)
dz

=
∫

p̂(z | x; ε) log
(

pZ(z)
p̂(z | x; ε)

)
+ p̂(z | x; ε) log p(x | z; ς)dz

=
∫

p̂(z | x; ε) log p(x | z; ς)dz ↘ DKL(p̂(z | x; ε) | pZ(z))

(3.12)

The two terms appearing are the log-likelihood as defined by the decoder and the KLD to the prior distribution
in latent space. The last term can be understood as a regularization term that has to be balanced against the
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reconstruction power of the network. To decrease computational complexity, the posterior estimate is often
parametrized as an uncorrelated normal distribution

p̂(z | x; ε) = N (z; µ, $) , with $ = diag(ω1, ..., ωdim !Z
) . (3.13)

The vector of means and variances is given by the encoder network eφ(x) = (µ(x), ω(x))↑. With the prior
choice pZ(z) = N (z; 0,1), the computation of the regularization can be executed as

DKL(p̂(z | x; ε) | pZ(z)) = DKL(N (z; µ(x), $(x)) | N (z; 0,1)

=
dim !Z∑

i=1
DKL(N (z; µi(x), ωi(x)) | N (z; 0, 1))

= 1
2

dim !Z∑

i=1

(
1i(x)2 + µi(x)2

↘ 1 + log(1i(x)2)
)

.

(3.14)

With this parametrization of the posterior estimate, the integration in the first term can be approximated by
a summation over samples drawn from the normal distribution

∫
p̂(z | x; ε) log p(x | z; ς)dz ⇔

∑

z↓N (µ,”)

log p(x | zj ; ς) . (3.15)

Often, a single drawing su"ces for the optimization of both networks. To ensure di!erentiability of the ELBO
for the parameters of the encoder, the sampling z ↓ N (µ, $) has to be recast as a sum of the encoder output

z = µ + ω↼ , with a random element ↼ ↓ N (0,1) . (3.16)

This can be seen as one instance of a more general reparametrization trick [102]. The same technique is also
applied for BNNs in Section 4.1.

Classically, the likelihood is also parametrized as a normal distribution centered in x with covariance 1. The
log-likelihood then reduces to an MSE. With these Gaussian approximations, the per-point ELBO loss is now
easy to compute. The VAE loss is then derived from the ELBO by summation over the subset Dm

LVAE(ς, ε; Dm) := ↘
n

m

m∑

i=1
ELBO

= ↘
n

m

m∑

i=1




∑

z↓N (µ,”)

log p(xi | zj ; ς) + 1
2

dim !Z∑

i=1

(
1i(xi)2 + µi(xi)2

↘ 1 + log(1i(xi)2)
)


 .

(3.17)

After minimizing this loss with one of the gradient descent methods from Section 2.3, we are left with an encoder
that tries to map any input onto a standard normal distribution and a decoder that can infer data like points
from samples of the standard normal prior pZ through

pX(x; ς) =
∫

p(x | z; ς) pZ(z) dz . (3.18)

As for the GAN, there are multiple drawbacks of this method. The first, is the use of an MSE loss. One
prominent local minimum of this loss, is the mean prediction over all data. VAE training is susceptible to
getting stuck in this minimum. The resulting VAE only reproduces the mean of the data. Using a GAN-like
discriminator on the decoder output instead of the MSE can improve this behavior [103]. This architecture is
referred to as a VAE-GAN.

Furthermore, the modeling capacity of a VAE is limited through the strong regularization in latent space. By
using an adversarial discriminator on the latent space, one can enforce arbitrary prior shapes [104]. Alternatively,
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one can use the data samples to estimate

p̂Z(z) :=
∫

p̂(z | x; ε)pX(x) dx

from the encoder mapping, for example by using an KDE [105, 106]. This relaxes the need for a strong
regularization. It also addresses the issue that the latent space distribution can never actually be a standard
Gaussian in order to retain information for the decoder.

The VAE can be understood as an application of an information bottleneck [107, 108]. This information
theoretic reasoning, connects GANs, VAEs, VAE-GANs and more in a single framework [109]. It also motivates
an architecture, the BIB-AE, that combines all the introduced features: A regularization of the latent space
distribution and a reconstruction MSE term, as well as discriminator networks on both distributions. This model
has been very influential in the initial development of fast calorimeter simulation with generative ML [106, 110,
111].

3.3 Normalizing Flows

Both GANs and VAEs learn to model a probability density indirectly, as the probability of the data under the
model itself is not accessible. The class of NFs [112, 113] is by construction easily invertible, with inverse gω =
f

↔1
ω , and both directions are di!erentiable almost everywhere, with an easy to compute Jacobian determinant

det ↼gε

↼x . This implies dim #Z = dim #X . For simplicity, we use #Z = #X = RN .
With these features, the approximated data space density can then be calculated as the push-forward of the

latent distribution
p̂X(x; ς) = pZ (gω(x))

det ϑgω

ϑx

 . (3.19)

In DL literature, this is often called the change-of-variables formula. The forward direction is often talked about
as the generating direction, as it maps random samples from the latent space to data-like samples The inverse
can be referred to as the normalizing direction. It maps data to a latent distribution of known shape.

The expectation of the data log-probability under the model can directly be used to optimize the model
parameters with a subset-based approximation

LNF (ς; Dm) := ↘

m∑

i=1
log p̂X(xi; ς) = ↘

m∑

i=1

(
log pZ(gω(x)) + log

det ϑgω

ϑx



)
. (3.20)

This can also be understood as the ELBO of DKL(pX(x) | p̂X(x; ς)). For simplicity, we have assumed a fixed
latent space distribution pZ(z). However, one can also use a parametrization pZ(z) := pZ(z; w) that is optimized
simultaneously with the flow parameters. In the following, we always enforce a standard normal distribution in
latent space. In this case, the log-probability in latent space reduces to

log pZ(gω(x)) = (gω(x))2
/2 + const. .

The direct optimization of the log-probability as a loss makes flows very stable to train. It comes at the
cost of limiting oneself to architectures that are easily invertible. This choice can be restrictive and introduces
obstructions on the topology of the learned distribution. The flow mapping fω is a homoeomorphism and, as
such, preserves the topological structure of the input space [114, 115]. See for example Reference [116] or [117]
for techniques reducing this e!ect.

Flows can also be used to infer a conditional distribution p̂(x | c; ς) given a dataset Dn = {(xi, ci)}i≃1,...,n,
without further modification to the reasoning above [118–120].
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Block-Based Normalizing Flows

A popular strategy to improve the expressive power of a flow is, to concatenate multiple bijective instances

f = f
(NB)

⇒ f
(NB↔1)

⇒ ... ⇒ f
(1)

∞∈ g = g
(1)

⇒ g
(2)

⇒ ... ⇒ g
(NB)

.

The compound flow then again is a bijection with a compound Jacobian determinant

log det ϑg(x)
ϑx

=
NB∑

i=1
log det ϑg

(i)(x(i))
ϑx(i) , where x

(i) = g
(i+1)

⇒ ... ⇒ g
(NB)(x) and x

(NB) = x . (3.21)

Di!erent choices of these individual blocks are feasible to construct a mapping that is cheap to invert and
calculate the Jacobian determinant of. Coupling flows, first explored in Reference [121], split the input into two
parts z = (zA

, z
B) and use an invertible function h to construct the forward direction and inverse as

x
A = h(zA

, sω(zB))
x

B = z
B

∞∈
z

A = h
↔1(xA; sω(zB))

z
B = x

B
. (3.22)

The Jacobian of this transformation is block-triangular and its determinant reduces to the determinant of the
Jacobian of h. The function h is called the coupling function and its parameters are predicted by an arbitrarily
complex NN sω. The NN is never inverted and does not need to be invertible.

Autoregressive Flows [122, 123] are another way of constructing a mapping with a triangular Jacobian.
The autoregressive property relates to the dependence of the modelled output on the inputs. The N coupling
functions of an autoregressive architecture can only use the previous entries of the input to predict the parameters
of the coupling function

xt = h(zt; st,ω(zt↔1, ..., z1))) . (3.23)

The normalizing direction of such a flow can be evaluated in a single pass using elaborate masking [124]. However,
the generating direction requires sequential evaluation of all entries and is thus slow to evaluate. By exchanging
the dependence on zt↔1, ..., z1 through xt↔1, ..., x1 in Equation (3.23), the converse can be achieved [123]. Still,
one direction of an autoregressive flow will always be slow to evaluate. Both, coupling and autoregressive flows,
benefit from using random permutations between the blocks to ensure mixing of all dimensions. In addition to
the Jacobian structure, the coupling functions themselves can be chosen. Popular choices are a"ne coupling
functions h(z, ς) = ς1z + ς2 [121, 123–126] and rational quadratic splines [127].

In contrast to GANs and VAEs, flows lack any kind of dimensionality reduction. They are therefore
parameter-intensive and slow in comparison. To reduce the computational complexity, residual flows [128,
129] can be constructed by applying the same block multiple times

x
(i+1) = f

(i)(x(i)) := x
(i) + fres(x(i)) . (3.24)

However, the Jacobians of proposed residual flows are ine"cient to compute, introducing a di!erent bottleneck
for computation. Thinking of residual flows with an infinite number of blocks, that is i ∝ {1, ..., NB} ⇓ t ∝ [0, 1],
motivates the use of an ordinary di!erential equation (ODE) to define the flow mapping.

Continuous Normalizing Flows

First introduced in Reference [130], Continuous Normalizing Flows (CNFs) define a flow transformation f : RN
⇑

[0, 1] ⇓ RN dependent on a continuous time t. For simplicity, we write x(t) := f(x, t) for the transformed
variable and set f0(x) = x. Instead of having multiple flow instances, the dependence of f on t is defined
through the ODE

dx(t) = v(x(t), t)dt , (3.25)
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by the time dependent vector-field v : Rd
⇑ [0, 1] ⇓ Rd. This vector-field itself is parametrized as a NN

ṽω(·, t) = v(·, t) .

This network can in principle be arbitrarily complex. By convention, the flow transforms data from a latent
space distribution, usually N (0, 1), for t = 0 into data-like output at t = 1. This choice sets the boundaries of
the probability path p : Rd

⇑ [0, 1] ⇓ R>0 induced by the vector-field trough Equation (3.25). The change in
probability distribution for a continuous transformation in time follows another ODE [130]

ϑ

ϑt
log p(x(t), t) = ↘tr

(
dṽω(x(t), t)

dx(t)

)
, (3.26)

the change of variables for continuous t. While the calculation of the discretized change of variables (3.19)
requires the calculation of the Jacobian determinant, in the continuous case we only need to calculate the trace.
This allows us to freely choose the network ṽω(·, t) as it does not need to be invertible.

To optimize the log-probability with stochastic gradient descent methods, we need to calculate the derivative
of the log-probability from Equation (3.26) in the parameters ς of ṽω(·, t). This requires the evaluation of [130]

d

dς
log p(x(t), t) = ↘

∫ 1

0

(
ϑ log p(x(t), t)

ϑx(t)

)↑
ϑṽω(x(t); t)

ϑς
dt . (3.27)

To minimize the NLL of input data at t = 1, we need to solve this ODE equation at every step of the training
through discrete numerical integration schemes with a su"cient number of steps. This is especially expensive
for higher dimensional models, because both, the trace operation and the ODE solving, scale linearly in N . The
cost of the trace calculation can be reduced by using a Monte Carlo estimate [131].

To facilitate a more e"cient training, the Conditional Flow Matching (CFM) objective [132–134]

LCFM(ς) = Et,x(t=1),x ↔ut(x|x(t = 1)) ↘ ṽω(x; t)↔2 (3.28)

can be applied. The samples are drawn as t ↓ uniform(0, 1), x(t = 1) ↓ pX and x ↓ p(x, t | x(t = 1)). This loss
avoids solving the ODE during training altogether and enables the scaling of CNFs to very high dimensions.
It reduces the calculation of the optimization criterion to the calculation of a mean-squared error between
the network output ṽt(x; ς) and an analytical solution ut. A good choice of ut and corresponding p(x, t) is a
Gaussian conditional probability path with mean and variance changing linear in time (optimal transport) [132].
The CFM-loss (3.28) then reduces even further to

LCFM↔OT(ς) = Et,x(t=1),x0

 (x(t = 1) ↘ (1 ↘ 1min) x0) ↘ ṽω(1tx0 + µt; t)


2
, (3.29)

where µt = tx(t = 1), 1t = 1 ↘ (1 ↘ 1min)t, x0 ↓ p(x0) = N (x0; 0, 1) and 1min a small parameter, that can be
chosen to match the noise level of the training data.

As the generative direction of a CNF employs an ODE solver, CNFs, be it with or without Flow Matching,
are slower in generation than discrete flows of similar size. However, CNF training has shown to scale more
e"ciently with the number of network parameters [130] and require less parameters for a given task overall.

3.4 Di!usion Models and Transformers

Di!usion Models

CNFs are closely related to Di!usion Models [135–137], a class of generative architectures that has been very
popular in prompt-to-image generation (see amongst other References [138, 139]). The di!erential equation at
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the core of Di!usion Models di!ers from Equation (3.25) only through the addition of a noise term

dx(t) = v(x(t), t)dt + 1(x(t), t)dW (t) . (3.30)

Here, W (t) is the Wiener process (Brownian motion) in N dimensions, v the drift coe"cient and 1 the di!usion
coe"cient. The change in the time dependent probability density now is described by the Fokker-Planck
equation (also Kolmogorov’s forward equation)

ϑ

ϑt
p(x(t), t) = ↘↑x

(
v(x(t), t)p(x(t), t)

)
+ 1

2

N∑

i=1

N∑

j=1

ϑ
2

ϑxiϑxj

(
Dij(x, t)p(x(t), t)

)
, (3.31)

with D(x, t) = 1
2 11

↑. A similar equation (Kolmogorov’s backward equation) can be used for the backwards
direction. This can be understood as adding noise until the data fully follows the noise distribution (di!usion
direction) or subtracting noise to generate data like output (generative direction).

Di!erent implementations of this idea exist. Denoising di!usion probabilistic models [136] in generative
direction add Gaussian noise at fixed intervals with mean and variance predicted by a NN dependent on the
previous step. In di!usion direction, fixed Gaussian noise is added. The model is trained on an ELBO of the
data log-probability. This technique is computationally intensive, as it does not leverage advances in modern
di!erential equation solvers, but relies on multiple equal length steps for the solution of the stochastic di!erential
equation (SDE).

Score matching [140–142] poses a di!erent way of constructing and optimizing a Di!usion Model. The term
score refers to the gradient of the log-probability of the underlying data distribution

s(x) = ↑x log pX(x) . (3.32)

Score matching models approximate the score with a NN ŝω(x) ⇔ s(x) by optimizing another lower bound. The
score approximation can then be used to solve the reverse SDE

dx(t) =

v(x(t), t) ↘ 1(x(t), t)2

s(x(t))


dt + 1(x(t), t)dW̃ (t) , (3.33)

where W̃ (t) is the time reversed Wiener process. This equation can then be solved with numerical SDE solvers.
A study of di!erent solvers available can be found in Reference [143].

Similar to CNFs, the drift v(x(t), t) can also be used to model the di!usion process. In this approach, the
CFM loss (3.29) can be employed for SDE based sampling as well.

Autoregressive Transformers

Autoregressive Transformers are fundamentally di!erent from the ODE/SDE based architectures introduced
previously. The autoregressive property (see Equation (3.23)) e"ciently relates new input to previous input
through the use of an attention mechanism [144]. This has been very popular in Large-Language Models, such
as ChatGPT [91], and can be leveraged for the cascade-like structure of particle showers [17, 145].

Again, the autoregressive property refers to a modeling, in which the output can only depend on previously
seen input. For a data point x ∝ RN this refers to a factorization

p̂(x; ς) =
N

i=1
p̂(xi | x1, ..., xi↔1; ςi) . (3.34)

The approximated distribution per dimension can be parametrized for example as a Gaussian mixture model [17],
with parameters predicted by a NN using the attention mechanism. For such a construction, the NLL of the
data can be easily evaluated and used for optimization of the network parameters.
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3.5 Data Amplification

If we want to use the previously introduced methods to accelerate detector simulations, there are two factors
that determine the success of this undertaking:

• Generation speed: The idea of emulating MC simulation with generative DL is based on the better
scaling to high dimensional data spaces of NNs over Geant4. This creates the opportunity to generate
a speed-up in simulation. The concrete speed varies between the di!erent models, with architectures
based on di!erential equations in general being slower than more classical architectures. This speed-up
has always been part of the discussion around fast detector simulation, such as in References [110, 111,
146–148].

• Data quality: A lesser discussed factor is the quality of the generated data, that is the alignment
between p̂X(x; ς) and pX(x). This alignment depends strongly on the number of points used for training
the model, as well as the network type and training. If we can simulate data very fast, but the systematic
bias introduced by the misalignment with the true data is larger than the benefits we gain from suppressing
stochastic variance through simulating more points, we did not gain an advantage.

In the following, and throughout this work, we will focus on the latter aspect of generating artificial data.
In detail, we will focus on data amplification.

Definition

Let o : #X ⇓ #O be an observable of a data sample, with #O the discrete or continuous space of observable
values. This could for example be the visible energy in a calorimeter image. The observable values follow pO,
the true distribution enforced by the mapping of the random variable X. For the purpose of discussing the
generation quality in data space, this mapping can be chosen to be the identity mapping.

For D!O
the set of all distributions over observable space, h : D!O

⇓ RH extracts a vector of properties of
the observable’s distribution. Illustrative examples of such properties are the mean, variance or histogram bin
counts. As the underlying distribution is not accessible, and thus sampled with complex MCMC algorithms,
usually a numerical estimator ĥ ⇒ o : #l

X ⇓ RH , is employed. The exponent l here denotes the arbitrary size of
a set sampled from data space and will be replaced by a more specific variable name whenever possible. Similar
definitions can also be found in statistics literature [149].

Using a measurement of distance M : RH
⇑RH

⇓ R, where a smaller value indicates better agreement, we
can formally define the data amplification A. One possible choice of M, used in the next section, is the MSE.
The amplification is the ratio of true data points ntrue, that equals the high statistics limit of the emulator data
in M, and the number of training samples n

A := a

n
, with a := min

(
ntrue ∝ N

 E
Dntrue ↓p

ntrue
X


M

(
ĥ (o(Dntrue)) , h(pO)

)

  
Mtrue

′ lim
ngen⇐⇒

E
Dngen ↓p̂

ngen
X


M

(
ĥ

(
o(Dngen)

)
, h(pO)

)

  
Mgen

)
.

(3.35)

If the amplification is larger than 1, the generated samples do improve the estimation of the observable distri-
bution pO in this measurement of distance. For cases where pX is not accessible, pO is likewise not accessible.
In these cases, we thus approximate h(pO) ⇔ ĥ⇒o(Dnval) for Dnval ↓ p

nval
X with a validation set size much bigger

than the number of data points compared against ntrue ∋ nval. The definition already gives us some intuition
to the pitfalls of discussing amplification. The reported value is dependent on the observable, the distribution
property and the chosen distance measure. A generalization to di!erent choices is non-trivial.
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Training Data Limits the Available Information

Fundamentally, the amount of information provided can never surpass the level present in the training data [150].
As a consequence, if the hypothesis test performed in the subsequent analysis uses the given data optimally (for
example in the sense of the Neyman-Pearson lemma), generated data cannot improve the analysis. Oversampling
a generative NN should in many cases be understood as a way of improving the analysis, rather than an
augmentation of the dataset. Due to the inductive bias of a NN, that is the inherent smoothness conditions [151],
the estimate of the data underlying distribution outperforms other methods based on more traditional density
estimation [P1]. For a numerical proof we refer to Section 3.7 and Reference [P1].

This limits the tasks in which amplification can be pursued. In HEP, we compare simulated data to exper-
imental data to decipher the nature of the hard processes in the collision. The cascade of particle emissions
following the collision and the limited detector resolution smear our view of these processes, but are time con-
suming to simulate. It is common practice to optimize the nuisance parameters of both detector simulation and
hadronization to better fit the experimental data. The enforced smearing through the detector model thus, even
in a full simulation pass, is an approximation. While we cannot amplify information from the hard process,
replacing the smearing in the detector with a much faster DL emulator is a much more feasible prospect and
analogous to other fast simulation approaches introduced in Section 1.7.

Comparing Bias against Variance

Independent of the amount of samples drawn from the generative NN, the fit p̂X(x; ς) ⇔ pX(x) will never be
perfect. The network approximation is always biased by the statistical limitations of the training data. However,
in the infinite sample limit the variance of the estimator ĥ ⇒ o goes to zero. For an unbiased estimator, the limit
thus reduces to

Mgen = lim
ngen⇐⇒

E
Dngen ↓p̂

ngen
X


M

(
ĥ

(
o(Dngen)

)
, h(pO)

)

= lim
ngen⇐⇒

M

(
ĥ

(
o(Dngen)

)
, h(pO)

)
= M (h(p̂O), h(pO)) ,

(3.36)

where p̂O(o(x), ς) is the distribution of the generated samples mapped to the observable.
On the other hand, sampling an infinite amount ntrue from the true data distribution Mtrue will approach

the minimal value of M, if ĥ ⇒ o is constructed as an unbiased estimator of h(pO). A finite amount of samples
however will lead to high variance in the estimator. This variance is captured by the distance measurement
Mtrue and leads to an increased value.

With the amplification setup we are thus comparing two di!erent e!ects: The bias caused by the statistical
fluctuations and to some extent remedied by the inductive bias of the NN against the statistical fluctuations of
an estimator constructed from a finite sample.

3.6 GANplification

The first experiments on amplification with specific focus on particle physics are conducted in Reference [1].
While we ultimately want to prove amplification for calorimeter emulation, these first experiments are conducted
on a toy example. The authors investigate emulating a one-dimensional camel-back distribution

pX(x) = N (x; ↘4, 1) + N (x; 4, 1)
2 ,

as well as its multidimensional generalizations defined in spherical coordinates through

pX(x) = pX(r, 2) = (N (r; ↘4, 1) + N (r; 4, 1)) ⇑ uniform(2; 0, ↽) .

These distributions are simplification of the typical resolution encountered for Breit-Wigner propagators of
intermediate particles [152].
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Figure 5: Left and middle: Distance to the true data distribution (one-dimensional camel-back) for a histogram
estimator based on di!erent numbers of samples drawn from a GAN distribution (red). For comparison the
quality of estimators based on 100, 200, 300, 500 and 1000 samples from the data distribution (blue) and for
a functional fit with a double Gaussian (green) is given. We find increasing the number of quantiles evaluated
from 10 (left) to 50 (middle) seemingly increases the possible amplification. The error bands show the standard
deviation of 100 independently sampled sets and consequent fits or GAN trainings respectively.
Right: Increase in amplification with the number of quantiles in the evaluation for a 5-dimensional hypersphere
(500 training points). Images taken from Reference [1].

For the one- and two-dimensional experiments a GAN is trained on 100 samples. For the concluding 5-
dimensional study, 500 samples are used. The employed GAN is fairly large, at a latent dimension of 1000,
seven fully-connected layers of 256 nodes for the generator and a DeepSets-like discriminator [153, 154] using
3 equally sizeable convolutional layers. The GAN is optimized for 10000 epochs to generate the best possible
approximation p̂X(x, ς). For more details, also see Reference [1] itself.

With the perspective of eventually amplifying particle showers in detectors, judging the amplification on the
full distribution rather than on defined observables is of interest. As the toy example is low-dimensional, this
is also computationally feasible. The authors thus choose o(x) = x and histogram bin values for h. To avoid
e!ects from arbitrarily choosing the edges of the histogram, they opt for bins with equal expected numbers of
sample points from the truth distribution. We will refer to bins of equal probability mass as quantiles Qi in the
following and denote the set of quantiles as Q = {Q1, ..., Qnquant}. The distribution properties are then

ĥi(o(D)) = ĥi(D) = #{x
↗
∝ D | x

↗
∝ Qi}

#D
, (3.37)

which is the Monte Carlo estimate of
hi(p↗

X) =
∫

Qi

p
↗
X(x) dx .

They evaluate the distance to the true distribution using a MSE

M(ĥ(o(Dngen)), h(pO)) = M(ĥ(Dngen)) = 1
nquant

nquant∑

i=1

(
ĥi(Dngen) ↘

1
nquant

)2
, (3.38)

where we used that hi(pX) = 1/nquant by the definition of the quantiles. Interestingly, this measure di!ers from
the 3

2-test statistic only through a factor of n
2
quant. As such, it appears on both sides of the inequality (3.35)

and cancels. The amplification estimate is thus indi!erent to the exchange of the MSE and 3
2 statistic. The

same is true for taking arbitrary powers of M, additive constants or factors.

Sparse Bins

In this setup the authors numerically verify amplification with a generative network. They find large samples
from the GAN distribution behave similar to those of a fit using the correct functional shape. As expected,
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Figure 6: Distance to the true data distribution (Gaussian ring) for a histogram estimator with increasing
number of bins based on samples drawn from a GAN (red) or KDE density estimator (green). This time we
scale the size of the training data (solid blue) and the validation sets (dashed blue) with n △ n

2
quant. Thus, the

variance of the estimator on limited data decreases to the right in the same way as for the oversampled artificial
data (ngen = 100 · n).

the quality of the estimator based on GAN samples surpasses the quality of one only using the training data at
around 10⇑ oversampling (compare Figure 5).

However, they also find a strong dependence on nquant. This observation only gives limited information on
the quality of the GAN fit. It rather shows the e!ect of the increasing variance of the estimator ĥ (o(Dntrue))
due to limited true data on Mtrue. For example, for the left panel of Figure 5 (10 quantiles, 100 data points)
the probability for the Poisson distributed bin value to be 0 is only 4.5 · 10↔5, while for the middle panel (50
quantiles, 100 data points) it is 13%. It is thus crucial to report amplification in realistic a setting, as the
number for a histogram based distance measure can always be inflated artificially.

The increase in variance for increasing nquant can be circumvented by scaling the number of training points
with number of quantiles in the evaluation. When scaling the number of training points n △ n

2
quant the variance

of the estimator ĥ (o(Dn)) converges to 0 as well. We repeat the experiments from Reference [1] for the 2-
dimensional Gaussian ring with the same GAN setup, but scale the training data and retrain when evaluating
higher numbers of quantiles. To make sure we are close to the low-variance limit ngen ⇓ ▽, we always sample
ngen = 100 · n samples with the GAN.

In contrast to the paper, in Figure 6 we use the 3
2 measure which di!ers from the previously shown MSE

results through a factor of n
2
quant and leaves the amplification estimate invariant as argued above. We find that

without the e!ect of sparse data, the GAN reports an amplification of approximately 5 over the full range of
quantile numbers. However, we also find similar, albeit slightly lower, amplification from a KDE at significantly
lower computational cost.

3.7 Calomplification [P1]

As discussed before, our goal is to prove the merit of replacing the costly MCMC calorimeter simulation in
the high-energy physics simulation pipeline with a DL emulator. We do so in Reference [P1] by demonstrating
amplification for calorimeter images.

For this numerical experiment, we simulate calorimeter depositions of 50 GeV photons using Geant4 [155].
The detector design used in the simulation is the electromagnetic calorimeter of the ILD [156], a 30 layer
silicon-tungsten (Si-W) sampling calorimeter proposed for the ILC. The full dataset contains 268k showers of
30 ⇑ 30 ⇑ 30 calorimeter cells. As the density pX(x) is not available in closed form, we hold nval = 218k showers
back as a validation sample. Of the remaining 50k samples, we only use sets of 1k for NN training and compare
the NN generated data against up to ntrue ′ 50k true data points. To facilitate training from such a small
sample, we reduce the dimensionality of the data to 10 ⇑ 10 pixels by summing along the propagation axis of
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(b) Approximating quantiles through iterative splitting.

Figure 7: Experimental setup for the detector amplification study. Figure 7a shows a preprocessed calorimeter
image after pooling. Figure 7b shows the iterative procedure for finding the approximate position of the quantiles
by iteratively splitting the validation set into subsets of equal size. Figures originally published in Reference [P1].
Figures originally published in Reference [P1].

the incident photon and pooling the resulting image in patches of 3 ⇑ 3. One point in the training data is show
in Figure 7a.

As a surrogate model, we train a VAE-GAN [103]. The generator and discriminator layer architecture is
inspired by the LAGAN [157]. Both feature locally connected layers, a more flexible version of convolutional
layers. The discriminator is trained using spectral norm [158] and label smoothing, meaning artificial noise is
added to the true-vs-generated label. The encoder uses three convolutional layers followed by one linear layer.
This setup is a simplification of the BIB-AE network developed specifically for precision simulation of particle
showers [106, 110, 111]. We train the full setup for 50000 epochs and chose the best epoch amongst the last
10000 epochs by calculating the mean Mgen for h as in Equation (3.37). For the selection, we use constant
width bins and o the common observables of calorimeter images specified below. To gauge the stability of the
training and the validity of the results, we train 3 instances of the VAE-GAN and sample in equal proportions
from them.

For the evaluation, we use five common observables for calorimeter images to circumvent the computational
complexity of evaluating the 100-dimensional data space. With x

↗
ab a pixel (energy value) of calorimeter image

x
↗
∝ R10

⇑R10, these observables are

visible energy o1(x↗) = Evis(x↗) =
∑

a,b x
↗
ab ,

peak energy o2(x↗) = Epeak(x↗) = maxa,b x
↗
ab ,

per-pixel energy o3(x↗) = Epixel(x↗) = (x↗
1 1, ..., x

↗
10 10)↑

,

center of gravity in x-dimension o4(x↗) = cgx(x↗) =
∑

a a

∑
b

x→
ab

Evis(x→) ,

and center of gravity in y-dimension o5(x↗) = cgy(x↗) =
∑

b b

∑
a

x→
ab

Evis(x→) .

From the validation data we construct a set of quantiles Q = {Q1, ..., Qnquant} similar to the previous section.
Because no closed form of either of pO is available, we construct the quantiles by dividing the validation set into
equal size halve, which we further, iteratively, divide into halves themselves. This procedure constructs bins of
approximately equal probability mass over one or multiple dimensions. When examining the joint distributions
of the observables and their NN surrogate, we alternate the dimensions we split the sets in. Figure 7b shows
the iterative construction of the quantiles for the joint distribution pO1,2 . As in Equation (3.37), we again use
the relative population of the quantiles as the distribution properties h of interest.

Under the assumption of an optimal discriminator, the adversarial training optimizes the JSD between pX(x)
and p̂X(x; ς), see Section 3.1. We thus change the measurement of distance from the previously used MSE/3

2
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Figure 8: Distance to the observable distribution of the true data (MCMC simulated photon showers) for a
histogram estimator with increasing number of bins based on samples drawn from a VAE-GAN (blue). For
comparison, we also show the results for histogram estimators calculated from sets of true data in 4 di!erent
sizes (orange). Error envelopes are calculated from 5 distinct sets of data and subsequent VAE-GAN training.
The observables shown are the visible energy, all cell energies and the center of gravity in x-dimension. These
Figures were originally published in Reference [P1].

to a JSD based measurement

DJS(ĥ(o(Dngen)), h(pO)) := M(ĥ(o(Dngen)), h(pO))

= 1
2

nquant∑

i=1

(
ĥi(o(Dngen)) log

ĥi(o(Dngen))
1
2 (ĥi(o(Dngen)) + hi(pO))

+hi(pO) log hi(pO)
1
2 (ĥi(o(Dngen)) + hi(pO))


,

(3.39)

with hi(pO) ⇔
1

nquant
. If we interpret the set of hi and ĥi as histogram approximations of the densities pO

and p̂O, this measurement is exactly the JSD (3.3) between both histograms. To prevent the sparse bins, we
only report results where #D < 10 · nquant. As in the last section, the probability for an empty bin in this
configuration is then < 4.5 · 10↔5.

In this setup, we find a similar dependence on nquant as in Section 3.6. For low numbers (nquant < 8), no
significant amplification can be observed. This is in line with the observation that an estimator of a mean
of a Gaussian distribution cannot be improved with surrogate data [150]. At nquant > 64, the amplification
surpasses 5 and can reach up to 50 for very small bins. This can be observed for all observables individually
(Figure 8), as well as for the joint distributions of the observables (Figure 9).

To find out whether this e!ect is universal for di!erent density estimation techniques, we fit a histogram
and a KDE to the training data. For these more classical density estimation techniques, we optimize on the
observable values rather than the 100-dimensional images. Still we find in Figure 10, for high numbers of
quantiles, the distance to the truth distribution for the VAE-GAN approximation is close to that of KDEs and
histograms using five times the data. For higher-dimensional observables, the performance di!erence between
the methods gets more substantial. This is testament to the superior interpolation of NNs in high-dimensional,
more data sparse, applications. Unsurprisingly, for low numbers of quantiles we again find that no improvement
can be generated by using a generative NN.
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Figure 9: Distance to the observable distribution of the true data (MCMC simulated photon showers) for a
histogram estimator with increasing number of bins based on samples drawn from a VAE-GAN (blue). For
comparison, we also show the results for histogram estimators calculated from sets of true data in 4 di!erent
sizes (orange). Error envelopes are calculated from 5 distinct sets of data and subsequent VAE-GAN training.
The observables shown are the vector of visible energy and peak energy, both centers of gravity and joint vector
of all four observables. These Figures were originally published in Reference [P1].
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Figure 10: Distance to the observable distribution of the true data (MCMC simulated photon showers) for
a histogram estimator with increasing number of bins based on samples drawn from a VAE-GAN (blue), a
histogram (red) and a KDE (green). For the histogram and KDE we report results for trainings on 1k and 5k
showers, while for the VAE-GAN we only show results on the smaller sample size. Error envelopes are calculated
from 5 distinct sets of data and subsequent VAE-GAN training. The observables shown are the visible energy,
the vector of visible energy and peak energy, and the joint vector of visible energy, peak energy and both centers
of gravity. These Figures were originally published in Reference [P1].
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4 Bayesian Neural Networks
This far, we have discussed the e!ects of limited training statistics on generative NNs trained with stochastic
gradient descent. We found that the resulting mismodeling decreases with increasing the amount of data. In
the greater context of learning uncertainties, this mismodeling is captured by the epistemic uncertainty [159].
In physics terms, the epistemic uncertainty of a model is often referred to as its systematic uncertainty. A
mismodeling which in this case is based in the statistical uncertainty of the available data.

It has to be distinguished from the aleatoric uncertainty, the systematic uncertainty of the data itself. This
could be the stochasticity of the detector simulation or the measurement error of the detector in the experiment.
It is irreducible. While we cannot reduce this uncertainty through more data, we can model the probability
of the continuous (or discrete) outcome. We often assume a Gaussian distribution and adapt the mean and
variance to achieve the highest possible likelihood of the data. More complex distributions can be approximated
using a NFs, see Section 3.3. For some cases it is su"cient to vary only the mean, but not the variance or shape
of the distribution, dependent on the input. One example for such a case is the error caused by rounding to a
specified decimal place. This is called homoscedastic uncertainty. In physics, errors often scale with the input,
for example the precision of a detector with the deposited energy. The variance or shape of the distribution
thus needs to be a function of the input. This is understood as heteroscedastic uncertainty.

Epistemic uncertainty can have multiple sources. One is that the optimization of a loss on limited dataset
will not result in the best possible solution over the true, inaccessible data distribution. This is even more drastic
if a subset-based, empiric estimate of the loss on the full set is applied. This is called approximation uncertainty.
Furthermore, the functional form encoded by the chosen architecture of the NN does not necessarily include
the optimal solution to the task (model uncertainty). For a more detailed introduction into uncertainty in ML,
see References [160–162] and Reference [13] for a review dedicated to applications in HEP.

The model uncertainty is hard to quantify. One possibility is to use an ensemble of NNs to construct
frequentist confidence intervals of the network output [163–166], but vary the network architecture within
the ensemble [167]. It is also theoretically conceivable, although computationally ine"cient, to sample the
architecture as part of a Markov chain, as analyzed in Reference [P3]. As NNs are largely overparametrized,
they have the flexibility to approximate an optimal solution. We can thus safely assume the model to be
valid [162] and focus on gauging the approximation uncertainty.

Similarly, we assume the data distribution to be smooth and stationary during training and testing. To
gauge it we employ Bayesian inference, that is, we infer a distribution on the function space of the NNs
specified through the network parameters ς. This distribution is called posterior distribution

↽(ς | Dn) = ↽(Dn | ς) ↽(ς)
↽(Dn) △ ↽(Dn | ς) ↽(ς) (4.1)

and is formed from our prior beliefs ↽(ς) and the likelihood ↽(Dn | ς) of the data Dn given ς. The marginal
probability p(Dn) =


↽(Dn | ς) ↽(ς) dς is often intractable if the likelihood is not available in closed form. The

likelihood distribution is in fact not new to us. We have encountered it in the previous chapters on probabilistic
learning

↽(Dn | ς) =
n

i=1
p̂X(xi; ς) . (4.2)

To distinguish conditional densities of the data that are part of the learning task, from those of the model
parameters, we use p for the probability densities of the former and ↽ for those of the latter. In the previous
sections, we also only reported results for a single parameter estimate. With access to the posterior distribution
however, we are interested in the posterior mean distribution

p̂X(x) =
∫

p̂X(x; ς)↽(ς | Dn) dς . (4.3)

Similarly, we can analyze the spread of the approximated distributions over di!erent drawings of the parameters
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from the posterior. In Section 6.2, that is Reference [P5], we further discuss the interpretation of this uncertainty.
Bayesian learning also gives us insights into stochastic optimization. For example, the parameter estimate

maximizing the posterior distribution

ςMAP = argmaxω≃!↽(ς | Dn) (4.4)

is commonly referred to as the maximum a-posteriori (MAP) estimate. Using the log-posterior

LMAP(ς; Dn) := log ↽(ς | Dn) = log ↽(Dn | ς) + log ↽(ς) ↘ const. (4.5)

as the optimization criterion for a gradient descent optimization then naturally gives rise to common weight
regularization terms. For an exponential or Gaussian prior, the second term of LMAP reduces to L1- or L2-
weight regularization respectively. We see that in the context of Bayesian learning, the prior does not necessarily
need to be the distribution used for initializing the network parameters. It should rather be understood as a
regularization term that implements the e!ects of our prior assumptions in the posterior in addition to the data
likelihood.

For the following methods, we will often encounter the assumption that the posterior is a multi-variate
Gaussian. To better understand this assumption, we will take a step back and discuss some statistical tools and
statements for MLE.

Fisher Information

An important term in this discussion will be the Fisher information, or short the Fisher [168]. Let us assume
pX(x; ς) is a family of probability densities parametrized by parameters ς and the data is generated by drawing
from the true distribution Dn ↓ p

n
X = pX(x; ς0)n. If pX(x; ς) is concentrated tightly around ς0, finding a good

estimate from Dn is easy. The Fisher information

I(ς↗) = E
x↓pX

(
ϑ

ϑς
log pX(x; ς)

)2
 ς

↗


= ↘ E

x↓pX

[
ϑ

2

ϑς2 log pX(x; ς)
 ς

↗
]

(4.6)

measures the amount of information that samples x ↓ pX carry on ς. The Fisher only exists if pX(x; ς) is
di!erentiable with respect to ς almost everywhere. The second equality is only well-defined if it is twice di!er-
entiable with respect to ς and integration over pX and the derivative commute. If the Fisher is approximated
from a set of data Dn

Î(ς↗) = E
x≃Dn

(
ϑ

ϑς
log pX(x; ς)

)2
 ς

↗


, (4.7)

it is referred to as the empirical Fisher information. In the case where ς is multidimensional, the Fisher is a
matrix with entries

I(ς↗)ij = E
x↓pX

[(
ϑ

ϑςi
log pX(x; ς)

) (
ϑ

ϑςj
log pX(x; ς)

) ς
↗
]

= ↘ E
x↓pX

[
ϑ

2

ϑςiϑςj
log pX(x; ς)

 ς
↗
]

. (4.8)

Cramér–Rao Bound and E"ciency

Under certain regularity conditions, the inverse Fisher can be used as a lower bound of the variance of an
unbiased estimator ς̂(Dn) of ς0

varω(ς̂(Dn)) ↗ I(ς0)↔1
. (4.9)

Here A ↗ B means A ↘ B has non-negative eigenvalues. Of course, this requires the Fisher matrix to be
well-defined and invertible. Again, the proof uses that the order of integration in the expectation value and
di!erentiation can be reversed. Similar statements can also be derived for the more general case of a biased
estimator. For the proof and generalizations of the Cramér–Rao bound [169, 170], we refer to the statistics
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Figure 11: Correlations of the parameters in the first layer of a NNs for a simple regression example (left).
The parameters are highly correlated (center) and the marginal posterior of a single weight exhibits a multi-
modal shape (right). The posterior samples are generated with a piece-wise deterministic Markov process [172].
Figures taken from [172].

literature [100].
An estimator is said to be fully e"cient, if the Cramér–Rao bound (4.9) is reached. For MLE, as it is often

applied in generative ML
ς̂n = argmin

ε≃!
NLL(ς; Dn) , (4.10)

this bound is achieved in the limit of large data n ⇓ ▽ under certain regularity conditions on the family
pX(x; ς) [171, Chapter 8.9]. More specifically

→
n

(
ς̂n ↘ ς0

)
n⇐⇒
↘↘↘↘⇓ N

(
0, I(ς0)↔1)

. (4.11)

Bernstein-Von Mises Theorem

Equation (4.11) can also be connected to Bayesian inference. The Bernstein-von Mises Theorem states that the
posterior distribution of the parameter ς converges to a normal distribution in total variation distance for the
limit of large samples [171, Chapter 10.2]

TV
(

↽(ς | Dn), N

(
ς̂n, n

↔1
I(ς0)↔1

))
=

↽(ς | Dn) ↘ N

(
ς̂n, n

↔1
I(ς0)↔1

)
TV

n⇐⇒
↘↘↘↘⇓ 0 . (4.12)

Here, ↔f(ς)↔TV is the total variation norm, I is the Fisher information matrix and ς̂n the estimator from
MLE (4.10). Equation (4.12) is only true under a set of assumptions. First, the Fisher matrix needs to exist
and be invertible. The log-probability thus needs to be di!erentiable at ς0. Furthermore, pX(x; ς) needs to be
di!erentiable in quadratic mean [171, Equation 5.38] and allow separating ς0 from compliments of balls around
ς0 for arbitrary radii through a series of hypothesis tests [171, Chapter 10.2].

The symmetric, over-parameterized shape of pX(x; ς) for NNs breaches the last assumption, as many pa-
rameter configurations can lead to the same probability predictions. The Bernstein-von Mises Theorem (4.12)
can thus be a bad approximation. BNN posteriors are expected to be highly correlated [173] and multi-modal.
Reference [172] shows the correlations of the parameters in the first layer of a NN and the marginal posterior for
one weight for a simple regression task (Figure 11). Even for this small example, the posterior shows strong cor-
relations between parameters, multiple modes and long tails and is thus not in agreement with the assumptions
of Equation (4.12).

Common Methods

Full Hamiltonian Monte Carlo [174] is considered the gold standard of inferring NN posterior distributions [175].
This Markov chain requires calculation of the loss over the entire dataset at every update step. In an example
on the ResNet20 architecture [175], 240 samples of the posterior are drawn at the cost of 6 · 107 SGD steps.
The stochastic MCMC methods introduced in 4.2 achieve more e"cient sampling at the cost of mixing and
accuracy.

They also compare the results of this substantial computational e!ort to other, computationally more ef-
ficient methods. The most common methods include deep ensembles [166], dropout MCMC [176], Gaussian
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processes [177], Laplace approximations [178] and mean-field variational inference [14]. Less common but very
computationally e"cient methods are SWAG [179] and evidential deep learning [180]. See References [12, 181–
183] for an overview. For a review of non-Bayesian methods for quantifying epistemic uncertainty, consider
Reference [162]. These methods include set-valued and conformal prediction, as well as outlier detection with
anomaly detection methods and classification with rejections.

Besides Reference [175], multiple studies have compared subsets of these methods [184–186]. In general,
these studies find better uncertainty estimation and generalization properties with deep ensembles and MCMC
based methods over methods inferring a Gaussian approximation of the posterior. Furthermore, analogously to
pruning of a network, studies have found that inferring a marginal posterior for only a subset of the parameters
yields similar results at significantly reduced cost [187–190]. A popular technique of these subset-BNNs is
treating only the last-layer of a NN as Bayesian [189, 190].

Training an ensemble of networks is not feasible for the large generative tasks in HEP. We will thus focus
on approximations of the posterior as a Gaussian (as it is the most widespread in HEP) in Section 4.1, as well
as stochastic gradient MCMC methods in Section 4.2. In Section 4.3, we then introduce our own stochastic
gradient MCMC method.

4.1 Gaussian Approximations to the Posterior

As already hinted at in the introduction, a common way to achieve scalable implementations of BNNs is through
an approximation of the posterior distribution with a Gaussian distribution

↽(ς | D) ⇔ ↽̃(ς; ε) = N (ς; µ(ε), $(ε)) . (4.13)

Usually, the entries of µ and $ themselves are the parameters ε. For evidential learning [180], pX(x; ς) is a
Gaussian parametrization and the functions µ(ε) and $(ε) are implemented as NNs.

In the previous section, we have seen that this can be a bad approximation of the true posterior. This
is especially true if the covariance matrix of the Gaussian is assumed to be diagonal, that is the parameters
are not correlated. However, due to their easy application, this class of has found the most widespread use in
HEP [15–18]. We will thus discuss the main techniques to infer such an approximation in the following.

Variational Inference

The most popular technique is to translate the inference task into a variational optimization problem, thus
dubbed variational inference (VI) [191] or Bayes-by-Backprop [14]. It has developed from earlier ideas on
ensemble learning [173, 192]. This inference task can be achieved trough minimizing the KLD between true
posterior and approximation

LVI(ε; D) = DKL [ ↽̃(ς; ε), ↽ (ς|D)] = ↘

∫
log ↽ (D|ς) ↽̃(ς; ε)dς + DKL [ ↽̃(ς; ε), ↽(ς)]

  
ELBO

+ const. . (4.14)

Here, as in Section 3.2, we encounter the evidence lower bound of the KLD. Analogously to the calculation in
Equation (3.14), for an uncorrelated posterior approximation and a Gaussian prior with the same mean and
covariance on all independent parameters

↽̃(ς; ε) = N
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the calculation of the KLD reduces to

DKL [ ↽̃(ς; ε), ↽(ς)] = 1
2

P∑

i=1

(
(log 1

2
p ↘ log 1

2
i ) +

1
2
i ↘ 1

2
p

12
p

+ (µi ↘ µp)2

12
p



⇔
1

212
p

P∑

i=1

((
1

2
p ↘ 1

2
i

)2

1
2
i

+ (µi ↘ µp)2


.

(4.15)

Here, we also introduce P as the number of parameters in the BNN. The log-likelihood of the first term of
the ELBO can be calculated di!erently for di!erent applications. In 2.2, we discuss di!erent optimizations
objectives with interpretations as log-probabilities and in Section 3.3 we discuss how to directly access the
log-probability of the data for generative ML with flows. For these implementations, we need to calculate the
expectation value over the approximation of the posterior. This is done through Monte Carlo approximation,
that is sampling from the posterior distribution

∫
log ↽ (D|ς) ↽̃(ς; ε) dς ⇔ Eω↓↽̃(ω;φ) log ↽ (D|ς) . (4.16)

Again as in Section 3.2, we need to ensure di!erentiability of the loss for the parameters to use gradient de-
scent on the parameters of the posterior approximation. Because we assumed the posterior to be an uncorrelated
Gaussian, we can use the same reparametrization trick (3.16) as for VAEs [14]

ςi = µi + ωi↼ , with ↼ ↓ N (0, 1) for i ∝ {1, ..., P} . (4.17)

Due to the cost of loss calculation and parameter storing, only a limited amount of samples is drawn from
the posterior for the integration (4.16). Often only a single sample is used. This leads to a large variance in the
MC estimate. Several techniques try to reduce this variance through di!erent sampling [193] or by sampling
pseudo-independent perturbations [194]. We have found great improvements in the stability of VI with the
latter method.

Similar to dropout regulation [195], which can be understood as a limiting case of sampling a neural network
posterior itself [176], the flipout method uses the activations of the nodes as perturbations to decrease correlations
within one batch of data. Due to the symmetry of ↼ ↓ N (0,1) around 0, the reparametrization (3.16) is
independent of multiplying with a random sign ±1. One can thus generate pseudo-independent samples

ς = µ + eω↼ ↓ ↽̃(ς; ε) (4.18)

by multiplying with e ↓ uniform({↘1, +1})P for a single fixed perturbation ↼ ↓ N (0,1) and every point in
the training data Dn. This can be e"ciently implemented by binary masks and parallelized. It approximately
doubles the cost, but guarantees the best possible variance reduction 1/n [194].

The two terms in LVI (4.14) often have largely di!erent scales. While the log-likelihood scales linearly
in the number of points n, the KLD is often close to 0. The convergence of the prior regularization is often
significantly slowed down by the dominance of the first term. It can thus be beneficial to initiate the posterior
approximation at the result of a classical maximum likelihood training as motivated by the Bernstein-von Mises
theorem (4.12). This can be interpreted as specifying an informative prior through empirical Bayes [196].

For a derivative of VI with a less restricted posterior approximation, see Reference [197].
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Laplace Approximation

Using a Gaussian distribution based on the second derivative of the log-posterior to approximate the posterior
distribution has been a popular, scalable method for BNNs [198–200]

↽(ς | Dn) ⇔ N



ς; ςMAP,
ϑ

2

ϑς2 log ↽(ς | Dn)  
=LMAP(ω;Dn)


ωMAP



 . (4.19)

It is often referred to as the Laplace approximation, as it can also be understood as a second-order Taylor
expansion of the log-posterior at the MAP estimate

log ↽(ς | Dn) ⇔ LMAP(ςMAP; Dn) + 1
2(ς ↘ ςMAP)↑ ϑ

2

ϑς2 LMAP(ς; Dn)

ωMAP  

⇑I(ωMAP)+↼↓/↼ω↓ log ↽(ω)

(ς ↘ ςMAP) . (4.20)

The first order vanishes, as ςMAP is a maximum of the posterior. Exponentiating both sides recovers the
Gaussian shape of the approximation. The Laplace approximation can thus be inferred after training of the
model, that is estimation of the MAP estimate.

Recent developments in optimization libraries accomplish the fast calculation of second derivatives. Based
on these libraries, di!erent matrix representations of the empirical Fisher can be used for the approxima-
tion (4.20) [178]. This includes the calculation of more expressive factorizations than the diagonal factorization,
which establishes the same functional shape of the approximation as is commonly used in VI. One popular
choice of block-diagonal factorization is the Kronecker-factored approximate curvature (KFAC) [201, 202].

4.2 Stochastic Markov Chain Monte Carlo for Posterior Sampling

As mentioned in the introduction to Section 4, the Bernstein-von Mises approximation, as any approximation
assuming a Gaussian shape of the posterior, can be far o! for the over-parametrized regime of BNNs. Such
an approximation might thus not yield accurate credible sets. This motivates the development of more flexible
methods for Bayesian learning in NNs.

Traditionally, Monte Carlo sampling has often been used for sampling from intractable posteriors. The
literature on sampling NN weights is as old as the concept of stochastic, gradient-based optimization, with early
literature dating back to the early 1990s and before [174, 203]. With the ever steady increase of model- and
data-complexity, multiple problems with the basic theory of Monte Carlo sampling occur. The most critical
issues are:

• E"cient convergence and mixing in high dimensional sampling spaces: NNs consist of up to
hundreds of trillions of parameters. Applications in HEP often have millions of parameters, for example
2.14M parameters for ParT [76] or 560k for EPIC flow matching [148]. Even smaller toy examples still
require tens of thousands of parameters [P5]. Due to the random-walk like nature of Markov chains, the
parameter space exploration of such algorithms is ine"cient, especially for high numbers of parameters.
This is often solved by using gradient-based chains (with momentum) to profit from the e"ciency of
network optimization during Monte Carlo sampling.

• Computational complexity: Based on the immense size of the datasets (200k showers of up to 150
constituents for EPIC flow matching or 100M of up to 100 particles for JetClass [204]) it is not feasible to
calculate the parameter gradient for full datasets in every step of the chain. However, using a stochastic
approximation, that is batches of data, introduces a bias on the chains invariant distribution. This bias
needs to be accounted for with corrections or applying correct asymptotics.

For applying corrections to the chain, the M-H correction is the most common one. It corrects the sampled
invariant distribution, by accepting or rejecting a step of the chain based in the log-likelihood (loss) of
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the corresponding parameters. Again, employing a stochastic estimate of the likelihood (loss) reduces
the accuracy of the correction and might lead to further biases. The M-H correction thus needs its own
correction terms.

MCMC algorithms that feature both, gradients and batch-wise computation, are referred to as stochastic gradi-
ent MCMC (sgMCMC). We will concentrate on this class of algorithms as the only viable solution for parameter
sampling with limited resources.

Let us assume a labeled or unlabeled n-point dataset Dn, the vector of network weights ς, a generic loss
(also risk or cost) function L(ς) and its empirical counterpart Ln(ς) = L(ς; Dn). The goal of every sgMCMC
algorithm then is to sample from the Gibbs posterior distribution

↽ε(ς | Dn) △ exp(↘⇀Ln(ς)) ↽(ς) , (4.21)

with an inverse temperature parameter ⇀ > 0 and a prior density on the network weights ↽(ς). The Gibbs
posterior matches the classical Bayesian posterior through Bayes theorem up to a multiplicative constant if the
empirical loss is exactly the log-likelihood of the data under the model distribution. That is if ⇀ = 1 and

Ln(ς; Dn) = ↘ log ↽(Dn | ς) = ↘

∑

x→≃Dn

log ↽(x↗
| ς) . (4.22)

Reference [205] introduces a unified framework in which all the major established stochastic gradient MCMC
methods can be developed from a general SDE that ensures the invariant distribution of the chain is the Gibbs
posterior. The general SDE is constructed from a positive semi-definite di!usion matrix D(z) and a skew-
symmetric curl matrix Q(z). The chain is calculated for z = (ς, r), a vector of the network parameters ς and
auxiliaries of the chain r. For this vector of parameters, a joint distribution

↽(z | Dn) △ exp(↘H(z)) , with H(z) = ⇀Ln(ς) ↘ log ↽(ς) + g(ς, r) , (4.23)

is sampled. In imitation of physics terminology, the combined energy function H(z) is called a Hamiltonian
and can include various auxiliary terms satisfying


exp(↘g(ς, r))dr = const.. The marginal of ↽(z | Dn) in the

network parameters is then again the Gibbs posterior (4.21).
Assuming ergodicity of the process, any SDE that can be written as

dz = f(z) dt +
√

2D(z) dW (t) , (4.24)

with W (t) the Wiener process (Brownian motion) in d dimensions samples from ↽(z | Dn) as its stationary
distribution [205]. This is only true if

f(z) = ↘ (D(z) + Q(z)) ↑H(z) + %(z) , where %i(z) =
d∑

j=1

ϑ

ϑzj
(Dij(z) + Qij(z)) . (4.25)

Conversely, they also show that any Markov chain with desired stationary distribution ↽(z | Dn) can be written
in terms of Equation (4.25), if

fi(z) ↽(z | Dn) ↘

d∑

j=1

ϑ

ϑςj
(Dij(z) ↽(z | Dn))

is integrable with respect to the Lebesgue measure. Through discretization into steps of size ϖt, we get the
update rule of the chain

zt+1 = zt ↘ ϖt [(D(zt) + Q(zT )) ↑H(zt) + %(zt)] +
√

2ϖtD(zt)↼t , with ↼t ↓ N (0, 1) . (4.26)
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For a random m-point subset Dm of the full dataset Dn drawn uniformly without replacement,

L̂m(ς) = ↘ log ↽(Dm | ς) = ↘
n

m

∑

x→≃Dm

log ↽(x↗
| ς)

is an unbiased estimator of the full loss Ln and its gradient ↑L̂m(ς) is an unbiased estimator of the full gradient
↑Ln(ς). The variance of the loss estimator propagates to the estimator of the Hamiltonian gradient ↑Ĥ(z).
The introduced noise thus changes the dynamics of the system and has to be countered by adapting the scale
of the Brownian motion √

2ϖtD(zt)↼t ↘⇓

(√
2ϖtD(zt) ↘ ϖtB̂t

)
↼t . (4.27)

Here, B̂t is an estimate of the variance of the stochastic gradient V(ς) = var(↑L̂m(ς)). It is assumed that the
batches are large enough for the central limit theorem (CLT) to apply (couple hundreds [206]) such that the
noise on the stochastic gradient is approximately Gaussian

↑L̂m(ς) ⇔ ↑Ln(ς) + N (0, V(ς)) .

As ϖtB̂t approaches 0 more quickly than
√

2ϖtD(zt) for ϖt ⇓ 0, in the limit to small stepsizes the invariant
distribution is unchanged by the variance introduced by the batch-wise computation.

The general SDE specified by Equation (4.24), Equation (4.25) and Equation (4.27) and its discretization
(4.26) allows us to derive the di!erent families of sgMCMC from a general theory through the choice of the
auxiliary variables, curl- and di!usion matrices.

4.2.1 Stochastic Gradient Langevin Dynamics

The simplest family includes stochastic gradient Langevin Dynamics (sgLD) [20, 203] and derivatives thereof.
The sgLD algorithm is closely related to stochastic gradient descent and only di!ers from it through the addition
of isotropic noise

ςt+1 = ςt ↘ ϖt↑L̂m(ςt) +
√

2ϖt

⇀
↼t , with ↼t ↓ N (0, 1) . (4.28)

Here of course, the subset Dm is drawn anew for each step. This update rule describes a discretization of the
Itô-SDE of Brownian dynamics [20, 207]

dς(t) = ↘↑ϱL̂m(ς(t))dt +
√

2
⇀

dW (t) . (4.29)

For a suitable loss, the unique invariant distribution of this SDE is indeed given by the Gibbs posterior (4.21) [208].
In terms of the general theory (4.25), sgLD can be constructed from the general SDE by removing auxiliaries,
z = ς and H(z) = ⇀Ln(ς) ↘ log ↽(ς), and using a uniform prior. The matrices are chosen to be D = 1/⇀,
Q = 0 and B̂t = 0.

In addition to the error of the stochastic approximation of the gradient, the discretization of the SDE
introduces a discretization error. Rather than correcting for this error with an M-H correction, commonly the
limit ϖt ⇓ 0, such that

∑⇒
t=0 ϖt = ▽ and

∑⇒
t=0 ϖ

2
t < ▽, is considered with a polynomial decay of the stepsize.

In this limit, the discretization error of the chain vanishes and a small error can be achieved by decreasing
the stepsize to 0 after an initial burn-in phase [20]. Doing so, the stochasticity in the gradient will also be
dominated by the added noise and the acceptance rates of a possible M-H correction will approach 1. Such a
correction can thus be omitted [20]. To circumvent vanishing mixing rates, in practice the stepsize is reduced
to a small fixed value, where the acceptance step can still be neglected. Finding a good final learning rate, as
well as scheduling, is notoriously tricky. A detailed analysis of the bias introduced through finite stepsizes is
performed in Reference [209]. The authors find that the final learning rate for a controlled bias depends on the
batchsize in such a way that the computational cost remains roughly constant over all sub-sample sizes. For
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larger batches, larger steps can be used to reach the same bias. Thus, the chain convergences faster and requires
the computation of fewer steps. This motivates the introduction of controls on the sample variance that scale
sub-linearly in the batchsize, as we discuss in Section 5.

4.2.2 Stochastic Gradient Hamiltonian Monte Carlo

Due to the random-walk like nature of sgLD, these algorithms often exhibit slow convergence and mode explo-
ration [210]. Hamiltonian Monte Carlo (HMC), originally proposed as Hybrid Monte Carlo, achieves a more
e"cient algorithm for high-dimensional parameter spaces by simulating the motion of an object of mass (matrix)
M at position ς and momentum r. The full system is described by the Hamiltonian

H(z) = H(ς, r) = ⇀Ln(ς) ↘ log ↽(ς) + 1
2r

T M↔1
r . (4.30)

Similar to optimization with momentum, this additional momentum term results in a smoother exploration of
the loss landscape.

Unlike sdLD, the noise of the stochastic gradient HMC (sgHMC) process is solely introduced by the variance
V(ς) of the stochastic estimator of the gradient. By assuming Gaussianity and absorbing it into the di!usion
matrix D, we find an additional friction term from

D(z)↑H(z) =
(

0 0
0 ϖtV(ς)

 (
↑ω

↑r


H(z) = ϖtV(ς)↑rH(z) = ϖtV(ς)M↔1

r .

By using an estimate of the random friction caused by the variance of the gradient estimator B̂ ⇔ V(ς) and
introducing a user specified friction variable C that dominates the random friction C ↗ B̂, the update rules for
parameters and momentum read [21, 205]

ςt+1 = ςt + ϖtM↔1
rt

rt+1 = rt ↘ ϖt

(
⇀↑L̂m(ςt) ↘ ↑ log ↽(ςt)

)
↘ ϖtCM↔1

rt +
(√

2ϖtC ↘ ϖt

√
B̂t

)
↼t .

(4.31)

As in Equation (4.27), the estimate B̂t of the variance of the stochastic gradient estimator is subtracted to
reduce the noise during sampling to the necessary amount. This fits the general SDE with

Q =
(

0 ↘1

1 0


.

In the limit ϖt ⇓ 0, the controlled noise C dominates and the resulting updates admit the correct invariant
distribution. Similarly to sgLD [20], the limit is not applied in practice and a small residual bias through the
finite learning rate is accepted. As pointed out in References [211, 212], this algorithm can lead to arbitrarily
poor performance when the Gaussianity assumption on the noise is violated. For a study including multiple
applications of sgHMC to BNN see Reference [213].

4.2.3 Further Developments and Improvements

Many improvements on the dynamics of sgLD and sgHMC have been proposed. They can all be understood as
employing the freedom of the general SDE introduced in Section 4 in one way or another:

• Preconditioning: The process di!usion matrix D can be chosen as any positive semi-definite matrix. To
improve the convergence of both sgLD or sgHMC, it can be used to parameterize the posteriors geometry
and introduce larger noise levels in the dominant directions of the posterior. This is often referred to
as preconditioning and the use of such a preconditioning matrix to “transform all directions to the same
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scale” [20] has already been proposed with the original sgLD [20]. Note that, through Equation (4.25), all
choices of D require a correction term.

From the Bernstein-von Mises approximation (4.12), we know for well-parameterized models and for large
enough datasets the posterior is shaped like a Gaussian. The covariance of the posterior is given by the
inverse Fisher Information matrix (4.6). The empirical Fisher is thus a popular choice as a preconditioner

D = D(ς) != I
↔1(ς) ⇔ Î

↔1(ς) .

The earliest use of the inverse Fisher metric as a preconditioning of sgLD can be found in Reference [206].
The authors propose to transition from sgLD to sampling from the Bernstein-von Mises approximation
directly at large stepsizes using an online average of the empirical Fisher. Of course for BNNs, where the
Bernstein-von Mises approximation is violated, this approach does yield limited improvements and the
small stepsize asymptotics still need to be invoked. A similar approach using a running average of the
Hessian matrix is presented in Reference [214].

Later schemes propose to determine the inverse Fisher metric for every sampled parameter point I
↔1(ςt)

to use as preconditioning for the next update step [205, 215]. The experiments are however only performed
for latent Dirichlet allocations rather than BNNs. Once again, the over-parametrized nature BNNs has
us questioning whether convergence improvements are on the same high level for NNs. Furthermore, the
calculation of the (empirical) Fisher metric significantly increases computational cost.

Similar preconditioning of sgLD has been explored in Reference [216] for BNNs. The authors use the
preconditioning from dimension-wise RMSprob (2.15)

D(ςt+1) = diag
(
1⇐ (φ1+

√
V (ςt+1))

)
(4.32)

V (ςt+1) = ϱV (ςt) + (1 ↘ ϱ)↑L̂m(ςt) ≃ ↑L̂m(ςt)/m
2

, (4.33)

with element-wise multiplication and division and a small, positive constant φ preventing numerical nui-
sance. Here, the steps and noise are adapted to the gradients of the posterior landscape. This algorithm
admits the same asymptotic guarantees as sgLD, but converges much quicker for the examined NN exam-
ples, both fully-connected and convolutional.

• Relativistic Monte Carlo: A similar e!ect to preconditioning can be derived from a relativistic descrip-
tion of the momentum in sgHMC. In Section 4.2.2, we have used a kinetic energy of K(r) = 1

2 r
↑M↔1

r

for setting the Hamiltonian (4.30). In theory, this Hamiltonian can produce infinitely large parameter up-
dates. An alternative solution to preconditioning averting the resulting instability is to use a relativistic
energy function [217]

Krel(r) =
P∑

j=1
mjc

2
j

(
r

2
j

m
2
jc

2
j

+ 1
 1

2

. (4.34)

This limits the size of the parameter updates to cj , a speed of light individually set for a parameter
dimension. The resulting mass matrix is diagonal M = M(r) = diag(m1(r), ..., mW (r)), with

mj(r) = mj

(
r

2
j

m
2
jc

2
j

+ 1
 1

2

=

√
r

2
j

c
2
j

+ m
2
j .

The parameter update ϖtM↔1
rt thus yields

ϖtM↔1(rt)
rt = ϖt
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2
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↑

, (4.35)
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where rt,j is the entry of the momentum vector in dimension j at time t. A rescaling similar to those
in Section 2.3 thus naturally arises without the need for additional preconditioning. It limits the update
in dimension j to ϖtcj . In the limit of low temperature, a similar adaptive stochastic optimizer can
indeed be obtained. Analogously to stochastic optimization, the authors show that the use of a relativistic
momentum improves the stability with regard to the variance of the stochastic gradients compared to
Newtonian momenta.

A similar relativistic kinematic term is also employed in the Adaptive Thermostat Monte Carlo sam-
pler [218].

• Monomial gamma HMC: To improve transitioning between di!erent modes, the kinetic function of
HMC (4.30) can be generalized

r
↑Mr ↘⇓

(
|r|

1
2a

)↑
M |r|

1
2a , (4.36)

with the exponent applied component-wise. It can be shown that for increasing a ⇓ ▽ the probability to
get trapped in a posterior mode goes to zero. Analogous improvements are found in application [219] at
the cost of poor convergence and numerical di"culties for a ↗ 1. In subsequent work, the authors show
that more e"cient generalizations of the kinetic energy in combination with an additional thermostat
parameter can be applied to sgHMC [220].

• Thermostats and tempering: Further insights from physics are used to improve sampling. In Ref-
erence [221] the number of weights is promoted to a canonical ensemble that has to maintain thermal
equilibrium. The ensemble has to fulfill

↽(▷, r) = exp(↘H(▷, r)/(kBT )) , with kBT = 1
P
E(r↑

r) . (4.37)

Here, kB is the Boltzmann constant and T the temperature ⇀ = 1/(kBT ). This condition is not guaranteed
when using stochastic gradients in sgLD or sgHMC and thus a further auxiliary variable 4 needs to be
added into the chain to correct the dynamics

4t+1 = 4t + ( 1
P

r
↑
t rt ↘ kBT ) , with 4(0) = C . (4.38)

This variable replaces the friction variable C in Equation (4.31) and adapts the friction in concordance
with the equilibrium condition (4.37). The authors show, that this stabilizes the sampled chain with
respect to sgHMC for large stepsizes ϖ.

Similar techniques based on the idea of a thermal equilibrium, as well as the general SDE from Equa-
tions (4.24) and (4.25) are applied in References [217] and [218]. Increased friction will however also slow
down convergence and negative friction terms can lead to exploding momenta [218]. They thus clip the
friction term at the variance of the momentum update.

One further idea to leverage the temperature of the simulated distribution is simulated annealing as
presented in Reference [222]. When starting sgLD out with a high temperature posterior, the algorithm
can explore the posterior landscape e"ciently as the Gibbs posterior is e!ectively flattened. However, if the
temperature is too large, the chain will escape the desired posterior modes. To improve the convergence to
high probability modes, the temperature is decreased later in the chain (as well as the stepsize, to achieve
sampling from the true posterior asymptotically). The authors show analytically, that such an algorithm
can find the minimum of a convex function, even in the presence of multiplicative, non-bounded, noise.
The stochastic optimization algorithm obtained through temperature annealing of sgHMC with a thermal
equilibrium variable is studied numerically in Reference [223]. The MAP estimate is shown to outperform
the stochastic optimization algorithms from Section 2.3 in MNIST classification and other examples.
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Interestingly, Reference [224] schedules the temperature the other way around. During mode exploration,
they use the stochastic optimization limit T ⇓ 0, that is ⇀ ⇓ ▽, to force the algorithm into the modes of
the posterior and switch to an untempered posterior only shortly before drawing samples from the chain.

• Contour sgLD: A comparable flattening e!ect to tempering the posterior is achieved in Reference [225]
with a gradient multiplier in Equation (4.28). It is calculated from a histogram of the Gibbs posterior and
updated similarly to a Wang-Landau algorithm (importance sampling). This improves the sampling of
multi-modal distributions as the barriers between modes are continually reduced. Note that for contour
sgLD the samples are drawn from the flattened posterior rather than the untempered posterior. In
Reference [226], this idea is combined with a multi-chain approach. A more stable convergence is achieved,
through estimating the flattening histogram as a mean over the chains.

• Multiple chains: Using multiple, interacting chains computed in parallel to improve the performance is
a popular idea. These chains can work on batches of di!erent sizes and interact at given times to sample
the posterior distribution [227]. Theoretic evidence on the superior e"ciency of interacting chains over
individual computations is provided by Reference [228]. More complex interaction schemes [229–231],
as well as interactions of chains at di!erent temperatures [232] have been proposed specifically for the
sampling of multi-modal posteriors.

Large applications in HEP already require distributed computation over multiple nodes. A further factor-
ization of the computation cost to accommodate parallel chains thus seems unfeasible. In the following,
we thus concentrate on single machine, non-distributed, MCMC approaches.

• Cyclical scheduling schemes: When applying sgLD and sgHMC, one has to balance fast convergence
against mode exploration capabilities. Once a minimum mode is reached, the probability of transferring
to a di!erent mode is low. This regime is mostly determined by sampling with ⇀ = 1 and diminishing
stepsizes, as to circumvent the asymptotical bias of the invariant distribution. The chain can be divided
into di!erent phases, an exploration phase and a sampling phase.

To improve the characteristics of both phases, mode exploration can be stimulated by high tempera-
tures [222] or high learning rates [224]. After su"cient time, the sampling phase can be initiated by
decreasing temperature or learning rate. Reference [224] proposes to alternate exploration and sampling
by reestablishing the large stepsize after a predefined number of samples is drawn. In this scheme a cosine
schedule is used for to decay the learning rate after reinitialization. The authors prove convergence of
sgLD and sgHMC in this scheme and demonstrate the improvements in sampling multi-modal posteriors
of BNNs.

With multiple chains, the problem in exploration is circumvented by starting from di!erent parameter
configurations and likely sampling di!erent modes with di!erent chains. The cyclical scheduling can be
understood as a concatenation of chains from parallel MCMC.

Furthermore, the integration scheme can be adapted. To this point, we only discussed discretizations of the
SDE (4.24) that alternate the updates of auxiliary variables and parameters. This is commonly referred to as
the Euler integrator. As already mentioned, this discretization introduces an error, which can be corrected by
an M-H correction. Alternatively this error can also be reduced by using higher-order integration schemes.

• Higher order integrators: The leapfrog integrator [233] for HMC is one popular example of a second-
order integrator. It alternates the update of the momentum rt ⇓ rt+1/2, ςt ⇓ ςt+1 and a second
momentum update rt+1/2 ⇓ rt+1. This approach can be generalized to arbitrary orders by introducing
the generator G of the di!usion (4.24) [234]

Gf(ςt) := lim
⇀⇐0+

Eωt+ϑ
(f(ςt+⇀)) ↘ f(ςt)

ϖ
. (4.39)
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The function f here is an arbitrary, twice di!erentiable function. The generator defines the true evolution
following the SDE as Eωt+T

(f(ςt+T )) = e
T G

f(ςt). The e!ect of the generator on a small step h is usually
approximated by a numerical integrator P⇀ ⇔ e

⇀G , such that

Eωt+T
(f(ςt+T )) = e

⇀G
⇒ ... ⇒ e

⇀G
  

T/⇀ ↘

f(ςt) ⇔ P⇀ ⇒ ... ⇒ P⇀f(ςt) . (4.40)

It is said to be of order K if
Phf(ςt) = e

hG
f(ςt) + O(hK+1) . (4.41)

This means, the error per step size ϖ, is of the order ϖ
K+1. In sgMCMC, we further approximate G

through a subset-based approximation Ĝ, introducing the stochastic approximation error.

For sgLD (and sgHMC), the Euler integration specified through Equation (4.26) can be shown to be of
order 1. Its error scales with ϖ

2. For higher-order integrators, the interplay of the approximation and
discretization errors for sgMCMC has been analyzed in detail in References [234] and [235]. The authors
find, that varying the stepsize of the Euler integrator (4.26) leaves the convergence rate unchanged. They
also propose a concrete second-order integrator and show improved convergence. Furthermore, they show
that convergence rates of higher-order integration schemes can approach those of full MCMC for high
orders. References [218] and [217] also consider higher order integrators in their work.

• Split Symmetric HMC: The factorization (4.40) can also be used to distribute one full HMC step into
M/N individual subset steps by splitting the Hamiltonian itself into a sum over the subsets. This retains
the same dynamics and ensuring reversibility of the chain [236].

Albeit the dynamics of this sampling seem advantageous in that they do not require handling of the
variance of the subset-based gradient estimator, the scheme still requires an M-H correction to correct for
the error of the time discretization. A combination with controlled stochastic M-H methods (see Section 5)
might thus yield a truly e"cient algorithm.

Markov chains also do not need to satisfy the symmetry conditions under which sgLD and sgHMC are developed.
Chains with favorable properties can be constructed using weaker conditions.

• Piecewise deterministic Markov processes [237]: The reversibility of the introduced methods hin-
ders fast convergence through either the limitation on symmetric proposal distributions or low M-H accep-
tance rates. Thus, multiple non-reversible, continuous time Markov chains [238–241] have been proposed,
with specific focus on datasets with large numbers of points.

Rather than sampling updates at constant time intervals ϖ, as suggested through the segmentation in
Reference 4.40, the times between updates are simulated from an inhomogeneous Poisson process. The
intensity function of the Poisson process, that is the phase space dependent rate of the steps to occur, is
a function of the log-probability of the model. For the Boomerang Sampler [239], as well as the Bouncy
Particle Sampler [240, 241], it is the inner product of the trajectory velocity and the gradient of the log-
probability. The trajectory velocity itself is generated from arbitrarily complex update rules that might
themselves contain random elements. Strategies like adaptive preconditioning can be applied for these
chains similarly as for sgHMC [216, 239]. Through treating the update time intervals as another sampled
variable, these algorithms usually do not have discretization errors. They can be constructed such that
subset-based versions retain the exact posterior as invariant distribution.

The main complication of this class of Markov chains, is integrating the intensity function, and thus the
log-probability, along the trajectories of the sampling update intervals. This is analytically impossible
for BNNs, even if the stochasticity from subset-based gradient estimation does not change the invariant
distribution in this scheme [237]. Similar to sgLD the Monte Carlo error of this integration at a fixed
number of integration steps increases for smaller sample sizes. Control algorithms similar to the ones
discussed in Section 5 could thus be beneficial.
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Recently, an application of piece-wise deterministic Markov processes to BNNs that e"ciently implements
this sampling using adaptive bounds to the gradient of the log-probability was presented [172]. While
they find performance on the same level as sgLD and sgHMC, the sampling e"ciency of such chains is
strongly increased. They also find similar dependencies on the introduced noise (here on the velocity),
where too much noise leads to bad convergence and to little will result in bad mode exploration. The
authors provide a package for running this sampling with BNNs, which might be a good starting point
for future studies.

4.2.4 Metropolis-Hastings Correction and MALA

As pointed out in Reference [242], the naive use of subset-based gradient estimators can lead to large devi-
ations between the chain on full gradients and its stochastic approximation. The presented implementations
of Section 4.2.1 Section 4.2.2 and Section 4.2 thus rely on controlled, artificially introduced noise to control
the bias of the algorithm. In the limit of diminishing stepsizes, the artificial noise dominates the noise of the
stochastic gradient approximation and leads to asymptotically correct sampling as both, the discretization and
the influence of the gradient estimator variance, go to zero. In practice, this limit a!ects the capabilities of
the sampling to explore the mode landscape and is thus never realized. Cyclic learning rate schemes try to
solve this predicament by distinguishing between exploration and sampling phases [224]. However, through the
dependence of the chain during the sampling phase on the exploration steps, as well as the time-discretization,
some bias remains.

One way to restore the exact sampling is an M-H correction [243, 244].

1. First, we draw a possible update step z̃t+1 ↓ q(z↗
| z) from a proposal distribution. It gives the probability

of proposing z↗ starting at z.

2. For this step, we calculate the acceptance probability (ratio)

ϱ(z̃t+1 | zt) = 1 ̸
↽ε(z̃t+1 | Dn)
↽ε(zt | Dn)

q(z̃t+1 | zt)
q(zt | z̃t+1) = 1 ̸

exp(↘⇀Ln(z̃t+1)) ↽(z̃t+1)
exp(↘⇀Ln(zt)) ↽(zt)

q(z̃t+1 | zt)
q(zt | z̃t+1) , (4.42)

where a ̸ b = min{a, b}.

3. We draw u ↓ Uniform(0, 1). If u ′ ϱ, we update to the proposed state zt+1 ← z̃t+1. Else, we reject the
proposal and revert to the previous state zt+1 ← zt .

This construction ensures that the stationary distribution of the chain is the tempered Gibbs posterior ↽ε(· | Dn).
For a more in depth discussion of the M-H algorithm, also see Reference [245, Chapter 7.3].

The combination of the stochastic gradient centered proposal distribution from Langevin dynamics (4.28)
with an M-H acceptance step is known as the Metropolis-adjusted Langevin algorithm (MALA) [245, Section
7.8.5]. As hinted at before, the M-H step is applied to correct for the inherent discretization error of Langevin
dynamics. It is thus not limited to small stepsizes to guarantee sampling from the posterior distribution [246].
However, there are three major drawbacks to employing an M-H correction. For one, whenever the stationary
distribution of the chain dictated by drawing of z̃t+1 without correction does not agree well with the desired pos-
terior, acceptance probabilities will be low. The algorithm is thus slowed down significantly by the large amount
of rejected samples calculated in vain. This can be solved by carefully designing the proposal distribution.

Furthermore, the correction introduces a sensitive dependence on the width and shape of the proposal
distribution. On one hand, a very wide proposal distribution will, with high probability, sample a z̃t+1 far from
the loss minima. This results in an increased corresponding loss Ln(z̃t+1). On the other hand, low noise will
lead to a diminishing probability of the backwards direction under the proposal distribution q(zt | z̃t+1), due to
the narrow shape of the distribution. This has to be met by carefully choosing the batchsize of the stochastic
updates and the shape and width of the proposal distribution.

The biggest issue however, is the cost of the ideal correction. The calculation of the acceptance probabil-
ity requires the computation of the log-likelihood over the full dataset in every step. For the large datasets
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encountered in particle physics, this is unfeasible. To solve this, approximations of the ideal correction (4.42)
have been proposed. Early proposals for correction schemes based on variable size subsets to reduce the cost
of an M-H correction while controlling the introduced bias have been introduced in Reference [211] and [247].
Later publications introduce sub-sampling schemes with fixed size batches, see for example Reference [248]. In
Section 5, we give a detailed overview over all proposed methods and elaborate on our own design of a correction
to the log-likelihood loss that restores the original scaling with the data size.

4.3 AdamMCMC [P2]

The algorithms presented in the previous section start out by discretizing a di!erential equation that leaves
the Gibbs posterior invariant and usually only sample the true posterior in the limit for small stepsizes. This
comes at the cost of slowing down convergence and mixing. The algorithms thus compromise on the speed-up
gained by designing the steps on a subset of the data. Thus, if we want to guarantee fast convergence and
sampling from a controlled distribution, an M-H correction is indispensable. In Section 5, we discuss di!erent
possibilities for performing the correction based on batches of data. We also present our own view on stochastic
M-H corrections.

For now, we accept that a discrete-time algorithm needs to employ a correction. As the correction step
ensures the stationarity of the chain, the update proposal can be chosen more freely. Specifically, this allows us
to start out from a parameter update we know is very e"cient for Deep NNs: the Adam algorithm [97]. The
update rules (2.17) of Adam are

mt+1 = 01mt + (1 ↘ 01) ↑L̂m(ςt)

vt+1 = 02vt + (1 ↘ 02) ↑L̂m(ςt) ≃ ↑L̂m(ςt)

ςt+1 = ςt ↘ ϖt
mt+1

1 ↘ 0
t+1
1

⇐

((
vt+1

1 ↘ 0
t+1
2

)1/2
+ φ



  
ut(mt+1,vt+1)

.

We construct a parameter proposal ς̃t+1, by sampling from a normal distribution centered in the Adam step

ς̃t+1 ↓ q1(ς | ςt, mt+1, vt+1) = N (ς; ςt ↘ ut(mt+1, vt+1), $t(mt+1, vt+1)) . (4.43)

When choosing equal noise levels in all dimensions $t = 1
21P , the subsequent correction step will result in

diminishing acceptance rates, due to the smoothing properties of the momentum auxiliary variables. We thus
need to employ another preconditioning on the noise. In contrast to the preconditions introduced in Section 4.2.3,
our goal is not to balance the stepsize in all dimensions. The Adam update itself is preconditioned already. We
rather want to align the direction of the proposal with that of the momentum. This can be achieved by using
an elliptical proposal distribution by choosing

$t = 1
21P + 1

2
⇓ut(mt+1) ut(mt+1)↑

. (4.44)

While we do not add any artificial noise on the auxiliary variables, the variance of the subset based gradient
estimator does e!ectively impose a distribution

mt+1, vt+1 ↓ q2(m, v|ςt, mt, vt) =N (m; 01mt + (1 ↘ 01) ↑Ln(ςt), 5
2
11P )

· N (v; 02vt + (1 ↘ 02) ↑Ln(ςt) ≃ ↑L̂m(ςt), 5
2
21P ) ,

(4.45)

with low noise values 51, 52 > 0. We have seen similar reasoning for example in Section 4.2.2. Using
the same auxiliary values for the sampling probability q1(ς̃t+1 | ςt, mt+1, vt+1) and the reverse direction
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Figure 12: Optimization performance of AdamMCMC in comparison to Adam, SGD and sgHMC for Top-tagging
with ParticleNet. Left: Cross entropy loss on the training set over steps of the chain/training. The first 500
steps are plotted in log-scaling. For the remaining ⇔ 230k steps, the moving-average over 2400 steps (solid), as
well as the unsmoothed cross entropy, are shown in linear scaling. Right: Test set accuracy on the (400k jets)
over training epochs, of 2400 steps each. AdamMCMC (1 = 0.2) closely resamples the behavior of Adam including
overfitting. For larger noise values, AdamMCMC (1 = 2.0) shows no signs of overfitting and a similar optimization
performance as sgHMC. Originally published in Reference [P2].

q1(ςt | ς̃t+1, mt+1, vt+1), we can calculate the acceptance probability ratio as

ϱt(ς̃t+1|ςt, mt+1, vt+1) = 1 ̸

(
↽ε(ς̃t+1|Dn)
↽ε(ςt|Dn)

q1(ςt|ς̃t+1, mt+1, vt+1)
q1(ς̃t+1|ςt, mt+1, vt+1)

C(ςt, ς̃t+1)
)

. (4.46)

We set 0/0 = 0 for the case where pε(ςt|Dn) = 0. The correction terms C accounts for the drawing of auxiliary
variables

C(ςt, ς̃t+1) = q2(mt+1, vt+1|ς̃t+1, mt, vt)
q2(mt+1, vt+1|ςt, mt, vt)

= exp
(

↘
|mt+1 ↘ ↑Ln(ς̃t+1)|2

25
2
l /(1 ↘ 0

2
1) + |mt+1 ↘ ↑Ln(ςt)|2

25
2
l /(1 ↘ 0

2
1)

↘
|vt+1 ↘ ↑Ln(ς̃t+1)2

|
2

25
2
l /(1 ↘ 0

2
2) + |vt+1 ↘ ↑Ln(ςt)2

|
2

25
2
l /(1 ↘ 0

2
2)

)
.

(4.47)

After an initial period, the running averages mt+1 and vt+1 will be close to gradients which decrease over time.
Setting C(ςt, ς̃t+1) = 1 thus is a well justified simplification. In Reference [P2], we prove this chain admits an
invariant distribution with the correct marginal distribution ↽ε(·|Dn) in ς. We also show the distribution of ςt

converges to the Gibbs posterior distribution in total variation distance.
We test the AdamMCMC algorithm by sampling the parameters of the state-of-the-art jet tagging architecture

ParticleNet [249]. This architecture constructs a graph from the point cloud of incoming particles and processes
this graph with edge convolution blocks [250]. The architecture circumvents evaluation of sparse input and
is invariant under shu#ing of the particles. In comparison to the Particle Transformer architecture [76] this
architecture is very parameter e"cient. As this is a classification task, the categorical log-posterior takes on
the shape of a binary CE-loss (2.7).

As data, we use the TopLandscape dataset [75]. For training, it contains 600k simulated top and QCD jet
events each. We run Adam for 100 epochs (2400 batches of size 512 each) with ϖt = 1⇑10↔3 and 01 = 02 = 0.99
as ground truth. Figure 12 shows the resulting test accuracy during training. It exhibits strong overfitting. We
can closely reproduce this behavior when running our sampling at low overall noise of 1 = 0.2. We chose ⇀ = 1
and 1# = P/100 = 3661.6 and learning rate and 01/2 as before. Increasing the noise to 1 > 2.0 prevents this
overfitting. The convergence of the adjusted AdamMCMC is similar to that of sgHMC.

We find that using a prolate proposal distribution, as specified in Equation (4.44), results in an algorithm
that maintains an e"cient mean acceptance ratio in the limit 1 ⇓ 0. A scan over multiple orders of magnitude
for values of 1 is show in Figure 13. In combination with a large span of 1# values that yield solid performance,
this robustness to low 1 makes AdamMCMC easy to use. While other algorithms can be notoriously hard to tune,
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Figure 13: Mean acceptance rate (upper) and accuracy of the posterior mean prediction on test data (lower)
over the width of the proposal distribution 1. An algorithm without aligned proposal and momentum (light
blue) is strongly dependent on a correct choice of 1. Aligning both (dark blue) enables e"cient sampling at low
proposal width. The algorithm reproduces the accuracy of the deterministic optimization in this limit. Starting
at the low 1 limit, noise can be added to prevent overfitting or achieve well-calibrated uncertainties. Originally
published in Reference [P2].

for AdamMCMC one can simply start out at a working Adam optimization, reuse learning rate and betas, set a
low 1 and increase 1# until the mean acceptance rate is su"cient. This setting reproduces the Adam results
closely. Starting from there, one can increase 1 until overfitting is suppressed and the uncertainty prediction is
well-calibrated (Figure 14). Other parameters do not a!ect the error prediction significantly, as long as e"cient
sampling is guaranteed.

When running this algorithm, we use a stochastic estimator L̂m of the loss Ln for the M-H acceptance
step. This allows e"cient computation in batches, but changes the sampled distribution to a mixture of subset
posteriors. In theory, this is quite unattractive, even more so as our algorithm heavily relies on the correction
for sampling the true Gibbs posterior. However, we do not find dramatic di!erences between the true posterior
and the mixture in practice, In the next section, we introduce several stochastic M-H correction methods with
better control of the sampled distribution. This includes our own proposal for stochastic M-H algorithms in
Section 5.4.

Figure 14: Posterior mean prediction (left) and posterior spread (right), that is di!erence between the 75%-
and 25%-quantile of the prediction for 10 posterior sample, over the noise level 1. The median (center line)
and the 75%- and 25%-quantile (envelopes) are reported for both classes and true and false assignments for a
test set of 400k jets. A slight decrease in classification performance shows for increasing 1 for a large section
of the scanned space. The performance of an Adam optimization is recovered well for low noise values. The
uncertainty prediction strongly depends on 1. A significant posterior spread can already be found for 1 = 1.
Originally published in Reference [P2].
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5 Weight Sampling with Stochastic Metropolis-Hastings
Given the high computational cost of the log-likelihood loss computation in Equation (4.42), the search for
stochastic equivalents of the M-H correction has experienced a new rise in popularity with the current push to
big, that is tall, data. The corresponding literature is scattered within the diverse field of MCMC sampling.
A first review of the early approaches is given in Reference [212]. The authors categorize the e!orts into two
groups:

• Divide-and-conquer approaches: This class of algorithms runs multiple chains on subsets of the data
and infers an approximation of the posterior from the combination of the chains. It has been shown that
this procedure is very sensitive to the quality of the posteriors sampled for every subset [251].

• Sub-sampling: Sub-sampling algorithms use a (newly drawn) subset of data at every iteration of the
chain to perform an approximate acceptance step.

The former class merely distributes the computation cost over a longer time or multiple machines and often relies
on a Gaussian shaped posterior or other approximations for the combination of the posteriors deduced from
every sub-sample [212, Section 3]. In this work, we will thus focus on the domain of sub-sampling algorithms as
the best current solution to the excessive cost of M-H corrections for NNs in HEP. For the same reason, we will
also not further discuss the option of distributing the calculation of a full likelihood over multiple machines.

5.1 Naive Sub-Sampling

Naively exchanging the negative log-likelihood in the calculation of the acceptance probability ratio for the M-H
correction with a stochastic estimator

ϱ̂(z̃t+1 | zt) = 1 ̸
exp(↘⇀L̂m(z̃t+1)) ↽(z̃t+1)

exp(↘⇀L̂m(zt)) ↽(zt)
q(z̃t+1 | zt)
q(zt | z̃t+1) , (5.1)

will lead to a complicated invariant distribution that is hard to interpret [212]. While L̂m is an unbiased estimator
of Ln, the same is not true after exponentiation. exp (↘L̂m) will clearly introduce a bias over exp (↘Ln). The
admitted invariant distribution is thus a mixture of all sub-sampled posteriors. While such a mixture is hard
to read, we show in Section 5.4 that it sustains a lot of characteristics of the posterior distribution.

An algorithm employing an estimator with uncontrolled variance can also get stuck at a parameter proposal
accepted due to an outlier estimate [212]. This is a phenomenon we often encountered in the early stages of
testing AdamMCMC.

For the naive sub-sampling scheme, Reference [252] shows the connection between using the log-likelihood
estimator in a M-H step and sampling from a tempered posterior at higher, known temperature. For sub-
sampling with m = n

⇁ and ⇀ = 1, they show that rescaling the estimator as n
γ↔1

L̂m, where γ is a new
temperature parameter such that 0 < γ < 5 < 1, will correct the posterior distribution and result in

↽nϖ↔1(z | Dn) △ exp
(
↘n

γ↔1
Ln(z)

)
↽(z) (5.2)

as an invariant distribution in the limit of large datasets and 1/⇀ ∋ n. Their argument is based on an augmented
chain including the di!erence between estimator and full log-likelihood as an auxiliary variable. If we choose
γ close to 5, the resulting tempering gives n

γ↔1
⇔ m/n as an upper limit. For this choice, the change in

temperature reflects only the change in batchsize analogous to our observations in Section 5.4.
Reference [252] also shows, that sampling at higher temperature, that is lower ⇀, due to the stochasticity

of the acceptance improves the probability of transitions between modes of the posterior. A similar argument
is also given in Reference [212, Section 6.3]. In Parallel Tempering [229], this e!ect of high temperature is
leveraged to construct multiple chains at di!erent temperatures and thus di!erent mode exploration properties.
Similarly, a temperature scheduling can be applied to achieve better mixing in an exploration phase of the chain.
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5.2 Inexact Algorithms with Controlled Bias

In the naive approach, the bias on the sampled distribution is not gauged. A method to control this bias, is to
assume a Gaussian distribution for drawings of the log-likelihood estimator L̂m(z̃t+1) ↘ L̂m(z) justified by the
CLT. From this assumption, a statistical test can be employed to test whether the true log-likelihood fulfills

n∑

i=1
↘⇀ (Ln(z̃t+1) ↘ Ln(zt)) ↗ log u ↘ log

(
↽(z̃t+1)q(z̃t+1 | zt)
↽(zt)q(zt | z̃t+1)

)
(5.3)

with high probability. If it does not, the batchsize is increased until the correct acceptance decision is taken
with a previously fixed p-value of the test. Note that Equation (5.3) is just a reshu#ing of u ′ ϱ for an
acceptance rate as in Equation (4.42). This procedure, applying a T -test, has been proposed in Reference [247]
as AusterityMH. One can achieve a good reduction in computational cost at reliable sampling whenever the
Gaussian assumption from the CLT applies, but runs the risk of large and uncontrolled biases for example for
posteriors with strong tails [212].

A similar adaption of the batchsize in combination with concentration inequalities to construct confidence
bounds cm(6) satisfying

P
(

⇀

n


(

L̂m(zt) ↘ L̂m(z̃t+1))
)

↘

(
Ln(zt) ↘ Ln(z̃t+1))

) > cm(6)
)

↗ 1 ↘ 6 (5.4)

is applied in Reference [211]. The algorithm predicts a subset size m for a user-specified confidence 1 ↘ 6 to
perform the M-H step. The authors however find that in non-favorable cases, this yields almost no reduction of
the computation as the predicted m is close to the size of the full dataset. The follow-up improved confidence
sampler [212], uses a proxy of the full log-likelihood in form of a second order Taylor expansion to replace many
likelihood estimations and achieve a notable speed-up compared to Reference [211].

In a similar manner, a Barker test [253] (logarithmic M-H test) is employed in Reference [248] to achieve
controllable biases from adaptive batches. They leverage the first three moments of the batch of log-likelihood
ratios to estimate the confidence of the accept-reject decision.

All three papers test the algorithms on Gaussian distributions and logistic regression, but not on large scale
NNs. For BNN applications, the iterative nature of the tests will slow down the computation considerably
in comparison to stochastic optimization, all while the multi-modal structure of an over-parameterized NN
posterior further reduces the e"ciency of the sampling.

5.3 Exact Algorithms

For the introduced inexact algorithms, one can show that for arbitrary constants 6 ∝ (0, 1) and 5 > 0 one can
find a target posterior ↽ and proposal distribution q such that the actual stationary distribution of the inexact
algorithm ↽̃ satisfies [254, Theorem 1]

TV(↽, ↽̃) ↗ 6 and DKL(↽, ↽̃) ↗ 5 .

In theory there will thus always be a target distribution for which the sampling included a controlled stochastic
M-H correction is arbitrarily bad. In practice, this can often be circumvented by a smart design of the proposal
(see for example Section 4.2.2 and Section 4.3). However, it still motivates the design of stochastic M-H
corrections that are exact, that is they sample from the full posterior ↽ε(ς | Dn).

The easiest way to reduce computation cost while retaining the exact invariant distribution of choice is a
two-stage M-H correction [255]. In a first step, a point drawn from the proposal distribution is accepted or
rejected based on a sub-sample estimate of the log-likelihood. If it is accepted, a second accept-reject step based
on the full sample is calculated such that the combined transition kernel reduces to the full kernel exactly. While
this might yield large savings for the case of low acceptance rates, we want to employ gradient based proposal
distributions to navigate the large dimension of the BNN posterior e"ciently. We thus aim at high acceptance
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rates, where the gains from such a two-step approach are marginal.
Amortized Metropolis Adjustment (AMA), as introduced with in AMAGOLD [256], cuts the cost by using

an infrequent M-H corrections only every T > 0 steps. The idea is charmingly simple:

1. Sample T consecutive steps ς̃t+1, ..., ςt+T from the corresponding proposal distributions

q(ς̃t+1 | ςt), ..., q(ς̃t+T | ς̃t+T ↔1) .

2. Accept all T steps with

ϱAMA(ς̃t+T | ςt) = 1 ̸
exp(↘⇀L̂m(ς̃t+T )) ↽(ς̃t+T )

exp(↘⇀L̂m(ςt)) ↽(ςt)

T ↔1

i=1

q(ς̃t+i+1 | ς̃t+i)
q(ς̃t+i | ς̃t+i+1)

q(ς̃t+1 | ςt)
q(ςt | ς̃t+1)

(5.5)

to restore detailed balance, that is the reversibility, of the chain.

Contrary to the previously introduced two-stage M-H, this algorithm shows the best improvements for high
acceptance rates and proposal distributions that are already close to reversible. It should thus work especially
well with the directional proposal distribution of Section 4.3. For the combination of AMA with sgHMC, that is
the AMAGOLD algorithm, the authors note that sgHMCs proposals are not close to reversible without negating
the momentum term. They thus introduce a notion of “skew-reversibility” including the negation, that can be
converted back to a regular reversible chain through momentum resampling, to reach high acceptance rates. The
resulting algorithm is shown to converge to the exact posterior at finite stepsizes at a rate at most a constant
factor slower than sgHMC. The algorithm is demonstrated to run e"ciently and robustly on various examples,
including a two-layer MLP classification task with 60000 data points. Code is shared with the paper and might
be interesting for future applications in HEP.

For high acceptance rates, better reductions can be achieved with strong assumptions on the target, that is
the posterior [257, 258]. Both require a tight and easy to compute (global) lower bound of the log-likelihood and
sum the di!erence between bound and estimator over a subset of data. As such a bound is not easily available
for NN posteriors, the application of these methods to BNNs seems impractical.

References [259, 260] also introduce exact algorithms for posterior sampling from batches. They however
come at increased computational cost, limiting their merit over the full correction. The algorithm proposed in
Reference [259] calculates the acceptance ratio for each step from a product of parallel batch-wise estimates
of the log-likelihood, e!ectively performing the calculation over the all data points. Similar to the algorithms
proposed in Reference [211, 212], the Scalable M-H of Reference [260] relies on a Gaussian posterior to construct
a factorized M-H Kernel from a Taylor expansion of the log-posterior. The Taylor expansion has to be calculated
at every step of the chain, limiting the possible speed-up of the algorithm. Scalable M-H [260] also assumes
bounds on the energy di!erence, that is di!erence in log-prior and log-likelihood. This is easily implemented
through a Lipschitz constant and limited stepsizes.

The same bound is assumed for the tunable M-H algorithm (TunaMH) [254]. It however does not impose
any further assumptions on the posterior shape. The authors propose drawing batchsizes according to B ↓

Poisson(3C
2
M

2(ςt, ς̃t+1) + CM(ςt, ς̃t+1)) for C =
∑n

i=1 ci, c1, ..., cn ∝ R+, 3 ∝ R>0 and a symmetric function
M such that |Ui(ςt) ↘ Ui(ς̃t+1)| ′ ciM(ςt, ς̃t+1). Here for the dataset Dn = x1, ..., xn the energy per point

Ui(ς) = ↘ log ↽(xi|ς) ↘
1
n

log ↽(ς)

is used. Subsequently, they choose B points uniformly distributed over the dataset and add them to the
sub-sample I based on the relation of the individual energy di!erence Ui(ςt) ↘ Ui(ς̃t+1) and their bound
ciM(ςt, ς̃t+1). They make the correct M-H acceptance ratio out to be

ϱTunaMH(ς̃t+1 | ςt) = 1 ̸ exp
(

2
∑

i≃I

artanh
(

Ui(ςt) ↘ Ui(ς̃t+1)
ciM(ςt, ς̃t+1)(1 + 23M(ςt, ς̃t+1))

)
q(ς̃t+1 | ςt)
q(ςt | ς̃t+1)

.
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The resulting sampling is shown to be exact with a convergence speed that is tunable through the choice of 3.
This is the first proof of a connection between batchsize and convergence rate, that is between scalability and
e"ciency. However, the assumption of a-priori knowledge of the ci and M make this algorithm hard to apply
for the arbitrarily complex energy landscape of BNNs, as for loose bounds the sampled batchsize B will be close
to the full set size n. As such, the numerical experiments in Reference [254] only employ the sampling to a
Gaussian mixture model and logistic regression.

Penalty BNNs [261] solve the same problem with a di!erent approach. Once again, they assume the loss (here
an estimator of the log-posterior including the bias) is normal distributed around the true values with variance
1

2(ς̃t+1, ςt) due to the stochasticity of the sub-sampling. They then apply the concept of noise penalty [262]
to the M-H correction, that is penalize the acceptance rate (5.1)

ϱPBNN(ς̃t+1 | ςt) = 1 ̸ ϱ̂(ς̃t+1 | ςt) exp(↘1
2(ς̃t+1, ςt)/2). (5.6)

Here, ϱ̂ is as in Equation (5.1), but without the clipping operation 1 ̸ ·. This correction is su"cient to
reestablish detailed balance on average and ensures sampling from the full posterior. It however comes at
the cost of exponentially suppressing the acceptance of update steps and thus significantly slowing down the
computation. To remedy this fact, the authors employ the mean over multiple batches as an unbiased estimator
of the log-posterior di!erence in ϱ̂(ς̃t+1 | ςt), as well as a chi-squared estimator of its variance. This improves
the acceptance rates, but significantly increases computation. The authors employ their algorithm on a 1-
dimensional NN regression with only 2998 data points and find significant improvements over the naive M-H
correction or sgLD. The size of the example, as well as the increased computation from using multiple batches
per step give reasons to question the applicability of noise penalty methods to large scale BNNs.

Similar control variates to Equation (5.6) are proposed and analyzed in detail in Reference [263] to control
the variance of the likelihood estimator itself (rather than the acceptance probability). Instead of the naive
rescaled sum, a di!erence estimator can be used for a better grasp on the estimator variance [263]. The resulting
method samples from a perturbed posterior dependent on the variance of the likelihood estimator. However,
the derivative of these considerations using a block-Poisson estimator of the likelihood [264] reinstates exact
sampling of the posterior expectation values. The application to BNNs however is discussed in neither and the
strong dependence on correctly estimating the variance of the employed estimators could make both algorithms
di"cult to adjust for noisy data.

5.4 Statistical Guarantees for Stochastic Metropolis-Hastings [P3]

In Reference [P3], we study the MALA algorithm with a subset-based M-H correction for regression settings and
matched data Dn = {(xi, yi)}i≃1,...,n. For these settings, the NLL corresponds to the MSE (2.8). To prevent the
calculation of the MSE over a full dataset, we draw auxiliary variables from a Bernoulli distribution bi ↓ Ber(5)
for some 5 ∝ (0, 1]. The loss on the subset defined through B = {b1, ..., bn} is then

Ln(ς, B) = L(ς, B; Dn) := 1
n5

n∑

i=1
bi (yi ↘ fω(xi))2

  
=:li(ω)

. (5.7)

We thus have to consider the joint target distribution

↽(ς, B | Dn) △

n

i=1
5

bi(1 ↘ 5)1↔bi exp(↘⇀Ln(ς, B)) ↽(ς)

△ exp
(

↘⇀Ln(ς, B) + log
(

5

1 ↘ 5

) n∑

i=0
bi


↽(ς) .

(5.8)
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Figure 15: Training data for the regression task (black), as well as functions for 50 parameter samples drawn
with MALA, uncorrected stochastic MALA and stochastic MALA including the correction from Equation (5.11).

Summing over all drawn b leaves us with the marginal in ς

↽(ς | Dn) △

n

i=1

[
5 exp

(
↘

⇀

n5
li(ς)

)
+ 1 ↘ 5

]
↽(ς)

= exp




↘⇀


↘

1
⇀

n∑

i=1
log

(
5e

↔ ω

nϱ
li(ω) + 1 ↘ 5

)

  
=:Ln(ω)

↽(ς)




.

(5.9)

It resembles the Gibbs posterior (4.21), but for an adapted loss Ln(ς). We refer to this posterior as the surrogate
posterior and show that for su"ciently small ε

n⇁ the surrogate posterior is a good approximation of the true
posterior in terms of the KLD [P3, Lemma 1]. For very small 5 and thus small batches, it behaves like the
mixed posterior

n

i=1
exp

(
5e

↔ ω

nϱ
li(ω)

)
↽(ς) . (5.10)

This mixture largely resembles the prior for all non-optimal ς, that is whenever li(ς) > 0.
When adapting the loss to

L̃n(ς, B) := 1
n

n∑

i=1
bili(ς) + 7

log 5

⇀

n∑

i=1
bi , (5.11)

we find the marginal of the corresponding invariant distribution

↽̃(ς | Dn) △

n

i=1

[
exp

(
↘

⇀

n
li(ς)

)
+ 1 ↘ 5

]
↽(ς) (5.12)

resembles the true Gibbs posterior (4.21) with a reduced inverse temperature of ε
1↔⇁ for small ε

n . The dependence
on the sampling probability is dropped and the scaling of MALA restored. Again this guarantee is given in
terms of the KLD between both posteriors.

For a simple one dimensional regression setting (see Figure 15), we sample a NN with 10401 parameters.
We examine the scaling of the validation MSE-loss of the posterior mean prediction on a validation set of 10000
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Figure 16: Scaling of the validation loss on the size of the training sample. We find the scaling of MALA is
restored with the correction. Originally published in Reference [P3].

points in Figure 16. The corrected stochastic MALA exhibits the same scaling with the number of training
samples n as MALA. The naive approach however, is dependent on the batch size n5 = 1000, which we keep
constant. It does not show any dependence on n. We find similar results for the radii of credible sets calculated
from the posterior samples.
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6 Uncertainty in Generative Machine Learning
In Section 3, we have discussed multiple ways to construct generative NNs. For many popular applications of
generative ML, such as image generation or language modeling, uncertainties as discussed in Section 4 are of
no meaning. In such applications, only single points are generated in data space. Thus, reproducing realistic
images or chat responses is valued the most and the uncertainty on the distribution of all generated points is
not evaluated. In science applications, for example in emulating detector simulation, we generated millions of
points in data space. This could be done either to infer the distribution of a variable or to compare against
experimental data. In 6.1, we give an example for a sensible application of generative uncertainties for inference
and close the loop back to the idea of amplification in Section 6.2.

The previous sections already define all the technical tools needed to construct Bayesian generative NNs.
While adversarial learning only defines a loss objective which can be understood in probabilistic terms for
optimal discriminator power, VAEs are inherently Bayesian. They infer the posterior distribution of latent space
variables p(z | x) from input variables as a parameterized fit with a NN. This setting can be expanded to a full
Bayesian phrasing of all network weights [265]. For an e"cient implementation using the LA, see Reference [266].
As VAEs can be used to reconstruct images by applying the encoder and the decoder sequentially, a Bayesian
VAE can even be applied on an image-by-image basis to indicate high variance regions of the input. It is
interesting to note, that the variance on a reconstructed image can be used as a method for edge detection.

In HEP, VAEs however have been replaced in favor of (continuous) flows, di!usion models and transformers
to increase the expressive power of the modeling. For these architectures, the log-likelihood of the data is
accessible via the Equations (3.19), (3.26), (3.31) and (3.34). Combinations with the Bayesian methods of
Section 4 therefore seem self-evident. To apply VI, the log-likelihood in Equation (4.14) can be calculated as
one of the above [17]. For the LA (4.19) the MAP-loss (4.5) also consists of the log-likelihood and a prior
term. And sgMCMC methods sample the Gibbs posterior (4.21), which resembles the true posterior for NLL-
losses (4.22). This gives us a large variety of possible methods to choose from.

For the studies presented in References [P4] and [P5], we select CNFs due to their parameter e"cient nature,
as well as methodical proximity to di!usion models and block-based flows. We combine this architecture
with both, the widely popular VI scheme and our proposed AdamMCMC. Following Reference [17], we use the
CFM-objective (3.29) in combination with VI for e"cient optimization. The CFM-loss however has no clear
interpretation as a log-likelihood. We thus need to introduce an additional, tunable parameter k to account for
the di!erence

LVIB↔CFM(ε; Dn) = Eω↓↽̃(ω;φ) [LCFM↔OT(ς; Dn)] + kDKL [ ↽̃(ς; ε), ↽(ς)] . (6.1)

6.1 Classifier Surrogates [P4]

As hinted at in Section 3.3, one popular application of NFs is to infer conditional likelihood distributions. In
the domain of inverse problems, where p(y | x) is defined through an irreversible forward process, using a flow
to estimate the inverse direction p(x | y) ⇔ p̂(x | y; ς) is a popular approach. It is often referred to as neural
posterior estimation [118–120]. Such a setup can be interesting for tuning nuisance parameters or measuring
theory parameters of the irreversible MCMC simulations used in HEP [267]. In Reference [P4], we look at the
converse problem, that is approximating the forward direction itself. This is sometimes called neural likelihood
estimation.

Modern analysis pipelines at CMS and ATLAS often employ NN-based tagging algorithms. The tagging
output is a complex function of the detector response and hard to understand in terms of physical represen-
tations. This is problematic when sharing the analysis within and outside the collaboration. Reinterpretation
from outside the collaboration is impossible, as the detailed detector schematics are only available within and
the tagger input cannot be simulated. Furthermore, reproducing the result, if possible, still requires the costly
simulation of the detector. For these reasons, it would be desirable to have a prediction of the tagger output
from high-level jet observables or simulation data before or after hadronization. Such a surrogate would need to
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(a) Detector smearing of the tagger output (b) Learned approximation of the tagger output

Figure 17: Prediction of the distribution of ParT output imposed through the detector smearing of a QCD
jet event (purple) and top jet event (green). Figure 17a shows an approximation by a histogram of the 1000
points closest in transverse momentum, energy and particle number. Figure 17b shows the posterior mean
approximation of a CNF samples from a VI-posterior (solid) as well as the approximation inferred by stochastic
optimization of the CFM-objective (checkered). The envelopes depict the min-max envelope over 11 samples
drawn starting a AdamMCMC chain at the MAP-estimate or from the VI result. Figures originally published in
Reference [P4].

reproduce the tagger data well. Through the stochasticity of the detector simulation, multiple detector events
can correspond to the same high-level observables or simulation results preceding the detector. Each of the
events can di!er in tagger output. The tagger output for fixed observables thus follows a distribution that
needs to be approximated with a conditional NF, the detector smearing distribution. In addition, in cases where
input is given, that is not included in the training of the tagger or its surrogate, neither the tagger nor the
surrogate output is not to be trusted. The surrogate needs to indicate this through balanced predictions or
large uncertainties.

As an example for our proof-of-principle study, we choose top-tagging on the JetClass dataset [204] with
the state of the art ParT architecture [76]. ParT uses the kinematics, particle identification, and trajectory
displacement information measured by the detector. We compile a new dataset including the ParT predictions,
as well as observables of the of the jet events. The observables are the transverse momentum pT , pseudorapidity
ϖ, scattering angle !, jet energy Ejet, number of particles nconst, soft drop mass mSD [268] and N-subjettiness
⇁N [269] for N = 1, ..., 4. Figure 17a shows the distribution of the ParT output for the 1000 events in the 108

point dataset that are closest to one randomly chosen QCD and top jet event in pT , Ejet, and nconst. This is a

Figure 18: Dependence of the accuracy (top row) and mean epistemic uncertainty (bottom row) when distorting
the input by artificially adding fixed amounts to the depicted high-level observables. Solid lines show the median
over 1000 QCD events (purple) and top events (green) drawn at random. Envelopes indicate the 10%-90%-
quantile envelope of the VIB and AdamMCMC ensemble respectively. Figures originally published in Reference [P4].
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first approximation of the detector smearing distribution.
We approximate the true distribution with a CNF with CFM and with VI for the CFM-objective (6.1) using

Adam. Starting at the result of the stochastic optimization, we sample 10 points from the network posterior
with AdamMCMC. Qualitatively, we find similar shapes in the conditioned output of the model (Figure 17b) as
for the proximity based approximation (Figure 17a). However, we find significant discrepancies between both
models. When checking the calibration of the uncertainty prediction on 105 validation samples however, we
find both setups give well-calibrated predictions [P4].

To investigate the indication of unknown data, we examine the prediction when adding increasing amounts
of unphysical distortions to the jet observables. We report the mean accuracy of the prediction for a class
distinction at 0.5 (predicted accuracy). We also give the mean distance between the minimal and maximal
prediction in the set of posterior samples as a measure of the epistemic uncertainty. In Figure 18, we see that
the AdamMCMC ensemble is much more sensitive to distortions than the VI one. Large distortions are indicted,
once all events are outside the expected intervals. This can be seen in both measures. The epistemic uncertainty
measure goes to 1 and the predicted accuracy approaches a balanced prediction of 0.5.

6.2 Bayesiamplification [P5]

When generating large numbers of samples with a generative NN, the bias left on the generated data is purely
based on the limited statistics of the training set of the model. This bias can be estimated in terms of the
epistemic uncertainty with the Bayesian setups introduced previously. The question thus arises: Can we con-
struct an estimator of the amplification (3.35) from the epistemic uncertainty prediction? We try to answer this
question in Reference [P5].

To this end, we use the Bayesian CNFs introduced in the previous sections. These are VI with a CFM-loss
and AdamMCMC sampling of a CNF based on its log-likelihood. The toy data we use is closely related to that of
the original GANplification study [1] introduced in Section 3.6. Both studies use data from a ring distribution.
To increase to di"culty of the task, we sample the radial coordinates from a Gamma distribution

pX(x) = pX(r, 2) = %(r; 2, 2) ⇑ uniform(2; 0, 2↽) ,

which is not di!erentiable at r = 4. The histogram of the resulting two-dimensional data distribution in
Cartesian coordinates, as well as a plot of the marginal distribution along the radius, is shown in Figure 19.

The samples ε = {ς
1
, ..., ς

nstat}, drawn either with AdamMCMC or from the VI posterior approximation ↽̃(ς; ε),
give us two sets of approximations of the toy distribution

{p̂X(x, ς
↗)}ω→≃ωAdamMCMC

and {p̂X(x, ς
↗)}ω→≃ωVI

.

Figure 19: Left and middle: Histogram of the 10000 point training data in Cartesian coordinates (left), as well
as marginal histogram and marginal data distribution in radial direction (middle). Right: Count of the training
data in 5 quantiles constructed form a 107 point validation set. Figures originally published in Reference [P5].
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Figure 20: JSD between the posterior mean prediction of the data approximation and the data distribution, as
well as JSD between an independent set of the size N̂ estimated from the relative error predicted on the bin
counts by a BNN. Both JSD measurements exhibit a dependence on the number of quantiles nQ through the
increase in amplification power shown in Figure 21. Error bars are calculated as the minimum and maximum
of 5 independent repetitions. Figures originally published in Reference [P5].

To evaluate the approximations we sample sets D
i
ngen ↓ p̂X(x, ς

i)ngen and count the number of draws in bins of
equal expected probability weight Q = {Q1, ..., QnQ

}. As an example, the right panel of Figure 19 shows the
quantiles for 5 bin in radial and angular direction each. For the distribution properties hj , we again use the
count in quantile Qj defined in Equation (3.37), but without normalizing by the number points. To compare
to the results of Section 3.6 and Section 3.7, we calculate the JSD based measurement of distance

DJS(ĥ(o(Di
ngen)), h(pO))

(3.39) for all parameter samples. The mean results over εAdamMCMC and εVI are reported in Figure 20. We
compare them against

DJS(ĥ(o(DN̂ )), h(pO)) .

Here,

N̂ :=
nQ∑

j=1

µ
2
ĥj

1
2
ĥj

:=
nQ∑

j=1

Ei≃{1,...,nstat}


ĥj(o(Di

ngen))
2

Ei≃{1,...,nstat}

(
ĥj(o(Di

ngen)) ↘ µĥj

)2 (6.2)

is an estimator of the amplification estimate a (3.35). It is designed as the number of independently drawn true
data points in DN̂ , whose Poisson error on ĥj equals the relative error predicted by the Bayesian CNFs. The
dependence of the amplification power N̂/n on the number of quantiles nQ is given in Figure 21. Again we see

Figure 21: Dependence of the amplification estimate N̂/n (left), as well as N̂/(n · nQ) (right), on the number
of quantiles nQ. Error bars are calculated as the minimum and maximum of 5 independent repetitions. Figures
originally published in Reference [P5].
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a strong, exponential dependence. This is in line with the results of Section 3.6 in Figure 5.
Furthermore, DJS(ĥ(o(Di

ngen)), h(pO)) and DJS(ĥ(o(DN̂ )), h(pO)) align well for high numbers of quantiles
and well-calibrated uncertainties, as shown in Figure 20. We test the calibration of the ĥj with 5 independent
sets of samples and find that choosing a k for VI or 1 for AdamMCMC, that shows good calibration over multiple
orders of magnitude in nQ, is hard. In line with the figure, we find the predictions are underconfident where
DJS(ĥ(o(DN̂ )), h(pO)) is below DJS(ĥ(o(Di

ngen)), h(pO)) and overconfident where they are above. A setting that
produces well-calibrated uncertainties for a large spread of nQ and underconfident ones for low numbers was
only found for AdamMCMC. For further details on how to judge calibration, as well as training the models we refer
to Reference [P5].
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7 Conclusion and Outlook
Motivated by the surge in required event simulation due to the upcoming HL-LHC runs, replacing the detector
simulation in the HEP simulation chain by NN surrogates has recently been proposed. Previous studies have
shown great agreement between data and surrogate output and large possible speed-ups. However, a rigorous
study of data amplification has only been conducted in Reference [1] for a low-dimensional toy example.

In Reference [P1], we provide numerical proof for amplification in a realistic setting. For 10 ⇑ 10 images of
calorimeter data, we examine the agreement between histograms of surrogate data and large amounts of true
data in terms of the JSD. We estimate the amplification by comparing the results to the JSD of histograms
of training data and the same validation data. This amplification estimate strongly depends on the number of
histogram bins. We conclude, that estimates of global properties of the data distribution, such as the mean and
standard deviation, cannot be improved with surrogate data. Detector simulation however can be understood
as a convolution with a complex smearing distribution. As such die functional shape itself and thus small bins
have to be considered. In this regime we find the surrogate output can resemble up to 50 times the size of the
training data. We further find that for small bins our NN model performs on the same level as a histogram or
KDE surrogate trained on 5 times the amount of data. The NN surrogate however scales much better to higher
dimensions.

To break the dependence on large amounts of data for the estimation of the mismodeling of the surrogate
distribution, we turn to Bayesian ML. We proof that well-calibrated epistemic uncertainties can indeed be
used to construct on estimate of the amplification [P5]. This amplification estimate agrees with the one from
comparing JSD values studied in Reference [P1]. It also depends on the number of bins in the same way.
However, we also find that well-calibrated uncertainty predictions are crucial for a valid estimate.

In two studies on di!erent applications, we observe that the widespread VI method for BNNs when applied
to CNFs is hard to calibrate [P4, P5]. Out-of-distribution data is not indicated, due to the imposed Gaussian
shape of the weight posterior distribution. And the quality of the approximation lacks behind the deterministic
implementation or MCMC approaches. In comparison, our own implementation of stochastic gradient MCMC,
AdamMCMC [P2], provides tunable uncertainty predictions and out-of-distribution indication through large un-
certainties and balanced predictions. It constitutes a drop-in replacement for common stochastic optimization
methods and can thus be used for arbitrary architectures employing a log-likelihood objective without being
reliant on fixed layer implementations. The reliable indication of out-of-distribution use makes AdamMCMC, and
sgMCMC in general, suitable for applications where error estimation is critical. Classifier Surrogates [P4], that
predict the output of detector events from more accessible simulation results, are one example for such an
application.

The method relies on an M-H correction, that for sake of limited computational resources can only be
executed with stochastic estimates of the log-likelihood. This introduces additional bias into the MCMC and
multiple algorithms have been proposed to control or mitigate this bias. In Reference [P3], we examine this
issue and find that a simple, additive correction to the stochastic loss objective can restore the scaling of the
sampled posterior. Including the correction, the sampled distribution approaches the data distribution in the
same way as for log-likelihoods calculated from the full data. The only di!erence is a small tempering of the
sampled distribution.

In HEP a discovery is claimed, when the experimental data di!ers from the null-hypothesis by more than
51. As such, the field is largely dependent on well-calibrated error estimates. If the estimated uncertainty is too
low, the variance of the evaluation might be interpreted as new physics and if it is too high, possible discoveries
are missed. In consideration of the significant value uncertainties hold in HEP and the widespread use of
Deep Learning within the field, the low frequency at which BNNs are applied is staggering. Modern stochastic
gradient MCMC methods, such as AdamMCMC or AMAGOLD [256], promise optimization performance on par
with commonly used stochastic optimization algorithms such as Adam at similar computational cost. They also
include the estimation of epistemic uncertainties at low additional cost. Moreover, they are independent of the

67



initialization and can be applied after NN optimization to further decrease their cost or analyze uncertainties
in hindsight. While they are currently widely unknown within the community, they have shown huge potential
for applications with generative methods and beyond.
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1 Introduction

Particle physics research at colliders is defined by extremely large datasets combined with precision
simulations, from first principles all the way to a detailed detector simulation. A reliable generation
and simulation chain is crucial to link measurements to fundamental properties of elementary
particles. This chain is factorized into two main parts, event generation based on a fundamental
Lagrangian and perturbative or non-perturbative quantum field theory, and detector simulations
describing the interactions of relativistic particles with the detector. For the upcoming runs of the
Large Hadron Collider (LHC), both parts need to gain significantly in speed, to keep up with the size
of experimental datasets. One way to achieve this speed gain is to apply modern machine learning
(ML) to all levels of the simulation chain. A key tool in this speed-improvement program is deep
generative neural networks (NNs) that learn to emulate slower physics-based simulations, replacing
the underlying physics by fast and accurate surrogate models.

A foundational question with NN surrogate models is, what are the advantages of using the
fast simulation compared with the original dataset used for training? Or specifically, how many
more events can we sensibly generate from these models before we are limited, for instance, by
the training statistics? Without any additional information, we would expect that the statistical
power of a generated dataset is at most the same as the dataset used for training. A larger generated
sample than the training dataset will then include successively less information per event than the
training data, and eventually the information in the generated events will saturate and be dominated
by limitations from the network architecture and training. With this pattern in mind [1], we can
define an amplification or GANplification factor [2, 3] in terms of an e�ective sample size for a
given surrogate model.

GANplification arises, intuitively, from the fact that neural networks work like classical
parametric fits [4, 5], and they are particularly e�ective when we want to interpolate in many
dimensions. This feature is behind the success of the NNPDF parton densities [6] as the first
mainstream ML-application in particle theory.

Formally, this fit-like e�ect is one source of inductive bias, where the underlying assumption is
that physics probability densities are smooth. Especially in particle physics, it should be possible to
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employ other inductive biases, such as symmetries or fundamental invariances in datasets [7–12].
Fast detector simulations benefit from the fact that we can factorize the problem into pieces. Surrogate
models are trained to produce a detector response for each outgoing particle. For example, if there is
an event with " outgoing particles, each one will be attached to a sampling from the surrogate model.
If the training set has # detector interactions, additional combinatorial factors appear for choosing
# out of " di�erent events that could be created. These factors can lead to another statistical
amplification. Finally, surrogate models with valid inductive biases require far fewer parameters to
specify than the original dataset, so there will also be a benefit in the required disk space.

The goal of this paper is to study the statistical amplification of deep generative models, focusing
on interpolation from the smoothness inductive bias, for detector simulations as a realistic and highly
relevant application. Fast surrogate models for detector simulations have been developed [13–25] and
improved [26–40] to the level that they are ready to be used in the upcoming LHC runs. In fact, the
ATLAS Collaboration has already integrated a Generative Adversarial Network (GAN) into its fast
calorimeter simulation and will use it to generate over a billion events [41, 42]. Initial studies exist
on quantifying uncertainties of generative models in event generation [43], but there has not yet been
a study of the fundamental benefits of deep generative surrogates applied to detector simulations.

In this paper, we study statistical amplification in the context of photon showers in an
electromagnetic calorimeter for a GAN-like generative model (Calomplification). However, the
method can be applied to gauge the merit of generative surrogates whenever the underlying distribution
can be accessed either through a large number of samples or analytically. We expect similar results
in all cases where the smoothness assumption on the underlying density distribution is valid.

The paper is organized as follows. In section 2, we start by introducing our data set and
the established generative Variational Autoencoder-GAN (VAE-GAN) architecture adapted to this
simulation [30]. Next, we describe our treatment of the comparison between generated and truth
samples and the relevant observables in section 3. We then present the amplification e�ects of the
generative networks in section 4. This comparison includes an estimate of the e�ective sample size
to the information encoded and a comparison to standard density estimators. In section 5, we briefly
summarize our promising findings.

2 Dataset and model

The International Large Detector (ILD) [44] is one of two detector concepts proposed for the
International Linear Collider (ILC). It is optimized towards the Particle Flow analysis concept for
optimal global event reconstruction [45, 46]. It combines high-precision tracking and vertexing
capabilities with very good hermiticity and highly-granular electromagnetic and hadronic calorimeters
(ECal/HCal). We choose one of its two proposed electromagnetic calorimeters, the Si-W ECal, for
our dataset. It consists of 30 active silicon layers in a tungsten absorber stack with 20 layers of
2.1 mm and 10 layers of 4.2 mm thickness. The silicon sensors have a cell size of 5 ⇥ 5 mm2.

ILD uses iLCSoft [47] for detector simulation, reconstruction, and analysis. The G����4 [48]
simulation uses a realistic detector model implemented in DD4hep [49]. Photons are shot into the
ECal barrel at a perpendicular incident angle. We project the cells with energy depositions (hits)
onto a rectangular grid of 30 ⇥ 30 ⇥ 30 cells. We choose photon showers, because their structure is
more regular and faster to learn than the structure of pion showers [32].
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Figure 1. Illustrated transformation of the original calorimeter images from left to right. All histograms
feature a logarithmic color coding, with an equal scaling for the 10 ⇥ 10 images. The final step of cutting
below half the MIP energy is applied for evaluation only.

To develop a high-precision generative model, we fully simulate 268k photon showers with
a fixed energy of 50 GeV. From the full set, 50k showers are randomly selected for training (1k)
and for the evaluation of the network performance (all 50k). Whenever we need to estimate the
generative model uncertainty, we train the network on five sets of 1k training samples. To include an
error estimate for the evaluation samples, we use five sets of 5k or 10k evaluation showers, chosen as
subsets of these 50k showers. The remaining 218k showers are used as a high-statistics estimate of
the truth distribution.

To simplify the training of our precision-generative model, we reduce the dimensionality of the
images to 10 ⇥ 10 pixels, summing along the beam axis and pooling 3 ⇥ 3 patches of the resulting
2D-images. The process is illustrated in figure 1. We will always refer to the combined calorimeter
cells as pixels of the calorimeter image. The reduction allows us to obtain a powerful model from a
small training set, such that the majority of the data can be used to estimate the truth distribution.
Finally, we apply a cut at 0.1 MeV, which corresponds to the most probable energy deposition of a
minimal ionizing particle (MIP). Cell energies below have a low signal to noise ratio. To aid the
network training, this cut is not present in the training data, but applied on the full set of generated
and reference data.

In comparison to studies done in context of proposed, high-granularity tracking calorimeters,
these simplifications seem extensive. However, for simulation of the current ATLAS detector the
AtlFast3 simulation tool [42] uses 300 individual GANs, each generating only one 4C0-slice of
the calorimeter. Each network generates a 2D-image in the radius-?⌘8-plane of the detector and
only 1000 events are generated to learn the highest energy samples. Albeit, the models are trained
including ten-thousands of lower energy samples. We see that in order to facilitate a comparison to a
large validation set, the task has not been simplified further than in current applications.

Our generative architecture is a VAE-GAN [50], closely related to the network developed for
precision simulations of photon showers [30] and illustrated in figure 2. It closely resembles a
standard VAE setup, but deviates in its use of a GAN-like discriminator as a substitute for the usual
element-wise reconstruction loss. The loss function is

LVAE-GAN = LGAN +⇡KL (@encoder(I |G) |?(I))|                          {z                          }
Lprior

with LGAN = EG⇠?data (G)
⇥

log ⇡ (G)
⇤
+EI⇠@encoder (I |G)

⇥
log(1 � ⇡ (⌧ (I)))

⇤
, (2.1)
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Encoder Decoder/
Generator

Discriminator Real/Fake

Latent
Input Output

xx

Figure 2. Illustration of the VAE-GAN architecture. The encoder and decoder form a VAE setup, while the
decoder can also be understood as a GAN generator. The discriminator acts as a binary classifier, as in a
classical GAN.

where ?(I) = N (0, �). We maximize LGAN during discriminator optimization. Every two
discriminator steps, we update generator and encoder by minimizing the full loss function, LVAE-GAN,
i.e. the generator dependent part of LGAN and the second term Lprior. The prior loss regularizes the
latent space and allows us to sample from ?(I) = N (0, �) during generation. For generator updates,
we recast the GAN loss to � log ⇡ (⌧ (I)) to ensure e�cient training for early epochs [51]. In every
update step we sample I only once per input G. Using a GAN-like discriminator is essential, as
the range of pixel values covers multiple orders of magnitude. For such images, the element-wise
reconstruction loss is dominated by the central, high-energy pixels.

The GAN-like part of our network is modeled after the LAGAN [13] illustrated in figure 3.
Unlike many standard applications of convolutional networks, the LAGAN features locally connected
layers. Other than convolutional layers, these have the flexibility to account for the missing translation
symmetry in calorimeter images. A few changes are made to the original LAGAN setup, including
modifying the dimensionality of our network layers to conform to our image and latent space sizes.
We also replace batch norm by spectral norm in the discriminator [52] to further stabilize the training.
The discriminator uses the di�erence between reconstructed images and the corresponding training
images as an additional input to the final, fully connected layer. For the training images themselves,
this di�erence vector is zero. We apply label smoothing to prevent vanishing gradients from an
overconfident classifier. Supplementing the information gained from the images themselves with
locally connected layers and mini-batch discrimination [53] ensures better consistency between
training and generated images.

The encoder network uses a convolutional input and two convolutional hidden layers, applying
Leaky Rectified Linear Unit activation (LeakyReLU) [54] after the first two and ReLU after the third
layer. The output of the encoder’s convolutional part is fed to two separate linear layers, defining the
mean and log var values of the Gaussian VAE latent space.

Our network is implemented in P�T���� 1.8.0 [55] and trained on Nvidia P100s using the
Adam optimizer [56] with a learning rate of 8 ⇥ 10�6 for all networks. Each training on 1k showers is
run for 24h, amounting to around 50000 epochs. For epochs after 40000, the distributions of the (i)
pixel energy sum (visible energy), (ii) highest pixel energy (peak energy), (iii) per-pixel energy, and,
(iv,v) the pixel position weighted by the pixel energy (center of gravity) in a given direction,

�
⇢vis, ⇢peak, ⇢pixel,CGG,H

 
, (2.2)
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I ⇠ N (0, 1)

1x1x30
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Linear Layer
Reshaping
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Batch Norm
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(a) Generator

1x10x10 32x10x10 8x8x8 8x6x6 8x6x6 8x3x3 1x1x1

Convolution
Leaky ReLU

3x
LC Layer

Leaky ReLU
Spectral Norm

Average
Pooling

Minibatch Discrimination
Concat Di�

Linear Layer

(b) Discriminator

Figure 3. Generator and discriminator setup including parameter space sizes in between operations. The
feed-forward for both networks proceeds left to right.

are estimated using histograms of 96000 generated images. The histograms feature 100 bins and
constant ranges. Finally, we select the epoch with the best agreement between the generated and
training distributions averaged over all five observables, in terms of the measure discussed in the next
section. This procedure is repeated for three independent trainings per set of training samples, and
we draw a VAE-GAN sample in equal proportions from the resulting three models. We are aware
that three independently trained models are not statistically su�cient to define a reliable standard
deviation, but we have found them to be very helpful and su�cient in estimating the stability of the
network training. The results in section 4 feature the standard deviation on the five di�erent training
sets. Whenever we show ⇢pixel we apply an additional minimum cut of 5 MeV, as will be discussed
in detail in the next section.

3 Sample comparison

To determine the performance of the trained model, we again use distributions of the same five
high-level observables as for the training. We compare showers generated by G����4 and our
VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of distributions for
1k shower images used for a single VAE-GAN training and 1000k showers from the corresponding
generative network. They are compared to the validation set of 218k G����4 showers. In addition
to the continuous distributions we also show the number of active pixels per image. First, we see
that statistical fluctuations of the training set propagate into under- and over-densities of the learned
distributions. One prominent di�erence is the number of active pixels, which can be attributed to the
under-estimation of the number of low energy hits below 5 MeV. The remaining learned distributions
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Figure 4. Di�erential distributions for the observables given in eq. (2.2) from G����4 and from the
VAE-GAN-generated images. Errors of the validation set (grey) and the training set (orange) correspond to
the Poisson-error per bin, while the uncertainty on the VAE-GAN line (blue) is illustrated by the standard
deviation of three independent trainings on the 1k training data. All histograms are normalized, such that all
bins add up to one. The insets show the ratio to the high-statistics estimate of the truth distribution.

are smoother and show fewer fluctuations than the training data. For the visible per-pixel energy, the
VAE-GAN interpolates into the sparsely populated interval between around 2 and 120 MeV even
though the training set does not include a single pixel in this range. Previous work has shown [30]
how to correct the low-energy behavior through an additional, consecutively trained post-processing
network, using an maximum mean discrepancy loss [18, 57] on the pixel energy spectrum. Here
we skip this post-processing and instead focus on the statistical properties of the generated data for
visible pixel energies above 5 MeV.

Quantiles. We now turn to quantifying the e�cacy of the VAE-GAN, given the strong performance
shown in figure 4. Like in section 2, we could use standard histograms with bins of equal size.
However, in this case the occupation numbers of the bins strongly depend on the assumed support
of the distributions and on the binning. To avoid zero bins and sparse distributions we have to
define the ranges and binnings by hand, making this strategy inconsistent in evaluation. Instead, we
now split the support of the distributions into bins of equal probability weight, so-called quantiles,
forming the set Q. We generate the quantiles for a given distribution by iteratively dividing the set of
validation showers into equal-sized subsets and keeping the median as the edge of the quantile. For
multi-dimensional distributions, the splitting dimensions alternate. Figure 5 illustrates this algorithm.
When comparing generated with reference samples, we want to increase the number of quantiles as
far as possible, to cover the entire respective distribution at su�cient resolution.

In this iterative quantile scheme, zero bins will still occur once the number of quantiles exceeds
the number of generated showers. To ensure the statistical fluctuations per bin are small and do not
cause empty quantiles, we discard results for more than =/10 bins, where = is the number of showers
in the evaluation set. This leads to roughly 10 events per bin, because the evaluated data is either
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Figure 5. Quantiles developing by splitting of the validation set into subsets of equal size regarding their
energy sum & peak energy.

generated from the same distribution as the validation data or is trained to resemble it well. As the
event counts follow a Poisson distribution, the probability for a zero bin to occur can be calculated
for the average occupation and gives around 4.5 · 10�5.

Jensen-Shannon divergence. The evaluation chain for the quality of the generated samples starts
by constructing quantiles from the validation set. This defines our approximate truth density ?8
per quantile 8. Next, we extract the density of showers 68 per quantile, either for smaller sets of
G����4 showers or 1000k VAE-GAN generated showers. Due to values appearing in our validation
set multiple times, quantiles are not uniquely defined, so the ?8 values may di�er slightly from their
constructed value 1/#Q.

To measure the similarity of the two distributions, we use the Jensen-Shannon divergence

⇡JS(6, ?) =
1
2
⇡KL

 
6

�����
6 + ?

2

!
+ 1

2
⇡KL

 
?

�����
6 + ?

2

!
. (3.1)

The ⇡JS can be understood as a symmetrized version of the Kullback-Leibler (KL)-divergence

⇡KL(6 | ?) =
π

6(G) log
6(G)
?(G) dG. (3.2)

For the VAE-GAN results, where 6 = 6(G) is the generated distribution, the ⇡JS is the exact entity
optimized by the min-max training on the GAN loss defined in eq. (2.1) [30, 51]. For GAN and
Monte Carlo methods, we usually do not have an explicit form of the generated distributions, but
only sets G and P generated from the estimated distribution 6 or the true distribution ?. This is why
we estimate the ⇡JS for the continuous distributions from the quantile values

⇡JS(6, ?) =
1
2

’
&8 2Q

 
68 log

68
1
2 (68 + ?8)

+ ?8 log
?8

1
2 (68 + ?8)

!
. (3.3)

Just like the ⇡JS, this estimate lies between zero and log 2. It turns into the continuous ⇡JS between
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the histogram estimators

6(G) =
’
&8 2Q

68
vol(&8)

1&8 (G) =
’
&8 2Q

#{G 0 2 &8 | G 0 2 G}
#G · vol(&8)

1&8 (G)

and ?(G) =
’
&8 2Q

?8
vol(&8)

1&8 (G) ,
(3.4)

with vol the n-dimensional volume, 1&8 the indicator function of the i-th quantile and G all showers
in either an evaluation set of G����4 samples or in the generated set. As for all histogram estimators,
independent of the choice of bin edges, the overall number of bins, the cardinality of the fitted set,
as well as the number of showers per bin have to go to infinity for the estimator to converge to the
underlying distribution. As ⇡JS goes to zero, the two distributions 6 and ? are identical.

To determine the quality of our generative model relative to truth or validation distributions,
we look at the dependence of the Jensen-Shannon divergence ⇡JS on the number of quantiles =quant
we can reliably construct. This will allow us to gauge where the density estimation underlying
the VAE-GAN beats the statistically limited training data. As discussed earlier, we estimate the
uncertainty on ⇡JS for the 5k and 10k evaluation sets of G����4 data from five independent sets each.

4 GANplification performance

Using our illustrated methodology we are now in a position to extend the toy study of ref. [1] to a
relevant physics application, with the corresponding increased complexity and physics content.

Overcoming training statistics. In figure 6 we show how ⇡JS depends on the number of quantiles
for the di�erent observables given in eq. (2.2). For simple, uni-modal distributions like the energy
sum, the peak energy and the centers of gravity, 1000k showers generated from the VAE-GAN achieve
similar values as the 1k training data for very low numbers of bins. This means the generated data
closely resembles the mean, standard deviation and low-level moments of the training data. For the
more complex distribution of the visible per-pixel energy, the ⇡JS only resolves part of the high-density
regions for a small number of quantiles. Increasing the numbers of quantiles, the interpolation of the
generative model in the sparsely populated areas of the support starts to becomes apparent, and the ⇡JS-
values for the G����4 data increases over the VAE-GAN level. As there are on average about 13 active
pixels above 5 MeV, as seen in figure 4, the statistics for the per-pixel energy distribution benefits from
these 13 pixel measurements per shower. For large numbers of quantiles, the ⇡JS values of the VAE-
GAN are consistently below the corresponding values for the training sample and for all observables.
This amplification is a result of the interpolation via the generative model’s smoothing properties.

To quantify the amplification, we can compare the VAE-GAN distributions to larger G����4
samples. Again, for small numbers of quantiles the VAE-GAN does not reach the truth ⇡JS-values
of larger data samples. This confirms that the neural network does not add global information to the
training data and will not improve, for instance, the estimated mean of a Gaussian distribution. On
the other hand, what we are really interested in are the features over the full distributions. In figure 6
we show how the network trained on 1k showers and used to generate 1000k showers plateaus in ⇡JS,
as a function of the resolution, and how this plateau value compares to di�erent G����4 sample sizes.
For a large number of quantiles and probing detailed features of the distributions, our VAE-GAN
surrogate description corresponds to at least 50k G����4 showers when we look at ⇢vis, ⇢peak, or
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⇢pixel. This gives us GANplification factors as large as 50 for the relevant high-resolution features.
For the reconstructed center of gravity this factor becomes a little smaller, but remains above ten.

Similar observations can be made for joint distributions, or correlations, of the di�erent
observables. Figure 7 shows how the VAE-GAN encodes the correlations between observables
with a consistently smaller error than the training data. The per-pixel energy distribution cannot
be included in the correlations, as it features a varying number of pixel energy values per shower,
whereas all other observables give a single value per shower. An unexpected upwards slope appears
when examining joint distributions containing the energy sum and the peak energy of the generated
images. This can be traced back to slight, small-scale fluctuations in the correlation between them in
the generated data. Still, in all of the correlations we find a GANplification factor larger than 50 for
the relevant detailed features, larger than for the one-dimensional distributions, as expected from the
higher dimensionality and therefore reduced per-quantile statistics.

Density estimation. After we have seen that it is beneficial to generate datasets based on a
learned density estimation, the question is whether other ways to estimate densities can give similar
results. While there exists literature on convergence rates of generative methods [58, 59], our physics
application is defined by very specific limitations, di�erent from those formal arguments. We therefore
compare the performance of our VAE-GAN to two classical density estimation techniques. For both of
them we analyze the same one-dimensional and multi-dimensional kinematic distributions as before.
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Figure 6. Dependence of ⇡JS on the number of quantiles =quant for di�erent amounts of G����4 data (orange)
and VAE-GAN data (blue) for the observables given in eq. (2.2). Solid lines indicate meaningful, non-sparse
quantile sets. The 1k G����4 samples were also used to train the VAE-GAN. Errors are calculated as the
standard deviation from five datasets. For 50k we omit the negligible errors.
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Figure 7. Dependence of ⇡JS on the number of quantiles =quant for di�erent amounts of G����4 data (orange)
and VAE-GAN data (blue), now for correlations between the observables of eq. (2.2), corresponding to the
1D results in figure 6.

To each of our five training sets, we fit a kernel density estimator (KDE) and a histogram estimator,
by minimizing the mean negative log-likelihood of cross-validation subsets of the training set on a
grid of the estimator parameters. The results for the energy sum are shown in figure 8. For the KDE
we use the scikit-learn [60] K�����D������ class together with the built-in G���S�����CV
tool using 5-fold cross-validation to optimize the bandwidth of the Gaussian kernel. The values of
the bandwidth for the individual optimizations are given in table 1. The parameters of the histogram
estimator, i.e. the number of bins along the individual dimensions, are optimized using our own
implementation of the same techniques. To ensure stable convergence, we form 500 cross-validation
sets from the training data. The results of this optimization can again be found in table 1.

In figure 8 we see that the KDE tends to over-fit and that the histogram estimator is limited
by its discrete functional form. We can analyze their performance more quantitatively using the
⇡JS shown in figure 9. Due to the logarithmic nature and complex functional form of the per-pixel
energy distribution, the histogram estimator and the KDE do not converge for the low number of
training showers we use, so we omit this observable. First, trained on 1k showers, the histogram
estimator can only use very few bins to balance over-fitting against the approximation error caused
by its coarse structure and is thus outperformed by the KDE. For a larger training set and the
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Figure 8. Example of an histogram estimator (red) and a kernel density estimator (green). The orange
histogram shows the training data, including Poisson errors, that both estimators where fitted to using
cross-validation.
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Figure 9. Dependence of ⇡JS on the number of quantiles =quant for 1000k observable values sampled
from histogram estimators (red) and kernel density estimators (green) and for 1000k showers sampled from
VAE-GANs (blue). Errors are calculated as the standard deviation of five fits to di�erent datasets. The size of
the training sets is given to the right of the corresponding lines.
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Figure 10. Dependence of ⇡JS on the number of quantiles =quant for 1000k observable values sampled from
di�erent density estimators for multi-dimensional combinations of the observables given in eq. (2.2), in
analogy to the 1D results in figure 9.

correspondingly larger number of bins, the approximation errors drop and both estimation methods
perform similarly. However, compared to the VAE-GAN, both techniques lack descriptive power for
small scales. Only for two to four bins they perform similarly to the VAE-GAN. Next, comparing
the generative network to density estimators fitted to 5k showers, we can again observe the benefits
of higher statistics for estimating low moments of the distributions.

For the 2-dimensional correlations shown in figure 10 we find similar limitations of the classical
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Table 1. KDE bandwidths and numbers of bins in the according dimensions for the histogram estimators
presented in figures 9 and 10. Estimators are fitted for five independent training sets to extract the mean and
standard deviation.

KDE bandwidth 1k KDE bandwidth 5k # histogram bins 1k # histogram bins 5k
⇢vis 0.05 ± 0.01 0.03 ± 0.01 39 ± 10 58 ± 7
⇢peak 0.10 ± 0.03 0.03 ± 0.02 27 ± 4 50 ± 5
CGG 0.10 ± 0.02 0.02 ± 0.01 32 ± 12 49 ± 13
CGH 0.10 ± 0.02 0.03 ± 0.01 25 ± 4 43 ± 7
⇢vis vs ⇢peak 0.09 ± 0.01 0.03 ± 0.01 30 ± 3 ⇥ 26 ± 7 40 ± 2 ⇥ 46 ± 5
CGG vs CGH 0.18 ± 0.02 0.07 ± 0.01 21 ± 1 ⇥ 20 ± 1 21 ± 1 ⇥ 22 ± 2
complete 4D 0.24 ± 0.01 0.12 ± 0.01 20 ⇥ 19 ⇥ 5 ⇥ 5 ± 1 21 ⇥ 21 ⇥ 7 ⇥ 8 ± 1

methods. Only the 4-dimensional density estimation behaves di�erently in that the histogram
estimator is generally outperformed by the KDE. We can understand these patterns from the
histogram parameters in table 1. As the histogram estimator introduces bins in every direction,
the number of showers per bin drops inversely proportional to the volume of the space. To avoid
over-fitting, only few bins per dimension can then be used, leading to a large approximation error.
The KDE and the VAE-GAN scale better with the number of dimensions, and as before the KDE
only matches the VAE-GAN performance for a very small number of quantiles.

In addition to the neural network outperforming both density estimators, we remind ourselves that
the VAE-GAN actually performs the more general task of estimating the distribution of calorimeter
images or low-level observables, whereas the classical methods estimate the distributions of the
high-level observables.

5 Conclusions

In this paper we have shown that a realistic generative ML-model can indeed be used to generate a
large number of showers, beyond a limited training statistics. Specifically, we used a VAE-GAN to
generate photon showers for the electromagnetic calorimeter of the planned ILD detector design at a
future linear collider. Our model is a simplification of the established precision-simulation network
developed for this task [30]. This model is trained on a small number of showers from a G����4
simulation, where a high-statistics sample of G����4 showers serves as a truth estimate. Relative
to this truth sample, we estimate the information content of finite-size samples using quantiles for
standard kinematic observables and their correlations. A variable number of quantiles allows us to
balance resolution with statistics.

Our study confirms earlier results based on a simple Gaussian example [1], in that for a properly
trained network a set of generated showers comparable in size to the training data provides a
physics-wise nearly equivalent but statistically independent copy of the training data. More generated
showers will, individually, contain less information than an actual shower, but add information as a
sample. This amount of information can be linked to an e�ective sample size of actual data. For
very large numbers of generated showers, the information in the generated sample reaches a plateau,
reflecting limitations of the network architecture and training.
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For our problem and network at hand, we find that the e�ective sample sizes give an enhancement

or GANplification factor of 10 to 50, for a large number of quantiles and corresponding to high-
resolution kinematic features. For a training sample of 1k showers we generate up to 1000k showers
from the network and find a comparable performance of up to 50k G����4 showers for the kinematic
distributions and their correlations. We also interpret the VAE-GAN as a density estimator and
find that it learns the truth density from the showers better than standard density estimators on the
high-level kinematic variables. This proves that the generative network can even learn and sample
from implicitly defined distributions and benefit from superior interpolation or fit properties. These
properties motivate deep generative detector simulations for statistical amplification in addition to
computational acceleration.

Acknowledgments

We would like to thank Suada Mulgeci for the valuable discussions in the earlier stages of this project.
The research of AB and TP is supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under grant 396021762 — TRR 257 Particle Physics Phenomenology after
the Higgs Discovery. This work was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 — 390900948
(the Heidelberg STRUCTURES Excellence Cluster). BN is supported by the U.S. Department of
Energy, O�ce of Science under contract DE-AC02- 05CH11231. SB is supported by the Helmholtz
Information and Data Science Schools via DASHH (Data Science in Hamburg — HELMHOLTZ
Graduate School for the Structure of Matter) with the grant HIDSS-0002. DH and SD acknowledge
support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306. EE is funded through
the Helmholtz Innovation Pool project ACCLAIM that provided a stimulating scientific environment
for parts of the research done here. This research was supported in part through the Maxwell
computational resources operated at Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

References

[1] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying event samples,
SciPost Phys. 10 (2021) 139 [arXiv:2��8.�6545].

[2] Y. Hao, A. Orlitsky, A.T. Suresh and Y. Wu, Data amplification: A unified and competitive approach to
property estimation, arXiv:19�4.���7�.

[3] B. Axelrod, S. Garg, Y. Han, V. Sharan and G. Valiant, On the Statistical Complexity of Sample
Amplification, arXiv:22�1.�4315.

[4] M. Bellagente, M. Haußmann, M. Luchmann and T. Plehn, Understanding Event-Generation Networks
via Uncertainties, SciPost Phys. 13 (2022) 003 [arXiv:21�4.�4543].

[5] I. Chahrour and J.D. Wells, Comparing machine learning and interpolation methods for loop-level
calculations, SciPost Phys. 12 (2022) 187 [arXiv:2111.14788].

[6] NNPDF collaboration, Unbiased determination of the proton structure function F(2)**p with faithful
uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/�5�1�67].

[7] S. Krippendorf and M. Syvaeri, Detecting Symmetries with Neural Networks, arXiv:2��3.13679.

– 13 –



2022 JINST 17 P09028
[8] G. Barenboim, J. Hirn and V. Sanz, Symmetry meets AI, SciPost Phys. 11 (2021) 014

[arXiv:21�3.�6115].

[9] B.M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vogel, Symmetries, safety, and
self-supervision, SciPost Phys. 12 (2022) 188 [arXiv:21�8.�4253].

[10] C.G. Lester, Chiral Measurements, arXiv:2111.��623.

[11] R. Tombs and C.G. Lester, A method to challenge symmetries in data with self-supervised learning,
2022 JINST 17 P08024 [arXiv:2111.�5442].

[12] K. Desai, B. Nachman and J. Thaler, Symmetry discovery with deep learning, Phys. Rev. D 105 (2022)
096031 [arXiv:2112.�5722].

[13] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware
Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1 (2017) 4
[arXiv:17�1.�5927].

[14] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with Generative Adversarial
Networks: An Application to 3⇡ Particle Showers in Multilayer Calorimeters, Phys. Rev. Lett. 120
(2018) 042003 [arXiv:17�5.�2355].

[15] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3⇡ high energy particle showers in
multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D 97 (2018)
014021 [arXiv:1712.1�321].

[16] S. Vallecorsa, F. Carminati and G. Khattak, 3⇡ convolutional GAN for fast simulation, EPJ Web Conf.
214 (2019) 02010.

[17] S. Carrazza and F.A. Dreyer, Lund jet images from generative and cycle-consistent adversarial networks,
Eur. Phys. J. C 79 (2019) 979 [arXiv:19�9.�1359].

[18] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075
[arXiv:19�7.�3764].

[19] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DÚetGAN: A
Generative-Adversarial Network Approach for the Simulation of QCD DÚet Events at the LHC, JHEP
08 (2019) 110 [arXiv:19�3.�2433].

[20] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin and E. Zakharov, Generative Models
for Fast Calorimeter Simulation: the LHCb case, EPJ Web Conf. 214 (2019) 02034
[arXiv:1812.�1319].

[21] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle Detectors Using Generative
Adversarial Networks, Comput. Softw. Big Sci. 2 (2018) 8 [arXiv:18�5.��85�].

[22] K. Deja, T. Trzcinski and ˇ. Graczykowski, Generative models for fast cluster simulations in the TPC
for the ALICE experiment, EPJ Web Conf. 214 (2019) 06003.

[23] L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in GAN-Accelerated
Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085 (2018) 042017
[arXiv:1711.�8813].

[24] J.W. Monk, Deep Learning as a Parton Shower, JHEP 12 (2018) 021 [arXiv:18�7.�3685].

[25] J.N. Howard, S. Mandt, D. Whiteson and Y. Yang, Learning to simulate high energy particle collisions
from unlabeled data, Sci. Rep. 12 (2022) 7567 [arXiv:21�1.�8944].

– 14 –



2022 JINST 17 P09028
[26] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refining particle detector

simulations using the Wasserstein distance in adversarial networks, Comput. Softw. Big Sci. 2 (2018) 4
[arXiv:18�2.�3325].

[27] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter showers
using a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3 (2019) 4
[arXiv:18�7.�1954].

[28] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Unweighting, SciPost Phys. 10
(2021) 089 [arXiv:2�12.�7873].

[29] D. Belayneh et al., Calorimetry with deep learning: particle simulation and reconstruction for collider
physics, Eur. Phys. J. C 80 (2020) 688 [arXiv:1912.�6794].

[30] E. Buhmann et al., Getting High: High Fidelity Simulation of High Granularity Calorimeters with High
Speed, Comput. Softw. Big Sci. 5 (2021) 13 [arXiv:2��5.�5334].

[31] E. Buhmann et al., Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network,
EPJ Web Conf. 251 (2021) 03003 [arXiv:21�2.12491].

[32] E. Buhmann et al., Hadrons, better, faster, stronger, Mach. Learn. Sci. Tech. 3 (2022) 025014
[arXiv:2112.�97�9].

[33] C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
Normalizing Flows, arXiv:21�6.�5285.

[34] C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers
with Normalizing Flows, arXiv:211�.11377.

[35] G.R. Khattak, S. Vallecorsa, F. Carminati and G.M. Khan, Fast simulation of a high granularity
calorimeter by generative adversarial networks, Eur. Phys. J. C 82 (2022) 386 [arXiv:21�9.�7388].

[36] R. Kansal et al., Particle Cloud Generation with Message Passing Generative Adversarial Networks,
arXiv:21�6.11535.

[37] A. Hariri, D. Dyachkova and S. Gleyzer, Graph Generative Models for Fast Detector Simulations in
High Energy Physics, arXiv:21�4.�1725.

[38] F. Rehm et al., Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative
Adversarial Network Use Case, arXiv:21�3.1�142.

[39] F. Rehm, S. Vallecorsa, K. Borras and D. Krücker, Validation of Deep Convolutional Generative
Adversarial Networks for High Energy Physics Calorimeter Simulations, arXiv:21�3.13698.

[40] F. Rehm, S. Vallecorsa, K. Borras and D. Krücker, Physics Validation of Novel Convolutional 2⇡
Architectures for Speeding Up High Energy Physics Simulations, EPJ Web Conf. 251 (2021) 03042
[arXiv:21�5.�896�].

[41] ATLAS collaboration, Deep generative models for fast shower simulation in ATLAS,
ATL-SOFT-PUB-2018-001 (2018).

[42] ATLAS collaboration, AtlFast3: the next generation of fast simulation in ATLAS, Comput. Softw. Big
Sci. 6 (2022) 7 [arXiv:21�9.�2551].

[43] A. Butter et al., Generative Networks for Precision Enthusiasts, arXiv:211�.13632.

[44] ILD C������ G���� collaboration, International Large Detector: Interim Design Report,
arXiv:2��3.�1116.

– 15 –



2022 JINST 17 P09028
[45] M.A. Thomson, Particle Flow Calorimetry and the PandoraPFA Algorithm, Nucl. Instrum. Meth. A 611

(2009) 25 [arXiv:�9�7.3577].

[46] J.S. Marshall and M.A. Thomson, The Pandora Software Development Kit for Pattern Recognition, Eur.
Phys. J. C 75 (2015) 439 [arXiv:15�6.�5348].

[47] iLCSoft Project Page, https://github.com/iLCSoft (2016).

[48] J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. A 835 (2016) 186.

[49] M. Frank, F. Gaede, C. Grefe and P. Mato, DD4hep: A Detector Description Toolkit for High Energy
Physics Experiments, J. Phys. Conf. Ser. 513 (2014) 022010.

[50] A.B.L. Larsen, S.K. Sønderby, H. Larochelle and O. Winther, Autoencoding beyond pixels using a
learned similarity metric, in Proceedings of the 33rd International Conference on International
Conference on Machine Learning — Volume 48, pp. 1558-1566, PMLR (2016) [PDF].

[51] I.J. Goodfellow et al., Generative Adversarial Networks, arXiv:14�6.2661.

[52] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral Normalization for Generative Adversarial
Networks, arXiv:18�2.�5957.

[53] T. Salimans et al., Improved techniques for training gans, in Adv. Neural Inf. Process. Syst., D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon and R. Garnett eds., vol. 29, Curran Associates, Inc. (2016) [PDF].

[54] A.L. Maas, A.Y. Hannun and A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models,
in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, Atlanta, Georgia,
U.S.A. (2013).

[55] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library, Adv. Neural
Inf. Process. Syst. 32 (2019) 8024.

[56] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.698�.

[57] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf and A. Smola, A kernel method for the
two-sample-problem, in Adv. Neural Inf. Process. Syst., B. Schölkopf, J. Platt and T. Ho�man eds.,
vol. 19, MIT Press (2007) [PDF].

[58] G. Biau, B. Cadre, M. Sangnier and U. Tanielian, Some theoretical properties of gans, Annals Statist. 48
(2018) 1539 [arXiv:18�3.�7819].

[59] D. Belomestny, E. Moulines, A. Naumov, N. Puchkin and S. Samsonov, Rates of convergence for
density estimation with GANs, arXiv:21�2.��199.

[60] F. Pedregosa et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825.

– 16 –





AdamMCMC: COMBINING METROPOLIS ADJUSTED LANGEVIN
WITH MOMENTUM-BASED OPTIMIZATION

A PREPRINT

Sebastian Bieringer*1
, Gregor Kasieczka

1
, Maximilian F. Steffen

2
, and Mathias Trabs

2
1Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany

2Karlsruhe Institute of Technology, Institut für Stochastik, Englerstr. 2, 76131 Karlsruhe, Germany

December 6, 2024

ABSTRACT

Uncertainty estimation is a key issue when considering the application of deep neural network meth-
ods in science and engineering. In this work, we introduce a novel algorithm that quantifies epistemic
uncertainty via Monte Carlo sampling from a tempered posterior distribution. It combines the well
established Metropolis Adjusted Langevin Algorithm (MALA) with momentum-based optimization
using Adam and leverages a prolate proposal distribution, to efficiently draw from the posterior. We
prove that the constructed chain admits the Gibbs posterior as invariant distribution and approxi-
mates this posterior in total variation distance. Furthermore, we demonstrate the efficiency of the
resulting algorithm and the merit of the proposed changes on a state-of-the-art classifier from high-
energy particle physics.

1 Introduction

Deep learning methods are widely applied in industry, engineering, science and medicine. Especially in the latter
fields, widespread application of such methods is held back by non-existent, overconfident or time-intensive error
estimates. This is especially problematic when neural network outputs are used in clinical decision making, control
systems of autonomous vehicles, or scientific discovery, for example in particle physics (Karagiorgi et al., 2022).

In these cases, the uncertainty in the data generation or taking, the aleatoric uncertainty, can by accessed by learning
a data likelihood p(D|ω) in the same framework. This is often done by parameterizing the likelihood as a Gaussian
(Gal, 2016) or with a normalizing flow architecture (Radev et al., 2020).

Bayesian neural networks (BNNs) can be used to estimate an uncertainty on the neural network fit stemming from
the limited training statistics, that is the epistemic uncertainty. Such methods understand the network parameters ω
as random variables from a posterior distribution p(ω|D) conditioned on the training data D. By drawing from this
distribution we can produce an uncertainty prediction from an ensemble of different parameter samples.

BNN algorithms based on parametric estimates of the posterior weights, be it Gaussian-mean field (Blundell et al.,
2015) or Laplace approximation based (Daxberger et al., 2021; Ritter et al., 2018), have to balance the quality of the
fit with the complexity of the algorithm. To accommodate efficient evaluation and scaling with the network size, they
rely on (block-) diagonal approximations of the covariance matrix, leading to bad fit performance and underconfident
uncertainties.

Markov Chain Monte Carlo (MCMC) algorithms on the other hand can access the full weight posterior, but struggle
with slow convergence and high computational costs. To reduce computation, Welling & Teh (2011) proposed a first
chain based on stochastic gradients. The authors achieve unbiased sampling in the limit of diminishing step sizes,
thus reducing the phase space exploration of the algorithm to a random walk. Chen et al. (2014) therefore adapt
Hamiltonian Monte Carlo for stochastic gradients (sgHMC) to achieve more efficient exploration through use of an
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auxiliary momentum variable. Thermostats Ding et al. (2014); Heek & Kalchbrenner (2019) use yet another auxiliary
variable, inspired by thermodynamics, that is quadratic in the parameters to further improve the sampling.

The random walk like diffusion process underlying these stochastic gradient based chains can be tuned to the geometry
of the posterior with a diffusion matrix (Patterson & Teh, 2013; Xifara et al., 2014). Ma et al. (2015) note that arbitrary,
positive definite diffusion matrices can be used whenever the commonly used Fisher metric is hard to compute. This
includes the preconditioning of RMSprop (Li et al., 2016; Chen et al., 2016).

Rather than using the general framework of Ma et al. (2015) to construct a chain that admits the posterior as invariant
distribution, we bridge the gap to stochastic optimization by

• proposing a novel algorithm that employs the MALA algorithm (Roberts & Tweedie, 1996a) around Adam
updates (Kingma & Ba, 2015), including first and second order momentum. In combination with a pro-
late deformation of the diffusion we ensure high acceptance rates. We refer to the resulting algorithm as
AdamMCMC.

• For a state-of-the-art particle physics application, we show the changes lead to a more well-behaved algo-
rithm, that approaches the performance of pure Adam for narrow proposal distributions and allows adjusting
the calibration as a tradeoff between fit uncertainty and performance.

AdamMCMC uses a Metropolis-Hastings (M-H) step Robert & Casella (2004) that ensures convergence for fixed size
learning rates. It has desirable theoretical properties in terms of contraction rates as well as credible sets (Franssen
& Szabó, 2022; Bieringer et al., 2023). Our study can thus also be understood as a study of the difference between
stochastic optimization and Bayesian inference in terms of M-H acceptance rates.

In Section 2, we introduce the established MALA algorithm. The changes to the proposal distribution are presented
in Section 3, with the accompanying proofs in Appendix A. We employ the proposed algorithm on an application from
particle physics in Section 4, where we use a stochastic approximation of the M-H step. We discuss the implications
of this choice, as well as proposals from related literature, in Section 4.4 before concluding in Section 5.

2 Metropolis Adjusted Langevin Algorithm

For a labeled or unlabeled n-point dataset Dn, the P -dimensional vector of network weights ω, a generic loss function
L(ω) and its empirical counterpart Ln(ω) = L(ω; Dn), the Gibbs posterior is given by the density

pω(ω|Dn) → exp(↑εLn(ω)) p(ω), (1)

where ε > 0 is the inverse temperature parameter and p(ω) is a prior density on the network weights. The Gibbs
posterior is a central object in the PAC-Bayes theory (Alquier, 2021) and it matches the classical Bayesian posterior
distribution by Bayes theorem if εLn(ω) is the negative log-likelihood of the data-generating distribution, that is
p(Dn|ω) = exp(↑εLn(ω)). Throughout, we choose a uniform prior on some bounded set ! ↓ RP .

Starting at some initial choice ω(0), for every update step k + 1 a new parameter proposal ϑ (k) is sampled from a
Gaussian proposal density centered in a gradient step

ϑ (k) ↔ q(ϑ |ω(k)) =
1

(2ϖϱ2)P/2
exp

(
↑ 1

2ϱ2

∣∣∣ϑ ↑ ω(k) + ς↗εLn(ω(k))
∣∣∣
2
)

. (2)

The new proposal is accepted with the acceptance probability (ratio)

φ(ϑ (k)|ω(k)) =

(
exp

(
↑εLn(ϑ (k)) + εLn(ω(k))

)
· 1!(ϑ (k))

q(ω(k)|ϑ (k))

q(ϑ (k)|ω(k))

)
↘ 1, (3)

where a↘ b = min{a, b}. Here, q(ω(k)|ϑ (k)) is the probability of the current parameters given the parameter proposal,
that is the backwards direction. When the gradient steps are larger than ϱ, this probability can be very small and lead
to vanishing acceptance probabilities.

If the proposal is not accepted, the previous parameter values are kept:

ω(k+1) =

{
ϑ (k) with probability φ(ϑ (k)|ω(k))
ω(k) with probability 1 ↑ φ(ϑ (k)|ω(k)).

The calculation of the acceptance probability requires the evaluation of the loss function Ln and its gradient ↗εLn

for both the current weights ω(k) and the proposed update ϑ (k).

2



The choice of proposal density ensures that for a proposal ϑ (k) close to the previous parameters ω(k), the transition
probability q(ϑ (k)|ω(k)) is bounded from below. Under these assumptions, Roberts & Tweedie (1996b, Theorem 2.2)
prove that (ω(k))k→N0 is a Markov chain with invariant distribution pω(·|Dn). The resulting neural network estimators
are denoted by f̂ε(k) .

After a burn-in time b ≃ N, the Markov chain stabilizes at its invariant distribution and generates samples from the
Gibbs posterior (1) in every iteration. To ensure approximate independence of the samples, we estimate the posterior
mean prediction over samples with a gap of gap length c ≃ N

f̄ω =
1

N

N∑

i=1

f̂ε(b+ic) .

3 Improved Sampling Efficiency

Proposals unlikely under the Gibbs posterior will come with low acceptance probabilities. We thus need to make
sure the proposals track the loss landscape closely as not to slow down the algorithm.For fast convergence, it is thus
desirable to run MALA at low ϱ. This, on the contrary, reduces the probability of the backwards direction. To
solve this dilemma, we adapt the diffusion process and introduce a prolate proposal distribution. In combination with
momentum-smoothed trajectories (see Section 3.2), we recover high probabilities of the backwards direction even at
large ϱ.

3.1 Directional Noise

Similarly to Ludkin & Sherlock (2023), we replace the isotropic noise in (2) with a modified Langevin proposal with
a directional noise in gradient direction ↗L(k)

n := ↗εLn(ω(k)). The new proposal distribution

ϑ (k) ↔ q(ϑ |ω(k)) =
1√

(2ϖ)P det(!k)
exp

(
↑1

2

(
ϑ ↑ ω̃(k+1)

)↑
!↓1

k

(
ϑ ↑ ω̃(k+1)

))
, (4)

is centered in
ω̃(k+1) = ω(k) + ς↗εLn(ω(k),

with covariance
!k := !

(
↗L(k)

n

)
:= ϱ2IP + ϱ2

↔↗L(k)
n

(
↗L(k)

n

)↑
.

Here, ϱ, ϱ↔ > 0 are noise levels and IP the P -dimensional unit matrix. We omit the argument and write !k whenever
the direction of the update is clear from context. In particular, the variance of ϑ (k) in gradient direction is

Var
(
⇐ϑ (k), ↗L(k)

n ⇒
)

= ϱ2|↗L(k)
n |2 + ϱ2

↔|↗L(k)
n |4,

while the variance in any direction v ≃ RP orthogonal to ↗L(k)
n is Var(⇐ϑ (k), v⇒) = ϱ2|v|2. As a consequence,

the underlying random walk converges more reliably towards a minimum of the loss while still being sufficiently
randomized to explore the whole parameter space.

To evaluate the acceptance probability under the new proposal distribution effectively, we need to circumvent matrix
multiplications in the calculation of both the determinant and inverse of the covariance !k. Thanks to our particular
choice of the anisotropic covariance structure, the Sylvester determinant identity yields

det(!k) = ϱ2P
(
1 +

ϱ2
↔

ϱ2

∣∣∣↗L(k)
n

∣∣∣
2 )

(5)

and due to the rank one perturbation of the unit matrix the inverse covariance matrix can be calculated as

!↓1
k = ϱ↓2IP ↑ ϱ↓4ϱ2

↔

1 + ϱ↓2ϱ2
↔|↗L(k)

n |2
↗L(k)

n

(
↗L(k)

n

)↑
. (6)

and the probability of the proposal (4) can thus be evaluated as two vector products.

Note that the directional noise affects the invariant distribution chain. Without a M-H step, a correction term to the
gradient update, needs to be applied. Following the general framework of Ma et al. (2015), this correction would
include second derivatives of the loss.

3



Algorithm 1: AdamMCMC

Input: empirical loss function Ln(ω), starting position ω(0), inverse temperature ε > 0, learning rate ς > 0,
momenta parameters ↼1, ↼2 ≃ [0, 1), standard deviations ϱ, ϱ↔ > 0.

for k = 0, 1, 2... do

Sample parameters around Adam(Ln(ω(k))):
m(k+1) = (m(k+1)

1 , m(k+1)
2 ) ⇑

(
↼1m

(k)
1 + (1 ↑ ↼1)↗Ln(ω(k)), ↼2m

(k)
2 + (1 ↑ ↼2)↗Ln(ω(k))2

)

ω̃(k+1) ⇑ ω(k) ↑ uk(m(k+1))

ϑ (k) ↔ N
(

ω̃(k+1),!
(
uk(m(k+1))

))

Metropolis-Hastings correction:
ϑ̃ (k+1) ⇑ ϑ (k) ↑ uk(m(k+1))

φk(ϑ (k)| ω(k), m(k+1)) = 1!(ϑ (k)) · exp(↓ωLn(ϑ (k)))
exp(↓ωLn(ε(k)))

ϖ
ω̃(k+1),!(uk(m(k+1)))(ε(k))

ϖ
ε̃(k+1),!(uk(m(k+1)))(ϑ (k))

a ↔ uniform(0, 1)
if a ⇓ φk(ϑ (k)| ω(k), m(k+1)) then

ω(k+1) ⇑ ϑ (k)

else

ω(k+1) ⇑ ω(k)

end

end

3.2 Metropolis-Hastings with Adam

The change in the proposal distribution is especially effective in combination with momentum variables. We therefore
replace the gradient ↗L(k)

n in the above construction with an Adam update step (Kingma & Ba, 2015, Algorithm 1).
The k-th step of Adam updates the momenta m(k+1) :=

(
m(k+1)

1 , m(k+1)
2

)
as

m(k+1)
1 := ↼1m

(k)
1 + (1 ↑ ↼1)↗L(k)

n ,

m(k+1)
2 := ↼2m

(k)
2 + (1 ↑ ↼2)(↗L(k)

n )2,
(7)

where ↼1, ↼2 ≃ [0, 1) tune the importance of the momenta and the exponent is understood component wise. The
network parameters are then updated as

ω(k+1) := ω(k) ↑ uk(m(k+1)),

with

uk(m(k+1)) := ς
m(k+1)

1

1 ↑ ↼k+1
1

/((∣∣m(k+1)
2

∣∣
•

1 ↑ ↼k+1
2

)1/2
+ ↽

)

Again, exponents and division are understood component wise, | · |• denotes the entry-wise absolute value and a small
constant ↽ > 0 prevents numerical nuisance.

Due to the dependence on the momenta, the augmented chain (ω(k), m(k))k↗1 has to be considered. The augmentation
recovers the Markovian nature of the chain and allows us to calculate the acceptance probabilities, as in (3), based
on the proposal distributions q(ω(k)|ϑ (k), m(k+1)) and q(ϑ (k)|ω(k), m(k+1)) using the same momenta m(k+1), see
Algorithm 1. Therein, we denote the probability density function of the P -dimensional normal distribution N (µ,!)
by ⇀µ,!. If the covariance matrix is diagonal, that is ! = ϱ2IP for some ϱ > 0, we abbreviate ⇀µ,ϱ2 = ⇀µ,!.

The proposal for the network parameters is distributed according to

q1,k(ϑ (k)|ω(k), m(k+1)) = ⇀ε(k)↓uk(m(k+1)),!k
(ϑ (k)) (8)

with covariance matrix
!k = ϱ2IP + ϱ2

↔uk(m(k+1))uk(m(k+1))↑.
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Although we do not randomize the moments in practice, for theoretical considerations we impose a momentum update
distribution given by

q2(m
(k+1)|ω(k), m(k)) =

2∏

l=1

⇀
ςlm

(k)
l +(1↓ςl)↔Ln(ε(k))l,φ2

l
(m(k+1)

l ) (9)

with small noise levels ⇁1, ⇁2 > 0. This approximation is in line with an additional stochastic error that occurs if the
gradient is replaced by a stochastic gradient for Section 4 and similar approximations are applied for example by Chen
et al. (2014). The acceptance probabilities are then given by

φk(ϑ (k)|ω(k), m(k+1)) = 1 ↘
(pω(ϑ (k)|Dn)

pω(ω(k)|Dn)

q1,k(ω(k)|ϑ (k), m(k+1))

q1,k(ϑ (k)|ω(k), m(k+1))
C(ω(k), ϑ (k))

)
(10)

(setting 0/0 = 0 if pω(ω(k)|Dn) = 0) with a correction term

C(ω(k), ϑ (k)) = exp
(

↑
2∑

l=1

|m(k+1)
l ↑ ↗Ln(ϑ (k))l|2

2⇁2
l /(1 ↑ ↼2

l )
+

2∑

l=1

|m(k+1)
l ↑ ↗Ln(ω(k))l|2

2⇁2
l /(1 ↑ ↼2

l )

)
.

Note that ↼1 and ↼2 are chosen close to 1 and after a burn-in time the gradients ↗Ln(ω(k))l and ↗Ln(ϑ (k))l will be
small and close to their long-term average m(k)

l . While our theoretical results rely on the explicit form of C(ω(k), ϑ (k)),
the correction term can be well approximated by 1 in the sampling stage and in our algorithm AdamMCMC we simply
set C(ω(k), ϑ (k)) = 1.

The following theorem verifies that the Adam based Metropolis-Hastings algorithm indeed admits the desired invariant
distribution.
Theorem 1. For arbitrary proposal distributions q1,k(ϑ (k)|ω(k), m(k+1)) and q2 from (9) the Markov chain
(ω(k), m(k))k↗1 admits the invariant distribution

f(ω, m) = pω(ω|Dn)⇀↔Ln(ε),φ2
1/(1↓ς2

1)(m1) · ⇀↔Ln(ε)2,φ2
2/(1↓ς2

2)(m2).

In particular, the marginal distribution of f(ω, m) in ω is the Gibbs posterior distribution pω(·|Dn).

Moreover, the following result shows a good approximation of the Gibbs distribution in the presence of a sufficiently
small momentum. The special case ↼ = 0 corresponds to a Metropolis-Hastings-within-Gibbs algorithm where we
obtain convergence to the invariant distribution with the typical geometric rate, cf. Jones et al. (2014):
Theorem 2. Suppose that Ln(ω) and ↗Ln(ω) are uniformly bounded for ω ≃ !. Choose q1,k and q2 from (8) and (9),
respectively. Further, let m(0) ↔ N

(
↗Ln(ω(0)), ⇁2

1/(1 ↑ ↼2
1)IP

)
⇔ N

(
↗Ln(ω(0))2, ⇁2

2/(1 ↑ ↼2
2)IP

)
, where ω(0) is

drawn from an arbitrary distribution with bounded density f (0)(ω) and support !. Then, the total variation distance
of the distribution of ω(k) to the Gibbs posterior pω(·|Dn) satisfies:

TV(Pε(k)

, ”ω(·|Dn)) ↭ (1 ↑ a)k + b↼.

for some a ≃ (0, 1), b > 0 and ↼ = ↼1 ↖ ↼2 := max{↼1, ↼2}.

Note that the geometric decay suffers from an exponential decrease of a with P as typically observed in the conver-
gence analysis of Metropolis-Hastings algorithms.

4 Numerical Experiments

We determine the effects of the algorithm parameters ε, ϱ, ϱ” and ↼1, ↼2 on the generated ensemble of network
weights for a high-dimensional classification task from particle physics. In a parallel application on neural posterior
estimation using continuous normalizing flows (Bieringer et al., 2024b), we have already found great improvements
in indicating out-of-distribution input over the commonly used variational inference-based network weight posterior
approximation (Blundell et al., 2015).

In neural network training code, the gradient calculation and optimizer step can be easily exchanged by an AdamMCMC
step. As the algorithm extends a single Adam update step, the M-H step constitutes the main computational bottleneck.
Besides the calculation of the loss-values, it only applies highly parallelisable subtractions and vector products.
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Figure 1: Optimization speed of AdamMCMC in comparison to Adam, SGD and sgHMC for the Top-tagging (binary
classification) task. We report the mean curves over 5 independent runs for the highest learning rate that allows stable
results from a grid search. Left: Development of the cross entropy loss on the training set during running of the
chain/training. To increase the readability, we show log-scaling for the first 500 steps and linear scaling as well as the
a moving-average over 2400 steps for the remaining ↙ 230k steps. Right: Accuracy on the test set (400k jets) over
training epochs (2400 steps per epoch). While AdamMCMC (ϱ = 0.2) closely resamples the behavior of Adam including
overfitting, the samples generated with AdamMCMC (ϱ = 2.0) show no signs of overfitting and a similar optimization
performance as sgHMC. The error bands show the min-max evelope of the 5 runs.

4.1 Top-Tagging and ParticleNet

At the Large Hadron Collider (LHC), products of particle collisions are measured using calorimeters. In these, the
generated particles produce a spray of daughter particles each depositing energy in the calorimeter cells. The cascade
of measured energy depositions is usually referred to as a particle shower. During evaluation, these measured showers
are grouped into jets originating in one initial particle. To reconstruct the correct scattering process in the particle
collisions, the reconstructed jets need to be assigned to the correct initial partons.

One particularly useful tool in the investigation of the Higgs particle is a classification of jets originating from Top-
quarks from their background originating from lighter quarks (QCD). To ensure a fair comparison between the multiple
efforts within the high-energy physics community, Butter et al. (2019) introduce the TopLandscape dataset. It contains
600k top and background jets each for training.

While the Particle Transformer architecture (Qu et al., 2022b) currently reports the best accuracy and rejection rates,
we choose the commonly used and more parameter-efficient ParticleNet architecture (Qu & Gouskos, 2020) for our
evaluation of AdamMCMC. ParticleNet constructs a graph from the per-jet point cloud of constituents by connecting each
constituent to its k = 16 nearest neighbours in physical space. It does so for the 128 particles with highest transverse
momentum. We follow the original architecture and apply three layers of edge convolutions (Wang et al., 2019) to the
graph, dynamically recalculating the neighbours at the beginning of every edge convolution block and transforming
the features of the graph with a three-layered perceptron based on its neighbours. The graph layers are followed by a
global average pooling layer on the channels of the edge convolutions. After this, two fully connected layers, the first
featuring additional dropout of 0.1 and ReLU activation, and a softmax function are applied. In total the employed
ParticleNet uses P = 366160 parameters on an input dimension of 128 points of 2 coordinates and 7 input features.

The classification is trained using a cross entropy loss, that is the sum of the categorical-log-liklihoods per event. Due
to the size of network and dataset, we have to employ stochastic approximations of the loss and its gradient for update
and correction steps. While the stochasticity in the update steps is corrected by the M-H correction, the stochasticity
of the M-H step allows a remaining bias to the invariant distribution. In Section 4.4, we gauge the effects of this
approximation numerically.

Originally, ParticleNet is trained using AdamW and weight decay. To focus on the transition from Adam to AdamMCMC,
we omit these technicalities and train with a constant learning rate of 1 ∝ 10↓3 and ↼1 = ↼2 = 0.99 for 100 epochs
(2400 batches of size 512 each). This barely slows down convergence and reports comparable accuracy values to the
original training schedule reported by Qu & Gouskos (2020).

For an initial setup with ε = 1, ϱ = 0.2 and ϱ” = P/100 = 3661.6 shown in Figure 1, we find the sampling
algorithm follows its deterministic counterpart closely for the full optimization. The performance on the 400k test
training set indicates overfitting of the model for both algorithms. This is a clear indication for running AdamMCMC
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Figure 2: Dependence of the mean acceptance rate (upper) and the accuracy of the posterior mean prediction on test
data (lower) on the momentum parameters of the proposal distribution ϱ” (left) and Adam optimizer ↼1 = ↼2 (right).
For low noise runs, we find a strong dependency of the algorithm efficiency on sufficiently large momentum terms. At
higher noise, this dependence is reduced due to increased width of the proposal distribution and corresponding higher
probability of the backwards direction.

with too little noise, thereby prohibiting any parameter space exploration. We thus increase ϱ to 2.0, which is the
lowest noise setting that allows sufficient parameter space exploration to prevent overfitted samples.

With the higher noise level, AdamMCMC converges at similar speed as sgHMC. Both outperform simple stochastic
gradient descent (SGD) optimization, which acts as a benchmark for stochastic gradient Langevin Dynamics (Welling
& Teh, 2011) based chains, such as MALA.

4.2 Noise, Directional Noise and Momentum

The key novelty of the proposed algorithm is the combination of an prolate proposal distribution with momentum-
based optimization. To gauge the effect of these changes, we observe the dependence of the mean acceptance rate
during sampling, as well as the accuracy of the ensemble drawn from the approximate posterior, on both the noise in
update direction ϱ” and the momentum parameters ↼1 and ↼2 in Figure 2. For easier evaluation, we choose ↼1 = ↼2.
To ensure sampling from a converged chain and approximate independence of the samples, we use a burn-in time of
b = 48 · 2400 steps and a gap length of c = 5 · 2400 steps, that is five epochs, in the following. From the 100 epoch
runs, we thus generate N = 10 weight samples.

We find a strong dependence on both, the directional noise and the momentum parameters, when running the algorithm
with low noise of ϱ = 0.2. As expected for low directional noise (ϱ” < 100) and low momentum (↼1/2 < 0.99), the
sampling breaks down due to low acceptance rates. The low acceptance probabilities originate from the low probability
of the backwards direction in (10). The accuracy drops accordingly. Using higher directional noise and momentum
increases the acceptance probabilities by aligning the proposal distribution with the optimization step.

Figure 3: Dependence of the mean acceptance rate (upper) and the accuracy of the posterior mean prediction on
test data (lower) on the width of the proposal distribution ϱ. Without directional noise (light blue), the algorithms
efficiency is strongly dependent on a correct choice of ϱ. Applying an prolate proposal distribution however allows
the algorithm to approach the deterministic optimization in the limit of low ϱ. Noise can then be added to guarantee
sufficient parameter space exploration and achieve well-calibrated uncertainties.
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For higher noise, ϱ = 2.0, the same dependence cannot be observed. Even without directional noise or momentum,
stable sampling at good performance can be achieved due to the sufficient spread of the proposal distribution.

High and low noise runs show a strong decrease in acceptance and performance when going to very high directional
noise values (ϱ” > 105). This decrease is caused by the low likelihood values, that is high NLL-loss values, of
network parameters sampled with high variance and thus far away from the currently explored loss minimum. Similar
scaling can be observed at very high overall noise (ϱ > 10).

Up to this point, the improvements of combining momentum-based optimization with an prolate proposal distribution
over sgMALA appear only at low ϱ. In this region, AdamMCMC is prone to overfitting due to limited parameter space
exploration. Higher values of ϱ, in which the effect of the prolate proposal is limited, are to be used regardless.
However, in application the extended algorithm is more well-behaved. To show this, we run the sampling chain with
and without the adapted proposal for an array of noise values. Figure 3 shows the scaling of the mean acceptance and
test accuracy for both.

Running a chain at low noise without directional noise leads to diminishing acceptance probabilities, as does running
at high noise. From applying AdamMCMC to multiple tasks (Bieringer et al., 2024a;b), we find the range of functional
ϱ-values can vary strongly between different applications, data set sizes and parameter dimensionalities. In a hyperpa-
rameter search, it is thus unclear in which direction the noise parameter has to be altered to achieve efficient sampling.
When including the directional noise however, low noise parameters result in increasing acceptance and close resem-
blance between optimizer and MCMC. Starting from this parameter space interval of semi-deterministic optimization,
a practitioner can simply increase the noise value until the mode exploration capabilities are sufficient, overfitting is
avoided and the desired uncertainty calibration is achieved. This renders fine-tuned learning rate schedules as required
for sgHMC unnecessary.

4.3 Error Estimation

The noise parameter ϱ not only gives a handle on the fitting, but also determines the uncertainty in the predictions. A
higher noise value will lead to larger differences between the different weight samples. It thus allows us to adjust the
uncertainty quantification to calibrate the predictions.

Figure 4 shows the posterior mean prediction and the posterior spread, as an estimate of the epistemic uncertainty, for
different values of ϱ. We refrain from evaluating at ϱ < 1, due to the previously reported issues with limited mode
exploration at low noise. The class probability predictions are calculated for the 400k point test set and split into true
and false class assignments for both classes, Top- and QCD-jets.

For low noise, we find the posterior mean predictions in the left panel align very well with class predictions from
stochastic optimization. Increasing the sampling noise to ϱ > 7 leads to the decrease in classification power, that has
already been observed in Figure 3. Distinguishing between the two classes allows us attribute this trend to a decrease
in predicted probability of Top-jets.

While the performance slightly decreases between ϱ = 1 and 7, we find the posterior spread, determined as the
distance between the 75%- and 25%-quantile of the weight samples, steadily rises. This is most prominent in the
falsely assigned classes. For these, a significant uncertainty is reported at low noise already.

When running the classification on out-of-distribution data from the more comprehensive JetClass dataset (Qu et al.,
2022a), we find a largely increased posterior spread. The increase of the uncertainty with increasing noise is repro-
duced analogously to the in-distribution sample.

From the tempered Gibbs posterior (1), we would expect a similar effect from the inverse temperature ε. We have var-
ied the inverse temperature within ε ≃ [10↓4, 103] and did not find a strong dependence of the uncertainty prediction
on this parameter. Very low values will however lead to strongly suppressed acceptance rates and a corresponding loss
of classification performance.

4.4 Stochastic Metropolis-Hastings

To reduce computational cost for our experiments, we have used a stochastic approximation of the M-H correction.
That is a correction calculated from an unbiased, batch-based estimator of the full loss. This stochastic correction
introduces a bias to the posterior estimation.

To gauge the difference between an algorithm with a full correction to one using only a batch of data, here 512 points,
we run both algorithms at the same hyperparameter settings. Due to the immense computational cost of the full
correction, we are limited to short chains only. We thus only evaluate the most interesting regions in Figure 5.
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Figure 4: Scaling of the posterior mean prediction (left) and posterior spread (right) with the proposal distribution
width ϱ. The posterior spread is calculated as the difference between the 75%- and 25%-quantile of the prediction
for 10 posterior samples. We report individual results for both classes and true and false assignments for a test set of
400k jets. The center line shows the median of the jets in the according category and the envelopes depict the 75%-
and 25%-quantile on the data. We find a slight decrease classification performance for rising ϱ for a large section of
the scanned space, while for low noise values the performance of an Adam optimization is closely reproduced. The
uncertainty prediction increases with increasing ϱ starting out at an already significant level for ϱ = 1.

Figure 5: Comparing the loss development for AdamMCMC algorithms employing a full Metropolis-Hastings correc-
tion, as well as a stochastic approximation thereof from random initialization (left) and the end of the stochastically
corrected chain (right). Both chains are calculated at the same hyperparameters, that is ϱ = 2.0, ϱ” = 3661.6.ε =
1, ↼1/2 = 0.99 and a learning rate of 10↓3. We find no significant differences in the dynamics of the chain, although
the full correction is slightly more selective.

Starting from the same random initialization, the differences between both algorithms does not seem to exceed the
random fluctuations of the proposal and stochasticity of the batches. Both algorithms explore the phase space in the
same way.

To gauge the sampling after burn-in, we initialize a second chain with full corrections from the end of the chain
employing the stochastic approximation. We find that both, the mean and variance of the loss-values during the chain
are virtually the same. A difference in the mean acceptance probability can however be found. As expected, the full
correction is more restrictive as its stochastic counterpart.

The additional noise introduced by a stochastic correction, can in part be countered by a reduction of ϱ and ϱ”.
Stochastic M-H corrections that control the introduced bias can be employed for AdamMCMC, whenever the application
requires a strict control of the uncertainties. While the corrections of Balan et al. (2014) and Bardenet et al. (2014)
rely on subsets of various size to perform sequential hypothesis testing, the minibatch acceptance test of Seita et al.
(2018) ensures detailed balance from fixed size batches with an additive correction variable to a Barker test. Zhang
et al. (2020) introduce an exact routine for M-H algorithms on subsamples of data from bounds of the difference in
the loss through the update. Recent proposals (Bieringer et al., 2023; Kawasaki & Holzmann, 2022) also propose a
correction term to the loss to counteract the batch-wise approximation error of the acceptance probabilities.

5 Conclusion

In this report, we proposed a generalization of the Metropolis Adjusted Langevin Algorithm with update steps calcu-
lated from Adam. We suggested a prolate deformation of the proposal distribution to increase the algorithms acceptance
rate. Our construction allows for an efficient calculation of the proposal density which is strictly necessary in order
to obtain a computationally feasible algorithm. We have proven that the resulting algorithm admits the desired Gibbs
posterior distribution as invariant distribution. While a general convergence result is left open for further research, we
have verified that the Gibbs posterior can be well approximated by the algorithm.
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For a classification task for particle physics, we show the algorithm works well with stochastic approximation of loss
values and gradients. AdamMCMC recovers the behavior of the underlying stochastic optimization, and thereby improves
the robustness of the algorithm, at low injected noise. Through changing the width of the proposal distribution, it
enables the user to adjust the uncertainty quantification starting out from Adam-like behavior.

A Proofs

In this section, we verify our theoretical contributions. The proof strategies are in line with the literature, see
e.g. Chauveau & Vandekerkhove (2002) who have used a step-dependent proposal distribution. However, some tech-
nical modifications are necessary to handle noisy momenta.

A.1 Proof of Theorem 1

For brevity, we write ω = ω(k), ω̃ = ω(k+1) and similarly for m. The overall transition kernel is

qk(ω̃, m̃|ω, m) = q1,k(ω̃|ω, m̃)φ(ω̃|ω, m̃)q2(m̃|ω, m) +
( ∫

q1,k(ϑ |ω, m̃)(1 ↑ φ(ϑ |ω, m̃)) dϑ
)
q2(m̃|ω, m) ↽ε(dω̃),

where the first term corresponds to accepting the proposal for ω̃, the second one rejects the proposal and ↽ε denotes
the Dirac measure in ω. By construction we can rewrite

φk(ω̃|ω, m̃) = 1 ↘ f(ω̃, m̃)q1,k(ω|ω̃, m̃)

f(ω, m̃)q1,k(ω̃|ω, m̃)

and thus the detailed balance equation

φk(ω̃|ω, m̃)q1,k(ω̃|ω, m̃)f(ω, m̃) =
(
f(ω̃, m̃)q1,k(ω|ω̃, m̃)

)
↘

(
f(ω, m̃)q1,k(ω̃|ω, m̃)

)
(11)

= φk(ω|ω̃, m̃)q1,k(ω|ω̃, m̃)f(ω̃, m̃)

is satisfied. Setting s2
l := ⇁2

l /(1 ↑ ↼2
l ) we have s2

l = ↼2
l s2

l + ⇁2
l and thus we deduce for two independent standard-

normal random vectors Z1, Z2 ≃ RP and any A = A1 ∝ A2 with measurable A1, A2 ′ RP that
∫

A

∫
q2(m̃|ω, m)f(ω, m) dm dm̃ = pω(ω|Dn)

∫

A

∫
q2(m̃|ω, m)

2∏

l=1

⇀↔Ln(ε)l,s2
l
(ml) dm dm̃

= pω(ω|Dn)
2∏

l=1

∫

Al

∫
⇀ςlml+(1↓ςl)↔Ln(ε)l,φ2

l
(m̃l)⇀↔Ln(ε)l,s2

l
(ml) dml dm̃l

= pω(ω|Dn)
2∏

l=1

P(↼l(↗Ln(ω)l + slZ1) + (1 ↑ ↼l)↗Ln(ω)l + ⇁lZ2 ≃ Al)

= pω(ω|Dn)
2∏

l=1

P(↗Ln(ω)l +


↼2
l s2

l + ⇁2
l Z1 ≃ Al)

=

∫

A
f(ω, m̃) dm̃, (12)

that is


q2(m̃|ω, m)f(ω, m) dm = f(ω, m̃). Therefore,
∫ ∫

A
qk(ω̃, m̃|ω, m)f(ω, m) d(ω̃, m̃) d(ω, m)

=

∫ ∫
1A(ω̃, m̃)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃)q2(m̃|ω, m)f(ω, m) d(ω̃, m̃) d(ω, m)

+

∫ ∫
1A(ω, m̃)q1,k(ω̃|ω, m̃)

(
1 ↑ φk(ω̃|ω, m̃)

)
q2(m̃|ω, m)f(ω, m) d(ω̃, m̃) d(ω, m)

=

∫ ∫
1A(ω̃, m̃)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃)f(ω, m̃) d(ω̃, m̃) dω

+

∫ ∫
1A(ω, m̃)q1,k(ω̃|ω, m̃)

(
1 ↑ φk(ω̃|ω, m̃)

)
f(ω, m̃) d(ω̃, m̃) dω
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=

∫ ∫
1A(ω̃, m̃)q1,k(ω|ω̃, m̃)φk(ω|ω̃, m̃)f(ω̃, m̃) d(ω̃, m̃) dω

+

∫
1A(ω, m̃)

∫
f(ω, m̃) d(ω, m̃)

↑
∫ ∫

1A(ω, m̃)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃)f(ω, m̃) d(ω̃, m̃) dω

=

∫
1A(ω, m̃)f(ω, m̃) d(ω, m̃).

Hence, if the distribution of (ω(k), m(k)) is f , then (ω(k+1), m(k+1)) is also distributed according to f which is the
claimed stationarity.

A.2 Proof of Theorem 2

We denote the joint density of (ω(k), m(k)) by fk(ω, m). The density of marginal distribution of ω(k) is denoted by
fk(ω) and, e.g. the conditional density of m(k) given ω(k) = ω by fk(m|ω) and similarly for f . Throughout let
ω̃, ω ≃ !, m̃, m = (m̃1, m̃2) ≃

(
RP

)2. The proof is organized in five steps.

Step 1: We show that the relative error Dk(ω̃, m̃) := fk(ε̃,m̃)

f(ε̃,m̃)
↑ 1 remains bounded. Define

f̃k(ω̃, m̃) :=

∫
fk(ω̃, m)q2(m̃|ω̃, m)dm and D̃k(ω̃, m̃) :=

f̃k(ω̃, m̃)

f(ω̃, m̃)
↑ 1.

With the convention 0/0 = 0 and the momentum adjusted detailed balance condition (11), we get

fk+1(ω̃, m̃) =

∫
fk(ω, m)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃)q2(m̃|ω, m) d(ω, m)

+

∫
fk(ω̃, m)q1,k(ω|ω̃, m̃)

(
1 ↑ φk(ω|ω̃, m̃)

)
q2(m̃|ω̃, m) d(ω, m)

=

∫
f̃k(ω, m̃)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃) dω +

∫
f̃k(ω̃, m̃)q1,k(ω|ω̃, m̃)

(
1 ↑ φk(ω|ω̃, m̃)

)
dω

= f̃k(ω̃, m̃) +

∫
f(ω, m̃)q1,k(ω̃|ω, m̃)φk(ω̃|ω, m̃)

f̃k(ω, m̃)

f(ω, m̃)
dω

↑
∫

f(ω̃, m̃)q1,k(ω|ω̃, m̃)φk(ω|ω̃, m̃)
f̃k(ω̃, m̃)

f(ω̃, m̃)
dω

= f̃k(ω̃, m̃) ↑
∫ ( f̃k(ω̃, m̃)

f(ω̃, m̃)
↑ f̃k(ω, m̃)

f(ω, m̃)

)
hk(ω, ω̃, m̃) dω, (13)

where
hk(ω, ω̃, m̃) :=

(
f(ω̃, m̃)q1,k(ω|ω̃, m̃)

)
↘

(
f(ω, m̃)q1,k(ω̃|ω, m̃)

)
.

Setting Qk(ω̃, ω, m̃) := hk(ω, ω̃, m̃)/f(ω̃, m̃) this leads to

Dk+1(ω̃, m̃) = D̃k(ω̃, m̃) ↑
∫ ( f̃k(ω̃, m̃)

f(ω̃, m̃)
↑ 1

)hk(ω, ω̃, m̃)

f(ω̃, m̃)
dω +

∫ ( f̃k(ω, m̃)

f(ω, m̃)
↑ 1

)hk(ω, ω̃, m̃)

f(ω̃, m̃)
dω

= D̃k(ω̃, m̃) ↑
∫

D̃k(ω̃, m̃)Qk(ω̃, ω, m̃) dω +

∫
D̃k(ω, m̃)Qk(ω̃, ω, m̃) dω

= D̃k(ω̃, m̃)
(
1 ↑

∫
Qk(ω̃, ω, m̃) dω

)
+

∫
D̃k(ω, m̃)Qk(ω̃, ω, m̃) dω.

Since


Qk(ω̃, ω, m̃) dω ⇓ 1, we conclude

Dk+1(ω̃, m̃) ⇓ ∞D̃k∞↘ ↑
∫ (

∞D̃k∞↘ ↑ D̃k(ω, m̃)
)
Qk(ω̃, ω, m̃) dω ⇓ ∞D̃k∞↘. (14)
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Since (12) yields

∞D̃k∞↘ = sup
ε̃,m̃

∣∣∣


(fk(ω̃, m) ↑ f(ω̃, m))q2(m̃|ω̃, m) dm

f(ω̃, m̃)

∣∣∣ = sup
ε̃,m̃

∣∣∣


Dk(ω̃, m)f(ω̃, m)q2(m̃|ω̃, m) dm

f(ω̃, m̃)

∣∣∣ ⇓ ∞Dk∞↘,

we obtain for all k ≃ N
∞Dk+1∞↘ ⇓ ∞Dk∞↘ ⇓ ∞D0∞↘.

Step 2: We now study the relative error of the marginal distribution of ω. To this end we write

F k+1(ω) :=
#fk+1(ω)

f(ω)
, #fk+1(ω) := fk+1(ω) ↑ f(ω), #fk+1(ω, m) := fk+1(ω, m) ↑ f(ω, m),

#f̃k+1(ω, m) := f̃k+1(ω, m) ↑ f(ω, m).

To bound ∞F k+1∞↘, we start similarly to Step 1. Using (13), we have

#fk+1(ω̃, m̃) = #fk(ω̃)f(m̃|ω̃) ↑
∫ (#fk(ω̃)f(m̃|ω̃)

f(ω̃, m̃)
↑ #fk(ω)f(m̃|ω)

f(ω, m̃)

)
hk(ω, ω̃, m̃) dω

+
(
#f̃k(ω̃, m̃) ↑ #fk(ω̃)f(m̃|ω̃)

)

↑
∫ (#f̃k(ω̃, m̃) ↑ #fk(ω̃)f(m̃|ω̃)

f(ω̃, m̃)
↑ #f̃k(ω, m̃) ↑ #fk(ω)f(m̃|ω)

f(ω, m̃)

)
hk(ω, ω̃, m̃) dω

=: T1(ω̃, m̃) + T k
2 (ω̃, m̃)

with

T1(ω̃, m̃) = #fk(ω̃)f(m̃|ω̃) ↑
∫ (#fk(ω̃)f(m̃|ω̃)

f(ω̃, m̃)
↑ #fk(ω)f(m̃|ω)

f(ω, m̃)

)
hk(ω, ω̃, m̃) dω

= #fk(ω̃)f(m̃|ω̃) ↑
∫ (#fk(ω̃)

f(ω̃)
↑ #fk(ω)

f(ω)

)
hk(ω, ω̃, m̃) dω.

Hence,

F k+1(ω̃) =
1

f(ω̃)

∫
#fk+1(ω̃, m̃) dm̃ = F k(ω̃) ↑

∫ (
F k(ω̃) ↑ F k(ω)

)
Q̃k(ω̃, ω) dω + Rk(ω̃)

with Q̃k(ω̃, ω) :=
 hk(ε,ε̃,m̃)

f(ε̃)
dm̃ and Rk(ω̃) := 1

f(ε̃)


T k

2 (ω̃, m̃) dm̃.

Step 3: We first bound the main term in the above display. To this end we verify the momentum adjusted Doeblin-type
condition

Q̃k(ω̃, ω) ∈ af(ω), ∋ω̃, ω ≃ ! (15)
for some a > 0.

It holds that

Q̃k(ω̃, ω) =

∫
hk(ω, ω̃, m̃)

f(ω̃)
dm̃ =

∫
1

f(ω̃)

((
q1,k(ω|ω̃, m̃

)
f(ω̃, m̃)

)
↘

(
f(ω, m̃)q1,k(ω̃|ω, m̃)

))
dm̃

=

∫ (
q1,k(ω|ω̃, m̃

)
f(m̃|ω̃)

)
↘

( f(ε)

f(ε̃)
f(m̃|ω)q1,k(ω̃|ω, m̃)

)
dm̃.

Since ! is bounded, det($k) as calculated in (5) is uniformly bounded from above and away from 0 and since
$↓1

k ⇓ C1 in the ordering of positive definite matrices for some C1 > 0, we have

q1,k(ω|ω̃, m̃
)
f(m̃|ω̃) = ⇀ε̃↓uk(m̃),#k

(ω)⇀↔Ln(ε̃),φ2
1/(1↓ς2

1)(m̃1)⇀↔Ln(ε̃)2,φ2
2/(1↓ς2

2)(m̃2)

↫ exp(↑C1|uk(m̃)|2)⇀↔Ln(ε̃),φ2
1/(1↓ς2

1)(m̃1)⇀↔Ln(ε̃)2,φ2
2/(1↓ς2

2)(m̃2)

∈ exp(↑C̃1|m̃1|2)⇀↔Ln(ε̃),φ2
1/(1↓ς2

1)(m̃1)⇀↔Ln(ε̃)2,φ2
2/(1↓ς2

2)(m̃2).
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With an analogous bound for f(ε,m̃)

f(ε̃)
q1,k(ω̃|ω, m̃), we obtain for some constant C̃ > 0

Q̃k(ω̃, ω) ↫
∫

exp(↑C̃|m̃1|2)⇀↔Ln(ε̃),φ2
1/(1↓ς2

1)(m̃1)⇀↔Ln(ε̃)2,φ2
2/(1↓ς2

2)(m̃2) dm̃

=

∫
exp(↑C̃|m̃1|2)⇀↔Ln(ε̃),φ2

1/(1↓ς2
1)(m̃1) dm̃1. (16)

This integral is equal to E[exp(↑|Z|2)] for Z = (Z1, . . . , ZP ) ↔ N
(
µ, ϱ̃2IP

)
with µ = (µ1, . . . , µP )↑ =√

C̃↗Ln(ω̃) and ϱ̃2 = C̃⇁2
1/(1 ↑ ↼2

1). It holds that

E[exp(↑|Z|2)] =
P∏

i=1

E[exp(↑|Zi|2)] =
1

(2ϖϱ̃2)P/2

P∏

i=1

∫
exp

(
↑ |zi|2

)
exp

(
↑ 1

2ϱ̃2
(zi ↑ µi)

2
)

dzi

=
1

(2ϱ̃2 + 1)P/2
exp

(
↑ |µ|2

2ϱ̃2 + 1

)
. (17)

Noting that |µ| is bounded, ϱ̃2 is bounded and bounded away from 0 and f is bounded and bounded away from 0 on
its support, (16) and (17) yield (15).

Note that


Q̃k(ω̃, ω) dω ⇓ 1. Therefore, we can conclude from (15) that

F k+1(ω̃) = F k(ω̃)
(
1 ↑

∫
Q̃k(ω̃, ω) dω

)
+

∫
F k(ω)Q̃k(ω̃, ω) dω + Rk(ω̃)

⇓ ∞F k∞↘ ↑
∫ (

∞F k∞↘ ↑ F k(ω)
)
Q̃k(ω̃, ω) dω + Rk(ω̃)

⇓ ∞F k∞↘ ↑ a

∫ (
∞F k∞↘ ↑ F k(ω)

)
f(ω) dω + Rk(ω̃)

= (1 ↑ a)∞F k∞↘ + a

∫
(fk(ω) ↑ f(ω)) dω + Rk(ω̃)

= (1 ↑ a)∞F k↓1∞↘ + Rk(ω̃).

With an analogous bound for ↑F k+1 we obtain

|F k+1(ω̃)| ⇓ (1 ↑ a)∞F k↓1∞↘ + |Rk(ω̃)|.

Step 4: Finally we bound the remainder Rk. Recall that #fk(ω, m) := fk(ω, m) ↑ f(ω, m) and, similarly, write
#fk(m) := fk(m) ↑ f(m). Using (12), we have

∣∣#f̃k(ω, m̃) ↑ #fk(ω)f(m̃|ω)
∣∣ =

∣∣∣
∫

#fk(ω, m)
(
q2(m̃|ω, m) ↑ f(m̃|ω)

)
dm

∣∣∣

=
∣∣∣
∫

Dk(ω, m)f(ω, m)%(ω, m̃, m) dm
∣∣∣

⇓ ∞Dk∞↘

∫
f(ω, m)|%(ω, m̃, m)| dm (18)

with

%(ω, m̃, m) := q2(m̃|ω, m) ↑ f(m̃|ω) =
2∏

l=1

⇀ςl,ml+(1↓ςl)↔L(ε)l,φ2
l
(m̃l) ↑

2∏

l=1

⇀↔L(ε)l,φ2
l /(1↓ς2

l )(m̃l).

Therefore, we can use hk(ω, ω̃, m̃)/f(ω, m̃) ⇓ q1,k(ω̃|ω, m̃) to obtain

|Rk(ω̃)| ⇓ 1

f(ω̃)

∫ ∣∣#f̃k(ω̃, m̃) ↑ #fk(ω̃)f(m̃|ω̃)
∣∣
(
1 +

∫
hk(ω, ω̃, m̃)

f(ω̃, m̃)
dω

)
dm̃

+
1

f(ω̃)

∫∫ ∣∣#f̃k(ω, m̃) ↑ #fk(ω)f(m̃|ω)
∣∣hk(ω, ω̃, m̃)

f(ω, m̃)
dω dm̃

⇓ ∞Dk∞↘

( 2

f(ω̃)

∫∫
f(ω̃, m)|%(ω̃, m̃, m)| dm dm̃
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+
1

f(ω̃)

∫∫∫
f(ω, m)|%(ω, m̃, m)|q1,k(ω̃|ω, m̃) dm dm̃ dω

)

=: C(ω̃, ↼)∞Dk∞↘.

From the explicit form of % and the boundedness of f(ω̃) away from 0, we can now derive a constant b > 0 such that

C(ω̃, ↼) ⇓ b↼ (19)

for all ω̃ ≃ !.

To this end, we employ Proposition 2.1 in Devroye et al. (2018) to obtain
∫

|%(ω̃, m̃, m)| dm̃ = 2TV
( 2

l=1

N
(
↼lml + (1 ↑ ↼l)↗L(ω̃)l, ⇁2

l IP

)
,

2

l=1

N
(
↗L(ω̃)l

)
, ⇁2

l /(1 ↑ ↼2
l )IP )

))

⇓
( 2∑

l=1

↼l⇁
↓1
l |ml ↑ ↗Ln(ω̃)l|2 +

△
P

(
↼l/(1 ↑ ↼2

l ) +
(
log(1 ↑ ↼2

l )
)))1/2

.

Therefore,
∫ ∫

f(ω̃, m)|%(ω̃, m̃, m)| dm dm̃

=

∫
f(ω̃, m)

( ∫
|%(ω̃, m̃, m)| dm̃

)
dm

⇓
2∑

l=1

(
↼l⇁

↓1
l

∫
|ml ↑ ↗Ln(ω̃)l|f(ω̃, m) dm +

△
P

(
↼l/(1 ↑ ↼2

l )1/2 +
∣∣ log(1 ↑ ↼l)

∣∣1/2)
∫

f(ω̃, m) dm
)

= f(ω̃)
2∑

l=1

(
↼l⇁

↓1
l

∫
|ml ↑ ↗Ln(ω̃)l|⇀↔Ln(ε̃),φ2

1/(1↓ς2
1)(m1)⇀↔Ln(ε̃)2,φ2

2/(1↓ς2
2)(m2)

+
△

P
(
↼l/(1 ↑ ↼2

l )1/2 +
∣∣ log(1 ↑ ↼l)

∣∣1/2))

⇓ f(ω̃)
2∑

l=1

(
↼l⇁

↓1
l

∫
|ml ↑ ↗Ln(ω̃)l|⇀↔Ln(ε̃)l,φ2

l /(1↓ς2
l )(ml) dml

+
△

P
(
↼l/(1 ↑ ↼2

l )1/2 +
∣∣ log(1 ↑ ↼l)

∣∣1/2))
.

Note that for fixed l = 1, 2, the integral term in the last display is equal to E[|Z|] with Z ↔ N
(
0, (⇁2

l /(1 ↑ ↼2
l )IP

)
. It

holds that
E[|Z|] ⇓ E[|Z|1] ⇓ P⇁l

(1 ↑ ↼2
l )1/2

.

Hence,
∫ ∫

f(ω̃, m)|%(ω̃, m̃, m)| dm dm̃ ⇓ f(ω̃)
2∑

l=1

( P↼l

(1 ↑ ↼2
l )1/2

+
△

P
(
↼l/(1 ↑ ↼2

l )1/2 +
∣∣ log(1 ↑ ↼2

l )
∣∣1/2))

=: f(ω̃)C(↼). (20)

Further, note that q1,k(ω̃|ω, m̃) ⇓ (2ϖϱ)↓P/2. Similarly to (20), we have
∫ ∫ ∫

f(ω, m)|%(ω, m̃, m)|q1,k(ω̃|ω, m̃) dm dm̃ dω ⇓ (2ϖϱ)↓P/2

∫ ( ∫
f(ω, m)

∫
|%(ω, m̃, m)| dm̃ dm

)
dω

= (2ϖϱ)↓P/2C(↼)

∫
f(ω) dω

= (2ϖϱ)↓P/2C(↼).

Overall, (19) is verified, since f is bounded away from 0 on its support and C(↼) ⇓ b≃↼ for some b≃ > 0.
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Step 5: Putting everything together, we obtain

∞F k+1∞↘ ⇓ (1 ↑ a)∞F k∞↘ + b∞D0∞↘↼ ⇓ (1 ↑ a)k+1∞F 0∞↘ + b∞D0∞↘↼
k∑

l=0

(1 ↑ a)l

⇓ (1 ↑ a)k+1∞F 0∞↘ +
b

a
↼∞D0∞↘.

Since our choice of the distribution for initializing the chain implies that F 0, D0 are bounded, the proof is complete.
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com/sbieringer/AdamMCMC

References

Alquier, P. (2021). User-friendly introduction to PAC-Bayes bounds.
Balan, A. K., Chen, Y., & Welling, M. (2014). Austerity in MCMC land: Cutting the Metropolis-Hastings budget.

In Proceedings of the 31th International Conference on Machine Learning, volume 32 of JMLR Workshop and
Conference Proceedings (pp. 181–189).

Bardenet, R., Doucet, A., & Holmes, C. C. (2014). Towards scaling up Markov chain Monte Carlo: An adaptive
subsampling approach. In Proceedings of the 31th International Conference on Machine Learning, volume 32 of
JMLR Workshop and Conference Proceedings (pp. 405–413).

Bieringer, S., Diefenbacher, S., Kasieczka, G., & Trabs, M. (2024a). Calibrating Bayesian generative machine learning
for Bayesiamplification. Mach. Learn. Sci. Tech., 5(4), 045044.

Bieringer, S., Kasieczka, G., Kieseler, J., & Trabs, M. (2024b). Classifier surrogates: sharing AI-based searches with
the world. Eur. Phys. J. C, 84(9), 972.

Bieringer, S., Kasieczka, G., Steffen, M. F., & Trabs, M. (2023). Statistical guarantees for stochastic Metropolis-
Hastings.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network. In
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research (pp. 1613–1622).: PMLR.

Butter, A. et al. (2019). The Machine Learning landscape of top taggers. SciPost Phys., 7, 014.
Chauveau, D. & Vandekerkhove, P. (2002). Improving convergence of the Hastings-Metropolis algorithm with an

adaptive proposal. Scandinavian Journal of Statistics, 29(1), 13–29.
Chen, C., Carlson, D. E., Gan, Z., Li, C., & Carin, L. (2016). Bridging the gap between stochastic gradient MCMC

and stochastic optimization. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, volume 51 of JMLR Workshop and Conference Proceedings (pp. 1051–1060).

Chen, T., Fox, E., & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. In Proceedings of the 31st
International Conference on Machine Learning, volume 32 of JMLR Workshop and Conference Proceedings (pp.
1683–1691).

Daxberger, E. A., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., & Hennig, P. (2021). Laplace redux -
effortless bayesian deep learning. In Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021 (pp. 20089–20103).

15



Devroye, L., Mehrabian, A., & Reddad, T. (2018). The total variation distance between high-dimensional Gaussians
with the same mean.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling using stochastic
gradient thermostats. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014 (pp. 3203–3211).

Franssen, S. & Szabó, B. (2022). Uncertainty quantification for nonparametric regression using empirical Bayesian
neural networks.

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis, University of Cambridge.
Heek, J. & Kalchbrenner, N. (2019). Bayesian inference for large scale image classification.
Jones, G. L., Roberts, G. O., & Rosenthal, J. S. (2014). Convergence of conditional Metropolis-Hastings samplers.

Advances in Applied Probability, 46(2), 422 – 445.
Karagiorgi, G., Kasieczka, G., Kravitz, S., Nachman, B., & Shih, D. (2022). Machine learning in the search for new

fundamental physics. Nature Reviews Physics, 4(6), 399–412.
Kawasaki, E. & Holzmann, M. (2022). Data subsampling for Bayesian neural networks.
Kingma, D. P. & Ba, J. (2015). Adam: A method for stochastic optimization. In The 3rd International Conference on

Learning Representations.
Li, C., Chen, C., Carlson, D. E., & Carin, L. (2016). Preconditioned stochastic gradient Langevin dynamics for deep

neural networks. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (pp. 1788–1794).: AAAI
Press.

Ludkin, M. & Sherlock, C. (2023). Hug and hop: a discrete-time, nonreversible markov chain monte carlo algorithm.
Biometrika, 110(2), 301–318.

Ma, Y., Chen, T., & Fox, E. B. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015 (pp. 2917–
2925).

Patterson, S. & Teh, Y. W. (2013). Stochastic gradient riemannian langevin dynamics on the probability simplex.
In Advances in Neural Information Processing Systems 26: Annual Conference on Neural Information Processing
Systems 2013 (pp. 3102–3110).

Qu, H. & Gouskos, L. (2020). ParticleNet: Jet Tagging via Particle Clouds. Phys. Rev. D, 101(5), 056019.
Qu, H., Li, C., & Qian, S. (2022a). Jetclass: A large-scale dataset for deep learning in jet physics.
Qu, H., Li, C., & Qian, S. (2022b). Particle Transformer for Jet Tagging.
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). Bayesflow: Learning complex stochastic
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Abstract

A Metropolis-Hastings step is widely used for gradient-based Markov chain Monte Carlo meth-

ods in uncertainty quantification. By calculating acceptance probabilities on batches, a stochastic

Metropolis-Hastings step saves computational costs, but reduces the e!ective sample size. We show

that this obstacle can be avoided by a simple correction term. We study statistical properties of

the resulting stationary distribution of the chain if the corrected stochastic Metropolis-Hastings ap-

proach is applied to sample from a Gibbs posterior distribution in a nonparametric regression setting.

Focusing on deep neural network regression, we prove a PAC-Bayes oracle inequality which yields

optimal contraction rates and we analyze the diameter and show high coverage probability of the

resulting credible sets. With a numerical example in a high-dimensional parameter space, we illus-

trate that credible sets and contraction rates of the stochastic Metropolis-Hastings algorithm indeed

behave similar to those obtained from the classical Metropolis-adjusted Langevin algorithm.

Keywords: Stochastic neural network, optimal contraction rate, credible sets, oracle inequality,
uncertainty quantification
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1 Introduction

An essential feature in modern data science, especially in machine learning as well as high-dimensional
statistics, are large sample sizes and large parameter space dimensions. As a consequence, the design
of methods for uncertainty quantification is characterized by a tension between numerically feasible and
e!cient algorithms and approaches which satisfy theoretically justified statistical properties. In this
work we demonstrate that a Bayesian MCMC-based method with a stochastic Metropolis-Hastings step
achieves both: It is scalable, i.e., it is computationally feasible for large samples, and we can prove
an optimal bound for the prediction risk as well as uncertainty statements for the underlying posterior
distribution.

Bayesian methods enjoy high popularity for quantifying uncertainties in complex models. The
classical approach to sample from the posterior distribution are Markov Chain Monte Carlo methods
(MCMC). For large parameter spaces gradient-based Monte Carlo methods are particularly useful, with
e.g. Langevin dynamics serving as a prototypical example. State-of-the-art methods such as Metropolis
adjusted Langevin (MALA) [11, 47] and Hamiltonian Monte Carlo [24, 41] equip a Metropolis-Hastings
(MH) step to accept or reject the proposed next state of the chain. From the practical point of view,
the MH step improves robustness with respect to the choice of the tuning parameters and in theory MH
speeds up the convergence of the Markov chain.

∗The authors would like to thank Botond Szabó and two anonymous referees for helpful comments. SB is supported by
DASHH (Data Science in Hamburg - HELMHOLTZ Graduate School for the Structure of Matter) with the grant HIDSS-
0002. SB and GK acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence
Strategy - EXC 2121 Quantum Universe - 390833306. MS and MT acknowledge support by the DFG through project TR
1349/3-1. The empirical studies were enabled by the Maxwell computational resources operated at Deutsches Elektronen-
Synchrotron DESY, Hamburg, Germany.
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If the sample size is large, the computational costs of gradient-based MCMC methods can be reduced
by replacing the gradient of the full loss over all observations by a stochastic gradient. This is standard in
empirical risk minimization and has been successfully applied for Langevin dynamics as well [1, 36, 43, 55].
In this case, the MH steps remain as a computational bottleneck: Since the target distribution depends on
the full dataset, we have to compute the loss on the full sample to calculate the acceptance probabilities.
Among the approaches to circumvent this problem, see Bardenet et al. [9] for a review, a stochastic MH
step is presumably the most natural one. There, the full loss in the acceptance probability is replaced
by a (mini-)batch approximation which reduces the computational cost considerably.

Bardenet et al. [9, Section 6.1] have argued heuristically that the naive stochastic MH step reduces
the e"ective sample size, which determines, for instance, contraction rates of the posterior distribution,
to the size of the batch. To rigorously understand the statistical consequences of a stochastic MH step,
we apply the pseudo-marginal Metropolis-Hastings perspective by Andrieu & Roberts [4] and Maclaurin
& Adams [37]. It turns out that a Markov Chain with a stochastic MH step does not converge to the
original target posterior distribution, but a di"erent distribution, which we call surrogate posterior and
whose statistical performance is indeed determined to the batch size only. However, we show that there is
a simple correction term in the risk such that the resulting stochastic MH chain converges to a surrogate
posterior which achieves the full statistical power in terms of optimal contraction rates.

In a nonparametric regression problem, we investigate the distance of the surrogate posteriors associ-
ated to the stochastic MH algorithm and the corrected stochastic MH algorithm to the original posterior
distribution in terms of the Kullback-Leibler divergence. While these approximation results could be
used to analyze the surrogate posteriors based on properties of the original posterior as done for varia-
tional Bayes methods, see Ray & Szabó [45], we will instead directly investigate the surrogate posteriors
which will allow for sharp results.

We prove oracle inequalities for the surrogate posteriors of the stochastic MH method and its corrected
modification in the context of deep neural networks. Based on that we can conclude contraction rates
as well as rates of convergence for the surrogate posterior mean. Applied to Hölder regular hierarchical
regression functions, the contraction rate of the corrected stochastic MH procedure coincides with the
minimax rate by Schmidt-Hieber [51] (up to a logarithmic factor). While the latter paper has analyzed
sparse deep neural networks with ReLU activation function, similar results for fully connected networks
are given by Kohler & Langer [35] and we exploit their main approximation theorem. Moreover, we
investigate size and coverage of credible balls from the surrogate posterior. A mixing approach, as e.g.
in Alquier & Biau [3], allows for learning the optimal width of the network and leads to a fully adaptive
method, see Section 4.

A simulation study demonstrates the merit of the correction term for sampling from a 10401 dimen-
sional parameter space for a low-dimensional regression task. The samples from the surrogate posterior
of our corrected stochastic MH algorithm, as well as their mean, show a significant improvement in terms
of the empirical prediction risk and size of credible balls over those taken from the surrogate posterior of
the naive stochastic MH algorithm. The correction term cancels the bias on the size of accepted batches
introduced by the stochastic setting. The Python code of the numerical example is available on GitHub.1

Related literature. In view of possibly better scaling properties, variational Bayes methods have been
intensively studied in recent years. Instead of sampling from the posterior distribution itself, variational
Bayes methods approximate the posterior within a parametric distribution class which can be easily
sampled from, see Blei et al. [13] for a review. The theoretical understanding of variational Bayes
methods is a current research topic, see [57, 58, 45] and references therein.

Our oracle inequalities rely on PAC-Bayes theory which provides probably approximately correct error
bounds and goes back to Shawe-Taylor & Williamson [52] and McAllester [39, 40]. We refer to the review
papers by Guedj [29] and Alquier [2]. PAC-Bayes bounds in a regression setting have been studied, see
e.g. Audibert [6, 7], Audibert & Catoni [8] and the references therein. Our analysis of the Bayesian
procedure from a frequentist point of view embeds into the nonparametric Bayesian inference, see Ghosal

1https://github.com/sbieringer/csMALA.git
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& van der Vaart [27]. Coverage of credible sets has been studied, for instance, by Szabó et al. [54] and
Rousseau & Szabó [49] and based on the Bernstein-von Mises theorem in Castillo & Nickl [14] among
others. While contraction rates for Bayes neural networks have been studied by Polson & Ro#ková [44]
and Chérief-Abdellatif [17], the theoretical properties of credible sets are not well understood so far.
Franssen & Szabó [25] have studied an empirical Bayesian approach where only the last layer of the
network is Bayesian while the remainder of the network remains fixed.

For an introduction to neural networks, see e.g. Goodfellow et al. [28] and Schmidhuber [50]. While
early theoretical foundations for neural nets are summarized by Anthony & Bartlett [5], the excellent
approximation properties of deep neural nets, especially with the ReLU activation function, have been
discovered in recent years, see e.g. Yarotsky [56] and the review paper DeVore et al. [23]. In addition
to these approximation properties, an explanation of the empirical capabilities of neural networks has
recently been given by Schmidt-Hieber [51] as well as Bauer & Kohler [10]: While classical regression
methods su"er from the curse of dimensionality, deep neural network estimators can profit from a hier-
archical structure of the regression function and a possibly much smaller intrinsic dimension.

Tailoring Markov Chains to the needs of current neural network application is an field of ongoing
investigation. Di"erent e"orts to improve e!ciency by improve mixing, that is transitioning between
modes of the posterior landscape, exist. Zhang et al. [59] employ a scheduled step-size to help the
algorithm move between di"erent modes of the posterior, while contour stochastic gradient MCMC
[22, 21] uses a piece-wise continuous function to flatten the posterior landscape which is itself determined
through MCMC sampling or from parallel chains. Parallel chains of di"erent temperature are employed
by [20] at the cost of memory space during computation. Only limited research on scaling MCMC
for large data has been done. Most recently, Cobb & Jalaian [18] introduced a splitting scheme for
Hamiltonian Monte Carlo maintaining the full Hamiltonian.

Organization. The paper is organized as follows: In Section 2, we derive the stochastic MH procedure,
introduce the stochastic MH correction and study the Kullback-Leibler divergences of the surrogate pos-
terior from the Gibbs posterior. In Section 3, we state the oracle inequality and the resulting contraction
rates and we investigate credible sets. In Section 4 we present a data-driven approach to choosing archi-
tecture of the network for our method. The numerical performance of the method is studied in Section 5.
All proofs have been postponed to Section 6.

2 Stochastic Metropolis-adjusted Langevin algorithm

The aim is to estimate a regression function f : Rp → R, p ↑ N based on a training sample Dn :=
(Xi, Yi)i=1,...,n ↓ Rp ↔ R given by n ↑ N i.i.d. copies of generic random variables (X, Y ) ↑ Rp ↔ R on
some probability space (!, A, P) with Y = f(X) + ω and observation error ω satisfying E[ω | X] = 0

almost surely (a.s.). Equivalently, f(X) = E[Y | X] a.s. For any estimator f̂ , the prediction risk and its
empirical counterpart are given by

R(f̂) := E(X,Y )

[(
Y ↗ f̂(X)

)2] and Rn(f̂) =
1

n

n∑

i=1

(
Yi ↗ f̂(Xi)

)2
,

respectively, where E denotes the expectation under P and EZ is the (conditional) expectation only with
respect to a random variable Z. The accuracy of the estimation procedure will be quantified in terms of
the excess risk

E(f̂) := R(f̂) ↗ R(f) = EX

[(
f̂(X) ↗ f(X)

)2]
= ↘f̂ ↗ f↘2

L2(PX),

where PX denotes the distribution of X.
We consider a parametric class of potential estimators F = {fω : ε ↑ [↗B, B]P } for some fixed B ↭ 1

and a potentially large parameter dimension P ↑ N. For fω ↑ F we abbreviate R(ε) = R(fω) and

Rn(ε) = Rn(fω) =
1

n

n∑

i=1

ϑi(ε) with ϑi(ε) =
(
Yi ↗ fω(Xi)

)2
.
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Throughout, |x|q denotes the ϑq-norm of a vector x ↑ Rp, q ↑ [1, ≃]. For brevity, | · | := | · |2 is the
Euclidean norm. We write a ⇐ b := max{a, b} and a ⇒ b := min{a, b} for a, b ↑ R. The identity matrix in
Rd is denoted by Ed.

2.1 Prior and posterior distribution
As a prior on the parameter set of the class F we choose a uniform distribution ” = U([↗B, B]P ). The
corresponding Gibbs posterior ”ε(· | Dn) is defined as the solution to the minimization problem

inf
ϑ

( ∫
Rn(ε) ϖ(dε) +

1

ϱ
KL(ϖ | ”)

)

where the infimum is taken over all probability distributions ϖ on RP . Hence, ”ε(· | Dn) will concentrate
at parameters ε with a small empirical risk Rn(ε), but it takes into account a regularization term
determined by the Kullback-Leibler divergence (denoted by KL, see (6.2) for a definition) to the prior
distribution ” and weighted via the inverse temperature parameter ϱ > 0. This optimization problem
has a unique solution given by

”ε(dε | Dn) ⇑ exp
(

↗ ϱRn(ε)
)
”(dε), (2.1)

see Alquier [2] or Lemma 15 below. While (2.1) coincides with the classical Bayesian posterior distribution
if Yi = fω(Xi) + ωi with i.i.d. ωi ⇓ N (0, n

2ε ), the so-called tempered likelihood, see e.g. Bissiri et al. [12],
Guedj [29], exp(↗ϱRn(ε)) serves as a proxy for the unknown distribution of the observations given ε.
As we will see, the method is indeed applicable under quite general assumptions on the regression model.

Based on the Gibbs posterior distribution the regression function can be estimated via a random
draw from the posterior

f̂ε := fω̂ω
for ε̂ε | Dn ⇓ ”ε(· | Dn), (2.2)

or via the posterior mean

f̄ε := E
[
fω̂ω

∣∣ Dn

]
=

∫
fω ”ε(dε | Dn). (2.3)

Another popular approach is to use the maximum a posteriori (MAP) estimator, but we will focus on
the previous two estimators.

To apply the estimators f̂ε and f̄ε in practice, we need to sample from the Gibbs posterior. The
MCMC approach is to construct a Markov chain (ε(k))k→N0 with stationary distribution ”ε(· | Dn), see
[46]. In particular, the Langevin MCMC sampler is given by

ε(k+1) = ε(k) ↗ ς⇔ωRn(ε(k)) + sWk, (2.4)

where ⇔ωRn(ε) denotes the gradient of Rn(ε) with respect to ε, ς > 0 is the learning rate and sWk ⇓
N (0, s2EP ) is i.i.d. white noise with noise level s > 0. This approach can also be interpreted as a
noisy version of the gradient descent method commonly used to train neural networks. In practice
this approach requires careful tuning of the procedural parameters and Langevin-MCMC su"ers from
relatively slow polynomial convergence rates of the distribution of ε(k) to the target distribution ”ε(· |
Dn), see [42, 16]. Only in special cases, the convergence rates are faster, see e.g. Freund et al. [26] for
an overview and Dalalyan & Riou-Durand [19] for the case of log-concave densities. This convergence
rate can be considerably improved by adding an MH step resulting in the Metropolis-adjusted Langevin
algorithm (MALA), see [47].

Applying the generic MH algorithm to ”ε(· | Dn) and taking into account that the prior ” is uniform,
we obtain the following iterative method: Starting with some initial choice ε(0) ↑ RP , we successively
generate ε(k+1) given ε(k), k ↑ N0, by

ε(k+1) =

{
ε↑ with probability φ(ε↑ | ε(k))

ε(k) with probability 1 ↗ φ(ε↑ | ε(k))
,

4



where ε↑ is a random variable drawn from some conditional proposal density q(· | ε(k)) and the acceptance
probability is chosen as

φ(ε↑ | ε) = exp
(

↗ ϱRn(ε↑) + ϱRn(ε)
)

[↓B,B]P (ε↑)
q(ε | ε↑)

q(ε↑ | ε)
⇒ 1. (2.5)

In view of (2.4) the probability density q of the proposal distribution is given by

q(ε↑ | ε) =
1

(2↼s2)P/2
exp

(
↗ 1

2s2

∣∣ε↑ ↗ ε + ς⇔ωRn(ε)
∣∣2

)
. (2.6)

The standard deviation s should not be too large as otherwise the acceptance probability might be too
small. As a result the proposal would rarely be accepted, the chain might not be su!ciently randomized
and the convergence to the invariant target distribution would be too slow in practice. On the other
hand, s should not be smaller than the shift ς⇔ωRn(ε) in the mean, since otherwise q(ε | ε↑) might be
too small. The MH step ensures that (ε(k))k→N0 is a Markov chain with invariant distribution ”ε(· | Dn)
(under rather mild conditions on q). The convergence to the invariant distribution follows from Roberts
& Tweedie [48, Theorem 2.2] with geometric rate.

To calculate the estimators f̂ε and f̄ε from (2.2) and (2.3), respectively, one chooses a burn-in time
b ↑ N to let the distribution of the Markov chain stabilize at its invariant distribution and then sets

f̂ε = fω(b) and f̄ε =
1

N

N∑

k=1

fω(b+ck) .

A su!ciently large gap length c ↑ N ensures the necessary variability and reduced dependence between
ε(b+ck) and ε(b+c(k+1)), whereas N ↑ N has to be large enough for a good approximation of the expec-
tation by the empirical mean.

2.2 Stochastic Metropolis-Hastings
The gradient has to be calculated only once in each MALA iteration. Hence, using the full gradi-
ent ⇔ωRn(ε) = 1

n

∑n
i=1 ⇔ωϑi(ε), the additional computational price of MALA compared to training

a standard neural network by empirical risk minimization only comes from a larger number of neces-
sary iterations due to the rejection with probability 1 ↗ φ(ε↑ | ε(k)). For large datasets however the
standard training of a neural network would rely on a stochastic gradient method, where the gradient
1
m

∑
i→B ⇔ωϑi(ε) is only calculated on (mini-)batches B ↓ {1, . . . , n} of size m < n. While we could

replace ⇔ωRn(ε) in (2.6) by a stochastic approximation without any additional obstacle, the MH step
still requires the calculation of the loss ϑi(ε↑) for all 1 ↫ i ↫ n in (2.5).

To avoid a full evaluation of the empirical risk Rn(ε), a natural approach is to replace the empirical
risks in φ(ε↑ | ε) by a batch-wise approximation, too. To study the consequences of this approximation
we follow a pseudo-marginal MH approach, see [4, 37, 9].

We augment our target distribution by a set of auxiliary random variables Zi
i.i.d.⇓ Ber(↽) with some

↽ ↑ (0, 1] and aim for a reduction of the empirical risk Rn(ε) to the stochastic approximation

Rn(ε, Z) :=
1

n↽

n∑

i=1

Ziϑi(ε)

in the algorithm. Hence, we define the joint target distribution by

”̄ε,ϖ(ε, z | Dn) ⇑
n∏

i=1

↽zi(1 ↗ ↽)1↓zi exp
(

↗ ϱRn(ε, z)
)
”(dε)

⇑ exp
(

↗ ϱRn(ε, z) + log
( ↽

1 ↗ ↽

) n∑

i=1

zi

)
”(dε), z ↑ {0, 1}n.
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The marginal distribution in ε is then given by

”̄ε,ϖ(ε | Dn) =
∑

z→{0,1}n

”̄ε,ϖ(ε, z | Dn) ⇑
n∏

i=1

(
↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)
”(dε). (2.7)

As proposal for the MH algorithm we use

q̄(ε↑, z↑ | ε, z) = qs(ε
↑ | ε, z)

n∏

i=1

↽z→
i(1 ↗ ↽)1↓z→

i with (2.8)

qs(ε
↑ | ε, z) =

1

(2↼s2)P/2
exp

(
↗ 1

2s2

∣∣ε↑ ↗ ε + ς⇔ωRn(ε, z)
∣∣2

)
.

Hence, the proposed Z ↑ = z↑ is indeed a vector of independent Ber(↽)-random variables and qs(ε↑ | ε, z) is
the stochastic analogue to q from (2.6) with a stochastic gradient. The resulting acceptance probabilities
are given by

φ(ε↑, z↑ | ε, z) =
q̄(ε, z | ε↑, z↑)”̄ε,ϖ(ε↑, z↑ | Dn)

q̄(ε↑, z↑ | ε, z)”̄ε,ϖ(ε, z | Dn)
⇒ 1

=
qs(ε | ε↑, z↑)

qs(ε↑ | ε, z) [↓B,B]P (ε↑)e↓εRn(ω→,z→)+εRn(ω,z) ⇒ 1.

We observe that φ(ε↑, z↑ | ε, z) corresponds to a stochastic MH step where we have to evaluate the
loss ϑi(ε↑) for the new proposal ε↑ only if z↑

i = Z ↑
i ⇓ Ber(↽) is one, i.e. with probability ↽. Calculating

φ(ε↑, z↑ | ε, z) thus requires only few evaluations of ϑi(ε) for small values of ↽. The expected number of
data points on which the gradient and the loss have to be evaluated is n↽ and corresponds to a batch
size of m = n↽.

Generalizing (2.2), we define the stochastic MH estimator

f̂ε,ϖ := fω̂ω,ε
for ε̂ε,ϖ | Dn ⇓ ”̄ε,ϖ(· | Dn). (2.9)

For ↽ = 1 we recover the standard MALA.
As discussed by Bardenet et al. [9], the previous derivation reveals that the stochastic MH step leads

to a di"erent invariant distribution of the Markov chain, namely (2.7) instead of the Gibbs posterior
from (2.1). Writing

”̄ε,ϖ(ε | Dn) ⇑ exp
(
↗ ϱR̄n,ϖ(ε)

)
”(dε) with R̄n,ϖ(ε) := ↗ 1

ϱ

n∑

i=1

log
(
↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)
, (2.10)

we observe that ”̄ε,ϖ(· | Dn) is itself a Gibbs posterior distribution, the surrogate posterior, corresponding
to the modified risk R̄n,ϖ(ε). Note that ”̄ε,ϖ(· | Dn) coincides with ”ε(· | Dn) for ↽ = 1 and thus f̂ε = f̂ε,1

and f̄ε = f̄ε,1 in distribution. Whether ”̄ε,ϖ(ε | Dn) also behaves as our original target distribution
”ε(ε | Dn) for ↽ < 1 depends on the choice of ϱ and ↽:

Lemma 1. If f and all fω are bounded by some constant C > 0, then we have

1

n↽
KL

(
”̄ε,ϖ(· | Dn)

∣∣ ”ε(· | Dn)
)

↫
( ϱ

n↽

)2(
64C4 +

4

n

n∑

i=1

ω4
i

)
.

For ↽ < 1 and the probability distribution ⇀ε,ϖ(ε | Dn) :⇑ exp
(
↽

∑n
i=1 e↓ ω

nε ϱi(ω))”(dε) we moreover
have

1

n↽
KL

(
”̄ε,ϖ(· | Dn)

∣∣ ⇀ε,ϖ(· | Dn)
)

↫ ↽

1 ↗ ↽
.
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Figure 1: Points: Y1, . . . , Yn ⇓ N (0, 0.5) for n = 10. Solid lines: densities of ”̄ε,ϖ(· | Dn) with ϱ = 10n
(blue) and ϱ = n/2 (orange) and ↽ = 0.9 (left) and ↽ = 0.1 (right). Dashed lines: corresponding densities
of ”ε(· | Dn). Dotted lines: corresponding densities of ⇀ε,ϖ(· | Dn).

On the one hand, if ε
nϖ is su!ciently small, then the surrogate posterior ”̄ε,ϖ(· | Dn) is indeed a

good approximation for the Gibbs posterior ”ε(· | Dn). On the other hand, for ↽ → 0 the distribution
”̄ε,ϖ(· | Dn) behaves as the distribution ⇀ε,ϖ(· | Dn) with density proportional to

exp
(
↽

n∑

i=1

e↓ ω
nε ϱi(ω)

)
”(dε).

For large ε
nϖ the terms e↓ ω

nε ϱi(ω) rapidly decay for all ε with ϑi(ε) > 0, i.e. ⇀ε,ϖ(· | Dn) emphasizes
interpolating parameter choices. For all ε where ε

nϖϑi(ε) is relatively large the density converges to a
constant. Therefore, in the extreme case ↽ → 0 and ε

nϖ → ≃ the distribution ⇀ε,ϖ(· | Dn) and thus
”̄ε,ϖ(· | Dn) converge to the uninformative prior with interpolating spikes at parameters where ϑi(ε) are
zero.

We illustrate Lemma 1 in a simple setting where Yi = N (0, 0.5) and fω(x) = ε for ε ↑ [↗1, 1]. The
densities of the measures ”(· | Dn), ”̄(· | Dn) and ⇀(· | Dn) are shown in Fig. 1 for di"erent choices
of ϱ and ↽. Fig. 1 confirms the predicted approximation properties: ”̄ε,ϖ(· | Dn) behaves similarly to
”ε(· | Dn) if ϱ is not too large (violet lines) or ↽ is not too small (left figure). Additionally, we observe
that ”̄ε,ϖ(· | Dn) is still informative if ϱ is in the order n↽ even if it is not close to the Gibbs posterior
at all.

The scaling of the Kullback-Leibler distance with n↽ in Lemma 1 is quite natural in this setting.
In particular, applying an approximation result from the variational Bayes literature by Ray & Szabó
[45, Theorem 5] we obtain for the two reference measures Q ↑ {”ε(· | Dn), ⇀ε,ϖ(· | Dn)} and a high
probability parameter set #n with Q(#c

n) ↫ Ce↓nϖ for some constant C > 0 that

E
[
”̄ε,ϖ(#n | Dn)

]
↫ 2

n↽
E

[
KL

(
”̄ε,ϖ(· | Dn)

∣∣ Q
)]

+ Ce↓nϖ/2. (2.11)

Hence, for ε
nϖ → 0 we could analyze the surrogate posterior via the Gibbs posterior itself at the cost

of the approximation error 1
nϖ KL

(
”̄ε,ϖ(ε | Dn)

∣∣ ”ε(ε | Dn)
)
. Instead of this route, we will directly

investigate ”̄ε,ϖ(· | Dn) which especially allows for ϱ in the order of n↽.

7



2.3 Corrected stochastic MALA
The computational advantage of the stochastic MH algorithm due to the reduction of the information
parameter from n to ↽n comes at the cost of a slower convergence rate, see Theorem 5.

To remedy this loss while retaining scalability, we define another joint target distribution as

”̃ε,ϖ(ε, z | Dn) ⇑
n∏

i=1

(
e↓ ω

n ϱi(ω)zi(1 ↗ ↽)1↓zi
)
”(dε)

⇑ exp
(

↗ ϱ

n

n∑

i=1

ziϑi(ε) ↗ log(1 ↗ ↽)
n∑

i=1

zi

)
”(dε), z ↑ {0, 1}n,

with marginal distribution in ε given by

”̃ε,ϖ(ε | Dn) =
∑

z→{0,1}n

”̃ε,ϖ(ε, z | Dn) ⇑
n∏

i=1

(
↽
e↓ ω

n ϱi(ω)

↽
+ 1 ↗ ↽

)
”(dε) = exp

(
↗ ϱR̃n,ϖ(ε)

)
”(dε)

with

R̃n,ϖ(ε) := ↗ 1

ϱ

n∑

i=1

log
(
e↓ ω

n ϱi(ω) + 1 ↗ ↽
)
. (2.12)

Compared to R̄n,ϖ from (2.10) there is no ↽ in the first term in the logarithm. In line with (2.2) and
(2.3), we obtain the estimators

f̃ε,ϖ := fω̃ω,ε
for ε̃ε,ϖ | Dn ⇓ ”̃ε,ϖ(· | Dn) (2.13)

and
f̄ε,ϖ := E

[
fω̃ω,ε

∣∣ Dn

]
=

∫
fω ”̃ε,ϖ(dε | Dn). (2.14)

To sample from ”̃ε,ϖ(· | Dn) the MH algorithm with proposal density q(ε↑, z↑ | ε, z) = qs(ε↑ |
ε, z)

∏n
i=1 ↽z→

i(1 ↗ ↽)1↓z→
i as in (2.8) leads to the acceptance probabilities

φ(ε↑, z↑ | ε, z) =
qs(ε | ε↑, z↑)

qs(ε↑ | ε, z) [↓B,B]P (ε↑) exp
(

↗
n∑

i=1

z↑
i

(
ε
nϑi(ε

↑) + log ↽
)

+
n∑

i=1

zi

(
ε
nϑi(ε) + log ↽

))
⇒ 1.

To take the randomized batches into account, we thus introduce a small correction term log ϖ
ε |Z| =

OP(n
ε↽ log ↽) in the empirical risks. The resulting surrogate posterior ”̃ε,ϖ(ε | Dn) achieves a considerably

improved approximation of the Gibbs distribution ”ε(· | Dn):

Lemma 2. If f and all fω are bounded by some constant C > 0, then we have

1

n
KL

(
”̃ε,ϖ(· | Dn) | ”ε/(2↓ϖ)(· | Dn)

)
↫

(ϱ

n

)2(
32C4 +

2

n

n∑

i=1

ω4
i

)
.

Compared to Lemma 1, the approximation error of ”̃ε,ϖ(· | Dn) in terms of the Kullback-Leibler
distance is now determined by the full sample size n instead of the possibly much smaller batch size
↽n as for the stochastic MH algorithm. The only price to pay is a reduction of the inverse temperature
parameter ϱ by the factor (2↗↽)↓1 ↑ [ 12 , 1]. As already mentioned in (2.11), we can conclude contraction
and coverage results for ”̃ε,ϖ(· | Dn) by combining Ray & Szabó [45, Theorem 5] with Lemma 2 if
ϱ/n → 0. A direct analysis of ”̃ε,ϖ(· | Dn) will even allow for ϱ of the order n in our main results and
thus lead to results as good as we can hope for the Gibbs measure itself.

The corrected stochastic MALA (csMALA) is summarized in Algorithm 1. The implementation omits
the restriction of the proposed network weights to [↗B, B]P which is practically negligible for su!ciently
large constant B and the correction term log ϖ

ε |Z| = OP(n
ε↽ log ↽) in the empirical risk is weighted by

some tuning parameter ⇁ ↭ 0. For ⇁ = 0 we recover the uncorrected method. In theory we always set
⇁ = 1, but in practice the flexibility gained from choosing ⇁ was beneficial.
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Algorithm 1 csMALA - corrected stochastic Metropolis adjusted Langevin Algorithm

Input: inverse temperature ϱ > 0, learning rate ς > 0, standard deviation s > 0,
correction parameter ⇁ ↭ 0, batch size m ↑ {1, . . . , n}, burn-in b ↑ N,
gap length c ↑ N, number of draws N ↑ N.
1. Initialize ε(0) ↑ RP

and Z(0) ⇓ Ber(m
n )↔n

.

2. Calculate R(0)
n = 1

n

∑n
i=1 Z(0)

i ϑi(ε(0)) + ⇁ log ϖ
ε |Z(0)| and ⇔R(0)

n = ⇔ωRn(ε(0), Z(0)).

3. For k = 0, . . . , b + cN do:

(a) Draw Z ↑ ⇓ Ber(m
n )↔n.

(b) Draw ε↑ ⇓ N (ε(k) ↗ ς⇔R(k)
n , s2) and calculate

R↑
n = 1

n

∑n
i=1 Z ↑

iϑi(ε↑) + ⇁ log ϖ
ε |Z ↑| and ⇔R↑

n = ⇔ωRn(ε↑, Z ↑).

(c) Calculate acceptance probability

φ(k+1) = exp
(
ϱR(k)

n +
1

2s2

∣∣ε↑ ↗ ε(k) + ς⇔R(k)
n

∣∣2 ↗ ϱR↑
n ↗ 1

2s2

∣∣ε(k) ↗ ε↑ + ς⇔R↑
n

∣∣2
)
.

(d) Draw u ⇓ U([0, 1]). If u ↫ φ(k+1)
,

then set ε(k+1) = ε↑, R(k+1)
n = R↑

n, ⇔R(k+1)
n = ⇔R

→

n,

else set ε(k+1) = ε(k), R(k+1)
n = R(k)

n , ⇔R(k+1)
n = ⇔R(k)

n .

Output: f̃ε,ϖ = fω(b), f̄ε,ϖ = 1
N

∑N
k=1 fω(b+ck)

3 Oracle inequality and its consequences

In this section we state the statistical guarantees for the estimators defined in terms of the surrogate
posterior distributions. It is worth noting that our analysis is independent of the choice of the proposal
distribution. We derive oracle inequalities for the estimators f̂ε,ϖ (Theorem 5) and f̃ε,ϖ (Theorem 3) and
as a consequence an analogous oracle inequality for f̄ε,ϖ (Corollary 6), which verify that these estimators
are not much worse than the optimal choice for ε. We also discuss the properties of credible balls.

In the sequel the estimator f̂ is chosen as a neural network. More precisely, we consider a feedforward
multilayer perceptron with p ↑ N inputs, L ↑ N hidden layers and constant width r ↑ N. The latter
restriction is purely for notational convenience. The rectified linear unit (ReLU) φ(x) := max{x, 0}, x ↑
R, is used as activation function. We write φvx :=

(
φ(xi + vi)

)
i=1,...,d

for vectors x, v ↑ Rd. With this
notation we can represent such neural networks as

gω(x) := W (L+1)φv(L)W (L)φv(L↑1) · · · W (2)φv(1)W (1)x + v(L+1), x ↑ Rp,

where the parameter vector ε contains all entries of the weight matrices W (1) ↑ Rr↗p, W (2), . . . , W (L) ↑
Rr↗r, W (L+1) ↑ R1↗r and the shift (‘bias’) vectors v(1), . . . , v(L) ↑ Rr, v(L+1) ↑ R. The total number of
network parameters is

P := (p + 1)r + (L ↗ 1)(r + 1)r + r + 1.

A layer-wise representation of gω is given by

x(0) := x ↑ Rp,

x(l) := φ(W (l)x(l↓1) + v(l)), l = 1, . . . , L, (3.1)

gω(x) := x(L+1) := W (L+1)x(L) + v(L+1),

where the activation function is applied coordinate-wise. We denote the class of all such functions gω by
G(p, L, r). For some C ↭ 1, we also introduce the class of clipped networks

F(p, L, r, C) :=

fω = (↗C) ⇐ (gω ⇒ C)

∣∣ gω ↑ G(p, L, r)

.
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3.1 Oracle inequality

Our first main result compares the performance of the estimator f̃ε,ϖ from (2.13) to the best possible
network fω↓ for the oracle choice

ε↘ ↑ arg min
ω→[↓B,B]P

R(ε) = arg min
ω→[↓B,B]P

E(ε). (3.2)

The oracle is not accessible to the practitioner because R(ε) depends on the unknown distribution of
(X, Y ). A solution to the minimization problem in (3.2) always exists since [↗B, B]P is compact and
ε ↖→ R(ε) is continuous. If there is more than one solution, we choose one of them. We need some mild
assumption on the regression model.

Assumption A.

1. Bounded regression function: For some C ↭ 1 we have ↘f↘≃ ↫ C.

2. Second moment of inputs: For some K ↭ 1 we have E[|X|2] ↫ K.

3. Conditional sub-Gaussianity of observation noise: There are constants σ, $ > 0 such that

E[|ω|k | X] ↫ k!

2
σ2$k↓2 a.s., for all k ↭ 2.

4. Conditional symmetry of observation noise: ω is conditionally on X symmetric.

Note that neither the loss function nor the data are assumed to be bounded. We obtain the following
non-asymptotic oracle inequality for our estimator f̃ε,ϖ from (2.13):

Theorem 3 (PAC-Bayes oracle inequality for csMALA). Under Assumption A there are constants
Q0, Q1 > 0 depending only on C, $, σ such that for ϱ = n/Q0 and su!ciently large n we have for all
▷ ↑ (0, 1) with probability of at least 1 ↗ ▷ that

E(f̃ε,ϖ) ↫ 12E(fω↓) +
Q1

n

(
PL log(n) + log(2/▷)

)
. (3.3)

Remark 4. For ↽ = 1 we do not need the conditional symmetry condition in Assumption A. An explicit
admissible choice for ϱ is ϱ = n/

(
25C($ ⇐ (2C)) + 27(C2 + σ2) + 23(σC + σ2)

)
. The dependence of Q1

on C, $, σ is at most quadratic and n ↭ n0 = 2 ⇐ B ⇐ K ⇐ L ⇐ r ⇐ p is su!ciently large.
The right-hand side of (3.3) can be interpreted similarly to the classical bias-variance decomposition

in nonparametric statistics. The first term E(fω↓) = E[(fω↓(X) ↗ f(X))2] quantifies the approximation
error while second term is an upper bound for the stochastic error. Theorem 3 is in line with classical
PAC-Bayes oracle inequalities, see Bissiri et al. [12], Guedj & Alquier [30], Zhang [60]. In particular,
Chérief-Abdellatif [17] has obtained a similar oracle inequality for a variational approximation of the
Gibbs posterior distribution. A main step in the proof of Theorem 3 is to verify the compatibility
between the risk R̃n,ϖ from (2.12) and the empirical risk Rn as established in Proposition 13.

We obtain a similar result for f̂ε,ϖ from (2.9). Note that here the stochastic error term is of order
O(PL

nϖ ) instead of O(PL
n ) as in Theorem 3 (up to logarithms).

Theorem 5 (Oracle inequality for sMALA). Under Assumption A there are constants Q↑
0, Q

↑
1 > 0

depending only on C, $, σ such that for ϱ = n↽/Q↑
0 and su!ciently large n we have for all ▷ ↑ (0, 1) with

probability of at least 1 ↗ ▷ that

E(f̂ε,ϖ) ↫ 4E(fω↓) +
Q↑

1

n↽

(
PL log(n) + log(2/▷)

)
.
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In view of Theorem 5 the following results are also true for the stochastic MH estimator if n is
replaced by n↽. However, we focus only on the analysis of ”̃ε,ϖ(· | Dn) for the sake of clarity.

The 1↗▷ probability in Theorem 3 takes into account the randomness of the data and of the estimate.
Denoting

r2
n := 12↘fω↓ ↗ f↘2

L2(PX) +
Q1

n
PL log(n), (3.4)

we can rewrite (3.3) as

E
[
”̃ε,ϖ

(
↘fω̃ω,ε

↗ f↘2
L2(PX) > r2

n + t2
∣∣ Dn

)]
↫ 2e↓nt2/Q1 , t > 0,

which is a contraction rate result in terms of a frequentist analysis of the nonparametric Bayes method.
An immediate consequence is an oracle inequality for the posterior mean f̄ε,ϖ from (2.14).

Corollary 6 (Posterior mean). Under the conditions of Theorem 3 we have with probability of at least
1 ↗ ▷ that

E(f̄ε,ϖ) ↫ 12E(fω↓) +
Q2

n

(
PL log(n) + log(2/▷)

)

with a constant Q2 only depending on C, $, σ from Assumption A.

Using the approximation properties of neural networks, the oracle inequality yields the optimal rate
of convergence (up to a logarithmic factor) over the following class of hierarchical functions:

H(q,d, t, ◁, C0) :=


gq ↙ · · · ↙ g0 : [0, 1]p → R
∣∣∣ gi = (gij)

⇐
j : [ai, bi]

di → [ai+1, bi+1]
di+1 ,

gij depends on at most ti arguments,

gij ↑ Cςi
ti

([ai, bi]
ti , C0), for some |ai|, |bi| ↫ C0


,

where d := (p, d1, . . . , dq, 1) ↑ Nq+2, t := (t0, . . . , tq) ↑ Nq+1, ◁ := (◁0, ..., ◁q) ↑ (0, ≃)q+1 and where
Cςi

ti
([ai, bi]ti , C0) denote classical Hölder balls with Hölder regularity ◁i > 0. For a detailed discussion

of H(q,d, t, ◁, C0), see [51]. Theorem 3 reveals the following convergence rate which is in line with the
upper bounds by Schmidt-Hieber [51] and Kohler & Langer [35]:

Proposition 7 (Rates of convergence). Let X ↑ [0, 1]p. In the situation of Theorem 3, there exists a
network architecture (L, r) = (C1 log n, C2(n/(log n)3)t↓/(4ς↓+2t↓)) with C1, C2 > 0 only depending on
upper bounds for q, |d|≃, |◁|≃, C0 such that the estimators f̃ε,ϖ and f̄ε,ϖ satisfy for su!ciently large n
uniformly over all hierarchical functions f ↑ H(q,d, t, ◁, C0)

E(f̃ε,ϖ) ↫ Q3

( (log n)3

n

)2ς↓/(2ς↓+t↓)
+ Q3

log(2/▷)

n
and

E(f̄ε,ϖ) ↫ Q4

( (log n)3

n

)2ς↓/(2ς↓+t↓)
+ Q4

log(2/▷)

n

with probability of at least 1 ↗ ▷, respectively, where ◁↘ and t↘ are given by

◁↘ := ◁↘
i↓ , t↘ := t↘i↓ for i↘ ↑ arg min

i=0,...,q

2◁↘
i

2◁↘
i + t↘i

and ◁↘
i := ◁i

q∏

l=i+1

(◁l ⇒ 1).

The constants Q3 and Q4 only depend on upper bounds for q,d, ◁ and C0 as well as the constants from
Assumption A.

Remark 8. Similarly, there exists a network architecture (L, r) = (C1(n/ log n)t↓/(4ς↓+2t↓), C2) such that
we achieve the same rate of convergence just with log n instead of (log n)3.

It has been proved by Schmidt-Hieber [51] that this is the minimax optimal rate of convergence for
the nonparametric estimation of f up to logarthmic factors. Studying the special case of classical Hölder
balls Cς

p ([0, 1]p, C0), a contraction rate of order n↓2ς/(2ς+p) has been derived by Polson & Ro#ková [44]
and Chérief-Abdellatif [17].
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3.2 Credible sets
In addition to the contraction rates, the Bayesian approach o"ers a possibility for uncertainty quan-
tification. For this, we will assume that the distribution PX of X is known. We define the credible
ball

Ĉ(0φ) := {h ↑ L2 : ↘h ↗ f̄ε,ϖ↘L2(PX) ↫ 0φ}, φ ↑ (0, 1),

with critical values

0φ := arg inf
↼>0


”̃ε,ϖ(ε : ↘fω ↗ f̄ε,ϖ↘L2(PX) ↫ 0 | Dn) > 1 ↗ φ


.

By construction Ĉ(0φ) is the smallest L2-ball around f̄ε,ϖ which contains 1 ↗ φ mass of the surrogate
posterior measure. Despite the posterior belief, it is not necessarily guaranteed that the true regression
function is contained in Ĉ(0φ). More precisely, the posterior distribution might be quite certain, in the
sense that the credible ball is quite narrow, but su"ers from a significant bias. In general, it might happen
that P(f ↑ Ĉ(0φ)) → 0, see e.g. Knapik et al. [34, Theorem 4.2] in a Gaussian model. To circumvent this,
Rousseau & Szabó [49] have introduced inflated credible balls where the critical value is multiplied with
a slowly diverging factor. While they proved that this method works in several classical nonparametric
models with a sieve prior, our neural network setting causes an additional problem. In order to prove
coverage, we would like to compare norms in the intrinsic parameter space, i.e. the space of the network
weights, with the norm of the resulting predicted regression function. While the fluctuation of fω can
be controlled via the fluctuation of ε, more precisely we have ↘fω ↗ fω→↘L2(PX) = O(%(L, r) · |ε ↗ ε↑|≃)
with %(L, r) := (2rB)L, see Lemma 17 below, the converse direction does not hold. Even locally around
an oracle choice ε↘ we cannot hope to control |ε|≃ via ↘fω↘L2(PX) in view of the ambiguous network
parametrization. As a consequence, we define another critical value at the level of the parameter space

0ω
φ := arg inf

↼>0


”̃ε,ϖ(ε : |ε|≃ ↫ %(L, r)↓10 | Dn) > 1 ↗ φ


.

Remark 9. The factor %(L, r) in the definition of 0ω
φ could be improved by a di"erent geometry in the

parameter space at the cost of a di"erent approximation theory for the resulting network classes. For
instance, we may assume that all weight matrices are bounded by B in the ϑ2-operator norm ↘ ·↘2, which
is in line with the weight scaling employed in the theory of neural tangent spaces, cf. [32]. In this case a
minor modification of Lemma 17 yields ↘fω↗fω→↘L2(PX) = O((2B)L) ·↘ε↗ε↑↘ where ↘ε↘ is defined as the
maximal ↘ · ↘2-norm of all weight matrices and all | · |2-norms of the biases. The resulting critical value
is given by arg inf↼>0


”̃ε,ϖ(ε : ↘ε↘ ↫ (2B)↓L0 | Dn) > 1 ↗ φ


avoiding the undesirable dependence on

the network width r.
Both critical values measure the fluctuation of the posterior. The theoretical properties of the credible

ball are summarized in the following theorem:

Theorem 10 (Credible balls). Under Assumption A and with constants Q0, Q1, Q2 > 0 from above we
have for ϱ = n/(2Q0), r2

n from (3.4) and su!ciently large n that

P
(

diam
(
Ĉ(0φ)

)
↫ 4


2r2

n +
4(Q1 ⇐ Q2)

n
log

2

φ

)
↭ 1 ↗ φ.

If the depth L and the width r are chosen such that L log(n)E(fω↓) = O(PL log(n)/ϱ), then we have for
some constant 1 >

∝
L log n depending on K, p and φ that

P
(
f ↑ Ĉ(10ω

φ )
)

↭ 1 ↗ φ.

Therefore, the order of the diameter of Ĉ(0φ) is of the best possible size if L and r are chosen as
in Proposition 7. On the other hand, the larger credible set Ĉ(10ω

φ ) defines an honest confidence set
for a fixed class H(q,d, t, ◁, C0) of the regression function if 1 is chosen su!ciently large depending on
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the class parameters. That is, f ↑ H(q,d, t, ◁, C0) is contained in Ĉ(10ω
φ ) with probability of at least

1 ↗ φ. In that sense 1 is a non-asymptotic version of the inflation factor by Rousseau & Szabó [49]. To
circumvent the unknown constant 1, we can conclude from Theorem 10 that for any sequence an ′ ≃,
e.g. an = log n, we have

P
(
f ↑ Ĉ(an0ω

φ )
)

↭ 1 ↗ φ for su!ciently large n.

The condition L log(n)E(fω↓) = O(PL log(n)/ϱ) for the coverage result means that the rate is dom-
inated by the stochastic error term and can be achieved with a slightly larger network compared to
Proposition 7. This guarantees that the posterior is not underfitting and that the posterior’s bias is
covered by its dispersal.

4 Learning the width

To balance the approximation error term and the stochastic error term in (3.4), we have to choose an
optimal network width. In this section we present a fully data-driven approach to this hyperparameter
optimization problem which avoids evaluating competing network architectures on a validation set. To
account for the model selection problem, we augment the approach with a mixing prior, which prefers
narrower neural networks. Equivalently, this approach can be understood as a hierarchical Bayes method
where we put a geometric distribution on the hyperparameter r. While this method has interesting
theoretical properties, an e!cient implementation is challenging and left for future research.

We set
q” =

n∑

r=1

2↓r”r


(1 ↗ 2↓n),

where ”r = U([↗B, B]Pr ) with

Pr := (p + 1)r + (L ↗ 1)(r + 1)r + r + 1.

The basis 2 of the geometric weights is arbitrary and can be replaced by a larger constant to assign even
less weight to wide networks, but the theoretical results remain the same up to constants.

We obtain our adaptive estimator qfε,ϖ by drawing a parameter ε from the surrogate-posterior distri-
bution with respect to this prior, i.e.

qfε,ϖ := fqωω,ε
for qεε,ϖ | Dn ⇓ q”ε,ϖ(· | Dn) with q”ε,ϖ(ε | Dn) ⇑ exp

(
↗ ϱR̃n,ϖ(ε)

)q”(dε).

This modification allows the estimator to adapt to the optimal network width and we can compare its
performance against that of the network corresponding the oracle choice of the parameter

ε↘
r ↑ arg min

ω→[↓B,B]Pr

R(ε) (4.1)

given any width r. We obtain the following adaptive version of Theorem 3:

Theorem 11 (Width-adaptive oracle inequality). Under Assumption A there is a constant Q5 > 0
depending only on C, $, σ such that for ϱ = n/Q0 (with Q0 from Theorem 3) and su!ciently large n we
have for all ▷ ↑ (0, 1) with probability of at least 1 ↗ ▷ that

E( qfε,ϖ) ↫ min
r=1,...,n

(
12E(fω↓

r
) +

Q5

n

(
PrL log(n) + log(2/▷)

))
.

Since the modified estimator mimics the performance of the optimal network choice regardless of
width, we obtain the following width-adaptive version of Proposition 7 with no additional loss in the
convergence rate:
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Corollary 12 (Width-adaptive rates of convergence). Let X ↑ [0, 1]p. In the situation of Theo-
rem 11, there exists a network depth L = C3 log n with C3 > 0 only depending on upper bounds for
q, |d|≃, |◁|≃, C0 such that the estimator qfε,ϖ satisfies for su!ciently large n uniformly over all hierar-
chical functions f ↑ H(q,d, t, ◁, C0)

E( qfε,ϖ) ↫ Q6

( (log n)3

n

)2ς↓/(2ς↓+t↓)
+ Q6

log(2/▷)

n

with probability of at least 1 ↗ ▷, where ◁↘ and t↘ are as in Proposition 7. The constant Q6 only depends
on upper bounds for q, |d|≃, |◁|≃ and C0 as well as the constants C, $, σ from Assumption A.

For sparse neural networks, contraction rates for hierarchical Bayes procedures have been analysed
by Polson & Ro#ková [44] and Ste"en & Trabs [53]. It has to be noted that we cannot hope to construct
credible sets with coverage as in Theorem 10 based on the adaptive posterior distribution. It is well
known that adaptive honest confidence sets are only possible under additional assumptions, e.g. self-
similarity or polished tail conditions, on the regularity of the regression function, see Ho"mann & Nickl
[31] and we remark that such conditions with respect to the network parametrization seem infeasible.

5 Numerical examples

Figure 2: 50 samples drawn from the di"erent MALA chains, given a training sample (black markers)
of 10000 points. Random variables are drawn for ↽ = 0.1. The dashed line shows the corresponding
posterior mean f̄ε.

Section 2.3 introduces a correction to the batch-wise approximation of the empirical risk when
calculating the MH step. In the following, we will show the merit of this correction for learning a
one-dimensional regression function using a feed-forward neural network of L = 2 layers of r = 100
nodes each and ReLU activation. The neural network has a total number of 10401 parameters. The
training sample of size 10000 consist of two equally populated intervals [↗0.8, ↗0.2] and [0.2, 0.8] with
Xi ⇓ U([↗0.8, ↗0.2] ∞ [0.2, 0.8]) and true regression function

f(x) =

{
1.5(x + 0.5)2 for x < 0

0.3 sin (10x ↗ 2) + 0.5 for x ↭ 0.
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MALA sMALA csMALA
ϱ n n · ↽ n · (2 ↗ ↽)
ς 10↓4 10↓4 10↓4/↽
s 0.2/

∝
P

b 100000/↽
c 5000
N 20

Table 1: Parameter choice for the di"erent
MALA chains. For ↽ = 0.1, we chose a
burn-in of b = 50000 to keep computation
costs low.

Figure 3: Histogram of the summed auxiliary variables,
that is the number of training samples contributing to the
stochastic risk, for all accepted steps. For MALA the the
MH acceptance step is calculated on the full sample and the
distribution of the samples contribution to the risk gradi-
ents is thus unbiased by the batch size.

We generate the trainng sample we generate Y = f(X)+ω by adding an observation error ω ⇓ N (0, 0.022).
In the interval between ↗0.2 and 0.2 no data is produced in order to illustrate whether the methods
recover the resulting large uncertainty due to missing data. For a su!ciently flexible model we expect
a large spread between samples from each Markov chain in this region. Fig. 2 depicts exactly this
behaviour, as well as the training sample.

To compare the convergence of MALA, stochastic MALA (sMALA) and our corrected stochastic
MALA (csMALA) within reasonable computation time, we initialize the chains with network parameters
obtained through optimization of the empirical risk with stochastic gradient descent for 2000 steps. For
this pre-training, we use a learning rate of 10↓3. The hyperparameters of the subsequent chains are listed
in Table 1. The inverse temperature is chosen to counteract the di"erent normalization terms of the risk
for (s)MALA and csMALA, as well as the reduction of the learning rate by (2↗↽) through the correction
term from Section 2.3. The proposal noise level per parameter dimension is normalized with respect to
the number of network parameters such that the total length of the noise vector is independent of the
parameter space dimension.

To further improve the e!ciency of the sampling, we restart Algorithm 1 with ε(0) set to the last
accepted parameters whenever no proposal has been accepted for 100 steps. Especially for small ↽ and
large ω, the stochastic MH algorithms exhibit the tendency to get stuck after accepting an outlier batch
with low risk.

It is also important to adapt ⇁ such that

⇁
log ↽

ϱ
∈ 1

n

n∑

i=1

ϑi(ε
(k)).

For ⇁ lower than this, a bias is introduced towards accepting updates where many points of the data
sample contributed to the stochastic risk approximation due to the Bernoulli distributed auxiliary vari-
ables. Conversely, for higher values updates are preferably accepted for low amounts of points in the risk
approximation. This bias to small batches, note the minus sign due to log ↽, can also be observed for the
uncorrected sMALA. It arises from the dependence of Rn on the sum of the drawn auxiliary variables
Zi. Fig. 3 shows a histogram of this sum for all accepted steps. A clear bias for sMALA towards small
batches can be seen. To achieve a good correction, we update ⇁ every 100 steps to fulfill the preceding
correspondence. Over the chain, the correction factor thus falls like the empirical risk with ⇁ ∋ 1 due
to the proportionality to n↓1.
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Figure 4: Average empirical risk on a validation set of 10000 points during running of the MALA chains.
We show di"erent batch probabilities ↽, as well as the values of the posterior mean (dashed lines).
Uncertainties correspond to the minimum and maximum values of 10 identical chains. For clarity, a
the simple moving average over 1501 steps is plotted. In the legend, the average acceptance probability
over all 10 chains is given. For easier interpretation of the risk values, we also show the behaviour of a
gradient-based optimization using ADAM.

We quantify the performance of the estimators gathered from the di"erent chains with an independent
validation sample Dval

nval
:= (Xval

i, Y val
i )i=1,...,nval ↓ Rp ↔ R of size nval = 10000 drawn from the same

intervals as the training sample and calculate the empirical validation risk

Rn(f̂) =
1

nval

nval∑

i=1

(
Y val

i ↗ f̂(Xval
i )

)2

during running of the chain. Fig. 4 illustrates the behaviour of the empirical validation risk for the
di"erent MALA algorithms, as well as for a simple inference fit using ADAM [33] with a learning rate of
10↓3. For a fair comparison, we calculate the gradient updates for all algorithms, including MALA and
ADAM, from Bernoulli drawn batches, and only calculate the MH step for MALA using the full training
sample. We can see, the individual samples of MALA outperform those of the sMALA chains, while
the samples from the corrected chain achieve substantially better values than those of the uncorrected
stochastic algorithm. On a level of individual samples, all chains are outperformed by the gradient-
based optimization using ADAM. Investigating the posterior means, MALA outperforms ADAM for small
↽ where our corrected algorithm reaches similar risk values as the gradient-based optimization. For
moderate values of ↽ the corrected stochastic MALA restores the performance of the full MH step for
both, posterior samples and posterior means, at a level similar to ADAM. While the acceptance rates of
MALA decrease for low ↽ and those of sMALA increase, the acceptance rates of the corrected algorithm
are stable under variation of the average batch size.

To study the empirical coverage properties, we calculate 10 individual chains per algorithm and ↽
and estimate the credible sets and their average radii. As radius of our credible balls, we approximate
the 99.5% quantile q1↓φ of the mean squared distance to the posterior mean via

0φ,n = q1↓φ

(
(h1, ..., hN )

)
with hk =

1

nval

nval∑

i=1

∣∣fω(b+ck)(Xval
i ) ↗ f̄ε,ϖ(X

val
i )

∣∣2 .
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Figure 5: Scaling of the empirical risk of the posterior
mean f̄ on a 10000 point validation set with the size
of the training sample. We scale ↽ to keep the average
batch size n↽ = 1000 constant. Errorbars report the
standard deviation of 10 identical chains.

↽ MALA sMALA csMALA
0.1 1.42 ± 0.16 13.5 ± 1.4 7.72 ± 0.82
0.3 1.10 ± 0.15 3.70 ± 0.51 2.15 ± 0.23
0.5 1.28 ± 0.11 2.76 ± 0.19 1.91 ± 0.36

Table 2: Average radii 0φ · 103 of credible sets
for φ = 0.005 calculated from 10 Monte Carlo
chains. All sets show a coverage probability
Ĉ(0φ) of 100%.

To determine the coverage probability, we then calculate the number of chains with a mean squared
distance of the posterior mean to the true regression function not exceeding this radius. The results are
shown in Table 2. While the uncertainty estimates of all algorithms remain conservative, we find the
correction term leads to considerably more precise credible sets.

To illustrate Theorem 3 and Theorem 5, we also investigate the scaling behavior of the empirical
validation risk of the posterior means with the training sample size n while keeping n↽ constant. We
expect the risk of MALA to fall with growing n, while sMALA should not decay due to the constant
n↽. The numerical simulation of Fig. 5 coincides with the theoretical expectations. For our corrected
algorithm, we regain the scaling behaviour of MALA as expected.

6 Proofs

We will start with proving the main theorems. Additional proofs of auxiliary results are postponed to
Section 6.7 and Section 6.8.

6.1 Compatibility between R̃n,ω and the excess risk

The first step in our analysis is to verify that the empirical risk R̃n,ϖ which arises from the stochastic
MH step is compatible with the excess risk E(ε) = E

[(
f(X1) ↗ fω(X1)

)2]. More precisely, we require
the following concentration inequality. A concentration inequality for the empirical risk Rn(ε) ↗ Rn(f)
follows as the special case where ↽ = 1.

Proposition 13. Grant Assumption A. Define

Ẽn(ε) := R̃n,ϖ(ε) ↗ R̃n,ϖ(f).

and set Cn,ε := ε
n

8(C2+↽2)
1↓wε/n , w := 16C($ ⇐ 2C). Then for all ϱ ↑ [0, n/w) △

[
0, n log 2

8(C2+↽2)

]
, ↽ ↑ (0, 1] and

n ↑ N we have

E
[
exp

(
ϱ
(
Ẽn(ε) ↗ E(ε)

))]
↫ exp

((
Cn,ε + ε

n (σC + σ2)
)
ϱE(ε)

)
and

E
[
exp

(
↗ ϱ

(
Ẽn(ε) ↗ E(ε)

))]
↫ exp

((
Cn,ε + 3

4 + ε
n (σC + σ2)

)
ϱE(ε)

)
.
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Proof. Define 2ϖ(x) := ↗ log
(
e↓x + 1 ↗ ↽

)
such that

Ẽn(ε) =
1

ϱ

n∑

i=1

(
2ϖ

(
ε
nϑi(ε)

)
↗ 2ϖ

(
ε
nϑi(f)

))
.

We have

Ẽn(ε) =
1

n

n∑

i=1

(
ϑi(ε) ↗ ϑi(f)

)
2↑

ϖ

(
1i

ε
nϑi(ε) + (1 ↗ 1i)

ε
nϑi(f)

)
(6.1)

with some random variables 1i ↑ [0, 1]. Using ϑ1(ε)↗ϑ1(f) =
(
f(X1)↗fω(X1)

)2
+2ω1

(
f(X1)↗fω(X1)

)
,

we can decompose the expectation of (6.1):

E
[
Ẽn(ε)

]
= E

[(
f(X1) ↗ fω(X1)

)2
2↑

ϖ

(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

)]

+ 2E
[
ω1

(
f(X1) ↗ fω(X1)

)
2↑

ϖ

(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

)]

=: E1 + E2.

We treat both terms separately. We have

1 ↭ 2↑
ϖ(x) = (1 + (1 ↗ ↽)ex)↓1

↭ 1

1 + 2(1 ↗ ↽)
↭ 1

3
for x ↑ [0, log 2]

and 2↑
ϖ(x) ↑ (0, 1] for all x ↭ 0. In particular, we observe

E1 ↫ E
[(

fω(X1) ↗ f(X1)
)2]

= E(ε).

If |ω1| ↫ 2σ, we have ε
nϑ1(·) ↫ ε

n8(C2 + σ2) ↫ log 2 for ε
n ↫ log 2

8(C2+↽2) . Hence,

E1 ↭ E
[(

f(X1) ↗ fω(X1)
)2

2↑
ϖ

(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

)
{|⇀1|↭2↽}

]

↭ 1

3
E

[(
f(X1) ↗ fω(X1)

)2P(|ω1| ↫ 2σ | X1)
]

=
1

3
E

[(
f(X1) ↗ fω(X1)

)2(
1 ↗ P(|ω1| > 2σ | X1)

)]

↭ 1

4
E

[(
f(X1) ↗ fω(X1)

)2]

where we used Chebyshev’s inequality in the last estimate. Hence, 1
4E(ε) ↫ E1 ↫ E(ε). For E2 we use

E[ω12↑
ϖ(

ε
nω2

1) | X1] = 0 by symmetry together with ϑ1(f) = ω2
1 to obtain for some random 1↑

1 ↑ [0, 1]

E2 = 2E
[
ω1

(
(f(X1) ↗ fω(X1)

)(
2↑

ϖ

(
ε
nϑ1(f) + 11

ε
n

(
ϑ1(ε) ↗ ϑ1(f)

))
↗ 2↑

ϖ

(
ε
nϑ1(f)

))]

=
2ϱ

n
E

[
ω1

(
f(X1) ↗ fω(X1)

)
11

(
ϑ1(ε) ↗ ϑ1(f)

)
2↑↑

ϖ

(
1↑
1

ε
nϑ1(ε) + (1 ↗ 1↑

1)
ε
nϑ1(f)

)]

=
ϱ

n
E

[
211

(
ω1

(
f(X1) ↗ fω(X1)

)3
+ 2ω2

1

(
f(X1) ↗ fω(X1)

)2)
2↑↑

ϖ

(
1↑
1

ε
nϑ1(ε) + (1 ↗ 1↑

1)
ε
nϑ1(f)

)]
.

Since maxy↫0
y

(1+y)2 = 1
4 , we have

|2↑↑
ϖ (x)| =

(1 ↗ ↽)ex

(1 + (1 ↗ ↽)ex)2
↫ 1

4
for x ↭ 0.

Therefore,

|E2| ↫ ϱ

n

(
1
2E

[
|ω1||fω(X1) ↗ f(X1)|3 + 2ω2

1

(
f(X1) ↗ fω(X1)

)2])
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↫ ϱ

n

(
σC + σ2

)
E(ε).

In combination with the bounds for E1 we obtain
(

1
4 ↗ ε

n (σC + σ2)
)
E(ε) ↫ E

[
Ẽn(ε)

]
↫

(
1 + ε

n (σC + σ2)
)
E(ε).

Define Zi(ε) := n
ε

(
2ϖ

(
ε
nϑi(ε)

)
↗ 2ϖ

(
ε
nϑi(f)

))
such that Ẽn(ε) = 1

n

∑n
i=1 Zi(ε). The previous bounds

for E[Ẽn(ε)] yield

E
[
exp

(
ϱẼn(ε) ↗ ϱE(ε)

)]
= E

[
e

ω
n

∑n
i=1(Zi(ω)↓E[Zi(ω)])

]
eε(E[Ẽn(ω)]↓E(ω))

↫ E
[
e

ω
n

∑n
i=1(Zi(ω)↓E[Zi(ω)])

]
e

ω2

n (↽C+↽2)E(ω)

and

E
[
exp

(
↗ ϱẼn(ε) + ϱE(ε)

)]
= E

[
e

ω
n

∑n
i=1(↓Zi(ω)↓E[↓Zi(ω)])

]
eε(E(ω)↓E[Ẽn(ω)])

↫ E
[
e

ω
n

∑n
i=1(↓Zi(ω)↓E[↓Zi(ω)])

]
e( 3ω

4 + ω2

n (↽C+↽2))E(ω).

To bound the centered exponential moments, we use Bernstein’s inequality. The second moments are
bounded by

E[Z2
i ] = E

[(
n
ε

(
2ϖ

(
ε
nϑ1(ε)

)
↗ 2ϖ

(
ε
nϑ1(f)

)))2]

= E
[((

ϑ1(ε) ↗ ϑ1(f)
)
2↑

ϖ

(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

))2]

= E
[(

(fω(X1) ↗ f(X1))
2 + 2ω1(fω(X1) ↗ f(X1))

)2
(2↑

ϖ)
2
(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

)]

↫ 2E
[(

fω(X1) ↗ f(X1)
)4

+ 4ω2
1

(
fω(X1) ↗ f(X1)

)2]

↫ 8
(
C2 + σ2

)
E(ε) =: U.

Moreover, we have for k ↭ 3

E
[
(Zi)

k
+

]
↫ E

[∣∣ϑ1(ε) ↗ ϑ1(f)
∣∣k∣∣2↑

ϖ

(
11

ε
nϑ1(ε) + (1 ↗ 11)

ε
nϑ1(f)

)∣∣k]

↫ E
[∣∣ϑ1(ε) ↗ ϑ1(f)

∣∣k]

= E[|f(X1) ↗ fω(X1) + 2ω1|k|f(X1) ↗ fω(X1)|k↓2(f(X1) ↗ fω(X1))
2]

↫ (2C)k↓2E[|f(X1) ↗ fω(X1) + 2ω1|k(f(X1) ↗ fω(X1))
2]

↫ (2C)k↓22k↓1((2C)k + k!2k↓1σ2$k↓2)E(ε)

↫ (2C)k↓2k!8k↓2
(
(2C)k↓2 ⇐ $k↓2

)
U

= k!Uwk↓2.

Hence, Bernstein’s inequality [38, inequality (2.21)] yields

E
[
e

ω
n

∑n
i=1(Zi(ω)↓E[Zi(ω)])

]
↫ exp

( Uϱ2

n(1 ↗ wϱ/n)

)
= exp

(
Cn,εϱE(ε)

)

for Cn,ε as defined in Proposition 13. The same bound remains true if we replace Zi by ↗Zi. We
conclude

E
[
exp

(
ϱẼn(ε) ↗ ϱE(ε)

)]
↫ exp

((
Cn,ε + ε

n (σC + σ2)
)
ϱE(ε)

)

and
E

[
exp

(
↗ ϱẼn(ε) + ϱE(ε)

)]
↫ exp

((
Cn,ε + 3

4 + ε
n (σC + σ2)

)
ϱE(ε)

)
.

19



Remark 14. Replacing 2ϖ by 2̄ϖ(x) := ↗ log
(
↽e↓x/ϖ + 1 ↗ ↽

)
, x ↭ 0, and using

1 ↭ 2̄↑
ϖ(x) = (↽ + (1 ↗ ↽)ex/ϖ)↓1

↭ 1

↽ + 3(1 ↗ ↽)
↭ 1

3
for x ↑ [0, ↽ log 3],

we can analogously prove under Assumption A that Ēn(ε) := R̄n,ϖ(ε) ↗ R̄n,ϖ(f) with R̄n,ϖ from (2.10)
satisfies for all ϱ ↑ [0, n/w) △

[
0, n log 3

8(C2+↽2)

]
, ↽ ↑ (0, 1] and n ↑ N:

E
[
exp

(
ϱ
(
Ēn(ε) ↗ E(ε)

))]
↫ exp

((
Cn,ε + ε

nϖ4(σC + σ2)
)
ϱE(ε)

)
and

E
[
exp

(
↗ ϱ

(
Ēn(ε) ↗ E(ε)

))]
↫ exp

((
Cn,ε + 1

4 + ε
nϖ4(σC + σ2)

)
ϱE(ε)

)
.

6.2 A PAC-Bayes bound
Let µ, ϖ be probability measures on a measurable space (E, A ). The Kullback-Leibler divergence of µ
with respect to ϖ is defined via

KL(µ | ϖ) :=

{
log

(dµ
dϑ

)
dµ, if µ ∋ ϖ

≃, otherwise
. (6.2)

The following classical lemma is a key ingredient for PAC-Bayes bounds, cf. Catoni [15, p. 159] or
Alquier [2]. We include the short proof for the sake of completeness.

Lemma 15. Let h : E → R be a measurable function such that


exp ↙h dµ < ≃. With the convention
≃ ↗ ≃ = ↗≃ it then holds that

log
( ∫

exp ↙h dµ
)

= sup
ϑ

( ∫
h dϖ ↗ KL(ϖ | µ)

)
, (6.3)

where the supremum is taken over all probability measures ϖ on (E, A ). If additionally, h is bounded from
above on the support of µ, then the supremum in (6.3) is attained for ϖ = g with the Gibbs distribution
g, i.e. dg

dµ :⇑ exp ↙h.

Proof. For D :=


eh dµ, we have dg = D↓1ehdµ and obtain for all ϖ ∋ µ:

0 ↫ KL(ϖ | g) =

∫
log

dϖ

dg
dϖ =

∫
log

dϖ

ehdµ/D
dϖ

= KL(ϖ | µ) ↗
∫

h dϖ + log
( ∫

eh dµ
)
.

Note that no generality is lost by considering only those probability measures ϖ on (E, A ) such that
ϖ ∋ µ and thus

log
( ∫

exp ↙h dµ
)

= ↗ inf
ϑ⇒µ

(
KL(ϖ | µ) ↗

∫
h dϖ

)
.

In combination with Proposition 13 we can verify a PAC-Bayes bound for the excess risk. The basic
proof strategy is in line with the PAC-Bayes literature, see e.g. Alquier & Biau [3].

Proposition 16 (PAC-Bayes bound). Grant Assumption A. For any sample-dependent (in a measurable
way) probability measure 3 ∋ ” and any ϱ ↑ (0, n/w) and ↽ ↑ (0, 1] such that Cn,ε + ε

n (σC + σ2) ↫ 1
8 ,

we have
E(ε̃ε,ϖ) ↫ 9

∫
E d3 +

16

ϱ

(
KL(3 | ”) + log(2/▷)

)
(6.4)

with probability of at least 1 ↗ ▷.
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Proof. Proposition 13 yields

E
[
exp

(
ϱẼn(ε) ↗

(
1 + Cn,ε + ε

n (σC + σ2)
)
ϱE(ε) ↗ log ▷↓1

)]
↫ ▷ and

E
[
exp

(
ϱ
(

1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε) ↗ ϱẼn(ε) ↗ log ▷↓1

)]
↫ ▷.

Integrating in ε with respect to the prior probability measure ” and applying Fubini’s theorem, we
conclude

E
 ∫

exp
(
ϱẼn(ε) ↗

(
1 + Cn,ε + ε

n (σC + σ2)
)
ϱE(ε) ↗ log ▷↓1

)
d”(ε)


↫ ▷ and (6.5)

E
 ∫

exp
(
ϱ
(

1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε) ↗ ϱẼn(ε) ↗ log ▷↓1

)
d”(ε)


↫ ▷.

The Radon-Nikodym density of the posterior distribution ”̃ε,ϖ(· | Dn) ∋ ” with respect to ” is given
by

d”̃ε,ϖ(ε | Dn)

d”
= D̃↓1

ε exp
(

↗
n∑

i=1

2ϖ

(
ε
nϑi(ε)

))

with

D̃ε :=

∫
e↓εR̃n,ε(ω) ”(dε) =

∫
exp

(
↗

n∑

i=1

2ϖ

(
ε
nϑi(ε)

))
”(dε). (6.6)

We obtain

▷ ↭ EDn

 ∫
exp

(
ϱ
(

1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε) ↗ ϱẼn(ε) ↗ log ▷↓1

)
d”(ε)



= EDn,ω̃⇑!̃ω,ε(·|Dn)


exp

(
ϱ
(

1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε̃) ↗ ϱẼn(ε̃)

↗ log ▷↓1 ↗ log
(d”̃ε,ϖ(ε̃ | Dn)

d”

))

= EDn,ω̃⇑!̃ω,ε(·|Dn)


exp

(
ϱ
(

1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε̃) ↗ ϱẼn(ε̃)

↗ log ▷↓1 +
n∑

i=1

2ϖ

(
ε
nϑi(ε̃)

)
+ log D̃ε

)

Since [0,≃)(x) ↫ eεx for all x ↑ R, we deduce with probability not larger than ▷ that

(
1
4 ↗ Cn,ε ↗ ε

n (σC + σ2)
)
E(ε̃) ↗ Ẽn(ε̃) +

1

ϱ

n∑

i=1

2ϖ

(
ε
nϑi(ε̃)

)
↗ 1

ϱ

(
log ▷↓1 ↗ log D̃ε

)
↭ 0.

Provided Cn,ε + ε
n (σC + σ2) ↫ 1

8 , we thus have for ε̃ ⇓ ”̃ε,ϖ(· | Dn) with probability of at least 1 ↗ ▷:

E(ε̃) ↫ 8
(
Ẽn(ε̃) ↗ 1

ϱ

n∑

i=1

2ϖ

(
ε
nϑi(ε̃)

)
+

1

ϱ

(
log ▷↓1 ↗ log D̃ε

))

↫ 8
(

↗ 1

ϱ

n∑

i=1

2ϖ

(
ε
nϑi(f)

)
+

1

ϱ

(
log ▷↓1 ↗ log D̃ε

))

Lemma 15 with h = ↗
∑n

i=1 2ϖ(
ε
nϑi(ε)) yields

log D̃ε = log
( ∫

exp
(
↗

n∑

i=1

2ϖ

(
ε
nϑi(ε)

))
d”(ε)

)
= ↗ inf

⇁⇒!

(
KL(3 | ”)+

∫ n∑

i=1

2ϖ

(
ε
nϑi(ε)

)
d3(ε)

)
. (6.7)

21



Therefore, we have with probability of at least 1 ↗ ▷:

E(ε̃) ↫ 8 inf
⇁⇒!

( ∫
1

ϱ

n∑

i=1

(
2ϖ

(
ε
nϑi(ε)

)
↗ 2ϖ

(
ε
nϑi(f)

))
d3(ε) +

1

ϱ

(
log ▷↓1 + KL(3 | ”)

))

↫ 8 inf
⇁⇒!

( ∫
Ẽn(ε) d3(ε) +

1

ϱ

(
log ▷↓1 + KL(3 | ”)

))
.

In order to reduce the integral


Ẽn(ε) d3(ε) to


E(ε) d3(ε), we use Cn,ε + ε
n (σC + σ2) ↫ 1

8 , Jensen’s
inequality and (6.5) to obtain for any probability measure 3 ∋ ” (which may depend on Dn)

EDn


exp

( ∫ (
ϱẼn(ε) ↗ 9

8ϱE(ε)
)
d3(ε) ↗ KL(3 | ”) ↗ log ▷↓1

)

= EDn


exp

( ∫
ϱẼn(ε) ↗ 9

8ϱE(ε) ↗ log
( d3

d”
(ε)

)
↗ log ▷↓1 d3(ε)

)

↫ EDn,ω⇑⇁


exp

(
ϱẼn(ε) ↗ 9

8ϱE(ε) ↗ log
( d3

d”
(ε)

)
↗ log ▷↓1

)

↫ EDn

 ∫
exp

(
ϱẼn(ε) ↗

(
1 + Cn,ε + ε

n (σC + σ2)
)
ϱE(ε) ↗ log ▷↓1

)
d”(ε)


↫ ▷.

Using [0,≃)(x) ↫ eεx again, we conclude with probability of at least 1 ↗ ▷:
∫

Ẽn(ε) d3(ε) ↫ 9

8

∫
E(ε) d3(ε) + ϱ↓1

(
KL(3 | ”) + log ▷↓1

)
.

Therefore, we conclude with probability of at least 1 ↗ 2▷

E(ε̃) ↫ 9

∫
E(ε) d3(ε) +

16

ϱ

(
KL(3 | ”) + log ▷↓1

)
.

6.3 Proof of Theorem 3
We fix a radius 4 ↑ (0, 1] and apply Proposition 16 with 3 = 3η defined via

d3η

d”
(ε) ⇑ {|ω↓ω↓|↔↭η}

with ε↘ from (3.2). Note that indeed Cn,ε + ε
n (σC +σ2) ↫ 1

8 for Q0 su!ciently large. In order to control
the integral term, we decompose
∫

E d3η = E(ε↘) +

∫
E

[
(fω(X) ↗ f(X))2 ↗ (fω↓(X) ↗ f(X))2

]
d3η(ε)

= E(ε↘) +

∫
E

[
(fω↓(X) ↗ fω(X))2

]
d3η(ε) + 2

∫
E

[
(f(X) ↗ fω↓(X))(fω↓(X) ↗ fω(X))

]
d3η(ε)

↫ E(ε↘) +

∫
E

[
(fω↓(X) ↗ fω(X))2

]
d3η(ε)

+ 2

∫
E

[
(f(X) ↗ fω↓(X))2

]1/2E
[
(fω↓(X) ↗ fω(X))2

]1/2
d3η(ε)

↫ 4

3
E(ε↘) + 4

∫
E

[
(fω↓(X) ↗ fω(X))2

]
d3η(ε), (6.8)

using 2ab ↫ a2

3 + 3b2 in the last step. To bound the remainder, we use the Lipschitz continuity of the
map ε ↖→ fω(x) for fixed x ↑ Rp:

Lemma 17. Let ε, ε̃ ↑ [↗B, B]P . Then we have for x ↑ Rp that

|fω(x) ↗ fω̃(x)| ↫ 4(2rB)L(|x|1 ⇐ 1)|ε ↗ ε̃|≃.
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We obtain ∫
E d3η ↫ 4

3
E(ε↘) +

4

n2
for 4 =

1

8K(2rB)Lp n
. (6.9)

It remains to bound the Kullback-Leibler term in (6.4) which can be done with the following lemma:

Lemma 18. We have KL(3η | ”) ↫ P log(2B/4).

Plugging (6.9) and the bound from Lemma 18 into the PAC-Bayes bound (6.4), we conclude

E(ε̃ε,ϖ) ↫ 12E(ε↘) +
36

n2
+

16

ϱ

(
P log

(
16BK(2rB)Lpn

)
+ log(2/▷)

)
.

↫ 12E(ε↘) +
Q1

n

(
PL log(n) + log(2/▷)

)

for some constant Q1 only depending on C, σ, $.

6.4 Proof of Theorem 5
Due to Remark 14 we can prove analogously to Proposition 16 the following PAC-Bayes bound under
Assumption A: For any sample-dependent (in a measurable way) probability measure 3 ∋ ” and any
ϱ ↑ (0, n/w) and ↽ ↑ (0, 1] such that Cn,ε + ε

nϖ4(σC + σ2) ↫ 1
4 , we have

E(ε̂ε) ↫ 5

2

∫
E d3 +

4

ϱ

(
KL(3 | ”) + log(2/▷)

)

with probability of at least 1 ↗ ▷. From here we can continue as in Section 6.3.

6.5 Proof of Theorem 10
Choosing ϱ = n

2Q0
, Theorem 3 and Corollary 6 yield

min

E[”̃ε,ϖ(ε : ↘fω ↗ f↘L2(PX) ↫ sn | Dn)], P(↘f ↗ f̄ε,ϖ↘L2(PX) ↫ sn)


↭ 1 ↗ φ2

2

with s2
n := 2r2

n + 4(Q1⇓Q2)
n log 2

φ . We conclude

P
(
diam(Ĉ(0φ)) ↫ 4sn

)
= P

(
sup

g,h→Ĉ(↼ϑ)

↘g ↗ h↘L2(PX) ↫ 4sn

)

↭ P
(

sup
g,h→Ĉ(↼ϑ)

↘g ↗ f̄ε,ϖ↘L2(PX) + ↘f̄ε,ϖ ↗ h↘L2(PX) ↫ 4sn

)

↭ P
(
0φ ↫ 2sn

)

= P
(
”̃ε,ϖ(ε : ↘fω ↗ f̄ε,ϖ↘L2(PX) ↫ 2sn | Dn) > 1 ↗ φ

)

↭ P
(
”̃ε,ϖ(ε : ↘fω ↗ f̄ε,ϖ↘L2(PX) > 2sn | Dn) < φ

)

= 1 ↗ P
(
”̃ε,ϖ(ε : ↘fω ↗ f̄ε,ϖ↘L2(PX) > 2sn | Dn) ↭ φ

)

↭ 1 ↗ φ↓1E
[
”̃ε,ϖ(ε : ↘fω ↗ f̄ε,ϖ↘L2(PX) > 2sn | Dn)

]

↭ 1 ↗ φ↓1
(
E

[
”̃ε,ϖ(ε : ↘fω ↗ f↘L2(PX) > sn | Dn)

]
+ P

(
↘f̄ε,ϖ ↗ f↘L2(PX) > sn

))

↭ 1 ↗ φ.

The first statement in Theorem 10 is thus verified.
For the coverage statement, we denote 1̄ := 1%(L, r) = 1(2rB)L and bound

P
(
f ↑ Ĉ(10ω

φ )
)

= P
(
↘f ↗ f̄ε,ϖ↘L2(PX) ↫ 10ω

φ

)
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↭ P
(
”̃ε,ϖ(ε : |ε|≃ ↫ 1̄↓1↘f ↗ f̄ε,ϖ↘L2(PX) | Dn) < 1 ↗ φ

)

↭ P
(
”̃ε,ϖ(ε : |ε|≃ ↫ 1̄↓1sn | Dn) < 1 ↗ φ

)
↗ φ2

= 1 ↗ φ2 ↗ P
(
”̃ε,ϖ(ε : |ε|≃ ↫ 1̄↓1sn | Dn) ↭ 1 ↗ φ

)

↭ 1 ↗ φ2 ↗ (1 ↗ φ)↓1E
[
”̃ε,ϖ(Bn | Dn)

]

with
Bn :=


ε : |ε|≃ ↫ 1̄↓1sn


.

In terms of Ẽn(ε) = R̃n,ϖ(ε) ↗ R̃n,ϖ(f) and D̃ε =


exp
(
↗ ϱR̃n,ϖ(ε)

)
”(dε) the inequalities by Cauchy-

Schwarz and Jensen imply

E
[
”̃ε,ϖ(Bn | Dn)

]
= E


D̃↓1

ε

∫

Bn

e↓εR̃n,ε(ω) ”(dε)


= E

D̃↓1

ε e↓εR̃n,ε(f)

∫

Bn

e↓εẼn(ω) ”(dε)


↫ E
[
D̃↓2

ε e↓2εR̃n,ε(f)
]1/2E

( ∫

Bn

e↓εẼn(ω) ”(dε)
)21/2

↫ E
[
D̃↓2

ε e↓2εR̃n,ε(f)
]1/2E


”(Bn)

∫

Bn

e↓2εẼn(ω) ”(dε)
1/2

.

The smaller choice of ϱ = n/(2Q0) instead of n/Q0 ensures Cn,2ε + 2ε
n (σC +σ2) ↫ 1

8 allowing us to apply
Proposition 13 with 2ϱ. With Fubini’s theorem and the uniform distribution of the prior, the second
factor can thus be bounded using

E
 ∫

Bn

e↓2εẼn(ω) ”(dε)


=

∫

Bn

E
[
e↓2εẼn(ω)

]
”(dε)

↫
∫

Bn

exp
(
2
(
Cn,2ε + 3

4 + 2ε
n (σC + σ2) ↗ 1

)
ϱE(ε)

)
”(dε)

↫ ”(Bn)

↫ exp
(
P log

sn

B1̄

)
.

Based on (6.7), we conclude

E
[
”̃ε,ϖ(Bn | Dn)

]
↫ exp

(
P log

sn

B1̄

)
E

[
D̃↓2

ε e↓2εR̃n,ε(f)
]1/2

= exp
(
P log

sn

B1̄

)
E


exp

(
inf

⇁⇒!

(
2 KL(3 | ”) + 2

∫
ϱR̃n,ϖ(ε) d3(ε)

)
↗ 2ϱR̃n,ϖ(f)

)1/2

= exp
(
P log

sn

B1̄

)
E


exp

(
inf

⇁⇒!

(
2 KL(3 | ”) +

∫
2ϱẼn(ε) d3(ε)

))1/2
.

For 3η→ defined via
d3η→

d”
(ε) ⇑ {|ω↓ω↓|↔↭η→}, 4↑ =

sn

8K%(L, r)p
∝

L log n
.

we can moreover estimate with (6.8), Lemma 17 and Lemma 18

inf
⇁⇒!

(
KL(3 | ”) +

∫
ϱẼn(ε) d3(ε)

)
↫ KL(3η→ | ”) +

4

3
ϱE(ε↘) + 3ϱ

∫
E

[(
fω↓(X) ↗ fω(X)

)2]
d3η→(ε)

+ ϱ

∫ (
Ẽn(ε) ↗ E(ε)

)
d3η→(ε)

↫ P log
2B

4↑ +
4

3
ϱE(ε↘) + 3L↓1ϱs2

n + ϱ

∫ (
Ẽn(ε) ↗ E(ε)

)
d3η→(ε).

24



In the sequel Qi > 0, i = 7, 8, . . . , are numerical constants which may depend on C, $, σ, K, p and φ.
Since L log(n)E(ε↘) ↫ s2

n ↫ Q7PL log(n)/ϱ by assumption, we obtain

E
[
”̃ε,ϖ(Bn | Dn)

]
↫ exp

(
↗ P log 1̄ + P log

(
16K%(L, r)p


L log n

)
+ 5Q7P

)

↔ E

exp

(
2ϱ

∫ (
Ẽn(ε) ↗ E(ε)

)
d3η→(ε)

)1/2

↫ exp
(

↗ P log 1 + P (Q8 + log


L log n)
)
E

 ∫
exp

(
2ϱ

(
Ẽn(ε) ↗ E(ε)

))
d3η→(ε)

1/2

applying Jensen’s inequality in the last line. To bound the expectation in the previous line, Fubini’s
theorem, Proposition 13 with Cn,2ε + 2ε

n (σC + σ2) ↫ 1
8 and Lemma 17 imply

E
 ∫

exp
(
2ϱ

(
Ẽn(ε) ↗ E(ε)

))
d3η→(ε)


=

∫
E

[
exp

(
2ϱ

(
Ẽn(ε) ↗ E(ε)

))]
d3η→(ε)

↫
∫

exp
(
2ϱ

(
Cn,2ε + 2ε

n (σC + σ2)
)
E(ε)

)
d3η→(ε)

↫
∫

exp
(

1
2ϱE(ε)

)
d3η→(ε)

↫
∫

exp
(
ϱ
(
E(ε↘) + ↘fω ↗ fω↓↘2

L2(PX)

))
d3η→(ε)

↫
∫

exp
(
ϱ
(
E(ε↘) + s2

n/L
))

d3η→(ε)

↫ e2Q7P log n.

We conclude

E
[
”̃ε,ϖ(Bn | Dn)

]
↫ exp

(
↗ P

(
log 1 ↗ Q8 ↗ Q7 log n ↗ log


L log n

))
.

For a su!ciently large 1 ↭ ∝
L log n, we obtain E

[
”̃ε,ϖ(Bn | Dn)

]
↫ φ(1 ↗ φ)2 and thus

P
(
f ↑ Ĉ(1rω

φ)
)

↭ 1 ↗ φ2 ↗ φ(1 ↗ φ) ↭ 1 ↗ φ.

6.6 Proof of Theorem 11
The outline of the proof is similar to that of Theorem 3. Note that the only property of the prior that we
used in the proof of Proposition 16 is that ” is a probability measure on the space of network weights.
Hence, it is straightforward to see that the analogous statement still holds when replacing ” with q”. We
obtain with probability of at least 1 ↗ ▷

E(qεε,ϖ) ↫ 9

∫
E d3 +

16

ϱ

(
KL(3 | q”) + log(2/▷)

)
. (6.10)

For a width r ↑ N and some radius 4 ↑ (0, 1], we now choose 3 = 3r,η defined via

d3r,η

d”r
(ε) ⇑ {|ω↓ω↓

L|↔↭η}

with ε↘
r from (4.1). Replacing ε↘ with ε↘

r in the arguments from before, we find
∫

E d3r,η ↫ 4

3
E(ε↘

r) +
3

n2
for 4 =

1

8K(2rB)Lp n
.

To bound the Kullback-Leibler term in (6.10), we employ the following modification of Lemma 18:

Lemma 19. We have KL(3r,η | q”) ↫ Pr log(2B/4) + r.
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Therefore, we have with probability 1 ↗ ▷

E(qεε,ϖ) ↫ 12E(fω↓
r
) +

Q5

n

(
PrL log(n) + log(2/▷)

)
,

for some Q5 > 0 only depending on C, $, σ. Choosing r to minimize the upper bound in the last display
yields the assertion.

6.7 Remaining proofs for Section 3
6.7.1 Proof of Lemma 1

Define
Dε :=

∫
exp

(
↗ ϱRn(ε)

)
”(dε), D̄ε :=

∫
exp

(
↗ ϱR̄n,ϖ(ε)

)
”(dε).

For the first part of the lemma, we write

KL
(
”̄ε,ϖ(· | Dn)

∣∣ ”ε(· | Dn)
)

=

∫
log

d”̄ε,ϖ(ε | Dn)

d”ε(· | Dn)
”̄ε,ϖ(dε | Dn)

= ϱ

∫
Sn(ε) ”̄ε,ϖ(dε | Dn) + log

Dε

D̄ε
with

Sn(ε):= Rn(ε) ↗ R̄n,ϖ(ε).

By concavity of the logarithm we have

1

ϱ

n∑

i=1

log
(
↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)

↭ 1

ϱ

n∑

i=1

↽ log e↓ ω
nε ϱi(ω) + (1 ↗ ↽) log 1 = ↗ 1

n

n∑

i=1

ϑi(ε) = ↗Rn(ε).

Hence, Sn(ε) ↭ 0 and Dε ↫ D̄ε. We conclude

KL
(
”̄ε,ϖ(· | Dn)

∣∣ ”ε(· | Dn)
)

↫ ϱ

∫
Sn(ε) ”̄ε,ϖ(dε | Dn).

Moreover, log(x + 1) ↫ x for all x > ↗1 and a second order Taylor expansion of x ↖→ ex yields

Sn(ε) =
1

ϱ

n∑

i=1

(
log

(
↽(e↓ ω

nε ϱi(ω) ↗ 1) + 1
)

+
ϱ

n
ϑi(ε)

)

↫ ↽

ϱ

n∑

i=1

(
e↓ ω

nε ϱi(ω) ↗ 1 + ε
nϖϑi(ε)

)

↫ ↽

2ϱ

n∑

i=1

(
ε
nϖϑi(ε)

)2
e↓ ω

nε ϱi(ω)

↫ ϱ

n↽
· 1

2n

n∑

i=1

|ϑi(ε)|2.

For ϑi(ε) = |Yi ↗ fω(Xi)|2 ↫ 2|f(Xi) ↗ fω(Xi)|2 + 2ω2
i ↫ 8C2 + 2ω2

i we obtain

Sn(ε) ↫ ϱ

n↽

(
64C4 +

4

n

n∑

i=1

ω4
i

)

and thus

1

ϱ
KL

(
”̄ε,ϖ(· | Dn)

∣∣ ”ε(· | Dn)
)

↫ ϱ

n↽

(
64C4 +

4

n

n∑

i=1

ω4
i

) ∫
”̄(dε | Dn)
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=
ϱ

n↽

(
64C4 +

4

n

n∑

i=1

ω4
i

)
.

In the regime ↽ → 0, define

Tn(ε) := ↗↽n
1

n

n∑

i=1

e↓ ω
nε ϱi(ω) and D-,ε :=

∫
exp

(
↗ Tn(ε)

)
”(dε)

such that

KL
(
”̄ε,ϖ(· | Dn)

∣∣ ⇀ε,ϖ(· | Dn)
)

=

∫ (
Tn(ε) ↗ ϱR̄n,ϖ(ε)

)
”̄ε,ϖ(dε | Dn) + log

D-,ε

D̄ε
.

We have

ϱR̄n,ϖ(ε) ↗ Tn(ε) = ↗
n∑

i=1

log
(
↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)

↗ Tn(ε)

= ↗n log(1 ↗ ↽) ↗
n∑

i=1

(
log

(
↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)

↗ log(1 ↗ ↽)
)

↗ Tn(ε)

= ↗n log(1 ↗ ↽) ↗
n∑

i=1

↽e↓ ω
nε ϱi(ω)

∫ 1

0

(
t↽e↓ ω

nε ϱi(ω) + 1 ↗ ↽
)↓1

dt ↗ Tn(ε)

= ↗n log(1 ↗ ↽) ↗
n∑

i=1

↽e↓ ω
nε ϱi(ω)

∫ 1

0

( 1

t↽e↓ ω
nε ϱi(ω) + 1 ↗ ↽

↗ 1
)

dt,

where (t↽e↓ ω
nε ϱi(ω) + 1 ↗ ↽)↓1 ↗ 1 ↑ [0, ϖ

1↓ϖ ]. Therefore,

↗ ↽2

(1 ↗ ↽)

n∑

i=1

e↓ ω
nε ϱi(ω) ↫ ϱR̄n,ϖ(ε) ↗ Tn(ε) + n log(1 ↗ ↽) ↫ 0.

This implies log Dϖ,ω

D̄ω
↫ ↗n log(1 ↗ ↽) and thus

KL
(
”̄ε,ϖ(· | Dn)

∣∣ ⇀ε,ϖ(· | Dn)
)

↫ ↽2

1 ↗ ↽

∫ n∑

i=1

e↓ ω
nε ϱi(ω) ”̄ε,ϖ(dε | Dn) ↫ ↽2n

1 ↗ ↽
.

6.7.2 Proof of Lemma 2

Recall 2ϖ(x) = ↗ log(e↓x + 1 ↗ ↽), 2↑
ϖ(x) = 1

1+(1↓ϖ)ex and 2↑↑
ϖ (x) = ↗ (1↓ϖ)ex

(1+(1↓ϖ)ex)2 ↑ [↗1/4, 0]. Since

R̃n,ϖ(ε) =
1

ϱ

n∑

i=1

2ϖ

(
ε
nϑi(ε)

)

=
n

ϱ
2ϖ(0) +

1

ϱ

n∑

i=1

ε
nϑi(ε)2↑

ϖ

(
1i

ε
nϑi(ε)

)

=
n

ϱ
2ϖ(0) +

2↑
ϖ(0)

n

n∑

i=1

ϑi(ε) +
1

n

n∑

i=1

ϑi(ε)
(
2↑

ϖ(1i
ε
nϑi(ε)) ↗ 2↑

ϖ(0)
)

= ↗n

ϱ
log(2 ↗ ↽) +

1

2 ↗ ↽
Rn(ε) +

ϱ

n2

n∑

i=1

ϑi(ε)21i2
↑↑
ϖ

(
1↑
i
ε
nϑi(ε)

)
,

we have

↗ ϱ2

4n2

n∑

i=1

ϑi(ε)2 ↫ ϱR̃n,ϖ(ε) ↗ ϱ

2 ↗ ↽
Rn(ε) + n log(2 ↗ ↽) ↫ 0.
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Therefore, we have with D̃ε from (6.6) that

KL
(
”̃ε,ϖ(· | Dn)

∣∣ ”ε/(2↓ϖ)(· | Dn)
)

=

∫ ( ϱ

2 ↗ ↽
Rn(ε) ↗ ϱR̃n,ϖ(ε)

)
”̃ε,ϖ(dε | Dn) + log

Dε/(2↓ϖ)

D̃ε

↫
∫ ( ϱ

2 ↗ ↽
Rn(ε) ↗ ϱR̃n,ϖ(ε) ↗ n log(2 ↗ ↽)

)
”̃ε,ϖ(dε | Dn)

↫ ϱ2

4n

∫
1

n

n∑

i=1

ϑi(ε)2 ”̃ε,ϖ(dε | Dn)

↫ ϱ2

n

(
32C4 +

2

n

n∑

i=1

ω4
i

)
.

6.7.3 Proof of Corollary 6

Jensen’s and Markov’s inequality yield for r2
n from (3.4) that

P
(
E(f̄ε,ϖ) > r2

n +
Q1

n
+

Q1

n
log(2/▷)

)
= P

(
↘E[fω̃ω,ε

| Dn] ↗ f↘2
L2(PX) > r2

n +
Q1

n
+

Q1

n
log(2/▷)

)

↫ P
(
E

[
↘fω̃ω,ε

↗ f↘2
L2(PX)

∣∣ Dn

]
> r2

n +
Q1

n
+

Q1

n
log(2/▷)

)

= P
( ∫ ≃

Q1
n log(2/▷)

”̃ε,ϖ

(
↘fω̃ω,ε

↗ f↘2
L2(PX) > r2

n + t
∣∣ Dn

)
dt >

Q1

n

)

↫ n

Q1

∫ ≃

Q1
n log(2/▷)

E
[
”̃ε,ϖ

(
↘fω̃ω

↗ f↘2
L2(PX) > r2

n + t
∣∣ Dn

)]
dt.

Using Theorem 3, we thus obtain

P
(
E(f̄ε,ϖ) > r2

n +
Q1

n
+

Q1

n
log(2/▷)

)
↫ 2n

Q1

∫ ≃

Q1
n log(2/▷)

e↓nt/Q1 dt = ▷.

6.7.4 Proof of Proposition 7

We combine arguments from [51] with the approximation results from [35]. By rescaling, we can rewrite

f = fq ↙ · · · ↙ f0 = hq ↙ · · · ↙ h0

with hi = (hij)j=1,...,di+1 , where h̃0j ↑ Cς0
t0 ([0, 1]t0 , 1), h̃ij ↑ Cςi

ti

(
[0, 1]ti , (2C0)ςi

)
for i = 1, . . . , q ↗ 1 and

h̃qj ↑ Cςq

tq

(
[0, 1]tq , C0(2C0)ςq

)
and hij is h̃ij understood as a function in di instead of ti arguments.

We want to show that there exists a constant Ci such that for any Mi ↑ N we can find su!ciently
large Li, ri ↑ N and a neural network g̃ij ↑ G(ti, Li, ri) with PLi,ri = ciM ti parameters and

↘h̃ij ↗ g̃ij↘L↔([0,1]ti ) ↫ CiM
↓2ςi
i . (6.11)

To construct such gij , we use Theorem 2(a) from [35]. Their conditions

1. Li ↭ 5 + ▽log4(M
2ςi)̸

(
▽log2(max{7◁i∀, ti} + 1̸ + 1

)
and

2. ri ↭ 2ti+6
(ti+⇔ςi↖

ti

)
t2i (7◁i∀ + 1)M ti

i

can be satisfied for Li = Ci log(Mi), ri = CiM
ti
i , where Ci only depends on upper bounds for ti and ◁i.

Hence, there exists a neural network g̃ij ↑ G(ti, Li, ri) with (6.11). Careful inspection of the proof of this
theorem reveals, that the weights and shifts of g̃ij grow at most logarithmically in M , whereas our result
still holds for linearly growing weights and shifts. Since ti ↫ di, ri, we can easily embed g̃ij into the class
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G(di, Li, ri) by setting gij = g̃ij(Wij ·), where the matrix Wij ↑ Rti↗di is chosen such that gij depends
on the same ti many arguments as hij . Note that the approximation accuracy of g̃ij carries over to gij ,
that is

↘hij ↗ gij↘L↔([0,1]di ) ↫ ↘h̃ij ↗ g̃ij↘L↔([0,1]ti ) ↫ CiM
↓2ςi
i . (6.12)

Setting g = gq ↙ · · · ↙ g0 with gi = (gij)j we obtain a neural network g ↑ G(p, L, r) with r =
maxi=0,...,q, ridi+1 and L =

∑q
i=0 Li.

Counting the number of parameters of g and using Li = CiM
ti
i , we get

PL,r ↫ Q9

q∑

i=0

Lir
2
i

for some Q9 > 0.

It follows from Schmidt-Hieber [51, Lemma 3] and (6.12) that

↘f ↗ g↘L↔([0,1]p) ↫ C0

q↓1∏

l=0

(2C0)
ςl+1

q∑

i=0

|hi ↗ gi|≃

∏q

l=i+1 ςl↙1

L↔([0,1]di )
↫ Q10

q∑

i=0

M↓2ςi
i ,

for some Q10 > 0.
Applying Theorem 3 together with E(fω↓) ↫ ↘f ↗ g↘2

L↔([0,1]p) we now obtain

E(f̃ε,ϖ) ↫ Q11

q∑

i=0

M↓4ςi
i +

Q11

n

q∑

i=0

M2ti
i (log n)3 + Q11

log(2/▷)

n
(6.13)

with probability of at least 1 ↗ ▷. Choosing

Mi =
( n

(log n)3

)1/(4ςi+2ti)

ensures L, r ↫ n for su!ciently large n, balances the first two terms in the upper bound (6.13) and thus
yields the asserted convergence rate for f̃ε,ϖ.

The convergence rate for the posterior mean can be proved analogously using Corollary 6.

6.7.5 Proof of Corollary 12

The statement follows by choosing L in the upper bound from Theorem 11 as in the statement of
Proposition 7 and then using the same approximation result to control excess-risk of the corresponding
oracle choice ε↘

L.

6.8 Proofs of the auxiliary results
6.8.1 Proof of Lemma 17

Set 4 := |ε ↗ ε̃|≃ and let W (1), . . . , W (L+1), v(1), . . . , v(L+1) and W (1), . . . , W (L+1), ṽ(1), . . . , ṽ(L+1) be
the weights and shifts associated with ε and ε̃, respectively. Define x̃(l), l = 0, . . . , L + 1, analogously to
(3.1). We can recursively deduce from the Lipschitz-continuity of φ that for l = 2, . . . , L:

|x(1)|1 ↫ |W (1)x|1 + |v(1)|1
↫ 2rB(|x|1 ⇐ 1),

|x(1) ↗ x̃(1)|1 ↫ |W (1)x(0) + v(1) ↗ W (1)x̃(0) ↗ ṽ(1)|1
↫ 42r(|x|1 ⇐ 1),

|x(l)|1 ↫ |W (l)x(l↓1)|1 + |v(l)|1
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↫ 2rB(|x(l↓1)|1 ⇐ 1) and

|x(l) ↗ x̃(l)|1 ↫ |W (l)x(l↓1) + v(l) ↗ W (l)x̃(l↓1) ↗ ṽ(l)|1
↫ |(W (l) ↗ W (l))x(l↓1)|1 + |W (l)(x(l↓1) ↗ x̃(l↓1))|1 + |v(l) ↗ ṽ(l)|1
↫ 42r(|x(l↓1)|1 ⇐ 1) + rB|x(l↓1) ↗ x̃(l↓1)|1.

Therefore,

|x(L)|1 ↫ (2rB)L↓1(|x(1)|1 ⇐ 1)

↫ (2rB)L(|x|1 ⇐ 1) and

|x(L) ↗ x̃(L)|1 ↫ 42r
L↓1∑

k=1

(rB)k↓1(|x(L↓k)|1 ⇐ 1) + (rB)L↓1|x(1) ↗ x̃(1)|1

↫ 42(L+1)r(|x|1 ⇐ 1)(rB)L↓1

Since the clipping function y ↖→ (↗C) ⇐ (y ⇒ C) has Lipschitz constant 1, we conclude

|fω(x) ↗ fω̃(x)| ↫ |gω(x) ↗ gω̃(x)|
= |x(L+1) ↗ x̃(L+1)|

= |W (L+1)x(L) + v(L+1) ↗ W (L+1)x̃(L) ↗ ṽ(L+1)|

↫ |(W (L+1) ↗ W (L+1))x(L)| + |W (L+1)(x(L) ↗ x̃(L))| + |v(L+1) ↗ ṽ(L+1)|

↫ r|W (L+1) ↗ W (L+1)|≃|x(L)|1 + r|W (L+1)|≃|x(L) ↗ x̃(L)|1 + |v(L+1) ↗ ṽ(L+1)|
↫ 4r(2rB)L(|x|1 ⇐ 1) + 4(rB)L2L+1(|x|1 ⇐ 1) + 4

↫ 44(2rB)L(|x|1 ⇐ 1).

6.8.2 Proof of Lemma 18

Since 3η and ” are product measures, their KL-divergence is equal to the sum of the KL-divergences in
each of the P factors. For each such factor, we are comparing

U([(ε↘)i ↗ 4, (ε↘)i + 4] △ [↗B, B]) with U([↗B, B]),

where (ε↘)i denotes the i-th entry of ε↘. The KL-divergence of these distributions is equal to

log
( ϱϱ([↗B, B])

ϱϱ([(ε↘)i ↗ 4, (ε↘)i + 4] △ [↗B, B])

)
↫ log

(ϱϱ([↗B, B])

ϱϱ([0, 4])

)
= log(2B/4),

where ϱϱ denotes the Lebesgue-measure. Thus,

KL(3η | ”) =
P∑

i=1

KL
(
U([(ε↘)i ↗ 4, (ε↘)i + 4] △ [↗B, B])

∣∣ U([↗B, B])
)

↫ P log(2B/4).

6.8.3 Proof of Lemma 19

We will show that
d3r,η

dq”
= 2r(1 ↗ 2↓n)

d3r,η

d”r
, (6.14)

from which we can deduce

KL(3r,η | q”) =

∫
log

(d3r,η

dq”

)
d3r,η =

∫
log

(d3r,η

d”r

)
d3r,η + log(2r(1 ↗ 2↓n)) ↫ KL(3L,η | ”L) + r
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and since the arguments from the proof of Lemma 18 yield KL(3r,η | ”r) ↫ Pr log(2B/4), the lemma
follows.

For (6.14), note that ↽r,η can only assign a positive probability to subsets A ↓ [↗B, B]Pr . Hence,

3r,η(A) =

∫

A

d3r,η

dq”
dq” = (1 ↗ 2↓n)↓1

n∑

l=1

2↓l

∫

A

d3r,η

dq”
d”l = (1 ↗ 2↓n)↓12↓r

∫

A

d3r,η

dq”
d”r.
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Abstract In recent years, neural network-based classifica-
tion has been used to improve data analysis at collider exper-
iments. While this strategy proves to be hugely successful,
the underlying models are not commonly shared with the
public and rely on experiment-internal data as well as full
detector simulations. We show a concrete implementation of
a newly proposed strategy, so-called Classifier Surrogates, to
be trained inside the experiments, that only utilise publicly
accessible features and truth information. These surrogates
approximate the original classifier distribution, and can be
shared with the public. Subsequently, such a model can be
evaluated by sampling the classification output from high-
level information without requiring a sophisticated detector
simulation. Technically, we show that continuous normaliz-
ing flows are a suitable generative architecture that can be
efficiently trained to sample classification results using con-
ditional flow matching. We further demonstrate that these
models can be easily extended by Bayesian uncertainties
to indicate their degree of validity when confronted with
unknown inputs by the user. For a concrete example of tag-
ging jets from hadronically decaying top quarks, we demon-
strate the application of flows in combination with uncer-
tainty estimation through either inference of a mean-field
Gaussian weight posterior, or Monte Carlo sampling network
weights.

1 Introduction

Current experimental work in particle physics, for example
by the ATLAS and CMS collaborations, uses deep learning-
based taggers to great success [1–4]. Such models often
define unique and essential quantities in the analysis chain,
which are hard to understand in terms of physical quanti-

a e-mail: sebastian.guido.bieringer@uni-hamburg.de (corresponding
author)

ties. While the performance benefit is apparent, best prac-
tices for sharing the analysis as for traditional cut-based
analyses [5,6] are not yet established. This especially hin-
ders the re-interpretation of experimental results. Recently, a
first set of proposals on sharing neural network-based results
has been published [7]. On the purely technical side, solu-
tions exist for sharing serialized networks [8,9] and some
first searches shared with serialized models have been made
public [10–13].

However, when the model inputs contain features which
are not available outside the collaborations or can only be
simulated at high computational cost within the collabo-
ration, the benefit of sharing the network weights is lim-
ited as results still can either not be reproduced at all, or
are very expensive. Costly and unavailable input features
include detector level quantities, such as hits, or highly detec-
tor dependent quantities, such as soft jet-substructure vari-
ables. For example, both b-taggers of ATLAS and CMS use
detector dependent information [14,15] and current research
shows the best classification performance is achieved when
using detector-level data, rather than only high-level observ-
ables [4,16]. For these cases, sharing a surrogate model
trained to reproduce the classification results from truth-,
parton- or reconstruction-level inputs has recently been pro-
posed in discussions at the LHC Reinterpretation Forum and
the 2023 PhysTeV workshop at Les Houches [7]. We will
follow the newly introduced terminology and refer to such
models as Classifier Surrogates. In this work

• we demonstrate for a concrete example how such a Clas-
sifier Surrogate could be constructed and evaluated

• and present a novel combination of Continuous Normal-
izing Flows with Monte Carlo-based Bayesian Neural
Networks (BNN) for this purpose.

0123456789().: V,-vol 123
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Complementary to sharing the full likelihood or the full sta-
tistical model [17]

p(data | µ),

a Classifier Surrogate can be used to model dependencies on
parameters µ̃ that were not explicitly included in the statisti-
cal model at the time of the release and are hard to model with
public fast simulation tools like Delphes [18]. Altering the
parameters requires that the released model includes interme-
diate information, for example distributions of observables
that are used in a template fit. These might stem from the
output x of a complex neural network classifier. For such
distributions, the application of a classification surrogate can
be beneficial.

In practice, a Classifier Surrogate

p(x | c)

can be used to predict classifier output from any single-event
surrogate input

c ∼ p(c | µ̃).

This simulation of truth-, parton- or reconstruction-level data
allows an arbitrary choice of parameters µ̃. If the simulated
event is out-of-distribution (OOD) of the training data of the
classifier, the surrogate will predict large uncertainties and
thus prevent the practitioner from interpreting the analysis
where the classification can not be applied reliably. For sim-
ulated events within the classifiers input range, the surrogate
predicts samples from the distribution of viable classifier out-
put. This output prediction in turn can be used to estimate
expectation values in histogram bins of derived observables
in full analogy to the processing of the classification results
from observed data. A statistical model for the new parame-
ters

p(data | µ̃)

can again be derived from the processed and possibly
histogrammed surrogate output, for example by assuming
Poisson-distributed bin values. The surrogate strategy there-
fore is a truly “open-world” approach to sharing a classifier-
aided analysis.

The uncertainties from the statistical limitation of the
dataset, as well as the the smearing introduced by the detec-
tor simulation and reduced information of the input c may
also be absorbed into an additional nuisance parameter of the
new statistical model.

Depending on the nuisance handling strategy used for
classifier training [19], the dependence on the nuisance

parameters needs to be included in the surrogate

p(x | c) → p(x | c,ϑ)

for nuisance-parameterized classifiers or in the correspond-
ing input model

p(c | µ̃) → p(c | µ̃,ϑ)

for nuisance-invariant approaches.
If trained on truth- or parton-level, generating surrogate

input events c ∼ p(c|µ̃) does not require detector simulation
and can thus significantly improve the computational cost of
any re-interpretation. Furthermore, eliminating the detector
simulation also removes a major bottle-neck for sharing the
results with colleagues, that do not have access to collabora-
tion internal simulation-settings.

We introduce the strategy on the concrete example of a
classifier derived from the particle transformer [16]. This
setup is introduced in Sect. 2. In Sect. 3, we then discuss why
a Classifier Surrogate needs to employ a generative archi-
tecture and introduce a possible architecture in Sect. 4. To
model increased uncertainty for unknown inputs, we develop
two BNN implementations of the architecture in Sect. 5. In
Sect. 6, we discuss the performance of the surrogate both for
data within the distribution of the training data, as well as for
data new to the model. We evaluate calibration and scaling
to the tails of the distribution, as well as OOD indication.

2 Particle transformer and JetClass dataset

As internal taggers of the big collaborations are not avail-
able for public study, we choose to emulate the state-of-the-
art jet tagger, the Particle Transformer (ParT) [16]. ParT is
an attention-based model trained to distinguish 10 different
types of jets using per-particle information and trained on
the 100 M JetClass dataset [20]. The features include kine-
matics, particle identification, and trajectory displacement of
every particle in the jet.

From the large initial JetClass dataset as stand-in for the
internal collaboration datasets, we distill our toy dataset by
calculating transverse momentum, pesudorapidity, scattering
angle, jet energy, number of particles, soft drop mass [21] and
N-subjettiness [22] for N = 1, . . . , 4, as well as the output of
the full ParT for the regarding event. For the first studies we
will restrain the experiments to the first five jet-observables
as well as the true top or QCD label as surrogate input.

While learning a surrogate of a multiclassifier is possible
by using a generative architecture with a multidimensional
output space, we restrict the setup to finding a surrogate for
binary classification of top jets. The toy train and valida-
tion datasets contain 1M jet events each from Z -events and
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Fig. 1 Histograms of the ParT classification results for the 1000 jet
events of the training data, closest to the two arbitrary jets indicated
by the dotted lines. Although being classified with varying confidence
from detector-level data, the high-level observables pT , Ejet and nconst
appear identical

hadronic decay of t t̄ . To reduce the 10-dimensional ParT
output to a binary classification result, we rescale

pt→bqq′ =
pParT

t→bqq′

pParT
t→bqq′ + pParT

Z→qq′
.

3 Detector smearing distribution

Due to the stochasticity of the detector simulation, jets with
the same high-level observables can differ a lot on detector-
level. Similarly, jets simulated for identical truth- or parton-
level events, would vary significantly. These jets will thus
result in different ParT outputs defining the likelihood per
set of high-level observables

p(ParT︸︷︷︸
x

| pT , η,φ, Ejet, nconst, . . .︸ ︷︷ ︸
c

). (1)

Based on its physical origin, we will also refer to this distri-
bution as the detector smearing distribution.

We can generate a first approximation of this distribution
by generating a histogram of the ParT output for the closest
points in pT , Ejet and nconst. In Fig. 1 we show this histogram
for the 1000 nearest jet events in the training sample for two
arbitrary jet events in the bulk of the transverse momentum
distribution at pt ≈ 530 GeV. The imperfect ParT classifi-
cation introduces an output distribution with tails for events
indistinguishable from the high-level features. Employing a
generative architecture as introduced in Sect. 4, allows us to
infer this distribution from the high-level observables.

For the toy setup, we assume the classifier to be con-
structed invariant for the relevant nuisance parameters [19].
Whenever a nuisance-parameterized classifier is applied, the
nuisance parameters need to be included into the likelihood
as well.

4 Neural density estimation

While all flavours of generative models have found numer-
ous applications in high-energy physics, for example in [23]
and [24], normalizing flows can easily and efficiently be
applied to infer complex, low-dimensional conditional distri-
butions [25,26]. For an early application to particle physics,
see for example MadMiner [27] and Bayesflow [26,28]. In
our tests, coupling block-based Normalizing Flows exhibit
great performance for dense phase space regions, but larger
deviations when modelling tails of distributions. To boost the
performance of the model we employ Continuous Normaliz-
ing Flows (CNF), a generalization of coupling block Flows
based on ordinary differential equations (ODE) introduced
in Sect. 4.1.

In Classifier Surrogates, the deficiency of coupling block-
based normalizing flows to model distribution tails is masked
to large extend by the softmax-normalization employed on
the classifier, and thus also surrogate, when calculating class
probabilities. We do observe similar performance between
both architectures. However, CNFs are also much more
parameter efficient allowing us to reduce the number of
parameters needed by a factor of ≈ 20 at the cost of slower
inference time. As the weights of the surrogate are designed
to be shared, and we do expect their use in case studies rather
than evaluating on millions of jets, we believe that CNFs are
best suited for the application.

4.1 Continuous Normalizing Flows and conditional flow
matching

First introduced in [29], CNFs define a transformation φt :
[0, 1]×Rd → Rd called flow dependent on a time variable t .
The time variable is the continuous equivalent to the number
of a coupling blocks in a coupling block-flow [30]. Instead
of having multiple flow instances, the dependence of φ on t
is defined through the ODE

d
dt

φt (x) = vt (φt (x)), φ0(x) = x, (2)

by the time dependent vector-field vt : [0, 1] × Rd → Rd ,
which itself is approximated by a deep neural network

ṽt (·, θ) ≈ vt .

While this network can be arbitrarily complex, we stick to
fully-connected architectures due to the low dimensional-
ity of the task. In our case, the flow transforms data from a
Gaussian distribution N (0, 1) for t = 0 into ParT output at
t = 1. This choice sets the boundaries of the probability path
pt : [0, 1] × Rd → R>0 induced by the vector-field trough
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Equation (2) and

pt (x) = p0

(
φ−1
t (x)

)
det

(
∂φ−1

t (x)
∂x

)

. (3)

A standard CNF is trained by solving the ODE Eq. (2) in
reverse and minimizing the negative log-likelihood (NLL) of
input data at t = 1. The computation of this loss objective is
expensive, especially for higher dimensional models.

Thus, the authors of [31] introduce the conditional flow
matching (CFM) objective

LCFM(θ) = Et,q(x1),pt (x |x1) ‖ut (x |x1) − ṽt (x; θ))‖2 (4)

It reduces the calculation of the optimization criterion to the
calculation of a mean-squared error between the network
output ṽt (x; θ) and an analytical solution ut for sampled
t ∼ U(0, 1), x1 ∼ q and x ∼ pt (·|x1). Here, q is the prob-
ability distribution of the input data. A good choice of ut
and corresponding pt is a Gaussian conditional probability
path with mean and variance changing linear in time (optimal
transport) [31]. The CFM-loss (4) then reduces even further

LCFM(θ) = Et,q(x1),p(x0)

∥∥∥∥ (x1 − (1 − σmin) x0)

− ṽt (σt x0 + µt ; θ))
∥∥∥∥

2

,

(5)

where µt = t x1, σt = 1 − (1 − σmin)t , p(x0) = N (0, 1)
and σmin a small parameter, that can be chosen to match the
noise level of the training data.

4.2 Conditional density estimation

Following the coupling-block flow based example of [26],
we can extend CNFs to approximate a conditional density

pt (x | c) = p0

(
φ−1
t (x, c) | c

)
det

(
∂φ−1

t (x, c)
∂x

)

, (6)

where the noise distribution is independent of the condition
p0(· | c) = p0(·), by appending the vector of conditions
to every layer of the vector field model ṽt (x, c ; θ). For our
surrogate, x will be the ParT output and c will be the vector
of jet-observables.

5 Bayesian Neural Networks

To indicate the application of the surrogate on data not
included in tagger and thus surrogate training, we employ

Bayesian deep learning. Through modeling of (or sampling
from) a posterior weight distribution

π (θ | D) ,

these methods give a large spread of predictions for data not
included in the loss objective during training. This posterior
distribution is the distribution of weights θ of the network
ṽt (·, θ) given the training data

D =
{
(x (1), c(1)), (x (2), c(2)), . . .

}
.

Multiple instances from the weight posterior will form an
ensemble of networks with differing weights. With both
being conditional probability distributions, the weight poste-
rior has to be distinguished from the likelihood of classifier
output (1) that is to be inferred by every CNF in the ensem-
ble. Sections 5.1 and 5.2 introduce two different approaches
to connect both distributions.

5.1 Mean-field Gaussian variational inference (VIB)

A first way to relate the the weight posterior π (θ | D)

to a CNF is to approximate it with an uncorrelated Nor-
mal distribution π̃(θ) [32]. This approximation is usually
inferred during optimization of the network, by minimizing
the Kullback–Leibler divergence (DKL) between the poste-
rior and its approximation

LVIB = DKL
[
π̃(θ),π (θ | D)

]

= −
∫

dθ π̃(θ) log π (D | θ)

+ DKL
[
π̃(θ),π(θ)

]
+ constant,

(7)

where π(θ) is the prior imposed on the network weights. Fol-
lowing the construction in [33], we bridge the gap between
the CFM-loss (5) and the log-likelihood of the data in (7) by
introducing a factor k that can be optimized to account for
the difference

LVIB−CFM = Eπ̃(θ)LCFM + kDKL
[
π̃(θ),π(θ)

]
. (8)

5.2 AdamMCMC

While the derivation of the loss (8) lacks theoretic backing
and its optimization can take considerably longer than that
of the CFM-loss (5) alone, the low dimensionality of the
Classifier Surrogate problem allows us to directly sample the
weight posterior distribution through Markov chain Monte
Carlo (MCMC).

Full Hamiltonian Monte Carlo (HMC) is still often consid-
ered the gold-standard for inferring weight posteriors [34].
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The large size of the training data however forces us to use
stochastic MCMC algorithms. As one instance of this class,
we choose AdamMCMC [35] due to its easy implementation.
Competing algorithms, such as stochastic gradient HMC [36]
or symmetric splitting HMC [37], will likely produce similar
results.

We initialize the AdamMCMC-chain with a network opti-
mized using the CFM-loss objective (5) and solve the ODE
(2) to determine the negative log-likelihood LNLL of the data
for every step of the MCMC from there on.

To ensure detailed balance we employ a Metropolis–
Hastings (MH) correction with acceptance rate

( = exp (−)LNLL(τi )) q(θi | τi )

exp (−)LNLL(θi )) q(τi | θi )
(9)

for all steps of the chain. Through the proportionality
π (θ | D) ∝ −LNLL (Bayes formula) the acceptance step
guarantees sampling from the weight posterior. Here, the
parameter ) gives the inverse temperature of the tempered
posterior distribution sampled from. The proposed weights
τi are drawn from a proposal distribution centered on a gra-
dient descent step

θ̃i+1 = Adam(θi ,LNLL(θi )) (10)

calculated using the Adam algorithm [38]. We can use the
momentum terms of the update to ensure high acceptance
rates by smearing the proposal distribution in the direction
of the last update

τi ∼ q(· | θi )

= N (θ̃i+1, σ
21 + (θ̃i+1 − θi )(θ̃i+1 − θi )

)).
(11)

To efficiently run this algorithm, we evaluate the NLL
on batches of data. For proofs on convergence and invariant
distribution of this algorithm, we refer to [35].

6 Results

To learn the detector smearing distribution from data, we
found a CNF with only 3 multi-layer perceptrons (MLPs)
with 3 layers of dimension 64 and ELU activation to be suf-
ficient. The condition and time variable t are concatenated
to every MLP input, totaling in 31617 network parameters.
Converting to VIB as in [32], doubles the number of param-
eters. We train on a balanced set of 4M jets in batches of
131,072 for 4000 epochs using Adam [38] with a constant
learning rate of 10−3. As loss objective, we use the CFM-loss
as introduced in Eqs. (5) and (8) respectively. To achieve good
coverage, we choose c = 100 and ) = 50 from a course grid
search over multiple orders of magnitude.

Fig. 2 Histograms of 50,000 samples drawn form the detector smear-
ing distributions learned with a CFM-model. Uncertainties are gen-
erated by drawing the samples from 11 points sampled from the net-
work posterior approximation or chain. The ParT-output for the arbitrary
QCD and top jet used as condition is indicated with dotted lines. Both
jet events are the same as for Fig. 1

We run the AdamMCMC chain for another 1000 epochs
with the learning rate reduced to 5 · 10−6 and σ = 0.05.
For the sampled posterior we always report the results from
CFM-optimization in solid lines and the uncertainty calcu-
lated as the min-max-envelope of 10 drawings and for the
learned approximation (VIB) we give the mean and the min-
max-envelope over 11 sets of weights.

Using a fully-connected architecture, the sampled net-
works, either from the VIB-approximation or MCMC, can
be easily exported as a serialized file usingONNX [9] at only
0.3 MB per instance. The the ODE defined by the network
remains to be solved at inference time.

6.1 In-distribution

We can use the trained CNFs to generate another approx-
imation of the detector smearing distribution by perform-
ing the forward direction starting at different points in latent
space but for the same high-level features. Figure 2 shows
histograms of the generated data for the same arbitrary jet
events as Fig. 1.

We can see similar distributions for the approximation
with CNFs as for the histograms of the closest events. The
biggest discrepancy occurs between the distribution for the
QCD jet obtained using AdamMCMC and VIB. It can be
attributed to the difference between the model at initializa-
tion of the AdamMCMC chain and the posterior mean out-
put of VIB. The initialization can be adapted to accom-
modate desired behaviours, if well defined, by choosing
between different epochs of the CFM-optimization. Further-
more, increasing the chain length decreases the dependence
of the ensemble output on the initialization overall.
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Fig. 3 Empirical over nominal coverage calculated by taking 1000
samples from the learned detector smearing distribution for 10,000 jet
events each. Uncertainties again are calculated from 11 points of the
network posterior

6.1.1 Uncertainty calibration

To find out whether surrogate predictions using AdamMCMC
are in general conservative, we need to look at the calibration
of the estimated detector smearing distributions for multiple
events, here 10,000. Per event we take 1000 samples from the
inferred distribution and calculate q-quantiles for 50 values
of q (nominal coverage) linearly spaced between 0 and 1.
We then evaluate the empirical coverage, that is the fraction
of corresponding ParT output within the respective quantile
of the inferred distribution. The calibration is perfect when
nominal and empirical coverage agree. Figure 3 shows very
good calibration for both methods, where AdamMCMC in fact
tends to be slightly more confident than VIB approximations.

6.1.2 Epistemic uncertainty

In contrast to uncertainty due to noisy data resulting in the
detector smearing distributions, epistemic uncertainty is the
uncertainty encoded in the variations within the ensembles of
network weights induced by data sparsity. For a further dive
into the behaviour of the epistemic uncertainty, we calcu-
late the mean distance of the maximum discrepancy between
instances of the network posterior

δepis =
1

nstat

nstat∑

i=0

max
p(θ |D)

φ1,θ (xi ) − min
p(θ |D)

φ1,θ (xi ) (12)

for a total of nstat = 1000 points drawn from the Gaussian
latent space x1, . . . , xnstat ∼ N (0, 1). Ideally, this error esti-
mate is large for sparsely populated areas of the high-level

feature space and small in the bulk of the distribution. To
investigate this behaviour, we plot a histogram of the high-
level features of the training data as well as δepis for 10,000
jet events chosen at random from a test set for both methods
in Fig. 4.

The most instructive panels show the dependence of the
error estimate on the number of constituents in the jet nconst,
which is the most descriptive input feature. We can see high
uncertainties occurring in the regions where the distributions
for QCD and top jets overlap in the training data. These are
events that can not easily be attributed to one of the two
classes by the five high-level observables alone, resulting in
high uncertainties. These events also make up the high-error
bulk when plotted over the other high-level features.

For every tailed distribution, we can also see an increase
of the error estimate for top jet predictions towards the edges
of the data. This behaviour is stronger for AdamMCMC than
for VIB at the cost of higher uncertainties overall.

The same behaviour is not observed for QCD jets. This
again can be traced back to the distribution of nconst. The
distribution of the number of particles of top jets is fully
within the support of the one for QCD jets inducing high
epistemic uncertainties for both highly and lowly populated
jets. On the other hand, the distribution of top jets does not
include events with as few particles as for QCD jets, allowing
a perfect classification of these jets that dominates the low
uncertainty edge of the plotted cloud.

6.1.3 Adding informative features

Another measure for the informative value of a detector
smearing distribution generated by a Classifier Surrogate is
the predicted accuracy

â = 1
nstat

nstat∑

i=0

{
1[0.5,1]

(
φ1,θ (xi )

)
for top jets

1[0,0.5)
(
φ1,θ (xi )

)
for QCD jets

(13)

per jet event, with 1A(x) the indicator function of set A. The
cut value of 0.5 is arbitrary and can be chosen in line with the
experimental analysis. Our choice reflects the requirement to
yield symmetric output distributions in case of uninformative
high-level input.

Figure 5 shows histograms of the predicted accuracy for
10,000 jet events chosen at random from the full balanced
test set. The distributions are generated from surrogates using
the five high-level jet features from before, as well as for
surrogates including the soft drop mass mSD and the N -
subjettiness for N ∈ {1, .., 4}. Naively, we assume that
adding more information will lead to more certain predic-
tions and thus will shift the distributions towards high accu-
racy values. In the highest value bin, the information hier-
archy is well reproduced, with the highest number of input
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Fig. 4 Epistemic uncertainty calculated from the mean difference
between 11 points from the network posterior over 1000 samples drawn
from the respective learned detector smearing distribution for each event

of the validation set. The uncertainty shows a clear scaling towards the
edges of the train data, as well es in regions where nconst is uninformative

Fig. 5 Accuracy of 1000 ParT outputs predicted for each of 10,000
jet events. The different colors indicate the output of CNFs conditioned
with increasing amount of features and thus provided with more infor-
mation during inference. A histogram of the probabilistic ParT predic-
tion itself is given in red

features leading to the highest number of certain outputs. In
the range of 0.85 to 1, more informative input leads to fewer
predictions in line with the naive assumption. For less cer-
tain predictions, a different effect can be observed. Increas-
ing the information in the conditions allows the network to
better model the ParT output, which features long tails of
individual false positives and events predicted with low con-
fidence. Thus, the Jensen-Shennon divergence between the
histograms of surrogate and ParT output (Table 1) decreases
with increasing number of input features.

Table 1 Jensen–Shannon-divergence between the histograms of pre-
dicted accuracies of Classifier Surrogates with different input features
(Fig. 5) and the actual accuracy distribution of the ParT

JSD VIB-CFM AdamMCMC-CFM

pT , η, φ, Ejet , nconst 0.174 ± 0.018 0.147 ± 0.036

+ mSD 0.134 ± 0.023 0.160 ± 0.013

+ τ1, . . . , τ4 0.080 ± 0.009 0.097 ± 0.007

6.2 Out-of-distribution

Although including an epistemic uncertainty into the evalua-
tion this far is a nice feature to gauge uncertainties in the tail
regions of the data, the true value of BNNs is indicating input
that is outside the distribution of the training data by assign-
ing high uncertainties. We use the introduced measures (12)
and (13) to show the behaviour of the BNN surrogates for
OOD data generated when artificially increasing the values
for one jet-observable.

We produce OOD data by selecting 1000 jet events from
the test set at random and increasing the values of a single jet-
feature by adding a constant value. We perform this distortion
for 3 dimensions, pT , Ejet and nconst, and 10 values each.
Again, we report the accuracy and error estimate calculated
from nstat = 1000 points of the learned detector smearing
distribution.
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Fig. 6 Behaviour of the Classifier Surrogate predictions for distorted
input over the size of the distortion artificially added to the given jet-
observable for 1000 random events. The first row shows the accuracy
predicted per event while the second row gives the mean epistemic

uncertainty per event. Solid lines give the median of the set of events.
The shaded and structured areas indicate the 10%–90%-quantile enve-
lope of the VIB and AdamMCMC ensemble respectively

The first row of Fig. 6 shows the mean accuracy predicted
for the OOD data by the different drawings from the weight
posterior. The envelope and solid line give the 10%- and
90%-quantile and the median over the set of events. When
adding an unphysical offset to the features, we can see the
mean predicted accuracy of theAdamMCMC ensemble rapidly
drops. Optimally, the network predicts 0.5 when all inputs
are outside the training interval to indicate equal confidence
of both classes. The ensemble seems to be able to detect most
outliers, but only indicates large distortions of Ejet for top jets
and of nconst for QCD jets.

The predicted accuracy of the VIB samples does not
exhibit any dependence on the increasing offset in the OOD
data. It is sensitive only to the number of jet constituents for
top jets.

In the second row, we show the error estimate based on the
difference between highest and lowest proposed output in the
ensemble, see Eq. 12. This measure captures the differences
in the output and thus the encoded uncertainty directly. We
expect increasing uncertainties for increasing offset. Only
the AdamMCMC ensemble shows this behaviour, for all three
disturbed input dimensions, while VIB once again is only
sensitive to OOD inputs in the particle number. While the
predicted accuracy did not capture the decreasing confidence
for distorted Ejet of top jets well, the error estimate clearly
indicates the unknown inputs. Similarly, distortions in nconst
of QCD jets appear earlier in this measure.

7 Conclusion

In this paper, we proposed a first architecture for training
Classifier Surrogates, which are models describing the out-
put of a deep neural network classification based on detector-
level information from high-level jet-observables and truth

information. We show that the resulting Classifier Surrogates
are well calibrated and scale with the amount of information
provided. A combination with Monte Carlo generated sam-
ples from the networks Bayesian weight posterior allows for
stable uncertainty quantification, that incorporates the den-
sity of the training data towards the edges. The predicted
uncertainty reliably indicates unknown inputs.

This approach should next be implemented by the large
experimental collaborations to allow the statistical re-interpre-
tation of analysis results.
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Abstract
Recently, combinations of generative and Bayesian deep learning have been introduced in particle
physics for both fast detector simulation and inference tasks. These neural networks aim to
quantify the uncertainty on the generated distribution originating from limited training statistics.
The interpretation of a distribution-wide uncertainty however remains ill-defined. We show a clear
scheme for quantifying the calibration of Bayesian generative machine learning models. For a
Continuous Normalizing Flow applied to a low-dimensional toy example, we evaluate the
calibration of Bayesian uncertainties from either a mean-field Gaussian weight posterior, or Monte
Carlo sampling network weights, to gauge their behaviour on unsteady distribution edges. Well
calibrated uncertainties can then be used to roughly estimate the number of uncorrelated truth
samples that are equivalent to the generated sample and clearly indicate data amplification for
smooth features of the distribution.

1. Introduction

The upcoming high-luminosity runs of the LHC will push the quantitative frontier of data taking to over
25-times its current rates. To ensure precision gains from such high statistics, this increase in experimental
data needs to be met by an equal amount of simulation. The required computational power is predicted to
outgrow the increase in budget in the coming years [1, 2]. One solution to this predicament is the
augmentation of the expensive, Monte Carlo-based, simulation chain with generative machine learning. A
special focus is often put on the costly detector simulation [3, 4].

This approach is only viable under the assumption that the generated data is not statistically limited to
the size of the simulated training data. Previous studies have shown, for both toy data [5] and calorimeter
images [6], that samples generated with generative neural networks can surpass the training statistics due to
powerful interpolation abilities of the network in data space. These studies rely on comparing a distance
measure between histograms of generated data and true hold-out data to the distance between smaller,
statistically limited sets of Monte Carlo data and the hold-out set. The phenomenon of a generative model
surpassing the precision of its training set is also known as amplification. While interesting in theory and
crucial for the pursuit of the amplification approach, these studies can not be performed in experimental
applications as they rely on large validation sets multiple orders of magnitude bigger than the training data.

Recently, generative architectures employing Bayesian network weight posteriors have been applied to
event generation [7] allowing the generation of sets of data with a corresponding uncertainty on the
generated data distribution. In the limit of large generated sets, this uncertainty is entirely based in the
statistical limitations of the training data. For well calibrated uncertainty predictions, this raises the question
whether an estimate of statistical power of the generated data can be formed from the uncertainty prediction
itself. In this paper,

© 2024 The Author(s). Published by IOP Publishing Ltd
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• we introduce a technique for quantifying the calibration of Bayesian uncertainties on generative neural
networks based on the mean coverage of the prediction.

• We then develop an estimate of the number of simulated truth eventsmatching the generated set in statistical
power and validate this estimate.

For applications where the uncertainty calibration can be ensured, for example by evaluating on a validation
region, this approach gives an inherent quantification of the significance of a generated set.

In Bayesian neural networks (BNNs) and beyond, calibrating uncertainty quantification is crucial for
correct application of the prediction results [8]. While we prefer the uncertainties to align perfectly with the
prediction error, overconfident predictions will lead to inflated significance values and false discoveries.
Underconfident predictions on the other hand will obscure findings, but not lead to false results and can thus
be tolerated to small extend.

Bayesian generative machine learning is inherently different from other BNNs in particle physics
applications such as regression [9] or classification [10, 11]. Notably, in generative modeling, a low density
region of data cannot be understood as low training statistics, but rather as a feature of the data that has to
reproduced by the network. The uncertainty estimate thus behaves similarly to a low-dimensional,
parameterized fit [12] introducing high error estimates at steep features of the data distribution or whenever
the function class induced by the network architecture is not sufficient to reproduce the data. In a subsequent
study of the quality of event generators [13], the authors also connect low uncertainty to good performance
of the posterior mean in terms of a classifier test, but find that the weight distribution of a classifier is more
sensitive to diverse failure modes than the Bayesian uncertainty.

In section 2, we will explain the basic concepts of BNNs, while the connection to generative machine
learning will be made in section 3. We introduce the toy data, as well as the employed binning in section 4
and use them to evaluate the calibration of two different classes of BNNs in section 5. The idea of employing
the Bayesian uncertainties for amplification is developed and deployed in section 6, before we conclude in
section 7.

2. BNNs

In contrast to traditional, frequentist deep neural networks, in a Bayesian phrasing of deep learning, a
distribution on the network weights is applied. This distribution encodes the belief in the occurrence of the
weight configuration θ. This, so called posterior distribution

π (θ|D) =
π (D|θ) π (θ)

π (D)
(2.1)

is formed from our prior beliefs π(θ) and the likelihood π(D|θ) of the data D under the model. While the
likelihood gives the probability of the data given its modelling through the network and thus encodes the
data inherent distribution (aleatoric uncertainty), the posterior distribution provides the uncertainty due to
a lack of data (epistemic uncertainty) [14].

Multiple methods of accessing the posterior distribution exist. For a broad overview over the existing
techniques, we refer the readers to [8, 14–16]. They can mostly be classified as either approximating or
sampling the posterior.

One popular option is approximating the posterior as an uncorrelated Gaussian distribution by learning
a mean and a standard deviation per network weight. These parameters of the approximation are then
inferred with (stochastic) variational inference. This technique is also referred to as ‘Bayes-by-Backprop’ [17]
or within High-Energy Physics often understood as ‘Bayesian Neural Networks’. We will refer to it as
‘Variational Inference Bayes’(VIB).

For sampling the posterior, Markov Chain Monte Carlo (MCMC) methods are employed, with full
Hamiltonian Monte Carlo (HMC) often considered the gold-standard [18]. To adapt this class of methods to
the large datasets and high dimensional parameter spaces of deep learning stochastic and gradient-based
chains have been developed. Most notably among them are stochastic gradient HMC [19] and its variations.
Due to its easy application to different machine learning tasks and great performance on previous generative
applications [20], we use AdamMCMC [21] as one instance of MCMC-based Bayesian inference of network
weights.

With access to the posterior distribution of a neural network fθ(x) = y, we can generate the network
prediction as the posterior mean prediction and its uncertainty prediction as

ŷ =

ˆ
dθπ (θ|D) fθ (x) and σ2

ŷ =

ˆ
dθπ (θ|D) [ fθ (x) → ŷ]2 . (2.2)

2
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Here, the integration is approximated as a summation over an ensemble of network weights obtained from
the posterior directly via sampling or from its approximation.

For generative machine learning, a per-sample uncertainty cannot be evaluated due to the unsupervised
setup of the problem. We thus generate sets of data with every network weight instance in the ensemble,
calculate histograms for each set and report the mean and standard deviation per bin over all sets. This
allows us to compare against the expected truth values in each histogram bin.

3. Bayesian continuous normalizing flows (CNFs)

Generative models of various flavours have been applied for fast simulation of detector effects [3, 4].
Meanwhile, Normalizing Flows, both block-based [22] and continuous [23], can be connected to Bayesian
machine learning straight-forwardly, as the log-likelihood of the model is accessible. Due to the recent
success of diffusion-style models in detector emulation [24–29] and their high data efficiency, we combine
both and concentrate on CNFs in this study.

Let x ∈ Rd be a point in the data set D. Following [30] , we first introduce the flowmapping
φt : [0,1] × Rd → Rd parameterized by a time parameter t ∈ [0,1]. In analogy to the application of multiple
blocks in a coupling-block flow [22], the change of the flow mapping between target and latent space is
determined by an ordinary differential equation (ODE)

d

dt
φt (x) = vt (φt (x)) , φ0 (x) = x, (3.1)

through a time dependent vector-field vt : [0,1] × Rd → Rd. For Diffusion Models this differential equation is
promoted to a stochastic differential equation through the addition of time-dependent noise. For both cases,
the vector-field is approximated using a deep neural network

ṽt (·,θ) ≈ vt.

By convention, the flow is constructed to model latent data from a standard Gaussian at t = 0 and
detector/toy data at t = 1. This defines the the boundaries of the probability path induced by the flow
mapping

pt (x) = p0
(
φ−1
t (x)

)
det

(
∂φ−1

t (x)

∂x

)
. (3.2)

To circumvent solving the ODE to calculate the likelihood of the input data during training, we employ
conditional flow matching (CFM) [30]. Instead of the arduous ODE solving, the CFM loss objective matches
the neural network predictions ṽt(x;θ) to an analytical solution ut, by minimizing their respective
mean-squared distance

LCFM(θ) = Et,q(x1),pt(x|x1) ‖ut(x|x1) → ṽt(x;θ))‖2 . (3.3)

The expectation value is calculated by sampling t ∼ U(0,1), x1 ∼ q and x ∼ pt(·|x1), with q the probability
distribution of the detector/toy data. An efficient and powerful choice of ut is the optimal transport
path [30]. By applying a Gaussian conditional probability path the CFM loss objective reduces to

LCFM(θ) = Et,q(x1),p(x0)

∥∥∥(x1 → (1→ σmin)x0) → ṽt(σtx0 + µt;θ))
∥∥∥
2
. (3.4)

Here, we use the conventions µt = tx1 and σt = 1→ (1→ σmin)t, as well as the Gaussian latent distribution
p(x0) = N (0,1) and a small parameter σmin, that mimics the noise level of the training data.

3.1. VIB
The parameters of an approximation π̃(θ) of the posterior distribution π(θ|D) can be inferred, by
minimizing their Kullback–Leibler (KL) divergence using stochastic gradient descent methods [17]. As the
posterior is not analytically accessible, Bayes’ theorem (2.1) is employed to rewrite the KL divergence in
terms of the log-likelihood and the distance to the prior

LVIB = DKL [ π̃ (θ) ,π (θ|D)] = →
ˆ

dθ π̃ (θ) logπ (D|θ) +DKL [ π̃ (θ) ,π (θ)] + constant. (3.5)

The log-likelihood of the data under the CNF can be directly employed here. However, calculating the
log-likelihood of a CNF is costly as the ODE (3.1) needs to be solved for every point in the training data. The

3
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authors of [7] thus propose, to substitute the log-likelihood with the CFM loss (3.4) and attribute for the
difference by a tunable factor k

LVIB−CFM = Eπ̃(θ)LCFM + kDKL [ π̃ (θ) ,π (θ)] . (3.6)

Similar to changing the width of the prior π(θ), varying k adjusts the balance of the CFM-loss to the prior
and thus both the bias and variance of the predicted distributions. Trainings at low values of k produce better
fits at smaller uncertainties, while higher values impact the fit performance by imposing higher smoothness
at the trade-off of higher estimated uncertainties. In our experience, promoting a CFMmodel to a BNN this
way increases the training time considerably, due to the low impact and thus slow convergence of the KL-loss
term. Possible ways to mitigate this include initiating the prior distribution and the variational parameters
from the a pretrained deterministic neural network [31].

3.2. MCMC
A competing approach to variational inference-based Bayesian deep learning is MCMC sampling. Our
approach to MCMC sampling for neural networks, AdamMCMC [21], uses the independence of the sampled
invariant distribution to the starting point to initiate the sampling from CFM-trained model parameters θ0.
This drastically reduces the optimization time over the joint optimization of section 3.1, and makes
employing the costly log-likelihood for the consequent uncertainty quantification feasible.

For every step of the chain, the ODE (3.1) is solved to determine the negative log-likelihood LNLL of the
data to construct a chain drawn from a proposal distribution around an Adam [32] step

θ̃i+1 = Adam(θi,LNLL (θi)) . (3.7)

In combination with a proposal distribution that is elongated in the direction of the step

τi ∼ q(·|θi) = N
(

θ̃i+1,σ
21+ σ∆

(
θ̃i+1 → θi

)(
θ̃i+1 → θi

)"
)

. (3.8)

This algorithm handles high dimensional sampling for neural networks very efficiently and results in a high
acceptance rate in a subsequent stochastic Metropolis–Hastings correction with acceptance probability

α =
exp(→λLNLL (τi))q(θi |τi)
exp(→λLNLL (θi))q(τi |θi)

, (3.9)

for a large range of noise parameter settings. If the added noise σ is low, the results remain close to the
stochastic optimization without error estimates close to zero, but if the noise levels are high, the random walk
through parameter space dominates and the algorithm does not converge to a sensible parameter values. This
behaviour is masked by diminishing acceptance probabilities for very low and very high σ [21].

Both the inverse temperature parameter λ and the noise parameter σ tune the predicted uncertainties. In
theory small λ and high σ will result in high error estimates, albeit in practice the dependence on the inverse
temperatures is very weak. We thus limit ourselves to adapting the noise parameter to align the generated
uncertainties.

After an initial burn-in period, which can be skipped when initializing from a pretrained model,
repeatedly saving the network parameters after gaps of length l ensures approximately independent
parameter samples. The set of sampled parameters

ΘMCMC =
{

θ(1), . . .,θ(nMCMC)
}

:= {θ1·l, . . .,θnMCMC·l} . (3.10)

Follows the tempered posterior distribution, due to Bayes’ theorem and the resulting proportionality

π̃λ (θ|D) ⇐ exp(→λLNLL (θ))π (θ) . (3.11)

4. Toy setup

4.1. Gamma function ring
Similar to previous studies on data amplification [5], we employ the CNF on a low-dimensional ring
distribution. Generative Architectures often struggle with changes in the topology between latent space,
typically Normal distributed, and data space [33]. The ring structure reflects this ‘topological worst case’. A
generalization of the results from a similar, topologically complicated, but low-dimensional toy to
high-dimensional, simulated, and topologically less problematic calorimeter images was performed in [6]. In

4
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Figure 1. Left: Histogram of one training data set (10000 points). The data follows a ring structure with a sharp edge at r= 4 and
a long tail to higher radii. Mid: Marginal distribution of the training data in radial direction. Right: 5× 5 quantiles generated
from a data set of 10M points and filled with the training data. The quantiles are constructed with equal probability of the truth
data to fall into every quantiles.

this paper, we focus on the calibration of generative uncertainties and draw a connection to data
amplification. We thus limit the study to two dimensions for illustrative purposes and to reduce
computational costs. Nevertheless, the calibration can be executed analogously for higher dimensional
distributions. We generate samples from a ring distribution with an unsteady edge at a radius of r= 4, by
sampling in spherical coordinates from

φ ∼ uniform(0,2π) and r→ 4 ∼ Γ(α,β) ,

with parameters α = β = 2 for the Gamma distribution. Per training, we use an independent sample of
N = 10000 points. Before passing the data to the CNF, we transform into Cartesian coordinates to obtain the
ring shape shown in figure 1. This construction allows us to estimate the behaviour of the uncertainties at
distribution edges and simultaneously prevents divergences of the probability distribution in (x,y) = (0,0).

4.2. Hyperparameter choices
Due to the low dimensionality of the toy example, we do not need to employ complicated architectures to
obtain a good approximation of the vector-field ṽt(·,θ). Based on a small grid search, a Multi-Layer
Perceptron with 3 layers of 32 nodes and ELU activation is sufficient to reproduce the training data well. Each
of the 3 layers takes the time variable t as an additional input. The neural network part of the CNF thus totals
a mere 2498 parameters.

When parameterizing the weight posterior approximation π̃(θ) as an uncorrelated Normal distribution,
as is standard in VIB [17], the number of parameters consequently doubles. For VIB we train using the Adam
optimizer [32] at a learning rate of 10−3 for up to 250k epochs of 10 batches of 1000 datapoints each. To
prevent overfitting, we evaluate the model at the earliest epoch after convergence of the KL-loss term. This
point depends on the choice of k and varies between 75k for k= 50 and 250k for k= 1. We do 5 runs each for
multiple values of k ∈ [1,5,10,50] to regulate the uncertainty quantification. For this range of k we have
previously found sensible density estimation and optimization convergence trough performing a log-linearly
spaced scan in k ∈ [10−4,105]) with only one run per parameter choice.

For the AdamMCMC sampling, we start the chain from a pretrained model. The model is first optimized for
2500 epochs (Adam with learning rate of 10−3) using only the CFM-loss (3.4). For the deterministic model,
this is enough to converge. We then run the sampling at a the same learning rate as the optimization with
σ∆ ≈ 50 and λ = 1.0. This choice of σ∆ ensures high acceptance rates, while the choice of λ reflects sampling
from the untempered posterior distribution, as per (3.11). We add a sample to the collection at intervals of
100 epochs, to ensure the independence of the sampled weights. To adjust the calibration, we scan the noise
value at four points σ ∈ [0.01,0.05,0.1,0.5]. This parameter span is based on a log-linearly spaced scan in
σ ∈ [10−4,10]). Once again, we calculate 5 chains per noise parameter setting.

4.3. Quantiles
As in [5], we evaluate the generated data in histogram bins of equal probability mass. We will refer to these
bins as quantiles Qj, their count as qj and the set of all quantiles as Q= {Q1, . . .,QnQ}. To construct bins with
the same expected occupancy, we use spherical coordinates. In angular direction, the space can simply be
divided into linearly spaced quantiles, while in radial direction we use the quantiles of a 10M generated truth
dataset to gauge the boundaries of the quantiles. To guaranty even population, we always choose the same
number of quantiles in both dimensions. Figure 1 illustrates the construction and occupancy for 5× 5
quantiles in Cartesian coordinates.

5
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For correlated data, quantiles can be constructed by iteratively dividing a truth set into sets of equal
size [6]. The binning is however not relevant for the discussion of calibration and analogous arguments can
be made for arbitrary histograms. The advantage of quantiles over other binning schemes is the clear
definition of the number of bins without an offset by an arbitrary amount of insignificant bins in the sparsely
or unpopulated areas of the data space. This allows us to show the behaviour of calibration and amplification
over the number of bins in sections 5 and 6.

5. Calibration

To align the uncertainty quantification, for AdamMCMC we generate 10M points from the CNF for the
nMCMC = 10 parameter samples in ΘMCMC. We obtain a set of points G(i) per parameter sample θ(i), with the
corresponding count

g(i)j = #
{
x ′ ∈ Qj | x ′ ∈ G(i)

}

in quantile Qj. Each count corresponding to a parameter sample thus constitutes one drawing of a random
variable Gj whose distribution is induced by the posterior.

Analogously, for VIB we draw a set ΘVIB of parameters from the posterior approximation π̃(θ), generate
10M samples from each and calculate the quantile counts to generate drawings of Gj. As the training cost
does not depend on the number of draws for VIB, we use nVIB = 50 samples for better accuracy.

Using the quantile values g(i)j , we approximate the cumulative distribution function (CDF)

F̂Gj,Θ

(
gj
)

≈ FGj

(
gj
)

= P
(
Gj ! gj

)
, (5.1)

from its empirical counterpart using linear interpolation. We leave the set Θ general, without a subscript, for
now. From the approximated CDF, we construct symmetric confidence intervals for a given confidence level c
from its inversion

Ij,Θ (c) =
[
F̂−1
Gj,Θ

(
0.5→ c

2

)
, F̂−1

Gj,Θ

(
0.5+

c

2

)]
. (5.2)

The chosen confidence level c corresponds to the expected or nominal coverage.
To evaluate the observed coverage, we draw 5 different training sets from the Gamma ring distribution

and calculate a VIB- and AdamMCMC-CNF ensemble each

Θ s
MCMCand Θ s

VIBfor s ∈ {1, . . .,5} .

For every model, we construct a confidence interval and evaluate the number of intervals containing the
expected count of the truth distribution, i.e. 1/nQ. The ratio of models with an interval containing the truth
value over the total number of models gives the empirical coverage per bin

ĉj =
#

{
1/nQ ∈ Ij,Θ s (c) | s ∈ {1, . . .,5}

}

5
, (5.3)

where we again keep the subscript on the set of parameters unspecified. For one quantile this coverage
estimate is very coarse as it can only take on one of six values. Since we want to check the agreement of
nominal and empirical coverage for multiple nominal coverage values, we report the mean empirical
coverage

c̄ =
〈
ĉj
〉
j∈{1,...,nQ} (5.4)

over all quantiles. The range of possible mean values is big enough to compare to a fine spacing in nominal
coverage.

This also allows us to judge the agreement of nominal and empirical coverage in the full data space in a
single figure. However, it also introduces the possibility for over- and underconfident areas to cancel each
other out. This issue will be treated in more detial in sections 5.1 and 5.2.

Figure 2 shows the mean empirical coverage over all quantiles for 50 values of the nominal coverage
linearly spaced between 0 and 1 and over three different numbers of quantiles. For a well calibrated
uncertainty estimation, the empirical estimate closely follows the nominal coverage and the resulting curve is
close to the diagonal of the plot. For figure 2 we can see that high noise levels in the MCMC chain lead to
overestimated errors and a prediction that is underconfident on average. Inversely, low noise levels lead to
overconfident predictions. From our chosen grid, σ = 0.1 shows the best agreement.
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Figure 2.Mean empirical coverage for confidence intervals calculated from 10 samples of the Bayesian weight posterior drawn
with AdamMCMC using 4 different hyperparameter settings. Higher σ will generally result in larger uncertainties. The empirical
coverage is calculated from 5 independent runs and averaged over all quantiles. The panels show a clear dependence of the
calibration on the number of quantiles increasing from left to right.

Figure 3.Mean empirical coverage for confidence intervals calculated from 50 drawings from the VIB approximation of the
Bayesian weight posterior with 4 different hyperparameter settings. Larger k increases the dependence of the fit on the prior. The
empirical coverage is calculated from 5 independent runs and averaged over all quantiles. The panels again show a clear
dependence of the calibration on the number of quantiles increasing from left to right.

It further becomes apparent that the calibration depends on the number of quantiles. For lower numbers
of quantiles, the fluctuations in the generated distribution average out and both the mean prediction and
error estimation are more precise, while for higher numbers of quantiles good calibration becomes
challenging while limited to 10 posterior samples.

For VIB in figure 3, where we evaluate 50 posterior samples, calibration seems to improve for high nQ.
While at lower numbers only a very small prior trade-off k leads to overconfident intervals and larger values
result in underconfident predictions, at higher numbers of quantiles previously underconfident predictions
appear well calibrated.

5.1. Scaling with the number of quantiles
To further investigate the calibration of our Bayesian generative neural networks, we pick the seemingly best
calibrated parameter settings for both methods. For AdamMCMC this is σ = 0.1 and for VIB k= 10. We
generate nMCMC = nVIB = 50 samples from the posterior for both methods now and evaluate the scaling with
the number of quantiles in more detail.

As we do not want to evaluate one calibration plot for each quantile, we reduce the diagonal calibration
plots by calculating the mean (absolute) deviation between empirical and nominal coverage

MD = ⇒̄c→ c〉c∈[0,1] and MAD = ⇒|̄c→ c|〉c∈[0,1] , (5.5)

where the mean empirical coverage still depends on the nominal coverage c̄ = c̄(c). The composition of the
mean on the quantiles, the absolute value, and the mean on the nominal coverage allows for under- and
overestimation in individual quantiles to cancel out.

To gauge this we promote the index over all quantiles j to a tuple of indices ( jr, jφ). We write ĉ( jr,jφ) for the
empirical coverage in the jrth radial and jφth angular bin. By limiting the average over the empirical
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Figure 4. Left: Mean absolute deviation between the nominal and the empirical coverage (5 runs) for 50 posterior samples from
both, VIB at k= 10 and AdamMCMC at σ = 0.1. The panel shows a strong dependence on the number of quantiles. From evaluating
the calibration plots for all numbers of quantiles individually, we know both methods are undercertain at low numbers. With
increasing nQ, the calibration mean exhibits a strong dependence on the order of the absolute and average operations. When only
the over- and underdensities along radial or angular dimension can cancel out, the mean calibration of the VIB-CNFs drastically
decreases. Right: Difference between nominal and empirical coverage (mean over angular direction) for the radial direction of
200× 200 quantiles. Values below 0 indicate overcertainty, while values above indicate undercertain predictions. While the
predictions of the AdamMCMC-CNFs are well calibrated to slightly undercertain along the radius, the prediction of the VIB-CNFs
starts out overcertain due to the oversmoothing caused by the strong prior dependence. When averaging over all radii, the
VIB-CNF predictions cancel exactly and the BNN seems well calibrated.

coverage (5.4) to one of the dimensions

c̄jr =
〈
ĉ( jr,jφ)

〉

jφ
and c̄jφ =

〈
ĉ( jr,jφ)

〉

jr
(5.6)

we construct marginal coverage distributions in the remaining directions. We can then again calculate the
mean absolute deviation to the nominal coverage and suspend the average in the remaining direction until
the very end

MADr =
〈〈

|̄cjr → c|
〉
c∈[0,1]

〉

jr
and MADφ =

〈〈
|̄cjφ → c|

〉
c∈[0,1]

〉

jφ

By switching the order, only quantile counts in direction of the first mean (5.6) can even out. When starting
out with the average in the angular dimension, we end up with an estimate where the fluctuations in the
radial direction are preserved in the absolute mean and vice versa.

The left panel of figure 4 shows the dependence of the three different coverage deviation averages on the
number of quantiles. To keep the effect of statistic fluctuations per bin to a minimum, we generate sets of
1000 · nQ artificial points with the CNFs and evaluate between 2× 2 and 200× 200 quantiles.

We find a clear dependence of the coverage means on the number of quantiles. At low numbers, the mean
prediction averages over large areas of the data space increasing the quality of the mean prediction. The
uncertainty estimation is thus underconfident for both methods and the mean absolute deviations are high
and do not depend on the order of averaging. For low numbers of quantiles, calibration is much better,i.e.
the absolute deviation is closer to 0. While for AdamMCMC we cannot see big changes depending on the
averaging order. This indicates a calibration independent of the dimension. At the same time, we find large
discrepancies for VIB. This variation can be understood from the marginal calibrations.

5.2. Calibration at sharp features in radial direction
The right panel of figure 4 displays the the marginal empirical coverage in radial direction c̄r for 200× 200
quantiles and both BNN methods. We can see a distinct difference in the uncertainty quantification.

While the VIB prediction seems very well calibrated in total, in the radial direction, the VIB
underestimates its bias for the steeply rising part of the data distribution between r ∈ [4.0,5.0]. For the same
interval, the MCMC prediction is well calibrated and less underconfident than for higher radii. For r> 5
both models slightly overestimate the uncertainty and show very similar calibration.

In terms of absolute uncertainty, both methods actually predict very similar results. However, the mean
prediction of the VIB-CNF is strongly biased by the prior KL-loss term, resulting in large underpopulation of
the generated density due to oversmoothing for r< 4.5 and a corresponding overpopulation in r ∈ [4.5,5.0].
We have tested the predictions for k= 50 and the behaviour is magnified at higher values of k. For lower
values (k= 5), the oversmoothing is reduced to the area below r= 4.3 at the cost of an overestimated tail. The
AdamMCMC-CNF shows signs of oversmoothing as well, but only very close to the start of the radial
distribution.
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6. Bayesiamplification

Based on the previous discussion of both the total and marginal calibration, we can confidently say that our
AdamMCMC-CNF is well calibrated, albeit slightly underconfident for some areas of data space and small
numbers of bins. It is, however, important to note that truth information was needed to evaluate the
calibration of the BNN. In a practical application, this would require either a validation region or a large
hold-out set, the latter of which would partially defeat the purpose of data amplification in fast detector
simulation. However, for applications with validations regions, such as generative anomaly detection [34,
35], precision improvements through data amplification can be realized.

With a well calibrated BNN, we can try and develop a measure of the statistical power of the generated set
from the uncertainties. We do so by relating the uncertainty to the statistics of an uncorrelated set of points T
from the truth distribution. For nbins arbitrary bins, we expect the count in the jth bin to be approximately
Poisson distributed with mean and variance tj. For the same bin, the set of nMCMC = 50 AdamMCMC-CNF
posterior samples gives a mean prediction

ḡj =
〈
g(i)j

〉

i∈{1,...,nMCMC}
and variance σ2

ḡj =

〈(
g(i)j → ḡj

)2
〉

i∈{1,...,nMCMC}
.

We will now use the posterior mean and variance to construct an estimator t̂j of the Poisson equivalent to the
per-bin predictions. Using only the mean t̂j := ḡj, the equivalent will simply be the generated statistics.
Thereby, we would disregard the correlations in the generated data through limited training data completely.

By instead equating the variance of the BNN to that of the equivalent uncorrelated set t̂j := σ2
ḡj , we

would introduce an unwanted dependence on the uncertainty prediction. Overestimated uncertainties would
lead to an overestimation of the statistical power.

As we do not want to overestimate the generative performance, we aim to have undercertain predictions
to lead to an underestimation of the uncorrelated equivalent. Such a behaviour can be constructed using the
coefficient of variation

1√
t̂j

:=
σḡj

ḡj
⇐⇒ t̂j =

ḡ2j
σ2
ḡj

. (6.1)

The equivalent uncorrelated statistics now decreases for overestimated σḡj . Both the predictions from the
absolute and from the relative error give the similar estimates for well calibrated errors in our tests.

We calculate the equivalent truth set size for both the VIB-CNF and AdamMCMC-CNF and the quantiles
from section 5. In figure 5, we report the amplification as the ratio of the sum over all bin estimates and the
training statistics

nbins∑

j=1

t̂j/N

in the left panel, as well as the mean estimate over all bins on the right.
Since the amplification contains the sum over all quantiles of our setup and t̂j depends on the

fluctuations of the individual predictions g(i)j around the posterior mean prediction only, we expect it to scale
linearly in the number of bins. This seems in good agreement with the figure. For large numbers of quantiles,
where the BNNs are best calibrated, the average amplification per bin converges to a constant value. Fitting a
exponential linear function exp(a+ b · log(x)) = a ′ · xb to these last 8 points of figure 5 using least squares,
we indeed find no significant deviations from b= 1. We estimate a ′ = (4.3± 2.9) · 10−3 and b = 0.99± 0.06
for the VIB-CNF and a ′ = 0.012± 0.004 and b = 0.99± 0.04 for the AdamMCMC-CNF. At lower numbers, the
deviations of the model output for different parameters in the Bayesian set integrate over large intervals of
the data space leading to smaller error estimates and increased amplification per bin.

This behaviour is consistent with the previous studies [5, 6] and the observation that one can not
improve the estimation of low moments of the distribution, like the distribution mean, by oversampling with
a generative neural network. From figure 5, we can also estimate the minimum amount of bins to leverage
the amplification. For the MCMC sample, evaluating at 100 bins is expected to yield an improved density
estimation over using only the training set. This number could decrease for a less underconfident model. For
highly granular binning, we find amplification estimates of more than a factor 100.

For smaller training statistics, we expect a higher initial amplification at low numbers of bins, while the
corresponding larger uncertainty estimate will result in a flatter slope. The number of quantiles where an
amplification larger than 1 first occurs will be smaller in such a case. Higher training statistics on the other
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Figure 5. Left: Amplification estimate generated by equating the error prediction per bin for both BNNs to the Poisson error of an
independent data set. Higher uncertainty results in lower amplification. Errorbars are calculated from the ensemble of 5 runs
done per BNN method. Again, we use 50 samples of the weight posterior (approximation) for both methods. The faint solid lines
show the result of exponential linear fit (least squares) to the last 8 points. Right: The mean estimate over all quantiles converges
to a constant value at high numbers of quantiles resulting in linear scaling of the amplification with the number of quantiles.

Figure 6. Jensen–Shannon divergence between the mean prediction by the Bayesian CNFs and the true data distribution (solid
line) and between a uncorrelated data set of the size predicted by the BNN error estimate and the true data (dashed line). Both
divergences align only for well calibrated uncertainties (AdamMCMC at high numbers of quantiles) and indicate over- and
underestimated errors otherwise. Uncertainties are reported from the ensemble of 5 independent runs done for estimation of the
empirical coverage.

hand will lead to a steeper slope and a later trade-off point. The results of [5] imply, that amplification effects
are stronger in larger data spaces, due to the reduced density of the training data.

Similar calculations can be done for arbitrary binnings to justify the use of generative machine learning
in a specific analysis. The evaluation of the Bayesian uncertainty prediction however requires the calculation
of multiple sets of fast-simulation data points. This reduces the speed benefits of applying generative
machine learning over more classical tools like MCMC simulation or inference.

6.1. Checking amplification with Jensen–Shannon (JS) divergence
To test how well the sum over all bin estimates

N̂ =
nbins∑

j=1

t̂j

actually gauges the size of an equivalent independent data set, we calculate the JS divergence

D̄JS (p,q) =
1

2

nbins∑

j=1

(
pj log

pj
1
2

(
pj + qj

) + qj log
qj

1
2

(
pj + qj

)
)

, (6.2)

between the histogram estimation of the density in our quantiles and the known data distribution. The JS
divergence is bounded by 0 and log2, with smaller values indicating similarity between the compared
distributions.

In our toy setup, the bins are constructed as quantiles. We evaluate the JS divergence for pj =
ḡj

1000·nQ , the

mean prediction of the BNN relative to total number generated, and qj = 1/nQ the probability per quantile
when sampling from the data distribution. In figure 6, we compare it to the JS divergence for pj = tj/N̂, the
relative population of the quantiles for a set of N̂ points drawn from the truth distribution, and the true
quantile count qj = 1/nQ for a large range of nQ.
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Where the BNN is well calibrated, i.e. for AdamMCMC and nQ > 103, the quality of the mean prediction
lines up with the results of the uncorrelated set drawn to the size of the BNN errors. The Bayesian coefficient
of variation correctly predicts the equivalent uncorrelated statistics. At lower numbers of quantiles, the error
is overestimated. Consequently, the statistical equivalent is underestimated. This can also be observed for the
VIB-CNF. However, for large number of quantiles where the uncertainty at low radii is underestimated, see
section 5.2, the performance of the mean prediction is worse than anticipated by the BNN. Good calibration
on the full data space therefore is important for a reliable prediction of N̂.

7. Conclusion

In the previous chapters, we present a novel evaluation of the uncertainty provided by a Bayesian generative
neural network in a histogram. To this end, we propose constructing confidence intervals per histogram bin
and compare the nominal coverage of the constructed interval to the empirical coverage obtained from a
small ensemble of BNNs.

We observe a strong dependence of the calibration on the parameters of both a VIB-CNF and an
MCMC-sampled CNF. Furthermore, we find a strong tendency to oversmooth with strong priors leading to
underestimation of the data density and corresponding error at the non-differentiable inner edge of our toy
distribution. While present in both approaches, this behavior was predominantly displayed by the VIB-CNFs.

We further use the calibrated errors to estimate the statistical power of the generated data in terms of the
size of an equivalent independently sampled data set. This estimate correctly quantifies the performance of
the BNNs mean prediction when the errors are well calibrated and assigns a concrete number to the data
amplification in dependence of the employed binning. For a correct amplification estimate, it is crucial that
the errors are well calibrated in the full data space.

Similar calibration checks can be applied wherever a generative neural network is used for inference or
generation with a sufficient validation set or for interpolation into hold-out regions of the data.
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