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Abstract

Semiconductor nanostructures have revolutionized semiconductor physics, driving fun-

damental discoveries and significant advancements in optoelectronic applications. In

recent years, colloidal nanostructures have become a research hotspot due to the re-

markable control and reproducibility achieved in their synthesis and manipulation.

These fascinating structures can be engineered with sizes ranging from just a few

atoms in the sub-2 nanometer (nm) regime to thousands of atoms extending across

tens of nm. In this size domain, quantum confinement and dielectric confinement ef-

fects play a critical role. These effects cause significant deviations in the electronic,

optical, and vibrational properties compared to the bulk materials. The highly tunable

electronic and optical properties of these structures depend on several factors includ-

ing size and shape, different compositions, and surface chemistry. This combination

of tunable properties leads to exciting research and commercial applications in various

fields, including bio-imaging, solar cells, LEDs, diode lasers, and transistors.

Understanding the electronic and vibrational properties of colloidal nanostructures

is essential, yet achieving a theoretical framework that consistently aligns with experi-

mental observations remains challenging. The choice of theoretical methods depends on

the desired accuracy and computational constraints. Highly accurate ab initio meth-

ods are ideal for small structures containing up to a few hundred atoms but become

computationally prohibitive for larger systems. Semi-empirical methods strike a bal-

ance between accuracy and efficiency, making them suitable for structures with several

thousand atoms. Fully empirical methods, while less accurate, are computationally

efficient and can handle very large structures with millions of atoms. In this work, we

strategically utilize ab initio, semi-empirical, and empirical methods to calculate the

electronic, optical, and vibrational properties of various nanostructured materials.

Chapter 1 lays the groundwork by providing a general overview of the physical

properties of semiconductor nanostructures and the motivation of the work.

Chapter 2 lays the foundation for the calculations and methodologies employed
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throughout this work. It establishes the fundamental theoretical principles that serve

as the basis for the specific theories and results presented in subsequent chapters.

This chapter discusses the complexities associated with many-body calculations and

explores various underlying approximations used to model materials at the atomic

level. A cornerstone of this theoretical framework is the elegant formulation of density

functional theory (DFT). Chapter 2 provides a detailed explanation of DFT principles,

followed by a discussion of the configuration interaction method.

Chapter 3 focuses on a topic of significant scientific debate: the origin of the high-

frequency shoulder (HFS) observed above the longitudinal optical (LO) peak around

230 cm−1 in the Raman spectra of cadmium selenide (CdSe) quantum dots (QDs). We

use state-of-the-art ab initio DFT applied to small CdSe QDs, considering variations in

size, the presence of surface defects, different surface terminations, and core/shell struc-

tures. We demonstrate that an intense Raman signal appears around 230 cm−1 in Se-

defective structures, corresponding to the stretching vibration of a twofold-coordinated

defective Se atom. We interpret this signal as the origin of the HFS. As this signal is

absent in fully passivated and defect-free (magic-size cluster) structures, it can serve

as a fingerprint to distinguish between defective and non-defective structures.

Chapter 4 investigates the influence of alloying on the excitonic fine structure (FS)

of the QDs and dot-in-rod nanostructures. We investigate how the excitonic FS evolves

in different size Zn1−xCdxSe alloyed dots with varying concentration x and Zn1−xCdxSe

dot in CdS rod. We use fully atomistic empirical pseudopotential method in combi-

nation with the configuration interaction approach. We find that lattice mismatch

in alloyed QDs induces strain, leading to crystal field splitting among SP levels com-

pared to pure QDs. These splittings translate into distinct excitonic fine structures

in alloyed QDs, compared to pure ones, indicating inherently multi-exponential pho-

toluminescence decay. The FS analysis of alloyed dot-in-rod structures further reveals

that low-temperature PL decay will involve multiple excitonic levels, consistent with

the multi-exponential PL decay observed experimentally.

Chapter 5 focuses on the description of the atomic effective pseudopotential (AEP)

method, a DFT-based approach for performing electronic structure calculations on large

systems with up to fifty thousand atoms. As the AEPs are directly obtained from DFT

using the local density approximation (LDA) for exchange-correlation functional, the

typical error from LDA, such as underestimated band gaps and effective masses, are

inherited by the AEPs. Therefore, an empirical correction of the non-local parts of the
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pseudopotential is introduced to achieve correct band gaps and effective masses within

the AEPs framework. The effectiveness of this correction is rigorously validated by

applying it to both bulk and QDs of varying diameters in various binary semiconductor

materials. We compare optical band gaps, intraband splitting, Coulomb integrals,

and excitonic FS of QDs with different diameters with the available experimental and

theoretical results. Moreover, we provide an example with wurtzite ZnS QDs to show

how this correction can be used to determine nanocrystal sizes with reasonable accuracy,

given that electronic, quasiparticle, or optical gaps are experimentally measured.

Chapter 6 discusses an extension of the AEP method tailored to handle impurities

and defects in semiconductor materials. This extension enables the calculation of the

electronic structure of dopant impurities and defects embedded within the materials.

To illustrate its practical utility, the electronic structure of Mn as an impurity in wide-

gap ZnS is presented. Preliminary results emphasize a comparison between the derived

defect AEPs and full ab initio calculations, affirming the accuracy of our AEP approach

for defect systems. Moreover, we demonstrate the application of our correction scheme

to get accurate Mn impurity energy levels in ZnS. By using these gap-corrected results,

we lay the groundwork for future calculations involving the many-body multiplets of Mn

in ZnS. This will include a combination of the screened CI method, adept at handling

open-shell systems, with the derived impurity/defect AEPs.

Finally, in Chapter 7 the results are summarized, and an outlook for future work is

presented.
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Zusammenfassung

Halbleiter-Nanostrukturen haben die Halbleiterphysik revolutioniert und zu grundle-

genden Entdeckungen und bedeutenden Fortschritten bei optoelektronischen Anwen-

dungen geführt. In den letzten Jahren sind kolloidale Nanostrukturen aufgrund der be-

merkenswerten Kontrolle und Reproduzierbarkeit, die bei ihrer Synthese und Manipula-

tion erreicht werden, zu einem Hotspot der Forschung geworden. Diese faszinierenden

Strukturen können in Größenordnungen von wenigen Atomen im Sub-2-Nanometer-

bereich (nm) bis hin zu Tausenden von Atomen mit einer Ausdehnung von mehreren

zehn nm hergestellt werden. In diesem Größenbereich spielen die Effekte des Quan-

teneinschlusses und des dielektrischen Einschlusses eine entscheidende Rolle. Diese

Effekte führen zu erheblichen Abweichungen bei den elektronischen, optischen und

Schwingungseigenschaften im Vergleich zu Massenmaterialien. Die hochgradig ab-

stimmbaren elektronischen und optischen Eigenschaften dieser Strukturen hängen von

mehreren Faktoren ab, darunter Größe und Form, unterschiedliche Zusammensetzun-

gen und Oberflächenchemie. Diese Kombination von abstimmbaren Eigenschaften führt

zu spannenden Forschungs- und kommerziellen Anwendungen in verschiedenen Bere-

ichen, darunter Bio-Imaging, Solarzellen, LEDs, Diodenlaser und Transistoren.

Das Verständnis der elektronischen und schwingungstechnischen Eigenschaften kol-

loidaler Nanostrukturen ist von entscheidender Bedeutung, doch ist es nach wie vor

eine Herausforderung, einen theoretischen Rahmen zu schaffen, der mit experimentellen

Beobachtungen übereinstimmt. Die Wahl der theoretischen Methoden hängt von der

gewünschten Genauigkeit und den Berechnungsbeschränkungen ab. Hochpräzise ab

initio-Methoden sind ideal für kleine Strukturen mit bis zu einigen hundert Atomen,

werden aber für größere Systeme rechnerisch unerschwinglich. Semi-empirische Meth-

oden schaffen ein Gleichgewicht zwischen Genauigkeit und Effizienz und eignen sich

daher für Strukturen mit mehreren tausend Atomen. Vollständig empirische Metho-

den sind zwar weniger genau, dafür aber rechnerisch effizient und eignen sich für sehr

große Strukturen mit Millionen von Atomen. In dieser Arbeit werden ab initio, semi-

xxv



xxvi

empirische und empirische Methoden strategisch eingesetzt, um die elektronischen,

optischen und Schwingungseigenschaften verschiedener nanostrukturierter Materialien

zu berechnen.

Kapitel 1 verschafft einen allgemeinen Überblick über die physikalischen Eigen-

schaften von Halbleiter-Nanostrukturen sowie über die Motivation der Arbeit.

Kapitel 2 legt den Grundstein für die in dieser Arbeit verwendeten Berechnungen

und Methoden. Es legt die grundlegenden theoretischen Prinzipien fest, die als Basis

für die spezifischen Theorien und Ergebnisse dienen, die in den nachfolgenden Kapiteln

vorgestellt werden. In diesem Kapitel werden die Komplexität von Vielkörperberech-

nungen erörtert und verschiedene zugrundeliegende Näherungen untersucht, die zur

Modellierung von Materialien auf atomarer Ebene verwendet werden. Ein Eckpfeiler

dieses theoretischen Rahmens ist die elegante Formulierung der Dichtefunktionaltheo-

rie (DFT). Kapitel 2 bietet eine detaillierte Erklärung der DFT-Prinzipien, gefolgt von

einer Diskussion der Configuration Interaction methode.

Kapitel 3 konzentriert sich auf ein Thema, das in der Wissenschaft viel disku-

tiert wird: den Ursprung der Hochfrequenzschulter (HFS), die oberhalb des longitudi-

nalen optischen (LO) Peaks um 230 cm−1 in den Raman-Spektren von Cadmiumselenid

(CdSe) Quantenpunkte (QDs) beobachtet wird. Wir verwenden die modernste DFT,

die auf kleine CdSe-QDs angewandt wird, und berücksichtigen dabei Variationen in

der Größe, das Vorhandensein von Oberflächendefekten, verschiedene Oberflächenab-

schlüsse und Kern-/Schalenstrukturen. Wir zeigen, dass ein intensives Raman-Signal

um 230 cm−1 in Se-defekten Strukturen erscheint, das der Streckschwingung eines

zweifach koordinierten defekten Se-Atoms entspricht. Wir interpretieren dieses Signal

als den Ursprung der HFS. Da dieses Signal in vollständig passivierten und defekt-

freien (magic-size cluster) Strukturen nicht vorhanden ist, kann es als Fingerabdruck

zur Unterscheidung zwischen defekten und nicht-defekten Strukturen dienen.

Kapitel 4 untersucht den Einfluss der Legierung auf die exzitonische Feinstruktur

(FS) der QDs und Dot-in-rod Nanostrukturen. Wir untersuchen, wie sich die exzitonis-

che FS in unterschiedlich großen Zn1−xCdxSe-legierten dots mit variierender Konzen-

tration x und Zn1−xCdxSe-dots in CdS-rod entwickelt. Wir verwenden die vollständig

atomistische empirische Pseudopotentialmethode in Kombination mit dem Configura-

tion Interaction methode. Wir stellen fest, dass die Gitterfehlanpassung in legiertem

QDs eine Dehnung induziert, die im Vergleich zu reinem QDs zu einer Aufspaltung

des Kristallfelds zwischen den SP-Niveaus führt. Diese Aufspaltungen führen zu unter-
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schiedlichen exzitonischen Feinstrukturen in legierte QDs im Vergleich zu reine QDs,

was auf einen inhärent multi-exponentiellen Photolumineszenzabfall hindeutet. Die

FS-Analyse von legierten Dot in-rod Strukturen zeigt außerdem, dass der PL-Zerfall

bei niedrigen Temperaturen mehrere Exzitonenniveaus umfasst, was mit dem experi-

mentell beobachteten mehrexponentiellen PL-Zerfall übereinstimmt.

Kapitel 5 konzentriert sich auf die Beschreibung der AEP-Methode, einem DFT-

basierten Ansatz zur Durchführung von Berechnungen der elektronischen Struktur

großer Systeme mit bis zu fünfzigtausend Atomen. Da die AEPs direkt aus der DFT-

Methode unter Verwendung die Lokale Dichtenäherung (LDA) Austausch-Korrelations-

funktionals gewonnen werden, werden die typischen Fehler der LDA-Methode, wie z.

B. unterschätzte Bandlücken und effektive Massen, auf die AEPs übertragen. Daher

wird eine empirische Korrektur der nichtlokalen Teile des Pseudopotentials eingeführt,

um korrekte Bandlücken und effektive Massen im Rahmen der AEPs zu erhalten. Die

Wirksamkeit dieser Korrektur wird rigoros validiert, indem sie sowohl auf Bulk- als auch

auf QDs mit unterschiedlichen Durchmessern in verschiedenen binären Halbleitermate-

rialien angewendet wird. Wir vergleichen optische Bandlücken, Intraband-Aufspaltung,

Coulomb-Integrale und exzitonische FS von QDs mit verschiedenen Durchmessern mit

den verfügbaren experimentellen und theoretischen Ergebnissen. Darüber hinaus zeigen

wir anhand eines Beispiels mit wurtzitischem ZnS QDs, wie diese Korrektur verwendet

werden kann, um Nanokristallgrößen mit angemessener Genauigkeit zu bestimmen,

vorausgesetzt, dass elektronische, Quasiteilchen- oder optische Lücken experimentell

gemessen werden.

In Kapitel 6 wird eine Erweiterung der AEP-Methode erörtert, die auf die Be-

handlung von Verunreinigungen und Defekten in Halbleitermaterialien zugeschnitten

ist. Diese Erweiterung ermöglicht die Berechnung der elektronischen Struktur von

Dotierungsverunreinigungen und Defekten, die in den Materialien eingebettet sind.

Zur Veranschaulichung des praktischen Nutzens wird die elektronische Struktur von

Mn als Verunreinigung in ZnS mit großer Bandlücke vorgestellt. Vorläufige Ergebnisse

unterstreichen einen Vergleich zwischen den abgeleiteten Defekt-AEP und vollständi-

gen ab initio-Berechnungen, was die Genauigkeit unseres AEP-Ansatzes für Defekt-

systeme bestätigt. Darüber hinaus demonstrieren wir die Anwendung unseres Korrek-

turschemas, um genaue Mn-Verunreinigungsenergieniveaus in ZnS zu erhalten. Mit

diesen Bandlückenkorrigierten Ergebnissen legen wir den Grundstein für zukünftige

Berechnungen der Vielteilchen-Multipletts von Mn in ZnS. Diese werden eine Kom-
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bination der gerasterten CI-Methode, die sich für die Behandlung von Systemen mit

offener Schale eignet, mit den abgeleiteten AEPs für Verunreinigungen/Defekte bein-

halten.

Abschließend werden in Kapitel 7 die Ergebnisse zusammengefasst und ein Ausblick

auf zukünftige Arbeiten gegeben.



Chapter 1

Introduction

Semiconductor nanostructures are a fascinating class of materials with unique prop-

erties driven by their size and dimensionality. These structures, typically with band

gaps ranging from 1 to 4 electron volts (eV), display confinement effects that signif-

icantly impact their electronic behavior. When one or more dimensions are confined

to a size smaller than the exciton Bohr radius, the confinement forces charge carriers

(electrons and holes) into a smaller space, increasing their kinetic energy. This effect,

overcoming the reduction in potential energy, leads to the formation of discrete elec-

tronic states [1, 2]. As a consequence, the properties of these nanostructures become

highly dependent on their size and geometry, offering a playground for tailoring their

functionalities. Fig. 1.1 illustrates different types of semiconductor nanostructures with
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Figure 1.1: Schematic illustration of the density of electronic states (DOS) of a bulk
semiconductor, 2D quantum well [3], 1D quantum wire [4], and 0D QD [5, 6].
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varying dimensionality. Each type of nanostructure has very distinct characteristics.

For example, quantum dots (QDs), with all three dimensions confined, are ideal for

applications like single-photon emitters in quantum computing [7, 8] and QD-based

solar cells [6]. Conversely, quantum wires, confined in two dimensions, show promise

for advancements in thermoelectrics [9] and nanoscale lasers [10]. Quantum wells, with

one-dimensional confinement, are widely used in optoelectronic devices like lasers and

LEDs [11, 12]. Beyond these traditional structures, recent advancements have led to

the development of ultra-thin 2D nanocrystals, such as nanoplatelets (NPLs), with

exceptional properties for applications like laser diodes [13, 14, 15, 16].

While advances in synthesis have yielded stable colloidal nanostructures with nar-

row size distributions and intense fluorescence across the visible and infrared ranges,

opening doors for diverse applications [17, 18, 19, 6], the focus extends beyond mere

shape and size control. Modern synthesis methods allow for precise tailoring of sur-

face composition [20, 21], alloying [22], and core/shell (CS) structures [23, 24], offering

exquisite control over electronic, vibrational, and optical properties. For instance,

ligands attached to the surface of QDs play a crucial role in influencing their photo-

luminescence (PL) decay and vibrational dynamics [20, 21]. While surface defects can

catalyze broad-spectrum emission for applications like white LEDs [25], they aren’t

always desirable, often impeding optimal PL quantum yield. Ideal for applications re-

quiring both stable and high quantum yield, core/shell nanostructures deliver improved

performance compared to pure nanostructures [26]. Similarly, alloyed nanostructures

are synthesized with interesting properties like wide absorption spectrum (visible to

near-infrared) [27], large stokes shift [28], improved photostability [29]. Another fas-

cinating way to exploit nanostructures is purposeful doping or impurity incorporation

within nanostructures. These impurities/defects introduce mid-band gap states which

have applications in realms like quantum information processing [30].

A critical challenge, yet also an exciting opportunity, lies in understanding and ma-

nipulating the underlying physics of the nanostructures. Here, computational methods

at various levels of theory become invaluable tools. They allow us to decipher how fac-

tors like size, shape, surface composition, and internal structure influence the underly-

ing physics, ultimately dictating the diverse properties of the materials. By simulating

nanostructure behavior at the atomic level using a range of theoretical approaches, we

can bridge the gap between theory and experiment. This multifaceted approach not

only allows us to connect with experimental observations but also allows us to pre-
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dict properties that can be targeted in future experiments. However, the choice of the

theoretical method depends on its accuracy and the underlying material properties.

Fully ab initio methods such as density-functional theory (DFT) are highly accurate

but are limited due to computational demand for larger structures with thousands

of atoms. On the other hand, methods based on empirical pseudopotentials excel in

handling larger systems due to their efficiency, but their focus lies primarily on the

electronic structure of the system. In this thesis, we utilize a multi-method approach

to comprehensively explore the different vibrational and optical properties of various

nanostructured materials.

1.1 Motivation

Cadmium selenide (CdSe) QDs from sub-2 nanometers (nm) to tens of nm [31, 32, 33,

21, 34, 35, 36, 37, 38] have been extensively explored due to their size tunable optical

properties. These optical properties are strongly influenced by vibrational properties

which lead to the appearance of rich phonon sidebands [39, 40, 41] and eventually

play a role in shaping the recombination dynamics [42, 43]. Over the years, Raman

spectroscopy has been effectively used to probe these vibrational properties [44, 45, 46,

47, 48, 49, 50, 51, 5, 52, 53, 44, 54]. For larger QDs (both core and core/shell), distinct

longitudinal optical (LO) and surface-optical (SO) peaks have been observed in the

Raman spectra. In addition to the well-established LO and SO peaks, Raman spectra of

CdSe QDs often show a high-frequency shoulder (HFS) centered around 230 cm−1 above

the LO region [46, 44, 51, 53, 45, 55]. The origin of this HFS remains debated, with

hypotheses including amorphous surface selenium [45], surface bond reconstruction [45],

and coupled optical-acoustic modes [45]. The disappearance of the HFS upon cadmium

sulfide (CdS) shell deposition [51, 46, 53] suggests a surface-related origin, yet its precise

nature is not fully understood. We investigate the origin of the HFS using state of art

ab initio DFT-based calculations. We calculate the Raman intensity of realistic ligand-

covered QDs with an emphasis on twofold coordinated Se-defect sites, that have been

shown to play an important role in small CdSe QDs [56, 57, 58]. Prior ab initio Raman

studies focused on defect-free structures [52, 59, 60] leaving the importance of defects

mainly unexplored from a theoretical standpoint. The underlying theoretical methods

and detailed results are presented in Chapter 3.

Another fascinating aspect of semiconductor nanostructures lies in their ability to
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form bound electron-hole pairs called excitons upon interaction with the light of energy

larger than their band gap. These excitons, classified as quasiparticle (QP), show

properties distinct from their individual free electron and hole counterparts. They

play a central role in governing the rich optical properties observed in semiconductor

nanostructured materials. The fine structure (FS) of the exciton controls the carrier

dynamics within the nanostructures [61, 62, 63, 20]. Excitonic FS is a consequence of

atomistic effects and the exchange interaction among the carriers (electron and hole)

due to their spins. Due to its atomistic nature, excitonic FS is strongly dependent on

the crystal and wavefunction symmetries. Therefore, modification of the potential (or

the wavefunctions) due to lattice mismatch induced strain and relative band offsets in

alloys and core/shell morphology [64, 23, 24, 22, 65, 66] is expected to impact excitonic

FS. However, the extent to which alloying and core/shell morphologies affect excitonic

FS still lacks a proper understanding which we studied here. In general, calculating

the FS is not straightforward, as it requires a proper treatment of the spin-orbit (SO)

interaction, the crystal structure, and the electron-hole exchange interaction. Using

an empirical pseudopotential-based atomistic approach, we calculate the excitonic FS

of varying size Zn1−xCdxSe (x is concentration) alloyed dots, and these alloy dots

in the shell of cadmium sulfide (CdS) rod on top. The theoretical framework and

corresponding results for the calculations are detailed in Chapter 4.

Recently derived atomic effective pseudopotentials (AEPs) allow atomistic calcula-

tions of semiconductor nanostructures with scalability up to fifty thousand atoms [67,

68] which is above the practical limit of DFT. AEPs provide electronic structure calcu-

lations that are comparable in accuracy to DFT. This approach now extends to impu-

rity/defect calculations in binary materials by creating impurity/defect AEPs. These

derived AEPs enable the use of larger supercells for defect simulations, overcoming lim-

itations of DFT for such systems [69, 70]. Notably, defect AEPs can be generated for

both spin-unpolarized and spin-polarized systems. The AEPs (defect AEPs) approach,

however, inherits the underestimation of the SP band gap and effective masses of the

LDA used in their generation. This underestimation of the SP band gap and effective

masses leads to discrepancies with experimental results obtained from spectroscopic

techniques, such as QP and optical gaps, and different transition energies. For appli-

cations where these properties are crucial, a simple yet effective empirical correction

method is necessary within the AEP framework to improve the quantitative accuracy of

band gaps and effective masses. In this work, we propose a simple approach to achieve
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the correct band gap and effective masses with the AEPs framework. Our approach

involves modifications to the non-local part of the pseudopotential. By incorporating

this correction scheme, we can achieve improved accuracy in the calculation of QP

energies, optical band gaps, and the FS of excitons in nanostructures. The details of

the correction scheme are presented in Chapter 5. To validate the effectiveness of our

approach, we apply it to various binary bulk and QD structures of varying sizes. We

demonstrate the accuracy of the correction through direct comparisons with experimen-

tal data. Additionally, we exemplify defect AEPs with the case of Mn as a magnetic

impurity in a wide-gap semiconductor like ZnS. Mn2+ in ZnS exhibits an intra-Mn d-d*

orbital spin-flip transition due to the presence of Mn defect levels within the ZnS band

gap. At AEPs (LDA) accurate description of Mn levels is not possible and our gap

correction addresses this limitation. This combined approach of gap-corrected defect

AEPs and windowed full configuration interaction (CI) [71] opens doors to studying

multiplets of Mn impurities in ZnS, which remain largely unexplored with traditional

ab initio methods due to computational demands. The underlying theoretical formal-

ism and preliminary results for the electronic structure of Mn in ZnS, calculated using

gap-corrected defect AEPs, are detailed in Chapter 6.



6 1.1. Motivation



Chapter 2

Theory of electronic structure

calculations

This chapter lays the foundation for the theoretical calculations and methods employed

throughout this work. It establishes the core theoretical principles that serve as the

building blocks for the specific theories presented in subsequent chapters. In some

cases, these core principles will be directly applied, while other chapters will elaborate

upon them with more specific details.

2.1 Description of a many-body electron system and

Born-Oppenheimer approximation

The Schrödinger equation is vital to understanding the properties of quantum systems

and is the cornerstone for electronic structure calculations. It has two distinct forms:

the time-dependent Schrödinger equation

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (2.1)

which describes temporal changes in the quantum system, and the time-independent

Schrödinger equation

ĤΨ(r) = EΨ(r), (2.2)
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2.1. Description of a many-body electron system and Born-Oppenheimer

approximation

describing the stationary states of the system. The generalized Hamiltonian, Ĥ, that

describes a solid can be written as

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en, (2.3)

where T̂e and T̂n represent the kinetic energies of the electrons and nuclei in the sys-

tem, respectively. Similarly, V̂ee, V̂nn, and V̂en denote the Coulombic electron-electron,

nucleus-nucleus, and electron-nucleus interactions, respectively. For an N electron sys-

tem, Ĥ (in SI units) can be described as

Ĥ = −ℏ2

2

∑
A

▽2
RA

MA

− ℏ2

2

∑
i

▽2
ri

me

− 1

4πϵ0

∑
A,j

e2ZA

| RA − rj |
+

1

8πϵ0

∑
i,j
i ̸=j

e2

| ri − rj |
+

1

8πϵ0

∑
A,B
A ̸=B

e2ZAZB

| RA − RB | .
(2.4)

where i, j and A,B denote electrons and nuclei, respectively. Furthermore, ZA is the

charge of nuclei A and MA its mass, whereas RAB represents the distance between

nuclei A and B. Analogously, rij is the distance between electrons i and j, whereas

riA describes the distance between electron i and nucleus A. ϵ0 is the permittivity of

vacuum and e is the electron charge.

The exact many-body (MB) Schrödinger equation is analytically and numerically

unsolvable due to the involvement of 3N coupled degrees of freedom. Due to the

complexity of the problem, approximations are necessary to make it solvable. The first

approximation we introduce is the Born-Oppenheimer (BO) approximation [72]. BO

approximation is based on the idea that the mass of an electron is much smaller than

that of a proton (mp/me ≈ 1836) and therefore, electrons in a solid can be assumed to

reach an equilibrium state on a much shorter timescale than the nuclei. Henceforth, BO

allows for the adiabatic treatment of the nuclei, which means that the nuclear motion

can be treated independently of the electronic motion. This allows for the separation

of the nuclear and electronic components of the many-body wavefunction. Formally,

Ψ(ri;RA) = ψ(ri; {RA})ϕ(RA), (2.5)

where ψ(ri; {RA}) is the electronic wavefunction in a frozen ion configuration {RA}.
ϕ(RA) is the ionic wavefunction describing the nuclear motion under the influence of the
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Coulomb potential and the time-averaged adiabatic electronic potential. Thus, the MB

problem transforms into a many-electron problem, and the electronic (el) Hamiltonian

can be written as:(
− ℏ2

2

∑
i

▽2
ri

me

− 1

4πϵ0

∑
A,j

e2ZA

| RA − rj |
+

1

8πϵ0

∑
i,j
i ̸=j

e2

| ri − rj |

+
1

8πϵ0

∑
A,B
A ̸=B

e2ZAZB

| RA − RB |

)
ψ(ri, {RA}) = Eelψ(ri, {RA}).

(2.6)

While the BO approximation significantly simplifies the complex many-body prob-

lem, solving the resulting Schrödinger equation (Eq. 2.6) remains a challenge for most

systems. Several approximate methods, such as the Hartree-Fock (HF) method, DFT,

and quantum Monte Carlo (QMC) methods [73], are available for solving the many-

electron Schrödinger equation. Over the past few decades, DFT has been quite suc-

cessful in describing the properties of materials with great accuracy at a reasonable

computational cost. DFT solves the many-electron Schrödinger equation by using the

electronic density as the central variable instead of the wavefunction, thus reducing the

degrees of freedom by N .

2.2 Density Functional Theory

All modern-day density functional theories stand on the two landmark theorems for-

mulated by P. Hohenberg and W. Kohn in 1964 [74]. The first theorem states that:

“the external potential Vext(r) is (to within a constant) a unique functional of n0(r);

since in turn Vext(r) fixes Ĥ we see that the full many particle ground state is a unique

functional of n0(r)”. The proof of this theorem is based on reductio ad absurdum (see

ref. [74]) and reducing the many-body problem to a one-body problem with a total

energy E0 that can be written as a functional of the density. Since the exact ground

state energy E0 is a functional of n0(r), so must be all its individual components: the

kinetic energy Te, the potential energy due to the interaction between electrons Eee,

and the potential energy Eext[n0(r)] due to the interaction between electron and the

external potential. Therefore, the exact functional E0[n0(r)] is given as:

E0[n0(r)] = Te[n0(r)] + Eee[n0(r)] + Eext[n0(r)]. (2.7)
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Here the last term, Eext[n0(r)] =
∫
n0(r)Vext dr depends on the system whereas the first

two terms are universal. Now we can introduce the Hohenberg-Kohn functional (HK),

FHK[n0(r)] = Te[n0(r)] + Eee[n0(r)], (2.8)

which describes the universal part of the ground state energy, and thus is of the same

form for all electronic systems. If FHK[n0(r)] is known exactly, the Schrödinger equation

of the many-electron problem can be solved exactly. However, the forms of T [n0(r)] and

Eee[n0(r)] are not explicitly defined. Eee[n0(r)] is composed of the classical Coulomb

energy (Hartree energy) EH[n0(r)], and the exchange and correlation interactions (XC),

EXC[n0(r)], where the latter includes non-classical and non-local effects. Formally, we

can write:

Eee[n0(r)] = EH[n0(r)] + EXC[n0(r)]. (2.9)

The major challenge in DFT is to determine the explicit expressions for Te[n(r)] and

Eee[n(r)]. Till now we have established that the ground state density determines

uniquely the Hamiltonian and all properties of interest for a given system. The ques-

tion that arises is how do we know exactly if any electron density n(r) is the actual

ground state density. This is answered by the second Hohenberg-Kohn theorem which

states that the E[n0(r)] is minimum only and only for the true ground state electron

density n0(r). This is simply the variational principle which in the present context is

expressed as:

E[n0(r)] ≤ E[n(r)] = T [n(r)] + EH[n(r)] + EXC[n(r)] + Eext[n(r)]. (2.10)

It is not straightforward and practical to solve the many-body problem within the

Hohenberg-Kohn formalism because the form of the universal functional FHK[n0(r)]

is not known. The electrostatic term EH[n0(r)] can be expressed explicitly, but the

functional forms of the remaining two terms, T [n0(r)] and EXC[n(r)], are unknown

and therefore, must be approximated. After Hohenberg and Kohn stated their two

theorems, in 1965, Kohn and Sham proposed a formalism to the unknown universal

functional EHK [75]. They introduced an auxiliary system of non-interacting electrons

with the same ground-state electron density as the interacting system. The idea is

now to compute the true kinetic energy by separating it into two parts. The main

part is equal to the kinetic energy of the non-interacting reference system TS[n0(r)]

and the smaller remainder TXC[n0(r)] is to be approximated. The universal functional
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FHK[n(r)] can thus be presented as:

FHK[n0(r)] = TS[n0(r)] + EH [n0(r)] + EXC[n0(r)], (2.11)

where EXC[n0(r)] is the so-called exchange-correlation energy. EXC[n0(r)] contains the

non-classical effects as well as part of the kinetic energy. Up to now only EXC[n0(r)]

is the energy contribution we do not know how to treat properly. However, with the

introduction of a non-interacting system, it is formally possible to replace the many-

electron wavefunction Ψ with a set of the single-particle (SP) wavefunctions or orbitals,

ψi [75]. The electron density is then given as:

n0(r) =
∑
i

li|ψ2
i |, (2.12)

where li is the occupation number. Now, the total energy of the electronic system is

written (in atomic units) as:

E[n0(r)] = TS[n0(r)] + EH [n0(r)] + EXC[n0(r)] + Eext[n0(r)]

= TS[n0(r)] +
1

2

∫ ∫
n0(r1)n0(r2)

r12
dr1dr2 + EXC[n0(r)] +

∫
Vextn0(r)dr

= −1

2

N∑
i

⟨ψi|▽2|ψi⟩+
1

2

N∑
i

N∑
j

∫ ∫
| ψi(r1) |2

1

r12
| ψj(r2) |2 dr1dr2

+ EXC[n0(r)]−
N∑
i

∫ NA∑
A

ZA

riA
| ψi(r1) |2 dr1. (2.13)

Now, we can obtain the ground state energy by minimizing the total energy functional

E[n0(r)], as in equation (2.13), with the normalized SP wavefunctions ⟨ψi|ψj⟩ = δij.

This is equivalent to solving a set of self-consistent equations[
−1

2
▽2 +

(∫
n(r2)
r12

dr2 + VXC(r1)−
NA∑
A

ZA

riA

)]
ψi =

[
−1

2
▽2 + VKS(r1)

]
ψi = ϵiψi,

(2.14)

which are the well-known Kohn-Sham equations. The term VXC is the potential due to

the exchange-correlation energy, and is simply the functional derivative of EXC w.r.t.

n0(r),

VXC(r) =
δEXC

δn0(r)
. (2.15)
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Unfortunately, there is no method so far that can determine EXC explicitly and exactly.

Therefore, approximations are usually employed to calculate EXC.

The EXC functional’s non-local nature and non-analytic relationship with the elec-

tron density in real systems make its calculations a complex and demanding task. In

the simplest approximation the exchange and correlation energies are calculated from

the solution of the homogeneous electron gas [75]. This widely used approximation is

known as the Local Density Approximation (LDA) where EXC[n0(r)] can be expressed

as

ELDA
XC [n0(r)] =

∫
n0(r)εXC(n0(r))dr, (2.16)

where εXC(n0(r)) is the exchange-correlation energy per electron for a homogeneous

electron gas corresponding to the electron density n0(r). The exchange-correlation

energy per electron εXC(n0(r)) can be written as a sum of exchange and correlation

contributions

εXC(n0(r)) = εX(n0(r)) + εC(n0(r)), (2.17)

where the exchange energy per electron, εX(n0(r)) := εhomX (n0(r)), is taken from the

results obtained for the homogeneous electron gas in the Slater approximation, based

on the Hartree-Fock method, the so-called called Slater exchange [76]

εX(n0(r)) = −3

4

3

√
3n0(r)
π

. (2.18)

Although there is no explicit expression of the correlation contributions, a func-

tional form of the correlation energy has been parametrized using highly accurate quan-

tum Monte-Carlo numerical simulations of the homogeneous electron gas performed by

Ceperly and Alder in 1980. One famous parametrization of εC(n0(r)) was presented

by Perdew and Zunger in 1981 [77]. In 1992, Perdew and Wang provided another

simple analytic representation of εC(n0(r)), which is still widely used [78]. The local

spin density approximation (LDA) and its extension to spin-polarized systems, the so-

called local spin density approximation (LSDA) provides a rather accurate description

of structural and vibrational properties, such as lattice constants, bulk moduli, and

phonon vibrational frequencies for weakly correlated solid systems. For the cohesive

energy of solids, the dissociation energy of molecules and the ionization energy of atoms

LDA is less accurate as it assumes a local nature of the EXC.

However, the interacting systems do not have nearly uniform electron densities.



Chapter 2. Theory of electronic structure calculations 13

LDA ignores the effect of inhomogeneities of the electron density and this prompted

the introduction of functionals that depend on more than just the local value of the

density. The generalized gradient approximations (GGA) are the set of functionals

that depend on the electron density and its first gradient

EGGA
xc = Exc[n0,∇n].

Continuing along this path, more complicated and computationally expensive ap-

proaches [79, 80] have been proposed, but not used in this work.

2.3 Periodic supercell and plane-wave pseudopoten-

tial method

Although DFT solves an effective SP picture, the problem is to expand the SP eigen-

states of the Kohn–Sham equations. The plane waves, which are the exact eigenfunc-

tions of the homogeneous electron gas, are particularly well-suited expansion for the

periodic systems.

Bloch’s theorem states that for any perfect periodic system, the SP electronic wave-

function (for jth eigenstate) can be written as

ψj(r) = eikruj(r), (2.19)

where ui(r) is a periodic function with the same periodicity as the system. ui(r) can

be expanded in a discrete plane-wave basis set whose wave vectors (k) are reciprocal

space vectors (G) of the crystal

uj(r) =
∑
G

cj,Ge
iGr. (2.20)

The electronic wavefunction can be written as the sum of plane waves

ψj(r) =
∑
G

cj,k+Ge
i(k+G)r. (2.21)

However, one needs an infinite number of plane waves to expand an electronic wave-

function, leading to large computational costs. Therefore it is important to truncate

this expansion to only plane waves with the kinetic energy lower than cutoff energy,
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namely Ecut ≥ (ℏ2/2m)|k+G|2. The errors in the total energy due to this truncation

can be minimized by the convergence of the total energy w.r.t. Ecut.

Solving the Schrödinger equation with full potential can be computationally ex-

pensive due to the high oscillation frequencies near the nuclei. Since valence electrons

are primarily responsible for the physical properties of the material, core, and valence

electrons can be treated separately. As core electrons are localized and strongly bound

to the nuclei, they can be treated together with the nuclei via so-called pseudopotential

approximation. Here the strong ionic potential is replaced by a weaker and smoother

pseudopotential acting on the pseudo wavefunctions part of the valence electrons.

The pseudopotential needs to be constructed in such a way that the scattering prop-

erties are preserved and beyond a certain cutoff radius rC, both pseudopotential and

the real potential are identical. There are different forms of pseudopotential used such

as projector augmented potentials (PAW), norm-conserving pseudopotential (NCPP),

and ultrasoft pseudopotential (USPP). Throughout this work, the NCPPs were intro-

duced by D. Hamann, M. Schlüter, and C. Chiang. [81] are used (unless specified). For

the high transferability and the preserved scattering properties NCPP has to satisfy

four criteria:

(i) Real and pseudo valence eigenvalues agree for the reference configuration.

(ii) Real and pseudo atomic wavefunctions agree beyond a chosen "core radius" rC.

(iii) The integrals from 0 to r of the real and pseudo charge densities agree for r > rC

for each valence state (norm conservation).

(iv) The logarithmic derivatives of the real and pseudo wavefunction and their first

energy derivatives agree for r > rC.

2.4 Configuration Interaction Method

SP picture assumes that electrons move independently of each other resulting in un-

derestimated electron correlations. Electron correlation is vital for interpreting exper-

imental spectra and predicting electronic transitions. Different methods such as CI,

and coupled clusters include electron correlations. CI includes correlations by consider-

ing multiple electronic configurations where electrons are allowed to interact with each

other. It is the matrix mechanics solution of the time-independent non-relativistic elec-

tronic Schrödinger equation. In CI, the wavefunction is a linear combination of Slater



Chapter 2. Theory of electronic structure calculations 15

determinants and the linear coefficients are determined variationally. Here, we discuss

the CI method in detail.

2.4.1 N-particle wavefunctions

For any given complete set of functions ψi(x1) of a single variable x1, we can expand

any function ϕ(x1) as:

ϕ(x1) =
∑
i

aiψi(x1), (2.22)

where ai are the expansion coefficients. Considering a two-particle system, the function

ϕ(x1, x2) keeping x2 fixed, we have:

ϕ(x1, x2) =
∑
i

ai(x2)ψi(x1), (2.23)

where ai(x2) can be written as:

ai(x2) =
∑
j

bijψj(x2). (2.24)

Now from 2.23 and 2.24, we have ϕ(x1, x2) as:

ϕ(x1, x2) =
∑
ij

bijψi(x1)ψj(x2). (2.25)

However, electrons are fermions and the many-particle wavefunction must be antisym-

metric w.r.t. the exchange of the coordinates of any two electrons as per the Pauli

exclusion principle. For example, in case of ϕ(x1, x2), it means

ϕ(x1, x2) = −ϕ(x2, x1), (2.26)

which is equivalent to bij = −bji and bii = 0, or

ϕ(x1, x2) =
∑
j>i

bij[ψi(x1)ψj(x2)− ψj(x1)ψi(x2)]. (2.27)

We can express ϕ(x1, x2) in the Slater determinants form as:

ϕ(x1, x2) =
∑
j>i

bijbij

∣∣∣∣∣ψi(x1) ψj(x1)

ψi(x2) ψj(x2)

∣∣∣∣∣ . (2.28)
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Similarly, we can construct any N-particle wavefunction as a linear combination of all

possible N-particle Slater determinants formed from a complete set of SP wavefunctions

ψi(x). The solution of the many-body equation (2.3) in this complete basis set can be

written as

|Ψj⟩ =
∑
i

cij |ϕi⟩ , (2.29)

where |ϕi⟩ denotes N-particle basis functions. |Ψj⟩ can be written as excitations from

the Hartree-Fock "reference" determinants, i.e.

|Ψj⟩ = c0 |ϕ0⟩+
∑
ra

cra |ϕr
a⟩+

∑
a<b,r>s

crsab |ϕrs
ab⟩+

∑
r<s<t,a<b<c

crstabc |ϕrst
abc⟩+ ..., (2.30)

where |ϕr
a⟩ means Slater determinant formed by replacing spin-orbital a in ground state

|ϕ0⟩ with spin-orbital r, and so on.

If we include all possible N-particle basis functions {|ϕi⟩} formed by a given SP

basis set {ψi(x)} then it is called full-CI calculations. However, with the increasing N,

it is impossible to use a complete set of SP basis function {ψi(x)} in calculations. For

a reasonable computational cost, a reduced but large enough basis set can be used to

obtain good results. The quality/accuracy of the SP basis set used for the calculation

can be checked by comparing the results of subsequent calculations using a progressively

larger basis set.

Unfortunately, a full-CI calculation is still computationally expensive even with

an incomplete SP basis set. Therefore, a reduced CI space is usually used in the

calculations. So far, CI singles and doubles (CISD) are the most used approximation,

which includes only those N-particle basis functions that represent single or double

excitations relative to a given reference state. The reference state can be constructed

using any ground state on a SP basis.

2.4.2 Screened CI calculation

The first step is to solve the SP Schrödinger equation to obtain ψi(r, σ). In the second

step, obtained SP basis functions set |ϕi⟩ is used to construct a set of single-substitution

Slater determinants Φh,e for the exciton. Φh,e is obtained from the ground-state de-

terminant Φ0 by promoting an electron from the occupied (h) valence state ψh with

energy εh to the unoccupied (e) conduction state ψe with energy εe [63, 61]. The exci-

ton wavefunctions Ψα (where α denotes the exciton quantum numbers) are expanded
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in terms of the determinants basis set [63] as:

Ψα =

Nh∑
h

Ne∑
e

Cα
h,eΦh,e, (2.31)

for Nh and Ne being the number of valence and conduction band states to be included in

the expansion of the exciton wavefunctions. The matrix elements of the many-particle

Hamiltonian H with basis set Φh,e are calculated as [63]:

Hhe,h′e′ = ⟨Φh,e|H |Φh′,e′⟩ ,
= (εe − εh)δh,h′δe,e′ − Jhe,h′e′ +Khe,h′e′ ,

(2.32)

where J and K are the Coulomb and exchange integrals, respectively:

Jhe,h′e′ = e2
∑
σ1,σ2

∫ ∫
ψ∗
h′(r1, σ1)ψ∗

e(r2, σ2)ψh(r1, σ1)ψe′(r2, σ2)
ϵ(r1, r2)|r1 − r2|

dr1dr2, (2.33)

Khe,h′e′ = e2
∑
σ1,σ2

∫ ∫
ψ∗
h′(r1, σ1)ψ∗

e(r2, σ2)ψe′(r1, σ1)ψh(r2, σ2)
ϵ(r1, r2)|r1 − r2|

dr1dr2, (2.34)

where σ1,2 are spin indices and ϵ(r1, r2) is the dielectric screening function as a conse-

quence of the neglected excitations from the deep core states. ϵ(r1, r2) is microscopic

and isotropic i.e. ϵ(r1, r2) = ϵ(|r1 − r2|). It has both the long- and short-range of

interaction. Since an electron is screened by the presence of other electrons as well as

moving ions, the dielectric function ϵ−1(k) has an electronic (high-frequency) ϵ−1
el and

an ionic (low-frequency) contribution ϵ−1
ion. In reciprocal space we can write this [82, 63]:

ϵ−1(k) = ϵ−1
el (k) + ϵ−1

ion(k). (2.35)

For the electronic part ϵ−1
el , the Thomas-Fermi model proposed by Resta [83] is used

while the ionic (or polaronic) part ϵ−1
ion is included using a derivation by Haken [82]:

ϵ−1
el (k) =

k2 + q2 sin(kn∞)/(ϵdot∞ kn∞)

k2 + q2
, (2.36)

∆ϵ−1
ion(k) =

( 1

ϵdot0

− 1

ϵdot∞

)
+
( 1/2

1 + n2
hk

2 +
1/2

1 + n2
ek

2

)
, (2.37)
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with q = 2π−1/2(3π2n0)
1/3 being the Thomas-Fermi wave vector, n0 is the electron

density, n∞ is the screening radius which can be calculated from sinh(qn∞)/(qn∞) =

ϵdot∞ , and nh,e = (ℏ/2mh,eωLO)
1/2, where mh,e are hole (h) and electron (e) effective

masses, ωLO is the frequency of the bulk LO phonon mode [63]. To include the size

dependence (R) , the high-frequency dielectric constant is obtained from a modified

Penn model [84, 63],

ϵdot∞ (R) = 1 + (ϵbulk∞ − 1)

[
Ebulk

gap +∆E
]2[

Edot
gap +∆E

]2 , (2.38)

where ϵbulk∞ is the bulk high-frequency dielectric constant of the material, Ebulk
gap and Edot

gap

are the SP bulk and QD band gaps, ∆E denotes the difference between the so-called

E2 and E0 transitions in bulk. For semiconductors with tetrahedral crystal structure,

E2 is the transition with the strongest absorption [85]. The low-frequency dielectric

constant is given as [63]:

ϵdot0 (R) = ϵdot∞ (R) + (ϵbulk0 − ϵbulk∞ ). (2.39)

Hence, the dielectric function depends both on the electron-hole separation as well as

the dot size. Now the diagonalization of the many-body Hamiltonian is done to obtain

the many-body eigenvectors and eigenenergies.



Chapter 3

Origin of the High-Frequency

Shoulder in the Raman Spectra of

CdSe Quantum Dots

This chapter is adapted from the published work ’Origin of the High-frequency Shoul-

der in Raman Spectra of CdSe Quantum Dots,’ by S. Kumar, T. Steenbock, and G.

Bester; J. Phys. Chem. Lett. 2024, 15, 41, 10392–10398 [86]. All calculations, data

analysis, and drafting of the manuscript were conducted by the first author, S. Kumar.

Cadmium selenide (CdSe) QDs from sub-2 nm to tens of nm [31, 32, 33, 21, 34, 35,

36, 37, 38] are of great interest due to their size tunable optical properties. Their optical

properties can be tailored by different factors such as size [38], shape anisotropy [68],

ligands [20, 32, 33, 21], the surface stoichiometry [34], and surface defects [35, 58, 56], as

emphasized by various experimental and theoretical studies. The optical properties are

directly influenced by their vibrational dynamics which lead to the appearance of rich

phonon sidebands [39, 40, 41] and eventually shape the recombination dynamics [42, 43].

Raman spectroscopy is an effective technique to probe these vibrational properties [44,

45, 46, 47, 48, 49, 50, 51, 5, 52], revealing, e.g., valuable information about alloying

and strain at core-shell interfaces [53, 44, 54]. Based on Raman spectra, vibrations in

CdSe QDs have been identified as bulk-like for diameters ≥ 2.1 nm or molecule-like for

diameters < 2 nm [5]. For larger QDs (both core and core/shell), distinct longitudinal

optical (LO) (bulk-like) and surface-optical (SO) peaks have been observed in the

Raman spectra. The behavior of these peaks, influenced by factors such as size, strain,

19
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and composition, has been thoroughly characterized and understood [87, 53, 46, 47,

88, 89, 90, 45].

In addition to the well-established LO and SO peaks, Raman spectra of CdSe QDs

often show a high-frequency shoulder (HFS) centered around 230 cm−1 above the LO

region [46, 44, 51, 53, 45, 55]. The HFS has been observed in QDs of different sizes,

ranging from 1.44 nm to 3.4 nm [44, 51, 53, 45, 55]. The origin of this HFS remains

debated, with hypotheses including amorphous surface selenium [45], surface bond

reconstruction [45], and coupled optical-acoustic modes [45]. The disappearance of the

HFS upon CdS shell deposition [51, 46, 53] suggests a surface-related origin, yet its

precise nature is not fully understood.

We use DFT to calculate the Raman intensity of realistic ligand-covered QDs with

an emphasis on twofold coordinated Se-defect sites, that have been shown to play an

important role in small CdSe QDs [56, 57, 58]. While simplified models accurately

predict Raman spectra of larger structures [91, 87, 47, 92], they are inadequate for

capturing the surface effects that will turn out to be crucial for smaller QDs. Prior

ab initio Raman studies focused on mainly defect-free structures [52, 59, 60]. Ahmed

et al. [60] focused primarily on QDs interactions with capping ligands by demonstrating

how vibrational spectroscopy can be useful for studying surface–ligand interactions.

Manav et al. [59] investigated the impact of non-stoichiometry on Raman spectra of

CdSe QDs. Therefore, so far the importance of defects mainly remains unexplored

from a theoretical standpoint which we address here.

3.1 Raman spectroscopy

Raman spectroscopy is a non-destructive class of vibrational spectroscopy that uses

light to inelastically scatter photons, inducing vibrational transitions in material. In-

elastic scattering of light causes the incident photon (frequency ω) to either lose energy

ℏωs = ℏω − ℏωp (Stokes scattering) or gain energy ℏωs = ℏω + ℏωp (Anti-Stokes scat-

tering) after the scattering, where ωs and ωp is the frequency of scattered light and

phonon respectively. Fig. 3.1 illustrate the excitation and de-excitation of energy levels

in Stokes and Anti-stokes scattering in Raman Spectroscopy. These phonons are fun-

damental vibration motions induced by the collective excitation of atoms or molecules

in a periodic and elastic arrangement. It corresponds to a lattice of atoms or molecules

vibrating evenly at a single frequency. This frequency is known as the normal mode
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frequency, and it is crucial because the lattice vibrations (or the phonons) can be

expressed as a superposition of these fundamental vibrations.

Microscopically, Raman scattering is caused by photon-phonon interaction, and its

intensity is defined by the change in polarizability w.r.t. atomic displacement corre-

sponding to a certain vibration mode. For the first time, Raman and Krishnan observed

the scattered light with distinct sidebands symmetrically arranged around the incident

frequency in liquids [93].

Figure 3.1: Illustration of excitation and de-excitation in energy levels using Stokes
and Anti-stokes scattering in Raman spectra. Reprinted from ref. [94].

3.1.1 Vibrational analysis and Raman Calculations

The harmonic oscillator model under the Born-Oppenheimer approximation is com-

monly used in computing normal modes and thus the Raman spectra. When a molecule

(or the considered material) is in equilibrium, it resides at the lowest energy point (at

least locally) on its potential energy surface (PES). Around this equilibrium position,

the PES profile is approximated as parabolic allowing us to treat the second derivative

of energy w.r.t. a nuclear coordinate as a force constant for the harmonic oscillation

of an atom along that coordinate. Since vibrations in materials involve multiple atoms
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moving simultaneously (i.e. polyatomic vibrations), the harmonic oscillator model can

be extrapolated to multiple nuclear coordinates. Furthermore, the N -dimensional nu-

clear coordinate harmonic oscillator can be decomposed into 3N independent harmonic

oscillators, each corresponding to the frequency of a classical normal mode. To describe

normal modes, imagine each atom (labeled with a capital letter I) is slightly shifted

from its equilibrium position (denoted by RI). This shift is described by a displacement

pattern (Uα
I ), where the Greek letter alpha refers to the x, y, and z directions in space.

The normal mode frequencies are calculated as [95, 96, 87]:

∑
J,β

(Cα,β
I,J −MIω

2
pδαβδIJ)U

β
J = 0, (3.1)

where MI is the mass of atom I and Cα,β
I,J is the force constant (Hessian) matrix given

as:

Cα,β
I,J (R

α −Rβ) =
∂2EBO

∂Rα
I ∂R

β
J

, (3.2)

where EBO is the Born-Oppenheimer energy surface. C̃αβ
IJ can be diagonalized to obtain

eigenvalues ωp(q) and eigenvectors Uα
I .

Once the vibrational eigenvalues ωp(q) and eigenvectors Uα
I are obtained, Raman

scattering cross sections can be calculated using the polarizability theory, based on

derivatives of the frequency-dependent polarizability tensor w.r.t. normal vibrational

modes. The Raman scattering differential cross-section ( dσ
dΩ

) in terms of frequency-

dependent polarizability tensor is given as [97]:

dσ

dΩ
= kω(ciα

′2(ω) + cjγ
′2(ω)), (3.3)

where α′(ω) and γ′(ω) are the isotropic part and the anisotropic part of the differenti-

ated polarizability tensor, respectively at incident frequency ω. The coefficients ci and

cj depend on the scattering geometry and the polarization of the incident and scattered

radiation. kω is a pre-factor given as:

kω =
ℏ

4π ε20 c
4
nv

(ω − ωp)
4 gp

2ωp

, (3.4)

where c is speed of light, frequency of vibration (ωp) (or the phonon) and degeneracy

of vibration (gp) and ε0 stands for the dielectric constant of vacuum. nv is occupation

of vibrational levels at temperature T and included through Boltzmann distribution
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1/(1 − eh cωp/kBT ) with h and kB being Planck and Boltzmann constants respectively.

The isotropic part α′(ω) is given as:

α′(ω) =
1

3

(
α′
xx + α′

yy + α′
zz

)
, (3.5)

and the anisotropic part γ′2(ω) is given as:

γ
′2
i = 1

2

[
(α′

xx − α′
yy)

2 + (α′
yy − α′

zz)
2 + (α′

xx − α′
zz)

2
]
+

+3
4

[
(α′

xy + α′
yx)

2 + (α′
xz + α′

zx)
2 + (α′

yz + α′
zy)

2
]
,

(3.6)

where α′
mn is differentiated polarizability with m,n ∈ (x, y, z).

However, calculations of differentiated polarizability tensor is not straightforward

and computationally expensive. Dmitrij and co-workers [98] presented an analytical

implementation of first-order derivatives of frequency-dependent polarizabilities in the

time-dependent density functional framework at low computational cost. Their an-

alytical method utilizes a fully variational polarizability Lagrangian. This approach

reformulates the individual components of the frequency-dependent polarizability as

variational Lagrangians. The polarizability Lagrangian is given as [98]:

Lmn[Xm, Y m, Xn, Y n, C, Zmn,Wmn](ω) (3.7)

= ⟨Xm, Y m| (Λ− ω∆) |Xn, Y n⟩+ ⟨Xm, Y m|P n, Qn⟩+ ⟨Pm, Qm|Xn, Y n⟩
+
∑
iaσ

Zmn
iaσFiaσ −

∑
pqσ,p≤q

Wmn
pqσ (Spqσ − δpq).

The stationary point of Lmn is the negative mn component of the electronic po-

larizability (α′
mn) at the frequency ω within the adiabatic approximation. Here the

supervectors |Xm/n, Y m/n⟩ contain the first-order density matrix response, expanded

in the basis of products of virtual and occupied molecular orbitals and their trans-

poses [98, 99]. These molecular orbitals (MOs) ϕpσ(r) are solutions of ground state

spin (σ) unrestricted KS equations, as usual, indices i , j , . . . , denote occupied, a ,

b , . . . , virtual, and p , q , . . . , general orbitals. The MOs are expanded in the basis

of atom-centered contracted Gaussians χµ(r) with expansion coefficients Cµpσ. The

Lagrangian multipliers Zmn and Wmn are introduced to make the MO coefficients C

satisfy the ground state KS equations and S is the overlap matrix. The operators Λ
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and ∆ are given as:

Λ =

(
A B

B A

)
, ∆ =

(
1 0

0 −1

)
, (3.8)

where (A ± B) are the electric and magnetic orbital rotation Hessians [100]. The

external perturbation enters the Lagrangian through the vectors |Pm/n, Qm/n⟩ given

by

P
m/n
iaσ = Q

m/n
iaσ =

∫
d3rϕiσ(r) (r)m/n ϕaσ(r), (3.9)

in the dipole-length gauge. For a stationary point of Lmn, the functional derivative

w.r.t. all parameters must vanish, and dynamic polarizability derivatives are given

by the negative derivatives of Lmn at its stationary point. Lmn is fully variational as

stationarity w.r.t. ⟨Xm, Y m| and |Xn, Y n⟩ leads to the time-dependent Kohn-Sham

response problems (follow ref. [98, 99] for detailed discussion). Because of the fully

variational nature of Lmn, computing the first-order derivative w.r.t. a nuclear dis-

placement does not involve any derivatives of the parameters Xm/n, Y m/n, C, Lmn,

and Wmn. Now using variational stability and transforming to the atomic orbital (AO)

basis, an expression reminiscent of the ground gradients can be obtained w.r.t. nuclear

displacement (RI)(follow ref. [98]).

Now we look back at Eq. 3.3 for a typical experimental setup where the incident

light is plane-polarized (or linear) and the scattered light is measured at a 90° angle

without any analyzers. For this case, we can write the differential cross section as [97]:

dσ

dΩ
= kω

(45α′2 + 7γ′2)

45
. (3.10)

This polarizability Lagrangian-based approach is implemented in the TURBOMOLE

7.5 program package [101] which has been used for this work. All structural opti-

mizations are carried out using Perdew–Becke–Enzerhoff (PBE) exchange-correlation

functional [78, 102]. Ahlrich’s double-ζ split-valence basis set with polarization func-

tions on all atoms (def2-SVP) [103] and Grimme’s empirical dispersion correction in

the third generation (D3) [104] were used. Additionally, accelerated Coulomb integrals

using a multipole-accelerated resolution of identity approximation (MARIJ) in the

self-consistent field (SCF) algorithm [103, 105, 106, 107] were used. All structures were

optimized with a convergence of 10−7 Hartree for energy and 10−6 Hartree/Bohr for

the gradient. Furthermore, we have employed the aoforce module [108] for vibrational

frequencies and eigenvectors. The egrad module [98] was used for Raman intensity
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from the TURBOMOLE package with incident wavelength 850 nm.
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Figure 3.2: Optimized structure of (a) Methylamine (MA) passivated ultrasmall CdSe
nanoclusters and QDs of varying sizes, represented by the number of constituent atoms.
(b) Different surface termination of the Cd45Se45 structure including pseudohydrogen
(PH), a CdS shell with PH on top, and trioctylphosphine oxide (TOPO). The inset
provides an enlarged view of the local arrangement around the twofold coordinated Se
defect, highlighted in red. The dotted lines delineate the core size in the core-shell
structure. Reprinted from ref. [86].

3.2 Results and Discussion

In Fig. 3.2 we show the relaxed wurtzite wurtzite (WZ) nanoclusters and QDs investi-

gated in this work. All initial structures are cut from bulk WZ lattice and subsequently

relaxed to minimize the energy below the convergence criteria. The smallest structures

(also experimentally realized), Cd13Se13 [109] and Cd33Se33 [109, 52, 110], are called

magic-size clusters and have threefold coordinated Se, that do not develop a defect state

in the gap [56, 57, 34, 58], and threefold coordinated Cd atoms that are partly passivated

by methylamine (MA) (with a shortened alkyl chain compared to the experiment). This

common L-type ligand selectively binds to surface Cd atoms [111, 21, 32, 33] via a co-
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valent dative bond, where the nitrogen atom in MA donates an electron pair to the Cd

atom. Some of the surface Cd that remain unpassivated and threefold coordinated do

not form defect states in the gap. In this sense, the magic-size clusters are free from

defects.

We keep the stoichiometry at 50% and increase the size to Cd45Se45. For this non-

magic-size cluster, three twofold coordinated Se atoms (defects) are unavoidable in the

QD construction. The top right panel of Fig. 3.2 gives a detailed view of the defect

geometry: Se is bonded to a threefold Cd on one side and to a fourfold Cd on the

other side. We supplement the portfolio of calculations by a trioctylphosphine oxide

(TOPO, where octyl chains are replaced by methyl groups to reduce computational

cost) passivated structure as well as pseudohydrogen (PH) [20, 68, 112] passivated

structures. These pseudohydrogen atoms have a fractional charge of 3/2 (1/2) when

attached to Cd (Se) and lead to electronic gaps free of defect states [91, 87]. We can

see these structures as “ideally” passivated.

For consistency, all investigated structures will be denoted as CdaSea-(Surface/Ligand),

where "a" represents the number of Cd or Se atoms in the structure and (Surface/Ligand)

specifies the surface modification or ligand group attached to the CdSe core.

The L-type ligand coverage in our TOPO and MA structures is different, following

literature [113, 114] we use a larger coverage for the smaller MA molecule (15) than for

the bulky TOPO (12). The Cd45Se45/Cd123S129-PH structure is a core/shell structure

where the CdSe core has the same size as the Cd45Se45-PH QD. Computational limita-

tions prohibit the use of larger structures. In the calculations involving PH, the mass

of PH is assigned the same as the atomic of the hydrogen element.

In Fig. 3.3 we show the single particle eigenvalues (a), isosurfaces of the defect

molecular orbitals (DMO) (b) of the highest occupied molecular orbital (HOMO), and

the lowest unoccupied molecular orbital (LUMO) (c). The isosurface values are chosen

in such a way as to enclose 75% of the state density.

In Fig. 3.3a), we see that only the structures declared as defective (Cd45Se45-MA and

Cd45Se45-TOPO) show defect levels (doubly occupied, shown in red) within the HOMO-

LUMO gap. For these states, the wavefunction is strongly localized on the Se-defect

(Fig. 3.3b)). For the Cd45Se45-MA structure the three defect levels are energetically

split by as much as 263 meV, while for Cd45Se45-TOPO they remain nearly degenerate,

so that the individual DMO look artificially distributed over the three defect sites.

We understand the splitting in Cd45Se45-MA as follows. In Cd45Se45-TOPO the L-
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Figure 3.3: Electronic structure analysis. (a) Single-particle energy levels for the var-
ious structures (see Fig. 3.2). The HOMO, LUMO, and DMO are shown as blue,
magenta, and red lines, respectively. The HOMO level is set to 0 eV for all struc-
tures. Isosurfaces of the wavefunction squared enclosing 75% of the state density for
the DMOs (b), LUMO, and HOMO (c). Reprinted from ref. [86].

type ligands are placed in a relatively symmetric arrangement (although the structure

has strictly speaking no remaining symmetry) and the three defect sites are nearly

equivalent. The tree additional L-type ligands in Cd45Se45-MA break the symmetry

(further) rendering the three defects inequivalent. A comparison of both structures

(MA and TOPO) is given in Fig. 3.4. It is also interesting to see that the HOMO-

LUMO gap of the smaller Cd33Se33 and the larger Cd45Se45 structures are nearly the

same. This is a consequence of the hybridization of the DMO with the HOMO which

pushes the HOMO to lower energy, opening the HOMO-LUMO gap in the defective

larger structure.

In Fig. 3.3c) we notice that the HOMO tends to be more localized than the LUMO,

in accordance to the heavier hole effective mass. This is also true for the magic size

clusters we described earlier as “defect-free” and now exhibit a hole localization in an

off-center location. It is clear that a static calculation for a chosen geometry, such as
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Cd45Se45 -MA Cd45Se45 -TOPO

Figure 3.4: Comparison of optimized structure of Cd45Se45 with MA and TOPO pas-
sivants. Ligands are not shown here. Reprinted from ref. [86].

the one performed here, is only a snapshot of the true very dynamic situation where

L-type ligands wiggle and presumably even interchange attachment sites [115]. The

PH-passivated structures show almost no geometric relaxation and the HOMO and

LUMO states are accordingly highly symmetric. The core \shell Cd45Se45\CdS-PH

structure shows a quasi type-II character, where the hole is localized in the core and

the electron over the entire structure.

3.2.1 Raman spectra

We deconvoluted the calculated Raman spectra of QDs into contributions from three

distinct fragments of the QDs: ligands, the bulk-like core (Cd four-fold coordinated

with Se and vice versa), and the surface (Cd atoms not four-fold coordinated with Se

and vice versa). To understand how fragments of the QD contribute to the Raman

spectra, we calculate the contributions from specific fragments (frag) of the structure

to the Qth vibrational mode as:

cQfrag =

∑
A∈frag

√
MA|RQ,norm

A |2∑Natom
B

√
MB|RQ,norm

B |2
, (3.11)

where A and B are atom indices, MA/B is the mass of atom A/B, RQ,norm
A/B is the atomic

displacement vector, which is normalized as
∑Natom

B |RQ,norm
B |2 = 1. cQfrag can take values
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between 0 for no contribution from a given fragment to the vibrational mode and 1 for

100% contribution. Further, we study the degree of localization for vibrational modes

by calculating the inverse participation ratio (IPR) [116]. The IPR ranges from 1 if

all atoms contribute equally to the vibrational mode to 1/Natom if only a single atom

contributes. The IPR for the Qth mode can be calculated from cQA to the overall phonon

mode and the number of atoms in the structure, Natom, as follows:

IPRQ =
1

Natom
∑Natom

A

(
cQA

)2 . (3.12)

The calculated Raman spectra are shown in Fig.3.5, for the Cd13Se13-MA, Cd33Se33-

MA and Cd45Se45-MA structures. The top panels (a-c) are plotted using a Gaussian

broadening of 23.5 cm−1, while the bottom panels (d-f) show unbroadened results. We

use two types of analysis of the signal, on the top, we discriminate surface/ligand/core

contributions according to Eq. 3.11 and on the bottom, we use the inverse participa-

tion ratio (IPR) [116] from Eq. 3.12. A low value of IPR (red color) signifies localized
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BM: Breathing mode
DM: defect mode
LW: ligand wiggling mode
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Acoustic region
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(3
.2
6x
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Figure 3.5: Calculated Raman spectra of (a,d) Cd13Se13-MA, (b,e) Cd33Se33-MA, (c,f)
Cd45Se45-MA using a Gaussian broadening of 23.5 cm−1 (solid lines upper panels, a-c),
and without broadening (bars on the lower panels, d-f). The broadened results are
analyzed in terms of the three fragments: ligand, surface, and core (Eq. (3.11)). The
bars (lower panels) are colored according to the IPR value (Eq. 3.12). The inset in
(c) shows the QD highlighting the defect and the inset in (b) shows the vibrational
eigenmode of the defect vibration at 233 cm−1. Reprinted from ref. [86].
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vibrations. For the lower panels, we have normalized the intensities according to the

breathing mode, which is easy to identify. While this specific normalization is debat-

able, it is at least rather simple to comprehend. We focus on the region below 250

cm−1, so that intra-ligand vibrations, typically upto around 3000 cm−1 [60], are not

presented. The calculated Raman spectra presented here correspond to a simulated

temperature of 298.15 Kelvin (room temperature).

As common for semiconductors, the vibrations can be divided into an acoustic and

an optical region, as indicated in the lower panels of Fig.3.5. We notice that for the

smaller magic size clusters the optical region is nearly Raman-inactive, so that dominant

contributions originate from acoustic-type modes. The optical region becomes active

already for the slightly larger Cd45Se45-MA structure. It is known that the LO-peak

strongly dominates for larger, bulk-like, structures [88, 89, 90] and the emergence of

the LO peak with QD size was investigated earlier [5]. We see in Fig.3.5c) that the

rise of the optical region correlates with the emergence of modes with significant core

characters (yellow line).

Generally, we see that many vibrations are, to a certain extent, Raman active,

which makes a meaningful and concise analysis difficult. However, we can identify

a few distinctive modes. The breathing modes (BM in Fig. 3.5d-f, see [117] for vi-

bration movie) show the qualitative frequency shift we would expect from the Lamb

model [91], i.e., to the red when the size increases: 93.86 cm−1, 63.66 cm−1 and 41.53

cm−1 for Cd13Se13-MA, Cd33Se33-MA, Cd45Se45-MA, respectively. One further mode

which strikes by its low IPR value (strong localization) and strong intensity is labeled

as LW in Fig. 3.5d-f). It corresponds to a wiggling motion of the entire MA ligand

molecule (see [117] for vibration movie). This vibration will most likely be hindered in

a realistic setup including solvents and we highlight it here to point out possible pitfalls

in the raw computational results.

Our most interesting result is the appearance of very intense defect-related peaks in

the low (11.93 cm−1) and the high-frequency regions (229.5, 231.1, and 232.99 cm−1) of

Cd45Se45-MA spectra (marked DM in Fig. 3.5f)). Each of the three Se defects produces

one high-frequency Raman peak, while we could identify only one low-frequency defect-

related peak. This low-frequency mode corresponds to the wagging vibration of the

two-fold coordinated Se defect, where the Se moves perpendicular to the Cd-Se-Cd

plane. The nature of the high-frequency mode is shown in the inset of Fig. 3.5b).

The Se and the threefold coordinated Cd undergo a stretching vibration, which is
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knowably strongly Raman active. The other Se-Cd bond (towards the threefold Cd)

accommodates the stretching but with a very small bond-length change (see [117] for

vibration movie).

It is noteworthy to mention that the threefold coordinated Cd atoms, present at

the surface of all our structures, reconstructed into a planar geometry with high sym-

metry. The localized vibrations in these regions exhibit a symmetric, Raman-inactive

character.

As a next step we will investigate the influence of the surface on the Raman intensity

and show in Fig. 3.6 results for the same size QD, but with different terminations.

Fig. 3.6d,h) is a repetition of Fig. 3.5c,f) and is used here again for ease of comparison.

The simplest structure is Cd45Se45-PH which has an idealized passivization and

high symmetry. As expected, none of the defect features previously mentioned are

present. The breathing mode at 55 cm−1 is the most intense, with a high IPR value

indicating that many atoms vibrate collectively, as expected from a breathing mode in

high symmetry. These types of modes are strongly Raman active. We also notice only

very weak intensities in the optical region and it seems that lower symmetry (realistic

surfaces) leads to an activation of the optical region already at smaller sizes.
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DM region
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DM: defect mode
SA: surface acoustic mode
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Figure 3.6: Similar to Fig. 3.5 but depicting Cd45Se45-PH (a,e) , Cd45Se45\CdS-PH
(b,f), Cd45Se45-TOPO (c,g), and Cd45Se45-MA (d,h). Reprinted from ref. [86].

Covering the QD with a shell of CdS leads to the Cd45Se45\CdS-PH core-shell

structure shown in Fig. 3.2b,f). The breathing mode still dominates, at a somewhat

lower frequency of 41.8 cm−1, following the larger size of the structure. The LO peak

starts to appear at 194 cm−1 for the CdSe core. Movies of all vibrational modes can
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be accessed in [117]. The optical region of the CdS shell appears at around 280 cm−1

and is presented in the appendix.

While both, the idealized passivated and the core-shell structures lead to the absence

of defect peaks, the TOPO-covered structure shown in Fig. 3.6(c,g) resembles the one

of the MA passivated structure. The breathing mode for TOPO and MA terminated

structures have similar frequencies (43.39 cm−1 and 41.53 cm−1 respectively) and have

in both cases significant intensities.

The optical region is somewhat more intense in the case of the MA terminated

structure. Although the L-type ligands bind only very weakly to the surface Cd atoms,

they have an influence on the Raman activity. In the case of TOPO oxygen binds to

Cd, while it is nitrogen for MA. Also, the structure is affected by the type of ligand,

although to a relatively low extent, as compared in Fig. 3.4. For Cd45Se45-TOPO,

we observe the high-frequency defect peaks we described for Cd45Se45-MA but do not

observe the low-frequency DM peak, which hints at a strong surface dependence of this

specific vibration. We find, however, a vibration of acoustic character that is rather

delocalized over a large part of the surface (on one “facet”) and indicated it with SA

for surface acoustic [91] in Fig. 3.6(g).

One further piece of information can be extracted from the calculations w.r.t. the

defect peaks. The vibrational frequencies of the three peaks corresponding to the three

defects are slightly split: 227.1 cm−1, 227.2 cm−1, and 228.5 cm−1 for TOPO; 229.5

cm−1, 231.1 cm−1, and 232.99 cm−1 for MA; and have significantly different intensities.

We notice that the splitting in vibrational frequencies corresponds to the splitting in

the DMO energies in the sense that we obtain large splittings in eigenvalues (263 meV)

and frequencies (3.49 cm−1) for MA and small splittings in eigenvalues (32 meV) and

frequencies for (1.4 cm−1) TOPO. We described this earlier as symmetry inequivalent

Se-defects. If we look at the bond length on one and the other side of the twofold

coordinated Se defect we notice that the strongest Raman intensity occurs for the

situation where the imbalance is the greatest. In other words, the Raman intensities

seem to be correlated to the difference in the Se-Cd bond lengths. Our largest difference

is 0.039 Å (2.517 Å vs. 2.556 Å) for the defect with the largest Raman intensity at

232.99 cm−1 in Cd45Se45-MA. In Table 3.1, we present the bond lengths for all three Se-

defects attached to a threefold-coordinated Cd on one side and a fourfold-coordinated

Cd on the other, for both Cd45Se45-MA and Cd45Se45-TOPO structures.
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Coordination 3-fold Cd 4-fold Cd

2.517 2.547

MA 2.517 2.556

2.542 2.565

2.528 2.544

TOPO 2.528 2.544

2.529 2.543

Table 3.1: Bond length (in Å) of three Se-defects in Cd45Se45-MA and Cd45Se45-TOPO
structures

We finally compare our results with the experimentally measured spectra reported

by Badlyan et al. [46], and reproduced in Fig.3.7. The authors reported a high-

frequency shoulder (HFS), shown in magenta, above the optical region around 233

cm−1 in pure CdSe QDs, which is shown to disappear upon the growth of a CdS shell.

This makes their data particularly relevant for direct comparison with our results. A

similar HFS has been observed in QDs of different sizes, ranging from 1.44 nm to 3.4

nm [44, 51, 53, 45, 55].

Figure 3.7: Measured Raman spectra of CdSe dots with HFS (shown in magenta)
reproduced with permission from ref. [46](Copyright (2019) by the American Physical
Society). Similar HFS has been measured in other experiments. [44, 51, 53, 45, 55]

Our calculated defect peaks, located above the optical region (228 cm−1 for TOPO

and 233 cm−1 for MA), coincide with the experimentally observed HFS. Additionally,
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our calculations for the core-shell structure do not exhibit this peak, which is consistent

with the experimental findings. However, in the experimental data, the high-frequency

shoulder (HFS) is relatively weak compared to the signals from the optical region, which

is in contrast to our calculations. We attribute this discrepancy to two main factors.

First, the size differences between the QDs in the experiments and our calculations

certainly play a significant role, especially in the intensity of the LO peak. Our QD

sizes only allow for a glimpse at the LO peak that is known to become very dominant

as size increases. Second, it is most likely that not all the QDs in the experimental

sample are defective, which would naturally lead to a weaker defect peak.

In conclusion, we identify, via state-of-the-art ab initio DFT on small CdSe QDs

with various realistic surface passivations, an intense Raman signal at approximately

230 cm−1, corresponding precisely to the frequency where the debated HFS is experi-

mentally measured. This signal corresponds to the stretching vibration of a defective

twofold coordinated Se atom. The Se atom is bonded to two inequivalent Cd atoms,

one being threefold and the other fourfold coordinated. We observe that the inequiva-

lence of the two bonds leads to the asymmetric geometry and the very intense Raman

signal. The placement and the type of L-type ligands (TOPO or MA) influence this

inequivalence and hence the intensity of the signal. However, the signal persists with

significant intensity in all scenarios.

To compare with experimental observations, which reported the disappearance of

the HFS after the growth of a protective shell, we constructed a core/shell structure

and observed the same phenomenon. Accordingly, the signal disappears in defect-free

(magic size cluster) structures, making it a distinctive marker for identifying defective

versus non-defective structures. More generally, we observe that the Raman signal

in the optical vibrational region is activated when realistic, partly reconstructed, L-

type ligand-protected surfaces are considered. In contrast, QDs modeled with idealized

passivation, and thus higher symmetry, exhibit comparatively weaker Raman signals

in this spectral region.
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Excitonic fine structure in alloyed QDs

and type-II dot-rod nanostructures

All the calculations and data analysis presented in this work were carried out by the

author, S. Kumar, in collaboration with Nadine Tewonoue Djota.

Changing composition via control of constituent stoichiometry, i.e., alloying in

nanostructures can provide desirable band gaps and properties. The alloys are formed

by combining two differing energy gaps semiconductors. By adjusting the ratio of the

constituents, the band gap can be precisely controlled [118]. Generally, increasing the

concentration of the wider band gap semiconductor in the same size structure increases

the band gap or vice versa. Building upon the compositional control, it is possible to

achieve a finer manipulation of the band gap by creating core/shell (CS) heterostruc-

tures. This involves growing a shell of another semiconductor material around a core,

which can be either pure or alloyed. This offers full control over the band gap and

helps to control the tunability of energy levels and wavefunctions of different carriers

for desirable applications.

CS nanostructures are heterostructures that can be classified into different cate-

gories depending on the band gaps and the relative position of the valence and conduc-

tion bands of the involved materials. Depending on the band offsets, electrons or holes

can be confined within either material, be trapped at the interface, or even delocalize

across the entire structure. Fig. 4.1 gives an overview of these different types of het-

erostructures. Three distinct cases based on band alignments are type-I, type-II, and

quasi-type-II CS nanostructures. For the type-I (inverted type-I) CS case, electrons

35
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and holes are both spatially localized in the core (shell), while type II has a spatial

separation of the electron and hole. Quasi-type-II has one of the carriers spatially

localized over the whole structure while the other carrier is spatially localized either in

the core or the shell.

Figure 4.2: (a–g) Representative TEM images of (a) ZnSe core sample and (b–g)
aliquots of the growth series, belonging to reaction times as noted. Scale bars: 25
nm. (h) Sizes of the length, rod diameter, and bulb diameter (if distinguishable) as
determined by TEM vs the sample number. Lines connecting data points are guides
to the eye. Reproduced from ref. [119].

Over the years, different alloyed and CS structures have been explored [120, 121,

122, 123, 124]. Recently, Rebmann and co-workers [119] have synthesized alloyed

e- h+ h+ h+
e-

e- h+

Core               Core/Shell           Core/Shell           Core/Shell  
                          type-I                      type-II     quasi- type-II

e-

Figure 4.1: Schematic illustration of various QD types classified by relative charge
carrier localization.
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Figure 4.3: Temperature dependent PL decay of Zn0.45Cd0.55Se alloyed dot in CdS rod
sample shown in Fig. 4.2. Reproduced from the unpublished work of Hans Werners
from the group of Prof. Mews at the University of Hamburg..

Zn1−xCdxSe (x is concentration) dots in CdS rod nanostructures. Fig. 4.2 shows the

TEM images of their synthesized nanostructures. The synthesis starts with pure ZnSe

dots, which undergo cation exchange to form the Zn1−xCdxSe dot, followed by the

growth of a CdS shell. The final core-shell nanostructures have two variations: one

with a Zn0.45Cd.55Se dots and another with a Zn0.55Cd.45Se dot (sample 7 in Fig. 4.2).

Fig. 4.3 presents the photoluminescence (PL) decay curve measured on Zn0.45Cd.55Se

dots in CdS rod shell structures at various low temperatures (ranging from 6 Kelvin to

60 Kelvin). The behavior of PL decay in semiconductor nanostructures is determined

by the material’s excitonic fine structure (shown in Fig. 4.4) and commonly interpreted

using a simplified three-level decay model [125, 36, 126, 127]. This decay model includes

an optically allowed bright state, an optically forbidden dark state, and the ground

state. This three-level model is derived from highly symmetric spherical dots (shown in

Fig. 4.4) and is generally adopted for different nanostructures [127, 128, 129]. However,

the measured PL decay curves for these structures show a multi-exponential character

at lower temperatures and, as the temperature increases, the decay behavior simplifies

to a bi-exponential character due to thermal energy (kBT i.e. product of the Boltzmann

constant, kB, and the temperature, T) exceed the exciton level splittings. Therefore,

a simplified three-level model will not be able to explain the multi-exponential nature

of PL decay at lower temperatures. Apart from that, creating alloys in nanostructures
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can introduce strain due to lattice mismatch. This lattice mismatch can change the

energy levels and spatial distribution of electron and hole wavefunctions. Similarly,

core/shell nanostructures can have different localization of charge carriers depending

on the specific structure. For example, in type-I CS heterostructures, the electron and

hole wavefunctions overlap significantly. In contrast, type-II CS heterostructures have

spatially separated wavefunctions. This spatial separation significantly affects the ex-

change interaction and the excitonic fine structure, which has not been considered in

a simplified three-level model.
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Figure 4.4: Schematic representation of the exciton FS formation from the ground state
electron (e0, unoccupied) and hole (h0, h1 occupied) states (SO coupling included) for
ZB and WZ spherical nanocrystals. Optically passive dark states are shown with
dashed lines while active bright states are plotted with solid lines. The dark-bright
(DB) splitting is a difference in energy between the lowest dark and lowest bright
exciton state. The degree of degeneracy is given in parentheses next to the state label.
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4.1 Excitonic fine structure

Excitonic fine structure (FS) is a direct consequence of electron and hole spins. When

an exciton originates from the same Kramer’s doublet (a pair of states differing only

in spin) of the electron and hole, their combined spin states can lead to four unique

configurations: |e ↑ h ↑⟩, |e ↑ h ↓⟩, |e ↓ h ↑⟩, |e ↓ h ↓⟩. The spin-dependent electron-

hole exchange interaction Hamiltonian, Ĥexch, takes on different forms due to the varied

pseudo-spin wavefunctions associated with each exciton state.

Therefore, these distinct pseudo-spin basis states lead to the splitting of these exci-

ton states, known as exciton fine structure (FS). The fine structure consists of optically

allowed (bright) and forbidden (dark) states. The splitting of the lowest bright and

the upper dark states is called dark-bright (DB) splitting. FS splitting is an atomistic

effect and is strongly dependent on crystal symmetries as well as the symmetry of the

wavefunctions.

The lowest exciton FS formation for spherical QDs with ZB and WZ crystal struc-

ture is shown schematically in Fig. 4.4. The SP eigenstates of the lowest unoccupied

orbitals (e0) and the highest occupied orbitals (h0 and h1) create the band-edge ex-

citonic states. In the WZ structure (C3v symmetry), the lower symmetry compared

to the ZB structure (Td symmetry) lifts the degeneracy of the SP states h0 and h1,

resulting in crystal field (CF) splitting. In the absence of Coulomb and exchange inter-

action, electron-hole (e-h) pairs are simple products of the SP states which can be four-

or eight-fold degenerate, depending on the crystal structure. The addition of Coulomb

interaction only lowers the energy of e-h pair without lifting its degeneracy. However,

the addition of exchange interaction lifts the degeneracy, leading to exciton FS. The

excitonic FS is highly dependent on the crystal structure. In the highly symmetric

Td structure, the excitonic states split into a lower-energy, five-fold degenerate, spin-

forbidden (dark) state and a higher-energy, three-fold degenerate, spin-allowed (bright)

state, highlighted in Fig 4.4.

Large DB splittings exceeding thermal energy can trap carriers in the lower-energy

dark state, prohibiting efficient emission [126, 130, 36]. At low temperatures, the

polarization properties of the emitted light from colloidal nanostructures are directly

determined by the excitonic FS [131, 132, 133, 134, 135, 136]. Given the influence of

alloying and core/shell growth on wavefunction localization and carrier interaction, it

becomes crucially important to understand how these factors affect the excitonic fine
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structure and their potential applications.

However, calculating FS is not straightforward as it needs a proper treatment of the

crystal structure, the spin-orbit interaction (for qualitatively correct h0, h1 states), and

the electron-hole exchange integrals. In the past, different atomistic approaches [61,

62, 63, 137, 138, 139, 140] have been used to calculate excitonic FS.

In this work, we use atomistic million-atom many-body pseudopotential calcula-

tions based on the empirical pseudopotential method in combination with screened

configuration interaction. We calculate the excitonic FS of Zn1−xCdxSe (where x is

concentration) alloyed dots of varying sizes, followed by an investigation of these dots

within CdS rod heterostructures. We provide compelling evidence that the exciton fine

structure in alloyed nanostructures shows qualitative differences compared to pure,

highly symmetrical spherical dots. This observation challenges the limitations of the

simplified three-level decay model typically used for describing PL decay.

4.2 Empirical Pseudopotential Method

The empirical pseudopotential method (EPM) is a computationally efficient tool to

calculate the optical properties of materials [142, 61], particularly suitable for large

systems containing millions of atoms. EPM bypasses the self-consistent solutions and

ignores the oscillations of valence electrons in the core region to significantly reduce

computational costs. Furthermore, standard DFT tends to underestimate the band gap

quite significantly, which is an especially significant problem for spectroscopic proper-

ties. The construction of an empirical pseudopotential involves fitting the reciprocal

space pseudopotential V (G) to experimentally known quantities and therefore pro-

vides accurate results. The self-consistent effective pseudopotential of the crystal (V

for crystal potentials and v for atomic potentials) conceivably written as a sum of

atom-centered pseudopotentials:

V (r) =
∑
α,j,n

vα(r−Rn − rα,j), (4.1)

where α is the atom type index, n being the index for the primitive unit cells, Rn is

the corresponding lattice vector, and rα,j is basis vector in unit cell n for atom j of

type α. For crystals with single atom type (e.g. Ge, Si), v, the potential in reciprocal
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Figure 4.5: Calculated bulk band structures using the fitted empirical pseudopotential
for (a) CdSe, (b) CdS, and (c) ZnSe. Red triangles are experimentally measured energy
gaps at various high-symmetry points used in the EPM fitting. The experimental data
is taken from refs. [141, 85] and references within.

space can be written as:

V (r) =
∑
G

v(G)S(G)eiG · r, (4.2)

or for the ZB structure as:

V (r) =
∑
G,α

vα(G)Sα(G)eiG · r, (4.3)

with geometry-dependent structure factor S being:

S(G) =
1

N

∑
j

eiG · rj , (4.4)
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where N is the number of basis atoms. Potential v(G) (form factor) is considered as

a disposable parameter in EPM. EPM also allows us to fit the effective masses and

the band gap simultaneously due to the rescaling of the kinetic energy for missing the

non-local part [61]. Now, the SP Schrödinger equation can be solved as:

Ĥψi(r) =

{
−β
2
∇2 + V EPM

loc,α (r) + V̂ SO
α (r)

}
ψi(r) = ϵiψi(r). (4.5)

where i denotes eigenstates and β is only used to rescale the kinetic energy term

−∇2/2 (in atomic units). V EPM
loc (r − rα), where r = r − rα, is the local potential fitted

to known experimental quantities for each atom type α and the spin-orbit interaction

is included as [61]:

V̂ SO
α =

∑
l

|l⟩V SO
l,α (r − rα)L̂ · Ŝ⟨l|, (4.6)

in which |l⟩ is the projection operator of spatial angular momentum l.

Fig. 4.5 presents the calculated band structures of bulk CdSe, CdS, and ZnSe. These

calculations were performed using a fitted empirical pseudopotential, which will be the

basis for further calculations in this chapter.

4.2.1 Linear Combination of Bulk Bands (LCBB)

Solving the time-independent Schrödinger equation, Eq. (4.5), requires the selection

of an initial form for the wavefunctions, often plane waves in DFT. Among various

approaches, the LCBB method [143] stands out as a better choice, offering several ad-

vantages. By confining the basis states to a subset of physically relevant bands n and

k-points (k), the LCBB method reduces computational complexity without compro-

mising accuracy. Unlike conventional approaches that approximate the symmetry of

the nanostructure based on its shape, this method maintains the system’s full atomistic

symmetry. This method can also include strain dependence in the basis set, the band

as well as valley mixing in Hamiltonian. The LCBB wavefunctions are written in real
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space as:

ψ(r, σ) =
NB∑
n

Nk∑
k

Cσ
k,nϕ

0
k,n(r) , (4.7)

ϕ0
k,n(r) =

1√
N
uk,n(r)eik · r , (4.8)

uk,n(r) =
1√
V0

NG∑
G

Ak,n(G)eiG · r , (4.9)

with V0 = a30 andN = nxnynz. Here, a0 denotes the lattice constant of the material such

that V0 constitutes the volume of the primary cell. nx,y,z is the size of the supercell in

each dimension x, y, z. ϕ0
k,n(r) represents a Bloch function whose periodic part, uk,n(r),

can be expanded in reciprocal space. The expansion coefficients Cσ
k,n will be obtained

after numerically diagonalizing the EPM Hamiltonian. σ accounts for the spin but this

index will be omitted in the next sections as the spin has no incidence on the energies

in the absence of magnetic field. The wavefunction can be expanded as:

ψ(r, σ) =
NB∑
n

Nk∑
k

Cσ
k,n

1√
N

[
1√
V0

NG∑
G

Ak,n(G)eiG · r
]
eik · r, (4.10)

such that the Bloch basis states are written:

ϕ0
k,n(r) =

1√
Ω0

NG∑
G

Ak,n(G)ei(G+k) · r, (4.11)

where Ω0 ≡ V N0 is the volume of the supercell. In Dirac bra-ket notation, this basis

state can be rewritten as:

⟨r|ϕ0
k,n⟩ =

1√
Ω0

NG∑
G

Ak,n(G)⟨r|k + G⟩, (4.12)

where we have defined

⟨r|ϕ0
k,n⟩ = ϕ0

k,n(r), (4.13)

⟨r|k + G⟩ = ei(k+G) · r, (4.14)
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(VFF)

and finally:

|ϕ0
k,n⟩ =

1√
Ω0

NG∑
G

Ak,n(G)|k + G⟩. (4.15)

Formally, we have removed the r-dependence of the Bloch states which is useful to

understand the derivation of the matrix elements of the Hamiltonian both in the un-

strained and strained cases. The equation that we want to solve is the following:[
−β
2

∇2 +
∑
α

(
Wα(k)v̂α(r − kα − dα(R)) + V̂ SO

α

)]
ψj(r) = Ejψj(r). (4.16)

The weight function Wα(R) is used to denote whether an atom of type α occupies

site R + dα(R). The atomic positions {R + dα(R)} are deviated from their “ideal”

positions dα(R) (e.g., perfect ZB crystal structure) to minimize the strain energy. For

strain-dependent pseudopotentials, Wα(R) could deviate from 0 or 1, being instead a

function of local strain.

4.3 Calculation of equilibrium atomic positions via

valence force field method (VFF)

For heterogeneous structures, lattice constant mismatch plays a crucial role in modi-

fying their electronic and optical properties. In real experimental structures, the en-

ergy is always minimized. For our simulated crystal structures, artificially cut from

the ideal ZB configuration, minimizing strain energy through structural relaxation is

therefore crucial. While ab initio methods offer better accuracy, they are limited to up

to 1000 atoms. The Keating valence force field (VFF) model [144] offers a computa-

tionally efficient alternative for atomic relaxation. Here, relaxing the atomic positions

with the VFF Hamiltonian includes bond stretching, bond-angle bending, and bond-

length/bond-angle interactions. The inclusion of higher-order bond-stretching terms

ensures a correct dependence of Young’s modulus on the pressure as well as an accu-

rate representation of the C11, C12, and C44 elastic constants in a ZB bulk material [145].
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The total VFF energy EV FF is given by:

EV FF =
∑
i

nni∑
j

3

8
[α

(1)
ij ∆d2ij + α

(2)
ij ∆d3ij] (4.17)

+
∑
i

nni∑
k>j

3βijk
8d0ijd

0
ik

[(Rj −Ri) · (Rk −Ri)− cos θ0jikd
0
ijd

0
ik]

2

+
∑
i

nni∑
k>j

3σijk
d0ik

∆dij[(Rj −Ri) · (Rk −Ri)− cos θ0ijkd
0
ijd

0
ik],

with ∆dij = [(Ri − Rj)
2 − d0

2

ij ]/d
0
ij. Here Ri is the position of atom i, d0ij is the

ideal bond distance between atom types i and j and θ0jik is the ideal angle of the

bonds j − i− k. The
∑nni denotes the summation over the nearest neighbors of atom

i. To calculate the bond stretching, bond-angle bending and bond-length/bond-angle

interaction coefficients α(1)
ij (≡ α), βijk(≡ β) and σijk(≡ σ) the elastic constants of a

bulk ZB structure can be used [146]:

C11 + 2C12 =

√
3

4d0
(3α + β − 6σ), (4.18)

C11 − C12 =

√
3

d0
β, (4.19)

C44 =

√
3

d0

αβ − σ2

α + β + 2σ
. (4.20)

The second-order bond stretching coefficient α(2) is related to Young’s modulus by

the pressure derivative dB
dP

, while Young’s modulus is B = (C11 + 2C12/3). All elastic

constants used are summarised in Tab. 4.1. After strain energy minimization, the new

relaxed atomic positions are used in the SP calculations.

Material C11 C12 C44 Ref.

CdSe 74.6 46.1 13.17 [141]

CdS 77.0 53.90 23.6 [147]

ZnSe 90.3 53.6 39.4 [141]

Table 4.1: Elastic constants (in GPa) of bulk materials considered in this work for VFF
relaxation.
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Figure 4.6: Schematic illustration of the relative band alignment for bulk ZnSe, CdS,
and CdSe, showing conduction and valence band offsets. The experimental data is
taken from refs. [141, 85] and references within.

4.4 Embedding in high gap artificial material

In the experiments, synthesized structures are capped with ligands. In our theoretical

simulations, nanostructures are cut out from the bulk structure, and surface atoms

remains unpassivated. These dangling bonds or unpassivated surface bonds can cre-

ate electronically active traps and need to be removed. For theoretical calculations,

simplified ways to mimic ligands are usually models like pseudo-hydrogen [148] or

parameterized ligand potential of a Gaussian form [149]. Such artificial passivation

removes the trap or the surface states from the band gap. For the work discussed in

this chapter, we embed our structure in an artificial material with a large band gap

to remove dangling bond states. The EPM of this material was fitted with a lattice

constant of 6.052 Å. The artificial material is considered very fragile (or soft) so that

it does not create an artificial strain in the structure and therefore the choice of lattice

parameter of the artificial barrier is arbitrary. The fake barrier is fitted with a band

gap of 8 eV to ensure enough confinement.

4.5 Results and Discussion

In this chapter, we investigate materials with ZB crystal structure for bulk, as well as

QDs and dot-in-rod heterostructures. The experimental bulk lattice constants, band
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Figure 4.7: Strain energy dependence on supercell volume for Zn1−xCdxSe dots (3.2 nm
diameter) with varying concentration (x). The supercell dimensions are 15×15×15×a0,
where a0 is the lattice constant, which is varied from ZnSe to CdSe bulk values. The
inset shows a magnified view around the minimum strain energy.

gaps, and spin-orbit splitting ∆SO of CdSe, CdS, and ZnSe are summarized in Table 4.2.

Fig. 4.6 then illustrates the relative band alignment for these bulk materials. To explore

the influence of size and composition, alloyed QDs were studied with diameters between

3.2 nm and 6.1 nm. For each dot size, the alloy composition (x) was varied in steps of

0.1. We investigated dot-in-rod heterostructures consisting of an alloyed core QD (3.2

nm diameter) with varying Zn composition (45% and 55%). The surrounding rod has

a diameter of 7 nm and a length of 27.7 nm as synthesized in experiments [119].

After embedding the structure in the artificial barrier material, we proceed to min-

imize the strain energy using VFF (see sec. 4.3). A significant challenge arises due

to the lattice constant mismatch between ZnSe, CdSe, and the surrounding material

(fake barrier). This mismatch makes it difficult to select the optimal lattice parame-

ter for the supercell containing the embedded material. Since this choice can impact

Material Band gap [eV] Lattice constant [Å] spin-orbit splitting ∆SO [eV]
CdSe 1.82 6.052 0.41
ZnSe 2.82 5.668 0.42
CdS 2.55 5.818 0.07

Table 4.2: Experimental parameters for bulk CdSe, ZnSe, and CdS taken from ref. [141].
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Figure 4.8: SP band gap dependence on different supercell sizes and k-point grids for
a 3.2 nm Zn0.9Cd0.1Se alloyed dot.

the accuracy of our calculations, we have minimized the strain energy as a function of

supercell volume. We have systematically varied the supercell size, ranging from nx

x ny x nz unit cells (where ni with i ∈ {x, y, z} represents the number of unit cells

along each direction) with the smallest bulk lattice constant (5.668 Å for ZnSe) to

the largest (6.052 Å for CdSe). By minimizing the strain energy within this range of

supercell sizes, we aimed to find a compromise that best accommodates the different

lattice constants and minimizes the impact on the calculations. Fig. 4.7 shows the cal-

culated strain energy as a function of supercell volume for 3.2 nm Zn1−xCdxSe alloyed

dots with varying alloy compositions (x). The supercell size used is 15x15x15 unit cells

which was obtained after the convergence of the SP energy band gap as discussed in

the next step. The plotted results show two key findings: (i) The relaxed supercell size

leans towards a lattice parameter closer to the larger bulk lattice constant (CdSe). (ii)

For each alloy composition (x), the minimum value of the strain energy is at a slightly

different lattice constant (or volume), indicating that every single structure has to be

strain-minimized. While the strain-minimization procedure outlined above applies to

all structures studied in this chapter, including dot-in-rod nanostructures, the strain

profiles for these additional structures are omitted here for conciseness.

In the next step, we focus on finding optimal nx x ny x nz unit cells in the supercell

and k-point sampling in our calculations. In Fig. 4.8, we present the calculated band
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gap of a 3.2 nm Zn0.9Cd0.1Se dot as a function of the number of unit cells along each

direction (nx, ny, nz) within the supercell. The different colors correspond to calcula-

tions performed with varying k-point grids. For a fixed supercell size, the band gap has

a stronger dependence on the k-point grid density. For example, the band gap signifi-

cantly changes when the k-point grid is increased from 3x3x3 to 10x10x10. Typically,

the convergence of the band gap w.r.t. the k-point grid is achieved around an 8x8x8

grid. In comparison, increasing the supercell size typically leads to a smaller change

in the band gap, on the order of 0.2 eV for a converged k-grid. In contrast, increasing

the supercell size has a comparatively weaker effect on the band gap for a converged

k-point 8x8x8 or above grid. While the band gap shows some degree of convergence

with respect to both the k-point grid and supercell size, it appears to be a slow process.

This necessitates a careful selection of these parameters to achieve a balance between

accuracy and computational cost. As observed in the figure, increasing the supercell

size from 15x15x15 to 18x18x18 with a corresponding increase in k-point grid density

(8x8x8 to 10x10x10) only leads to a band gap change of around 50 meV. In light of the

observed slow convergence of the band gap with respect to supercell size and k-point

grid, we opted for a compromise that balances accuracy and computational efficiency.

Therefore, a supercell size of 15x15x15 bulk unit cells and a k-point grid of 8x8x8 was

chosen for the calculations of the alloyed QDs, and a similar convergence procedure

was extended for dot-in-rod nanostructure but not shown here.

4.5.1 Single-particle results

In this section, we study the influence of alloying on SP states. We investigate both

bulk Zn1−xCdxSe alloys and the spherical alloyed QDs. We analyze how the alloy

composition (x) affects the relative positions of the VBM (HOMO) and the CBM

(LUMO). Subsequently, we discuss the further effects of alloying on the degeneracy of

various electronic levels. Following the analysis of bulk and spherical dots, we examine

the SP electronic states in dot-in-rod nanostructures.
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Figure 4.9: SP band gap dependence on alloy composition (x) in bulk and dots of
different sizes.

4.5.1.1 Alloyed QDs

In Fig. 4.9, we show the calculated energies of the VBM (HOMO) and CBM

(LUMO) for Zn1−xCdxSe alloys at the SP level. These SP states are shown for both

bulk material and QDs with varying diameters, as the alloy composition x changes.

The alloy composition (x) is varied from 0 (pure ZnSe) to 1 (pure CdSe) in steps of 0.1.

Fig. 4.9 shows the expected band gap increase for a given x on going from bulk to 3.2

nm dot due to stronger confinement. However with the varying alloy composition x,

the VBM and CBM, hence the band gap, deviate from a simple linear behavior for bulk

(shown in yellow). Similar non-linear behavior is observed for the HOMO and LUMO

levels in the QDs. This deviation from linearity is well-known in alloys and is called

band gap bowing [150]. Interestingly, in our case, the band gap bowing becomes sig-

nificantly stronger for the QDs compared to the bulk material. This band gap bowing

arises from a combination of structural and chemical factors. Structurally, the size mis-

match between Cd and Zn atoms induces lattice strain. This strain disrupts the ideal

crystal structure, modifying cation-anion-cation and anion-cation-anion bond angles

and leading to the relaxation of anion-cation bond lengths within the alloy. Addition-

ally, the replacement of the binary constituents’ lattice constants with an alloy lattice
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constant causes a volume deformation of the band structure [151]. Chemically, bowing

can also be attributed to differences in electronegativity and band offsets between the

constituent binary materials [151].

In Fig. 4.9 it is easily noticeable the bowing effect is more pronounced for the LUMO

compared to the HOMO. For example, as the alloy composition (x) increases from 0

to 0.2, the LUMO level shows a significantly larger shift of approximately 200 meV,

while the HOMO level experiences a shift of less than 100 meV in the case of a 3.2 nm

dot. This difference in the energy level shifts is due to the distinct orbital character

of the HOMO and LUMO states. The LUMO in II-VI semiconductors is primarily

composed of cation s-states (Cd or Zn in our case), while the HOMO is dominated by

anion p-states. Since we have varied the cation composition (Cd and Zn), the impact

on the s-orbital-dominated LUMO is more significant, leading to a stronger bowing

effect compared to the p-orbital-dominated HOMO.

(a) e0               (b) h0

Figure 4.10: Squared wavefunction envelopes with 75 % state density for (a) LUMO
(e0) and (b) HOMO (h0) for a 3.2 nm Zn0.2Cd0.8Se alloyed QD. The small grey scatter
dots represent the atoms in the QD.

Alloyed Zn1−xCdxSe quantum have type-I band alignment irrespective of the varia-

tions in size and alloy composition. Fig. 4.10 exemplifies this for a 3.2 nm Zn0.2Cd0.8Se

alloyed dot where squared wavefunction envelopes of both HOMO and LUMO states

remain well localized within the dot, signifying a type-I alignment. The observed dis-

tortion of the squared wavefunction envelopes in Fig. 4.10 likely arises from the small

size of the dot and a small compositional in-homogeneity which influences the shapes

of the wavefunctions.



52 4.5. Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0
Zn1−xCdxSe

1.8

2.0

2.2

2.4

2.6

2.8

B
an

d
ga

p
[e

V
]

Calculated
Experimental

Figure 4.11: Comparison of calculated and experimental band gap in bulk Zn1−xCdxSe
for varying x. Experimental data is taken from ref. [152, 153]. To account for the
temperature effect at room temperature, we shifted the experimental data by adding
100 meV.

Fig. 4.11 compares our calculated band gap for bulk Zn1−xCdxSe alloys with ex-

perimental measurements of band gaps in bulk-like Zn1−xCdxSe nanowires [152, 153].

These nanowires have diameters ranging from 60 to 150 nm and lengths of several tens

of micrometers. The experimental data is shifted upward by 100 meV to account for

the temperature effect, as the measurements were performed at room temperature. A

good agreement is observed between the measured and calculated data.

In the next step, we investigate strain effects on individual energy levels in alloyed

dots. In Fig. 4.12 (unoccupied states) and Fig. 4.13 (occupied states), we show the first

18 SP states including spin for alloyed dots. Each subplot displays the energy levels

for a specific alloy composition (x) as different colors for varying size dots.

In pure spherical QDs with Td symmetry, the lowest unoccupied electronic state

has two-fold degeneracy, including spin (see Fig. 4.12 for x = 0 or x = 1 case). This is

followed by a set of 6 p-states and followed by a set of 10 d-states including spins. The

highest occupied state is a four-fold degenerate set and is followed by another set of

four-fold degenerate states (see Fig. 4.13 for x = 0 or x = 1 case). Alloying breaks the

degeneracy observed in pure CdSe or ZnSe QDs, as shown in Figs. 4.12 and 4.13. For

example, in the case of 0 < x < 1, the p-states lose their six-fold degeneracy and split

into distinct energy levels. This splitting depends on both the alloy concentration and

the size of the dot. Interestingly, for a fixed alloy composition, the splitting becomes
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Figure 4.12: First 18 lowest unoccupied SP energy levels for Zn1−xCdxSe alloyed QDs
with varying diameters.

more pronounced for smaller dots due to the enhanced influence of alloying effects

under stronger confinement. Similar to the unoccupied states, the four-fold degenerate

highest occupied states also splits, reaching up to several meV in energy difference.

The observed splitting of the first two occupied states (excluding spin) arises from the

crystal field effect due to a change in bond lengths within the alloyed QD. This splitting

plays a significant role in the fine structure of excitonic states, which will be discussed

in detail in the next section.
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Figure 4.13: First 18 highest occupied SP energy levels for Zn1−xCdxSe alloyed QDs
with varying diameters.

4.5.1.2 Dot-in-rod heterostructures

In Fig. 4.14, we present the calculated energies of the HOMO and LUMO states for

dot-in-rod heterostructures. While experimentally fabricated structures have incorpo-

rated alloyed dots, we have also calculated the case of a pure ZnSe dot within a CdS rod

for a better understanding. For comparison, Fig. 4.14 additionally shows the HOMO

and LUMO levels for 3.2 nm pure CdSe and ZnSe dots. As presented in Fig. 4.14, the

calculated band gap for the 3.2 nm pure ZnSe dot is 3.623 eV. On growing a CdS shell

on top of the ZnSe dot, the band gap decreases sharply to 2.634 eV. While the LUMO

state is lowered in energy sharply, the HOMO state is slightly moved up in energy. This

behavior is consistent with the type-II band alignment of ZnSe and CdS, as illustrated
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Figure 4.14: SP HOMO and LUMO levels for 3.2 nm dot and 3.2 nm dot in CdS rod
structure. Arrow (red) indicates the type-II transition upon CdS rod growth on top of
the pure dot.

in Fig. 4.6. The figure shows that the VBM of CdS is lower in energy than ZnSe by 210

meV, while the CBM of CdS is significantly lower by 530 meV. This large offset in the

conduction band edges confines the electrons (LUMO) within the CdS shell, leading to

the observed decrease in the overall band gap and a type-II nanostructure.

When considering 45% and 55% Zn alloyed dots within the CdS rod structure

(compared to the pure ZnSe case), the calculated results show a minimal change in the

LUMO state energy as it is still localized in the CdS shell. In contrast, the HOMO

state has an upward shift in the energy. This behavior is due to the band gap bowing

effect observed in the alloyed dots, as discussed previously and illustrated in Fig. 4.9.

The alloyed dot within the CdS shell likely retains a type-II band alignment, similar to

the pure ZnSe dot in CdS. This means the electron (LUMO) is still primarily confined

within the CdS shell, while the hole (HOMO) is localized in the alloyed dot, as shown

in Fig. 4.15(a).
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e0

h0
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h0

Before SCF                            After SCF
(a) (b)

Figure 4.15: Calculated HOMO (h0) and LUMO (e0) wavefunction probability density
(in green) with 75 % distribution for a ZnSe/CdS dot-in-rod nanostructure (a) Results
without electron-hole (e-h) interaction (b) Results including e-h interaction after self-
consistent calculations (SCF).

In dot-in-rod structures, the spatial separation of electrons and holes weakens their

interaction. The conventional CI approach, commonly used for type I QDs, becomes

impractical for calculating exciton states in this situation. We therefore include a

self-consistent mean field self-consistent (SCF) calculation method for electron-hole

pair excitations within the EPM framework. A similar approach has been developed

previously by Matsuda et al. [154]. The SCF Hamiltonian is written as:{
−β
2
∇2 + V EPM

loc,α (r) + V̂ SO
α (r) + e2

∫
ρ(r′)

ε(r − r′)|r − r′|d
3r′
}
ψi(r) = ϵiψi(r). (4.21)

where ρ(r′) represents the electron (or hole) density at point r′. We then self-consistently

solve the Hamiltonian for an electron in the presence of a hole (or vice versa). Here,

the dielectric screening ε(r − r′) is approximated as constant bulk screening obtained

by averaging the ZnSe and CdSe. Additionally, the surrounding low-dielectric con-

stant media leads to dielectric confinement, which further influences the excitonic FS

by introducing electron-hole self-interaction and affecting the electron-hole overlap.

However, the effect of dielectric confinement is neglected due to the bigger size of the

structure.

Fig. 4.15 compares the electron and hole wavefunctions before and after self-consistent

calculations for a pure ZnSe dot embedded in a CdS rod. As expected, the hole wave-

function shows minimal change due to its strong confinement within the dot. In con-

trast, the electron wavefunction moves closer to the dot as a result of the self-consistent

interaction with the hole. This leads to an increased overlap between the electron and
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hole wavefunctions. Interestingly, despite this overlap, the change in the energy of elec-

tron and hole states is relatively small, on the order of 50 meV. For Zn0.55Cd0.45Se/CdS

dot-in-rod nanostructure results are presented in Fig. 4.16. Compared to the pure

ZnSe/CdS case, e0 and h0 relatively have small overlap in Zn0.55Cd0.45Se/CdS struc-

ture.

Before SCF After SCF 

e0 e0

h0 h0

(a) (b)

Figure 4.16: Similar to Fig. 4.15 but for Zn0.55Cd0.45Se/CdS dot-in-rod nanostructure.

4.5.2 Excitonic Fine Structure

In this section, we show the effect of alloying on the excitonic FS in both alloyed

QDs and dot-in-rod nanostructures. The excitonic fine structure is calculated within

screened configuration interaction formalism (see sec. 2.4) with SP wavefunctions ob-

tained within the SLCBB method discussed in sec. 4.2.1.

4.5.2.1 Alloyed dots

In Fig. 4.17, we present the calculated excitonic fine structure of different size

Zn1−xCdxSe dots with varying x. The energy of the lowest exciton state (E0) is set to

zero for a comparative reference. Each subplot shows the fine structure for a specific

dot size, with varying color intensity representing the oscillator strength of each energy

level. The black lines in each subplot of Fig. 4.17 correspond to the energy splitting

between the two highest occupied SP states (excluding spin).

Group theory analysis predicts a five-fold low-energy dark state and a three-fold

high-energy bright state for spherical pure dots in Td point group [63, 68], as illustrated
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Figure 4.17: Calculated excitonic fine structure for Zn1−xCdxSe dots with various alloy
compositions (x) and sizes. The energy of the lowest exciton state (E0) is set to zero for
reference. The black lines correspond to the energy splitting between the two highest
occupied SP states (excluding spin). Color represents the logarithm (base 10) of the
oscillator strength for each excitonic level.

in Fig. 4.18. As expected from theory, our calculations for pure ZnSe (x = 0) and

CdSe (x = 1) dots have five low-energy, dark electronic states and three high-energy,

bright states for all dot sizes. This degeneracy (five-fold for dark and three-fold for

bright states) is consistent with the spherical symmetry of the pure dots. Furthermore,

the energy difference between the bright and dark states, known as the dark-bright

(DB) splitting, increases as the dot size decreases. This trend is well understood as

stronger localization of wavefunction in small dots leads to their higher overlap and

hence increases exchange integral which increases the DB splitting.

However, the situation changes significantly for the alloyed dots. Unlike the pure

case, the degeneracy of the excitonic states is lifted. In pure dots, the SP state h0 is

a four-fold state while in alloyed dots this is no longer four-fold due to crystal field

i.e. change in bond lengths. The electron-hole pair, which was 8x degenerate for Td
symmetry becomes split into two 4x states due to this crystal field splitting. The lower

4x set originated from e0 and h0 states at SP levels while the upper 4x set is originating
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Figure 4.18: Illustrative comparison of excitonic fine structure of highly symmetric (Td)
pure dots with reduced symmetry (C1) alloyed dots. Optically passive dark states are
shown with dashed lines and optically active bright states are represented by solid lines
with their degeneracy indicated.

from e0 and h1. Including the J lowers the energy of these states similar to the pure

case but does not change the degeneracies of the levels. The addition of K further splits

these 4x states. A schematic comparison of excitonic fine structure for pure spherical

dots and alloyed dots is presented in Fig. 4.18. For the lower energy 4x set originating

from e0 − h0, the lowest two states are always dark and are very close in the energy of

the order of less than 0.1 meV which can easily be overcome by thermal energy above

2 Kelvin and hence we consider them as degenerate. The other two states are bright

and split differently for different alloy concentrations. However, the 4x set originating

from e0−h1 becomes split by the exchange interaction into a set of 4 singly degenerate

states where the lowest state is dark and the other three are bright states. These

three states split differently for different alloy concentrations. Noticeably, the splitting

between the 4x-4x electron-hole pair sets is also modified by alloy concentration. The

splitting between the two 4x-4x electron-hole sets is larger than the splitting between

states within those sets. The splitting between the two 4x electron-hole sets arises

from the splitting of h0 and h1 at the SP level and the exchange interaction while

within the two 4x-4x electron-hole sets, it is due to exchange interaction. Splitting of
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SP h0 and h1 (magnitude marked with a black arrow in Fig. 4.17) is larger than the

exchange interaction causing a larger splitting between these two 4x-4x sets. Overall,

no general trends can be established for the splitting behavior as it varies significantly

across different alloy compositions for all sizes.

4.5.2.2 Dot-in-rod

This section presents the calculated FSS of three different dot-in-rod structures.

We investigated a pure ZnSe dot embedded in a CdS rod, as well as Zn0.45Cd0.55Se and

Zn0.55Cd0.45Se alloyed dots within a CdS rod. All structures have identical dot and

rod dimensions. The FSS is presented after including the Coulomb interaction at the

SP level discussed previously. The qualitative trend of the FSS for these structures
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Figure 4.19: Convergence of excitonic fine structure in ZnSe/CdS dot-in-rod structure
with increasing configuration interaction (CI) basis size. The number of unoccupied
(Nc) and occupied (Nv) states included in the CI basis are increased equally in steps
of 1.

remains very similar to that observed for the isolated alloyed dot with two 4x-4x sets

in the lowest exciton. These two sets are separated by order of > 10 meV (∼110

Kelvin). Consequently, the higher energy set of 4x states will have negligible influence

on photoluminescence (PL) dynamics at low temperatures. Therefore, we focus solely

on the properties and discussion of the lower-energy 4x states.

Fig. 4.19 illustrates the convergence behavior of the four lowest excitonic states
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with respect to the size of the CI basis set in a pure ZnSe dot embedded within a CdS

rod structure. The energy of the lowest exciton state (E0) is set to zero as a reference

for comparison. Each data point represents the energy of an individual excitonic state,

while the color coding indicates the corresponding state’s oscillator strength. As can

be seen, the lowest two states are dark while the two higher energy states are bright.

The convergence of the FSS (or exchange splitting) is quite slow compared to colloidal

spherical QDs the FSS converges very quickly [68]. This happens due to a strong

interaction between different configurations within the dot-in-rod structure. While we

achieved proper convergence of the FSS for all investigated structures, the convergence

behavior itself is not presented here for other structures. In the final results, we have

included 30 e and 30 h states in the CI basis.
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Figure 4.20: FS in ZnSe/CdS and Zn0.55Cd0.45Se/CdS structures before (filled circles)
and after (filled triangles) SCF.

In Fig. 4.20, we illustrate the impact of including the e-h Coulomb interaction,

as described by Eq.4.21, on the excitonic fine structure (FS). The results are shown

for ZnSe/CdS and Zn0.55Cd0.45Se/CdS structures, both before (filled circles) and after

(filled triangles) including the Coulomb interaction (or SCF). We focus on the four

lowest excitonic states. It is evident that, in both structures, the character of the

states remains largely consistent before and after the SCF cycle, with the two lowest

states being dark and the two higher states being bright. However, the energy splittings

between these states are significantly influenced by the SCF cycle. Specifically, in both

cases, the splitting between the upper and lower states increases by approximately a

factor of three after the SCF cycle.

This increase in splittings is a direct consequence of the enhanced e-h exchange
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integrals, as reflected by the wavefunction overlap shown in Fig.4.15 and Fig.4.16,

following the SCF cycle. These results underscore the critical importance of the SCF

optimization of the wavefunctions before CI.
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Figure 4.21: Energy levels and oscillator strengths of the lowest four excitonic states in
various dot-in-rod structures after SCF. The Color represents the oscillator strength’s
logarithm (base 10) for each excitonic level.

In Fig. 4.21 we present the calculated energies of the four lowest excitonic states

for all three investigated dot-in-rod structures. For all structures, we have obtained

a qualitatively similar trend: the two lower energy states are ‘dark’, while the higher

energy states are ‘bright’. The exchange splitting between the excitonic states is three

times larger in pure ZnSe/CdS structure compared to the two other cases due to larger

strain in Zn0.55Cd0.45Se/CdS and Zn0.45Cd0.55Se/CdS structures.

The calculated results for the exciton fine structure in these dot-in-rod nanostruc-

tures provide valuable insights into the low-temperature PL decay behavior we expect

to observe (referencing Fig. 4.3). These calculations show the low-temperature decay

will involve 2 energetically separated bright states and two energetically very close (or-

der of µeV) dark states and the ground state. This existence of multiple radiative and

non-radiative decay pathways arising from different excited states can contribute to a

multi-exponential decay profile in the PL decay curve. As temperature increases, some

of the slower decay pathways involving the dark states might become suppressed. This

could lead to a simplification of the PL decay curve at higher temperatures, potentially

transitioning towards a more single-exponential character.
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In conclusion, we use a fully atomistic approach to calculate the exciton fine struc-

ture of alloyed Zn1−xCdxSe dot structures as well as Zn0.45Cd0.55Se, Zn0.55Cd0.45Se dots

in CdS rod structures. Our calculated results show that creating alloys introduces

strain due to lattice mismatch which creates crystal field splitting among SP levels

as compared to the pure dots. This splitting at a SP level translates to qualitative

different excitonic fine structures in alloyed dots and shows that alloyed dots will have

inherently multi-exponential PL decay. The calculated FS for dot-in-rod structures

shows that the low-temperature PL decay will include multiple excitonic levels and

explains the multi-exponential PL decay measured in experiments. The calculated ex-

citonic levels provide a foundation for further studies. We can now extend this work to

encompass calculations of excitonic lifetimes and model PL decay, ultimately leading to

a more comprehensive understanding of the material’s exciton dynamics and radiative

recombination processes.
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Chapter 5

Empirical Band-Gap Correction for

LDA-Derived Atomic Effective

Pseudopotentials

This chapter is adapted from the published work "Empirical Band-Gap Correction

for LDA-Derived Atomic Effective Pseudopotentials" by S. Kumar, H. Bui, and G.

Bester, Comp. Cond. Mat. 40 (2024) e00917 [112]. All calculations, data analysis,

and drafting of the manuscript were conducted by the first author, S. Kumar

Experimentally synthesized nanostructures can range from just a few to several

thousand atoms. DFT provides accurate qualitative descriptions of material properties

for structures up to a few hundred atoms. However, for bigger structures, DFT is

limited by a high computational cost. As an alternative, Cardenas and co-workers [67]

have developed atomic effective pseudopotentials (AEPs) that can handle up to several

thousand atoms with high accuracy. AEPs were derived via an analytic connection

to the effective crystal potential from DFT. The concept of AEPs ideally bypasses the

need for a self-consistent solution. Additionally, it opens the possibility to focus only on

a selected part of the eigenvalue spectrum. Here, unlike DFT calculations, the number

of total states required is independent of the number of atoms. Hence, AEPs are ideal

for observing the optical properties of nanostructures where only energy states in the

neighborhood of the band gap are of importance.

65
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5.1 Atomic Effective Pseudopotentials

5.1.1 Analytic connection between AEPs and effective Kohn-

Sham potentials

As already mentioned in chapter 2, the basis of DFT is the KS equation:

(
− ℏ2

2m
∆+ VKS(r)

)
ψi(r) = ϵiψi(r),

where the effective KS potential VKS(r) describes the interaction of an electron with

its environment including other electrons:

VKS(r) = Vext(r) + VH[n0(r)] + VXC[n0(r)] (5.1)

with

n0(r) =
occ∑
i

|ψi(r)|2

is the electron density of all occupied states. The external potential Vext(r) is replaced

by a weaker one pseudopotential V (r) in the pseudopotential approximation. The local

and non-local part of the pseudopotential, in the representation of angular momentum

projectors, can be expressed:

Vloc(r) =
∑
αn

vαloc(|r − ταn|), (5.2)

Vnloc(r) =
∑
αn

∑
lm

δvαl(|r − ταn|)P̂αn,lm, (5.3)

where α stands for atom type running from 1 to Nspecies, n is the atom index which

runs from 1 to the total number of atoms Nα for each atom type α. ταn are the atomic

position and P̂αn,lm is the projection operator. The potential vαloc defined in Eq. (5.2) is

the norm-conserving pseudopotential constructed using the approach of Troullier and

Martins [155]. Using the Kleinman and Bylander form [156, 157], the pseudopotential

is rewritten as:

VKS = Vloc(r) + VH[n0] + VXC[n0] +
∑
lm

|χlm
KB⟩El

KB⟨χlm
KB|, (5.4)
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where the last term is the non-local part of the potential and El
KB are the Kleinman-

Bylander eigenvalues

El
KB =

⟨δVlul|δVlul⟩
⟨ul|δVl|ul⟩

, (5.5)

and χlm
KB being the normalized Kleinman-Bylander projectors

|χlm
KB⟩ =

|δVlulm|
⟨ulδVl|δVlul⟩

, (5.6)

where ulm is an eigenstate of the atomic pseudo-Hamiltonian. To construct AEPs, we

use the local part of the self-consistent effective Kohn-Sham potential

Vloc,KS(r) = Vloc(r) + vH[n0] + vXC[n0]. (5.7)

The effective potential in reciprocal space is Fourier transformed from real space effec-

tive potential as:

Vloc,KS(G) =
1

Ωc

∫
Ωc

Vloc,KS(r)e−iG.rd3r, (5.8)

where Ωc is the volume of the unit cell. In real space, we can write effective potential

as a sum of atom-centered potentials

Vloc,KS(r) =
Nspecies∑

α

Nα∑
n

vα(r − ταn), (5.9)

and then transformed back into the reciprocal space as:

Vloc,KS(G) =
1

Ωc

Nspecies∑
α

Nα∑
n

vα(G)e−iG.ταn

, (5.10)

where

vα(G) =

∫
∞
vα(r)e−iG.rd3r, (5.11)

are the AEPs for different types of atoms.

5.1.2 AEPs construction

The AEPs of a binary system are indirectly constructed through v+ and v−:

v+ = va + vc, (5.12)
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v− = va − vc, (5.13)

using the anion va and the cation vc potentials. In any binary system, the effective is

presented as the sum of anion and cation components

V
(1)
loc,KS(r) =

Na∑
i=1

va(r − τ i) +
Nc∑
j=1

vc(r − τ j). (5.14)

With an inverted position structure where anion and cation positions are interchanged

with the same atomic positions, the effective local potential is expressed as:

V
(2)
loc,KS(r) =

Nc∑
i=1

vc(r − τ i) +
Na∑
j=1

va(r − τ j). (5.15)

From sum of equations (5.14) and (5.15), we simply lead to

Natoms∑
n=1

v+(r − τ n) = V
(1)
loc,KS(r) + V

(2)
loc,KS(r) = V

(1+2)
loc,KS(r), (5.16)

and
Natoms∑
n=1

(−1)n+1v−(r − τ n) = V
(1)
loc,KS(r)− V

(2)
loc,KS(r) = V

(1−2)
loc,KS(r). (5.17)

The Fourier transforms of Eqs. (5.16) and (5.17) gives us following expressions:

V
(1+2)
loc,KS(G) =

1

Ω

∫
Ω

V
(1+2)
loc,KS(r)e

iG.rd3r =
1

Ω

Natoms∑
n=1

eiG.τn

v+(G), (5.18)

V
(1−2)
loc,KS(G) =

1

Ω

∫
Ω

V
(1−2)
loc,KS(r)e

iG.rd3r =
1

Ω

Natoms∑
n=1

(−1)n+1eiG.τn

v−(G). (5.19)

Obtained v+(G) and v−(G) are complex in nature. However, only real parts of v+(G)

and v−(G) are of interest within spherical approximation (SA) and can be extracted

from 5.18 and 5.19 as:

V
(SA)
± (|G|) = Re[v±(G)] = Ω

[Re[V (1±2)
loc,KS(G)]

β±
+
Im[V

(1±2)
loc,KS(G)]

α±

]
×
( β±α±

β2
± + α2

±

)
(5.20)
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where

β+ =
∑Natoms

i=1 sin(G.τ n),

α+ =
∑Natoms

i=1 cos(G.τ n),

β− =
∑Natoms

i=1 (−1)n+1sin(G.τ n),

α− =
∑Natoms

i=1 (−1)n+1cos(G.τ n).

To obtain V
(1)
loc,KS(G) and V

(2)
loc,KS(G), DFT calculations are performed on two [100]

elongated 24 atoms supercells. Both the supercells are identical with only cation and

anion exchanged with each other. To extract long-range interaction, a deformation (5%)

is applied along the slab direction to break the symmetry of the crystal. Calculation

of potential from slabs and bulk unit-cell have a small difference [67] and therefore a

Gaussian correction was applied to have the same effective local potential in supercells

and bulk unit-cell calculations.

For heterostructures, the band offsets are very crucial and the band alignment needs

to be determined correctly. We therefore link the AEPs of different binary materials

together. We perform DFT calculations of two quantum wells (QWs) which comprise

materials whose AEPs need to be linked. The lattice parameter is defined as the average

of the lattice constants of the considered two materials. The values of V (G) at G = 0

and small G are adjusted to reproduce DFT calculation of deformation potential of the

valence band.

AEPs can be derived by using the LDA or the GGA. Over the years LDA/GGA

has been very successful in describing ground-state properties, such as total energies

and structural properties. However, these approximations usually result in a significant

underestimation of the band gap and effective masses for semiconductors and insulators

in DFT calculations. These errors are large, with differences ranging up to 100% [158,

159] from experimental values. Sometimes, LDA can even lead to the incorrect order

of electronic states for materials such as HgTe [160, 161] and InAs [162]. This is a

limitation when comparing with the experimental results and extracting the underlying

physics. Consequently, being derived from LDA, AEPs inherit the underestimated

band gaps and effective masses, which represents a serious problem in the realm of

spectroscopic techniques.

Historically, great efforts have been made on the calculation of QP and optical gaps

since the middle of the last century [163, 164, 165]. Based on many-body perturbation

theory, the QP energies are described by Dyson’s equation and are typically solved

within the GW approximation [164, 159, 166, 167]. The optical gaps can be calcu-

lated ab initio by solving the Bethe-Salpeter equation [165, 168], using time-dependent
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density functional theory [169] or the quantum Monte Carlo method [170, 171]. Ad-

ditional methods such as hybrid functionals [80], self-interaction correction [77], and

LDA+U [172] have also aimed at addressing the gap underestimation issue. Although

these approaches can give an accurate description of the fundamental and optical gaps,

all of them are currently only possible for either bulk systems or molecules up to one

hundred atoms, due to the high computational demand.

As an alternative, various empirical corrections retaining the computational simplic-

ity of LDA have been proposed. Such as corrections on the kinetic-energy density [79,

173, 174], correction to the local [175, 176], and the non-local [177, 178, 179, 180]

components of the different pseudopotentials.

Motivated by the fact that the GW results suggest that the LDA bandstructure

is qualitatively correct up to a rigid energy shift of the conduction bands, the so-

called scissor shift has been introduced [181, 182, 158]. While the underlying idea is

simple, the operator (scissor-operator) fulfilling the task is non-trivial, and also non-

local [183, 184, 185, 186, 187], making this approach computationally more demanding.

Furthermore, a rigid shift will not explicitly correct the low effective masses, which is

a significant drawback for nanostructures, since confinement effects are directly linked

to effective masses, as we will discuss further below.

In this work, we propose a simple empirical correction scheme (β-correction) to cor-

rect the band gap and improve the effective masses of LDA-derived AEPs. We validate

our correction by a direct comparison with experimental results for (a) band energies

at high-symmetry points in the Brillouin zone (b) effective masses for bulk InP, ZnS,

GaAs, and HgTe (c) optical gaps (d) excitonic fine structure splitting for InP, CdSe,

and GaAs QDs with different diameters. We use our findings to formulate a straight-

forward analytic expression, which can be adopted to correct the band gaps obtained

using standard DFT codes in (small) QDs. Based on our excitonic screened config-

uration interaction (CI) results, we further provide an expression to obtain accurate

optical gaps.

5.2 Correction Scheme

Using the separable form of the norm-conserving pseudopotential formulated by Klein-

man and Bylander [81, 67, 156, 157], we can express the effective self-consistent poten-
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tial as:

V̂eff ≡ V̂AEP + V̂NL,

with the non-local part from eq. 5.4:

V̂NL =
∑
l,m

|l,m⟩ δVl(r) ⟨l,m| , (5.21)

where |l,m⟩ are the spherical harmonics and δVl is the difference between the l-

dependent pseudopotential Vl(r) and the selected local part part already taken into

account in V̂ AEP (see Refs. [157, 67]).

In order to improve the band gap and the effective masses we modify the non-local

component of the pseudopotential according to:

δV corr.
l =

δVl(r) + βl(1 + cos πr
rc
) for r < rc

0 for r ≥ rc ,
(5.22)

within cut off radius rc = 2.25 Bohr and βl as correcting parameter. Our correction

is localized close to the atomic core where we expect less impact on the inter-atomic

bonding. The idea to correct only close to the atomic core is in line with the atomic

pseudopotential idea in general. Indeed, a match between the pseudopotential and

the accurate all-electron result in the pseudopotential construction is only guaranteed

beyond a cut-off radius similar to ours [81, 155].

In most III-V and II-VI bulk semiconductors, the anion’s p-orbital (l=1) largely de-

termines the valence band maximum (VBM), while the cation’s s-orbital (l=0) shapes

the conduction band minimum (CBM). Although β-parameters can be applied for any

orbital, here we need two parameters βCation−s and βAnion−p for l=0 and l=1 respec-

tively.

We choose bulk ZB InP as an example and in Fig. 5.1 plot the difference between

AEP (LDA) and experimental results for (a) band gap and (b) the effective mass error

as a function of the β-parameters. The thick lines in Fig. 5.1 indicate the values of

β-parameters for which the differences between the calculated AEP and experimental

values are zero. We can correct both, the band gap and masses, for moderate values of

the parameters. However, both lines in Fig. 5.1 are nearly parallel pointing out that

it is not possible to correct both the masses and gaps with the same set of parameters
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which is the limitation of the approach. Therefore, we can correct either the band

gap or the effective mass. In this work, we choose to correct the band gap at the

cost of having overestimated effective masses. The opposite procedure, to correct the

effective masses at the cost of having too low band gaps is a viable alternative that

may be advantageous whenever the extracted physical observable depends strongly on

the effective masses.
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Figure 5.1: InP color-plot of the difference between the calculated and experimental
values of (a) the band-gap ∆Eg and (b) the electron effective mass ∆m∗

e as a function
of the β-parameters. The solid line corresponds to the zero-value contour line and
represents the perfect match to the experiment. Reprinted from ref. [112].

In Fig. 5.1(a) we show that any pair of correcting parameters (βIn−s, βAs−p) residing

on the solid line yields the exact experimental band gap. Now we are left with the

question related to the appropriate selection of this pair. Since βIn−s (βAs−p) is almost

directly proportional to the CBM (VBM) shift, we use GW corrections to establish

the appropriate weight of the CBM/VBM corrections, but fit the band gap to the

experimental results and not to GW gap. We follow the simple procedure by initiating

the selection by quantifying the error in the band gaps between the AEPs (LDA) and

the GW methods for the given material. This involves determining the individual

shifts in the CBM and VBM between LDA and GW . The shift can be determined

with direct computation or from known literature [188, 160, 161]. For example, Klimes

and co-workers [188] have presented results for most of the II-VI and III-V binary

semiconductor materials and one can directly obtain the values for VBM and CBM

shifts from their work. We then compute the relative contributions (in %) of the VBM

and CBM shifts to the overall band gap difference between LDA and GW to use these

values to correct the VBM and CBM energy levels in AEPs to fit the experimental gap.
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For example, consider ZB bulk GaAs, which show a 0.87 eV gap difference between the

LDA and GW0 [188] results. The VBM shift of -0.78 eV in GW0 w.r.t. LDA contributes

90% to the total gap difference, while the remaining 10% is contributed by the CBM.

When applying β-correction to GaAs’s AEP band gap with the experimental value

(and not the GW gap, which can be off by several tens of percent, in this example

21%), we also choose a 90% VBM shift and a 10% CBM shift. This ensures a better

physical description as GW results are of higher accuracy.

We now evaluate the corrections applied to both bulk and confined structures.

For bulk materials, we calculate various band structure parameters, including energy

band gaps for different symmetry points and effective masses. We then compare these

calculated values with the experimentally extracted data and analyze the physical

consequences of applied correction. For QDs, we explore the impact of corrections

on the optical gap and fine structure.
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Figure 5.2: Band structure of ZB InP (left) and HgTe (right) calculated before (blue
line) and after the β-correction (red dashed line). Bottom: magnification of the area
in the green square. Reprinted from ref. [112].
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5.3 Effect of the β-correction on the band structure

Band structure describes energy states for electrons as a function of momentum in a

material, dictating its electrical, optical, and thermal properties which play a crucial

role in designing materials for electronics, photonics, and many other applications.

We, therefore, illustrate the impact of the correction on the band structure for direct

band gap InP and the semi-metal HgTe [160, 161] materials and show the results in

Figs. 5.2. A qualitative comparison of corrected (red) and uncorrected bands (blue)

shows that the top of the valence bands rigidly shifts to lower energies across the entire

Brillouin zone, whereas deep bands are significantly less affected. A qualitative change

in the bands is primarily seen close to the band gap. For InP (Fig. 5.2) the CBM

is shifted up in energy. The curvature of the band is reduced after the correction

and effective mass has increased. For HgTe, we observe very significant energy shifts

and reordering of the bands around the Γ-point. In LDA calculations, and hence our

AEPs [160, 161], a band inversion of the Γ6 and Γ7 bands is obtained, with Γ7 being

higher in energy than Γ6 . This results in a qualitatively incorrect order of states, as

the experimental order is Γ7 being lower in energy than Γ6. With β-correction, this

issue is resolved such that ordering is restored of the Γ6 and Γ7 bands by shifting the

Γ6 band up and the Γ7 band down in energy (following the arrows in Fig. 5.2).

We now compare further important band structure properties including band gaps

at different symmetry points, spin-orbit splitting (∆SO), crystal field splitting (∆CF ,

only for WZ structures), and effective masses for bulk GaAs, InP, ZnS, and HgTe. All

the results are summarised in Table 5.1. The corrected results have improved for the Γ-

Lc (VB top at Γ to bottom of the CB at L) gap, the Γ-Xc (VB top at Γ to bottom of CB

at X) gap. The error in the AEP (LDA) calculated Γ-Lc and Γ-Xc has decreased from

approximately 40 % to about 5 % after our correction. The potentials for spin-orbit

interaction are directly taken from DFT-derived norm-conserving pseudopotentials and

not modified in our AEP methodology [156]. The agreement of the spin-orbit splitting

∆SO with the experiment is generally very good. The electron effective masses tend to

be too large after the correction. While they are underestimated by 36-67 % at the

DFT level, they are overestimated by 14-67 % after the correction. The hole-effective

masses are generally improved by the correction except for WZ ZnS. The hole-effective

masses are generally improved by the correction with the exception of ZnS WZ. The

results for HgTe have to be assessed separately since the correction changes the order of
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the bands. In this case, both electron and hole effective masses are in good agreement

with the experiment.

GaAs InP ZnS ZnS HgTe
(ZB) (WZ)

Eg AEP 0.359 0.270 1.760 1.930 -1.300
(eV) AEP+β 1.520 1.420 3.720 3.910 -0.300

Exp. 1.520a 1.420a 3.720a 3.910a -0.300a,c

AEP 0.730 1.180 3.280 3.880 1.500
Γv − Lc AEP+β 1.730 2.220 5.170 5.520 1.230
(eV) Exp. 1.850 1.930

GW 5.010b 1.230c

AEP 1.090 1.610 3.500 2.870
Γv −Xc AEP+β 1.850 2.420 5.140 2.440
(eV) Exp. 1.980 2.190

GW 4.920b 2.450c

∆SO AEP 0.355 0.120 0.067 0.107 0.837
(eV) AEP+β 0.399 0.110 0.064 0.096 0.856

Exp. 0.346a 0.110a 0.064a 0.092a 1.080a

∆CF AEP 27
(meV) AEP+β 25

Exp. 29a

m∗
e (m0)

AEP 0.023 0.026 0.140 0.140 0.216
AEP+β 0.096 0.130 0.340 0.320 0.024
Exp. 0.066d 0.082e 0.220f 0.280g 0.028h

m∗
hh (m0)

AEP 0.285 0.366 0.765 1.596α, 0.48γ 0.210
AEP+β 0.362 0.473 1.396 1.990α, 0.61γ 0.337
Exp. 0.340i 0.450j 1.760k 1.400α, 0.49gγ 0.320l

Eg/m
∗
e

AEP 15.608 10.384 12.571 13.785 6.018
AEP+β 15.833 10.923 10.941 12.218 12.500
Exp. 23.030 17.317 16.909 13.964 10.714

Table 5.1: Calculated band gaps and effective masses without correction (AEP) and
with correction (AEP+β) for different high symmetry points compared with experi-
mental and GW results. For ZnS WZ, the subscripts α and γ for the hole effective
masses indicate the reciprocal space direction [001] and [010] respectively. The super-
script alphabets correspond to the data references, as follows: a: [141], b: [188], c: [161],
d: [189], e: [190], f : [191], g: [192], h: [193], i: [194], j: [195], k: [196], l: [197].
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5.4 Effect of the β-correction on the wavefunctions

Our correction acts as a perturbation and the modification of the non-local part of

the pseudopotential leads to new eigenfunctions. It is difficult to assess whether the

new wavefunctions represent an improvement as it would require high-quality self-

consistent GW calculations. We scrutinize the extent of the modification by analyzing

the wavefunction overlap and Coulomb matrix elements in QDs.
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Figure 5.3: Square of the wavefunction plotted along the [001]-direction for (a) the
e0 state and (b) the h0 state of an InP QD with diameter 1.97 nm. Reprinted from
ref. [112].

5.4.1 Bulk

The overlap between the uncorrected and the corrected wavefunction is usually above

99% for the first electron (e0) and first hole (h0) states for all the materials (see Ta-

ble 5.2 for InP). k · p perturbation theory offers a check on the extent of wavefunctions

modification through the ratio Eg/m
∗
e, shown at the bottom of Tab. 5.1, which is

nearly unaffected by the correction (HgTe being a special case). Indeed, according to
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Diameter (nm) e0 h0

bulk 99.8 99.8
1.61 99.3 99.1
1.97 98.8 98.7
2.42 99.3 98.7
2.91 98.0 98.3
3.18 98.3 98.3
3.74 99.1 98.1

Table 5.2: Wavefunction overlap ⟨ΨAEP |ΨAEP+β⟩ ( in % ) for e0 and h0 states before
and after the correction for InP bulk and QDs.

k · p perturbation theory [198], we have:

m0

m∗
e

≈ 2

m0

P 2
cv

Egap

, (5.23)

with Pcv = ⟨uc | p̂ |uv ⟩ and the Bloch function uc,v for the conduction and the valence

bands, suggesting a constant ratio of Eg/m
∗
e. The deviation of approximately 50%

observed for HgTe is due to the incorrect ordering of the Γ6 and Γ7 states in the AEP

(LDA), as presented in Fig. 5.2.

5.4.2 QDs

The central aim of the AEPs method is to study the electronic and optical proper-

ties of larger semiconductor structures such as QDs (QDs), nanoplatelets, and more.

We therefore investigate the correction’s influence on QDs properties as an example,

especially how the correction influences the wavefunctions. We initially compute SP en-

ergies and wavefunctions for InP NCs with different diameters (d). These calculations

were performed using the LATEPP package [156] in combination with the AEP ap-

proach [67]. All calculations for the QDs were performed with non-relaxed geometries.

The relaxation effects are negligible for optical properties. All the QDs considered in

this work have a ZB (ZB) crystal structure. A minimum separation of 0.6 nm between

periodically repeated QDs avoids electrostatic interaction among them. The InP QDs

are passivated with fractional charge non-spherical pseudo-hydrogen (with charge val-

ues of 1.25H and 0.75H) potentials [148]. This ideally removes the surface or dangling

bond states from the band gap. Subsequently, we determined the degree of overlap

for the e0 and the h0 wavefunctions both before and after the correction. In Table 5.2
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the overlap results are presented. For all sizes of InP dots, the change of less than

2%, between wavefunctions before and after the correction is observed. In Fig. 5.3,

1D wavefunctions along [001]-direction are plotted before and after the correction for

h0 and e0 states. We see relatively small changes, with a tendency for the corrected

wavefunctions to be more localized, in agreement with their larger effective masses after

correction.

In Fig. 5.3, we show the e0 and h0 wavefunctions for an InP QD with 1.97 nm

diameter before (blue) and after the band gap correction (red). We see relatively

small changes, with a tendency for the corrected wavefunctions to be more localized, in

agreement with their larger effective masses. A simple calculation of the wavefunction

overlap between corrected and uncorrected wavefunctions shows deviations from the

unity of less than 2% as shown in Table 5.2.

Diameter (nm) Je0h0 (AEP) Je0h0 (AEP+β) Diff. in %

1.61 0.324 0.328 1.2

1.97 0.251 0.257 2.3

2.91 0.150 0.154 2.7

3.18 0.142 0.146 2.8

3.74 0.116 0.123 6.0

4.45 0.094 0.102 8.5

Table 5.3: Coulomb integral Je0h0 (in eV) between the e0 and the h0 states calculated
before and after the corrections for InP QDs with varying diameters.

Since the change in electron distribution (wavefunction squared) is small, we expect

small variations in the energy contributions. The Coulomb integral (J) between the

electron (e) and hole (h) states, a parameter intrinsically dependent on the wavefunc-

tions [61, 63], should lead to comparably small variations. J is defined as:

Jhe,h′e′ = e2
∑
σ1,σ2

∫∫
ψ∗
h′ (r1, σ1)ψ

∗
e(r2, σ2)ψh(r1, σ1)ψe′ (r2, σ2)

ε(r1, r2) |r1 − r2|
dr1dr2, (5.24)

where σ1, σ2 are spin indices, and ε(r1, r2) is the microscopic screening function.

Here, ε(r1, r2) is accounted by employing the modified Penn-Resta-Haken approach [68,

63]. For the sake of comparison, J values with and without β-correction are calculated

with the same screening function. As shown in Table 5.3, the Coulomb integrals increase
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slightly (approx. 8 %) when the correction is applied. This is expected due to an

increase in the effective mass and the stronger localization of the carrier. However, the

effect is rather small, indicating that correction maintains wavefunction quality.

5.5 Comparison to experiments

5.5.1 Optical Band Gap

We calculate the optical band gap for InP and CdSe dots with varying d, including

the correlation effects using configuration interaction [63]. We compare our results,

numerically obtained both with and without our β-correction, with available experi-

mental data, other theoretically calculated known results, and analytical spherical well

approximation (both infinite and finite). For the analytical infinite (ISW) case, we

have used the well-known equation:

Enl =
ℏ2

2m∗
e/h a

2
z2nl (5.25)

where znl is the n-th root of the Bessel Function, a is the radius of nanocrystal and

m∗
e/h is the effective mass of the electron/hole.

For finite (FSW) case, we use the following analytical equations:

−k cot(ka) = q, for l = 0 case, (5.26a)

k−2(1− ka cot(ka)) = −q−2(1 + qa) for l = 1 case (5.26b)

with,

k2 =
2m∗

e/h

ℏ2
(E + V0),

q2 = −
2m∗

e/h

ℏ2
E,

where V0 is the height of the barrier’s well. Similar to FSW, the solution of ISW

cannot be obtained analytically. Instead, one needs to solve Eq. (5.26a) numerically or

graphically (by intersection of the graphs) to determine the solution. Here we present

the results with a height of 0.7 eV for the barrier as it provides a reasonable agreement
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Figure 5.4: Optical band gap of ZB InP QDs obtained from calculations at different
levels of theory (see text for details, the black filled circles being the final theoretical
result), compared with earlier theoretical work (Theo. 1 [199], Theo. 2 [200]), with
the “sizing function” from Ref. [201] and with experimental work (Exp. 1 [200], Exp.
2 [202] and Exp. 3 [203]). ISW and FSW are effective mass results for infinite and
finite spherical wells, respectively.Reprinted from ref. [112].

with the experimental data.

In Fig. 5.4 we present the optical gap for InP dots and the black-filled circles

are our final β-corrected exciton results including correlation effects. With different

experiments (filled triangles), our β-corrected results agree very well and with other

theoretical calculations (square symbols) based on the EPM approach [199, 200]. In

orange-filled circles the band-gap corrected SP or the QP results are shown. The QP

results do not include Coulomb e− h binding energy and therefore overshoot the band

gap. A simple “scissor” operator that rigidly shifts the conduction band states with

respect to the valence band states by an energy ∆ is also used to calculate the gap.

This is a commonly adopted approximation to adjust the band gaps obtained at the

LDA or GGA level. ∆ is the difference between the bulk experimental band gap and

the LDA (or AEP, since they yield the same results) band gap. The results are shown
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Figure 5.5: similar to Fig. 5.4 but for ZB CdSe QDs. The references corresponding
to the experiment number in the figure label are as follows: 1 [204], 2 [205], 3 [206],
4 [207], 5 [201], 6 [208], 7 [209], 8 [210], 9 [211], 10 [212], 11 [201], 12 [213], and 13
[201]. Sizing function: [201]. Reprinted from ref. [112].

in magenta-filled circles. It is noticeable that the scissor operator method tends to

strongly overestimate the band gap, specifically for smaller sizes. The results from the

infinite square well model are shown as the solid blue line. As expected, this model

significantly overestimates the band gap. On the other hand, the finite square well

model (solid green line) can be made to approximately fit the experimental results by

using a well depth of 0.7 eV. In the dashed line, the results for an empirical “sizing

function” [201] are shown which slightly overestimates the gap as well.

In Fig. 5.5 results are presented for CdSe QDs using similar terminology. The QDs

can be either in ZB or WZ structure while our theoretical results are performed for

ZB structures. The theoretically calculated band gap of ZB and WZ QDs for a given

diameter are usually similar [208]. However, we notice a relatively large spread of the

experimental results in general, which can be attributed, e.g., to the intrinsic difficulty

to asses the QD size, the crystal structure, and the organic capping environment. Our

theoretical results are found within the mean value of the experimental data. The

“sizing function” [201] for ZB yields larger band gap values for this size range (while it

fits the results more accurately for larger QD sizes).
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5.5.2 Splitting of the lowest two-electron states (“S-P”-splitting)

As our simple β-correction leads to an accurate band gap description, we anticipate an

improved description of the intraband energy splittings (compared to LDA) as well. In

LDA, the effective masses are significantly smaller than the experimental values. Since
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Figure 5.6: Comparison of the energy splitting between the e0 and e1 states for InP
QDs as a function of diameter d. Experimental results Exp. 1 and Exp. 3 are from
ref. [214] while Exp.2 are from ref. [215]. Reprinted from ref. [112].

the intraband S-P splitting is roughly inversely proportional to the effective mass, the

S-P splitting is too large in AEP (and LDA).

In Fig. 5.6 we present the splitting of the lowest two unoccupied (e0 and e1) SP states

(S-P splitting) for InP QDs calculated before (blue) and after (orange) β-correction

along with the experimental results (red, green, violet).

The results after the β-correction (orange squares) are significantly lower and in

better agreement with the experimental data. As we mentioned earlier, when we correct

the gap, the effective mass tends to overshoot (become larger than the experimental

value), hence lowering the S-P splitting.

5.5.3 Excitonic Fine structure splitting

As discussed in Chapter 4, the excitonic fine structure splitting (FSS) describes the

small splitting of the “ground state" exciton. These small splittings are of great im-

portance, influencing the absorption and emission properties [63, 62, 68, 20]. These
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Figure 5.7: Calculated dark-bright (DB) splitting of the lowest excitonic states of InP
QDs as a function of diameter. Experimental [203] and theoretical EPM [63] results
are shown in magenta and green, respectively. Reprinted from ref. [112].

splittings have an atomistic origin and dependence on the symmetry of the crystal

lattice (or the wavefunction). Therefore, symmetry preservation after the pseudopo-

tential modification is crucial to ensure the correct physical picture of the system.

For high-quality ZB QDs with spherical shape and Td-symmetry, 5-fold spin-forbidden

dark states and a 3-fold spin-allowed bright states both with degeneracy (see Fig. 4.4)

are expected [63, 68]. As anticipated, our calculations yield 5-fold spin-forbidden dark

states and threefold spin-allowed bright states and strongly indicate that our correction

preserves symmetry in the system.

Experimentally, the FS of InP dots have been measured by O. Mićić et al. [203].

In their work, high-quality, defect-free InP QDs were synthesized that are well-suited

for a direct comparison with our calculated results. This early experimental work is

exceptional since ligands and atomic details of the QD surface can significantly affect

the FSS [20]. Theoretically, Franceschetti et al. [63] have computed the FSS of InP QDs

assuming an ideal surface passivation and used a high-quality atomistic EPM method.

In Fig. 5.7 we show both results along with our calculations and observe a very good

agreement in general.
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5.6 Suggested empirical correction to DFT (LDA/GGA)

results
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Figure 5.8: Fitted plot for (a) the empirical band gap fit δ(d) = A/dx (Eq. (7) in the
main text) (b) the empirical Coulomb integrals fit δJ(d) = B/dy (Eq. (8) in the main
text) for InP, CdSe and GaAs. Reprinted from ref. [112].
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Figure 5.9: SP band gap calculated with AEP (blue dots), "β-correction" (orange
triangles), using bulk scissor (magenta dots) and with the empirical fit (green triangles)
for (a) InP (b) CdSe and (c) GaAs QDs. Reprinted from ref. [112].

5.6.1 QP Band Gap

Our correction method is of significant value to the LDA/GGA QDs community as

we can provide a simple way to obtain the correct QP and optical gaps. As we have

accurate QP and optical band gaps, as well as the LDA results, we proceed by gen-

erating a simple correcting term that can be used directly with the LDA results. In

Fig. 5.8 we show the QP band gaps of InP, CdSe and GaAs QDs calculated using

AEPs, AEPs+β, scissor δ and correction to be used for LDA. Our corrected gaps are
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given by the AEP +β results in orange triangles. The AEP (LDA) results in blue solid

circles are significantly underestimated gaps, as commonly known. For the scissor ∆

correction (magenta) we have added the bulk band gap LDA error of 1.16 eV for GaAs,

1.15 eV for InP, and 1.70 eV for CdSe to the calculated AEPs (LDA) QD band gaps.

The scissor ∆ correction procedure leads to an overestimated band gap, especially

for smaller QDs, which can be understood from the underestimated effective masses

at the LDA level. The latter leads to an overestimation of the confinement potential

and consequently overestimated band gap. To improve the LDA results, we suggest

starting from the scissor-corrected LDA results and adding a size-dependent correction

δ(d) with fitting parameters A and x:

Eexact
QPgap = ELDA

gap (d) + ∆− δ(d), δ(d) =
A

dx
, (5.27)

where Eexact
QPgap represents the exact QP band gap and ELDA

gap represents the SP band gap

calculated using LDA for a QD with diameter d given in nm. We have utilized our

AEP (LDA) and AEP+β results to fit δ(d), shown in Fig. 5.8, and give the parameters

in Table 5.4. The empirical fit (green triangles in Fig. 5.8) and the exact results (yellow

triangles) are in very good agreement for all the structures and materials.

Materials A x B y
InP 0.656 0.609 0.577 1.181

CdSe 0.692 0.608 0.846 1.185
GaAs 0.627 0.767 0.443 1.139

Table 5.4: Fitting parameters used for the empirical QP band gap correction (Eq. 5.27)
and for the optical band gap correction (Eq. 5.28) for InP, CdSe and GaAs.

5.6.2 Optical Band Gap

While the QP band gap is relevant for electron affinities, work functions, and charging

effect, the optical properties require to take excitonic effects into account. By using

our accurate optical band gaps, calculated at the screened CI level, we can derive an

empirical correction for Coulomb integrals (δJ(d)), shown in Fig. 5.9, to the QP band

gap obtained in the previous section.
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Figure 5.10: Comparison of optical band gap calculated with our β-correction, obtained
with fitted results from Eq. (5.28) for (a) InP (b) CdSe and (c) GaAs QDs. Reprinted
from ref. [112].

We use the simple fitting function:

Eoptical
gap (d) = Eexact

QPgap − δJ(d), δJ(d) =
B

dy
, (5.28)

where B and y are fitting parameters reported in Tab. 5.4. In Fig. 5.10 we show the

QD optical band gap calculated using our correction and obtained from Eq. 5.28. The

exact results (black circles) and the result of the empirical fit (magenta triangles) are

generally in very good agreement.

5.6.3 Size Determination of Nanocrystals

Recently, Klemeyer et al. [216] have conducted in situ experiments to investigate the

development of electronic properties during the reaction leading to ZnS NC in the

wurtzite phase and their subsequent transition into ZnS nanorods in the sphalerite

phase. Their study revealed an electronic band gap of 4.3 eV when spherical WZ ZnS

NCs are formed, with a predicted size distribution ranging from 1.8 nm to 2.2 nm. We

have supplemented their work by predicting the NC size using our β-corrected band gap

calculations [112]. We calculated different-sized quantum dots (QDs) that are passi-

vated with fractional charge non-spherical pseudo-hydrogen atoms [148]. Since our SP

calculations are performed at zero temperature, we include temperature effects a poste-

riori via an analytical expression for the temperature dependence of the experimental

band gap presented in Ref. [217] given as:

E(T ) = E(0)−k

ρ2
 4

√
1 +

π2

6

(
4T

Θρ

)2

+

(
4T

Θρ

)4

− 1

+ (1− ρ)

[
coth

(
Θρ

2T

)
− 1

]
(5.29)
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Figure 5.11: Temperature dependence of electronic band gap of bulk wurtzite ZnS
calculated using an analytical expression presented by Pässler et al. [217] (see text for
more details).

where k= αΘρ

2
with E(0) = 3.91 eV, α = 0.548 meV/K, Θρ = 350 K, ρ = 0.389 taken

from reference [217]. This approach leads to a 138 meV red shift of the band gap

from zero to room temperature (373 K), as shown in Fig. 5.11. This value has been

subtracted from our calculated band gap. The results are presented in Fig. 5.12 for

both T=0 K (red circles) and T=373 K (black circle). We have derived a diameter
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Figure 5.12: Electronic band gap of WZ ZnS QDs as a function of diameter. The filled
red (black) circles are the electronic gaps at T=0 K (373 K) and the red (black) solid
line is a diameter-dependent fit. The green dot shows our measured electronic gap and
the ensuing dot diameter. Reprinted from ref. [216].

(d) dependent fit (black line) of the electronic gap and obtained a diameter of 2.14 nm

corresponding to their measured electronic gap of 4.3 eV, which is consistent with their
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dot size distribution.

In summary, we have derived an empirical correction to improve key properties of

LDA-derived AEPs. This correction can improve band gaps at different high-symmetry

points of the Brillouin zone and effective masses. We modify the non-local part of the

pseudopotential within the atomic core region. To show the accuracy of the correction,

we compare optical band gaps, intraband (e0-e1) splitting, Coulomb integrals, and

excitonic fine structure of QDs with different diameters with the available experimental

and theoretical results. Based on our correction, we drive a straightforward analytic

expression to determine accurate QP and optical band gaps for InP, CdSe, and GaAs

QDs from standard LDA calculation. Furthermore, we demonstrate, using wurtzite

ZnS QDs as an example, how this correction can aid in accurately determining the size

of nanocrystals in experiments. This is achievable when the electronic, quasiparticle,

or optical gaps are measured.



Chapter 6

Electronic structure of Mn impurity in

ZnS from Defect Atomic Effective

Pseudopotentials

The idea and derivation of ’Atomic Effective Pseudopotentials for Large Scale Defect

Calculations’ were developed by W. Pfäffle et al. and remain unpublished at the time

of this thesis submission. The author, S. Kumar, acknowledges their permission to

use this methodology. All calculations and data analysis presented in this chapter were

conducted by S. Kumar, applying the approach developed by Pfäffle et al.’s to a new

material, namely Mn-doped ZnS.

In semiconductor materials, introducing transition metal (TM) atoms dopants or

impurities can have both desirable and undesirable properties. While they might nega-

tively affect some properties, they offer spin-dependent optical transitions for spintronic

or spin-based quantum information [218, 219, 71, 30]. These defects are prominent for

high luminescent efficiencies, and lifetime shortening [220]. One such example is Mn2+

defect in tetrahedrally coordinated (both ZB and WZ crystal structures) wide gap

ZnS [221, 222, 223, 220]. Mn2+ is a charge-neutral defect in ZnS with 3d5 configura-

tion. Experimentalists have observed room temperature PL transition with a strong

broadening (with full width at half maximum (FWHM) of about 230 meV) around

2.12 eV, 2.10 eV, and 2.06 eV in ZnS-bulk, nanocrystals, and nanoplatelets respec-

tively [221, 222, 223, 220]. This long-lived luminescence, lasting in the milliseconds

range, results from spin flip intra Mn d-d∗ (6A1 → 4T1) transition [221, 222, 223]

89
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(outlined in Fig. 6.1).

To understand the origin of 6A1 → 4T1 transition and other similar transitions,

spectroscopic notation for the many-body multiplets is most commonly used [224, 225,

226]. In spectroscopic notation, each multiplet term is denoted as 2S+1LJ in angular

momentum L-S coupling scheme for a multi electron system [226]. Here L is the total

orbital angular momentum and takes on all possible values of angular momentum
∑

li.

S is the absolute value of the total electron spin
∑

si. J is vector sum of S and L,

representing the total angular momentum. 2S+1 is the spin multiplicity and 2L+1 gives

the orbital degeneracy. In atoms/ions, an enormous number of possible transitions can

happen but not all of these possible transitions are observed. Certain selection rules

define whether the transition will be a permitted transition or a forbidden transition.

For a certain transition to be allowed (in strict L-S coupling limits), it is necessary

that ∆S=0, ∆L=0, ±1 and ∆J=0, ±1 (except J=0 -> J=0 transition). Since J can

be readily determined from S and L, we omit J explicitly by using 2S+1L notation as

it specifies the spin multiplicity (2S+1) and L.

Figure 6.1: Multiplet scheme for Mn in different ZnS crystal field environments.

Fig.6.1 illustrates different many-body multiples in spectroscopic notation for free

Mn2+ in different crystal field environments [227, 228]. As a free atom, Mn has highly

degenerate valence d-orbitals due to the spherical symmetry. With five unpaired elec-

trons, the ground state of Mn can be determined according to Hund’s rule which states

that:



Chapter 6. Electronic structure of Mn impurity in ZnS from Defect
Atomic Effective Pseudopotentials 91

1. Term with highest spin multiplicity (or maximum |S|) is lowest in energy.

2. From different terms with the same spin multiplicity, the term with maximum L

is lower in energy.

In case of 5 unpaired electron, possible |S| values are:

• |S|= 5
2
: All five electron spins are aligned parallel (↑ ↑ ↑ ↑ ↑).

• |S|= 3
2
: Four electron spins are aligned parallel and one is anti-parallel (↑ ↑ ↑ ↑ ↓).

• |S|= 1
2
: Three electron spins are aligned parallel and two are anti-parallel (↑ ↑ ↑ ↓ ↓).

Following Hund’s rule, all five electron spins align parallel (↑ ↑ ↑ ↑ ↑), resulting in a

maximum spin value of S = 5
2
. L is determined by summing the magnetic quantum

numbers (ml) of the occupied d-orbitals. However, for Mn in the S = 5
2

term with all

electrons having parallel spins, each d-orbital holds one electron, and their individual ml

values cancel out (ml= +2, +1, 0, -1, -2). Therefore, the total L for this configuration

is indeed 0. As a result, the ground state of Mn is 6S with spin multiplicity (2S+1)=6

and zero total orbital angular momentum (L = 0).

The first excited state of Mn arises from a single electron spin-flip relative to the

ground state (S = 5
2

). This spin flip can occur in various d-orbitals, leading to multiple

possible excited states with a total spin S = 3
2
. For each spin-flip scenario, L will change

depending on the initial and final ml values of the flipped electron. For instance, flipping

a spin from ml = -2 to ml = 0 in a d-orbital would result in a total L of 2. Conversely,

a spin flip from ml = -1 to ml = +2 would lead to a total L of 3. The maximum L

achievable with S = 3
2

will correspond to flipping a spin from ml = -2 to ml = +2 with

L of 4. Therefore, the first excited state will be 4G with ninefold orbital degeneracy.

The transition from 4G to 6S is both spin and orbital forbidden i.e. ∆S ̸=0 and

∆L̸=0, ±1. The states (or terms) with L=3,2,1,· · · will be higher in energy and have

a complex energy order as Hund’s rule sometimes fails [229, 230].

After doping Mn in ZnS by substituting a Zn atom, Mn is no longer in a spherical

field due to the host crystal field. The Stark effect of the crystal field lifts the degeneracy

of d-orbitals [227, 228, 224], as shown in Fig. 6.2. The splitting pattern of d-orbitals

depends on the local environment of the host and the crystal field would affect the

wavefunctions and energy structure of the impurity to form “crystal-field states” of the

impurity ions [225]. As shown in Fig. 6.2, the tetrahedral crystal-field of ZnS splits Mn
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Figure 6.2: Illustration of the effect of a tetrahedral crystal field of ZnS on the energy
levels of the Mn2+ ion. The resulting energy splitting is ∆t.

d-orbitals into higher-energy triply degenerate t2 consisting of dxy, dyz, dxz and lower-

energy doubly degenerate e consisting of dx2−y2 and dz2 orbitals. The subscript 2 in

t2 indicates that these states are symmetric with respect to the C2 axis perpendicular

to the principal Cn axis. Now, each state can be represented in terms of occupation

configuration of t2 and e levels as tm2 en where n + m is total number of d-electrons

(n +m=5 for Mn2+). The crystal field many-body states are denoted as 2S+1Dp. D

indicates the orbital degeneracy of the state with A: singly degenerate, E: doubly

degenerate and T triply degenerate. The symbol p denotes the symmetry of the state

with respect to a C2 axis perpendicular to the principal Cn axis. A value of p =

1 indicates a symmetric state relative to the C2 axis, while p = 2 corresponds to

an unsymmetrical state. Therefore, the spin sextet 6S ground state of Mn, which

remains unaffected by the crystal field, transforms to 6A1 maintaining its orbital single

degeneracy character [231, 224] with configuration t32e2. However, the first excited state
4G from isolated Mn undergoes significant splitting due to the crystal field, resulting in

various energy levels depending on the specific field strength (as illustrated in Fig. 6.1).

In Td symmetry, the excited state 4G of Mn splits in lower energy 4T1, and 4T2, 4E and
4A1 states. For c3v symmetry, the lower symmetry compared to Td further splits the

originally degenerate 4T1 and 4T2 states into 4A1 and 4E, respectively [232]. Any of

the transitions from 4T1, 4T2, 4A1 and 4E to 6A1 is both spin and orbitally forbidden

due to ∆S ̸=0 and ∆L̸=0, ±1. As 6A1 →4T1 is a spin-flip transition; this is forbidden
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by spin and orbital symmetry but weakly allowed due to spin-orbit coupling (SOC),

hence long-lived.

Understanding symmetry-breaking effects in excited states (4T1, 4T2, 4E1) via the-

oretical calculation could offer a better understanding of PL. Ab initio DFT methods

are powerful and efficient theoretical approaches for studying such systems. However,

they do have several limitations. Poor description of exchange and correlation at the

LDA or GGA level delivers an inaccurate description of the band gap. Impurity atoms

usually introduce energy levels in the band gap of the host material. An inaccurate

gap will have strong consequences for localized defect states positioning them either in

the valence or the conduction band instead of the gap. Alternative approaches such

as hybrid functionals, self-interaction correction (SIC), LDA+U, and QP methods like

GW are known to be more accurate compared to LDA(GGA) but are computationally

too expensive. DFT also suffers limitations for open shell defects [233] as only a single

configuration is used for the approximation of the many-electron wavefunction [234]

and electron correlations are included through approximations. For systems where the

ground state (as in our case) is well described only by more than one (nearly-)degenerate

determinant, static correlation becomes important which is missing in DFT. Therefore

it requires a multi-reference approach [235, 236, 71] to include all correlations and pro-

vide an accurate description of systems. Another constraint on DFT calculations might

arise from system size for several defects as they require bigger supercells [237].

In the present work, we use defect AEPs derived within the group which can ef-

fectively deal with different geometries and significantly larger systems avoiding self-

consistent cycles. Self-consistent cycle relaxation in defect AEPs offers a choice of cal-

culating a desired part of the eigenvalue spectrum i.e. only calculating states around

the gap including defect states. As discussed in Chapter 5, AEPs are derived using

LDA (or GGA) and inherit the band gap underestimation from these functionals. To

address this issue and achieve accurate experimental gaps and energy level positions,

we apply β-correction, as detailed in Chapter 5. The problem of the multi-reference

approach or many-body (MB) can be tackled with a screened configuration interaction

approach adapted for open-shell situations [71]. In this work, we focus on the results

obtained from SP calculations. Investigations into many-body effects are planned for

future studies.
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6.1 Analytic derivation of the impurity AEP

The derivation of the impurity/dopant AEP relies on the use of bulk AEPs which were

discussed previously in Chapter 5. As derived in Eq. 5.10, the local G-space potential

is:

Vloc(G) =
1

Ωc

Nspecies∑
α

Nα∑
n

vα(G)e−iG.ταn

, (6.1)

where vα(G) are the AEPs. To introduce the impurity (imp), we rewrite the po-

tential explicitly for a binary cation (cat)-anion (ani) system:

ΩcVloc(G) =

(
Ncat∑
n

e−iG.τcat,n

)
vcat(G) +

(
Nani∑
n

e−iG.τani,n

)
vani(G) + e−iG.τimpvimp(G),

= Scvcat(G) + Savani(G) + Sivimp(G), (6.2)

where Sc,a,i are the structure factors of the cations, anions, and of the impurity which

depends only on the atomic positions. We can get the impurity AEPs, reordering the

previous equation, as:

vimp(G) =
1

Si

[ΩcVloc(G)− Scvcat(G)− Savani(G)] (6.3)

where all terms on the right-hand side are known. The impurity AEP derived this

way is a complex quantity from which we keep only the real part; which corresponds

to an inversion symmetric potential [148]. Similar to the bulk AEPs [67], a spherical

approximation of the impurity potential i.e. vimp(G) = vimp(|G|) is considered.

Impurity AEPs are derived by taking advantage of the centrally short-ranged na-

ture of impurity-induced potential changes. Though these AEPs are derived from self-

consistent calculations of small supercells, they can be applied non-self consistent way

to bigger supercells with several thousand atoms. For spin-polarized systems, such as

Mn in ZnS, the AEPs are derived based on the total potential V loc↑ and V loc↓ obtained

via spin-polarized calculations for a bulk ZnS supercell with 256 atoms with one sub-

stitutional Mn impurity replacing one Zn atom. Therefore, V loc(G) is obtained from

ABINIT package [238] with the SLDA [102] exchange-correlation functional (Troullier-

Martins NCPP [155] ) and a supercell with 256 atoms. The supercell dimensions were

based on the experimental lattice constant, with a c/a ratio of 1.637 (where c = 0.626

nm is the lattice constant along the c-axis and a is the lattice constant in the plane
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perpendicular to c). For Zn, we choose a maximum angular momentum cutoff lmax=2

and a local channel angular momentum lloc=1 in NCPP. For S atoms, lmax=1 and

lloc=0 were set. For Mn, we set lloc=0 and lmax=2 with 3p, 4s and 3d electrons as

valence electrons. The inclusion of 3p as valance electrons was necessary to obtain

correct 3d energy levels. Here we use gamma-only k-point sampling. With gamma-

point sampling, though neighboring defects wavefunctions hybridization still exists,

but the k-dependent occupation of the defect states is prevented. As the supercell size

used in the generation of the potential increases, the effect of gamma-point sampling

diminishes.

The case of SLDA self-consistent DFT solution, obtained without spin-orbit inter-

action, gives total potentials for spin-up and spin-down states independently, and we

obtain two individual Mn impurity potentials. Although the average potential in a

periodic crystal (G = 0 component) is undefined, the difference between the average

potentials between spin-up and spin-down is significant and defines the average spin

splitting:

Vloc↑(G = 0)− Vloc↓(G = 0) = ∆. (6.4)

The difference ∆ obtained from the DFT calculation is considered while construct-

ing the AEPs. For the value of vimp(G = 0), we consider the value vani(G = 0)

or vani(G = 0) depending on impurity replaces a cation or an anion (See Ref. [67] on

choice of G=0 point in binary materials). This is done not to change the bulk deforma-

tion potential taken from the host material [67]. From DFT calculations, we obtained

∆=-9.52327 Hartree which was divided evenly between the two (spin-up, spin-down)

AEP potentials.

In Fig. 6.3 we show the derived Mn defect spin-up AEP. In the figure, circles are raw

data points and the lines are cubic spline interpolations through these data points. The

initial raw data (blue circle) and AEPs (blue line) obtained form Vloc(G = 0) suffers

from the error which is intrinsically carried over from the bulk AEPs [239, 240] in the

region of |G|=n · 2π
√
3/a0 data point extraction, where n is an integer and a0 the bulk

lattice constant. As our goal for passivant AEP is not to correct the deviations existing

within the bulk AEPs, we omit the data points in the vicinity of these |G| values, as

shown in orange color. One may indeed obtain a better agreement by using these data

points instead of ignoring them for a specific structure, but the transferability to the

structures with other dimensions and configurations would be less accurate. Fig. 6.4

shows the final AEPs of Mn defect for the spin-up and down obtained after removal of
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data points in the region of |G|=n · 2π
√
3/a0 and interpolated through the raw data.

The quality of obtained Mn AEPs is discussed in the next section.

6.2 Results and discussion

As a first step, we compare the SP results obtained with our derived Mn defect AEPs

with with DFT (LDA) results. Fig. 6.5 shows the SP energies obtained with defect

AEPs and DFT. The AEPs are derived for spin up and down channels individually

as discussed in Sec. 6.1. We compare the results for both spin-up and spin-down

channels separately. In Fig. 6.5, circles represent the electronic levels for the spin-up

channel: red circles for DFT and black circles for the defect AEPs. Similarly, squares

depict the spin-down channel states: green squares for DFT and violet squares for the

defect AEPs. For a better comparison, the CBM are aligned and indicated by a dotted

red line. In LDA, the energy difference between the CBM and first occupied spin-up

states is 1.714 eV. This energy difference is slightly increased to 1.754 eV in AEP. The

0 1 2 3 4 5
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Figure 6.3: Spin-up AEP for the Mn in ZnS as a function of |G| in a 256 atom supercell.
The initial AEP (blue circles) are with the bad point in the region of |G|=n · 2π

√
3/a0,

where n is an integer and a0 the bulk lattice constant (see text). The final AEP (orange
circles) is obtained after removing these bad points. The raw data points (both initial
and final) are represented by colored circles, while the smoothed AEP is shown by the
dashed line, obtained via cubic spline interpolation.
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Figure 6.4: Final AEPs obtained for a Mn defect in WZ ZnS in reciprocal space derived
from a 256 atom supercell.

energy difference between the CBM and the next higher conduction state shows good

agreement between LDA (0.963 eV) and AEP (0.961 eV), with a minimal difference

of only 0.2%. The energy difference between the CBM and the highest occupied state

in the spin-down channel also shows a slight increase in AEP (1.889 eV) compared to

LDA (1.80 eV). The difference in SP exchange splitting [241, 242] (shown in orange) in

LDA (2.03 eV) and AEP (2.056 eV) is small, with a difference of 1.2%. The splitting

between the valance states is comparatively complex. The valance states in DFT are

more split compared to AEPs. These discrepancies (and overall differences) between

AEP and LDA are likely due to the spherical approximation used when constructing the

defect AEPs. It’s important to note that these energy level splittings and differences,

all within the range of 100 meV, are relatively insignificant (relative to the band gap

scale). Despite these slight differences, the AEP approach demonstrates reasonable

accuracy compared to the more computationally expensive DFT calculations.

Since AEPs are inherent in the LDA gap underestimation, we apply the gap correc-

tion on the ZnS levels. Fig. 6.6 shows AEPs SP band structure for bulk WZ ZnS before

(blue) and after (red) the with gap correction scheme discussed in Chapter 5. The un-

corrected AEP calculation yielded a band gap of 1.94 eV for WZ ZnS, significantly

lower than the experimental value. Applying the gap correction with the βl parameter

(as described previously), we increase the band gap to an experimental value of 3.91 eV.
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Figure 6.5: Comparison of SP energy levels obtained from derived Mn defect in ZnS
AEPs and fully DFT calculations in a WZ supercell with 256 atoms.

Applying a gap correction has a significant impact on both the quantitative values and

qualitative features of the energy levels, particularly near the Γ-point. This correction

leads to a substantial downward shift of the VBM by over 1 eV. Therefore, correcting

the gap is crucial for capturing an accurate physical picture of the electronic structure.

With the importance of gap correction understood, we now explore its impact on the

electronic structure of Mn in ZnS.

In Fig. 6.7 we show the SP energy levels near the band gap of bulk ZnS (WZ struc-

ture) before and after applying our gap correction method for a single Mn defect. The

calculations were performed for a 256-atom supercell containing a single Mn impu-

rity. Markers of the same color correspond to the same energy level before and after

gap correction. Circles represent the host ZnS levels, while triangles represent the Mn

d-levels. We defer the presentation of wavefunction squared plots for identifying the

Mn-d levels until later in Fig. 6.12. These plots will be presented after all initial test

calculations are complete to ensure a clear distinction between the initial test results

and the final analysis of the Mn-d states. The uncorrected band gap, represented by
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Figure 6.6: SP band structure of bulk WZ ZnS before (blue) and after (red) the gap
correction (discussed in Chapter 5) calculated with AEPs.

the energy difference between the circles, is 1.94 eV for both spin states. Prior to the

gap correction, the electronic structure shows three spin-up (green triangle) d-states

positioned above the VBM (represented by the blue circle) of the host material. In-

terestingly, two additional spin-up d-states (orange triangle) reside slightly below the

VBM. In contrast, for the spin-down channel, no d-states are found within the band

gap. However, after applying the gap correction (or level correction), the distribution

of d-states is significantly changed. As VBM moves down with correction, all spin-up

d-states become positioned within the band gap. In the spin-down channel, the correc-

tion moves the CBM higher in energy and brings two d-states (pink triangle) below the

CBM (represented by the brown circle). We therefore focus solely on the gap-corrected

energy levels as they match with the experimental known transition between d-d levels

being well below the host ZnS transition in energy.

We now shift our focus to understanding how Mn substitution affects the struc-

tural properties of the material. Due to its larger size compared to Zn, substituting

a Zn atom with Mn can distort the surrounding crystal structure, particularly bond

lengths and angles around the Mn atom. This distortion can be localized near the

dopant or extend outwards, influencing the electronic energy levels. Therefore, quan-

tifying the impact of this structural distortion on the electronic structure is crucial
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Figure 6.7: SP energy levels near the band gap for spin-polarized calculations of a
256-atom bulk ZnS supercell containing a single Mn impurity. The results are shown
with (right) and without (left) gap correction. Triangles represent the Mn 3d levels,
while circles represent the ZnS host levels. Markers of the same color correspond to
the same energy level before and after gap correction.

for accurate understanding. Since Mn2+ has five unpaired d-electrons, it leads to a

strong spin-polarized state where the spins of these electrons tend to be aligned in

the same direction. Consequently, all calculations presented in this chapter are spin-

polarized only unless explicitly stated otherwise. Due to the separation of spin-up and

spin-down SP energies obtained from our spin-polarized calculations, we present them

separately throughout this work. We use spin-LDA (SLDA) functional in the ABINIT

software package [238] to calculate SP energies for a 256-atom supercell. This supercell

is obtained by relaxing the atomic positions after introducing the Mn impurity. The

calculations are performed only at the Brillouin zone center (Γ-point). Fig. 6.8 illus-

trates the impact of atomic relaxation on bond lengths within the calculated supercell.

The color map represents the percentage change in bond lengths relative to the ideal

ZnS. The position of the Mn atom, which replaced a Zn atom, is highlighted in ma-

genta. A closer inspection shows a significant relaxation primarily localized around the

Mn substitution. This is apparent with the noticeable change (approximately 6%) in

the bond lengths of the Mn-S bond fragment. Conversely, Zn-S bonds further away

from the Mn atom have minimal to no change. This suggests that the Mn substitution
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Figure 6.8: Percentage change in bond lengths after full relaxation. The color map
shows the percentage change in bond lengths within a 256-atom supercell after full
relaxation of ionic positions. The reference structure is ideal ZnS. The position of the
Mn atom, which has been substituted for a Zn atom, is highlighted in magenta.

primarily induces localized structural distortions around Mn and its four nearest sulfur

neighbors (Mn-4S fragment), with a slight impact on the bulk structure of the host

ZnS material.

Since relaxation mainly occurs in the Mn-4S fragment region, we can potentially

exploit this localization to simplify the calculations. Relaxing only the Mn-4S fragment

offers a computationally efficient alternative to relaxing the entire structure, provided

the changes in electronic energies are comparable between both approaches (full relax-

ation vs. Mn-4S relaxation). We therefore have considered three scenarios to investigate

the relaxation effects on SP energies: (a) frozen structure where the atomic positions

are fixed, neglecting any relaxation due to Mn substitution. This provides a baseline

for the impact of structural changes, (b) full relaxation where all atomic positions are

allowed to relax to minimize the system’s energy. This allows for the most significant

structural changes and reflects the fully distorted configuration and (c) Mn-4S fragment

relaxation where relaxation of only the Mn atom and its four nearest-neighbor sulfur

(S) atoms is done.

In Fig. 6.9, the calculated SP energies for the 256-atom supercell for different relax-

ation cases are presented. Black circles indicate the spin-up channel, while red circles

represent the spin-down channel for no relaxation (NR) of atomic positions. Squares

denote the SP energies obtained after allowing all atoms to fully relax. These results

correspond to the configuration for both spin-up (green) and spin-down (magenta)
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Figure 6.9: Effect of relaxation on energy levels in a WZ structure supercell with 256
atoms. NR: No relaxation; AP: Full atomic position relaxation; FR: Mn-4S fragment
relaxation.

channels. Orange diamonds (spin-up) and violet diamonds (spin-down) represent the

SP energies when only the Mn atom and its four nearest-neighbor sulfur (S) atoms are

allowed to relax.

We begin by analyzing the SP energies for the spin-up channel across all relaxation

scenarios: No Relaxation (NR), Full Relaxation (AP), and Mn-4S Fragment Relaxation

(FR). The band gap for the NR case is 1.530 eV. Relaxation significantly increases the

band gap to 1.714 eV for the AP case and 1.733 eV for the FR case. The difference be-

tween AP and FR (19 meV) is negligible, suggesting a minimal impact on the band gap

from relaxing atoms beyond the Mn-4S fragment. While the conduction band position

shows slight changes, the valence band moves significantly towards the lower energy

upon relaxation. Other higher-lying conduction states remain relatively unchanged.

Notably, valence states exhibit a clear dependence on relaxation, with both AP and
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FR producing similar results. This behavior is due to the presence of Mn up states

lying close to the VBM. These Mn states hybridize with the VBM states, leading to

a downward shift of the valence band states. For the spin-down channel, the major

changes are observed in the states above the CBM. Relaxation alters the splittings

between the next five levels, while the VBM states remain largely unaltered. These

changes likely arise due to the influence of Mn down states located near the CBM.

The structural relaxation results have a key finding: relaxation primarily occurs in

the vicinity of the Mn dopant, significantly influencing the electronic energy levels. No-

tably, relaxing only the Mn-4S fragment yields sufficiently accurate results, making this

a viable approach for computationally efficient calculations involving large structures

with thousands of atoms.

We now address the issue of spurious interactions arising from the use of periodic

boundary conditions. If the separation between periodically repeated defects is too

small, the electronic structure of an isolated defect becomes distorted. This occurs

because the deep energy levels within the band gap can interact and form extended

energy bands with a finite dispersion. By converging the supercell size in which the

Mn defect is placed, we aim to eliminate these interactions and obtain a more accurate

description of the defect’s behavior. Fig. 6.10 illustrates the convergence behavior of

SP energies around the band gap of Mn-doped WZ ZnS with respect to the supercell

size. The x-axis represents the supercell size in multiples of the bulk 4-atom unit cell

of WZ ZnS. In the figure, the Mn d-states are shown by triangles, while the host ZnS

states are shown by circles. The VBM and CBM of the host ZnS are denoted by blue

and orange circles, respectively. For clarity, spin-up and spin-down states are presented

together for each supercell size. It is important to note that these results are based

on unrelaxed supercells. This choice is justified because relaxation effects are expected

to be highly localized around the Mn-S bonding region and will have a negligible

influence on the overall convergence trends observed with varying supercell sizes. We

investigated the convergence of various energy splittings with respect to supercell size.

The band gap of ZnS (represented by the energy difference between the orange and

blue circles) decreases by 24 meV when increasing the supercell size from 2x2x2 to

6x6x6 for both spin-up and spin-down channels. This decrease becomes considerably

smaller (only 4 meV) upon further enlargement to an 8x8x8 supercell. In the spin-up

channel, a qualitative change in the ordering of Mn d-energy levels (shown in triangles)

is observed as the supercell size increases. In the 2x2x2 supercell, the lowest energy
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d-states are doubly degenerate (2x) followed by a singly degenerate state (1x) at a

higher energy level. Finally, the highest energy d-states are again doubly degenerate

(2x). However, for supercells of 4x4x4 and larger, the lowest and middle energy d-states

are both doubly degenerate (2x each), while the highest energy state becomes singly

degenerate (1x). The energy level splitting between the two higher energy, doubly

degenerate (2x) d-states (represented in magenta) and the singly degenerate (1x) d-

state (represented in teal) shows a quick convergence when increasing the supercell size

from 4x4x4 to 8x8x8. In contrast, the convergence of the splitting between the two

lower energy, doubly degenerate (2x) d-states is somewhat slower. Here, a 9% change

in the splitting is observed between 6x6x6 and 8x8x8 supercells. This suggests that

a slightly larger supercell size might be necessary for a fully converged description of

these specific d-states. In the spin-down channel, the energy levels of the Mn d-states

show fast convergence with respect to supercell size. When increasing the supercell

size from 4x4x4 to 8x8x8, the maximum change observed in any state’s energy is on
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Figure 6.10: SP energy levels with respect to supercell size for a system containing a
single Mn impurity embedded in bulk WZ ZnS. The results are presented after applying
a gap correction to the host ZnS electronic structure. Circles represent the SP states of
ZnS, while triangles represent the Mn d-states. For the Mn d-states, their degeneracy is
indicated by both a number (e.g., "2x") and a corresponding symbol (e.g., e for doubly
degenerate states).
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the order of 5%. The energy difference between spin-up and spin-down Mn d-states

(SP exchange splitting), is changed by less than 1 meV when increasing the supercell

size from 4x4x4 to 8x8x8. This excellent convergence suggests that a 6x6x6 supercell

is sufficient for capturing the essential electronic structure features of our interest for

further calculations. The convergence of Mn in bulk ZB ZnS supercell is presented in

the appendix.
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Figure 6.11: SP energy levels around the gap for spin-polarized calculations after gap
correction for bulk (a) ZB (b) WZ ZnS with a single Mn impurity. Results are compared
with converged supercell size for both structures. For the Mn d-states, their degeneracy
is indicated by both a number (e.g., "2x") and a corresponding symbol (e.g., e for doubly
degenerate states).

In Fig. 6.11, we present the calculated SP energy levels surrounding the band gap

for fully converged supercells of ZnS with Mn impurities in both ZB and WZ crystal

structures. In the figure, Mn levels are depicted as triangles, while the host ZnS VBM

and CBM states are represented by blue and orange circles, respectively. The dashed

black line indicates the host ZnS band gap, while the red dashed line represents the SP

exchange splitting [242, 241] between the Mn up and down spin states. The degeneracy

of the different states is highlighted in the same color as their origin marker. As the

calculations are spin-polarized, we have plotted the energy levels separately for both
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up and down spin channels. In the case of ZnS with a ZB crystal structure, the

VBM is triply degenerate for both spin-up and spin-down channels. Interestingly, the

spin-up VBM sits at a slightly higher energy level (-3.030 eV) compared to the spin-

down VBM (-3.028 eV). This small energy difference of only 2 meV arises due to the SP

exchange interactions. However, the degeneracy remains largely unaffected because the

VBM originates from fully occupied p-orbitals, lacking unpaired electrons that could

contribute to a significant spin splitting. Unlike the triply degenerate VBM, the CBM

state is singly degenerate for both spin-up and spin-down channels. This difference

arises due to the origin of the states. The CBM originates from the Zn s-orbital,

which can only accommodate two electrons. A slight energy difference (around 0.7

meV) exists between spin-up and spin-down CBM due to SP exchange. Considering

the presence of five unpaired d-electrons in Mn, we observe a significant exchange

splitting between the spin-up and spin-down states. The spin-up states of Mn lie

closer to the ZnS VBM while the spin-down states lie closer to the ZnS CBM. The SP

exchange splitting between the spin-up and spin-down states of Mn in ZnS (marked

by the dashed red line) has a splitting of 2.45 eV. This value (2.45 eV) is significantly

lower compared to the exchange splitting observed in an isolated Mn atom, which we

calculated to be around 5 eV at the LDA level. The tetrahedral crystal field in ZnS

splits the Mn d-orbitals. This splitting has a significant energy difference (739 meV)

between the triply degenerate t2 states (located at -2.34 eV) and the doubly degenerate

e-states (located at -3.08 eV) for the spin-up channel. These t2 states reside within

the band gap, while the e-states are positioned slightly below the VBM by 57 meV.

The spin-down channel shows a similar crystal field splitting pattern between the t2
and e-states. However, the crucial difference lies in their overall position relative to the

band edges. All spin-down states are located within the band gap, with both t2 (0.50

eV) and e (0.103 eV) levels lying well below the CBM by 203 meV. The spin-down

t2-e splitting (397 meV) is comparatively smaller compared to the spin-up channel.

This disparity in t2-e splitting between spin channels is due to stronger hybridization

between the Mn spin-up d-orbitals and the host ZnS states. Similar observations of such

spin-dependent hybridization have been reported in other Mn-doped semiconductor

systems, such as Mn in GaAs. In the WZ ZnS crystal structure, the presence of Mn

introduces some major differences compared to the ZB arrangement. These differences

arise from an internal crystal field within ZnS, resulting from slightly elongated bond

lengths along the z-axis in the WZ structure. This additional crystal field affects
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both the energy levels of ZnS and the d-levels of Mn. In the WZ case, VBM is no

-3.056 eV-3.056 eV-2.88 eV-2.334 eV -2.37 eV -2.37 eV0.83eV

-2.88 eV0.34 eV0.34 eV0.531 eV0.83 eV 0.47 eV 0.47 eV

(a) Spin-up

(b) Spin-down

Wurtzite

Figure 6.12: Wavefunction squared (in red) plots with 75% state density for SP levels
around the gap in bulk WZ ZnS with a single Mn impurity: (a) spin-up and (b)
spin-down states. These states correspond to the levels plotted in Fig. 6.11(b) after
spin-polarized calculations and gap correction. Each state’s corresponding energy value
is marked with the same color as its data point in Fig. 6.11(b), indicating the specific
state to which the wavefunction plot belongs.

longer triply degenerate for both spin channels due to the internal crystal field of the

WZ structure. While the e channel (in green color) remains doubly degenerate, the t2

channel splits into double degenerate states e ( magenta circles) and a singly degenerate

state (purple circle). The crystal field splitting between both e-states is similar to the

ZB counterpart’s 739 meV for the spin-up channel. Similarly in the spin-down, the t2

states of ZB split into double degenerate states e and singly degenerate state a in the

case of WZ structure. Here, the crystal field splitting between the two e state channel

is slightly lower than the ZB’s 397 meV likely as a result of stronger hybridization in

the ZB structure. Figure 6.12 presents the squared wavefunctions corresponding to the

electronic states identified in Figure 6.11(b). Each state’s energy value (obtained from

Figure 6.11(b)) is matched to its corresponding wavefunction plot by using the same

color. This color-coding scheme allows for easy identification of the state associated

with each wavefunction. As expected, the host ZnS VBM and CBM) states (labeled
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in orange and blue, respectively) are delocalized throughout the entire structure. In

contrast, the Mn d-states show strong localization around the Mn atom, highlighting

the deep defect nature of Mn in ZnS.

In summary, we have derived a defect/impurity AEPs to calculate the electronic

structure of Mn impurity in ZnS using both ZB and WZ crystal structures. Our

comparison of single particle results shows that derived defect AEPs provide good

agreement with the DFT calculations. Our calculations highlight that the relaxation

around the Mn impurity increases the band gap and just relaxing the Mn-4S fragment is

a good approximation to reduce the computational cost for larger supercell calculations.

Furthermore, applying our gap correction method placed the Mn defect states within

the band gap, which was not achievable with the uncorrected AEPs (LDA level). These

corrected energy levels make the way for future calculations using windowed screening

CI to explore the many-body multiplets associated with the Mn impurity.



Summary and Outlook

This thesis is aimed at the understanding of excitonic and vibrational properties in var-

ious nanostructures through ab initio and empirical methods. This study has revealed

several key findings across different nanostructures, emphasizing the impact of surface

effects, alloying, and impurity incorporation on their optical and electronic properties.

Based on state-of-the-art ab initio DFT, we have calculated the Raman spectra of

CdSe nanoclusters and QDs with various realistic surface passivations. Based on our

results, we identify an intense Raman signal at approximately 230 cm−1, corresponding

precisely to the frequency where the debated HFS is experimentally measured. This sig-

nal corresponds to the stretching vibration of a defective twofold coordinated Se atom.

The Se defect atom is bonded to two inequivalent Cd atoms, one being threefold and the

other fourfold coordinated. We note that that the inequivalence of the two bonds re-

sults in an asymmetric geometry and a highly intense Raman signal. The arrangement

and type of L-type ligands (TOPO or MA) affect this inequivalence, thereby affecting

the intensity of the signal. However, the signal persists with significant intensity in

all scenarios. To compare with experimental observations, which reported the disap-

pearance of the HFS after the growth of a protective shell, we constructed a core/shell

structure and observed the same phenomenon. Accordingly, the signal disappears in

defect-free (magic size cluster) structures, making it a fingerprint for identifying defec-

tive versus non-defective structures. More generally, we observe that the Raman signal

in the optical vibrational region is activated when realistic, partly reconstructed, L-

type ligand-protected surfaces are considered. In contrast, QDs modeled with idealized

passivation, and thus higher symmetry, exhibit comparatively weaker Raman signals

in this spectral region.

Using a fully atomistic single-particle EPM in combination with CI, the exciton

fine structure of alloyed Zn1−xCdxSe QDs and core-shell structures where a CdS rod

is grown on top of these QDs is calculated. Our calculations of single-particle results

have shown a strong bowing of the band gap of Zn1−xCdxSe, observed both in bulk and
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in various QDs sizes. We have established that the strain induced by lattice mismatch

in alloys leads to crystal field splitting of single-particle levels which varies with the

concentration of the alloy. In alloyed QDs, the lowest e−h pair (without the Coulomb

and exchange interaction) is no longer eightfold degenerate as in pure QDs. This is

a consequence of crystal-field splitting in two highest occupied single-particle levels

h0 and h1. This results in qualitatively different excitonic fine structure for alloyed

QDs compared to the pure QDs. In pure dots, the lowest exciton is split in fivefold

degenerate dark and threefold degenerate bright state. In contrast, for alloyed QDs, the

lowest exciton splits into two crystal-field split manifolds, each containing four states

(4x and 4x). These manifolds experience further splitting due to exchange interaction

and these splittings vary strongly with alloy concentration. Based on these splittings,

we propose an explanation for the multi-exponential PL decay observed in experiments

for alloyed QDs and alloyed dot-in-rod structures.

In order to improve the key properties of LDA-derived AEP, which can calculate the

electronic structure of up to 50,000 atoms, we have developed an empirical correction.

The empirical correction modifies the non-local part of the pseudopotential within

the atomic core region and can improve the band gaps, and effective masses. With our

correction, a good agreement with experimental and theoretical results for optical band

gaps, intraband splitting, Coulomb integrals, and excitonic fine structures in QDs is

achieved. We have offered a straightforward way to determine accurate quasiparticle

and optical band gaps for InP, CdSe, and GaAs QDs from standard LDA calculations.

Based on defect/impurity AEPs and the empirical correction, the electronic structure

of Mn impurities in ZnS for both ZB and WZ crystal structures is calculated. We

have first shown that the defect/impurity AEPs are in a good agreement with DFT

calculations. We have highlighted that the atomic relaxation around the Mn impurity

increases the band gap, and can be approximated by relaxation of the Mn-4S fragment

to reduce the computational costs.

As an outlook, our fine-structure calculations form the foundation for further inves-

tigations into excitonic lifetimes and radiative recombination processes in alloyed dots,

with potential research extensions into biexciton and trion dynamics. Additionally,

our gap-corrected defect AEP enables future many-body multiplet calculations using

windowed screening CI.



Appendix

Cd45Se45\CdS-PH core-shell spectra

CdSe
 

Optical region

CdS

A.1: Calculated Raman spectra of Cd45Se45\CdS-PH core-shell showing the optical
regions for both CdSe core and CdS shell.

Supercell size convergence for Mn in ZB ZnS

Fig. A. 2 investigates the convergence of SP energies for Mn in ZB ZnS supercell w.r.t.

supercell size. We consider supercells with dimensions of 2x2x2, 4x4x4, 6x6x6, and

8x8x8, representing repetitions of the bulk unit cell along all three axes. The Mn atom

is positioned near the center of each supercell. For clarity, the figure presents the spin-

up energy states for all supercell sizes plotted together. Likewise, the spin-down states

are plotted together. States close to band gap are plotted only. Individual energy
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levels corresponding to each supercell size are distinguished using the same marker

style. Convergence is assessed by analyzing the change in energy levels as the supercell

dimensions are expanded. We analyze the states in order of decreasing energy. We

begin by analyzing the spin-up energy states for Mn in ZB ZnS supercells of varying

sizes. The CBM energy for the 2x2x2 supercell (0.810 eV) exhibits a slight upward

shift of 32 meV when the size is increased to 4x4x4. Further increase to 6x6x6 results

in a significant decrease of 139 meV, with a further 1 meV decrease observed for the

8x8x8 supercell. This trend suggests a convergence of the CBM energy between 6x6x6

and 8x8x8 supercells. The next state in decreasing order is triply degenerate states

(Magenta, Orange, Green) and show a change of 47 meV from 2x2x2 to 4x4x4, followed

by a further change of 51 and 55 meV for 6x6x6 and 8x8x8 supercells, respectively. This

indicates convergence between 6x6x6 and 8x8x8. Next, we have triply degenerate VBM

states which show a larger change of 147 meV from 2x2x2 to 4x4x4. However, they

converge between 6x6x6 and 8x8x8 with a change of only 50 meV for both sizes. he

further lower doubly degenerate states (Blue, Pink) show a significant energy shift from

2x2x2 to 6x6x6, followed by a smaller change of 20 meV upon further increase to 8x8x8.

Similar convergence trends are observed for spin-down states. The CBM energy has a

larger shift of 127 meV from 2x2x2 to 6x6x6 and converges at 8x8x8 with a negligible
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A.2: SP energy levels convergence w.r.t. supercell of bulk ZnS with single Mn impurity.
Results are presented after the gap-correction of the ZnS host.
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change of less than 1 meV. Likewise, the triply degenerate and doubly degenerate states

show larger initial changes from 2x2x2 to 6x6x6 and minimal changes (around 2 meV)

for the 8x8x8 supercell. The triply degenerate VBM state also exhibits a significant

change from 2x2x2 to 6x6x6 and converges for the 8x8x8 supercell with a change of less

than 1 meV. Considering the minimal energy change observed for energy states when

increasing the supercell size from 6x6x6 to 8x8x8, a 6x6x6 supercell appears sufficient

for obtaining reasonable results.
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