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Abstract

Today, most applications are distributed to manage the growing volume of data
and processes. Simultaneously, the need for low latency, bandwidth efficiency,
and privacy has driven the deployment of distributed applications to the
network edge. However, the edge poses unique challenges, including widely
distributed, heterogeneous, uncontrolled, and untrusted environments.

Accordingly, this monographic thesis presents contributions to simplify the
development and deployment of distributed applications at the network edge.

The first contribution addresses the challenges of restricted connectivity
in edge networks and the risk of edge device communication in untrusted
networks to eavesdropping or forgery. Therefore, this contribution presents
an approach for the efficient and secure linking of edge devices. Hence, this
thesis introduces a new protocol that efficiently overcomes these connectivity
restrictions and simultaneously establishes secure communication channels.

The second contribution simplifies the integration of dynamic overlay net-
works into edge applications. Previous work often restricts the application
design or makes strong assumptions about the underlying network infrastruc-
ture. Therefore, this thesis introduces a new application programming interface
for overlay network integration into edge applications. The approach estab-
lishes an IP overlay that can be adapted by any IP-based application without
modification. Overlay services like routing, forwarding, quality of service, or
security are dynamically defined and transparently applied to selected appli-
cation communications. Such overlay services help applications in maximizing
edge resource usage.

The third contribution simplifies the deployment of edge applications. Lack
of central control, restricted reachability, and heterogeneous edge devices
complicate deployment in edge environments. The approach brings capabili-
ties known from software-defined networking, such as centralized network
view and control, a common interface for edge device configuration, network
configuration based on high-level functional requirements, and a closed-loop
mechanism identifying and reverting unintended network changes to the edge.

All contributions have been combined into a fully functional open-source
middleware, which was also evaluated in real-world experiments to demon-
strate their seamless integration and functional characteristics.
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Kurzfassung

Viele Anwendungen sind verteilt, um das wachsende Daten- und Prozessvolu-
men zu bewältigen. Niedrige Latenzzeiten, eine effiziente Bandbreitennutzung
und ein verbesserter Datenschutz führen dazu, dass verteilte Anwendungen
näher an die Datenquelle, an den so genannten „Rand“ des Netzwerks, verla-
gert werden. Dieses Anwendungsmodell bringt Herausforderungen aufgrund
unkontrollierter, heterogener und unsicherer Netzwerke mit sich.

Daher stellt diese Arbeit Beiträge vor, die die Entwicklung und Bereitstellung
verteilter Anwendungen am Netzwerkrand vereinfachen.

Im ersten Beitrag wird ein Ansatz zur effizienten und sicheren Vernetzung
von Edge-Geräten vorgestellt. Er behandelt die Herausforderungen der einge-
schränkten Konnektivität in Edge-Netzwerken und das Risiko von Abhör- oder
Manipulationsversuchen in unsicheren Netzwerken. Es wird ein neues Netz-
werkprotokoll vorgestellt, das diese Einschränkungen effizient überwindet
und gleichzeitig eine sichere Kommunikation ermöglicht.

Im zweiten Beitrag wird ein Ansatz zur einfachen Integration von Overlay-
Netzwerken in Edge-Anwendungen vorgestellt. Dies ist relevant, da existie-
rende Arbeiten oft das Anwendungsdesign einschränken oder strenge Annah-
men über die zugrundeliegende Netzwerkinfrastruktur treffen. Daher wird
eine neue API zur flexiblen Integration von Overlay-Netzwerken in Edge-
Anwendungen vorgestellt. Der Ansatz konstruiert ein IP-Overlay und erlaubt
so die Benutzung durch jede IP-basierte Anwendung ohne Anpassung. Trans-
parent für die Anwendung werden dabei dynamisch Overlay-Dienste wie z.B.
Routing, QoS und Sicherheit auf ausgewählte Kommunikation angewendet.

Der dritte Beitrag stellt einen Ansatz für die vereinfachte Bereitstellung von
Anwendungen im Edge-Bereich vor. Fehlende zentrale Kontrolle sowie hetero-
gene und schwer zu erreichende Edge-Geräte stellen eine Herausforderung für
die Bereitstellung dar. Der vorgestellte Ansatz erleichtert dies durch zentrale
Kontrolle, eine einheitliches Konfigurationsinterface, Ziel-basierte Netzkonfi-
guration und einer Closed-Loop-Kontrolle zur automatischen Erkennung und
Reparatur von unbeabsichtigten Netzveränderungen, angewendet werden.

Diese Beiträge wurden in eine voll funktionswähige Open-Source-Middle-
ware integriert und durch mehrere Echtwelt-Experimente auf ihr Zusammen-
spiel und Funktionalität hin evaluiert.
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1
Introduction

1.1 motivation and problem statement

Most modern applications are designed to be distributed in order to handle the
ever-increasing volume of data and processes of a progressively digital world.
Distributed applications provide a level of scalability and availability that
is unattainable for centralized applications. The development of distributed
applications requires, however, careful consideration to aspects such as com-
munication, coordination, consistency, replication, fault tolerance, and security
[ST23]. The common denominator among all these aspects is the goal of maxi-
mizing the utilization of available computing resources.

While distributed applications in cloud environments benefit from access to
a virtually unlimited pool of well-defined and highly configurable resources
within a common infrastructure, edge computing applications often operate in
untrusted environments. This kind of environment presents unique challenges
for resourcemanagement due to its heterogeneous, uncontrolled, andunknown
infrastructure [Ren+19; Mao+17]. Despite these challenges, the applications’
need for low latency, high bandwidth efficiency, and privacymakes it necessary
to run applications in edge environments instead.

One way of dealing with these challenges is the use of the overlay network
technique. Overlay networks can help to manage edge devices by adding a
logical layer between the network and the application layer. An overlay network
provides services to an application layer without requiring changes to the
underlay, thereby granting an idealized view and access over the edge. Despite
its effectiveness in optimizing resource management, the development and
deployment process of overlay networks at the edge presents several major
problems:

problem 1: restricted connectivity and lack of trust in edge
networks Edge devices are typically distributed across different networks.
While connectivity within individual networks is usually unrestricted, it is
often limited between different networks. Restrictions stem from incompatible
network configurations and middleboxes (e.g., NATs and firewalls) that route
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2 introduction

communication between these networks. Additionally, edge devices are often
operated in untrusted networks, introducing the risk that transmitted data may
be intercepted ormanipulated. Therefore, overcoming connectivity barriers and
implementing security services are essential for constructing overlay networks
that span edge devices efficiently and securely.

problem 2: inflexible overlay network integration into ap-
plications Integrating an overlay network into an application is a pre-
requisite for accessing the overlay’s services. However, this integration can be
complex, potentially introducing constraints on the application’s design and
functionality. Often, developers must adhere to a specific paradigm or build
their application using a particular framework, which may not align with the
application’s original design goals [STS08; Rod+04; BP12; BL18; Lig09]. In
addition, the services that an overlay can provide must be as versatile in their
functionality as the application that uses the overlay.Many overlay network sys-
tems are inflexible in terms of overlay service selection. As a result, efficiently
utilizing edge resources is difficult without the ability to select available or
implement custom overlay services to help deal with edge constraints and het-
erogeneity. Therefore, the seamless integration of flexible overlay networks into
the application is essential to assist developers in meeting their requirements.

problem 3: complex application deployment to the edge De-
ploying distributed applications at the network edge introduces significant
complexity due to the heterogeneity of devices and restrictive network condi-
tions, making it challenging to access and manage these devices efficiently. The
lack of central control makes it difficult to achieve consistent and coordinated
actions across all edge devices hosting an application. Developers are required
to identify low-level configuration steps for individual edge devices necessary
to achieve the desired application development. After identifying these steps,
these configurations must be applied on the edge devices. This process is com-
plex and prone to errors. Therefore, application developers would benefit from
a simplified edge deployment and a goal-oriented overlay networking, based
on high-level functional requirements.

1.2 research questions

The problems outlined in the previous section highlight the need for advanced
resource management and more flexibility in programming, deploying, and
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operating overlay networks in untrusted edge environments. To address these
problems, we1 propose a new terminology called software-defined overlay net- 1 For better readability, the author refers to him-

self aswe in the remainder of this thesis. Contri-
butions are explicitly credited when resulting
from collaborative efforts.

working. This new terminology reflects the thesis’ incorporation of the advanced
network management capabilities of software-defined networking (SDN) with
the flexibility of overlay networks, allowing operation without altering the
underlying network infrastructure. SDN is a paradigm where networks are au-
tomatically configured based on intents (high-level functional requirements),
which are automatically translated to policies configuring network devices
[Kre+15; Ope24; Cle+22; LF23]. SDN systems provide automatic network
device configuration and ensure that the network is kept in the desired state in
response to changes in available underlying resources. By collecting analytics
and distilled insights, every unintended network change is tracked, potentially
triggering automatic reconfiguration of the network devices. Further, an SDN
system provides application programming interfaces (APIs) that enable cen-
tralized control of the network through a unified interface and configuration
language. In this thesis, these SDN principles are applied to run overlay net-
works in edge networks, allowing similar network management capabilities at
the edgewithout the need to reconfigure the underlying network infrastructure
(Figure 1.1). This helps running distributed applications in untrusted edge en-
vironments, as constructed overlay networks provide an idealized view of the
underlying network that matches the applications’ needs. While providing the
applicationwith an idealized environment to run, the software-defined overlay
networking system transparently provides means to cope with restricted com-
munication and untrusted edge environments (Problem 1) as well as seamless
overlay network integration and customization (Problem 2). Further, the API
offers centralized control over the overlay network and simplified application
deployment to the edge (Problem 3).

Software-defined overlay
networking system

Application developer

intents

Edge devices

configures

Overlay network

establishes

Figure 1.1: Software-defined overlay net-
working.

In this context, the following research questions and their corresponding sub-
research questions are considered:

▶ rq 1 How to overcome the connectivity restrictions and lack of trust in edge
networks efficiently?

rq 1.1 How to achieve connectivity between edge devices effi-
ciently?

rq 1.2 How to ensure that edge devices are linked securely?
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▶ rq 2 How to seamlessly integrate dynamic overlay networks into edge applica-
tions?

rq 2.1 How to integrate overlay networks into applicationswithout
imposing restrictions on application design and functionality?

rq 2.2 How to improve the use of heterogeneous edge resources
through dynamic overlay networks?

▶ rq 3 How to simplify efficient overlay network programming and deployment at
the network edge?

rq 3.1 How to program overlay networks that assist application
developers to use edge resources efficiently?

rq 3.2 How to simplify overlay network deployment and manage-
ment at the network edge?

1.3 contributions

This thesis answers the research questions regarding flexible overlay network
development, deployment, and operation in untrusted edge environments.
This section briefly overviews the thesis’s contributions and explains their
relevance to the research questions.

Physical network

Routing, forwarding, rendezvous, 
discovery

Security and resource management, 
reliability, fault tolerance

Services management

Applications, services, tools

Figure 1.2: Layers common to all overlay
networks [Tar10].

This thesis presents three contributions, each advancing towards software-
defined overlay networking at the edge. These contributions build upon one
another. From bottom to top, the contributions loosely correspond to the three
layers common to all overlay networks (see Figure 1.2) [Tar10]. Figure 1.3
summarizes the contributions and illustrates how they are related. The system
described by these contributions has been fully implemented as a functional
middleware. It is released as open-source software under a permissive license
[BR23].
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contribution 1: efficient and secure edge device linking
This contribution presents an approach for the efficient and secure linking
of edge devices. This contribution addresses two problems present in edge
computing: First, edge devices are often distributed across different networks,
with connectivity between these networks being restricted. This restriction is
caused by incompatible network configurations or middleboxes (e.g., NATs
and firewalls) that route communication between the networks. Second, edge
devices are often operated in untrusted networks, making any communication
between these devices vulnerable to eavesdropping or forgery.

A new network protocol is proposed to address these two issues and answer
research question rq 1. It enables edge devices to link efficiently and securely
with each other. This is achieved by combining middlebox traversal techniques,
hole punching, and relaying with a Diffie-Hellman key agreement [BRK21;
BRF23a]. This results in the protocol saving 1 to 2 RTTs compared to other
approaches.

contribution 2: seamless dynamic overlay network integra-
tion The second contribution presents an approach for simplifying the
integration of dynamic overlay networks into edge applications without im-
posing restrictions on the application’s design or functionality. This is relevant
because existing overlay network approaches often need the application to be
adapted to a specific overlay network implementation or impose restrictions
on the application design [STS08; Rod+04; BP12; BL18; Lig09]. In addition,
offloading application functionalities to the overlay would ease application
development, but can be difficult to achieve. This is especially relevant for edge
computing, where the overlay can help maximize edge resource usage.

To answer rq 2, we introduce a new API for seamless dynamic overlay
network integration into applications that help to utilize edge resources effi-
ciently [Bor+23; Röb+23]. The proposed API establishes an IP overlay that
transparently applies overlay services. While the edge application components
communicate using regular IP packets, the overlay processes the packets ac-
cording to configured services. Such services include routing, forwarding,
quality of service (QoS), communication encryption, and other mechanisms
that help improve the use of unreliable and heterogeneous edge resources.
Therefore, this API allows a seamless integration of dynamic overlay networks
into all IP-based applications.

contribution 3: simplified overlay network deployment at
the edge Finally, this contribution presents an approach for simplified
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development and deployment of distributed applications running in restricted
edge networks. Deploying edge applications is inherently complex and error-
prone due to the absence of centralized control and the heterogeneity and
restrictions of edge devices.

To address rq 3, this contribution presents an overlay networking system
that adapts principles of software-defined networking to overlay networking at
restricted edge networks [Bor+25]. Software-defined networking capabilities
such as centralized control, a common interface for edge device configura-
tion, network configuration based on high-level functional requirements, and
a closed-loop mechanism to help identify and revert unintended network
changes are brought to the edge through this contribution.

1.4 outline

Table 1.1 provides an overview of this thesis, focusing on the research questions,
contributions, and publications released within the scope of this thesis. This
thesis is structured as follows:

Chapter 2 provides the required background for this thesis on the terms of
software-defined networking, intent-based networking, overlay networks,
NAT and TLS fundamentals.

Chapter 3 derives requirements for a software-defined overlay networking
system.

Chapter 4 discusses and compares relatedworkwith requirements identified
in the previous chapter.

Chapter 5 presents an architecture of a software-defined overlay networking
system.

Chapter 6 presents the implementation of a software-defined overlay net-
working middleware.

Chapter 7 evaluates the implemented prototype by conducting simulations
and real-world experiments, showing that the system requirements are
fulfilled.

Chapter 8 concludes this thesis by summarizing the contributions and pro-
viding an outlook to future work in the area of software-defined overlay
networking.
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Table 1.1: The outline of the thesis. Section Research question Contribution Publications

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Requirements analysis

Chapter 4: Related work

Chapter 5: Architecture

Section 5.3 rq 1 Contribution 1 [BRK21; BRF23a]

Section 5.4 rq 2 Contribution 2 [Bor+23; Röb+23]

Section 5.5 rq 3 Contribution 3 [Bor+25]

Chapter 6: Implementation

Chapter 7: Evaluation

Chapter 8: Conclusion

1.5 publications

Our publications that are within the context of this thesis were peer-reviewed
and published. Additionally, open-source software implementations were
released to encourage further research in these areas. The appendix also in-
cludes a list of additional publications to which the author contributed (see
Appendix a.1) and student theses supervised by the author (see Appendix a.2).

1.5.1 Main publications

[Bor+25] Heiko Bornholdt, Kevin Röbert, Stefan Schulte, Janick Edinger,
and Mathias Fischer. “A Software-Defined Overlay Networking
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2
Background

This chapter presents the nomenclature and methodological background necessary for
the remainder of this thesis. The chapter is organized into the following sections:

• Section 2.1 covers software-defined networking, which enables dynamic and pro-
grammable network configuration, forming the inspiration for software-defined
overlay networking which applies this principles to overlay network program-
ming.

• Section 2.2 introduces intent-based networking, where some concepts of which
are applied to software-defined overlay networking.

• Section 2.3 explains overlay networks, highlighting their ability to abstract from
underlying limitations, a key aspect of the approach in this work.

• Section 2.4 discusses network address translation, which complicate overlay
network construction on the Internet by rendering many hosts unroutable, thus
necessitating traversal techniques and careful assessment of host constrains.

• Section 2.5 provides an overview of the Transport Layer Security protocol, es-
sential for securing communication between overlay nodes in untrusted envi-
ronments.

• Section 2.6 introduces the Tasklet computation-offloading system.

• Section 2.7 summarizes this chapter.

2.1 software-defined networking

Software-defined networking (SDN) is a network architecture that enables
dynamic, centralized, and programmatically efficient network management
by decoupling the control plane from the data plane. Traditionally, network
operators were constrained by proprietary software from vendors like Cisco
and Juniper, which required manual setups and provided limited flexibility.
SDN was developed to overcome these limitations by providing standardized
interfaces like OpenFlow, allowing network configuration independent of the

11
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vendor [TFW21]. In traditional networks, both planes are tightly integrated
within the same network devices, which makes network management complex
and static. In contrast, SDN separates these two planes:

• The control plane is responsible for the logic that determines traffic routing,
such as selecting paths and managing network policies.

• The data plane consists of hardware (e.g., switches and routers) that
forwards packets based on instructions from the control plane.

By moving the control plane into centralized controllers, SDN enables uni-
form configuration and management across heterogeneous network devices,
regardless of vendor. Instead of manually configuring individual devices, SDN
controllers automate network policies and configurations via standardized
application programming interfaces (APIs). This centralization simplifies net-
work management, enhances flexibility, and allows for real-time reconfigura-
tions based on traffic patterns or policies.

Figure 2.1: SDN-controlled switches in
the data plane are configured by an
SDN controller, which implements the
network-control applications’ configura-
tions from the control plane [Fis22].

data
plane

control
plane

SDN Controller
(network operating system)

…routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Figure 2.1 illustrates the architecture of a typical SDN system. At the bottom,
SDN-enabled switches are configured by the control plane of an SDN controller.
These switches are controlled through a southbound API using protocols such
as OpenFlow. The SDN controller centralizes control logic and interacts with
network control applications through a northbound API. At the top, network-
control applications implement control functions using services and APIs
provided by the SDN controller, enabling a flexible and unbundled network
control ecosystem. [Fis22].
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After discussing SDN and its capabilities for dynamic network configuration,
intent-based networking (IBN) is explored. IBN further automates network
management, therefore helping reduce manual intervention and minimizing
configuration errors.

2.2 intent-based networking

Intent-based networking (IBN) builds upon the foundation of SDN (Sec-
tion 2.1) to simplify network management and configuration through automa-
tion and abstraction [LF23].While SDN centralizes control and allows dynamic
network provisioning via a common API, it still requires manual policy def-
inition and oversight [Doy22]. In contrast, IBN introduces a higher level of
abstraction by allowing network operators to define “intents” as declarative,
high-level goals describing the desired network behavior [Cle+22]. This omits
the necessity to identify the individual configuration steps required to achieve
the goal, which is a complex and error-prone task. Intents can be stated in natu-
ral language, such as a network operator specifying, “ensure all traffic between
finance department is encrypted and prioritized over other internal traffic dur-
ing business hours.” or a developer requesting, “Ensure my video streaming
application maintains a minimum bandwidth of 5Mbit/s for a smooth user
experience”. An IBN system automatically translates intents into configura-
tions and applies them to the network devices. Additionally, a closed-loop
mechanism is integrated into the IBN system to continuously monitor the
network, ensuring compliance and making real-time adjustments in response
to unintended network changes [LF23].

A typical IBN system as shown in Figure 2.2 includes the following five
components [LF23]:

• Intent profiling: This component processes and interprets the user’s
high-level intents, expressed in natural language, to define the desired
outcome. Further, it checks if all intents can be translated into network
configuration.

• Intent translation: This component translates the high-level intents into
low-level network policies that can be applied to specific network devices.
In this step, each network device’s individual capabilities are considered.

• Intent resolution: This component checks for conflicts or incompatibil-
ities between new and existing intents and attempts to resolve them
automatically. It detects possible interference or unwanted side effects
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Figure 2.2: Interaction of main compo-
nent of an intent-based networking sys-
tem [LF23].

between intents. If automatic resolution is not possible, the user gets
notified.

• Intent activation: This component deploys the network configuration
based on the translated intent to the relevant devices.

Intent assurance: This component ensures the network continues to
behave as desired after deployment. It continuously monitors the net-
work for unwanted changes and tries to correct any deviations from the
intended configuration automatically.

In summary, IBN is built upon the foundational concepts of SDN. Further
automation of network management is achieved through high-level intent
declarations. Manual effort is reduced, and continuous alignment between
network configurations and desired outcomes is ensured. The increasing com-
plexity of networks is addressed through the principles of overlay networks.
As a result, the overlay network provides an abstracted, idealized view while
also maintaining control over the underlying infrastructure.

2.3 overlay networks

Overlay networks are virtual networks built on top of existing ones. They
provide their own addressing, routing, and service models while leveraging
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the existing infrastructure. This virtualization layer enhances functionalities
by optimizing traffic, bypassing limitations, improving scalability and security,
and facilitating complex distributed applications while also providing better
resilience and specialized data handling [Toy21]. As overlay networks do not
require changes to the underlying network infrastructure, this technology
is particularly useful for deploying new technologies or protocols like P2P
systems, content delivery networks, or virtual private networks [Tar10].

An example of a simple overlay network is depicted in Figure 2.3. In this
ring-shaped overlay, each node represents a user’s machine participating in
a distributed file-sharing system. Communication between two nodes over
a virtual link 𝑒 involves transmitting messages through multiple underlying
network links, denoted as 𝑒1, … , 𝑒4. This underlying routing complexity is
abstracted from the overlay’s perspective. Overlay network topologies can
optimize the efficiency of distributed algorithms, such as distributed search or
data distribution [Sch10].

Underlay 
network

Overlay 
network

𝑒

𝑒! 𝑒"

𝑒#
𝑒$

Figure 2.3: Example overlay network
built on top of an Internet-style under-
lay [Sch10].

Depending on the requirements, different types of overlay network struc-
tures are utilized, categorized into unstructured, structured, and hybrid types,
each with its own advantages and trade-offs [ST23]. Unstructured overlay
networks offer high flexibility and expressiveness but face challenges with
efficiency and consistency. Structured overlay networks’ advantages include
efficient and deterministic data access due to their well-defined topologies,
although they come with increased complexity. Hybrid overlay networks com-
bine features from both unstructured and structured approaches, aiming to
balance flexibility and efficiency.

unstructured overlay networks Unstructured overlay networks
consist of nodes connected randomly, resulting in a non-deterministic struc-
ture. In unstructured overlays, maintaining the topology is simpler and more
lightweight because nodes are not required to adhere to a rigid structure.
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This flexibility makes the network more resilient to high node churn, as new
nodes can join or leave without disrupting the overall connectivity or requiring
complex reconfigurations. However, without a controlled structure, no assump-
tions must be made about effectively implementing distributed searches in
such networks, as finding specific data is not guaranteed. Figure 2.4 illustrates
an example of an unstructured overlay, with the P2P file-sharing application
Gnutella serving as a practical example of its use. Each dot represents a virtual
node and the rounded boxes correspond to data itemswith their respective keys.
In Gnutella versions before 0.6 [Gnu03], search requests propagate through
the network as nodes forward them to all their neighbors until a maximum
of seven hops is reached [Cha+03; RF02]. This flooding can cause scalability
issues due to the high traffic generated by search propagation, which at times
reportedly accounted for a significant fraction of global Internet traffic [MIF02].
To increase the likelihood of finding the desired data item, it must be replicated
to multiple nodes.

Figure 2.4: Example for an unstructured
overlay network, as constructed by early
version of Gnutella [Sch10].
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structured overlay networks Structured overlay networks have
defined topologies and algorithmic methods to organize and maintain node
connections. They exhibit strict coordination, as nodes must follow specific
rules for joining and leaving, resulting in higher management complexity. The
deterministic nature of these networks ensures predictable routing paths, en-
abling efficient data localization and retrieval. In such overlays, management
is distributed and employs protocols like DHTs to maintain order. The struc-
tured design ensures high consistency, allowing reliable data replication and



2.3 overlay networks 17

availability. These networks are usually hierarchical or grid-like, promoting
completeness by systematically storing and retrieving data. Although struc-
tured overlay networks may limit expressiveness compared to unstructured
systems, they excel in efficient and scalable query processing, making them
ideal for applications that require reliable data access and distribution. The
previous overlay network shown in Figure 2.3 is structured. However, the
ring topology is impractical because it does not efficiently handle network
dynamics and may lead to high latency and limited fault tolerance. A more re-
alistic example of a structured overlay network is provided in Figure 2.6 which
is generated by Chord [Sto+03]. While the nodes and data were randomly
arranged in Figure 2.4, there is a strict sorting here. The lookup complexity
for the Chord protocol is 𝑂(log𝑁), where 𝑁 is the number of nodes in the
network. This logarithmic complexity is highly efficient, especially compared
to unstructured or randomized overlay networks, where lookup operations
often require traversing a significant portion of the network, leading to an
expected complexity of 𝑂(𝑁) in the worst case (see Figure 2.5).
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Figure 2.5: Comparison of 𝑂(𝑁) and
𝑂(log𝑁) complexity.
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Figure 2.6: Example for a structured over-
lay network using a DHT, as generated
by Chord [Sch10].

hybrid overlay networks Hybrid overlay networks feature moderate
coupling, with some nodes functioning as super nodes or central coordina-
tors while others operate more freely. The complexity and management of
hybrid systems are higher than those of unstructured networks but lower than
those of fully structured ones. These networks offer a mix of deterministic and
non-deterministic features, with structured elements ensuring reliable data
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access and unstructured aspects providing greater flexibility. Completeness
is generally high due to organized data management, while expressiveness
remains flexible, supporting varied query types. Hybrid overlay networks
are versatile, optimizing resource discovery and scalability while maintaining
robustness and adaptability. BitTorrent’s file sharing protocol employs hybrid
overlay networks, where centralized servers, known as trackers, provide a di-
rectory service by maintaining an index of available files and the peers sharing
them. However, the actual file transfers occur in a decentralized, P2P manner,
allowing peers to directly exchange data without relying on the centralized
server for the transfer itself. An example of such an overlay network is shown
in Figure 2.7, where the nodes 12, 24, 20 and 44 act as super peers.

Figure 2.7: Example for a hybrid overlay
network. Hierarchical topology using su-
per peers each serving a subset of leaf
peers. [GG09]

221.4.235.19

71.25.169.89

124.34.58.114

72.124.34.122
99.227.149.223.13.225.225

112.34.2.156

134.156.245.76

136.4.165.120

136.199.51.120

78.23.123.252

112.34.2.156

96.34.234.23

154.34.78.234

128.169.25.56 154.125.89.4

3

23
7

13
11

7

7

23

13
11
3

25
3

1144

48 52

36

20

4

32

8

60

28

4016

24

12

0

56

After discussing the various types of overlay networks, it is important to con-
sider the practical challenges they face in real-world deployment. One signifi-
cant challenge is the presence of NAT, which can hinder direct communication
between peers. This limitation prevents the overlay topology from being fully
realized, as nodes may be unable to establish direct connections, requiring
additional mechanisms to maintain network functionality.

2.4 network address translation

NAT is a method of mapping IP address spaces from one to another, facilitat-
ing transparent routing between private networks, as defined in [Mos+96],
and external networks by modifying network address information in packet
headers [HS99]. NAT is often deployed on middleboxes like Internet gateways
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and firewalls. A middlebox is an intermediary network device that performs
functions beyond the standard operations of an IP router [BC02].

Depending on whether the sender, receiver or both IP address information
is translated, NAT is classified into source, destination, or bidirectional NAT.
Source NAT translates the sender IP addresses, which is used when a private
host needs to access the Internet. Accordingly, destination NAT translates the
receiver addresses, which is used when an Internet host needs to access private
services. Finally, bidirectional NAT combines source and destination NAT,
allowing both Internet and private hosts to access private services.

Initially, NAT translated only network address information on the IP header.
Later, network address/port translation (NAPT) was introduced [ES01], trans-
lating also transport identifiers (such as a TCP/UDP port numbers or ICMP
query ids). [Qia24].

Today, the most common NAT deployed on the Internet is the source NAPT.
This kind of NAT is typically applied on residential network routers, corporate
network firewalls, or mobile carrier networks [Per+13]. Source translation
helps mitigate the exhaustion problem of IPv4 addresses as multiple private
hosts can be mapped to a single public IP address [ICA11]. Further, access
from the Internet to a private network is restricted which is a security benefit.
Today, when referring to “NAT” in the literature, it usually means source
NAPT. Therefore, unless otherwise stated, this thesis always refers to this kind
of translator when the term “NAT” is used.

Client:
192.168.0.20

Server:
5.5.5.5

NAT

Src: 192.168.0.20:1025 Src: 2.2.2.2:1234

Session table
MappingEndpoint

2.2.2.2:1234192.168.0.20:1025

Dst: 5.5.5.5:80 Dst: 5.5.5.5:80

Figure 2.8: Flow of source NAPT. The
outgoing packet’s source information
with the client’s address is replaced with
mapped address information of the NAT
device.

Figure 2.8 shows an example flow of an outgoing packet sent from client end-
point 192.168.0.20:1025 in a private network to a server endpoint 5.5.5.5:80
on the Internet, where the NAT device transparently replaces the client’s end-
point information with its own mapped endpoint 2.2.2.2:1234 (an endpoint
refers to an IP address and port number). The mapping is stored in the NAT
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device’s session table, which routes corresponding inbound packets back to
the client.

2.4.1 NAT classification

The method by which the NAT device populates its session table, specifically
when a new mapping is created or an existing one is reused, and which incom-
ing packets aremapped to a client, depends on theNAT type. Traditionally, four
NAT types are distinguished, whose different implementations are displayed
in Figure 2.9 and are described now [Ros+03]:

2.4.1.1 Traditional NAT types

full-cone nat All requests originating from the same private endpoint
are mapped to the same public endpoint. Any Internet host can communi-
cate with the private host by sending packets to the mapped public endpoint
(Figure 2.9a). This is the least restrictive type.

restricted-cone nat The mapping behavior is the same as a full-cone
NAT, but the private host can only be reached by Internet hosts if the private
host has previously initiated communication by sending a packet to the Internet
host (Figure 2.9b).

port-restricted-cone nat This type is similar to a restricted-cone
NAT, but the restriction includes port numbers. An Internet host can send
packets to a private host only if the private host has previously contacted the
Internet host on the same endpoint (Figure 2.9c).

symmetric nat A new mapping is created whenever the private host
contacts a new Internet host or the same host on a different port. Apart from
this mapping behavior, the filtering of incoming packets is identical to that of
a port-restricted cone NAT (Figure 2.9d). This is the most restrictive type.

2.4.1.2 NAT behavioral classification

The traditional classification provides an overview of different NAT types but
does not cover all the aspects of NAT behavior. For instance, theseNAT types do
not detail how private ports are mapped to public ports. Consequently, while
the traditional classification is still commonly used in literature, a more sophis-
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(a) Full-cone NAT.
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(b) Restricted-cone NAT.
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(c) Port-restricted-cone NAT.
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(d) Symmetric NAT.

Figure 2.9: Behavior of different NAT
types. Outbound client packets result in
different session table entries populated.
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ticated taxonomy has emerged [Pen+16]. This new behavioral classification
describes the NAT as a combination of three different policies [REH09]:

mapping policy This policy is activated when a packet is sent from a
private endpoint to an Internet endpoint. The mapping policy determines
whether a new mapping should be added to the session table or an existing
one should be reused. There are three different behaviors: Endpoint-independent
mapping bases its decision solely on the private endpoint, reusing existing
mappings as long as the private address and port remain unchanged. Address-
dependent mapping maintains existing mappings if the public address stays
the same. Endpoint-dependent mapping only reuses existing mappings when
both the public address and port remain the same.

port allocation policy While the mapping policy determines when a
new public port should be assigned, this policy specifies which port should be
assigned. There are three types of behavior: Port-preservation allocation method
keeps the same private port number in the mapping. Port-contiguity allocation
assigns ports in a sequentially increasing order. Random allocation assigns a
random port number.

filtering policy This policy determines whether a packet from the
Internet, directed to a mapped endpoint of a NAT, is allowed to be forwarded
to the corresponding private endpoint or discarded. Three different behaviors
are possible: Endpoint-independent filtering allows packets from any public
endpoint to reach the private endpoint, provided the private endpoint has pre-
viously communicated with any address. Host-dependent filtering only allows
packets from a specific public address that the private endpoint has previously
contacted. Endpoint-dependent filtering permitting packets only from the same
public endpoint that the private endpoint has previously communicated with.

Rather than classifying NATs into just four traditional types, these policies
can describe 27 different NATs. Table 2.1 illustrates how traditional types
correspond to behavioral policies. This finer-grained distinction helps in better
distinguishing NATs, which is important and will be further explained in
the upcoming section Section 2.4.2, where several approaches for traversing
connection restrictions imposed by NATs are discussed.
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Policy

Mapping Port allocation Filtering
N
A
T
ty
pe

Full-cone

Endpoint-independent
undefined

Endpoint-independent

Restricted-cone Address-dependent

Port-restricted cone
Endpoint-dependent

Symmetric Address- or Endpoint-dependent

Table 2.1: Mapping of traditional NAT
types to behavior policies.2.4.1.3 Further NAT behavior considerations

NAT devices in real-world networks exhibit a wide range of behaviors, and
even the classification by these three policies fails to capture all aspects. In this
section, some further NAT behaviors are discussed that have been encountered
during the literature review and experiment conduction in the context of this
thesis.

First, it is undefined how aNAT device behaves when it exhausts its available
resources. This situation can occur when all available IP addresses and ports
are already assigned to existing mappings. In such cases, the NAT device may
either cease routing packets for which it cannot establish a new mapping or
begin cleaning up existing entries in the session table.

The mechanisms for cleaning up session table entries vary. While a NAT
device can anticipate the termination of a connection-oriented communication,
such as TCP, by listening for FIN segment, it must use timeout mechanisms
for connectionless protocols like UDP. The applied timeout value can differ
significantly, with experimental studies revealing most values range from
1min to 10min [Hät+10]. The same studies indicate that some devices apply
different timeout values depending on the protocol used and whether the
mapping was used for outbound or bidirectional communication.

SomeNATdevices preserve port parity duringmapping [JA07]. This practice
is infrequent and aims to maintain compatibility with protocols like Real-time
Transport Protocol (RTP), where the protocol specification recommends using
even port numbers for RTP and odd-numbered ports for RTP Control Protocol
(RTCP) [Sch+03].

Some NAT devices not only modify a packet’s address and port information
but also rewrite the payload to replace private endpoints with the mapped
endpoint. This mechanism aims to enhanceNAT compatibility but can interfere
with protocols like Session Traversal Utilities for NAT (STUN) that need to
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communicate private endpoints. As aworkaround, STUNuses anXOR function
to obfuscate endpoints, preventing interference from such NAT behavior.

In an attempt to standardize the behavior of NAT devices, several RFCs
specifying the requirements for translating protocols such as UDP, TCP, and
ICMP [JA07; For+08; Guh+09]. However, an experimental study by Hätönen
et al. revealed that many devices do not conform to the RFCs specifications.

2.4.2 NAT traversal

In the previous section Section 2.4, the source NAT was identified as the most
commonly present type, preventing Internet hosts from reaching private hosts.
This significant level of unreachability poses a problem for many applications,
particularly in the P2P and VoIP domains, which rely on participants being
able to communicate with each other. Studies have revealed that up to 92 % of
devices in today’s popular distributed applications remain unreachable because
of this [Haa+16; WP17]. To address this, multiple NAT traversal techniques
have been established to facilitate communication across NAT devices.

As the mapping and filtering behavior of a NAT device can vary, NAT
traversal can range from simple to complex, or even be unfeasible [REH09;
Hät+10]. The following section presents different techniques to overcome
restrictions imposed by NAT devices. The discussion includes the types of NAT
that these techniques can overcome, protocols implementing these techniques,
and their respective drawbacks.

2.4.2.1 Port forwarding

Port forwarding, sometimes referred as port mapping, is a technique where
(permanent) mappings are created on a NAT device. This method enables
private hosts to appear as though they are directly connected to the unrestricted
public Internet. Port forwarding involves reconfiguring the NAT device, either
manually by a user via a management interface or through a network protocol
that allows applications running on private hosts to create these mappings
automatically. Three network protocols for creating portmappings are currently
used, with most devices typically supporting only one of these protocols. Port
forwarding is often restricted to privileged users and disabled for security
reasons in non-residential networks.

nat port mapping protocol (nat-pmp) Introduced in 2005 [CK13],
this protocol operates over UDP and follows a simple request-response model
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[HW03]. Private hosts act as clients, while the NAT device functions as the
server. In NAT Port Mapping Protocol (NAT-PMP), requests are always sent
by clients to UDP port 5351 of their default gateway, assuming it serves as the
server.

With this protocol, clients not only request new mappings, but can also learn
the external IPv4 address. A mapping request includes the desired protocol
(UDP or TCP), the internal port to be mapped, the external port to use, and a
requested mapping lifetime. The server treats the external port and mapping
lifetime as suggestions and may adjust them. It responds with a message
specifying the protocol, internal port, public port, and the mapping lifetime.
Clients must refresh their mapping within the specified lifetime by sending a
new request. To delete a mapping, a request with a mapping lifetime of 0 is
sent.

port control protocol (pcp) Port Control Protocol (PCP) is the
proposed successor to NAT-PMP, introduced in 2013, using compatible packet
formats. Support is provided for IPv6, outbound mapping management, and
firewall rule configuration. Compatibility with large-scale NATs using a pool
of external addresses is ensured. Error lifetimes are managed, and an extension
mechanism is included to facilitate future enhancements [Win+13].

PCP mapping requests are similar to those in NAT-PMP but also include
the client IP address (to detect unexpected NATs between client and server),
a nonce that must be copied to the response to enable client verification, and
a suggestion for the public IP address to use for mapping. This suggestion is
needed to ensure that a mapping will maintain its external endpoint.

universal plug and play (upnp) internet gateway device-
port control protocol interworking function The Universal
Plug and Play (UPnP) Internet Gateway Device (IGD)-Port Control Protocol,
introduced in year 2013, is based on UPnP to add, remove, or enumerate
mappings and to discover the external IP address [BPW13].

Initially, the IGD must be discovered. For this, private hosts send an IP mul-
ticast discovery request using a UPnP protocol to locate Internet gateways.
Matching devices respond with a UPnP device description XML. Private hosts
then verify if the gateway is connected and if it has an external address. Next,
an AddPortMapping SOAP request is sent to the gateway, containing informa-
tion about the internal endpoint, the desired external endpoint, the network
protocol, and a textual description for identification. Although the protocol
includes a field to specify the desired lifetime of the mapping, this field’s value
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should always be set to 0, for the following reason: “[…] if the client requests a
lease other than zero, some IGD home gateways may ignore the request, fail in
other ways, or even crash completely.” [CK13, page 30]

2.4.2.2 Relaying

This technique uses third-party hosts acting as intermediaries to facilitate com-
munication between devices behind NATs. This method ensures connectivity
with all kinds of NATs but can introduce additional latency, increase band-
width costs, create a bottleneck, and present a single point of failure (SPOF).
Additionally, relaying raises security and privacy concerns, as all communi-
cation passes through the relay server, potentially exposing sensitive data to
unauthorized access. SOCKS and Traversal Using Relays around NAT (TURN)
are two widely used protocols for relaying network traffic [Lee96; Red+20].

In both SOCKS and TURN protocols, private hosts register with a relay
server, which assigns them a relay address and port. This address serves as
an endpoint through which traffic sent to the relay is forwarded to the private
host. Discovery of each other’s relay endpoint is not part of these protocols and
is typically achieved through some signaling communication implemented by
the respective application.

2.4.2.3 Hole punching

Hole punching tries to exploit a NAT’s mapping and filtering behavior to create
desired entries in the session table enabling P2P connections. This technique is
compatible with most NAT types, but will not work reliably if both peers are
operated behind separate NATs both applying endpoint-depended mapping
[GTF04; DA08]. In terms of compatibility, a distinction must be made between
UDP and TCP hole punching were the latter one comes with more restrictions
as discussed later [FSK05; GTF04; Big+05].

udp hole punching UDP hole punching, when successful, establishes
UDP connectivity across NAT devices. Consider two clients, 𝐴 and 𝐵, both
potentially behind NAT devices, as illustrated in Figure 2.10. Initially, clients
only know their local IP addresses. To become reachable by others, both clients
register with a publicly accessible rendezvous server 𝑆 located on the Internet.
The registration message includes information about their local endpoints,
causing any present NAT to create a mapping and filter that permits 𝑆 to
respond. Additionally, 𝑆 records the mapped endpoints from which the regis-
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tration messages are received. If client 𝐴 now wants to connect to client 𝐵, the
following steps occur [BRF23a]:

𝐴 : Client 𝑆 : Rendezvous server 𝐵 : Client

(4) ReachabilityCheck

(3) ForwardEndpoints(2) ForwardEndpoints

(6) Acknowledgement

(1) ConnectionRequest

par

(5) ReachabilityCheck

(7) Acknowledgement

“Punches hole” 
in 𝐴’s NAT

“Punches hole” 
in 𝐵’s NAT

(8) [Application Data]

Figure 2.10: The UDP hole punching pro-
cess. The NAT devices are not included
for space reasons. However, any commu-
nication from either client must always
pass through an existingNATdevice first.
[BRF23a]

(1) As 𝐴 is unaware of how to route to 𝐵, it has to request connection infor-
mation at 𝑆 using a ConnectionRequest.

(2) Because of the preceding registrations, 𝑆 knows a list of possible end-
points to reach 𝐵. Therefore, 𝑆 will send this list to 𝐴 by using a Forward-
Endpoints message.

(3) At the same time, 𝑆 will also send 𝐵 all it knows about how to reach 𝐴
with another ForwardEndpoints message.

(4) Once this information is received, 𝐴 will try to reach 𝐵 through all re-
ceived endpoints. Implicitly, 𝐴’s ReachabilityCheck will “punch a hole”
into any present NAT device between 𝐴 and the Internet, allowing it to
be contacted back by 𝐵.

(5) 𝐵 will do the same in parallel once it has received 𝐴’s endpoints from 𝑆.
𝐵’s ReachabilityCheckwill also implicitly punch a hole into any present
NAT device of 𝐵.

(6) 𝐴 will wait for any ReachabilityCheck from 𝐵 and will reply with Ac-

knowledgment when received.

(7) In parallel, 𝐵 will behave identically for any received ReachabilityCheck

from 𝐴.
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(8) Each client will “lock in” to the endpoint for which it receives an Ac-

knowledgment first. As soon as both clients have locked in, bidirectional
communication is possible through the locked endpoints. The hole punch-
ing steps are concluded with this, and any other UDP-based protocol
(e.g., HTTP/3) can take over. However, in case of a connection loss, the
hole punching process must be repeated.

tcp hole punching Establishing P2P TCP connections between hosts
behind P2Ps is slightlymore complex than forUDP.A standard TCP connection,
initiated by sending a SYN packet, requires one peer to listen for this initiation.
This approach only works when one peer is behind a NAT and initiates the
connection. In hole punching scenarios, where both peers are behind NATs,
the listening peer cannot receive the SYN packet because it is dropped by the
listener’s NAT. Different techniques are available for TCP hole punching, which
all impose some smaller or larger drawbacks that result in TCP not being as
reliable as UDP in many environments [GF05].

▶ TCP simultaneous open is a connection establishment procedure where both
peers initiate a connection by sending SYN packets simultaneously, followed
by ACK packets from both sides to complete the handshake [Edd22]. This
method would reliably facilitate hole punching if the NAT devices involved
used endpoint-independentmapping and if neither NAT respondedwith a FIN
packet when inbound packets are discarded, which would prematurely close
the connection. However, many platforms do not support TCP simultaneous
open, limiting its applicability in practice.

▶ User space TCP implementations allow applications to apply non-standard
TCP behavior, which is mandatory by some TCP hole punching methods (like
ignoring FINs send by aNAT).While TCP implementation is normally provided
by the platform, a raw socket can be used for a user space implementation.
However, access to raw sockets generally requires elevated privileges, which
may not be available in all environments due to security and administrative
restrictions.

▶ TTL manipulation sends outbound packets with a TTL value that is just high
enough to pass the NAT. This action creates a mapping but prevents the peer’s
NAT from sending a FIN segment that could prematurely terminate the con-
nection. After sending the low TTL SYN packet, the private host closes the
socket and reopens another socket on the same local port, ready to listen for
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incoming connections. Now the other host can initiate a TCP connection. While
this approach does not need a custom TCP implementation, setting a custom
TTL value is also a privileged action. Finding the right TTL might also be
challenging in complex NAT environments [GTF04].

Having explored the intricacies of NAT and its influence on network communi-
cation, the foundational aspects of TLS are now the focus. TLS is used to secure
data transmission over networks, ensuring that communication between over-
lay network nodes remains confidential and authentic, especially in untrusted
environments.

2.5 tls fundamentals

TLS is a cryptographic protocol designed to provide secure communication
over a computer network [Res18]. It is widely used to ensure privacy, integrity,
and authenticity between two communicating applications, such as a web
browser and a server. TLS encrypts the data transmitted between the client
and server, thus protecting it from eavesdropping and tampering.

The protocol begins with a handshake process, during which the client
and server negotiate key parameters for the secure session, including the
TLS version, encryption cipher suites, and session keys. The handshake is
initiated by one peer (the client) and then confirmed by the other (server).
During this handshake, the server presents its digital certificate, which the
client verifies to ensure the server’s identity. Once the handshake is completed,
a secure, encrypted communication channel is established using symmetric
encryption for efficiency. Public key cryptography is usedduring the handshake
to exchange the encryption keys securely.

: Client : Server

(1) ClientHello, …
(2) ServerHello, …, Finished, 

[Application data]

…, (3) Finished, 
[Application data]

par
[Application data]

[Application data]

(a) Full handshake.

: Client : Server

(1) ClientHello , …, 
[Application data]
(2) ServerHello, …, 
[Application data]

par
[Application data]

[Application data]

(b) 0-RTT handshake.

Figure 2.11: TLS handshake modes with
and without reuse of previously received
information, highlighting encrypted
data. [BRF23a].
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Starting with version 1.3, TLS provides two handshake modes relevant to
distinguish [Res18]:

2.5.1 Full handshake

The full 1-RTT handshake (Figure 2.11a) is used for the initial connection
establishment when no previous cryptographic information exists between
client and server.

(1) The client initiates the handshake by sending a ClientHello message to
the server. This message contains the client’s cryptographic capabilities,
including information like the supported cipher suites, TLS versions, and
any extensions.

(2) The server responds with a ServerHello message, which includes the
server’s choice of cipher suite and the cryptographic parameters for the
session. The servermay also send its certificate or other optionalmessages
required for authentication and key exchange. The server then completes
its part of the handshake with a Finished message. At this point, the
server can optionally start sending encrypted application data.

(3) After receiving the server’s messages, the client responds with a Fin-

ished message, confirming that it has received the server’s information
and that the handshake is complete from its side as well. Once this is
done, the client can also start sending encrypted application data.

2.5.2 0-RTT handshake

The 0-RTT handshake (Figure 2.11b) allows the client to send data to the
server immediately without waiting for the full handshake to complete. This
is possible when the client and server have communicated previously, and the
client has stored session information from an earlier connection.

(1) The client initiates the handshake by sending a ClientHello message
indicating that the client wants to initiate a 0-RTT handshake. Following
this, the client sends encrypted application data based on previously
established session information, assuming the data to be processed by
the server.

(2) After receiving the ClientHello and application data, the server checks
session information and proceeds to decrypt and process the data if it’s
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valid. The server’s response includes a ServerHello to confirm session
resumption. Further, the server can send encrypted application data
immediately afterwards.

2.6 the tasklet system

The Tasklet edge computing system [Sch+16] shown in Figure 2.12 consists of
three main components: resource providers, resource consumers, and resource
brokers.

Broker

Broker

Broker

P/CCP/C
P/C

P

P/C
P/C

P/C

C
P

P

P/C

C

P/C

P/C
P/C

P/C

P

P/C

P
Resource
Provider

Resource
Consumer C

Resource Provider 
and Consumer P/C

Tasklet
TVM

Figure 2.12: The Tasklet system. Compu-
tation resources are offered by resource
providers (P) in the form of virtual ma-
chines (TVMs) to resource consumers
(C). Scheduling is performed by the
peer-to-peer broker overlay. Tasklets and
results are exchanged directly between
providers and consumers.

• Resource providers are participants in the Tasklet system who offer
their local computing resources to support the execution of Tasklets from
other participants. Tasklets are self-contained computation units, typi-
cally at the granularity of function calls, that can be executed on remote
resources. These providers make their processing power, memory, and
other computational resources available for use by resource consumers,
facilitating the offloading of tasks that require additional capacity.

• Resource consumers are participants that offload local computations
by utilizing Tasklets. This offloading occurs for various reasons, such
as when local resources are insufficient or exhausted, or when faster
computation is desired to achieve quicker results. By leveraging exter-
nal computational resources, consumers can optimize performance and
manage resource constraints more effectively.

• The broker is essential for the Tasklet system, facilitating the matchmak-
ing process between resource consumers and providers.
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Figure 2.13: The Tasklet life cycle
[Bor+23].

(8) Forward
result

(1) Submit
task

(7) Return result

(5) Offload task

: Consumer : Provider : Broker

(2) Resource request
(3) Assign
resource(4) Resource response

(6) Execute

After the various components of the Tasklets system have been introduced,
the life cycle of a Tasklet [Bor+23], as shown in Figure 2.13, is now presented:

(1) The application requiring additional computing power packages the local
computation into a Tasklet and submits it to the locally running Tasklets
system, which processes the “Submit task” request.

(2) The locally running Tasklets system sends a “Resource request” to the
broker to obtain the necessary computing resources.

(3) The broker selects the most suitable provider for this request and per-
forms the “Assign resource” operation.

(4) The broker sends a “Resource response” back to the consumer, informing
it of the selected provider.

(5) The consumer “Offloads task” by forwarding the Tasklet directly to the
chosen provider for execution.

(6) The provider “Execute” the Tasklet locally using its available resources.

(7) After execution, the provider performs a “Return result” operation of
the Tasklet to the consumer.

(8) The local Tasklet system performs a “Forward result” operation to the
application, completing the Tasklet’s life cycle.

It is necessary for communication between providers, consumers, and the
broker so that all parties can reach each other. However, this is not always
the case in edge environments, which would prevent the Tasklet system from
easily utilizing such resources. The existing application’s limitation is overcome
by using middleware, which provides the necessary routability between all
participants.
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2.7 chapter summary

This chapter presented various topics that all contributed to making the under-
lying edge network infrastructure and its hostsmore accessible andmanageable.
SDN is a networking management approach that enables centralized network
control through a unified interface and configuration language. IBN is built on
many SDN concepts and provides network configuration through a declarative
abstraction that describes what is desired from the network rather than how it
is achieved. Some of the concepts of SDN and IBN have inspired the system
proposed by this thesis. Overlay networks help abstract from the limitations
of underlying edge resources, providing an idealized view and control of avail-
able resources while transparently hiding corresponding complexity from the
application. NAT is a widely deployed technology on the Internet, introducing
indirections in host communication. This imposes restrictions on individual de-
vices and methods for traversal, which must be considered when constructing
overlay networks of edge devices, as up to 92 % of Internet hosts are affected by
NAT [Haa+16; WP17]. TLS is a proven protocol providing secure communica-
tion between edge devices. The Tasklet system is a computation-offloading
system that can transform computations into self-contained units that can be
sent to other computers.





3
Requirements analysis

This chapter introduces requirements for a software-defined overlay networking system.
These resulting requirements are used in assessing prior work and that guided the
development of a software-defined overlay networking system, which is presented later
in this manuscript. The chapter consists of the following sections:

• Section 3.1 defines a scenario to identify all stakeholders of a software-defined
overlay networking system.

• Section 3.2 describes each software-defined overlay networking system stake-
holder’s needs.

• Section 3.3 and Section 3.4 specify both the functional requirements and non-
functional requirements of a software-defined overlay networking system.

• Section 3.5 summarizes the chapter.

3.1 software-defined overlay networking scenario

A scenario is created to identify the stakeholders involved in an software-
defined overlay networking (SDON) system used by a distributed application.
Scenarios serve as informal descriptions of a system’s usage, offering a high-
level overview of its functionality. They typically outline the system’s operation,
different user groups, and potential exceptional situations [LK22]. Further, the
interactions between the stakeholders and the system are explored. Figure 3.1
illustrates the scenario, where the stakeholders and their interactions are as
follows:

The application developer has specific requirements for the overlay network
needed by its distributed application. The developer used the application
programming interface (API), provided by the SDON system, to express
the overlay network requirements. Thereby, the developer can use overlay
network-related functionalities of the SDON system, and thus do not need to
be implemented by the application. This allows the developer to focus on the
development of other functionalities of the application.

35



36 requirements analysis

Figure 3.1: Stakeholders and their inter-
actions in a software-defined overlay net-
working (SDON) system.
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The distributed application is a standalone software that relies on a network
to enable communication between its distributed components. While the ap-
plication is used like any other software, it transparently utilizes the overlay
network managed by the SDON system. Further, the application may specify
new intents during runtime.

The SDON system manages the overlay network desired by the distributed
application by configuring the edge devices that form the overlay.

The overlay network provides an idealized view and access to the underlying
resources. It offers services to the application that are not provided by the
underlay. The complexities of managing and utilizing the overlay network are
transparently hidden from the application and the user.

The application user runs the application like any other software, while the
application transparently uses the overlay network to provide the desired
functionalities. This allows the user to seamlessly access resources from various
edge devices without needing to understand how these resources are managed
or offered.

An edge device is any computer system that iswilling to offer its local resources
to a SDON system. This could be dedicated devices waiting to be configured
by the SDON system or, in the case of a P2P application, the computer system
currently running the distributed application.

Lastly, the SDON system maintainer maintains the implementation of the
SDON system. It ensures the ongoing health by fixing reported bugs and
addressing feature requests from users and developers.
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3.2 stakeholders

In the subsequent section, each stakeholder is described by outlining their
interests and responsibilities [LK22] as well as tangible benefits [Mac07].

application developer This stakeholder is responsible for integrating
the SDON system into the distributed application.

The developer expects the SDON system to manage any overlay network-
related tasks. Therefore, possible tasks are, e.g., communication protocol de-
sign, peer discovery, overlay network implementation and operation, resource
management, and security. By delegating these tasks to the SDON system, the
developer expects a streamlined development process and transparent overlay
network management during runtime. The development process itself must
also be supported by effective testing and debugging options.

Additionally, the developer expects the SDON system to use available device
resources as efficiently as custom overlay network management in both small-
and large-scale systems. Overall resource usage should bemaximized, resulting
in a minimized cost of running the application. The system is required to not
only use the optimal resources but also include suboptimal ones, as long as
they are still adequate, in order to distribute the workload more evenly across
all available resources.

Distributed application may have requirements regarding additional overlay
services, like custom routing, forwarding, quality of service (QoS), commu-
nication encryption, and other mechanisms that help to improve the use of
unreliable and heterogeneous edge resources.

application user The application user runs the application and expects
seamless functionality, whereas the overlay network runs transparently, ensur-
ing that the distributed application behaves as a unified system. Additionally,
the user expects the system to provide high reliability, with minimal perfor-
mance degradation, even in the face of communication failures, resource churn,
or malicious resources. The distributed application should maintain seamless
functionality.

Furthermore, in a P2P application scenario, the user accesses and offers
resources simultaneously. In this case, the user should also be able to stop
resourcing sharing at any time, such as by exiting the application.
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The application may involve transmitting sensitive data, which raises secu-
rity and privacy concerns. Therefore, the SDON system should support the
integration of appropriate safeguards.

sdon system maintainer The SDON system maintainer aims to sup-
port developers in creating performant distributed applications and ensure
reliable operation. To achieve this, themaintainer should deliver an easy-to-use,
well-defined, and documented API. As applications’ requirements vary, the
system should be extensible to match the wide range of possible use cases. The
maintainer is also responsible for ensuring the system’s longevity by fixing
reported bugs and adding requested features without unnecessarily disrupting
its overall architecture.

In summary, the needs and concerns of all key participants involved in a
SDON system are discussed, providing a comprehensive understanding of
the overall system. Some of the mentioned interests conflict with each other,
such as the application user’s need for the best possible user experience and
SDONsystem’s inclusion of suboptimal resources. Therefore, the SDONsystem
must consider these conflicting interests and achieve a balanced trade-off
between these needs. The insights gained in this section assist in defining the
requirements that a SDON system must meet, which are addressed in the
following sections.

3.3 functional requirements

After identifying all relevant stakeholders, in this section, the functional re-
quirements (FRs) are extracted to specify what a SDON system must be able
to do.

fr 1: dynamic overlay network programming The primary func-
tion of the SDON system is to equip distributed applications with an overlay
network that aligns with the application requirements. No restrictions should
be imposed on the type of overlay networks, especially regarding topology,
routing behavior, and optimization [LHM10]. Given that both the application’s
requirements and the environment in which the overlay network operates can
change during runtime, the system must be capable of dynamically adapting
the overlay network to meet evolving constraints.
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fr 2: self-configuration The SDON system is intended to free the
developer from tasks related to the overlay network programming and man-
agement. Therefore, developers should only specify the overlay network’s
high-level goals. The whole system must be operational without external in-
terventions by autonomously configuring itself [Fis12]. Further, the system
should automatically devise a strategy based on knownmechanisms to achieve
those goals efficiently. Achieving consistent and coordinated actions across all
components in overlay networking is essential. This ensures the system can
quickly adapt to changing application requirements and edge resources. Such
a level of coherence and efficiency is only possible when a unified, centralized
control instance governs the configuration and behavior of all nodes.

fr 3: overlay services Since application requirements vary, the overlay
network required varies as well. Therefore, the overlay network should provide
a wide range of services, helping the application offload functionalities to the
overlay system and to make better use edge resources. This includes services
such as custom routing, forwarding, QoS, or communication encryption. It
must be possible to dynamically enable these services and restrict them to spe-
cific application components. Services should also be able to operate without
interfering with each other. Finally, applications should be able to add their
own overlay services to the system.

3.4 nonfunctional requirements

In addition to the FRs, there are nonfunctional requirements (NFRs) that define
how the system should behave.

nfr 1: efficiency The SDON systemmust be designed for high efficiency
to meet application users’ application developers’, and edge device’s expectations.

For application users, the SDON system must use the overlay network opti-
mally, ensuring that the application runs smoothly with e.g., minimal latency,
fast response times, and optimal bandwidth use. The user should experience a
seamless and uninterrupted service even under changing or restricted edge
network conditions.

For application developers, the SDON systemmust provide APIs that allow the
overlay network to be designed to maximize the use of underlying resources.
This includes minimizing the overhead related to overlay network and edge de-
vice management. Additionally, in untrusted environments where distributed
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applications commonly operate, the system must adapt edge device resources
to improve utilization and align with the application’s requirements.

For edge devices, the SDON system should ensure that the offered resources
are optimally allocated and used. The system must minimize unnecessary
resource consumption, such as reducing CPU, memory, and bandwidth us-
age. Additionally, it should dynamically adapt to changing workloads and
network conditions, ensuring that resources are used in a cost-effective manner
and aligned with both the application’s requirements and the edge device’s
limitations [Mac07].

nfr 2: overlay robustness The SDON system must feature a high
degree of robustness to function correctly under stress conditions such as
invalid inputs, resource unavailability, and communication failures [IEE90].
The system must maintain stable overlay networks, even amidst fluctuations
in resource behavior and resource availability. This robustness ensures that
consistent, “acceptable” behavior is preserved, successfully managing adverse
or unexpected conditions [FMP05]. In case of a failure, the system should pro-
vide self-healing mechanisms that automatically detect and restore the affected
components back to a normal state. Furthermore, the attack surface for poten-
tial attacks from external or internal participants must be minimized as much
as possible. This robustness is particularly important in edge environments, as
edge devices and edge networks display varying levels of reliability and may
leave the system at any time or change behavior due to network transitions.
Therefore, all resources in these environments must be considered unreliable
and untrusted by default.

nfr 3: scalability is crucial for the SDON system to accommodate
a broad spectrum of application deployment sizes. A system is considered
scalable if its performance grows in proportion to the size of resources added
[Hil90]. The system must perform efficiently across both small and large-
scale environments. It should be capable of horizontal scaling (scaling out)
by dynamically incorporating additional edge devices and resources into the
overlay network to distribute workloads effectively [ST23].

In addition to the scalability of the edge devices and resources available
to the system, scalability must also be maintained concerning the size of the
requested overlay network in terms of links and nodes. Furthermore, central
components that could create bottlenecks or lead to single point of failure
(SPOF) must be avoided [Fis12].
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nfr 4: extensibility is essential for the SDON system to accommodate
to various distributed applications. It must be designed to facilitate easy cus-
tomization, allowing for the seamless addition or replacement of components
without disrupting existing operations [ST23]. The system must specifically
support extensibility concerning constructing and managing different types
of overlay networks and the associated mechanisms. Additionally, the sys-
tem must be extensible to include measures that optimize resource utilization
in edge environments and integration of a wide range of edge devices and
network types.

nfr 5: security To operate securely across potentially untrusted environ-
ments, the SDONsystemmust address key security goals, such as confidentiality,
integrity, and availability [LK22].

Confidentiality prevents unauthorized access to transmitted data and can be
achieved using techniques such as end-to-end encryption. End-to-end security
is essential evenwhen communication is relayed through third parties, ensuring
that intermediaries cannot access the data. The encryption of the data must
rely on session keys, ensuring that even a future compromise of long-term
secrets (e.g., the private key) does not allow the reconstruction of a session
key, thus achieving PFS [Roß11].

Integrity guarantees that data transmitted over the overlay network remains
unaltered and protected from unauthorized modifications by third parties.
Furthermore, it must be possible to reliably associate the data with a specific
sender, even in indirect communication scenarios where end-to-end security
must be maintained [Roß11].

Availability ensures that a system, its data, and functionalities are accessible
to users whenever required. It also requires that resource access remains un-
interrupted, even during failures, attacks, or high load, ensuring continuous
operation and minimizing downtime.

3.5 chapter summary

This chapter identified FRs and NFRs for a SDON system. A requirements
analysis was conducted using a scenario to identify stakeholders, including ap-
plication developers, application users, and SDON system maintainers, along
with their needs. Based on these needs, requirements were identified, such
as dynamic overlay network programming (fr 1), self-configuration (fr 2),
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dynamic overlay services (fr 3), efficiency (nfr 1), overlay robustness (nfr 2),
scalability (nfr 3), extensibility (nfr 4), and security (nfr 5).



4
Related work

In this chapter, related work relevant to this thesis is reviewed, focusing on approaches
that facilitate the creation of distributed applications through overlay networking
technologies. The chapter is structured as follows:

• Section 4.1 establishes a classification for the literature analysis and presents
related work following this classification.

• Section 4.7 evaluates prior work against the requirements of a software-defined
overlay networking system identified in Chapter 3 to highlight gaps in prior
work.

4.1 classification

The creation process of a distributed application can be divided into several
life cycle phases (Figure 4.1). Related work is classified into five areas corre-
sponding to the following phases [RF20]:

Design

Code

TestDeploy

Monitor

Figure 4.1: Overlay network develop-
ment life cycle.

1. Design: Defines the architecture and component interaction based on
the requirements. Focuses on aligning technical design with business
goals, ensuring robustness, scalability, and maintainability (Section 4.2).

2. Code: Implements the design through coding. Produces reliable, scalable,
and efficient code to meet requirements (Section 4.3).

3. Test: Verifies component interaction and checks for correct functioning.
Involves writing and conducting tests to ensure all requirements are met
(Section 4.4).

4. Deploy: Installs and configures the application across hosts. Ensures a
smooth transition to production (Section 4.5).

5. Monitor: Monitors performance and reliability. Tracks metrics, detects is-
sues and ensures stability by scaling or migrating components as needed
(Section 4.6).

43
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After categorization, this chapter presents the relevant work. The literature
review includes approaches with varying scopes. Some works are extensive,
addressing multiple challenges in developing distributed applications using
overlay networking technologies, while others focus on solving specific as-
pects. The review period spans over three decades and covers several areas of
distributed systems development.

4.2 design methodologies for overlay networks

The design phase of a distributed application overlay network involves translat-
ing the requirements into a detailed architecture that defines how the system’s
components interact. This phase is critical for aligning the technical aspects of
the application with business objectives and performance goals. During this
phase, architects and developers decide on the software’s structure, technol-
ogy stack, and data flows. The primary goal is to ensure the system is robust,
maintainable, and scalable. [RF20].

In this context, works are identified and classified into overlay network tax-
onomies (Section 4.2.1) and declarative application modeling (Section 4.2.2).

4.2.1 Decision-support through overlay network taxonomies

Survey papers provide taxonomies that offer an overview and comparison
of existing overlay network schemes, guiding the selection of an appropri-
ate overlay network for specific application use cases. Notable work includes
[Lua+05; AS04; KS10; Pas12; RM06], which each compare popular overlay net-
works like the structured overlay networks CAN, Chord, and Pastry [Rat+01;
Sto+03; RD01] as well as the unstructured overlay networks Hyphanet (for-
merly known as Freenet), Gnutella, and FastTrack [Cla+01; KR02; KR04].
The papers compare the overlay networks based on different functionalities
and performance metrics. The following aspects are identified as often being
considered to assist in the selection of the correct overlay network scheme:

• Assess the overlay network system’s decentralization degree.

• Describe the operational architecture of the overlay network system.

• Specify the overlay’s lookup query protocol performance in terms of message
complexity.

• Identify the required overlay network system parameters for operation.
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• Evaluate the lookup routing protocol performance in the overlay.

• Analyze the routing state and scalability of the overlay network system.

• Describe the behavior of node churn and related self-organization.

• Look into the overlay network security.

• Examine the robustness and fault resiliency of the overlay network system.

• Review the fairness of resource allocation to assess the balance of respon-
sibilities and dependencies among all overlay network participants.

Based on this work, architects and developers get a comprehensive overview of
overlay network techniques, allowing them tomake an informed decision about
choosing the best-suited existing one or creating a new overlay. However, the
benefit of these surveys may be limited if they do not address aspects of interest
relevant to the specific application, such as how well the overlay network
topologies map onto the physical network infrastructure or their behavior
in mixed mobile, wireless, and ad-hoc network environments. Furthermore,
[Lua+05] mentions that an overlay’s behavior in real-world networks like the
Internet is often not considered.

4.2.2 Declarative application modeling

Other papers present methodologies for modeling distributed applications
declaratively, where developers can specify what the solution should accom-
plish rather than how it should be achieved, contrasting with imperative pro-
gramming. While some of the following approaches are limited to modeling
the system, other models support features such as automatic source code gen-
eration or automatic service management during overlay network operation
that can be used in later software development life cycle phases. This section
covers rule-based application specification, embedding service descriptions
in source code, domain-specific language (DSL) descriptions, and modeling
overlay networks as distributed databases.

▶ Rule-based application specification is applied by approaches like FogBrain
[FB20] and MARIO [Bro+20]. FogBrain provides an approach where the appli-
cation, the included services, and the service interconnections can be specified
via declarative rules. In MARIO, management policies that define triggers when
and how an application should undeploy, migrate, or replicate services to keep
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the application state aligned to a desired goal can be specified. Both approaches
have been implemented using the Prolog logic programming language. Prolog
employs a declarative programming paradigm, meaning the logic of computa-
tion is articulated through relations, manifested as sets of facts and rules that
can be queried to resolve problems via logical inference [CM12].

Snippet 4.1 shows an example of a VR application specified with FogBrain.
Line 1 specifies the application with identifier vrApp and three services video-
Storage, sceneSelector, and vrDriver using an application/2 fact. In the
next line, a service/4 fact is used to describe the videoStorage service with
software requirements mySQL and ubuntu, as well as hardware requirements of
16GB of memory. Lines 3 to 4 describe the two other services, and in lines 5
to 8, the interaction requirements between all services using s2s/4 facts are
specified. For instance, line 5 specifies that communications directing from
service videoStorage to service sceneSelector requires a latency of at most
150ms and a bandwidth of at least 8Mbit/s.

Snippet 4.1: Example VR application
specification in FogBrain [FB20]. 1 application(vrApp, [videoStorage, sceneSelector, vrDriver]).

2 service(videoStorage, [mySQL, ubuntu], 16, []).

3 service(sceneSelector, [ubuntu], 2, []).

4 service(vrDriver, [gcc, make], 2, [vrViewer]).

5 s2s(videoStorage, sceneSelector, 150, 16).

6 s2s(sceneSelector, videoStorage, 150, 0.5).

7 s2s(sceneSelector, vrDriver, 20, 8).

8 s2s(vrDriver, sceneSelector, 20, 1)

Such rule-based approaches present a declarative continuous reasoning frame-
work to support runtime management decision-making. Both approaches do
not support application topology changes like adding/removing services.

▶ Embedding service descriptions into the source code is an approach that is for
example used by the multi-agent platform Jadex [BP12] and the distributed
computing framework Ray [Any17]. Service properties, dependencies and
interfaces are specified declaratively with method. Such descriptions can be
interpreted by a suitable runtime environment, as with Jadex. This runtime
environment ensures that the service is executed according to its configuration
and that all dependencies are resolved. Therefore, the application developer
is freed from tasks such as manual dependency management, service deploy-
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ment, resource allocation, and runtime configuration adjustments. This design
principle, known as inversion of control, improves modularity and flexibility
by decoupling the execution of components from their implementation. This
allows systems to be more dynamic and adaptable.

16 @Description("This agent provides a basic chat service.")

17 @Agent

18 @ProvidedServices(@ProvidedService(type=IChatService.class,

19 implementation=@Implementation(ChatServiceD2.class)))

20 @RequiredServices({

21 @RequiredService(name="clockservice", type=IClockService.class),

22 @RequiredService(name="chatservices", type=IChatService.class, scope=ServiceScope.PLATFORM)

23 })

24 public class ChatD2Agent

25 {

26 }

Snippet 4.2: Service descriptions are di-
rectly embedded to the source code in
Jadex [BP12].

Snippet 4.2 illustrates this design principlewith the ChatD2Agent agent taken
from the Jadex tutorial. In Jadex, all services are part of an agent, which can
be – like in this case – an empty Java class for a simple agent. The service
descriptions are formulated by using Java annotations. The @ProvidedSer-

vices annotation in line 18 informs the Jadex runtime that this agent offers a
service of type IChatService and that this service should be instantiated using
the corresponding implementation ChatServiceD2. Conversely, the @Required-
Services annotation specifies the services required by the agent for execution,
in this case, services of types IClockService and IChatService. The attribute
scope in line 22 is used to specify the scope in which a required service should
be looked up for. It is worth noting that in Jadex, a distributed application is
organized into components and sub-components corresponding to this scope.
While the IClockService is only searched within the current or immediate
sub-components, the IChatService is searched across all components of the
Jadex platform.

This design paradigm offers advantages in terms of application modularity
and testability. However, in exchange, the developer loses some control over
the application as the framework supervises the runtime environment. This
can lead to increased dependency on the particular framework and restricted
expandability and debugging.. These are aspects that engineers and developers
of a distributed application should consider beforehand.
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▶ dsl-based overlay network behavior modeling. Approaches such as MACE-
DON, Mace, SEDA, and by Lopes [Rod+04; Kil+07; WCB01; Lop97] introduce
DSLs where tailored language syntax and semantics simplifies the overlay
network description, reducing errors, and increasing development efficiency.
Further, such overlay-generic application programming interface (API) in-
creases the interoperability between different overlay networks and applica-
tions, simplifying consistent experimental evaluation.

The mentioned approaches have in common that they all implement overlay
node’s behavior using an event-driven finite state machine (FSM). Here, FSMs
typically consist of states, events (triggered by actions like message reception or
peer failures), transitions that define responses to these events, and timers for
scheduling future processes.

Approaches like Mace and Macedon support the generation of source code
based on these high-level specifications. The generated code can be used un-
modified in Internet settings, as all necessary functionalities, such as thread
and timer management, network communication, and state serialization, are
automatically provided. The generated source is API-consistent, allowing seam-
less integration into the application and ensure that overlay network changes
do not require modifications elsewhere in the system.

While DSL-based development can significantly reduce development effort, it
may come with the cost of potentially reduced overlay network performance
due to the required overlay network abstraction layer (the FSM). Additionally,
the authors of MACEDON note that some overlay networks may not be ex-
pressible using a FSM. Nonetheless, such approaches are well-suited for rapid
prototyping and evaluating various overlay network schemes.

▶ Modeling overlay networks as distributed databases, as introduced by ap-
proaches like OverLog and Behnel et al. [Loo+05; BB05], provide a method
for designing overlay network topologies as database management systems
(DBMSs). This approach treats each node’s knowledge about itself and its
directly connected overlay network neighbors as a partial view of a distributed
database containing all node information.

Behnel et al. design overlay networks using a SQL-like declarative languages.
Based on stored queries, a management system makes decision about relevant
neighbors, attributes of interest, and messages transmitted. This approach
makes it necessary, that all information will eventually reach all nodes. Behnel
et al. suggest various methods, including broadcast, active lookup, overhearing
routed messages, central discovery services, and epidemic communication.
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1 CREATE VIEW chord_fingertable AS

2 SELECT node.id

3 FROM node_db

4 WITH log_k = log(𝒦)

5 WHERE node.supports_chord = TRUE AND node.alive = TRUE

6 HAVING ring_dist(local.id, node.id) IN (2𝑖, 2𝑖+1)

7 FOREACH 𝑖 IN [0, log_k)

8 RANKED highest(1, ring_dist(local.id, node.id))

Snippet 4.3: Implementation of the
Chord graph [Sto+03] in SQL-like
overlay network specification language
SLOSL [Beh07].

Snippet 4.3 demonstrates how a Chord graph can be formulated using the
SQL-like overlay specification language (SLOSL) [BB07]. Chord is a DHT or-
ganizing nodes in a circular identifier space, with each node maintaining links
to its successor, predecessor, and “fingers” – peers at exponentially increasing
intervals for efficient routing [Sto+03]. In SLOSL, the clauses CREATE VIEW,
SELECT, FROM, and WHERE function similarly to their counterparts in SQL. The
CREATE VIEW clause initiates a node set view named chord_fingertable. Lines
1 to 2 utilize the SELECT and FROM clauses to define the view’s attributes and
data sources, specifically showcasing the node.id attribute and integrating it
as a sub-view of the local node table, node_db. The WITH clause sets variables or
options, notably by assigning log_k a default value representing the logarithm
of the DHT key space size 𝒦. Line 5 ’s WHERE clause filters nodes into the view
based on their support for the Chord protocol and their status as “alive”, ex-
cluding those considered dead by the local node. The FOREACH clause outlines
a set of buckets corresponding to individual chord fingers, with the HAVING

expression allocating nodes to these buckets. Line 8 then selects the highest
node from each bucket to finalize the view setup.

Designing overlay networks as DBMSs allows developers to focus solely on
the view configuration rather than the underlying overlay network protocol,
effectively decoupling the design process. Behnel et al. acknowledge that while
performance may not match that of a direct implementation, the benefits of
rapid replication and flexibility justify its use. Further, manual configuration
is still necessary to select appropriate algorithms, such as a gossip protocol,
to maintain the currency and accuracy of the views. While the approach ex-
plained how a node locally decides what information is relevant to create and
maintain its local view of the overlay networks, the efficient propagation of
this information was out of scope.
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4.3 coding-support for overlay networks

The code phase in the life cycle of a distributed application overlay network
covers implementing the overlay’s functionality. During this phase, developers
write code to realize the design specified in the previous phase. The primary
goal of this phase is to produce reliable, scalable, and efficient code that meets
the specified requirements. [RF20].

Two approaches are identified that support this life cycle phase in this con-
text: Providing building blocks for generic overlay network functionalities (Sec-
tion 4.3.1) and utilizing concurrent programming paradigms (Section 4.3.2).

4.3.1 Distributed application programming environments

Distributed application programming environments facilitate the development
of distributed applicationswith overlay networks by providing adaptable build-
ing blocks designed to address common challenges in distributed systems. For
example, JXTA [Gon01] and libp2p [Pro20] are software libraries that facilitate
P2P communication and simplify distributed application development.

▶ The JXTA P2P framework, originally developed by SunMicrosystems, includes
a suite of six protocols and components utilizing these protocols to provide
often-needed P2P functionalities. Within this framework, JXTA features two
fundamental protocols designated as core protocols, vital for basic message
routing and query resolution, while the remaining four protocols build on
these two core protocols to provide higher-level functionalities [Tra+02]:

• Endpoint routing protocol: Facilitates route discovery for message trans-
mission between peers, particularly through intermediary relays when
direct routes are unavailable.

• Rendezvous protocol:Managesmessage propagation across peer groups
by allowing peers to subscribe to and propagate messages within a peer
group’s rendezvous service.

• Peer discovery protocol: Enables peers to publish and discover advertise-
ments related to peers, peer groups, modules, pipes, and content using
resolver queries.

• Peer information protocol: Supports the retrieval of status information
about peers, including status, uptime and capabilities, using resolver
queries for propagation.
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• Pipe binding protocol: Establishes virtual communication channels, or
pipes, between peers and manages the binding of these pipes to physical
peer endpoints. These pipes provide quality of service (QoS) guarantees
and are used for application traffic.

Any peer on the extended Web

Security

Peer monitoringPeer pipes Peer groups

JXTA community services Sun JXTA 
services

• Indexing
• Searching
• File sharing

JXTA community applications
Sun
JXTA 
applications

JXTA 
applications

JXTA
services

JXTA
core

Figure 4.2: JXTA architecture.

The JXTA architecture displayed in Figure 4.2 is structured into three main
layers: core, services, and applications. The core layer provides the fundamental
protocols and mechanisms for P2P communication, including peer discovery,
peer communication, peer group management, and security. Building on these
core protocols, the services layer offers higher-level functionalities such as
indexing, searching, and file sharing, facilitatingmore complex interactions and
functionalities required by distributed applications. Finally, the applications
layer consists of the end-user applications that leverage the core and services
layers to perform specific tasks, providing user-facing functionalities built
on top of the core and service components. Sun Microsystems envisioned a
community developing over time to provide services and applications for the
JXTA ecosystem.

▶ libp2p originated as the networking protocol for the InterPlanetary File System
(IPFS) project [Ben14] and has since been abstracted into a standalonemodular
networking stack utilized across various projects for P2P communication. In
contrast to JXTA, libp2p is aimed more at interoperability across different
programming languages and versions, thereby providing developers with the
flexibility to integrate P2P capabilities into diverse software environments.

The architecture of libp2p is designed to be modular, allowing developers
to tailor the overlay network stack by selecting specific components that meet
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their applications’ requirements. This modularity extends to the transport
layer, accommodating a range of protocols to ensure operability under various
network conditions, including challenging scenarios such as NAT traversal.

libp2p comprises a suite of language-agnostic protocol specifications that
support fundamental P2P functionalities like peer discovery, data storage and
retrieval, and secure communications. Security features include peer identity
verification through public key cryptography and encrypted communications
to safeguard data exchanges.

In conclusion, JXTA and libp2p offer libraries that accelerate distributed appli-
cation development by providing directly usable and well-tested components.
These components primarily address lower-level functionalities, which require
developers to engage in significant configuration. Integration efforts to achieve
higher-level functionalities are tailored to specific requirements and can there-
fore introduce complexity.

4.3.2 Concurrent programming paradigms

While the approaches in the previous chapter are software libraries integrated
into the application, this chapter introduces frameworks that utilize concur-
rent programming paradigms like actor-based and agent-based programming.
Here, an application is modeled as a collection of software actors or agents
who interact with each other to achieve given goals.

The actor-based model [Agh86] is a computational paradigm where actors
are the fundamental computation units. All actors are independent software
components that do not share data and communicate through asynchronous
message passing with non-deterministic message delivery. They operate au-
tonomouslywith location-transparent communication, relying on thread-based
local behavior and a mailbox that buffers incoming messages, serving as the
universal identifier for the actor [CN22].

An agent is an goal-driven entity capable of learning and adaptation, while
an actor focuses on concurrency and state isolation through asynchronous
message passing [Fer99].

This programmingmodel fosters scalable application development by simpli-
fying concurrency management, ensuring inherent fault tolerance, enhancing
scalability, providing location transparency, and facilitating easier debugging
and maintenance by encapsulating state and behavior within actors. These fea-
tures make it a powerful and effective alternative to traditional multi-threaded
systems that rely on shared data and locks [Lee06].
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The principles of these approaches for overlay network programming are
now discussed, based on the work of actor-based programming platforms
Akka, Parallel Theatre, and ActorEdge [Lig09; Nig21; AZ17] and agent-based
programming platforms Jadex, JADE, and JaCoMo [BP12; BPR01; Boi+13].
These approaches provide runtime platforms to host multi-actor/multi-agent
applications running locally or distributedmultiple systems connected through
a network.

The following section contains further description of Parallel Theatre, which
offers the most comprehensive features for distributed application develop-
ment, including automatic actor migration between remote platforms and
dynamic load balancing. In Parallel Theatre, the actor runtime environments
are called “theatres”. Each theatre consists of four layers: (1) The application
layer (AL) contains actors assigned locally for execution. (2) The control layer
(CL)manages scheduling and dispatchingmessages among AL actors. (3) The
transport layer (TL) facilitates remote interactions through communication
networks, typically using TCP sockets. (4) The time server layer (TS) ensures
a common global time notion within the system.

Figure 4.3: Distributed actor-based sys-
tem consisting of N actor runtime envi-
ronments called “theatres” [CNS20].

Figure 4.3 shows the relationships between theatres, the messages travel-
ing through the network, and the actors within the system. Black circles ( )
represent actors currently executing in a specific theatre. White circles ( )
indicate actors that have moved away from their original theatre. Gray circles
( ) depict actors that are migrating to a new destination theatre.

As part of a load-balancing strategy, an actor can migrate between different
theatres during its lifecycle. A proxy version is then created in the original
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theatre when the actor migrates. This proxy is a placeholder and message
forwarder, retaining the last known destination theatre. Messages directed to
a proxy actor are transparently forwarded to the indicated remote theatre.

To summarize, concurrent programming paradigms like actor-based and agent-
based programming offer an easy-to-use, lock-free, and concurrent computing
model that supports the development of scalable distributed application over-
lay networks. However, these paradigms can introduce complexity in debug-
ging and managing states across distributed systems, along with performance
overhead, a steep learning curve for developers, and limited tooling.

4.4 testing frameworks for overlay networks

In the test phase of a distributed application overlay, it is verified that all com-
ponents interact correctly. This phase is crucial for identifying defects and
verifying all requirements. Tasks include writing and conducting automatic/-
manual tests. [RF20].

Formal verification methodologies (Section 4.4.1) and simulation environ-
ments (Section 4.4.2) for overlay network systems have been identified to assist
in this development phase.

4.4.1 Formal verification of distributed systems

Approaches like IronFleet, Verdi, or by Sergey et al. [Haw+15; Wil+15; SWT17]
aim to verify the correctness of a distributed system formally. In theory, this
verification methodology can potentially completely remove errors from dis-
tributed systems.

The formal verification methodology is examined by highlighting IronFleet,
which outlines a methodology for constructing provably correct systems using
a combination of formal state-machine refinement based on TLA1 [Lam02]1 “The temporal logic of actions (TLA) is a logic

for specifying and reasoning about concurrent
systems.”—[Lam94]

and formal program verification using Floyd-Hoare-style imperative verifica-
tion [Hoa69]. This approach can be automated and machine-checked, proving
the safety and liveness properties of distributed system implementations. The
“safety” property states that something will do not happen, such as guaran-
teeing that a program started with correct input cannot terminate without
producing correct output [Lam77]. The “liveness” property states that some-
thing must happen, such as guaranteeing that a program will terminate if its
input is correct [Lam77]. IronFleet ensures that a distributed system imple-
mentation conforms to a high-level centralized specification (e.g., a distributed
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key-value store behaves like a key-value store). Consequently, the approach can
address specific concurrency issues, arithmetic errors, and protocolmismatches
[Yua+14]. To achieve this, IronFleet decomposed the distributed system be-
havior into three layers corresponding to a high-level specifications layer, a
distributed protocol layer, and an implementation layer, making the verification
of practical distributed system implementations feasible, as illustrated in Fig-
ure 4.4. Each layer consists of a series of steps determined utilizing reduction
[Lip75] based on a fine-grained behavior description of the application that
must be supplied. Any behavior of a lower layer (e.g., P0, P1, …) refines some
behavior of the layer above (e.g., H0, H1, …). The two states must satisfy the
specification’s refinement conditions for each refinement, as shown in a dashed
arrow. Figure 4.4: IronFleet divides a dis-

tributed system’s behavior into layers of
steps for verification [Haw+15].

Imperative verification is applied for the implementation layer running on
each host, proving that the implementation correctly refines the protocol layer.
For this, Dafny, an automatic programverifier for functional correctness [Lei10],
is used as seen in Snippet 4.4. This capability automatically handles many low-
level proofs, such as verifying the program for all possible inputs without
assistance.

1 method halve(x:int) returns (y:int)

2 requires x > 0;

3 ensures y < x;

4 { y := x / 2; }

Snippet 4.4: Imperative verification ex-
ample [Haw+15].

To summarize these formal approaches, verification complexity scalability
relative to application size is an ongoing area of research. The authors of
IronFleet note that exploring a large search space can be time-consuming.
Additionally, extending guarantees, e.g., to include fairness properties beyond
liveness is a topic for future work. “fairness” property extend “liveness” by
ensuring that certain actions occur infinitely often within a system. A crucial
requirement for formal verification is a fine-grained behavior description of
the application.

4.4.2 Simulation environments

Simulation environments offer well-defined platforms for running and com-
paring different distributed application overlay networks. In this context, two
simulation frameworks are highlighted: PlanetSim [Gar+05], which focuses
on structured overlay networks, and OverSim [BHK07], which supports both
structured and unstructured overlay networks. Both frameworks utilize a cus-
tom discrete event simulator (like OMNeT++ [Ope01] in the case of Plan-
etSim). A discrete event simulator models the operation of a system as a
sequence of discrete events in time, where each event occurs at a specific point
and changes the system’s state [Rob14].
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These simulators divide their simulation environments into three layers: the
application layer, the overlay network layer, and the underlay layer. Each layer
is separated by a well-defined API, allowing layers to be exchanged indepen-
dently. This separation allows for the simulation of the same application with
different overlay networks or underlay networks.

OverSim features a similarly flexible underlay layer that supports heteroge-
neous networks, enabling the configuration of bandwidth and latency proper-
ties. Additionally, it allows simulations to run on real networks. In contrast,
PlanetSim offers a GUI for visualizing the overlay network topology at any
time, aiding in the debugging of new overlay network protocols [Nai+06].

Before an overlay network can be executed within these frameworks, it must
implement a given API. PlanetSim requires overlay networks to implement
the Common API (CAPI) for structured overlay networks, as presented by
[Dab+03], which offers an overlay-neutral interface based on key-based routing
and consists of eight individual interfaces, as detailed in Table 4.1.

Once the overlay network is implemented and all underlying layers and
experiment parameters (such as the initial state and desired overlay network
size) are configured, the simulation can be started. The entire distributed
system will be executed event by event. Simulators like OMNeT++ offer the
flexibility to manually step through each event or run the simulation until a
specified condition is met. Additionally, the environment can be configured
to behave deterministically, facilitating easier debugging and comparison of
results. OMNeT++ also provides an interactive simulation runtime GUI.

In conclusion, it is essential to implement the overlay network using the sim-
ulation framework’s API first. When using CAPI, a widely adopted API for
overlay network programming, the overlay network implementation will likely
work directly in the simulator. However, the poor scalability of simulators often
necessitates a significant amount of computing time [Law24]. Additionally,
the usability of some simulators is a serious issue, as documentation is often
inadequate [Nai+06].

4.5 strategies for overlay network deployment

The deployment phase of a distributed application overlay network involves
installing the application’s components across multiple hosts. This phase en-
sures the application is correctly installed, configured, and operational in the
target environment. This phase is crucial for transitioning from development
to production. [RF20].
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Interface Description

void route(key →K, msg M, nodehandle hint) Forwards message M, towards root of key K. Optional
hint argument specifies the initial hop node for rout-
ing.

void forward(key ↔K, msg ↔M, nodehandle ↔nextHopNode) Triggered at every node forwarding message M, no-
tifies the application that M with key K is being for-
warded to nextHopNode.

void deliver(key →K, msg →M) Called on root node for key K when message M ar-
rives.

nodehandle[] local_lookup(key →K, int →num, bool →safe) Generates node list for next hops towards key K,
maintains a safe fraction of non-faulty nodes if safe
is true.

nodehandle[] neighborSet(int →num) Returns up to num unordered nodehandles neighbor-
ing the local node.

nodehandle[] replicaSet(key →k, int →max_rank) Returns ordered nodehandles for storing replicas of
object k up to max_rank.

void update(nodehandle →n, bool →joined) Informs application that node n joined or left neigh-
bor set of the local node.

bool range(nodehandle →N, rank →r, key ↔lkey, key ↔rkey) Returns ranges the node N is currently a r-root for.
true if determinable, false otherwise.

readonly parameters are denoted as → p. read-write parameters as ↔ p. ordered set of type T as T[].

Table 4.1: Common API for structured
overlay networks [Dab+03].
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Aspart of this effort, solutions have been identified that createmore favorable
environments for the deployment and operation of distributed applications.
Overlay networks such as VPNs overcome some limitations of underlying
physical networks by providing multicast, QoS support, DoS defense, and
resilient routing [Sto+02; For04; KS10] (Section 4.5.1). Further, ISP-involved
overlay network deployment models are presented (Section 4.5.2).

4.5.1 Self-configurable mesh VPNs

Mesh VPNs use a P2P network architecture, which improves resiliency, scala-
bility, and performance compared to traditional VPNs that use a star topology.
One approach is highlighted in which the control and data planes are decen-
tralized, followed by two where the control plane is centralized.

▶ The Secure OverLay for IPsec Discovery (SOLID) [RSS10] approach is a self-
configurable VPN based on IPsec, used to connect subnetworks. IPsec is a suite
of protocols designed to ensure the confidentiality, integrity, and authenticity
of data communications over IP [SK05]. Here, access to the overlay network
is controlled via a central authority, which also assigns IP addresses to the
individual participants. Apart from that one-time certification per gateway,
SOLID requires no manual configuration. If a packet arrives at a gateway
without knowing a route to the corresponding target gateway, it is cached, and
the gateway sends a discovery request over the existing routes. A greedy search
is used where each gateway forwards the message to the gateway closest to
the destination address. The Chord [Sto+03] ring structure ensures the timely
discovery of the correct gateway. Routing tables are further optimized by
detecting public routable gateways and gateways within the same subnetworks
that are candidates for direct paths. This overlay network for discovery and
routing allows the system to achieve the necessary security, robustness, and
scalability.

Figure 4.5 illustrates the SOLID overlay network that is organized in a Chord
ring [Sto+03]. Each subnetwork, capable of containing an arbitrary number
of hosts, is connected to the overlay network via an IPsec gateway. Solid lines
indicate proactively established IPsec tunnels, while dotted lines show tunnels
that are routed through intermediate systems due to a nested configuration.
Thick lines represent virtual connections between IPsec gateway processes on
the same device, allowing multiple secured subnetworks to connect through a
single IPsec gateway.
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Figure 4.5: Mapping of a VPN topology
to a SOLID overlay [RSS10].

▶ A centralized configuration approach is presented by ZeroTier [Zer14] and
Tailscale [Tai19]: These two providers offer proprietary services where they
provide centralized infrastructure to semi-automatical customer VPNs. Via
a web interface (or an API), the customer can configure their overlay net-
work, such as routing tables and access rights. Subsequently, customers must
install the provider’s software on the respective hosts and associate it with
the customer’s token. The provider’s software then automatically handles the
construction and management of the overlays. Further, these approaches aim
to optimize the underlay routes to minimize latency automatically.

ZeroTier uses a two-layered overlay network. The first layer consists of a P2P
network with encryption and NAT traversal, providing a fully routable flat
network. On top of this, a second layer for the data plane, an Ethernet virtual-
ization layer, is placed [Zer24a]. Further, ZeroTier provides a SDK [Zer24b]
allowing to use their service as an application-level overlay. Tailscale relies on
WireGuard for the data plane. WireGuard is a secure network tunnel protocol
operating at layer 3, known for its lightweight design, performance, and use of
modern cryptography [Don17]. In contrast, a custom protocol is used for the
control plane, utilizing centralized coordination servers for rendezvous and
configuration distribution [Tai20].
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The presented work here helps deploy distributed applications by providing
secure, fully-routable layer 3 overlays. Therefore, generic IP-based applications
can be used without customization while relying on a more idealized network.

4.5.2 ISP-involved overlay network deployment models

[KS10] discusses overlay network deployment models with involvement from
ISPs. While overlays usually do not impose requirements on the underlay, the
approach presented here expects ISP participation to provide end-to-end QoS
guarantees.

The deployment model proposed by [DZH03], aims to provide end-to-end
QoS guarantees on an interdomain scale through an overlay network. This
is achieved by purchasing necessary resources like bandwidth with specific
QoS guarantees from underlying ISPs via bilateral service level agreements
(SLAs). The authors motivate their approach because of the inherent structure
of the Internet, which is a collection of autonomous systems owned by various
administrative entities (like an ISP) that work on a best-effort quality model.
They state that each administrative entity is primarily concerned only with the
performance of its network, making it challenging to achieve end-to-end QoS
across multiple such systems.

The overlay network uses service gateways that perform service-specific
data forwarding and control functions. These gateways are placed between
the individual networks, and the QoS guarantees between them are specified
in bilateral SLAs. End-to-end QoS between networks is provided by these
gateways, while within individual networks, it is managed by the respective
administrative entity.

To conclude this approach, it must be stated that the primary challenge lies in
efficiently purchasing resources from ISPs, which is a capital-intensive process
and does not scale well with large and dynamic overlays due to the extensive
number of required SLAs with numerous ISPs. However, there is the opportu-
nity to achieve end-to-end QoS by ensuring that the underlying ISPs reserve
the necessary resources according to the SLAs.

4.6 monitoring and managing overlay networks

The monitor phase of a distributed application overlay network involves contin-
uously observing the application’s performance, availability, and reliability.
Key tasks include tracking system metrics, logging events, detecting anoma-
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lies, and raising alerts. The goals are to ensure optimal performance, quickly
identify and resolve issues such as node churn or link failures, and maintain
the application’s health and stability by migrating or scaling components to
meet QoS goals. [RF20].

This section examines two contrasting approaches to application monitoring
and management. The first approach involves a separate system that conducts
monitoring and management, allowing the application to operate without
being aware of these functions (Section 4.6.1). The second approach integrates
monitoring and management directly into the application, enabling it to mon-
itor itself and respond autonomously to failures, load changes, or evolving
requirements (Section 4.6.2).

4.6.1 Separate application orchestration

This approach places the application orchestration into a separate system that is
transparent to the application. This simplifies the application design by decou-
pling operational concerns, allowing developers to focus solely on application
logic without the added complexity of incorporating monitoring and manage-
ment functionality. It also enables specialized, dedicated systems to handle
monitoring and management tasks, potentially leading to more robust and
efficient performance. Additionally, this separation allows for greater flexibility,
as the monitoring and management system can be independently updated,
scaled, and optimized without requiring changes to the application itself. This
modularity facilitates more manageable maintenance and upgrades and can
enhance the overall reliability and scalability of the application infrastructure.

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: nginx-mariadb-pod

5 spec:

6 containers:

7 - name: nginx

8 image: nginx:latest

9 resources:

10 requests:

11 memory: "64Mi"

12 cpu: "250m"

13 limits:

14 memory: "128Mi"

15 cpu: "500m"

16 livenessProbe:

17 httpGet:

18 path: /

19 port: 80

20 initialDelaySeconds: 30

21 periodSeconds: 10

22 - name: mariadb

23 image: mariadb:latest

24 resources:

25 requests:

26 memory: "128Mi"

27 cpu: "500m"

28 limits:

29 memory: "256Mi"

30 cpu: "1"

31 livenessProbe:

32 tcpSocket:

33 port: 3306

34 initialDelaySeconds: 30

35 periodSeconds: 10

Snippet 4.5: Pod manifest for an Nginx
andMariaDB podwith resource manage-
ment and monitoring mechanisms.

Kubernetes [Kub14] is an open-source orchestrator designed for deploying
containerized applications. Initially developed by Google in 2014, it has since
become the standard API for building cloud-native applications. Kubernetes
is versatile and can be used on various scales, from small clusters of Raspberry
Pi computers to large data centers filled with the latest hardware. [Bur+22].
While initially developed for cloud environments, several approaches have been
proposed to adapt the principles of Kubernetes to IoT and edge environments
as well [SAF23; Bar+23].

In Kubernetes, a distributed application must be packaged as containers,
typically created with Docker [Doc13]. A container image is a binary package
that includes all the files, libraries, and dependencies required to run a program.
It also encapsulates the application’s code and environment settings. The
container image has well-defined interfaces, allowing the orchestration system
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to manage and run the containers without understanding the application’s
specifics or internal structure. This abstraction enables Kubernetes to efficiently
handle application deployment, scaling, and management across a cluster of
machines, ensuring consistency and portability across different environments.

To orchestrate an application, Kubernetes requires metadata regarding the
resource requirements of each container, performancemetrics, and appropriate
responses to those metrics. Snippet 4.5 describes a simple pod example. Pods
are the smallest deployable units of computing that Kubernetes can manage.
Here, the pod consists of a nginx-based [Igo04] web server (lines 7 to 21) and
a MariaDB-based [Mar09] database server (lines 22 to 35).

For resource management, Kubernetes allows the specification of minimal
and maximum resources a single container utilizes. For each container, the
requests sections (lines 10 and 25) specify the minimum amount of resources
(memory and CPU) guaranteed to the container, while the limits sections
(lines 13 and 28) define the maximum amount of resources it can use. If a
container exceeds its CPU limits, it is throttled, while exceeding memory limits
results in the container being terminated and restarted according to a specified
restart policy. Thismechanismhelpsmaintain system stability andperformance
by controlling resource usage.

For monitoring, Kubernetes can be instructed with livenessProbe sections
on how to check if an application within a container is deadlocked. For the web
server, it performs an HTTP GET request starting 30 s after the container begins
and repeating every 10 s. For the database server, it checks TCP connectivity
on port 3306, starting 30 s after startup and repeating every 10 s. If a liveness
probe fails, Kubernetes restarts the container to restore functionality according
to a specified restart policy.

Further, Kubernetes allows scaling the number of pod instances running in
parallel in response to changing loads or failures. Kubernetes can be instructed
to maintain a given number of pods at all times and to scale horizontally
up or down in response to specific criteria, such as CPU or memory usage.
For example, if the CPU usage of a set of pods exceeds 80 %, Kubernetes can
automatically create additional pod instances to distribute the loadmore evenly.
Conversely, if the CPU usage drops below a certain threshold, Kubernetes can
reduce the number of running pods to save resources. Kubernetes alsomanages
load balancing through built-in service mechanisms.

A core concept of Kubernetes is the reconciliation loop, which ensures that
the system’s observed state matches the desired state. For example, it ensures
pod resource consumption is within defined limits, liveness probes succeed,
andpod replication is alignedwith the desired configuration. The reconciliation
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loop continuously monitors the system’s current state and takes specified
actions to return it to the desired state.

Even though management and monitoring run transparently for the applica-
tion, using dedicated orchestration tools like Kubernetes requires the applica-
tion to be containerized and its requirements to be explicitly specified. This
additional step can make adoption more complex, but it ultimately provides
robust management, scalability, and reliability for distributed applications.

4.6.2 Integrated application orchestration

This approach integrates orchestration functionalities directly into the appli-
cation, enabling real-time, context-aware responses to failures, load changes,
and evolving requirements. Having immediate access to its performance data,
the application can use resources more efficiently and react faster to dynamic
conditions. This tight coupling enhances resilience and adaptability, allow-
ing the application to adjust its behavior autonomously to maintain optimal
performance and reliability.

node_constraint(Host) :-
  comonnode{hostname:Host},
alive(Host), 
light_loaded(Host), 
is_avail(Host),

  get_node_attr(Host,cpuspeed,Cpuspeed),
  get_node_attr(Host,freecpu,Freecpu),
  Cpuspeed*Freecpu/100>1.5.

group_constraint(NodeList) :-
assemble_values(NodeList,location,Locs),
length(NodeList,Len), 
Max is ((Len-1)//4)+1,

  ( for(I,1,4), param(Locs,Max) do
count_element(I,Locs,Num),

      Num=<Max ).

path_constraint(LenList, Max) :−
max(LenList, Max), 
diameterUtil(_,DiameterMax, _),
Max<DiameterMax.

util_function(NodeList,Util,Params) :-

  % Compute utility values for different node attributes
fiveminloadUtil(LoadMin,LoadMax,LoadWeight),
assemble_values(NodeList,fiveminload,LoadList),
util_value("<",LoadList,LoadMin,LoadMax,LoadUtil),

  % Omitting utility values for liveslices and freecpu, the same as above

  % Utility of max distance from fixed nodes to the overlay
  findall(P,fixednode(P),Fixed), 
minlatency(MinLat),
maxneighUtil(_,NeighMax,NeighWeight),
get_nearest_neighbor_list(Fixed,NodeList,NeighList),
max(NeighList,MaxDist),
util_value("<",[MaxDist],MinLat,NeighMax,NeighUtil),

  % Utility of overlay network diameter
diameterUtil(_,DiamMax,DiamWeight),
 util_value("<",Params,MinLat,DiamMax,DiamUtil),

  % Weighted average of the utilities above
weighted_avg([LoadUtil,SliceUtil,CpuUtil,NeighUtil,DiamUtil], 

  [LoadWeight,SliceWeight,CpuWeight,NeighWeight,DiamWeight],Util).

Definition of util_value: 
util_value< = avgi ((xmax− bound(xi))/(xmax− xmin))
util_value> = avgi ((bound(xi) − xmin)/(xmax− xmin))
bound(x) = max(min(x, xmax), xmin)

CONSTRAINTS UTILITY FUNCTION

COST FUNCTION

CONFIGURATIONS

  fiveminloadUtil(0, 10, 2). liveslicesUtil(0, 10, 1). freecpuUtil(1, 4, 3). maxneighUtil(0, 500, 2). diameterUtil(0, 1000, 2).
addCostParam(0.012). removeCostParam(0). 

migration_cost(Actions, MigrateCost) :-
    count_element(add, Actions, AddLen),
    count_element(remove, Actions, RmvLen),

addCostParam(AddParam),
removeCostParam(RmvParam),

    MigrateCost is AddParam*AddLen + 
RmvParam*RmvLen.

Figure 4.6: Publish/Subscribe applica-
tion requirements expressed as a set of
Rhizoma constraints [Yin+09].



64 related work

Rhizoma [Yin+09] and GoPrime [Cap+16] and by Al-Oqily et al. [AK09],
provide approaches where orchestration management is provided by a policy
layer embedded in the application. To give a deeper insight into these ap-
proaches, this section focuses on Rhizoma and closely connects the application
with a decentralized management system called Rhizoma, turning it into a
self-deploying system similar to early “worm” programs. A computer worm
is a self-replicating malware program that spreads across networks without
needing to attach itself to a host program or requiring human intervention. The
application specifies its resource requirements to the Rhizoma management
system as a constrained optimization problem. Constraint logic programming
defines a set of constraints an application must satisfy and a goal function that
optimizes within those constraints. Rhizoma monitors the resources on which
the application runs and decides at runtime if new resources are needed or if
existing resources can be released to maximize its utility continually [Yin+08].

Figure 4.6 illustrates the requirements for a publish/subscribe application
using Rhizoma constraints. These constraints encompass node, group, and
network path constraints. Node constraints (top left of the figure) employ
several predefined predicates, such as “alive” for nodes that must respond to
ping requests and accept SSH connections and “light loaded” for specifying
maximummemory pressure and five-minute load averages.Group constraints
(second box on the left side) are applied to any group of nodes, ensuring, for
instance, that nodes are evenly distributed across four geographical regions.
Path constraints (third box on the left side) specify the desired network prop-
erties, such as setting a limit on the maximum diameter for the shortest path
between any two nodes in the overlay network. Additionally, Rhizoma defines
a utility function used to compute a utility value for each possible deployment,
aiming to optimize this value. The function represents a weighted average
of the deviations of different node parameters from their ideal states, taking
into account factors such as the five-minute load on each node, available CPU
resources, network diameter, and maximum latency. Moreover, a cost function
is included to evaluate the cost of a specific deployment and the migration
process to it. This is especially important for commercial cloud services, as it
directly aligns with the provider’s pricing model. Optimizing for actual costs
is a key characteristic of Rhizoma. An example configuration of these function
values is shown at the bottom of the figure.

Concluding, using knowledge-representation techniques in distributed sys-
tems is widespread in work on intelligent agents [Syc+96]. There has not
been much related work in autonomous, self-managing distributed systems
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since then, outside the malware community [Yin+09]. Approaches only sup-
port system-level metrics, not application-level metrics used in the optimized
process.

4.7 chapter summary

Related work was discussed in terms of the different development life cycle
phases. Now, related work is classified against the requirements identified in
chapter 3. The tabular overview in table 4.2 illustrates which related works
fully (●), partially (○), or not at all (blank) meet the requirements. In some
cases, a lack of data prevented a conclusive statement, indicated by a “?”. This
evaluation follows a summary highlighting research gaps and unaddressed
issues in existing work.

Dynamic overlay network programming: Previous approaches, like [STS08;
Rod+04; Buf08; Net20; DAS23], focus on separating the application from
the implemented overlay scheme by providing a overlay-agnostic interface,
such as the presented Common API for structured overlays [Dab+03]. This
separation allows the overlay implementation to be switched transparently for
the application, providing flexibility when different overlay schemes need to
be evaluated or when the application’s requirements change. However, these
approaches share the limitation that the choice of overlay implementation
must be made at the application’s build time. This means that the developer
must decide on a concrete overlay scheme before deployment and operation of
the application. Consequently, the application cannot switch between overlay
schemes at runtime and can only react to changing constraints within the
current scheme.

The only approaches that theoretically support runtime adaption of overlay
schemes are [Buf08; AK09; Yin+09]. However, these approaches primarily
focus on overlay resource policy description. They allow for the theoretical
description of high-level goals to be fulfilled by dynamically selecting an overlay
scheme at runtime, but this capability is not actually addressed or implemented
in the approaches.

Self-configuration: Some approaches support self-configuration only partially.
However, this often comes with the limitation that self-configuration is fully
achieved iff a specific overlay scheme is chosen at build time, or the approach
supports only a specific overlay scheme (e.g., DHT) as seen in [Sto+02; For04;
RSS10]. Therefore, approaches that meet this requirement often exclude those
that fulfill the requirement of “dynamic overlay programming”.
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Table 4.2: Related work in overlay net-
work construction systems.

System / Author Year Requirement
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JXTA [Gon01] 2001 ● ○ ● ○ ● ●

i3 [Sto+02] 2002 ● ● ● ● ● ●

MACEDON [Rod+04] 2004 ○ ○ ○ ? ● ● ?

UIP [For04] 2004 ● ● ● ● ●

Behnel et al. [BB05] 2005 ○ ● ● ● ○ ○

Kumar S.D et al. [KB06] 2006 ● ● ● ● ?

Buford [Buf08] 2008 ● ● ● ○

Overlay Weaver [STS08] 2008 ○ ○ ○ ? ● ● ?

Akka [Lig09] 2009 ○ ● ● ● ●

Al-Oqily et al. [AK09] 2009 ● ● ● ○ ○ ○

Rhizoma [Yin+09] 2009 ● ● ○ ● ● ?

SOLID [RSS10] 2010 ● ● ● ●

Jadex [BP12] 2012 ○ ● ● ○ ● ○

Kubernetes [Kub14] 2014 ○ ○ ● ○ ● ● ● ○

ZeroTier One [Zer14] 2014 ● ● ○ ●

GoPrime [Cap+16] 2016 ● ● ● ● ?

ActorEdge [AZ17] 2017 ○ ●

EmbJXTAChord [BL18] 2018 ○ ● ● ● ● ●

Tailscale [Tai19] 2019 ● ● ○ ●

FogBrain [FB20] 2020 ● ● ○ ○ ○

libp2p [Pro20] 2020 ● ● ● ● ●

MARIO [Bro+20] 2020 ● ● ○ ○ ○

OpenZiti [Net20] 2020 ○ ○ ● ● ● ● ●

Parallel Theatre [Nig21] 2021 ○ ● ● ?

Idawi [Hog22] 2022 ● ● ● ● ?

EdgeVPN [SAF23] 2023 ● ● ● ● ● ● ●

INSANE [Ros+23] 2023 ● ● ? ? ● ?

Oakestra [Bar+23] 2023 ○ ● ● ○ ● ● ● ?

Diaz Rivera et al. [DAS23] 2023 ○ ● ● ● ● ● ●

● ∶= fully met ○ ∶= partially met (blank) ∶= not met ? ∶= unknown
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It is also noteworthy that some presented approaches focus on specific func-
tionalities, such as low-latency pairwise communication in the case of INSANE
[Ros+23], or location transparency as seen in Jadex [BP12], Tailscale [Tai19],
andZeroTier [Zer14]. These approaches are self-configuringwithin their clearly
defined working area.

Additionally, it should be mentioned that approaches like [Buf08; AK09;
Yin+09] construct only a conceptual framework for self-configuration without
considering this aspect in the context of dynamic overlays.

Overlay services: In terms of flexible overlay services, the observation is sim-
ilar to self-configuration. Many approaches provide solutions that address
specific sub-problems of overlay construction in untrusted environments, such
as focusing on communication constraints, without offering extensions [Buf08;
Yin+09; Net20; DAS23].

Efficiency and Robustness: It has often been observed that strong assumptions
about the underlay in terms of control and availability are made, which only
apply to limited environments like data center networks [Kub14]. Operation in
heterogeneous and dynamic networks is often considered out of scope. Only
a few approaches [BP12; For04; Hog22; BL18; Zer14; Tai19; SAF23] address
operation in more flexible network environments e.g. by implementing NAT
traversal or failover mechanics. Approaches like [Pro20; BL18] provide low-
level building blocks for the construction of overlays and are thus capable of
being efficient and robust in principle. However, whether these approaches
fulfill these properties depends on the specific overlay scheme implemented.

Scalability and Extensibility: This is a fundamental requirement of many
overlay schemes, which is why many approaches partially fulfill these re-
quirements. Scalability and extensibility often come at the cost of reduced or
nonexistent control over the overlay regarding dynamic overlay programming
or self-configuration, which require a certain degree of central coordination.
This central coordination can limit the system’s overall scalability.

Security: Security is often not considered and is frequently omitted by many
approaches, as indicated by the numerous “?” symbols for this requirement
in table 4.2. When security is addressed, it is typically focused on controlling
access to the overlay resources and ensuring the integrity of the overlay while
operating in an untrusted underlay [Sto+02; For04; RSS10]. Approaches like
[Zer14; Tai19] provide confidentiality by encrypting all data plane communi-
cations. Other approaches, such as [Gon01; Pro20], offer low-level building
blocks that at least provide security primitives.



68 related work

In summary of prior work, each system focuses on one or a few aspects of the
overall topic, no system meets all the discussed requirements to the best of our
knowledge. A recurring observation is the frequent absence of dynamic overlay
reconfiguration in response to changing application requirements or resource
constraints. Furthermore, support for dynamic overlay services is often lacking,
which is necessary for resource management in heterogeneous environments.
Existing applications frequently require modifications to be compatible with a
given approach, or limitations in the application design process may arise.

There is a lack of solutions that can dynamically reconfigure overlays at
run time without placing strong requirements on the physical network capa-
bilities. A robust solution should overcome limitations through appropriate
techniques, such as NAT traversal, and support additional overlay services,
which many applications require. Overlay design is complex, so developers
should be supported in constructing overlays by allowing them to define the
desired outcome without specifying each step necessary to achieve it.

Overall, the need for a comprehensive approach that addresses these gaps
remains an open research area.



5
System architecture for SDON at the edge

In the preceding chapters 3 and 4, the requirements for a software-defined overlay net-
working system are identified, and the relevant literature is reviewed. The review found
that numerous existing systems facilitate the development of distributed applications by
applying overlay networking techniques. However, while these systems address certain
aspects of the broader topic, none fully satisfy all the identified requirements. This
chapter, therefore, presents an architecture for a software-defined overlay networking
approach that meets all requirements. The structure of this chapter is as follows:

• Section 5.1 outlines the general system model of a software-defined overlay
networking system.

• Section 5.2 describes the overall system architecture of a distributed middleware
for a simplified development and deployment of overlay networks at the network
edge. This includes the rationale for splitting themiddleware into three conceptual
layers, each dealing with one aspect of software-defined overlay networking.

• Section 5.3 introduces the communication layer. It overcomes restricted connec-
tivity and the lack of trust in edge networks to link edge devices dynamically.

• Section 5.4 describes the service layer. This layer allows the flexible integration
of services into the overlay, like custom routing, quality of service (QoS), or
security. Therefore, it helps applications in making better use of edge resources.

• Section 5.5 introduces the software-defined overlay networking layer. This layer
provides central control and automatically interprets high-level functional re-
quirements to configure overlay networks. Thus, it simplify deployment of overlay
networks to the edge.

• Section 5.6 summarizes this chapter.

69
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5.1 software-defined overlay networking system model

This section describes a system model that combines the advanced network
management capabilities of software-defined networking (SDN) (Section 2.1)
with the flexibility of overlay networks (Section 2.3) to operate independently
of underlying edge network challenges. SDN systems allow network adminis-
trators to define the desired outcomes for the network rather than manually
specifying individual configuration steps. These systems automatically config-
ure network devices and paths to meet performance, security, and reliability
requirements. Many SDN systems, like ONOS and Ryu [Ope24; Ryu17], re-
quire control of the underlying network infrastructure, which requires all
networks involved to be operated by the same administrative domain, which
is typically only provided in data center-like networks [LL14]. In contrast,
overlay networks are often deployed in untrusted environments, spanning
administrative domains without the need to control the network configura-
tion. For this reason, overlay networks construct an abstraction layer above
this constrained environment (Section 2.3). Overlay networks provide their
own services without requiring changes to the existing network infrastructure.
Therefore, a normal SDN system cannot be used in untrusted environments
because it makes strong assumptions about underlying infrastructure con-
trol. Whereas a conventional SDN system requires network infrastructure
configuration to adapt to requirements, a software-defined overlay networking
(SDON) system creates an overlay network that does not require control of
the underlying infrastructure.

In the remainder of this section, the impact of distributed application re-
quirements on such a system is first discussed, followed by the challenges the
system faces in untrusted edge networks. Finally, the next section presents an
architecture for a SDON system that connect these two “worlds” of application
requirements and edge network challenges.

Distributed applications requirements

Distributed applications demand a robust and flexible network environment
where individual components can communicate seamlessly. Such a network
environment is often not present at the edge. A system in which overlay net-
works are programmed is required to integrate them into the application. This
approach allows the network to be created and used transparently to match the
application’s needs (fr 1). The overlay network deployment process involves



5.1 software-defined overlay networking system model 71

Public IPv6 subnet

Private IPv6 subnetPrivate IPv4 subnet

Public dual stack subnet

ASAS

AS

Internet backbone

MiddleboxMiddlebox

Middlebox

Private IPv4 subnet

Middlebox

Application
Ed

ge
 n

et
w

or
k 

la
ye

r
A

pp
lic

at
io

n 
la

ye
r

Applications’ requirements:
overlay network programming,

self-configuration, overlay
services, efficiency, robustness,

scalability, extensibility,
security

Software-defined overlay networking (SDON) system

Networks’ challenges:
limited visibility and

control, complex resource
management, restricted

communication, insecure data

Application

Figure 5.1: Model of a SDON sys-
tem: Atop applications requiring well-
behaving overlay networks. At the bot-
tom, independent best-effort behaving
devices. In between, the SDON system
provides means to “connect” these two
layers.

the application developer formulating high-level functional goals. Afterward,
the system automatically self-configures the overlay by enforcing the necessary
lower-level configuration steps to achieve the formulated goals (fr 2). Since
no assumption can be made about the behavior of edge devices the overlay is
deployed on, the system must support overlay services to provide additional
services, like routing, QoS, or security in an otherwise best-effort and untrusted
environment (fr 3). Furthermore, the system must be efficient, robust, scal-
able, extensible, and secure to optimize the utilization of device resources
and to be capable of supporting a wide range of application deployment sizes
(nfr 1–nfr 5).

Challenges of edge networks

The edge networks pose challenges to SDON, respectively when distributed
applications are operated across multiple subnetworks under different ad-
ministrative control, e.g. the Internet [TFW21]. Here, developers have limited
visibility and control over the configuration and behavior of devices and
networks. Here, reconfiguring devices and networks to improve application
performance is constrained or entirely unfeasible. The types of devices en-
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countered, such as smartphones, desktop computers, and servers, as well as
the networks they operate on, including residential, corporate, cloud, public,
and mobile networks, can vary significantly in their capabilities. Additionally,
networks are dynamic and edge resources can be unpredictable, as they may
suddenly exit the system or change their behavior without prior warning, mak-
ing complex resource management necessary. The construction of an overlay
networks needs coordination and synchronization. Although almost all devices
are somehow connected with the Internet, communication is restricted between
many devices [DA08; For04]. Incompatible protocols are used side-by-side,
such as IPv4 and the successor IPv6, requiring IPv6 transition mechanisms
(like NAT64, 4in6, or 6in4 [MBB11; DC98]). Those mechanisms introduce com-
munication indirections between IPv4 and IPv6. Furthermore, the widespread
deployment of middleboxes on the Internet render many devices unreachable
without additional countermeasures like NAT traversal (refer to section 2.4 for
more information about NAT) [Haa+16; WP17]. A middlebox is an intermedi-
ary network device that performs functions beyond the standard operations of
an IP router, like gateways or firewalls [BC02]. Finally, all information trans-
mitted in these environments must be considered as insecure data due to the
absence of built-in security services and the public nature of the Internet. Thus,
received information can be manipulated, including the sender and receiver
information of the communication and its content, in the absence of security
protocols.

The system model described is illustrated in Figure 5.1. The SDON system
application layer at the top contains applications, each requiring a different
overlay network. At the bottom, the edge network layer consists of devices that
can host the applications and establish overlay networks for the distributed
applications. The application will transparently use the overlay network. In
between, the SDON system, tasked with addressing the needs of applications
despite the challenges present in the underlying edge network.

The described system model can be used for the following two usage sce-
narios: i) Operation on dedicated devices that wait to host services of various
distributed applications, which then transparently use the SDON overlay. This
enables SDON system to realize an edge computing platform, on which any
application can be deployed and operated. ii) Peer-to-peer operation, where
SDON system is tightly coupled with a specific application. In this case, the
user starts the application as usual, with SDON system transparently inte-
grated into the application. While the user operates the application normally,
an overlay established by SDON system is used transparently.
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In the next section, an architecture for such an envisioned SDON system
is presented by identifying required components, specifying their needed
functionalities and defining their interfaces.

5.2 overview on the distributed middleware system

This section outlines the overall architecture of the conceptualized Software-
defined overlay networking (SDON) system. Given the system model pre-
sented (Section 5.1), a realization as distributed middleware is suitable. A
middleware is a software layer located between the application and the oper-
ating system, abstracting the complexities of the device resources to simplify
the programming and management of distributed applications [Mah04]. The
SDON middleware is distributed, meaning it can run on every device that
wants to offer its local resources to run distributed applications that transpar-
ently build and use the overlay. Developers can use the middleware to provide
applications equipped with an overlay network, giving them an idealized view
and control of the underlying device resources. The middleware transparently
handles all the necessary tasks regarding overlay networking.

Bringing software-defined networking to the edge

In the previous section, four main challenges were identified for overlay net-
working in untrusted edge environments: limited visibility and control, com-
plex resourcemanagement, restricted communication, and untrusted resources.
Each of these challenges must be addressed using appropriate techniques,
which can then be combined to form the desired SDON middleware. For this
reason, the process enabling SDON is divided into the following subsequent
steps (Figure 5.2):

1. Link edge device efficiently and securely: Ensuring that asmany devices
as possible can securely reach each other is a key task in overlay network
construction. Establishing connectivity enables individual devices to be
used for flexible network topology creation. Additionally, equipping each
device with a cryptographic identity ensures the secure identification
of devices. This step provides the primitives for flexible, efficient, and
secure overlay network construction.

2. Integrate dynamic overlay networks seamlessly: Control communi-
cation behavior between devices by overlay services. Edge networks
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Figure 5.2: Software-defined overlay net-
working is conducted in three steps. First,
edge devices are efficiently and securely
linked. Second, requested overlay ser-
vices are employed. Third, overlay net-
work deployment is simplified by achiev-
ing central overlay control and auto-
matically repairing unintended network
changes.
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typically operate on a best-effort service level, which does not meet the
requirements of many applications to function properly. This step pro-
vides the ability to control the behavior of the overlay network by overlay
services that, e.g., enforce QoS or other services that make the edge
appear more reliable.

3. Simplify deployment of overlay networks to the edge: SDON enables
flexible overlay network management using high-level functional re-
quirements. This assists developers in managing overlay networks, as
a network management system takes over many tasks related to device
resource selection, overlay construction, and maintenance.

This three-step process shows how underlying device resources are trans-
formed step by step to an overlay networkmanaged by intents. Initially, the edge
network layer consists of a collection of autonomous systems, each containing
one or more subnetworks, operating on different IP versions and including
heterogeneous devices and configurations, some of which are deployed behind
middleboxes. As a result, communication is heterogeneous, restricted, and
insecure. Therefore, a first layer constructs an overlay network, enabling secure
connectivity between all devices. A second layer dynamically adds services
to the overlay network. The third layer allows the overlay network to be cen-
trally managed through high-level function requirements, enabling automatic
resource selection, overlay construction, and maintenance.
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Architecture overview

The corresponding overall middleware architecture is shown as an UML com-
ponent diagram [OMG11] in Figure 5.3. The middleware is positioned between
the application on top and the device’s edge network interface at the bottom.
Three sub-components are included within the SDONmiddleware component,
corresponding to the three steps discussed earlier in this section.

Figure 5.3: Overview of SDON middle-
ware architecture as UML component di-
agram. Themiddleware utilizes the phys-
ical network to provide distributed appli-
cations with overlay networks specified
by intents.
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The remainder of this section is structured as follows: First, the required inter-
faces of the SDON middleware are presented. This is followed by a discussion
of the provided interfaces. Finally, the sub-components are introduced.

Required interfaces

The SDON middleware requires one interface from the edge network:

• Send/Read IP packets: The edge network is utilized for control plane and
data plane traffic, serving purposes such as overlay networkmanagement
and application traffic. Therefore, the middleware must be providedwith
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an interface allowing sending and reading IP packets for communication
with other remote devices running the middleware.

Provided interfaces

The SDON middleware provides a total of three interfaces to applications:

• Send/Read IP packets: While the required “Send/Read IP packets” in-
terface handles underlay network communication, this interface is used
for overlay network communication. The overlay network transparently
processes all packets sent via this interface. This interface enables the ap-
plication running on the local device to communicate with applications
running on remote devices, allowing coordination and synchronization,
thereby forming a distributed application. This interface processes all
application communication and applies the overlay network routing and
traffic-control.

• Specify intents: This interface is used to pass the application’s require-
ments for the SDON system. These requirements are described as intents,
where only the desired high-level goal is specified without detailing
the necessary steps to achieve it. This abstraction simplifies the manage-
ment of overlay networks [LF23]. While the application only specifies
its intents, the middleware determines and automatically applies the
necessary steps, such as neighbor discovery, latency measurements, link
establishment, and dynamic adaption to node churn and alignment to
the intents.

• View insights: This interface provides insights into internal middleware
information. These internal details include the status of intent imple-
mentation, overlay network configuration, monitoring data, and device
information. While intent-based networking (IBN), as facilitated by the
previous interface, is typically designed to prevent applications needing
to care about these internal details – since the SDON system abstracts and
implements the provided intents automatically – it is advantageous in
this case to provide applications with such an interface. IBN is typically
applied in environments with a controlled availability of resources or the
ability to deploy new resources (e.g., cloud environments). The SDON
system is operated in potentially untrusted environments. Therefore, no
assumptions about available resources can be made. The application can
adapt to the edge network constraints using this interface if necessary.
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Sub-components

The SDON middleware component includes three sub-components: the commu-
nication layer (Section 5.3), the service layer (Section 5.4), and the SDON layer
(Section 5.5) that will be described in detail in the following sections.

5.3 communication layer

The communication layer, as depicted in Figure 5.4, provides fundamental com-
munication capabilities, secure communication and mutual authentication
among individual middleware devices. This component optimizes device re-
source utilization by maximizing device connectivity and identifying the most
efficient edge network paths. Establishing a key infrastructure at this low layer,
by mutually authenticating devices and ensuring confidential communication,
provides the secure foundation needed for all subsequent steps.

Figure 5.4: Communication layer archi-
tecture as UML component diagram. The
layer enables secure communication be-
tween as many edge network devices as
possible. It abstracts from communica-
tion barriers and provides a unified inter-
face for communication.
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After presenting this component’s task of creating a secure communication over-
lay network, the required interfaces, provided interfaces, and sub-components
are introduced.
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Required interface

The communication layer requires the following interface:

• Send/Read IP packets: The edge network is utilized for peer discovery
and communication with remote middleware devices. This interface is
provided by the parent SDON middleware component (Section 5.2).

Provided interfaces

The communication layer provides two interfaces:

• Send/Read IP packets: This interface differs from the required “Send /
Read IP packets” interface, as it processes communication overlay net-
work messages, not edge network packets. All communication passed
over this interface is routed and secured via the overlay network provided
by this component. Communication overlay addresses are used instead
of IP addresses for peer identification. The reasoning for introducing a
separate overlay address schema is explained in Section 5.3. This interface
is used by the parent SDON middleware.

• View insights: This interface provides internal information regarding the
construction of the communication overlay network and edge network
metrics. This interface exposes information such as discovered peers,
paths to reach them, and corresponding path metrics. This interface is
used by the service layer.

Sub-components

The communication layer component consists of three sub-components: Identity
manager (Section 5.3.1), peer discoverer (Section 5.3.2), and location-aware router
(Section 5.3.3), which are now described in detail.

5.3.1 Identity manager

The identity manager holds information about the identity of the locally running
middleware. While IP addresses are used by the edge network to identify hosts,
the communication overlay network employs its own addressing scheme for
the following reasons:
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• IP addresses are often unintentionally and unknowingly shared among
multiple devices when deployed behind firewalls or NATs, making iden-
tification based on IP addresses impossible.

• These deployments also cause devices to be reachable at different ad-
dresses (e.g., WAN address vs. LAN address), depending on whether
the sender is in the same subnetwork, rendering IP routing information
context-sensitive.

• Further, a device’s IP address changes over time when being mobile and
roaming between networks or connected through dial-up Internet access,
which assigns the device a new address every time a new connection is
established. Here, it is not known which and when a new address will
be assigned, making it difficult to identify a device over a longer period
of time.

• IP addresses can be forged easily when no additional network security
protocol, e.g., IPsec, is used.

Therefore, the identity manager employs virtual identities consisting of a
public/private signing key pair, where the public part is used as the address
for communication. Using a public key as a peer identifier is beneficial because
it ensures both uniqueness and security. In contrast, the private part is used
to authenticate and initiate encrypted communication [Cas+03]. A signing
key pair allows the device to securely prove its ownership of an address to
other entities and to ensure that messages originating from this address are
recognized as legitimate.

Provided interface

• Get identity: This interface provides the middleware’s local identity,
including the address and corresponding cryptographic key material.

5.3.2 Peer discoverer

The peer discoverer is responsible for finding routable IP endpoints of remote
middleware devices. This process involves exchanging routing information,
overcoming communication barriers, verifying reachability, and providing
secure communications. Establishing routability between as many devices
as possible using most local network paths helps efficiently utilize available
devices. Establishing secure communication is necessary as otherwise received
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information, like the identity of a peer or application messages, can not be
trusted. First, we explore the challenges of establishing routability and secure
communications, and then present a protocol design that effectively addresses
both issues.

Peer discovery

As stated in the system model (Section 5.1), the widespread deployment of
NATs and firewalls render many devices unreachable from the Internet, which,
in turn, prevents these devices from being used flexibly in overlay networks.
Therefore, this component must provide means to overcome these commu-
nication barriers. Due to the heterogeneous behavior of NATs and firewalls,
multiple traversal techniques have emerged, each with its rationale for use:

• The most successful NAT traversal method is relaying (Section 2.4.2.2).
Here, communication with NATed devices is achieved by relaying all
communication through a public reachable server. This method works
with all NAT behaviors but has the drawback of making the relay a
single point of failure (SPOF), a potential bottleneck, and a privacy con-
cern. Further, this relayed communication increases the communication
latency.

• Another method is hole punching (Section 2.4.2.3), which can establish
direct network connectivity for most NAT behaviors. There is one excep-
tion: If both devices trying to communicate with each other are operated
behind a NAT applying endpoint-dependent mapping and filtering (of-
ten named as “Symmetric NAT”, see Section 2.4.1.2), this method will
not succeed reliably. In this case, relaying is the only way to enable con-
nectivity.

• Port forwarding (Section 2.4.2.1) – when supported by the NAT – changes
the NAT behavior to endpoint-independent mapping and filtering. This
allows the device to become reachable like a public server, increasing the
likelihood of successful hole punching.

Individual protocols exist for each of these techniques. For relaying and
hole punching, the Interactive Connectivity Establishment (ICE) framework
[KHR18] is widely-employed, which combines the protocols STUN [Pet+20],
TURN [Red+20], and a signaling protocol like SIP [Sch+02]. For port for-
warding, protocols such as NAT-PMP [CK13], PCP [Win+13], and UPnP IGD
[BPW13] are required, with the latter relying on SSDP, SOAP, and HTTP (refer
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to section 2.4.2.1 for more information about port forwarding). As different
NAT devices implement different port forwarding protocols, all protocols must
be supported to ensure compatibility with many NAT devices.

Establishing secure peer communications

A cryptographic key agreement must be performed between both devices
before a discovered network path can be used securely (Section 5.1). This key
agreement is necessary to establish confidential and authenticated communi-
cation, and it involves the following steps:

1. Each device generates a pair of public and private keys for key agreement.

2. The public keys are then exchanged between the devices.

3. Each device computes a shared secret key using the received public key
and its own public and private keys. This shared secret key is used to
encrypt and authenticate subsequent communications.

For key agreement, protocols such as TLS using Diffie-Hellman key agree-
ment are available [Res18; IT21; RTM22]. Since the key agreement process
requires connectivity between the two devices, it cannot be performed before
NAT traversal. As a result, key agreement protocols are applied after the NAT
traversal process has been completed.

Secure peer discovery

For secure peer discovery, the NAT traversal techniques of port forwarding,
hole punching and relaying must first be applied to achieve routability, fol-
lowed by key agreement to secure the connection. Accomplishing this using
existing protocols would involve many protocols, each conducting individual
handshakes, resulting in additional load on the network and delayed commu-
nication establishment. This issue is illustrated in Figure 5.5. The messages 1 to
7 belong to the NAT traversal process (Section 2.4.2.3). This process requires
at least 2 RTTs. Depending on the behavior of the NAT, up to two additional
ReachabilityCheck messages might be necessary. Afterwards, with messages
8 to 9, the key agreement is conducted, resulting in an additional RTT. With
this sequential process, devices are utilized less efficiently, which contradicts
the efficiency nonfunctional requirement. Additionally, NAT traversal mes-
sages are not secured, which allows a potential attacker to perform a MITM
attack. This can unintentionally result in an opening in the NAT for the attacker,
enabling unauthorized access to the local network.
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Figure 5.5: Sequential hole punching and
key agreement. Messages 1 to 7 belong to
the hole punching process and messages
8 to 9 to the key agreement process.

A more efficient approach includes creating a new protocol aware of the
whole NAT traversal and key agreement processing, avoiding redundant hand-
shakes. The communication used for NAT traversal can be used for key agree-
ment, saving the subsequent handshake. Further, the NAT traversal messages
can be used to initial application communication, further reducing connection
establishment time. While the key agreement could be integrated into NAT
traversal process, port forwarding cannot be changed as these would involve
adjustments to middleboxes, which is impossible as control of underlying
network infrastructure cannot be assumed.
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Figure 5.6:NAT traversal process applied
by the peer discoverer component.

The complete secure peer discovery process is shown in Figure 5.6. First,
port forwarding is applied to help make any local NAT less restrictive to hole
punching. Second, hole punching is applied, which requires both peers to
exchange information. While existing protocols only exchange routing infor-
mation, this signaling is also be used for key agreements. If hole punching
succeeds, the discovered direct path is used. Otherwise, communication is
relayed through a public reachable server. Unlike existing protocols, this new
protocol would better use existing devices, thereby improving the efficiency of
the middleware.
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Required interfaces

• Get identity: The discovery process involves agreeing on cryptographic
keys with peers, which needs access to the local address and identity’s
key material.

• Send/Read IP packets: The edge network is utilized for peer discovery.
This interface is provided by the parent communication layer component
(Section 5.3).

Provided interface

• Request route: This interface specifies to which peers a route is needed,
triggering this component to start the discovery process.

5.3.3 Location-aware router

The location-aware router is responsible for routing using the most local discov-
ered edge network path. The componentmaintains a table containing all known
peers and their corresponding discovered paths. Continuously, all entries in
the table are checked to verify peer reachability. Periodic health checks also
collect path metrics like latency, jitter, and packet loss. Ensuring reachability
and collecting metrics is necessary, as the service layer and SDON layer require
this information to select suitable edge resources for overlay network construc-
tion. Further, this router signs and encrypts all outbound communication and
decrypts and verifies all inbound communication to ensure an attacker has not
forged received data. If a communication to an unknown peer is requested,
this component temporarily buffers outgoing communication messages while
a route is requested via the “Request route” interface.

Required interface

• Request route: This interface is required to request the discovery of a
route to a given peer. Used when a communication to a peer with no
discovered path occurred.

• Get identity: The routing process involves signing and encrypting com-
munication, which needs access to the local address and identity’s cryp-
tographic key material.
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• Send/Read IP packets: The edge network is utilized for route main-
tenance and processing outbound and inbound application commu-
nication. This interface is provided by the parent communication layer
component (Section 5.3).

Provided interfaces

• Send/Read IP packets: This interface processes communication with
peers. All communication passed over this interface is routed and secured,
as mentioned in the component description. Communication overlay
addresses are used instead of IP addresses.

• View insights: This interface exposes insights such as discovered peers,
their routable IP endpoints, and associated route statistics.

In summary, the communication layer creates an overlay network that enables
secure connectivity between as many devices as possible on the underlay using
the best physical path, as shown in Figure 5.7. The dotted lines indicate the
possible any-to-any connectivity, where physical paths are only established
if communication occurs. The dashed lines indicate the mapping of devices
between layers. This overlay network abstracts from many communication
barriers incurred by heterogeneous physical network configurations and mid-
dleboxes. Further, secure communication and mutual authentication are pro-
vided, enabling devices to authenticate each other mutually and communicate
securely.
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Figure 5.7: Communication overlay net-
work provides secure connectivity be-
tween all devices. Heterogeneities and
communication barriers of edge net-
works are abstracted. Dotted lines indi-
cate available connectivity between de-
vices, while dashed lines indicate the
mapping of devices.



86 system architecture for sdon at the edge

5.4 service layer

The service layer is built upon the communication layer (Section 5.3). While
the communication layer enables connectivity between devices, it inherits the
best-effort behavior prevalent in the edge networks. While some applications
support running without any guarantees, many need higher requirements to
function properly. Therefore, the service layer provides capabilities to control
the overlay network behavior, like enforcing a given topology, QoS, or security.
As a result, this layer elevates the best-effort overlay network to an overlay
network, providing QoS guarantees. This component is designed to support a
wide range of services to suit various application needs. Thus, goals can, for
example, influence the communication between individual pairs of devices
or the behavior and organization of groups of devices. Given the virtually
limitless range of service requirements, as each application may have unique
objectives, the middleware should offer a core set of foundational services
while remaining flexible enough to accommodate the addition of new services
as needed.

Figure 5.8: Service layer architecture as
UML component diagram. The layer im-
plements mechanisms to provide ser-
vices many applications need to function
correctly.
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After describing this component’s task of making the communication behavior
configurable by dynamic integration of overlay services, the required interfaces,
provided interfaces, and sub-components are presented.
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Required interface

• Send/Read IP packets: This component requires access to the commu-
nication layer’s communication interface as some overlay services might
need to modify it.

• View insights: This interface is necessary because some services require
access to internal information about the underlying environment.

Provided interfaces

• View insights: This interface provides internal information regarding the
applied overlay services. Information, such as the currently applied ser-
vice and statistics generated by some of those services, is made accessible
alongside insights provided by the communication layer.

• Specify services: This component provides an interface that accepts a
list of required services that are integrated into the overlay and may only
regard specific devices and their communication.

• Send/Read IP packets: This interface is equal to the one provided by
the communication layer (Section 5.3), with the difference that all commu-
nication passing through this interface undergoes the communication
modification enforced by some overlay services.

Sub-components

The service layer component comprises three sub-components: the library of
service mechanisms (Section 5.4.1), the service goals interpreter (Section 5.4.2),
and the service implementer (Section 5.4.3), each of which is now described in
detail.

5.4.1 Library of service mechanisms

While service goals define the desired outcome (e.g., connectivity, confiden-
tial communication, support for distributed lookup overlay service), concrete
mechanisms are required to enforce these goals (e.g., perform connectivity
checks between edge devices, conduct latency measurement on network links,
apply encryption sent over specific overlay links, let edge devices arrange in a
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DHT). Thus, the library of service mechanisms maintains a library of available
mechanisms to enforce service goals. These mechanisms may implement spe-
cific protocols, such as a cryptographic key agreement [DH22], authentication,
error-control [Wel82], or codecs (e.g., gzip compression). More complex pro-
tocols, including examples like the structured Chord-DHT [Sto+03] and the
unstructured membership management protocol CYCLON [VGS05], can be
used to influence the arrangement of devices. Since service goals vary widely,
the library also allows the addition of new mechanisms.

The interceptor design pattern is well-suited for implementing service mech-
anisms by adjusting the communication behavior on a lower level [Sch+00;
RF20; ST23]. It enables modular processing of inbound and outbound mes-
sages through interceptors that can independently filter, modify, or analyze
messages as shown in Figure 5.9. For example, an interceptor may encrypt
outbound messages and decrypt inbound messages independently of any
other interceptors, while other interceptors may perform functions such as
authentication or replay protection. This independence allows easy addition,
removal, or reordering of interceptors, as each interceptor focuses solely on its
specific service mechanism.

Figure 5.9: Interceptor design pattern
used to implement various service mech-
anisms.
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Provided interface

• Select mechanisms: This interface provides access to all service mecha-
nisms available to achieve certain service goals.

5.4.2 Service goals interpreter

The service goals interpreter interprets the service goals received through its
interface by mapping them to specific service mechanisms. It tracks available
mechanisms in the library and which enforce what goals. Enforcing a goal may
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include choosing one or combining multiple available mechanisms. Not all
communication requires the same service goals. Therefore, setting different
goals for each remote device and message is possible.

Service mechanisms are implemented as independently acting interceptors.
This component connects these interceptors in sequence to form pipelines that
ensure that all communication passes through such pipelines is processed se-
quentially by all interceptors, where each interceptor applies its corresponding
service mechanism. For each peer, the middleware creates separate pipelines
as shown in Figure 5.10. In this example, the processing pipeline for communi-
cation with peer 𝐴 applies encryption and error control. For peer 𝐵, only error
control is applied. For peer 𝐶, only encryption is applied. A list of the available
service mechanisms in the middleware can be found in Section 6.3.1.2.
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Error control 
interceptor

Encryption 
interceptor

Figure 5.10: Interceptors are chained to
create peer-level processing pipelines.

Required interfaces

• Select mechanisms: This interface is required to retrieve available service
mechanisms from which this component selects to enforce service goals.

• Submit pipelines: After goals have been mapped to mechanisms, the
mechanisms are chained together, creating processing pipelines. These
pipelines are submitted to a component that processes messages through
the dedicated pipeline before being passed further.

Provided interface

• Specify service goal: This component provides an interface that accepts
service goals that must be applied to communication.
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5.4.3 Service implementer

The service implementer ensures that the chosen servicemechanisms are enforced
to meet the specified goals. It tracks the inbound and outbound communi-
cations associated with each peer and processing pipeline, ensuring that the
appropriate service mechanisms are applied to the communication stream
before passing it along for further processing.

Required interfaces

• Send/Read IP packets: Access to the communication interface of the
communication layer is necessary for this component to apply servicemech-
anisms. This interface is provided by the parent service layer component
(Section 5.4).

• View insights: This interface is essential because certain service mech-
anisms can benefit from internal information about the underlying en-
vironment. For instance, a reliable communication service mechanism
might need details about the average latency of a route to configure the
acknowledgment timeout for received messages correctly. This interface
is provided by the parent service layer component (Section 5.4).

Provided interfaces

• Send/Read IP packets: This interface provides the application commu-
nication where the required service goals have been applied.

• Submit pipelines: This interface configures this component to know
which communication belongs to what processing pipeline.

• View insights: This interface provides internal information regarding
the applied service mechanisms. Further, the insights obtained via the re-
quired “View insights” interface are also exposed through this interface.

In summary, the service layer provides control of the overlay network topology
and service guarantees in an otherwise best-effort environment, which does
not adequately meet higher-level guarantees required by many applications
to work correctly. The service overlay network created is shown in Figure 5.11:
The communication overlay network has been “elevated” to a service over-
lay network with enforced network topology and communication behavior.
Solid directed lines indicate established network paths by the connectivity goal.
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The rounded boxes indicate different service goals applied, like reliability or
confidentiality. To save space, the different goals are only depicted by differ-
ent symbols, each type representing one goal. service goals are mapped to
mechanisms that enforce the desired communication behavior. While the com-
munication layer facilitates the communication itself, this layer determines the
behavior of that communication.
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5.5 sdon layer

Figure 5.12: Software-defined overlay
network programming.

Intent activationIntent assurance

Intent translation

Devices

Network model

Device policiesInsights
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The SDON layer enables overlay networking using intents that are high-level
functional requirements, as shown in Figure 5.12. The system shown is similar
to an IBN system and has been adopted for the use with overlay networks in
untrusted environments [LF23]. The SDON system provides an interface 1 ,
allowing applications to express intents – high-level functional requirements –
which are then translated into a network model specifying resource constraints
and service goals on all overlay network elements, such as nodes and links. This
also includes specifying which application components should be deployed on
which nodes. Based on this model, device configuration policies are created,
and appropriate devices are selected 2 . For this selection, information available
for each device is considered. Not only is information provided automatically
by the lower layers used, but information is also actively gathered from the
devices (e.g., by requesting devices to benchmark peer bandwidth). The goal
is to select the best available devices for each overlay network node that meet
the desired properties. Once suitable resources are selected, the devices are
configured according to the policy configurations. During the implementation
of these policies, service goals are applied. After the deployment is completed,
both the overlay network and the devices used are monitored by this SDON
layer. Due to changes in edge resources or newly available information, it may
become necessary to repeat the entire process and possibly deploy the overlay
network on more suitable devices 3 . This closed-loop mechanism ensures
ongoing alignment between the intended and deployed overlay network.
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SDON layer

View
insights

Specify
intents

Send/Read
IP packets

View
insights

Specify
service goals

Intent
translator

Intent
activatorImplement 

monitoring

Provide network model

Intent
assurer

Figure 5.13: SDON layer as UML com-
ponent diagram. The layer enables the
construction and deployment of overlay
networks based on intents, representing
high-level functional requirements.

After describing this component’s task, the required interfaces, provided
interfaces, and sub-components are presented.

Required interfaces

The SDON layer requires three interfaces:

• Send/Read IP packets: This component requires access to an interface
for overlay network communication, as activating intents requires coor-
dination and synchronization with remote middleware devices.

• Specify service goals: The activation of intents requires configuring
the behavior of overlay network communication. This is achieved by
specifying service goals on devices and their communication.

• View insights: This interface is necessary because intent activation and
monitoring require access to internal information about the layers below.

Provided interfaces

These interfaces are provided, which are both delegated to the parent SDON
middleware component (Section 5.2):

• View insights: This interface provides internal information regarding
the activation and assurance of intents. This includes information such as



94 system architecture for sdon at the edge

what intent results in what device policies and what policies have been
successfully applied. Besides this information, the insights provided by
the lower layers are exposed as well.

• Specify intents: Through this interface, intents specifying the high-level
functional requirements of the overlay network are received.

Sub-components

This component has three sub-components: Intent translator (Section 5.5.1),
intent activator (Section 5.5.2), and intent assurer (Section 5.5.3).

5.5.1 Intent translator

The intent translator compiles the received intents into a network model that
describes the desired overall overlay network behavior. This model includes the
desired nodes, links, resource requirements, service goals, and instructions on
which application components should run on each node. The network model
is the foundation for matchmaking between overlay nodes and devices.

Figure 5.14: Software-defined network
model describing a client-server appli-
cation communicating through a proxy.
Intents describe the desired topology,
nodes, and links.

n1

n2

n3

Run: proxy.bat
Disk: 5 GB

Run: server.sh
Memory: 1024 MB

Run: client.sh
CPU: 2

Route: n2 via n1

Confidential, Latency: 100 ms

Reliable, Bandwidth: 500 kbit/s

To improve the understanding of such a network model, an example of
an application consisting of three nodes is shown in Figure 5.14. The model
specifies that the program 𝑝𝑟𝑜𝑥𝑦.𝑏𝑎𝑡 is to be executed on a node identified 𝑛1,
the program 𝑐𝑙𝑖𝑒𝑛𝑡.𝑠ℎ on node 𝑛2, and the program 𝑠𝑒𝑟𝑣𝑒𝑟.𝑠ℎ on node 𝑛3. Node
𝑛1 is required to have at least 5GB of disk capacity, while node 𝑛2 must have at
least 1024MB of memory. Node 𝑛3 is required to have at least 2 CPU cores and
should route its messages to 𝑛2 via 𝑛1. Additionally, it is specified that nodes
𝑛1 and 𝑛2 should be connected by a link that ensures the confidentiality of
the communications and maintains a latency not exceeding 100ms. Nodes 𝑛1
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and 𝑛3, on the other hand, are to be connected by a link that ensures reliable
communications with a minimum bandwidth of 500kbit/s.

Required interface

• Provide network model: An interface is required so that this component
can hand over the network model, including all intents.

Provided interface

• Specify intents: Through this interface, intents are received from the
application. This interface is delegated to the parent SDON layer, which
is provided to the application (Section 5.2).

5.5.2 Intent activator

The intent activator uses the received network model to create a list of node-
centered intents, as illustrated in Table 5.1. This list specifies which intents exist
for each node, serving as a basis for matchmaking between overlay nodes and
devices. A distinction is made between two categories of intents:

• Resource constraints: Resource constraints describe intents that require
specific device capabilities, which cannot be intentionally enforced. For
example, an operating system cannot be changed from Linux to Win-
dows to enable support for running a batch program as requested by
an application. Similarly, the bandwidth of a link between two nodes
cannot be deliberately increased, but it may automatically increase in the
future (e.g., due to reduced network congestion, which frees up more
bandwidth).

For this reason, only this category of intents is considered in the resource
matchmaking process.

• Service goals: Service goals describe intents that can either fully or par-
tially enforced. For example, two devices can implement an encryption
protocol to enforce confidential communications, or an error control
protocol to manage packet loss by resending lost packets in the edge
network.

This component tries to select devices that best match the specified resource
constraint intents. Resource matchmaking decisions are made based on the
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Table 5.1: List of intents describing net-
work model shown Figure 5.14.

Node Intent Value
Resource
constraint

Service
goal

𝑛1 Run program. proxy.bat ✓

𝑛1 Minimum disk size. 5GB ✓

𝑛1 Confidential communication. 𝑛2 ✓

𝑛1 Maximum latency. 𝑛2 = 100ms ✓

𝑛1 Reliable communication. 𝑛3 ✓

𝑛1 Minimum bandwidth. 𝑛3 = 500 kbit/s ✓

𝑛2 Run program. server.sh ✓

𝑛2 Minimum memory size. 1024MB ✓

𝑛2 Confidential communication. 𝑛1 ✓

𝑛2 Maximum latency. 𝑛1 = 100ms ✓

𝑛3 Run program. client.sh ✓

𝑛3 Minimum CPU count. 2 ✓

𝑛3 Route 𝐵 via 𝐴 ✓

𝑛3 Reliable communication. 𝑛1 ✓

𝑛3 Minimum bandwidth. 𝑛1 = 500 kbit/s ✓



5.5 software-defined overlay networking layer 97

information available at the moment of the process. Information may be incom-
plete, change, or become outdated, resulting in a different resource matchmak-
ing process that better aligns with specified intents in the future. To address
this, the next component employs a closed-loop mechanism that allows the
resource matchmaking process to be rescheduled whenever new information
or intents become available. Further, this component can trigger processes
that will start to collect metrics needed to better comply with intents (e.g.,
perform bandwidth tests to find links that align with an intent). This device
matchmaking is shown in Figure 5.15. Here, the intents from the client-server
application that have already covered (Figure 5.14) are mapped to match avail-
able devices best. Overlay node 𝑛1 is mapped to device 𝐷 because it is the only
system that can run the proxy.bat service, which is a Windows batch script,
and meets the other constraints. Node 𝑛2 is mapped to device 𝐴 because it
requires a connection with a latency not exceeding 100ms to the device used
for node 𝑛1. Node 𝑛3 is mapped to device 𝐶. It is the best remaining device
because it is known to have a link to device 𝐷, although the exact bandwidth
is not (yet) known. This selection may be based on incomplete information, as
opportunistic matchmaking assumes that the desired conditions will likely be
met.

Resource constraints

Available devices

A
OS: Linux

Memory: 8 GB
Latency: D=29ms 

B
OS: Linux

CPU: 2
Memory: 5 GB
Latency: A=200ms 

C
OS: macOS

CPU: 8
Latency: D=912ms

Bandwidth: D=?ms

D
OS: Windows

CPU: 8
Disk: 500 GB

Latency: A=27ms 
Bandwidth: C=?ms

n1
Run: proxy.bat

Disk: 5 GB
Latency: n2=100 ms

Bandwidth: n3=500 kbit/s

n2
Run: client.sh

Memory: 5 GB
Latency: n1=100 ms

n3
Run: server.sh

CPU: 2
Bandwidth: n1=500 kbit/s

Device
matchmaking

Figure 5.15: Device matchmaking ap-
plied by intent activator. Each node is
mapped to best matching device.

After matchmaking, device configuration policies are created based on the
corresponding intents. These policies are then sent using the communication
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overlay to the intent activator components of the selected devices, which will
then automatically apply the received configuration policies.

Required interfaces

• Implement monitoring: This interface is used to inform which intents
are activated and which monitoring tasks should be conducted to contin-
uously verify that the overlay network aligns with the expressed intents.
The collected monitoring information is sent back using the same inter-
face.

• View insights: This interface helps to get lower-level information in
activating intents.

• Specify QoS goals: This interface is used to configure the local mid-
dleware by applying the desired QoS goals on the necessary peers and
messages.

• Send/Read IP packets: This interface is required to communicate local
decisions on resource allocation and desired QoS goals to other middle-
ware devices. Therefore, this interface is also required to receive decisions
a remote middleware made about the activation of intents.

Provided interface

• Provide networkmodel: This interface is provided to receive the network
model, including all intents.

5.5.3 Intent assurer

The intent assurer ensures that the overlay network remains aligned with the
intended state. This is necessary as edge networks are dynamic, and device
resources change over time. Further, overlay network deployment may have
been conducted using limited information, revealing after some time that a
different device matchmaking would result in better overlay network perfor-
mance. Therefore, this component continuously monitors the overlay network
by gathering passive and active analytics. The information to be gathered is
directly specified by the intents (e.g., latency intents require monitoring the la-
tency). The gathered information is sent to the intent activator, when thresholds
are met and if the overlay networks needs to be reconfigured.
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Required interfaces

• View insights: This interface helps to get lower-level information used
to track the deployment progress of intents and monitor the state of
successfully applied intents.

Provided interfaces

• View insights: This interface provides intent-level insights in addition to
the existing insights received that are just passed through. This interface is
delegated to the parent SDON layer, which is provided to the application
(Section 5.2).

• Implement monitoring: This interface is needed to make this component
aware of the intents that are in the process of being activated and to
decide what measures are necessary to collect monitoring information to
track intents.
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∩ Figure 5.16: Software-defined overlay
network. Based on high-level functional
application requirements, an overlay net-
work of nodes and links is created imple-
menting the desired behavior.

In summary, the SDON layer provides all key system components to achieve
IBN using overlay networking technology, facilitating the operation of dis-
tributed applications in untrusted environments, as shown in Figure 5.16. This
component represents the final layer and last step of the middleware. The
intended behavior of nodes and links is specified based on an overlay network
model. This specification assists in selecting devices that can meet the require-
ments to achieve the desired outcome. Additionally, a closed-loop mechanism
is applied to keep the overlay network aligned with the intents, responding to
changes in application requirements or edge resources.
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5.6 chapter summary

In this chapter, the architecture for a SDON system was summarized, which
fulfilled all functional requirements and nonfunctional requirements identified
in Chapter 3. The requirements necessitate architecting the SDON system as a
distributed middleware, positioned between the application and the edge net-
work. The individual components, their tasks, and interfaces were identified.
The SDON middleware includes a communication layer that dynamically and
securely links individual edge devices by applying methods known from the
P2P domain to overcome connectivity restrictions of edge networks. Further,
the middleware includes a service layer, which allows the flexible integration of
additional overlay services as needed by the application. These services can pro-
vide functionalities like custom routing, forwarding, QoS, or security. Finally,
a SDON layer allows the programming of overlay networks using high-level
functional requirements (intents), where the middleware then automatically
identifies the required means to construct and maintain the desired overlay
network. This architecture forms the basis for the prototypical implementation
discussed in the next chapter.
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Implementation of a SDON middleware

This chapter introduces the prototype of a software-defined overlay networking middle-
ware. It implements the architecture developed in chapter 5. The prototype is a fully
functional distributed middleware called drasyl. The structure of this chapter is as
follows:

• Section 6.1 gives an overview of the distributed middleware implementation.

• Section 6.2 presents the implementation of the communication layer.

• Section 6.3 details the implementation of the quality of service layer.

• Section 6.4 describes the implementation of the software-defined overlay net-
working layer.

• Section 6.5 summarizes this chapter.

6.1 the sdon middleware

The software-defined overlay networking (SDON) middleware has been im-
plemented in Java due to its capability to support a wide range of software
and hardware platforms, enabling the inclusion of as many devices as possible
in constructing software-defined overlay networks at the edge. Therefore, the
middleware is compatible with desktop computers, notebooks, servers running
Windows, macOS, Linux, and smartphones with Android operating systems.
Overlay networks can be constructed spanning across all these platforms.

Figure 6.1: Yggdrasil (1895) by Lorenz
Frølich.

The middleware implementation is called drasyl [döazy:l], named after Yg-
gdrasil, the mythical tree from Norse mythology that connects all the realms
of the universe [Lin01]. This name reflects the middleware’s goal of con-
necting any devices, regardless of location and context, enabling overlay net-
working. drasyl was published as an open-source software project under the
permissive MIT license to foster further research in this area. This disserta-
tion refers to the version current at the time, which was also published as an
open dataset [BR23]. The latest version of drasyl can be found on GitHub:
https://github.com/drasyl/drasyl.
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6.2 communication layer

This section presents the implementation of the communication layer, whose
architecture has been developed in Section 5.3. Beginning with the identity
manager (Section 6.2.1), where details about the implemented public-key signa-
ture system are provided. This is followed by the peer discoverer (Section 6.2.2),
which describes the protocol implemented for communication overlay net-
work construction. Finally, the location-aware router (Section 6.2.3) is presented,
describing the mechanism used to verify peer reachability and routing.

6.2.1 Identity manager

As outlined in Section 5.3.1, public keys are used instead of IP addresses. Public
keys provide uniqueness and security, while IP addresses do not offer these
features. The identity manager uses an Ed25519 key pair as the device identity.
Ed25519 is a high-speed and high-security public-key signature system, that is
based on the Edwards-curve Digital Signature Algorithm (EdDSA) [Ber+12].
This signature scheme has been chosen because it best meets the requirements
as it provides the following properties:

• High security: This signature system provides a 2128 security level, of-
fering a similar difficulty to break as a 3000-bit RSA key [Ber+12]. A
security level high enough to be used to connect devices securely.

• Fast performance: A quad-core 2.4GHz Intel Westmere processor from
the year 2010 can verify 71 000 signatures per second and sign 109 000
messages per second. Key generation happens almost as quickly as sign-
ing. [Ber+12]. This makes the signature system usable even on lower-
power devices running the middleware.

• Small keys: The public key uses just 32 byte, and a signature takes up
64 byte, making them compact compared to other schemes providing
a similar security level. This compactness reduces the middleware’s
overhead of the network protocol, as every middleware message must
contain the recipient and sender’s public key in its header. Every byte
saved in the header increases the available space for application payloads
contained in messages.

• Flexibility: Ed25519 keys are convertible to X25519 keys for use in key
agreement protocols. This allows peers to establish Authenticated en-
cryption with associated data (AEAD)-secured communication from the
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first message by knowing only the peer’s address, which represents the
peer’s Ed25519 public key. AEAD encrypts data while also protecting the
integrity of both the ciphertext and associated, non-encrypted data, pro-
viding confidentiality and protection against unauthorized modifications
[Rog02]. Message complexity can be reduced because signaling for agree-
ing on a key is no longer required, increasing security as communication
can be encrypted from the very first message [Tho21].

When the middleware is started, it checks if an identity is present. If not, a new
random identity is automatically generated locally and stored to be found on
the next start. An example of a middleware’s address is shown below:

c0900bcfabc493d062ecd293265f571edb70b85313ba4cdda96c9f77163ba62d

6.2.2 Peer discoverer

This component’s architecture section 5.3.2 identifies the need for a custom pro-
tocol that efficiently combines NAT traversal and key agreement functionalities.
This section presents the implementation of this protocol by first providing
an overview and then all protocol messages (Section 6.2.2.1) and processes
(Sections 6.2.2.2 and 6.2.2.3). Finally, the protocol is summarized by giving
further details on how this protocol establishes the communication overlay.

The protocol is implemented by using UDP as the 4 protocol because UDP
offers more flexibility than TCP. The features provided by TCP, such as reli-
ability, flow control, congestion control, and error detection, are not always
necessary, which leads to otherwise unnecessary overhead. Additionally, UDP
hole punching is less constrained than TCP hole punching (Section 2.4.2.3). In
this protocol, the standard UDP hole punching process is enhanced by piggy-
backing the key agreement on the signaling required for NAT traversal. As a
result, the key agreement is completed no later than NAT traversal is finished,
saving at least 1 RTTs. A second and third RTT can be saved in some scenarios
because signaling traffic can securely transfer application data. While standard
UDP hole punching uses only a single rendezvous server and uses it solely for
signaling, this new protocol supports multiple rendezvous servers, which can
also serve as relays when direct communication is not possible (or if the device
does not desire it). Multiple rendezvous servers increase the scalability of the
middleware, and using rendezvous servers as relays reduces the additional
message complexity needed to contact a dedicated additional server.
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6.2.2.1 Messages

Each message is AEAD-secured using the stream cipher XChaCha20 for en-
cryption, with Poly1305 authenticator. XChaCha20, a variant of ChaCha20,
supports random nonces, which reduces protocol complexity by eliminating
the need for stateful nonce tracking and synchronization [Arc20]. The message
format builds up on a public header, a private header and a body, as shown in
Figure 6.2. The complete message is authenticated. The private header and the
body are encrypted and can only be accessed by the recipient.

Body

Nonce (24 byte)

Recipient (32 bytes)

Sender (32 bytes)

Message type (1 byte)

Authentication header (16 bytes)

HELLO

Time (8 byte)

Endpoints (18 bytes/each)

Signed Public Keys (96 bytes/each)

ACKNOWLEDGEMENT

Time (8 byte)

Remaining Keys (1 byte)

UNITE

Address (32 byte)

Endpoints (18 bytes/each)

Signed Public Key (96 bytes)

APPLICATION

Payload

Private
header

Public
header

Figure 6.2: The communication layer
protocol contains four message types.
Each contains a public header, a private
header, and a message type-dependent
body.

The public header includes three fields: A 24-byte uniformly random Nonce,
used as amessage id and for encryption, followed by theRecipient’s and Sender’s
public key, both fields are 32 byte long.

The private header contains two fields: A 1-byte long field for the Message type
and a 16-byte long Authentication header.

The Body has the following message-type-dependent fields:

• HELLO: This message is used to register at a rendezvous server or to check
connectivity to a peer.

It consists of:

– An 8-byte Time field, containing the sender’s current time in mil-
liseconds as a Unix timestamp when the message is sent.

– An Endpoints field, listing IP endpoints, each 18 bytes long.
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– A Signed public keys field, listing signed public keys, each 96 byte
long.

Only the Time field is used for peer communication.

• ACKNOWLEDGEMENT: This message acknowledges the receipt of HELLO mes-
sages.

It has:

– An 8-byte Time field containing the timestamp from the correspond-
ing HELLO message.

– A 1-byteRemaining Key field indicating the number of unused public
keys stored at the rendezvous server, only used when the message
is sent from a rendezvous server.

• UNITE: This message is sent by the rendezvous server to exchange con-
nection information between two middleware devices.

– A 32-byte Address field containing the public key.

– An Endpoints field with a list of IP endpoints, each 18 byte long.

– A Signed Public Key used for key agreement.

• APPLICATION: This message is used to send application data and, with
an empty payload, to initiate a connection information exchange at a
rendezvous server.

– A variable-length Payload field containing application data.

6.2.2.2 Server registration

Middleware devices register with a rendezvous server to become available for
peer discovery initiated by other devices. Further, the registration is used to
place connection information on how the device believes it can be reached,
together with signed public keys used for key agreement on the server. While
the connection information will help during NAT traversal, the public keys are
used for key agreement.

The registration process is described in theUML sequence diagram [OMG11]
shown in Figure 6.3. The registration is refreshed periodically as long as the
middleware device is running. This is necessary to notify the rendezvous server
that the middleware device is still online, to update the connection information
stored on the server, to upload additional public keys, and to ensure that any
existing middlebox keeps the device reachable.



106 implementation of a sdon middleware

Figure 6.3: Registration process. : Device : Rendezvous server
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23
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• The middleware device sends a 1 HELLO message to the rendezvous
server. The HELLO message contains the current timestamp, contact infor-
mation and public keys.

• The rendezvous server stores the received contact information and pub-
lic keys. Additionally, the server records the IP endpoint from which
it received the middleware device message. Receipt of the message is
acknowledged by respondingwith an 2 ACKNOWLEDGEMENTmessage. This
response includes the received timestamp.

• Upon receiving the ACKNOWLEDGEMENT, the device is successfully regis-
tered to the communication overlay 3 . The device also learns the RTT
to the rendezvous server using the received and current timestamp.

• If no ACKNOWLEDGEMENT is received within a given time, the device is no
longer registered to the communication overlay 4 .

To unregister, the device stops sending new HELLOmessages, resulting in being
considered offline by the rendezvous server after some time. The rendezvous
server maintains a list of all currently considered online clients, including their
transferred contact information, keys, and IP endpoint the registrations were
received from and registration time.

6.2.2.3 Peer discovery process

Middleware devices perform peer discovery to establish connectivity using
the most local available network path. This process requires both devices to be
registered with the rendezvous server. It is shown as a UML sequence diagram
in Figure 6.4.
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𝐴 : Device : Rendezvous server 𝐵 : Device

HELLO

UNITEUNITE

ACKNOWLEDGEMENT

APPLICATION

par

HELLO

ACKNOWLEDGEMENT

Endpoint 
discovered

Endpoint 
discovered

1

2 3

4

5

4

5

6

6

Figure 6.4: Discovery process.
• When middleware device 𝐴 wants to communicate with middleware

device 𝐵, it initially lacks information on how to reach 𝐵. Therefore, it
contacts a rendezvous server to request information to reach 𝐵 by sending
an empty 1 APPLICATION message addressed to middleware device 𝐵.

• The rendezvous server now sends all contact information alongside a
signed public key for 𝐵 to 𝐴 using a 2 UNITE message. The server sent
𝐴’s routing to 𝐵 in parallel using another 3 UNITE message to enable
hole punching. Both sent public keys are immediately removed from the
server, to not be used for another key agreement process.

• Both devices will check if the received own public key for the key agree-
ment has already been used. Additionally, the received peer’s public key
is verified to ensure it is signed by the peer. Both devices will check if
the public keys received for the key agreement have already been used.
If not, both devices can generate their part of the shared secret and try
to reach each other in parallel on all endpoints contained in the UNITE

message by sending 4 HELLOmessages. On receipt, a middleware device
will respond with an 5 ACKNOWLEDGEMENT message. Once a middleware
device gets an acknowledgment, it will know that the endpoint used for
the HELLO message can be used to reach the other middleware device 6 .
The timestamps in both messages are also used to calculate the RTT.

The augmented protocol requires only four message types and two protocol
processes “Server registration” and “Peer discovery”. Depending on if one or
both middleware devices are behind a middlebox and one of the middleboxes
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applies endpoint-dependent mapping, up to three 4 HELLO messages must
be sent to “punch” a hole into the middlebox (see Section 2.4.1.2). If hole
punching failed, the active relay is used for communication with the peer. In
this situation, middleware device 𝐴 periodically repeats the discovery process
as it never gives up on establishing a direct connection.

Figure 6.5: Communication overlay es-
tablished by the communication layer to
enable secure discovery of middleware
peers.

Registration (active relay)

Registration

Direct path

Relayed path

Rendezvous 
server S2

Rendezvous 
server S1

Device 𝑩Device 𝑨 Device 𝑫Device 𝑪 Device 𝑬

Figure 6.5 illustrates the overlay network constructed by this protocol. Mid-
dleware devices register with at least one rendezvous server and select the
one with the shortest latency as the active relay. The active relay is used when
direct communication is impossible (like devices 𝐶 and 𝐸). If hole punching
succeeds, a direct connection is possible (like devices 𝐴 and 𝐶).

6.2.3 Location-aware router

This componentmaintains a tablewith all knownpeers and their corresponding
IP endpoints, discovered by the peer discoverer (Section 5.3.3).

The following factors were considered for the implementation of the IP end-
point health check: middleware devices can leave the communication overlay
at any time or may be assigned a new IP address. Therefore, a health check
is necessary to verify that the discovered endpoint is still alive. Furthermore,
the discovered endpoint might point to a middlebox that has created a tempo-
rary mapping (refer to section 2.4 for more information about middleboxes
and their mapping behavior). Middleboxes strive to destroy mappings due to
inactivity. Therefore, traffic must be sent through this mapping to keep it alive.
Thus, a periodic health check is needed to verify that a peer is still reachable,
measure the latency, and prevent any middlebox from garbage-collecting the
used mapping. A proper time interval must be selected for this as too many
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health checks increase the network’s overhead. Too few checks will result in
the destruction of middlebox mappings and increase the time before a peer can
be assumed offline. The challenge with middleboxes is that no assumption can
be made regarding when a mapping will be cleared. According to [Hät+10],
most middleboxes retain UDP bindings for at least 120 s of inactivity.

The health check is shown as a UML sequence diagram in Figure 6.6 and
has been implemented as follows (Figure 6.6):

• Each IP endpoint is periodically checked by sending a 1 HELLO message
including the current time in milliseconds as a Unix timestamp.

• The contacted peer has to response by sending back an 2 ACKNOWL-

EDGEMENT including the just received timestamp. As all messages are
AEAD-secured the response can be verified and the timestamp is used
to calculate the RTT 3 .

If no response is received within a given time, the message is considered lost.
If no response is received for a series of messages, the endpoint is considered
dead and will be removed from the routing table 4 . The component assumes
an endpoint is finally dead if at least three consecutive responses fail to arrive.

𝐴 : Device 𝐵 : Device

HELLO

ACKNOWLEDGEMENT

loop

alt
[default]

[time
exceeded]

Endpoint
alive

Endpoint
dead

1

2
3

4

Figure 6.6: Endpoints are checked.

In summary, the communication layer implements a peer discovery protocol
creating a communication overlay making all middleware devices routable.
Whenever a middlebox device needs to communicate with an other device, the
most local discovered network IP endpoint is used for communication. Hole
punching is used to provide direct connectivity in most cases, with a fallback
to relayed communication.
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6.3 service layer

This section presents the presented of the service layer, whose architecture has
been developed in Section 5.4. The presentation begins with the service mecha-
nisms library (Section 6.3.1), which demonstrates the application programming
interface (API) that supports the implementation of a wide range of mecha-
nisms. Additionally, a selection of the already implemented mechanisms is
presented. Next, the service goals interpreter (Section 6.3.2) is introduced, show-
ing how the mapping of service goals to service mechanisms is performed. It
also explains how these mapped mechanisms are subsequently used to con-
struct a communication processing pipeline. Finally, the service implementer
(Section 6.3.3) is discussed, describing how the constructed pipelines are ap-
plied and how messages are assigned to the correct pipelines.

6.3.1 Library of service mechanisms

First, the library of service mechanisms provides an API allowing the implemen-
tation of mechanisms to enforce service goals. Second, a collection of already
implemented mechanisms is provided, from which the application can select
(Section 5.4.1).

6.3.1.1 Service mechanism API

Service goals are enforced by mechanisms implemented as message-level inter-
ceptors that control how communication is processed between the application
and the network.

Interface Description

void messageOutbound(Object msg) Invoked when an outbound message is passed to the interceptor.

void messageInbound(Object msg) Invoked when an inbound message is passed to the interceptor.

void pipelineActive() Invoked once, when pipeline for peer communication has been created.

void pipelineInactive() Invoked once, when pipeline for peer is about to be terminated.

Table 6.1: MessageInterceptor API for
implementingmechanisms to enforce ser-
vice goals.
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In drasyl, each interceptor is represented by a Java class that implements
the MessageInterceptor interface, providing the methods shown in Table 6.1.
The outboundMessage() and inboundMessage()methods alter outbound or in-
bound messages, while pipelineActive() and pipelineInactive() perform
connection establishment or teardown handshakes. All methods can optionally
be implemented, depending on the mechanism to be implemented.

1 public class EncryptionInterceptor extends MessageInterceptor {

2 private final byte[] encryptionKey;

3 private final byte[] decryptionKey;

4

5 EncryptionInterceptor(byte[] encryptionKey, byte[] decryptionKey) {

6 this.encryptionKey = encryptionKey;

7 this.decryptionKey = decryptionKey;

8 }

9

10 void outboundMessage(Object msg) {

11 if (msg instanceof byte[]) {

12 byte[] cyphertext = encrypt(msg, encryptionKey);

13 super.outboundMessage(cyphertext);

14 } else {

15 super.outboundMessage(msg);

16 }

17 }

18

19 void inboundMessage(Object msg) {

20 if (msg instanceof byte[]) {

21 byte[] cleartext = decrypt(msg, decryptionKey);

22 super.channelRead(cleartext);

23 } else {

24 super.channelRead(msg);

25 }

26 }

Snippet 6.1: Implementation of a service
mechanism that enforces confidentiality
using encryption.

An example implementation of an interceptor for encrypting application
communication before it is transmitted over the edge network, ensuring confi-
dentiality, is provided in Snippet 6.1. The example interceptor is called Encryp-

tionInterceptor and implements the MessageInterceptor interface.
The outboundMessage() method (line 10) first checks if the outbound mes-

sage msg is a byte array. If msg is a byte array, it is encrypted using the provided
encryption key. This key could, for example, be provided by a separate inter-
ceptor that has performed a key agreement in advance. The encrypted message
is then passed to super.outboundMessage() to forward it along the pipeline
for further processing or transmission (line 13). This enables handling by the
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next outbound interceptor in the pipeline, eventually leading to transmission
over the network. Using outboundMessage() ensures that each interceptor can
add processing logic while maintaining a consistent and organized flow of
message handling. If msg is not a byte array, it is forwarded unaltered (line 15).

Similarly, the method inboundMessage() (line 19) checks and decrypts in-
bound messages using a provided decryption key before passing it further by
calling super.inboundMessage() (line 22).

6.3.1.2 Implemented overlay service mechanisms

Several overlay service mechanisms have been implemented to enforce service
goals that are often needed. All these mechanisms have been implemented
using the API presented in the previous section.

authenticated communication Authentication has been imple-
mented by signing messages with the sender’s private Ed25519 key (Sec-
tion 6.2.1), enabling the verification of the sender’s identity and securely en-
suring the integrity of the transmitted messages against forgery.

compressed communication Compression has been implemented
by applying the Zstandard (Zstd) lossless data compression algorithm to all
messages sent over the network [CK21]. Compression reduces the amount of
data transmitted in exchange for CPU time, improving the network efficiency
and data throughput.

chord-based arrangement All nodes participating in an overlay
network can apply the Chord protocol [Sto+03] to establish a DHT, which can
be used for efficient, scalable distribution of keys across nodes in a distributed
system. Nodes and keys are arranged in a virtual ring, allowing for quick data
retrieval, and dynamic scaling with minimal reorganization.

encryption Encryption has been implemented using the XChaCha20
stream cipher with Poly1305 for message authentication. Both peers perform
an X25519 key agreement to establish this, generating a shared secret to derive
encryption keys.

error control Error control has been implemented using Automatic Re-
peat reQuest (ARQ), which ensures in-order delivery of messages and triggers
retransmissions when necessary to prevent data corruption or loss. Addition-
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ally, checksums are employed to detect accidental errors during transmission,
maintaining the integrity of the transmitted messages.

cyclon arrangement All nodes participating in an overlay network
can apply the CYCLON protocol [VGS05], which conducts a peer sampling
mechanism where each node maintains a continuously updated list of peers.
CYCLON achieves this by periodically exchanging partial network views with
randomly chosen peers, ensuring robust and dynamic peer sampling.

prioritization Prioritization is implemented using a priority queue,
where each message is assigned a priority level (based on factors like message
type, urgency, or the time it was created). Messages are enqueued based on
their priority, with the highest priority messages processed first, ensuring that
critical messages are handled before less important ones.

routing Routing has been implemented by allowing the specification of
custom relays, enabling overlay messages to be routed through a predefined
path of overlay nodes rather than the default direct network route.

In summary, the implemented mechanisms are not intended to be exhaustive
in meeting all the needs of applications. However, they demonstrate that this
component’s API can represent various mechanisms.

6.3.2 Service goals interpreter

The quality of services (QoSs) goal interpreter uses the implemented service mech-
anisms to enforce service goals specified by the application. It creates processing
pipelines, including one or multiple service mechanisms. (Section 5.4.2). First,
the available service goals are presented. Next, the mapping of these goals to
mechanisms is explained. Finally, the interface for implementing processing
pipelines is presented.

6.3.2.1 Service goals

Service goals describe the desired outcomes. To illustrate this function, goals
are selected based on two criteria: (1) goals providing themost desired features
by applications, (2) goals that describe different dimensions, goals describing
overlay links between node pairs, goals describing paths between groups of
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nodes, and goals describing the overlay topology. This section presents goals
that can be enforced using the available mechanisms (Section 6.3.1.2).

reliability Communication in unreliable environments is inherently un-
predictable. While some applications can tolerate message loss, others require
reliable data transfer to ensure guaranteed delivery and error-free reception.

integrity Integrity ensures that transmission data is protected from unau-
thorized alterations. While reliability addresses errors that occur accidentally
during transmission, integrity focuses on preventing intentional attacks such
as tampering or data corruption. This is needed by applications where data
authenticity and accuracy are essential.

confidentiality Confidentiality ensures that transmission data is ac-
cessible only to authorized parties, protecting it from eavesdropping. This
is needed to maintain privacy and when the application handles sensitive
information, such as personal information. If this confidentiality flag is set, the
system uses symmetric encryption to ensure data can only be decrypted by the
receiver having the corresponding decryption key, even when relayed through
a rendezvous server.

efficiency Communication has a cost, in terms of required communi-
cation resources. This means the network between two devices has only a
limited bandwidth, determining how much data can be transmitted over time.
Increasing efficiency is essential when applications are operated in constrained
environments with limited resources.

privacy The privacy goal ensures that sensitive data is handled with strict
access control, allowing users to determine who can access their information.
Additionally, it is essential to protect not only the content of the communication
but also the identities of the communicating parties, ensuring that both the
data and the interaction remain confidential.

distributed lookup Distributed lookup aims to efficiently locate and
retrieve data or resources across multiple nodes, ensuring scalability, low
latency, fault tolerance, and balanced query load while minimizing network
traffic and maintaining data consistency.



6.3 service layer 115

load balancing The goal of load balancing is to evenly distribute work-
load across multiple resources, ensuring optimal performance, preventing
overload, minimizing latency, maximizing resource utilization, and enhancing
system reliability and fault tolerance.

6.3.2.2 Service goals mapping

While goals specify the desired outcome, mechanisms are needed to enforce
them. Therefore, goals must be mapped to mechanisms. Table 6.2 shows possi-
ble strategies to enforce each service goal by one or multiple service mecha-
nisms.
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Reliability ✓ (✓)

Integrity ✓ (✓) (✓)

Confidentiality ✓

Efficiency ✓ (✓) ✓

Privacy ✓ ✓

Distributed lookup ✓ (✓)

Load balancing ✓ ✓ (✓)

✓ ∶= fully enforced (✓) ∶= cond. enforced (blank) ∶= not enforced

Table 6.2: Mapping between service
goals and mechanisms. The service layer
in the drasyl middleware selects a single
mechanism or a combination of mecha-
nisms to enforce one goal.

6.3.2.3 Pipeline configuration

Once service goals have been mapped to mechanisms, the processing pipeline
is created. The pipeline consists of a chain of one more multiple Message-

Interceptors and itself is called ProcessingPipeline.
Snippet 6.2 shows the exemplary initialization of a pipeline using the pro-

vided ProcessingPipeline interface. This pipeline enforces the goals reliability
and confidentiality by using error control and encryption mechanisms (lines 3 to
4).
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Snippet 6.2: Creation of a processing
pipeline that enforces service goals re-
liability and confidentiality.

1 class ReliableAndConfidentialPipeline extends

ProcessingPipelineInitializer {↪

2 void initChannel(Pipeline p) {

3 p.addLast(new EncryptionHandler());

4 p.addLast(new ErrorControlHandler());

5 }

6 }

6.3.3 Service implementer

The service implementer ensures that every incoming and outgoing message
passes through the respective processing pipeline. A separate pipeline is main-
tained for each peer. If a message is sent to or received from a peer without an
existing pipeline, one is implicitly created based on the service goals. Regard-
less of the processing performed by the pipeline, each message is formatted
as an APPLICATION message with the appropriate public, private header, and
body (see Section 6.2.2.1).

A virtual network interface is established on each edge device to implement
the “Send/Read IP packets” interface. This virtual interface can be used as
any other interface connecting a physical network. By creating such a TUN
interface [Bor23b], IP applications can communicate transparently through
the overlay network without modification. While Linux and macOS provide
native support for TUN devices, Windows requires the use of Wintun1.1 https://www.wintun.net/

Configured with the IP address and netmask specified in the network model,
the TUN interface ensures correct network addressing. The SDON middle-
ware receives IP packets sent to this interface, processes them according to the
overlay network configuration, and transmits them to the appropriate destina-
tion SDON device. Conversely, packets received via the overlay network are
delivered to the local application through the TUN interface.

6.4 sdon layer

This section presents the implementation of the overlay layer, which has been
architected in Section 5.5. The introduction begins with the intent translator
(Section 6.4.1), which provides a Lua-based programming interface for creating
overlay networkmodels that incorporate the intents specified by an application.
Lua is a lightweight, high-level scripting language specifically designed for

https://www.wintun.net/
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embedded use in applications [IFF96]. Next, the intent activator (Section 6.4.2)
is introduced, showcasing the SDON controller that provides logically central-
ized software control of the underlying edge resources being programmed. The
controller’s greedy-based algorithm for selecting the best currently available
resources for activating the overlay intents is demonstrated. Finally, the intent
assurer (Section 6.4.3) is discussed, highlighting the closed-loop mechanism
used to verify that the overlay aligns with the desired intents in the presence
of changing resources.

6.4.1 Intent translator

Intents submitted to the system cannot be directly used to configure the under-
lying edge resources. Therefore, intents need to be converted into a network
intent. The intent translator defines the network model and API for submitting
intents to the system. (Section 5.5.1).

The goal is to describe a network with virtual nodes and virtual edges. Both
the network as well as the nodes and edges can be assigned intents. Since the
system is designed to be extensible, it must allow for adding new properties.

6.4.1.1 Network model

Following the requirements mentioned above, the data model has been created
and is presented as an entity-relationship (ER) model [Che76] in Figure 6.7.
The “root” of each network model is the network entity, which can contain any
number of network intents and nodes. Links have a start and an end, connecting
two nodes. Nodes and links can each have any number of associated node
intents or link intents. Now, the available node, link, and network intents are
presented, with the flexibility to extend them as needed. Intents either result
in influencing the resource allocation progress applied by the intent activator
(Section 6.4.2) or the service goals being enforced provided by the service
goals interpreter (Section 6.3.2.1).

node intents These node intents are available to be used individually or
in combination.

• cpu: The minimal number of CPU cores. Applied by the intent activator
to influence the resource allocation process (Section 6.4.2).

• memory: The minimum amount of memory in MB. Applied by the intent
activator to influence the resource allocation process (Section 6.4.2).
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Figure 6.7: Network model describing
intent-based overlay networks as an ER
model.
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• disk: The minimum disk size in GB. Applied by the intent activator to
influence the resource allocation process (Section 6.4.2).

• privacy: Enables encryption. Optionally, a list of routes can be supplied
to control which devices see communication. Enforced by the service goals
interpreter (Section 6.3.2.1).

• distributed_lookup: Enables node to perform distributed lookup pro-
tocol. Enforced by the service goals interpreter (Section 6.3.2.1).

• load_balancing: Enables node to perform balancing protocol. Enforced
by the service goals interpreter (Section 6.3.2.1).

link intents The following link intents can be used individually or in
combination:

• reliability: Enables reliable communication if set to true. Enforced by
the service goals interpreter (Section 6.3.2.1).

• integrity: Ensures communication integrity when set to true. Enforced
by the service goals interpreter (Section 6.3.2.1).

• confidentiality: Ensures communication confidentiality when set to
true. Enforced by the service goals interpreter (Section 6.3.2.1).
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• efficiency: If set to bandwidth, communication is optimized to mini-
mize bandwidth usage. If set to latency, communication is optimized
to minimize transmission latency Enforced by the service goals interpreter
(Section 6.3.2.1).

• latency: The maximum latency in ms. Applied by the intent activator to
influence the resource allocation process (Section 6.4.2).

• jitter: Themaximum jitter inms. This parameter is applied by the intent
activator to influence the resource allocation process (Section 6.4.2).

• loss: The percentage of packet loss, expressed as a percentage (%). This
parameter is applied by the intent activator to influence the resource
allocation process (Section 6.4.2).

• bandwidth: The minimum bandwidth in kbit/s. Applied by the intent
activator to influence the resource allocation process (Section 6.4.2).

network intents Both node and link intents can also be enforced on the
network level, activating them on every node and link if not locally overwritten.
Furthermore, additional network intents control the proactive collection of
edge device and network capabilities:

• measure_latency: Enables latency measurements between SDON de-
vices. Each device periodically performs latency measurements with
randomly selected other devices. The results of these measurements are
collected at the SDON controller and are used to optimize the overlay
network.

• measure_cpu: Enables one-time CPU benchmarks on all SDON devices
to measure the CPU performance. The benchmark includes searching for
prime number within a specified interval. The results of these measure-
ments are collected at the SDON controller and are used to optimize the
overlay network.

6.4.1.2 Network modeling API

An overlay network scripting API has been created using Lua to create network
models. Lua is language-agnostic, making integrating with many different
programming environments easy. This decouples the model from the concrete
implementation.
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Function Description

create_network(intents) Creates a new network model with specified intents.

network:add_node(node_id, intents) Adds a new node to the network model with specified identifier and intents.

network:remove_node(node_id) Removes node with specified identifier from the network model.

network:clear_nodes() Removes all nodes from the network model.

network:add_link(node1, node2, intents) Adds a new link to the network model between specified nodes and with
specified intents.

network:remove_link(node1, node2) Removes link between specified nodes from the network model.

network:clear_links() Removes all links from the network model.

network:get_nodes() Returns list of all nodes of the network model.

network:get_links() Returns list of all links of the network model.

network:set_callback(callback) Sets a callback function that is called every time new insights have become
available.

node:get_insights() Returns list of all insights of the node.

link:get_insights() Returns list of all insights of the link.

Table 6.3: Lua-API describing desired
overlay networks. Table 6.3 shows the Lua interfaces. First, a networkmodel is created by calling

create_network(). Then, nodes and links with the desired properties are
added to the model using add_node() and add_link(), respectively. Further,
a callback can be defined using the set_callback() function. That callback
is called every time a new insight becomes available, allowing the network
model to change in response to changes in the underlying device resources.
This callback can alter the network model in response to changes in the edge
resources or to implement intents that are otherwise impossible with the
available options.

Snippet 6.3 presents an example of using the modeling API to create the
overlay network shown in Figure 5.14. A conditional intent has been added
using the callback functionality (lines 7 to 17): If latency of link 𝐴↔𝐵 exceed
latency of 100ms, traffic from node 𝐶 to 𝐵 is routed through a direct link instead
of a path via 𝐴. If latency is below 100ms, traffic via 𝐴.
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1 network = create_network()

2 network:add_node("A", {disk = "5G"})

3 network:add_node("B", {memory = "1024M"})

4 network:add_node("C", {cpu = 2, routes = {B = "A"}})

5 network:add_link("A", "B", {encrypted = true, latency = "100m"})

6 network:add_link("A", "C", {reliable = true, bandwidth = "500k"})

7 function my_callback(network, devices)

8 linkAC = network:get_link("A", "C")

9 nodeC = network:get_node("C")

10 if get_insights(linkAC)["latency"] > "100m" then

11 network:add_link("C", "B")

12 nodeC.routes[B] = "B"

13 else

14 nodeC.routes[B] = "A"

15 network:remove_link("C", "B")

16 end

17 end

18 network:set_callback(my_callback)

Snippet 6.3: Example usage of network
modelingAPI describing network shown
in Figure 5.14.

6.4.2 Intent activator

The intent activator allocates underlying edge resources and configures nodes
and links to activate the network model (Section 5.5.2).

A centralized SDON controller supervises the task of activating intents by
first asses available resources, which includes the application of reactive/proac-
tive means to collect information on the available resources. All other nodes
are middleware devices that register to one SDON controller forming a sys-
tem as shown in Figure 6.8 using the protocol shown in Figure 6.9. Through
registration, they offer resources to the controller, who can use these to create
desired overlay networks and deploy application components.

The protocol shown relies on the virtual overlay network provided by the
communication layer, enabling connectivity between the controller and all
nodes. Further, all SDON overlay protocol messages are processed by pipelines,
enforcing confidentiality, integrity, and reliability.

Multiple controllers can be added to the system, distributing the load of
managing multiple applications among them. However, each application and
each edge device is alwaysmanaged by one controller at a time. An edge device
transfer between controllers is possible. One controller with excess resources
can hand over devices to a controller that needs more edge resources.
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Figure 6.8: SDON overlay network. De-
vices register with a controller and offer
resources to be part of an overlay where
application components are deployed on
the individual nodes.
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6.4.2.1 Resource allocation algorithm

Algorithm 1 Matchmaking of overlay nodes to SDON devices.
1: function matchmaking(𝑁, 𝐷)
2: 𝑀 ← ∅
3: for all 𝑛 ∈ 𝑁 do
4: 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ← ∅
5: 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← ∞
6: for all 𝑑 ∈ 𝐷 do
7: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← |current_state(𝑑) − desired_state(𝑛)|
8: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
9: 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

10: 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ← 𝑑
11: end if
12: end for
13: 𝑀 ← 𝑀 ∪ {(𝑛, 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ)}
14: end for
15: return 𝑀
16: end function

A greedy algorithm selects the best device resources based on the available
knowledge of the resources during allocation. The algorithm is implemented
as follows: For each node 𝑛 ∈ 𝑁, with 𝑁 being the set of all nodes in the
model, the desired state 𝑑𝑛 is defined. The matchmaking process is outlined
in Algorithm 1. Matchmaking requires traversing all overlay nodes 𝑁 (line 3).
Each node’s and its connected links’ requirements are compared with available
SDON devices 𝐷 to find the most suitable device 𝑑 ∈ 𝐷 (line 6). For each
node 𝑛 ∈ 𝑁, the desired state of 𝑛 is compared with the current state of 𝑑 and
then 𝑛 is mapped to the 𝑑 closed to the desired state (lines 7 to 11). At the end,
the matchmaking returns a list of mappings 𝑀 containing pairs (𝑛, 𝑑), each
mapping a node 𝑛 to a device 𝑑 (line 15).

The distance between the two states is calculated as follows. Each state is
represented as a vector 𝑠 = (𝑝1, 𝑝2, … , 𝑝𝑛), where each component 𝑝𝑖 represents
a resource property to be considered. The vectors are subtracted component-
wise to quantify the distance between the desired state 𝑠𝑑 and the current state
𝑠𝑐. This results in a difference vector Δ𝑠 = 𝑠𝑑 − 𝑠𝑐. Each component is weighted
by a corresponding priority vector 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛) to enable prioritization
among the resource properties. The weighted distance is then calculated by
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multiplying the difference vector component-wise with the priority vector,
resulting in:

Δ𝑠weighted = 𝑤∘Δ𝑠 = (𝑤1 ⋅ (𝑠𝑑1 − 𝑠𝑐1), 𝑤2 ⋅ (𝑠𝑑2 − 𝑠𝑐2), … , 𝑤𝑛 ⋅ (𝑠𝑑𝑛 − 𝑠𝑐𝑛))

This allows certain resource properties to have a greater influence on the overall
distance measurement (e.g., when latency is more important than jitter).

6.4.2.2 Configuration distribution

In this step, the controller distributes the overlay node intents to the assigned
SDON devices. This is achieved using the 1 CONTROLLER_HELLO message seen
in Figure 6.9, where the list of desired intents is attached to.

6.4.3 Intent assurer

The SDON controller supervises the provision and ongoing application of
distributed intents by periodically receiving HELLO_NODE messages containing
information about the node as well as the currently applied intents. These
periodic updates potentially alter the current state of each node, 𝑐𝑚, which
may render the existing resource allocation suboptimal. To address this, the
controller regularly executes the algorithm described in the previous section
to ensure that the overlay utilizes resources optimally and, if necessary, auto-
matically reconfigures the overlay.

6.5 chapter summary

This section presented the implementation of a distributed middleware for
software-based overlay network programming.

First, the implementation of the communication layer was presented. A
novel network protocol was introduced, which efficiently combined multiple
NAT traversal techniques with a Diffie-Hellman key agreement, allowing edge
devices to establish secure links in minimal time. This was used to construct
an IP overlay, which creates the illusion of an unrestricted network for the
application.

Second, a service layer was introduced that allowed the flexible integration
of overlay services. This was implemented by applying the interceptor design
pattern to all communication processed by the overlay. Individual interceptors
can alter overlay behavior to integrate desired services without interfering with
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other service interceptors. Services can be limited to specific overlay elements
and can be changed during runtime. These services include functionalities like
custom routing, forwarding, QoS, or security.

Third, the SDON layer was introduced, which provided global visibility and
control of the overlay by introducing a network controller. The controller pro-
vides a Lua scripting API where application developers can program desired
overlay networks by specifying the desired number of nodes, the topology, and
node and link behavior. The presented controller automatically identifies the
required steps and most suitable edge devices to create the desired overlay net-
work. The controller supervises the ongoing alignment of the current overlay
network state with the desired state by monitoring all edge devices. A closed-
loop mechanism allows the automatic detection and repair of any unintended
network change in response to unpredicted changes of edge resources.





7
Evaluation

The prototype of a software-defined overlay networking system presented in Chapter 6
is evaluated through several experiments, each focusing on one of the three layers:
communication, dynamic overlay services, and software-defined overlay networking.
Although each experiment targeted a specific layer, the lower layers were also implicitly
tested. The evaluations are performed to demonstrate that the prototype meets the
specified requirements. The same middleware is used throughout all evaluations, and it
is successively extended with new functionalities, which then become the focus of each
respective evaluation. Therefore, the experiments demonstrate how the middleware can
be applied across a variety of use cases. This chapter is structured as follows:

• Section 7.1 describes the evaluation of the protocol that enables secure connectiv-
ity between devices in restricted networks.

• Section 7.2 shows the performance evaluation of edge offloading where the mid-
dleware was integrated into a pre-existing computation offloading application.

• Section 7.3 presents the evaluation of two edge computing applications using
the middleware to simplify edge deployment and centrally-controlled overlay
network optimization.

7.1 evaluation of the secure connectivity protocol

In this section, the protocol used for achieving secure connectivity in re-
stricted edge networks is evaluated. The evaluation setup is described first
(Section 7.1.1), followed by themetrics (Section 7.1.2), the results (Section 7.1.3)
and a discussion of the findings (Section 7.1.4). Parts of this section are based
on the publication [BRF23a].

The evaluation demonstrates that the protocol implemented in the commu-
nication layer can securely connect devices in heterogeneous network environ-
ments. Therefore, the proposed protocol has been compared with the state of
the art to show the expected 2 RTTs reduction in connection establishment
time. Additionally, it is shown that this approach is compatible with actual ap-
plications and transparently provides secure communication channels. Further,
with this experiment, we address the following research questions:

127
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rq 1.1 How to achieve connectivity between edge devices efficiently?

rq 1.2 How to ensure that edge devices are linked securely?

7.1.1 Experimental setup

Figure 7.1: Application for communica-
tion layer evaluation. The application
consists of a HTTP-client on device 𝐴
communicating and a HTTP-server on
device 𝐵. On the underlay, both nodes are
connected through NATs with the Inter-
net. The middleware transparently pro-
vides secure reachability between client
and server.

Device 𝑨

NAT NAT

Rendezvous
server 𝑺

Application layer

Physical
network layer

Internet

Device 𝑩

HTTP 
client

HTTP
server

The setup used for this experiment is shown in Figure 7.1. In this evaluation,
the middleware runs a client-server HTTP application consisting of one client
and one server. In this application, the client wants to send a single request to
the server and receive the response. The HTTP client runs on device 𝐴, and
the HTTP server runs on device 𝐵. To prove NAT traversal capabilities, each
device is operated behind a NAT. Therefore, before the device 𝐴 can securely
reach the device 𝐵, the overlay network must perform NAT traversal and key
agreement. Rendezvous server 𝑆, a public Internet host, handles the signaling
required for hole punching and key agreement. In this setup, both devices are
registered with the rendezvous server and have not yet established a direct
connection.

An early snapshot of the middleware prototype has been used for this evalu-
ation using a TLS-based key agreement (Section 2.5). TLS supports two distinct
key agreement modes: The first one is used when peers communicate for the
first time. This handshake mode is called “full handshake”. The second mode
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uses key material received through an earlier handshake or a separate chan-
nel, which is known as the “0-RTT handshake”. The prototype used for this
experiment has been published [BRF23b]. A

SB

Figure 7.2: Location of server and de-
vices of communication layer evaluation.
Device 𝐴 is located in Helsinki, Finland;
device 𝐵 is in Ashburn, Virginia, USA;
and the rendezvous server 𝑆 is in Nurem-
berg, Germany.

This experiment is conducted as a real-world experiment, where both devices
and the rendezvous server are deployed on actual hardware within the Internet
(Figure 7.2). Device 𝐴 is located in Helsinki, Finland; device in 𝐵 in Ashburn,
Virginia, USA; and rendezvous server 𝑆 in Nuremberg, Germany.

To demonstrate that the proposed approach is more effective than exist-
ing approaches, the client-server application establishes a connection once
using the communication layer, with both devices and the server implement-
ing the communication layer protocol, resulting in a piggybacked TLS hand-
shake. The same experimental setup is used to perform hole punching and
key agreement as conducted by previous approaches. In previous approaches,
the TLS handshake is conducted subsequently after the hole punching pro-
cess is completed. These two scenarios are repeated for both TLS handshake
modes to compare how the system behaves during initial and successive con-
nection establishments. Therefore, four real-world experiments are conducted,
comparing the proposed approach and existing approaches for different TLS
handshake modes:

𝐸1 Hole punching with subsequent full TLS handshake (state of the art).

𝐸2 Hole punching with piggybacked full TLS handshake.

𝐸3 Hole punching with subsequent 0-RTT handshake (state of the art).

𝐸4 Hole punching with piggybacked 0-RTT handshake.

7.1.2 Experimental metrics

This experiment aims to demonstrate that the proposed approach is effective
and performs faster than existing methods when two peers want to communi-
cate with each other. To achieve this, the experiment first examines whether a
connection between the two peers can be established. Next, it measures the
number of RTTs required before the time to first application byte sent (TTFBS).
Additionally, the time elapsed from the client’s connection request to the recep-
tion of the first byte is recorded. These metrics comprehensively evaluate the
proposed approach’s connectivity success rate and communication efficiency.
Each of the four mentioned experiments (Section 7.1.1) was repeated 𝑛 = 1000
times to obtain a reliable mean value for the TTFBS.
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7.1.3 Results
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Figure 7.3:Distribution of the time to first
application byte sent for 𝑛 = 1000 experi-
ments until two software-defined overlay
networking (SDON) devices can start to
communicate securely after a connection
has been requested. Broken down into
the two available TLS handshake modes
and whether the handshake was done
subsequently or piggybacked.

Rendezvous
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Device 𝑩Device 𝑨 103 ms

24 ms 89 ms

Figure 7.4: Observed median ping times
between server and devices during ex-
periment.

During the experiments, the followingmedian ping times between the server
and devices were observed (Figure 7.4):

𝐴 ↔ 𝐵: 103ms 𝐴 ↔ 𝑆: 24ms 𝐵 ↔ 𝑆: 89ms

Figure 7.3 plots the median time to the first application byte sent in depen-
dence on the conducted handshake mode:

𝐸1 A median TTFBS of 241ms was observed for hole punching with a sub-
sequent full TLS handshake. This result is consistent with the expected
value, as the total handshake time can be derived by adding the ping
times: 𝐴 experiences 1 RTTwith 𝑆 and 2 RTTswith 𝐵 (24ms+2×103ms ≈
230ms). The value observed sets the baseline for full TLS handshakes.

𝐸2 Hole punching with a piggybacked full TLS handshake resulted in a
median TTFBS of 139ms, which is 102ms less compared to 𝐸1. The ob-
served value comprises 1 RTT between 𝐴 and 𝑆 and 1 RTT between 𝐴
and 𝐵, corresponding to the expectation. This experiment demonstrates
that 1 RTT can be saved during a full TLS handshake.

𝐸3 Subsequent hole punching followed by a 0-RTT handshake results in a
median time of 139ms. This observation matches the previous experi-
ment, with 𝐴 having 1 RTT to 𝑆 and another 1 RTT to 𝐵. The observed
value sets the baseline for zero round-trip time (0-RTT) TLS handshakes.

𝐸4 Hole punching with a piggybacked 0-RTT TLS handshake results in a
TTFBS of 35ms. Data transmission can begin after 1 RTT between 𝐴 and
𝑆, aligning with expectations. These results indicate that saving 1 RTT
can reduce the connection establishment time by 134ms.
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The experiment results confirm statements regarding general functionality
and reduced peer discovery time by 1 to 2 RTTs. Since the TLS handshake is
implemented similarly in other protocols, such as QUIC or Datagram Transport
Layer Security (DTLS), similar results are expected. The results of this minimal
setup can also be applied without loss of generality to large-scale middleware
deployments, as the actual connection setup process between devices remains
consistent.

7.1.4 Discussion of results and evaluation conclusion

This section discusses various aspects of the proposed approach and concludes
with a summary.

handshake optimization Further handshake optimizations are tech-
nically impossible with current NAT behavior. All TLS handshake messages
are already piggybacked, and no further optimization of the hole punching
process is feasible.

tls security In this approach, the ClientHellomessage of the TLS hand-
shake is relayed through the rendezvous server 𝑆, which might be seen as
a potential security concern. However, TLS is explicitly designed to handle
message transmission through potentially untrusted intermediaries, ensuring
that security remains unaffected.

appending application data Following the completion of the TLS
handshake, the augmented hole punching process allows for the transmission
of encrypted application data via subsequent hole punching messages, thereby
reducing connection establishment time. While this capability is technically
possible with previous hole punching methods, it is generally discouraged
due to the risk of data being sent to incorrect hosts during the hole punching
process. Existing methods, which do not incorporate a TLS handshake, risk
leaking unencrypted data if messages are sent to incorrect hosts. This issue
arises when ReachabilityChecks are addressed to private endpoints obtained
from 𝑆. Since many LANs use the same private address spaces, a Reachabil-

ityCheck from 𝐴 might reach an incorrect host within 𝐴’s private network,
which shares the same private IP address as 𝐵.
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amplification attacks Existing hole punching methods are suscepti-
ble to amplification attacks. In such an attack, a malicious rendezvous server
𝑆 could send 𝐴 a large list of incorrect endpoints for 𝐵, causing 𝐴 to send
repeated ConnectionRequests to all these endpoints until a timeout or retry
limit is reached. This attack can be mitigated in the proposed approach if TLS
is configured to use a public key cipher, which is commonly the case. A public
key cipher enables both peers to sign their endpoint lists before sending them
to 𝑆 for registration, allowing 𝐴 to verify the ForwardEndpointsmessage upon
receipt.

man-in-the-middle attacks Man-in-the-middle attacks during the
hole punching process are also possible, where malicious hole punching mes-
sages are injected. For instance, 𝐵 might receive a ForwardEndpoints message
with endpoints pointing to a malicious client 𝐶, resulting in 𝐵 performing
hole punching with 𝐶 instead of 𝐴. This situation would create a hole in 𝐵’s
NAT, exposing 𝐵 to direct attacks from 𝐶. The proposed approach can miti-
gate this risk by configuring TLS to require client certificates, allowing 𝐵 to
authenticate 𝐴’s identity when receiving the ClientHello message. Another
potential attack involves injecting Acknowledgments for non-functional end-
points, causing a client to lock into an endpoint and preventing communication.
This attack can be countered using the piggybacked 0-RTT handshake, which
allows authentication of all Acknowledgments.

In summary, the presented approach saves between 1 to 2 RTTs compared
to existing methods. A full TLS handshake saves 1 RTT, while all subsequent
0-RTT TLS handshakes save 1 to 2 RTTs. This approach is designed for use with
protocols such as QUIC and DTLS 1.3, which rely on UDP and use TLS-based
handshakes for security. Particular benefits are seen for applications where the
overlay network frequently needs to link new edge devices. Additionally, the
hole punching process is secured through the piggybacked TLS handshake.

7.2 edge computing evaluation using the middleware

In this section, a performance evaluation of edge offloading is presented. The
middleware is integrated into a pre-existing computation offloading system,
enabling execution on the edge. This section begins with a description of
the evaluation setup (Section 7.2.1), followed by the evaluation metrics (Sec-
tion 7.2.2), and concludes with the evaluation results (Section 7.2.3). Parts of
this section are based on the publication [Bor+23].
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The evaluation shows that a pre-existing application that uses TCP and UDP
for communication in unrestricted networks can be operated in restricted edge
networks through an IP overlay network provided by the service layer. This
overlay integration simplifies conducting a performance evaluation of various
edge computing scenarios, where the service layer constructs the required
overlay for each scenario. Additionally, it shows the successful creation of
overlays across various environments, including edge, cloud, grid, residential,
and mixed settings. With this experiment, we address the following research
questions:

rq 2.1 How to integrate overlay networks into applications without
imposing restrictions on application design and functionality?

rq 2.2 How to improve the use of heterogeneous edge resources
through dynamic overlay networks?

7.2.1 Experimental setup

Application layer

Edge network
layer
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C
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GH3   GH4  
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NAT NAT NAT NAT

MH1 MH2 MK1
NAT NAT

Internet

Figure 7.5: Application for service layer
evaluation.

In this evaluation, the middleware runs the Tasklet computation-offloading
system (Section 2.6) as shown in Figure 7.5.



134 evaluation

Edge computing environments vary widely. An edge computing application
is considered with heterogeneous devices that are connected differently across
several scenarios. Different overlay service goals are applied in the individual
experiments. Furthermore, this experiment demonstrates that existing soft-
ware can operate with the middleware without modifications, thereby gaining
the advantages provided by the middleware and improving application per-
formance. This evaluation demonstrates how the middleware supports the
execution of scientific experiments. Additionally, it is shown how various net-
work environments impact communication and, consequently, the performance
of edge computing. This experiment is conducted as a real-world experiment
with an actual implementation.

An overviewof the devices (Section 7.2.1.1), environments that are integrated
with the middleware in different scenarios (Section 7.2.1.2), and computation
tasks (Section 7.2.1.3) is provided in the following.

7.2.1.1 Devices involved in experiment

Figure 7.6: Location of all environments
and nodes with their respective roles.
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For this evaluation, sixteen heterogeneous devices were used at seven lo-
cations in Germany, near Hamburg, Frankfurt, and Mannheim, as shown in
Figure 7.6. One device acted as a consumer that offloaded computations to
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Environment ID Network/ISP NAT type CPU (cores/threads) RAM OS

Cloud
CF1

AWS Frankfurt -
c5.xlarge (2C/4T) 8GB Ubuntu 20.04

CF2 c5.xlarge (2C/4T) 8GB Ubuntu 20.04

CF3 c5.xlarge (2C/4T) 8GB Ubuntu 20.04

Residential

RH1 Deutsche Telekom

Port-restricted

Xeon E3-1270v6 (4C/8T) 60GB Ubuntu 20.04

RH2 Vodafone M1 2020 (8C/8T) 16GB macOS 12.1

RH3 O2 Xeon E3-1225v2 (4C/4T) 32GB Ubuntu 20.04

RH4 Deutsche Telekom Xeon E3-1225v2 (4C/4T) 12GB Windows 10

Grid

GH1

University
of Hamburg

Port-restricted Xeon E3-1225v2 (4C/4T) 16GB Ubuntu 20.04

GH2 Port-restricted Xeon E3-1225v2 (4C/4T) 32GB Ubuntu 20.04

GH3 Port-restricted Xeon E3-1225v2 (4C/4T) 32GB Ubuntu 20.04

GH4 Port-restricted Xeon E3-1225v2 (4C/4T) 16GB Ubuntu 20.04

GM1 Symmetric Core i7-8700K (6C/12T) 32GB Windows 10

GM2 Symmetric Core i7-8700K (6C/12T) 32GB Windows 10

Mobile
MH1

Deutsche Telekom
(4G LTE Band 7)

Symmetric
Core i5-6300U (2C/4T) 8GB Ubuntu 20.04

MH2
Deutsche Telekom
(4G LTE Band 7)

Core i5-8350U (4C/8T) 8GB Ubuntu 20.04

MH3 O2 (4G LTE Band 7) Ryzen 7 3700X (8C/16T) 64GB Ubuntu 21.10

Broker B1 DigitalOcean - Xeon 62xx (1vCPU) 1GB Ubuntu 20.04

Rendezvous
server

S1 Vultr - 5th Gen. Core (1vCPU) 1GB Ubuntu 20.04

Table 7.1: Devices, networks/ISPs, oper-
ating systems and NAT types used in the
evaluation [Röb22].
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fifteen providers. Additionally, two other hosts served as a broker and a ren-
dezvous server, respectively. The devices varied in type (desktop or mobile
systems), Internet connection (cellular or wired), and communication restric-
tions imposed by the networks to which the devices belong, such as firewalls
or NATs blocking inbound connections, NATs rendering hosts unroutable, and
ISP policies blocking P2P connections entirely, as detailed in Table 7.1.

Devices without NAT-imposed restrictions can be reached directly, while
devices with such restrictions must be made reachable using the NAT traversal
techniques first, which is transparently applied by the communication overlay.
SomeNATs restrict any P2P connections, requiring communication to occur via
a public rendezvous server as a last resort. The devices were placed in different
environments, allowing evaluation of the Tasklet system’s performance in
various scenarios. Providers were either located in the cloud, on a local or
remote grid, in private households (residential), or in cellular networks as
mobile devices.

In the following sections, devices are referred to by systematic identifiers.
For consumers and providers, the first letter indicates the environment (C
for “cloud”, R for “residential”, G for Grid, M for “mobile”). The second letter
represents the location (H for Hamburg, F for Frankfurt, M for Mannheim). B
denotes the broker, and S denotes the rendezvous server (see Figure 7.5).

The cloud environment (CF1–CF3) was located in the AWS data center in
Frankfurt. All devices in this cloud environment were provided with public IP
addresses and configuredwith no firewall, allowing these devices to be directly
routable from any other device. The residential environment devices (RH1–RH4)
were distributed in and around Hamburg and equipped with broadband In-
ternet connections. Each residential network was isolated from the Internet
through an NAT, which applied network address translation and blocked all
inbound connection attempts. Therefore, to enable bilateral connection estab-
lishment with devices in these residential environments, the overlay network
must be used to overcome the barriers imposed by the NAT. The filtering poli-
cies applied by the NAT permitted P2P connection establishment. The first
grid environment was located in a university network in Hamburg (3 providers,
GH1–GH3; 1 consumer, GH4). A second grid environment was placed in a univer-
sity network in Mannheim (2 providers, GM1–GM2). Each university network
was isolated from the Internet through a network-wide firewall that blocked
all inbound connections. Within each grid, devices could reach each other, but
bilateral connection establishment with devices from the Internet was only pos-
sible using the overlay network. Two mobile environments with three providers
(MH1–MH3) were also utilized. Both mobile environments were equipped with
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a carrier-grade NAT, assigning each mobile device a private, unroutable IP
address and preventing any inbound connection attempts. Additionally, all
mobile devices were isolated from each other, making P2P communication
between these devices impossible. The overlay network allowed these devices
to be reachable from the Internet, but P2P connections between two mobile
devices were restricted by the strict filtering policies of the carrier-grade NAT.
For communication between mobile devices, relaying through S1was required.

The broker B1 and the rendezvous server were located near Frankfurt, Ger-
many, in data centers operated byDigitalOcean andVultr. Bothwere configured
with public routable IP addresses and were not protected by a firewall.

7.2.1.2 Edge computing scenarios

Seven scenarios were evaluated, each representing an individual experiment.
In each scenario, a subset of providers was used for execution, except for the
“combined” scenario, where all available resources were utilized.

Each scenario required a different overlay network topology to be enforced.
Further, the quality of service (QoS) goal “reliability” was set for all communi-
cation. In the following sections, each scenario is briefly presented.

cloud This scenario resembles traditional cloud offloading. ThreeAmazon
EC2 c5.xlarge instances were rented in the same data center/availability zone
in Frankfurt (CF1–CF3). Since no network barriers, such as firewalls, exist in
this scenario, the consumer GH1 can communicate directly with the providers.
Therefore, the overlay network did not need to make any hosts reachable in
this scenario.

residential This scenario models typical residential setups (RH1–RH4).
Each environment is located near Hamburg, Germany, and within different
NATs. As a result, the overlay network must first make all providers reachable.
Without this, the providers would not be available as offloading targets. The
relaxed filtering policies applied by the residential gateways allow for P2P
communication.

grid-local In this scenario, a grid environment within an institute or
company network is assumed (GH1–GH4). All devices, including the resource
consumer, are located within the same LAN. This environment represents the
ideal setting for P2P communication, as there are no network barriers on any
side.
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grid-relayed The Grid-Relay scenario is a variation of the Grid-Local
environment. In this scenario, all LAN-based communication between peers
is intentionally disabled using a “routing” QoS goal. As a result, all commu-
nication is relayed through the public server S1. This setup allows for the
comparison of the impact of the absence of the overlay network, as direct
communication between consumers and providers is not possible.

grid-remote In this scenario, the consumer (GH4) is located in a different
location than the grid’s providers (GM1 and GM2). Although these locations
provide a high-quality Internet connection, institute/company-wide NATs
require that the providers be made reachable via the overlay network first.

mobile In this scenario, offloading in mobile environments is assessed
(MH1–MH3). Two of Germany’s three Tier 1 mobile carriers, Deutsche Telekom
and O2, are covered. Mobile environments are typically very P2P-hostile, as
mobile operators deploy symmetric NATs that prevent establishing any direct
link between two mobile devices. As a result, communication between mobile
devices must be relayed. Furthermore, due to the cellular connection, this
environment can experience significant disruptions and jitter. Therefore, this
environment represents the worst-case scenario for computation offloading.

combined This scenario combines the Cloud, Residential, Grid-Remote,
and Mobile environments. The goal of this scenario is to evaluate how highly
heterogeneous environments impact the results. This scenario introduces the
risk of observing negative performance effects on overall completion time due
to stragglers.

7.2.1.3 Tasks

During the experiment, 16 800 tasks were executed across seven scenarios. Each
taskwas split into 12 individual sub-task andwas repeated 100 times. The result
of a task is returned to the application once all 12 sub-tasks results have been
obtained. The offloading experiments have been conducted with four different
types of tasks. They are divided into two CPU-intensive (option pricing &
a color key filter) and two bandwidth-intensive tasks (image convolution &
ray tracing). The influence of network connectivity or computational power
on offloading performance can be determined using this spectrum. Since all
four application types show the same trend, only two tasks are presented in
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this thesis: Option pricing (CPU-intensive) and Image convolution (bandwidth-
intensive).

option pricing This task represents a CPU-intensive computation with
low network load, using a Monte Carlo method to price a European call option.
A Monte Carlo experiment uses random sampling to estimate mathematical
or statistical outcomes. A European call option is a financial contract allowing
the holder to purchase an underlying asset at a predetermined price, but only
on a specific date in the future, without any obligation. The compiled code for
this task is approximately 5kB in size, takes two integers as input parameters,
and outputs a single floating-point number. Consequently, the network load
can be considered negligible for this task type.

(a) Source image. (b) Filtered image.

Figure 7.7: Source image and filtered out-
put image of the image convolution task
for edge kernel.

image convolution An image convolution filter was implemented to
exemplify tasks with high network load and moderate CPU usage. This filter
constructs a 9×9 matrix for each pixel to detect the edges of images. Since
this task uses images with the same resolution for both input and output
parameters, the network load is higher and strongly dependent on the size
of the image. In the experiment, the image was 1867 pixels wide and 1050
pixels high, resulting in 2 million pixels and 6 million RGB values that needed
to be transferred twice (source input image and filtered output image) per
computation (see Figure 7.7).

7.2.2 Experimental metrics

In this experiment, both qualitative and quantitative metrics have been cap-
tured. The qualitative metrics assessed whether the middleware successfully
constructed the desired overlay network and whether task offloading was
effectively implemented. On the other hand, the quantitative metrics involved
investigating the behavior of different edge environments by measuring the
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timings associatedwith transferring the task from the consumer to the provider
(“offload task”) and the timings of transferring the results back to the consumer
(“return result”).

7.2.3 Results

Figure 7.8:Average transmission times in
milliseconds for a task of aCPU-intensive
(left) and bandwidth-intensive (right)
application.
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Figure 7.8 and Figure 7.9 plot the average transmission times in dependence
on the edge scenario. The figures summarize the results of the experiments
for the CPU-intensive option pricing (left) and bandwidth-intensive image
convolution (right) tasks. The figures show the average transmission times
observed for offloading the task and returning the result. Transmissions were
routed either directly through P2P connections or via the rendezvous server
S1, depending on the specific environment. Since computation times strongly
depend on the CPU performance of the respective device, the focus is placed
only on transmission-related operations (offloading a task from a resource
consumer to a provider and returning the result) to provide insights into
environment-related performance. The outcomes of the results will now be
presented and discussed:



7.2 edge computing evaluation using the middleware 141

Stage Completion Time [ms] Mean Median
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Figure 7.9: Histograms showing the den-
sity of the completion times in millisec-
onds of the individual life cycle stage in
each scenario.

7.2.3.1 Option pricing (CPU-intensive)

The Cloud scenario performs very well, even though the providers are located
hundreds of miles away from the consumer. This strong performance is at-
tributed to the large and reliable symmetrical network connections of the cloud
servers. However, a lower performance bound exists due to network latency
caused by the long distances.

The Residential scenario’s median performance is slightly higher, and the
mean is 50 % higher than that of the cloud scenario. Amore significant variance
in performance is observed, attributed to the heterogeneity of the residential
devices. While some tasks were completed within 5ms, others took over a
minute due to stragglers. This issue with stragglers can be mitigated by of-
floading the same task to multiple consumers in parallel and returning the
first available result. Applying this scheduling strategy is expected to improve
performance, demonstrating that P2P-connected edge resources can achieve
competitive performance.

It is observed that the Grid-Local scenario achieves the best overall perfor-
mance. This result aligns with expectations, as this environment is optimal for
offloading. Grid-Local is twice as fast as the Cloud environment, demonstrating
that with comparable CPU performance, a significant performance increase is
possible in locality-aware computation offloading systems.
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The results of the Grid-Relayed scenario demonstrate the impact of missing
P2P connections compared to the Grid-Local environment. Since all communi-
cation must be routed through a public rendezvous server, the performance is
generally lower in this scenario, with approximately 22ms compared to 11ms.

The Grid-Remote scenario performs worse than the Cloud environment but
better than the Residential environment. Apart from a few stragglers, the exe-
cution time shows low variance, attributable to the homogeneity of the devices
present in the grid. This scenario further demonstrates that edge comput-
ing can be effectively applied to institutional resources, offering competitive
advantages over traditional cloud resources.

The Mobile scenario exhibits the worst mean and median performance of
all scenarios. This aligns with expectations given the nature of cellular com-
munication, the resulting network latency, and the shared network capacity
among all carrier customers within a radio cell. It is notable that the proximity
of consumers and providers does not result in improved performance.

In the Combined scenario, all providers from the Cloud, Residential, Grid-
Remote, and Mobile environments were combined. The overall performance is
comparatively poor, despite this scenario offering the most resources. This is
attributed to the previously mentioned splitting of tasks into 12 sub-tasks and
the significant impact of stragglers on performance. This issue can be mitigated
by using a different scheduler that prioritizes faster devices or employs parallel
offloading.

7.2.3.2 Image convolution (Bandwidth-intensive)

Due to the fast connection between the consumer and the providers, the Cloud
environment consistently performs well for data-insensitive tasks. This envi-
ronment is not significantly affected by the type of application.

The Residential scenario performs slower than the Cloud environment, with
the task offloading stage displaying a higher variance in completion times.
Four clusters can be identified in the histogram for the return result stage,
each representing one of the four residential providers in this scenario. The
asymmetrical downlink and uplink of the providers significantly affect these
environments, particularly when returning the result. If the consumer is also
situated in a residential environment, the uplink will have a strong influence
on the offloading task stage.
Grid-Local exhibits the best performance for the offloading task stage and

the second-best overall performance. Although the times are comparable to



7.2 edge computing evaluation using the middleware 143

the Cloud environment, it is observed that stragglers negatively impact the
performance during the result return stage.

In the Grid-Relayed environment, it is evident that relaying traffic signifi-
cantly impacts network times. For instance, the time required to offload a task
is increased by 33 %, and the time to return the result is increased by 46 %
compared to the direct traffic observed in the Grid-Local scenario.

In the offload task stage of the Grid-Remote environment, the mean is ap-
proximately 1000ms slower, and the median is nearly 900ms slower compared
to the Grid-Local environment. This decrease in performance is due to the
providers being several hundred kilometers/miles away from the consumer.

The Mobile scenario represents the weakest-performing environment for
these task types. Compared to the CPU-intensive task, there is a considerable
variation in the offloading task stage times. This result aligns with expecta-
tions that the varying quality of radio communications significantly impacts
bandwidth-intensive tasks. In contrast, the response result does not exhibit
such significant deviation,which can be explained by themore restricted uplink
of the asymmetric cellular connection.

The Combined environment is also evident in this scenario. It should be noted
that, compared to returning the result, the offloading stage is slightly faster
due to the asymmetrical uplink of some devices.

7.2.4 Evaluation conclusion

This evaluation assumed a computation offloading system that utilizes cloud,
grid, and (idle) edge computation resources. The following main challenges
has been addressed in the evaluation: First, the heterogeneity of hardware,
software, connectivity, and reliability of the involved devices needed to be
overcome to create a unified computing platform. Second, different network
topologies and QoS goals have been successfully enforced. Third, the network
environment context information have been collected that can be used to
support QoS mechanisms. The systemwas deployed in a real-world setup with
peers located in various cloud, residential, grid, and mobile environments.

It was demonstrated that residential and grid resources are only marginally
slower than cloud resources regarding network times, making them cost- and
energy-efficient alternatives. The additional resources from the edge were
shown to positively impact application performance, indicating that these edge
resources can serve as cost-effective alternatives to cloud resources.
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Furthermore, the experiments indicated that the absence of P2P communi-
cations could significantly degrade overall application performance by up to a
factor of 5.

In this evaluation, it has been shown how an existing application – the
Tasklet system – that normally only functions in unrestricted networks, can be
operated in restricted networks without requiring changes to the application.
This enables the application to access resources that could not previously be
used.

7.3 evaluation of centrally-optimized overlay networks

This chapter describes the evaluation of an approach to simplifying the deploy-
ment and operation of overlay networks at the network edge. The evaluation
assumes complementing edge computation scenarios and is divided into two
complementary sub-evaluations. Both evaluations focus on constructing an
overlay network based on high-level functional requirements. The underlying
resources are heterogeneous, and initial knowledge about these edge devices is
limited. In both evaluations, the overlay network is optimized and redeployed
over time asmore data is collected. The first evaluation considers heterogeneous
link latencies between edge devices, while the second evaluation considers
heterogeneous edge device computing performances.

The evaluation demonstrates that the implemented SDON layer can do
overlay network management based on high-level functional requirements.
Therefore, the implementation of the SDON layer, including all components,
has been used in two scenarios: One requiring overlay link resource optimiza-
tion, the other requiring overlay node resource optimization. Further, with this
experiment, we address the following research questions:

rq 3.1 How to program overlay networks that assist application de-
velopers to use edge resources efficiently?

rq 3.2 How to simplify overlay network deployment and manage-
ment at the network edge?
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7.3.1 Latency-based routing optimization

This evaluation focuses on optimizing the overlay routing based on link laten-
cies. This section first describes the evaluation use case, setup (Section 7.3.1.2),
followed by the metrics (Section 7.3.1.3), the results (Section 7.3.1.4).

Application
layer

Edge network
layer

…

Client:
n1

Server:
n2

Server:
n3

Server:
n100

Device𝑨
NAT

Device𝑩

…

Device 𝒁
NAT

Device 𝑪
NAT

Device𝑫

Internet

Figure 7.10: Real-time application used
for first evaluation of SDON layer.

7.3.1.1 Use Case

This use case assumes a widely distributed real-time application as shown in
Figure 7.10, where a client (n1) wants to communicate with a set of servers
(n2–n100), each placed in a different edge network. The client and most of the
servers are placed behind separate symmetric NATs (Section 2.4), while some
servers are not NATed and, therefore, publicly reachable. Since hole punching
is not practically feasible over two symmetric NATs, the only option for the
client to reach NATed servers is relayed communication (Section 2.4.2).

routing algorithm Instead of just rely on the rendezvous server, the
application uses a custom routing, using one of the accessible servers as a relay.
Achieving the best performance requires the application to determine which
servers are accessible and which are only accessible via a relay. In the latter
case, the application must find which node can act as the relay with the lowest
latency and configure the routing table accordingly.
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Figure 7.11: In (a), client n1 communi-
cates with all servers n2–n5 through n2

acting as a relay. In (b), faster paths are
selected due to additional knowledge
about link latencies (edge labels) and
NAT information.
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(b) Middleware-aware routing.

Application developers often prefer a simpler implementation approach
where all nodes route through a centralized relay, as shown in Figure 7.11a.
This use case is chosen to demonstrate how the middleware facilitates the pro-
gramming of an overlay network that performs these functions, as illustrated
in Figure 7.11b.

Snippet 7.1: Network model for NAT-
aware routing. 1 network = create_network({measure_latency='0.2|60'})

2 initial_relay = 'n2'

3 network:add_node('n1', {ip='10.2.1.1', run='client.sh'})

4 for i = 2, 100 do

5 network:add_node('n'..i, {ip='10.2.1.'..i, run='server.sh'})

6 network:add_link('n1', initial_relay)

7 network:add_link(initial_relay, 'n'..i)

8 network:get_node('n1').routes['n'..i] = initial_relay

9 network:get_node('n'..i).routes['n1'] = initial_relay

10 end

11 network:set_callback(function(network, devices)

12 network:clear_links()

13 for i = 2, 100 do

14 fastest_relay = fastest_path('n1', 'n'..i)

15 network:add_link('n1', fastest_relay)

16 network:add_link(fastest_relay, 'n'..i)

17 network:get_node('n1').routes['n'..i] = fastest_relay

18 network:get_node('n'..i).routes['n1'] = fastest_relay

19 end

20 end)

network model
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Snippet 7.1 demonstrates the networkmodel, providing functions to optimize
routing.

• In line 1, a new network model is created. The parameter measure_laten-
cy is set to 0.2|60 resulting in the SDON controller enforcing all SDON
devices to randomly select a subset of 20 % of other devices for latency
testing, repeated every 60 seconds. Otherwise, no latency information
would be available to optimize the overlay network. The results of these
tests, which fail for non-routable devices, thereby identifying NATed
devices, are automatically aggregated at the SDON controller.

• The initial relay n2 is specified in line 2.

• In line 3, the client node n1 is added, setting the overlay IP address to
10.2.1.1.

• In lines 4 to 10, servers n2–n100 are added. Initially, the client uses n2 as
a central relay to reach all servers (see Figure 7.11a).

• Lines 11 to 20 define a function triggered upon receiving new latency
information. This function allows the identification of the fastest relay and
updates the topology and routing tables accordingly (see Figure 7.11b).

• Although the exact code for selecting the fastest relay in line 14 is not
shown for brevity, the process involves creating a latency matrix that
includes all latencies, enabling the selection of the fastest relay.

7.3.1.2 Experimental setup

In this experiment, Mininet [LHM10] is used to emulate a network consisting
of 103 nodes, with one serving as a rendezvous server, another as the SDON
controller, and the remaining 101 nodes acting as SDON system nodes. One
SDON system node functions as the application client, while the other 100 act
as servers. 92 % of the SDON system nodes are placed behind NATs, reflecting
real-world end-host statistics in edge networks [Haa+16]. To equip theMininet
environment with NATs exhibiting the desired symmetric behavior, a software
was developed that implements several NAT behaviors [Bor23a]. Latencies
based on the King dataset [GSG02] are incorporated, providing real-world
latencies between a set of 1740 Internet hosts, with a random subset of 101
hosts drawn to configure the latencies of the paths between the client and
servers. The controller is configured with the SDON system settings specified
in Snippet 7.1, where measure_latency is set to n|60 with 𝑛 ∈ { 0

8 , 1
8 , … , 8

8 },
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resulting in nine individual settings. Thus, for each setting, 𝑛 relay candidates
are considered for every client-server path. When 𝑛 = 0

8 , centralized relaying
is used, whereby all paths use the same predefined relay.

An experiment run begins with the rendezvous server and controller being
started, followed by all nodes registering with both. Subsequently, the con-
troller instructs the nodes to perform latency measurements with a random
subset (as defined by the above parameter), to then choose the fastest relay,
and to configure the corresponding routing tables. Once routing tables are
populated, the application client contacts all servers in sequence. The experi-
ment is repeated 100 times, testing all nine possible settings in each iteration.
For each iteration, a new random subset of latencies from the King dataset is
drawn, resulting in a total of 900 runs.

7.3.1.3 Experimental metrics

fping is used to measure latency for each client-server path, calculating the
average from 10 ICMP pings. Additionally, tcpdump is employed to monitor
relay traffic, using the number of UDP packets handled by each relay as a load
metric.

7.3.1.4 Results

The results are shown in Figure 7.12.
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(a) Path latencies in dependence on the number of considered relays.
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(b) Maximum per-relay load in dependence on the number of consid-
ered relays.

Figure 7.12:Median client-server-path la-
tency andmaximum per-relay load in de-
pendence on the number of considered
relays per path. Results have been nor-
malized to centralized relaying within
the same experiment iteration.
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path latencies Figure 7.12a shows the median path latencies for client-
server communications depending on the number of considered relays. These
latencies are plotted on the y-axis and normalized to the median latency for
centralized relaying within the same experiment iteration. This normalization
is performed to compare all latencies with centralized relaying, which is com-
monly used due to its ease of implementation for communication across NATs.
The x-axis indicates the number of relays considered for each client-server
path to identify the fastest relay through latency measurements. The solid line
represents the median latency of centralized relaying, while the triangle marks
the mean latency for each setting.

The results indicate a logarithmic improvement in median and mean path
latencies as more relay candidates are considered. The highest scattering is
observed when only one relay is considered, which can be attributed to the
fact that, in this setting, a random relay is effectively chosen since only one
relay is tested, preventing the selection of the best option. Consequently, this
setting shares the same median latency as centralized relaying, whereas, in all
other cases, the median latency is improved. Including a second and third relay
improves performance by 5 % with each additional candidate. This improve-
ment decreases to 2 % and eventually to 1 % for each subsequent candidate.
Overall, performance can be enhanced by 20 % when all eight available relays
are considered.

maximum per-relay load Figure 7.12b shows the median of the max-
imum per-relay load depending on the number of considered relays. These
loads are plotted on the y-axis and are normalized to the median load for
centralized relaying observed within the same iteration. In all other respects,
this sub-figure is structured in the same manner as the left-hand sub-figure.

The results show a logarithmic increase in load as more relay candidates
are considered. This growth occurs because the likelihood of using a globally
optimal relay increases. Additionally, the scattering of the load also increases
due to this effect. For all eight settings, the load per relay remains within the
range observed when a central relay is used. Addressing the second experi-
ment’s research question, the inclusion of a second relay increases the load by
67 %. This increase reduces to 40 % and 21 % with each additional candidate.
Overall, performance can be enhanced by 20 % when all eight available relays
are tested.

Considering the results of both figures in Figure 7.12, a favorable trade-off
between reduced latency andmoderate load is achieved when half of the relays
are tested for each path.
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7.3.2 CPU-based node arrangement optimization

This evaluation focuses on the overlay node arrangement based on node
CPU performances. This section first describes the evaluation use case, setup
(Section 7.3.2.2), followed by the metrics (Section 7.3.2.3), the results (Sec-
tion 7.3.2.4).

Figure 7.13: Computation-offloading ap-
plication used for first evaluation of
SDON layer.
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7.3.2.1 Use Case

This use case assumes a computation offloading systemwhere a node (denoted
as the consumer) wants to offload a batch of similar computations to a group
of other nodes (denoted as providers). Each computation involves finding the
largest element in a set, which requires a pairwise comparison of the elements.
Here, parallel reduction is employed, where the set is evenly divided among
the providers. Each provider then calculates its local maximum and forwards
it to the next provider. This step is repeated until only one element – the
global maximum – has been identified. Each provider compares exactly two
elements, with the computational load per comparison being equal. This type
of computation results in a pipeline that resembles a binary tree, where each
provider acts as a node and the final result is received back from the root.
Consequently, each provider must wait for the completion of the previous
two providers, always waiting for the slower of the two providers. Therefore,
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it is beneficial that the two preceding nodes have as similar performance as
possible. This problem is illustrated in Figure 7.14.Here,we see how the timings
of subsequent sub-tasks impact overall completion time. In Figure 7.14a, the
providers n2–n8 are not optimally arranged. The computation task in this figure
compares eight elements, with two elements sent to nodes n2–n5 respectively.
These, in turn, send their results to the subsequent providers n6 and n7. Here,
n6must wait for n3 and n7must wait for n4 before the sub-task can begin. This
causes sub-task 6 to be significantly delayed, affecting the overall completion
time.

arrangement algorithm Achieving the best performance requires
the application to assess individual providers’ performance and arrange the
computation pipeline that minimizes delays due to stragglers. An optimized
pipeline is shown in Figure 7.14b: The fastest provider is placed at the last stage.
The second and third providers are placed in the stage before. The slowest
providers are placed in the first stage, whereas the slowest providers in this
first stage are placed before the fastest providers in the second stage.

This use case is chosen to demonstrate how SDON system assists in config-
uring an overlay that takes over these functionalities, hiding the complexity
in performance distinction of providers and automatically reconfiguring the
overlay, resulting in faster computation completion times.
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Figure 7.14: Task completion time is re-
duced when fast providers are placed at
the end of the processing pipeline.
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1 network = create_network()

2 network:add_node('n1', {ip='10.2.1.1', run='consumer.sh'})

3 for i = 2, 8 do

4 network:add_node('n'..i, {ip='10.2.1.'..i, run='provider.sh', record_packets={offload={magic_number='0x1'},

result={magic_number='0x2'}}})↪

5 network:add_link('n1', 'n'..i)

6 for j = i + 1, 8 do

7 network:add_link('n'..i, 'n'..j)

8 end

9 end

10 network:set_callback(function(network, devices)

11 providers = providers_n_sorted(network, sort_count)

12 for i = 1, #providers do

13 network:get_node(providers[i]).ip = '10.2.1.'..(i+1)

14 end

15 end)

Snippet 7.2: SDON system configuration
for computation offloading. network model Snippet 7.2 shows the network model of the SDON

system, providing functions that optimize the pipeline arrangement.

• In line 1, a new network model is created.

• In line 2, the consumer n1 is added, and in the subsequent for loop,
seven providers n2–n8 are added. The magic numbers of the applica-
tion messages offload task and return result are assigned to each provider.
This enables SDON system nodes to identify these messages and report
the timings to the controller. The controller then uses these timings to
calculate sub-task times, estimating the CPU capacity per provider.

• Additionally, lines 5 to 8 ensure that the consumer and all providers can
reach each other.

• The code for clustering providers based on performance (line 11) is omit-
ted, which estimates task completion times by using the time delta be-
tween offload and result messages, calculates average times per provider,
compares these averages with other providers, and then creates a list of
providers where the fastest sort_count providers are moved from their
current position to the end.

• The for loop in lines 12 to 14 virtually flips providers’ positions in the
computing pipeline by changing their overlay addresses.
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This experiment demonstrates how a SDON system helps an application
better utilize host resources.

7.3.2.2 Experimental setup

In this experiment, Mininet is used again to emulate a network consisting
of 10 nodes, with one serving as a rendezvous server, another as the SDON
controller, and the remaining eight nodes acting as SDON devices. One SDON
device functions as the application consumer, while the other seven act as
providers. cgroups is used to limit the CPU resources per provider to create a
network of devices with heterogeneous capacities [ker15]. For CPU capacities,
a random sample is drawn from a normal (Gaussian) distribution, resulting
in sub-task times with a mean (𝜇) of 1000ms and a standard deviation (𝜎)
of 400ms. The controller is set up with the SDON network model specified
in Snippet 7.2, where sort_count is set to 𝑛 ∈ {0, 1, … , 7}, resulting in eight
individual settings. Thus, with each setting, 𝑛 providers are optimally placed.

An experiment run begins with the rendezvous server and controller being
started, followed by all nodes registering with both. Initially, the controller
arranges providers randomly, as no information about the individual CPU
capacities is known. The consumer submits ten tasks to the providers, resulting
in seven sub-tasks computed on the providers, for a total of 700 sub-tasks being
performed. As each provider reports the times of sub-tasks using the provided
magic numbers, the controller learns about the performance of each provider.
The SDON controller then rearranges the first 𝑛 fastest providers. Once the
overlay is reconfigured, the application submits another batch of ten tasks. The
experiment is repeated 100 times, testing all eight possible settings in each
iteration. For each iteration, a new random sample of CPU capacities is drawn,
resulting in a total of 800 runs.

7.3.2.3 Experimental metrics

The time is measured fromwhen each task is submitted by the consumer to the
first group of providers until the final result is received from the last provider,
and this is used as the overall computation completion time.

7.3.2.4 Results

The results are shown in Figure 7.15, illustrating the median task completion
times based on the number of optimally placed providers. These times are
plotted on the y-axis and normalized to the median time for an unoptimized
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(a) Median task completion time in dependence on the number of
optimally placed providers.
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(b) Maximum per-relay load in dependence on the number of op-
tionally placed providers.

Figure 7.15: Median task completion
time and rearrangements in dependence
on the number of optionally placed
providers. Task completion times have
been normalized to randomly placed
providers within the same experiment
iteration.

provider arrangement (𝑛 = 0) observed within the same iteration. This nor-
malization is performed to compare all times with a random (unoptimized)
arrangement, which is considered the baseline for its simplicity. The x-axis
indicates the number of providers optimally placed within the computation
pipeline. The dashed line represents the median of optimally placed providers,
while the triangle denotes the mean completion time for each setting.

The results indicate an improvement in the median and mean completion
times as more providers are placed optimally. Special attention should be given
to the setting with two optimally placed providers, which is the only setting
where a performance decrease is observed in some iterations. This decrease
occurs when the initial provider arrangement includes similarly performing
providers at the first processing pipeline stage (sub-tasks 1 to 4), but a provider
from this balanced stage is swapped out for a slower provider in stage two
(sub-tasks 5 to 6). Under these circumstances, the decline in performance in
the first stage is greater than the gain in the second stage. The best perfor-
mance gain is observed when three providers are optimally placed, resulting
in optimal levels one and two. Optimizing the third level only slightly further
improves performance, as the likelihood of additional improvements decreases
when only providers within the same level are moved. Placing more than five
providers does not result in further improvements, as this only causes the last
two providers in the third level to swap, which does not impact performance.
Regarding the first experiment’s research question, the best performance gain
is achieved when all but the last two providers are optimally placed, resulting
in a performance gain of 22 %. The greatest performance gain is observed when
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additional stages are optimized. Optimizing the first stage increases perfor-
mance by 11 %, while an optimized second stage increases performance by
6 %.

7.3.3 Conclusion

In the evaluation, the novel concept of SDON system was introduced and ap-
plied inmiddleware, combining central control and configuration, intent-based
overlay programming, support for IP applications, and operation in rigid envi-
ronments with no control over intervening network devices. Through two use
cases, it was demonstrated how overlay networks can be seamlessly configured
and automatically optimized according to specified KPIs. The results indicate
that, in the evaluation scenarios, SDON system and centrally enforced opti-
mization at the SDON controller can improve mean network and host resource
usage by up to 20 % and 22 %, respectively. This demonstrates that with SDON
system, applications can delegate functionalities to the underlying overlay
layer, making SDON system a suitable tool for accelerating the prototyping,
development, and deployment of distributed applications or algorithms in
real-world edge environments.

7.4 chapter summary

This section presented the evaluation results of several key components of the
SDON middleware.

First, a real-world experiment was conducted to demonstrate that the pro-
posed protocol used by the communication layer reduces 1 to 2 RTTs in se-
cure connection establishment in restricted networks compared to existing
approaches.

Second, seven experiments were conducted, each in a separate real-world
environment, including residential, mobile, cloud, grid, corporate, and mixed
environments, to demonstrate how the proposed service layer successfully
enforces required overlay network behaviors. Further, the experiment shows
that a pre-existing application can use the middleware without modifications.

Third, two real-world data experiments indicate how the SDON layer im-
proves edge computing application performance through centrally enforced
optimizations by 20 % and 22 %, respectively.

These experiments were built upon and conducted on different early snap-
shots of the middleware implementation. They indicate that each middleware
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layer fulfills the requirements, and the interaction between the layers works,
ensuring that the middleware as a whole meets the requirements.



8
Conclusion

Distributed applications, such as those used in emerging application scenarios
like autonomous vehicles, smart cities, healthcare, and industrial automation,
require low-latency, high-bandwidth, and computational resources [Var+16;
Cao+20]. Due to the distant locations of data centers from data production
and consumption sites, cloud environments fail to meet these requirements.
However, edge computing involves distributed applications that run at the
cloud, edge, and end-systems simultaneously. Getting edge applications to
work as unified systems spanning across these disparate edge environments
makes application development complex [Shi+16].

Accordingly, this thesis presents contributions incorporated into a middle-
ware, which simplifies the development and operation of applications running
at the edge. This middleware provides functionalities that are essential for a
seamless application operation at the edge. Functionalities that would other-
wise have to be implemented by the applications themselves. Therefore, many
of the “nasty” things that make edge application development and operation
complex are hidden from the application.

Chapter 1 introduces research questions that we answer in the following:

rq 1.1 How to achieve connectivity between edge devices efficiently?

In edge computing scenarios, devices are typically distributed across differ-
ent networks. Communication between these networks is often restricted due
to incompatible configurations or the presence of middleboxes (e.g., NATs,
firewalls) by which communication is routed between these networks. Con-
nectivity is usually unrestricted within networks, although some networks
prevent this through client isolation.

Thus, mutual route discovery on the underlying network by both devices
is required to connect edge devices. Many devices are not directly reachable
from other networks by middleboxes, requiring the appliance of NAT traversal
techniques. Furthermore, the heterogeneity of NATs makes it necessary to
combine multiple techniques, each usually requiring separate protocols, to
traverse middleboxes in the most optimal way. Therefore, to minimize the time
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before two edge devices are linked, a new protocol is proposed that efficiently
combines NAT traversal techniques [BRF23a] (Contribution 1). Compared to
previous work using individual NAT traversal protocols, our protocol min-
imizes the number of messages required to determine the most local path
between two edge devices, allowing for more efficient and faster connection
establishment.

rq 1.2 How to ensure that edge devices are linked securely?

Edge devices that host edge computing applications are often operated in
untrusted networks. Therefore, there is an inherent risk that any informa-
tion obtained might not be reliable. Data transmitted could be intercepted or
manipulated.

Unique identification among edge devices is necessary to enable secure
linking. Therefore, an approach is presented that equips all devices with a
public-private key pair. The public part is also used for identification, and
the keys together can be used to secure the communication. Thus, before
two devices are linked, they mutually authenticate first. Further end-to-end
encrypted communication between edge devices with the very first message is
possible. This is achieved by piggybacking aDiffie-Hellman key agreement into
the protocol described in previously [BRF23a] (Contribution 1). Compared
with previous work, our protocol saves between 1 to 2 RTTs and secures the
connection establishment process against multiple vulnerabilities.

rq 2.1 How to integrate overlay networks into applications without
imposing restrictions on application design and functionality?

Integrating overlay networks into applications often imposes restrictions on
application design or functionality. Further, many integrations depend on a
concrete type of overlay network, making it a complex task for the developer
to migrate to a different overlay, which might be necessary to adapt to evolving
application requirements.

Accordingly, an application programming interface (API) is presented, al-
lowing the integration dynamic overlay networkswithout imposing restrictions.
The approach establishes an IP overlay that can be adapted by any IP-based
application without modification. While the application receives or sends
communication from remote components as before, the overlay network trans-
parently processes the packet delivery. Based on Contribution 1, the application
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creates the impression of seamless, secure and location-transparent connectiv-
ity between all edge devices. The presented API has been successfully used
with pre-existing applications and evaluated in real-world scenarios [Bor+23;
Röb+23]. The evaluation demonstrated that using our approach, dynamic over-
lay networks can be transparently integrated without imposing restrictions.
In addition, our approach enables applications to operate in restricted edge
environments, which helps conduct real-world experiments (Contribution 2).

rq 2.2 How to improve the use of heterogeneous edge resources
through dynamic overlay networks?

Many distributed application systems [Kub14; Lig09; AZ17; Nig21; Ros+23]
make strong assumptions about the underlying network infrastructure in terms
of control and behavior. However, edge applications are often operated in
networks where the edge computing application does not control the network
configuration. Furthermore, edge devices are more heterogeneous, restricted,
and unreliable than devices in cloud computing environments. Therefore,
edge computing environments must be considered as best-effort systems, and
additional mechanisms are required to provide applications with additional
services, quality of service (QoS), security, and reliability for correct application
functioning.

Therefore, a service layer is presented that dynamically integrates additional
services into the overlay network through an extensible set of mechanisms.
Individual services can be flexibly applied to certain overlay elements and
operated in coexistence. The service layer is transparently integrated into the
previously presented API. Thus, overlay services can be added or removed as
needed, without affecting the application’s transparency. As a result, applica-
tions got an idealized view of the edge resources that provide more service
guarantees in an otherwise best-effort system (Contribution 2).

rq 3.1 How to program overlay networks that assist application de-
velopers to use edge resources efficiently?

Overlay networks are as versatile as the edge applications that utilize them.
They can vary in size, topology, node, and link properties. Further, overlay
networks apply different mechanisms to maintain and restore the desired state.

Accordingly, an approach is presented that allows application developers to
program software-defined overlay networks using high-level functional require-
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ments. Desired overlay nodes, overlay links, their respective resource capa-
bilities, and desired behavior can be described. This goal-oriented overlay
programming relieves developers from identifying and describing routines
to reach the desired overlay state, as our middleware automatically identifies
these routines. Further, policies can be specified, describing how an overlay
network should respond to unwanted network changes or customizing how
overlay elements are mapped to edge resources [Bor+25] (Contribution 3).

rq 3.2 How to simplify overlay network deployment and manage-
ment at the network edge?

Deploying and operating an overlay network at the network edge is challenging
due to the heterogeneous, restricted, and unknown environments and the
absence of central control.

Therefore, an software-defined overlay networking middleware is presented
that brings capabilities known from software-defined networking, such as
centralized control, a common interface for edge device configuration, intent-
based overlay network configuration, and a closed-loopmechanism identifying
and reverting unintended network changes to the edge [Bor+25] (Contribu-
tion 3). The presented approach builds upon the protocol used for flexible and
secure edge device linking Contribution 1 and API for unrestricted integration
of dynamic overlay networks Contribution 2. Our evaluation results, assum-
ing two contrary edge computation scenarios, show that deployments via
our middleware, with centrally enforced optimizations, improve applications’
performance by 20 % and 22 %, respectively.

All contributions have been combined into a fully functional open-source
middleware, most evaluated in real-world experiments, to demonstrate their
seamless integration and function. Additionally, themiddlewarewas published
as open-source to encourage further research in these areas: https://github.
com/drasyl/drasyl.

future work

Beyond our contributions, we discovered several other open research gaps that
remain as future work. These gaps include decentralizing network control, re-
fining intent-based networking support, enhancing multi-application support,
integrating with cloud deployment systems, and leveraging API for improved
resource management.

https://github.com/drasyl/drasyl
https://github.com/drasyl/drasyl
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reduction of system’s dependence on the central network
controller The approaches presented in this thesis rely on a central net-
work controller to maintain global view and control over the overlay network.
So far, the controller poses a crucial role for the operation and health of the
overlay network: New edge devices need to register with the controller, the
current state of each device is aggregated at the controller and the controller
disseminates new overlay network configurations. Therefore, the controller
poses a potential bottleneck and single point of failure (SPOF), limiting the
whole system’s scalability and availability.

However, some of the controller’s functions can be offloaded to the edge
devices, reducing the overlay network’s dependency on the controller. Selected
edge devices can take over managing parts of the overall network. Further,
moving closer to edge devices could improve the system’s performance.

enhancing the intent-based programming of overlay net-
working functionalities The presented system has already been
built upon certain concepts known from the intent-based networking (IBN)
domain, such as goal-oriented descriptions of network functionalities and the
closed-loop mechanism.

However, further improvements to overlay network management may be
possible. Currently, intent profiling (Section 2.2) is missing, which enables
intents to be described through natural language expressions by application
developers. An investigation can be conducted into how existing intent profiler
approaches can be utilized with overlay networks at the edge.

improve multi-application support Although the controller pre-
sented in the current approach can manage multiple applications simultane-
ously, further work is necessary in this regard. Currently, a single application
can request all available resources and will also receive them.

To prevent resource monopolization, further mechanisms that improve the
co-existence of applications need to be implemented. A mechanism that pro-
vides fairness among applications might be included. Various approaches are
promising for this: For example, market-based approaches where resources are
bid on by applications [NLB19]. This way, resources are allocated based on bids,
which can reflect the urgency or importance of the application. Alternatively,
fair scheduling can be applied, where resource allocation is based on historical
usage. Here, higher priority is given in future allocations to applications that
have had fewer resources in the past to balance overall usage [Mad+20]. In
this context, it can also be monitored that an application requests only as many
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resources as it actually consumes. Applications that intentionally request too
many resources are accordingly penalized by being given lower priority.

incorporation with application deployment systems The
approaches presented in this work help simplify application deployment chal-
lenges in edge environments. This was achieved by creating overlay networks
that provide an idealized view of the underlying edge resources. In the cloud
computing field, many approacheswith sophisticated applicationmanagement
capabilities exist, such as Kubernetes. However, these approaches perform
poorly and inefficiently in edge environments, as they make strong assump-
tions about the behavior and control of the underlying network infrastructure,
which is only available in cloud-like environments.

Future research can explore the integration of the proposed approach with
existing cloud-based application deployment systems. Specifically, it warrants
investigation into how the network control mechanisms presented in this work
can enhance the operation of cloud-native application management solutions
in edge environments. One avenue to explore is the implementation of the
Container Network Interface [CNI24]. This integration would enable Kuber-
netes pods and other containerized applications to communicate efficiently at
the edge, thereby overcoming the limitations posed by conventional network
control in edge scenarios. The approach described here promises to be more
effective than existing work such as [SAF23], which does not provide means
to overcome edge network restrictions efficiently.

improved resource management through edge ai Finding the
most suitable edge resources to host distributed applications poses significant
challenges due to the unpredictable behavior of these resources. Edge devices
often have limited and variable capacities, making it difficult to guarantee
sufficient computational and networking resources. This could potentially lead
to suboptimal overlay network performance or even complete failure.

AI-based approaches are increasingly used in edge computing. Edge AI is
defined as deploying AI technologies within an edge computing environment.
Adaptive inference is a promising approach to enhancing resource matchmak-
ing in edge environments by improving the predictability of resource behavior.
Increased predictability allows the overlay network management system, for
example, to gracefully degrade network performance in response to insufficient
resources. This approach helps applications maintain functionality even under
adverse conditions.
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Christian Esteve Rothenberg, SiamakAzodolmolky, and Steve Uh-
lig. “Software-Defined Networking: A Comprehensive Survey.”
In: Proceedings of the IEEE 103.1 (Jan. 2015), pages 14–76. issn:
1558-2256. doi: 10.1109/JPROC.2014.2371999 (cited on page 3).

[Ope24] Open Networking Foundation. Open Network Operating System.
July 16, 2024. url: https://opennetworking.org/onos/ (visited
on 09/25/2024) (cited on pages 3, 70).

[Cle+22] Alexander Clemm, Laurent Ciavaglia, Lisandro Zambenedetti
Granville, and Jeff Tantsura. Intent-Based Networking - Concepts
and Definitions. RFC 9315. Oct. 2022. doi: 10.17487/RFC9315. url:
https://www.rfc-editor.org/info/rfc9315 (cited on pages 3,
13).

[LF23] Aris Leivadeas and Matthias Falkner. “A Survey on Intent-Based
Networking.” In: IEEE Communications Surveys & Tutorials 25.1
(2023), pages 625–655. issn: 1553-877X. doi: 10.1109/COMST.2022.
3215919 (cited on pages 3, 13, 14, 77, 92).

[Tar10] Sasu Tarkoma. Overlay Networks: Toward Information Networking.
Auerbach Publications, 2010. isbn: 978-1-4398-1373-7. doi: 10.
1201/9781439813737 (cited on pages 4, 15).

[BR23] Heiko Bornholdt and Kevin Röbert. drasyl - a middleware for rapid
development of distributed applications. Software. Version 0.10.0. Jan.
2023. doi: 10.25592/uhhfdm.14206. url: https://github.com/
drasyl/drasyl (cited on pages 4, 101).

[BRK21] Heiko Bornholdt, Kevin Röbert, and Philipp Kisters. “Accessing
Smart City Services in Untrustworthy Environments via Decen-
tralized Privacy-Preserving Overlay Networks.” In: 2021 IEEE In-
ternational Conference on Service-Oriented System Engineering (IEEE

https://doi.org/https://doi.org/10.1016/j.comcom.2017.11.002
https://www.sciencedirect.com/science/article/pii/S0140366417303584
https://www.sciencedirect.com/science/article/pii/S0140366417303584
https://akka.io/
https://doi.org/10.1109/JPROC.2014.2371999
https://opennetworking.org/onos/
https://doi.org/10.17487/RFC9315
https://www.rfc-editor.org/info/rfc9315
https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1201/9781439813737
https://doi.org/10.1201/9781439813737
https://doi.org/10.25592/uhhfdm.14206
https://github.com/drasyl/drasyl
https://github.com/drasyl/drasyl


bibliography 175

SOSE 2021). 15th IEEE International Conference On Service-Ori-
ented System Engineering (IEEE SOSE 2021). Oxford, United
Kingdom: IEEE, 2021, pages 144–149. doi: 10.1109/SOSE52839.
2021.00021 (cited on pages 5, 8).

[BRF23a] Heiko Bornholdt, Kevin Röbert, andMathias Fischer. “Low-Laten-
cy TLS 1.3-AwareHole Punching.” In: ICC 2023 - IEEE International
Conference on Communications. IEEE International Conference on
Communications (ICC) 2023. Rome, Italy: IEEE, 2023, pages 1481–
1486. doi: 10.1109/ICC45041.2023.10279326 (cited on pages 5,
8, 27, 29, 127, 158).

[Bor+23] Heiko Bornholdt, KevinRöbert,Martin Breitbach,Mathias Fischer,
and Janick Edinger. “Measuring the Edge: A Performance Evalu-
ation of Edge Offloading.” In: 2023 IEEE International Conference
on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops). 2nd Workshop on Server-
less computing for pervasive cloud-edge-device systems and ser-
vices (*LESS‘24). Atlanta, GA, USA: IEEE, 2023, pages 212–218.
doi: 10.1109/PerComWorkshops56833.2023.10150261 (cited on
pages 5, 8, 32, 132, 159).

[Röb+23] Kevin Röbert, Heiko Bornholdt, Mathias Fischer, and Janick Edin-
ger. “Latency-Aware Scheduling for Real-Time Application Sup-
port in Edge Computing.” In: Proceedings of the 6th International
Workshop on Edge Systems, Analytics and Networking. 6th Inter-
national Workshop on Edge Systems, Analytics and Network-
ing (EdgeSys ’23). Rome, Italy: ACM, 2023, pages 13–18. doi:
10.1145/3578354.3592866 (cited on pages 5, 8, 159).

[Bor+25] Heiko Bornholdt, Kevin Röbert, Stefan Schulte, Janick Edinger,
and Mathias Fischer. “A Software-Defined Overlay Networking
Middleware for a Simplified Deployment of Distributed Applica-
tion at the Edge.” In: Proceedings of the 40th ACM/SIGAPP Sympo-
sium on Applied Computing. SAC ’25. Catania, Italy: Association
for Computing Machinery, 2025 (cited on pages 7, 8, 160).

[BBP21] Heiko Bornholdt, Dirk Bade, and Wolf Posdorfer. “Incorum: A
Citizen-Centric Sensor Data Marketplace for Urban Participa-
tion.” In: Advances in Computer, Communication and Computational
Sciences, Proceedings of IC4S 2019. International Conference on
Computer, Communication and Computational Sciences (IC4S

https://doi.org/10.1109/SOSE52839.2021.00021
https://doi.org/10.1109/SOSE52839.2021.00021
https://doi.org/10.1109/ICC45041.2023.10279326
https://doi.org/10.1109/PerComWorkshops56833.2023.10150261
https://doi.org/10.1145/3578354.3592866


176 bibliography

2019). Bangkok, Thailand: Springer Singapore, 2021, pages 659–
669. doi: 10.1007/978-981-15-4409-5_59.

[Bor21] Heiko Bornholdt. “Towards Citizen-Centric Marketplaces for Ur-
ban Sensed Data.” In: Advances in Service-Oriented and Cloud Com-
puting, International Workshops of ESOCC 2020. 8th European Con-
ference On Service-Oriented And Cloud Computing (ESOCC
2020). Heraklion, Crete, Greece: Springer Cham, 2021, pages 140–
150. doi: 10.1007/978-3-030-71906-7_12.

[Bor23a] Heiko Bornholdt. NatPy - python-based network address translator
with configurablemapping, allocation, and filtering behavior forNetfilter
NFQUEUE. Software. Dec. 2023. doi: 10.25592/uhhfdm.14208.
url: https://github.com/HeikoBornholdt/NatPy (cited on
page 147).

[Bor23b] Heiko Bornholdt. netty-tun - netty channel communicating via TUN
devices. Software. Version 1.2.2. Apr. 2023. doi: 10.25592/uhhfdm.
14210. url: https://github.com/drasyl/netty-tun (cited on
page 116).

[BRF23b] Heiko Bornholdt, Kevin Röbert, and Mathias Fischer. Low-Laten-
cy TLS 1.3-Aware Hole Punching Proof of Concept. Software. Jan.
2023. doi: 10.25592/uhhfdm.16613. url: https://github.com/
HeikoBornholdt/tls-hole-punching (cited on page 129).

[TFW21] Andrew S. Tanenbaum,Nick Feamster, andDavidWetherall.Com-
puter Networks. 6th edition. Pearson Education, 2021. isbn: 978-1-
292-37406-2 (cited on pages 12, 71).

[Fis22] Mathias Fischer. Lecture notes in Computer Networks. 2022 (cited
on page 12).

[Doy22] Jeff Doyle. Intent-Based Networking. John Wiley & Sons, Inc., 2022.
isbn: 978-1-119-87905-3 (cited on page 13).

[Toy21] Mehmet Toy. Future Networks, Services and Management: Underlay
and Overlay, Edge, Applications, Slicing, Cloud, Space, AI/ML, and
Quantum Computing. Springer Nature Switzerland AG, 2021. isbn:
978-3-030-81960-6. doi: 10.1007/978-3-030-81961-3 (cited on
page 15).

[Sch10] Ingo Scholtes. “Harnessing Complex Structures and Collective
Dynamics in Large Networked Computing Systems.” PhD thesis.
Universität Trier, 2010 (cited on pages 15–17).

https://doi.org/10.1007/978-981-15-4409-5_59
https://doi.org/10.1007/978-3-030-71906-7_12
https://doi.org/10.25592/uhhfdm.14208
https://github.com/HeikoBornholdt/NatPy
https://doi.org/10.25592/uhhfdm.14210
https://doi.org/10.25592/uhhfdm.14210
https://github.com/drasyl/netty-tun
https://doi.org/10.25592/uhhfdm.16613
https://github.com/HeikoBornholdt/tls-hole-punching
https://github.com/HeikoBornholdt/tls-hole-punching
https://doi.org/10.1007/978-3-030-81961-3


bibliography 177

[Gnu03] Gnutella Developer Forum. The Annotated Gnutella Protocol Specifi-
cation v0.4. 2003. url: https://rfc-gnutella.sourceforge.net/
developer/stable/index.html (visited on 08/04/2024) (cited
on page 16).

[Cha+03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham,
and Scott Shenker. “Making gnutella-like P2P systems scalable.”
In: Proceedings of the 2003 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications. SIG-
COMM ’03. Karlsruhe, Germany: Association for Computing Ma-
chinery, 2003, pages 407–418. isbn: 1581137354. doi: 10.1145/
863955.864000. url: https://doi.org/10.1145/863955.864000
(cited on page 16).

[RF02] Matei Ripeanu and Ian Foster. “Mapping the Gnutella Network:
Macroscopic Properties of Large-Scale Peer-to-Peer Systems.” In:
Peer-to-Peer Systems. Edited by Peter Druschel, Frans Kaashoek,
and Antony Rowstron. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2002, pages 85–93. isbn: 978-3-540-45748-0 (cited on
page 16).

[MIF02] R. Matei, A. Iamnitchi, and P. Foster. “Mapping the Gnutella
network.” In: IEEE Internet Computing 6.1 (2002), pages 50–57.
doi: 10.1109/4236.978369 (cited on page 16).

[Sto+03] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. “Chord: a scalable peer-to-peer
lookup protocol for Internet applications.” In: IEEE/ACM Transac-
tions on Networking 11.1 (Feb. 2003), pages 17–32. issn: 1558-2566.
doi: 10.1109/TNET.2002.808407 (cited on pages 17, 44, 49, 58,
88, 112).

[GG09] WojciechGaluba and SarunasGirdzijauskas. “Peer to PeerOverlay
Networks: Structure, Routing and Maintenance.” In: Encyclopedia
of Database Systems. Edited by LING LIU and M. TAMER ÖZSU.
Boston, MA: Springer US, 2009, pages 2056–2061. isbn: 978-0-
387-39940-9. doi: 10 . 1007 / 978 - 0 - 387 - 39940 - 9 _ 1215. url:
https://doi.org/10.1007/978-0-387-39940-9_1215 (cited on
page 18).

[Mos+96] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter, Eliot Lear,
andGeert Jan de Groot.Address Allocation for Private Internets. RFC

https://rfc-gnutella.sourceforge.net/developer/stable/index.html
https://rfc-gnutella.sourceforge.net/developer/stable/index.html
https://doi.org/10.1145/863955.864000
https://doi.org/10.1145/863955.864000
https://doi.org/10.1145/863955.864000
https://doi.org/10.1109/4236.978369
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1007/978-0-387-39940-9_1215
https://doi.org/10.1007/978-0-387-39940-9_1215


178 bibliography

1918. Feb. 1996. doi: 10.17487/RFC1918. url: https://www.rfc-
editor.org/info/rfc1918 (cited on page 18).

[HS99] Matt Holdrege and Pyda Srisuresh. IP Network Address Translator
(NAT) Terminology and Considerations. RFC 2663. Aug. 1999. doi:
10.17487/RFC2663. url: https://www.rfc-editor.org/info/
rfc2663 (cited on page 18).

[BC02] Scott W. Brim and Brian E. Carpenter. Middleboxes: Taxonomy and
Issues. RFC 3234. Feb. 2002. doi: 10.17487/RFC3234. url: https:
//www.rfc-editor.org/info/rfc3234 (cited on pages 19, 72).

[ES01] Kjeld Borch Egevang and Pyda Srisuresh. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022. Jan. 2001. doi:
10.17487/RFC3022. url: https://www.rfc-editor.org/info/
rfc3022 (cited on page 19).

[Qia24] Liu Qiaoqiao. What Is Network Address Translation (NAT)? June 17,
2024. url: https://info.support.huawei.com/info-finder/
encyclopedia/en/NAT.html (visited on 07/29/2024) (cited on
page 19).

[Per+13] Simon Perreault, Ikuhei Yamagata, Shin Miyakawa, Akira Nak-
agawa, and Hiroyuki Ashida. Common Requirements for Carrier-
Grade NATs (CGNs). RFC 6888. Apr. 2013. doi: 10.17487/RFC6888.
url: https://www.rfc-editor.org/info/rfc6888 (cited on
page 19).

[ICA11] ICANN. Available Pool of Unallocated IPv4 Internet Addresses Now
Completely Emptied. Feb. 3, 2011. url: https://itp.cdn.icann.
org/en/files/announcements/release-03feb11-en.pdf (vis-
ited on 08/02/2024) (cited on page 19).

[Ros+03] Jonathan Rosenberg, Christian Huitema, Rohan Mahy, and Joel
Weinberger. STUN - Simple Traversal of User Datagram Protocol
(UDP)ThroughNetworkAddress Translators (NATs). RFC 3489.Mar.
2003. doi: 10.17487/RFC3489. url: https://www.rfc-editor.
org/info/rfc3489 (cited on page 20).

[Pen+16] Reinaldo Penno, Simon Perreault, Mohamed Boucadair, Senthil
Sivakumar, and Kengo Naito. Updates to Network Address Trans-
lation (NAT) Behavioral Requirements. RFC 7857. Apr. 2016. doi:
10.17487/RFC7857. url: https://www.rfc-editor.org/info/
rfc7857 (cited on page 22).

https://doi.org/10.17487/RFC1918
https://www.rfc-editor.org/info/rfc1918
https://www.rfc-editor.org/info/rfc1918
https://doi.org/10.17487/RFC2663
https://www.rfc-editor.org/info/rfc2663
https://www.rfc-editor.org/info/rfc2663
https://doi.org/10.17487/RFC3234
https://www.rfc-editor.org/info/rfc3234
https://www.rfc-editor.org/info/rfc3234
https://doi.org/10.17487/RFC3022
https://www.rfc-editor.org/info/rfc3022
https://www.rfc-editor.org/info/rfc3022
https://info.support.huawei.com/info-finder/encyclopedia/en/NAT.html
https://info.support.huawei.com/info-finder/encyclopedia/en/NAT.html
https://doi.org/10.17487/RFC6888
https://www.rfc-editor.org/info/rfc6888
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
https://itp.cdn.icann.org/en/files/announcements/release-03feb11-en.pdf
https://doi.org/10.17487/RFC3489
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://doi.org/10.17487/RFC7857
https://www.rfc-editor.org/info/rfc7857
https://www.rfc-editor.org/info/rfc7857


bibliography 179

[REH09] Roberto Roverso, SamehEl-Ansary, and SeifHaridi. “NATCracker:
NAT Combinations Matter.” In: 2009 Proceedings of 18th Interna-
tional Conference on Computer Communications and Networks. Aug.
2009, pages 1–7. doi: 10.1109/ICCCN.2009.5235278 (cited on
pages 22, 24).

[Hät+10] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes,
Pasi Sarolahti, and Markku Kojo. “An experimental study of
home gateway characteristics.” In: Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement. IMC ’10. Melbourne,
Australia: Association for ComputingMachinery, 2010, pages 260–
266. isbn: 9781450304832. doi: 10.1145/1879141.1879174. url:
https://doi.org/10.1145/1879141.1879174 (cited on pages 23,
24, 109).

[JA07] Cullen Fluffy Jennings and Francois Audet.Network Address Trans-
lation (NAT) Behavioral Requirements for Unicast UDP. RFC 4787.
Jan. 2007. doi: 10.17487/RFC4787. url: https://www.rfc-editor.
org/info/rfc4787 (cited on pages 23, 24).

[Sch+03] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van
Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC
3550. July 2003. doi: 10.17487/RFC3550. url: https://www.rfc-
editor.org/info/rfc3550 (cited on page 23).

[For+08] Bryan Ford, Saikat Guha, Kaushik Biswas, Senthil Sivakumar,
and Pyda Srisuresh. NAT Behavioral Requirements for TCP. RFC
5382. Oct. 2008. doi: 10.17487/RFC5382. url: https://www.rfc-
editor.org/info/rfc5382 (cited on page 24).

[Guh+09] Saikat Guha, Bryan Ford, Senthil Sivakumar, and Pyda Srisuresh.
NAT Behavioral Requirements for ICMP. RFC 5508. Apr. 2009. doi:
10.17487/RFC5508. url: https://www.rfc-editor.org/info/
rfc5508 (cited on page 24).

[Haa+16] Steffen Haas, Shankar Karuppayah, Selvakumar Manickam, Max
Mühlhäuser, andMathias Fischer. “On the resilience of P2P-based
botnet graphs.” In: 2016 IEEE Conference on Communications and
Network Security (CNS). Oct. 2016, pages 225–233. doi: 10.1109/
CNS.2016.7860489 (cited on pages 24, 33, 72, 147).

[WP17] Liang Wang and Ivan Pustogarov. Towards Better Understanding of
Bitcoin Unreachable Peers. 2017. arXiv: 1709.06837 [cs.NI] (cited
on pages 24, 33, 72).

https://doi.org/10.1109/ICCCN.2009.5235278
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.17487/RFC4787
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://doi.org/10.17487/RFC3550
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3550
https://doi.org/10.17487/RFC5382
https://www.rfc-editor.org/info/rfc5382
https://www.rfc-editor.org/info/rfc5382
https://doi.org/10.17487/RFC5508
https://www.rfc-editor.org/info/rfc5508
https://www.rfc-editor.org/info/rfc5508
https://doi.org/10.1109/CNS.2016.7860489
https://doi.org/10.1109/CNS.2016.7860489
https://arxiv.org/abs/1709.06837


180 bibliography

[CK13] Stuart Cheshire and Marc Krochmal. NAT Port Mapping Protocol
(NAT-PMP). RFC 6886. Apr. 2013. doi: 10.17487/RFC6886. url:
https://www.rfc-editor.org/info/rfc6886 (cited on pages 24,
26, 81).

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley, 2003. isbn: 9780321200686 (cited on page 25).

[Win+13] DanWing, Stuart Cheshire,Mohamed Boucadair, Reinaldo Penno,
and Paul Selkirk. Port Control Protocol (PCP). RFC 6887. Apr. 2013.
doi: 10.17487/RFC6887. url: https://www.rfc-editor.org/
info/rfc6887 (cited on pages 25, 81).

[BPW13] Mohamed Boucadair, Reinaldo Penno, and Dan Wing. Universal
Plug and Play (UPnP) Internet Gateway Device - Port Control Protocol
Interworking Function (IGD-PCP IWF). RFC 6970. July 2013. doi:
10.17487/RFC6970. url: https://www.rfc-editor.org/info/
rfc6970 (cited on pages 25, 81).

[Lee96] Marcus D. Leech. SOCKS Protocol Version 5. RFC 1928. Mar. 1996.
doi: 10.17487/RFC1928. url: https://www.rfc-editor.org/
info/rfc1928 (cited on page 26).

[Red+20] Tirumaleswar Reddy.K, Alan Johnston, Philip Matthews, and
Jonathan Rosenberg. Traversal Using Relays around NAT (TURN):
Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC
8656. Feb. 2020. doi: 10.17487/RFC8656. url: https://www.rfc-
editor.org/info/rfc8656 (cited on pages 26, 81).

[GTF04] Saikat Guha, Yutaka Takeda, and Paul Francis. “NUTSS: a SIP-
based approach to UDP and TCP network connectivity.” In: Pro-
ceedings of the ACMSIGCOMMWorkshop on FutureDirections inNet-
work Architecture. FDNA ’04. Portland, Oregon, USA: Association
for Computing Machinery, 2004, pages 43–48. isbn: 158113942X.
doi: 10.1145/1016707.1016715. url: https://doi.org/10.
1145/1016707.1016715 (cited on pages 26, 29).

[DA08] Luca Deri and Richard Andrews. “N2N: A Layer Two Peer-to-
Peer VPN.” In: Resilient Networks and Services. Edited by David
Hausheer and Jürgen Schönwälder. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pages 53–64. isbn: 978-3-540-70587-1
(cited on pages 26, 72).

https://doi.org/10.17487/RFC6886
https://www.rfc-editor.org/info/rfc6886
https://doi.org/10.17487/RFC6887
https://www.rfc-editor.org/info/rfc6887
https://www.rfc-editor.org/info/rfc6887
https://doi.org/10.17487/RFC6970
https://www.rfc-editor.org/info/rfc6970
https://www.rfc-editor.org/info/rfc6970
https://doi.org/10.17487/RFC1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://doi.org/10.17487/RFC8656
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8656
https://doi.org/10.1145/1016707.1016715
https://doi.org/10.1145/1016707.1016715
https://doi.org/10.1145/1016707.1016715


bibliography 181

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. “Peer-to-Peer Com-
municationAcrossNetworkAddress Translators.” In: 2005USENIX
Annual Technical Conference (USENIX ATC 05). Anaheim, CA:
USENIX Association, Apr. 2005. url: https : / / www . usenix .
org/conference/2005-usenix-annual-technical-conference/

peer-peer-communication-across-network-address (cited on
page 26).

[Big+05] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian
Perrig. “NATBLASTER: Establishing TCP Connections Between
Hosts Behind NATs.” In: Proceedings of the ACM SIGCOMM ASIA
Workshop. Apr. 2005 (cited on page 26).

[GF05] Saikat Guha and Paul Francis. “Characterization and measure-
ment of TCP traversal throughNATs andfirewalls.” In:Proceedings
of the 5th ACM SIGCOMMConference on Internet Measurement. IMC
’05. Berkeley, CA: USENIX Association, 2005, page 18 (cited on
page 28).

[Edd22] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293. Aug.
2022. doi: 10.17487/RFC9293. url: https://www.rfc-editor.
org/info/rfc9293 (cited on page 28).

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. Aug. 2018. doi: 10.17487/RFC8446. url: https:
//www.rfc-editor.org/info/rfc8446 (cited on pages 29, 30,
82).

[Sch+16] Dominik Schäfer, Janick Edinger, Sebastian VanSyckel, JustinMaz-
zola Paluska, and Christian Becker. “Tasklets: Overcoming Het-
erogeneity in Distributed Computing Systems.” In: 2016 IEEE 36th
International Conference onDistributed Computing SystemsWorkshops
(ICDCSW). June 2016, pages 156–161. doi: 10.1109/ICDCSW.2016.
22 (cited on page 31).

[LK22] Phillip A. Laplante and Mohamad H. Kassab. Requirements En-
gineering for Software and Systems. 4th edition. Auerbach Publica-
tions, 2022. isbn: 978-0-367-65452-8. doi: 10.1201/9781003129509
(cited on pages 35, 37, 41).

[Mac07] Leszek A. Maciaszek. Requirements Analysis and Systems Design.
3rd edition. Pearson Education, 2007. isbn: 978-0-321-44036-5
(cited on pages 37, 40).

https://www.usenix.org/conference/2005-usenix-annual-technical-conference/peer-peer-communication-across-network-address
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/peer-peer-communication-across-network-address
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/peer-peer-communication-across-network-address
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1109/ICDCSW.2016.22
https://doi.org/10.1109/ICDCSW.2016.22
https://doi.org/10.1201/9781003129509


182 bibliography

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. “A network
in a laptop: rapid prototyping for software-defined networks.”
In: Proceedings of the 9th ACM SIGCOMMWorkshop on Hot Topics
in Networks. Hotnets-IX. Monterey, California: Association for
Computing Machinery, 2010. isbn: 9781450304092. doi: 10.1145/
1868447.1868466. url: https://doi.org/10.1145/1868447.
1868466 (cited on pages 38, 147).

[Fis12] Mathias Fischer. Construction of Attack-Resilient and Efficient Over-
lay-Topologies for Large-Scale P2P-based IPTV Infrastructures. Cuvil-
lier Verlag, 2012. isbn: 978-3954042081 (cited on pages 39, 40).

[IEE90] IEEE. “IEEE Standard Glossary of Software Engineering Termi-
nology.” In: IEEE Std 610.12-1990 (Dec. 1990), pages 1–84. doi:
10.1109/IEEESTD.1990.101064 (cited on page 40).

[FMP05] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. “A
Model-Based Approach for Robustness Testing.” In: Testing of
Communicating Systems. Edited by Ferhat Khendek and Rachida
Dssouli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pages 333–348. isbn: 978-3-540-32076-0 (cited on page 40).

[Hil90] Mark D. Hill. “What is scalability?” In: SIGARCH Comput. Archit.
News 18.4 (Dec. 1990), pages 18–21. issn: 0163-5964. doi: 10.1145/
121973.121975. url: https://doi.org/10.1145/121973.121975
(cited on page 40).

[Roß11] Michael Roßberg. Skalierbare Autokonfiguration sabotageresistenter
virtueller privaterNetze. Cuvillier Verlag, 2011. isbn: 978-3869557755
(cited on page 41).

[RF20] Mark Richards and Neal Ford. Fundamentals of Software Architec-
ture: An Engineering Approach. 1st edition. O’Reilly Media, 2020.
isbn: 978-1-492-04345-4 (cited on pages 43, 44, 50, 54, 56, 61, 88).

[Lua+05] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. “A
survey and comparison of peer-to-peer overlay network schemes.”
In: IEEE Communications Surveys & Tutorials 7.2 (2005), pages 72–
93. issn: 1553-877X. doi: 10.1109/COMST.2005.1610546 (cited on
pages 44, 45).

[AS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. “A
survey of peer-to-peer content distribution technologies.” In:ACM
Comput. Surv. 36.4 (Dec. 2004), pages 335–371. issn: 0360-0300.

https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/121973.121975
https://doi.org/10.1109/COMST.2005.1610546


bibliography 183

doi: 10.1145/1041680.1041681. url: https://doi.org/10.
1145/1041680.1041681 (cited on page 44).

[KS10] Jinu Kurian and Kamil Sarac. “A survey on the design, applica-
tions, and enhancements of application-layer overlay networks.”
In: ACM Comput. Surv. 43.1 (Dec. 2010). issn: 0360-0300. doi:
10.1145/1824795.1824800. url: https://doi.org/10.1145/
1824795.1824800 (cited on pages 44, 58, 60).

[Pas12] Andrea Passarella. “A survey on content-centric technologies
for the current Internet: CDN and P2P solutions.” In: Computer
Communications 35.1 (2012), pages 1–32. issn: 0140-3664. doi:
https : / / doi . org / 10 . 1016 / j . comcom . 2011 . 10 . 005. url:
https : / / www . sciencedirect . com / science / article / pii /

S0140366411003173 (cited on page 44).

[RM06] John Risson and Tim Moors. “Survey of research towards ro-
bust peer-to-peer networks: Search methods.” In: Computer Net-
works 50.17 (2006), pages 3485–3521. issn: 1389-1286. doi: https:
//doi.org/10.1016/j.comnet.2006.02.001. url: https://www.
sciencedirect.com/science/article/pii/S1389128606000223

(cited on page 44).

[Rat+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. “A scalable content-addressable network.” In:
Proceedings of the 2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications. SIGCOMM ’01.
San Diego, California, USA: Association for Computing Machin-
ery, 2001, pages 161–172. isbn: 1581134118. doi: 10.1145/383059.
383072. url: https://doi.org/10.1145/383059.383072 (cited
on page 44).

[RD01] Antony Rowstron and Peter Druschel. “Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-to-Peer
Systems.” In:Middleware 2001. Edited by Rachid Guerraoui. Berlin,
Heidelberg: Springer BerlinHeidelberg, 2001, pages 329–350. isbn:
978-3-540-45518-9 (cited on page 44).

[Cla+01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. “Freenet: A Distributed Anonymous Information Storage
and Retrieval System.” In: Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in Anonymity and Unob-
servability Berkeley, CA, USA, July 25–26, 2000 Proceedings. Edited by

https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1824795.1824800
https://doi.org/10.1145/1824795.1824800
https://doi.org/10.1145/1824795.1824800
https://doi.org/https://doi.org/10.1016/j.comcom.2011.10.005
https://www.sciencedirect.com/science/article/pii/S0140366411003173
https://www.sciencedirect.com/science/article/pii/S0140366411003173
https://doi.org/https://doi.org/10.1016/j.comnet.2006.02.001
https://doi.org/https://doi.org/10.1016/j.comnet.2006.02.001
https://www.sciencedirect.com/science/article/pii/S1389128606000223
https://www.sciencedirect.com/science/article/pii/S1389128606000223
https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/383059.383072
https://doi.org/10.1145/383059.383072


184 bibliography

Hannes Federrath. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pages 46–66. isbn: 978-3-540-44702-3. doi: 10.1007/3-540-
44702-4_4. url: https://doi.org/10.1007/3-540-44702-4_4
(cited on page 44).

[KR02] T. Klingberg and Manfredi R. Gnutella 0.6. June 2002. url: https:
//rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

(visited on 06/04/2024) (cited on page 44).

[KR04] T. Klingberg and Manfredi R. The FastTrack Protocol. Apr. 14, 2004.
url: http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-
fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD%5C&content-

type=text/vnd.viewcvs-markup (visited on 12/17/2012) (cited
on page 44).

[FB20] Stefano Forti andAntonio Brogi. “Continuous Reasoning forMan-
aging Next-Gen Distributed Applications.” In: Electronic Proceed-
ings in Theoretical Computer Science 325 (Sept. 2020), pages 164–
177. issn: 2075-2180. doi: 10.4204/eptcs.325.22. url: http:
//dx.doi.org/10.4204/EPTCS.325.22 (cited on pages 45, 46,
66).

[Bro+20] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera.
“Towards Declarative Decentralised Application Management
in the Fog.” In: 2020 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). Oct. 2020, pages 223–
230. doi: 10.1109/ISSREW51248.2020.00077 (cited on pages 45,
66).

[CM12] William F. Clocksin and Christopher S. Mellish. Programming in
Prolog. 5th edition. Springer Berlin, Heidelberg, 2012. isbn: 978-
3-642-55481-0. doi: 10.1007/978-3-642-55481-0 (cited on
page 46).

[Any17] Anyscale, Inc. Ray: Productionizing and scaling PythonMLworkloads
simply. May 21, 2017. url: https://www.ray.io/ (visited on
06/04/2024) (cited on page 46).

[Lop97] Cristina Videira Lopes. “D: A Language Framework for Distribut-
ed Programming.” PhD thesis. Northeastern University, 1997
(cited on page 48).

https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
https://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
https://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD%5C&content-type=text/vnd.viewcvs-markup
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD%5C&content-type=text/vnd.viewcvs-markup
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?rev=HEAD%5C&content-type=text/vnd.viewcvs-markup
https://doi.org/10.4204/eptcs.325.22
http://dx.doi.org/10.4204/EPTCS.325.22
http://dx.doi.org/10.4204/EPTCS.325.22
https://doi.org/10.1109/ISSREW51248.2020.00077
https://doi.org/10.1007/978-3-642-55481-0
https://www.ray.io/


bibliography 185

[Kil+07] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit
Jhala, andAminM. Vahdat. “Mace: language support for building
distributed systems.” In: Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
PLDI ’07. San Diego, California, USA: Association for Comput-
ing Machinery, 2007, pages 179–188. isbn: 9781595936332. doi:
10.1145/1250734.1250755. url: https://doi.org/10.1145/
1250734.1250755 (cited on page 48).

[WCB01] Matt Welsh, David Culler, and Eric Brewer. “SEDA: an architec-
ture for well-conditioned, scalable internet services.” In: Proceed-
ings of the Eighteenth ACM Symposium on Operating Systems Princi-
ples. SOSP ’01. Banff, Alberta, Canada: Association for Computing
Machinery, 2001, pages 230–243. isbn: 1581133898. doi: 10.1145/
502034.502057. url: https://doi.org/10.1145/502034.502057
(cited on page 48).

[BB05] Stefan Behnel and Alejandro Buchmann. “Overlay Networks –
Implementation by Specification.” In: Middleware 2005. Edited by
Gustavo Alonso. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pages 401–410. isbn: 978-3-540-32269-6 (cited on pages 48,
49, 66).

[Loo+05] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Ma-
niatis, Timothy Roscoe, and Ion Stoica. “Implementing declar-
ative overlays.” In: Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles. SOSP ’05. Brighton, United King-
dom: Association for Computing Machinery, 2005, pages 75–90.
isbn: 1595930795. doi: 10.1145/1095810.1095818. url: https:
//doi.org/10.1145/1095810.1095818 (cited on page 48).

[Beh07] Stefan Behnel. “A Model Driven Architecture for Adaptable Over-
lay Networks.” PhD thesis. Technische Universität Darmstadt,
2007 (cited on page 49).

[BB07] Stefan Behnel and Alejandro Buchmann. “Models and Languages
for Overlay Networks.” In:Databases, Information Systems, and Peer-
to-Peer Computing. Edited by Gianluca Moro, Sonia Bergamaschi,
Sam Joseph, Jean-Henry Morin, and Aris M. Ouksel. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pages 211–218. isbn:
978-3-540-71661-7 (cited on page 49).

https://doi.org/10.1145/1250734.1250755
https://doi.org/10.1145/1250734.1250755
https://doi.org/10.1145/1250734.1250755
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/1095810.1095818
https://doi.org/10.1145/1095810.1095818
https://doi.org/10.1145/1095810.1095818


186 bibliography

[Gon01] Li Gong. “JXTA: a network programming environment.” In: IEEE
Internet Computing 5.3 (May 2001), pages 88–95. issn: 1941-0131.
doi: 10.1109/4236.935182 (cited on pages 50, 66, 67).

[Pro20] Protocol Labs. libp2p - Modular Peer-to-Peer Networking Stack. 2020.
url: https://libp2p.io/ (visited on 06/04/2024) (cited on
pages 50, 66, 67).

[Tra+02] BernardTraversat,MohamedAbdelaziz,MikeDuigou, Jean-Chris-
tophe Hugly, Eric Pouyoul, and Bill Yeager. “Project JXTA Virtual
Network.” In: (2002) (cited on page 50).

[Ben14] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System.
2014. arXiv: 1407.3561 [cs.NI] (cited on page 51).

[Agh86] Gul A. Agha. Actors: A Model of Concurrent Computation In Dis-
tributed Systems. Technical Report. Massachusetts Institute of Tech-
nology, 1986 (cited on page 52).

[CN22] Franco Cicirelli and Libero Nigro. “Performance Prediction of
Scalable Multi-agent Systems Using Parallel Theatre.” In: Intelli-
gent Sustainable Systems. Edited by Atulya K. Nagar, Dharm Singh
Jat, Gabriela Marín-Raventós, and Durgesh Kumar Mishra. Sin-
gapore: Springer Nature Singapore, 2022, pages 45–64. isbn: 978-
981-16-6369-7 (cited on page 52).

[Fer99] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence. 1st. USA: Addison-Wesley Longman Publish-
ing Co., Inc., 1999. isbn: 0201360489 (cited on page 52).

[Lee06] E.A. Lee. “The problem with threads.” In: Computer 39.5 (May
2006), pages 33–42. issn: 1558-0814. doi: 10.1109/MC.2006.180
(cited on page 52).

[Nig21] Libero Nigro. “Parallel Theatre: An actor framework in Java for
high performance computing.” In: Simulation Modelling Practice
and Theory 106 (2021), page 102189. issn: 1569-190X. doi: https:
//doi.org/10.1016/j.simpat.2020.102189. url: https://www.
sciencedirect.com/science/article/pii/S1569190X20301283

(cited on pages 53, 66, 159).

[AZ17] Austin Aske and Xinghui Zhao. “An Actor-Based Framework
for Edge Computing.” In: Proceedings of The10th International Con-
ference on Utility and Cloud Computing. UCC ’17. Austin, Texas,
USA: Association for Computing Machinery, 2017, pages 199–

https://doi.org/10.1109/4236.935182
https://libp2p.io/
https://arxiv.org/abs/1407.3561
https://doi.org/10.1109/MC.2006.180
https://doi.org/https://doi.org/10.1016/j.simpat.2020.102189
https://doi.org/https://doi.org/10.1016/j.simpat.2020.102189
https://www.sciencedirect.com/science/article/pii/S1569190X20301283
https://www.sciencedirect.com/science/article/pii/S1569190X20301283


bibliography 187

200. isbn: 9781450351492. doi: 10.1145/3147213.3149214. url:
https://doi.org/10.1145/3147213.3149214 (cited on pages 53,
66, 159).

[BPR01] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “De-
veloping Multi-agent Systems with JADE.” In: Intelligent Agents
VII Agent Theories Architectures and Languages. Edited by Cristiano
Castelfranchi and Yves Lespérance. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pages 89–103. isbn: 978-3-540-44631-6
(cited on page 53).

[Boi+13] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro
Ricci, and Andrea Santi. “Multi-agent oriented programming
with JaCaMo.” In: Science of Computer Programming 78.6 (2013).
Special section: The Programming Languages track at the 26th
ACM Symposium on Applied Computing (SAC 2011) & Special
section on Agent-oriented Design Methods and Programming
Techniques for Distributed Computing in Dynamic and Com-
plex Environments, pages 747–761. issn: 0167-6423. doi: https:
//doi.org/10.1016/j.scico.2011.10.004. url: https://www.
sciencedirect.com/science/article/pii/S016764231100181X

(cited on page 53).

[CNS20] Franco Cicirelli, Libero Nigro, and Paolo F. Sciammarella. “Seam-
less development in Java of distributed real-time systems using
actors.” In: International Journal of Simulation and Process Modelling
15 (2020), pages 13–29. doi: 10.1504/IJSPM.2020.106965 (cited
on page 53).

[SWT17] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming
and proving with distributed protocols.” In: Proc. ACM Program.
Lang. 2.POPL (Dec. 2017). doi: 10.1145/3158116. url: https:
//doi.org/10.1145/3158116 (cited on page 54).

[Haw+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill.
“IronFleet: proving practical distributed systems correct.” In: Pro-
ceedings of the 25th Symposium onOperating Systems Principles. SOSP
’15. Monterey, California: Association for Computing Machinery,
2015, pages 1–17. isbn: 9781450338349. doi: 10.1145/2815400.
2815428. url: https://doi.org/10.1145/2815400.2815428
(cited on pages 54, 55).

https://doi.org/10.1145/3147213.3149214
https://doi.org/10.1145/3147213.3149214
https://doi.org/https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/https://doi.org/10.1016/j.scico.2011.10.004
https://www.sciencedirect.com/science/article/pii/S016764231100181X
https://www.sciencedirect.com/science/article/pii/S016764231100181X
https://doi.org/10.1504/IJSPM.2020.106965
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428


188 bibliography

[Wil+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. “Verdi: a
framework for implementing and formally verifying distributed
systems.” In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’15.
Portland, OR, USA: Association for Computing Machinery, 2015,
pages 357–368. isbn: 9781450334686. doi: 10 . 1145 / 2737924 .
2737958. url: https://doi.org/10.1145/2737924.2737958
(cited on page 54).

[Lam94] Leslie Lamport. “The temporal logic of actions.” In: ACM Trans.
Program. Lang. Syst. 16.3 (May 1994), pages 872–923. issn: 0164-
0925. doi: 10.1145/177492.177726. url: https://doi.org/10.
1145/177492.177726 (cited on page 54).

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, June 2002.
url: https://www.microsoft.com/en-us/research/publication/
specifying - systems - the - tla - language - and - tools - for -

hardware-and-software-engineers/ (cited on page 54).

[Hoa69] C. A. R. Hoare. “An axiomatic basis for computer programming.”
In: Commun. ACM 12.10 (Oct. 1969), pages 576–580. issn: 0001-
0782. doi: 10.1145/363235.363259. url: https://doi.org/10.
1145/363235.363259 (cited on page 54).

[Lam77] L. Lamport. “Proving the Correctness of Multiprocess Programs.”
In: IEEE Transactions on Software Engineering SE-3.2 (Mar. 1977),
pages 125–143. issn: 1939-3520. doi: 10.1109/TSE.1977.229904
(cited on page 54).

[Yua+14] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm.
“Simple Testing Can Prevent Most Critical Failures: An Anal-
ysis of Production Failures in Distributed Data-Intensive Sys-
tems.” In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO: USENIX Asso-
ciation, Oct. 2014, pages 249–265. isbn: 978-1-931971-16-4. url:
https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/yuan (cited on page 55).

[Lip75] Richard J. Lipton. “Reduction: a method of proving properties of
parallel programs.” In:Commun.ACM 18.12 (Dec. 1975), pages 717–

https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/TSE.1977.229904
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan


bibliography 189

721. issn: 0001-0782. doi: 10.1145/361227.361234. url: https:
//doi.org/10.1145/361227.361234 (cited on page 55).

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for
Functional Correctness.” In: Logic for Programming, Artificial Intel-
ligence, and Reasoning. Edited by Edmund M. Clarke and Andrei
Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pages 348–370. isbn: 978-3-642-17511-4 (cited on page 55).

[Gar+05] Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio
Tejedor, and Robert Rallo. “PlanetSim: A New Overlay Network
Simulation Framework.” In: Software Engineering and Middleware.
Edited by Thomas Gschwind and Cecilia Mascolo. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, pages 123–136. isbn:
978-3-540-31975-7 (cited on page 55).

[BHK07] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. “Over-
Sim: A Flexible Overlay Network Simulation Framework.” In:
2007 IEEE Global Internet Symposium. May 2007, pages 79–84. doi:
10.1109/GI.2007.4301435 (cited on page 55).

[Ope01] OpenSim Ltd. OMNeT++ Discrete Event Simulator. Feb. 15, 2001.
url: https://omnetpp.org/ (visited on 06/04/2024) (cited on
page 55).

[Rob14] Stewart Robinson. Simulation: The Practice of Model Development
andUse. 2nd edition. PalgraveMacMillan, 2014. isbn: 978-1137328021
(cited on page 55).

[Nai+06] StephenNaicken, Anirban Basu, Barnaby Livingston, and Sethalat
Rodhetbhai. “A survey of peer-to-peer network simulators.” In:
Proceedings of The SeventhAnnual Postgraduate Symposium, Liverpool,
UK. Volume 2. 2006, page 13 (cited on page 56).

[Dab+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and
Ion Stoica. “Towards a Common API for Structured Peer-to-Peer
Overlays.” In: Peer-to-Peer Systems II. Edited byM. Frans Kaashoek
and Ion Stoica. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pages 33–44. isbn: 978-3-540-45172-3 (cited on pages 56, 57,
65).

[Law24] Averill M. Law. Simulation Modeling and Analysis. 6th edition. Mc-
Graw Hill, 2024. isbn: 9781264268245 (cited on page 56).

https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234
https://doi.org/10.1109/GI.2007.4301435
https://omnetpp.org/


190 bibliography

[Sto+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and
Sonesh Surana. “Internet indirection infrastructure.” In: SIGCOMM
Comput. Commun. Rev. 32.4 (Aug. 2002), pages 73–86. issn: 0146-
4833. doi: 10.1145/964725.633033. url: https://doi.org/10.
1145/964725.633033 (cited on pages 58, 65–67).

[For04] Bryan Ford. “Unmanaged Internet Protocol: taming the edge net-
work management crisis.” In: SIGCOMM Comput. Commun. Rev.
34.1 (Jan. 2004), pages 93–98. issn: 0146-4833. doi: 10.1145/
972374.972391. url: https://doi.org/10.1145/972374.972391
(cited on pages 58, 65–67, 72).

[RSS10] Michael Rossberg, Guenter Schaefer, and Thorsten Strufe. “Dis-
tributed Automatic Configuration of Complex IPsec-Infrastruc-
tures.” In: Journal of Network and Systems Management 18.3 (Sept.
2010), pages 300–326. issn: 1573-7705. doi: 10.1007/s10922-010-
9168-7. url: https://doi.org/10.1007/s10922-010-9168-7
(cited on pages 58, 59, 65–67).

[SK05] Karen Seo and Stephen Kent. Security Architecture for the Internet
Protocol. RFC 4301. Dec. 2005. doi: 10.17487/RFC4301. url: https:
//www.rfc-editor.org/info/rfc4301 (cited on page 58).

[Zer14] ZeroTier, Inc. ZeroTier - Global Area Networking. 2014. url: https:
//github.com/zerotier/ZeroTierOne (visited on 06/04/2024)
(cited on pages 59, 66, 67).

[Tai19] Tailscale Inc. Best VPN Service for Secure Networks. 2019. url: https:
//tailscale.com/ (visited on 06/04/2024) (cited on pages 59,
66, 67).

[Zer24a] ZeroTier, Inc. The Protocol | ZeroTier Documentation. Apr. 12, 2024.
url: https://docs.zerotier.com/protocol/ (visited on 06/04/2024)
(cited on page 59).

[Zer24b] ZeroTier, Inc. libzt: ZeroTier’s Lightweight End-to-End Encrypted
Network Virtualization Library. Jan. 16, 2024. url: https://github.
com/zerotier/libzt (visited on 01/16/2024) (cited on page 59).

[Don17] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Net-
work Tunnel.” In: Network and Distributed System Security Sympo-
sium. 2017. url: https://api.semanticscholar.org/CorpusID:
2590070 (cited on page 59).

https://doi.org/10.1145/964725.633033
https://doi.org/10.1145/964725.633033
https://doi.org/10.1145/964725.633033
https://doi.org/10.1145/972374.972391
https://doi.org/10.1145/972374.972391
https://doi.org/10.1145/972374.972391
https://doi.org/10.1007/s10922-010-9168-7
https://doi.org/10.1007/s10922-010-9168-7
https://doi.org/10.1007/s10922-010-9168-7
https://doi.org/10.17487/RFC4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://github.com/zerotier/ZeroTierOne
https://github.com/zerotier/ZeroTierOne
https://tailscale.com/
https://tailscale.com/
https://docs.zerotier.com/protocol/
https://github.com/zerotier/libzt
https://github.com/zerotier/libzt
https://api.semanticscholar.org/CorpusID:2590070
https://api.semanticscholar.org/CorpusID:2590070


bibliography 191

[Tai20] Tailscale Inc. How Tailscale works. Mar. 20, 2020. url: https://
tailscale.com/blog/how-tailscale-works (visited on 06/04/2024)
(cited on page 59).

[DZH03] Zhenhai Duan, Zhi-Li Zhang, and Y.T. Hou. “Service overlay net-
works: SLAs, QoS, and bandwidth provisioning.” In: IEEE/ACM
Transactions on Networking 11.6 (Dec. 2003), pages 870–883. issn:
1558-2566. doi: 10.1109/TNET.2003.820436 (cited on page 60).

[Kub14] KubernetesAuthors.Production-Grade ContainerOrchestration. 2014.
url: https://kubernetes.io/ (visited on 06/04/2024) (cited on
pages 61, 66, 67, 159).

[Bur+22] Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Even-
son. Kubernetes: Up & Running. 3rd edition. O’Reilly Media, 2022.
isbn: 978-1-098-11020-8 (cited on page 61).

[SAF23] Kensworth Subratie, Saumitra Aditya, and Renato J. Figueiredo.
“EdgeVPN: Self-organizing layer-2 virtual edge networks.” In:
Future Generation Computer Systems 140 (2023), pages 104–116.
issn: 0167-739X. doi: https://doi.org/10.1016/j.future.
2022.10.007. url: https://www.sciencedirect.com/science/
article/pii/S0167739X22003235 (cited on pages 61, 66, 67, 162).

[Bar+23] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Halu-
szczynski,NitinderMohan, and JörgOtt. “Oakestra:ALightweight
Hierarchical Orchestration Framework for Edge Computing.”
In: 2023 USENIX Annual Technical Conference (USENIX ATC 23).
Boston, MA: USENIX Association, July 2023, pages 215–231. isbn:
978-1-939133-35-9. url: https://www.usenix.org/conference/
atc23/presentation/bartolomeo (cited on pages 61, 66).

[Doc13] Docker Inc. Docker: Accelerated Container Application Development.
Mar. 20, 2013. url: https://www.docker.com/ (visited on 06/04/2024)
(cited on page 61).

[Igo04] Igor Sysoev. nginx. Oct. 4, 2004. url: https://nginx.org/ (visited
on 06/04/2024) (cited on page 62).

[Mar09] MariaDB Corporation. MariaDB Enterprise Open Source Database |
MariaDB. Oct. 29, 2009. url: https://mariadb.org/ (visited on
06/04/2024) (cited on page 62).

https://tailscale.com/blog/how-tailscale-works
https://tailscale.com/blog/how-tailscale-works
https://doi.org/10.1109/TNET.2003.820436
https://kubernetes.io/
https://doi.org/https://doi.org/10.1016/j.future.2022.10.007
https://doi.org/https://doi.org/10.1016/j.future.2022.10.007
https://www.sciencedirect.com/science/article/pii/S0167739X22003235
https://www.sciencedirect.com/science/article/pii/S0167739X22003235
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://www.docker.com/
https://nginx.org/
https://mariadb.org/


192 bibliography

[Yin+09] Qin Yin, Adrian Schüpbach, Justin Cappos, Andrew Baumann,
and Timothy Roscoe. “Rhizoma: A Runtime for Self-deploying,
Self-managing Overlays.” In: Middleware 2009. Edited by Jean M.
Bacon and Brian F. Cooper. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pages 184–204. isbn: 978-3-642-10445-9 (cited
on pages 63–67).

[Cap+16] Mauro Caporuscio, Vincenzo Grassi, Moreno Marzolla, and Raf-
faela Mirandola. “GoPrime: A Fully Decentralized Middleware
for Utility-Aware Service Assembly.” In: IEEE Transactions on Soft-
ware Engineering 42.2 (Feb. 2016), pages 136–152. issn: 1939-3520.
doi: 10.1109/TSE.2015.2476797 (cited on pages 64, 66).

[AK09] I. Al-Oqily and A. Karmouch. “Towards automating overlay net-
work management.” In: Journal of Network and Computer Appli-
cations 32.2 (2009), pages 461–473. issn: 1084-8045. doi: https:
//doi.org/10.1016/j.jnca.2008.02.013. url: https://www.
sciencedirect.com/science/article/pii/S1084804508000593

(cited on pages 64–67).

[Yin+08] Qin Yin, Justin Cappos, Andrew Baumann, and Timothy Roscoe.
“Dependable self-hosting distributed systems using constraints.”
In: Proceedings of the Fourth Conference on Hot Topics in System De-
pendability. HotDep’08. San Diego, California: USENIX Associa-
tion, 2008, page 11 (cited on page 64).

[Syc+96] K. Sycara, A. Pannu, M. Willamson, Dajun Zeng, and K. Decker.
“Distributed intelligent agents.” In: IEEE Expert 11.6 (Dec. 1996),
pages 36–46. issn: 2374-9407. doi: 10.1109/64.546581 (cited on
page 64).

[KB06] Madhu Kumar S.D and Umesh Bellur. “An underlay aware, adap-
tive overlay for event broker networks.” In: Proceedings of the 5th
Workshop on Adaptive and Reflective Middleware (ARM ’06). ARM
’06. Melbourne, Australia: Association for Computing Machinery,
2006, page 4. isbn: 1595934197. doi: 10.1145/1175855.1175859.
url: https://doi.org/10.1145/1175855.1175859 (cited on
page 66).

[Buf08] John F. Buford. “Management of peer-to-peer overlays.” In: Int. J.
Internet Protoc. Technol. 3.1 (July 2008), pages 2–12. issn: 1743-8209.
doi: 10.1504/IJIPT.2008.019291. url: https://doi.org/10.
1504/IJIPT.2008.019291 (cited on pages 65–67).

https://doi.org/10.1109/TSE.2015.2476797
https://doi.org/https://doi.org/10.1016/j.jnca.2008.02.013
https://doi.org/https://doi.org/10.1016/j.jnca.2008.02.013
https://www.sciencedirect.com/science/article/pii/S1084804508000593
https://www.sciencedirect.com/science/article/pii/S1084804508000593
https://doi.org/10.1109/64.546581
https://doi.org/10.1145/1175855.1175859
https://doi.org/10.1145/1175855.1175859
https://doi.org/10.1504/IJIPT.2008.019291
https://doi.org/10.1504/IJIPT.2008.019291
https://doi.org/10.1504/IJIPT.2008.019291


bibliography 193

[Net20] NetFoundry Inc. OpenZiti - Open Source Zero Trust Networking.
2020. url: https://openziti.io/ (visited on 06/04/2024) (cited
on pages 65–67).

[Hog22] Luc Hogie. “Idawi: a decentralised middleware for achieving
the full potential of the IoT, the fog, and other difficult comput-
ing environments.” In: Proceedings of the 1st Workshop on Middle-
ware for the Edge. MIDDLEWEDGE ’22. Quebec, Quebec City,
Canada: Association for Computing Machinery, 2022, pages 1–5.
isbn: 9781450399302. doi: 10.1145/3565385.3565876. url: https:
//doi.org/10.1145/3565385.3565876 (cited on pages 66, 67).

[Ros+23] Lorenzo Rosa, Andrea Garbugli, Antonio Corradi, and Paolo
Bellavista. “INSANE: A Unified Middleware for QoS-aware Net-
work Acceleration in Edge Cloud Computing.” In: Proceedings
of the 24th International Middleware Conference. Middleware ’23.
Bologna, Italy: Association forComputingMachinery, 2023, pages 57–
70. doi: 10.1145/3590140.3629105. url: https://doi.org/10.
1145/3590140.3629105 (cited on pages 66, 67, 159).

[DAS23] Javier Jose Diaz Rivera, Muhammad Afaq, and Wang-Cheol Song.
“Blockchain and Intent-Based Networking: A Novel Approach to
Secure and Accurate Network Policy Implementation.” In: 2023
24st Asia-Pacific Network Operations and Management Symposium
(APNOMS). Sept. 2023, pages 77–82 (cited on pages 65–67).

[Ryu17] Ryu SDN Framework Community. Ryu SDN Framework. Jan. 1,
2017. url: https://ryu-sdn.org/ (visited on 09/25/2024) (cited
on page 70).

[LL14] Lin Lin and Ping Lin. “Software-Defined Networking (SDN)
for Cloud Applications.” In: Cloud Computing: Challenges, Lim-
itations and R&D Solutions. Edited by Zaigham Mahmood. Cham:
Springer International Publishing, 2014, pages 209–233. isbn: 978-
3-319-10530-7. doi: 10.1007/978-3-319-10530-7_9. url: https:
//doi.org/10.1007/978-3-319-10530-7_9 (cited on page 70).

[MBB11] Philip Matthews, Iljitsch van Beijnum, and Marcelo Bagnulo.
Stateful NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers. RFC 6146.Apr. 2011. doi: 10.17487/RFC6146.
url: https://www.rfc-editor.org/info/rfc6146 (cited on
page 72).

https://openziti.io/
https://doi.org/10.1145/3565385.3565876
https://doi.org/10.1145/3565385.3565876
https://doi.org/10.1145/3565385.3565876
https://doi.org/10.1145/3590140.3629105
https://doi.org/10.1145/3590140.3629105
https://doi.org/10.1145/3590140.3629105
https://ryu-sdn.org/
https://doi.org/10.1007/978-3-319-10530-7_9
https://doi.org/10.1007/978-3-319-10530-7_9
https://doi.org/10.1007/978-3-319-10530-7_9
https://doi.org/10.17487/RFC6146
https://www.rfc-editor.org/info/rfc6146


194 bibliography

[DC98] Dr. Steve E. Deering and Alex Conta. Generic Packet Tunneling in
IPv6 Specification. RFC 2473. Dec. 1998. doi: 10.17487/RFC2473.
url: https://www.rfc-editor.org/info/rfc2473 (cited on
page 72).

[Mah04] Qusay H. Mahmoud. Middleware for Communications. 1st edition.
JohnWiley&Sons, Inc., 2004. isbn: 0-470-86206-8 (cited onpage 73).

[OMG11] Object Management Group (OMG). OMG Unified Modeling Lan-
guage (OMG UML), Superstructure, Version 2.4.1. Object Manage-
ment Group, Aug. 2011. url: http://www.omg.org/spec/UML/2.
4.1 (cited on pages 76, 105).

[Cas+03] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Row-
stron, and Dan S. Wallach. “Secure routing for structured peer-
to-peer overlay networks.” In: SIGOPS Oper. Syst. Rev. 36.SI (Dec.
2003), pages 299–314. issn: 0163-5980. doi: 10 . 1145 / 844128 .
844156. url: https://doi.org/10.1145/844128.844156 (cited
on page 80).

[KHR18] Ari Keränen, Christer Holmberg, and Jonathan Rosenberg. Interac-
tive Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal. RFC 8445. July 2018. doi: 10.17487/
RFC8445. url: https://www.rfc-editor.org/info/rfc8445
(cited on page 81).

[Pet+20] Marc Petit-Huguenin, Gonzalo Salgueiro, Jonathan Rosenberg,
Dan Wing, Rohan Mahy, and Philip Matthews. Session Traversal
Utilities for NAT (STUN). RFC 8489. Feb. 2020. doi: 10.17487/
RFC8489. url: https://www.rfc-editor.org/info/rfc8489
(cited on page 81).

[Sch+02] Eve Schooler, Jonathan Rosenberg, Henning Schulzrinne, Alan
Johnston, Gonzalo Camarillo, Jon Peterson, Robert Sparks, and
Mark J. Handley. SIP: Session Initiation Protocol. RFC 3261. July
2002. doi: 10.17487/RFC3261. url: https://www.rfc-editor.
org/info/rfc3261 (cited on page 81).

[IT21] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. May 2021. doi: 10.17487/
RFC9000. url: https://www.rfc-editor.org/info/rfc9000
(cited on page 82).

https://doi.org/10.17487/RFC2473
https://www.rfc-editor.org/info/rfc2473
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1
https://doi.org/10.1145/844128.844156
https://doi.org/10.1145/844128.844156
https://doi.org/10.1145/844128.844156
https://doi.org/10.17487/RFC8445
https://doi.org/10.17487/RFC8445
https://www.rfc-editor.org/info/rfc8445
https://doi.org/10.17487/RFC8489
https://doi.org/10.17487/RFC8489
https://www.rfc-editor.org/info/rfc8489
https://doi.org/10.17487/RFC3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000


bibliography 195

[RTM22] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The
Datagram Transport Layer Security (DTLS) Protocol Version 1.3. RFC
9147. Apr. 2022. doi: 10.17487/RFC9147. url: https://www.rfc-
editor.org/info/rfc9147 (cited on page 82).

[DH22] Whitfield Diffie andMartin E. Hellman. “NewDirections in Cryp-
tography.” In: Democratizing Cryptography: The Work of Whitfield
Diffie and Martin Hellman. 1st edition. New York, NY, USA: As-
sociation for Computing Machinery, 2022, pages 365–390. isbn:
9781450398275. url: https : / / doi . org / 10 . 1145 / 3549993 .
3550007 (cited on page 88).

[Wel82] E. Weldon. “An Improved Selective-Repeat ARQ Strategy.” In:
IEEE Transactions on Communications 30.3 (Mar. 1982), pages 480–
486. issn: 1558-0857. doi: 10.1109/TCOM.1982.1095497 (cited on
page 88).

[VGS05] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. “CY-
CLON: Inexpensive Membership Management for Unstructured
P2P Overlays.” In: Journal of Network and Systems Management 13.2
(June 2005), pages 197–217. issn: 1573-7705. doi: 10.1007/s10922-
005-4441-x. url: https://doi.org/10.1007/s10922-005-4441-
x (cited on pages 88, 113).

[Sch+00] DouglasC. Schmidt,Michael Stal,HansRohnert, and FrankBusch-
mann.Pattern-Oriented Software Architecture: Patterns for Concurrent
and Networked Objects. 2nd edition. John Wiley & Sons, Inc., 2000.
isbn: 0-471-60695-2 (cited on page 88).

[Lin01] John Lindow. “Norse Mythology: A Guide to the Gods, Heroes,
Rituals, and Beliefs.” In: Oxford University Press (2001) (cited on
page 101).

[Ber+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. “High-speed high-security signatures.” In: Journal
of Cryptographic Engineering 2.2 (Sept. 2012), pages 77–89. issn:
2190-8516. doi: 10.1007/s13389-012-0027-1. url: https://doi.
org/10.1007/s13389-012-0027-1 (cited on page 102).

[Rog02] Phillip Rogaway. “Authenticated-encryptionwith associated-data.”
In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security. CCS ’02. Washington, DC, USA: Association
for Computing Machinery, 2002, pages 98–107. isbn: 1581136129.

https://doi.org/10.17487/RFC9147
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9147
https://doi.org/10.1145/3549993.3550007
https://doi.org/10.1145/3549993.3550007
https://doi.org/10.1109/TCOM.1982.1095497
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1


196 bibliography

doi: 10.1145/586110.586125. url: https://doi.org/10.1145/
586110.586125 (cited on page 103).

[Tho21] Erik Thormarker. On using the same key pair for Ed25519 and an
X25519 based KEM. Cryptology ePrint Archive, Paper 2021/509.
https://eprint.iacr.org/2021/509. 2021. url: https://
eprint.iacr.org/2021/509 (cited on page 103).

[Arc20] Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and AEAD_-
XChaCha20_Poly1305. Internet-Draft draft-irtf-cfrg-xchacha-03.Work
in Progress. Internet Engineering Task Force, Jan. 2020. 18 pages.
url: https://datatracker.ietf.org/doc/draft-irtf-cfrg-
xchacha/03/ (cited on page 104).

[CK21] YannCollet andMurray Kucherawy.Zstandard Compression and the
’application/zstd’ Media Type. RFC 8878. Feb. 2021. doi: 10.17487/
RFC8878. url: https://www.rfc-editor.org/info/rfc8878
(cited on page 112).

[IFF96] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes Filho. “Lua–an extensible extension language.” In:
Softw. Pract. Exper. 26.6 (June 1996), pages 635–652. issn: 0038-
0644 (cited on page 117).

[Che76] Peter Pin-Shan Chen. “The entity-relationship model–toward a
unified view of data.” In:ACMTrans. Database Syst. 1.1 (Mar. 1976),
pages 9–36. issn: 0362-5915. doi: 10.1145/320434.320440. url:
https://doi.org/10.1145/320434.320440 (cited on page 117).

[Röb22] Kevin Röbert. “A Secure Context-Aware Middleware for Com-
putation Offloading in Untrustworthy, Open, and Dynamic Edge
Environments.” Master’s thesis. University of Hamburg, Feb. 3,
2022 (cited on page 135).

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. “King:
estimating latency between arbitrary internet end hosts.” In: Pro-
ceedings of the 2nd ACM SIGCOMMWorkshop on Internet Measur-
ment. IMW ’02. Marseille, France: Association for Computing
Machinery, 2002, pages 5–18. isbn: 158113603X. doi: 10.1145/
637201.637203. url: https://doi.org/10.1145/637201.637203
(cited on page 147).

[ker15] kernel development community.Control Group v2. 2015. url: https:
//www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.

html#controllers (visited on 05/24/2024) (cited on page 153).

https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://eprint.iacr.org/2021/509
https://eprint.iacr.org/2021/509
https://eprint.iacr.org/2021/509
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC8878
https://www.rfc-editor.org/info/rfc8878
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/637201.637203
https://doi.org/10.1145/637201.637203
https://doi.org/10.1145/637201.637203
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#controllers
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#controllers
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#controllers


bibliography 197

[Var+16] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick,
and Dimitrios S. Nikolopoulos. “Challenges and Opportunities
in Edge Computing.” In: 2016 IEEE International Conference on
Smart Cloud (SmartCloud). Nov. 2016, pages 20–26. doi: 10.1109/
SmartCloud.2016.18 (cited on page 157).

[Cao+20] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. “An
OverviewonEdgeComputingResearch.” In: IEEEAccess 8 (2020),
pages 85714–85728. issn: 2169-3536. doi: 10.1109/ACCESS.2020.
2991734 (cited on page 157).

[Shi+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu.
“Edge Computing: Vision and Challenges.” In: IEEE Internet of
Things Journal 3.5 (Oct. 2016), pages 637–646. issn: 2327-4662. doi:
10.1109/JIOT.2016.2579198 (cited on page 157).

[NLB19] Duong Tung Nguyen, Long Bao Le, and Vijay K. Bhargava. “A
Market-Based Framework for Multi-Resource Allocation in Fog
Computing.” In: IEEE/ACM Transactions on Networking 27.3 (June
2019), pages 1151–1164. issn: 1558-2566. doi: 10.1109/TNET.2019.
2912077 (cited on page 161).

[Mad+20] Arkadiusz Madej, Nan Wang, Nikolaos Athanasopoulos, Rajiv
Ranjan, and Blesson Varghese. “Priority-based Fair Scheduling
in Edge Computing.” In: 2020 IEEE 4th International Conference
on Fog and Edge Computing (ICFEC). May 2020, pages 39–48. doi:
10.1109/ICFEC50348.2020.00012 (cited on page 161).

[CNI24] CNIAuthors.Container Network Interface. July 22, 2024. url: https:
//github.com/containernetworking/cni (visited on 09/25/2024)
(cited on page 162).

[KBE23] Philipp Kisters, Heiko Bornholdt, and Janick Edinger. “SkABNet:
A Data Structure for Efficient Discovery of Streaming Data for
IoT.” In: 2023 32nd International Conference on Computer Commu-
nications and Networks (ICCCN). 32nd International Conference
on Computer Communications and Networks (ICCCN 2023).
Honolulu, HI, USA: IEEE, 2023. doi: 10.1109/ICCCN58024.2023.
10230169.

[Bor+21] Heiko Bornholdt, David Jost, Philipp Kisters, Michel Rottleuth-
ner, Sehrish Shafeeq, Winfried Lamersdorf, Thomas C. Schmidt,
and Mathias Fischer. “Smart Urban Data Space for Citizen Sci-
ence.” In: Volume 80: Conference on Networked Systems 2021 (NetSys

https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/TNET.2019.2912077
https://doi.org/10.1109/TNET.2019.2912077
https://doi.org/10.1109/ICFEC50348.2020.00012
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://doi.org/10.1109/ICCCN58024.2023.10230169
https://doi.org/10.1109/ICCCN58024.2023.10230169


198 bibliography

2021). Conference on Networked Systems (NetSys 2021). Lübeck,
Germany: ECEASST, 2021. doi: 10.14279/tuj.eceasst.80.1158.

[PKB21] Wolf Posdorfer, Julian Kalinowski, and Heiko Bornholdt. “To-
wards EU-GDPR Compliant Blockchains with Intentional Fork-
ing.” In: Advances in Computer, Communication and Computational
Sciences, Proceedings of IC4S 2019. International Conference on
Computer, Communication and Computational Sciences (IC4S
2019). Bangkok, Thailand: Springer Singapore, 2021, pages 649–
658. doi: 10.1007/978-981-15-4409-5_58.

[PBL20] Wolf Posdorfer,Heiko Bornholdt, andWinfried Lamersdorf. “Trans-
action Dependency Model for Block Minimization in Arbitrary
Blockchains.” In: Proceedings of the 2nd International Electronics
Communication Conference. 2nd International Electronics Commu-
nication Conference (IECC 2020). Singapore, Singapore: ACM,
2020, pages 59–66. doi: 10.1145/3409934.3409935.

[Hau+18] Christopher Haubeck, Heiko Bornholdt, Winfried Lamersdorf,
AbhishekChakraborty, andAlexander Fay. “Step-based Evolution
Support among Networked Production Automation Systems.” In:
at - Automatisierungstechnik (2018), pages 849–858. doi: 10.1515/
auto-2018-0047.

[Bor+19] Heiko Bornholdt, David Jost, Philipp Kisters, Michel Rottleuth-
ner, Dirk Bade, Winfried Lamersdorf, Thomas C. Schmidt, and
Mathias Fischer. “SANE: Smart Networks for Urban Citizen Par-
ticipation.” In: 2019 26th International Conference on Telecommuni-
cations (ICT). 26th International Conference on Telecommunica-
tions (ICT 2019). Hanoi, Vietnman: IEEE, 2019, pages 496–500.
doi: 10.1109/ICT.2019.8798771.

[Pos+20] Wolf Posdorfer, JulianKalinowski, Heiko Bornholdt, andWinfried
Lamersdorf. “Decentralized Billing and Subcontracting of Appli-
cation Services for Cloud Environment Providers.” In: Advances
in Service-Oriented and Cloud Computing, International Workshops of
ESOCC 2018. 8th European Conference On Service-Oriented And
Cloud Computing (ESOCC 2018). Como, Italy: Springer Cham,
2020, pages 91–101. doi: 10.1007/978-3-030-63161-1_7.

[Kis24] Liliana Kistenmacher. “QUIC Load Balancing: Enumeration At-
tacks on QUIC-aware Load Balancers and Countermeasures.”
Master’s thesis. University of Hamburg, Feb. 22, 2024.

https://doi.org/10.14279/tuj.eceasst.80.1158
https://doi.org/10.1007/978-981-15-4409-5_58
https://doi.org/10.1145/3409934.3409935
https://doi.org/10.1515/auto-2018-0047
https://doi.org/10.1515/auto-2018-0047
https://doi.org/10.1109/ICT.2019.8798771
https://doi.org/10.1007/978-3-030-63161-1_7


bibliography 199

[Sem23] Anton Semjonov. “Opportunistic Distributed Computation Of-
floading usingWebAssembly.”Master’s thesis. University ofHam-
burg, Oct. 16, 2023.

[Brü22] Timon Brüning. “Methoden zur Qualitätsanalyse von Daten in
Sensornetzwerken im Kontext einer Smart City.” Master’s thesis.
University of Hamburg, Feb. 18, 2022.

[Mai21] Tom Maier. “Dezentrale Access-Control-Konzepte für einen kon-
trolliertenAustausch vonDaten zwischen Bürger:innen auf Smart-
City-Marktplätzen.”Master’s thesis. University ofHamburg,Apr. 14,
2021.

[Sza21] Phil Szalay. “Methoden für eine Event-basierte Verarbeitung von
Sensordaten aus heterogenen Datenquellen im Smart-Home-Be-
reich am Beispiel eines Incorum-Ansatzes.” Master’s thesis. Uni-
versity of Hamburg, June 29, 2021.

[Abt19] Florian Abt. “Monitoring-Dienste im Web of Things.” Master’s
thesis. University of Hamburg, Dec. 1, 2019.

[Bag19] Samuel Bagdassarian. “Predicting Suitable Update Times for IoT
Devices.” Master’s thesis. University of Hamburg, Dec. 27, 2019.

[Rei19] Yanneck Reiß. “Caching-Strategien für Daten in Wireless-Sensor-
netzwerken im Kontext einer Smart City.” Master’s thesis. Uni-
versity of Hamburg, Mar. 5, 2019.

[Vie18] Sebastiano Vierk. “Software-Wartung im Kontext von Firmware-
Updates bei IoT-Geräten.”Master’s thesis. University of Hamburg,
Dec. 14, 2018.

[Moh22] PatrickMohr. “Evaluating Impacts on the Randomness Properties
of Gossip-Based Peer Sampling when using the drasyl Commu-
nication Framework.” Bachelor’s thesis. University of Hamburg,
May 23, 2022.

[Bau21] Simon Bauer. “Ursachen, Auswirkungen und Behandlung von
Free Riding in Smart-City-Datenräumen.” Bachelor’s thesis. Uni-
versity of Hamburg, June 7, 2021.

[Hir19] Michael Hirsch. “Evaluierung von Question-Answering Syste-
men für Sensornetze.” Bachelor’s thesis. University of Hamburg,
Nov. 28, 2019.



200 bibliography

[Ngu19] MinhHieuNguyen. “Flexible und automatisierte Provisionierung
von IoT-Systemen am Beispiel von Raspberry-Pi-basierten Robo-
tern.” Bachelor’s thesis. University of Hamburg, May 1, 2019.

[Wut19] Maximilian Wutz. “Entwurf einer Middleware zur Standard-
isierung von heterogenen Sensordaten am Beispiel von open-
HAB.” Bachelor’s thesis. University of Hamburg, Mar. 27, 2019.

[Sch23] Tom Schmolzi. “A Proposal-Based, Decentralized Demand-Side
Management Peak-Reduction Algorithm.” base.camp project re-
port. University of Hamburg, Mar. 2023.

[Röb21] Kevin Röbert. “Overlay Network Framework for Rapid Develop-
ment of Distributed P2P Applications.” base.camp project report.
University of Hamburg, Mar. 2021.

[Töt21] Fin Töter. “Towards a Decentralized Trust-Based Reputation Sys-
tem for Citizen-Driven Marketplaces.” base.camp project report.
University of Hamburg, Dec. 2021.

[Alt20] Claas Altschaffel. “Virtuelle Assistenten als Benutzungsschnitt-
stelle für Smart-City-Plattformen.” Diploma thesis. University of
Hamburg, Mar. 23, 2020.



Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift
selbst verfasst und keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt habe. Sofern im Zuge der Erstellung der vorliegenden Disser-
tationsschrift generative Künstliche Intelligenz (gKI) basierte elektronische
Hilfsmittel verwendet wurden, versichere ich, dass meine eigene Leistung im
Vordergrund stand und dass eine vollständige Dokumentation aller verwende-
ten Hilfsmittel gemäß der Guten wissenschaftlichen Praxis vorliegt. Ich trage
die Verantwortung für eventuell durch die gKI generierte fehlerhafte oder
verzerrte Inhalte, fehlerhafte Referenzen, Verstöße gegen das Datenschutz-
und Urheberrecht oder Plagiate.

Pinneberg, September 30, 2024

Heiko Tobias Bornholdt





colophon

This document was typeset using LATEX and the typographical look-and-feel
classicthesis1 developed by André Miede and Ivo Pletikosi. Furthermore, 1 https://bitbucket.org/amiede/

classicthesis/the style customization in this document was inspired by Aaron Turon’s Un-
derstanding and expressing scalable concurrency2. 2 https://www.ccs.neu.edu/home/turon/

thesis.pdf

https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/
https://www.ccs.neu.edu/home/turon/thesis.pdf
https://www.ccs.neu.edu/home/turon/thesis.pdf

	Quote
	Abstract
	Kurzfassung
	Danksagung
	Contents
	1 Introduction
	1.1 Motivation and problem statement
	1.2 Research questions
	1.3 Contributions
	1.4 Outline
	1.5 Publications
	1.5.1 Main publications
	1.5.2 Software implementations


	2 Background
	2.1 Software-defined networking
	2.2 Intent-based networking
	2.3 Overlay networks
	2.4 Network address translation
	2.4.1 NAT classification
	2.4.2 NAT traversal

	2.5 TLS fundamentals
	2.5.1 Full handshake
	2.5.2 0-RTT handshake

	2.6 The Tasklet system
	2.7 Chapter summary

	3 Requirements analysis
	3.1 Software-defined overlay networking scenario
	3.2 Stakeholders
	3.3 Functional requirements
	3.4 Nonfunctional requirements
	3.5 Chapter summary

	4 Related work
	4.1 Classification
	4.2 Design methodologies for overlay networks
	4.2.1 Decision-support through overlay network taxonomies
	4.2.2 Declarative application modeling

	4.3 Coding-support for overlay networks
	4.3.1 Distributed application programming environments
	4.3.2 Concurrent programming paradigms

	4.4 Testing frameworks for overlay networks
	4.4.1 Formal verification of distributed systems
	4.4.2 Simulation environments

	4.5 Strategies for overlay network deployment
	4.5.1 Self-configurable mesh VPN
	4.5.2 ISP-involved overlay network deployment models

	4.6 Monitoring and managing overlay networks
	4.6.1 Separate application orchestration
	4.6.2 Integrated application orchestration

	4.7 Chapter summary

	5 System architecture for SDON at the edge
	5.1 Software-defined overlay networking system model
	5.2 Overview on the distributed middleware system
	5.3 Communication layer
	5.3.1 Identity manager
	5.3.2 Peer discoverer
	5.3.3 Location-aware router

	5.4 Service layer
	5.4.1 Library of service mechanisms
	5.4.2 Service goals interpreter
	5.4.3 Service implementer

	5.5 Software-defined overlay networking layer
	5.5.1 Intent translator
	5.5.2 Intent activator
	5.5.3 Intent assurer

	5.6 Chapter summary

	6 Implementation of a SDON middleware
	6.1 The SDON middleware
	6.2 Communication layer
	6.2.1 Identity manager
	6.2.2 Peer discoverer
	6.2.3 Location-aware router

	6.3 Service layer
	6.3.1 Library of service mechanisms
	6.3.2 Service goals interpreter
	6.3.3 Service implementer

	6.4 Software-defined overlay networking layer
	6.4.1 Intent translator
	6.4.2 Intent activator
	6.4.3 Intent assurer

	6.5 Chapter summary

	7 Evaluation
	7.1 Evaluation of the secure connectivity protocol
	7.1.1 Setup
	7.1.2 Metrics
	7.1.3 Results
	7.1.4 Discussion of results and conclusion

	7.2 Edge computing evaluation using the middleware
	7.2.1 Setup
	7.2.2 Metrics
	7.2.3 Results
	7.2.4 Conclusion

	7.3 Evaluation of centrally-optimized overlay networks
	7.3.1 Latency-based routing optimization
	7.3.2 CPU-based node arrangement optimization
	7.3.3 Conclusion

	7.4 Chapter summary

	8 Conclusion
	a Appendix
	a.1 Additional publications
	a.2 Supervised theses
	List of figures
	List of tables
	List of snippets
	List of abbreviations & acronyms

	 Bibliography
	Declaration
	Colophon

