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Abstract

The development of ultra-low emittance storage rings, such as the e+/e- Future Circular

Collider (FCC-ee) with a circumference of about 90 km, aims to achieve unprecedented

luminosity and beam size. One significant challenge is correcting the optics, which be-

comes increasingly difficult as we target lower emittances. The use of stronger quadrupoles

and sextupoles makes these machines particularly sensitive to misalignments, which can

severely impact performance. This study investigates optics correction methods to address

these challenges. We examined the impact of arc and Interaction Region (IR) magnet

alignment errors in two optics design options for the FCC-ee, called Baseline and Local

Chromatic Correction Optics (LCCO). To establish realistic alignment tolerances, we de-

veloped a sequence of correction steps using the Python Accelerator Toolbox (PyAT) to

correct the lattice optics, achieve nominal emittance, and large Dynamic Aperture (DA).

We focused initially on the Linear Optics from Closed Orbit (LOCO) method, which fits

the measured Orbit Response Matrix (ORM) to the lattice model to determine optimal

parameters such as quadrupole strengths. We implemented a Python-based numerical code

for LOCO correction and evaluated its effectiveness for the FCC-ee. Preliminary results

indicate successful optics corrections. We also compared LOCO with phase advance +

ηx and coupling Resonance Driving Terms (RDTs) + ηy optics correction, finding that

the latter performed better in achieving design emittance values and a large DA area for

realistic alignment tolerances, for the studied cases. The code was further optimized and

expanded to include more realistic scenarios. Additionally, we applied LOCO to PETRA

IV -a fourth generation light source upgrade, and integrated the code into the Python

Simulated Commissioning toolkit for Synchrotrons (PySC).
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Zusammenfassung

Die Entwicklung von Speicherringen der nächsten Generation, wie dem e+/e- Future Cir-

cular Collider (FCC-ee) mit einem Umfang von etwa 90 km, zielt darauf ab, beispiellose

Leuchtkraft und Strahlgröße zu erreichen. Eine bedeutende Herausforderung besteht in

der Korrektur der Optik, die zunehmend schwieriger wird, wenn wir niedrigere Emittanzen

anstreben. Der Einsatz stärkerer Quadrupole und Sextupole macht diese Maschinen beson-

ders empfindlich gegenüber Fehlern in der Magnetausrichtung, die die Leistung erheblich

beeinträchtigen können. Diese Studie untersucht Methoden zur Optikkorrektur, um diese

Herausforderungen zu bewältigen. Wir untersuchten die Auswirkungen von Ausrichtungs-

fehlern der Magnete im Bogen und in der Interaktionsregion (IR) in zwei Optikoptionen für

den FCC-ee: Baseline und LCCO @ Z-Energie. Um realistische Ausrichtungstoleranzen

festzulegen, entwickelten wir eine Abfolge von Korrekturschritten mithilfe des Python Ac-

celerator Toolbox (PyAT), um die Optik zu korrigieren, die nominale Emittanz zu er-

reichen und die Dynamische Apertur (DA) zu optimieren. Zunächst konzentrierten wir

uns auf die Methode LOCO (Linear Optics from Closed Orbit), die die gemessene Or-

bit Response Matrix (ORM) an das Lattice-Modell anpasst, um optimale Parameter wie

die Quadrupolstärken zu bestimmen. Wir implementierten einen Python-basierten nu-

merischen Code zur LOCO-Korrektur und bewerteten dessen Wirksamkeit für den FCC-

ee. Vorläufige Ergebnisse zeigen erfolgreiche Optikkorrekturen. Wir verglichen auch LOCO

mit der Phasenvorschub und RDTs-Optikkorrektur und stellten fest, dass letztere bei der

Erreichung der Entwurfs-Emittanzwerte und einer großen DA-Fläche für realistische Aus-

richtungstoleranzen in den untersuchten Fällen besser abschnitt. Der Code wurde weiter

optimiert und erweitert, um realistischere Szenarien zu berücksichtigen. Darüber hinaus

wendeten wir LOCO auf das PETRA IV Lattice an und integrierten den Code in die
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Python Simulated Commissioning toolkit for Synchrotrons (PySC).
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Ṅp Number of interaction events per second

r0 Classical electron radius

S Luminosity reduction factor

U Voltage

v Particle velocity

B Magnetic field

E Electric field

F Lorentz force

6



Chapter 1

Introduction

1.1 Motivation

Since the 1920s, various machines have been built to accelerate particle beams and were

continuously developed aiming to achieve higher energies. One of the main applications of

particle accelerators is in experimental nuclear and particle physics research. By increasing

the energy that particles can reach, these accelerators have led to the discovery of many

subatomic particles, including the antiproton, gluon, top quark, Higgs boson, and many

other particles [1]. In nuclear physics, researches have covered a wide range of studies, from

precise particles energy measurements to the exploration of phenomena like the quark-

gluon plasma. Over time, the applications of particle accelerators have expanded beyond

fundamental research to include various other fields such as health, food quality, and more.

In addition, particle accelerators also play a crucial role in materials science and industrial

applications enabling processes such as ion implantation and lithography. Biological and

medical research benefits from X-rays produced by light source accelerators, or accelerated

ion beam, that used in radiation therapy for medical treatments.

Over the years, advances in accelerator physics technology have enabled the achieve-

ment of increasingly higher particle energies, providing a more microscopic probe for under-

standing elementary particles and their interactions. Research and development in acceler-

ator physics blossomed during the 1950s, supported by the development of high-power radio
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frequency sources and increased government funding for accelerator projects [2]. Alongside

technological progress, the growing number of publications in the field reflects increased

research activity and interest [3].

The Future Circular Collider (FCC) study was launched, as an international collabora-

tion hosted by CERN [4]. The FCC covers a high-luminosity lepton collider (FCC-ee) and

an energy-frontier hadron collider (FCC-hh). This thesis focuses on the electron position

collider, FCC-ee, representing the next intensity frontier in particle physics research, that

aims to push the limits of the achievable centre-of-mass collision energy and luminosity.

This will make the FCC-ee a unique precision instrument to study the heaviest known

particles (Z, W and H bosons and the top quark), offering great insights into new physics.

This thesis is organized in five chapters, The first chapter provides an introduction to

particle colliders, discussing different types of particle colliders. It also delves into beam dy-

namics, optics functions, and the role of different magnets. Additionally, this first chapter

introduces computer codes used in accelerator physics. The second chapter, focuses on the

proposed FCC-ee, it details the FCC-ee optics design and parameters and also highlights

the specific challenges faced by this machine. The sources of magnet imperfections and

their impact on machine performance will be presented in the third chapter, followed by

discussion of several orbit and optics correction algorithms, to address these imperfections.

In the fourth chapter, we present detailed results from tuning simulations for FCC-ee,

covering a variety of studies followed by conclusions and outlook in the final chapter.
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1.2 Beam dynamics and lattice optics

Beam dynamics is a crucial concept in the study of particle accelerators, it focuses on the

behavior of particle beam as it travels through the various components of the accelerator.

In this section, we will introduce the fundamental parameters and equations governing the

motion of particles in accelerator.

1.2.1 Accelerator magnets

Accelerators are described as sequence of elements along the nominal trajectory of the

beam, the horizontal and vertical axes of the coordinate system that describe the motion

of beam particles are labelled by x and y respectively. The magnetic field component has

the form B = (Bx, By, 0), since the transverse dimensions of the beam are small compared

to the radius of curvature of the particles trajectory, one may expand the magnetic field

component in the vicinity of the nominal trajectory using Taylor series expansion [5], where

n is the number of multipoles terms:

By(x) = By0 +
∞∑
n=1

1

n!

dnBy

dxn
xn (1.1)

For optics design it is convenient to normalize the multipoles strengths to the particle

momentum to get an energy-independent description of the focusing properties. By mul-

tiplying Eq.(1.1) by the factor q
p
, where q and p are the particle charge and momentum

respectively, it becomes:

q

p
By(x) =

q

p
By0 +

∞∑
n=1

1

n!

q

p

dnBy

dxn
xn (1.2)

q

p
By(x) =

q

p
By0 +

q

p

dBy

dx
x+

1

2!

q

p

d2By

dx2
x2 +

1

3!

q

p

d3By

dx3
x3 + . . . (1.3)

q

p
By(x) =

1

R
+ k1x+

1

2!
k2x

2 +
1

3!
k3x

3 + . . . (1.4)
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The magnetic field in an accelerator may therefore be described as a sum of multipoles

terms and these terms in Eq.(1.4) corresponds to the dipole, quadrupole, sextupole, oc-

tupole and higher order terms respectively. Each of these terms has a different effect on the

path and shape of the beam. If only the two lowest multipoles (dipole and quadrupole) are

used for beam steering and focusing in an accelerator, the optics are considered as linear

beam optics. Higher multipoles (sextupole, octupole etc.) are either unwanted field errors

or are intentionally introduced for some parameters correction (e.g. sextupoles are used

for chromaticity correction as will be described in Sec. 1.2.3).

Figure 1.1: Magnetic field patterns of various magetic multipoles: dipole (left), quadrupole

(middle), and sextupole (right).

Magnetic field lines of the first three multipoles are shown in Fig. 1.1. The different

accelerator magnet designs and properties are described in many resources [6–8] . In the

third chapter of this thesis we will discuss the different types of imperfections of these

magnets and their impact in beam optics.

1.2.2 Equation of motion

As mentioned earlier the beam dynamics of charged particles in an accelerator describes

the movement of single or multiple particles under the influence of external bending and

focusing magnetic fields.
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Starting from the basic Lorentz equation of motion for a particle of charge q moving

under the influence of electric and magnetic fields E, B, we can define the force that

controls the particle’s motion as follows [9]:

F =
dp

dt
= q(v ×B +E), (1.5)

where p = γLmv is the particle’s momentum, v is the velocity vector, andm is the invariant

particle mass. In the momentum expression, γL is the Lorentz factor,

γL ≡ 1√
1− v2

c2

. (1.6)

As the particle moves from point r1 to r2, the particle’s energy changes by the amount:

∆E =

∫ r2

r1

F · dr = q

∫ r2

r1

(v ×B +E) · dr. (1.7)

The path element dr is always parallel to v. The vector v×B is perpendicular to dr. At

relativistic speeds, electric fieldsE and magnetic fieldsB have the same effect if |E| = c|B|.
This implies that a magnetic field with a strength of |B| = 1T is equivalent to an electric

field of |E| = 3 × 108Vm−1. Magnetic fields over 1T can be relatively easily produced

using conventional methods, whereas generating an electric field of 3× 108Vm−1 requires

special types of accelerators (e.g., laser-plasma accelerators). Consequently, magnets are

almost always used to steer beams in modern accelerators. Electric fields can steer beam

only at very low energies, and are instead used for acceleration, where the energy gain from

the electric field directly follows from Eq.(1.7):

∆E = q

∫ r2

r1

E · dr = qU, (1.8)

where U is the voltage crossed by the particle.

The forces used to bend and focus particle beams are perpendicular to both v and B. As

a result, the charged particles will move in a circular path or orbit. The condition for this
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circular orbit is given by the equality of the Lorentz force and the centrifugal force that

keeps the particle in a curved path:

q · v ·B =
mv2

ρ
, (1.9)

where ρ is the perpendicular distance from axis of rotation to the center of curvature known

as the bending radiance. This equation also introduce the quantity known as the magnetic

rigidity Bρ = pb

q
. Given a bending magnet that is designed to bend a beam on a circular

orbit with bending radius ρ, its Bρ value indicates the corresponding beam momentum.

From the Lorentz force law, the bending angle θb is given by:

θb =
q

pb

∫ s2

s1

Bdl =
1

Bρ

∫ s2

s1

Bdl, (1.10)

where pb is the momentum of the beam, and Bρ = pb/q is the magnetic rigidity of the

beam. The total bending angle for a circular accelerator is 2π, and the total integrated

dipole field is

∮
Bdl = 2π

p0

q
= 2πBρ. (1.11)

were p0 is the momentum of the reference particle.

The reference orbit is the path of the ideal particle. However, due to various errors, the

actual orbit of particles (closed orbit) does not coincide with the ideal orbit, and the motion

of a particle in the accelerator can be described with respect to the reference orbit using

the curvilinear coordinate system (x, y, s) where s is the axis along the beam direction or

trajectory. More precisely, it is the tangent to the reference orbit, while the horizontal and

vertical axes are labelled x and y respectively as illustrated in Fig. 1.2.

The motion of particles through the accelerator can be described by the Hill’s differential

equation of motion. A full derivation of the linear equations of motion can be found in [10].

We write them here as,

x′′(s) +

(
1

ρ2
− k1(s)

)
· x(s) = 1

ρ

∆p

p0
(1.12)
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Figure 1.2: Curve linear coordinate system for particle motion in synchrotron

y′′(s) + k1(s) · y(s) = 0 (1.13)

where k1(s) is the focusing strength of the quadrupole elements. 1
ρ
is the weak focusing term

of the dipole field, ∆p represent the particle momentum deviation from the momentum of

reference particle p0. For monochromatic particle beams ∆p0 = 0.

We will continue to concentrate on the situation where ∆p/p0 = 0. The solutions of

the equation depend on the sign of the quadrupole strength, for k1 < 0 the solution will

be [11]:

x(s) = x0 cos
(√

|k1|s
)
+

x′0√
|k1|

sin
(√

|k1|s
)

(1.14)

x′(s) = −x0
√

|k1| sin
(√

|k1|s
)
+ x′0 cos

(√
|k1|s

)
. (1.15)

In the linear approximation, the complete beam transfer line can be represented by

a single matrix, called the transfer matrix M and it describes the change of particle co-

ordinates between two locations. This approach allows the piece-wise calculation of the

particle’s full trajectory, by splitting the machine into separate elements i, finding the

matrices for all of these N components Mi and multiply them all together:
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M(s) =
N∏
i

Mi(s).

The solution of the equations of motion u (where u = x, y) of the particles in matrix form

can be descried by:

(
u(s)

u′(s)

)
= M(s) ·

(
u0

u′0

)
. (1.16)

In addition to the transverse motion of the particle, there is also motion along the longi-

tudinal direction of the coordinate system. The longitudinal motion can be observed from

Hill’s equation of motion, which looks like the equations for a simple harmonic oscillator.

Consequently, we can expect a quasi-harmonic oscillation of the particle’s orbit around the

reference orbit. The frequency and amplitude of this oscillation vary depending on the

particle’s location in the ring and exhibit periodic behavior. This phenomenon is known

as particle synchrotron motion or synchrotron oscillation.

1.2.3 Optics functions

Particles perform oscillations around the design orbit known as betatron oscillations. In the

Courant-Snyder formalism, the amplitude of the oscillation represented by the trajectory

function x(s) in Hill’s equation Eq.(1.14) can be expressed in terms of optics parameters

as following:

x(s) =
√
ε
√
β(s) cos[ψ(s) + ψ0] (1.17)

where β(s) is the beta function, also known as the beam envelope function, it represent the

amplitude of the beam envelope, the beta function depends on the beam focusing, which

varies with the positions along the lattice. ψ(s) is the phase advance which is equal to∫ s
0

1
β(s)

ds, the initial condition phase is denoted by ψ0. The constant ε is the emittance,

which is proportional to the area A = επ of the phase space ellipse formed by the particle’s

potential states of motion at a specific position in the lattice, as shown in Fig. 1.3.
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Figure 1.3: Ellipse representing the potential states of a particle in trace space.

The first derivative of the trajectory function in terms of the Courant-Snyder param-

eters (the formulas are identical for the vertical plane but x′ is replaced with y′ and the

beta function and phase advance are evaluated in the vertical plane) is given by:

x′(s) = −
√
ε√
β(s)

[α(s) cos(ψ(s) + ψ0) + sin(ψ(s) + ψ0)] (1.18)

Figure 1.3 shows the beam shape and orientation in the x − x′ plane that can also be

described using the Twiss parameters β, α and γ by the following ellipse equation [11]:

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ε (1.19)

where α(s) = −β′(s)/2 is proportional to the correlation between x and x′ and indicates the

orientation of the ellipse in the phase space, γ(s) = 1+α2(s)
β(s)

is a measure for the divergence

of the beam.

The phase space ellipse of the beam is deformed by bending and focusing elements, and

the transverse rms beam size is:
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σ(s) =
√
εβ(s). (1.20)

Betatron tune and resonances

The number of betatron oscillations in one revolution of the particles around the reference

orbit can be obtained by dividing the phase advance of the whole accelerator lattice of

circumference Lo by 2π and this quantity is known as the betatron tune Q [12]. The tune

is one of the most important parameters in circular accelerators since it has strong impact

on beam dynamics as will be explained later.

Q =
ψ(Lo)

2π
=

1

2π

∮
Lo

ds

β(s)
. (1.21)

Since the tunes are determined by the betatron motion, the focusing/defocusing quadrupoles

have a major influence on the tunes values.

It is critical to keep the horizontal and vertical tunes away from specific values; oth-

erwise, resonance may cause the oscillation amplitude of the particles to grow rapidly,

leading to beam blow-up or particle loss into the machine aperture. Resonance condition

are described by [13]:

mQx + nQy = p (1.22)

where (m,n, p ∈ Z) and |m|+ |n| is the resonance order. The tunes integer part is mostly

irrelevant, but the fractional part of the tune should be kept away from low-order rational

numbers, notably 0, 1
2
, 1

3
, and 1

4
.

The tune diagram shown in Fig. 1.4 is a convenient way to map out the unstable tune

areas. This diagram shows the so-called tune space for an accelerated particle beam. The

colored lines indicate resonances in tune space to be avoided. The dot represents a possible

stable area (working point) where neither horizontal nor vertical tunes are near a resonance

line.
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Figure 1.4: Tune diagram with resonances up to third order. The horizontal axis corre-

sponds to the fractional part of the horizontal tune, and the vertical axis corresponds to

the fractional part of the vertical tune. The lines show where the values of the tunes satisfy

the resonance condition.

Dispersion

As mentioned earlier, in real situations, the particle beam dose not follow exactly the

designed machine orbit; moreover, the beam is never quite mono-energetic and includes a

finite distribution of particle energies. These deviations of particle energies from the ideal

design energy cause perturbations in the solutions of the equations of motion even in the

absence of magnet strength and alignment errors.

When a beam of charged particles pass through a dipole magnet, the particles are

separated based on their momentum (the dipole works like an energy filter) as seen in

Fig. 1.5 and each particle’s positions is given by:

x(s) = D(s)∆p/p0 (1.23)

where D(s) is the dispersion function which is a function of position along the accelerator.
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Figure 1.5: Dispersion can create a spread in transverse position of particles of different

energies.

The solution of the equation of motion Eq.(1.12) can be considered now as a sum

of the homogeneous (on-momentum) and the in-homogeneous (off-momentum) equation

solutions:

x(s) = xH(s) + xI(s).

In that way, the equation of motion can be split in two parts [14]:

x′′H + k1(s)xH = 0, x′′I + k1(s)xI =
1

ρ(s)

∆p

p
. (1.24)

Using the dispersion function expression in Eq.(1.23) we can also define the dispersion

equation:

D′′(s) + k1(s)D(s) =
1

ρ
. (1.25)

As will be clarified later in Sec. 3.1 , vertical dipole errors and a non-zero vertical closed

orbit in the quadrupole magnets will directly introduce vertical dispersion and a non-

zero vertical closed orbit through the sextupole magnets, vertical sextupole misalignments,

or rotational misalignments of the quadrupoles will couple the horizontal and vertical

dispersion planes.
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Chromaticity

Similar to the dispersion concept we can examine particles beam with momentum de-

viations as it pass through quadrupole magnets. Due to these momentum deviations,

the beam experience magnetic focusing errors, resulting in different focal points through

quadrupoles. This phenomenon leads to a blurring of the beam spot and the quantity ex-

pressing this is known as the chromaticity [15]. In linear lattice we can define the natural

chromaticity function Q′ as:

Q′ =
∆Q

∆p/p0
=

1

4π

∮
k1(s)β(s)ds (1.26)

Fig. 1.6 shows the dependence of the quadrupole focusing strength on the momentum of

the particle, which varies as 1
f
∝ 1

p
. Although the quadrupoles create positive chromaticity

in their defocusing plane, the natural chromaticity is negative; As the beta functions at the

quadrupoles reach maximum values in the focusing plane while having minimum values in

the defocusing plane, the negative contribution from the focusing plane dominates.

Figure 1.6: Trajectories of particles with different momentum deviations, exhibit different

focus points.

Since it acts as a quadrupole error in the machine, the chromaticity leads to a tune

spread. With a large tune spread, the particles might encounter optics resonances. Hence,

the control of these chromatic effects is crucial [16], [17].
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Since a certain energy spread of the beam cannot be avoided, especially in the case of

a lepton beam with synchrotron radiation, chromaticity needs to be corrected.

Figure 1.7: Sextupoles through a non-linear magnetic field, correct the effect of energy

spread.

Sextupole magnets positioned where the dispersion is non-zero can alter the natural

chromaticity to:

Q′
x =

−1

4π
×
∮
k1(s)β(s)ds+

1

4π

∑
F sext

kF2 lsextD
F
x β

F
x − 1

4π

∑
D sext

kD2 lsextD
D
x β

D
x (1.27)

were the first term of the equation represent the natural chromaticity in the horizontal

plane and the additional two terms are the focusing and defocusing sextupoles correction

values of the first term, k1 and k2 are the normalised quadrupoles and sextupoles strengths

respectively, lsext is the length of the sextupole magnet, and β and D are the beta and

dispersion value at the sextupole location (for a detailed derivation see reference [18]).

The sextupoles used for chromaticity correction are called chromatic sextupoles. Usu-

ally two families are used, one horizontal (focusing) and one vertical (defocusing), see

Fig. 1.7. In a sextupole a charged particle passing off-center receives a kick proportional to

the square of its displacement from the center, i.e. a sextupole acts like a quadrupole with

a focusing strength proportional to the displacement of the closed orbit from the sextupole
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center. This allows the chromaticity to be corrected because for off-momentum particles

the closed orbit is displaced with respect to the reference one by a quantity Dδ, where D

is the dispersion function and δ = ∆p
p

is the momentum deviation.

In a periodic FODO lattice (further discussion to follow in Chapter 2) the value of the

chromaticity equals approximately the negative value of the betatron tune. For N cells,

the total chromaticity is equals to N times the chromaticity of each cell.

Momentum compaction factor

The dispersion orbit of particles with momentum deviation has a different path length than

the reference orbit, i.e. particle with ∆p/po > 0 travels a larger distance per revolution than

the reference particle. Since the bending radii increases with larger particle momentum,

the nominal orbit L0 moves outward of the ring and becomes longer. For particles with

smaller momentum, the orbit becomes shorter.

The change of orbit length is proportional to the energy deviation and quantified by

the momentum compaction factor αc. It can be expressed as the derivative of normalized

path length difference to normalized momentum:

∆L

L0

= αc
∆p

p0
(1.28)

αc =
∆L/L0

∆p/p0
=
p0
L0

∆L

∆p
=

1

L0

∮
D(s)

ρ(s)
ds (1.29)

1.2.4 Synchrotron radiation and energy loss

Charged particles moving in an accelerator will radiate energy in the form of electromag-

netic waves known as Synchrotron Radiation (SR). SR from acceleration in the longitudinal

direction is negligible compared to the transverse direction [19].

The total SR power emitted by a relativistic particle with charge q and energy E is [20]:
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Pγ =
cCγ
2π

E4

ρ2
(1.30)

where ρ is the bending radius associated with the bending field 1
ρ
= q

p
B and the constant

Cγ is defined as:

Cγ =
q2

3ϵ0

1

(mc2)4
(1.31)

where ϵ0 is the permittivity of vacuum. From Eq.(1.30) we noticed that the radiated power

varies inversely with the fourth power of the rest mass m, which means that the radiated

SR power increases for particles with small rest mass.

Comparing the power radiated from an electron (mec
2 = 0.511 MeV) with that from a

proton of the same energy (mpc
2 = 938.19 MeV) gives:

Pγ,e
Pγ,p

=

(
mpc

2

mec2

)4

= 1.13× 1013. (1.32)

It becomes evident that the SR plays an important role for electrons, while for protons

and all other heavy particles it can only be observed at energies of at least several hundred

GeV.

In circular accelerators it is often important to know the energy loss ∆Eloss that a

particle undergoes during one complete revolution which can be obtained by the integral

of the radiation power for one revolution time T0. Using dt = 1
c
ds and an expression

refereed to as the second SR integral [21]:

I2 =

∮
1

ρ2
(1.33)

the energy loss per turn is given by,

∆Eloss =

∫ T0

0

Pγdt =
Cγ
2π
E4I2. (1.34)

In order to reduce the energy losses the bending radius needs to be increased, which is why

circular lepton colliders tend to have a large circumference as seen in Fig. 1.13.
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Radiation damping

The emission of SR damps the particle oscillations both in the longitudinal and in the

transverse planes. This leads to a reduction of the energy spread of the beam and hence to a

smaller amplitude of the longitudinal or the synchrotron oscillation. The SR is emitted into

the forward direction of the particle movement reducing both longitudinal and transverse

momentum. Through Radio Frequency (RF) systems the particle only gains longitudinal

momentum, see Fig. 1.8 and as consequence a net loss of transverse momentum is achieved,

which leads to a compression of the volume occupied by particles in transverse phase space

and to a reduction of transverse emittance.

Figure 1.8: Decrease in transverse momentum due to radiation damping. Initially, the

transverse momentum Px,1 decreases to Px,2. The emission of a photon (γ) results in a

reduction of both the longitudinal momentum Ps and the transverse momentum Px by

∆Pγ. However, the subsequent re-acceleration in the RF cavities (∆PRF) only increases

the longitudinal component.

The amplitudes of the oscillation Au are damped exponentially [22]:

Au = Au,0e
−αut, αu =

cCγ
4πL

E3
0I2Ju, (1.35)

where, u = x, y, s, the parameters αu are the damping decrements, the damping time t
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depends on the initial beam energy E0, and becomes shorter when SR losses increase and

Ju is the damping partition number, which defined using the SR integrals as follows:

Jx = 1− I4x

I2

, Jy = 1− I4y

I2

, Js = 2 +
I4x + I4y

I2

(1.36)

where I2 is the second SR integral defined previously in Eq.(1.33), and I4u is the fourth

SR integral and it is given by:

I4u =

∮
Du

ρ

(
1

ρ2
+ 2k1

)
ds. (1.37)

From the definition of the horizontal equilibrium emittance [23]:

εx0 = Cqγ
2 I5x

JxI2

, (1.38)

where Cq = 3.832× 10−13m and I5x is the fifth SR integral and is given by:

I5x =

∮
Hx

|ρ|3
ds, Hx = γη2x + 2αηx, (1.39)

and from Eq.(1.37) we noticed that radiation in focusing quadrupoles, reduces the hori-

zontal damping partition number. This reduction reduces the stability of the horizontal

equilibrium emittance.

1.2.5 Dynamic Aperture (DA)

DA is an important parameter for circular accelerators, it is defined as the boundary of the

stable area in co-ordinate space for fixed number of turns and it is computed directly via

particle tracking. A large DA is needed both for good efficiency of injection of the beam

into a storage ring, and for good lifetime of the stored beam. Achieving sufficiently large

dynamic aperture is typically one of the biggest challenges in the design of modern light

sources, due to strong non-linear dynamics effects.
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Nonlinearities may originate from various sources, such as higher-order multipole com-

ponents in dipoles and quadrupoles, higher-order multipole magnets (sextupoles, octupoles

etc.) used to control various properties of the beam as we have discussed in Sec. 1.2.3 and

also from effects of fields generated by a bunch of particles on individual particles within the

bunch, like space-charge forces, beam-beam effects (Sec. 1.4.2), and many others [24] [25].

1.3 Computer codes

There are many software codes that are used to design and study accelerator beam dynam-

ics e.g, the Methodical Accelerator Design software (MAD-X), X-suite and the Accelerator

Toolbox (AT). The following section will introduce the AT code that is used in the tuning

simulations described in this thesis.

1.3.1 The Accelerator Toolbox (AT)

Accelerator Toolbox (AT) [26] is a collection of tools that model storage rings and beam

transport lines. The original papers of AT were published in 2001 by A. Terebilo [27], [28].

Since then AT proved to be an efficient and flexible tool for interactive accelerator modeling,

with ability to:

• Model storage ring.

• Track particles through the lattice, choosing the correct integrator to represent the

applicable physics.

• Determine properties of the beam and the influence of lattice parameters on the beam

properties.

Lattice manipulation and computation of accelerator physics parameters in AT are

provided by two interfaces:
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Matlab interface

AT was originally designed to take advantage of the power and the simplicity of MATLAB,

(commercially developed environment for technical computing and visualization [29]) since

many accelerator facilities extensively were using or planned to use MATLAB. Illustrations

of the different options and features AT offers are highlighted in the paper [27].

Python

pyAT is a Python interface to AT [30], first developed in 2019. It uses the “pass methods”

defined in AT, implemented by compiling the C code used in the AT “integrators” into a

Python extension. These pass methods are used by higher-level functions to provide physics

results. PyAT, with its user-friendly interface, free accessibility, and integration of large

open-source scientific and plotting libraries in Python, was used for lattice manipulation,

beam optics calculations, and particle tracking simulations in this thesis. It also supports

the creation of new scripts or the use of existing resources.
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1.4 Particle colliders

Particle colliders are type of particle accelerators, in which two beams of particles are accel-

erated to high energy, circulate in opposite directions and perform high-energy collisions at

specified interaction points with a crossing angle. A major advantage of such machines is

that when two beams collide head-on, the energy of the particles goes directly into the en-

ergy of the interactions between them. When the beams collide, they produce high-energy

events, that can be analyzed using detector devices. Secondary particles travel away from

the collision point, they can be captured by detector devices that are able to measure their

different properties, including positions in space, energy, momentum, mass, and charge.

The particles are identified using these information, and entirely new particles could be

discovered. Figure. 1.9 shows a schematic layout of the underground civil engineering for

the electron positron future circular collider, with respect to the Large Hadron Collider

(LHC) [31] and the Super Proton Synchrotron (SPS) [32] at CERN, the in the figure, the

different parts of the accelerator including RF systems and detectors are shown.

Figure 1.9: A schematic layout (not to scale) of the underground civil engineering for the

FCC-ee machine and infrastructure. (Credit: FCC study) [33].

Particle colliders can be either circular, like the FCC-ee and CEPC [34], or linear, like
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the International Linear Collider (ILC) [35]. Linear colliders can reach TeV energies, offer

easy longitudinal polarization, and have low radiation. Circular colliders, on the other

hand, can achieve the highest luminosity at Z/WW/ZH energies but are limited to below

400 GeV energies, as they experience more radiation. Both collider types produce a similar

number of Higgs bosons. Circular colliders enable precision electroweak Z and WW physics,

while linear colliders extend to higher energies for studying Higgs self-coupling [36].

Particle-antiparticle circular colliders, such as the FCC-ee, are designed with two stor-

age rings that allow beams of the same type of particles to circulate in opposite directions

and collide at multiple points. Another notable examples of particles colliders include the

LHC at CERN, which collides protons, and the SuperKEKB [37] which collides electron

and positron and located at KEK in Japan.

1.4.1 Luminosity

Figure 1.10: Scheme of beam bunches collision with a crossing angle θ.

Particle beam is not a continuous stream of particles but is clustered into “bunches”

that may be a few centimetres long and a tenth of a millimetre across, and it may contain

about 1012 particles (bunch population). Fig. 1.10 illustrates the collision of such particle

bunches at cross angle θ, the horizontal and vertical root mean square (rms) transverse

beam sizes at the collision point are indicated by σx, σy, the bunch length σs is also indicated

in the figure. One of the most important factors that determine the performance of the
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colliders is known as the luminosity L, it is a measure of the interaction probability in the

colliding beams and comes from the expression of the number of interactions events per

second:

Ṅp = σpL. (1.40)

where σp is the cross-section of the particle reaction. An expression for the luminosity of

two colliding Gaussian beams (the amplitude envelope of the beam in the transverse plane

is given by a Gaussian function) is given by [38]:

L =
1

4π

frevN1N2

σxσy
S (1.41)

frev is the revolution frequency, N1 and N2 are the bunch population of both beams and S

is the luminosity reduction factor, it is defined as function of the crossing angle θ for small

crossing angles and for σs >> σx,y, as following:

S =
1√

1 +
(
σs
σx

tan θ
2

)2 ≈ 1√
1 +

(
σs
σx

θ
2

)2 (1.42)

It may be noticed from Eq.(1.41) that the luminosity increases proportionally with

the number of particles per beam, L ∝ N1N2 for the two beams. Therefor, in order to

produce a high enough rate of events, the vacuum in the rings of the colliders must be

particularly good so that the particles can circulate for many hours in the storage rings

without being lost through collisions with residual air molecules. The luminosity increases

also with reducing the horizontal and vertical sizes of the beam σx and σy in the collision

region. Furthermore, L is proportional to the frequency with which the beams are fired

at one another. Eq.(1.42) also tells us that the luminosity reduction factor for Gaussian

bunches colliding under a non-zero crossing angle decreases if the denominator increases,

this term is called the Piwinski’s angle ϕ:

ϕ ≈ σs
σx

θ

2
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Particle colliders must account for all these factors to achieve high-energy beams and

collide them with high luminosity. However, this objective is constrained by numerous

other considerations, which will be discussed in detail later on.

Hour-glass effect

Up to this point, we have assumed that the transverse beam sizes remain constant over the

entire collision regions. However, since the β-functions have their minima at the collision

point and increases with distance, our previous assumption may not always be a good

approximation.

Figure 1.11: Schematic illustration of the hourglass effect where β(s) is plotted for two

different values of β∗ [38].

The hourglass effect, as detailed in Ref. [38], arises due to the fact that the β-function

exhibits a parabolic increase with distance from the interaction point, as follows, where β∗

is the beta function at the interaction poin:
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β(s) = β∗

(
1 +

(
s

β∗

)2
)

(1.43)

Furthermore, the beam size increases approximately linearly with the distance from the

interaction point. This is schematically shown in Fig. 1.11 where the functions β(s) are

shown for two different values of β∗ (0.50 m and 0.15 m). Because of the shape of the

β(s) functions this effect is known as the hourglass effect. Returning to the luminosity

expression in Eq.(1.41), we can now rewrite it in a more general form by replacing σu with

σu(s):

L =

(
N1N2frevNb

8πσxσy

)
2 cos θ

2√
πσs

∫ +∞

−∞

e−s
2A

1 +
(

s
β∗

)2ds,
A =

sin2 θ
2

(σx)
2

[
1 +

(
s
β∗

)2] +
cos2 θ

2

σ2
s

.

(1.44)

1.4.2 Beam-beam effect and tune shift

In particle colliders, charged particles in one beam exert forces on themselves and on

particles in the other beam. These forces are experienced as localised periodic distortions

when the two beams cross each other. This beam-beam interactions is considered to be one

of the limiting factors of the luminosity, specially for high density beams, (high intensity

and small beam sizes), which are the key to high luminosity [39]. When the beam-beam

interaction becomes too strong, the beam can become unstable or the beam dynamics is

strongly distorted.

Considering a single particle deflected by a Gaussian charge distribution and small orbit

offsets, the beam-beam effect is equivalent to an additional quadrupole term, which creates

a tune shift. The magnitude of the tune shift depends on the phase advance between the

interaction points and the so-called beam-beam parameter, which is often used as a scaling

factor to quantify the strength of the beam-beam interaction (u = x, y).
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ξu =
Nr0β

∗
u

2πγσ∗
u

(
σ∗
x + σ∗

y

) (1.45)

where β∗
u is the beta function at the interaction point, r0 is the classical electron radius.

The beam-beam tune shift increases for large bunch population N , and small beam sizes.

At high energies with large Lorentz factor γ, the tune shift becomes less relevant. From

the luminosity definitions Eq.(1.44) and Eq.(1.45), L, and the horizontal and vertical tune

shifts ξx, ξy, for beam collisions under a horizontal crossing angle θ can be scaled as [40]:

L ∝ N · ξy
βy

; ξy ∝
N · βy

σxσy ·
√
1 + ϕ2

; ξx ∝
N

εx · (1 + ϕ2)
(1.46)

In this expression, εx is the horizontal emittance. Employing these formulas will address

several challenges for colliders, as will be discussed in Sec. 2.3.

1.4.3 Hadron vs. Lepton colliders

Particle colliders can be classified based on main criteria: collider types, center-of-mass

energy, and types of colliding beams.

• Collider types: ring-ring, linac–linac, and linac-ring.

• Center-of-mass energy: energy frontiers and particle factories.

• Colliding beams (species): hadron, lepton, photon, lepton–hadron, and photon–

hadron colliders.

In this discussion, we will focus on the primary categories of beam particle types,

specifically hadron and lepton colliders.

Hadron collider:

This type includes collision of two composite particles, made of two or more quarks held

together by the strong interaction, known as hadrons, the collision includes electroweak

interactions in addition to the strong interactions. The large number of events generated
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from the collision of hadrons allows to study physics observations at highest energies, and

also the study of the fundamental properties of matter and the forces that govern them or

even search for new particles or phenomena beyond the Standard Model of particle physics.

Lepton collider:

This type of collider includes collision of two point-like particles known as leptons, with

only electroweak interactions. Compared to hadron colliders, lepton colliders are used in

order to gain better knowledge about already discovered particles and draw conclusions

about the properties of new physics and for precision measurements of particles energies

and parameters. An example of a lepton collider is the Large Electron-Positron collider

(LEP) [41], which put the standard model on solid basis of empirical data by delivering

precise measurements of the W and Z bosons. A comparison of various parameters for

several lepton and hadron colliders worldwide is presented in Tab. 1.1.

Parameter LHC Design LEP2 Achieved FCC-hh SuperKEKB

Species pp e+e− p+p− e+/e−

Ebeam[GeV] 7,000 104 100,000 4/7.007

Current [mA] 584 3.0 500 3.60/2.6

Number of bunches Nb 2808 4 10,400 2500

ϵx/ϵy [nm/pm] 0.5 / 500 22 / 250 -
1.9 / 4.4/

8.64/12.9

β∗
x/β

∗
y [m/mm] 0.55 / 550 1.2 / 50 1.1

23 /25/

0.27 / 0.30

L/IP[1034/cm2/s] 1 0.01 5 0.8

Energy loss / turn

[MeV]
0.0067 3340 4.67 1.76/2.43

Table 1.1: Comparison of various parameters for the LHC, LEP2, FCC-hh, and Su-

perKEKB.

Figure 1.12 shows the so-called Livingston plot that represent the evolution of the

particles colliders from the past to the future and the achieved beam energy. It’s clear

from the plot that the hadron colliders provide highest values for the center of mass energy.

33



Lepton colliders typically have center-of-mass energies that are an order of magnitude

smaller than those of hadron colliders, while lepton-hadron colliders offer intermediate

energy values. The peak luminosity and size of various hadron and lepton colliders as

a function of center-of-mass energy is represented in Fig. 1.13. The hadron colliders are

represented by the blue bubbles, and the lepton colliders by the red bubbles. The semi-

transparent bubbles in both cases represent the future colliders that are being suggested.

The bubble’s size indicates the collider’s dimensions (diameter or length). Lepton colliders

can be pushed to achieve high luminosity and high energy by increasing the size of the

machine as clear from the example of the proposed FCC-ee.

Figure 1.12: Evolution of particles colliders from the past to the future [42].
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Figure 1.13: Colliders peak luminosity and size as a function of centre-of-mass energy [43].
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Chapter 2

The electron positron future circular

collider (FCC-ee) and its challenges

2.1 The Future Circular Collider FCC

The Future Circular Collider (FCC) study is developing plans for a new research facility

that will host the next generation of higher performance particle colliders, extending the

research that is being done at the LHC. The FCC aims to push the limit of the energy

and intensity of particle colliders [4], combining research efforts of several international

institutes and labs under the leadership of CERN. The timeline of the FCC project is

illustrated in Fig. 2.1.

The FCC will offer immense physics potential, being a multi-stage facility at the energy

and intensity frontier, it aims to explores three different types of particle collisions: FCC-

hh for hadron collisions (involving protons or heavy ions) similar to those at the LHC,

that can directly probe the next energy frontier and measure various Higgs couplings,

and FCC-ee for electron-positron collisions as in the former LEP, which will achieves the

highest luminosity at Z, W, and ZH energies, allowing ultra-precise measurements of the

Higgs boson and electroweak parameters, indirectly exploring energy scales beyond the

LHC, and other options like proton-electron or proton-heavy ion collisions. The FCC also
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Figure 2.1: FCC timeline from the opening session at FCC week 2024 given by Fabiola

Gianotti, director general of CERN: 2014-2018: Conceptual design study, 2021-2025:

Feasibility study 2028: Project approval by CERN Council, 2030: Construction of FCC-

ee tunnel, 2041: HL-LHC ends, 2045-2048 Operation of FCC-ee, 2070: Operation of

FCC-hh [44].

supports heavy-ion collisions and possibly ion collisions. With four collision points, it

ensures maximum physics output. The FCC program would foresee first the construction

of the FCC-ee, followed by FCC-hh [45] which is proposed to push the energy to 100 TeV

centre-of-mass energy. Figure. 2.3 shows the schematic layout of FCC-hh. Some of the

main parameters of FCC-hh are presented in Tab. 1.1. The topic of the proposed FCC-hh,

is not the primary focus of this thesis.

Figure. 2.2 shows the proposed location for FCC tunnel in the Geneva area with respect

to the LHC ring. The circumference is determined by the available dipole magnetic field,

which is in the order of 16 to 20 T. The foreseen circumference is therefor in the range of

90 km circumference.
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Figure 2.2: FCC footprint location at CERN with respect to the LHC collider.

2.2 FCC-ee optics design and parameters

The proposed FCC-ee is designed as a double ring collider similar to the KEKB accelerator.

The schematic diagram of the FCC-ee, as represented in Fig. 2.3 shows the storage rings

positioned 1m outside the FCC-hh footprint in the ring arc where the electron and positron

rings maintain a 30 cm horizontal separation. The machine will have four Interaction

Points (IPs) which are shifted 10.6 m away from the FCC-hh circumference. At two IPs,

the FCC-ee beams cross at a 30 mrad horizontal angle. To implement a crossing angle at

the Interaction Point (IP), the beam must come from the inner ring to the IP, then the

beam will be bent strongly after the IP to merge back close to the opposing ring. Thus,

the IP of the rings is displaced towards the outside relative to the hh-beam. Profiting

from the crossing angle, a crab waist collision scheme, is adopted [46] (more details are on

Section. 2.3.1), this scheme enables an extremely small vertical beta function (β∗
y) at the

IPs.

FCC-ee beam energy covers a range extending from the Z (45.6 GeV/beam) to the
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Figure 2.3: Schematics of the implementation of the FCC-ee collider (left) and the FCC-hh

collider (right) in the common infrastructure [4].

tt̄ production threshold (182.5 GeV/beam). The betatron tune, phase advance in the arc

cell, final focus optics and the configuration of the sextupoles are set to the required values

at each energy. Another RF system will be installed for the tt̄ mode.

As clarified in the schematic layout of FCC-ee Fig. 2.3, experiments are hosted at points

PA and PG and each ring incorporates two RF sections located at points PD and PJ. The

intermediate straight sections in the middle of the arc can be used for injection, dump and

collimation.

The latest table of parameters Tab. 2.1 representing the different parameters values

of the FCC-ee different energy modes was published on 15 Nov 2023 [47]. The thesis

focuses mainly on the Z energy mode 45.6 GeV, unless specified otherwise. This choice is

driven by the higher sensitivity to errors in the Z mode compared to other energy modes,

(see the comparison study between Z and tt̄ mode in Appendix A.1) making the machine

particularly suitable for conducting detailed and robust tuning studies, which can then be

applied to other modes. Moreover, other higher energy operation modes come at a later

stage in the physics programme of FCC-ee at CERN, thus Z energy lattice analysis has a

higher priority.

39



Parameter [unit] Z W ZH tt

Beam Energy [Gev] 45.6 80 120 182.5

Number of IPs 4

Circumference [km] 90.66

Bend. radius of arc dipole [km] 10.02

Energy loss / turn [GeV] 0.04 0.37 1.88 10.29

SR power / beam [MW] 50

Beam current [mA] 1279 137 26.7 4.9

Colliding bunches / beam 11200 1780 380 56

Bunch population [1011] 2.14 1.45 1.32 1.64

Horizontal emittance εx [nm] 0.71 2.17 0.67 1.57

Vertical emittance εy [pm] 1.9 2.2 1.0 1.6

Arc cell Long 90/90 90/90

Momentum compaction αc [10
−6] 28.6/75 7.4/146

β∗
x/y [mm] 110/0.7 220/1 240/1 800/1.5

Transverse tunes Qx/y 218.158/222.200 218.186/222.220 398.192/398.360 398.148/398.216

Chromaticities Q′
x/y 0/+5 0/+2 0/0 0/0

Energy spread (SR/BS) σδ [%] 0.039/0.109 0.070/0.109 0.103/0.152 0.159/0.201

Bunch length (SR/BS) σz [mm] 5.60/15.5 3.46/5.09 3.40/5.09 1.85/2.33

RF voltage 400/800 MHz [GV] 0.079/0 1.00/0 2.08/0 2.1/9.38

Harmonic number for 400 MHz 121200

RF frequency (400 MHz) [MHz] 400.786684

Synchrotron tune Qs 0.0288 0.081 0.032 0.089

Longitudinal damping time [turns] 1158 219 64 18.3

RF acceptance [%] 1.05 1.15 1.8 3.1

Energy acceptance (DA) [%] ±1.0 ±1.0 ±1.6 −2.8/+ 2.5

Beam crossing angle at IP [mrad] ±15

Crab waist ratio [%] 70 55 50 40

Beam-beam ξx/ξy 0.0022/0.097 0.013/0.128 0.010/0.088 0.066/0.144

Piwinski angle (θxσz,BS) / σ
∗
x 26.4 3.7 5.4 0.99

Lifetime (q + BS + lattice) [sec] 10000 4000 3500 3000

Lifetime (lum) [sec] 1330 970 660 650

Luminosity / IP [1034/cm2 s] 141 20 6.3 1.38

Table 2.1: Parameters of the FCC-ee baseline lattices at various energies [47]
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Baseline and local chromatic correction optic lattices

The FCC-ee Conceptual Design Report (CDR) and feasibility study have been based

for a few years on the baseline optics developed by Katsunobu Oide (former director of

the accelerator laboratory at KEK) in 2016 [48]. These optics have clearly shown that

the required performance for the collider can be reached. In 2022, Pantaleo Raimondi

(accelerator physicist, currently leader of Fermilab’s accelerator project) has developed

another set of optics based on different principles as will be explained in the following

subsections. The new proposed optics is known as the Hybrid FoDo cell (HFD) or more

recently renamed to the Local Chromatic Correction Optic (LCCO). The developments of

the two proposed optics with minor modifications are ongoing, at the time of writing the

thesis.

Due to the differences between the two sets of optics as clarified in Subsections 2.2.1

and 2.2.2, they cannot share the same hardware or layout in the collider tunnel and under-

ground areas, necessitating a thoughtful selection between the two proposed lattice designs,

including comparisons of the physics performance, optics tuning, impact on hardware, pro-

cess and timeline required by each of the two lattices [49]. Comparison of the optics tuning

between the two proposed lattices will be discussed in this thesis.

2.2.1 Arc region

The FCC-ee lattice are designed to have eight arcs, the baseline arc are designed to have 42

arc cell. The transfer arc cell phase advances are 90/90 degrees for the Z energy modes [50],

with FODO lengths and phase configurations varying across different energy modes [51].

The optics of the arc region for the baseline lattice rely on a FODO cell structure. The

FODO structure consists of alternating horizontally focusing and defocusing quadrupoles

(denoted as QF and QD) with bending dipoles in-between. The FODO cell setup provides

the most space for dipole magnets that leads to the smallest synchrotron radiation losses

for a given machine size and particle energy. In addition. The chosen number of the FODO

cells was aimed at achieving the desired horizontal emittance.

Twin aperture quadrupoles with equal lengths for QF and QD are shared between the
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electron and positron rings (one aperture for each beam). Additionally, one focusing (SF)

and one defocusing (SD) sextupole pair within a supercell of 5 FODO cells will be used

to correct the chromaticity [52]. The lattice incorporates ”tapering” of all magnets, which

locally rescales the field strength based on the local energy along the closed orbit. This

approach nearly compensates for orbit excursions resulting from synchrotron radiation

losses [51].

The general objectives of developing the LCCO include increasing tolerances on mag-

net misalignments, achieving larger DA and lifetimes, relaxing tuning requirements, and

reducing both magnet power consumption through development of optics solutions that

allow/rely on chromatic and harmonic corrections as local as possible [53].

The baseline lattice design incorporates a FODO arc structure, while the LCCO arc

optics includes Hybrid FODO (HFD) arc. The arc lattice is periodic over 5 Hybrid-FODO

cells, introducing a beta and phase-modulation, and relying on 4 sextupole families. The

arc lattice has a phase advance of about 51/44 [54].

Figure. 2.4 offers a view of section of the arc regions for both lattices. The lattice

components and optics parameters for the two nominal lattices are illustrated, showing

the impact of focusing and defocusing quadrupoles on horizontal and vertical beta func-

tions, along with horizontal dispersion. The FCC-ee baseline lattice includes 1420 arc

quadrupoles and 568 arc sextupoles, while the LCCO includes 2168 arc quadrupoles and

1728 arc sextupoles.
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(a) Baseline lattice

(b) LCCO lattice

Figure 2.4: Section of the arc region indicating the lattice and optics parameters for the

baseline and the LCCO lattice. Quadrupoles, sextupoles and dipoles (rectangulars) are

shown in blue, orange and purple respectively
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2.2.2 Interaction region

To achieve the desired high luminosity for FCC-ee, it is crucial to reduce the beam size

at the Interaction Points (IPs), as specified by Eq.(1.41). This reduction can be achieved

through strong focusing of the beam (small beta function), as described by Eq.(1.20). This

is accomplished by installing strong final focusing quadrupoles in the Interaction Region

(IR). Additionally, special attention must be given to chromaticity resulted for the strong

quadrupoles, as discussed in [55]. To address this, strong sextupoles are also installed in

the IR.

In the baseline lattice, the IR has a Local Chromaticity Correction System (LCCS)

(for more details see Ref. [56]) only in the vertical plane at each side of the IP, where two

sextupoles separated by phase advance of π are located together with inner sextupole in

dispersive region to correct vertical chromaticity [48]. The strength of the outer LCCS

sextupoles are set to cancel geometric aberrations and reduced to generate crab waist (to

be discussed in Sec. 2.3.1).

The LCCO final focusing system based in correcting the low-beta IP chromaticity in

both planes With the need of placing the crab sextupoles in a nearly chromatic-free region

which is the final focusing outer ends [57]. Table 2.2 illustrates the main parameters of the

LCCO lattice at Z energy (version V22 hfd) [58].

Figure. 2.5 shows the optics function along the elements of the interaction region for

the baseline and the LCCO lattices. The baseline lattice has 436 quadrupoles and 64 sex-

tupoles in the IR, while the LCCO lattice IR has 532 and 136 quadrupoles and sextupoles

respectively.
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(a) Baseline lattice

(b) LCCO lattice

Figure 2.5: IR region optics of the baseline and the LCCO lattice. S = 22.79 marks the

IP.
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Parameter [unit] Z

Beam Energy [GeV] 45.6

Horizontal emittance εx [nm] 0.49

Horizontal emittance εy [pm] 0.98

εx/εy 2.0× 10−3

Colliding bunches / beam 10000

Bunch population [1011] 2.43

Beam current [mA] 1280

Momentum compaction αc [10
−6] 23.047

Transverse tunes Qx/y 198.20 / 174.30

β∗
x/y [mm] 150 / 0.80

Table 2.2: Parameters of the LCCO lattice @ Z energy (version V22 hfd) [58]
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2.3 Challenges of FCC-ee

In high-luminosity colliders with conventional collision schemes, the key requirements for

increasing luminosity include:

• A very small vertical beta function, βy, at the IP.

• High beam intensity (current).

However, βy at the IP cannot be smaller than the longitudinal rms bunch size without

incurring the hourglass effect (Subsection. 1.4.1) that arises due to the finite bunch length

relative to βy, which causes an increase in transverse beam sizes as one moves away from

the IP. For round beams, the hourglass effect reduces the contribution to luminosity from

such locations (for more details see Ref. [42]). It is difficult also to increase beam cur-

rent without exciting (multi-particle effects and multi-bunch effects) collective instabilities

(further information on collective effects can be found in [59]).

These problems can be overcome with the crab-waist scheme for beam-beam collisions

where a substantial luminosity increase can be achieved without bunch length reduction

and with moderate beam currents.

2.3.1 Crab-waist collision scheme

The Crab-Waist collision scheme (CW) was initially proposed by P.Raimondi [60]. This

scheme combines the following several potentially advantageous ideas to enhance the lu-

minosity:

• Large Piwinski angle

Piwinksi’s angle can be increased by increasing the bunch length σs, which will allows

for an increased bunch population N, In this case, in Eq.1.46 ξy remains constant, ξx

decreases and L increases proportionally to N [61,62].
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• Vertical β-function comparable to the overlap area size:

The vertical β-function at the IP (β∗
y) is set to be comparable to the overlap area size

(σx/θ) and hence becomes smaller than the longitudinal bunch length, i.e:

β∗
y ≈

σx
θ

≪ σs

As illustrated in the Fig. 2.6, in the CW scheme, two bunches with small transverse

sizes (low emittance beams are essential) collide at large Piwinski angle, hence, the length

of the overlap area is much smaller than the bunch length. In this case the vertical beta

function at the IP can be squeezed to the length of the intersection area without incurring

in the hourglass effect and the luminosity increases [63]. Figure. 2.7 shows the crab-waist

sextupoles locations with respect to the IP and the required phase advances.

2.3.2 Beam dynamics challenges

The proposed FCC-ee faces a series of beam dynamic challenges. One of the challenges

include the desire of achieving large transverse/longitudinal DA to ensure sufficient beam

lifetime and momentum acceptance in the presence of Beamstrahlung and top-up injection

[64]. The non-linear dynamics effects, originating from various sources as mentioned in the

previous chapter, influence both the longitudinal and transverse motion of the particles.

These effects can cause minor changes in beam properties or lead to serious limitations on

beam stability. These nonlinearities reduce the DA area, which diminishes beam lifetime

and achievable momentum acceptance, ultimately impacting machine performance.

The FCC-ee challenges extend to the need for precise energy calibration and to putting

focus on cost and energy efficiency due to the sheer number of components and the large

size of the facility [65].

Pushing the β function to its limits in the IP will make the IR highly sensitive to errors

in its strong components, reflecting challenges during optics parameter correction/tuning.

Alignment of the machine elements is also a major challenge. As a result, we need to

carefully study and address these alignment issues and how to correct their effects. Many

48



Figure 2.6: Comparison of β-function waist alignment without (upper) and with (lower)

the crab sextupole transformation. The waist of the β-functions is aligned to the axis of

the other beam via adequate sextupole powering

algorithms for correcting the linear optics have been developed to achieve better optics

and DA. Continuous testing and development of various tuning procedures, along with

further enhancements of these algorithms, are crucial to ensure new machine can achieve

their challenging design parameters. We will outline the impact of element imperfections

and discuss some of the developed correction algorithms in the following chapter.
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Figure 2.7: Crab waist sextupoles locations and required phase advances from the IP
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Chapter 3

Optics measurement and correction

algorithms

In preceding chapters, the specifications of the proposed high-performance FCC-ee have

been outlined, with its primary goal being achieving remarkable level of high luminosity,

by tightly focusing the beam vertically in the interaction regions, along with minimizing

vertical beam emittance εy. This goal entails achieving low vertical beta functions β∗
y at the

interaction point, ranging from 0.7 mm to 1.5 mm, depending on the mode of operation,

and a εy of 1.9 pm for the Z mode, as specified earlier in Tab. 2.1. When accounting for

the various sources of emittance growth, beam-beam effects are budgeted to contribute 1.2

pm to the vertical emittance [66], [67]. Therefore the vertical emittance to be achieved in

simulations excluding beam-beam effects is 0.7 pm. Aiming for such an exceptionally low

target vertical emittance highlights the necessity for a comprehensive understanding of tol-

erance requirements regarding magnet field imperfections and misalignments of accelerator

components; since the vertical beam emittance without collision is strongly dominated by

these imperfections which has impact on the machine performance.

Since the existence of strong focusing synchrotron accelerators and the development

of strong focusing theory in 1957 [68], the measurement and correction of charged parti-

cle beam optics have been significant concerns. These concerns have continued through

decades of research on accelerator linear optics measurement and correction techniques [69],
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and numerous techniques have been developed and tested over many years to address this

challenge effectively.

While alignment teams can achieve high precision of accelerator components alignments

to the nanometre scale [70] and magnet designers can achieve high field quality [71], even

small misalignments and field errors can introduce vertical dispersion and coupling of mo-

tion between the horizontal and vertical planes, causing the vertical emittance to increase.

Additionally, other sources such as residual beta-beating, introduced by magnet misalign-

ments and field errors, along with beam-beam effects, are expected to contribute to the

growth of vertical emittance.

This chapter explores the origins of various misalignments and field errors, their impact

on beam optics parameters and machine performance, and introduces concepts such as

beta-beating, orbit distortion, and coupling. Furthermore, we discuss a group of orbit and

optics correction techniques in the latter part of this chapter. These techniques, using

different types of correctors placed based on magnet design specifications, include Singular

Value Decomposition (SVD) and Dispersion-Free Steering (DFS), as well as k-modulation

and multi-turns. Furthermore, we explore the LOCO method, which uses a comprehensive

model of the machine to achieve effective optimization and correction.

3.1 Sources of imperfections and their impact on ma-

chine performance

Misaligned magnets are the prime source of imperfections on the machine and the major

reason of beam optics degradation. It is required to ensure that element’s alignment are

precised, this process implies a precise measurements of the magnetic axis in the laboratory

with reference to the element’s alignment markers used by the survey group and precise

on-site alignment (position and angle) of the element in the tunnel.

Magnets can be transversely displaced (shifted) in the x or y directions, and they can

also be shifted longitudinally along the s axis. Magnets can also be rotated about the

x,y, or s axes Figure. 3.1 illustrates different types of magnets rotations. Three cases of
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rotations commonly known as the tilt (right), pitch (middle) and yaw (left) are shown.

The tilt is a rotation around the s-axis, the pitch is a rotation around the x-axis and the

yaw is a rotation around the y-axis.

Figure 3.1: Illustrations of different types of magnet rotation misalignments [72].

Another class of imperfection is caused by magnets gradients errors, where the magnet

field may differ from the design value and may vary with time, this happen for example

when a power supply delivers a very high or very low current. A focusing quadrupole that

excited too strongly, will focus the particles to a point closer to the quadrupole causing

the beam optics and tunes to differ from the design values.

Other sources of imperfections that affects the machine could come from power supply

calibration, fringe fields or in the case of low-energy beams, the earth’s magnetic field.

Multipoles imperfections can be either linear when the imperfection source is dipole or

quadrupole, or non-linear when higher order multipoles are considered. As a consequence

of multipole misalignments, field errors corresponding to a lower-order magnetic field type

is generated. For example, a shifted quadrupole generates a dipole field, while a vertically

shifted sextupole generates a (skew ) quadrupole field error. This effect is commonly

described as the feed-down effect.

Feed-down effect

To quantify the feed-down effect caused by imperfection of multipole of order m, we start

with the multipole expansion of the magnetic field [5]:
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By + iBx = B0

∞∑
m=1

(bm + iam)

(
x+ iy

R0

)m−1

(3.1)

where B0 and R0 are the reference main field and reference radius respectively. bm and

am characterize the magnitude of the multipole component, were bm describe magnets,

which have a vertical field component By along the x-axis, known as upright or normal

multipoles, whereas the am describe magnets which are rolled by ϕ = π/m and are called

skew multipoles.

For magnet of length L, the orbit x′ and y′ kicks induced from the magnet can be

written as:

∆x′ − i∆y′ =
(By + iBx)L

Bρ
= −

∞∑
n=0

knL

n!
(x+ iy)n. (3.2)

where knL = L (∂nBy/∂x
n)y=0 /Bρ for an upright magnet, and Bρ is the magnetic rigidity

as described earlier in Subsection 1.2.2.

For a magnet with a single multipole component the kick from Eq.(3.2) simplifies to:

∆x′ − i∆y′ =

(
knL

n!

)
(x+ iy)n (3.3)

When this magnet is horizontally displaced by dx, the kick becomes

∆x′ − i∆y′ = −knL
n!

(x+ dx + iy)n

= −knL
n!

(x+ iy)n − knL

n!

n−1∑
k=0

(
n

k

)
dn−kx (x+ iy)k,

(3.4)

where the second equality derives from a binomial expansion of (x+ dx + iy)n. The first

term shows that the displaced multipole maintains its intended functionality and moreover

all lower-order multipoles k = 0, . . . , n− 1 appear.

Consider a horizontally displaced sextupole, with kick given by:

∆x′ − i∆y′ = −k2L
2

[
(x+ iy)2 + 2dx(x+ iy) + d2x

]
(3.5)
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The first term, proportional to (x+ iy)2 describes the sextupole component, the middle

term 2dx(x+ iy), describes the quadrupole component, and an additional horizontal dipole

kick appears in the last term as d2x.

A vertically misaligned sextupole causes the particles to be kicked by

∆x′ − i∆y′ = −k2L
2

[
(x+ iy)2 + 2idy(x+ iy)− d2y

]
(3.6)

The linear term, proportional to dy(x+ iy) is now multiplied by an imaginary unit, which

describes a skew quadrupolar field.

Table. 3.1 summarizes the imperfections due to dipole, quadrupole, and sextupole mag-

nets, their impact on the machine parameters and the corresponding feed-down effect.

Table 3.1: Sources and impact of magnets imperfections up to sextupoles

Field type Imperfection Error type Impact

Dipole Field error Dipole
Orbit, trajectory distortion

energy variation

Dipole Roll Dipole Orbit, trajectory distortion

Quadrupole Field error Quadrupole Tune shift, optics errors

Quadrupole Offset Dipole Orbit, trajectory distortion

Quadrupole Roll Skew quad. Introduced coupling

Sextupole Field error Sextupole Introduced chromaticity

Sextupole Horizontal offset Quadrupole Tune shift, optics errors

Sextupole Vertical offset Skew quad. Introduced coupling

Orbit distortion

As discussed earlier, the shape of the closed orbit and particle positions is determined

by the accelerator magnets. The orbit of the ideal particle is known as the design or

reference orbit. However, due to previously described magnet imperfections, the closed

orbit can deviate from the design value. Small additional dipole kicks, arising from dipole
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magnet field imperfections and/or misalignments of higher-order multipoles through the

feed-down effect, result in a distortion of the closed orbit. Consequently, particles will no

longer undergo betatron oscillations around the design orbit but around a new closed orbit.

The general expression for the horizontal or vertical distorted closed orbit at specific

location s in the presence of dipole deflection θ, at location s0 is:

U(s) =

[√
β(s)β(s0)

2 sin(πQ)
cos (πQ− ψ(s) + ψ (s0)) +

η(s)η(s0)

αcLo

]
θ. (3.7)

For the vertical plane, the term η(s)η(s0)
αcLo

θ is zero because there is no vertical dispersion.

Due to the factor of 1
2 sin(πQ)

, we can see that if the tune becomes an integer, the argument

of the sin becomes a multiple of π and Eq.(3.7) becomes undefined and no stable orbit

exists. In other words, at each revolution any small dipole error will always kicks the

particle in the same direction and at the same phase of its betatron oscillation, and the

individual kicks will add coherently leading to an unlimited increase of the amplitude of

the particle’s transverse oscillation and the closed orbit displacements will grow until the

beam is lost. Thus, integer tunes have to be avoided in circular accelerators.

Figure 3.2 show the resulted distortion on the horizontal closed orbit due to apply-

ing horizontal random displacement errors distributed via a Gaussian distribution with a

standard deviation of 10 µm on the arc quadrupoles of the baseline lattice.

Figure 3.2: Horizontal Closed Orbit Distortion (COD) due to random displacement (shift)

errors on arc quadrupoles of the baseline lattice, without applying correction
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Beta beating

The imperfections of quadrupoles field components, influences beam optics parameters.

Unlike dipole errors which affect orbit displacements, quadrupole field errors alter the

focusing properties of the lattice, resulting in a change in the tune. The general expression

of this change resulted from a distribution of quadrupole errors δK at location s along the

ring is:

∆Q =
1

4π

∮
β(s)δK(s)ds (3.8)

Tune shifts in both planes could result also from space-charge, beam-beam effects and

electron clouds. From Eq.(3.8) we noticed that quadrupole field errors will induce greater

tune shifts at locations with larger beta functions.

In addition to tune shifts, quadrupole field errors will lead to a position dependent

change of the beta function, which can be expressed as following:

∆β(s) =
β(s)

2 sin (2πQ0)

∮
δK (s0) β (s0) cos [2 (ψ(s)− ψ (s0)− πQ)] ds0 (3.9)

Unlike Eq. (3.7), the beta function experiences a significant increase in the presence of

half-integer tunes.

The relative change in the beta function in the presence of errors depends on both

the beta function at the position of the gradient error β(s0) and the beta function at the

measurement position β(s). It is known as the beta beating [73]:

∆β(s)

β(s)
=
β(s)measured − β(s)model

β(s)model
(3.10)

Figure 3.3 shows an example of the horizontal and vertical beta beating resulting from

random relative field errors distributed via a Gaussian distribution with a standard devi-

ation of 10−3 applied to arc quadrupoles of the baseline lattice.
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(a) Horizontal beta beating (b) Vertical beta beating

Figure 3.3: Beta beating results from quadrupole field errors without applying correction

Coupling and vertical dispersion

Another important effect results from magnets imperfections is the betatron coupling be-

tween the transverse oscillations in the horizontal and vertical planes. These oscillations

can be coupled by magnetic fields of rotated quadrupoles in the x–y plane, solenoids, orbit

offsets in sextupoles or vertically misaligned sextupoles. The mentioned imperfections can

also couple the horizontal dispersion into the vertical plane, thereby increasing the verti-

cal dispersion. Vertical dispersion can also be introduced by dipole errors and a non-zero

vertical closed orbit in the quadrupole magnets.

To improve machine performance, it is crucial to strictly control strong coupling and ver-

tical dispersion, as they lead to emittance growth—particularly vertical emittance, which

is typically dominated by alignment and tuning errors that generate vertical dispersion and

betatron coupling. Furthermore, the vertical beam size is influenced by the local coupling

between the vertical plane and the horizontal and longitudinal planes.

Resonance Driving Terms (RDTs)

The coupling between the planes is not constant around the ring. Consequently, a uniform

coupling strength is used to quantify the coupling in a ring and is given by [74–76]:
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C = − 1

2π

∮
dsks(s)

√
βx(s)βy(s)e

−i(ψx(s)−ψy(s)+i(s/Lo)∆ (3.11)

where ks is the s-dependent coupling strength, ψx,y the horizontal and vertical betatron

phase for the uncoupled lattice, Lo is the ring circumference, βx,y are the uncoupled beta

functions, ∆ is the fractional distance from the resonance of the tunes defined in Eq.(1.22):

∆ = Qx −Qy − p

Using Hamiltonian and normal form theory, Resonance Driving Terms (RDTs) have

been defined and it proved to be a powerful tool to describe betatron coupling close to

the sum and difference resonance (for detailed derivations of the RDTs see References [77]

and [78]).

These terms are functions of the uncoupled lattice parameters at the location of both

the coupling elements and the observation point s and is given by:

f1001
1010

(s) = − 1

4 (1− e2πi(Qx∓Qy))

∑
l

ksl(s)
√
βlx(s)β

l
y(s)e

i(∆ψsl
x +∆ψsl

y ), (3.12)

where k(s)sl is the l th integrated skew quadrupole strength, βlx,y are the s-dependent beta

functions at the location of the l th skew quadrupole, ∆ψ(s)slx,y are the phase advances

between the observation point s and the lth skew quadrupole.

A relation detailed in Ref. [12], shows that, in order to minimize the vertical emittance,

the driving terms for the two nearest sum and difference resonances, should be minimized.

Methods to correct these terms will be explained in the following section.

The global machine coupling can be determined directly using the closest tune ap-

proach [74], which is a measurement technique requires moving the transverse tunes close

to each other and measuring the minimum distance between the fractional tunes that can

be achieved in presence of linear transverse coupling. This distance ∆Qmin corresponds to

the coupling parameter.

59



3.2 Orbit and optics correction algorithms

Several correction steps are required to mitigate the impact of magnet misalignments and

field errors on machine performance. These steps include orbit and optics corrections, as

well as other types of corrections performed by the installed magnets, such as using sex-

tupoles to correct chromaticity. The aim of orbit and optics correction algorithms is to

minimize lattice errors by adjusting magnet strengths. The primary goal of these algo-

rithms is to achieve optics parameters that closely resemble the design optics. This helps

to recover the dynamic aperture, momentum acceptance, and lifetime, while minimizing

emittance and the beta function at the interaction point, thereby enhancing machine per-

formance.

Before looking through the various correction algorithms, let’s approach the overall

issue as a minimization problem. This approach involves finding optimal values for fitting

parameters, such as magnet strengths, to minimize resultant errors. In statistics the goal

of minimization is to determine a set of numerical parameter values that yield the most

accurate fit of an equation or series of equations to a given set of data (measurements).

The minimization approach works for most of the cases in correcting the orbit and optics

parameters, as will be explained in the coming sections.

3.3 Orbit Correction

Orbit corrections are achieved through orbit kicks produced by orbit steerers, resembling

the impact of dipole errors on the orbit. The steerers kicks’ strength are determined by

different algorithms. Beam Position Monitors (BPMs) provide essential information about

the position of the beam. The accuracy of BPM measurements is critical for achieving a

well-corrected orbit. However, like other machine components, BPM measurements have

some imperfections. These include measurement offsets due to BPM alignment, scale

errors, non-linearity in position readings and other imperfections. Consequently, BPM

measurements require calibration. For more details, see References [79] and [80].

Figure. 3.4 illustrates the simplest version of orbit correction for a transfer line where
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the beam, represented in red, experiences a kick from a transversely misaligned quadrupole

(in blue), and then a steering magnets (red triangles) with strength θ counteract this effect,

redirecting the beam to ensure it passes precisely through the center of the BPMs. This

approach is known as one-to-one steering in which one orbit reading at BPM is corrected

at a time [81].

Figure 3.4: Orbit correction via one-to-one steering

Since the closed orbit reacts linearly to the dipole corrector kicks as represented in

Eq.(3.7), orbit correction involves generating Orbit Response Matrix (ORM) for the closed

orbit as a function of the corrector kicks, the matrix is of dimension m× n, where n is the

number of used orbit correctors and m is the number of BPMs.

For the ith BPM and the jth corrector the ORM element is:

ORMi,j =

√
βi(s)βj(s0)

2 sin(πQ)
cos (πQ− ψi(s) + ψj (s0)) +

ηi(s)ηj(s0)

αcLo
. (3.13)

By defining a column vectorB containsm BPM readings and vector θ contains strengths

of n corrector magnets:

B = (b1, b2, b3, . . . , bm),

θ = (θ1, θ2, θ3, . . . , θn),

the pesudo-inverse of the ORM can be used to identify correctors powering θ that minimise

the orbit at the BPMs B.
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Since the ORM is related to orbit responses due to correctors kicks, via the expression:

ORM.θ −B = 0. (3.14)

Least squares or weighted least squares [82] arise in this context, since in most cases the

ORM is not invertible and also not a square matrix, Eq.(3.14) can only be solved using

the least square fit by minimizing the square norm:

||ORM.θ −B||2. (3.15)

This quadratic norm can be minimized by a pseudo inversion and the required correctors

powering are expressed as:

θ = (ORMTORM)−1ORMT .B. (3.16)

3.3.1 Orbit correction using SVD

The Singular Value Decomposition (SVD) technique [83–85] is used to solve least squares

problems more efficiently, especially when dealing with ill-conditioned or singular matrices.

In SVD the ill-conditioned matrix ORM can be decomposed into a product of two orthog-

onal U , V matrices of dimensions m × m and n × n and one diagonal matrix Σ, with

non-negative, real eigenvalues on the diagonal (1/σ11, 1/σ22, 1/σ33, ...1/σkk). The diagonal

eigenvalues σii, provide a measure for how ill-conditioned the matrix ORM is. Using SVD,

the ORM becomes:

ORM = UΣV T . (3.17)

We can define a correction matrix A:

A = UT .Σ.V T . (3.18)
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The required corrector strengths for a given distorted closed orbit reading can be given by:

∆θ = ORM.A.B. (3.19)

Small diagonal values in the matrix Σ reflect a strong amplification of orbit BPM

reading errors during the calculation of the required corrector strength, making the least

squares fit algorithm unstable. It is desirable to limit the number of eigenvalues used for

the correction to avoid small eigenvalues that are very sensitive to the accuracy of the

model. This can be done by choosing an appropriate cutoff value for the eigenvalues to

exclude them from the orbit correction procedure, as illustrated in Fig. 3.5.

Figure 3.5: Selecting the cut-off of the singular values

used for orbit correction, values above 750 will be re-

moved.

In general we can say that orbit correction equation can be solved through the least

squares method using the SVD of the ill-conditioned response matrix.
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3.3.2 Orbit correction using MICADO

Another algorithm used for orbit correction is known as the Most Effective Corrector

Algorithm (MICADO) [86], [87].

MICADO compares the response of every corrector with the orbit to be corrected, by

calculating the scalar products:

σj =
i=m∑
i=1

biORMji and ρj =
i=m∑
i=0

ORMjiORMji, (3.20)

for j correctors. MICADO selects the corrector that has the best correlation with the

orbit corresponding to the largest value of σ2
j/ρj. By setting the right kick value ∆θj to

the chosen corrector, it will produce the largest reduction in the quadratic sum of Eq.(3.15).

This procedure can be iterated using the remaining correctors until the orbit reach a desired

value.

Both MICADO and SVD algorithms have their own distinct advantages and drawbacks.

MICADO excels in selecting individual correctors, making it effective for identifying local

sources of orbit perturbation in measurements. On the other hand, SVD always utilizes the

entire set of correctors, and the number of SVD eigenvalues controls the quality of the cor-

rection; limiting the number of eigenvalues limits the influence of BPM noise. Additionally,

the simplicity of the SVD correction, which can be represented as a straightforward matrix

operation, makes it particularly well-suited for real-time orbit feedback applications.

3.3.3 Dispersion Free Steering (DFS)

One of the techniques to correct horizontal and vertical dispersion is Dispersion Free Steer-

ing (DFS). This method involves simultaneously correcting the orbit and dispersion using

standard orbit correction algorithms, ensuring a flat orbit while minimizing residual dis-

persion.

DFS extends the orbit correction method described previously, to account for dispersion

at the BPMs. It modifies Eq.(3.14) to incorporates dispersion effects as following:

64



(
(1− α)u

αη

)
+

(
(1− α)ORM

αD

)
θ = 0, (3.21)

where η (vector of length n) represents the horizontal or vertical dispersion at the BPMs,

and D is the m× n dispersion response matrix. The elements Dij represent the dispersion

change at the i-th monitor due to a kick from the j-th corrector. The weight factor α shifts

the correction from a pure orbit (α = 0) to pure dispersion correction (α = 1). The optimal

α is machine-specific. Applied to Eq.(3.21), a least square algorithm will minimize:

S = (1− α)2∥B +ORMθ∥2 + α2 ∥η +Dθ∥2 . (3.22)

For a detailed example of improving emittance using DFS at LEP, refer to reference [88].

3.3.4 Beam-Based Alignment (BBA)

The aim of Beam-Based Alignement (BBA) technique is to find the magnetic centers of

magnets using the beam, aiming to determine a golden orbit. This process minimizes the

feed-down effect resulting from quadrupole misalignment. Beam-Based Alignment (BBA)

for quadrupole magnets has become a standard practice at modern accelerator facilities

[89], [90]. BBA can be performed using two approaches. The first approach is model-

dependent. In this method, the orbit shift due to a change in the quadrupole gradient

is measured, and using a lattice model, the corresponding kick angle at the quadrupole

location is calculated. From this, the orbit offset is obtained [91]. The second approach is

model-independent. This method aims to find an orbit through the quadrupole where a

change in the quadrupole strength does not cause a deflection of the beam orbit. This is

achieved by experimentally steering the orbit with a corrector magnet while observing the

orbit shift caused by the quadrupole variation at each step [92].

For storage rings with a large number of quadrupoles, like the FCC-ee, the conventional

BBA procedure is time consuming, particularly during the commissioning phase, due to the

necessary iterative process. Additionally, the conventional BBA method can be affected

by strong coupling and the nonlinearity of the storage ring optics. For these reasons, BBA
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has not been used in the scope of this thesis. However, it can be noted that some recent

studies have presented novel methods to address this issue, such as those based on a neural

network [93] or performing parallel BBA for FCC-ee [94].

3.4 Optics measurement and correction

Measuring and correcting the optics parameters such as beta-beating, dispersion, and

coupling is crucial, much like orbit correction. Numerous techniques have been developed

and tested over many years to address this challenge effectively. These techniques fall into

two categories: The first set of techniques, provide beam information without requiring

precise knowledge of the accelerator’s model, (such as k-modulation in which the strength of

individual quadrupoles is modulated to determine the local optics function and the Multi-

turn technique, when the beam is excited and multi-turn beam position data is recorded

to determine the betatron phase advance between beam position monitors allowing the

betatron function to be reconstructed from the phase advance information). The goal of

the second group, which includes the orbit response technique, is to create a comprehensive

model of the machine, by measuring the ORM with orbit corrector kicks, and a fit to the

response is used to reconstruct and correct the machine model.

Detailed explanations of the techniques in these two groups will be provided in this

section.

3.4.1 K-modulation

This technique was first documented in 1975 [95]. During the measurement, a single

quadrupole gradient variation (current) and the resulted horizontal and vertical tune shifts

are recorded, and the average betatron function inside the modulated quadrupole can be

determined, as clarified in Eq.(3.8).

The average β function at a quadruple of length Lq, with δK change in its strength

and result in ∆Qx,y tune shifts is given by:
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β̄x,y (∆Qx,y) =± [cot (2πQx,y) (1− cos (2π∆Qx,y))

+ sin (2π∆Qx,y)]
2

δKLq

≈± 4π
∆Qx,y

δKLq
,

(3.23)

In (±) the (+) and (−) signs correspond to the horizontal and vertical planes respectively

(derivations for this relation are presented in [12]).

The K-modulation technique has proven to be a powerful and simple method for effec-

tively measuring average beta functions in a variety of accelerators. For example, it has

been successfully applied at the LHC [96]. However, this technique has certain limitations.

It requires the quadrupoles to be powered individually, which is a common scheme at syn-

chrotron light sources but less so at large machines like the proposed FCC-ee, where only a

subset of quadrupoles may be individually powered due to the high cost of power convert-

ers. Additionally, the technique is limited by several factors, including tune measurement

resolution, residual betatron coupling, the accuracy of the quadrupole integrated gradient

versus current, quadrupole fringe fields, and unwanted tune shifts caused by possible orbit

changes at nonlinear magnets during quadrupole modulation.

3.4.2 Multi-turn technique

Multi-turn optics measurements rely on beam excitation over a certain number of turns,

typically a few thousand, to obtain sufficient resolution. The collected beam position

data provides comprehensive information about the linear optics. For example, the beam

oscillation phase, corresponding to the betatron phase ψ at each BPM, is extracted for

each BPM. Consequently, the betatron phase advance ∆ψ between two BPMs can then be

determined [97]. An important advantage is that the phase measurement does not depend

on the BPM calibration, though it remains sensitive to BPM non-linearities that may bias

the phase reconstruction. In addition, exciting the beam with a single kick is often limited

by the decoherence of the oscillation (or by radiation damping).
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Previous studies have demonstrated that adjusting the phase advance is as effective as

correcting the beta functions, providing a powerful numerical method for linear optics cor-

rection by minimizing the difference between measured and model phase advances between

adjacent BPMs [98]. Equation(3.24) shows that the betatron function can be reconstructed

from the phases obtained for three BPMs, assuming there are no sources of errors between

those BPMs. For three consecutive BPMs labeled 1, 2, and 3, the measured betatron

function at BPM 1, βmeas
1 , may be obtained with input from the model as [69]:

βmeas
1 = βmodel

1

coth (∆µmeas
12 )− coth (∆µmeas

13 )

coth
(
∆µmodel

12

)
− coth

(
∆µmodel

13

) (3.24)

Once the optics data is extracted from the multi-turn data, an optics modelling tool can

be used to fit machine errors to the data as following:

From the ideal model, one can obtain the response matrix, C(model) , that relates the

relative phase-advance δ∆ψ, relative horizontal dispersion δηx and tune errors ∆Q to the

relative strengths δK of all quadrupole, as following:


δ∆ψx

δ∆ψy

δDx

δQ

 = C(model) · δK, (3.25)

and then the SVD method is used to solve this system (similar to the orbit correction as

described in Sec. 3.3).

The multi-turn technique has several advantages. It obtains the optics for both planes

from two measurements, which can be significantly faster compared to the K modulation

method. This method is also not sensitive to BPM calibrations. However, a disadvantage of

the multi-turn technique is that the beam must be excited to a sufficiently large amplitude

relative to the BPM resolution. While BPM noise is generally not an issue for multi-

turn measurements (since it is averaged over many turns), it can be very problematic for

single-turn measurements.
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3.4.3 Linear Optics from Closed Orbits (LOCO)

While k-modulation and multi-turn techniques offer direct measurements of optics func-

tions, the Linear Optics from Closed Orbit (LOCO) algorithm requires fitting measured

data to a model to obtain information about the optics functions. The principle behind

LOCO is to leverage the extensive information encoded in the ORM, described in Eq.

(3.13).

LOCO has proven to be a powerful and reliable tool for storage rings and synchrotrons

since it was established at NSLS by J. Safranek [99–103]. It measures the closed orbit

responses to the steering corrector variations matrix and optionally the dispersion function

of the machine. The data are then fitted to a lattice model by minimizing the deviation

between the model and measured orbit response matrices, Ĉ and C respectively.

The minimization process involves adjusting parameters to fit the model to the mea-

sured data, which is represented by the following chi-square equation:

χ2 =
∑
i,j

(Ci,j − Ĉi,j)
2Wi, (3.26)

where Wi is the diagonal weights matrix given by Wi =
1
σ2
i
, and σi is the measured noise

level on the i-th BPM (variance of input error).

The measured coefficients can be expressed as first-order Taylor expansion of the model

coefficients in the fit parameters. Thus, χ2 is minimized by solving the following equation:

Ci,j = Ĉi,j +
∑
k

∂Ĉi,j
∂gk

∆gk + Ĉi,j∆xi + Ĉi,j∆yj +
∑
l

∂Ĉi,j
∂pl

∆pl, (3.27)

where ∆gk is quadrupole k gradient, ∆xi is the amount by which the reading of monitor i

differs from unity, and ∆yj is the scale error of steering magnet j. Additional parameters

pl can be accounted for by numerically determining the derivative
∂Ĉi,j

∂pl
and including

parameter variations ∆pl in the fitting procedure.

Fitted parameters

Parameters varied to fit the orbit response matrices in LOCO include:
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• Quadrupole gradients

• Quadrupole rolls (skew quadrupole gradients)

• BPM horizontal and vertical calibration

• BPM roll (coupling)

• Steering magnet horizontal and vertical calibration

• Steering magnet rolls

• Energy shifts

Due to the propagation of random measurement noise on BPMs, if all the BPMs were

perfectly calibrated, it would be better not to vary the BPM gains in the fit [104].

Solving such system of equations with an iterative approach is a well-known numerical

optimization task. The method for solving it will be explained in detail in the next.

Non-linear Least Squares

Least squares fitting minimizes the sum of squared errors between a model and measured

data. If the model is linear in its parameters, the minimization can be done in one step by

solving a linear matrix equation, as shown in Sec. 3.3. However, if the model is non-linear

in its parameters, as in the case for storage rings like FCC-ee to which we will apply the

LOCO algorithm, an iterative solution is required. These iterations reduce the sum of the

squares of the errors through a sequence of well-chosen updates to the fit parameters. Non-

linear least squares fitting aims to match m observations with a model that is non-linear

in n unknown parameters, where m ≥ n [105], [106]. More mathematical clarification will

be given in the next.
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Objective function

In fitting a model function Ĉ(t;p) of an independent variable t and a vector of n parameters

p to a set of m data points (ti, Ci), it is customary and convenient to minimize the sum

of the weighted squares of the errors (or weighted residuals) between the data Ci and the

curve-fit function Ĉ(t;p) known as the objective function:

χ2(p) =
m∑
i=1

[
C(ti)− Ĉ(ti; p)

σCi

]2
= (C − Ĉ(p))⊤W (C − Ĉ(p))

= C⊤WC − 2C⊤WĈ + Ĉ⊤WĈ.

(3.28)

The weights matrix W is diagonal as mentioned earlier with Wi = 1/σ2
i , Such problem is

known as weighted non-linear least square method.

Common optimization algorithms for solving nonlinear weighted least squares problems

include the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm. To start,

we can define the local sensitivity of the function Ĉ(p) to variations in the parameter

vector p by the Jacobian matrix J =
(
∂Ĉ
∂p

)
.

Gauss-Newton algorithm

The Gauss-Newton (GN) method was the first minimization algorithm adopted by the orig-

inal LOCO [99]. In this method, the function evaluated with perturbed model parameters

may be locally approximated through a first-order Taylor series expansion:

Ĉ(p+ h) ≈ Ĉ(p) +

(
∂Ĉ

∂p

)
h = Ĉ + Jh, (3.29)

where, h represents the perturbation to the model parameters.
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Parameter update derivation

Substituting the approximation Ĉ(p+ h) ≈ Ĉ(p) + Jh into Eq.(3.28) for χ2(p+ h) yields:

χ2(p+ h) =
m∑
i=1

[
C (ti)− Ĉ (ti;p+ h)

σCi

]2
=

m∑
i=1

[
C (ti)− Ĉ (ti;p)− Jh (ti)

σCi

]2
. (3.30)

Expanding the square:

χ2(p+ h) =
m∑
i=1

[
C (ti)− Ĉ (ti;p)

σCi

]2
− 2

m∑
i=1

C (ti)− Ĉ (ti;p)

σCi

Jh (ti)

σCi

+
m∑
i=1

[
Jh (ti)

σCi

]2
.

(3.31)

Now by using the weighted sum of squares and the transpose notation Eq.(3.31) can be

rewritten as,

χ2(p+ h) ≈ C⊤WC + Ĉ⊤WĈ − 2C⊤WĈ − 2(C − Ĉ)⊤WJh+ h⊤J⊤WJh. (3.32)

The parameter update h that minimizes χ2 is found from ∂χ2/∂h = 0 :

∂

∂h
χ2(p+ h) ≈ −2(C − Ĉ)⊤WJ + 2h⊤J⊤WJ, (3.33)

The factor of 2 in the second term on the right-hand side of Eq.(3.33) arises from the chain

rule when differentiating h⊤J⊤WJh with respect to h as following:

The chain rule for matrix differentiation states that d
dx

(
a⊤x

)
= a, where a and x are

vectors. So, for our expression, we apply the chain rule twice:

d

dh

(
h⊤
)
·
(
J⊤WJh

)
+
(
h⊤J⊤WJ

)
· d
dh

(h) (3.34)

Now, let’s calculate these derivatives:
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1. The derivative of h⊤ with respect to h is 1 because it’s a scalar.

2. The derivative of h with respect to h is the identity matrix, typically denoted as I.

Then, the expression becomes:

J⊤WJh+ h⊤J⊤WJ = 2h⊤J⊤WJ. (3.35)

Parameter update formula

In GN algorithm the solution propagates toward the minimum at each iteration by δhGN,

which is determined by

[
J⊤WJ

]
δhGN = J⊤W (C − Ĉ), (3.36)

δhGN =
[
J⊤WJ

]−1
J⊤W (C − Ĉ) (3.37)

where (C−Ĉ) ≈ r0 is the residual vector of the previous iteration. The algorithm converges

to the global minimum only if the initial guess is already somewhat close to the final

solution. SVD is introduced here to solve the matrix inversion [
[
J⊤WJ

]
]−1 and optics

corrections can be performed by applying the differences in quadrupole gradients found

through the fitting, with opposite sign to the machine.

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt method, often referred to as LM, also known as the damped

least-squares is based on the paper by Moré [107] in combination with the book of Nocedal

and Wright [108]. In many cases it finds a solution even if it starts very far from the

final minimum. This algorithm adaptively varies the parameter updates using damping

parameter λ, and the damped version of Eq.(3.37) reads:

[
J⊤WJ + λI

]
δhLM = J⊤W (C − Ĉ). (3.38)

The (non-negative) damping factor λ, is adjusted at each iteration in the following way:
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If any iteration happens to result in a worse approximation (χ2 (p+ hLM) > χ2(p))

and/or the iteration gives insufficient reduction in the residual, then λ is increased. Oth-

erwise, if reduction of χ2 is rapid and the solution improves, λ is decreased, in this case

the LM method approaches the GN method, and the solution typically accelerates to the

local minimum. If either the length of the calculated step δhLM or the reduction of χ2

from the latest parameter vector p+ δ fall below predefined limits, iteration stops, and the

last parameter vector p is considered to be the solution [109].

In 1971, Fletcher modified the expression Eq.(3.38) by replacing the identity matrix I with

a diagonal matrix made up of the diagonal elements from the transpose of the matrix J

times itself J⊤WJ [110] as following:

[
J⊤WJ + λ diag

(
J⊤WJ

)]
hlm = J⊤W (C − Ĉ) (3.39)

The choice of damping parameter λ significantly influences the performance of the

LM optimization method. Various strategies exist for selecting an appropriate λ, each

balancing local convergence and global convergence considerations. For more details on

different approaches to choose the damping parameters, see References [111] and [112].

In conclusion, LOCO is one of the strongest techniques to correct optics errors in accel-

erators, by finding the proper normal and skew quadrupoles gradient strengths to correct

the beta function and the coupling. Including dispersion fitting in LOCO is possible and

often beneficial. Fitting the response to steering magnets alone usually results in a model

with correct tunes and beta functions, but may not accurately reproduce the dispersion.

This discrepancy occurs because beta functions do not vary much with dipole magnet

errors around the ring, whereas dispersion does. Additionally, when LOCO is used to cor-

rect some gradient error, non-local gradient corrections can fix beta function distortions

associated with the gradient error, but not necessarily the dispersion distortion. Including

dispersion explicitly as a column in the response matrix ensures that LOCO generates a

model reflecting both the beta functions and the dispersion of the real storage ring. This

dispersion fitting option is useful for controlling dispersion to achieve low emittance [104].

Today, most synchrotron light sources worldwide routinely perform LOCO. The ro-

bustness of LOCO is based on the significant redundancy of experimental data. However,
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LOCO is known to be a time-consuming technique. For larger rings such as FCC-ee, fit-

ting thousands of parameters to tens of thousands of data points (consuming hundreds

of gigabytes of storage) requires reducing the size of the problem by limiting the number

of steering magnets in the response matrix until the desired tolerance is achieved. This

reduction, however, limits the amount of information and the minimization accuracy, and

is known as reduced-size LOCO.

3.4.4 Coupling correction and vertical dispersion correction

In Section 3.1, we discussed the concept of coupling, its origins, and its significant impact

on vertical emittance growth. In order to correct coupling, skew quadrupoles must be

installed, primarily at each sextupole magnet. Similar to betatron phase, the coupling

matrix can be inferred from multi turn BPM data [113] or orbit measurements [114]. These

measurements are analyzed and minimization is applied to determine the appropriate skew

quadrupole strength. Another approach to correct the coupling is by minimising ∆Qx,y

(more information in Ref. [12]).

In Eq.(3.12), we sow how coupling can be quantified using the two coupling Resonant

Driving Terms (RDTs), known as f1001 and f1010, in order to correct these RDTs, (the

lower these RDTs, i.e., the coupling, the lower the vertical emittance) the system to invert

via SVD reads:

(
f1001

f1010

)
meas

= −Mks, (3.40)

where ks is a vector of length n of the integrated strengths of the corrector skew quadrupoles

to be determined, f is a (complex) vector containing the measured or computed RDTs at

all BPMs, and M is the (complex) RDT response matrix of size (m × n).

However, correcting only the RDTs is not sufficient to minimize the vertical emittance,

a further correction of vertical dispersion is required (more details in Reference [114]), the

skew quadrupoles can also be used to perform this. A more general system to be solved

can then reads:
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a1f1001a1f1010

a2ηy


meas

= −Mks, (3.41)

where M is now a (m × 2+m) × n, and ∆ηy is vector of the vertical dispersion distortion

at each BPM induced by the skew corrector. The weights a2 = 1 − a1 are introduced in

order to determine the best compromise between correction of dispersion and deterioration

of coupling. Their determination is empirical. Coupling correction alone is not sufficient

without correcting focusing errors using normal quadrupoles components [115].

Vertical emittance reduction via RDTs correction has been successfully performed at

the European Synchrotron Radiation Facility (ESRF) [114].

3.4.5 Summary of Chapter 3

In this chapter, we provide an overview of how machine imperfections, such as incorrect field

settings and misalignments, affect linear machine optics. We explore the effects of these

imperfections on various magnet types, including dipoles, quadrupoles, and sextupoles,

and discuss the resulting observable beam parameters. Additionally, we introduced some

global correction techniques, that are mostly based on a response matrix approach, in

which matrices containing information of the model in response to a change in model is

used to obtain the required magnets strengths in order to restore the nominal machine

parameters.

In the upcoming chapter, we will delve deeper into how these machine imperfections

impact the performance of the proposed FCC-ee. Additionally, we will analyze the applica-

tion of correction techniques on perturbed FCC-ee lattices and evaluate their effectiveness

in achieving the machine’s design performance.
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Chapter 4

Optics correction simulations for

FCC-ee @ Z mode

In lepton storage rings, the emittance primarily depends on the machine geometry, lattice,

and beam energy. Consequently, the smallest emittance achievable is largely determined

during the machine’s design phase. Reference [116] discusses the considerations and possi-

ble modifications involved in designing the FCC-ee lattice to achieve the desired emittance.

Nonetheless, during operation, emittance and optics beating, can be corrected within a cer-

tain range to achieve the design value using optics correction techniques. Additionally, it

is crucial to thoroughly understand the tolerance requirements for magnet field errors,

alignments, and large optics tuning simulation campaigns are needed to achieve this.

Tuning simulations for the FCC-ee tt lattice at an energy of 182.5 GeV, including a

comprehensive correction strategy, were performed using MAD-X [117], [118]. We decided

to focus on the Z energy mode because, although both energy modes are challenging to

correct, the Z energy mode is more sensitive to errors compared to tt as illustrated in the

study we carried in Appendix A.1, in which we assigned random horizontal and vertical

misalignment errors with a range of rms standard deviations and compared the resulting

optics distortion between the Z and tt energy modes. The study shows a larger distortion

for the Z lattice compared to tt. For example, Fig. A.4 and Fig. A.5 shows that assigning

1.2 µm errors led to a horizontal closed orbit distortion with a mean value (averaged for
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10 seeds) of 80 µm for tt, while for the Z mode it resulted in a distortion of 260 µm.

As we have mention previously, the higher sensitivity to error of the Z mode makes

the machine especially well-suited for detailed and robust tuning studies, which can subse-

quently be applied to other modes. Additionally, other higher energy operation modes are

scheduled for later stages in the FCC-ee physics program at CERN, giving higher priority

to Z energy lattice analysis. To include realistic optics measurement scenarios, we carried

out tuning studies for FCC-ee @ Z energy that allowed for further analysis, ensuring the

effectiveness of the proposed correction strategies for FCC-ee.

In this chapter, we will discuss the error tolerances of the proposed FCC-ee, specifically

focusing on the arc and IR magnets alignments errors. We will evaluate the effectiveness

of optics and orbit correction methods that we implemented in PyAT through a tuning

scheme, aiming to bring the machine optics parameters to acceptable values. This, in turn,

improves vertical emittance, DA, beam lifetime, and luminosity. The chapter will explore

the iterative modifications we made to our tuning scheme, aiming to optimize it providing

a detailed analysis of its evolution.

Moreover, we will delve into specific studies conducted on the FCC-ee’s two proposed op-

tics designs, to offer insights into the performance and characteristics of these lattices. A

comprehensive benchmarking analysis comparing the performance of commissioning simu-

lations utilizing two computer codes, AT and MAD-X will also be presented. Moreover, the

correction algorithms evaluated in more realistic scenarios than the previously conducted

work on the tt lattice such as including SR and BPM misalignments.

The simulations presented in this chapter are based on the following assumptions:

• Synchrotron radiation effects were excluded from the initial simulations (except for

emittance calculations). The effects of SR are considered later in Sec. 4.8.

• Solenoid errors were not included.

• Emittances were calculated for non-colliding beams (i.e. without considering beam-

beam effects).
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The FCC-ee lattices used in this study are available in the FCC-ee optics and data

GitLab repository [119], which contains various lattice designs, including those under de-

velopment. This repository includes files detailing machine layout, optics, and parameters

for each operation mode. Additionally, the CERN optics repository, accessed through the

CERN accelerator models website [120], includes all published versions of the lattices along

with parameters values. These lattices are available in different formats, including SAD

scripts [121] and MAD-x sequence files.

To convert lattice file between different simulation codes, the Xconverters tool [122] [123]

was used to convert the sequence from MAD-X format into AT format. By the time this

thesis was completed, AT had developed a function that uses the command at.load madx

to load MAD-X sequence files and convert them into AT format directly inside AT.

Specifically, we used the baseline lattice at Z energy mode (45.6 GeV), version V 22,

and the LCCO lattice at Z mode, version 79a or as defined in the FCC-ee optics repository,

version V 22 hfd.

The code developed for these studies, along with various examples, has been made

available in a GitHub repository [124].

Figure 4.1 presents the nominal DA for the baseline and the LCCO lattice computed

at marker “RFR.1” and marker “center” respectively, these elements are in the RF section

of the lattices. The DA calculations were conducted with beam sizes of σx = 8.84× 10−6m

and σy = 3.12 × 10−8m, particles were tracked over a sufficient number of turns initially

without considering synchrotron radiation effects. Incorporating radiation effects in the

DA calculation would typically yield a smaller DA area due to increased particle losses

resulting from the change in particles energy due to SR, as discussed in Subsection 1.2.4.

Nominal DA in presence of SR will be presented in Sec. 4.8.

Figure 4.1 was generated by tracking single particles with varying initial horizontal and

vertical amplitudes to determine the stable area - or dynamic aperture, over 1000 turns.

If a particle survived the 1000 turns, then the amplitude was increased and the tracking

performed again. The procedure searched in radial lines from the origin, in steps of 10-

degrees over a 180-degree range. If the particle was lost before reaching 1000 turns, then

the search returned to the previous successful step and increased the amplitude with a
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smaller step size.

The FCC-ee baseline lattice nominal DA (i.e. without errors or corrections applied)

with radiation not included (shown in Fig. 4.1) covers an area range from -20 to 20 hori-

zontally and up to 380 vertically in multiples of the horizontal and the vertical beam sizes

respectively, while the DA of the LCCO lattice extends over -30 to 25 in the horizontal

plane and up to about 100 in multiples of the horizontal and vertical beam size respectively.
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(a) Baseline lattice

(b) LCCO lattice

Figure 4.1: Nominal DA without synchrotron radiation for a) the baseline lattice and b)

the LCCO lattice.
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4.1 Correction scheme

The most basic correction procedure, considering our simulation assumptions, is illustrated

in Fig. 4.2. We adopted this basic scheme as our foundation. This correction scheme

is feasible if nonlinear effects from sextupoles are initially neglected by turning off the

sextupoles at the start of the simulation. This is a common approach in the commissioning

of 4th generation light sources [125, 126]. After initial orbit correction, the beam lifetime

is long enough to start detailed optics corrections steps. We present initial studies using

this scheme and explore potential improvements.

In the following subsections, the correction scheme steps are described in more detail.

Installing correctors to the lattice

The FCC-ee proposed lattice designs, that are provided by the FCC-ee Optics Group, are

subject to modifications from time to time as the design evolves. Figure. 4.3 illustrates

the placement of the corrector elements utilized in these simulation studies for the baseline

lattice (similar locations were used for the LCCO lattices). One horizontal and one vertical

orbit corrector were installed at every quadrupole. One BPM was also placed at each

quadrupole, including the final quadrupole doublets next to the IPs. Skew quadrupole

correctors combined with a trim quadrupole are placed at each sextupole in order to correct

the coupling and to rematch the vertical dispersion.

In a recent proposal from the FCC-ee Optics Group [127], it was suggested to position

the horizontal orbit correctors at the edges of each dipole element, without losing the main

dipole field. Vertical orbit correctors are positioned at each quadrupole.

Another proposal involves installing long steerers (∼20 cm) before the quadrupoles and

placing BPMs after the quadrupoles (the first quadrupole magnets near the IPs do not

have steerers or BPMs) [128]. Although we explored this alternative arrangements of orbit

correctors and BPMs, our tuning results did not show significant differences. Therefore,

we used the initially mentioned locations for our chosen studies. It is worth noting that

these alternative locations could yield different results in other studies.
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Figure 4.2: Baseline tuning scheme procedure that was later iterated upon and improved.

The total number of each corrector type and the BPMs used for the two lattices are

listed in Tab. 4.1.

Switching off sextupoles

The lattice is used with full beam energy 45.6 GeV and the AT function radiation off

was used to turn off everything affecting the longitudinal momentum, including the RF

cavities and the energy loss from SR.
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Figure 4.3: Orbit correctors, BPMs and skew quadrupole locations shown over part of the

arc region for the baseline lattice. Purple rectangles are dipoles, pink objects are focusing

and defocusing quadrupoles, and the orbit correctors, BPMs, and skew quadrupoles are as

indicated.

Table 4.1: Number of correctors and BPMs for the baseline and the LCCO lattice

Corrector type Baseline LCCO

Hor. orbit 1856 2700

Ver. orbit 1856 2700

Skew quads 632 2000

BPMs 1856 2700

The next step involved turning off all sextupoles. This was done to mitigate strong non-

linear effects caused by the sextupole fields and the strong orbit distortions (illustrated in

previous chapters), thereby starting with linear lattice that can initially tolerate larger

imperfection values. Figure 4.4 illustrates the impact of sextupole fields on deforming the

optics parameters in the arc, even when small alignment errors of only 10 µm rms are

applied to arc magnets.

Turning off all sextupoles magnets initially is feasible as long as the orbit distortion
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does not exceed the vacuum chamber gap and if the distortion does exceed the gap, a

first-turn trajectory correction can be applied to achieve a closed orbit inside the vacuum

chamber.

Figure 4.4: Impact of horizontal and vertical random alignments errors with standard

deviation of 10 µm applied to arc magnets with sextupoles on. The region shown is one

arc.

Sextupoles nonlinear effect on the ORMs

Due to the nonlinear fields generated by the sextupoles, the kick values assigned to orbit

correctors for generating ORMs lead to changes in the horizontal and vertical tune values

(Qx and Qy). Thus the kick values of the orbit correctors need to be chosen carefully, such

that it avoid the nonlinear effect of the sextupoles. The relationship between the kicks

magnitude and the BPM readings of the closed orbit was generated while sextupoles are

turned on by choosing one orbit corrector, assigning a range of kicks values to the corrector

and recording the orbit reading at one BPM. The non-linearity between the kicks values

and BPM readings of the closed orbit is illustrated in Fig. 4.5. For the baseline lattice,

the acceptable range for horizontal corrector kicks lies between −10 × 10−5 radians and

3.75× 10−5 radians. Similar values were obtained for the LCCO lattice.
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Figure 4.5: The plot shows how the horizontal closed orbit changes with different kick

values. The straight dotted orange line represents a linear fit based on the midpoint slope

of the data, highlighting the general trend of the orbit distortion with varying kicks.

Applying errors to elements

To apply errors to elements we used the shift elem function that sets the transverse

displacement of an element. The translation vectors are stored in the T1 and T2 attributes.

While for rotation we applied the rotate elem function that can apply tilt, pitch, and yaw

angles to the elements. The rotation matrices are stored in the R1 and R2 attributes, where

θ is the element tilt angle:

R1 =

(
cos θ sin θ

− sin θ cos θ

)
, R2 =

(
cos θ − sin θ

sin θ cos θ

)
. (4.1)

These transformations are applied by changing the particle coordinates at the entrance

of the element and restoring them at the end. For field errors we changed the corre-

sponding polynomial component of the elements or the integrated field parameters K (for

quadrupoles) and H (for sextupoles).
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In Sec. 4.2, we will conduct a comprehensive investigation into the influence of alignment

errors on both the IR and arc components for both lattices.

Orbit Correction

The SVD orbit correction is the algorithm used in this study for orbit correction through the

correction scheme. The implemented SVD algorithm utilizes all orbit correctors available

along the lattice, ensuring the orbit distortion is minimized in both the horizontal and

vertical planes at all BPM locations around the ring. Figure 4.6 shows an example of

the SVD correction method implemented to correct the distorted orbit resulting from

introducing random horizontal and vertical misalignments with standard deviation of 50

µm on the arc quadrupoles, while the sextupoles are switched off, resulting in reduction of

the horizontal orbit distortion rms values from 3152.43 µm to 4.78 µm and in the vertical

orbit distortion rms values from 5895.83 µm to 3.88 µm.

In Sec. 4.4, we will analyze the effects of the selected number of eigenvectors on the

orbit correction results.

Switching on sextupoles

The orbit correction step helped in achieving stable optics values in terms of the rms

orbit and the relative dispersion in the presence of sextupole fields. Now, the sextupole

fields need to be switched on again to manage the chromatic effects of the lattice and

to dampen the head-tail instability [16]. Therefore, we initially followed orbit correction

by setting the sextupole strength to its full design value of 100% in one step. However,

further optimization of this correction process revealed improved tuning (resulting in lower

beta-beating, lower coupling, smaller vertical dispersion, and ultimately smaller vertical

emittance) when incrementally increasing the sextupole strength in steps, interleaved with

other necessary corrections, as will be detailed in Sec. 4.4.

At the end of the sextupole ramping process, when the sextupole strengths reach their

design values, the partial correction of chromaticity achieved by setting the sextupole
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Figure 4.6: Horizontal and vertical closed orbit before and after applying the SVD orbit

correction. The correction led to a reduction in the rms value of the horizontal orbit

distortion from 3152.43 µm to 4.78 µm and in the vertical orbit distortion rms value from

5895.83 µm to 3.88 µm.

strengths to full value in the presence of alignment and field errors is only a preliminary

step. It is crucial to fine-tune the sextupole strengths further to bring the chromaticity as

close to the design values before moving on to subsequent correction steps. Additionally,

constant adjustment of the tunes through the correction scheme is necessary. Both chro-

maticity correction and tune correction are vital to avoid resonances and ensure overall
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beam stability.

Fitting tune and chromaticity

For tune fitting we used the AT fit tune function that uses an optimization routine

to vary the quadrupole strength values until the correct output tunes are achieved. A

similar manner is followed by the fit chrom function that changes the sextupole strengths

to correct the chromaticity. In this study, all focusing and defocusing arc quadrupoles

were used to fit the horizontal and vertical tunes, while all arc focusing and defocusing

sextupoles were used for horizontal and vertical chromaticity fitting. Initially, we included

the IR magnets in the fitting process, however, they showed poor results. Therefore, we

excluded the IR magnets. The arc magnets were used for tune and chromaticity fitting for

both lattices.

Optics Correction

At this stage, linear optics correction is performed, including beta beating, coupling, hori-

zontal and vertical dispersion corrections. For optics correction, we utilised LOCO method,

and we developed our own implementation of it. The implementation includes numerical

calculations of orbit response matrices, Jacobian calculations, and the design of LOCO

iterations strategies.

Since the Jacobian calculations are the most time-consuming part of this process, we

initially used only 10 horizontal and 10 vertical orbit correctors to generate the ORMs,

for both lattices. However, realizing the necessity for more accuracy, we doubled this

number to 20 horizontal and 20 vertical orbit correctors distributed evenly around the

ring. Figure. 4.7 shows the horizontal and vertical phase advance distribution of the 20

orbit correctors used for the baseline lattice. The Jacobian calculations were executed using

parallel processing on a computer cluster and it took approximately one hour in total in

the case of the baseline lattice.

Our LOCO scheme began with two iterations of beta beating correction, through ad-

justing the strengths of all normal quadrupoles, including only the diagonal ORMs in the
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Figure 4.7: Horizontal (upper) and vertical (lower) phase advance distribution of 20 used

orbit correctors for the baseline lattice
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calculations. These initial iterations ensured convergence of beta beating and horizontal

dispersion values. Figure 4.8 showed the reduction of the horizontal and vertical beta

beating over each LOCO iteration until convergence. As seen in Fig.4.8, the first LOCO

iteration had the most impact on reducing the beta beating. These results were produced

from choosing a relatively large number of singular values when performing the SVD, lead-

ing to faster convergence of the fit. Following the beta-beating iterations, one iteration of

coupling and dispersion correction was applied, including the on and off (coupling) diag-

onal matrices, where skew quadrupole strengths were adjusted alongside normal ones. A

final iteration of beta-beating correction was then applied to refine the beta-beating values

from the previous step. Vertical dispersion remained relatively stable throughout this last

iteration. Each LOCO iteration was interleaved with tune fitting. The LOCO iteration

steps with the interleaved tune fitting are illustrated in Fig.4.9. A final check on tune and

chromaticity preceded emittance and DA calculations.

The implemented Python-based numerical code for LOCO correction, has been tested

using FCC-ee tt energy mode 182.5 GeV [129]. The code has also been integrated into the

Python version of the Simulated Commissioning toolkit for Synchrotrons (PySC) [130–

132]. The code will be expanded and applied in the commissioning of PETRA IV at

the Deutsches Elektronen Synchrotron (DESY) [133–135]. A validation of the code under

strength and calibration errors using PETRA IV lattice can be found in Appendix B.
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(a) Horizontal beta beating correction

(b) Vertical beta beating correction

Figure 4.8: Improvement of beta beating over three LOCO iterations

Figure 4.9: Explanation of the initial LOCO iteration scheme
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4.2 Optics sensitivity to magnet alignment errors

In this section we present a sensitivity analysis to investigate the impact of magnets mis-

alignment errors on various optics parameters crucial for the machine performance. The

parameters evaluated include horizontal and vertical Closed Orbit Distortion (COD), rel-

ative dispersion, beta beating, tune, chromaticity, and emittance. Sextupoles were set

to 100% of their design value for this sensitivity analysis. Horizontal and vertical ran-

dom alignment errors distributed via a Gaussian distribution with a cutoff at 2.5 times

the standard deviation. The cutoff and alignment error values are consistently applied

throughout the simulations tested in this thesis, unless specified otherwise. Errors were

systematically introduced first to the arc quadrupoles, sextupoles, and dipoles, and then

to the IR magnets. The range of standard deviations used (in micrometers) is:

[0.0, 0.2, 0.4, 0.6, 0.8, 1, 1.2]

These misalignment values are unrealistically small and are just used to compare the sen-

sitivity of the lattice to alignment errors on arc region magnets and on the IR magnets

separately, enabling insightful comparisons between these two regions of the proposed

FCC-ee. Additionally, the study compared the optics performance between the proposed

baseline and the LCCO lattices, providing further insights into optimal design considera-

tions. Fifty simulations were conducted, each employing different random seed, and the

assigned alignment errors followed the same standard deviation range. The study gener-

ated plots illustrating the standard deviation of alignment errors against each evaluated

parameter.

4.2.1 Arc region

Figures 4.10–4.14 show how various optics parameters change with the increase in the

standard deviation of random errors applied to the arc magnets for the baseline and LCCO

lattices. Large outliers were removed from the plots when needed. Following the mean

values line in the plots, the COD difference between the baseline lattice and LCCO is

not clear, as seen in Fig. 4.10. However, Fig. 4.2.1 illustrates that the horizontal and
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Figure 4.10: Horizontal and vertical closed orbit distortion vs. error standard deviation

for the baseline (left) lattice and LCCO lattice (right) (errors in arc magnets)

vertical dispersion distortions are larger for the baseline lattice compared to LCCO. The

assigned errors in the arc region do not lead to a significant increase in the beta beating

for either lattice, as shown in Fig. 4.11. The fractional part of the horizontal tunes, shown

in Fig. 4.12, does not exhibit large variations that might lead to resonance issues; however,

the LCCO lattice vertical tune variation is larger compared to the baseline. In contrast, the

baseline lattice showed a large change in vertical chromaticity compared to the LCCO, as

seen in Fig. 4.14. Regarding emittances, the horizontal emittance does not show significant

distortion with errors, while the vertical emittance distortion is larger and more pronounced

for the LCCO lattice, as shown in Fig. 4.14.
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4.2.2 Interaction region

The distortion of the optics parameters is larger when errors are applied to the IR magnets

as seen in Figures 4.15–4.21. In this scenario, all parameters exhibit greater distortion

for both lattices compared to when errors are only applied to the arc magnets, e.g. when

misalignments are applied to the arc region, the baseline design shows a mean rms vertical

dispersion of 15 mm, while the LCCO design results in a mean vertical dispersion of 5 mm.

In contrast, for misalignments applied only to the IR, the baseline design experiences a

larger rms mean vertical dispersion of approximately 500 mm, whereas the LCCO design

maintains a mean vertical dispersion of 70 mm.

As mentioned earlier, turning off the radiation and sextupoles at the beginning of the

simulation allows for assigning larger error values, avoiding any non-linearity or instability

caused by the sextupole fields and radiation before applying corrections. A similar optics

sensitivity to error analysis study with larger error values, conducted with sextupoles and
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Figure 4.11: Horizontal and vertical percentage beta beating vs. error standard deviation

for the baseline (left) lattice and LCCO lattice (right) (errors in arc magnets)

radiation turned off, is available in Appendix A.2. In the mentioned study, the assigned

random alignment errors standard deviations are increased by a factor of 10, starting from

a standard deviation of 10 µm up to 50 µm. These errors were applied to the arc, the IR,

and in combination to both regions.
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Figure 4.12: Horizontal and vertical tune vs. error standard deviation for the baseline

(left) lattice and LCCO lattice (right) (errors in arc magnets))
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Figure 4.13: Horizontal and vertical chromaticity vs. error standard deviation for the

baseline (left) lattice and LCCO lattice (right) (errors in arc magnets)
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Figure 4.14: Horizontal and vertical emittance vs. error standard deviation for the

baseline (left) lattice and LCCO lattice (right) (errors in arc magnets)

99



Figure 4.15: Horizontal and vertical closed orbit distortion vs. error standard deviation

for the baseline (left) lattice and LCCO lattice (right) (errors in IR magnets)
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Figure 4.16: Horizontal and vertical relative dispersion vs. error standard deviation for

the baseline (left) lattice and LCCO lattice (right) (errors in IR magnets)
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Figure 4.17: Horizontal and vertical percentage beta beating vs. error standard deviation

for the baseline (left) lattice and LCCO lattice (right) (errors in IR magnets)
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Figure 4.18: Horizontal and vertical tune vs. error standard deviation for the baseline

(left) lattice and LCCO lattice (right) (errors in IR magnets)
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Figure 4.19: Horizontal and vertical chromaticity vs. error standard deviation for the

baseline (left) lattice and LCCO lattice (right) (errors in IR magnets)

104



Figure 4.20: Horizontal emittance for

baseline lattice

Figure 4.21: Horizontal and vertical emittance vs. error standard deviation for the

baseline (left) lattice and LCCO lattice (right) (errors in IR magnets)
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4.3 Preliminary results of tuning procedure

The initially implemented correction scheme was tested with random alignment errors

with standard deviation of 10 µm on arc magnets for the baseline and LCCO lattices.

The BPMs alignments are considered later in Sec. 4.9. When assigning errors, before

performing any corrections, PyAT failed to calculate emittance values, indicating unstable

optics. Consequently, the other optics parameters, which were calculated using only 4D

phase space coordinates (i.e. without the effects of radiation) are unreliable; however,

they indicate that these parameters will be large. In tables 4.2 and 4.3, the emittance with

errors, before performing any corrections, is marked with “-” to indicate that the emittance

could not be calculated. Similarly, in the following tables throughout this chapter “-” in

the emittance column indicates that the emittance could not be calculated.

Tables 4.2 and 4.3 show optics parameters at the intermediary correction steps of the

procedure outlined in Fig. 4.2. Tables 4.2 and 4.3 demonstrates reduction in orbit rms

values following the SVD orbit and tune correction. Turning on the sextupoles after this

step increased the beta beating and dispersion via the feed down effect from sextupoles

misalignments, which required optics correction using LOCO. The first two LOCO iter-

ations corrected the horizontal and vertical beta beating, followed by a LOCO coupling

correction iteration that reduced the horizontal and vertical dispersion as seen in the table.

The correction procedure resulted in vertical emittance mean values of 0.12 pm and 0.057

pm for the baseline and LCCO lattices, respectively, both of which are below the target

vertical emittance value of 0.7 pm.

We further increased the assigned random errors standard deviation to 20 µm. Ta-

bles 4.4 and 4.5 show achieved mean vertical emittance values of 1.34 pm and 5.14 pm

for the baseline and LCCO lattices respectively, after correction. These values exceed the

target, even with small rms misalignments of 20 µm, indicating that the initial correction

scheme needs further optimization in order tolerate realistic error values.

Figures 4.22 and 4.23 show the distribution of horizontal and vertical emittance for 50

seeds after the correction of 10 µm and 20 µm standard deviations of random alignment

errors in the baseline and LCCO lattices. Figure 4.23 shows two large outliers that influence

the vertical emittance mean value for the LCCO lattice.
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At this stage, it is premature to include the IR errors due to the high sensitivity of

the IR region to errors (as seen in Subsection 4.2.2), while the correction scheme is still

under development. However, the correction procedure has also been tested with random

alignment errors of 10 µm standard deviation in both arc and IR magnets for the two

lattices. Tables 4.6 and 4.7 show that while the optics were corrected through the chain,

PyAT failed to provide emittance values for the baseline lattice after correction, the other

optics parameters aren’t reliable, but give an indication of the optics parameters values

after correction. For the LCCO lattice, the resulting vertical emittance was 4.89 pm.

Table 4.2: Optics values of the baseline after each correction step with horizontal and

vertical random displacement errors having standard deviation of 10 µm on arc magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 661.1230 766.0700 1.20e-07 1.80e-04 1294.3200 8109.6700 - -

std 298.5500 297.0230 7.50e-08 6.152e-06 835.0800 5724.0400 - -

Orbit cor.
mean 0.8530 0.8250 6.88e-06 1.80e-04 0.0187 0.0242 0.7060 0.0054

std 0.0490 0.0520 2.10e-10 8.44e-09 0.0079 0.0105 0.0001 0.0069

Sext. on
mean 0.8570 0.8370 0.6340 0.9616 3.9900 4.4190 0.7060 0.1366

std 0.0480 0.0510 0.1990 0.4800 1.3890 1.6510 0.0002 0.0684

Beta beat cor.
mean 0.8590 0.8460 0.1764 0.2080 3.6710 4.4190 0.7060 0.1690

std 0.0504 0.0520 0.0746 0.0977 1.2840 1.6560 0.0002 0.0952

Coup. & ηy cor.
mean 0.8600 0.8430 0.1740 0.2137 0.0330 0.1522 0.7060 0.1258

std 0.0490 0.0520 0.0728 0.0996 0.0064 0.0099 0.0002 0.0869

Final cor. result
mean 0.8600 0.8430 0.1474 0.1890 0.4640 0.1520 0.7060 0.1265

std 0.0490 0.0520 0.0750 0.0940 0.1970 0.0095 0.0002 0.0870
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Figure 4.22: Horizontal (left) and vertical (right) emittance distributions for 50 seeds,

following the correction chain outlined in Fig. 4.2, are shown for random alignment errors

with standard deviations of 10 µm (upper plots) and 20 µm (lower plots) in the arc

magnets of the baseline lattice
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Figure 4.23: Horizontal (left) and vertical (right) emittance distributions for 50 seeds,

following the correction chain outlined in Fig. 4.2 are shown for random alignment errors

with standard deviations of 10 µm (upper plots) and 20 µm (lower plots) in the arc

magnets of the LCCO lattice. The inset in the bottom right plot shows the distribution

after removing two large outliers.
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Table 4.3: Optics values of the LCCO after each correction step with horizontal and

vertical random displacement errors having standard deviation of 10 µm on arc magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 516.6480 696.1600 1.10e-04 4.70e-04 784.9600 10010.6800 - -

std 225.7870 302.4920 1.30e-04 1.62e-05 497.5500 7323.8800 - -

Orbit cor.
mean 0.3320 0.3320 2.58e-08 4.60e-04 0.0130 0.0120 0.6860 0.0001

std 0.0255 0.0243 1.11e-10 7.97e-10 0.0046 0.0058 0.0002 0.0001

Sext. on
mean 0.3320 0.3330 0.1050 0.1556 0.8045 1.0560 0.6860 0.2370

std 0.0255 0.0244 0.0350 0.0470 0.3340 0.4720 0.0002 0.3420

Beta beat cor.
mean 0.3320 0.3340 0.0230 0.0278 0.1710 1.0560 0.6860 0.2560

std 0.0250 0.0240 0.0067 0.0110 0.0880 0.4710 0.0002 0.3630

Coup. & ηy cor.
mean 0.3323 0.3340 0.0037 0.0260 0.0013 0.0098 0.6860 0.0570

std 0.0250 0.0240 0.0014 0.0083 0.0005 0.0005 0.0002 0.0840

Final cor. result
mean 0.3320 0.3340 0.0132 0.0223 0.1020 0.0098 0.6860 0.0570

std 0.3320 0.3340 0.0130 0.0230 0.1020 0.0090 0.6860 0.0574

Table 4.4: Optics values of the baseline after each correction step with horizontal and

vertical random displacement errors having standard deviation of 20 µm on arc magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 1119.58 1493.39 1.92e-7 0.00019 2002.22 16028.51 - -

std 515.60 533.66 1.39e-7 1.37e-5 1572.75 10891.69 - -

Orbit cor.
mean 1.71 1.66 6.83e-9 0.00018 0.036 0.044 0.71 0.02

std 0.09 0.10 4.04e-10 1.52e-8 0.013 0.017 0.000 0.02

Sext. on
mean 1.74 1.74 1.18 2.10 9.21 9.79 0.71 0.89

std 0.10 0.11 0.38 0.77 3.56 3.54 0.0004 0.65

Beta beat cor.
mean 1.76 1.83 0.33 0.41 8.43 9.79 0.71 1.54

std 0.11 0.20 0.14 0.20 3.29 3.52 0.0004 1.77

Coup. & ηy cor.
mean 1.78 1.81 0.36 0.44 0.10 0.33 0.71 1.36

std 0.11 0.20 0.14 0.22 0.03 0.04 0.0004 1.75

Final cor. result
mean 1.78 1.81 0.29 0.37 1.09 0.35 0.71 1.34

std 0.11 0.20 0.14 0.18 0.44 0.12 0.0004 1.70
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Table 4.5: Optics values of the LCCO after each correction step with horizontal and

vertical random displacement errors having standard deviation of 20 µm on arc magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 1225.0700 1474.8500 8.00e-04 6.00e-04 1851.6450 20718.8300 - -

std 617.8000 710.8400 1.00e-03 3.60e-04 1306.1060 16730.2800 - -

Orbit cor.
mean 0.6640 0.6470 2.58e-08 4.60e-04 0.0270 0.0680 0.6860 0.0016

std 0.0436 0.0514 2.55e-10 1.46e-09 0.0130 0.0760 0.0006 0.0035

Sext on
mean 0.6660 0.6573 0.2170 0.2840 1.7360 2.1220 0.6860 0.9790

std 0.0430 0.0520 0.0630 0.0880 0.7159 0.7670 0.0005 1.3360

Beta beat cor.
mean 0.6710 0.6670 0.0530 0.0630 0.3850 2.2160 0.6860 1.4936

std 0.0430 0.0570 0.0330 0.0520 0.1620 0.9820 0.0006 1.9690

Coup & ηy cor.
mean 0.6740 0.6745 0.0147 0.1270 0.0340 0.4910 0.6860 1.3120

std 0.0480 0.0910 0.0380 0.3810 0.1803 2.6800 0.0006 3.3460

Final cor. result
mean 0.6710 0.6890 0.0600 0.0787 0.3550 0.9360 0.6860 5.4153

std 0.0430 0.1680 0.1940 0.1880 0.5490 4.7290 0.0006 28.3440

Table 4.6: Optics values of the baseline after correction steps with horizontal and vertical

random displacement errors having standard deviation of 10 µm on arc and IR magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm)

With errors
mean 2188.7400 10110.0690 4.112e-07 2.380e-04 4992.8160 140701.7700

std 1367.9780 6899.8970 3.712e-07 1.080e-04 4114.4580 116837.4220

Final cor. result
mean 1.1945 1.6650 0.4074 1.8844 0.9420 0.5550

std 0.0636 0.2240 0.6370 3.9770 0.6960 0.5390

Table 4.7: Optics values of the LCCO after correction steps with horizontal and vertical

random displacement errors having standard deviation of 10 µm on arc and IR magnets

for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 1244.9630 10843.2070 0.020128 0.014090 2137.1260 192494.1000 - -

std 613.8740 6803.6600 0.020300 0.015000 1399.5200 146679.6560 - -

Final cor. result
mean 1.1584 1.0890 0.0436 0.1105 0.7500 0.0880 0.6850 4.8600

std 0.4927 0.3120 0.0081 0.0380 0.3920 0.0587 0.0001 3.4110
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4.4 Optimizing the correction procedure

In this section, we present various attempts to optimize the correction procedure to achieve

the design value of 0.7 pm for vertical emittance under larger alignment tolerances. These

optimizations include adjusting the number of singular values used in the SVD orbit cor-

rection and ramping the sextupoles in steps. We will also discuss the necessity of repeating

some correction steps throughout the entire chain. Additionally, we will explore different

optics correction algorithms.

Number of singular values

The impact of increasing the number of singular values used for SVD orbit correction

on the rms orbit and dispersion distortion values for the baseline and the LCCO lattice,

with 10 µm standard deviation of random alignment errors on both arc and IR regions are

shown in Tables 4.8 and 4.9. As the number of chosen singular values increases, there is

an improvement in both orbit and dispersion correction. The reduction in rms orbit and

dispersion, indicating convergence of the correction, is observed with 1500 singular values

for the baseline lattice and 2500 for the LCCO lattice.

Figure 4.24 provides a logarithmic plots of the singular values for the horizontal ORM

of the baseline and the LCCO lattice indicating the chosen cut off values.

Table 4.8: Impact of increasing the number of singular values on orbit and dispersion

correction for the baseline lattice

Orbit correction rms orbit x (µm) rms orbit y (µm) ∆ηx (mm) ∆ηy (mm)

With err 1620.69 9123.88 1452.14 66566.81

Orb cor with 500 svd 14.06 13.62 1.08 7.88

Orb cor with 1000 svd 2.10 2.80 0.56 4.62

Orb cor with 1500 svd 1.69 2.75 0.44 4.61

Sextupoles ramping in steps

Ramping up the strength of the sextupoles in steps has been tested and shows im-

provement in reducing the distortion of optics parameters. This approach mitigates the
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Table 4.9: Impact of increasing the number of singular values on orbit and dispersion

correction for the LCCO lattice

Orbit correction rms orbit x (µm) rms orbit y (µm) ∆ηx (mm) ∆ηy (mm)

With error 460.89 20334.90 551.49 390637.06

Orb cor with 500 svd 14.29 12.02 1.67 48.96

Orb cor with 1000 svd 4.29 4.27 1.18 18.02

Orb cor with 1500 svd 3.41 2.01 1.15 9.61

Orb cor with 2500 svd 3.09 1.52 1.13 9.11

(a) Baseline lattice (b) LCCO lattice

Figure 4.24: Logarithmic plot of the singular values for the horizontal ORM

strong impact of the sextupoles’ nonlinear fields on the optics values. Figures 4.25 and 4.26

present the baseline lattice optics parameter values, including horizontal and vertical tune

shifts, at each step of sextupole ramping with no other corrections applied. The plots were

generated with random alignment errors in all arc sextupoles, having a standard devia-

tion of 100 µm. As seen from Figures 4.25 and 4.26 the distortion of the optics parameters

increases with the strength of the sextupoles, which can lead to the beam encoutering reso-

nances or unstable beam dynamics. To manage these variations, we incorporated orbit and

tune fitting into the correction process as part of the ramping procedure. When the sex-
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tupoles are completely turned on the achieved horizontal and vertical chromaticity values

were 1.388 and 0.141 respectively, however, it deviates from the nominal values -0.017 and

-0.061, therefore, chromaticity correction is performed at the end of the ramping process.

Figure 4.27 shows the sextupoles ramping approach with these variations included.

Figure 4.25: RMS distortions for horizontal and vertical orbits and dispersion with

increasing sextupole strength.

Before performing the sextupole ramping, the random alignment error tolerance for the

baseline lattice was a standard deviation of 10 µm. With sextupole ramping, the alignment

tolerance can be increased to a standard deviation of 30 µm.

Additional orbit correction steps along the scheme

With alignment tolerances of 100 µm standard deviation the correction including sex-

tupole ramping shows improvement across optical values, however vertical emittance ex-

perienced significant growth, reaching mean values of 537.30 pm for the baseline lattice

as shown in Tab. 4.10. The growth in vertical emittance results from the increased orbit
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Figure 4.26: Beta beating and tunes for horizontal and vertical planes with increasing

sextupole strength. The nominal fractional horizontal and vertical tunes for the baseline

lattice are 0.2598 and 0.3763 respectively.

Figure 4.27: Sextupole ramping approach

distortion observed during the correction steps following sextupole ramping. For the base-

line lattice the horizontal rms orbit distortion increased from 8.49 µm to 12.81 µm after
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ramping, while the vertical rms orbit distortion increased from 8.40 µm to 17.74 µm as

illustrated in Tab. 4.10.

After correcting for random alignment errors in the arc magnets of the LCCO lattice,

with a standard deviation of 100 µm, the horizontal rms orbit distortion increased from

3.31 µm to 3.87 µm, and the vertical RMS orbit distortion increased from 3.22 µm to 4.36

µm. The achieved mean vertical emittance was 444 µm.

Additional orbit correction steps up to the end of the scheme were necessary and have

reduced the achieved vertical emittance for the baseline lattice to from 537.30 pm to 5.99

pm, as shown in Tab. 4.11 where the optics parameters values are shown after final correc-

tion of horizontal and vertical random alignment errors having standard deviation of 100

µm in the arc magnets, for the LCCO lattice further orbit correction reduced the vertical

emittance values from 325.58 pm to 10.52 pm.

Table 4.10: Correction of horizontal and vertical random alignment errors, with a

standard deviation of 100 µm in the arc magnets of the baseline lattice, with sextupole

ramping included in the correction procedure for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With errors
mean 5727.41 7304.30 9.35× 10−7 2.07× 10−4 10560.84 70773.25 - -

std 2098.96 2206.81 7.19× 10−7 5.77× 10−5 6434.41 42308.78 - -

After sext. ramping
mean 8.49 8.40 5.99 10.40 44.27 43.72 0.71 10.29

std 0.45 0.45 1.77 4.93 13.26 13.64 0.01 5.62

Beta beat. cor.
mean 10.76 14.90 2.50 3.69 41.52 44.11 0.72 327.05

std 1.74 3.76 1.22 2.33 16.33 14.67 0.02 402.75

Coupling & ηy cor.
mean 12.62 18.09 4.62 13.38 2.37 4.17 0.73 636.65

std 2.62 6.12 2.29 10.45 1.07 2.07 0.04 814.78

Final cor. result
mean 12.81 17.74 3.10 6.28 10.19 3.88 0.73 537.30

std 2.60 5.36 2.95 7.73 5.50 1.77 0.04 664.58
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Table 4.11: Constantly correcting the orbit throughout the scheme reduced the achieved

vertical emittance. Case 1: Orbit corrected only through the ramping. Case 2: Further

orbit corrections. For 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

Case 1
mean 12.81 17.74 3.10 6.28 10.19 3.88 0.73 537.30

std 2.60 5.36 2.95 7.73 5.50 1.77 0.04 664.58

Case 2
mean 8.56 8.35 1.93 3.23 4.95 2.93 0.70 5.99

std 0.49 0.44 0.99 3.15 1.93 0.96 0.0049 4.54

4.5 Benchmark of commissioning simulations with er-

rors and corrections: AT vs. MAD-X

Following a previous report on FCC-ee tuning simulations [136] that highlighted some dis-

crepancies between the simulations performed with MAD-X and with AT, we participated

in a dedicated comparison study to understand and correct these discrepancies. In this

section we used the same errors as outlined in references [137] and [138], and followed the

same simulations steps as outlined in the previous subsection.

To include the PyAT data points in the plot shown in Fig. 4.28, the correction steps

involved ramping the sextupole strengths in incremental steps, interleaved with orbit

and tune corrections, chromaticity corrections were performed at 100% of the sextupole

strengths.

Figure 4.28 illustrates the good agreement between the two codes for misalignments up

to 30 µm, up to the orbit correction step. Therefore, it is tentatively concluded that the

discrepancy from the two studies originates from the different optics correction strategies.

Our pyAT studies implement LOCO optics correction approach, while the current MAD-

X studies [118] implement a response matrix on phase advance, dispersion and coupling

RDTs. This comparison underscores the need to further investigate and compare different

optics correction algorithms within the framework of PyAT as will be seen in the following

section.
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Figure 4.28: A comparison of β-beating between the PyAT and MAD-X codes, after

assigning random misalignment errors (horizontal axis) and performing orbit and tune

corrections, shows good agreement between the two codes. Solid lines represent results

from AT, while dotted lines represent results from MAD-X [138].

4.6 LOCO vs. phase advance and coupling RDTs cor-

rection

We have begun exploring the impact of applying different optics correction algorithms and

comparing them to our initially adopted algorithm, LOCO. Previously, we applied LOCO

iterations to separately correct the beta beating, and coupling through vertical dispersion

correction, utilizing all the normal quadrupoles and all skew quadrupoles at sextupoles.

However, LOCO does not address phase advances and coupling resonance driving term

corrections. We integrated phase advance correction into our scheme. The phase advance

matching consequently results in beta beating correction as illustrated in Subsection 3.4.2.

We also integrated coupling RDTs corrections into our scheme and compared the results

of the new optics correction methods with those obtained using LOCO.

Initially, similar to LOCO, all normal quadrupoles were used to construct the phase

advance and horizontal dispersion response matrices used for correction. However, applying

the resultant relative quadrupole strengths failed to sufficiently correct the beta beating

and horizontal dispersion. Therefore, we examined different corrector locations by using

normal trim quadrupole components installed at every sextupole magnet.
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4.6.1 Different correctors locations

We initially tested the new corrector locations using LOCO, which resulted in improved

performance and a larger DA compared to the previous corrector locations. To further

enhance LOCO performance, we followed the LOCO correction with coupling RDTs and

vertical dispersion correction. We used the same skew quadrupoles located at the sex-

tupoles, which were also used for LOCO dispersion correction iterations. This approach

led to an improvement in the achieved vertical emittance. The achieved mean value of the

vertical emittance for 50 seeds was 0.75 pm, compared to 5.99 pm when using only LOCO

for optics correction.

Figure 4.29 shows the DA after correcting for random horizontal and vertical alignment

errors, with a standard deviation of 100 µm, on the arc magnets of the baseline lattice.

The correction was performed using LOCO followed by coupling RDTs and ηy correction

with different sets of corrector locations, indicating an improvement in DA with the new

set of corrector locations.

The achieved median DA of the seeds with the new set of corrector locations covers an

area range from -20 to 20 horizontally and up to about 250 vertically in multiples of the

horizontal and vertical beam sizes. Compared to DA median coverage with the old set of

corrector locations ranged from -10 to 10 horizontally and up to about 170 vertically with

the old set of corrector locations.

We then began to examine the impact of replacing LOCO with phase advance and

horizontal dispersion correction using the normal trim quadrupoles at sextupoles followed

by coupling RDTs and vertical dispersion correction. Table 4.12 demonstrate the optics

parameters resulting from the new tuning scheme. The correction scheme achieved the

design vertical emittance of 0.73 pm (mean value from 50 seeds) when random horizontal

and vertical alignment errors with standard deviation of 100 µm were applied to arc com-

ponents of the baseline lattice. Table 4.13 presents the results for the LCCO lattice. Table

4.14 illustrates the strengths of the horizontal and vertical orbit correctors, as well as the

skew quadrupoles, after correction of random alignment errors with standard deviation of

100 µm in the arc components for the baseline lattice. For magnet design, low magnet

strength is preferred because it translates into reduced power consumption, which in turn
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leads to lower costs.

A histogram of the vertical emittance after correction, shown in Fig. 4.30, indicates that

the corrected seeds primarily achieved vertical emittance values below 1 pm, with only a

few seeds exceeding this threshold. It remains crucial to verify whether the resulting DA

has also improved compared to LOCO followed by coupling RDTs and vertical dispersion

correction. Figure 4.31 illustrates the achieved DA using phase advance + ηx and RDTs

+ ηy optics correction correction instead of LOCO for the baseline lattice. The achieved

median DA of the seeds when applying phase advance + ηx and RDTs + ηy covers an

area range from -20 to 20 horizontally and up to about 320 vertically in multiples of the

horizontal and vertical beam sizes, the larger DA compared the LOCO DA in Fig. 4.29b

highlights a better performance of the phase advance + ηx and RDTs + ηy corrections for

the lattices and conditions we examined. Since the calculated DA so far does not include

synchrotron radiation, a reduction in the nominal DA is expected when SR effects are

considered due to particle losses. However, these DA calculations are useful for comparing

different correction approaches. SR will be accounted for in the tuning simulation later in

Sec. 4.8. Simulation with LOCO method typically takes significantly more time compared

to simulations using phase advance + ηx and RDTs + ηy due to the large-dimensional

matrices mathematical operations and the performed iterations.

In conclusion, while the new correction scheme including phase advance + ηx and RDTs

+ ηy correction improved the machine performance, as clarified by large DA area, this study

does not assert that phase advance correction algorithm is superior to LOCO algorithm

for optics correction of accelerators. LOCO minimize the deviation between model and

measured ORMs, whereas by using trim quadrupoles at the sextupoles to correct the phase

advance, the phase advance between all of the sextupoles (arc sextupole pairs and crab

sextupoles) are better corrected than in case of LOCO so that the chromatic aberrations

are not as significant, leading to better optics performance.
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Table 4.12: Correction of random horizontal and vertical alignment errors with standard

deviation of 100 µm on the arc components of the baseline with advance + ηx and RDTs

+ ηy correction for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

With err
mean 6224.83 7276.71 1.01e-06 0.000224 11985.76 73458.77 - -

std 2329.70 2922.48 7.31e-07 6.48e-05 7340.09 53557.01 - -

After sextupoles ramping
mean 8.55 8.35 5.99 9.91 45.24 45.97 0.71 9.62

std 0.45 0.46 2.13 3.87 16.80 14.87 0.01 4.83

RDTs & ηy cor.
mean 8.58 8.42 6.01 9.94 45.09 4.49 0.72 2.32

std 0.45 0.46 2.16 3.92 16.811 1.65 0.01 2.91

Phase advance & ηx cor.
mean 8.55 8.35 0.35 0.79 2.95 4.36 0.71 0.89

std 0.45 0.46 0.19 0.35 1.62 1.64 0.00 0.85

Final cor. result
mean 8.55 8.35 0.35 0.79 2.94 4.37 0.71 0.73

std 0.45 0.46 0.19 0.35 1.61 1.64 0.00 0.85

Table 4.13: Correction of random horizontal and vertical alignment errors with standard

deviation of 100 µm on the arc components of the LCCO with phase advance + ηx and

RDTs + ηy for 50 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm)

With errors
mean 8153.76 10714.79 0.28 0.16 11731.75 150637.32

std 3278.44 4961.20 0.24 0.16 6708.75 119456.25

After sextupoles ramping
mean 5.24 4.98 1.57 2.26 12.35 16.51

std 0.37 0.43 0.51 0.60 5.67 7.12

RDTs & ηy cor.
mean 9.68 7.30 1.57 2.33 13.05 1.24

std 20.53 9.56 0.55 0.81 5.67 2.53

Phase advance & ηx cor.
mean 6.35 6.44 0.09 0.37 0.38 1.03

std 4.90 6.81 0.24 1.33 0.58 1.62

Final cor. result
mean 6.50 5.62 0.09 0.38 0.37 0.89

std 6.07 3.13 0.24 1.43 0.55 0.93
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(a) Using LOCO with all normal quadrupoles followed by

RDTs + ηy correction

(b) Using LOCO with normal trim quadrupoles at

sextupoles followed by RDTs + ηy correction

Figure 4.29: DA after correcting for random horizontal and vertical alignment errors, with

a standard deviation of 100 µm, on the arc components of the baseline lattice for 50 seeds
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Figure 4.30: Horizontal (left) and vertical (right) emittance frequency distributions for 50

seeds, after following the correction chain using phase advance and RDTs + ηy, when

random horizontal and vertical alignment errors with a standard deviation of 100 µm

were applied to the arc magnets of the baseline lattice

Table 4.14: Mean rms and maximum strengths of orbit and skew quadrupole correctors

used to correct random alignment errors with a standard deviation of 100 µm in the arc

magnets of the baseline lattice, averaged over 50 seeds

Parameter Value (Mean)

RMS horizontal orbit corrector strengths 2.13 µrad

Peak horizontal orbit corrector strengths 7.07 µrad

RMS vertical orbit corrector strengths 2.14 µrad

Peak vertical orbit corrector strengths 7.01 µrad

RMS skew quadrupole strengths 4.71 m−2

Peak skew quadrupole strengths 2.40 ×10−4 m−2
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Figure 4.31: DA after correction of random horizontal and vertical alignment errors with

a standard deviation of 100 µm on the arc components of the baseline lattice, using phase

advance + ηx and RDTs + ηy corrections, for 50 seeds
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4.7 Correction results including IR magnets alignment

errors

The improvement in the tuning simulation results, achieved by incorporating phase advance

and coupling RDTs correction, has encouraged us to explore the most challenging part

of the FCC-ee: the interaction region (IR). This region is very sensitive to alignment

errors due to the strong focusing magnets, strong sextupoles used for local chromaticity

correction, and large beta function values. Initial results demonstrate the ability of the

correction algorithm to handle horizontal and vertical random alignment errors of up to

100 µm standard deviation in the arc magnets and up to 5 µm standard deviation in the

IR for the baseline lattice. Beyond this limit of errors in the IR, the correction procedure

failed to achieve physical values. Table 4.15 shows the achieved optics parameters values

after correction. We managed to improve the achieved optics values by further optimizing

the correction schemes. This optimization involved performing iterations of phase advance

+ ηx and coupling RDTs + ηy corrections interleaved with correction of the orbit and

tune to avoid resonances. The improved correction results with 100 µm standard deviation

of random alignment errors in the arc and 5µm in the IR are presented in Tab. 4.16,

where PyAT failed in obtaining results for the achieved emittance. Figure 4.32 indicates a

reduction in the achieved DA area compared to Fig. 4.31 caused by introducing of additional

5 µm alignment errors in the IR magnets.

Table 4.15: Initial results of correction procedure after random horizontal and vertical

displacement errors with a standard deviation of 100 µm in the arc magnets and 5 µm in

the IR magnets of the baseline lattice were introduced for 50 seeds.

rms orbit

x (µm)

rms orbit

y (µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

Values
mean 15.60 13.87 0.59 3.47 4.47 7.80

std 49.51 38.81 0.46 2.78 8.99 5.22

With the arc magnet misalignment errors of 100 µm rms and 5 µm rms misalignment of

the IR magnets, the optics parameters after correction are already significantly larger (see
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Table 4.16: Results after optimization, after correction of random horizontal and vertical

displacement errors with standard deviation of 100 µm in the arc components and 5 µm

in the IR components of the baseline lattice for 50 seeds

rms orbit

x (µm)

rms orbit

y (µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

Values
mean 8.510 8.310 0.056 0.086 0.125 0.242

std 0.590 0.520 0.089 0.088 0.050 0.247

Figure 4.32: DA after correction of random horizontal and vertical displacement errors

with standard deviation of 100 µm in the arc components and 5 µm on the IR

components of the baseline lattice

Tab. 4.16) and the emittance could not be calculated. Further increasing the IR magnet

misalignment errors to 10 µm rms resulted in 50% of the seeds failing due to unstable optics

encountered during the correction procedure. These results indicate that the performed
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global correction procedure for FCC-ee should include dedicated local corrections through

developed IP tuning knobs [139], to achieve the desired optics values at the IPs. The

challenges with IR magnets alignment tolerances and tuning will likely be addressed by

a dedicated alignment system with feasible tolerances provided by the FCC-ee magnet

alignment group to guide future tuning simulations.

4.8 Tuning studies with synchrotron radiation

So far, our tuning simulations have been conducted without considering radiation effects.

To explore more realistic scenarios, we have evaluated the effectiveness of our tuning tools

in the presence of SR, which has several effects on the beam dynamics as mentioned earlier

in Subsection 1.2.4.

Including the SR in the tuning studies was done by using the AT command enable 6d.

This command activates longitudinal motion and by default, enables radiation effects in

the elements, activates RF cavities, and collective effects. Subsequently, we needed to

introduce additional correction steps into our scheme, as outlined below:

Setting RF parameters

We activated the accelerating RF voltage to the appropriate level using the AT function

set cavity, and ensured that the cavity phase and frequency were correctly set. These set-

tings were established using the AT functions set rf frequency and set cavity phase.

The one RF system for the baseline lattice consist of 24 cavities with harmonic number

121200 and an RF voltage of 80 MV for each cavity.

Tapering

Tapering involves locally adjusting magnet strengths to compensate for beam energy vari-

ations. Performing tapering at this stage is necessary due to the large energy loss per turn

caused by SR and the large saw-tooth distortion in the horizontal orbit, which can result
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in beam loss. Individually tapering all magnets ensures that the orbit and optics remain

nearly the same as they would be without the effects of radiation. This process is carried

out using the tapering command, which scales the magnet strengths with the local energy

to correct the closed orbit and optics errors introduced by SR. Figure 4.33 illustrates the

large saw-tooth distortion in the horizontal closed orbit of the baseline lattice in the pres-

ence of SR, with an orbit rms value of 26.54 µm. Performing magnet tapering has reduced

the horizontal orbit distortion to an rms value of 0.019 µm.

Figure 4.33: Horizontal closed orbit before and after applying magnets tapering

The nominal DA in the presence of SR compared to the nominal DA without radiation

reveals a reduction in the DA area due to particle loss as seen in Fig. 4.34 for the baseline

lattice. The calculated nominal DA with SR covers area range from -20 to 20 horizontally

and up to 40 vertically in multiples of the horizontal and the vertical beam sizes: σx =

4.526× 10−4m and σy = 1.819× 10−5m respectively.

Trajectory correction (beam threading)

Correcting the intial trajectory, also known as beam threading, of the injected beam is

crucial at this stage to establish a closed orbit and ensure that the beam circulates over a

few turns. We utilized a PyAT-based function [140], which employs an SVD method using
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Figure 4.34: Comparison of nominal baseline lattice DA calculated at the first cavity:

with and without SR (upper), zoomed-in view with SR (lower). The DA were calculated

with 512 turns. The beam sizes are σx = 4.526× 10−4m and σy = 1.819× 10−5m.

the lattice’s trajectory response matrix. This approach helps adjust the beam’s trajectory

and transitions the lattice from its initial uncorrected state to a state of full one-turn

transmission.

129



After implementing the above mentioned steps to incorporate radiation effects, the

improved tuning scheme including the phase advance + ηx and coupling RDTs + ηy optics

correction were evaluated after applying horizontal and vertical random displacement errors

with standard deviation of 100 µm to the arc quadrupoles and sextupoles and 150 µm to

all dipoles, for 20 error seeds. Figure 4.35 illustrate the DA and vertical emittance achieved

with the correction applied to the seeds. Figure 4.36 includes the effects of magnet tilt

- that is rotation about the direction of the beam. As with the misalignments, the tilts

are applied randomly via a Gaussian distribution truncated at 2.5 sigma. Random tilt

errors with a standard deviation of 100 µ rad were introduced in the arc quadrupoles and

sextupoles, while a standard deviation of 150 µ rad was applied to all dipoles. Figure 4.35

shows that 19 seeds achieved DA close to the nominal while one seed achieved smaller DA

compared to the others. The vertical emittance distribution shows that all but one of the

seeds were below 1 pm. The mean εy was 0.281 pm. Table 4.17 summarizes the achieved

optics parameters after correction.

Table 4.17: Optics values of the baseline lattice after correction in presence of SR, with

horizontal and vertical random displacement errors with standard deviation of 100 µm on

arc quadrupole and sextupoles and 150 µm in all dipoles for 20 seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

Final cor. result
mean 9.9120 8.5602 1.1666 11.3845 13.3624 0.4630 0.7066 0.2813

std 1.3112 0.6557 0.7179 7.1324 5.7058 0.5455 0.0024 0.4129

Although one error seed failed when tilt errors were added, the remaining seeds achieved

DA close to the nominal as shown in Fig. 4.36, the vertical emittance distribution shows

that the seeds achieved values below 0.55 pm with mean value of 0.181 pm. The optics

parameter values after correction, including tilt, are illustrated in Tab. 4.18. As observed,

some of the corrected optics parameters in Tab. 4.18 are better than those in Tab. 4.17.

This improvement may be attributed to the tilting of elements like quadrupoles, which

can produce skew quadrupole fields that help correct certain optics parameters, such as

coupling, leading to better overall optics performance.

The correction results from this study show that including the SR effect leads to a

90% reduction in the DA in the vertical plane. Additionally, the inclusion of SR causes
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Table 4.18: Optics values of the baseline lattice after correction in presence of SR, adding

random tilt errors with standard deviation of 100 µm on arc quadrupole and sextupoles

and 150 µm on all dipoles in addition to the misalignment described in Tab. 4.17 for 20

seeds

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

Final cor. result
mean 9.3580 8.4064 0.9423 9.2066 8.4097 0.7843 0.7070 0.1811

std 0.8505 0.3993 0.5410 5.3534 4.7790 0.6588 0.0024 0.1814

larger distortion in some optics parameters, such as horizontal dispersion, compared to

the case without SR where the mean ∆ηx was 13.36 mm when SR is included compared

to 2.94 mm without SR. This is because, with SR, particles displaced off the design orbit

experience magnetic fields that differ from the design values, causing them to move along

different orbits and resulting in increased horizontal dispersion. Nevertheless, the results

demonstrate the feasibility of the tuning procedure in achieving the design parameters for

the FCC-ee, even in the presence of SR.
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(a) DA

(b) Vertical emittance distribution

Figure 4.35: DA and vertical emittance distribution for 20 seeds after correction of

random horizontal and vertical displacement errors in arc quadrupoles and sextupoles

with a standard deviation of 100 µm, and a standard deviation of 150 µm in all dipoles in

the presence of SR.
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(a) DA

(b) Vertical emittance distribution

Figure 4.36: DA and vertical emittance after correction in presence of SR, adding random

tilt errors with standard deviation of 100 µm on arc quadrupole and sextupoles and 150

µm on all dipoles in addition to the misalignment described in Tab. 4.17 for 20 seeds
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4.9 BPMs alignment

In this study, we investigated the effects of introducing BPMs alignment in the optics tuning

of the baseline lattice. To model the impact of BPM alignment on orbit measurements and

subsequent corrections, we started by attaching BPMs to each quadrupole. To model BPM

alignment, we introduced a transverse ”Offset” field for each BPM element. The offset

values for these BPMs were set to equal the assigned offset errors of the corresponding

quadrupole. The horizontal and vertical BPM offsets represent the new reference orbit of

the lattice, as illustrated in Fig. 4.37. This study considers an ideal scenario where the

random misalignments of the BPMs are precisely equal to the assigned misalignments of

the corresponding elements to which they are attached. As a result, there is no need for a

Beam-Based Alignment procedure.

To perform orbit correction the orbit to be corrected is determined by subtracting the

new reference orbit from the distorted orbit.

Figure 4.37: The horizontal displacement of the BPMs attached to the quadrupoles

represents the new horizontal reference orbit (solid line). T2[0] in AT notation indicates

the horizontal displacement of an element at its exit

Table 4.19: Assigned standard deviation of the random alignment errors

Elements Horizontal & vertical displacement Tilt θ

Arc quads and sextupoles 100µm 100µrad

All dipoles 150µm 150µrad

BPMs Same as quads -

Table 4.19 presents the assigned standard deviations of alignment errors. The tuning
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simulation was performed and Tab. 4.20 shows the achieved optics parameter values after

correction.

Table 4.20: Optics values of the baseline lattice after correction of random displacement

and tilt errors as described in Tab. 4.19 for 50 seeds.

rms orbit x (µm) rms orbit y (µm) ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) ∆ηy (mm) εh (nm) εv (pm)

Final cor. result
mean 24.786 24.395 1.122 10.821 14.523 1.159 0.706 0.054

std 1.577 1.113 0.826 8.126 7.819 0.791 0.002 0.065

Figure 4.38 shows the DA and vertical emittance distribution after correction of 20

seeds. One seed failed to complete the simulation, and another seed resulted in a large

vertical emittance of 300 pm and so was considered to have failed. The achieved DAs for

17 seeds were close to the nominal while one seed achieved smaller DA compared to the

others. The achieved mean vertical emittance was 0.054 pm for 18 seeds.

Including BPM alignments in this study seems to add to the complexity by leading to

the failure of some seeds; however, the successful seeds represents 90% of the total number

of seeds and achieved mean vertical emittance of 0.054 pm, which is well below the design

value of 0.7 pm.
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(a) DA

(b) Vertical emittance distribution

Figure 4.38: DA and vertical emittance after correction including BPMs aligned to

quadrupoles (with one removed large outlier)
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4.10 Results summary

In this chapter, we present our tuning results for the baseline and LCCO lattices at Z

energy of 45.6 GeV.

We began by analyzing the sensitivity of optics parameters to alignment errors in

magnets. The study shows that the optics distortion is lower for the arc region magnets

in both the baseline and LCCO lattices compared to the IR magnets. In some cases, the

LCCO optics parameters exhibits less sensitivity to errors in the arc components compared

to the baseline.

Next, we examined our developed tuning procedure. The tuning process starts with

turning off the sextupoles, which is a necessary step to remove the non-linear effects from

the sextupoles at the beginning of the correction procedure. This step is followed by SVD

orbit correction and tune fitting using all arc quadrupoles. After this step, the sextupole

strengths are ramped up in one step to 100% of the design value, after that the sextupole

strengths are varied to perform chromaticity correction.

After sextupole ramping and chromaticity correction linear optics correction was per-

formed using LOCO. We developed a numerical code for LOCO method that includes

iterations of beta beating correction until convergence using all normal quadrupoles, 20

horizontal and 20 vertical correctors, and all BPMs were used for ORMs and Jacobians

calculations. Coupling correction iterations were performed using skew quadrupole correc-

tors located at every sextupole.

Initial results show a reduction in the optics parameters distortion at each correction

step. For the baseline lattice with horizontal and vertical random displacement errors

having a standard deviation of 10 µm on arc magnets, the achieved vertical emittance

mean for 50 seeds was 0.1295 pm, and 1.338 pm with errors of standard deviation of 20

µm. For the LCCO lattice, the results were 0.057 pm with 10 µm and 5.41 pm with 20 µm.

Including random alignment errors of 10 µm standard deviation in IR magnets together

with the arc resulted in larger deviations of the achieved optics parameters compared to

the previous case, with factors ranging from approximately 2 to 10 times larger depending

on the parameter for both LCCO and baseline.
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We thoroughly optimized our correction procedure, aiming to achieve the design ver-

tical emittance value (0.7 pm) for realistic alignment tolerances in the magnets. This

optimization process involved many steps, start with selecting the most effective singular

value cut off to perform SVD orbit correction. We examined the impact of increasing

the number of chosen eigenvectors on reducing orbit and dispersion distortion. The study

showed that a reduction in rms orbit and dispersion, indicating convergence of the cor-

rection, was observed with 1500 singular values for the baseline lattice and 2500 for the

LCCO lattice.

We began ramping sextupole strength in steps of 10%, with further orbit and tune

correction performed at every stage. Once at 100% of the design value, the sextupole

strengths are varied to perform chromaticity correction. With these improvements, the

correction procedure managed to increase the manageable alignment tolerances to a 30 µm

standard deviation.

Performing orbit correction through the scheme followed by final tune and chromaticity

fitting mitigated emittance growth and reduced the achieved mean vertical emittance of

50 seeds from 537 pm to 5.99 pm for the baseline and from 444 pm to 10.52 pm for the

LCCO lattice when horizontal and vertical random alignments with a standard deviation

of 100 µm in arc magnets were included.

We examined different correctors locations for LOCO by using normal trim quadrupoles

located at sextupoles for beta beating correction. The tests showed an improvement in

the achieved DA area. Following LOCO with coupling RDTs correction helped achieve

a vertical emittance of 0.75 pm, compared to 5.99 pm when using only LOCO for optics

correction for the baseline lattice, after correcting random horizontal and vertical alignment

errors with a standard deviation of 100 µm on the arc magnets.

We participated in benchmarking study of commissioning simulations with errors and

corrections between AT and MAD-X to understand and correct discrepancies between the

two computer codes by applying the same errors and following the same correction steps.

The study demonstrated good agreement between the two codes when the comparison

were performed up to orbit correction step and the agreement between the codes suggests

that different tuning simulation results are due to different optic correction algorithms. As
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outcome of the benchmarking study we started to explore another optics correction algo-

rithms by integrating phase advance and horizontal dispersion correction into our scheme

instead of LOCO to correction the beta beating and horizontal dispersion. We also cor-

rected coupling using skew quadrupoles located at sextupoles by correcting coupling RDTs

and vertical dispersion.

The inclusion of the coupling RDTs and vertical dispersion into the correction proce-

dure resulted in a vertical emittance of 0.73 pm (mean value for 50 seeds) when random

horizontal and vertical alignment errors with a standard deviation of 100 µm were applied

to the arc magnets of the baseline lattice. The nominal DA of the baseline lattice cover an

area range from -20 to 20 horizontally and up to 380 vertically in multiples of the horizontal

and vertical beam sizes, with beam sizes of σx = 8.84× 10−6 m and σy = 3.12× 10−8 m.

Subsequent phase advance and horizontal dispersion was applied after the RDTs and

ηy correction, which resulting in the achieved median DA of the seeds covers an area range

from -20 to 20 horizontally and up to about 320 vertically in multiples of the horizontal

and vertical beam sizes. Comparatively, the DA median resulting from using LOCO and

RDTs + ηy correction covered from -20 to 20 horizontally and up to about 250 vertically.

After correction of the baseline lattice, the rms horizontal orbit corrector strengths are

2.13 µrad, while the peak horizontal orbit corrector strengths reach 7.07 µrad. The rms

vertical orbit corrector strengths are 2.14 µrad, and the peak value is 7.01 µrad. Addi-

tionally, the rms skew quadrupole strengths are 4.71 m−2, and the peak skew quadrupole

strengths are 2.40 ×10−4m−2.

The achieved optics parameter variations for the LCCO after correction with random

horizontal and vertical alignment errors of a standard deviation of 100 µm applied to

the arc components of the lattice were lower compared to the baseline lattice, especially

for horizontal and vertical beta beating and dispersion, with values of ∆βx
βx

(%) = 0.35,
∆βy
βy

(%) = 0.79, ∆ηx (mm) = 2.94, and ∆ηy (mm) = 4.37, for the baseline lattice. For the

LCCO lattice, the corresponding values are ∆βx
βx

(%) = 0.10, ∆βy
βy

(%) = 0.39, ∆ηx (mm) =

0.38, and ∆ηy (mm) = 0.89.

For the baseline lattice we examined the IR region by introducing 100 µm standard

deviation of random alignment errors in the arc magnets and 5 µm standard deviation
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of random alignment errors in the IR magnets. Optimization of the correction procedure

involved performing iterations of phase advance and coupling corrections interleaved with

corrections of orbit and tune to avoid resonances helped in improving the achieved pa-

rameters values after correction. However, the DA covered an area range from -10 to 10

horizontally in multiples of the horizontal beam size. Increasing the standard deviation of

errors in the IR region to 10 µm led to a failure of 50% of the seeds. The performed global

correction will need further refinement through IP tuning knobs to achieve the desired

optics at the interaction points. Alignment errors and tuning challenges in the IR magnets

will likely be addressed by a dedicated alignment system, with feasible tolerances provided

by the FCC-ee magnet alignment group to guide future tuning simulations.

We further explored more realistic conditions by including Synchrotron Radiation (SR).

The nominal DA with SR covers an area range from -20 to 20 horizontally and up to 40

vertically in multiples of the horizontal and vertical beam sizes: σx = 4.526× 10−4 m and

σy = 1.819× 10−5 m, respectively.

The correction procedure was also examined under conditions of radiation effects. This

was done by setting RF parameters and applying tapering to the magnets. Under these

conditions, initial trajectory correction was found to be necessary. The correction scheme

was applied to correct horizontal and vertical random displacement errors with a standard

deviation of 100 µm on arc quadrupoles and sextupoles and 150 µm in all dipoles of the

baseline optics. Out of 20 seeds, 19 seeds achieved a vertical emittance distribution below

1 pm, with a mean value of 0.281 pm. The DA areas for 19 seeds were close to the nominal,

except for one seed whose DA area was reduced by a factor of 1.8 in the horizontal plane.

We added horizontal and vertical random tilt errors with a standard deviation of 100

µm on arc quadrupoles and sextupoles, and 150 µm in all dipoles of the baseline optics, to

the displacement errors. One seed failed to complete the simulation, while the remaining

19 seeds achieved vertical emittance below 0.55 pm with a mean value of 0.18 pm. The

achieved DA was close to the nominal for 19 seeds.

We investigated the effect of BPM alignment by attaching BPMs to the quadrupoles.

The simulation of the correction procedure with random displacement and tilt errors with

a standard deviation of 100 µm on arc quadrupoles and sextupoles, and 150 µm in all
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dipoles, including BPM alignment to quadrupoles for the baseline lattice, resulted in one

out of 20 seeds failing. After correcting 20 seeds and excluding a large outlier, the DA for

17 seeds was near the nominal values, while one seed had a smaller DA. The mean vertical

emittance for 18 seeds was 0.054 pm. Including BPM alignments increased complexity and

caused some seeds to fail, however approximately 90% of the seeds succeeded and achieved

a mean vertical emittance below the design value of 0.7 pm.

The outcomes of the studies presented in this chapter demonstrate the feasibility of the

developed tuning procedure in achieving the design parameter values while accounting for

random displacement and tilt errors with standard deviations of 100 µm on arc quadrupoles

and sextupoles and 150 µm in all dipoles, including BPM alignment to quadrupoles.

Looking ahead, future outlooks aim to refine these correction procedures under more

realistic conditions, including solenoid errors, scale imperfections in BPMs, investigating

the inclusion of girders and their imperfections and long-range misalignments. Addition-

ally, addressing beam-beam effects, impact of the developed IP tuning knobs on the error

tolerances of the IR, and exploring different algorithms and computational methods to

optimize the performance of FCC-ee will be essential.
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Chapter 5

Conclusion

In this thesis, we addressed the optics tuning of the proposed electron-positron Future

Circular Collider (FCC-ee), a machine with a circumference of about 90 km. This collider

represents the next generation of higher-performance particle colliders, aiming to push the

limits of the achieved luminosity. It combines research efforts from several international

institutes and laboratories under the leadership of CERN, and will allow for ultra-precise

measurements of the discovered particles.

Being a very ambitious project does not remove the fact that the FCC-ee faces a series of

challenges. One of these challenges is to the beam dynamics, which arises from the machine

components imperfections. FCC-ee will consist of vast array of magnets, each having its

own impact if imperfect, potentially preventing the machine from achieving the desired

performance. Misalignments and field errors are critical concerns for machines like the

FCC-ee and 4th-generation light sources, which are highly sensitive to such imperfections.

Research into accelerator optics measurement techniques, and correction methods has been

extensive and ongoing. Numerous optics correction techniques have been developed over

years to address this challenge effectively. It is crucial to develop a strong correction

procedure for FCC-ee unique requirements and to define the tolerance requirements for

the machine and large optics tuning simulation campaigns are needed to achieve this.

In this thesis, we explored the potential of several correction algorithms for FCC-ee op-

tics tuning. We developed our own correction procedure, tailored it to the highly-sensitve
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FCC-ee lattice, and conducted comprehensive simulation studies. We compared the effec-

tiveness of some correction techniques over others for FCC-ee. Moreover, we conducted

a comparison between two proposed machine optics designs for the future collider. The

thesis managed to achieve the design parameters for realistic alignment imperfections in

the machine arc region magnets.

Looking ahead, we aim to refine these correction procedures under more realistic condi-

tions. Advanced algorithms and computational methods will continue to be explored. Chal-

lenges for FCC-ee still lie ahead, specifically in its interaction region, where the strongest

magnets are located to focus the beam at the collision point. This makes the region very

sensitive to any imperfections.

The outcomes of this thesis not only contribute to the optimization of the FCC-ee’s

performance but also can be used for future next-generation colliders and light sources.
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Appendix A

Lattice sensitivity to errors

A.1 Comparison between: Z and tt̄ lattices

A.1.1 Horizontal and vertical beta beating at different locations

Figures A.1, A.2 and A.3 show that the horizontal and vertical beta values for the Z lattice

at different locations are higher than tt̄ lattice.

A.1.2 Optics response to increase of alignment errors

Horizontal Dx and vertical Dy random misalignment errors with standard deviation in the

range:

[0.0, 2× 10−7, 4× 10−7, 6× 10−7, 8× 10−7, 10× 10−7, 12× 10−7]

were applied to all quadrupoles, sextupoles, and dipoles without any corrections. Sex-

tupoles and radiation were turned on.

The resulted changes in various optics parameters show a larger distortion for the Z

lattice compared to the tt̄ lattice. This indicates that the Z lattice is more sensitive to

errors and thus harder to correct than the tt̄ lattice.
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Figure A.1: Horizontal and vertical beta beating around one IP for the baseline tt̄ (left)

and Z (right).

Figure A.2: Horizontal and vertical beta beating at the locations of strong quadrupoles

and sextupoles in the IR for tt̄ (left) and Z (right).
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Figure A.3: Horizontal and vertical beta beating at the locations of quadrupoles and

sextupoles in the arc region for tt̄ (left) and Z (right).

Figure A.4: Horizontal COD for Z lattice Figure A.5: Horizontal COD for tt̄ lattice

Figure A.6: Vertical COD for Z lattice Figure A.7: Vertical COD for tt̄ lattice
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Figure A.8: Horizontal dispersion for Z

lattice

Figure A.9: Horizontal dispersion for tt̄

lattice

Figure A.10: Vertical dispersion for Z

lattice

Figure A.11: Vertical dispersion for tt̄

lattice

Figure A.12: Horizontal beta beating for Z

lattice

Figure A.13: Horizontal beta beating for tt̄

lattice
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Figure A.14: Vertical beta beating for Z

lattice

Figure A.15: Vertical beta beating for tt̄

lattice

Figure A.16: Horizontal tune for Z lattice Figure A.17: Horizontal tune for tt̄ lattice

Figure A.18: Vertical tune for Z lattice Figure A.19: Vertical tune for tt̄ lattice
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Figure A.20: Horizontal chromaticity for Z

lattice

Figure A.21: Horizontal chromaticity for tt̄

lattice

Figure A.22: Vertical chromaticity for Z

lattice

Figure A.23: Vertical chromaticity for tt̄

lattice
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A.2 Sensitivity to errors while sextupoles are turned

off

This study examines various misalignments applied to the baseline Z lattice and the LCCO

lattice, with sextupoles turned off and without considering synchrotron radiation (SR). Ta-

ble A.1 provides a summary of the misaligned elements, detailing the types of misalignment

and their corresponding standard deviation values.

Misaligned elements Type of misalignment Value (µm)

Arc quads Hor & Ver displacement 10,20,30,40,50

Arc sextupoles Hor & Ver displacement 10,20,30,40,50

All dipoles Hor & Ver displacement 10,20,30,40,50

IR quads Hor & Ver displacement 10

IR sextupoles Hor & Ver displacement 10

IR quads Hor & Ver displacement 10

IR sextupoles Hor & Ver displacement 10

Arc quads Hor & Ver displacement 10

Arc sextupoles Hor & Ver displacement 10

All dipoles Hor & Ver displacement 10

Arc quads Displacement + 3 angles rotations 10

Arc sextupoles Displacement + 3 angles rotations 10

All dipoles Displacement + 3 angles rotations 10

Table A.1: Applied random misalignment standard deviation to the baseline and the

LCCO lattice

Table. A.2 presents a summary of the results for the baseline lattice. Before applying

any correction PyAT failed to give values for the horizontal and vertical emittance. Ta-

ble. A.3 illustrates the combined impact of displacements and three-angle rotations on the

arc components of the baseline lattice. Tables A.4 and A.5 shows impact of horizontal

and vertical displacement errors and combined impact of displacements and three-angle

rotations errors on arc components of the LCCO lattice.
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A comparison between the impact of errors in the arc component and the IR component

is presented in Tables A.6 and A.7. These results highlight the greater sensitivity of the

IR magnets to errors compared to the arc even when we apply the errors while sextupoles

are turned off.

Table A.2: Impact of errors on the arc components of the baseline lattice (sextupoles off)

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

10
mean 661.124 766.072 0.634 0.96 1294.322 8109.671

std 298.55 297.023 0.199 0.480 835.080 5724.043

20
mean 1119.57 1493.39 1.175 2.101 2002.22 16028.51

std 515.597 533.66 0.38 0.766 1572.75 10891.68

30
mean 1929.019 2231.965 1.7474 3.232 3807.41 23466.34

std 713.98 816.58 0.60 1.364 2041.58 15785.598

40
mean 2728.836 2719.68 2.282 3.855 5333.75 28634.589

std 1231.93 945.22 0.77 1.466 3920.526 18881.92

50
mean 3167.085 4092.77 3.159 4.722 5787.87 47111.809

std 1150.435 1426.808 1.109 1.650 3101.976 28390.57

Table A.3: Adding 3 angle rotations errors on the arc component of the baseline lattice

(sextupoles off)

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

10
mean 31164.707 47166.624 0.000111 0.00072 58755.728 567394.68

std 11936.754 18719.737 9.2468e-5 0.000528 36254.366 362336.1789

164



Table A.4: Impact of errors on the arc components of the LCCO lattice (sextupoles off)

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

10
mean 516.648 696.162 0.105 0.155 784.96 10010.68

std 225.787 302.49 0.034 0.047 497.55 7323.88

20
mean 1225.07 1474.85 0.217 0.284 1851.64 20718.83

std 617.80 710.84 0.062 0.088 1306.106 16730.28

30
mean 1489.96 2344.05 0.315 0.46 2310.64 37264.89

std 734.088 1022.65 0.11 0.147 1479.00 22877.194

40
mean 2337.88 2888.37 0.422 0.565 3530.76 42327.42

std 1149.749 1379.435 0.135 0.165 2424.226 31200.389

50
mean 2862.97 3582.41 0.554 0.180 4198.65 48326.76

std 1070.23 1697.705 0.73 0.233 2270.49 41387.56

Table A.5: Adding 3 angle rotations errors on the arc component of the LCCO lattice

(lattice has more dipoles) (sextupoles off)

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

10
mean 25586.888 40993.606 7.2374 6.0228 52672.23 646282.484

std 10620.314 19734.425 6.5592 6.2218 33258.3938 481665.556

Table A.6: Impact of 10µm displacement errors on the IR components compared to arc

components of the baseline lattice

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

Arc
mean 661.124 766.072 0.634 0.96 1294.322 8109.671

std 298.55 297.023 0.199 0.480 835.080 5724.043

IR
mean 1869.318 9841.29 3.835e-7 0.000245 4185.86 132811.62

std 977.78 5324.56 2.979e-7 0.0001079 2937.15 93501.923

IR & Arc
mean 2188.74 10110.069 4.112e-7 0.000238 4992.816 140701.77

std 1367.978 6899.897 3.712e-7 0.000108 4114.458 116837.422
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Table A.7: Impact of 10µm displacement errors on the IR components compared to arc

components of the LCCO lattice

50 seeds
rms orbit

x(µm)

rms orbit

y(µm)

∆βx/βx

%

∆βy/βy

%

∆ηx

(mm)

∆ηy

(mm)

Arc
mean 516.648 696.162 0.105 0.155 784.96 10010.68

std 225.787 302.49 0.034 0.047 497.55 7323.88

IR
mean 1330.41 10526.986 0.0174 0.0121 2478.838 185857.68

std 855.02 7088.24 0.0279 0.01862 1880.62 149578.20

IR & Arc
mean 1244.963 10843.207 0.020128 0.01409 2137.126 192494.10

std 613.874 6803.66 0.0203 0.0150 1399.52 146679.656
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Appendix B

Application of LOCO optics

correction in PETRA IV lattice

• The developed Python-based numerical code of LOCO has been tested using PETRA

IV lattice, version (p4 H6BA v4 2 4)

• The following two cases were applied:

1. Applying random relative field errors distributed via a Gaussian with ∆k/k =

1× 10−3 to all lattice quadrupoles.

2. Adding to the field errors horizontal and vertical random relative calibration

errors distributed via a Gaussian with a standard deviation σ = 1× 10−3.

• Reduced size LOCO were utilized with 20 horizontal and 20 vertical steering magnets

and all BPMs, totalling 2 × 790 BPMs.

• All lattice normal quadrupoles were used in the fit, totaling 1348 normal quadrupoles.

• The jacobian calculations with dimensions J(1348, 40, 1580) took approximately 26.4

minutes in DESY Maxwell cluster, performing multiprocessing parallelization.

• Three LOCO iterations were performed.
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• Fifty simulations were conducted using different initial conditions (seeds). The mean

and standard deviation of the optical parameters were calculated from these simula-

tions.

B.1 Normal quadrupoles field errors

In the first case, where only quadrupole field errors were applied, the results showed 8.92

% horizontal and 8.92 % vertical rms beta beating, with a relative horizontal dispersion of

2.71 mm. These values represent the initially distorted state before any corrections were

applied.

Table. B.1 shows the improvement of the horizontal and vertical beta beating and hor-

izontal dispersion in addition to the horizontal emittance over the three LOCO iterations.

As noticed from the table the first LOCO iteration has the most impact on reducing the

optics parameters, this resulted from choosing relatively large number of singular values

when performing the SVD leading to faster convergence of the fit.

Figure B.1: Relative quadruple strengths obtained by the first iteration of LOCO

compared to random relative errors ∆k/k = 10−3, for a single seed.

Figure. B.1 reflecting this, by showing a good reconstruction of the errors after the

first LOCO iteration for one of the seeds, the remaining iteration helped in fine tuning

the results. Figure. B.2 shows the reduction on the percentage horizontal and vertical
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rms beta beating for the 50 seeds over the iterations. The reduction on the horizontal

dispersion and the horizontal emittance are shown in Fig. B.3 and Fig. B.4 respectively.

The Horizontal and vertical emittance frequency distribution of 50 seeds after following the

LOCO iteration are shown in Fig. B.5, demonstrating a reduction in horizontal emittance

across most seeds.

Table B.1: Impact of errors on optics parameters and the improvement of the optics

values over 3 LOCO iterations with field errors applied to all quadruples.

One seed ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) εv (nm)

∆k/k = 1e− 3
mean 8.92 5.74 2.71 -

std 3.70 1.91 1.62 -

LOCO 1
mean 2.65 1.43 1.24 0.0204

std 1.50 0.49 0.68 0.000079

LOCO 2
mean 1.55 1.21 0.71 0.0199

std 2.09 0.38 0.38 0.000029

LOCO 3
mean 1.26 1.19 0.70 0.0199

std 0.66 0.38 0.35 0.00026
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Figure B.2: Horizontal and vertical beta beating improvement over 3 LOCO iterations

Figure B.3: Horizontal dispersion improvement over 3 LOCO iterations
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Figure B.4: Horizontal emittance improvement over 3 LOCO iterations

Figure B.5: Horizontal emittance frequency distribution of 50 seeds after following the

LOCO iterations.
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B.2 Adding calibration errors to BPMs and steering

magnets

The second case that we examined, was by increasing the number of parameters used in

the LOCO fit. The calibration errors of the BPMs and the steering magnets do not have

large impact on the optics parameters values, as represented in Tab. B.2 however, these

errors must be taken into account in order to achieve better fitting as illustrated in the

formula Eq.(3.27). Table. B.2 shows the correction of the optics parameters up to 1.746%

and 1.85% rms horizontal and vertical beta beating respectively and 0.92 mm relative

horizontal dispersion.

Table B.2: Impact of field errors in all lattice quadruples, including BPMs and correctors

calibrations, and the improvement of optics values over 3 LOCO iterations.

One seed ∆βx/βx (%) ∆βy/βy (%) ∆ηx (mm) εv (nm)

∆k/k = 1e− 3
mean 9.15 5.47 2.66 -

std 3.10 1.59 1.199 -

LOCO 1
mean 2.66 2.04 2.31 0.022

std 1.02 0.68 0.93 0.0018

LOCO 2
mean 1.789 1.88 0.17 0.021

std 0.67 0.71 0.90 0.0016

LOCO 3
mean 1.746 1.85 2.08 0.021

std 0.66 0.68 0.92 0.0016

Figure. B.6 illustrates the reduction in the horizontal and vertical rms beta beating

across 50 seeds over 3 LOCO iterations in case of including quadrupoles field errors and

calibration errors to BPMs and steering magnets. Figure. B.7 presents the horizontal and

vertical emittance frequency distribution of the corrected 50 seeds iterations.
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Figure B.6: Horizontal and vertical beta beating improvement over 3 LOCO iterations

Figure B.7: Horizontal emittance frequency distribution of 50 seeds after following the

LOCO iterations.
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