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Abstract

Powerful ultrashort laser pulses in the vacuum ultraviolet (VUV) spectral range

are of great interest for investigating ultrafast dynamics in atomic and molecular

systems, such as in pump-probe studies of photoionization and photodissociation.

To freely select arbitrary electronic transitions, achieving wavelength tunability is

highly desirable but challenging to attain.

In this thesis, an ultrashort pulsed light source with a central wavelength of 133 nm

is realized, employing a step-wise manipulation scheme of ultrashort laser pulses

generated by a titanium-sapphire laser system. The second harmonic, centered

around 400 nm, serves as the fundamental for third-harmonic generation (THG) in

a pulsed gas cell. By utilizing xenon as the nonlinear medium, VUV pulse energies

of up to 1.5 µJ are achieved, with a THG conversion e�ciency of 1.7× 10−3.

A signi�cant advancement toward a wavelength-tunable source is attained through

a proof of concept for tunability in the VUV range. The technique is based on the

variation of the fundamental wavelength in the Fourier plane of a 4f geometry, which

is also used for pulse compression. By shifting the wavelength of the UV radiation

over a range of 10 nm, a wavelength shift of 2.8 nm is observed in the resulting VUV

light.
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Zusammenfassung

Leistungsstarke ultrakurze Laserpulse im vakuumultravioletten Spektralbereich

(VUV) sind von groÿer Bedeutung für die Untersuchung ultraschneller Prozesse

in atomaren und molekularen Systemen, beispielsweise bei Pump-Probe Unter-

suchungen von Photoionisation und Photodissoziation. Um beliebige elektronische

Übergänge frei wählen zu können, ist eine Durchstimmbarkeit der Wellenlänge wün-

schenswert, was allerdings schwierig umzusetzen ist.

In dieser Arbeit wird eine ultrakurz gepulste Lichtquelle mit einer zentralen Wellen-

länge von 133 nm realisiert. Dazu wird ein schrittweises Manipulationsschema ver-

wendet, welches auf ultrakurzen Laserpulsen basiert, die von einem Titan:Saphir-

Lasersystem erzeugt werden. Die zweite Harmonische mit einer Zentralwellenlänge

von 400 nm dient als Fundamentale für Frequenzverdreifachung in einer gepulsten

Gaszelle. Unter Verwendung von Xenon als nichtlineares Medium werden Pulsen-

ergien im VUV von bis zu 1, 5 µJ erreicht. Die Konversionse�zienz der Frequen-

zverdreifachung beträgt dabei 1, 7× 10−3.

Ein wesentlicher Fortschritt auf dem Weg zu einer durchstimmbaren Quelle wird

durch erfolgreiche Wellenlängenverschiebung im VUV erreicht. Die Methode basiert

auf der Anpassung der fundamentalen Wellenlänge in der Fourierebene einer 4f-

Geometrie, welche darüber hinaus auch zur Pulskompression verwendet wird. Bei

einer Verschiebung der Wellenlänge der fundamentalen UV-Strahlung um 10 nm

wird eine Wellenlängenverschiebung des resultierenden VUV-Lichts um 2, 8 nm

beobachtet.
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1. Introduction

The vacuum ultraviolet (VUV) spectral region, covering wavelengths between 100

and 200 nm, holds exceptional signi�cance in spectroscopy, as nearly all materi-

als and chemical compounds exhibit strong electronic absorption resonances within

this range. Consequently, VUV photons are particularly valuable for investigating

electronically excited atoms and molecules, enabling photoionization and photodis-

sociation through single-photon processes. To perform time-resolved measurements

that explore the dynamics of excited systems, the generation of ultrashort pulses is

essential.

To access the VUV, various types of sources are available, each o�ering distinct

advantages for speci�c applications. Excimer lasers, for instance, are commonly em-

ployed in the production of microelectronic devices, semiconductor-based integrated

circuits, and micromachining due to their ability to deliver high pulse energies. How-

ever, they are constrained by long pulses and low repetition rates [1].

Another approach that enables short pulses in the VUV is frequency conversion of

short laser pulses through nonlinear optical processes. For frequency conversion in

solid nonlinear media, conventional nonlinear crystals like beta barium borate (BBO)

or lithium triborate (LBO) are unsuitable due to their strong absorption. An ex-

ception is potassium beryllium �uoroborate (KBBF), which can reach down to ap-

proximately 150 nm [2]. For wavelengths down to 177 nm, a pulse duration of 55 fs

is attainable [3]. While this is relatively short, it is not short enough to resolve

the dynamics of the majority of relevant photochemical processes. Furthermore,

KBBF crystals are challenging to grow and not readily available [4]. An additional

solid-state based method is frequency conversion utilizing dielectric nanomembranes

[5] or surfaces [6, 7], although they are limited in peak power due to the material

damage threshold.

In gas, frequency conversion can be achieved via four-wave mixing [8] or harmonic

generation [9�11], enabling the production of short pulses down to the attosecond

range [12]. In hollow core capillary �bers (HCFs), in addition to four-wave mixing

[13] and (cascaded) harmonic generation [14], the creation of resonant dispersive

waves (RDWs) [15] is a viable method.
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1. Introduction

Beyond laboratory tabletop sources, synchrotrons [16] and free electron lasers (FELs)

[17] o�er continuously tunable radiation with extremely high brightness. However,

they are limited in terms of pulse duration, coherence properties [18] and accessibil-

ity.

The most widely used source for time-resolved VUV spectroscopy is harmonic gen-

eration in gas, with a prominent example being the �fth harmonic of a titanium-

sapphire (Ti:Sa) laser, centered around 160 nm. In an argon gas cell, high-energy

pulses with 1.1 µJ pulse energy and less than 20 fs pulse duration have been gen-

erated [19]. These pulses have been utilized to study the dynamics of atomic and

molecular systems [20�24]. However, the number of accessible transitions is limited

by the �xed photon energy of 7.75 eV.

In this thesis, an alternative VUV generation scheme is explored to expand the acces-

sible range of photon energies. The second harmonic of a Ti:Sa laser system serves

as the fundamental to generate pulses centered around 133 nm through frequency-

tripling in a gas cell. This approach promises high conversion e�ciencies, as third-

harmonic generation (THG) is primarily governed by the bound-electron third-order

susceptibility. Additionally, shorter driving wavelengths have been shown to enhance

harmonic generation in the multiphoton regime [25]. Sapaev et al. predict a conver-

sion e�ciency of 1.5× 10−3 in argon [26]. Another bene�t of a 400 nm fundamental

wavelength is the relatively large separation of 6.2 eV between the generated har-

monics, which simpli�es spectral selection.

There is only a limited number of experimental works utilizing the same generation

scheme based on THG of 400 nm radiation in gas for ultrashort pulses. Trabs et

al. report a conversion e�ciency in the order of 10−4 in argon [27, 28], though the

beam pro�le suggests that six-wave mixing, rather than THG, may be the under-

lying process in their work. Zhou et al. estimate their VUV pulse energy to be

a remarkable value of 6.4 µJ, resulting in a conversion e�ciency of 1.4 × 10−3 in

an argon gas jet [29]. Notably, Svoboda et al. have demonstrated the generation

of ultrashort circularly polarized VUV pulses in a xenon gas jet through low-order

harmonic generation driven by 400 nm pulses [30].

To precisely address and freely select arbitrary electronic transitions, thereby gain-

ing a deeper insight into the dynamics of excited atomic and molecular systems, a

powerful and tunable ultrashort pulsed light source for spectroscopy in the VUV is

needed. In this thesis, a signi�cant step toward this objective is taken by demon-

strating tunability in the VUV through adjustment of the fundamental wavelength

in the Fourier plane of a 4f geometry that is additionally used for pulse compression.
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To elucidate the fundamental principles underlying the experiments, Chapter 2 in-

troduces the theoretical background of ultrashort laser pulses and their nonlinear

interactions with matter. Chapter 3 provides a detailed description of the individual

components comprising the experimental setup, while Chapter 4 focuses on numer-

ical simulations of the manipulation of ultrashort laser pulses at various stages of

the setup. Subsequently, Chapter 5 analyzes the ultraviolet (UV) pulses centered

around 400 nm, which serve as the fundamental for THG, and Chapter 6 examines

the characteristics of the generated VUV pulses. Chapter 7 concludes with a sum-

mary of �ndings, few ideas for future optimization of the setup, and an outlook on

possible systems to study in time-resolved experiments using the generated VUV

radiation.
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2. Theoretical background

In order to establish a theoretical foundation of the underlying physical mechanisms

in this work, the following chapter will focus on the description of ultrashort laser

pulses in time, frequency and space and their nonlinear interactions with matter.

Second-order e�ects such as second-harmonic generation (SHG) and third-order ef-

fects such as self-phase modulation (SPM) and THG are discussed, since they enable

the creation of new frequencies from 800 nm in the near-infrared (NIR) down to the

VUV spectral region.

Subsequently, the transport of light in a gas �lled hollow core capillary �ber will be

elucidated, laying the groundwork for numerical simulations of the propagation in

Chapter 4.

Additionally, di�erent autocorrelation techniques will be considered and a powerful

tool for pulse characterization will be introduced - the fringe-resolved interferomet-

ric autocorrelation (FRIAC). This method combines quantities related to both �eld

and intensity autocorrelation, providing an estimate of pulse duration as well as

details about the phase of the pulse.

2.1. Ultrashort laser pulses

Laser pulses can be described as electromagnetic wave packets and therefore be

fully characterized by their time and space dependent electric �eld E(r, t) or mag-
netic �eld H(r, t) that are coupled by Maxwell's equations. These quantities are

three-dimensional real valued vector �elds depending on space r and time t. The

discussion in this chapter follows [31] and [32].

For convenience, the utilization of the complex representation of the electric �eld

E(r, t) is common practice. In the following, the spatial and polarization dependence

are omitted for better readability, reducing the relation between the real and complex

electric �eld to

E(t) = ℜ (E(t)) =
1

2
E(t) + c.c., (2.1)

where c.c. denotes the complex conjugate. Depending on the speci�c e�ect described,

a representation in frequency domain Ẽ(ω) - linked to time domain by Fourier trans-

form - is sometimes preferable, de�ned as

5



2. Theoretical background

Ẽ(ω) =

∫ ∞

−∞
E(t)e−iωtdt, E(t) =

1

2π

∫ ∞

−∞
Ẽ(ω)eiωtdω. (2.2)

2.1.1. Spectral phase and dispersion

The �eld is commonly expressed by the product of an amplitude A(t), also referred

to as envelope term, and a phase term eiΦ(t). Together with the carrier frequency

ω0 representing the central frequency of the pulse, this results in

E(t) = A(t) · eiΦ(t) = A(t) · ei(ϕ(t)−ω0t), (2.3)

where ϕ(t) denotes the temporal phase of the pulse. Along the same lines, the

spectral amplitude Ã(ω) and spectral phase φ(ω) are de�ned by

Ẽ(ω) = Ã(ω) · eiφ(ω). (2.4)

To evaluate the phases, φ(ω) and ϕ(t) are commonly expanded into Taylor series

around the central frequency ω0 or the reference time t0. In the frequency domain,

this yields

φ(ω) =
∞∑
n=0

1

n!

∂nφ(ω)

∂ωn

∣∣∣∣
ω=ω0

(ω − ω0)
n

= φ0 + φ1(ω − ω0) +
φ2

2
(ω − ω0)

2 +
φ3

6
(ω − ω0)

3 +
φ4

24
(ω − ω0)

4 + ...,

(2.5)

where φ0 is the absolute phase between carrier and envelope of the electric �eld of

the pulse, φ1 is the group delay, φ2 is the group delay dispersion (GDD), and φ3

and φ4 are the third-order dispersion (TOD) and fourth-order dispersion (FOD),

respectively.

The impact of the carrier-envelope phase (CEP) φ0 becomes pronounced mainly for

few-cycle pulses, since in this situation the observed electric �eld is notably in�u-

enced by the relative phase between carrier wave and envelope. The group delay

represents the arrival time of the pulse with respect to the reference time t0. The

GDD is correlated with a linear chirp, i.e. frequency dependent arrival time of dif-

ferent spectral components. Moreover, a chirp leads to temporal broadening of the

pulse. Analogous to the GDD, the TOD is related to a cubic dependence of the

phase and results in an asymmetric pulse shape with satellite pulses in time at the

trailing or leading edge of the pulse depending on its sign. Leading and trailing

wings in time are an indication for FOD components in the spectral phase. An illus-

tration of the impact of all these terms on a short pulse can be found in Figure 2.1.

While the Taylor expansion could of course be further continued, the terms up to

the fourth order are su�cient to describe the e�ects discussed in this work.

6



2.1. Ultrashort laser pulses

For completeness, a similar Taylor expansion of the phase may be done in the time

domain, written as

ϕ(t) =
∞∑
n=0

1

n!

∂nϕ(t)

∂tn

∣∣∣∣
t=t0

(t− t0)
n

= ϕ0 + ϕ1(t− t0) +
ϕ2

2
(t− t0)

2 +
ϕ3

6
(t− t0)

3 +
ϕ4

24
(t− t0)

4 + ...,

(2.6)

where the quantities ϕ0 - ϕ4 correspond to analogous terms φ0 - φ4 in the Fourier

domain (see Equation (2.5)) - for instance the �rst order term ϕ1 corresponds to an

overall shift in frequency and so forth.

Time-bandwidth product

Obtaining the shortest possible pulse with temporal width ∆τ for a given spectral

width ∆ν = ∆ω/2π and a given amplitude Ã(ω) requires the phase to be �at and

all higher-order (≥ 2) phase terms to vanish. When these conditions are ful�lled, a

pulse is referred to as transform-limited (see Figure 2.1 (a)-(c)).

To quantify the deviation of a speci�c pulse shape from the theoretical minimum

given by the uncertainty principle, the time-bandwidth product (TBP) is of interest.

The TBP is de�ned as

∆ν∆τ = TBP ≥ K. (2.7)

The theoretical minimum K varies with pulse shape and de�nition of the width. For

a Gaussian pulse and full width at half maximum (FWHM) of the intensity, the min-

imum is K = 0.441, whereas for a sech2 shaped pulse the limit is given by K = 0.315.

7



2. Theoretical background
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2.1. Ultrashort laser pulses

Figure 2.1.: The impact of the spectral phase. (a-f): Oscillating electric �eld, electric
�eld envelope and intensity of short pulses centered at 800 nm as a function
of time (normalized to unity). (g-l): Corresponding spectra (normalized)
and phases (in radians) in frequency space. The the central frequency is
given by ν0 = ω0/2π = 3.75× 1014 Hz.

(a/g) Transform-limited Gaussian with φ = 0 and intensity FWHM of 5 fs.
The phase is �at.

(b/h) Pulse from (a) with an additional CEP of π, still transform-limited -
only the relative phase between carrier and envelope is shifted. The phase
is �at with an o�set.

(c/i) Pulse from (a) with an additional group delay of 5 fs, also still transform-
limited - the pulse is only shifted in time. The phase is linear with respect
to the frequency ν.

(d/j) Pulse from (a) with an additional GDD of 15 fs2, not transform-limited
any more - the pulse is longer and exhibits a linear chirp. The phase is
quadratic with respect to ν.

(e/k) Pulse from (a) with an additional TOD of 100 fs3, the pulse is longer
and the shape is asymmetric. The phase is proportional to (ν − ν0)

3.

(f/l) Pulse from (a) with an additional FOD of 300 fs4, the pulse is longer
with symmetric wings to both sides. The phase is proportional to (ν − ν0)

4.

The spectra remain unchanged for all cases.

9



2. Theoretical background

2.1.2. Gaussian beam propagation

Beyond the temporal and spectral characteristics, also the spatial propagation of

laser beams is of interest for this work. In many instances it may be adequately

described by the model of a simple Gaussian beam that we will discuss here. In one

part of the setup, the light is con�ned by an HCF - the propagation characteristics

of this �ber are a bit more complex and will be explained later in this chapter.

The electric �eld E(r, z) of a Gaussian beam is a solution to the paraxial Helmholtz

equation. Since radial symmetry is assumed, a cylindrical coordinate system is

chosen. For simplicity, the temporal dependence is omitted - but it may always be

added by multiplication with a Gaussian pulse in time. The equation for the electric

�eld reads

E(r, z) = E0
w0

w(z)
e

−r2

w(z)2 e
−i

kz+k r2

2R(z)
−ψ(z)


, (2.8)

where r is the radial coordinate, z is the axial distance from the beam waist,

E0 = E(0, 0) is the electric �eld amplitude at the origin, w0 is the waist radius

at z = 0 (where the intensity drops to 1/e2 of the maximum), w(z) is the beam

waist for a given z-position, R(z) is the radius of curvature of the wavefronts, k is

the wave number and ψ(z) is the Gouy phase.

Some of these terms are commonly expressed using the Rayleigh range zR, the central

wavelength λ0 and refractive index of the medium n. The Rayleigh range de�nes the

distance z in propagation direction where the area of the cross section of the beam

has doubled. The expressions for the Rayleigh range, beam waist, Gouy phase, and

radius of curvature are given by

zR =
πw2

0n

λ0
, w(z) = w0

√
1 +

(
z

zR

)2

,

ψ(z) = arctan

(
z

zR

)
, R(z) = z

(
1 +

(zR
z

)2)
. (2.9)

For the corresponding intensity distribution I(r, z), the relation simpli�es to

I(r, z) =
|E(r, z)|2

2η
= I0

(
w0

w(z)

)2

e

−2r2

w(z)2 , (2.10)

where η =
√
µ/ϵ is the wave impedance of the medium, de�ned by the magnetic

permeability µ and electric permittivity ϵ. I0 = |E0|2/2η denotes the intensity in

the center of the beam at the waist. In Figure 2.2, the intensity distribution of an

exemplary beam is depicted together with the corresponding Rayleigh range and

beam waist.
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2.1. Ultrashort laser pulses

Figure 2.2.: Normalized intensity distribution of a Gaussian beam with Rayleigh range
zR = 30 and beam waist w0 = 10. The z-dependent waist is indicated by
dashed white lines.

Beam quality factor M2

In the description above, the beam is assumed to exhibit a perfect Gaussian shape.

To describe deviations from this assumption, the parameter M2 is commonly used

[33]. It is also known as the beam quality factor and represents the degree of variation

from an ideal Gaussian beam. For a single mode perfect Gaussian, M2 is exactly one.

To determine M2, the D4σ width W is measured at multiple positions z, some close

to the beam waist and others further away than the Rayleigh range. σ denotes the

standard deviation of the intensity distribution. For an ideal Gaussian beam, the

D4σ width and 1/e2 diameter measurements (= 2w) yield the same result but the

D4σ de�nition is more robust with respect to noise, since it relies on integrated

quantities rather than single values at speci�c points. The widths and positions can

be �tted to

W 2(z) = W 2
0 +M4

(
λ

πW0

)2

(z − z0)
2, (2.11)

where λ denotes the wavelength and W0 the beam width at the central position z0.
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2. Theoretical background

2.2. Nonlinear interactions with matter

A general approach to the description of the interaction of an electromagnetic �eld

with matter is using Maxwell's macroscopic equations in their di�erential form. This

chapter follows [34] for most of the argumentation. A similar discussion can be found

in various textbooks, e.g. [35]. Maxwell's equation read

∇ ·D = ρ, ∇ ·B = 0,

∇× E = − ∂

∂t
B, ∇×H = J +

∂

∂t
D, (2.12)

where D denotes the electric displacement �eld, ρ the electric charge density, B
the magnetic �ux density (sometimes referred to as magnetic induction or also as

magnetic �eld), E the electric and H the magnetic �eld and J the electric current

density. The relations between D, E , B and H are given by

D = ϵ0E +P , (2.13)

H =
1

µ0

B −M, (2.14)

where ϵ0 is the vacuum permittivity, P the polarization density of the material, µ0

the vacuum permeability and M the magnetization.

In the special case of linear, homogeneous, isotropic, dielectric media with instanta-

neous response to changes in the electric �eld, P shows a linear dependence on the

electric �eld, written as

P = ϵ0χE , (2.15)

where the constant of proportionality is called electric susceptibility χ. In general,

χ = χ(ω) and E = E(ω) change with the frequency of the light ω, leading to a

frequency dependent polarization P(ω). Combining Equations (2.13) and (2.15)

and de�ning the permittivity ϵ = ϵ0(1 + χ) leads to the commonly used relation for

linear media, which reads

D = ϵ0(1 + χ)E = ϵE . (2.16)

In a more general scenario of a nonlinear dielectric medium, P = P(E) can be

expressed as a nonlinear function of E . Since there are no free currents or charges,

we set ρ = 0 as well as J = 0. Additionally we assume a non-magnetic medium,

thus M = 0.

Taking the curl of ∇× E , using the vector identity ∇× (∇× E) = ∇(∇ · E)−∇2E
and combining this with Maxwell's equations (Equation (2.12)), one obtains the

wave equation

12



2.2. Nonlinear interactions with matter

∇2E − µ0ϵ0
∂2

∂t2
E = µ0

∂2

∂t2
P . (2.17)

Assuming a well-behaved polarization P(E), we express it in a Taylor series (Ein-

stein summation convention)

Pi = ϵ0(χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ...). (2.18)

The susceptibilities χ(x) are in general tensors of the order (x+1), but their number

of independent components strongly depends on the material's symmetries - usually

most of the components vanish. For example the linear susceptibility χ(1) corre-

sponds to the simple χ in Equation (2.15) for the condition of isotropic media. Only

for anisotropic media, when birefringence comes into play, the multi-dimensional

nature of χ(1) is of interest. All linear e�ects that do not depend on the intensity

of the light are described by the �rst term of the Taylor series. The linear index of

refraction is given by

n =
√
1 + χ(1). (2.19)

In general, interaction of light with matter is dominated by the linear term, as the

susceptibilities χ(x) are becoming smaller with larger x. Only for high values of the

electric �eld, which are in the order of magnitude of the inner-molecular or inner-

atomic �elds, the nonlinear components cannot be neglected any more.

Separating the linear and nonlinear part of the polarization P = ϵ0χE +PNL and

using the vacuum speed of light c0 = 1/
√
µ0ϵ0, Equation (2.17) yields

∇2E − n2

c20

∂2

∂t2
E = µ0

∂2

∂t2
PNL, (2.20)

where only χ(x) with x ≥ 2 are in�uencing the source term on the right side of the

di�erential equation.

2.2.1. Second-order nonlinear processes

Second-order nonlinear interactions - such as SHG - can only occur in non-centro-

symmetric media, since the second order susceptibility χ(2) vanishes in case of in-

version symmetry. As gases, liquids, amorphous solids and even many crystals dis-

play inversion symmetry, the choice of materials for second-order processes is rather

limited. Crystals lacking inversion symmetry, such as BBO, LBO, and potassium

titanyl phosphate (KTP), are typically used for χ(2) nonlinear frequency conversion.

Moreover, the breaking of symmetry caused by an interface is sometimes exploited

to drive second-order processes at surfaces [36].
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2. Theoretical background

Omitting the vector nature of the �elds for better readability, the nonlinear polar-

ization for second-order processes can simply be written as

P(2) = ϵ0χ
(2)E2. (2.21)

Considering an electric �eld with two frequency components ω1 and ω2 and ampli-

tudes E1 and E2, which is de�ned by

E =
1

2
(E1e

−iω1t + E2e
−iω2t) + c.c., (2.22)

the nonlinear polarization reads

P(2) =
ϵ0χ

(2)

4

(
E1e

−iω1t + E2e
−iω2t + E∗

1e
iω1t + E∗

2e
iω2t
)2

=
ϵ0χ

(2)

4
(2E1E

∗
1 + 2E2E

∗
2

+ E2
1e

−i2ω1t + E2
2e

−i2ω2t + E∗
1
2ei2ω1t + E∗

2
2ei2ω2t

+ 2E1E2e
−i(ω1+ω2)t + 2E∗

1E
∗
2e
i(ω1+ω2)t

+ 2E1E
∗
2e

−i(ω1−ω2)t + 2E∗
1E2e

i(ω1−ω2)t).

(2.23)

The non-oscillating terms in the �rst line of Equation (2.23) lead to a process known

as optical recti�cation, creating a static electric �eld. The other terms give rise to

frequency conversion. They are oscillating with new frequency components that are

sums of the frequency components of the original electric �eld. The terms oscillating

with 2ω1 and 2ω2 in the second line correspond to SHG, the terms oscillating with

(ω1 + ω2) in the third line describe sum frequency generation (SFG) and the terms

oscillating with (ω1 − ω2) result in di�erence frequency generation (DFG).

In a particle picture, SHG, SFG and DFG are three-photon processes, where the in-

teraction between the photons is mediated by virtual states in the nonlinear medium.

An illustration of the processes with corresponding energy-levels is shown in Fig-

ure 2.3. Since energy is conserved, one photon with ω1 and one photon with ω2 is

needed to create one photon with (ω1 + ω2) in case of SFG. In this picture, SHG is

a special case of SFG with (ω1 = ω2). For DFG, two photons are created from one

photon at the �rst frequency of the original �eld ω1 - one at the di�erence frequency

ω1 − ω2 and one at the second frequency of the original �eld ω2.
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2.2. Nonlinear interactions with matter

χ(2)
ω

2ω ω

ω
2ω

χ(2) ω1+ω2

ω1

ω2
ω1

ω2

ω1+ω2

χ(2)
ω1-ω2ω1
ω2 ω1

ω2

ω1-ω2

SHG

SFG

DFG

ω

Figure 2.3.: Illustration of the second-order nonlinear processes SHG, SFG and DFG on
the left and energy-level scheme on the right. Adapted from [34].

Phase-matching conditions

The description above neglects the vector nature of the electric �elds. To drive

any of those processes e�ciently, the phase-matching condition ∆k = 0 for the

wave vectors k needs to be satis�ed. In the particle picture, this corresponds to

momentum conservation. For SFG and SHG (ω3 = ω1+ω2) one obtains the following

condition:

0 = ∆k = k1 + k2 − k3. (2.24)

In a collinear geometry, the relation reduces to

0 = k1 + k2 − k3 =
1

c0
(n(ω1)ω1 + n(ω2)ω2 − n(ω3)ω3) . (2.25)

In general, the linear refractive index n depends on the frequencies of the light. In

the special case of SHG, where ω = ω1 = ω2 and ω3 = 2ω, one obtains

0 = 2n(ω)ω − n(2ω)2ω ⇒ n(ω) = n(2ω). (2.26)

Since the refractive index usually increases monotonically with the frequency, this

relation cannot be satis�ed for most materials. A common method to achieve a

scenario, where Equation (2.26) can be ful�lled, is through the use of birefringent

crystals, where n depends on the polarization of the light. Fortunately, birefringence

occurs naturally in the non-inversion symmetric crystals, which are commonly used

for second-order nonlinear frequency conversion.
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2. Theoretical background

To obtain phase-matching in birefringent crystals, there are two possibilities. For

type I phase-matching, two photons with ordinary polarization are converted to one

photon with extraordinary polarization. For type II phase-matching, two photons

with orthogonal polarization are converted to one photon with ordinary polarization.

In this thesis, a thin BBO is used for SHG with type I phase-matching to convert

the short laser pulses centered around 800 nm in the NIR to 400 nm in the UV.

2.2.2. Third-order nonlinear processes

Third-order nonlinear processes do not require the absence of inversion symmetry

and therefore can be observed in various media when the electric �eld strength of

the light �eld is strong enough. Similar to the second-order nonlinear polarization,

the third-order polarization can be written as

P(3) = ϵ0χ
(3)E3. (2.27)

For a general case, where the input �eld E is composed of di�erent frequencies, the

expression for P becomes rather long and complicated, describing all kinds of 4-

wave-mixing processes. Thus, we will focus on a simple monochromatic input �eld,

given by E = 1
2
(Ee−iωt + c.c.). The third-order polarization in this case reads

P(3) =
ϵ0χ

(3)

6

(
Ee−iωt + E∗eiωt

)3
=
ϵ0χ

(3)

6
(E3e−i3ωt + E∗3ei3ωt

+ 3 |E|2Ee−iωt + 3 |E|2E∗eiωt).

(2.28)

Third-harmonic generation

The �rst part in Equation (2.28) describes a nonlinear response at 3ω. This corre-

sponds to THG that is a four-photon process in the particle picture, where three

photons with the fundamental frequency ω are converted to one photon with the

frequency 3ω. A schematic depiction of THG can be found in Figure 2.4. In this

work, the third-harmonic of short 400 nm pulses is generated via THG in gas, which

creates photons at 133 nm in the VUV spectral range.

χ(3)ω 3ω
ω

ω

3ωTHG ω

ω

ω

Figure 2.4.: Illustration of third-harmonic generation on the left and energy-level scheme
on the right. Adapted from [34].
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2.2. Nonlinear interactions with matter

Optical Kerr e�ect

The second part in Equation (2.28) gives rise to a nonlinear polarization at the

frequency of the incident light, which depends on the absolute value squared of the

electric �eld amplitude and thus on the intensity I of the light �eld, since I ∝ |E|2.

As a consequence, this e�ect may be described as an intensity dependent refractive

index

n = n0 + n2I, (2.29)

where n0 denotes the linear refractive index and n2 = 3χ(3)/4n2
0ϵ0c the nonlinear

refractive index. This phenomenon is referred to as optical Kerr e�ect.

A spatial process that is caused by an intensity dependent refractive index is self-

focusing. When a high-intensity beam of light that is more intense in the center

of the beam pro�le (e.g. Gaussian) travels through a medium where n2 > 0, the

material acts like a converging lens, since the refractive index in the center of the

beam is higher than in the surrounding area.

Another mechanism caused by the optical Kerr e�ect - but now in the temporal do-

main - is self-steepening. When a laser pulse travels through a nonlinear medium,

the intensity is highest at the peak, which increases the refractive index and causes

the peak to travel slightly slower than the rest of the pulse. This leads to a steep-

ening of its trailing edge.

An additional process, which is caused by the intensity dependent refractive index,

is self-phase modulation (SPM). Here, the frequency domain is a�ected. When

a short light pulse travels through a medium, it induces a variation of the refractive

index in time, resulting in a phase shift that leads to the creation of new frequency

components. We consider the exemplary case of a simple Gaussian pulse with the

temporal intensity distribution

I(t) = I0 e
−4 ln(2)( t

τ )
2

, (2.30)

where I0 is the peak intensity and τ the FWHM pulse duration. Together with

Equation (2.29), the time dependent refractive index is given by

n(t) = n0 + n2 I0 e
−4 ln(2)( t

τ )
2

. (2.31)

The instantaneous phase of the pulse Φ(t) (see Equation (2.3)) can be written as

Φ(t) = ω0t− kz = ω0t−
2π

λ0
n(t)z, (2.32)
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2. Theoretical background

with the central frequency ω0, wave number k, propagation distance z and cen-

tral wavelength λ0. Since the instantaneous frequency ω is given by the temporal

derivative of the phase, one obtains

ω(t) =
d

dt
Φ(t) = ω0 −

2π

λ0
z
d

dt
n(t) = ω0 +

16 ln(2)πzn2I0
λ0τ 2

t e−4 ln(2)( t
τ )

2

. (2.33)

Figure 2.5.: E�ect of SPM on a Gaussian pulse in time in a waveguide. Left: temporal
intensity pro�le of the pulse (blue) together with the instantaneous frequency
(red). Right: spectrum of an initially Fourier-limited Gaussian pulse before
and after traveling through a �ber where SPM occurs.

A qualitative depiction of the instantaneous frequency for a Gaussian pulse in a

waveguide is given in Figure 2.5 on the left. In case of an initially transform-limited

pulse or a pulse with a positive chirp, SPM leads to spectral broadening, which is

depicted in Figure 2.5 on the right. The data was retrieved by a numerical simula-

tion that is described in Chapter 4.1.1.

Spectral broadening induced by SPM is commonly used in hollow core �ber com-

pressors to achieve the necessary spectral bandwidth to further compress already

short laser pulses. In this work, SPM in a stretched hollow core �ber �lled with

noble gas (helium) is used to create a broad spectrum around 400 nm.

2.3. Propagation of light in a capillary waveguide

Hollow core capillary waveguides are widely used in nonlinear and ultrafast optics

for various applications, e.g. four-wave mixing [37], high-harmonic generation [38],

nonlinear spectral broadening [39], and soliton generation [15]. As mentioned above,

a stretched HCF is used in this work to spectrally broaden ultrashort laser pulses

through SPM.
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2.3. Propagation of light in a capillary waveguide

2.3.1. Fiber modes

To understand the guiding mechanism, we consider a cylindrical waveguide with a

hollow core of radius a surrounded by dielectric material - in our case fused silica -

with complex refractive index n. Opposed to standard optical �bers, the refractive

index of the core (usually �lled with a noble gas) is smaller than that of the cladding,

leading to a weaker guiding mechanism and more propagation losses, since total in-

ternal re�ection is not possible. The subsequent argumentation follows [40] and [39].

If the radius a is much larger than the wavelength λ of the propagating light, one

can safely assume the free space propagation constant k = 2π/λ to ful�ll

ka =
2πa

λ
≫ |n|unm, (2.34)

where unm is them-th zero of the Bessel function Jn−1. In our case, the wavelength is

400 nm and the inner radius 250µm, which satis�es the condition in Equation (2.34).

Solving the wave equation in cylindrical coordinates and neglecting terms with pow-

ers of λ/a larger than one, one �nds three di�erent kinds of supported modes:

transverse electric (TE) circular modes, transverse magnetic (TM) circular modes,

and hybrid modes (EH or HE), which can be analyzed as a superposition of TE and

TM components. When the TE components dominate, the convention is to name

the mode hybrid electromagnetic (EH) and when the TM components dominate,

they are usually referred to as hybrid electromagnetic (HE). In [40], all possible

modes are discussed in detail.

For a ratio of outer and inner refractive index ν = ncladding/ncore of more than 2.02,

the mode with lowest attenuation is TE01. For ν < 2.02, which is the case for most

combinations of glass and gas, EH11 - a hybrid mode - leads to the lowest atten-

uation constant. Consequently, this mode is preferred when propagating light in

hollow core capillary �bers.

The radial intensity pro�les of hybrid modes EHnm are given by

Inm(r) = I0J
2
n−1

(un,mr
a

)
, (2.35)

where the wave oscillates like eγz−ωt, where γ is the (complex) propagation constant,

z the propagation distance, ω the frequency and t the time.
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Figure 2.6.: Intensity pro�le of the hybrid modes EHnm for n and m up to two inside
the waveguide, where r < a. For r = a, they go to zero, where they remain
for r > a.

In Figure 2.6, the shape of the intensity pro�le of the �rst few modes is shown. For

n > 1, the distribution exhibits a minimum at the center of the waveguide.

The real part (α, attenuation constant) and imaginary part (β, phase constant) of

the propagation constant γ = α + iβ can be expressed as

αnm =
(unm
2π

)2 λ2
a3

(ν2 + 1)

2
√
ν2 − 1

, (2.36)

βnm =
2π

λ

(
1− 1

2

[
unmλ

2πa

]2)
. (2.37)

Since the attenuation constant is proportional to λ2/a3, transmission is improved

for large inner diameters. Higher-order modes experience loss proportional to u2nm.

Incoupling of Gaussian beams

When coupling a Gaussian beam into a capillary �ber, the optimal overlap with

the fundamental hybrid mode and thus the highest coupling e�ciency to this mode

occurs when the ratio between the beam waist w0 and the �ber inner radius a is

approximately 0.64 [41]. In Figure 2.7 on the left, the coupling e�ciency of a Gaus-

sian beam with radius w0 to the �rst �ve hybrid modes EH1m with m ranging from

one to �ve is shown. EHnm with n > 1 are not considered, since there is a minimum

in the center that leads to poor overlap for any distribution with a central maximum.
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2.3. Propagation of light in a capillary waveguide

Additionally, the intensity pro�le of the fundamental hybrid mode is depicted in

Figure 2.7 on the right, together with the Gaussian that results in the best coupling

e�ciency.
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Figure 2.7.: Left: Coupling e�ciency of a Gaussian beam with radius w0 to the �rst �ve
hybrid modes for a �ber with inner radius a. Right: Intensity pro�le of the
fundamental hybrid mode together with the Gaussian that leads to the best
coupling e�ciency.

Bending loss

Another important variable for guiding loss in capillary �bers is the bending radius.

Opposed to standard optical �bers that have a high refractive index core and a lower

refractive index cladding, bending loss is a severe issue for hollow core �bers. The

overall attenuation is given by the sum of the attenuation constant for a straight

waveguide (Equation (2.36)) and the attenuation constant αR depending on the

radius of curvature R. The constant αR is not only proportional to 1/R2, but also

to a3/λ2 [40], yielding

αR ∝ a3

R2λ2u2nm
. (2.38)

Comparing Equations (2.36) and (2.38) yields: The lower the attenuation constant

αnm is, the higher the loss due to bending becomes. Therefore, the only way to

achieve high transmission in hollow core waveguides is a large bending radius. Rigid

capillaries have widely been used for this purpose, but there are limitations in length.

To gain access to longer nonlinear interaction regions, stretched capillary �bers with

large bending radii are a viable option [42].

When a �exible �ber with thin walls is �xed to holders at both sides, it forms a

catenary that is determined by the gravitational force per unit length W and by the

horizontal stretching force T . The ratio between the forces b = T/W is de�ning the

exact shape of the �ber, which can be described by the function

y = b cosh
(z
b

)
, (2.39)

where y is the vertical and z the horizontal coordinate. The smallest radius of curva-
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ture is present in the center, where it is exactly given by b. Since hollow capillaries

with thin walls are extremely light, only weak stretching forces are necessary to

achieve bending radii of several thousands of meters that have a negligible e�ect on

the attenuation [42]. In this work, a commercial setup to mount stretched �bers

produced by few − cycleTM was used together with a �ve meter long fused silica

capillary.

2.3.2. Propagation e�ects in gas �lled �bers

When short laser pulses propagate in a gas �lled capillary, various e�ects - wanted

or unwanted - take place. In this thesis, the spectral broadening due to SPM is ex-

ploited, but of course there are more mechanisms to be considered. The dispersion

and attenuation of the waveguide are given by Equations (2.37) and (2.36). In com-

parison, the dispersion and absorption of the noble gas are rather small, but they

still need to be taken into account. Additionally, self-steepening and self-focusing

should be considered and for high-intensity pulses, ionization is another e�ect that

may in�uence the shape of the output pulse. In order to achieve controlled spectral

broadening in a hollow waveguide with minimal losses, one tries to avoid self-focusing

by keeping the peak power of the pulse below a certain threshold. Additionally, the

peak intensity should be kept below the threshold for photoionization. [43]

In Chapter 4, numerical simulations of the propagation of light in a gas �lled capil-

lary are described in detail together with the underlying propagation equations.

2.4. Optical autocorrelation

Autocorrelation techniques enable the measurement of short signals, such as ultra-

short laser pulses, without the necessity of fast detectors. Moreover, they can also

provide spectral information about the pulse. An overview of autocorrelation meth-

ods and further tools for pulse characterization can be found in [44]. Section 2.4.3

focusses on the fringe-resolved interferometric autocorrelation (FRIAC) that is em-

ployed to measure the pulse duration of the generated UV pulses in Chapter 5.2.

2.4.1. Field autocorrelation

The �eld autocorrelation is obtained by coherent superposition of two collinear

replica of the same pulse with delay τ . The resulting intensity depends on the

sum of the �elds E(t) and E(t− τ), written as

Ifield(τ) ∝
∫ ∞

−∞
|E(t) + E(t− τ)|2dt, (2.40)

22



2.4. Optical autocorrelation

where E is the complex representation of the electric �eld and I ∝ |E|2 the related
intensity. Equation (2.40) can be expanded in three terms, resulting in

Ifield(τ) ∝
∫ ∞

−∞
|E(t)|2 + |E(t− τ)|2 + 2 ℜ(E(t)E∗(t− τ))dt, (2.41)

where the �rst two terms contain information about the pulse energy and do not

depend on the delay τ after the integration. Thus, they lead to a constant o�set of

the trace. The third term is determined by the �eld autocorrelation. The Fourier

transform of the �eld autocorrelation yields the spectrum of the pulse, but there

is no information about the temporal characteristics that could be obtained. In

Figure 2.8 on the left, Ifield of a transform-limited Gaussian pulse is shown. Oscilla-

tions at the pulse frequency are present, distributed symmetrically above and below

a constant o�set.

2.4.2. Intensity autocorrelation

To measure the intensity autocorrelation (IAC), a second-order nonlinear process,

such as SHG, is exploited. One obtains a signal proportional to (E(t) + E(t− τ))2

but �lters out only the components that depend on the cross-product E(t)E(t− τ),

which leads to

IIAC(τ) ∝
∫ ∞

−∞
|E(t)E(t− τ)|2dt ∝

∫ ∞

−∞
I(t)I(t− τ)dt. (2.42)

The width of the IAC is correlated with the temporal width of the intensity. For a

Gaussian pulse, the autocorrelation width is
√
2 times longer than the pulse duration.

IIAC of the same pulse as for the �eld autocorrelation is depicted in Figure 2.8 in the

center. Opposed to the �eld autocorrelation, there are no oscillating components.

2.4.3. Fringe-resolved interferometric autocorrelation

The fringe-resolved interferometric autocorrelation (FRIAC) is an experimental method

that combines quantities related to the pulse duration as well as the spectrum in a

single measurement. Similar to the �eld autocorrelation, it also relies on coherent

superposition of two collinear replica of the same pulse - but in this case, they drive

a nonlinear process. For a second-order process, the resulting intensity reads

IFRIAC(τ) ∝
∫ ∞

−∞
|(E(t) + E(t− τ))2|2dt. (2.43)
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Equation (2.43) may be further expanded in four terms with di�erent characteristics

[45], namely

IFRIAC(τ) ∝
∫ ∞

−∞
|E2(t) + 2E(t)E(t− τ) + E2(t− τ)|2dt

=

∫ ∞

−∞
(|E(t)|2)2 + (|E(t− τ)|2)2dt (2.44)

+

∫ ∞

−∞
4 ℜ{(E(t)E∗(t− τ))} (|E(t)|2 + |E(t− τ)|2)dt (2.45)

+

∫ ∞

−∞
2 ℜ

{
(E(t)E∗(t− τ))2

}
dt (2.46)

+

∫ ∞

−∞
4 |E(t)|2 |E(t− τ)|2dt. (2.47)

The �rst term of IFRIAC (Equation (2.44)) is determined by the intensity I ∝ |E|2 of
the two replica of the pulse and leads to a constant o�set of the overall signal. The

second term (Equation (2.45)) contains the �eld autocorrelation that oscillates at the

frequency of the pulse and is scaled by the sum of the intensities |E(t)|2+ |E(t−τ)|2

of the two replica. Spectral information can be acquired from this term. The third

term (Equation (2.46)) is given by the �eld autocorrelation of the second-harmonic

of the pulses that oscillates at double the frequency of Equation (2.45). The fourth

term (Equation (2.47)) is proportional to the IAC, allowing for an evaluation of the

pulse duration.

In Figure 2.8 on the right, IFRIAC of the same pulse as for the other two cases

is shown. The oscillations around a constant o�set exhibit a ratio of one to eight

between the peak and the baseline. Additional to the trace, the non-oscillating part

of the signal, which is the intensity autocorrelation together with a constant o�set,

is depicted. Numerically, this part can be extracted from an experimental trace by

low-pass �ltering the data such that all oscillating parts vanish [46].

Figure 2.8.: Di�erent autocorrelation signals of the same transform-limited Gaussian
pulse. Left: Field autocorrelation. Center: Intensity autocorrelation. Right:
FRIAC trace together with the intensity autocorrelation plus constant o�set.
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Pulses that are not transform-limited typically show deviations from the ideal shape

in their FRIAC traces. Figure 2.9 depicts calculated traces of an initially transform-

limited Gaussian pulse (10 fs FWHM) with additional GDD, TOD and FOD. Since

the e�ect of higher-order dispersion is rather similar for all orders, it is not straight-

forward to identify the individual contributions in an experimental trace.

Figure 2.9.: FRIAC traces of a transform-limited Gaussian pulse centered at 400 nm with
10 fs FWHM pulse length (a) and of the same pulse with additional dispersion
of 30 fs2 GDD (b), 300 fs3 TOD (c) and 3000 fs4 FOD (d).

Higher-order processes

Besides second-order processes, also higher-order processes may be exploited to per-

form FRIAC measurements. The resulting intensity for a process of the order n is

given by

IFRIAC(τ) ∝
∫ ∞

−∞
|(E(t) + E(t− τ))n|2dt. (2.48)

Equation (2.43) is a special case, where the exponent n is two. For the sake of

readability, the individual components for third- and fourth-order processes will not

be expanded here but an overall intuition for the behavior of the traces is shown in

Figure 2.10. On the left (a-c), the traces for the same transform-limited Gaussian

pulse are depicted for second-, third-, and fourth-order processes. On the right

(d-f), the corresponding spectra (obtained by Fourier transform) are given. The

frequencies present are integer multiples of the fundamental frequency of the pulse

- the number of frequency peaks is determined by the order of the process. For

increasing orders, the oscillations around the constant o�set show a rapidly changing

ratio between the peak and the baseline. For n = 3, the ratio is already 1:32, for

n = 4, the ratio is 1:128. The general rule for the ratio depending on n is 1:2(2n−1).
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2. Theoretical background

Analogous to the second-order FRIAC traces, also for higher-order processes, a low-

pass �ltered signal can be numerically extracted from the oscillating experimental

trace to determine the pulse duration, assuming a pure process of the order n and

a Gaussian pulse shape. While the autocorrelation width is 1.41 times the pulse

duration for n = 2 (see Section 2.4.2), this factor decreases for higher orders. For

n = 3, the autocorrelation width is 1.22 times the pulse duration, and for n = 4,

the autocorrelation width is only 1.07 times the pulse duration.
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Figure 2.10.: FRIAC traces (a-c) and corresponding spectra (d-f) for processes of second,
third and fourth order. The fundamental frequency of the pulse is denoted
by ω. The spectra are obtained by Fourier transform of the traces and
plotted on a linear scale.
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3. Experimental setup

To reach the VUV spectral region, a step-wise manipulation scheme of ultrashort

laser pulses generated by a Ti:Sa laser system in the NIR (800 nm) is performed.

Initially, the pulses undergo frequency-doubling via SHG in a BBO crystal, there-

after they are coupled into a gas-�lled HCF. Here, spectral broadening due to SPM

occurs. Subsequently, the pulses are temporally compressed in a 4f geometry that

also allows for spectral �ltering. Finally, to reach the VUV range, the third har-

monic of the short UV pulses is generated by focusing the beam into a gas cell. Two

di�erent gas cell designs have been implemented: one featuring a straightforward

static con�guration, while the other employs a more advanced pulsed mechanism.

3.1. Femtosecond laser system

The femtosecond laser system (Pulsar, Amplitude Technologies) used in this thesis

consists of commercially available parts, which are combined in a chirped pulse am-

pli�cation (CPA) scheme, delivering short NIR pulses at a repetition rate of 100Hz.

A schematic overview is shown in Figure 3.1.

A passive mode-locked Ti:Sa oscillator (Synergy Pro, Femtolasers) delivers sub-10 fs

pulses at a repetition rate of 75 MHz with a central wavelength of 770 nm and a

bandwidth of 85 nm. Those pulses exhibit a rather low pulse energy around 4 nJ.

To enable ampli�cation, the pulses are �rst stretched in an aberration-free Ö�ner-

triplet single-grating con�guration. Subsequently, they proceed into a two-stage

ampli�cation setup comprising a regenerative ampli�er followed by a multipass am-

pli�er. Since higher pulse energies are achievable at reduced repetition rates, a

combination of Pockels cells and polarizers is used to lower the repetition rate in the

regenerative cavity to 1 kHz. The Ti:Sa crystal within the regenerative ampli�er is

pumped by a diode-pumped Nd:YLF laser (DM30-527, Photonics Industries (until

March 2023) / Terra 527-50-M, Continuum (since March 2023)). Inside the cav-

ity, an acousto-optic programmable gain �lter (Mazzler, Fastlight) decreases gain-

narrowing. The pulses delivered by the regenerative ampli�er possess an energy of

up to 0.7mJ.
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3. Experimental setup

After the regenerative ampli�er, the system is divided into two branches. The Pock-

els cells and polarizers act as pulse pickers, assigning every 10th pulse to the 100Hz

branch. The remaining 900Hz share the same regenerative ampli�er but are routed

to a separate multipass ampli�er. In this work, only the 100Hz branch is used and

discussed.

In the multipass ampli�cation stage, each pulse passes through a Ti:Sa crystal �ve

times, which is again pumped by a diode-pumped solid-state laser (SpitLight DPSS

250, Innolas). Subsequently, the pulses undergo re-compression by a double-grating

compressor. Additionally, the spectral phase of the output is adapted, utilizing

an acousto-optic programmable dispersive �lter (Dazzler, Fastlight) before the re-

generative ampli�er. Individual manipulation of dispersion terms up to the fourth

order allows for �attening the spectral phase. At the compressor output, the energy

reaches up to 19mJ, with a pulse duration of 30 fs FWHM and a spectral band-

width of 45 nm. The pulse duration and spectral phase are measured via spectral

phase interferometry for direct electric-�eld reconstruction (SPIDER) [47] using a

commercial device (APE). The 1/e2 waist w0 of the collimated beam behind the

compressor is 10.5 mm, determined by a knife-edge scan.

Figure 3.1.: Architecture of the femtosecond laser system together with a depiction of
the ampli�cation steps. Note that this is only an illustration of the CPA
process and not to scale by any means.
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3.2. SHG and transport to the �ber

3.2. SHG and transport to the �ber

The subsequent manipulation steps - SHG in a BBO crystal and coupling into the

HCF - are performed within a vacuum environment (< 10−1 mbar) to minimize

dispersion and nonlinear e�ects arising from propagation through air. An overview

of the beam path is depicted in Figure 3.2.

compressor

beam 
stabilization

BBO

M1

M2M3CM

M4

S2S1

M5 B1

B2

S3

HCF

Figure 3.2.: Geometry of the setup between laser system and hollow core �ber including
SHG in a BBO crystal to convert the pulses from 800 nm to 400 nm.

Behind the compressor, the beam is sent into the �rst vacuum chamber, where it

is directed onto a curved mirror (CM) positioned to minimize the incident angle,

thus reducing astigmatism. CM couples the beam directly into the �ber utilizing a

relatively long focal length of 5m. Beam stabilization is facilitated by a commer-

cial system (Aligna, TEM), which manipulates two mirror holders with two axes

each. While the �rst mirror is positioned inside the compressor box and not visible

in Figure 3.2, the second mirror is the last one before the vacuum chamber (M2).

The stabilization system's near and far �eld detectors are supplied with input from

the leakage of M4, which is transported by the mirrors S1-3. Additionally, M5 is

equipped with piezo actuators (Picomotor, New Focus) that enable manual control

over the focus position at the �ber entrance. M1-5 and S1-3 are dielectric mirrors

optimized for 800 nm, whereas CM is made of protected silver.

For the next manipulation step, the beam is sent to a connected vacuum chamber,

where the slightly convergent 800 nm light passes through a thin BBO (diameter:

22mm, thickness: 0.28mm). Here, SHG with type I phase-matching is exploited to

create 400 nm pulses. The peak power density of the NIR on the BBO is between 3

and 4 × 1011 W/cm2. In the UV, pulse energies of up to 7mJ can be achieved, re-

sulting in a conversion e�ciency of more than 35%. Behind the BBO, the remaining

fundamental is �ltered out by the dielectric mirrors B1-2 (045-0400, Eksma Optics)

before continuing the propagation to the �ber.

29



3. Experimental setup

3.3. Stretched hollow core �ber

The HCF is 5m long and chosen to have a rather large inner diameter of 500µm

to limit the peak intensity and thus hinder unwanted e�ects such as self-focusing or

ionization when high-energy pulses are propagating in the �ber. The outer diameter

of the capillary is 1/32” ≈ 0.8mm. The �ber setup utilizes a commercially available

system (few− cycleTM) that comes with an adjustable holder (two axes translation

and two axis tilt) for the entrance side and a holder equipped with a rotation handle

to straighten the �ber along with adjustment options for the tilt (two axes) at the

exit side. Both ends of the glass capillary are protected by a ceramic piece. At the

entrance side, the piece may be chosen in such a way that it o�ers reduced material

damage by enlarging the surface area in form of a conical shape. The setup is oper-

ated in a pressure gradient mode, where the gas inlet is located at the exit side and

the entrance side is positioned in a vacuum environment, leading to a steady �ow

in the capillary. The pressure gradient reduces ionization and other high-intensity

e�ects, since the lowest pressure occurs at the input, where the pulse is shortest.

Furthermore, helium was chosen as the nonlinear medium for SPM, as it exhibits a

high ionization energy of 24.69 eV [48].

Figure 3.3.: Beam pro�le at the �ber entrance together with the dimension of the �ber
core (dashed white).

The beam is coupled into the fundamental mode of the �ber to reduce propagation

loss. The waist of the focus at the �ber input was chosen to be close to the theo-

retical optimum of w0/a ≈ 0.64 (see Figure 2.7). For a radius of a = 250 µm, the

desired Gaussian beam waist is w0 ≈ 160 µm. Figure 3.3 shows the beam pro�le

at the �ber entrance. The beam waist is slightly more narrow than the theoretical

optimum (≈ 150 µm).
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3.3. Stretched hollow core �ber

The HCF output spectrum strongly depends on the energy and spectral phase of the

input (see Chapter 4). Via the acousto-optic programmable dispersive �lter in the

laser system, the spectral phase of the 400 nm pulse cannot directly be addressed,

only the fundamental 800 nm pulse may be manipulated, leading to a strong cor-

relation between spectral phase and energy of the 400 nm pulse. Consequently, the

spectral phase is usually optimized for maximum energy and not used to manipulate

the shape of the output spectrum.

Figure 3.4 depicts the beam path behind the �ber. The divergent beam is collimated

by a curved mirror (CM), which has a focal length of 4m. Subsequently, the beam is

transported to a 4f setup to temporally compress the pulses. CM and M1 are made

of UV-enhanced aluminum, whereas M2 is a dielectric mirror optimized for the

spectral range between 380 nm and 420 nm (042-0400-i0, Eksma Optics) to enhance

the overall transmission. The entire arrangement is inside vacuum chambers and

tubes to minimize the exposure of the broadband UV radiation to ambient air and

humidity. This is of special importance close to the �ber output, where the beam

diameter is still small. The chambers may be �lled to a pressure of 2 bar to realize

the pressure gradient inside the hollow core �ber. Since the beam expands after

exiting the �ber, the in�uence of the propagation in gas behind the �ber exit on

the output spectrum is negligible. To enable �ne alignment while the system is in

operation, CM can be manipulated from outside using feedthroughs. Before the

beam reaches the 4f setup, which operates in ambient air, it passes through a thin

fused silica window (W).

gas input

HCF CM

M1

M2
to 4f setup

W

Figure 3.4.: Geometry behind the hollow core �ber including collimation and steering of
the beam.
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3. Experimental setup

3.4. Dispersion compensation in a 4f setup

A common concept in pulse shaping applications are 4f setups [49]. In general, they

consist of a dispersive element (such as a grating or prism) followed by a focusing

element (such as a lens or mirror) placed at a distance equal to one focal length

(1f), another focusing element at twice the focal length (2f), and �nally, a second

dispersive element at a distance equal to one focal length (1f). When a 4f setup is

perfectly aligned, it becomes dispersion free. Additionally, 4f geometries allow for

phase modulation in the Fourier plane, for instance, through a simple mask or spatial

light modulator (SLM). Figure 3.5 depicts a perfectly aligned 4f setup comprising

two gratings and two lenses, along with a mask positioned in the Fourier plane.

Figure 3.5.: Schematic depiction of a 4f setup with re�ection gratings, lenses and a mask
in the Fourier plane, taken from [49].

Misalignment in such systems results in various e�ects, including additional GDD,

spatial and angular chirp, and pulse front tilt. Deviation from a perfect 4f geometry

can be exploited to manipulate dispersion [50]. Another possibility to adjust the

GDD is by introducing a tilted cylindrical lens at the Fourier plane of the arrange-

ment [51]. In this work, a combination of multiple degrees of freedom in a detunable

4f setup is exploited to compensate for the accumulated dispersion after the propa-

gation through the gas-�lled HCF.

The 4f setup built in this thesis consists of only one volume phase holographic

transmission grating (1400 lines/mm, Wasatch Photonics), one cylindrical lens (f =

300mm), and a retro-re�ector composed of two dielectric mirrors (045-0400, Eksma

Optics). As illustrated in Figure 3.6, the arrangement is con�gured such that the

beam passes through the grating and the lens twice. To minimize the required grat-

ing size, the beam is redirected onto the same region of the grating, leading to an

angle of 3◦ between the incoming/outgoing beams and the horizontal axis.
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3.4. Dispersion compensation in a 4f setup

grating

cylindrical lens

retro-reflector

s-pol.

Figure 3.6.: Geometry of the 4f setup. The incoming beam (blue/dashed white arrow)
is split up at the grating in three exemplary colors: green, blue, and (ul-
tra)violet. The cylindrical lens parallelizes the incoming beams. The Fourier
plane with line foci for each color is located between the two mirrors of the
retro-re�ector. The second pass through the lens directs the colors at one
position on the grating, resulting in a recombined outgoing beam (blue/-
dashed white arrow). The solid black arrows indicate degrees of freedom for
alignment and dispersion manipulation. The dashed blue arrow indicates
the direction of polarization of the incoming light.

The transmission grating is optimized for a wavelength of 380 nm and used in �rst

order Littrow con�guration (sometimes referred to as Bragg incidence), where the

minus �rst and zero order transmitted through the grating propagate symmetri-

cally with respect to the grating normal (see Figure 3.7). The theoretical di�raction

e�ciency for the �rst order for one polarization can be close to 100% in such a

geometry [52]. In the setup constructed in this work, the light is s-polarized and

the angle of incidence and di�raction of the �rst order is 15.4◦ to the grating normal.

incident

zero order

-1st order

+1st order

transmission
grating

Θi Θ-1

Θ+1

Θ0

Figure 3.7.: First order Littrow con�guration for a transmission grating. The angle of
the incident light to the grating normal Θi is equal to the angle of the -1st
order Θ−1 and the angle of the zero order Θ0.
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3. Experimental setup

There are multiple degrees of freedom used for adjustment in the setup, indicated

by arrows in Figure 3.6:

� Rotation of the grating to optimize the transmission.

� Position (two axes) of the cylindrical lens to manipulate the GDD and center

the lens with respect to the beam.

� Rotation and tilt of the cylindrical lens to further manipulate the dispersion,

compensate for the wavefront error introduced by detuning the 4f setup, and

mitigate astigmatism.

� Position of the retro-re�ector to center the Fourier plane between the mirrors.

In Chapter 4.3, numerical simulations of the spectral phase depending on the de-

tuning of the 4f geometry are described in detail.

Key challenges in building setups operating in the UV range for high peak power

pulses include the damage threshold of most coatings, particularly crucial for focused

beams, and the fundamental limitations of simple metallic surfaces with respect to

re�ectivity in this spectral region. Although enhanced aluminum o�ers improved re-

�ectivity compared to other metals, the re�ectivity never exceeds 95%, signi�cantly

impacting the overall system e�ciency, especially in case of multiple re�ections.

Moreover, the e�ciency of re�ective gratings tends to be inferior compared to the

NIR. Consequently, a transmission grating and a lens were chosen instead of re�ec-

tive elements.

The additional dispersion accumulated in the material of the transmission grating

and cylindrical lens is compensated together with the dispersion introduced by the

gas-�lled HCF by detuning the 4f geometry. The cylindrical lens is advantageous

compared to a spherical lens, since the line foci in the Fourier plane lead to a reduced

peak power density on the mirrors of the retro-re�ector.

With only two re�ections by dielectric mirrors (R>99.5% for 380-420 nm), the over-

all transmission of the 4f setup is measured to be 73%. This results in a calculated

e�ciency of the transmission grating of more than 85% for one pass.

An additional feature of the 4f setup is the ability to manipulate pulses in frequency

space in the Fourier plane. By placing a simple amplitude mask between the two

mirrors of the retro-re�ector and blocking one part of the spectrum, the central

frequency of the exiting pulses can be shifted. In Chapter 5, the short UV pulses

compressed and manipulated by the 4f setup are analyzed in detail using the FRIAC

technique described in Chapter 2.4.3.
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3.5. Harmonic generation

3.5. Harmonic generation

After compression, the short UV pulses are focused into a noble gas medium to

reach the VUV spectral range by THG. A schematic depiction of the optical setup

between the 4f setup and the gas cell is presented in Figure 3.8. Initially, the UV

beam undergoes two re�ections by dielectric mirrors (M1-2) to realize a small angle

of incidence on the focusing mirror (CM). Subsequently, the s-polarized UV light

is transferred into vacuum via a fused silica window positioned at Brewster's angle

(BW). In the �rst vacuum chamber, the beam encounters two more re�ections by

dielectric mirrors (M3-4). M4 is equipped with piezo actuators (Picomotor, New

Focus), o�ering precise control over the focal position in the gas cell. The gas

cell itself is located within a connected vacuum chamber, positioned at a distance

corresponding to the focal length from CM. The focal length is 2000mm for most

of the data analyzed in Chapter 6. Initial measurements were conducted with a

focal length of 3000mm. However, the conversion e�ciency could be improved by

choosing a slightly tighter focusing geometry.

M1

M2

CM
BW

M3

M4

gas cell

from 4f setup

Figure 3.8.: Geometry of the beam path between the 4f setup and the gas cell.

Two di�erent variants of gas cell have been realized, the �rst is a relatively straight-

forward static approach, while the second involves a more complex design with a

pulsed nozzle. This pulsed nozzle con�guration allows for the generation of higher

pressures within a con�ned volume, synchronized with the repetition rate of the

laser. Both cells have been operated in the same vacuum chamber, which consists

of up to three sub-chambers with removable walls, enabling individual pumping. A

three-stage turbomolecular pump (Pfei�er, SplitFlow 310) that o�ers three grada-

tions of compression ratio with separate �anges (I, II and III in Figures 3.10 and

3.12) is used to pump the sub-chambers individually. In a di�erential pumping

scheme, the gas for THG can be e�ciently pumped, while at the same time a pres-

sure of < 10−5 mbar is maintained behind the source.
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3. Experimental setup

The beam pro�le in the focal region is notably in�uenced by the alignment of the 4f

setup. As mentioned above, adjustments of the tilt and rotation of the cylindrical

lens in the 4f geometry are crucial for minimizing astigmatism. Figure 3.9 presents

M2 measurements corresponding to focal lengths of 2000 and 3000mm. For the

shorter focal length, yielding a tighter focus, the measured minimal waist was 73µm.

This, together with a pulse duration of 10 fs (see Chapter 5) and an energy of

1mJ, results in a peak power density of 1.2 × 1015 W/cm2. For the longer focal

length, the minimal waist is given by 87µm, resulting in a peak power density of

8.4× 1014 W/cm2.

Figure 3.9.: Beam waist scans around the focus for THG along the propagation direction
(z) for both the x- and y-direction for focal lengths of 2000 and 3000mm.
Additionally, the �t function determining M2 values for both directions is
shown. The dashed lines indicate the 95% con�dence interval of the �t.

3.5.1. Static gas cell

The static gas cell is a construction that has been utilized in previous setups to

directly create harmonics of the fundamental 800 nm laser pulses [53�56]. A cut

through the cell's geometry is depicted in Figure 3.10 on the left. The gas-�lled

volume of the cell is terminated by two aluminum foils (labeled 1 and 2) with pin-

holes, created by the UV beam itself. To adjust the cell's length in vacuum, the

tube with the smaller diameter can be moved in and out using a linear stage (see

Figure 3.10 on the right). Gas pressure inside the cell is regulated by a dosing valve

outside the vacuum chamber and monitored using a pressure gauge implemented in

the inlet line. The inlet line is connected to the cell via a feedthrough in the �rst

section of the vacuum chamber (S1 in Figure 3.10 on the right). Phase-matching

for the THG process is achieved by adapting both the length and pressure of the cell.
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3.5. Harmonic generation

The �rst stage of the di�erential pumping scheme is provided by the cylindrical

enclosure around the cell, connected to the entrance side (S1) and separated by a

third aluminum foil (3) from the central chamber section (S2). Once again, the UV

beam creates its own aperture in the foil. Subsequent di�erential pumping stages

are implemented between the second and third section of the vacuum chamber (S2

and S3). Again, there is an aluminum foil with a hole dividing the two sections.

Due to the increased beam size, the intensity is insu�cient to create a hole, which is

large enough for transmission without signi�cant di�raction. Consequently, a small

aperture is cut into the foil.

gas in
beam

1

23 S1S2S3

gas in

I

IIIII

Figure 3.10.: Cut through the static gas cell (left) and entire vacuum chamber with sub-
chambers S1-3 (right). The �anges I-III are used for the three stages of the
turbomolecular pump.
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Figure 3.11.: Relative measurement of the generated VUV pulse energy - experimental
geometry (left) and measured data (right). The third harmonic is separated
from the fundamental by an aluminum di�raction grating. Only the -1st
order of the 133 nm radiation arrives on the surface of a simple photodetec-
tor. The detector consists of a silver coated plate and a copper mesh with
a bias voltage of 5V.
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3. Experimental setup

Helium and argon have been tested for THG in the geometry described above.

Typical operation conditions are the following: up to a pressure of 100mbar in the

inlet line to the cell, < 10−1 mbar in section S1, < 10−3 mbar in section S2 and

< 10−5 mbar in section S3. For helium, the pumping is less e�cient and therefore the

pressure in the cell must be kept lower compared to argon. In Figure 3.11, a relative

measurement of the generated VUV pulse energy for di�erent argon pressures is

depicted. On the left, the measurement principle with an aluminum grating and

a simple photodetector is shown. The data on the right indicates that saturation

is not attained, and therefore higher VUV output could be expected, if the gas

pressure in the cell could be increased. Similarly, longer cell lengths have enhanced

the conversion e�ciency. To overcome the limitations caused by pumping speed

and gas �ow, a pulsed construction has been implemented and is discussed in the

following.

3.5.2. Pulsed nozzle

The bene�t of a pulsed gas cell is a reduced overall gas load while reaching higher

pressures in the nonlinear medium. Additionally, the gas is con�ned to a nar-

row channel with di�erential pumping (see Figure 3.12) to further improve the

medium density for a given pumping speed. The lateral dimensions of the chan-

nel are 500 × 500 µm and the length is 1 cm. The aperture of the pulsed nozzle,

through which gas is introduced into the channel in a symmetric and quasi-static

manner, is located in the center of the channel. The opening time is 200µs and the

repetition rate is synchronized with the laser to 100Hz. Besides repetition rate and

opening time, the overall gas �ow is in�uenced by the backing pressure of the gas

and the voltage on the piezo opening the nozzle. This voltage is continuously tun-

able. On both sides of the channel, there are holes for di�erential pumping, which

are connected to the �rst stage of the turbomolecular pump (I). Behind the holes,

the geometry is again reduced in diameter to e�ciently separate the gas volume in

the channel from the outside. The chamber section surrounding the cell is pumped

by the second stage of the turbomolecular pump (Figure 3.13, S1+2/II).

The assembly of the pulsed nozzle and gas channel is mounted onto a combination

of two linear stages, one horizontal and the other vertical, and one goniometric stage

to tilt the channel such that it is parallel to the beam. The entire setup is placed in

the central section of the vacuum chamber with the wall to the �rst section removed,

since the �rst stage of the pump (I) is directly connected to the gas cell. The third

section of the vacuum chamber (S3) is again separated by the aluminum foil with

an aperture and pumped by the third stage of the turbomolecular pump (III). The

typical operation conditions are very similar to the case with the static gas cell, only

the pressure in the inlet line to the cell may now be increased to more than 1 bar of
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3.5. Harmonic generation

argon or xenon without being limited by pumping speed. The pressure in the line

to the �rst stage of the pump (I) is < 10−1 mbar, in the combined section S1+2 it

is < 10−3 mbar, and in section S3 < 10−5 mbar.

nozzle
aperture

channel
length
(1 cm)

holes for pumping
(a) (b)

nozzle

Iconnected to

Figure 3.12.: Geometry of the pulsed gas cell - (a) top view of the channel, (b) vertical
cut through the cell. The blue/violet arrows indicate the direction of the
light.

S1+2

S3

I

II
III

gas in

Figure 3.13.: Cut through vacuum chamber with the pulsed gas cell installed. The sec-
tions S1 and S2 are combined by removing the wall. The �rst stage (I)
of the turbomolecular pump is directly connected to the cell for e�cient
pumping of the gas load.
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3. Experimental setup

In Figure 3.14, white light emission from ionized gas (xenon) in the channel is

depicted. For recording the image, a pressure of 700mbar is applied, which exceeds

the optimal pressure for THG. The absence of light in the center is attributed to the

acrylic glass lid being contaminated by sputtered aluminum from the channel walls

by the UV pulses. It is evident that the distribution of ionized gas extends beyond

the channel, reaching through the holes for di�erential pumping up to the wider

opening leading to the surrounding vacuum chamber, where it abruptly terminates.

The densest region, indicating the focal point, is situated within the channel behind

the nozzle.

propagation direction

Figure 3.14.: White light emission from ionized gas (xenon) in the cell. The image is
recorded with a long-pass �lter (OG570, Schott) to exclude the 400 nm
stray light. For better visibility, the colors are inverted.

The nonlinear media tested for THG include argon, helium, xenon and nitrogen/am-

bient air. Among these gases, xenon exhibits the highest conversion e�ciency, fol-

lowed by argon and nitrogen, while helium yields disappointing results. The reason

for the exceptional characteristics of xenon compared to the other gases might be

a resonance line close to 130 nm [48]. In Chapter 6, the energy measurement and

spectral analysis of the generated VUV pulses is discussed in detail.
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4. Numerical simulations

In this chapter, numerical simulations are presented regarding di�erent stages of the

step-wise manipulation scheme introduced in Chapter 3.

First, light propagation in a HCF (see Chapter 2.3 and 3.3) is discussed, employing

two di�erent approaches with corresponding propagation equations: the generalized

nonlinear Schrödinger equation (GNLSE) and the unidirectional pulse propagation

equation (UPPE). The GNLSE is solved using a 1D split-step Fourier method im-

plemented in MATLAB, which is subsequently expanded to a 2D version exploiting

modal decomposition into EH modes. The UPPE is solved using Luna.jl [57] and

compared to the results of the GNLSE approach.

To simulate THG in gas as described in Chapter 3.5, the Luna.jl framework is uti-

lized, which incorporates short pulse propagation in �bers as well as in free-space.

Since third-order nonlinear processes and ionization e�ects are readily included,

THG can be analyzed with minor adjustments to the original code.

Furthermore, a ray-tracing approach to dispersion manipulation in the detuned 4f

setup introduced in Chapter 3.4 is discussed. The calculations are conducted in

Wolfram Mathematica using the optical design package Optica EM.

4.1. Light propagation in a hollow core �ber

Analogous to Chapter 2.2, a general description of dispersive as well as nonlinear

e�ects during propagation in optical �bers is provided by the wave equation (Equa-

tion (2.17))

∇2E − 1

c20

∂2

∂t2
E = µ0

∂2

∂t2
PL + µ0

∂2

∂t2
PNL, (4.1)

where the linear (PL) and nonlinear (PNL) part of the polarization are separated.

The wave equation directly originates from Maxwell's equations (Equations (2.12)-

(2.14)), with the only assumptions being no free currents or charges and a non-

magnetic medium. Various numerical methods are available to address the challenge

of solving this type of di�erential equations, each o�ering distinct advantages for

speci�c situations.
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4. Numerical simulations

4.1.1. Nonlinear Schrödinger equation

In the GNLSE approach, several assumptions are made to solve Equation (4.1),

resulting in a basic propagation equation that is suitable for pulses as short as 10 fs

[58]. The approximations include:

� PNL is considered a small perturbation to PL.

� The polarization is assumed to be maintained along the �ber, justifying a

scalar approach.

� A slowly-varying-envelope approximation is applied, implying that the pulse

envelope changes slowly in both time and space compared to the optical period.

� The nonlinear response is assumed to be instantaneous, neglecting the contri-

bution of molecular vibration (Raman e�ect) to χ(3). This assumption holds

true for all noble gases.

Here, we outline the pathway to the GNLSE, while a complete derivation can be

found for example in [58]. The electric �eld is expressed as

E(r, t) = 1

2
x̂
(
F (x, y)A(z, t)ei(β0z−ω0t) + c.c.

)
, (4.2)

where x̂ represents the unit vector of light polarization (assuming linear polarization

in x-direction), F (x, y) denotes the transverse �eld distribution, which is separated

from A(z, t), the slowly varying amplitude, and β0 denotes the wavenumber.

The e�ective mode area Aeff is computed as

Aeff =

(∫∞
−∞

∫∞
−∞ |F (x, y)|2 dxdy

)2
∫∞
−∞

∫∞
−∞ |F (x, y)|4 dxdy

, (4.3)

which necessitates knowledge about the spatial distribution of the �ber mode. For

the fundamental EH11 mode of a �ber with core radius a, it is given by Aeff =

0.48× πa2.

The nonlinear coe�cient γNL is de�ned as

γNL =
n2ω0

c0Aeff
, (4.4)

where n2 represents the nonlinear refractive index and c0 denotes the vacuum speed

of light.
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4.1. Light propagation in a hollow core �ber

Similar to the Taylor expansion of the spectral phase in Equation (2.5), the phase

constant β(ω), which is the imaginary component of the propagation constant γ =

α+ iβ, is expanded into a Taylor series around the central frequency ω0. The terms

of the order n are given by

βn =

[
dnβ

dωn

]
ω=ω0

. (4.5)

Neglecting βn with n > 3 and moving to a retarded frame, written as

T = t− z/vg = t− β1z, (4.6)

where T represents the retarded time and vg denotes the group velocity, the GNLSE

is expressed as

∂

∂z
A+

α

2
A+

iβ2
2

∂2

∂T 2
A− β3

6

∂3

∂T 3
A = iγNL

(
|A|2A+

i

ω0

∂

∂T

(
|A|2A

))
, (4.7)

where A = A(z, t) is the envelope depending on time and the z-coordinate, α rep-

resents the attenuation constant, β2 denotes the group velocity dispersion (GVD)

parameter, β3 characterizes the cubic dispersion and γNL stands for the nonlinear

coe�cient. The terms on the left-hand side of Equation (4.7) account for absorption

and dispersion, while those on the right-hand side incorporate the Kerr e�ect (as

discussed in Chapter 2.2.2). The term proportional to γNL |A|2 describes SPM, while

the term proportional to γNL/ω0 is responsible for self-steepening. Naturally, the

one dimensional approach omits self-focusing. Additionally, ionization and plasma

e�ects are neglected.

1D split-step Fourier method

The split-step Fourier method is a pseudo-spectral numerical technique employed

to solve nonlinear partial di�erential equations. Its name "split-step" re�ects its

approach of computing the solution in small steps, handling the linear and non-

linear components in separate operations. The term "Fourier" indicates that the

�eld is alternately transformed between the time domain, where the linear step is

computed, and the frequency domain, where the nonlinear step is computed.

To comprehend the mechanism underlying the split-step Fourier method, we express

the GNLSE (Equation (4.7)) as

∂

∂z
A =

(
D̂ + N̂

)
A, (4.8)

where D̂ denotes the linear di�erential operator that describes dispersion and loss,

and N̂ represents the the nonlinear operator governing SPM and self-steepening.
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4. Numerical simulations

These operators are given by

D̂ = −α
2
+ i

3∑
n=2

inβn
n!

∂n

∂T n
= −iβ2

2

∂2

∂T 2
+
β3
6

∂3

∂T 3
− α

2
, (4.9)

N̂ = iγNL

(
|A|2 + i

ω0

1

A

∂

∂T

(
|A|2A

))
. (4.10)

For improved accuracy, higher orders of β (n > 3) may always be included in D̂,

especially when dealing with shorter pulses.

In the following analysis, we assume that dispersive and nonlinear e�ects act inde-

pendently during propagation over a small distance h. Thus, the propagation from

a point z to z + h can be performed in two steps. First, only the operator N̂ acts

on A, and subsequently, only the operator D̂ acts on A. Assuming that D̂ and N̂

commute, one can write

A(z + h, T ) = eh(D̂+N̂)A(z, T ) ≈ ehD̂ehN̂A(z, T ). (4.11)

The operator ehD̂ is evaluated in the frequency domain, where ∂
∂T

is replaced by

(−iω), simplifying calculations since D̂(−iω) in Fourier space is merely a number.

Utilizing the fast Fourier transform (FFT) algorithm makes the computation ef-

�cient, despite the necessity to switch back and forth between the time and the

frequency domain. With the aid of the inverse fast Fourier transform (IFFT), the

evaluation of the linear operator can be expressed as

ehD̂A(z, T ) = IFFT
{
ehD̂(−iω)FFT {A(z, T )}

}
. (4.12)

The dominant error term made by the assumption of commuting operators can be

estimated using the Baker�Campbell�Hausdor� formula [59] to be 1
2
h2[D̂, N̂ ]. Thus,

the method is accurate to the second order in the step size h.

To enhance the accuracy of the method, a symmetrized scheme is employed, which

is given by

A(z + h, T ) ≈ e
h
2
D̂ehN̂e

h
2
D̂A(z, T ). (4.13)

In the symmetrized version, the leading error term is proportional to h3, as the

Baker�Campbell�Hausdor� formula needs to be applied twice for three consecutive

operators.
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4.1. Light propagation in a hollow core �ber

To implement the split-step Fourier method, the �ber length is partitioned into small

segments, which do not necessarily need to be equally spaced. For each segment

h, the �eld A(z, T ) is propagated over a distance of h/2 using the FFT and IFFT

algorithm as described in Equation (4.12). At the position h/2, the �eld is multiplied

by a nonlinear term representing the e�ect of nonlinearity over the entire segment

length h. Subsequently, the �eld is propagated over the remaining part of the

segment h/2 considering only dispersion. The propagation scheme for one step is

illustrated in Figure 4.1. In Section A.1 in the appendix, the key parts of the

MATLAB code are presented to show the actual implementation.

Figure 4.1.: Schematic depiction of one propagation step from z to z + h employing the
one dimensional symmetrized split-step Fourier method.

To model the propagation along the HCF in pressure gradient mode, the pressure

distribution inside the capillary is described by [60]

p(z) =

√
p2in +

z

L
(p2end − p2in), (4.14)

where p(z) denotes the pressure at distance z, pin represents the pressure at the

�ber entrance, L is the �ber length and pend stands for the pressure at the exit side

of the HCF.

The refractive index of the helium gas in the �ber core is computed using the dis-

persion formula [61]

nhe =
c1

c2 − λ−2
0

+ 1, (4.15)

where nhe represents the refractive index of helium at atmospheric pressure, the

�rst coe�cient is given by c1 = 0.014755297, the second coe�cient is given by

c2 = 426.2974, and λ0 = 400 nm denotes the central wavelength.

The nonlinear refractive index of helium at atmospheric pressure is estimated to be

n2 = 0.41× 10−24 m2/W [62].

45



4. Numerical simulations

We will now discuss one speci�c simulation, which closely mirrors experimental con-

ditions. The numeric grid chosen for this simulation consists of 1000 equally spaced

propagation steps, each corresponding to 5mm. In the time and the frequency do-

main, we employ N = 211 = 2048 steps. The simulation spans a time interval of

900 fs, while the considered frequency range extends up to 3×1015 Hz. In Figure 4.2,

the temporal and spectral characteristics of the input and output pulse are shown.

The asymmetry observed in the temporal shape and the spectral distribution il-

lustrates the impact of self-steepening. When comparing the spectral results with

experimental data, we observe a generally strong agreement, despite some variations

in shape around the central wavelength and at the shorter wavelength side.
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Figure 4.2.: Temporal (left) and spectral distribution (right) of the input and output
pulse simulated with the 1D split-step Fourier method. The conditions cho-
sen are close to the experiment: 5m propagation length, 250 µm �ber inner
radius, pressure gradient between 0 and 1.5 bar helium, 400 nm initial central
wavelength, 1.2mJ input pulse energy, 45 fs FWHM input pulse duration,
Fourier limited Gaussian input in time and frequency space. The spectral
distribution is compared to experimental data.

Naturally, the ideal condition of a Fourier limited Gaussian input pulse is hard to

achieve in real-world scenarios. Simulations indicate that the shape of the output

spectrum is heavily in�uenced by the input dispersion of the 400 nm pulses. Since

this dispersion cannot be independently tuned but is directly linked to the energy of

the 400 nm pulses (see Chapter 3.1), we will numerically investigate how dispersion

in�uences the spectral distributions to gain a qualitative understanding of its impact.

Figure 4.3 illustrates how input GDD a�ects the output spectra, while Figure 4.4

demonstrates the in�uence of input TOD. The greater the magnitude of the addi-

tional input GDD or TOD is, the narrower the spectral width of the output becomes.

Additionally, the sign of the TOD strongly in�uences the shape of the spectral dis-

tribution.
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4.1. Light propagation in a hollow core �ber
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Figure 4.3.: Output spectra for Gaussian pulses with di�erent input GDD. The input
spectrum for all cases is the dashed black curve. The parameters of the
simulation are as follows: 5m �ber length, 250 µm �ber inner radius, pressure
gradient between 0 and 1.5 bar helium, 30 fs FWHM Fourier limited Gaussian
input, 1.5mJ pulse energy.

350 400 450
wavelength (nm)

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 in

te
ns

ity

 input

 0 fs3

 5000 fs3

 10000 fs3

 15000 fs3

350 400 450
wavelength (nm)

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 in

te
ns

ity

 input

 -5000 fs3

 -10000 fs3

 -15000 fs3

Figure 4.4.: Output spectra for Gaussian pulses with di�erent input TOD. The input
spectrum for all cases is the dashed black curve. The parameters of the
simulation are the same as in Figure 4.3.

2D split-step Fourier method

To extend the method beyond one-dimensional propagation of the fundamental

mode while maintaining reasonable computational e�ort, the spatial beam pro�le

is decomposed into radially symmetric EH modes. Since radial symmetry is as-

sumed, this approach is only two-dimensional, thus saving computation time com-

pared to full three-dimensional propagation. The intensity pro�le of the relevant

modes exhibit a Bessel-like shape, making a straightforward approach to this prob-

lem a Fourier-Bessel series for �nite intervals [63].
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4. Numerical simulations

We restrict ourselves to EHnm with n = 1 and m > 0 (see Chapter 2.3.1), leading

to

Ã(z, r, ω) =
∞∑
m=1

cmEH1m(z, r, ω), (4.16)

where EH1m represents the �eld distribution for the m-th mode and cm denotes the

corresponding coe�cient. The distribution EH1m is given by

EH1m = J0

(u1mr
a

)
, (4.17)

where J0 is the Bessel function of the �rst kind with index zero, unm denotes the

m-th zero of the Bessel function Jn−1, r is the radial coordinate, and a represents

the inner radius of the HCF. The coe�cients cm are obtained using the following

relation [63]

cm =
2

a2J1(u1m)2

∫ a

0

rÃ(r) EH1mdr. (4.18)

The modes are individually propagated for the dispersion (half) step and then re-

composed for the nonlinear step. This process is illustrated in the propagation

scheme of our two-dimensional model in Figure 4.5. The dashed gray arrow indi-

cates the procedure of one complete propagation step after another as described in

Equation (4.13). The dashed black arrow represents a computationally more e�-

cient procedure, which skips the last IFFT and �rst FFT operations, along with one

modal re- and decomposition for all propagation steps except for the �rst and last

ones.

Figure 4.5.: Schematic depiction of one propagation step from z to z + h employing the
two-dimensional symmetrized split-step Fourier method. The gray arrow
shows one complete propagation step, whereas the black arrow indicates a
computationally more e�cient procedure.
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4.1. Light propagation in a hollow core �ber

Ionization e�ects

To incorporate ionization e�ects into the simulations, the Perelomov-Popov-Terent'ev

(PPT) model [64�66] is choosen to determine ionization rates. The model im-

proves the formalism introduced by Keldysh for non-relativistic ionization rates of

hydrogen-like atoms in strong laser �elds [67] by considering Coulomb interaction

at larger inter-nuclear distances. In the quasi-static limit, the PPT model converges

to the well known Ammosov-Delone-Krainov (ADK) model [68].

According to Keldysh theory, there are two regimes of ionization: tunnel ionization

and multiphoton ionization. The dominant mechanism may be determined by the

Keldysh parameter γ, given by

γ =

√
IP

2Up
, (4.19)

where IP denotes the ionization potential of the atom and Up represents the pon-

deromotive potential. Up is calculated as

Up =
e2E2

4meω2
, (4.20)

where e is the elemental charge, E denotes the electric �eld strength, me is the

electron mass and ω represents the angular frequency of the light. For γ ≪ 1, only

tunneling ionization occurs, whereas for γ ≫ 1, multiphoton ionization dominates.

The advantage of the PPT model lies in its ability to accurately predict ionization

rates not only within the tunnel ionization range, where the ADK model would suf-

�ce, but also in the intermediate regime of γ ≈ 1 in case of noble gases [69].

We compute the ionization rate w following the methodology outlined in [70] (the

subsequent calculations are in atomic units)

w = Q · wSR, (4.21)

where Q characterizes the Coulomb correction and wSR represents the ionization

rate for a system bound by a short-range potential. The Coulomb correction Q is

approximated by

Q ≊
(
2

F

)2n∗

(1 + 2e−1γ)−2n∗
, (4.22)

where F = E/(2 IP)3/2 represents the reduced electric �eld, and n∗ = Z/
√
2 IP is

the e�ective principal quantum number of the bound state. This value is determined

by the charge number of the atomic core Z and the ionization potential of the atom

IP.
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4. Numerical simulations

The ionization rate wSR is given by

wSR =
2C2

π
IP K

−3/2
0 β1/2

∑
n>nth

F
(√

β(n− nth)
)
e−

2g(γ)
3F

−2c1(n−nth), (4.23)

where several terms require further explanation: C denotes the asymptotic coe�-

cient of the bound state wave function, determined by C2 = 22n
∗−2/(n∗!)2, employing

Hartree's approximation [71] for s-states. K0 compares the ionization potential to

the photon energy and is given by K0 = IP/ℏω. The parameter β is de�ned as

β = 2γ/
√
1 + γ2. F(...) denotes the Dawson integral [72]. nth represents the ion-

ization threshold, given by nth = K0(1 + 1/(2γ2)). Finally, g(γ) and c1 are de�ned

as

g(γ) =
3

2γ

[(
1 +

1

2γ2

)
arcsinh(γ)−

√
1 + γ2

2γ

]
, (4.24)

c1 = arcsinh(γ)− γ√
1 + γ2

. (4.25)

Given an ionization rate w (Equation (4.21)) dependent on an electric �eld E(r, t),

the ionization probability P of one atom being ionized can be calculated as fol-

lows [73]

P (r, t) =
(
1− e−

∫ t
−∞ w(E(r,t′))dt′

)
. (4.26)

The density of free electrons ne created by ionization is determined by multiplying

the ionization probability with the particle density n0

ne(r, t) = n0P (r, t). (4.27)

Since evaluating the integral in Equation (4.26) contributes signi�cantly to the over-

all computational e�ort and needs to be performed independently for each radial

coordinate r in our numeric grid, we exploit MATLAB's built-in option for parallel

computing via a "parfor" loop, considerably reducing the computation time. Nat-

urally, this approach strongly depends on the capabilities of the machine being used.

To incorporate ionization e�ects into the simulations, the nonlinear operator N̂

(Equation (4.10)) in the GNLSE may be expanded to include an additional term [74]

N̂ = iγNL

(
|A|2 + i

ω0

1

A

∂

∂T

(
|A|2A

))
−

iω2
p

2ω0c
, (4.28)

where c denotes the speed of light.
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4.1. Light propagation in a hollow core �ber

The plasma frequency ωp is calculated from the density of free electrons ne (Equa-

tion (4.27))

ωp =

√
e2ne
meϵ0

, (4.29)

where e denotes the elementary charge, me represents the (e�ective) electron mass,

and ϵ0 is the vacuum permittivity.

The introduction of the new term in the nonlinear operator N̂ (Equation (4.28)),

which depends on ωp, induces a frequency shift, known as the plasma blue shift.

Additionally, an extra loss term is linked to ionization. However, since we work at

low electron densities, we neglect the additional absorption.

In Figure 4.6, the temporal and spectral �eld envelopes of an exemplary 2D simu-

lation are illustrated. The top row displays the input pulse, while the subsequent

three rows show the simulated output pulse for an increasing number of implemented

nonlinear e�ects. Initially, only dispersion is considered with dispersion terms βn
(see Equation (4.5)) computed up to the sixth order for both waveguide dispersion

and dispersion in the gas. Subsequently, the Kerr e�ect is incorporated into the sim-

ulation, resulting in spectral broadening due to SPM and self-steepening of the pulse

in time. Finally, the correction term for ionization is introduced to the nonlinear

operator as described in Equation (4.28). Here, the spectral distribution exhibits

a slight shift towards higher frequencies compared to the results obtained previously.

Since the plasma blue shift is not readily apparent in Figure 4.6, the di�erence be-

tween the spectral distribution with and without ionization is depicted in Figure 4.7.

There, the shift towards higher frequencies becomes evident.
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4. Numerical simulations

Figure 4.6.: 2D simulation results with increasing number of e�ects included. Input pa-
rameters: 10 fs FWHM pulse duration, 1mJ pulse energy, 800 nm central
wavelength, 1 bar helium, 3m propagation length, 250 µm �ber inner radius,
1000 propagation steps, 100 grid points in radial direction.
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4.1. Light propagation in a hollow core �ber

Figure 4.7.: Di�erence between the simulated spectra from Figure 4.6 with and without
ionization (fourth minus third row).

4.1.2. Unidirectional pulse propagation equation

We compare our simulation results, acquired through the solution of the GNLSE

with the split-step Fourier method outlined earlier, to a more rigorous approach

provided by Luna.jl [57], a versatile tool for simulating nonlinear optical dynam-

ics. The software o�ers a choice between the z-propagated UPPE and the GNLSE,

along with options for single-mode (mode-averaged) or multi-mode propagation in

waveguides, as well as full (3+1)D propagation in free space.

Since the unidirectional pulse propagation approach does not rely on the slowly

varying envelope approximation, it remains valid for shorter pulses, where the abso-

lute phase between envelope and carrier holds signi�cance. The key approximation

lies in assuming that the back-re�ected �eld is weak and can be disregarded for

computing the nonlinear response of the medium [75]. Consequently, the nonlinear

response itself must be a small perturbation to the linear response. Additionally,

when the z-component of the �eld and response are signi�cantly smaller than the

transverse components, a scalar form of the z-propagated UPPE for non-magnetic

homogeneous media may be retrieved.
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4. Numerical simulations

The equation is given by [76]

∂

∂z
Ekx,ky(ω, z) = ikzEkx,ky(ω, z) +

iω2

2ϵ0c2kz
Pkx,ky(ω, z)−

ω

2ϵ0c2kz
jkx,ky(ω, z), (4.30)

where Ekx,ky is the transverse �eld, ω denotes the angular frequency of the light,

Pkx,ky represents the transverse nonlinear polarization, jkx,ky is the transverse current

density and kz denotes the z-component of the wave vector given by

kz =

√
ω2ϵ(ω)

c2
− k2x − k2y, (4.31)

where ϵ(ω) is the relative permittivity.

E�ects that can be incorporated into the numerical model of Luna.jl when solv-

ing the UPPE include modal dispersion and loss in waveguides, the optical Kerr

e�ect, Raman scattering in molecular gases or glasses (not relevant in this case,

since we study noble gases only), photoionization and plasma dynamics [57]. For

photoionization, two models are implemented, which were already mentioned above

in Chapter 4.1.1: ADK and PPT.

In the subsequent analysis, the basic propagation example illustrated previously in

Figure 4.2 is compared to UPPE simulations conducted using Luna.jl. Figure 4.8

presents the same simulation outcomes as depicted in Figure 4.2, although without

normalization. Furthermore, the spectrum is visualized on a logarithmic scale to

enhance comparability. In Figure 4.9, results obtained by an equivalent simulation

using Luna.jl to solve the UPPE are depicted.

The outcomes derived from the simple 1D split-step Fourier approach addressing

the GNLSE, and those obtained through solving the UPPE exhibit nearly perfect

agreement. A marginal discrepancy can be found in the shape of the trailing edge

of the temporal distribution and in the short wavelength region (close to 350 nm) in

the spectral distribution. However, the variation in wavelength is only visible on a

logarithmic scale, given the minimal energy in this spectral range.
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Figure 4.8.: Simulation results from Figure 4.2. Temporal pulse shape on the left and
spectral distribution on the right. The spectrum is plotted on a logarithmic
scale.
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Figure 4.9.: Simulation results obtained by Luna.jl for the same initial conditions as in
Figure 4.8. Temporal pulse shape on the left and spectral distribution on
the right. The spectrum is plotted on a logarithmic scale.

Generally, the 1D split-step Fourier method, the 2D split-step Fourier method, and

solving the UPPE yield nearly identical spectra under conditions close to our ex-

perimental parameters, where an input pulse energy of up to 1.5mJ, a �ber inner

radius of 250µm, and up to 1.5 bar helium in the �ber are assumed. The primary

uncertainty lies in the precise shape of the input pulse in the time and the frequency

domain, which signi�cantly impacts spectral broadening.

At higher peak powers, the e�ects of self-focusing, higher-order waveguide modes,

and ionization-induced frequency shifts become signi�cant and must be taken into

account. However, we aim to avoid this regime, since losses induced by the long prop-

agation length increase with the order of the waveguide mode (see Chapter 2.3.1),

and the setup following the HCF is optimized for the beam size and divergence of

the fundamental EH11 mode. Nevertheless, it is crucial to perform simulations that

include these e�ects to determine in which regime we are operating.
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4. Numerical simulations

4.2. Third-harmonic generation in gas

To simulate THG in noble gases within the con�gurations described in Chapter 3.5,

the nonlinear pulse propagation provided by Luna.jl [57] is adapted. The key parts of

the implementation can be found in Section A.2 in the appendix. Radially symmet-

ric free space propagation is chosen to mitigate computational complexity compared

to a full 3D approach. Given the assumption of a perfect Gaussian input pulse in

both time and space, together with a homogeneous nonlinear medium, radial sym-

metry is a valid assumption.

The pressure distribution along the propagation direction is modeled to be either

constant or a gradient, following the description provided in Equation (4.14). In the

case of the pulsed nozzle, where the gas input is situated at the center of the gas

cell, two gradient distributions are de�ned for the two halves of the cell and merged

at the center. The position of the focus within the gas cell can be adjusted freely by

varying the curvature of the input wavefront, achieved by specifying a distance from

the (virtual) beam waist to the Gaussian input �eld. Furthermore, the wavelength

range and time interval considered are adaptable, as are the initial and maximum

step sizes in propagation direction. During propagation, the step size is dynamically

adjusted to minimize computation time while ensuring that the computational error

remains below a prede�ned threshold.

In the nonlinear response term, third-order e�ects are included. Additionally, the

PPT ionization rate (see Chapter 4.1.1) is computed to construct the plasma polar-

ization response.

A serious limitation of the accuracy of the THG simulations is the de�nition of re-

fractive indices in the nonlinear pulse propagation implemented in Luna.jl. These

indices are determined using Sellmeier equations for noble gases, primarily derived

from data in the visible or infrared range. For instance, the relation used for xenon

is only applicable down to 400 nm [77], while the one for helium is valid down to

90 nm [78]. Given that many gases exhibit resonances in the VUV range, careful

consideration of the refractive index model is necessary.

For an exemplary simulation optimized for high conversion e�ciency in helium, the

input parameters are as follows: 0.5mJ pulse energy, 10 fs FWHM pulse duration

(Fourier limited Gaussian), maximum pressure of 1.5 bar helium in the center of the

1 cm long gas cell with a pressure gradient towards vacuum on both sides, 70µm

(virtual) minimal waist and the (virtual) focus position of the fundamental beam is

precisely at the end of the cell. However, due to plasma defocusing, the most intense

UV beam pro�le is located directly at the input side.
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4.2. Third-harmonic generation in gas

Figure 4.10 depicts the radial intensity distribution for the 400 nm and 133 nm radia-

tion along the propagation. Figure 4.11 presents the corresponding integrated VUV

pulse energy depending on the propagation distance on the left and a polar plot

of the spatial distribution of the generated VUV pulse on the right. The resulting

pulse energy slightly exceeds 3 µJ, leading to a conversion e�ciency of more than

6× 10−3.

Figure 4.10.: Simulated radial intensity distribution of the fundamental and third-
harmonic beam along the propagation for 1.5 bar of helium.

Figure 4.11.: Left: integrated VUV pulse energy, right: polar plot of the VUV spatial
pro�le for 1.5 bar of helium.
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4. Numerical simulations

When we maintain the same initial conditions but double the maximum pressure

(Figure 4.12 and 4.13), we observe that the conversion e�ciency decreases. The VUV

energy subsides in the second half of the propagation, and the spatial distribution of

the generated harmonic pulse exhibits a ring shape with a central minimum, which

is generally not preferable for further use of the VUV pulses.

Figure 4.12.: Simulated radial intensity distribution of the fundamental and third-
harmonic beam along the propagation for 3 bar of helium.

Figure 4.13.: Left: integrated VUV pulse energy, right: polar plot of the VUV spatial
pro�le for 3 bar of helium.
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4.2. Third-harmonic generation in gas

To illustrate the e�ect of phase mismatch, we investigate a scenario with lower

pressure (0.75 bar) that remains constant over a relatively long propagation distance

of 15 cm. The minimal waist is increased to 150µm and the focus position is shifted

to the center of the medium to ensure nonlinear interaction over the full simulation

length. Figures 4.14 and 4.15 depict the simulation results analogous to Figures 4.10

- 4.13. The oscillations in the VUV energy are a clear indication of phase mismatch.

Figure 4.14.: Simulated radial intensity distribution of the fundamental and third-
harmonic beam for 0.75 bar of helium and 15 cm propagation length.

Figure 4.15.: Left: integrated VUV pulse energy, right: polar plot of the VUV spatial
pro�le for 0.75 bar of helium and 15 cm propagation length.
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4. Numerical simulations

The THG simulations demonstrate the critical importance of optimizing the in-

terplay between medium length, pressure, and pulse peak power. Although direct

simulation of the gases used in the experiments described in Chapter 6 is not feasi-

ble, the general behaviour can be analyzed. The ring shape observed in Figure 4.13

resembles the beam pro�le reported by Trabs et al. [27], who attribute it to six-wave

mixing processes. In our context, plasma formation due to increased medium density

may also contribute to absorption and defocusing of the VUV beam, since there is a

pronounced maximum in VUV energy at approximately half the propagation length.

In general, conversion e�ciency is maximized with shorter medium lengths, when

paired with higher pressure and matched peak power. Consequently, when there is

�exibility in selecting other parameters, a shorter cell appears to be preferable to a

longer one.
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4.3. Dispersion manipulation in a 4f setup

4.3. Dispersion manipulation in a 4f setup

In Chapter 3.4, the 4f setup for dispersion compensation after the HCF is intro-

duced. Simulations of the spectral phase, depending on the exact geometry of the

setup, are conducted using Wolfram Mathematica with the optical design package

Optica EM. The code was originally developed by Armin Azima. Only minor ad-

justments are made to implement the retro-re�ector and adjust the dimensions and

angles accordingly, since the original version of the code featured just one plane

mirror for back-re�ection. In Section A.3 in the appendix, parts of the Mathematica

notebook containing the calculations are presented.

The optical path length, which varies with wavelength, is determined by ray tracing

a so-called "rainbow of rays" spanning from 370 to 430 nm and then interpolating the

results. Figure 4.16 illustrates the ray tracing geometry involving the grating, lens,

and retro-re�ector. Note that the grating is not rotated with respect to the lens as

an artifact of the way the grating is implemented in Optica EM. In the experiment,

the rotation of the grating ensures maximum di�raction e�ciency as described in

Chapter 3.4. Due to the inherent con�ict between ray tracing and the wave-optics

nature of di�raction at a grating, Optica EM simpli�es the process by de�ning the

rays to be entirely directed to the desired order, calculating the di�raction angle

based on the ray's wavelength.

Figure 4.16.: Ray tracing geometry. The distance between grating and lens is denoted
dlens, the distance between lens and the mirrors of the retro-re�ector is
denoted dmirror.
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4. Numerical simulations

From the di�erences in optical path length, it is straightforward to calculate the

relative phase and its derivatives. Figure 4.17 shows the phase, group delay, GDD

and TOD for a scenario, where the properties remain unchanged for the central

wavelength, which is 400 nm, corresponding to an angular frequency of 4700 rad/ps.
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Figure 4.17.: Phase, group delay, GDD and TOD depending on the angular frequency
ω. The curves are derived from the optical path length. A frequency of
4700 rad/ps corresponds to the central wavelength of 400 nm.

4.3.1. Shifting the lens

To compensate for the dispersion accumulated in the HCF, GDD values on the order

of hundreds of femtoseconds squared are required. This can be achieved by adjust-

ing the position of the cylindrical lens relative to the grating. Figure 4.18 illustrates

one exemplary case where the lens is shifted 5mm away from the grating compared

to the situation shown in Figure 4.17.

Evaluating the GDD at 400 nm, one obtains nearly 0 fs2 in Figure 4.17 (10 fs2 to be

precise) and 2218 fs2 in Figure 4.18. This shift is observed analogously for shorter

distances between the lens and the grating, only the sign of the GDD changes.

Figure 4.19 displays values for a shift of ±10mm relative to the conditions in Fig-

ure 4.17. From the linear behavior of the GDD with respect to the lens position,

one can extract a slope of 441 fs2/mm.
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Figure 4.18.: Shifting the cylindrical lens 5mm: phase, group delay, GDD and TOD
depending on the angular frequency ω.
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Figure 4.19.: GDD depending the lens position for the central wavelength of 400 nm. The
position dlens is given relative to the lens position in Figure 4.17.

4.3.2. Rotating the lens

Another factor in�uencing dispersion is the rotation of the cylindrical lens. Fig-

ure 4.20 depicts the result of 5◦ rotation with respect to the conditions in Figure 4.17.

The most prominent change is the position of the minimum in GDD and thus zero

TOD. Consequently, this may be exploited to adjust the TOD at the central wave-

length. Figure 4.21 illustrates the numerically retrieved TOD for lens rotations of up

to 20◦. Of course, there are limitations regarding large rotations in the experiment,

since this would a�ect the beam quality after the 4f setup.
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Figure 4.20.: Rotating the cylindrical lens by 5◦: phase, group delay, GDD and TOD
depending on the angular frequency ω.
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Figure 4.21.: TOD depending the lens rotation for the central wavelength of 400 nm. The
rotation is given relative to the situation in Figure 4.17.

To optimize the focus quality behind the 4f setup, there is one additional degree

of freedom: the tilt of the lens. Naturally, this is not completely independent from

the system's dispersion, but the e�ect is rather small. The main contribution is an

increase in GDD due to longer propagation in the lens material (fused silica), which,

in turn, may be compensated by shifting the lens position.
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5. UV pulse characterization

This chapter focuses on the generated UV pulses that are spectrally broadened by

SPM in a helium-�lled HCF and subsequently temporally compressed using a 4f

setup for dispersion manipulation.

The pulses are centered around 400 nm, resulting from SHG of 800 nm light. Given

that the pulse length of the NIR is 30 fs FWHM and the second-harmonic intensity is

proportional to the square of the fundamental intensity, the shortest expected pulse

duration for Gaussian pulse shapes generated by the BBO crystal, without any dis-

persion or distortion and perfect phase-matching for all spectral components, would

be 30 fs/
√
2 ≈ 21.2 fs.

However, this ideal scenario is not achieved due to limitations imposed by the phase-

matching bandwidth, which is associated with the group velocity mismatch of the

BBO crystal. The bandwidth is calculated as follows [79, 80]

δλ1 =
1.39 λ1

πL
∣∣∣∂n1

∂λ1
− 1

2
∂n2

∂λ2

∣∣∣ , (5.1)

where δλ1 is the supported FWHM bandwidth of the fundamental pulse, λ1 de-

notes the fundamental wavelength, λ2 denotes the second-harmonic wavelength, L

stands for the crystal length and n1/2 are the respective refractive indices. With
∂n1

∂λ1
≈ −0.03/µm, ∂n2

∂λ2
≈ −0.22/µm [81], and L = 280 µm, this results in δλ1 ≈ 8 nm.

Consequently, the bandwidth of the second-harmonic is limited to δλ2 ≈ 4 nm, which

corresponds to a transform-limited pulse duration of 59 fs for a Gaussian pulse shape.

In the experiment, the spectrum of the 400 nm radiation is measured directly behind

the BBO (see Figure 5.1). The width of the spectral distribution is found to be

slightly more broadband than expected, 5 nm FWHM, corresponding to a transform-

limited pulse duration of 47 fs. The spatial beam pro�le of the 400 nm focus at the

�ber entrance is shown in Figure 3.3.
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Figure 5.1.: Measurement of the spectral distribution of the UV radiation directly behind
the BBO together with a Gaussian �t. The pulse energy in the UV is 6.5mJ.

5.1. Spectral analysis behind the HCF

The UV spectrum is signi�cantly broadened by SPM in the HCF. Figure 5.2 depicts

a comparison between the input and output spectrum under optimized conditions for

maximum spectral broadening. The output spectrum is measured in air after three

re�ections by metallic and dielectric mirrors (see Figure 3.4). Since the dielectric

mirror is optimized for the spectral range between 380 nm and 420 nm, the shorter

and longer wavelength ranges might be in�uenced by its re�ection characteristics.

A combination of �ber incoupling losses, propagation losses, absorption in helium,

and losses at the mirrors and window behind the HCF reduces the pulse energy in

Figure 5.2 compared to Figure 5.1.
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Figure 5.2.: Measurement of spectral broadening by SPM in the HCF. The �ber is �lled
with 1.5 bar helium in pressure gradient mode and the pulse energy behind
the HCF is 1.2mJ.
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5.1. Spectral analysis behind the HCF

Figure 5.3 on the left illustrates the spectral broadening observed at various pres-

sures. The �ber is operated in gradient mode, with vacuum conditions (< 10−1 mbar)

at the entrance and the speci�ed pressure at the exit side. As expected, an increase

in helium pressure results in a broader spectrum. Additionally, a considerable asym-

metry in the spectral distribution is observed for higher pressures.

Figure 5.3 on the right presents the spectral broadening corresponding to di�erent

pulse energies. Similarly, an increase in pulse energy leads to a broader spectrum.

Moreover, a comparable asymmetry to the one seen on the left side is evident for

high energies.

The data in Figure 5.3 is compared with simulations close to the expected param-

eters, which are shown in Figure 5.4. The assumed parameters for the simulations

are the following: 47 fs FWHM duration of a transform-limited Gaussian pulse and

5m �ber length. For the pressure scan, a pulse energy of 1.5mJ is assumed, ac-

counting for the losses at the mirrors and the window. For the energy scan, the

helium pressure is set to 1 bar, with the energies multiplied by 1.25 to compensate

for re�ection losses.

The overall behavior is similar for lower pressures and pulse energies. However, at

higher pressures, the measured spectrum appears truncated for wavelengths above

420 nm. On the shorter wavelength side, the deviations are even more pronounced.

This pattern is also observed in the lower wavelength range at higher pulse energies.

One possible explanation is a combination of plasma/material absorption and the

re�ection characteristics of the mirrors.

Another likely contribution to the deviations is the assumption of a transform-

limited input pulse in the simulations. Figure 5.5 shows the same simulation results

as in Figure 5.4, but with an additional TOD of 15 000 fs3 applied to the input pulse.

This adjustment produces an asymmetry similar to that observed in the experimen-

tal data.

To ensure a well-behaved phase and a balanced spectral distribution that is e�ciently

re�ected by the dielectric mirrors in the 4f setup and for beam transport to the gas

cell, the spectral range for subsequent experimental investigations is restricted to

approximately 380− 420 nm.
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Figure 5.3.: Left: spectral distribution behind the HCF for di�erent helium pressures at
the exit side. The energy behind the �ber is between 1.1 and 1.2mJ for
all curves. Right: spectral distribution behind the HCF for di�erent pulse
energies with 1 bar helium at the exit side.
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Figure 5.4.: Left: simulation results for the spectral distribution behind the HCF for
di�erent helium pressures at the exit side. Right: simulation results for the
spectral distribution behind the HCF for di�erent pulse energies with 1 bar
helium at the exit side.
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Figure 5.5.: Simulation results for an additional input TOD of 15 000 fs3.
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5.2. Fringe-resolved interferometric autocorrelation

5.2. Fringe-resolved interferometric autocorrelation

To determine the pulse duration behind the 4f setup, the FRIAC technique is uti-

lized. The theoretical framework for this method is introduced in Chapter 2.4.3.

Two replicas of the UV pulse are generated by a double-comb mirror consisting of

two silicon gratings, as described in [46]. A delay between the two pulse replicas

is induced by moving one of the silicon gratings using a linear stage. Behind the

double-comb mirror, the beam is focused onto a detection unit, which is described

in Section 5.2.1. In the focal plane, two interference patters develop due to di�rac-

tion at the two silicon gratings. When overlapping the patterns by aligning the

gratings, the resulting intensity in the zero di�raction order corresponds to the �eld

autocorrelation. Utilizing a second-order process in the detector, the FRIAC trace

is obtained (see Equation (2.43)). By driving higher-order processes, higher-order

FRIAC traces can be measured, as described in Chapter 2.4.3.

Figure 5.6 depicts the double-comb mirror alongside the intensity distribution in the

focal plane, depending on the phase di�erence between the two pulse replicas. At

a phase di�erence of zero, there is maximum intensity in the 0th di�raction order,

whereas at a phase di�erence of π/2, the 0th di�raction order vanishes.

Figure 5.6.: Simpli�ed illustration of the double-comb mirror together with the measured
intensity distribution in the focal plane for a phase di�erence of zero, π/4
and π/2 between the two pulse replicas. The red box highlights the 0th
di�raction order.
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5. UV pulse characterization

5.2.1. Detection unit

The detection unit comprises three components: a thin platinum wire, an electrode

and a glass plate. Figure 5.7 (a) presents a schematic depiction of the detector. The

entire setup is mounted on a plastic holder and placed in a vacuum environment on

three linear stages for precise adjustment relative to the UV beam.

Behind the glass plate, a long-pass �lter is installed to �lter out the UV light for

�uorescence imaging. Figure 5.7 (b) shows a camera image of the non-overlapped

di�raction patterns in the focal plane together with the platinum wire. The electrode

and both ends of the wire are connected to the outside via feedthroughs, allowing

for the recording of the photoelectron current, application of the bias voltage, and

heating of the wire with a small current.

electrode

Pt wire

glass plate

(a) (b)

Figure 5.7.: (a) FRIAC detection unit with electrode, platinum wire and glass plate.
(b) Fluorescence image of the non-overlapped di�raction patterns in the focal
plane and the platinum wire.

To record FRIAC traces, the detector is positioned in the focal plane with the wire

completely blocking the zero di�raction order. The shadowing e�ect of the wire can

be observed in the �uorescence, allowing for precise adjustment of the wire position.

Photoelectrons are generated at the platinum surface and extracted from the elec-

trode by applying a bias voltage. To enhance the stability of the platinum surface

conditions, a small current is sent through the wire to induce slight heating. The

photoelectron current is ampli�ed using a preampli�er (SR570, Stanford Research

Systems), and the signal is recorded by a digital oscilloscope (WaveRunner, LeCroy),

which is controlled by a Python script for data acquisition on a connected computer.

Depending on the UV intensity, second- or higher-order processes result in the emis-

sion of photoelectrons from the platinum. The work-function of platinum is in the

range of 5.1 to 5.9 eV, the exact value depends on the method of evaluation and the

surface conditions [82]. The photon energy corresponding to 400 nm is only 3.1 eV,

and thus �rst-order processes do not contribute to the signal.
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5.2. Fringe-resolved interferometric autocorrelation

5.2.2. Field autocorrelation

When the detector is moved downward such that the wire does not block the beam,

the glass plate provides a �uorescence image of the UV intensity distribution in the

focal plane, as shown in Figure 5.7 (b). By recording the overlapped di�raction

pattern and extracting the �uorescence intensity of the zero di�raction order, the

�eld autocorrelation is obtained (see Chapter 2.4.1).

Figure 5.8 presents extracted data of a 400 nm pulse, which is not spectrally broad-

ened in the HCF, as the �ber is not �lled with gas. Additionally, the spectrum

computed using the FFT algorithm is depicted. As expected, the trace is modu-

lated symmetrically above and below a constant o�set. The inset provides a detailed

view of the oscillations near the center. Ideally, the autocorrelation should be sym-

metric with respect to zero delay. However, a noticeable asymmetry is present,

likely due to �uctuations in the laser pulses, combined with slight misalignment of

the double-comb mirror. In the spectral distribution, only one peak is observed at

the central frequency of the pulse.

Figure 5.8.: Field autocorrelation extracted from the �uorescence intensity of the zero
dispersion order together with the FFT of the signal (spectrum). Note that
the spectrum is plotted on a logarithmic scale.

5.2.3. Second- and higher-order FRIAC

Figure 5.9 presents a second-order FRIAC trace of a compressed pulse behind the

4f setup. This pulse exhibits a broadened spectrum, which is shown in Figure 5.14

in the top row. As expected, the oscillations around a constant o�set exhibit a ratio

of approximately one to eight between the peak and the wings. To extract the pulse

duration, the data is low-pass �ltered, as explained in Chapter 2.4.3. For simplicity,

a Gaussian pulse shape is assumed, and a �t is applied to the low-pass �ltered data.
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5. UV pulse characterization

The results are summarized in Table 5.1. The autocorrelation width is determined to

be 13.5 fs FWHM, corresponding to a pulse duration of 9.6 fs FWHM. The spectral

distribution features a primary peak at the central frequency and a secondary peak

at twice the frequency, with the secondary peak being signi�cantly weaker than the

primary one.

-30 -20 -10 0 10 20 30
delay (fs)

0

2

4

6

8

10

no
rm

al
iz

ed
 s

ig
na

l

FRIAC trace

 data
 low pass filtered
 Gaussian fit

0 0.5 1 1.5 2 2.5 3
frequency (Hz) #1015

0

50

100

150

200

250

si
gn

al
 (

ar
b.

 u
ni

ts
)

spectrum

7.4 x 1014 Hz
405 nm

1.48 x 1015 Hz
203 nm

Figure 5.9.: Second-order FRIAC trace together with the FFT of the signal (spectrum).
The spectrum is plotted on a linear scale.

Figure 5.10 displays a higher-order FRIAC trace recorded with increased UV in-

tensity on the platinum wire, along with the corresponding spectral distribution.

Analogous to the previous case, the data was low-pass �ltered. However, due to the

potential involvement of multiple processes of di�erent orders, extracting the pulse

duration is not straightforward. An upper limit can be determined by assuming a

pure process of the highest order observed in the spectrum.
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Figure 5.10.: Higher-order FRIAC trace together with the FFT of the signal (spectrum).
The spectrum is plotted on a linear scale.

In Figure 5.10 on the right, there are four distinct peaks visible in the spectrum.

As expected, these peaks are equally spaced, being integer multiples of the cen-

tral frequency of the pulse. The highest frequency peak is located at 3 × 1015 Hz,
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5.2. Fringe-resolved interferometric autocorrelation

which is four times the central frequency of the pulse. According to theory (see

Chapter 2.4.3), a pure fourth-order process would exhibit a ratio of 1:128 between

the peak and the baseline. However, the ratio observed in the experimental data is

lower, though it is not su�ciently low to correspond to a pure third-order process,

which would show a ratio of 1:32.

The evaluation results are summarized in Table 5.1. The autocorrelation width

of the Gaussian �t in Figure 5.10 on the left is 9.9 fs FWHM. Assuming a pure

fourth-order process, this corresponds to a pulse duration of 9.4 fs FWHM, which

serves as an upper limit and is in good agreement with the results obtained from

the second-order FRIAC trace in Figure 5.9.

Table 5.1.: Evaluation of the FRIAC traces in Figure 5.9 and 5.10. The pulse duration
of the higher-order trace is computed assuming a pure fourth-order process.
This value serves as an upper limit.

Figure 5.9: second-order Figure 5.10: higher-order

extracted IAC FWHM (fs) 13.5± 0.3 9.9± 0.1

calculated pulse FWHM (fs) 9.6± 0.2 ≤ (9.4± 0.1)

5.2.4. Dispersion manipulation

This section covers FRIAC measurements of pulse elongation due to dispersion.

Initially, the measurement principle is tested by introducing a known material into

the beam path. Subsequently, the e�ect of detuning the 4f setup is investigated.

Dispersion introduced by additional material

To analyze the impact of pulse broadening due to dispersion on the measured FRIAC

traces, dispersion is arti�cially introduced by placing fused silica in the beam path

directly before the autocorrelation measurement. Moreover, any potential (higher-

order) chirp in the laser pulse would be di�cult to detect in the autocorrelation

traces (see Figure 2.9), but it would in�uence the broadening behavior introduced

by the additional material.

Figure 5.11 displays a FRIAC trace measured without the additional material on the

left and a FRIAC trace with 1 cm of fused silica on the right. The evaluation results

are summarized in Table 5.2. Analogous to Figure 5.8, the pulse is not spectrally

broadened in the HCF, as the �ber is not �lled with gas.
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5. UV pulse characterization

The autocorrelation width of the Gaussian �t in Figure 5.11 without additional ma-

terial is 63 fs FWHM, whereas the autocorrelation width with 1 cm of fused silica in

the UV beam is 80 fs FWHM. Due to insu�cient sampling, the maximum order of

processes involved cannot be de�nitively determined from the Fourier transformed

data. However, since the ratio between peak value and baseline is higher than 1:32,

contributions from the fourth order are assumed. This results in an upper limit for

the pulse duration of 60 fs without additional material and 76 fs with 1 cm of fused

silica.
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Figure 5.11.: FRIAC traces with and without 1 cm of fused silica in the beam path. The
traces su�er from under-sampling due to the long delay values.

Table 5.2.: Evaluation of the FRIAC traces in Figure 5.11. The pulse duration is com-
puted assuming a pure fourth-order process. This value serves as an upper
limit.

no material 1 cm fused silica

extracted IAC FWHM (fs) 63± 2 79, 8± 0.8

calculated pulse FWHM (fs) ≤ (60± 2) ≤ (76.0± 0.8)

expected GDD (fs2) 0 976

expected pulse FWHM (fs) 60± 2 75.0± 0.8

Since the GVD of fused silica is approximately 97.6 fs2/mm for 400 nm radiation

[83], the total GDD expected from 1 cm propagation is 976 fs2. Assuming a 60 fs

input pulse, the expected duration behind the material is 75 fs, which is slightly

shorter than the extracted values from the measurement but reasonably close to the

expected value and well within the range of uncertainty.
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5.2. Fringe-resolved interferometric autocorrelation

Dispersion manipulation in the 4f setup

To investigate the e�ect of detuning the 4f setup in the experiment and compare it

to the numerical simulations presented in Chapter 4.3, FRIAC traces are recorded

for di�erent lens positions. Three exemplary traces are depicted in Figure 5.12,

while the corresponding evaluation results are provided in Table 5.3.
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Figure 5.12.: FRIAC traces for three di�erent lens positions in the 4f setup.

Table 5.3.: Evaluation of the FRIAC traces for three di�erent lens positions together with
the expected GDD values (taken from Figure 4.19) and calculated GDD for
the extracted pulse lengths, assuming 0 fs2 for the non-detuned scenario.

non-detuned + 1mm + 2mm

extracted IAC FWHM (fs) 46.8± 0.8 61.6± 0.8 73± 1

calculated pulse FWHM (fs) ≤ (44.6± 0.8) ≤ (58.7± 0.8) ≤ (69± 1)

expected GDD (fs2) 0 441 882

expected pulse FWHM (fs) 44.6± 0.8 52.4± 0.5 70.7± 0.3

The evaluation of the measurements for three lens position reveals signi�cant pulse

broadening for the detuned cases. Qualitatively, the observed behavior aligns well

with the simulations. However, the elongated pulse for 1mm lens detuning is slightly

longer than expected.

Furthermore, a certain asymmetry is apparent in the FRIAC traces. Since the ideal

autocorrelation signal is expected to be completely symmetric, it is evident that

systematic errors are present in the experimental setup. Possible sources of error

include intensity drifts and pointing instabilities during a single delay scan, which

typically lasts half an hour.
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5. UV pulse characterization

5.2.5. Spectral selection

As discussed in Chapter 3.4, the 4f setup allows for the manipulation of pulses in the

frequency domain by inserting a simple mask between the two mirrors of the retro-

re�ector, thereby blocking a part of the spectrum. Figure 5.13 provides a schematic

depiction of this geometry. Figure 5.14 displays second-order FRIAC traces for a

pulse with a full spectrum, as well as two pulses with modi�ed spectra. Additionally,

the corresponding UV spectra are shown.

Figure 5.13.: Geometry of the 4f setup together with a mask to cut the spectrum. The
position of the mask is denoted by the two arrows at the retro-re�ector.

Figure 5.14.: Second-order FRIAC traces recorded behind the 4f setup together with the
corresponding UV spectra. Top: shortest pulse, full spectrum (no mask).
Middle: longer pulse, red part of the spectrum. Bottom: longer pulse, blue
part of the spectrum.
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5.2. Fringe-resolved interferometric autocorrelation

Table 5.4.: Evaluation of the FRIAC traces in Figure 5.14.

top middle bottom

extracted IAC FWHM (fs) 13.5± 0.3 31± 1 31.3± 0.8

calculated pulse FWHM (fs) 9.6± 0.2 22.1± 0.7 22.1± 0.6

central wavelength (nm) ≈ 400 ≈ 405 ≈ 395

1/e2 spectral width (nm) ≈ 29.3 ≈ 16.6 ≈ 16.3

The FRIAC measurement with the full spectrum was previously shown along with

the corresponding FFT in Figure 5.9. Since the pulse is relatively close to the trans-

form limit, it is expected that measurements with the cut spectra would exhibit a

longer pulse duration, which is indeed observed in the experiment. Furthermore, the

shape of the FRIAC traces is slightly altered for the cut spectra, revealing wings with

fading fringes on both sides, which is an indication for dispersion (see Chapter 2.4.3).

Calculating the TBP to determine the quality of pulse compression is not straightfor-

ward in this case, primarily because the spectra generated by SPM do not resemble a

Gaussian distribution. To characterize and compare the spectra, the 1/e2 de�nition

is chosen to calculate the spectral widths and central wavelengths in Table 5.4. De-

spite the cut spectral width being slightly broader than half the full spectral width

for both cases, the pulse duration is slightly longer than double the value of the

short pulse. This observation con�rms that the spectral phase is not perfectly �at

for the cut spectra shown in Figure 5.14 (middle and bottom).

However, it is feasible to tune the central wavelength of the UV over an interval of

10 nm, while maintaining a reasonably short pulse duration of 22 fs FWHM. For the

full spectrum, pulses as short as 10 fs FWHM are obtained.

These UV pulses are utilized to generate wavelength-tunable VUV radiation by

third-harmonic generation. In Figure 3.9, beam waist scans around the focus for

THG generation together with calculated M2 values are presented. An experimental

characterization of the resulting VUV pulses is provided in the following chapter.
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6. VUV pulse characterization

As described in Chapter 3.5, the VUV spectral range is reached through THG of UV

pulses in a gas cell. Given the signi�cantly enhanced performance of the pulsed gas

cell compared to the static gas cell, all pulses analyzed in this chapter are generated

using the pulsed version.

The nonlinear media utilized for frequency conversion in this chapter are argon

and xenon, as these gases show the highest conversion e�ciency in the experiment.

Unfortunately, the refractive index model used in the simulations introduced in

Chapter 4.2 is not valid in the VUV range for these gases. Especially for xenon,

with a resonance line at 129.6 nm [48], the linear and nonlinear refractive index in

the VUV is not straightforward to implement in the pulse propagation provided by

Luna.jl [57]. Therefore, a direct comparison between simulation and experiment is

beyond the scope of this work.

6.1. Energy measurement

An absolute measurement of photon numbers in the VUV spectral range is challeng-

ing since it requires either e�cient separation from the much more intense 400 nm

fundamental radiation or a detection scheme that is exclusively sensitive to VUV

wavelengths. Separating the 400 nm radiation from the generated VUV pulses for

conventional energy measurements, such as using a photodiode, is di�cult due to

the high sensitivity of most detectors to stray UV light. Additionally, each re�ection

at dielectric mirrors or silicon Brewster plates used for wavelength separation results

in signi�cant loss in the VUV range. Therefore, a technique that is insensitive to

UV radiation and relies on single-photon absorption is chosen.

Figure 6.1 presents a schematic depiction of the detection tube, which contains a

gaseous medium that converts absorbed VUV radiation into a measurable current

via photoionization. The tube is installed at a distance of one meter from the origin

of the harmonic conversion to prevent material damage and unwanted multiphoton

processes due to high UV intensities. The gas is con�ned by thin magnesium �uo-

ride windows (1.5mm) at both the entrance and exit side of the tube. Iodobenzene

molecules are ionized by single-photon absorption of VUV photons. A 12.5 cm long
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6. VUV pulse characterization

wire, positioned parallel to the beam within the tube, collects the resulting charged

particles. The detection of either electrons or ions is controlled by the polarity of

the applied bias voltage (see Figure 6.2). Valves at the gas inlet and outlet ensure a

steady �ow of gas at a constant pressure, thereby maintaining a continuous supply

of non-ionized particles.

Iodobenzene is selected due to its ionization energy of 8.8 eV [84], which is low

enough to permit single-photon absorption of the VUV light, while being su�ciently

high to prevent two-photon absorption of the UV radiation. The absorption cross

section of iodobenzene at 133 nm is 75Mb [85].

I(z)

z=0 z=d

C6H5I (C6H5I)+

e-

gas in

gas out

Ubias

Figure 6.1.: Detection tube for VUV pulse energy measurement via absorption in
iodobenzene. I(z) is the light intensity and d is the wire length. In the
illustrated case, a positive bias voltage is applied to the wire to detect elec-
trons.

Due to absorption, the VUV intensity and photon number exhibit an exponential

decay. The photon number N as a function of the propagation distance z is given

by

N(z) = N0e
−ρσz, (6.1)

where N0 denotes the initial photon number, ρ represents the particle density and σ

is the absorption cross section. The number of absorbed photons ∆N is expressed

as

∆N = N(0)−N(L) = N0(1− e−ρσd), (6.2)

where d is the length of the wire. When no processes other than single-photon

absorption by VUV radiation are involved, the number of charged particles detected

equals ∆N . This results in

∆N =

∣∣∣∣Qq
∣∣∣∣ , (6.3)

where Q denotes the detected charge for a single pulse and q represents the elemen-

tary charge. Combining Equation (6.2) and Equation (6.3) yields

N0 =
∆N

(1− e−ρσd)
=

Q

q(1− e−ρσd)
. (6.4)
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6.1. Energy measurement

The pulse energy E is computed by multiplying the number of photons with the

photon energy

E = hνN0 = 9.3 eV × Q

q(1− e−ρσd)
, (6.5)

where h is the Planck constant, ν denotes the light frequency and together they

result in the VUV photon energy of 9.3 eV.

The current from the wire is measured using a variable gain sub-femtoampere current

ampli�er (DDPCA-300, FEMTO) connected to a digital oscilloscope (WaveRunner,

LeCroy). Due to the relatively low repetition rate of 100Hz, single-shot resolution

is achieved. Integrating the measured data directly yields the accumulated charge

for a single pulse.

6.1.1. Bias voltage

Figure 6.2 presents measured data for various bias voltages. Positive voltages corre-

spond to electron detection, whereas negative voltages correspond to ion detection.

Figure 6.3 shows the computed charge as a function of the bias voltage.

Overall, the signal behavior in Figure 6.2 exhibits symmetry with respect to the

applied bias voltage. As the absolute value of the bias voltage increases, the peak

height correspondingly increases. Moreover, higher bias voltages lead to narrower

peaks due to the increased velocities of the charged particles. Interestingly, even at

zero bias voltage, a small positive signal is observed, likely attributed to photoelec-

tron emission from the wire due to scattered VUV light.
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Figure 6.2.: Bias voltage scan. The ampli�er setting is 107 V/A, and the data is averaged
over 20 shots. The UV energy is 0.9mJ, and the backing pressure of the
pulsed nozzle is 220mbar argon.
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Figure 6.3.: Accumulated charge for a single pulse as a function of the bias voltage,
computed by integrating the data from Figure 6.2.

Regarding the charge accumulated for a single pulse, which is depicted in Figure 6.3,

the dependence on bias voltage di�ers slightly between the detection of electrons and

ions. For ion detection, the charge increases more gradually with higher bias volt-

ages and does not appear to approach saturation within the analyzed voltage range.

In contrast, for electron detection, the increase in charge is much steeper at lower

voltages and close to a bias voltage of 10V, the accumulated charge for electron

detection seems to be saturated.

The di�erent characteristics observed for electrons and ions are most likely at-

tributed to the signi�cantly higher drift velocity and longer mean free path of elec-

trons. Consequently, electron detection using a positive bias voltage of 10.5V was

chosen for the energy measurements.

6.1.2. Pressure dependence

To further investigate the performance of the detector, measurements for various

iodobenzene pressures are conducted for ion and electron detection. Figure 6.4

presents the data obtained for ion detection, while the data for electron detection is

shown in Figure 6.5.

In both cases, the curves recorded at higher pressures exhibit signi�cant temporal

broadening. Additionally, these broadened curves show a saturation e�ect in charge

at higher pressures. A certain saturation e�ect is anticipated due to the accelerated

exponential decay of the VUV photon number in the gas at increased particle den-

sities. However, this phenomenon occurs at lower pressures than expected and is

probably attributed to collisions between the particles at higher densities or space

charge e�ects at the wire.
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6.1. Energy measurement

Since the measured curves do not exhibit unwanted broadening e�ects in the lower

pressure range, relatively low iodobenzene pressures are chosen. In this range, an

almost linear relationship between the computed charge and the applied iodobenzene

pressure is expected and observed (see Figure 6.6 and Figure 6.7). However, the

extrapolation of this linear behavior does not converge to zero at zero iodobenzene

pressure. This o�set will be analyzed and discussed in the following section.
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Figure 6.4.: Scan of the iodobenzene pressure for a bias voltage of −10V. The ampli�er
settings and experimental parameters are the same as in Figure 6.2.
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Figure 6.5.: Scan of the iodobenzene pressure for a bias voltage of 10.5V. The ampli�er
setting is 106 V/A and the data is averaged over 20 shots. The UV energy
is 1.1mJ and the argon backing pressure of the nozzle is 160mbar.
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6.1.3. THG in argon

Figure 6.6 presents measured data for optimized THG conditions in argon. Prior to

the measurements, the lens position, rotation and tilt in the 4f setup are adjusted

to maximize the output signal. Additionally, the backing pressure of the gas and

the voltage on the piezo opening the nozzle are carefully optimized.
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Figure 6.6.: Scan of the iodobenzene pressure for optimized THG conditions in argon.
The UV energy is 1mJ and the backing pressure of the pulsed nozzle is
290mbar. The ampli�er setting is 106 V/A, the bias voltage is 10.5V and
the data is averaged over 20 shots.

To determine the VUV pulse energy, a linear �t is applied to the accumulated charge

for a single pulse depending on the iodobenzene pressure, which is shown in Fig-

ure 6.6 on the right. The �t reveals a pressure o�set of 2× 10−3 mbar, likely caused

by the positioning of the gauge, which is not located directly within the detection

tube but in the gas outlet line, as depicted in Figure 6.1.

Subtracting the retrieved o�set from the measured pressure values and using Equa-

tion (6.5), yields a pulse energy of approximately 200 nJ in the detection tube.

Table 6.1 summarizes the results of the calculation. The particle density in iodoben-

zene was modeled with the van der Waals equation using a = 33.53 L2bar/mol2 and

b = 0.1658 L/mol [82].

Table 6.1.: Evaluation of the VUV energy measurement for THG in argon (Figure 6.6).

iodobenzene pressure (10−4 mbar) 0.73 2.68 4.00 4.50 5.11

measured charge (10−10 C) 0.35 1.38 2.03 2.42 2.51

energy (10−7 J) 1.95 2.08 2.06 2.18 2.00

mean energy (10−7 J) 2.05± 0.09
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6.1. Energy measurement

To compute the conversion e�ciency, the UV pulse energy in the gas cell is calculated

from the values measured behind the HCF, taking the transmission of the 4f setup

(73%) and the re�ections at the subsequent steering mirrors (4×99.5%) and focusing

mirror (90%) into account. The total VUV energy is calculated from the measured

pulse energy in the tube, considering the re�ection (5%) and absorption (23%) of the

magnesium �uoride window. For the UV, one obtains a scaling factor of 0.64 due to

known losses between UV pulse energy measurement and harmonic generation, and

for the VUV, one obtains a scaling factor of 1.3 due to known losses at the window

between harmonic generation and VUV pulse energy measurement. The resulting

UV energy is 0.64mJ, the VUV energy is 267 nJ, and the conversion e�ciency is

4.2× 10−4.

6.1.4. THG in xenon

Figure 6.7 presents measured data for THG in xenon. It is worth noting that the

conditions were not optimized to the same degree as in the argon measurement

shown in Figure 6.6. Similar to the previous case, the linear �t shows a pressure

o�set of 1.99×10−3 mbar, which is subtracted from the measured pressure values for

further analysis. The evaluation reveals a pulse energy of approximately 220 nJ in

the detection tube, corresponding to 286 nJ in the gas cell and a conversion e�ciency

of 3.7 × 10−4. This is similar to the previous results in argon despite less carefully

optimized THG parameters. The calculation results are given in Table 6.2.
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Figure 6.7.: Scan of the iodobenzene pressure for THG in xenon. The UV energy is 1.2mJ
and the backing pressure of the pulsed nozzle is 130mbar. The ampli�er
settings are the same as in Figure 6.6.
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Table 6.2.: Evaluation of the VUV energy measurement for THG in xenon (Figure 6.7).

iodobenzene pressure (10−4 mbar) 0.48 0.84 2.34 2.56 3.84

measured charge (10−10 C) 0.335 0.355 1.155 1.471 2.100

energy (10−7 J) 2.82 1.71 2.00 2.33 2.22

mean energy (10−7 J) 2.2± 0.4

Since the iodobenzene pressure scans are fairly time and xenon consuming � two

scarce resources towards the end of this PhD project � single measurements for

further optimized THG in xenon are conducted under the same conditions as in

Figure 6.7, using the retrieved value for the pressure o�set in the detection tube.

Figure 6.8 presents single-shot data of multiple pulses, whereas Figure 6.9 shows a

measurement averaged over 100 shots.
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Figure 6.8.: Single-shot measurement of 20 VUV pulses for optimized THG in xenon.
The UV energy is 1.4mJ and the backing pressure of the pulsed nozzle is
200mbar. The ampli�er setting is 106 V/A and the bias voltage is 10.5V.
The o�set-subtracted iodobenzene pressure in the detection tube is 2.03 ×
10−4 mbar.
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Figure 6.9.: Energy measurement for optimized THG in xenon, averaged over 100 shots.
The settings are the same as in Figure 6.8.
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6.1. Energy measurement

The mean integrated charge and corresponding energy for the pulses in Figure 6.8

is given in Table 6.3, along with the values from the averaged measurement shown

in Figure 6.9. The mean energy of the pulses in Figure 6.8 is (1.17±0.08) µJ, which

aligns well with the value of 1.23µJ for the averaged measurement. The resulting

conversion e�ciency is 1.7 × 10−3, with a UV energy of 0.9mJ and a mean VUV

energy of 1.5 µJ in the gas cell.

Table 6.3.: Evaluation of the VUV energy measurement for optimized THG in xenon.

Figure 6.8 charge (10−10 C) energy (10−6 J)

mean 5.75 1.17

std. dev. 0.41 0.08

Figure 6.9 100 shot avg. 6.07 1.23
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6.2. Spectral analysis

To investigate the spectral characteristics of the harmonic radiation generated in

the gas cell, di�raction at a re�ection grating was utilized. Figure 6.10 shows a

schematic depiction of the experimental setup. The grating, coated with aluminum

and featuring a groove density of 1200 lines/mm, is positioned one meter from the

gas cell, which is operated with xenon. The di�racted light arrives at a phosphor

screen (P43). The screen is imaged by a CCD camera. To eliminate UV stray light,

a long-pass �lter (GG455, Schott) is placed between the screen and the camera. The

zero di�raction order and the minus �rst di�raction order of the UV radiation are

prevented from hitting the phosphor screen using beam blocks. To calibrate the

spectrum, both beam blocks can be removed to allow imaging of the UV radiation.

The entire setup is placed in a vacuum environment, only the camera is located

outside the vacuum chamber behind a window.

Figure 6.10.: Geometry of the experimental setup for spectral analysis of the VUV light.

6.2.1. Beam pro�le

Figure 6.11 presents a background-subtracted image of the minus �rst di�raction

order, originating from the full beam pro�le of the VUV radiation. In addition to the

prominent pro�le of the third harmonic (133 nm), the �fth harmonic of the 400 nm

light (80 nm) is also visible. Since dispersion a�ects only the horizontal direction in

Figure 6.11, the vertical intensity distribution, depicted in Figure 6.12, corresponds

to the vertical VUV beam pro�le, assuming a linear behavior of the phosphor screen.

3rd harmonic 5th harmonic
(faint)

zero order
(blocked)

Figure 6.11.: Camera image of the minus �rst di�raction order of the VUV radiation
without slit. The image is background-subtracted and the colors are in-
verted for better visibility.
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Figure 6.12.: Vertical cut through the harmonic beam pro�les on the phosphor screen
together with Gaussian �t functions. The distance axis is calibrated using
the known diameter of the phosphor screen.

The vertical cut through the beam pro�le depicted in Figure 6.12 displays a well-

behaved Gaussian-like shape for the 133 nm radiation. This observation suggests

that the process di�ers from the six-wave mixing reported by Trabs et al. [27],

which would be characterized by a ring shaped pro�le.

The Gaussian �t functions in Figure 6.12 on the right yield a FWHM diameter

of 1.6mm for the pro�le of the third harmonic and 1.3mm for the pro�le of the

�fth harmonic, which corresponds to 1/e2 beam radii of w3rd = 1.4mm and w5th =

1.1mm, respectively. Together with a propagation distance of approximately 105 cm

from the center of the gas cell, an estimate for the divergence half angles of the VUV

beams is given by Θ3rd ≈ 1.3mrad and Θ5th ≈ 1.1mrad. From the data presented

in Figure 3.9 on the left, one obtains a divergence half angle of the fundamental

400 nm radiation of Θ400 = M2λ400/πw400 ≈ 2.6mrad, which is signi�cantly larger

than the value for the harmonic beams.

6.2.2. Quantitative analysis

To quantitatively analyze the spectral characteristics, a 60µm slit is positioned in

front of the grating. This setup increases the spectral resolution by avoiding con-

volution with the spatial beam pro�le. Due to the signi�cantly higher intensity of

the zero di�raction order compared to the other orders, two images are captured

with di�erent acquisition times and then merged to form a complete dataset of the

di�racted light. Figure 6.13 displays the merged image along with the integrated

intensity distribution. The spectrogram features four distinct peaks corresponding

to the zero di�raction order, the minus �rst di�raction order of the 400 nm funda-

mental, the minus �rst order the third harmonic, and the minus �rst order of the

�fth harmonic.
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Figure 6.13.: Merged image of the di�racted light on the phosphor screen together with
the integrated intensity distribution.

Using the geometry of the setup � speci�cally, the incidence angle on the grating (α =

65◦) and the angle between the phosphor and the grating (θ = 50◦) � the wavelengths

of these harmonic peaks can be calculated by calibrating the measurement with the

known wavelength of the UV radiation. Figure 6.14 depicts a sketch of the geometry

with the relevant angles.
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Figure 6.14.: Geometry of grating and screen with the relevant angles for the calculation.

The di�raction angle of the UV radiation, β, is calculated as

β = − arcsin

(
λ0
g

− sin(α)

)
= 25.2◦, (6.6)

where λ0 = 400 nm is the fundamental wavelength and g = 1/1200 mm is the grat-

ing period.
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6.2. Spectral analysis

The angle between the zero di�raction order and the minus �rst order of the funda-

mental, γ, and the angles γ′ and γ′′ (see Figure 6.14) are given by

γ = α− β = 39.8◦, γ′ = 90◦ + β − θ = 65.2◦, γ′′ = 180◦ − γ − γ′ = 75◦. (6.7)

To determine the angle between the zero di�raction order and the minus �rst order

of the harmonics, δ, using distances a and b on the phosphor screen, the law of sines

is applied twice and solved for δ

sin(γ′)

sin(γ)
(a+ b) =

sin(180◦ − γ′′ − δ)

sin(δ)
b → δ3rd = 16.7◦, δ5th = 10.9◦. (6.8)

Finally, the wavelength of the harmonic peaks λH is computed as

λH = (sin(α)− sin(α− δ)) g. (6.9)

The resulting values for the wavelength are (133±3) nm for the third harmonic and

(80± 2) nm for the �fth harmonic, assuming a precision of one degree for the angles

α and θ.

6.2.3. Relative wavelength shift

As detailed in Chapter 5.2.5, the central wavelength of the UV may be adjusted

over an interval of 10 nm while maintaining a pulse duration of 22 fs FWHM. In

the following, the spectral shift in the generated harmonic radiation will be analyzed.

Figure 6.15 illustrates the spectral distribution of the fundamental used for THG in

the subsequent measurements under three conditions: full spectrum, only the blue

part of the spectrum, and only the red part of the spectrum. Similar to Figure 5.14,

the shift in central wavelength is approximately 10 nm.
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Figure 6.15.: Spectrum of the fundamental UV radiation. The full spectrum is depicted
together with the cut spectra.
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6. VUV pulse characterization

To enhance the spectral resolution and accurately record the wavelength shift in the

harmonic radiation, the distance between the grating and the phosphor screen is

increased. Consequently, the reference points from the fundamental 400 nm radia-

tion are lost. However, since the objective is to measure relative wavelength shifts,

the only additional information needed is the distance between screen and grating,

which is 210mm for the subsequent measurements, and an image of a known cali-

bration target at the screen position to enable pixel-to-distance conversion.

Figure 6.16 presents the recorded images of the minus �rst di�raction order of the

third harmonic on the left and the integrated spectral distribution on the right. To

convert the x-axis from distance on the screen to wavelength shift, a linear approxi-

mation is applied due to the small di�erence in di�raction angle. Gaussian functions

are �tted to the data to determine the central wavelength di�erences for the blue-

and red-shifted spectra. The retrieved values are −1.4 nm and 1.4 nm, respectively,

resulting in an overall shift of 2.8 nm between the two cut spectra. This value is

only slightly lower than the expected value of 10 nm/3 = 3.33 nm.

Similar to the third harmonic in Figure 6.16, Figure 6.17 presents the recorded

images of the minus �rst di�raction order of the �fth harmonic. Again, Gaussian

functions are �tted to the data to determine the di�erence in central wavelength for

the blue- and the red-shifted spectra. The computed values are −0.3 nm and 0.2 nm,

respectively, resulting in an overall shift of 0.5 nm between the two cut spectra. This

value is notably lower than the expected value of 10 nm/5 = 2 nm.

Naturally, the harmonic intensity is signi�cantly reduced for the cut spectra. This

reduction is caused not only by the decreased fundamental energy, due to blocking

a portion of the beam, but also by the longer duration of the fundamental pulse

resulting from the narrower spectral width.
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Figure 6.16.: Image of the minus �rst di�raction order of the third harmonic on the
phosphor screen (left) and integrated spectral distribution (right).
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Figure 6.17.: Image of the minus �rst di�raction order of the �fth harmonic on the phos-
phor screen (left) and integrated spectral distribution (right).
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7. Discussion & Outlook

In this chapter, the experimental results obtained in Chapters 5 and 6 are sum-

marized and compared with the theoretical predictions and simulations established

in Chapters 2 and 4. Subsequently, a few exemplary applications of the ultrashort

pulsed light source in the VUV are presented, and possibilities for optimizing the

experimental setup are considered.

TheUV pulses characterized in Chapter 5 were found to be as short as 10 fs FWHM,

employing the FRIAC technique. Unlike earlier experiments utilizing the same

double-comb mirror structure as a split-and-delay unit, the detection scheme is based

on solid-state photoelectron emission from a platinum wire. Notably, the order of

the nonlinear detection process scales with the light intensity incident on the plat-

inum wire. This phenomenon might be explained by above-threshold photoemission

[86�90], which is the solid-state analogue to above-threshold ionization in molecules

[91, 92]. To validate this hypothesis, an analysis of the kinetic energy distribution of

the emitted photoelectrons would be required. Similar FRIAC experiments, using

the same detection unit but at lower light intensities, have been conducted with the

third harmonic of a Ti:Sa laser (≈ 260 nm) (unpublished, UV source described in

[93]) and with RDWs generated in a HCF setup (≈ 220 nm) [94]. These measure-

ments did not exhibit dominant higher-order detection processes, likely due to their

signi�cantly lower peak power density.

Wavelength-tunability of the UV pulses was achieved through spectral selection in

the Fourier plane of the 4f geometry, as described in Chapter 3.4. While maintaining

a reasonably short pulse duration of 22 fs FWHM, the central wavelength can be

adjusted over a range of 10 nm, as detailed in Chapter 5.2.5.

TheVUV pulses characterized in Chapter 6 were generated through THG in xenon

and argon. Contrary to the simulations, which predicted helium as the ideal candi-

date due to its favorable ratio of ionization probability to third-order nonlinearity,

xenon exhibited the highest conversion e�ciency in the experiments. However, the

available pumping speed was insu�cient to achieve more than 100mbar backing

pressure for helium, resulting in suboptimal performance. As shown in Chapter 4.2,

optimal conditions were predicted for 1.5 bar of helium.

95



7. Discussion & Outlook

Among the tested noble gases � helium, argon and xenon � all other media have

led to higher VUV yield than helium, as increased backing pressures of up to 1 bar

could be realized. In argon, VUV pulses of approximately 260 nJ were generated

with a conversion e�ciency of 4.2× 10−4 (see Chapter 6.1.3), while xenon produced

VUV pulses of approximately 1.5 µJ with a conversion e�ciency of 1.7 × 10−3 (see

Chapter 6.1.4). The exceptional characteristics of xenon might be attributed to a

resonance line close to 130 nm [48].

The spectral analysis of the VUV radiation in Chapter 6.2.2 con�rmed a central

wavelength of 133 nm (9.32 eV) for the third harmonic and 80 nm (15.5 eV) for the

�fth harmonic, with the �fth harmonic exhibiting signi�cantly lower intensity. The

dispersed beam pro�le observed on a phosphor screen in Chapter 6.2.1 displayed

a well-behaved Gaussian-like shape in the vertical direction. This observation sug-

gests that the process di�ers from the six-wave mixing reported by Trabs et al. [27],

which is characterized by a ring shaped pro�le.

The concept of tuning the VUV wavelength by adjusting the fundamental of the

THG was successfully demonstrated in Chapter 6.2.3, with an overall shift of 2.8 nm

(0.19 eV) for the third-harmonic radiation, which is reasonably close to the expected

shift of 3.3 nm (0.23 eV). However, the �fth-harmonic radiation could only be shifted

by 0.5 nm (0.1 eV), which is signi�cantly less than the expected 2 nm (0.38 eV).

A temporal analysis of the VUV pulses has not been performed in this work. Such

an analysis could be conducted similarly to the characterization of the UV pulses,

utilizing the FRIAC technique. However, the detection unit introduced in Chap-

ter 5.2.1 is unsuitable for this purpose, as the photon energy of the VUV radiation

exceeds the work function of any metal. Therefore, a detection scheme based on

two-photon ionization of gases such as argon, krypton or xenon could be employed.

Applications

The ultrashort pulsed source at 133 nm built in this thesis is intended for use in

time-resolved VUV spectroscopy of atomic and molecular systems.

One potential application is the study of VUV photodissociation dynamics of CO2,

a critical process in planetary atmospheres. CO2 has an absorption band centered

around 133 nm, characterized by pronounced vibrational structures [95].

Other interesting target systems include O2 and H2O, which are equally signi�cant

in atmospheric processes. The increased photon energy of 9.3 eV, compared to the

7.7 eV used in previous pump-probe studies [20�22], provides a wider single-photon

ionization window for the probe and thus allows for an extended analysis of the

electronic dynamics.
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Among the various organic compounds available for study, polycyclic aromatic hy-

drocarbons (PAHs) are prominent examples. Their ionization energies typically fall

within the VUV range, such as naphthalene with an ionization energy of 8.1 eV or

�uorene with an ionization energy of 7.9 eV [48], which enables single-photon ion-

ization with 9.3 eV.

Optimization

A key challenge in building and operating the experimental setup in this work was

the HCF. Coupling high-power UV pulses into a hollow waveguide limits the feasi-

ble peak power and repetition rate. Additionally, the stretched �ber is quite space-

consuming in the laboratory, as it is 5m long and requires an extra safety distance

for incoupling and outcoupling at both ends to prevent damages on folding mirrors.

With the recent development in multipass cells [96], a more compact and stable

technique for spectral broadening might be a viable option to replace the HCF.

The limiting factor in terms of tunability was the overall spectral width of the funda-

mental. By selecting mirrors that support a larger spectral bandwidth, the spectral

width could be increased at the expense of pulse energy. However, selecting only a

fraction of the spectrum reduces the pulse energy and elongates the pulses in time,

leading to drastically lower conversion e�ciencies to the VUV. Therefore, the gen-

eration of RDWs might o�er a more promising approach for achieving wide tuning

ranges while maintaining reasonable conversion e�ciencies [15].

To improve the numerical simulations of THG using Luna.jl, it is essential to im-

plement a realistic model for the refractive index in the VUV. This is particularly

challenging near resonances, as the framework currently relies on Sellmeier equa-

tions. In the UV, far from resonances, Wanie et al. have demonstrated that the

code is capable of producing qualitatively reliable predictions for THG in argon and

neon [97].
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A. Appendix

A.1. MATLAB code for solving the GNLSE

Since the 2D version of the split-step Fourier MATLAB code is distributed over var-

ious �les, and even the much simpler 1D version exeeds the scope of this appendix,

only the key parts of the 1D code are presented here to illustrate the implementa-

tion. The theory behind the method is described in Chapter 4.1.1.

First, input parameters are given:

5 %% define parameters

6

7 red = f a l s e ; % red i s 800 nm

8 blue = true ; % blue i s 400 nm

9

10 s e l f s t e e p = true ;

11 l o s s = true ;

12

13 s t ep s =2000; % s t ep s in propagat ion d i r e c t i o n

14 L = 5 ; % f i b e r l ength

15

16 T_0 =30*10^=15; % ( temp . ) Pulse l ength [ s ] FWHM

17 Energy =1*10^=3; % pu l s e Energy [ J ]

18

19 p_end = 1 . 5 ; % pre s s in bar at f i b e r output

20 p_in =0; % pre s s in bar at f i b e r output

21

22 a =250*10^=6; % f i b e r core rad iu s [m]

23

24

25 GDD = 0*(10^=15) ^2; %GDD [ s ^2]

26 TOD =0*(10^=15)^3; %TOD [ s ^3]

27 FOD = 0*(10^=15) ^4; %FOD [ s ^4]

Waveguide dispersion, loss coe�cient, nonlinear coe�cient and pressure gradient

are calculated from those input parameters. Subsequently, the numeric grid and the

input �eld for the propagation are de�ned:

146 %% numeric grid

147

148 dL =L/ s t ep s ; % step

149 N=2^12; % #step s

150 dt=T_0*30/N; % timestep

151 t=(=N/2 :N/2=1)*dt ; % time gr id

152

153 df=1/(dt*N) ; % f r e q step

154 f=(=N/2 :N/2=1)*df ; % f r e q g r id

155

111



A. Appendix

156

157 AA=ze ro s (1 ,N) ; %Coef f f o r FFT, iFFT

158 f o r j j =1:N

159 AA( j j )=(=1) .^( j j =1) ;

160 end

161

162 %% input f i e ld fourier=l imit

163

164 A1 = sq r t (P_0) *exp (=1/2*(2* s q r t ( l og (2 ) ) * t /T_0) .^2) ; %Gaussian f i e l d

Thereafter, the operator D is calculated for each propagation step:

223 %% define dispersion

224

225 D=ze ro s ( steps ,N) ;

226 f o r x=1: s t ep s

227

228 D(x , : )=exp (dL/2*(=0.5* alpha (x ) +(0.5*1 i *beta_2 (x ) *(2* pi * f ) .^2)+(1 i *beta_3 (x ) /6*(2* pi

* f ) .^3)+(1 i *beta_4 (x ) / f a c t o r i a l ( 4 ) *(2* pi * f ) .^4)+(1 i *beta_5 (x ) / f a c t o r i a l ( 5 ) *(2*

pi * f ) .^5)+(1 i *beta_6 (x ) / f a c t o r i a l ( 6 ) *(2* pi * f ) .^6) ) ) ;

229 end

Finally, the propagation starts:

238 %% propagation

239 f o r xx=1: s t ep s

240 d i sp ( s t r c a t ( ' s tep ' , num2str ( xx ) , ' o f ' , num2str ( s t ep s ) ) ) %count s t ep s

241 time ( xx )=toc ;

242

243 %% 1/2 disp step

244 F=AA.* f f t s h i f t ( i f f t (A) ) ;

245 A=AA.* f f t s h i f t ( f f t ( (F . * (D(xx , : ) ) ) ) ) ;

246

247 %%NL step

248 der ivat ive_abs=der iv1 ( abs (A) .^2 , dt ) ;

249 der ivat ive_a=der iv1 (A, dt ) ;

250 i f s e l f s t e e p ==true

251 NL(xx , : ) = exp (dL*1 i *gamma(xx ) *( abs (A) ) .^2=(0.5*2*gamma(xx ) . / omega_0*dL) . * (

der ivat ive_abs+conj (A) .* der ivat ive_a ) ) ; % with s e l f =s t eep

252 e l s e

253 NL(xx , : ) = exp (dL*1 i *gamma(xx ) *( abs (A) ) .^2) ; % without s e l f =s t eep

254 end

255 A=NL(xx , : ) .*A;

256

257 %% 1/2 disp step

258 F=AA.* f f t s h i f t ( i f f t (A) ) ;

259 A=AA.* f f t s h i f t ( f f t ( (F . * (D(xx , : ) ) ) ) ) ;

260

261 %% save

262 H=AA.* f f t s h i f t ( i f f t (A) ) *dt*N;

263 Spec ( xx+1 , : )=abs (H) .^2 ;

264 I ( xx+1 , : )=abs (A) .^2 ;

265 Spec_l ( xx+1 , : )=abs (H) .^2*2* pi *c . / lambda .^2 ;

266

267 end

268

269 Energy_test_output=sum( abs (A) .^2) *dt ; %should be Energy

270 Eout = A;

271 Fout = AA.* f f t s h i f t ( i f f t ( Eout ) ) *dt*N;

272 f1 = f + omega_0/(2* pi ) ;

273 lambda=10^9*c . / f 1 ; % [nm]
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Eout and Fout are the output �elds in time and frequency space. I and Spec contain

information about the evolution of the �elds along the propagation.

Thereafter, various di�erent plots are generated, showing the temporal and spectral

distribution as well as the phase of the pulse, as shown in Figures A.1 and A.2.

Figure A.1.: Temporal and spectral distribution of the input pulse (blue) and the output
pulse (red) together with the phase characteristics.

Figure A.2.: Temporal and spectral evolution along the propagation.

113



A. Appendix

A.2. Julia code for THG using Luna.jl

In the following, the the key parts of the code utilizing Luna.jl [57] to simulate THG

are presented. Details about the approach can be found in Chapter 4.2.

First, the input parameters are de�ned:

� �
1 using Luna

2 import Luna.PhysData: wlfreq

3 import FFTW

4 import Luna: Hankel

5 import NumericalIntegration: integrate, SimpsonEven

6

7 gas = :HeJ # options are: HeJ, Ne, Xe, Ar, Kr...

8 pres = 1.5 # maximum pressure in bar

9 low = 0 # minimum pressure in bar

10 τ = 10e-15 # input pulse FWHM in seconds

11 λ0 = 400*1e-9 # input wavelegth in meter

12 w0 = 70e-6 # gaussian beam waist at focus in meter

13 energy = 0.5e-3 # input pulse energy

14 L = 0.01 # length of the gas cell in meter

15 Z=(0, L/2, L) # defining points for presure gradient

16 P=(0,pres,0) # values for pressure gradient

17 R = 1e-3 # radius of the considered volume in meter

18 N = 1024 # number of points in radial direction

19 (coren,dens)=Capillary.gradient(gas,Z,P);� �
Then, the grid is de�ned. Subsequently, the linear and nonlinear response terms

and the input �eld are calculated:

� �
32 ionpot = PhysData.ionisation_potential(gas)

33 ionrate = Ionisation.ionrate_fun!_PPTcached(gas, λ0)

34 responses = (Nonlinear.Kerr_field(PhysData.γ3_gas(gas)),Nonlinear.PlasmaCumtrapz

(grid.to, grid.to, ionrate, ionpot))

35 linop = LinearOps.make_linop(grid, q, coren)

36 normfun = NonlinearRHS.norm_radial(grid, q, coren)

37 inputs = Fields.GaussGaussField(λ0=λ0, τfwhm=τ, energy=energy, w0=w0, propz=-L/2

)� �
Starting the propagation is now straightforward:

� �
42 Luna.run(Eω, grid, linop, transform, FT, output, max_dz=1e-3, init_dz=1e-4)

43 ω = grid.ω

44 t = grid.t

45 zout = output.data["z"]

46 Eout = output.data["Eω"]� �
The stepsize is automatically adjusted. Only an initial value, init_dz, and a max-

imum value, max_dz, are given. To extract the VUV part of the output �eld, a

�lter in Fourier space is applied.
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A.3. Mathematica noteboook for dispersion in the

4f setup

In Chaper 4.3, the simulation of the spectral phase using the optical design package

Optica EM is described. As mentioned before, the code was originally developed by

Armin Azima. Only minor adjustments are made to implement the retro-re�ector

and adjust the dimensions and angles accordingly. In the following, parts of the

Wolfram Mathematica notebook containing the calculations are presented.

First, the wavelength range, the light source, the transmission grating, and the cylin-

drical lens are de�ned:
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Then, the system is virtually assembled and analyzed:

From the path di�erences, the phase is calculated:

From this phase, the derivatives are extracted and the group delay, GDD and TOD

are calculated, as shown in Figure 4.17.
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