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0. Introduction

0.1. Large cardinals from model creation tools
Large cardinals are one of the focal points of set-theoretic research. On the one hand, they
directly advance our mathematical theory of the infinite. As Akihiro Kanamori puts it in
his monograph The Higher Infinite, “large cardinals are the trustees of older traditions in
direct line from Cantor’s original investigation of [...] the transfinite numbers” ([Kan03, p.
XV]). In this vein, for many they provide “natural” additions to Zermelo-Fraenkel set
theory with the axiom of choice (ZFC), which inform understanding of the infinite. On
the other hand, since the initialisation of their modern presentation in the 1960s, large
cardinals have turned out to provide the backbone to the project of gauging the strength
of our mathematical axioms. As a consequence of Gödel’s Incompleteness Theorems,
we cannot hope to ever prove the consistency of foundational mathematical theories.
The best we can do is to establish relative consistency: that under the assumption of
consistency of one theory, we can prove the consistency of another. In that light, one
of the major tasks of set theory is to give a description how the strengths of different
theories relate to each other. Carrying out this project, large cardinals turned out to be
the most useful additions to ZFC. Today, we virtually know of no sensible extension of
ZFC, whose consistency does not follow from the existence of some large cardinal.

Large cardinals are intimately connected to model theory of extensions of first-order
logic, today often dubbed strong logics. In fact, some of the earliest large cardinal axioms
considered posited the existence of so called weakly and strongly compact cardinals.
They can be motivated along the following lines. The probably most important tool in
first-order model theory is the Compactness Theorem. It says that to check satisfiability
of a first-order theory, it is sufficient to check satisfiability of all its finite subtheories.
In 1962, Alfred Tarski reported on a problem he had given to his student William Hanf
about how the Compactness Theorem carries over to infinitary logics (cf. [Tar62]). More
specifically, for an infinite, regular cardinal κ, Tarski and Hanf were interested in the
logic Lκκ, which allows to form conjunctions and disjunctions over sets of formulas and
quantification over strings of variables of length smaller than κ, respectively. Note that in
these terms first-order logic can be denoted as Lωω. The following concepts were raised:

(i) A theory T ⊆ Lκκ is called <κ-satisfiable if all of its < κ-sized subsets have models.

(ii) κ is called strongly compact if it is uncountable and every <κ-satisfiable theory
T ⊆ Lκκ has a model.

(iii) κ is called weakly compact if it is inaccessible and every <κ-satisfiable theory
T ⊆ Lκκ with size |T | = κ has a model.
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Notice that the Compactness Theorem for first-order logic precisely says that ω is strongly
compact, modulo the countability of ω. Soon it was understood that strongly compact
cardinals are measurable, while measurable cardinals are weakly compact. Further, Hanf
obtained the result that below a weakly compact cardinal are many inaccessible cardinals.
This hence answered the question affirmatively, whether the first measurable cardinal is
strictly larger than the first inaccessible, a problem that had been open since Stanisław
Ulam’s initial treatment of measurable cardinals in [Ula30] (cf. [Kan03, Section 4] for
an overview of the history and proofs of the above reported results). Model theory of
strong logics thus proved to provide deep insights into long standing open problems in
set theory.

In the subsequent years after this initial breakthrough, large cardinal axioms started
to be stated as statements about certain elementary embeddings, formalised via the
existence of ultrafilters – and later of extenders – and by the 1980s, these axioms were
established as the yardstick of measuring consistency strengths of strong set-theoretic
assumptions. Nevertheless, model theory of strong logics turned out to be quite flexible,
and many of these axioms were proven to be equivalent to statements about logics
possessing certain model-theoretic properties. This thesis stands in the tradition of this
latter type of research and adds to the theory of relations between large cardinals and
properties of strong logics. We will approach these questions from both angles: providing
model-theoretic characterisations of large cardinal axioms yet unknown to have such
equivalent formulations; and providing the large cardinal strength of properties of logics
where this strength is yet unknown.

Before we step into the technical treatment of our topic in Chapter 1, we give a short
overview of the early development of the field in the 1970s and 1980s. We by no means
claim to give a complete report of the history of relations between large cardinals and
strong logics, but only outline the results most important for this thesis. We assume
here that the reader is familiar with standard large cardinal notions. Should that not be
the case, the relevant definitions can be found in Section 1.3 below. The large cardinal
notions we will briefly consider here are:

(1) Supercompact cardinals.

(2) Extendible and C(n)-extendible cardinals.

(3) Vopěnka’s Principle.

Until recently, properties of logics which were known to be related to large cardinals,
were often of two kinds. On the one hand, compactness properties, like the defining
properties of strongly compact cardinals, generalise the Compactness Theorem to stronger
logics. More specifically, the compactness number of a logic L is the smallest cardinal κ
such that any <κ-satisfiable theory of L is satisfiable. On the other hand, Löwenheim-
Skolem properties generalise another of the most prominent theorems of first-order model
theory: the Löwenheim-Skolem Theorem says (in one version) that any structure in a
countable vocabulary has a countable elementary substructure. Similarly, the Löwenheim-
Skolem-Tarski (LST) number of a logic L is (in one version) the smallest cardinal κ such
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that any structure in a vocabulary of size < κ has a substructure of size < κ, which is an
elementary substructure regarding the logic L. In 1971, Menachem Magidor showed that
the smallest supercompact cardinal can be characterised as the LST number of second-
order logic L2, and further, that the smallest extendible cardinal can be characterised as
the compactness number of L2 (for both results cf. [Mag71]).

Miroslav Benda considered more complicated forms of compactness properties. Com-
pactness for type omission provides models of a large theory omitting a large type,
by models of small parts of the theory omitting small parts of the type. In 1976,
Benda showed that κ being a supercompact cardinal is equivalent to Lκκ having certain
omitting-types-compactness properties (cf. [Ben78]).

A parallel development that related model theory of strong logics with set theory was
the comparison of definability in set theory and definability by strong logics carried out
by Jouko Väänänen. He showed that for some logics, the classes of structures which are
definable by them correspond precisely to the classes of structures definable by some
level of the Lévy hierarchy, and gave this situation the name symbiosis. Importantly, he
introduced sort logics. These are extensions of second-order logic, graded by the natural
numbers, and the n-th level Ls,n is able to define the classes which are Σn ∪Πn definable
in the Lévy hierarchy.

This early history of relating large cardinals and model theory culminated in two
results by Jonathan Stavi and Johann Makowsky. Stavi showed that the large cardinal
axiom schema known as Vopěnka’s Principle (VP) is equivalent to the axiom schema:

“Every logic has an LST number.”

Stavi never published his result, but it can be found in [MV11, Theorem 6]. Similarly,
Makowsky showed in 1985 (cf. [Mak85]) that VP is equivalent to the axiom schema:

“Every logic has a compactness number.”

In particular, VP can be seen as a bound on the possible large cardinal strengths of
these types of properties. For a long time it therefore looked like large cardinal axioms
with higher strength than VP, like, for example, the existence of huge cardinals, were
out of reach of model theoretic means. We will see below that this is not the case, as
recent results showed that model theory can indeed provide such strong assumptions.
Nevertheless, it took around thirty years until advancements related to questions of this
thesis picked up pace again.

One major infusion that allowed to systematise the study of model theory of strong
logics came from the outside of it. In 2012, Joan Bagaria introduced the so called C(n)-
cardinals (cf. [Bag12]), for a natural number n. The C(n)-version of some large cardinal
property P often provides natural strengthenings of P . Bagaria showed that considering
C(n)-extendible cardinals provides major insights into the structure of Vopěnka’s Principle.

Considering VP’s equivalences to statements about properties of logics, one might
expect that one could undergo an analysis similar to Bagaria’s, providing insights into
the structure of the existence of compactness numbers for every logic. And indeed, Will
Boney showed in [Bon20] that the smallest C(n)-extendible cardinal gives us precisely the
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compactness number for Väänänen’s sort logic Ls,n. We will see that this is a pattern.
Several properties of logics stratify themselves along the lines of the C(n)-extendible
cardinals. Moreover, other large cardinals that can be varied via relations to the class
C(n) provide other such stratifications of model-theoretic properties in other regions of
the large cardinal hierarchy.

What is the reason that properties of strong logics are systematically related to large
cardinals? Results from first-order model theory (for example, the Compactness Theorem
and the Löwenheim-Skolem Theorems) can be seen as model creation tools. Given
some first-order theory, they provide new models of this theory, often with certain
desired properties. The higher ranks of the consistency strength hierarchy usually state
the existence of large cardinals which are witnessed by some elementary embedding
j : N → M between transitive and, in particular, well-founded structures. The model
creation tools from first-order model theory can provide elementary embeddings, namely
when the theory we are building a new model of is some elementary diagram. However, as
first-order logic cannot define well-foundedness, the elementary embeddings we get from
first-order model theory usually do not witness the existence of any large cardinal. Here
strong logics come into play. In many extensions of first-order logic, well-foundedness is
expressible. And hence, model creation tools that provide models of theories of stronger
logics do imply the existence of the correct type of elementary embeddings between
transitive structures. Moreover, many strong large cardinal assumptions require more
and more properties of the target M of some witnessing elementary embedding as above.
And often, the required properties are expressible in some strong logic. In many cases,
models of theories of strong logics are thus exactly the type of objects we require for the
existence of some large cardinal.

0.2. Overview of the dissertation
This dissertation operates at the intersection of two areas of mathematical logic, namely
the theory of large cardinals, and abstract model theory. While the former one is a
subdiscipline of set theory, the latter one could be viewed as studying model-theoretic
notions, in particular for extensions of first-order logic also known as strong logics, by
set-theoretic means. Accordingly, our perspective is mostly that of a set theorist, and
we assume familiarity with standard set-theoretic notions and techniques, like the most
common large cardinal notions (inaccessibility, measurability, supercompactness, etc.) or
forcing, as can be found in textbooks such as [Jec03,Kan03].

Chapter 1 will review many notions and results from the literature necessary for the
other chapters of the thesis. In Section 1.1, we will review some very basic concepts from
set theory which are crucial throughout. While we imagine that most readers will have
seen systems such as second-order logic, we do not assume familiarity with abstract model
theory (the treatment of logics as abstract objects of study). We will therefore consider
its basic setup in Section 1.2. We also review most of the concrete logics we will deal with
(Section 1.2.2), including a thorough treatment of sort logic (Section 1.2.4). Section 1.3
reviews the most important large cardinal notions we will consider. It can also be read as
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a reference to classical results about connections between large cardinals and properties
of strong logics, which we will point out going along. The subsequent chapters all make
reference to the concepts and notation introduced in Chapter 1. Besides that, while they
sometimes make reference to notions and results treated elsewhere, by and large they can
be read independently of each other. As an exception to this rule, before reading Section
4.8 the reader should consult Section 3.2, and possibly Sections 3.3 and 3.5. For Section
5.4 the reader should further be aware of some of the material on Πn-strong cardinals
discussed in Sections 2.3.1 and 2.3.2.

Chapter 2 studies compactness properties involving Henkin models of an abstract logic
L. We introduce the concept of a strong Henkin model, building on a weaker notion we will
call weak Henkin models, which was considered in [BDGM24]. Compactness properties
involving the latter notion are known to characterise strong and Woodin cardinals. In
Section 2.2, we show that compactness properties for our stronger notion can characterise
stronger large cardinals, namely supercompact cardinals when considering second-order
logic (Theorem 2.2.4), C(n)-extendible cardinals when considering sort logic (Theorem
2.2.8), and Vopěnka’s Principle (VP) (Corollary 2.2.12). In Section 2.3, we study further
applications of weak Henkin models. We consider a weakening of VP known as weak
Vopěnka’s Principle (WVP), introduced in [ART88]. While VP was known to have
model-theoretic characterisations since the 1980’s, whether the same is true for WVP has
been open. Recently, WVP was shown to be connected to so-called Πn-strong cardinals
(cf. [BW23]). We show that compactness properties for weak Henkin models of sort logic
can characterise Πn-strong cardinals (Theorem 2.3.6), and as a result WVP (Corollary
2.3.11). We further give some other applications of compactness properties for weak
Henkin models to give characterisations of cardinals which are jointly Πn-strong and
strongly compact (Theorem 2.3.25), and of superstrong cardinals (Theorem 2.3.28).

Chapter 3 introduces the new notion of cardinal correctly extendible cardinals and
some of its variants. They are motivated by relations to compactness cardinals of the
equicardinality logic L(I) we prove to hold in Section 3.5, and to upward Löwenheim-
Skolem-Tarski (ULST) numbers of L(I) considered in Chapter 4, Section 4.8. Sections 3.3
and 3.4 analyse how cardinal correctly extendible cardinals relate to strongly compact,
supercompact, and extendible cardinals. In particular, we observe some interesting
interaction between extendible cardinals and the inner model HOD, by showing that
under certain assumptions on the relation between the universe and HOD, the smallest
extendible cardinal may consistently cease to be extendible in HOD while preserving its
cardinal correct extendibility (Theorem 3.4.10 and Corollary 3.4.14).

Chapter 4 considers ULST numbers, which codify how variants of the upward Löwenheim-
Skolem Theorem hold for strong logics. They were introduced in [GKV20]. The authors
showed first results that the ULST number of second-order logic is partially extendible.
We confirm their conjecture that the ULST number of second-order logic is precisely
the first extendible cardinal (Theorem 4.5.1). We introduce the stronger notion of
strong ULST (SULST) numbers and analyse the connections between ULST and SULST
numbers of several logics and large cardinals. The logics and large cardinals we relate
include the well-foundedness logic and measurable cardinals (Corollary 4.4.3), sort logics

13



and C(n)-extendible cardinals (Corollary 4.6.1), and as a result VP (Corollary 4.6.4). We
relate ULST and SULST numbers of infinitary logics and variations of tall cardinals
(Corollaries 4.7.9, 4.7.20, and 4.7.24), and of L(I) and variations of cardinal correctly
extendible cardinals (Corollary 4.8.3). Our results imply that for some logics the notions
of ULST, SULST, and compactness numbers coincide, while for others they can be
separated. Finally, we introduce the notion of L-extendible cardinals and show that for
a large class of logics, their existence is equivalent to the existence of ULST numbers
(Section 4.9).

Chapter 5 analyses model-theoretic properties of class logics, which are logics that
have, for some fixed vocabulary, a proper class of sentences. While most classically
considered class logics do not allow for much interesting model theory, we build on
results by Trevor Wilson to show how restricted class logics can exhibit compactness
properties and (upward) Löwenheim-Skolem properties. In particular, we provide a
second characterisation of Πn-strong cardinals and WVP by model-theoretic means
through Löwenheim-Skolem properties of class extensions of sort logics (Theorem 5.4.3
and Corollary 5.4.6). In Section 5.3, we analyse classical compactness and upward
Löwenheim-Skolem properties of class versions of first- and second-order logic, and of
sort logics. Finally, we show how to characterise Shelah cardinals by a newly introduced
compactness property of second-order class logics (Theorem 5.5.1).

Chapter 6 considers the relationship of properties of strong logics L and certain
reflection principles involving some set theoretic predicate R, mediated through what is
known as symbiosis between L and R. Bagaria and Väänänen in [BV16] and Galeotti,
Khomskii, and Väänänen in [GKV20] showed how under assumption of symbiosis between
L and R, reflection principles involving R are equivalent to downward and upward
Löwenheim-Skolem properties of L, respectively. Building on results from the author’s
Master’s thesis [Osi21], we show that the same is true for transfer between compactness
properties of L and certain reflection principles in classes of partial orders defined via R
(Theorem 6.3.12). We further give a proof of a statement by Bagaria how weak downward
reflection principles transfer to weak downward Löwenheim-Skolem properties (Theorem
6.4.13).

Finally, in Chapter 7 we consider compactness for type omission properties. We show
that properties of finitary logics give rise to large cardinals stronger than VP by showing
that certain compactness for type omission properties of the well-foundedness logic are
equivalent to the existence of huge cardinals (Theorem 7.3.2). That this was possible was
known for infinitary logics previously, but was open for finitary ones. Further, we show
how compactness for type omission properties for infinitary equicardinality logics give
rise to a large cardinal notion in between supercompactness and extendibility (Theorem
7.4.1).
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1. Preliminaries

1.1. Basic set theory
Let us start by reviewing some basic set-theoretic notation and results, all of which are
standard. All definitions and results of this section not accompanied by references can
be found in any comprehensive introduction to axiomatic set theory, such as [Jec03]. We
work in ZFC throughout, formalised in a first-order meta-language with a single binary
relation symbol ∈.

Throughout the thesis we will be assessing the interplay between models of set theory
and how they interpret whether some structure A satisfies a sentence ϕ of some given
logic. In particular, we are interested in whether some model of set theory is correct
about whether A satisfies ϕ. To assess this, it will often be important to consider the
precise complexity of the set-theoretic formulas defining some logic we operate with. We
therefore review the Lévy hierarchy of formulas in the language of set theory, and we shall
be precise about the concrete coding of many of the objects we introduce. A formula is
∆0 = Σ0 = Π0 if it does not contain any unbounded quantifiers. Recursively, a formula
Φ is Σn+1 if it is of the form Φ = ∃xΨ for some Πn formula Ψ, and Φ is Πn+1 if it is of
the form Φ = ∀xΨ for a Σn formula Ψ. It is ∆n if there are Σn and Πn formulas Φ0 and
Φ1, respectively, and ` (Φ ↔ Φ0)∧ (Φ ↔ Φ1), i.e., that Φ is equivalent to both a Σn and
a Πn formula is a theorem of first-order logic.

A class is simply a formula Φ(x, p1, . . . , pn) in connection with some (optional) set
parameters p1, . . . , pn. We identify Φ with the collection of sets which Φ is true of and
write Φ = {a : Φ(a, p1, . . . , pn)}. If this collection Φ is not a set, we call Φ a proper
class. Note that any set M is a class, as M = {a : a ∈ M}. Given these conventions,
for formulas like Ord(x), expressing that x is an ordinal, or Card(x), expressing that x
is an infinite cardinal, we write Ord and Card to denote the classes of all ordinals and
cardinals, respectively.

For any formula Φ, and some transitive class M , we write ΦM for the relativisation
of Φ to M , i.e., all quantifiers in Φ are relativised to M . If a set M is transitive then
the ∆0 formulas are absolute between M and V , i.e., for any a1, . . . , an ∈M and any ∆0

formula Φ(x1, . . . , xn),
ΦM(a1, . . . , an) iff Φ(a1, . . . , an).

If Φ(x1, . . . , xn) is Σ1, then Φ is upwards absolute from M to V , i.e.,

ΦM(a1, . . . , an) implies Φ(a1, . . . , an).

If Φ(x1, . . . , xn) is Π1, then Φ is downwards absolute from V to M , i.e.,

Φ(a1, . . . , an) implies ΦM(a1, . . . , an).
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This implies that ∆1 formulas are absolute between transitive M and V .
If for some formula Φ and a Σn formula Ψ, we have ZFC ` Φ ↔ Ψ, we say Φ is ΣZFC

n .
Analogously, we define ΠZFC

n . If a formula is both ΣZFC
n and ΠZFC

n , it is ∆ZFC
n . Similar to

the above remarks, ΣZFC
1 , ΠZFC

1 , and ∆ZFC
1 formulas are upwards absolute, downwards

absolute, and absolute, respectively, for transitive models of ZFC. Notice that only a
finite amount of ZFC is needed to witness that a formula is, for instance, ΣZFC

n . Then
the upwards absoluteness holds for transitive models of this finite fragment of ZFC,
and analogously for ΠZFC

n and ∆ZFC
n . As we will most often work with models of some

amount of ZFC, and we might usually adjoin the “right” fragment of ZFC to show that
some formula is, for example, ΣZFC

n by simply adding it as a conjunct to the sentences
already satisfied by the model, we will drop the superscripts “ZFC” for these classes of
formulas throughout and simply write Σn, Πn and ∆n for ΣZFC

n , ΠZFC
n , and ∆ZFC

n . If K
is some class and for Γ ∈ {Σn,Πn,∆n} there is some Γ formula Φ(x1, . . . , xn) such that
K = {(a1, . . . , an) : Φ(a1, . . . , an)}, then we say that K is Γ definable, or that K can be
defined in a Γ way, or that being in K is a Γ property. When this is well-known, we will
often use that some property is Γ definable for Γ ∈ {Σn,Πn,∆n} without extra notice.

We will fix a formalisation Lωω of first-order logic inside of set theory. For this purpose,
we need to talk about vocabularies τ and corresponding τ -structures A. These definitions
are the standard ones from first-order model theory. Nevertheless, let us be precise for
the concrete set-theoretic coding we use, as this will be used for our treatment of general
logics, and, as remarked earlier, evaluating these objects inside models of set theory will
be crucial. Still, that we use this specific coding is not essential.

We consider many-sorted structures, i.e., structures that possibly come with multiple
domains. In this framework, a vocabulary τ , next to possible relation, function, and
constant symbols, contains a finite number of sort symbols. The precise definitions are
given below (cf. Definitions 1.1.1 and 1.1.2), but let us give some intuition. A τ -structure
in the many-sorted sense possibly has multiple domains As, one for each sort symbol
s ∈ τ . Further, each relation, constant, and function symbol comes with a configuration
of sorts, specifying which domains it shall be defined on. So a vocabulary τ = {s1, s2, R}
might consist of two sort symbols s1 and s2 and a relation symbol R with configuration
conf(R) = (s1, s2). A τ -structure A = (A1, A2, R

A) then consists of two sets A1 and A2,
the domains in sort s1 and s2, respectively, and a relation RA ⊆ A1 × A2. We do not
assume that the different domains have to be disjoint. Using many-sorted structures
is not strictly necessary, as multiple domains can be coded into a single one by using
additional unary predicates. It will however be convenient, as we will often work with sort
logic, whose semantics is naturally developed in the context of many-sorted structures.

Definition 1.1.1. We define the following notions.

(i) For each s ∈ ω, we call the pair (0, s) a sort symbol, and say that s is a sort.

(ii) For each set a and s ∈ ω, we call (1, (s, a)) a constant symbol of sort s.

(iii) For each set a and s1, . . . , sk ∈ ω, we call (2, (s1, . . . , sk, a)) a relation symbol of
arity k between the sorts s1, . . . , sk.
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(iv) For each set a and s1, . . . , sk+1, we call (3, (s1, . . . , sk+1, a)) a function symbol of
arity k between the sorts s1, . . . , sk to the sort sk+1.

(v) We let conf be the function that returns the configuration of sorts of a symbol, i.e.,
(a) if c = (1, (s, a)) is a constant symbol, then conf(c) = s.
(b) if R = (2, (s1, . . . , sk, a)) is a relation symbol then conf(R) = (s1, . . . , sk).
(c) if f = (3, (s1, . . . , sk+1, a)) is a function symbol, then conf(f) = (s1, . . . , sk+1).

A vocabulary τ is a set of sort symbols, relation symbols, function symbols and constant
symbols. If τ is a vocabulary, we write s(τ) for the set of sort symbols appearing in
τ . We assume that s(τ) is always non-empty and finite. Further, for any relation,
function or constant symbol x ∈ τ , all sorts involved in x must appear in s(τ), i.e., if
conf(x) = (s1, . . . , sk), then {s1, . . . , sk} ⊆ s(τ).

The sets a appearing in part (ii) to (iv) of the definition above are simply there to
generate a proper class of relation, function and constant symbols. Note that we can
read off of a given set whether it is a sort, relation, function or constant symbol, as well
as its arity and configuration, given its coding as a simple finite tuple. These concepts
are therefore easily seen to be ∆0 definable. Being a vocabulary is a ∆1 property, as it
involves restriction to finitely many sort symbols and being finite is ∆1. In particular, all
the notions of the above definition are absolute between transitive models and V .

As usual, a τ -structure provides interpretations for the symbols appearing in τ :

Definition 1.1.2. Let τ be a vocabulary with s(τ) = {s1, . . . , sn}. A tuple A =
(A1, . . . , An, F ) is called a τ -structure iff A1, . . . , An are non-empty sets called the domains
for sorts s1, . . . , sn, respectively, and F is a function with domain τ \ s(τ) such that

(i) if c = (1, (si, a)) ∈ τ is a constant symbol, then cA = F (c) ∈ Ai.

(ii) if R ∈ τ is a relation symbol and conf(R) = (si1 , . . . , sik), then RA = F (R) is a
relation RA ⊆ Πk

j=1Asij .

(iii) if f ∈ τ is a function symbol and conf(f) = (si1 , . . . , sik+1
), then fA = F (f) is a

function fA :
∏k

j=1Asij → Asik+1
.

We also write A =
⋃

1≤i≤nAi.

That A is a τ -structure is a ∆1 property of A and τ . If τ = {s0, R, f, c} for a sort
symbol s0, a relation symbol R, a function symbol f , and a constant symbol c, then if
A = (A0, F ) is a τ -structure, we will most often write the more customary expression
A = (A,RA, fA, cA) to denote A. We then mean that F (R) = RA, F (f) = fA and
F (c) = cA, and similar for other vocabularies.

Coming back to first-order logic Lωω, we fix a coding of formulas of first-order logic
over some vocabulary τ . We assume that all logical symbols, i.e., variables, equality,
boolean connectives and quantifiers, are coded as finite tuples of natural numbers, similar
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to the coding of the non-logical symbols above. Further, we assume that formulas over
τ are finite tuples of logical symbols and members of τ . For a precise definition of our
syntax, consider Appendix A. We write Lωω[τ ] for the collection of first-order formulas
over τ . Being a first-order formula is ∆1 definable, i.e., there is a ∆1 formula Φ(x, y)
such that Φ(ϕ, τ) holds of some sets ϕ and τ iff τ is a vocabulary and ϕ ∈ Lωω[τ ]. Let
us assume throughout that the vocabulary of the language of set theory {∈} is given
by the concrete binary predicate ∈= (2, (0, 0)). The satisfaction relation is defined in
the usual recursive way on the complexity of ϕ. Keep in mind that we also denote the
meta-language relation symbol as ∈. Let us write A |= ϕ[f ] to express that A is a
τ -structure for some vocabulary τ , ϕ ∈ Lωω[τ ], and f is a variable assignment on the free
variables of ϕ, taking values in A, such that ϕ is satisfied by A under the assignment f .
We also write ϕ(x1, . . . , xn) to indicate that the free variables of ϕ are among x1, . . . , xn,
and A |= ϕ(a1, . . . , an) for a1, . . . , an ∈ A to denote that A |= ϕ[f ] with f(xi) = ai.
First-order satisfaction can also be defined by a ∆1 formula Ψ(x, y, z) such that for any
sets A, ϕ, f :

A |= ϕ[f ] iff Ψ(A, ϕ, f).
In particular, both syntax and semantics of first-order logic are absolute for transitive
models of set theory. That these constructions are possible is to some extent folklore. For
proofs of how to carry them out, including the ∆1 definitions of the concepts involved,
consider, for example, [Bar75, Section III.1]. Note that there the infinitary logic L∞ω is
considered instead. The first-order case is essentially the same, only replacing arbitrary
conjunctions and disjunctions by finite ones.

Note that all formulas Φ of our meta-language have a formal analogue, i.e., a set
ϕ ∈ Lωω[{∈}], which mirrors the structure of the formula Φ. Usually it should be clear
from context whether we are talking about a formula of the meta-language or of a formula
in Lωω. But for the moment, let us write pΦq to denote the formal analogue of the
meta-language formula Φ. For any formula Φ(x1, . . . , xn), given some transitive set M
and considering the structure (M,∈) with the membership relation restricted to M and
any a1, . . . , an ∈M , we can prove:

ΦM(a1, . . . , an) iff (M,∈) |= pΦ(a1, . . . , an)q.

While formally, for ϕ ∈ Lωω[{∈}], the assertion (M,∈) |= ϕ(a1, . . . , an) is only defined if
M is a set, abusing notation we also write V |= ϕ(a1, . . . , an) to denote that Φ(a1, . . . , an)
holds, where ϕ = pΦq, and similarly for other classes. Given the above remarks, the two
perspectives are essentially the same for sets M .

Recall Tarski’s undefinability of truth (cf., e.g., [Jec03, Theorem 12.7]), i.e., there is
no formula T (x) such that for all formulas Φ(x1, . . . , xn) of the meta-language:

ZFC ` ∀x1, . . . , xn(Φ(x1, . . . , xn) ↔ T ((pΦq, x1, . . . , xn)).

On the other hand, the global satisfaction relation Tn restricted to Σn formulas is
uniformly definable in a Σn way (cf., e.g., [Kan03, Section 0]), i.e., there is a Σn formula
Tn(x) in the meta-language such that for all Σn formulas Φ(x1, . . . , xn):

ZFC ` ∀x1, . . . , xn(Φ(x1, . . . , xn) ↔ Tn((pΦq, x1, . . . , xn))).

18



In particular, if M is some transitive set, we can formalise that (M,∈) is a Σn-elementary
substructure of the universe by writing down the following as a formula of set theory:

For all x, if x = (ϕ, x1, . . . , xn) is a finite tuple such that ϕ ∈ Lωω[{∈}] is a
Σn formula, and x1, . . . , xn ∈M , then

(M,∈) |= ϕ(x1, . . . , xn) iff Tn((ϕ, x1, . . . , xn)).

If the above holds, then for any Σn formula ϕ ∈ Lωω[τ ] and any a1, . . . , an ∈ M ,
(M,∈) |= ϕ(a1, . . . , an) iff (V,∈) |= ϕ(a1, . . . , an) (where the latter assertion abuses
notation as described above). We denote this situation as M ≺Σn V .

Following Bagaria [Bag12], we write C(n) = {α : Vα ≺Σn V } for the class of all ordinals
for which Vα is a Σn-elementary substructure of the universe. Using the above remark
and the fact that “x is an ordinal and y = Vx” is Π1, Bagaria shows that C(n) is definable
by a Πn formula. Using the Reflection Theorem for the formula Tn shows that for every
n, C(n) forms a club class. Note that all Vα are transitive, so in particular absolute with
respect to the ∆0 formulas, so C(0) is simply the class of all ordinals. Further, the class
C(1) consists of precisely the uncountable fixed points of the i-function. For proofs of all
of these remarks, cf. [Bag12, Section 1].

1.2. Abstract model theory
We assume that the reader is familiar with model theory of first-order logic, and that
they have seen other logics, like expansions of first-order logic by additional quantifiers,
or second-order logic. Such extensions of first-order logic, also known as strong logics,
are our main objects of study. Many of our results concern some specific logic. For
example, we will consider large cardinal notions that arise from certain model-theoretic
properties of second-order logic. On the other hand, many large cardinal axiom schemas
are equivalent to schemas making assertions that all logics exhibit a certain property.
To make sense of such schemas, we have to give a formal definition of what we mean by
“logic”.

The point of view we will adopt is the one taken by the field of abstract model theory.
Its basic ideas go back to Per Lindström [Lin69] and Jon Barwise [Bar74] and were
codified in the collective monograph [BF85]. A logic in this sense has, like first-order
logic, a set of sentences for every vocabulary τ . Abstract model theory then generalises
from first-order logic what it means to sensibly ascribe truth values to these sentences as
interpreted in some τ -structure.

1.2.1. Abstract logics
In this section we will define what we mean by an abstract logic throughout this thesis
(Definition 1.2.1). Most notions are standard and can, for instance, be found in [BF85].
For technical details, we will follow [Osi21].
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Before we can give our definition, we need some other standard notions. If A and B
are τ -structures, an isomorphism f : A → B is a bijection f :

⋃
s∈s(τ)As →

⋃
s∈s(τ)Bs

which restricts to bijections As → Bs for every s ∈ s(τ) and preserves the constants,
relations, and functions defined on A and B in the obvious way. We write A ∼= B if there
is an isomorphism f : A → B. Further, if τ and σ are vocabularies, a map f : τ → σ is
called a renaming if it is a bijection between the respective sets of sort symbols, relation
symbols, function symbols, and constant symbols, respecting arity and configuration.
If f : τ → σ is a renaming and A is a τ -structure, we can use f to turn A into an
f(σ)-structure by interpreting, for example, some relation symbol f(r) ∈ σ by rA. We
will denote this f(σ)-structure as f(A) and call it as well a renaming of A.

Definition 1.2.1. An abstract logic L is a pair consisting of a definable class function
that maps every vocabulary τ to a class L[τ ], called the class of L-sentences over τ , and
a definable class relation |=L, called the satisfaction relation of L, such that:

(i) If A |=L ϕ, then ϕ ∈ L[τ ] for some vocabulary τ and A is a τ -structure. In this
case we say that A is a model of ϕ.

(ii) If σ ⊆ τ for vocabularies τ and σ, then L[σ] ⊆ L[τ ].

(iii) If A ∼= B for τ -structures A and B, then for every ϕ ∈ L[τ ]:

A |=L ϕ iff B |=L ϕ.

(iv) If ϕ ∈ L[σ] and σ ⊆ τ for vocabularies τ and σ, then for every τ -structure A:

A |=L ϕ iff (A � σ) |=L ϕ.

(v) If f : τ → σ is a renaming, then there is a bijection f : L[τ ] → L[σ] such that:

A |=L ϕ iff f(A) |=L f(ϕ).

We call (iv) the reduct property and (v) the renaming property. If f : L[τ ] → L[σ] is
the bijection from (v), we call for T ⊆ L[τ ] the image f“T a copy of T , and for ϕ ∈ T ,
we call f(ϕ) a renaming of ϕ. If clear from context which abstract logic we are talking
about, we will most often drop the subscript and simply write |= for |=L. If the abstract
logic L further satisfies the following condition, we simply say that L is a logic.

(vi) There is a cardinal κ such that for any vocabulary τ and any ϕ ∈ L[τ ] there is
τ0 ∈ Pκτ such that ϕ ∈ L[τ0], and such that if τ ∈ Hκ, then L[τ ] ⊆ Hκ.

We call the smallest κ as above the strong dependence number dep∗(L) of L.

If dep∗(L) = κ, note that the renaming property implies that ϕ is equivalent up
to renaming to a sentence in L ∩Hκ. When analysing models of L-sentences, we can
therefore restrict attention to sentences in Hκ. We will use this observation tacitly below.
We further get that there are not more than max(2<κ, |Pκτ |) many sentences in L[τ ].
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Note that there is in general no requirement on what the sentences of our abstract
logics look like. They are simply some abstractly given sets. In particular, for some
set-sized vocabulary τ , the collection L[τ ] may form a proper class. We call such abstract
logics (proper) class logics. We will see that sensible model theory of proper class logics
is very limited. For this reason, it has become somewhat customary to restrict attention
to abstract logics for which this cannot happen, so for which L[τ ] is always a set. By our
comments above, assuming the existence of a strong dependence number is one way to
achieve this goal. To make sure for a convenient formulation of our theorems, we reserve
the term logic to abstract logics with a strong dependence number, as we will most often
want to exclude proper class logics from the discussion.1

First-order logic can be considered as a logic, letting Lωω[τ ] be the first-order sentences
over τ , i.e., formulas without any free variables, and |=Lωω be the usual satisfaction
relation. Note that we also used Lωω[τ ] to denote the set of first-order formulas with
possible free variables over τ . It should be clear from context which of the perspectives
we are taking

Abstract model theory identifies the meaning of a sentence with the class of structures
satisfying it. This allows to compare abstract logics via their expressive strengths. For
this purpose, if τ is a vocabulary and ϕ ∈ L[τ ] we write

ModτL(ϕ) = {A : A is a τ -structure such that A |=L ϕ},

for the class of models of ϕ. Again, we drop the superscript τ and subscript L if they
are clear from context. If K is some class of τ -structures for some vocabulary τ , we also
call K a model class. If there is a sentence ϕ ∈ L[τ ] such that K = ModτL(ϕ), then we
say that K is definable or axiomatisable in L, or simply L-definable or L-axiomatisable.

Definition 1.2.2. Let L0 and L1 be abstract logics. We say that L1 is an extension of
L0, in symbols L0 ≤ L1, iff for every vocabulary τ and every ϕ ∈ L0[τ ], there is some
ψ ∈ L1[τ ] such that Mod(ϕ) = Mod(ψ), i.e., if every L0-definable model class is also
L1-definable. We also say that L0 is bounded by L1.

If L0 ≤ L1 and further there is ψ ∈ L1 such that for no ϕ ∈ L0, Mod(ϕ) = Mod(ψ),
then we say that L1 is a proper extension of L0, and write L0 < L1.

Definition 1.2.3. A logic L is called strong iff Lωω < L.

We call any subset T ⊆ L[τ ] an L-theory over τ or simply a theory. Given some
τ -structure A we write

ThL(A) = {ϕ ∈ L[τ ] : A |=L ϕ},

for the L-theory of A. Also here, if clear from context, we drop the subscript and simply
write Th(A).

1The difference of dep∗(L) to the more often considered dependence number dep(L) is the requirement
that L[τ ] ⊆ Hκ for τ ∈ Hκ. The technical advantage that dep∗(L) has over dep(L) is that it excludes
some pathological abstract logics which have a large set of sentences over small vocabularies.
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1.2.2. Examples of strong logics
Let us mention some of the most important examples of strong logics we will deal with.
We will point out the semantic features of each logic. Their syntax can be understood to
be defined in the obvious way. Note that when interacting with set theory, in particular
with elementary embeddings of the universe, also the precise coding of the syntax as
set-theoretic objects will be relevant. For such a precise definition, the reader is referred
to Appendix A.

(a) The logic L(QWF) expands first-order logic by adding the well-foundedness quantifier
QWF with the semantics:

A |= QWFxyϕ(x, y) iff {(a, b) ∈ A2 : A |= ϕ(a, b)} is a well-founded relation.

(b) The logic L(I) expands first-order logic by the Härtig or equicardinality quantifier I
with the semantics:

A |=L(I) Ixyϕ(x)ψ(y) iff |{a ∈ A : A |= ϕ(a)}| = |{a ∈ A : A |= ψ(a)}|.

(c) Second-order logic L2 expands first-order logic by introducing n-ary variables X(n)

for every natural number and thus allowing to quantify over n-ary relations over the
structure in question, i.e.,

A |= ∃X(n)ϕ(X) iff there is some B ⊆ An such that A |= ϕ(B),

and similarly for second-order universal quantification. If X is a unary relation variable,
we simply write ∃Xϕ(X).

(d) Let us consider the abstract logic L∞∞, with the intention to define infinitary logics
Lκλ as a subsystem. For L∞∞, we allow consideration of conjunctions and disjunctions
over arbitrary sets of formulas, and quantification over arbitrary sequences of variables.
i.e., if T ⊆ L∞∞ is a set of formulas, we allow the expressions

∧
T and

∨
T , whose truth

is evaluated in the following way:

A |=
∧

T iff A |= ϕ for all ϕ ∈ T, and

A |=
∨

T iff A |= ϕ for some ϕ ∈ T.

Further, if Z is some set, (xz : z ∈ Z) is a sequence of variables, and ϕ is some formula
of L∞∞, then ∃(xz : z ∈ Z)ϕ,∀(xz : z ∈ Z)ϕ are formulas; then A |= ∃(xz : z ∈ Z)ϕ iff

there is some sequence (az : z ∈ Z) such that A |= ϕ(az : z ∈ Z),

and dually for the universal quantifier. Omitting the part about infinite sequences of
variables, we get the abstract logic L∞ω, which allows for arbitrary conjunctions and
disjunctions but has no infinite quantifiers. Note that both L∞∞ and L∞ω are proper
class logics.
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(e) For regular cardinals κ ≥ λ, the formulas of the logic Lκλ are formed exactly
as L∞∞ but restricting to conjunctions and disjunctions of sets of sentences T of size
|T | < κ and strings of quantifiers indexed by sets Z ∈ Hλ. For the satisfaction relation,
we simply let A |=Lκλ

ϕ iff ϕ ∈ Lκλ and A |=L∞∞ ϕ.

(f) Further, we allow combinations of these logics. In particular, we consider the
infinite versions Lκλ(QWF), Lκλ(I) and L2

κλ. For Lκλ(QWF) and Lκλ(I), we simply add
infinite boolean connectives and infinite first-order quantifiers. For L2

κλ, we also allow
quantification over infinite sequences of second-order variables, with the semantics defined
in the obvious way. Similarly, we consider proper class logics like L∞ω(Q

WF), etc.

Note that any sentence of the logics L(QWF), L(I), and L2 can be considered as a
finite object and, as for first-order logic, given the coding we fix in Appendix A their
syntax is ∆1 definable. In particular, if τ is a vocabulary and (M,∈) is some transitive
model of set theory such that τ ∈M , then (L[τ ])M = L[τ ] ∈M for these logics. For the
infinitary logics Lκλ (and analogously for L2

κλ etc.), also their syntax is ∆1 definable, but
using κ and λ as parameters. So to compute Lκλ[τ ] in M , this only really makes sense
if M contains κ and λ. Further, even if κ, λ ∈ M , it might happen that, for example,
T ⊆ Lκω[τ ] such that |T | < κ for τ ∈ M but T /∈ M , and therefore also

∧
T /∈ M . On

the other hand, if T, κ ∈ M , then M |= |T | < κ (as κ is a cardinal) and so
∧
T ∈ LMκω.

We can reason similarly for sequences of variables. Thus, LMκλ = Lκλ ∩M ⊆ Lκλ.
We say that some transitive model M of set theory is correct about L-satisfaction or

simply correct about L if for every ϕ ∈ L[τ ] ∩M and τ -structure A ∈M :

A |=L ϕ if and only if (M,∈) |= “A |=L ϕ”.

It will be crucial throughout our discussion to consider whether some model of set theory
is correct about some given logic. Recall that any transitive model is correct about
first-order satisfaction. The following observations are well-known and easy to show by
induction on formulas of the considered logics, using the extra assumptions we specify
below in those inductive steps which distinguish the logic in question from first-order
logic. All the models are considered to be transitive.

(i) Any transitive model is correct about L(QWF)-satisfaction.

(ii) Any transitive model is correct about Lκω-satisfaction.

(iii) If Mλ ⊆M , then M is correct about Lκλ-satisfaction.

(iv) If M is correct about cardinals, i.e., CardM = Card ∩M , then M is correct about
L(I)-satisfaction.

(v) If for any A ∈M ,
⋃
n∈ω P(An) ⊆M , then M is correct about L2-satisfaction.

The usefulness of the strong logics above for large cardinal theory stems from the
fact that they can define important properties of set-theoretic models. For example, the
well-foundedness logic L(QWF) may express that some model of set theory is well-founded.
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Thus, in particular, L(QWF) allows us to consider transitive models of set theory by
considering the transitive collapse of a well-founded model. The other logics considered
are able to define additional properties of set-theoretic interest. For each of our logics, we
will collect the sentences most important for large cardinal theory and the properties they
are defining in Lemma 1.2.4 below. We will make reference to these sentences throughout
the later chapters.

Before we do this, let us make some notational remarks to state formulas in a more
convenient way. We denote quantification over ordinals by ∀αϕ, i.e., as a shorthand for
∀x(Ord(α) → ψ), and similar for existential quantification and also utilising other lower
case Greek letters. When writing down formulas in the language of set theory, we will
often use natural language to denote formal assertions. For example, we might write
something like

ϕ(x, y) = ∃y(y is a vocabulary),

for the formal expression, written down in the language of set theory, expressing that y
fulfils the properties of Definition 1.1.1. For better readability, we may also use quotation
marks, for example, ϕ(x, y) = ∃y(“y is a vocabulary”). Similarly, when working with
some vocabulary τ and we want to express something in some logic L and there is an
obvious way for this, we may simply state the desired property in ordinary English. For
example, if τ contains some binary relation symbol <, we might write:

“Fix a formula ϕ ∈ L(QWF)[τ ] saying that < is a well-order.”

Then we mean that ϕ is the obvious formula expressing this, namely, the conjunction
of the (first-order) axioms of linear orders, together with the sentence QWFxy(x < y).
Finally, to state things more concisely, let us further fix the following abbreviations for
first-order formulas, expressing the often used properties indicated.

func(x) “x is a function”
dom(f) = y “the domain of f is y”
x = (x1, . . . , xn) “x is the tuple (x1, . . . , xn)”
limit(γ) “γ is a limit ordinal”
succ(γ) “γ is a successor ordinal”
Ext ∀x∀y(x = y ↔ ∀z(z ∈ x↔ z ∈ y))

Lemma 1.2.4. Each sentence below is in the language {∈} of set theory.

(a) There is ϕWF ∈ L(QWF) such that (M,E) |= ϕWF iff E is well-founded.

(b) There is ϕCard ∈ L(I) such that any transitive model (M,∈) satisfying ϕCard
computes cardinals correctly, i.e., (M,∈) |= ϕCard iff

for every a ∈M,Card(a) iff (M,∈) |= Card(a).

(c) (Magidor [Mag71]) There is Φ ∈ L2, known as Magidor’s Φ, such that (M,E) |= Φ
iff there exists a limit ordinal α such that (M,E) ∼= (Vα,∈).
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(d) There is a sentence Φ∗ ∈ L2 such that (M,E) |= Φ∗ iff there exists an ordinal α
such that (M,E) ∼= (Vα,∈). We will call Φ∗ Magidor’s Φ∗.

(e) If κ is regular, for every a ∈ Hκ there is σa(x) ∈ Lκω such that for any transitive
set M and any b ∈M :

(M,∈) |= σa(b) iff a = b.

(f) There is ϕWF ∈ Lω1ω1 such that (M,E) |= ϕWF iff E is well-founded.

(g) For every regular κ and λ < κ there is a sentence ψλ ∈ Lκκ such that for any
transitive M , (M,∈) |= ψλ iff Mλ ⊆M .

Proof. For (a), let ϕWF = QWFxy(x ∈ y). For (b), let

ϕCard = ∀x[Card(x) ↔ (Ord(x) ∧ ∀y(y ∈ x→ ¬Izz(z ∈ y, z ∈ x)))].

For (c), first note that if (M,∈) is transitive and a, b ∈ M , then there is a formula
ψ(x, y) ∈ L2 such that M |= ψ(a, b) iff b = P(a). For instance, the following formula
does the job:

ψ(x, y) =∀v[v ∈ y → ∃w(w ⊆ x ∧ v = w)]

∧ ∀X(∀v(X(v) → v ∈ x) → ∃w(w ∈ y ∧ ∀z(X(z) ↔ z ∈ w))).

In the following, let us write Pr(x) = y for ψ(x, y). Note that M |= ∃y(Pr(a) = y) iff
P(a) ∈ M . If β ∈ M is any ordinal and f ∈ M , then consider the following formula
χ(β, f). It has the property, that M |= χ(β, f) iff f is a function with domain β such
that for any γ < β, f(γ) = Vγ:

χ(β, f) = func(f) ∧ dom(f) = β ∧ ∀γ < β[(γ = 0 → f(γ) = ∅)
∧ (succ(γ) ∧ γ = δ + 1 → f(γ) = Pr(f(δ)))

∧ (limit(γ) → f(γ) =
⋃
δ<γ

f(δ))].

Let us write ∃2y(y = Vβ) for the second-order assertion ∃f(ψ(β+1, f)∧ f(β) = y). Note
that if M ∩Ord is a limit ordinal, then M |= ∃2y(y = Vβ) iff Vβ ∈ M . Now let Φ ∈ L2

be the conjunction of the following sentences:

(i) Extensionality: ∀x, y(x = y ↔ ∀z(z ∈ y ↔ z ∈ y)).

(ii) Well-foundedness: ∀X∃x(X(x) ∧ ∀y¬(y ∈ x ∧X(y))).

(iii) There is no largest ordinal: ∀β∃γ(β ∈ γ).

(iv) For every ordinal β, Vβ exists: ∀β∃2y(y = Vβ).

(v) Every set is contained in some Vβ: ∀x∃β∃2y(y = Vβ ∧ x ∈ y).
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We claim that (M,E) |= Φ iff (M,E) ∼= (Vα,∈) for some limit ordinal α. For the
substantial direction, assume that (M,E) |= Φ. By (i) and (ii), (M,E) is isomorphic
to some transitive model, so let us assume that E =∈ and M is transitive. By (iii),
α = M ∩ Ord is a limit ordinal. We claim that M = Vα. Note that by (v), M thinks
that every set is contained in some Vβ for a β < α. By usage of second-order logic, this
Vβ is the real Vβ. This implies that M ⊆ Vα. To argue that Vα ⊆ M , it is sufficient to
show that Vβ ∈M for all β < α. But this simply follows from (iv).

For (d), we argue similarly, but we have to be more careful: if M = Vβ+1, due to the
standard encoding of ordered pairs and rank reasons, M does not have a function f such
that f(β) = Vβ. The following sentence encodes that M = Vλ+1 for some limit ordinal λ.

(i) Extensionality: ∀x, y(x = y ↔ ∀z(z ∈ y ↔ z ∈ y)).

(ii) Well-foundedness: ∀X∃x(X(x) ∧ ∀y¬(y ∈ x ∧X(y))).

(iii) There is a largest ordinal λ and λ is a limit: ∃λ(∀β(β ≤ λ) ∧ limit(λ)).

(iv) For every β < λ, Vβ exists: ∀β(β < λ→ ∃2y(y = Vβ)).

(v) Vλ exists: ∃x(∀z(z ∈ x↔ ∃β < λ(∃2y(y = Vβ ∧ z ⊆ y)))).

(vi) “I am the real power set of Vλ”:

∀y(y ⊆ Vλ) ∧ ∀X(∀v(X(v) → v ∈ Vλ)) → ∃z(∀v(X(v) ↔ v ∈ z))).

Let us call this sentence Φ+1
λ . Similarly, we can construct a sentence Φ+1

s truthfully
saying “I am Vα+1 for some successor α”, by minor technical adaptations. Then the
desired sentence Φ∗ encoding that the model is isomorphic to some Vα for some ordinal
α is the disjunction of Magidor’s Φ with Φ+1

λ and Φ+1
s .

For (e), we proceed by ∈-induction on a ∈ Hκ. If a = ∅, let σa(x) = ¬∃y(y ∈ x). If
a ∈ Hκ and σc(x) is defined for all c ∈ a, define:

σa(x) = ∀y(y ∈ x↔
∨
c∈a

σc(y)).

Note that σa(x) ∈ Lκω because a ∈ Hκ. For (f), the axiom of choice implies that
ϕWF = ¬∃(xi : i < ω)

∧
i<ω xi+1 ∈ xi is as desired. For (g), let ψλ be:

∀(xi : i < λ)∃f(func(f) ∧ ∃y(σλ(y) ∧ dom(f) = y ∧
∧
i<λ

∃z(σi(z) ∧ f(z) = xi))).
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1.2.3. Generalising model theory to abstract logics
Abstract Logics enable us to formulate a lot of model-theoretic notions from first-order
logic in a general way for any logic L. Consider the Compactness Theorem for first-order
logic:
Theorem 1.2.5. Let T ⊆ Lωω be a set of sentences of first-order logic. Then T has a
model iff every finite subset of T has a model.

Substituting Lωω by a stronger logic usually leads to a failure of this theorem. On the
other hand, it is possible that similar compactness properties hold at higher cardinals.
We can formulate these properties in a natural way:
Definition 1.2.6. Let L be a logic and κ be cardinal.
(1) Let T ⊆ L be an L-theory. We say that T is <κ-satisfiable iff every subset T0 ⊆ T

such that |T0| < κ has a model.

(2) We say that L is κ-compact, or that κ is a compactness cardinal for L, iff every
<κ-satisfiable L-theory has a model.

(3) If there is a cardinal γ such that L is γ-compact, we call the smallest such cardinal
δ the compactness number of L and write comp(L) = δ.

We will see that the existence of compactness numbers for strong logics is often
equivalent to the existence of large cardinals.

Another important theorem for first-order logic is the downward Löwenheim-Skolem
Theorem. It can be formulated in different strengths.
Theorem 1.2.7 (Downward Löwenheim-Skolem Theorem, Version 1). If ϕ is a first-order
sentence with an infinite model, then ϕ has a countable model.
Theorem 1.2.8 (Downward Löwenheim-Skolem Theorem, Version 2). If ϕ is a first-order
sentence over a countable vocabulary τ and A is an infinite τ -structure such that A |= ϕ,
then there is a countable substructure B ⊆ A such that B |= ϕ.

Again, we will see that both theorems may fail for stronger logics and therefore we are
interested in analogues of these properties at higher cardinals.
Definition 1.2.9. Let L be a logic and κ a cardinal.
(1) If any satisfiable sentence of L has a model of size < κ, we call κ a Löwenheim-

Skolem (LS) number of L. If such a cardinal exists, we call the smallest such δ the
Löwenheim-Skolem number of L and write LS(L) = δ.

(2) If for any ϕ ∈ L[τ ] with |τ | < κ, it is the case that for any τ -structure A |= ϕ,
there is some substructure B ⊆ A such that |B| < κ and B |= ϕ, we call κ a
Löwenheim-Skolem-Tarski (LST) number of L. If such a cardinal exists, we call the
smallest such δ the Löwenheim-Skolem-Tarski number of L and write LST(L) = δ.2

2In the literature, sometimes one also finds the LST number being defined as providing a small
L-elementary substructure (cf. Definition 1.2.11), as opposed to a small substructure that satisfies a
single designated sentence (and in fact, this is how we presented the LST number in Section 0.1). It is
folklore that for many logics these two definitions are equivalent.
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It is provable in ZFC that every logic has an LS number.

Proposition 1.2.10 (Folklore). Let L be a logic. Then L has an LS number.

Proof. Let κ = dep∗(L). As any sentence of ϕ is up to renaming equivalent to a sentence
in Hκ, we might restrict to ϕ ∈ L ∩Hκ to analyse possible sizes of models of sentences
of L. For any satisfiable ϕ ∈ L ∩Hκ, let

δϕ = min{|A| : A |= ϕ}.

Then X = {δϕ : ϕ ∈ L∩Hκ is satisfiable} is a set of cardinals. In particular, δ = sup(X)
is a cardinal. Clearly, δ+ is an LS number of L.

On the other hand, we will later see that the existence of LST numbers of strong logics
often has large cardinal strength.

In first-order model theory, we are often interested in elementary embeddings between
structures, i.e., maps that preserve satisfaction of first-order formulas. Recall that if A
and B are τ -structures, then an embedding e : A→ B is called an elementary embedding
if for every first-order formula ϕ(x1, . . . , xn) over τ with free variables among {x1, . . . , xn},
and every a1, . . . , an:

A |= ϕ(a1, . . . , an) iff B |= ϕ(e(a1), . . . , e(an)).

Note that this makes reference to free variables, a concept we do not have available for
general abstract logics. However, free variables can be coded by considering additional
constant symbols. This observation is also what lies behind the idea for the usage of
elementary diagrams in first-order model theory. If A is a τ -structure, we can take a
set of fresh, distinct constant symbols {ca : a ∈ A} which are not in τ , consisting of one
constant for every a ∈ A. Interpret every constant ca by a itself, letting cAa = a, and
consider the (τ ∪ {ca : a ∈ A})-structure (A, cAa )a∈A. Then we call

ElDiag(A) = ThLωω((A, cAa )a∈A),

the elementary diagram of A. It is easy to check that for any τ -structure B, the existence
of an elementary embedding e : A → B is equivalent to (B, eBa )a∈A |= ElDiag(A) with
eBa = e(a). Analogously, we therefore consider the following notion:

Definition 1.2.11. Let L be a logic, τ a vocabulary and consider τ -structures A and
B with an embedding e : A → B. Further let {ca : a ∈ A} be a set of distinct constant
symbols which are not in τ and let cAa = a.

(1) ElDiagL(A) = ThL((A, cAa )a∈A) is called the L-elementary diagram of A.

(2) The map e is an L-elementary embedding iff (B, e(cAa ))a∈A |= ElDiagL(A).

If A ⊆ B and the identity map id : A→ B is an L-elementary embedding, we also write
A ≺L B and say that A is an L-elementary substructure of B.
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Even though the word “elementary” seems to suggest preservation of first-order formu-
las, the name L-elementary embedding (diagram, substructure) has become customary.
For the designated logics L we considered before, like Lκκ, L(QWF), L(I) and L2, whose
semantics are also defined with the help of variables, the respective notion of L-elementary
embedding is equivalent to preservation of satisfaction of formulas with free variables.3

1.2.4. Sort logics
Sort logics were introduced by Jouko Väänänen in [Vää79]. Their usage can be motivated
by the following observations. Remember that we associate the expressive power of a
logic by the model classes definable in it. From our ZFC standpoint, any model class is
definable by some formula in the language of set theory. On the other hand, no logic can
define all model classes. For let L be an arbitrary logic. By definition, L is definable
by some formula in the language of set theory of complexity, say, Σn, possibly with
parameters from a set X. Let dep∗(L) = κ. Then to analyse model classes definable by
L, we can restrict to classes definable by some ϕ ∈ L ∩Hκ. If K is such a class,

A ∈ K iff A |=L ϕ,

is a Σn definition of K with parameters in X ∪Hκ. But surely there are model classes
which are not definable in a Σn way with parameters in X ∪Hκ. As a result, L cannot
define all model classes.

Väänänen’s sort logic is graded by the natural numbers. The n-th level Ls,n of sort
logic, for a natural number n, can define all model classes closed under isomorphism that
are Σn or Πn definable in the Lévy hierarchy. In particular, we will see that all model
classes closed under isomorphism are definable by some level of sort logic. In light of our
above remarks, this is the best we can do.

Let us first give some intuition about the way sort logic operates. Its main feature
are sort quantifiers, written as ∃̃ and ∀̃. A formula ∃̃Xϕ(X) involving a sort quantifier
over some relation variable X of arity n is true in a structure A if A can be expanded
by an additional domain B such that there is a subset Y ⊆ Bn and the expanded
structure satisfies the formula ϕ(Y ), i.e., the sort quantifiers search outside the structure
A itself for some relation on additional sorts satisfying the formula ϕ. The n-th level
Ls,n is then allowed to ask about alternations of n-sort quantifiers. We will also consider
fragments Ls,Σn and Ls,Πn of Ls,n, which are the formulas of Ls,n with a leading existential
and universal sort quantifier, respectively. For regular cardinals κ, we further consider
infinitary versions Ls,n

κω , Ls,Σn
κω , and Ls,Πn

κω , which each expand Lκω(QWF).
Väänänen gave a modern presentation of the syntax and semantics of sort logic in

[Vää14]. On the other hand, there is no modern presentation giving detailed proofs of
the main features of sort logic. As sort logic turned out to be central for the intersection
of large cardinal theory and abstract model theory, we believe that it is worthwhile to
provide here such an account of sort logics most important features.

3Though note that for L2, this only means preservation of satisfaction with regards to formulas
with first-order free variables, as the L2-elementary diagram considers individual constants which are
interpreted as elements of the model, as opposed to subsets.
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For reasons of comprehensibility, we first state the main properties of sort logic, before
continuing with the technical details and their proofs. In later chapters, the properties
we list below are often sufficient to follow our arguments, while the technical details are
mostly relevant for the proofs that these properties hold. With each of the properties
listed, we state where to find them. We assume κ to be a regular cardinal.

(a) If K is a model class of τ -structures for some τ ∈ Hκ, closed under isomorphism,
then:
(i) K is Σn definable with parameters in Hκ iff K is axiomatisable by some

ϕ ∈ Ls,Σn
κω [τ ].

(ii) K is Πn definable with parameters in Hκ iff K is axiomatisable by some
ϕ ∈ Ls,Πn

κω [τ ].
For both statements, cf. Corollary 1.2.23.

(b) There is a sentence Φs ∈ Ls,1 such that (M,E) |= Φs iff (M,E) ∼= (Vα,∈) for some
limit ordinal α (cf. Lemma 1.2.15).

(c) There is a sentence Φs,∗ ∈ Ls,2 such that (M,E) |= Φ iff (M,E) ∼= (Vα,∈) for some
ordinal α (cf. Corollary 1.2.18).

(d) For n ≥ 1, there is a sentence Φ(n) ∈ Ls,n such that (M,E) |= Φ(n) iff (M,E) ∼=
(Vα,∈) for some α ∈ C(n) (cf. Corollary 1.2.17).

(e) If α ∈ C(n), then Vα is correct about Ls,n-satisfaction (cf. Corollary 1.2.21).

(f) The satisfaction relation Ls,n
κω is ∆n+1 definable using κ as a parameter (cf. Corollary

1.2.22).

(g) Every logic is bounded by some level of sort logic, i.e., for every logic L there is
some natural number n and some cardinal γ such that L ≤ Ls,n

γω (cf. Corollary
1.2.24).

Let us now proceed with the precise definition of sort logic and proofs of the above
statements. Väänänen introduces sort logic as an expansion of second-order logic. For
technical reasons we will divert from this, and present it as an extension of L(QWF).
Our outline thus contains some novelty, as we show that basing sort logic on L(QWF) is
sufficient to define it and still end up with its main features.

Recall that a sort is simply a natural number (cf. Definition 1.1.1). We assume we
have a proper class of individual variables, denoted by lowercase letters x, y, z, u, v, w, . . .
Additionally, for every arity we fix a proper class of relation variables, denoted by
capitalised letters, X,Y, Z,R, S, T, . . . We assume that every individual variable has a
sort s(x) ∈ ω and every relation variable has, similarly to relation symbols, a configuration
conf(X) ∈ ω<ω, simultaneously determining its arity. The variables are coded as sets
in a convenient way so that conf is ∆1 definable, as carried out in Appendix A. Recall
that for a vocabulary τ , we write s(τ) for the collection of sort symbols appearing τ .
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We will refer to the collection of sorts used by X as s(X), i.e., if X has configuration
(n1, . . . , nk), then s(X) = {n ∈ ω : ∃i(1 ≤ i ≤ k and n = ni)}.

We will need an infinitary version of sort logic, for which we first define its syntax
by expanding on the class of formulas of L∞ω(Q

WF). We will then later restrict to an
extension of Lκω(QWF) for some regular cardinal κ. So let us recursively define a class of
formulas Ls

∞ω[τ ] for some vocabulary τ by the following clauses. For the concrete sets
we assume are used when coding formulas of sort logic, cf. Definition A.2.

(i) If r ∈ τ with conf(r) = (n1, . . . , nk) and for 1 ≤ i ≤ k, xi is an individual variable,
or a constant symbol in τ , such that s(xi) = ni, then r(x1, . . . , xk) ∈ Ls

∞ω[τ ].

(ii) If X is a relation variable with conf(X) = (n1, . . . , nk) and for 1 ≤ i ≤ k, xi
is an individual variable, or a constant symbol in τ , such that s(xi) = ni, then
X(x1, . . . , xk) ∈ Ls

∞ω[τ ].

(iii) If f is a function symbol with conf(f) = (n1, . . . , nk+1) and for 1 ≤ i ≤ k + 1, xi
is an individual variable, or a constant symbol in τ , such that s(xi) = ni, then
f(x1, . . . , xk) = xk+1 ∈ Ls

∞ω[τ ].

(iv) If x and y each are an individual variable or a constant symbol in τ , then x = y ∈
Ls

∞ω[τ ].

(v) If ϕ ∈ Ls
∞ω[τ ], then ¬ϕ ∈ Ls

∞ω[τ ].

(vi) If T ⊆ Ls
∞ω[τ ] is a set, then

∧
T,

∨
T ∈ Ls

∞ω[τ ].

(vii) If ϕ ∈ Ls
∞ω[τ ] and x and y are individual variables, then QWFxyϕ ∈ Ls

∞ω[τ ],
provided ϕ does not contain any sort quantifiers.

(viii) If ϕ ∈ Ls
∞ω[τ ] and x is an individual variable, then ∃xϕ, ∀xϕ ∈ Ls

∞ω[τ ], provided ϕ
does not contain any sort quantifiers.

(ix) If ϕ ∈ Ls
∞ω[τ ] and X is a relation variable, then ∃̃Xϕ, ∀̃Xϕ ∈ Ls

∞ω, provided
s(X) ∩ s(τ) = ∅ and no free variable of ϕ involves a sort n ∈ s(X).

The technical condition on the sorts of X in the last item is to prevent additional sorts
added from interfering badly with sorts already introduced. Further, we do not allow
sort quantifiers to appear in the scope of the well-foundedness quantifier QWF and of
first-order quantification ∃ and ∀. These two restrictions are mostly in place for technical
reasons, as they do not limit what we will want to express with sort logic, but make
some of the proofs somewhat easier.

Recall from Section 1.1 that domains of different sort are allowed to be non-disjoint.
Note that we do allow formulas of the form x = y for individual variables of different
sorts. In particular, sort logic is allowed to enquire whether two objects in two different
domains are equal.

We say that a formula has complexity ∆0 = Σ0 = Π0 in the sort quantifiers if it is free
of sort quantifiers. Recursively, it has complexity Σn+1 if it has the form ∃̃Xψ for some
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Πn formula ψ. And it has complexity Πn+1 if it has the form ∃̃Xψ for some Σn formula
ψ. Let us write Ls,Σn

∞ω for the collection of formulas of complexity up to Σn. Analogously
collect the formulas which have complexity up to Πn by Ls,Πn

∞ω . Now Ls,n
∞ω has as sentences

all infinitary boolean combinations of sentences in Ls,Σn
∞ω ∪ Ls,Πn

∞ω .
If we restrict in clause (vi) to sets to of size |T | < κ for some regular cardinal κ, we

write Ls
κω for the resulting collection of sentences, and similarly we restrict to Ls,Σn

κω , Ls,Πn
κω

and Ls,n
κω . We assume that if the vocabulary τ ∈ Hκ, then a formula of Ls

κω can only use
variables in Hκ. Note that all other non-logical symbols are coded as elements of Hω and
formulas are coded as finite tuples (cf. Appendix A). This makes sure that Ls

κω[τ ] ⊆ Hκ

for τ ∈ Hκ and so dep∗(Ls
κω) = κ. If κ = ω, we simply write Ls, Ls,n, Ls,Σn , and Ls,Πn .

We will define the semantics of sort logic making reference to variable assignments. A
variable assignment for a τ -structure M is a function f that has as its domain a set of
variables in sorts contained in s(τ) such that for any individual variable x, f(x) ∈Ms(x)

and for any relation variable X of configuration (n1, . . . , nk), f(X) ⊆Mn1 × · · · ×Mnk
.

If f is a variable assignment for a τ -structure M and S is a set of variables, we say
that a variable assignment g for a τ -structure M is a an S-variant of f iff S ⊆ dom(g)
and f \ {(x, f(x)) : x ∈ S} = g \ {(x, g(x)) : x ∈ S}. If S = {x} is a singleton, we simply
call g an x-variant.

We now give the semantics of sort logic. To make for a simpler statement of our
definition, if f is a variable assignment for a τ -structure M and c ∈ τ is a constant
symbol, we let f(c) = cM . Let us state the full recursive definition, even though only the
points involving sort quantifiers are novel.

Definition 1.2.12. Let M be a τ -structure, f a variable assignment for M , and n a
natural number. We define recursively:

(i) For every r ∈ τ , if s(r) = (n1, . . . , nk), and for 1 ≤ i ≤ n, xi is a variable symbol,
or a constant symbol in τ , of sort s(xi) = ni, then

M |=Ls,n
∞ω

r(x1, . . . , xk)[f ] iff (f(x1), . . . , f(xk)) ∈ rM .

(ii) For every relation variable X, if s(X) = (n1, . . . , nk), and for 1 ≤ i ≤ n, xi is a
variable symbol, or a constant symbol in τ , of sort s(xi) = ni, then

M |=Ls,n
∞ω

X(x1, . . . , xk)[f ] iff (f(x1), . . . , f(xk)) ∈ f(X).

(iii) If x, y are variables or constant symbols, respectively, and s(x), s(y) ∈ s(τ), then
M |=Ls,n

∞ω
x = y[f ] iff f(x) = f(y).

(iv) M |=Ls,n
∞ω

¬ϕ[f ] iff M 6|=Ls,n
∞ω

ϕ[f ].

(v) M |=Ls,n
∞ω

∨
T [f ] iff M |=Ls,n

∞ω
ϕ[f ] for some ϕ ∈ T .

(vi) M |=Ls,n
∞ω

∧
T [f ] iff M |=Ls,n

∞ω
ϕ[f ] for all ϕ ∈ T .

(vii) If x is a variable, then M |=Ls,n
∞ω

∃xϕ[f ] iff there is an x-variant g of f such that
M |=Ls,n

∞ω
ϕ[g].
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(viii) If x and y are variables, then M |=Ls,n
∞ω

QWFxyϕ[g] iff

{(g(x), g(y)) : g is an {x, y}-variant of f such that M |=Ls,n
∞ω

ϕ[g]}

is well-founded.

(ix) If ϕ ∈ Ls,Πn−1
∞ω , then M |=Ls,n

∞ω
∃̃Xϕ[f ] iff s(X) = (n1, . . . , nk) and there is an

expansion of M to a τ ∪ {n1, . . . , nk}-structure M ′ and a variable assignment g for
M ′ such that f ⊆ g and M ′ |=Ls,n

∞ω
ϕ[g].

(x) If ϕ ∈ Ls,Σn−1
∞ω , then M |=Ls,n

∞ω
∀̃Xϕ[f ] iff s(X) = (n1, . . . , nk) and for all expansions

of M to a τ ∪{n1, . . . , nk}-structure M ′ and any variable assignment g for M ′ such
that f ⊆ g, M ′ |=Ls,n

∞ω
ϕ[g].

If κ is regular, and ϕ ∈ Ls,n
κω , we define the satisfaction relation of Ls,n

κω by letting A |=Ls,n
κω
ϕ

iff ϕ ∈ Ls,n
κω ∧ A |=Ls,n

∞ω
ϕ.

Let us make a few notational remarks. As we deal with quantification over different sorts,
when introducing a variable in a sentence of sort logic, we will denote its configuration of
sorts by a superscript, which we will leave out afterwards. For example, we will write
things like

ϕ = ∃xs0ys1(x = y) and ψ = ∃̃X(s1,s1)(∀xs1(X(x, x))).

Our main use for sort quantifiers is to add a model of set theory, witnessing that some
structure satisfies some desired property. To add a model of set theory, we have to use
a sort quantifier, quantifying over a binary relation variable X. We then specify some
property the model of set theory shall satisfy, for example, that it is extensional. For
this we have to write out the extensionality axiom using the variable X. Concretely, this
would look like this:

χ = ∃̃X(s1,s1)(∀xs1∀ys1(X(x, y) ↔ ∀zs1(X(z, x) ↔ X(z, y)))).

This sentence is true in some structure A, if we can add an additional universe B with
a binary relation E, interpreting X, so that (B,E) satisfies the extensionality axiom
(in particular, this concrete sentence χ is trivially true in any structure A). In the
following, when we say that ψ is some set-theoretic statement written down using a
relation variable X(s1,s1), we mean that we replace all instances of ∈ occurring in ψ by
X and use quantification over variables in the sort s1, as done above when spelling out
the extensionality axiom above.

Notice that if ϕ0 = (∀̃X(s1,...,sn)χ) ∧ ψ ∈ Ls,n
κω and ϕ1 = (∀̃X(s1,...,sn)χ) ∨ ψ and none of

the sorts s1, . . . , sn appears in ψ, then ϕ0 is equivalent to ∀̃X(s1,...,sn)(χ ∧ ψ), and ϕ1 is
equivalent to ∀̃X(s1,...,sn)(χ∨ ψ). The same is true if we substitute ∀̃ by ∃̃. Thus, we may
absorb conjuncts and disjuncts into the scope of sort quantifiers without altering the
meaning of a sentence, as long as they do not interfere with the sorts quantified over.
In particular, this shows that if ϕ ∈ Ls,Πn

∞ω and ψ is free of sort quantifiers, then ϕ ∧ ψ
is equivalent to a formula in Ls,Πn

∞ω , i.e., with a leading universal sort quantifier. The
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same holds for Ls,Σn
∞ω . In the following, for better readability we will often write ϕ∧ ψ for

ϕ and ψ as above, but formally with the intention to denote the equivalent formula in
Ls,Πn

∞ω or in Ls,Σn
∞ω .

Our first aim is to show that if K is a Σn or Πn definable model class closed under
isomorphism, then it is Ls,n axiomatisable. The following lemma provides the first step.

Lemma 1.2.13. Let p, τ ∈ Hκ and Φ(x, p) be a Σ1 formula defining with the parameter p
a class K of τ -structures closed under isomorphism. Then there is a formula ϕ ∈ Ls,Σ1

κω [τ ]
such that K = Mod(ϕ).

Proof. Conceptually, the proof is simple. We write down a sentence of Ls,Σ1
κω , that we

can add a (by usage of QWF) transitive set M as an additional sort to the model which
contains the model itself, and which believes that the model is in K. If the model is in
K then surely this can be witnessed by some transitive set. On the other hand, if the
model is not in K, no such transitive set could be added: this would imply A ∈ K by Σ1

definability and therefore upward absoluteness of K from transitive sets. We use Lκω to
define the parameter p. Because this is our first time dealing with sort logic, we spell out
all the details to make sure everything works. Subsequently, we will be less detailed.

Since Φ is a Σ1 formula, we have that Φ(x, p) = ∃yΨ(x, y, p) for some ∆0 formula Ψ.
As τ, p ∈ Hκ, we have available the formulas στ and σp. For simplicity, assume that τ
uses only one sort s0 and contains only unary relation symbols, and further assume that
it is given by τ = {Ri : i < γ} for some γ < κ. Note that formally, if z is a τ -structure,
then z = (a, f), where a is the domain and f is a function assigning interpretations to
the Ri. Take a new sort symbol s1 and consider the following formula χs(a, f), in which
all set-theoretic formulas are written down using a binary relation variable X(s1,s1), and
a and f are individual variables in sort s1:

χs(a, f) = ∃ys1(στ (y)
∧ “(a, f) is a y-structure”
∧ ∀xs0∃zs1(X(z, a) ∧ z = x)

∧ ∀xs1∃zs0(X(x, a) ∧ z = x)

∧
∧
R∈τ

∀xs0∀zs1vs1((σR(v) ∧ x = z) → (X(z, f(v)) ↔ R(x))).

The purpose of this formula is the following: If (M,∈) is transitive and there is a pair
(a, f) in M such that the structure (A,M,∈) satisfies χs(a, f) – where M is taken to
be the interpretation of the sort symbol s1 and ∈ interprets the relation variable X –
then note that (a, f) is the actual structure A. With χs at hand consider the following
sentence, where Ψ is written down using the relational variable X:

ϕ = ∃̃X(s1,s1)[∀xs1ys1(x = y ↔ ∀zs1(X(z, x) ↔ X(z, y)))

∧ QWFxs1ys1X(x, y)

∧ ∃as1f s1vs1(χs(a, f) ∧ σp(v) ∧ ∃ys1Ψ((a, f), y, v))].
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We show that ϕ is the formula of Ls,Σ1
κω we were looking for. Note that the outer quantifier

is the only sort quantifier, so ϕ ∈ Ls,Σ1
κω .

If A |= ϕ, then this is witnessed by a new sort with domain M and some relation
X ⊆ M2 such that (M,X) is extensional and well-founded. So we can assume, by
collapsing, that M is transitive and X =∈. We then have that (M,∈) contains some pair
(a, f) which by satisfying the formula χs is the actual structure A. It contains p by the
usage of σp. Furthermore, M has some y ∈M such that (M,∈) |= Ψ(A, y, p). Because
Ψ is ∆0 and M is transitive, really Ψ(A, y, p) holds and thus Φ(A, p).

And if Φ(A, p) holds, this is verified by some transitive set containing A and p. But
then expanding A to (A,M,∈) witnesses that A satisfies ϕ.

Lemma 1.2.14. Let p, τ ∈ Hκ and Φ(x, p) be a Π1 formula defining with the parameter p
a class K of τ -structures closed under isomorphism. Then there is a formula ϕ ∈ Ls,Π1

κω [τ ]
such that K = Mod(ϕ).

Proof. Let Φ(x, p) = ∀yΨ(x, y, p) where Ψ is a ∆0 formula. Using χs as in the proof
above, let

ϕ = ∀̃X(s1,s1)([∀xs1ys1(x = y ↔ ∀zs1(X(z, x) ↔ X(z, y)))∧
QWFxs1ys1(x ∈ y) ∧ ∃as1f s1vs1(χs(a, f) ∧ σp(v))]
→ ∀as1f s1vs1(χs(a, f) ∧ σp(v) → ∀ys1Ψ((a, f), y, p)))

If A |= ϕ, then any expansion of A by a transitive set M which contains A and p will
have a y ∈M such that M |= Ψ(A, y, p). Then clearly, Φ(A) holds. On the other hand,
if Φ(A, p) holds, because it is Π1, by downward absoluteness, any transitive M that
contains A and p will believe Φ(A, p). Thus A |= ϕ.

By now we showed that the Σ1 and the Π1 definable model classes are Ls,1-axiomatisable,
respectively. We will argue inductively that Σn and Πn definable classes are Ls,n-
axiomatisable. For this, we will need a few facts about C(n)-classes for n ≥ 1. Recall
that C(n) is definable by a Πn formula. Now consider the class

K(n) = {A : ∃α ∈ C(n) such that A ∼= (Vα,∈)}.

If n ≥ 2, then

A ∈ K(n) iff ∀β(β ∈ C(n−1) ∧ A ∈ Vβ → Vβ |= “∃α ∈ C(n) : A ∼= Vα”)

provides a Πn definition of K(n). To see that the above equivalence holds, let A ∈ K(n)

with A ∼= Vα and α ∈ C(n). Take any β ∈ C(n−1) with A ∈ Vβ. We can compute the
transitive collapse of A in Vβ and so Vβ |= A ∼= Vα. Now because β ∈ C(n−1) and C(n) is
Πn definable, the fact that α ∈ C(n) is downward absolute to Vβ, so Vβ |= α ∈ C(n). And
clearly, if every Vβ with β ∈ C(n−1) believes A to be in K(n), then this is true (just take
a Vβ that is correct about K(n)).
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In our induction for n ≥ 2, we will use that K(n−1) is definable by a Ls,Πn−1-formula.
Note that for n = 1, the above equivalence is still true, but the right hand side is not a Π1

statement because “A ∈ Vβ” is already Π1. We can therefore not use our already obtained
results to derive a formula axiomatising K(1). We thus need the following lemma, which
shows that we can construct analogues to Magidor’s Φ in Ls,Π1 . That this is possible is
due to an ability of sort quantifiers to emulate second-order quantification.

Lemma 1.2.15. The following hold:

(i) There is a sentence Φs ∈ Ls,Π1 [{∈}] such that (M,E) |= Φ iff (M,E) ∼= (Vα,∈) for
some limit ordinal α.

(ii) There is a sentence Φ(1) ∈ Ls,Π1 [{∈}] such that (M,E) |= Φ(1) iff (M,E) ∼= (Vα,∈)
for some α ∈ C(1).

Proof. For (i), take ϕ to be the (first-order) statement in the language of set theory that
says “There is no largest ordinal, for every ordinal α, Vα exists, every set is in some
Vβ, and the power set axiom holds”. We fix a sentence ϕsub ∈ Ls,Π1 which is true in
some transitive model (M,∈) iff for every a ∈M , P(a) ⊆M . The sentence ϕsub can be
constructed as follows:

∀̃Xs1 [∃ys0∀xs1(X(x) → ∃zs0(x = z ∧ z ∈ y)) →
∃vs0 [∀zs0(z ∈ v → ∃xs1(z = x ∧X(x)))

∧ ∀xs1(X(x) → ∃zs0(z = x ∧ z ∈ v))]]

The sentence ϕsub is true in some model (M,∈) if for every possible expansion of (M,∈)
by a set N and a unary relation X ⊆ N , if X is a subset of some element y of M , then
X is an actual element of M . Thus P(y) ⊆M . Now define Φs as

Φ = Ext ∧ QWFxy(x ∈ y) ∧ ϕ ∧ ϕsub.

This sentence expresses that its model (M,E) is extensional, well-founded, satisfies ϕ,
and contains any subset of any of its members. Now clearly, if α is a limit ordinal, then
Vα |= Φs. And if (M,E) |= Φs, by well-foundedness and extensionality, we can without
loss of generality assume that (M,∈) is given by its transitive collapse. We claim that
with α =M ∩Ord, we have that α is a limit ordinal and M = Vα. Clearly α has to be a
limit because M does not have a largest ordinal. Because M believes that each of its
elements has a rank we have to have M ⊆ Vα. It is thus sufficient to show Vβ ∈M for
all β < α. Note ∅ = V0 ∈ M . Assume that β = γ + 1 and Vγ ∈ M . Then by virtue of
ϕsub, we have P(Vγ) = Vβ ⊆M . Furthermore, by ϕ, M has a set x that it believes to be
Vβ. Together this implies that x = Vβ. Finally, let β be a limit and assume Vγ ∈M for
all γ < β. Then Vβ =

⋃
γ<β Vγ ⊆M . But again, by ϕ, M has a set x that it believes to

be Vβ. This together implies Vβ ∈M .
For (ii), recall that C(1) consists precisely of the uncountable i-fixed points and let

Φ(1) = Φs ∧ ∀β(Ord(β) → ∃x∃y∃f [y = Vβ ∧ Card(x) ∧ “f : y → x is a bijection”]).
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By (i), any model of Φ(1) can be assumed to be some Vα with α a limit ordinal. But then
by the second part of Φ(1), whenever β is some ordinal below α, Vα contains a bijection
between Vβ and some cardinal κ < α. As Vα contains the real Vβ, this really gives rise to
a bijection Vβ → κ. Thus, α is a i-fixed point. Note that both Φs and Φ(1) are members
of Ls,Π1 .

Now we are ready to show our desired theorem.

Theorem 1.2.16. The following hold:

(i) For n ≥ 1, if τ, p ∈ Hκ and Φ(x, p) is a Σn formula defining a class K of τ -
structures closed under isomorphism, then there is a formula ϕ ∈ Ls,Σn

κω [τ ] such that
K = Mod(ϕ).

(ii) For n ≥ 1, if τ, p ∈ Hκ and Φ(x, p) is a Πn formula defining a class K of τ -
structures closed under isomorphism, then there is a formula ϕ ∈ Ls,Πn

κω [τ ] such that
K = Mod(ϕ).

Proof. We show the two statements simultaneously by induction on n. The base case
n = 1 was shown in Lemmas 1.2.13 and 1.2.14. We have to treat the case n = 2 and n > 2
separately. First let n = 2, and let us show (i). We assume that Φ(x, p) = ∃yΨ(x, y, p)
for some Π1 formula Ψ. By Lemma 1.2.15, the sentence Φ(1) ∈ Ls,Π1 axiomatises the
class K(1). Consider

ϕ = ∃̃X(s1,s1)(Φ(1) ∧ ∃as1f s1vs1(χs(a, f) ∧ σp(v) ∧ ∃ys1Ψ((a, f), y, v))).

We assume that s1 does not appear in τ , and that χs is as in the proof of Lemma 1.2.13.
We take Φ(1) to be written out using X as the binary relation. Then any setM expanding
a structure A to witness that A |= ϕ via X ⊆M2 satisfies Φ(1), so has the property that
(M,X) ∼= (Vα,∈) for some α ∈ C(1). Then if A |= ϕ, it thus can be expanded by a model
(Vα,∈) containing A, p and with α ∈ C(1) and such that there is some y ∈ Vα such that
Vα |= Ψ(A, y, p). Because α ∈ C(1), we get that Ψ(A, y, p) really holds and thus A ∈ K.
On the other hand, if A ∈ K, then this surely is witnessed by some Vα where α ∈ C(1),
and we can expand A accordingly by Vα to verify that A |= ϕ. Finally, since Φ(1) has
complexity Π1 in the sort quantifiers, ϕ ∈ Ls,Σ2

κω .

Proceeding to (ii) assume that Φ(x, p) is Π2 and so Φ(x, p) = ∀yΨ(x, y, p) for some Σ1

formula Ψ. Consider

ϕ = ∀̃X(s1,s1)([Φ(1) ∧ ∃as1f s1vs1(χs(a, f) ∧ σp(v))]
→ ∀as1f s1vs1(χs(a, f) ∧ σp(v) → ∀ys1Ψ((a, f), y, v))),

with the analogous assumptions on X and Φ(1). Then if A |= ϕ, take any Vα such
that α ∈ C(1), A, p ∈ Vα and Vα is correct about Φ(x). Because (A, Vα,∈) satisfies the
antecedent of ϕ, we get that Vα |= ∀yΨ(A, y, p), i.e., Vα |= Φ(A). As we took Vα such
that it is correct about Φ, we get A ∈ K. And if A ∈ K, and (M,X) is an expansion
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of A satisfying the antecedent of ϕ, Then (M,X) is without loss of generality given by
(Vα,∈) for some α ∈ C(1). Then because Φ is Π2, it is downward absolute to Vα and thus
Vα |= ∀yΨ(A, y, p), verifying that A |= ϕ. Because the implication turns Φ(1) into a Σ1

sentence of sort logic, ϕ has complexity Π2.

Now to the case in which n > 2: Recall that by our earlier remarks, the class K(n−1)

is Πn−1 definable. By induction hypothesis, there is thus a formula Φ(n−1) ∈ Ls,Πn−1

axiomatising it. Then we can use the same proof as above, substituting occurrences of
Φ(1) by Φ(n−1), occurrences of Σ1, Σ2, Π1, Π2 by Σn−1, Σn, Πn−1, Πn, and occurrences of
C(1) by C(n−1), respectively.

Because we will utilise the sentences Φ(n) from the above proof ubiquitously, let us fix
them in a separate statement.

Corollary 1.2.17. For every n ≥ 1, there is a sentence Φ(n) ∈ Ls,n[{∈}] such that:

(M,E) |= Φ(n) iff there is an ordinal α ∈ C(n) such that (M,E) ∼= (Vα,∈).

Because the class {(M,E) : ∃α((Vα,∈) ∼= (M,E))} is Π2-definable, Theorem 1.2.16
further implies:

Corollary 1.2.18. There is a sentence Φs,∗ ∈ Ls,2[{∈}] such that:

(M,E) |= Φs,∗ iff there is an ordinal α such that (M,E) ∼= (Vα,∈).

Our next goal is to show the opposite direction, and to turn axiomatisations in Ls,n

into definitions in the Lévy hierarchy. We need the following lemma.

Lemma 1.2.19. Satisfaction for L∞ω(Q
WF) is ∆1 definable.

Proof. For i ∈ {0, 1}, we will give formulas Sati(x, y, z, v) such that for any sets A, ϕ, τ ,
and f ,

Sati(A, ϕ, τ, f) iff τ is a vocabulary, ϕ ∈ L∞ω(QWF)[τ ] is a formula,
A is a τ -structure, f is a variable assignment for A
with dom(f) containing all free variables of ϕ, and
A |=L∞ω(QWF) ϕ[f ].

We already know that being a vocabulary τ and a τ -structure are ∆1. That f is a
variable assignment for A with a domain containing any free variables of ϕ is ∆1 as
well. Furthermore, given some vocabulary τ , L∞ω(Q

WF)[τ ] is ∆1 definable. This can be
shown, for example, exactly as in [Bar75, Section III.1] (here the argument is carried out
for L∞ω but as L∞ω(Q

WF) simply adds a finitary quantifier, this can easily be modified
to our case). Because well-foundedness is absolute for transitive models (of some large

38



enough finite fragment ZFC∗ of ZFC), one can show that A |=L∞ω(QWF)
ϕ[f ] is absolute

for transitive models. Therefore, the following provide Σ1 and Π1 formulas, respectively:

Sat0(x, y, z, v) = ∃M(“M is transitive” ∧ (M,∈) |= ZFC∗

∧ “z is a vocabulary” ∧ y ∈ L∞ω(Q
WF)[z]

∧ “x is a τ -structure” ∧ “v is a variable assignment
for x containing the free variables of y”
∧ x, y, z, v ∈M ∧ (M,∈) |= “x |=L∞ω(QWF)

y[v]”).

Sat0(x, y, z, v) = ∀M([“M is transitive” ∧ (M,∈) |= ZFC∗

∧ “z is a vocabulary” ∧ y ∈ L∞ω(Q
WF)[z]

∧ “x is a τ -structure” ∧ “v is a variable assignment
for x containing the free variables of y”
∧ x, y, z, v ∈M ] → (M,∈) |= “x |=L∞ω(QWF)

y[v]”).

Now we can show our desired theorem.

Theorem 1.2.20. Let n ≥ 1.

(a) Let τ be a vocabulary and ϕ ∈ Ls,Σn
∞ω [τ ] be a formula. Then there is a Σn formula

Sat(x, y) using ϕ and τ as parameters such that for any sets A and f :

Sat(A, f) iff A is a τ -structure and f is a variable assignment for A
such that A |=Ls,n

∞ω
ϕ[f ].

In particular, if α ∈ C(n) such that ϕ, τ,A ∈ Vα, then A |=Ls,n
∞ω

ϕ[f ] iff Vα |=
“A |=Ls,n

∞ω
ϕ[f ]”.

(b) Let τ be a vocabulary and ϕ ∈ Ls,Πn
∞ω [τ ] be a formula. Then there is a Πn formula

Sat(x, y) using ϕ and τ as parameters such that for any sets A and f :

Sat(A, f) iff A is a τ -structure and f is a variable assignment for A
such that A |=Ls,n

∞ω
ϕ[f ].

In particular, if α ∈ C(n) such that ϕ, τ,A ∈ Vα, then A |=Ls,n
∞ω

ϕ[f ] iff Vα |=
“A |=Ls,n

∞ω
ϕ[f ]”.

Proof. Let us show the two parts (a) and (b) simultaneously by induction on n. First
consider n = 1 and let ϕ ∈ Ls,Σn

∞ω [τ ] be a formula with free variables given by the members
of a set S. We argue for our claim by induction on ϕ. If ϕ ∈ L∞ω(Q

WF), we may simply
take the Σ1 formula from the previous Lemma 1.2.19. Thus, the base case is covered,
and we can further assume that ϕ contains a sort quantifier. Then ϕ = ∃̃Xψ(X,S) for
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some formula ψ ∈ L∞ω(Q
WF) free of sort quantifiers, with free variables given by a set S.

Let Sat(x, y) be given by:

∃M∃g(“x is a τ -structure”
∧ “y is a variable assignment for x
with dom(y) containing the free variables of ϕ”
∧ “M = (A, B1) is an expansion of x”
∧ “g ⊇ y is a variable assignment for (A, B1)”

∧ (A, B1) |=L∞ω(QWF) ψ[g]).

Note that (A, B1) |=L∞ω(QWF) ψ[g] is a ∆1 statement by Lemma 1.2.19 and therefore the
above is a Σ1 formula. We further use that being an expansion is expressible in a ∆1 way.

Let us argue for the “in particular” part. We argued above that Sat(A, f) holds true
if and only if A |=Ls,Σ1∞ω

ϕ[f ]. Note that these computations can be carried out in Vα
for Vα containing ϕ, τ , and A. Furthermore, Vα recognizes that ϕ ∈ Ls,1

∞ω is actually
in Ls,Σ1

∞ω . Thus Vα |= “A |=Ls,1
∞ω

ϕ[f ]” iff Vα |= “A |=Ls,Σ1∞ω
ϕ[f ]” iff Vα |= Sat(A, f). If

α ∈ C(1), it is correct about Σ1 formulas, and in particular about Sat(x, y). Therefore
Vα |= “A |=Ls,1

∞ω
ϕ[f ]” iff Sat(A, f) iff A |=Ls,1

∞ω
ϕ[f ].

If ϕ = ∀̃Xs1ψ(X,S) is Π1 in sort logic, replacing, in Sat(x, y) as above, the explicitly
written down existential quantifiers with universal ones and exchanging the last conjunc-
tion by an implication, results in the desired Π1 formula. The “in particular” part follows
analogously by using that Vα for α ∈ C(1) is also correct about Π1 formulas.

If n > 1, and ϕ = ∃̃Xψ(X,S) is Σn, then ψ is an Ls,Πn−1
∞ω formula and by induction

hypothesis there is a Πn−1 formula Satp(v, w) such that B |=Ls,Πn−1
∞ω

ψ[g] iff Satp(B, g).
Therefore the following formula is a Σn formula and works as desired:

∃M∃g(“x is a τ -structure”
∧ “y is a variable assignment for x
with dom(y) containing the free variables of ϕ”
∧ “M = (A, B1) is an expansion of x”
∧ “g ⊇ y is a variable assignment for (A, B1)”

∧ Satp((A, B1), g))

The Πn case is again analogous, replacing existential quantifiers by universal ones
appropriately. In both cases, the “in particular” part works as above.

Our results have a number of useful consequences.

Corollary 1.2.21. Let α ∈ C(n). For any ϕ ∈ Ls,n
∞ω[τ ] and τ -structure A, if ϕ,A ∈ Vα,

then
A |=Ls,n

∞ω
ϕ iff Vα |= “A |=Ls,n

∞ω
ϕ”.
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Proof. For ψ ∈ Ls,Σn
∞ω ∪Ls,Πn

∞ω , this follows from Theorem 1.2.20. Recall that any ϕ ∈ Ls,n
∞ω

is simply a boolean combination of members of Ls,Σn
∞ω ∪Ls,Πn

∞ω . But then clearly, correctness
of Vα about satisfaction of members of Ls,Σn

∞ω ∪Ls,Πn
∞ω implies correctness about satisfaction

towards ψ ∈ Ls,n
∞ω.

Corollary 1.2.22. For any n ≥ 1 and any regular cardinal κ:

(a) The satisfaction relation |=Ls,n
∞ω

is ∆n+1 definable.

(b) The satisfaction relation |=Ls,n
κω

is ∆n+1 definable using κ as a parameter.

Proof. For part (a), for i ∈ {0, 1}, we will give formulas Sati(x, y, z, v) such that for any
sets A, ϕ, τ, f ,

Sati(A, ϕ, τ, f) iff τ is a vocabulary, ϕ ∈ Ls,n
∞ω[τ ] is a formula,

A is a τ -structure, f is a variable assignment for A
with dom(f) containing all free variables of ϕ, and
A |=Ls,n

∞ω
ϕ[f ].

Again, checking the syntactical parts of the statement can be carried out in a ∆1 way. By
Corollary 1.2.21, A |=Ls,n

∞ω
ϕ[f ] is absolute between Vα and V for α ∈ C(n). This implies

that the following give equivalent formulas as desired:

Sat0(x, y, z, v) = ∃α∃X(α ∈ C(n) ∧X = Vα ∧ z is a vocabulary ∧
y ∈ Ls,n

∞ω[z] ∧ x is a τ -structure ∧ v is a variable
assignment for x containing the free variables of y
∧ x, y, z, v ∈ X ∧X |= “x |=Ls,n

∞ω
y[v]”).

Sat0(x, y, z, v) = ∀α∀X([α ∈ C(n) ∧X = Vα ∧ z is a vocabulary ∧
y ∈ Ls,n

∞ω[z] ∧ x is a τ -structure ∧ v is a variable
assignment for x containing the free variables of y
∧ x, y, z, v ∈ X] → X |= “x |=Ls,n

∞ω
y[v]”).

Since “α ∈ C(n)” is a Πn statement and “X = Vα” is a Π1 statement, these formulas are
Σn+1 and Πn+1, respectively.

For part (b), recall that A |=Ls,n
κω
ϕ iff ϕ ∈ Ls,n

κω and A |=Ls,n
∞ω

ϕ. Thus, that |=Ls,n
κω

is
∆n+1 definable follows from part (a), using that we can use the parameter κ to check
that ϕ ∈ Ls,n

κω .

Corollary 1.2.23. Let τ ∈ Hκ be a vocabulary and K a class of τ -structures closed
under isomorphism. Then:

(a) K is Σn definable with parameters in Hκ iff K is axiomatisable by some ϕ ∈ Ls,Σn
κω [τ ].

(b) K is Πn definable with parameters in Hκ iff K is axiomatisable by some ϕ ∈ Ls,Πn
κω [τ ].
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Proof. This follows immediately from Theorems 1.2.16 and 1.2.20.

Sort logics can be seen as the most powerful logics available, as every logic is bounded
by some level of sort logic:

Corollary 1.2.24. For every logic L, there is some cardinal κ and some natural number
n such that L ≤ Ls,n

κω .

Proof. Let dep∗(L) = γ. Then to analyse classes definable by sentences of L it is sufficient
to restrict to sentences ψ ∈ L∩Hγ . Take a natural number n and a cardinal κ ≥ γ large
enough such that L is definable by a Σn formula with parameters in Hκ. We claim that
L ≤ Ls,n

κω : For any ψ ∈ L ∩Hγ,
A |=L ψ,

is a Σn definition of Mod(ψ) with parameters in Hκ. As Mod(ψ) is closed under
isomorphism, Corollary 1.2.23 implies that Mod(ψ) is axiomatisable by some ϕ ∈ Ls,n

κω .

1.3. Large cardinals
We collect the most important classical large cardinal notions that will accompany us
throughout, fixing some notation going along. If not mentioned otherwise, all these
notions can be found in comprehensive set theory textbooks like [Jec03] or [Kan03].
Going along, we point out some of the classical results that connected large cardinals
with model theory.

1.3.1. Measurable cardinals, elementary embeddings and
ultrafilters

Most large cardinals useful in our considerations about model theory of strong logics
appear as critical points of elementary embeddings. For this, if j : (N,∈) → (M,∈) is
an elementary embedding between two transitive models of (some finite fragment of)
ZFC, it is standard to see that as long as j is not the identity, it moves some ordinal, i.e.,
there is δ ∈ M such that j(δ) > δ (cf. [Kan03, Section 5]). The smallest such ordinal
is called the critical point crit(j) of j. Often, elementary embeddings j are of interest
that have V as their domain, and in particular the target of j is then also a proper class
M ⊆ V . The most basic large cardinal axiom of this type then states the existence of
what is known as measurable cardinals:

Definition 1.3.1 (Measurable cardinals; Definition 1). A cardinal κ is measurable iff κ
is the critical point of an elementary embedding j : V →M where M is some transitive
class.

It is a theorem of Kunen that a non-trivial elementary embedding j : V → V is
inconsistent with ZFC (cf., e.g., [Kan03, Section 23]). Much of the theory of large
cardinals plays out between these two extremes. While the assumptions on the target M
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of an embedding witnessing measurability of a cardinal are quite minimal (M is only
needed to be transitive), demanding more properties of M that bring it closer and closer
to V , i.e., existence of elementary embeddings more and more resembling the inconsistent
embedding j : V → V , typically leads to stronger and stronger assumptions.

Note that according to the above definition, stating the existence of a measurable
cardinal would demand of us stating the existence of an elementary embedding j : V →M .
As such an embedding is a proper class, this cannot be formulated as a statement in the
language of set theory. This is a typical situation in large cardinal theory and it requires
us to formalise the notion of measurability in a different way. This can be achieved by
requiring the existence of certain ultrafilters.

Definition 1.3.2. Let S be a set.

(1) A filter over S is a set F ⊆ P(S) such that
(i) ∅ /∈ S.
(ii) If X,Y ∈ F , then X ∩ Y ∈ F .
(iii) If X ∈ F and Y ⊆ S such that X ⊆ Y , then Y ∈ F .

(2) A filter F over S is called non-principal iff there is no X ⊆ S such that F = {Y ⊆
S : X ⊆ Y }.

(3) A filter U over S is called an ultrafilter iff U is non-principal and for every X ⊆ S
either X ∈ U or S \X ∈ U .

(4) For a cardinal κ, a filter F is called κ-complete iff it is closed under intersections of
length < κ, i.e., for any δ < κ and any {Xi : i < δ} ⊆ U , also

⋂
i<δXi ∈ U .

Definition 1.3.3 (Measurable cardinals; Definition 2). Let κ be an uncountable cardinal.
Then κ is called measurable iff there is a κ-complete ultrafilter over κ.

Let us point out how the two definitions of measurable cardinals are connected. Recall
the ultraproduct construction (cf., e.g., [CK73, Chapter 4]). If U is an ultrafilter over a
set S, τ is a vocabulary, and for every s ∈ S we are given some τ -structure As, we write∏

s∈S As/U for the ultraproduct of the As modulo U . Recall that
∏

s∈S As/U is made
up out of equivalence classes [f ]U of functions f ∈

∏
s∈S As. If all the As are the same

structure A, we call
∏

s∈S As/U the ultrapower of A, and denote it as Ult(A, U). The
usefulness of ultraproducts in model theory stems from the following well-known result:

Theorem 1.3.4 (Łos’ Theorem). Let ϕ(x1, . . . , xn) be a first-order formula over τ and
[f1]U , . . . , [fn]U ∈

∏
s∈S As/U . Then∏

s∈S

As/U |= ϕ([f1]U , . . . , [fn]U) iff {s ∈ S : As |= ϕ(f1(s), . . . , fn(s))} ∈ U.
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Recall that we may, using what is known as Scott’s Trick, also construct an ultrapower
(Ult(V, U),∈Ult(V,U)) of (V,∈) modulo U (cf., e.g., [Kan03, Section 5]), which we will
denote simply by Ult(V, U). If f : S → V is some function, we write [f ]U ∈ Ult(V, U)
for the Scott equivalence class of f . When clear out of context, we will usually drop the
subscript and write [f ] for [f ]U .

We get a version of Łos’ Theorem:

Theorem 1.3.5 ([Kan03, Theorem 5.2]). For any formula ϕ(x1, . . . , xn) in the language
of set theory and f1, . . . , fn functions S → V :

Ult(V, U) |= ϕ([f1]U , . . . , [fn]U) iff {s ∈ S : ϕV (f1(s), . . . , fn(s))} ∈ U.

The importance of completeness of ultrafilters comes with the following result.

Theorem 1.3.6 ([Kan03, Proposition 5.3]). Let U be an ultrafilter over a set S. Then
Ult(V, U) is well-founded iff U is ω1-complete.

In particular, for an ω1-complete ultrafilter, we can consider the transitive collapse
MU of Ult(V, U) (with checking before that ∈Ult(V,U) is set-like). In the following, we will
therefore identify Ult(V, U) with its transitive collapse MU and hence ∈Ult(V,U) with ∈.

For a set x, let cx : S → V be the function with constant value x, i.e., c(s) = x for
all s ∈ S. Using Łos’ Theorem, one can check that x 7→ [cx]U defines an elementary
embedding jU : V → MU . We thus have a device that allows us to build elementary
embeddings of V into transitive classes, provided we have an ω1-complete ultrafilter.

The connection between ultrafilters of a certain completeness and measurable cardinals
is now the following. If j : V → M is an elementary embedding with a critical point
crit(j) = κ, then κ is a regular uncountable cardinal and for X ⊆ κ:

X ∈ U iff κ ∈ j(X)

defines a κ-complete ultrafilter U over κ (cf. [Kan03, Theorem 5.6]). On the other hand,
if for an uncountable cardinal κ there is a κ-complete ultrafilter over κ, our remarks above
show that jU : V → Ult(V, U) is an elementary embedding. Moreover, the κ-completeness
of U implies that jU has a critical point crit(jU) = κ (see [Kan03, Proposition 5.4]).
Putting everything together, we have the equivalence of our two definitions 1.3.1 and
1.3.3:

Theorem 1.3.7. Let κ be an uncountable cardinal. Then there is a κ-complete ultrafilter
U over κ iff there is an elementary embedding j : V →M with critical point crit(j) = κ.

1.3.2. Interactions between elementary embeddings and syntax
of logics

Before we continue with our treatment of large cardinals, let us first make a few remarks
about the interaction of logics with elementary embeddings. A typical use case of
elementary embeddings in model theory of strong logics is the following. Suppose
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T ⊆ L[τ ] for some logic L and vocabulary τ , and we want to argue that T is satisfiable.
We might know that T is <κ-satisfiable for some cardinal κ. Suppose we have an
elementary embedding j : V →M with crit(j) = κ, j(κ) > |T |, j“T ∈M and such that
M is correct about L-satisfaction. By elementarity, in M , j(T ) is a <j(κ)-satisfiable
j(τ)-theory. In particular, as |j“T | = |T | < j(κ), and M |= j“T ⊆ j(T ), then M has
a j(τ)-structure A that it believes to be a model of j“T . Because M is correct about
L-satisfaction, this is really a model of j“T . Now if we would know that j“T is a copy of
T , we could rename A � j“τ to a τ -structure satisfying T .

We can now appreciate the importance of the precise definitions of the syntaxes of the
logics considered in Appendix A: they make sure that j“T in many cases is indeed a copy
of T . Let us argue for this. In arguments of this kind, it is important to consider how
sentences of our logics look as material sets, to make sure that when applying j to some
ϕ ∈ L, then j(ϕ) is really a renaming of ϕ. First, note that our vocabularies are coded in a
way such that any elementary embedding provides a renaming: Suppose that j : V →M is
an elementary embedding and τ is a vocabulary. Recall that non-logical symbols are finite
tuples from which we can read off all relevant information about the symbol, like whether
it is a function or relation symbol, or what its arity or configuration is (cf. Definition 1.1.1).
Therefore, j preservers all of these information. For instance, if r = (2, (n1, . . . , nk, a)) is
a relation symbol, then by elementarity j(r) = (2, (n1, . . . , nk, j(a))) is a relation symbol
with the same configuration. Using these observations, it is simple to see that j“τ is a
renaming of τ .

Similarly, consider the official syntax of, for example, Lκκ for some regular cardinal
κ, fixed in Appendix A, Definition A.2. Note that if j : V → M is elementary and
crit(j) ≥ κ, then, if T = {ϕi : i < γ} ⊆ Lκκ for γ < κ and ϕ = (10, T ) =

∧
T ∈ Lκκ, then

j(ϕ) = j((10, T )) = (10, j(T )). But j(T ) = j({ϕi : i < γ}) = {j(ϕi) : i < j(γ)} = j“T .
Thus j(ϕ) =

∧
j“T . Or similarly, j(∃(xi : i < γ)ψ) = ∃(j(xi) : i < γ)j(ψ). Using

observations like this, it is easy to show by induction on ϕ, that j(ϕ) is simply a renaming
of ϕ. We summarise this in the following proposition.

Proposition 1.3.8. Let j : V → M be elementary such that crit(j) ≥ κ and τ a
vocabulary. Then j“Lκκ[τ ] is a copy of Lκκ[τ ], i.e., for every ϕ ∈ Lκκ[τ ] and for any
τ -structure A, when renaming A to a j“τ -structure A∗ along the renaming j : τ → j“τ ,
we get:

A |=Lκκ ϕ iff A∗ |=Lκκ j(ϕ).

Using their official syntaxes’ codings from Appendix A, analogous assertions are true
for the logics L(QWF), L(I), L2, and Ls,n, introduced in Section 1.2, as well as their
infinite versions, Lκλ(QWF), Lκλ(I), L2

κλ, and Ls,n
κω . Note that because L(QWF), L(I), L2,

and Ls,n are finitary logics, any elementary embedding j : V →M restricts to renamings
of any of their theories, independent of their critical point (while, for example, for Lκκ
this is only true for elementary embeddings with critical point at least κ).

Let us return to our consideration of large cardinals. Measurable cardinals have
traditionally not received the most prominent attention in model theory of strong logics.
Nevertheless, the following folklore characterisation has been known for a long time, at
least since Chang and Keisler’s Model Theory, in which it appears as an exercise.
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Theorem 1.3.9 ([CK73, Exercise 4.2.6]). The following are equivalent for a cardinal κ:

(1) κ is measurable.

(2) κ is a chain compactness cardinal for the logic Lκκ, i.e., if T ⊆ Lκκ is a theory
which can be written as an increasing union

⋃
α<κ Tα such that every Tα has a

model, then T has a model.

The following can be proved with similar arguments.

Proposition 1.3.10. The following are equivalent for a cardinal κ:

(1) κ is the smallest measurable cardinal.

(2) κ is the smallest chain compactness cardinal for the logic L(QWF), i.e., the smallest
cardinal κ such that if T ⊆ L(QWF) is a theory which can be written as an increasing
union

⋃
α<κ Tα such that every Tα has a model, then T has a model.

1.3.3. Supercompact cardinals
As in many parts of large cardinal theory, supercompact cardinals play a major role in
model theory of strong logics. Also they are characterised by the existence of certain
ultrafilters. We will present this perspective first, before stating to which kind of
elementary embeddings they give rise to. Instead of a single ultrafilter living on κ,
supercompact cardinals come with many ultrafilters, more specifically, one for every
ordinal λ ≥ κ living on Pκλ. These further need additional properties.

Definition 1.3.11. Let κ be a cardinal, λ ≥ κ an ordinal and F a filter over Pκλ.

(1) The filter F is called fine iff for every α < λ, {s ∈ Pκλ : α ∈ s} ∈ F .

(2) A fine ultrafilter U is called normal iff every function f which is regressive on a set
in U is constant on a set in U , i.e., if f : Pκλ → λ and there is X ∈ U such that
f(s) ∈ s for all s ∈ X, then there is γ < λ such that {s ∈ Pκλ : f(s) = γ} ∈ U .

Definition 1.3.12. Let κ be a cardinal.

(1) For λ ≥ κ, κ is called λ-supercompact iff there is a fine, normal, κ-complete
ultrafilter U over Pκλ.

(2) We call κ supercompact iff κ is λ-supercompact for every λ ≥ κ.

Taking the ultrapower jU : V → MU of V by a fine, normal, κ-complete ultrafilter
over Pκλ, we call jU a (λ-) supercompactness embedding. Again, κ-completeness amounts
to crit(jU) = κ, while normality and fineness can be used to show that jU(κ) > λ and
jU“λ ∈MU . One can further use the fact that jU“λ ∈MU to show that Mλ

U ⊆MU . On
the other hand, if j : V → M is elementary with crit(j) = κ, j(κ) > λ and j“λ ∈ M ,
one can show that letting for X ⊆ Pκλ:

X ∈ U iff j“λ ∈ j(X),
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defines a fine, normal, κ-complete ultrafilter U over Pκλ (see [Jec03, Lemma 20.13] for a
proof of these statements). Thus we get:

Theorem 1.3.13. The following are equivalent:

(1) κ is supercompact.

(2) For every λ ≥ κ, there is an elementary embedding j : V →M such that crit(j) = κ,
j(κ) > λ and Mλ ⊆M .

(3) For every λ ≥ κ, there is an elementary embedding j : V →M such that crit(j) = κ,
j(κ) > λ and j“λ ∈M .

It can be shown that if κ is 2κ supercompact, κ is a limit of measurable cardinals
(cf. [Kan03, Proposition 22.1]). In particular, then Vκ |= ∃α(α is measurable) and so
supercompact cardinals exceed measurable cardinals in consistency strength.

Supercompact cardinals are of major importance in model theory of strong logics,
because, as we will later see, they correspond to the first level of several hierarchies that
amount to stronger and stronger assumptions about model-theoretic properties of logics.
Contrary to what their name suggests, they are better known as cardinals giving rise to
Löwenheim-Skolem properties (in contrast to compactness). The following is a classic
result of Magidor:

Theorem 1.3.14 (Magidor [Mag71]). Let κ be a cardinal. Then κ is the first supercom-
pact cardinal iff κ = LST(L2).

Nevertheless, supercompactness has a known characterisation in terms of compactness
principles for strong logics. We will be able to appreciate this result better, after we
introduced strongly compact cardinals.

1.3.4. Strongly compact cardinals
Probably the archetype of cardinals connected to model theory are strongly compact
cardinals, as their original motivation stems from the question whether infinitary logics
are compact. Nevertheless, in modern research they are usually treated as a weakening
of supercompact cardinals. Let us take this perspective for a moment.

Definition 1.3.15. Let κ be a cardinal.

(1) For λ ≥ κ, κ is called λ-compact iff there is a fine, κ-complete ultrafilter U over
Pκλ.

(2) We call κ strongly compact iff κ is λ-compact for every λ ≥ κ.

Note that the difference to supercompactness is only the missing normality condition.
Again, we consider the ultrapower jU : V → MU of V , this time by a fine, κ-complete
ultrafilter over Pκλ. Again, κ-completeness amounts to crit(j) = κ. On the other hand,
we are missing normality. While this is needed in a proof to show that jU“λ ∈ MU ,
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fineness is sufficient to show that there is a set d ∈MU such that MU |= |d| < j(κ) and
j“λ ⊆ d. I.e., we can cover j“λ by a set which is “small” from M ’s perspective (note
that if j“λ ∈MU , such a cover in MU is given by j“λ itself). See [Kan03, Theorem 22.17]
for a proof of these statements. We remark that it can further be shown that Mκ ⊆M
(cf. [Ham09, Theorem 2.11]). On the other hand, if there is an elementary embedding
j : V →M such that crit(j) = κ, j(κ) > λ and there is a d ∈M such that j“λ ⊆ d and
M |= |d| < j(κ), then one can check that letting for X ⊆ Pκλ,

X ∈ U iff d ∈ j(X),

defines a fine, κ-complete ultrafilter on Pκλ. Thus we get:

Theorem 1.3.16. The following are equivalent:

(1) κ is strongly compact.

(2) For every λ ≥ κ, there is an elementary embedding j : V →M such that crit(j) = κ,
j(κ) > λ, Mκ ⊆M and there is d ∈M such that j“λ ⊆ d and M |= |d| < j(κ).

Moreover, one can show that condition (2) is actually sufficient to get the covering
property for the pointwise image of any set, not just for ordinals (see again [Kan03,
Theorem 22.17]). Thus, the above conditions (1) and (2) are equivalent to:

(3) For every set x, there is an elementary embedding j : V →M such that crit(j) = κ,
Mκ ⊆M and there is d ∈M such that j“x ⊆ d and M |= |d| < j(κ).

This covering of pointwise images by a “small” set in M is precisely what is needed in
arguments that give us compactness properties of infinitary logics Lκκ. In published
proofs of this fact (cf. [Kan03, Proposition 4.1] or [Jec03, Lemma 20.2]), this is often
obscured by deriving an ultrafilter, stating that a Łos like theorem can be proven for Lκκ,
and combining these two facts to show that a model of a theory can be constructed by an
ultraproduct. However, this is not strictly needed, as the compactness property of Lκκ
can be derived directly from (3), without going through the ultraproduct construction.
As the argument for this is instructive, we will show here how to do this (see the forward
direction of the proof):

Theorem 1.3.17. Let κ be a cardinal. Then κ is strongly compact iff κ = comp(Lκκ).

Proof. For the forward direction, suppose that κ is strongly compact. Because a com-
pactness cardinal of Lκκ cannot be smaller than κ, it is sufficient to show that Lκκ is
κ-compact. To this end, let T ⊆ Lκκ be a < κ-satisfiable theory. By (3) above, take an
elementary embedding j : V → M such that crit(j) = κ, Mκ ⊆ M and with a d ∈ M
such that j“T ⊆ d and M |= |d| < j(κ). We can without loss of generality assume (by
considering d ∩ j(T ) ∈ M) that d ⊆ j(T ). By elementarity, M believes that j(T ) is
<j(κ)-satisfiable. Therefore M believes that there is a model A |= d. In particular, for
every ϕ ∈ T , we have:

M |= “A |= j(ϕ)”.
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Because M is closed under κ-sequences, it is correct about Lκκ-satisfaction and so from
the outside we therefore see that really A |= j“T . Now since crit(j) = κ, by Proposition
1.3.8, j“T is a copy of T . Hence, A can be renamed to our desired model of T .

And now let κ = comp(Lκκ). We show that with λ ≥ κ there is a fine and κ-complete
ultrafilter over Pκλ. To this purpose, take a fresh constant symbol d and consider the
Lκκ-theory

T = ElDiagLκκ
(Vλ+2,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ},

where the constants ci in the second part of T refer to the constants used in the elementary
diagram. Let T0 ⊆ T such that |T0| < κ. Then there is some X ⊆ λ such that |X| < κ
and

T0 ⊆ ElDiagLκκ
(Vλ+2,∈) ∪ {ci ∈ d ∧ |d| < cκ : i ∈ X}.

Letting dM = X, clearly M = (Vλ+2,∈, dM) |= T0. Thus, by compactness, we get
that there is a model N |= T . Notice that the Lκκ-diagram contains the Lκκ-sentences
expressing well-foundedness and extensionality. We can therefore, by collapsing, without
loss of generality assume that N = (N,∈, cNx , dN)x∈Vλ+2

is transitive. The elementary
diagram gives us an elementary embedding j : Vλ+2 → N by x 7→ cNx . Note that cNi ∈ dN

for all i < λ and so |dN | ≥ λ. Further N |= |d| < cκ = j(κ) and so j(κ) > λ. In
particular, j has a critical point crit(j) ≤ κ. Because Lκκ can define all ordinals < κ,
these have to be fixed by j and so crit(j) = κ. Further, the theory T makes sure that
j“λ ⊆ dN . Then as before, we can use j to derive our desired ultrafilter. Note that
P(Pκλ) ⊆ Vλ+2, so it makes sense to define for X ⊆ Pκλ:

X ∈ U iff dN ∈ j(X).

It is standard to check that U is a fine and κ-complete ultrafilter over Pκλ.

In the above proof, the compactness property of Lκκ is not sufficient to derive an
embedding j : Vλ+2 → N such that j“λ ∈ N , as we cannot make sure by an Lκκ-theory
alone that a set covering j“λ does not contain any additional elements. Benda realised
that strengthening compactness by an omitting types property gets us around this
problem, and hence to supercompactness.

For this, if L is a logic, we say that a type p of L is simply a set of formulas of L in a
single free variable (we could strengthen this to types in multiple free variables, but as in
set theory we can code finite sequences by single elements, this would not amount to any
differences in our applications). If A is a structure in the language of p, we say that A
realises p, if there is an a ∈ A such that A |= ϕ(a) for every ϕ(x) ∈ p. We say that A
omits p if A does not realise p. Note that an abstractly given logic L might not have
free variables available, but we can code variables as additional constants. In this case, a
type of L over a vocabulary τ is a collection p of sentences ϕ ∈ L[τ ∪ {c}] for a constant
symbol c /∈ τ , and a τ -structure A realises p if there is an expansion (A, cA) satisfying
every ϕ ∈ p. Again, A omits p if it does not realise it.

We state Benda’s result in its modern presentation due to Boney.

Theorem 1.3.18 (Benda, Boney [Ben78,Bon20]). The following are equivalent for a
cardinal κ:

49



(1) κ is supercompact.

(2) For any λ ≥ κ, if T ⊆ Lκκ is a theory that can be written as an increasing
union T =

⋃
s∈Pκλ

Ts and p(x) = {ϕi(x) : i < λ} ⊆ Lκκ is a type such that with
ps = {ϕi(x) : i ∈ s} there is a club subset X of Pκλ such that for s ∈ X, Ts has a
model omitting ps, then T has a model omitting p.

We will not give the full proof here, but give an idea on how omitting a type can allow
us to get normality. Consider again the theory

T = ElDiagLκκ
(Vλ+2,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ},

but now accompanied by a type

p(x) = {x ∈ d ∧ x 6= ci : i < λ}.

If N is a (transitive) model of T , we get an elementary embedding j : Vλ+2 → N such
that crit(j) = κ, j(κ) > λ, j“λ ⊆ dN and N |= |d| < j(κ). Now suppose N omits p.
Then any x ∈ dN cannot satisfy all formulas in p. But then in particular, there has to be
i < λ such that x = cNi = j(i). Thus, x ∈ j“λ and we get j“λ = dN . But then deriving
an ultrafilter using j“λ, gives us a normal ultrafilter along the lines of Theorem 1.3.13.
Type omission can thus be used to rule out cases in which we have some undesired object
like d ) j“λ.

Obviously every supercompact cardinal is strongly compact, while it is consistent that
the smallest strongly compact cardinal is the smallest measurable cardinal, and hence not
supercompact (cf. [Mag76]). Nevertheless, strongly compact cardinals exceed measurables
significantly in consistency strength. In fact, whether the existence of supercompact and
strongly compact cardinals is equiconsistent is a longstanding open problem.

Recall that a cardinal κ is strongly compact iff every κ-complete filter over any set
can be extended to a κ-complete ultrafilter (cf., e.g., [Kan03, Proposition 4.1]). We will
sometimes consider the following variation of strongly compact cardinals introduced by
Bagaria and Magidor.

Definition 1.3.19 ([BM14a, Definition 4.6]). If κ ≤ δ are cardinals, we say that δ is
κ-strongly compact iff every δ-complete filter over any set can be extended to a κ-complete
ultrafilter.

Like strongly compact cardinals, they have a characterisation via elementary embed-
dings and via the existence of specific ultrafilters.

Theorem 1.3.20 (Bagaria & Magidor [BM14b, Theorem 1.2]). The following are
equivalent for uncountable κ ≤ δ:

(1) δ is κ-strongly compact.

(2) For every α ≥ δ there is an elementary embedding j : V →M such that crit(j) ≥ κ
and there is d ∈M with j“α ⊆ d and M |= |d| < j(δ).
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(3) For every set x there is an elementary embedding j : V →M such that crit(j) ≥ κ
and there is d ∈M with j“x ⊆M and M |= |d| < j(δ).

(4) For every set x, there is a κ-complete, fine ultrafilter over Pδ(x).

We can utilise ω1-strongly compact cardinals to characterise comp(L(QWF)).

Theorem 1.3.21 (Magidor). Let δ be a cardinal. A cardinal δ is a strong compactness
cardinal for L(QWF) iff δ is ω1-strongly compact. In particular, δ = comp(L(QWF)) iff δ
is the smallest ω1-strongly compact cardinal.

We are not aware of any published proof of this fact, besides the following one given
by Gitman and the author in [GO24].

Proof. Suppose that δ is ω1-strongly compact. Fix a vocabulary τ . Let T be a <δ-
satisfiable theory of L(QWF)[τ ]. We have to find a model of T . By Theorem 1.3.20,
ω1-strong compactness of δ gives us an elementary embedding j : V → M with
crit(j) = κ ≥ ω1 and d ∈ M such that j“T ⊆ d and M |= |d| < j(δ). In M , let
S = j(T ) ∩ d. Observe that M |= |S| < j(δ) and j“T ⊆ S ⊆ j(T ). By elementarity, M
believes that every subset of j(T ), a theory in L(QWF)[j(τ)] of size <j(δ), is satisfiable.
It follows that M has a j(τ)-structure A |= S. As M is transitive, it is correct about the
well-foundedness quantifier, so A is really a model of S and, in particular, of j“T ⊆ S.
Using the renaming which takes τ to j“τ , we get that A can be renamed to a model of T .

Next, suppose that δ is a strong compactness cardinal for L(QWF). To show that δ is
ω1-strongly compact, by the proof of [BM14a, Theorem 4.7] it is sufficient to produce for
every α > δ a fine ω1-complete ultrafilter over Pδ(α). If γ is an ordinal with P(α) ∈ Vγ
and we have an elementary embedding j : Vγ → M with M transitive, crit(j) ≥ ω1,
d ∈ M with j“α ⊆ d ⊆ j(α) and M |= |d| < j(δ), then it is routine to check that U
defined by

X ∈ U iff X ⊆ Pδ(α) and d ∈ j(X)

is a fine ω1-complete ultrafilter over Pδ(α). Let T be the following L(QWF)-theory:

ElDiagL(QWF)(Vγ,∈) ∪ {ci ∈ d ∧ |d| < cδ : i < α},

where d is a new constant symbol not used in the elementary diagram.

The theory T is <δ-satisfiable by Vγ itself, interpreting d by those i < α such that
ci ∈ d ∧ |d| < cδ appears as a sentence of T0 ∈ PδT . So T has a well-founded model
M , and by collapsing we can assume without loss of generality that M is transitive.
Thus, we get an elementary embedding j : Vγ → M . Clearly, |dM | ≥ α by T and so
j(δ) = cMδ > |dM |M ≥ |dM | ≥ α, so j has a critical point crit(j) ≤ δ. It is easy to
check along the lines of [Kan03, Theorem 5.6] that crit(j) is a measurable cardinal,
so in particular, crit(j) ≥ ω1. Finally, j“α ⊆ dM , so letting d0 = dM ∩ j(α) we get
j“α ⊆ d0 ⊆ j(α) and M |= |d0| ≤ |dM |M < j(δ).
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1.3.5. C(n)-extendible cardinals
Recall that C(n), for a natural number n, is the club class of ordinals α such that Vα is
a Σn-elementary substructure of V . The C(n)-extendible cardinals introduced by Joan
Bagaria in [Bag12] are, in a sense we will understand later, a natural strengthening of
supercompact cardinals. Their original definition diverts us from large cardinal properties
witnessed by the existence of ultrafilters and elementary embeddings of the universe.

Definition 1.3.22. Let κ be a cardinal and n a natural number.

(1) For α > κ, κ is called α-C(n)-extendible iff there is some ordinal β and an elementary
embedding j : Vα → Vβ such that crit(j) = κ, j(κ) > α and j(κ) ∈ C(n).

(2) We say that κ is C(n)-extendible iff it is α-C(n)-extendible for every α > κ.

Bagaria introduced C(n)-extendibles as a generalisation of the classical notion of
extendible cardinals (cf., e.g., [Kan03, Section 23]). Extendible cardinals are defined in
precisely the same way as the above notion, but missing the condition that j(κ) ∈ C(n).
Bagaria’s C(1)-extendible cardinals are precisely the classical extendible cardinals (cf.
[Bag12, Section 3]).

Bagaria also considered an apriori stronger notion, in which, for α ∈ C(n), one can
find an emedding j : Vα → Vβ witnessing (1) for a β ∈ C(n). Tsaprounis [Tsa12] showed
that these notions coincide. Hamkins and Gitman [GH19] further showed that using this
formulation one can drop the assumption that j(κ) ∈ C(n) and still arrive at the same
notion. It is further a classical result for extendible cardinals, i.e., the case n = 1, that
the condition j(κ) > α is superfluous. The proof carries over to the general case. Let us
collect these remarks.

Theorem 1.3.23. The following are equivalent for a cardinal κ:

(1) κ is C(n)-extendible.

(2) For every α > κ with α ∈ C(n), there is β ∈ C(n) and an elementary embedding
j : Vα → Vβ such that crit(j) = κ and j(κ) > α.

(3) For every α > κ with α ∈ C(n), there is β ∈ C(n) and an elementary embedding
j : Vα → Vβ such that crit(j) = κ.

Proof. For the equivalence of (1) and (2), consider [GH19, Theorem 15]. For the
equivalence of (2) and (3) in the case n = 1, see [Kan03, Proposition 23.15]. The general
case is an easy variation of this proof.

It is the formulations (2) and (3) that we will most often be interested in, in the
context of model theory of strong logics.

With increasing n, the existence of C(n)-extendible cardinals becomes a stronger and
stronger assumption. Already the classical notion exceeds supercompact cardinals:

Proposition 1.3.24. If κ is extendible, it is a supercompact limit of supercompact
cardinals.
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Proof. Combine [Kan03, Proposition 23.6] and [Kan03, Proposition 23.7].

Bagaria generalised this to C(n)-extendible cardinals.

Theorem 1.3.25 (Bagaria [Bag12, Proposition 3.5]). If κ is C(n+1)-extendible, then it
is a limit of C(n)-extendible cardinals.

Note that “κ is C(n)-extendible” is a Πn+2 statement:

∀α∃β∃j(α > κ→ (j : Vα → Vβ is elementary ∧ crit(j) = κ ∧ j(κ) ∈ C(n))).

It is again a classical result that extendible cardinals are in C(3) (see [Kan03, Proposition
23.15]). Therefore extendible cardinals are correct about extendibility. Bagaria showed
that also this generalises to larger n.

Theorem 1.3.26 (Bagaria [Bag12, Proposition 3.4]). If κ is C(n)-extendible, then
κ ∈ C(n+2).

In particular, if κ is C(n+1)-extendible, and therefore a limit of C(n)-extendibles, by
virtue of being in C(n+2), Vκ will satisfy that there is a C(n)-extendible cardinal. Hence,
the existence of C(n+1)-extendible cardinals exceeds the existence of C(n)-extendibles in
consistency strength.

We further get a strong reflection result about C(n)-extendible cardinals.

Corollary 1.3.27 (Bagaria [Bag12, Proposition 3.6]). If κ is C(n+2)-extendible, then
there is a proper class of C(n)-extendible cardinals.

Proof. If κ is C(n+2)-extendible it is in particular C(n+1)-extendible, and thus a limit of
C(n)-extendible cardinals. Thus Vκ satisfies that there is a proper class of C(n)-extendible
cardinals. The latter is a Πn+4-statement:

∀γ∃δ(δ > γ ∧ δ is C(n)-extendible).

Because κ ∈ C(n+4), it reflects this statement to V .

One of the first usages of extendible cardinals was Magidor’s theorem about compactness
cardinals of second-order logics:

Theorem 1.3.28 (Magidor [Mag71]). The following are equivalent for a cardinal κ:

(1) κ is extendible.

(2) κ = comp(L2
κκ).

(3) κ = comp(L2
κω).

One may further show that comp(L2) is the smallest extendible cardinal. We will see
below that these results generalise to C(n)-extendible cardinals.
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1.3.6. Vopěnka’s Principle
Vopěnka’s Principle is an axiom schema that can be understood as a limit point for many
model-theoretic properties. While this fact about Vopěnka’s Principle has been known
for a long time, developments of recent years enable us to understand this relation in a
much more structured way. In particular, its connections to C(n)-extendible cardinals
allow us to find precise connections between model theory and large cardinals.

There are many equivalent formulations of Vopěnka’s Principle. The one we will adopt
is the following:

Definition 1.3.29. Vopěnka’s Principle (VP) is the axiom:

For every proper class K of structures in a joint vocabulary τ , there are
distinct A,B ∈ K such that there is an elementary embedding e : A → B.

In our context of ZFC, we understand this as an axiom schema which states for
every meta-theoretic formula Φ(x, y1, . . . , yn) that, if Φ(x, p1, . . . , pn) defines a class of
structures in a joint vocabulary via possible parameters p1, . . . , pn, then we find A 6= B
such that Φ(A, p1, . . . , pn) and Φ(B, p1, . . . , pn) and an elementary embedding e : A → B.

We will also want to consider local versions of VP. For this, we write VP(Πn) for the
statement of VP restricted to classes definable by Πn formulas without any parameters.
We further write VP(Πn) for the statement of VP restricted to classes definable by Πn

formulas with parameters. Recall that the global satisfaction relation, restricted to a
fixed level of the Lévy hierarchy is definable by a single formula in the language of set
theory. Thus we can state VP(Πn) as a single axiom, and do not need to treat it as a
schema.

Let us further write VP(κ,Σn) for the following statement:

For every proper class K of structures in a joint vocabulary τ ∈ Hκ such
that K is Σn definable with parameters in Hκ, for every B ∈ K there exists
A ∈ K ∩Hκ such that there is an elementary embedding e : A → B.

This is one of the structural reflection principles, introduced by Bagaria and his co-authors
in [BCMR15]. Note that if for every n, there is a proper class of κ such that VP(κ,Σn)
holds, then VP holds as well.

VP is an unusual large cardinal assumption in that it does not talk about the existence
of cardinals at all. Nevertheless, relatively early several connections to large cardinal
assumptions were discovered. For example, in [SRK78] it was shown that if VP holds,
there exists a proper class of extendible cardinals, and if κ is a huge cardinal (and less),
then Vκ satisfies VP.

Modern results relate VP closely to C(n)-extendible cardinals. In fact, they form
what could be called the backbone of VP in that existence of a C(n)-extendible cardinal
corresponds precisely to restrictions of VP to lower levels of the Lévy hierarchy. Bagaria’s
following theorem makes this precise.
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Theorem 1.3.30 (Bagaria [Bag12, Corollary 4.13]). The following are equivalent for
n ≥ 1:

(1) VP(Πn+1).

(2) VP(κ,Σn+2) holds for some cardinal κ.

(3) There exists a C(n)-extendible cardinal.

The proof further shows that if κ is C(n)-extendible, then κ is one of the cardinals
witnessing (2). Recall that the existence of a C(n+2)-extendible cardinal implies that
there is a proper class of C(n)-extendible cardinals. Therefore, Bagaria’s theorem above
implies:

Theorem 1.3.31 (Bagaria [Bag12, Corollary 4.15]). The following are equivalent:

(1) VP.

(2) For every n, VP(Πn) holds.

(3) For every n, there is a cardinal κ such that VP(κ,Σn) holds.

(4) For every n, there is a proper class of cardinals κ such that VP(κ,Σn) holds.

(5) For every n, there is a C(n)-extendible cardinal.

(6) For every n, there is a proper class of C(n)-extendible cardinals.

The following theorem is a first glimpse in which way (C(n))-extendible cardinals are
direct strengthenings of supercompact cardinals.

Theorem 1.3.32 (Bagaria [Bag12, Corollary 4.6]). The following are equivalent:

(1) VP(Π1).

(2) VP(κ,Σ2) holds for some cardinal κ.

(3) There exists a supercompact cardinal.

And again, the proof shows that if κ is supercompact, then κ is one of the cardinals
witnessing (2). Summarising Bagaria’s results, we have that VP is stratified into a
hierarchy along restrictions of its statements to the Πn formulas,. And these restrictions
correspond precisely to the existence of large cardinals, starting with supercompact
cardinals on the level n = 1, and proceeding with C(n)-extendible cardinals, leading to
stronger and stronger statements with rising n. Bagaria and Lücke called this a “pattern”
in the large cardinal hierarchy [BL24]. It is this and similar hierarchies that we will pay
close attention to throughout this thesis.

Similar to the equivalence between VP and the existence of C(n)-extendible cardinals
for every n, VP is equivalent to global statements involving properties of logics. The
equivalence of VP to the following statement (2) was proven by Stavi, but never published
(see [MV11]). The equivalence to (3) is due to Makowsky [Mak85].
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Theorem 1.3.33 (Makowsky, Stavi). The following are equivalent:

(1) VP.

(2) Every logic has an LST number.

(3) Every logic has a compactness number.

We will see throughout the thesis that there are more statements of this type, relating
VP to statements about all logics exhibiting some property.

Consider Magidor’s theorems 1.3.14 and 1.3.28 on the one hand, and the equivalence
of VP and the existence of C(n)-extendible cardinals for every n on the other hand. In
the light of Makowsky’s and Stavi’s results, the question is then natural whether we can
also have local forms of Theorem 1.3.33 above. Indeed, results by Boney and Poveda
show that this is the case.

Theorem 1.3.34 (Boney [Bon20, Theorem 4.1]). Let κ be a cardinal and n a natural
number.

(a) κ is C(n)-extendible iff κ = comp(Ls,n
κω).

(b) κ = comp(Ls,n) iff κ is the smallest C(n)-extendible cardinal.

Theorem 1.3.35. The following are equivalent for a natural number n and a cardinal κ:

(1) κ is C(n)-extendible.

(2) κ = LST(Ls,n+1
κω ).

(3) For all β > κ such that β ∈ C(n+1) and for all x ∈ Vβ there is an α < κ such that
α ∈ C(n+1) and an elementary embedding j : Vα → Vβ such that x ∈ ran(j) and
j(crit(j)) = κ.

Proof. Boney [Bon20, Theorem 4.13] shows a slightly weaker statement than the equiva-
lence of (2) and (3). Poveda [Pov20, Theorem 5.2.3] shows the equivalence of (3) and (1).
The latter result was also already implicit in [BGS17, Theorem 3.8].

One can adopt this result to also give a characterisation of the smallest C(n)-extendible
cardinal as LST(Ls,n+1).

Notice that Makowsky’s and Stavi’s theorems can be derived as corollaries: For instance,
for the compactness case, if VP holds, then for every n, there exists a proper class of
C(n)-extendible cardinals. Now if L is any logic, L ≤ Ls,n

γω for some γ and n. Then taking
any C(n)-extendible cardinal κ > γ, we get comp(L) ≤ comp(Ls,n

γω) ≤ comp(Ls,n
κω). On the

other hand, if there is a compactness cardinal for any logic, then in particular comp(Ls,n)
exists for every n. Hence, there exists a C(n)-extendible cardinal for every n.

The pattern leading up via the C(n)-extendible cardinals to VP is therefore precisely
mirrored by compactness and Löwenheim-Skolem properties of stronger and stronger
logics. We summarise these relations in Figure 1.1. We will see that this hierarchy is
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repeated when considering other properties of logics, namely upward LST numbers and
Henkin compactness properties.

It it such hierarchies which let us consider VP as a limit point of model-theoretic
properties. For instance, for any fragment of VP, such as VP(Πn), we find some logic
L such that the existence of a compactness number of L is stronger than VP(Πn).
More precisely, such a logic is given by Ls,m for any m ≥ n. And further, assuming
the existence of compactness numbers of Ls,m for all natural numbers gives us the full
Vopěnka’s Principle. Bagaria and his co-authors found other similar patterns in the

Figure 1.1.: Relations between VP, C(n)-extendible cardinals, compactness numbers, and
LST numbers.

large cardinal hierarchy (cf. [BW23,BL24] and the survey paper [Bag23]). In particular,
Bagaria and Wilson showed that an analogous stratification is formed by what is now
known as Πn-strong-cardinals below weak Vopěnka’s Principle (cf. [BW23]). The latter
is an assumption arising from a weakening of a category-theoretic formulation of VP. We
will show that also Πn-strong cardinals, and hence weak Vopěnka’s Principle, relate to
patterns of certain properties being exhibited by stronger and stronger logics.

1.3.7. Extenders
We saw that many elementary embeddings j : V →M we are concerned with arrive as
the canonical embeddings provided by the ultrapower construction. As it turns out, not
all elementary embeddings we will need can be derived like this. Instead, we will have to
deal with so called extenders and corresponding extender powers. They provide a much
more flexible way of approximating elementary embeddings j : V →M . Informally, an
extender E is a collection of ultrafilters which fit together in some suitable way such that
computing the ultrapowers of the universe by them results in a directed system of models
with elementary embeddings between them. The directed limit ME of these models then
comes with an elementary embedding jE : V →ME. If the ultrafilters in E are derived
from some ambient embedding j : V →M , the embedding jE can embody many of the
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relevant properties of j. In this section we will summarise those parts of the basic theory
of extenders we will need throughout this thesis. We will first consider extender powers
of the universe V , and then lay out how to adapt the construction for set-sized models.
In particular we will consider how the extender power of some Vα relates to the extender
power of V .

Extender powers of the universe

The following procedure is standard and our exposition is based on [Kan03, Chapter
26]. Recall the direct limit construction from model theory, which we will not review
(cf., e.g., [Kan03, Section 0]). We will omit proofs. Suppose we have an elementary
embedding j : V →M with a critical point κ and suppose there is some ordinal λ > κ
and κ ≤ ζ < λ such that ζ is the smallest ordinal with the property that j(ζ) ≥ λ. Most
often we will consider the case ζ = κ. We write [α]<ω for the set of finite subsets of α,
and for a natural number n, we write [α]n for the n-sized subsets of α. The ultrafilters
we are interested in are indexed by a ∈ [λ]<ω and in live on [ζ]|a|. Note that if X ⊆ [ζ]|a|,
then j(X) ⊆ [j(ζ)]|a| and λ ⊆ j(ζ) by assumption. It thus makes sense to ask whether
a ∈ j(X), and indeed, it is standard to check that

X ∈ Ea iff X ⊆ [ζ]|a| and a ∈ j(X),

defines a κ-complete ultrafilter over [ζ]<ω. We write Ma = Ult(V,Ea) for the correspond-
ing ultrapower and ja : V → Ma for the standard elementary embedding x 7→ [cx]Ea .
This comes with an elementary embedding ka : Ma → M by letting [f ]Ea 7→ j(f)(a).
And further, the ultrapowers Ma indexed by a ∈ [ζ]<ω form a directed system with
elementary embeddings iab : Ma → Mb whenever a ⊆ b (note that if a, b ∈ [ζ]<ω, then
c = a∪b ∈ [ζ]<ω and so this gives directedness). To construct iab, let for b = {α1, . . . , αn}
with α1 < · · · < αn and a = {αi1 , . . . , αim} the map πba : [ζ]n → [ζ]m be defined by

{β1, . . . , βn} 7→ {βi1 , . . . , βim}.

Then defining iab : Ma → Mb by [f ]Ea 7→ [f ◦ πba]Eb
results in the desired properties

that ((Ma : a ∈ [λ]<ω), (iab : a ⊆ b)) forms a directed system such that jb = iab ◦ ja
and ka = kb ◦ iab. In particular, we can consider the direct limit ME of the Ma. As a
direct limit, ME consists of equivalence classes of elements of the Ma that are eventually
identified via the iab: if x ∈ ME, then x is the equivalence class (via Scott’s trick) of
some f ∈ Ma for some a, i.e., x consists of all [g]Eb

such that there is some c with
iac([f ]Ea) = ibc([g]Eb

). We write [a, [fEa ]]E ∈ME for such an equivalence class and often
drop the indices for better readability. As a direct limit, ME comes with elementary
embeddings

jE : V →ME, x 7→ [a, [cx]] (for any a ∈ [λ]<ω),
kaE :Ma →ME, [f ]Ea 7→ [a, [f ]],
kE :ME →M , [a, [f ]] 7→ j(f)(a).

such that j = kE ◦ jE, kaE = kbE ◦ iab and ka = kE ◦ kaE. Here the specific shapes of
the maps jE and kaE come from the direct limit construction, while that kE takes the
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specified form can be checked along the lines of the proof of [Kan03, Theorem 26.1]. Note
that in general, taking a direct limit may lead to ill-founded models. In this case though,
consider the relation ∈ME on ME which comes from the direct limit construction. As
we have an elementary embedding kE :ME →M , an ill-founded ∈ME would lead to M
being ill-founded. Therefore, ME is well-founded, and so we can, by collapsing, identify
∈ME with ∈ and assume that ME is transitive.

Fixing notation, we call E = (Ea : a ∈ [λ]<ω) the (κ, λ)-extender derived from j. We
call κ the critical point and λ the length of E. If ζ > κ, we further call E a long extender.
The following theorem summarises the most important results we will need about the
resulting embeddings and models.

Theorem 1.3.36 ([Kan03, Theorem 26.1]). Given the above construction, the following
hold:

(1) ME = {jE(f)(a) : a ∈ [λ]<ω, f : [ζ]|a| → V } and jE(f)(a) = [a, [f ]].

(2) crit(jE) = κ and jE(ζ) ≥ λ.

(3) crit(kE) ≥ λ.

(4) kE is the inverse collapsing isomorphism.

(5) For any γ such that |Vγ|M ≤ λ: V M
γ ⊆ ran(kE), V ME

γ = V M
γ and kE(x) = x for

x ∈ V ME
γ .

The reader is also referred to [Tsa12, Proposition A.3.] for a thorough proof of this
result. We made explicit that jE(f)(a) = [a, [f ]] which is implicity proven there.

For ease of presentation, we considered embeddings j : V → M . Rarely, we will be
interested in performing an extender construction for other inner models. In this case, if
j : N → M is an elementary embedding between inner models with crit(j) = κ and ζ
some smallest ordinal such that j(ζ) ≥ λ > κ, a similar construction can be carried out,
taking ultrapowers of N and a direct limit of these ultrapowers. The changes to be made
are that one considers for a ∈ [λ]<ω ultrafilters Ea on PN([ζ]<ω) instead of on P([ζ]<ω),
and that the ultrapowers of N consist of equivalence classes of functions f ∈[ζ]|a| N ∩N .
Consider [Kan03, Section 26] for details. We call (Ea : a ∈ [λ]<ω) the N-(κ, λ)-extender
derived from j. An analogue of Theorem 1.3.36 can then be stated (cf. [Kan03, Theorem
26.1]).

For completeness, let us mention that there is a also an axiomatic definition of
what it means to be an N-(κ, λ)-extender E, which is not dependent on an ambient
elementary embedding, specifying combinatorial properties of the objects involved in
E = (Ea : a ∈ [λ]<ω). Among these properties is that (N,∈, Ea) computes Ea to be an
ultrafilter and so one can proceed to build ultrapowers of N and consider their direct
limit ME. The combinatorial properties involved imply that ME is well-founded, and
so the direct limit gives an elementary embedding jE : N → ME between transitive
models. They further imply that crit(jE) = κ and there is some smallest ordinal ζ ≥ κ
such that jE(ζ) ≥ λ. Therefore, one can use jE to derive an extender E∗ in the way
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outlined above. One can show that this N -(κ, λ)-extender E∗ derived from jE is again the
N -(κ, λ)-extender E and therefore the two ways of considering extenders are essentially
equivalent. Again, consider [Kan03, Section 26] for details about all the mentioned
properties. We will mostly be concerned with extenders derived from an embedding, so
we will omit the exposition here. Note however, that to give a formalisation of some
large cardinal notion in terms of the existence of extenders, the latter notion, which is
formulated without reference to an elementary embedding, is the appropriate one.

Ultrapowers and extender powers of set models

As model-theoretic properties of logics often interact with set models, rather than with
proper classes, we will repeatedly want to derive extenders from embeddings between
set-sized structures, which are provided by our model-theoretic tools. It is folklore that
the extender power of the universe interacts nicely with building extender powers of
set-sized models. For instance, building an extender power of, say, some Vα, we have that
the resulting model mE is an initial segment of the extender power ME. While this is
quite clear, to argue that specific properties of mE carry over toME is sometimes delicate,
as some of the constructions for V only carry over to a Vα modulo technical difficulties.
As we will often need to make sure for a precise consideration of these relations, and
many of the technical details are rarely (if ever?) spelled out, we therefore want to
dedicate this section to present some of the required adaptations to treat this case, and
to fix the notation with which we will refer to it. We will in particular be interested in
how the extender power of some Vα and the associated embeddings of this construction
relate to the extender power of V . The main properties we will need in later chapters
are summarised in Theorems 1.3.39 and 1.3.40.

We start by considering how ultrapowers of some Vα relate to ultrapowers of V , as the
main technicalities appear already in this case. Let α be some ordinal, S ∈ Vα and U
an ultrafilter over S. We make some extra assumptions: Let us assume that either, α
is some successor ordinal α = β + 1, or that cof(α) > |S|. We consider m = Ult(Vα, U).
We have the standard map jm : Vα → m, x 7→ [cx]U . Using Łos’ Theorem, this provides
an elementary embedding also in this set-sized case. First we note that building the
ultrapower M = Ult(V, U) and the standard map jU : V →M , x 7→ [cx]U , we have

jU � Vα = jm

and that
V M
jU (α) = m.

This follows from the following chain of equivalences.

[f ]U ∈ V M
jU (α) iff M |= rk([f ]U) < jU(α) = [cα]U

iff {s ∈ S : rk(f(s)) ∈ cα(s)} ∈ U

iff {s ∈ S : rk(f(s)) ∈ α} ∈ U

iff [f ]U = [g]U for some g : S → Vα

iff [f ]U ∈ Ult(Vα, U) = m.

60



Now suppose j : Vα → N is an elementary embedding and x ∈ j(S) is some set such that
for X ⊆ S ∈ Vα,

X ∈ U iff x ∈ j(X),

defines an ultrafilter on U . Again build the ultrapower m = Ult(Vα, U) and the standard
map jm : Vα → m as above. We would like to build a factor map k : m→ N such that
j = k ◦ jm. Dealing with V , this is no problem, but note that this is different in our
case. We would like to define for f : S → Vα, the map k as [f ]U 7→ j(f)(x). But note
that in general f /∈ Vα and so j(f) might not be defined. This is where our assumptions
on α come into play. If cof(α) > |S|, then any map f : S → Vα is in Vα and so we can
define k as intended. If α = β+1 is a successor cardinal, we can code f by an element of
Vα as follows. Recall that a flat pairing function constructs a pair of two sets that does
not increase ranks, i.e., if a, b ∈ Vη for some η, we can build an object (a, b)∗ ∈ Vη such
that (a, b)∗ = (c, d)∗ iff a = c and b = d. Fix such a flat pairing function (a, b) 7→ (a, b)∗.4
Now if f : S → Vβ+1, let f ∗ = {(s, b)∗ : s ∈ S, b ∈ f(s)}. Note that f ∗ ∈ Vβ+1. Letting
f ∗(s) = {b : (s, b)∗ ∈ f ∗} ∈ Vβ+1, we have f ∗(s) = f(s) for all s ∈ S.

For notational homogeneity, in the following, if α = β+1 and f : S → Vα is a function
write f ∗ for the coded function as constructed above. And if α is a limit ordinal of
cofinality cof(α) > |S|, simply let f ∗ = f . Thus, in both cases we can define

km : m→ N, [f ]U 7→ j(f ∗)(k).

Then km behaves in the desired way:

Claim 1.3.37. The map km is elementary and j = km ◦ jm.

Proof. The following chain of equivalences shows elementarity.

m |= ϕ([f ]U) iff {s ∈ S : ϕVα+1(f(s))} ∈ U

iff x ∈ j({s ∈ S : ϕVα+1(f(s))})
iff x ∈ j({s ∈ S : ϕVα+1(f ∗(s))})
iff x ∈ {s ∈ j(S) : N |= ϕ(j(f ∗)(s))}
iff N |= ϕ(j(f ∗)(x))

iff N |= ϕ(km([f ]U)).

Further, because c∗y(s) = cy(s) = y for all s ∈ S and y ∈ Vα, by elementarity of j we have
j(c∗y)(x) = j(y). Thus we get km(jm(y)) = km([cy]U) = j(c∗y)(x) = j(y).

Now we want to consider extender powers of Vα. The construction is essentially
analogous to the class case, but at some points we have to use coded functions as above.
Let j : Vα → N be elementary and suppose j has a critical point crit(j) = κ and that we
have some ordinal λ > α such that for some smallest ordinal ζ ≥ κ, j(ζ) ≥ λ. Further,

4The most well-known such function is sometimes called the Quine-Rosser definition of an ordered
pair. For a definition, cf. [Ros53, p. 281].
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assume that either α = β + 1 is a successor ordinal, or that cof(α) > |ζ|. Then for
a ∈ [λ]<ω, the same arguments as in the case of class embeddings give that

X ∈ Ea iff X ⊆ [ζ]|a| and a ∈ j(X),

defines a κ-complete ultrafilter over [ζ]|a|, which comes with an ultrapower ma =
Ult(Vα, Ea) and an elementary map ja,m : Vα → ma, x 7→ [cx]Ea . By our construc-
tion above, using coded functions f ∗, we get factor maps

ka,m : ma → N, [f ]Ea 7→ j(f ∗)(a).

Define, analogously to the class case, for a ⊆ b elementary maps

iab,m : ma → mb, [f ]Ea 7→ [f ◦ πba]Eb
.

Also analogously, one checks that jb,m = iab,m ◦ ja,m, and, using the coding, that ka,m =
kb,m ◦ πba.

We can therefore consider the direct limit mE of the ma, writing [a, [f ]Ea ]E ∈ mE

for the equivalence classes making up mE, but mostly dropping the indices. We get
elementary maps

jE,m : Vα → mE, x 7→ [a, [cx]] (for any a),
ka,E,m : ma → mE, [f ]Ea 7→ [a, [f ]],
kE,m : mE → N , [a, [f ]] 7→ j(f ∗)(a),

where the definitions of jE,m and ka,E,m work as in the class case and come from the direct
limit construction, and we have jE,m = ka,E,m ◦ ka,m. The definition of kE,m requires
going through f ∗ again, so let us check that the desired properties carry over.

Claim 1.3.38. The map kE,m is elementary, j = kE,m ◦ jE,m and for any a, ka,m =
km,E ◦ ka,m,E.

Proof. We have kE,m ◦ ka,E,m([f ]) = kE,m([a, [f ]]) = j(f ∗)(a) = ka,m([f ]). Further,
kE,m ◦ jE,m(x) = kE,m([a, [cx]]) = j(c∗x)(a) = j(x), where the latter equality holds
as shown in Claim 1.3.37. So left to show is elementarity. This follows easily from
the commutativity and elementarity of the other maps involved: mE |= ϕ([a, [f ]]) iff
ma |= ϕ([f ]) iff N |= ϕ(ka,m([f ])) iff N |= ϕ(j(f ∗)(a)) iff N |= ϕ(kE,m([a, [f ]])).

The main results about correspondence of j with jE,m are exactly as in the class case,
summarised by Theorem 1.3.36 above. The proof goes completely analogous, (cf., e.g.,
[Kan03, Theorem 26.1]), substituting having to deal with coded functions f ∗ at the
appropriate places.

Theorem 1.3.39. The following hold:

(1) mE = {jE,m(f ∗)(a) : a ∈ [λ]<ω and f : [ζ]|a| → Vα}.

(2) crit(jE,m) = κ and jE,m(ζ) ≥ λ.
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(3) kE,m � λ = id.

(4) If j(ζ) = λ, then jE,m(ζ) = λ and kE,m(λ) = λ.

(5) kE,m is the inverse collapsing isomorphism.

(6) For any γ such that |V N
γ |N ≤ λ: V N

γ ⊆ ran(kE,m), V mE
γ = V N

γ and kE,m(x) = x for
x ∈ V mE

γ .

Notice the unusual statement of assertion (3), which is not talking about critical
points. The reason is that in the set-sized case, kE,m might simply not move any ordinal
at all. Let, for example, ζ = α and j : Vα+1 → Vβ+1 be such that crit(j) = κ and
j(κ) > α + 1, i.e., j is an (α + 1)-extendibility embedding. Derive the (κ, β)-extender
(Ea : a ∈ [β]<ω) consisting of ultrafilters Ea over [α]|a|. Then considering the extender
power mE of Vα+1, we get jE,m(α) = j(α) = β. And therefore with kE,m : mE → Vβ+1

we have kE,m � β + 1 = id (and, clearly, mE cannot contain any ordinal > β).
Now we want to connect the embedding jE,m with the extender power of the universe

jE : V → ME. Let us first note that for a ∈ [λ]<ω and X ⊆ [ζ]|a|, we have that
a ∈ jE,m(X) iff kE,m(a) ∈ kE,m ◦ jE,m(X) iff a ∈ j(X). In particular, deriving an
extender from jE,m again results in (Ea : a ∈ [λ]<ω). We already showed that with
Ma = Ult(V,Ea) and ja : V → Ma the usual map, we have that V Ma

ja(α)
= ma and that

ja � Vα = ja,m. Note further that V ME

jE(α) is the direct limit of the V Ma

ja(α)
. This holds

because

ME |= [a, [f ]] ∈ VjE(α) iff ME |= kaE([f ]) ∈ VkaE◦ja(α)

iff Ma |= [f ] ∈ Vja(α).

As V Ma

ja(α)
= ma and mE is the direct limit of the ma, this means that V ME

jE(α) = mE. Hence,
mE ⊆ME. Finally, if x ∈ Vα, then jE(x) = [a, [cx]] = jE,m(x) and so jE � Vα = jE,m.

We summarise the situation in the following theorem.

Theorem 1.3.40. Suppose there is an elementary embedding j : Vα →M with a critical
point crit(j) = κ, for some ordinal λ there is a smallest cardinal ζ ≥ κ such that j(ζ) ≥ λ
and α is a successor ordinal or of cofinality cof(α) > ζ. Let E be the (κ, λ)-extender
derived from j. Consider the canonical extender power embeddings jE,m : Vα → mE and
jE : V →ME. Then:

(1) mE ⊆ME and jE � Vα = jE,m.

(2) crit(jE,m) = crit(jE) = κ.

(3) ζ is the smallest ordinal such that jE,m(ζ) = jE(ζ) ≥ λ.

(4) If j(ζ) = λ, then jE,m(ζ) = jE(ζ) = λ.

(5) The (κ, λ)-extenders derived from jE,m and from jE are both again E.
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2. Henkin-Compactness Properties
Remarks on co-authorship. The results of Sections 2.2 and 2.3.4 are joint with
Alejandro Poveda and appear in [OP24]. The results of Section 2.3.2 are joint with Will
Boney.

2.1. Introduction
In [Bon20], Will Boney characterised strong cardinals by a compactness property involving
Henkin models of second-order theories. In [BDGM24], this served as motivation to
introduce the notion of a Henkin model for an arbitrarily given strong logic L and the
authors used a compactness property involving this concept to characterise Woodin
cardinals. The Henkin models considered in this result exhibit some specificities, which
lead to a natural strengthening of the concept of a Henkin model we will introduce. To
distinguish between the two, we will call the two notions weak and strong Henkin models,
respectively (cf. Definitions 2.2.1 and 2.2.3). The chapter is structured as follows. In
Section 2.2, we consider compactness properties involving strong Henkin models, and in
Section 2.3, we consider compactness properties involving weak Henkin models.

The relevant background and definitions for Henkin models are discussed in Section
2.2.1. We proceed to consider how compactness properties involving strong Henkin
models of L2 can be used to characterise supercompact cardinals (Section 2.2.2). We
then introduce a compactness property involving strong Henkin models called n-strong-
Henkin-compactness number (n-SHC number), for some natural number n (Section 2.2.3).
We show that the existence of n-SHC numbers of the sort logics Ls,n provides another
stratification of Vopěnka’s Principle corresponding to the hierarchy of C(n)-extendible
cardinals. In particular, Vopěnka’s Principle is equivalent to the existence of n-SHC
numbers for all logics.

In Section 2.3, we continue the study of compactness properties involving weak Henkin
models. We study what is known as weak Vopěnka’s Principle, a weakening of Vopěnka’s
Principle motivated by a category-theoretic formulation of the latter. Bagaria and Wilson
in [BW23] provided an analysis of weak Vopěnka’s Principle, showing that it has a
stratification by so-called Πn-strong cardinals, which is completely analogous to the
analysis of the usual Vopěnka’s Principle in terms of C(n)-extendible cardinals. The main
result of Section 2.3 is that compactness properties for weak Henkin models are able to
characterise Πn-strong cardinals and thus give rise to a stratification of weak Vopěnka’s
Principle in model-theoretic terms. The compactness properties we will employ are
further a direct weakening of the ones used to characterise C(n)-extendibles in Section
2.2.
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The relevant definitions of weak Vopěnka’s Principle and Πn-strong cardinals are
presented in Section 2.3.1. The main results on characterisations of Πn-strong cardinals
and weak Vopěnka’s Principle can be found in Section 2.3.2. Finally, we present some
further applications of compactness properties for weak Henkin models, by character-
ising cardinals which are jointly Πn-strong and strongly compact (Section 2.3.3), and
superstrong cardinals (Section 2.3.4).

2.2. Strong Henkin models

2.2.1. Motivation and definitions
Recall the Henkin semantics of a second-order sentence ϕ ∈ L2[τ ]. Given some τ -structure
A and a subset P ⊆ P(A), we say that the pair (A, P ) is a Henkin model of ϕ, if when
restricting the second-order quantifiers of ϕ to range over P (in contrast to over the full
power set of A), A computes to be a model of ϕ. Now note that if M is some transitive
set such that A ∈M and

M |= “A |=L2 ϕ”,

then (A,PM(A)) is a Henkin model of ϕ. Thus, having a Henkin model of some second-
order sentence is similar to evaluating the truth of “A |=L2 ϕ” in some transitive set that
might not contain the full power set of A.

This observation served as motivation in [BDGM24] to generalise the notion of Henkin
model to arbitrary strong logics L. We present a simplified version of the notion
considered there. Recall from Definition 1.2.1 that a copy T ∗ of some L-theory T over
a vocabulary τ is the image of T under the renaming of L-sentences induced by some
renaming f : τ → τ ∗.

Definition 2.2.1. Let L be a logic, τ a vocabulary, T ⊆ L[τ ] an L-theory, M a transitive
set and A ∈M . Then (M,A) is called a weak L-Henkin model of T iff there is a copy
T ∗ of T such that for any ϕ ∈ T ∗:

M |= “A |=L ϕ”.

We call these models weak, to distinguish them from the stronger ones we will consider
below.

Recall the notion of a strong cardinal. For κ < λ, a cardinal κ is called λ-strong if there
is an elementary embedding j : V →M such that crit(j) = κ, j(κ) > λ and Vλ ⊆M . It
is called strong if it is λ-strong for every λ > κ.

Boney in [Bon20] used a compactness property involving the classical Henkin models
for second-order logic to characterise strong cardinals. To restate his theorem in terms
of weak Henkin models, let us make a few remarks. Notice that our notion of weak
L-Henkin model imposes basically no restrictions on the transitive set M involved. In
practice, we always want M to satisfy some additional properties. In particular, we need
that M is a model of enough of set theory that it interacts somewhat nicely with the
logic L in question. For this purpose, let us fix a finite fragment ZFC∗ of (consequences
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of) ZFC, which in particular includes the statements that Vα exists for every ordinal α,
that every set is contained in some Vα, and that Magidor’s Φ∗ (cf. Lemma 1.2.4) is true
precisely in the structures (M,E) isomorphic to some (Vα,∈), and such that ZFC proves
that any Vβ with β a limit ordinal satisfies ZFC∗. Boney’s result (originally phrased with
reference to the classical Henkin semantics) can now be cast in the following way:

Theorem 2.2.2 (Boney [Bon20, Theorem 4.7]). The following are equivalent for a
cardinal κ and iλ = λ > κ:

(1) κ is λ-strong.

(2) For any theory T ⊆ L2
κω that can be written as an increasing union T =

⋃
α∈κ Tα

of theories Tα which each have a model of size ≥ κ, there is a weak L2
κω-Henkin

model (M,A) of T such that M |= ZFC∗, Vλ ⊆M and |A| ≥ λ.

Note that in the notion of a weak Henkin model, it is from the outside that we see
that M |= “A |=L ϕ” for every ϕ in (a copy of) some theory T , while M itself might not
have access to T provided T /∈M . It is thus natural to ask about strengthening Henkin
models in the following way.

Definition 2.2.3. Let L be a logic, τ a vocabulary, T ⊆ L[τ ] an L-theory, M a transitive
set and A ∈M . Then the pair (M,A) is called a strong L-Henkin model of T iff T ∈M
and

M |= “A |=L T”.

We will study this stronger notion and show that it indeed can be used to provide
characterisations of much stronger cardinals.

2.2.2. Supercompact cardinals
The typical use case of Henkin models is that T is some elementary diagram of some
structure B, and that a Henkin model (M,A) of T gives rise to an elementary embedding
B → A. In the case of weak Henkin models, it is only in V that we can compute
this embedding. But in the case of strong Henkin models, M has access to T , and so
the elementary embedding lives already in M . This, combined with considering fully
<κ-satisfiable theories, comes along with a jump up in large cardinal strength.

Theorem 2.2.4. The following are equivalent:

(1) κ is supercompact.

(2) For every λ, if T ⊆ L2
κω is a <κ-satisfiable theory, then there is a strong L2

κω-Henkin
model (M,A) of T such that M |= ZFC∗ and Vλ ⊆M .

(3) For every λ, if T ⊆ L2
κκ is a <κ-satisfiable theory, then there is a strong L2

κκ-Henkin
model (M,A) of T such that M |= ZFC∗, Vλ ⊆M and Mλ ⊆M .
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Proof. Clearly (3) implies (2). We first show that (1) implies (3). So let T be a <κ-
satisfiable L2

κκ-theory. Take a i-fixed point λ of cofinality at least κ such that Vλ |= ZFC∗

and large enough such that T ∈ Vλ and Vλ has a model for every < κ-sized subset of
T . By supercompactness, let j : V → N be elementary with crit(j) = κ, j(κ) > λ
and Nλ ⊆ M . Notice that the restriction i = j � Vλ : Vλ → V N

j(λ) is an elementary
embedding; this implies V N

j(λ) |= ZFC∗. Because Vλ believes that T is <κ-satisfiable, by
elementarity, V N

j(λ) |= “i(T ) is <i(κ)-satisfiable”. Because λ = iλ and T ∈ Vλ, |T | < λ.
Thus, by N ’s closure, i“T ∈ N and |i“T |N < λ < i(κ). Furthermore, i(T ) ∈ V N

j(λ) and
so also i“T ∈ V N

j(λ) and V N
j(λ) |= |i“T | < λ. Therefore V N

j(λ) believes that there is a model
B |= i“T . Because crit(i) = κ and T ⊆ L2

κκ, with the renaming i : τ → i“τ , we have
that i“T is a copy of T . Note that by closure under λ-sequences, N and hence V N

j(λ)

knows about the renamings i : τ → i“τ and i : T → i“T . We can therefore rename
B in V N

j(λ) to a τ -structure A, which V N
j(λ) believes to satisfy T . Notice that Vλ ⊆ V N

j(λ).
Further, cof(j(λ))N ≥ j(κ) > λ > κ. By closure of N , this implies that V N

j(λ) is λ-closed.
Summarising, (V N

j(λ),A) is a strong Henkin model as desired.

Now assume (2) and let us show (1). Take a cardinal λ > κ of cof(λ) ≥ κ. Consider
the theory

T = ElDiagL2
κω
(Vλ+1,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ},

where d is a new constant and the ci are the constants used in the elementary diagram. If
T0 ⊆ T is of size < κ, there is X ⊆ λ such that |X| < κ and the sentence “ci ∈ d∧|d| < cκ”
is contained in T0 iff i ∈ X. Then letting d = X, we get that (Vλ+1,∈, d) witnesses that
T0 is satisfiable. So by (2), we get a transitive set M satisfying ZFC∗ such that Vα ⊆M
for some large α > λ and A ∈ M such that M |= “A |= T”. We may take α large
enough such that T ∈ Vα. Note that T is a theory in a language τ = {∈, cx, d : x ∈ Vλ+1}.
Because with T , also τ ∈ Vα, and thus also the structure N = (Vλ+1,∈, cNx )x∈Vλ+1

in
which every cx is interpreted by x itself, and which witnesses that (Vλ+1,∈) satisfies
its own elementary diagram, is in Vα. Hence, this structure is also in M . Because
first-order satisfaction is absolute between M and V , M understands that T contains
the elementary diagram of (Vλ+1,∈) and therefore believes that there is an elementary
embedding j : Vλ+1 → A. Again, by absoluteness of first-order satisfaction, this is
really an elementary embedding. Note that T contains Magidor’s Φ∗, as clearly Vλ+1 is
isomorphic to some Vα. Together with M |= ZFC∗, this implies that M believes A to be
some rank-initial segment and so we have to have A = V M

β+1 for some β. Because cAi ∈ dA

for every i < λ, we get that j(κ) > |d|A ≥ λ. In particular, crit(j) ≤ κ. Because also
Lκω-satisfaction is absolute for transitive models and Lκω can define all ordinals < κ,
those have to be fixed by j. Thus crit(j) = κ. Note that j“λ is definable from j and λ
and so j“λ ∈M and therefore in V M

β+1. Summarising, we have an elementary embedding
j : Vλ+1 → V M

β+1 with crit(j) = κ, j(κ) > λ and j“λ ∈ V M
β+1. We can therefore let, for

X ⊆ Pκλ:
X ∈ U iff j“λ ∈ j(X).

It is standard to check that this defines a fine, normal and κ-complete ultrafilter U
over Pκλ. To check normality, for example, if f is a regressive function on Pκλ and
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so {s ∈ Pκλ : f(s) ∈ s} ∈ U . Then j“λ ∈ {s ∈ Pj(κ)j(λ) : j(f)(s) ∈ s} and hence
j(f)(j“λ) = j(γ) for some γ < λ. Therefore {s ∈ Pκλ : f(s) = γ} ∈ U . Hence κ is
λ-supercompact for arbitrarily large λ.

We may also characterise the smallest supercompact cardinal, by a slight adaptation
to the above proof.

Theorem 2.2.5. The following are equivalent for any cardinal κ:

(1) κ is the smallest supercompact cardinal.

(2) κ is the smallest cardinal such that for every λ, if T ⊆ L2 is a <κ-satisfiable theory,
then there is a strong L2-Henkin model (M,A) of T such that M |= ZFC∗ and
Vλ ⊆M .

(3) κ is the smallest cardinal such that for every λ, if T ⊆ L2 is a <κ-satisfiable theory,
then there is a strong L2-Henkin model (M,A) of T such thatM |= ZFC∗, Vλ ⊆M
and Mλ ⊆M .

Proof. If κ is supercompact, by Theorem 2.2.4 we know that property (3) holds with
respect to T ⊆ L2

κω and thus in particular for T ⊆ L2. Thus it is sufficient to show
that if κ is as in (2), then there is a supercompact γ such that γ ≤ κ. Let λ > κ be of
cof(λ) ≥ κ. Consider

T = ElDiagL2(Vλ+1,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ}.

By the same argument as in the proof before before, we get an M such that for some α
much larger than λ, we have T ∈ Vα, Vα ⊆M , and M |= “A |= T”. And further, we get
an elementary embedding jλ : Vλ+1 → A such that A = V M

β+1. Again, our theory implies
that jλ(κ) > λ and j“λ ∈ V M

β+1. But this time, we do not have Lκω at our disposal and
so we only get crit(jλ) ≤ κ. Nevertheless, this argument shows that for a proper class
of λ, we have an elementary embedding as above with crit(jλ) ≤ κ. As there are only
κ-many possible values for crit(jλ), there is a fixed γ which is the critical point of jλ for
a proper class of λ. Then let for X ⊆ Pγλ, X ∈ U iff j“λ ∈ j(X). This U can be shown
to be a fine, normal, γ-complete ultrafilter U over Pγλ by standard arguments. Then
γ ≤ κ is supercompact.

2.2.3. C(n)-extendible cardinals and Vopěnka’s Principle
In this section we will show that an analogue of Theorem 2.2.4 for sort logics provides
the hierarchy of C(n)-extendible cardinals, and thus another stratification of VP. To
show this, we will use the following characterisation of C(n)-extendibility provided by
Bagaria and Goldberg.
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Theorem 2.2.6 (Bagaria & Goldberg [BG24, Theorem 2.6]). The following are equivalent
for any cardinal κ and any natural number n ≥ 1:

(1) κ is C(n)-extendible.

(2) For every λ > κ, λ ∈ C(n+1), there is an elementary embedding j : V → M such
that crit(j) = κ, j(κ) > λ, Mλ ⊆M and M |= “λ ∈ C(n+1)”.

(3) For every λ > κ, λ ∈ C(n+1), there is a fine, normal and κ-complete ultrafilter U
over Pκλ such that {s ∈ Pκλ : ot(s) ∈ C(n+1)} ∈ U .

Recall that VP(Π1) is equivalent to the existence of a supercompact cardinal, and that
VP(Πn+1) is equivalent to the existence of a C(n)-extendible cardinal (cf. Section 1.3.6).
In this vein, C(n)-extendible cardinals can be seen as a generalisation of supercompact
cardinals. Bagaria’s and Goldberg’s theorem explains this observation in terms of
large cardinals, without the need to go through the equivalence to fragments of VP.
Extendibility and C(n)-extendibility can hence be understood as direct strengthenings
of supercompactness by simply adding correctness assumptions about the target of
supercompact embeddings.

Similarly, the characterisation of supercompactness by compactness properties with
L2-Henkin models as in Theorem 2.2.4 leads to C(n)-extendibility when considering
Ls,n-Henkin models (with some natural extra assumptions) instead. For this purpose,
for each natural number n > 1, fix a finite fragment ZFC∗

n of (consequences of) ZFC
containing the sentence that Φ(n) ∈ Ls,n is true in precisely those models which are
isomorphic to some Vα for α ∈ C(n) (cf. Corollary 1.2.17), and the sentence Φs,∗ ∈ Ls,n,
which is true in precisely those models which are isomorphic to some Vα for α any ordinal
(cf. Corollary 1.2.18). For uniformity of notation, let ZFC∗

1 = ZFC∗ be the fragment
introduced in Section 2.3.1.

We can now define the property we consider and prove our theorem.

Definition 2.2.7. Let L be a logic, n ≥ 1 a natural number, and κ a cardinal. We say
that κ is an n-strong-Henkin-compactness (n-SHC) number of L iff for any λ ∈ C(n) and
any <κ-satisfiable theory T ⊆ L there is a strong L-Henkin model (M,A) of T such that
M |= ZFC∗

n and Vλ ≺Σn M .

Theorem 2.2.8. The following are equivalent for any cardinal κ and any natural number
n ≥ 1:

(1) κ is C(n)-extendible.

(2) κ is an (n+ 1)-SHC number of Ls,n+1
κω .

Proof. The proof proceeds similar to the supercompactness case. Assume (1) and let
us show (2). Let T be <κ-satisfiable. Take λ = iλ ∈ C(n+1) of cof(λ) ≥ κ, such
that Vλ |= ZFC∗

n+1 and large enough such that Vλ verifies that T is <κ-satisfiable. By
Theorem 2.2.6, take j : V → N with crit(j) = κ, Nλ ⊆ N and N |= λ ∈ C(n+1).
Again, i = j � Vλ : Vλ → V N

j(λ) is elementary. In particular, V N
j(λ) |= ZFC∗

n+1; further
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V N
j(λ) |=“i(T ) is <i(κ) satisfiable” and so V N

j(λ) has a model B for the copy i“T . As earlier,
by closure of N , this can be renamed to a τ -structure A ∈ V N

j(λ) which V N
j(λ) believes to

satisfy T . Again, Vλ ⊆ V N
j(λ). Finally, if a ∈ Vλ and Φ(x) is a Σn+1 formula:

Vλ |= Φ(a) iff N |= Φ(a)

iff V N
j(λ) |= Φ(a).

Here the first “iff” holds as N |= λ ∈ C(n+1), and the second one because really λ ∈ C(n+1)

and so by elementarity, N |= j(λ) ∈ C(n+1). The equivalence shows that Vλ ≺Σn+1 V
N
j(λ)

and so, summarising, (V N
j(λ),A) is a strong Henkin model as desired.

Now assume (2), let λ > κ be in C(n+1), and consider

T = ElDiagLs,n+1
κω

(Vλ+1,∈) ∪ {ci ∈ d ∧ |d| < cκ : i < λ}.

Again, for <κ-satisfiable theories of T , we can get a model by considering Vλ+1 itself.
So for some α ∈ C(n+1) much greater than λ and such that T ∈ Vα, by assumption we
get an M |= ZFC∗

n+1 such that Vα ≺Σn+1 M and there is A ∈ M which M believes to
be a model of T . As before, M has a first-order elementary embedding j : Vλ+1 → A.
Note that Vλ |= Φ(n+1) and so Vλ+1 satisfies the relativisation of Φ(n+1) to Vλ, i.e., a
sentence coding that Φ(n+1) holds in the rank initial segment cut off at the largest ordinal
λ of Vλ+1. Then M believes that this sentence holds in V M

β+1 and so M |= β ∈ C(n+1).
Again, our theory implies that j(κ) > λ and because j“λ is definable in M , we have
j“λ ∈ V M

β+1. Summarising, we have an elementary embedding j : Vλ+1 → V M
β+1 with

crit(j) = κ, j(κ) > λ and j“λ ∈ V M
β+1. Define a fine, normal and κ-complete ultrafilter

on Pκλ as usual, by letting X ∈ U iff j“λ ∈ j(X). By Theorem 2.2.6, it suffices to verify
that X = {s ∈ Pκλ : ot(s) ∈ C(n+1)} ∈ U . Note that because λ ∈ C(n+1) and cof(λ) ≥ κ,
for s ∈ Pκλ we have

Vλ+1 |= ∀s ∈ Pκλ(s ∈ X ↔ Vλ |= “ot(s) ∈ C(n+1)”).

By elementarity,

V M
β+1 |= ∀s ∈ Pj(κ)j(λ)(s ∈ j(X) ↔ V M

β |= “ot(s) ∈ C(n+1)”).

So we have to show that V M
β |= “λ = ot(j“λ) ∈ C(n+1)”. Because M |=“β ∈ C(n+1)”,

this is equivalent to M |=“λ ∈ C(n+1)”. Recall that C(n+1) is Πn+1 definable. As really
α ∈ C(n+1), and α > λ ∈ C(n+1), hence Vα |= “λ ∈ C(n+1)”. Because Vα ≺Σn+1 M by
assumption, this implies M |= “λ ∈ C(n+1)”, verifying X ∈ U .

We would like to remark that extra assumptions on a Henkin model (M,A), like
Vλ ⊆ M in Theorem 2.2.4 and Vλ ≺Σn+1 M in Theorem 2.2.8, are crucial, if (M,A) is
supposed to be useful. The general definition of a (weak or strong) L-Henkin model only
requires there to be some transitive set M that believes in a structure satisfying some
L-sentences. However, M might be very incorrect about the logic L. The assumptions
on the Henkin models as above are natural to provide some partial correctness of M .

As we did with Theorem 2.2.5, it is easy to adapt the argument for Theorem 2.2.8 to
characterise the smallest C(n)-extendible cardinal.
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Theorem 2.2.9. The following are equivalent for every cardinal κ and every natural
number n ≥ 1:

(1) κ is the smallest C(n)-extendible cardinal.

(2) κ is the smallest n-SHC number of Ls,n+1.

We get the following results about VP and its local forms.

Corollary 2.2.10. The following are equivalent for every n ≥ 2.

(1) VP(Πn)

(2) Ls,n has an n-SHC number.

Proof. This follows immediately from Theorems 2.2.9 and 1.3.30.

Note that in our characterisation of supercompactness in Theorem 2.2.5, we might
add in conditions (2) and (3), that if (M,A) is the strong Henkin model provided, then
for λ ∈ C(1) also Vλ ≺Σ1 M . The reason for this is that if λ ∈ C(1) and j : V → N is
a λ-supercompactness embedding, then λ ∈ (C(1))N . Hence, combined with Theorem
1.3.32 our argument shows:

Corollary 2.2.11. The following are equivalent:

(1) VP(Π1).

(2) L2 has a 1-SHC number.

Finally, we can characterise the global notion.

Corollary 2.2.12. The following are equivalent:

(1) VP.

(2) For every logic L and every natural number n, there is an n-SHC number of L.

Proof. Assume that VP holds and let L be any logic. Then L ≤ Ls,n
κω for some κ and

some n > 1 (cf. Corollary 1.2.24). Because VP holds, there is a proper class of C(n−1)-
extendible cardinals, so there is some C(n−1)-extendible cardinal δ ≥ κ. By Theorem
2.2.8, δ is an n-SHC number for Ls,n

δω and thus in particular for L ≤ Ls,n
κω ≤ Ls,n

δω .

And if (2) holds, then in particular, every Ls,n has an n-SHC number. By Theorem
2.2.9, then for every n there is a C(n)-extendible cardinal. Hence, VP holds.

Figure 2.1 updates Figure 1.1 from Section 1.3.6 by the new properties we considered.
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Figure 2.1.: Relations between VP, C(n)-extendible cardinals, SHC numbers, compactness
numbers, and LST numbers.

2.3. Weak Henkin models

2.3.1. Motivation and definitions
Vopěnka’s Principle is equivalent to the existence of large cardinals and to several
model-theoretic statements, in particular to the existence of strong-Henkin-compactness
cardinals (cf. Theorem 2.2.12). And, as a finely grained analysis, we saw that the
stratification of VP along the Lévy hierarchy corresponds precisely to stratifications of
its large cardinal formulation in form of the C(n)-extendible cardinals (Theorem 1.3.30),
and to stratifications of its model-theoretic formulation in form of compactness cardinals
(Theorem 1.3.34), and n-SHC numbers for sort logics (Corollary 2.2.10), respectively.
On the other hand, it has been known for a long time that Vopěnka’s Principle has
consequences for category theory. In [AR94, Chapter 6], Adámek and Rosický show
for a long list of statements important in category theory that they are equivalent
to Vopěnka’s Principle. For instance, it is equivalent to the statement “The locally
presentable categories are precisely the complete and bounded categories” and to many
more. As they write, “assuming [...] Vopěnka’s Principle, the structure of locally
presentable categories becomes much more transparent” ([AR94, p. 241]).

The category-theoretic formulations of Vopěnka’s Principle motivated consideration of
an axiom called weak Vopěnka’s Principle. Its precise consistency strength was unknown
for a long time until this question recently got solved by Trevor Wilson (cf. [Wil22b]
and Theorem 2.3.5 below). As we will see, Bagaria and Wilson showed that similar to
the situation with Vopěnka’s Principle, also weak Vopěnka’s Principle can be stratified
along the existence of certain large cardinals called Πn-strong cardinals, for natural
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numbers n. This left open whether we can push this analogy between the structure of
Vopěnka’s Principle and weak Vopěnka’s Principle further and provide a model-theoretic
characterisation of weak Vopěnka’s Principle. Our goal is to show that the answer is
positive. We will see that analogously to how below VP the C(n)-extendible cardinals
correspond to Henkin-compactness-properties of logics, theΠn-strong cardinals correspond
to (different) Henkin-compactness-properties of logics as well. Note that independently
Holy, Lücke, and Müller in [HLM24, Theorem 1.7] provide a characterisation of the
axiom schema “Ord is Woodin” (and thus by Wilson’s Theorem 2.3.5 of weak Vopěnka’s
Principle) in terms of model-theoretic properties of logics (though the properties they
consider are entirely different ones than those we will employ).

We will first give some background on weak Vopěnka’s Principle and Πn-strong
cardinals before presenting our results in Section 2.3.2. To motivate the formulation of
weak Vopěnka’s Principle, let us consider some of the category-theoretic formulations of
Vopěnka’s Principle, without the need to give precise definitions of the involved notions.
For example, two of the statements that were singled out to be equivalent to Vopěnka’s
Principle (cf. [AR94, Section 6.D and Lemma 6.3]) are:

(1) If K is a locally presentable category, then all of its full subcategories closed under
colimits are coreflective in K.

(2) The category Ord of ordinals does not fully embed into the category of graphs, i.e.,
if (Gα : α ∈ Ord) is a sequence of graphs such that for any α ≤ β there is exactly
one homomorphism Gα → Gβ, then there are ordinals α < β and a homomorphism
Gβ → Gα.

Here the category Ord has as objects the ordinals, and as morphisms the initial segment
relation ≤. Recall that in category theory, the dual category Cop of some category C is
obtained by taking the same collection of objects and (informally speaking) reversing all
morphisms. In the case of Ord, the dual category Ordop thus consists of all ordinals with
the reverse initial segment relation ≥. Other category-theoretic notions can be dualised
in similar ways. It was shown (cf. [AR94, Section 6.D]) that the following natural variants
of the statements (1) and (2) about dual notions are also equivalent to each other:

(a) If K is a locally presentable category, then all of its full subcategories closed under
limits are reflective in K.

(b) The category Ordop does not fully embed into the category of graphs, i.e., if
(Gα : α ∈ Ord) is a sequence of graphs such that for any α ≤ β there is exactly one
homomorphism Gβ → Gα, then there are ordinals α < β and a homomorphism
Gα → Gβ.

In [ART88], the authors proved that Vopěnka’s Principle implies (b), and asked whether
the converse holds. So the name weak weak Vopěnka’s Principle was given to the
statement (b) (or equivalently to (a)). The question remained open until Wilson in a
series of articles first showed that weak Vopěnka’s Principle does not imply Vopěnka’s
Principle (cf. [Wil20]), and then that the former is equivalent to the large cardinal axiom
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“Ord is Woodin” (cf. [Wil22b] and Theorem 2.3.5), and therefore strictly weaker than
Vopěnka’s Principle, both in terms of direct implication and of consistency strength.

The above analyses, showing relations between category theory, versions of Vopěnka’s
Principle, and large cardinals, are naturally carried out using a class theory like GBC.
In these terms, Vopěnka’s Principle is not interpreted as an axiom schema, but as a
single statement positing the existence of elementary embeddings in every class by using
quantification over proper classes. Similarly, the statements about categories, about
sequences of graphs indexed by the ordinals, and “Ord is Woodin” can be interpreted in
such a theory. Contrastingly, in [BW23] Bagaria and Wilson carried out an analysis of
weak Vopěnka’s Principle for definable classes, under ZFC alone. In the following, we
will also take this standpoint. Our official definition of weak Vopěnka’s Principle is thus:

Definition 2.3.1. Weak Vopěnka’s Principle (WVP) is the axiom schema positing that if
(Gα : α ∈ Ord) is a sequence of graphs, which is definable possibly using set parameters,
such that for every α ≤ β there is exactly one homomorphism Gβ → Gα, then there are
ordinals α < β and a homomorphism Gα → Gβ.

We further write WVP(Πn) for the schema restricting WVP to sequences of graphs
definable by Πn formulas of the Lévy hierarchy without parameters, and WVP(Πn)
for the schema restricting WVP to sequences of graphs definable by Πn formulas with
parameters. Then WVP is equivalent to WVP(Πn) holding for every n.

To formulate Wilson’s Theorem about WVP, consider the following standard notions.

Definition 2.3.2. Let κ be a cardinal.

(i) For a class A, definable with possible set parameters, and λ > κ, κ is λ-A-strong
iff there is an elementary embedding j : V → M , crit(j) = κ, Vλ ⊆ M and
j(A ∩ Vλ) ∩ Vλ = A ∩ Vλ.

(ii) The cardinal κ is called A-strong iff it is λ-A-strong for every λ > κ.

(iii) We use the phrase “Ord is Woodin” for the schema expressing “For every class A,
there is an A-strong cardinal.”

Bagaria’s and Wilson’s analysis of WVP was carried out using Πn-strong cardinals,
which are a slight variant of A-strong cardinals.

Definition 2.3.3 (Bagaria & Wilson [BW23, Definition 5.1]). Let κ be a cardinal.

(i) For an ordinal λ, κ is λ-Πn-strong iff for every class A which is Πn definable without
parameters there is an elementary embedding j : V → M , crit(j) = κ, Vλ ⊆ M
and A ∩ Vλ ⊆ AM .

(ii) The cardinal κ is Πn-strong iff it is λ-Πn-strong for every λ.

It can be shown that strong cardinals are Π1-strong (combine [BW23, Proposition 5.2]
and [BW23, Corollary 5.4]). The characterisations of WVP, level-by-level and global,
can be stated as follows.
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Theorem 2.3.4 (Bagaria & Wilson [BW23, Theorem 5.11]). The following are equivalent
for every n ≥ 1:

(1) WVP(Πn).

(2) There exists a Πn-strong cardinal.

Theorem 2.3.5 (Bagaria & Wilson). The following are equivalent:

(1) WVP

(2) Ord is Woodin.

(3) For every n, there is a Πn-strong cardinal.

(4) For every n, there is a proper class of Πn-strong cardinals.

Proof. The equivalence of (1) and (2) is already due to Wilson [Wil22b], while the
equivalence of both (1) and (2) to (3) and (4) is due to Bagaria and Wilson [BW23, Section
5].

We will review some of the proofs in the following Section 2.3.2 to show how the
lightface statements (3) and (4) are equivalent to the boldface assertions (1) and (2). If
δ is a Woodin cardinal, then (Vδ, Vδ+1,∈) |= “Ord is Woodin”, and so the consistency
strength of WVP is well below that of, for example, a supercompact cardinal, so in
particular below that of VP or even weak forms like VP(Π1).

2.3.2. Weak Henkin compactness and Πn-strong cardinals
In this section we will show how Boney’s Theorem 2.2.2 characterising strong cardinals
can be generalised to sort logics to give a characterisation of Πn-strong cardinals, and
as a result of WVP. We will first state our main theorems, then review some of the
necessary background on Πn-strong cardinals, and finally proceed with proofs of the main
results.

Statement of the results

Recall the finite fragments ZFC∗
n we fixed in Section 2.2 for each natural number n > 1,

containing the statement that Φ(n) ∈ Ls,n is true in precisely those models which are
isomorphic to some Vα for α ∈ C(n), and such that Φs,∗ ∈ Ls,n is true in precisely those
models which are isomorphic to some Vα for α any ordinal.

Theorem 2.3.6. The following are equivalent for every cardinal κ and n ≥ 2:

(1) κ is Πn-strong

(2) For every λ which is a limit point of C(n) and every theory T ⊆ Ls,n
κω that can be

written as an increasing union T =
⋃
α<κ Tα of theories Tα that each have models

of size ≥ κ, there is a weak Ls,n
κω-Henkin model (M,A) of T such that |A| ≥ λ,

M |= ZFC∗
n, and Vλ ≺Σn M .
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Proof. Cf. Proof 2.3.21.

The theorem can also be understood as a local variant of the already cited [BDGM24,
Theorem 3.6] which gives a characterisation of Woodin cardinals in terms of compactness
for weak Henkin models.

The smallest Πn-strong cardinal can be described as the smallest cardinal witnessing
the above property (2) for finitary sort logic Ls,n.

Theorem 2.3.7. The following are equivalent for a cardinal κ.

(1) κ is the smallest Πn-strong cardinal.

(2) κ is the smallest cardinal such that for any limit λ of C(n) and any theory T ⊆ Ls,n

that can be written as an increasing union T =
⋃
α<κ Tα of theories Tα that each

have models of size ≥ κ, there is a weak Ls,n-Henkin model (M,A) of T such that
|A| ≥ λ, M |= ZFC∗

n, and Vλ ≺Σn M .

Proof. Cf. Proof 2.3.22.

As for n-strong-Henkin-compactness (cf. Definition 2.2.7), let us fix the property
expressed by (2) of the above theorems.

Definition 2.3.8. Let L be a logic, n a natural number, and κ a cardinal. We say that κ
is an n-Henkin-chain-compactness (n-HCC) number of L iff for any λ ∈ C(n) and theory
T ⊆ L which can be written as in increasing union T =

⋃
α<κ Tα of theories Tα which

each have a model of size ≥ κ, there is a weak L-Henkin model (M,A) of T such that
M |= ZFC∗

n, |A| ≥ λ, and Vλ ≺Σn M .

Again (cf. Corollary 2.2.10), we get a characterisation of local forms of WVP.

Corollary 2.3.9. For any n ≥ 1 the following are equivalent:

(1) WVP(Πn).

(2) Ls,n has an n-HCC number.

Proof. This immediately follows from Theorem 2.3.7 and Theorem 2.3.4.

Because strong cardinals are Π1-strong, Boney’s Theorem 2.2.2 (with a minor extra
argument to adjoin the condition that Vλ ≺Σ1 M for λ ∈ C(1)) shows:

Proposition 2.3.10. The following are equivalent:

(1) WVP(Π1).

(2) L2 has a 1-HCC number.

Finally, we get a model-theoretic characterisation of WVP.
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Corollary 2.3.11. The following are equivalent:

(1) WVP.

(2) For any logic L and any natural number n, there is an n-HCC number of L.

Proof. Cf. Proof 2.3.23.

Note that Lemma 2.3.12 and the formulation of C(n)-extendible cardinals as being
witnessed by specific supercompactness embeddings (cf. Theorem 2.2.6), show that the
definitions of Πn+1-strong and C(n)-extendible cardinals result from each other, simply
by replacing the clause “Vλ ⊆ M” by “Mλ ⊆ M”. This shows how the strengths
of the stratifications of WVP and VP along the Lévy hierarchy differ in slight (but
crucial) variances in formulation of our large cardinal assumptions. The Corollaries
2.2.10 and 2.3.9 show how the same is true for our model-theoretic characterisations:
the stratifications of WVP and VP they describe can be obtained from each other by
replacing n-Henkin-chain compactness of Ls,n by n-strong-Henkin compactness of Ls,n.
The situation for WVP is summarised in Figure 2.2.

Figure 2.2.: Relations between WVP, Πn-strong cardinals, and HCC numbers.

More on Πn-strong cardinals

To work towards a proof of Theorems 2.3.6 and 2.3.7, we start by giving some relevant
results on Πn-strong and A-strong cardinals. In particular, we will show that being
Πn-strong can be witnessed by embeddings between set-sized structures (cf. Lemma
2.3.14).

First of all, note that our definition of κ being a λ-strong cardinal contains the
condition that j(κ) > λ, while the definitions of Πn-strong and A-strong omit it. It is
well known that for the global notion of being strong, whether one omits or includes
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this condition, one arrives at equivalent notions: Call a cardinal κ weakly λ-strong if
there is an elementary embedding j : V →M such that crit(j) = κ and Vλ ⊆M . Then
one can show that κ is strong if and only if κ is weakly λ-strong for every λ (cf., e.g.,
[Kan03, Exercise 26.7]). As Bagaria and Wilson point out, the argument carries over
to Πn-strong (cf. [BW23, p. 162]) and A-strong cardinals (cf. [Wil22b]). Thus, κ is
Πn-strong iff for every Πn-definable class A and every λ there is an elementary embedding
j : V →M , crit(j) = κ, Vλ ⊆M , A ∩ Vλ ⊆ AM , and j(κ) > λ, i.e., we can equivalently
assume for a Πn-strong cardinal that its critical point gets in each case pushed beyond λ
and analogously for A-strong cardinals. Note that if κ is λ-A-strong and there is some
ordinal κ ≤ δ < λ such that j(δ) ≥ λ, then the A-strong condition j(A∩Vλ)∩Vλ = A∩Vλ
is equivalent to j(A ∩ Vδ) ∩ Vλ = A ∩ Vλ. We will use this observation tacitly below.

If A = C(n), Πn-strong cardinals and A-strong cardinals coincide, as formulated in
the following lemma. Note that by “C(n)-strong”, we mean here and in the following an
A-strong cardinal for A = C(n). The term is also used to refer to a strong cardinal for
which we can demand j(κ) ∈ C(n). It is known that this latter notion is equivalent to
merely being strong (cf. [Bag12, Proposition 1.2]).

Lemma 2.3.12 (Bagaria & Wilson [BW23, Proposition 5.9]). Let n ≥ 1 and λ be a
limit point of C(n). Then the following are equivalent:

(1) κ is λ-Πn-strong.

(2) There is an elementary embedding j : V → M with crit(j) = κ, Vλ ⊆ M and
M |= λ ∈ C(n).

(3) κ is λ-C(n)-strong, i.e., there is an elementary embedding j : V → M with
crit(j) = κ, Vλ ⊆M and j(C(n) ∩ Vλ) ∩ Vλ = C(n) ∩ Vλ.

(4) κ is λ-A-strong for every Πn-definable class A.

Item (3) is not made explicit in Bagaria’s and Wilson’s formulation of the lemma
but its equivalence to the other statements is argued for in the proof they provide. In
particular, the lemma implies:

Corollary 2.3.13. Let n ≥ 1. The following are equivalent:

(1) κ is Πn-strong.

(2) κ is C(n)-strong.

Let us use Bagaria’s and Wilson’s result to show how Πn-strength can be witnessed
by embeddings between set models. We will employ this result later in the proof of our
model-theoretic characterisation of Πn-strength (cf. Theorem 2.3.6).

Lemma 2.3.14. Let λ be a limit of C(n). If there is an elementary embedding j :
Vκ+1 → M into a transitive set such that crit(j) = δ ≤ κ, j(κ) ≥ λ, Vλ ⊆ M and
j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ, then δ is λ-Πn-strong.
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Proof. Under the above assumptions, note that there is ζ ≤ κ the smallest ordinal such
that j(ζ) ≥ λ. We can derive a (δ, λ)-extender E = (Ea : a ∈ [λ]<ω) by letting for each a
and X ⊆ [ζ]|a|:

X ∈ Ea iff a ∈ j(X).

We proceed to build the extender power mE of Vκ+1 by (Ea : a ∈ [λ]<ω). By Theorem
1.3.39, this comes with the standard elementary embeddings jE,m : Vκ+1 → mE and
kE,m : mE → M such that crit(jE,m) = δ, jE,m(ζ) ≥ λ, Vλ ⊆ mE, j = kE,m ◦ jE,m and
kE,m � λ = id. Further, by Theorem 1.3.40, building the extender power jE : V →ME,
we get Vλ ⊆ mE ⊆ ME and jE � Vκ+1 = jE,m. Therefore crit(jE) = δ and jE(ζ) ≥ λ.
Because λ is a limit of C(n), using Lemma 2.3.12, it is therefore sufficient to check
that jE(C(n) ∩ Vζ) ∩ Vλ = C(n) ∩ Vλ to show that δ is λ-Πn-strong. Using again that
jE � Vκ+1 = jE,m, we thus only have to show the following claim.

Claim 2.3.15. jE,m(C(n) ∩ Vζ) ∩ Vλ = C(n) ∩ Vλ.

By elementarity and because kE,m ◦ jE,m = j, we get:

α ∈ jE,m(C
(n) ∩ Vζ) iff kE,m(α) ∈ kE,m(jE,m(C

(n) ∩ Vζ)) = j(C(n) ∩ Vζ).

Now kE,m � λ = id, so if α < λ, then kE,m(α) = α. Together we have:

α ∈ jE,m(C
(n) ∩ Vζ) ∩ Vλ iff α ∈ j(C(n) ∩ Vζ) ∩ Vλ = C(n) ∩ Vλ.

We state a few more properties noted by Bagaria and Wilson, adding the proofs they
omit.

Proposition 2.3.16 (Bagaria & Wilson [BW23, p. 164]). Being Πn-strong is a Πn+1-
assertion.

Proof. Note that for ordinals κ, λ, and µ, the following is a Σ2 assertion:

ϕ(κ, λ, µ) = ∃j∃M(j : Vµ →M is elementary ∧ crit(j) = κ ∧ j(κ) ≥ λ ∧ Vλ ≺Σn M).

Thus, as “x ∈ C(n)” is Πn, the following is a Πn+1 property of κ:

ψ(κ) = ∀λ, µ(λ, µ ∈ C(n) ∧ λ < µ→ ϕ(κ, λ, µ)).

We claim that ψ(κ) holds iff κ is Πn-strong.

For the backward direction, assume that κ is Πn-strong and take some λ < µ both
in C(n). Let γ > µ be a limit point of C(n). If κ is Πn-strong, by Corollary 2.3.13,
it is C(n)-strong. Then we can take j : V → N with crit(j) = κ, j(κ) > γ, Vγ ⊆ N ,
and j(C(n) ∩ Vκ) ∩ Vγ = C(n) ∩ Vγ. Then N sees that γ is a limit point of C(n), so
in particular γ ∈ (C(n))N . Thus, Vγ ≺Σn N . Because Vγ is correct about C(n), this
implies λ ∈ (C(n))N , and because Vλ ⊆ N , thus Vλ ≺Σn N . Furthermore, as µ ∈ C(n),
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by elementarity j(µ) ∈ (C(n))N . As λ < j(µ), thus Vλ ≺Σn V
N
j(µ). Now note that, letting

M = V N
j(µ), j restricts to an embedding j � Vµ : Vµ →M as desired.

For the forward direction, let λ be a limit point of C(n). It is sufficient to show that
κ is λ-Πn-strong. We claim that there is an elementary embedding j : Vκ+1 →M such
that crit(j) = κ, j(κ) ≥ λ, Vλ ⊆ M and j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ. Then we are
done by Lemma 2.3.14. Let µ > λ be a limit point of C(n). Then by ψ(κ), there is an
elementary embedding j : Vµ → N such that crit(j) = κ, j(κ) ≥ λ, and Vλ ≺Σn N . This
implies that j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ. But then letting M = V N

j(κ), j restricts to an
embedding j � Vκ+1 : Vκ+1 →M as desired.

Proposition 2.3.17 (Bagaria & Wilson [BW23, p. 164]). If κ is Πn-strong, then
κ ∈ C(n+1).

Proof. By induction on n. For the case n = 1, this follows as strong cardinals are easily
seen to be Π1-strong by downward absoluteness of Π1 formulas and its a classic result
that they are in C(2) (cf., e.g., [Kan03, Exercise 26.6]). So assume every Πn-strong
cardinal is in C(n+1) and let κ be Πn+1-strong. We have to show that κ ∈ C(n+2). So
take Φ(x) = ∃yΨ(x, y), a Σn+2 formula. Because κ is in particular Πn-strong and thus by
induction hypothesis in C(n+1), it follows that Σn+2 formulas are upward absolute from
Vκ. It is thus sufficient to show that if a ∈ Vκ such that Φ(a) holds in V , then Vκ |= Φ(a).
By V |= Φ(a), there is a b such that V |= Ψ(a, b). Take some λ ∈ C(n+1) such that b ∈ Vλ
and a j : V →M such that crit(j) = κ, j(κ) > λ, Vλ ⊆M and M |= λ ∈ C(n+1). Then
we get that V , Vλ and M agree on Πn+1 formulas and therefore M |= Ψ(a, b). Thus
M |= ∃y(rk(y) < j(κ) ∧ Ψ(a, y)). By elementarity thus V |= ∃y(rk(y) < κ ∧ Ψ(a, y)).
So there is c ∈ Vκ such that Ψ(a, c) holds. Because κ ∈ C(n+1), also Vκ |= Ψ(a, c) and
therefore Vκ |= Φ(a).

Proposition 2.3.18 (Bagaria & Wilson [BW23, p. 164]). If κ is Πn+1-strong, then it is
a limit of Πn-strong cardinals.

Proof. Take any α < κ. Then because κ is Πn-strong, the statement

∃x(x > α ∧ x is Πn-strong)

holds in V . Because being Πn-strong is a Πn+1-property, this is a Σn+2-statement. As
κ ∈ C(n+2), also Vκ believes that there is some Πn-strong cardinal λ > α, and it is correct
about this.

This easily implies:

Corollary 2.3.19. If there is a Πn+1-strong cardinal, then there is a proper class of
Πn-strong cardinals.

Proof. The statement ∀α∃λ(λ > α ∧ λ is Πn-strong) is Πn+2. If κ is Πn+1-strong, Vκ
satisfies this statement, as it is a limit of Πn-strong cardinals. We further have κ ∈ C(n+2)

and so Vκ reflects it to V .
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Putting everything together, Bagaria and Wilson get the result we already partially
quoted above:

Corollary 2.3.20 (Bagaria & Wilson[BW23]). The following are equivalent:

(1) WVP.

(2) Ord is Woodin.

(3) For every n, there is a Πn-strong cardinal.

(4) For every n, there is a C(n)-strong cardinal.

(5) For every n, there is a proper class of Πn-strong cardinals.

(6) For every n, there is a proper class of C(n)-strong cardinals.

Proof. As promised, let us show how the lightface statements (3)-(6) imply (2), i.e., the
existence of A-strong cardinals for classes A that are defined with parameters. This
holds, as if κ is Πn-strong, then it is A-strong for every class which is Πn-definable
with parameters in Vκ: Let A be a class defined by a Πn formula Φ(x, p) with p ∈ Vκ
and let λ ∈ C(n). Take j : V → M , crit(j) = κ, Vλ ⊆ M , and M |= λ ∈ C(n). Then
Vλ, V and M agree on Πn formulas. We want to see that j(A ∩ Vλ) ∩ Vλ = A ∩ Vλ.
So fix a ∈ Vλ. We have a ∈ A iff Φ(a, p) iff Vλ |= Φ(a, p) iff M |= Φ(a, p). Now as
j(p) = p and thus j(A ∩ Vλ) = {y ∈ M : rk(y) < j(λ) ∧ ΦM(y, p)}, we get M |= Φ(a, p)
iff a ∈ j(A ∩ Vλ). Since by (5), we get arbitrarily large Πn-strong cardinals, we can
therefore cover definitions with any parameter.

Proofs of the main results

Proof 2.3.21 (Proof of Theorem 2.3.6). For the forward direction, suppose we have a
setup like in (2), i.e., a theory T ⊆ Ls,n

κω and an increasing union
⋃
α<κ Tα = T such that

every Tα has a model Aα of size ≥ κ and some λ ∈ C(n). Then we can pick a function f
on κ such that every f(α) = (Vβα ,Aα) is a weak Ls,n

κω -Henkin model of Tα. Without loss
of generality we can choose κ < βα ∈ C(n) such that Vβα |= ZFC∗

n.

By κ being Πn-strong, take an elementary embedding j : V → N such that crit(j) = κ,
j(κ) > λ, Vλ ⊆ N and N |= λ ∈ C(n). Computing j(T ), we get that j(T ) =

⋃
α<j(κ) T

∗
α

for some theories T ∗
α ⊆ Ls,n

j(κ)ω. Then j(f) is a function on j(κ) such that, in N , j(f)(α)
is a weak Ls,n

j(κ)ω-Henkin model of T ∗
α. Thus, in N , we have that j(f)(κ) = (M∗

κ ,A∗
κ) is an

Ls,n
j(κ)ω-Henkin model of T ∗

κ . Note that j“T =
⋃
α<κ j“Tα ⊆

⋃
α<κ j(Tα) ⊆

⋃
α<κ T

∗
α ⊆ T ∗

κ ,
and so from the outside, we see that (M∗

κ ,A∗
κ) is really a weak Henkin model of j“T .

Because crit(j) = κ, j“T ⊆ Ls,n
κω and so j“T is really an Ls,n

κω -theory. Furthermore, it is a
copy of T and so (M∗

κ ,A∗
κ) really is a weak Ls,n

κω -Henkin model of T .

Note that f(α) = (Vβα ,Aα) and Vκ ⊆ Vβα for every α. ThusN believes that V N
j(κ) ⊆M∗

κ .
Because Vλ ⊆ N and j(κ) > λ, we get that Vλ ⊆ M∗

κ . Also |Aα| ≥ κ for all α
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and so N believes that |A∗
κ| ≥ λ. Because λ is a cardinal, this really holds. Since

all Vβα satisfy ZFC∗
n, N believes M∗

κ to satisfy ZFC∗
n, and, by absoluteness of first-

order satisfaction, it is correct about this. Further, κ < βα ∈ C(n) for all α and so
M∗

κ = V N
β for some β > j(κ) > λ with β ∈ (C(n))N , i.e., M∗

κ = V N
β ≺Σn N . Now by

assumption, N |= λ ∈ C(n) and V N
λ = Vλ, so Vλ ≺Σn N . As λ < β, together this implies

Vλ ≺Σn V
N
β =M∗

κ . Summarising, (M∗
κ ,A∗

κ) is a weak Henkin model of T as promised.

For the backwards direction, suppose we have the compactness property from (2).
By Lemma 2.3.14, it is sufficient to provide, for λ a limit point of C(n), an elementary
embedding j : Vκ+1 → M with M transitive, crit(j) = κ, j(κ) ≥ λ, Vλ ⊆ M and
C(n) ∩ Vλ = j(C(n) ∩ Vκ) ∩ Vλ. Recall that the class {(M,E) : ∃α((M,E) ∼= (Vα,∈))}
is Σ2-definable, and therefore in particular, it is axiomatisable by some Φs,∗ ∈ Ls,2 (cf.
Corollary 1.2.18). Consider the following theory:

T = ElDiagLκω
(Vκ+1,∈) ∪ {ci < c < cκ : i < κ} ∪ {Φs,∗}

∪ {∀x(x ∈ cC(n)∩Vκ → (Φ(n)){y : y∈Vx}}∪
∪ {∀x((Φ(n)){y : y∈Vx} ∧ x ∈ cVκ → x ∈ cC(n)∩Vκ},

where (Φ(n)){y : y∈Vx} is the relativisation of Φ(n) to the structure which consists of the
elements of what the structure believes to be Vx, thus coding that x ∈ C(n). Clearly,
this theory can be written as an increasing union of satisfiable theories Tα for α < κ by
considering those bits of T that include only the sentences ci < c < cκ for i < α and using
Vκ+1 as a model. Then by (b), T has an Ls,n

κω -Henkin model (M,A) such that M |= ZFC∗
n,

Vλ ≺Σn M and |A| ≥ λ. We have that M believes that A satisfies Φs,∗, so we may assume
that A = V M

β for some β. As Lκω-satisfaction is absolute, from the outside we see that
A |= ElDiagLκω

(Vκ+1,∈). Therefore there is an elementary embedding j : Vκ+1 → V M
β

and we have that this has a critical point crit(j) ≥ κ, as Lκω can define all ordinals below
κ. Further crit(j) ≤ κ by the sentences ci < c < cκ holding in N . Thus crit(j) = κ. To
see that Vλ ⊆ V M

β , note that because |V M
β | = |A| ≥ λ and λ = iλ by being a member of

C(n), we have to have β ≥ λ. And because Vλ ⊆M , therefore Vλ ⊆ (Vβ)
M . Because Vκ+1

satisfies the sentence that there is a largest cardinal, also A satisfies this. In particular,
we have to have λ ∈ V M

β . Because κ is the largest cardinal of Vκ+1, j(κ) has to be the
largest cardinal of V M

β . Thus j(κ) ≥ λ.

Finally, the theory T implies that for α < λ, we have

M |= “A |= α ∈ cC(n)∩Vκ” iff M |= “A |= (Φ(n)){y : y∈Vα}”.

The first part means that α ∈ j(C(n)∩Vκ), while, as M |= ZFC∗
n, the second is equivalent

to M |= α ∈ C(n). Because Vλ ≺Σn M , for α < λ, this implies Vλ |= α ∈ C(n). Since λ
really is a member of C(n), Vλ is correct about membership in C(n) and so this implies
α ∈ C(n). Thus α ∈ j(C(n) ∩ Vκ) ∩ Vλ iff α ∈ C(n) ∩ Vλ.

Proof 2.3.22 (Proof of Theorem 2.3.7). Let κ be the cardinal as designated by (2). It
is sufficient to show that there is a smallest Πn-strong cardinal γ ≤ κ: By Theorem 2.3.6,
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then the above Henkin compactness property holds for theories T ⊆ Ls,n
γω , so in particular

for theories of Ls,n ⊆ Ls,n
γω . As κ is the smallest cardinal for which this holds, we thus get

κ ≤ γ and hence γ = κ.

Consider the Ls,n-theory

T =ElDiag(Vκ+1,∈) ∪ {ci < c < cκ : i < κ} ∪ {Φs,∗}
∪ {∀x(x ∈ cC(n)∩Vκ → (Φ(n)){y : y∈Vx}}∪
∪ {∀x((Φ(n)){y : y∈Vx} ∧ x ∈ cVκ → x ∈ cC(n)∩Vκ}.

This is basically the same theory as considered above, with the only difference being that
we consider the first-order elementary diagram instead of the Lκω-diagram. Exactly the
same argument as above gives us that there is an elementary embedding j : Vκ+1 →M
with M transitive, crit(j) ≤ κ, j(κ) ≥ λ, Vλ ⊆ M and j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ.
The only difference is that we cannot use Lκω to show that the critical point crit(j) is
exactly κ. Let δ = crit(j). Then Lemma 2.3.14 shows that δ is λ-Πn-strong. We can
conclude that there is a Πn-strong cardinal ≤ κ as there is a proper class of λ > κ, but
only κ-many possible values for critical points ≤ κ, so some fixed cardinal will have to
be the critical point for arbitrarily large λ.

Proof 2.3.23 (Proof of Corollary 2.3.11). Assume WVP and let L be a logic and n a
natural number. There is a cardinal κ and a natural number m such that L ≤ Ls,m

κω . Let
k = max{n,m}. By Corollary 2.3.20, from WVP we get a Πk-strong cardinal δ > κ. By
Theorem 2.3.6, δ is a k-HCC number of Ls,k

δω . In particular, δ is an n-HCC number for
L ≤ Ls,k

δω .

And now assume (2). In particular it follows that for any n, Ls,n has an n-HCC
number. Theorem 2.3.6 then implies that there is a Πn-strong cardinal. Therefore by
Corollary 2.3.20, WVP holds.

2.3.3. Variations of jointly strong and strongly compact
cardinals

We proceed by presenting some further applications of weak Henkin models by considering
other compactness properties. Note that there are two essential differences between
n-Henkin-chain-compactness and n-strong-Henkin compactness. First, the latter provides
strong Henkin models while the former provides weak Henkin models. And second,
the latter assumes < κ-satisfiability of theories, while the former assumes satisfiability
along a κ-chain. It is thus natural to ask what we get from a compactness property
which provides weak Henkin models under the assumption of < κ-satisfiability. Boney
considered this question for second-order logic with the classical Henkin semantics, stating
without proof that in this case, this amounts to a jointly strong and strongly compact
cardinal (cf. [Bon20, p. 159]). With our framework, his remarks can be formulated in the
following way.
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Theorem 2.3.24 (Boney). The following are equivalent for a cardinal κ:

(1) κ is jointly strong and strongly compact, i.e., for every λ > κ, there is an elementary
embedding j : V →M such that crit(j) = κ, j(κ) > λ, Vλ ⊆M and with a d ∈M
such that j“λ ⊆ d and M |= |d| < j(κ).

(2) For every <κ-satisfiable theory T ⊆ L2
κω there is a weak L2

κω-Henkin model (M,A)
such that M |= ZFC∗ and Vλ ⊆M .

We refrain from giving a proof of the above result, as it can be shown with similar
arguments as the following theorem, which provides a generalisation to the sort logic
case.

Theorem 2.3.25. The following are equivalent for any cardinal κ and natural number
n ≥ 2:

(1) κ is jointly Πn-strong and strongly compact, i.e., for every λ ∈ C(n), there is an
elementary embedding j : V → M such that crit(j) = κ, j(κ) > λ, Vλ ⊆ M ,
M |= λ ∈ C(n) and with a d ∈M such that j“λ ⊆ d and M |= |d| < j(κ).

(2) For every λ ∈ C(n) and every <κ-satisfiable theory T ⊆ Ls,n
κω there is a weak

Ls,n
κω -Henkin model (M,A) such that M |= ZFC∗

n and Vλ ≺Σn M .

Proof. Assume (1). It is sufficient to show (2) for λ a limit point of C(n). Let T ⊆ Ls,n
κω be

<κ-satisfiable. Let γ > λ be a limit point of C(n) such that Vγ satisfies ZFC∗
n and verifies

that T is <κ-satisfiable. Take an elementary embedding j : V →M such that crit(j) = κ,
j(κ) > γ, Vγ ⊆ M , M |= γ ∈ C(n) and with a d ∈ M such that j“γ ⊆ d ⊆ j(γ) and
M |= |d| < j(κ). The following claim is standard.

Claim 2.3.26. There is a d0 ∈M such that j“T ⊆ d0 ⊆ j(T ) and M |= |d0| < j(κ).

Proof. Notice that there is a surjection g : γ → T . Now if j(ϕ) ∈ j“T , there is an α < γ
such that g(α) = ϕ and so j(ϕ) = j(g(α)) = j(g)(j(α)) ∈ j(g)“d. Let d0 = ran(j(g) � d).
Then j“T ⊆ d0 = ran(j(g) � d) ∈M . Further M |= |d0| ≤ |d| < j(κ).

By elementarity j(T ) is <j(κ)-satisfiable and so M believes that there is a model
A |= d0, and further we can let A ∈ V M

j(γ). Then because j“T ⊆ d0, from the outside
we see that (V M

j(γ),A) is a weak Ls,n
κω -Henkin model of T . Using elementarity again, V M

j(γ)

satisfies ZFC∗
n. Furthermore, γ ∈ C(n), so by elementarity, M |= j(γ) ∈ C(n) and by

assumption also M |= γ ∈ C(n). Since Vγ ⊆ M , this implies Vγ ≺Σn V
M
j(γ). Therefore

(V M
j(γ),A) is as desired.

And now assume (2). It is sufficient to show (1) for λ a limit of C(n) of cofinality
cof(λ) ≥ κ. Again, let Φs,∗ ∈ Ls,n be the sentence axiomatising the class of models (M,E)
isomorphic to some (Vα,∈), and Φ(n) the sentence axiomatising the class of models
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isomorphic to some (Vα,∈) such that α ∈ C(n) (cf. Corollaries 1.2.18 and 1.2.17). Take a
new constant symbol d and consider the theory

T = ElDiagLκω
(Vλ+1,∈) ∪ {ci < d ∧ |d| < cκ : i < λ} ∪ {Φs,∗}

∪ {∀x(x ∈ cC(n)∩Vκ → (Φ(n)){y : y∈Vx}}∪
∪ {∀x((Φ(n)){y : y∈Vx} ∧ x ∈ cVκ → x ∈ cC(n)∩Vκ}.

It is easily seen that Vλ+1 satisfies every < κ-sized subset of T and so T has by assumption
a weak Ls,n

κω -Henkin model (M,A) such that Vλ ≺Σn M , satisfying ZFC∗
n. From the outside

we see that A |= ElDiagLκω
(Vλ+1,∈) and that M believes that A = V M

γ is some rank
initial segment by virtue of Φs,∗ and so we get an elementary embedding j : Vλ+1 → V M

γ

with crit(j) ≥ κ. In particular, γ = β + 1 for some β. By the theory, j“λ ⊆ dA and
|dA|A < j(κ) so j(κ) > λ and thus, by usage of Lκω, crit(j) = κ. Because Vλ ⊆M , that
j(κ) > λ, implies Vλ ⊆ V M

β+1. Exactly as in the proof of Theorem 2.3.6, the last parts of
the theory and that Vλ ≺Σn M |= ZFC∗

n implies j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ.
We want to see that the properties of j carry over to an embedding defined on V . We

have j(λ) = β so we can derive a long (κ, β)-extender E = (Ea : a ∈ [β]<ω) by letting for
X ⊆ [λ]|a|:

X ∈ Ea iff a ∈ j(X).

Theorem 1.3.39 implies that taking the extender power mE of Vλ+1 by E we get an
elementary embedding jE,m : Vλ+1 → mE with crit(jE,m) = κ, jE,m(κ) > λ, Vλ ⊆ mE.
Using that the factor embedding does not move ordinals < λ, as in the proof of Lemma
2.3.14, we get that jE,m(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ. And taking the extender power
ME of V , by Theorem 1.3.40, mE ⊆ ME and these properties of jE,m carry over to
jE : V → ME, as jE � Vλ+1 = jE,m. In particular, jE(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ, so if
α < λ and α ∈ C(n), then ME |= α ∈ C(n). Because λ is a limit point of C(n), ME thus
sees that C(n) is unbounded below λ and therefore ME |= λ ∈ C(n).

Thus, left to show is that there is d∗ ∈ME such that jE“λ ⊆ d∗ and M |= |d∗| < jE(κ).
Note that λ = iλ and so j(λ) = β is a i-fixed point in V M

β+1. Therefore V M
β+1 |= |Vβ| ≤ β

and so by Theorem 1.3.39, V mE
β = V M

β . Consider dA. We may assume that dA ⊆ β

by otherwise letting d0 = dA ∩ β ∈ V M
β+1. Notice that, in V M

β+1, we have |dA| < j(κ)
and, because λ really has cofinality at least κ, in V M

β+1, cof(β) = cof(j(λ)) ≥ j(κ).
Thus dA is bounded in j(λ) = β. Therefore dA ∈ V M

η for some η < β, and hence, in
particular, dA ∈ V M

β = V mE
β . Recall that mE ⊆ ME and thus dA ∈ ME. Further,

considering the factor map kE,m : mE → V M
β+1, we have kE,m � λ = id and so for α < λ,

j(α) = jE,m(α) = jE(α). Thus, dA covers jE“λ. Because V M
β |= |dA| < j(κ) then also

|dA|ME < j(κ) = jE(κ)

We would like to make some remarks about these and related results. First, an
argument by Dimopoulos shows that cardinals which are both strong and strongly
compact are already jointly strong and strongly compact (cf. [Dim19, Proposition 2.3]).
Theorem 2.3.24 therefore simply characterises cardinals which are both strong and
strongly compact. Recall that any supercompact cardinal is strong and strongly compact.
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Moreover, Apter and Hamkins showed that it is consistent that a cardinal is both strong
and strongly compact, but not supercompact (cf. [AH03, Theorem 1.2]). Being strong
and strongly compact is therefore strictly weaker in terms of direct implication than
supercomapctness. In particular, this shows that the usage of strong Henkin models in
Theorem 2.2.4 is necessary.

For the stronger notion of jointly Πn-strong and strongly compact cardinals, their
precise strength is not so apparent. Notice that as an upper bound, Bagaria’s and
Goldberg’s Theorem 2.2.6 implies that any C(n)-extendible cardinal is jointly Πn+1-strong
and strongly compact.

Our results leave open what kind of cardinals can be characterised by asking for strong
Henkin models of theories which are satisfiable along a chain.

Question 2.3.27. What kind of cardinal κ is characterised by the following compactness
property?

For any λ and any theory T ⊆ L2
κω that can be written as an increasing union

T =
⋃
α∈κ Tα of theories Tα which each have a model of size ≥ κ, there is

a strong L2-Henkin model (M,A) of T such that M |= ZFC∗, Vλ ⊆M and
|A| ≥ λ.

2.3.4. Superstrong cardinals
As a last note on Henkin models, let us show that a version of Henkin-chain-compactness
gives a characterisation of superstrong cardinals. Recall that a cardinal κ is superstrong
with target λ (cf. [Kan03, Section 26]), if there is an elementary embedding j : V → N
such that crit(j) = κ, j(κ) = λ, and Vλ ⊆ N . To our best knowledge, we give the first
known model-theoretic formulation of superstrength.

Theorem 2.3.28. The following are equivalent:

(1) κ is superstrong with target λ.

(2) For any theory T ⊆ L2
κω such that rk(T ) < κ + ω and that can be written as an

increasing union T =
⋃
α∈κ Tα of theories Tα which each have a model of rank

< κ+ ω and of size ≥ κ, there is a weak L2
κω-Henkin model (M,A) of T such that

M |= ZFC∗, Vλ ⊆M ⊆ Vλ+ω, |A| ≥ λ, and M |= λ = iMλ .

Proof. First assume (1) and suppose we have a setup as in (2). Then there is a function f
with domain κ such that f(α) |= Tα, rk(f(α)) < κ+ω and |f(α)| ≥ κ. Take an elementary
embedding j : V → N such that crit(j) = κ, j(κ) = λ and Vj(κ) ⊆ N . Consider the
sequence (Tα : α < κ). Evaluating it via j leads to a sequence j((Tα : α < κ)) = (T ∗

α : α <
j(κ)) such that j“T ⊆ T ∗

κ . Note that j“T is a copy of T . By elementarity, in N , we have
that j(f)(κ) |= T ∗

κ and so in particular, for every ϕ ∈ j“T , N |= “j(f)(κ) |= ϕ”. Further,
rk(j(f)(κ)) < j(κ)+ω = λ+ω and thus j(f)(κ) ∈ V N

λ+ω. Then (M,A) = (V N
λ+ω, j(f)(κ))

gives our desired Henkin model: V N
λ+ω satisfies ZFC∗, as λ+ω is a limit ordinal. Because

Vλ ⊆ N , we have Vλ ⊆ V N
λ+ω ⊆ Vλ+ω. Because V N

λ+ω and N agree on second-order
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satisfaction, we have V N
λ+ω |= “A |= ϕ” for every ϕ ∈ j“T . By elementarity, N , and hence

V N
λ+ω believes that j(κ) = λ is a i-fixed point. Finally, note that λ is actually a (strong

limit) cardinal as the target of a superstrong embedding, and so because by elementarity
N |= |j(f)(κ)| ≥ j(κ) = λ, that |j(f)(κ)| ≥ λ really holds in V .

And now assume (2). We show that κ is superstrong with target λ. Using Theorems
1.3.39 and 1.3.40, if j : Vκ+1 → N is an elementary embedding such that crit(j) = κ,
j(κ) = λ and Vj(κ) ⊆ N , and we derive an extender by letting for a ∈ [λ]<ω and
X ⊆ [κ]<ω,

X ∈ Ea iff a ∈ j(X),

then the extender power of the universe witnesses that κ is superstrong with target λ. So
it is sufficient to derive an embedding as above. For this, consider the following theory:

T = ElDiagL2
κω
(Vκ+1,∈) ∪ {ci < c < cκ : i < κ},

where c is a new constant and the ci are the constants from the elementary diagram.
Clearly, T can be considered to have rank < κ+ ω and can be written as an increasing
union of length κ of theories Tα for α < κ by considering in Tα only those bits of the
second part of T such that i < α. Then (Vκ+1,∈) gives a model of Tα of size ≥ κ and of
rank < κ + ω. By (2), we get a transitive set M and A ∈ M such that M |= “A |= ϕ”
for every ϕ from (a copy of) T and such that M |= ZFC∗, Vλ ⊆ M ⊆ Vλ+ω, |A| ≥ λ
and M |= λ = iMλ . Because T contains Magidor’s Φ, we have that A = V M

β for some
β. By size of A and λ = iMλ , we get β ≥ λ. Furthermore, in V we see that A |= T and
there is an elementary embedding j : Vκ+1 → A = V M

β such that crit(j) = κ. Because
A ∈ M ⊆ Vλ+ω, this implies β = λ + 1 and then clearly j(κ) = λ. Because Vλ ⊆ M ,
finally Vj(λ) = Vλ ⊆ V M

λ+1 = A.
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3. Cardinal Correctly Extendible
Cardinals

Remarks on co-authorship. The definitions of Section 3.2, as well as the results
of Sections 3.3 and 3.5 (except for 3.5.7 to 3.5.12) are joint with Victoria Gitman and
appear in [GO24]. The results of Section 3.4 are joint with Alejandro Poveda. The results
numbered 3.5.10 to 3.5.12 are joint with Will Boney.

3.1. Introduction
In this chapter, we introduce new large cardinal notions: cardinal correctly extendible
cardinals and their variants. We will see in Section 3.5 and Chapter 4 that these large
cardinals naturally arise from trying to characterise strong compactness cardinals and
so-called ULST numbers for the logic L(I). They further are a natural weakening of
extendible cardinals. We show that they exhibit some form of identity crisis: the smallest
cardinal correctly extendible cardinal can consistently be equal to, and consistently be
larger than the smallest supercompact cardinal.

The chapter is structured as follows. Section 3.2 states the definitions of the cardinals
we will consider. In Section 3.3, we will show that cardinal correctly extendible cardinals
are strongly compact, and that also the consistency of the weaker variants we consider
implies the consistency of the existence of a strongly compact cardinal. Further, we
separate them from supercompactness, by showing that the smallest cardinal correctly
extendible may consistently be larger than the smallest supercompact cardinal. In Section
3.4, we give a general result that under certain assumptions on the relation of HOD and
V , the smallest extendible cardinal is cardinal correctly extendible in HOD (Theorem
3.4.10). We then employ a model by Goldberg and Poveda, to derive a situation in which
the smallest cardinal correctly extendible cardinal, the smallest strongly compact, and
the smallest supercompact cardinal are all equal. In particular, this separates cardinal
correctly extendible cardinals from the usual extendibles. Finally, in Section 3.5, we give
a characterisation of the compactness number of the logic L(I) and their infinitary version
Lκκ(I) by variations of cardinal correctly extendible cardinals. We further give two proofs
that comp(L(I)) may consistently be larger than the first supercompact cardinal.
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3.2. Motivation and definitions
Recall that a cardinal κ is extendible if for every α > κ there is some β and an elementary
embedding j : Vα → Vβ such that crit(j) = κ and j(κ) > α. Cardinal correctly extendible
cardinals arrive from weaker assumptions on the target models involved in the embeddings
witnessing the notion.

Definition 3.2.1. Let M be a transitive set. We call M cardinal correct if the cardinals
in the sense of M are also cardinals in the sense of V , i.e., CardM = Card ∩M .

Definition 3.2.2. A cardinal κ is cardinal correctly extendible if for every α > κ there
is an elementary embedding j : Vα → M with crit(j) = κ, j(κ) > α, and M cardinal
correct. A cardinal κ is weakly cardinal correctly extendible if we remove the requirement
that j(κ) > α.

Clearly, extendible cardinals are cardinal correctly extendible because the rank initial
segments Vβ are always cardinal correct. Recall Theorem 1.3.23, that the property that
j(κ) > α comes for free in the case of extendible cardinals, but it is not known to us
whether this is the case for cardinal correctly extendibles.

Question 3.2.3. Are weakly cardinal correctly extendible cardinals and cardinal correctly
extendible cardinals equivalent?

For our applications in model theory, the following notion will further be relevant:

Definition 3.2.4. A cardinal κ is called cardinal correctly extendible pushing up some
δ ≥ κ iff for every α > κ there is an elementary embedding j : Vα →M with crit(j) = κ,
j(δ) > α, and M cardinal correct.

Note that if κ is cardinal correctly extendible pushing up some δ, then it is weakly
cardinal correctly extendible, and if it is cardinal correctly extendible pushing up κ, then
it is cardinal correctly extendible.

Recall that Magidor showed that the smallest strongly compact cardinal can consistently
be the smallest measurable cardinal, but also the smallest supercompact cardinal (cf.
[Mag76]). This phenomenon was dubbed the identity crisis of strongly compact cardinals.
Our results will imply that cardinal correctly extendibles also exhibit some form of
identity crisis.

3.3. Relations to supercompactness and strong
compactness

We will first mention some results on strongly compact cardinals before studying their
relation to (weakly) cardinal correctly extendibles (cf. Propositions 3.3.2 and 3.3.4).
We then show that the smallest cardinal correctly extendible may exceed the smallest
supercompact cardinal (cf. Theorem 3.3.6).
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Recall that a cardinal κ is λ-compact for some λ ≥ κ if there is a fine κ-complete
ultrafilter over Pκ(λ) and a cardinal κ is strongly compact if it is λ-compact for every λ ≥ κ.
By a theorem of Ketonen, if κ and λ are regular, then κ is λ-compact if and only if every
regular α in the interval [κ, λ] carries a uniform κ-complete ultrafilter [Ket72, Theorem
5.9]. As Goldberg points out in [Gol21], using a theorem of Kunen and Příkrý, if λ is a
successor cardinal, it suffices to show this only for successor cardinals in the interval [κ, λ].
Kunen and Příkrý showed that if κ is regular and U is a κ+-descendingly incomplete
ultrafilter on some set, then U is already κ-descendingly incomplete [KP71, Theorem
0.2]. An ultrafilter U is δ-descendingly incomplete if there is a decreasing sequence of sets
in U whose intersection is empty. If an ultrafilter U is κ-complete and δ-descendingly
incomplete, we claim that:

There is a uniform κ-complete ultrafilter W over δ. (∗)

That U is δ-descendingly incomplete means that there is {Ai : i < δ} ⊆ U such that
Ai ⊇ Aj for i < j and

⋂
i<δ = ∅. Suppose without loss of generality that U is an ultrafilter

over A0. Now define a function

f : A0 → δ, a 7→ least i such that a /∈ Ai,

and let W = {X ⊆ δ : f−1[X] ∈ U}. Then it is standard to check that W is the desired
uniform κ-complete ultrafilter, and hence (∗) holds.

Now suppose there is a uniform κ-complete ultrafilter over β+ that is κ-complete. In
particular, U is β+-descendingly incomplete, and hence by Kunen’s and Příkrý’s theorem,
it is β-descendingly incomplete. Thus, by (∗), there is a uniform κ-complete ultrafilter
W over β. Thus:

Theorem 3.3.1 (Goldberg). If κ is regular and λ is a successor cardinal, then κ is
λ-compact if and only if every successor cardinal in the interval [κ, λ] carries a uniform
κ-complete ultrafilter.

We can now show our results on the relation of cardinal correctly extendibles to
strongly compact cardinals.

Proposition 3.3.2. If κ is cardinal correctly extendible, then κ is strongly compact.

Proof. By Theorem 3.3.1, it suffices to argue that every successor cardinal β+ > κ carries
a uniform κ-complete ultrafilter. Let α > β+ and take j : Vα → M with crit(j) = κ,
j(κ) > α andM cardinal correct. Since j(κ) > α > β+, it follows that j(β) > β. Because
M is cardinal correct, we have that j(β) is a cardinal and

(j(β)+)M = j(β+) = j(β)+ > β+.

This means that j(β+) is regular, and so, in particular, j is discontinuous at β+, i.e.,
j“β+ is bounded in j(β+). Thus, we can let γ = sup(j“β+) < j(β+). It is then
easy to check that we can define a uniform κ-complete ultrafilter U on β+ by letting
X ∈ U if and only if γ ∈ j(X).
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For the relation of strong compactness to weakly cardinal correctly extendibles, we
will use the following lemma which is implicit in [Gol21, Theorem 2.10].1

Lemma 3.3.3 (Goldberg). If j : Vλ →M is an elementary embedding with M cardinal
correct, crit(j) = κ and such that λ = sup{jn(κ) : n ∈ ω}, then j(κ) is inaccessible and
Vj(κ) |= “κ is strongly compact”.

Proposition 3.3.4. If κ is weakly cardinal correctly extendible, then κ is strongly
compact or there is an inaccessible cardinal α such that Vα satisfies that κ is a strongly
compact cardinal.

Proof. Suppose that κ is not strongly compact. Choose some successor λ > κ such that
κ is not λ-compact. Let j : Vλ+ →M be an elementary embedding with crit(j) = κ and
M cardinal correct. If j(κ) ≥ λ, then the argument of the proof of Proposition 3.3.2
would show that κ is λ-compact. Thus, we have j(κ) < λ. This means we can apply j
to j(κ) = γ to get j2(κ) = j(γ). Again, assuming that j(γ) ≥ λ, we will argue that κ
must be λ-strongly compact, and so will be able to conclude that j(γ) < λ. By the same
argument as before, we get a discontinuity for successors of γ ≤ β < λ. But if κ ≤ β < γ,
then β < γ = j(κ) ≤ j(β). Repeating this argument, we get that jn(κ) < λ for all n < ω.
Letting γ = sup{jn(κ) : n < ω} we get that j restricts to j : Vγ → V M

γ and the latter is
cardinal correct, because M is. By Lemma 3.3.3, j(κ) is inaccessible and Vj(κ) satisfies
that κ is a strongly compact cardinal. Thus, we proved what we promised.

Thus, a weakly cardinal correctly extendible κ is either strongly compact or there is
some ordinal λ such that for cofinally many α > κ, if j : Vα →M with crit(j) = κ and
M cardinal correct, then jn(κ) < λ for all n < ω. It is not known to us whether this
situation is consistent.

We will use the following lemma to separate supercompact cardinals from cardinal
correctly extendible cardinals.

Lemma 3.3.5. If κ is cardinal correctly extendible pushing up δ and the GCH fails at
some cardinal γ ≥ δ, then the GCH fails cofinally often.

Proof. Suppose δ ≤ γ and 2γ > γ+. Fix an ordinal λ > 2γ and let α > λ. We will
show that the GCH fails somewhere above λ. Let j : Vα → M with crit(j) = κ, M
cardinal correct, and j(δ) > α. We have j(γ) ≥ j(δ) > α > λ. Since Vα |= 2γ > γ+, by
elementarity, M |= 2j(γ) > j(γ)+. Since M is cardinal correct, the j(γ)+ of M is the real
j(γ)+ and (2j(γ))M is a cardinal. Thus, the GCH really must fail at j(γ)+. Since λ was
chosen arbitrarily, it follows that the GCH fails cofinally often.

Theorem 3.3.6. It is consistent, relative to an extendible cardinal, that there is an
extendible cardinal and for every pair κ ≤ δ such that κ is cardinal correctly extendible
pushing up δ, δ is bigger than the least supercompact cardinal.

1Goldberg formulates his result for embeddings j : V → M such that M is cardinal correct, but his
argument considers the restriction j � Vλ for λ = sup{jn(κ) : n ∈ ω}. Our Lemma 3.3.3 thus implicitly
follows from his arguments.
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Proof. We can force the GCH to hold at all regular cardinals while preserving an
extendible cardinal [Tsa13]. So we can suppose that we start in a model V in which the
GCH holds at all regular cardinals and there is an extendible cardinal χ. Let ν be the
least supercompact cardinal, and note that ν < χ. We force with the Laver preparation
[Lav78] to make the supercompactness of ν indestructible by all <ν-directed closed
forcing and let V [G] be the resulting forcing extension. Since the Laver preparation
has size ν, the GCH still holds above ν in V [G] (while it fails badly below ν) and χ
remains extendible. Now fix any cardinal ν < γ < χ and force with Add(γ, γ++), the
forcing to add γ++-many Cohen subsets to γ, and let V [G][g] be the forcing extension.
By the indestructibility of ν in V [G], since Add(γ, γ++) is <ν-directed closed, ν remains
supercompact in V [G][g]. Also, the GCH holds above γ in V [G][g] and χ remains
extendible. Thus, by Lemma 3.3.5, in V [G][g], there cannot be a pair κ ≤ δ such that
δ ≤ γ and κ is cardinal correctly extendible pushing up δ.

Corollary 3.3.7. It is consistent that a supercompact cardinal is not cardinal correctly
extendible.2

3.4. Cardinal correctly extendible cardinals in HOD
In this section, we will show that it is consistent that the first cardinal correctly extendible
cardinal is equal to the first supercompact cardinal. Our main Theorem 3.4.10 shows
that extendible cardinals, under certain assumptions, are cardinal correctly extendible
in HOD. To show this, we will first discuss some relevant results on HOD. We then
use a model provided by Goldberg and Poveda which satisfies the assumptions of our
Theorem 3.4.10, and in which the first extendible cardinal is the first supercompact
cardinal in HOD. In particular, it is consistent that smallest cardinal correctly extendible
is simultaneously the smallest supercompact and strongly compact cardinal (cf. Corollary
3.4.14), and not extendible (cf. Corollary 3.4.15).

Recall (cf., e.g., [Kun80, Ch.5, §2]) that a set a is ordinal definable if there are ordinals
α1 < · · · < αn < α and ϕ(x, x1, . . . , xn) ∈ Lωω[{∈}] such that

Vα |= ∀x(x ∈ a↔ ϕ(x, α1, . . . , αn)).

We call the class of ordinal definable sets OD. Further, a is called hereditarily ordinal
definable if tcl({a}) ⊆ OD, and the class of all such sets is called HOD. The more
interesting of these classes is HOD, as this is a transitive model of ZFC (again, cf.
[Kun80, Ch.5, §2]).

It is easy to see that

a ∈ HOD iff ∃α(Vα |= “a ∈ HOD”).

In particular, HOD is Σ2-definable by the above formula. We fix the following useful
facts:

2This result was first pointed out to us by Alejandro Poveda with a more complicated argument using
Radin forcing (cf. [Pov24, Theorem 5.2]).
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Proposition 3.4.1. (i) Let α ∈ C(2). Then HODVα = V HOD
α .

(ii) For all α, HODVα is transitive.

(iii) For all α, HODVα ∈ HOD.

Proof. For (i), if Vα |= a ∈ HOD, then this means that for every b ∈ tcl({a}), there are
ordinals β1, . . . , βn, β < α and a formula ϕ(x, x1, . . . , xn) such that

Vα |= “Vβ |= ∀x(x ∈ b↔ ϕ(x, β1, . . . , βn))”.

Clearly, Vα is correct about Vβ satisfying this, so really b ∈ OD. Because Vα can compute
the transitive closure of {a}, this implies that really tcl({a}) ⊆ OD and thus a ∈
Vα∩HOD = V HOD

α . Thus HODVα ⊆ V HOD
α . On the other hand if a ∈ V HOD

α = Vα∩HOD,
then by Σ2-correctness, Vα |= a ∈ HOD and so a ∈ HODVα .

For (ii), let b ∈ a ∈ HODVα . Then Vα |= tcl({a}) ⊆ OD. Because b ∈ a, clearly
tcl({b}) ⊆ tcl({a}), and further Vα can compute all these transitive closures. Thus
Vα |= tcl({b}) ⊆ OD, and therefore b ∈ HODVβ .

For (iii), if a ∈ HODVα , then Vα |= a ∈ HOD and so a ∈ HOD by our remarks above.
As HODVα is transitive, it is thus sufficient to show that HODVα ∈ OD. But any β > α has
the following ordinal definition of HODVα : Vβ |= ∀x(x ∈ HODVα ↔ Vα |= x ∈ HOD).

We will use some results about closeness of HOD and V . Woodin isolated desiderata for
an inner model with a supercompact cardinal by studying the relationship of supercompact
cardinals of V and HOD. In particular, he introduced the following notion:

Definition 3.4.2 (Woodin [Woo17, Definition 3.5]). Let N |= ZFC be a transitive class
and δ some ordinal. We call N a weak extender model for “δ is supercompact” iff for
every γ > δ there is a fine, normal, δ-complete ultrafilter U over Pδγ such that

(i) N ∩ Pδγ ∈ U and

(ii) U ∩N ∈ N .

For us, weak extender models for “δ is supercompact” are important, as we will employ
the following theorem which tells us about N -extenders for some inner model N belonging
to N itself.

Theorem 3.4.3 (Universality Theorem; Woodin [Woo17, Theorem 3.26]). Let N be a
weak extender model for “δ is supercompact”. Suppose there is an N -extender of length
β with critical point κ ≥ δ. Let jE : N → NE be the extender power embedding. Then
the following are equivalent:

(1) For all A ∈ PN(β): jE(A) ∩ β ∈ N .

(2) E ∈ N .

Interesting for inner model theory are closeness results between some inner model and
V . For HOD, the following is a relevant closeness measure.
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Definition 3.4.4 (Woodin [Woo17, Definition 3.35]). Let λ be an uncountable regular
cardinal. We say that λ is ω-strongly measurable in HOD iff there exists κ < λ such that

(1) (2κ)HOD < λ and

(2) The stationary set {α < λ : cof(α) = ω} ∈ V does not have a partition (Sα : α < κ)
into stationary sets such that (Sα : α < κ) ∈ HOD.

Note that by Solovay’s Theorem (cf. [Sol71, Theorem 9], or [Jec03, Theorem 8.10]) such
a partition of {α < λ : cof(α) = ω} exists in V . Thus, λ being ω-strongly measurable in
HOD means that HOD is in this sense far away from V . The following axiom studied by
Woodin is therefore a positive closeness assumption about V and HOD.

Definition 3.4.5 (Woodin [Woo17, Definition 3.42]). The HOD Hypothesis is the
statement “There exists a proper class of regular cardinals which are not ω-strongly
measurable in HOD.”

The result relevant for our analysis is:

Theorem 3.4.6 (Woodin [Woo17, Theorem 3.44]). Let δ be an extendible cardinal and
suppose that the HOD Hypothesis holds. Then HOD is a weak extender model for “δ is
supercompact”.

Another result we will use is that under the assumptions of this theorem, nicely
approximated subsets of HOD, are already in HOD.

Definition 3.4.7 (Hamkins [Ham03]). Let N |= ZFC be transitive and κ a cardinal. N
is said to have the κ-approximation property iff for all sets A ⊆ N , if for all σ ∈ N such
that |σ|N < κ also A ∩ σ ∈ N , then also A ∈ N .

Theorem 3.4.8 (Woodin [Woo, Theorem 6.26]). Let δ be an extendible cardinal and
suppose that N is a weak extender model for “δ is supercompact”. Then N has the
δ-approximation property. In particular, if δ is extendible and the HOD Hypothesis
holds, then HOD has the δ-approximation property.

The situation, in which δ is both the first supercompact and the first cardinal correctly
extendible cardinal is given by the following yet unpublished theorem.

Theorem 3.4.9 (Goldberg & Poveda). Suppose it is consistent that there is an extendible
cardinal. Then there is a model of ZFC in which the following hold:

(1) There exists a smallest extendible cardinal δ.

(2) The HOD Hypothesis.

(3) δ is the smallest supercompact cardinal in HOD.

(4) δ is the smallest strongly compact cardinal in HOD.

(5) Every HOD-cardinal is a cardinal.
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We are now ready to show our theorem.

Theorem 3.4.10. Suppose that there is a smallest extendible cardinal δ, that the HOD
Hypothesis holds, and that every HOD-cardinal is a cardinal. Then δ is cardinal correctly
extendible in HOD.

Notice that the consistency of the assumption of Theorem 3.4.10 is provided by
Goldberg’s and Poveda’s Theorem 3.4.9.

Proof. We will show that for a proper class of ordinals α > δ, HOD has an elementary
embedding i : V HOD

α → M such that crit(i) = δ, i(δ) > α, and M and HOD agree on
cardinals. Let α > δ be in C(2) of cofinality cof(α) > δ. By extendibility of δ, there is an
elementary embedding j : Vα+1 → Vβ+1 such that crit(j) = δ and j(δ) > α + 1. Notice
that j(α) = β, so we can derive an extender (Ea : a ∈ [β]<ω) by letting for X ⊆ [α]|a|:

X ∈ Ea iff a ∈ j(X).

It is easy to check that letting F = (Ea ∩ HOD : a ∈ [β]<ω) gives us a HOD-extender.
So we can consider the extender power jF : HOD → MF . Our goal is to show that
F ∈ HOD and that jF � V HOD

α is our desired embedding. We first prove some claims
about the relationship between j and jF , and between F and HOD.

Claim 3.4.11. jF � V HOD
α = j � V HOD

α and V MF
β = HODVβ .

Proof. Standard results imply that

MF = {jF (f)(a) : a ∈ [β]<ω ∧ f ∈ |α||a|HOD ∩ HOD},

jF (α) ≥ β and jF (f)(a) = [a, [f ]] for every a ∈ [β]<ω and f ∈ |α||a|HOD ∩ HOD (cf.
[Kan03, Lemma 26.2], where the latter assertion is not explicitly stated but shown in the
proof of part (c)). Let us define a map k : V MF

β → HODVβ by

jF (f)(a) 7→ j(f)(a).

Our goal is to show that k is a bijection.
We first argue that k is well-defined. As an extender power, MF is the direct limit

of the ultrapowers Ult(HOD, Fa) which come with elementary embeddings ja : HOD →
Ult(HOD, Fa) defined by

x 7→ [cx]Fa

and ka : Ult(HOD, Fa) →MF defined by

[f ]Fa 7→ [a, [f ]] = jF (f)(a),

and further jF = ka ◦ ja. Now let jF (f)(a) ∈ V MF
β . We have jF (f)(a) = ka([f ]Fa).

Note that β ≤ jF (α) = ka(ja(α)). Therefore MF |= ka([f ]Fa) ∈ Vka(ja(α)). Thus by
elementarity, Ult(HOD, Fa) |= [f ]Fa ∈ Vja(α). Note that ja(α) = [cα]Fa and so by Łos,

{s ∈ [α]|a| : HOD |= f(s) ∈ Vα} = {s ∈ [α]|a| : HOD |= f(s) ∈ Vcα(s)} ∈ Fa.
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Therefore without loss of generality, f is a function f : [α]|a| → V HOD
α . Recall that

α ∈ C(2) and so V HOD
α = HODVα . Further, f ∈ Vα+1. Therefore it makes sense to apply

j to f and then by elementarity, j(f) : [β]|a| → HODVβ . Thus j(f)(a) ∈ HODVβ and
hence k is well-defined.

The following chain of equivalences shows that k is elementary and, in particular,
injective.

V MF
β |= ϕ(jF (f)(a)) iff MF |= “Vka(ja(α)) |= ϕ(ka([f ]fa))”

iff Ult(HOD, Fa) |= “V[cα]Fa
|= ϕ([f ]Fa)”

iff {s ∈ [α]|a| : HOD |= “Vα |= ϕ(f(s))”} ∈ Fa

iff {s ∈ [α]|a| : V HOD
α |= ϕ(f(s))} ∈ Fa

iff {s ∈ [α]|a| : HODVα |= ϕ(f(s))} ∈ Fa

iff a ∈ j({s ∈ [α]|a| : HODVα |= ϕ(f(s))})
iff HODVβ |= ϕ(j(f)(a)).

Here we use again that HODVα = V HOD
α .

And now we argue for surjectivity of k. Because α ∈ C(2), α = iα, and this is
downwards absolute to HOD. So HOD has a bijection g : [α]1 → V HOD

α = HODVα .
Further g ∈ Vα+1. Thus, by elementarity, Vβ+1 |= “j(g) is a bijection [β]1 → HODVβ”.
Therefore, for x ∈ HODVβ , there is η < β such that j(g)({η}) = x. Thus k(jF (g)({η})) =
x and so we showed that k is surjective.

We showed that k is an isomorphism between transitive structures and therefore k
is the identity. In particular, V MF

β = HODVβ . Finally, jF (x) = [a, [cx]Fa ] = jF (cx)(a) =
k(jF (cx)(a)) = j(cx)(a) = j(x).

Claim 3.4.12. F ∈ HOD.

Proof. Here we use Woodin’s machinery on HOD. Because the HOD Hypothesis holds,
by Theorem 3.4.6, HOD is a weak extender model for “δ is supercompact”. By the
Universality Theorem 3.4.3, it is thus sufficient to show that for any A ∈ PHOD(β),
jF (A) ∩ β ∈ HOD. First consider γ < β. Then jF (A) ∩ γ ∈ V MF

β . By the previous
Claim 3.4.11, V MF

β = HODVβ . Therefore jF (A) ∩ γ ∈ HODVβ ∈ HOD. This implies
jF (A) ∩ γ ∈ HOD, as HOD is transitive.

By Theorem 3.4.8, in our situation HOD has the δ approximation property. Consider
σ ∈ HOD such that |σ|HOD < δ. If we can show that jF (A) ∩ β ∩ σ ∈ HOD, then the
approximation property tells us that jF (A) ∩ β ∈ HOD and we are done. So take such
a σ. We took α of cofinality > δ, so by elementarity of j, cofVβ+1(β) > j(δ) > δ. Of
course, Vβ+1 is correct about cofinalities and so really cof(β) > δ. Thus, if |σ|HOD < δ,
then jF (A) ∩ β ∩ σ = jF (A) ∩ γ ∩ σ for some γ < β. But we already showed above that
jF (A) ∩ γ ∈ HOD, and as σ ∈ HOD, thus also jF (A) ∩ γ ∩ σ ∈ HOD.
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Now we will piece everything together. Because F ∈ HOD, we get that HOD can
compute jF � V HOD

α . Furthermore, we assumed α ∈ C(2) and so V HOD
α = HODVα . Notice

that if a ∈ HODVα , then by elementarity, j(a) ∈ HODVβ . By Claim 3.4.11, it follows
that j � V HOD

α = jF � V HOD
α . Thus jF � V HOD

α = j � V HOD
α : V HOD

α → HODVβ . Further,
by Proposition 3.4.1, HODVβ ∈ HOD, so HOD knows of the elementary embedding

jF � V HOD
α : V HOD

α → HODVβ .

We have crit(jF ) = crit(j) = δ and jF (δ) = j(δ) > α. So we are done, if we can show
that HODVβ is cardinal correct in HOD.

Claim 3.4.13. HODVβ is cardinal correct in HOD.

Proof. If HODVα |= “γ is a cardinal”, then as HODVα = V HOD
α , γ is a cardinal in V HOD

α ,
and thus in particular in HOD. Because by assumption every HOD-cardinal is a cardinal,
then γ really is a cardinal. Then in particular, Vα |= “γ is a cardinal”. This shows that

Vα |= “Every HOD-cardinal is a cardinal”.

By elementarity of j, Vβ satisfies this statement, and so every HODVβ -cardinal is a
cardinal, and hence in particular a HOD-cardinal.

Corollary 3.4.14. It is consistent, relative to consistency of the existence of an extendible
cardinal, that the smallest strongly compact, supercompact and cardinal correctly
extendible cardinal all coincide.

Proof. This follows immediately from considering the model of Theorem 3.4.9 and
applying Theorem 3.4.10.

Corollary 3.4.15. If the existence of a cardinal correctly extendible cardinal is consistent,
then it is consistent that there is a cardinal correctly extendible cardinal which is not
extendible.

Proof. This follows as the smallest supercompact cardinal cannot be extendible.

Theorem 3.3.6 and Corollary 3.4.14 together show that the first cardinal correctly
extendible cardinals exhibits some form of identity crisis. The following problems remain
open.

Question 3.4.16. Is it consistent, relative to large cardinals, that the first cardinal
correctly extendible cardinal is smaller than the first supercomapct cardinal?

Question 3.4.17. Is it consistent, relative to large cardinals, that the first cardinal
correctly extendible cardinal is the first extendible cardinal?

97



3.5. Compactness numbers of the equicardinality
logic

In this section, we introduce a large cardinal variant of cardinal correctly extendibles
characterising being a compactness number for the logic L(I) (cf. Theorem 3.5.2). We
then consider the relation of comp(L(I)) to strongly compact cardinals (cf. Corollaries
3.5.3 and 3.5.4). We give two proofs that comp(L(I)) may consistently be larger than the
smallest supercompact cardinal (cf. Corollaries 3.5.6 and 3.5.12). Finally, we consider
comp(Lδδ(I)) (cf. Theorem 3.5.13).

In order to obtain our theorem, we first need to argue that under certain circumstances,
we can express well-foundedness in the logic L(I), which we cannot generally do. However,
it turns out that we can express well-foundedness over models of a sufficiently large
fragment of set theory that are cardinal correct. Recall that L(I) can express that a
transitive set is cardinal correct via the sentence

ϕCard = ∀x(Card(x) ↔ (Ord(x) ∧ ∀y(y ∈ x→ ¬Izz(z ∈ y, z ∈ x))).

Let ZFC∗
a be a sufficiently large finite fragment of ZFC such that ZFC∗

a contains the
statements:

(i) Every set has a rank, i.e., for every ordinal α, Vα exists and every set is a member
of Vα for some minimal ordinal α.

(ii) For every ordinal α, the α-th cardinal ℵα exists.

The following result was pointed out to us by Gabriel Goldberg.

Theorem 3.5.1 (Goldberg). If (M,E) |= ZFC∗
a and (M,E) |=L(I) ϕCard, then E is

well-founded.

Proof. Suppose that E is not well-founded. Then there is a set {xi : i ∈ ω} ⊆ M such
that from the outside we see that xi+1Exi for all i ∈ ω. Since M believes that every set
has some rank, for every xi there is some minimal αi ∈ OrdM such that xiEV M

αi
. Then

αi+1Eαi for all i ∈ ω, and therefore also ℵMαi+1
EℵMαi

for all i ∈ ω. But note that then for
all i ∈ ω, by ϕCard,

|{y ∈M : yEℵMαi+1
}| < |{y ∈M : yEℵMαi

}|.

This is an infinite decreasing sequence of V -cardinals, which is impossible.

Theorem 3.5.2. The following are equivalent for a cardinal δ:

(a) δ is a strong compactness cardinal for L(I).

(b) For every γ > δ there is α > γ, a transitive set M and an elementary embedding
j : Vα → M such that M is cardinal correct, crit(j) ≤ δ and there exists d ∈ M
such that j“γ ⊆ d and M |= |d| < j(δ).
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Proof. First assume (a) and fix γ > δ. Take any ℵ-fixed point α > γ of cofinality
cof(α) ≥ δ. Take a constant symbol d and let T be the following L(I)-theory, where the
ci are the constants from the elementary diagram:

T = ElDiagL(I)(Vα,∈) ∪ {ci ∈ d ∧ |d| < cδ : i < γ}.

Clearly, any theory T0 ∈ PδT is satisfiable, as witnessed by the model (Vα,∈) itself,
interpreting the constant d by the set X of all i < γ such that the sentence ci ∈ d∧|d| < cδ
is in T0 (because cof(α) ≥ δ, X ∈ Vα, so we may interpret d by X). Thus, since δ is a
strong compactness cardinal of L(I), we can fix a model

N = (N,E, cNx , d)x∈Vα |= T.

The model N is well-founded by Theorem 3.5.1 because ZFC∗
a and ϕCard are in the

elementary diagram. Thus, by collapsing we can assume that N is transitive and E =∈.
By ϕCard, N is cardinal correct. We get an elementary embedding j : Vα → N with
crit(j) ≤ δ given by x 7→ cNx . Since N |= T , it follows that |d| < j(δ) and j“γ ⊆ d.

Next, we assume (b). Let τ be a vocabulary and let T be a <δ-satisfiable L(I)[τ ]-theory.
Assume without loss of generality that |T | = γ > δ. Let γ′ > γ be large enough that
T, τ, δ ∈ Vγ′ . By (b), take α > γ′ and j : Vα → M such that M is transitive and
cardinal correct, crit(j) ≤ δ and there is a d ∈ M such that j“γ ⊆ d and |d|M < j(δ).
Using that Vα has a surjection γ → T , we find a d0 ∈ M such that j“T ⊆ d0 ⊆ j(T )
and M |= |d0| < j(δ) (cf. the proof of Theorem 2.3.25). By elementarity, M has a
j(τ)-structure A, which it thinks satisfies the L(I)[j(τ)]-theory d0. Since M is cardinal
correct, it is correct about L(I)-satisfaction, and so A is really a model of d0. Thus, in
particular, (the reduct of) A is a j“τ -structure which satisfies j“T . Then because j is a
renaming j : T → j“T (cf. Section 1.3.2), A can be renamed to a τ -structure satisfying
the theory T .

Note that, as there is a proper class of γ > δ but only boundedly many possible critical
points ≤ δ, if δ is a strong compactness cardinal for L(I), then there is a fixed κ ≤ δ
such that for any γ > δ there is α > γ and an elementary embedding j : Vα → M
with M transitive and cardinal correct, crit(j) = κ and d ∈ M such that j“γ ⊆ d and
|d|M < j(δ). We therefore get:

Corollary 3.5.3. If δ is a strong compactness cardinal for L(I), then there is κ ≤ δ such
that κ is cardinal correctly extendible pushing up δ and δ is κ-strongly compact.

Proof. Take κ ≤ δ as a critical point of unboundedly many embeddings witnessing (b)
of Theorem 3.5.2 as pointed out above. Then clearly, κ is cardinal correctly extendible
pushing up δ. And it follows from the elementary embedding characterisation of κ-
strongly compact cardinals (cf. Theorem 1.3.20) and (b) of Theorem 3.5.2 that δ is
κ-strongly compact.

Corollary 3.5.4. Consistency of a strong compactness cardinal for L(I) implies the
consistency of a strongly compact cardinal.
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Proof. This follows immediately from the fact that κ from the previous theorem is
cardinal correctly extendible pushing up δ and Proposition 3.3.4.

Question 3.5.5. If δ is a cardinal and there is a cardinal correctly extendible cardinal
κ ≤ δ pushing up δ, then is δ a strong compactness cardinal for the logic L(I)?

We will show that comp(L(I)) can consistently be larger than the first supercompact
cardinal.

Corollary 3.5.6. It is consistent that the least strong compactness cardinal for L(I) is
above the least supercompact cardinal.

Proof. Consider the model M from Theorem 3.3.6. Since it has an extendible cardinal,
by Theorem 1.3.28 we know that there is a strong compactness cardinal for L2 and
therefore in particular for L(I) ≤ L2. But in M , the least cardinal δ such that there is a
cardinal correctly extendible κ ≤ δ pushing up δ must be above the least supercompact
cardinal ν. By Corollary 3.5.3, in particular comp(L(I)) > ν.

This result was first obtained by Will Boney and the author employing a different
proof we will present now. For this, we have to consider some results by Magdior and
Väänänen connecting model theory of L(I) to combinatorial principles. More concretely,
they reprove results on good scales from Shelah’s pcf theory (cf. [She94]) for weaker
notions tailored to their applications. For this, if f, g ∈ Ordω, we write

f <∗ g iff f(n) < g(n) for all but finitely many n ∈ ω.

Definition 3.5.7 ([MV11, Definition 12]). Let (fα : α < µ) be a <∗-increasing sequence
of fα ∈ Ordω. We make the following conventions.

(a) An ordinal δ ∈ µ is called a good point of the sequence (fα : α < µ) iff there is
a cofinal set C ⊆ δ and a function C → ω, α 7→ nα, such that α < β in C and
k > max(nα, nβ) implies fα(k) < fβ(k).

(b) The sequenece (fα : α < µ) is called good if there is a club subset D ⊆ µ such that
all members of D are good points of the sequence.

Lemma 3.5.8 (Magidor & Väänänen ([MV11, Theorem 15])). If κ = LST(L(I)), then
there is no good sequence (fα : α < λ+) of functions f : λ → ω for any λ ≥ κ with
cof(λ) = ω.

Recall that the Singular Cardinal Hypothesis (SCH) is the statement:

If λ is singular and 2cof(λ) < λ, then 2λ = λ+.

Failure of SCH is connected to the existence of good sequences.

Lemma 3.5.9 (Shelah (cf., e.g., [MV11, Lemma 17])). If λ is a singular cardinal of
cof(λ) = ω such that SCH fails at λ, then there is a good sequence (fα : α < λ+) of
functions fα : ω → λ.
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We show that the existence of good sequences can be expressed by a sentence of
L(QWF, I).

Lemma 3.5.10. There is a vocabulary τ and a sentence ϕgood ∈ L(QWF, I)[τ ] such that
for any set M , the following are equivalent:

(1) |M | is a successor cardinal λ+ such that cof(λ) = ω and there is a good sequence
(fα : α < λ+) of functions fα : ω → λ.

(2) There is a τ -structure M with universe M such that M |= ϕgood.

Proof. Consider the vocabulary {E,F,G,D,C, S}, where D is unary, E,G,C are binary,
and F and S are ternary. Then let ϕgood be the conjunction of the following sentences,
where (i) uses QWF for the well-foundedness assertion:

(i) “E is a well-order without a largest element.”

(ii) ot(E) is a cardinal: ¬∃xIyz(yEx, z = z).

(iii) There is a largest cardinal λ:

∃λ∀x((xEλ→ ¬∃wIyz(yEw, zEλ)) ∧ (λEx→ Iyz(yEλ, zEx))).

(iv) “G(·, ·) is a function with domain the smallest limit ordinal (i.e., ω) into λ with
unbounded range.”

(v) “For every α, F (α, ·, ·) is a function with domain ω and range ⊆ λ.”

(vi) “If α < β, there is an n < ω such that ∀m ≥ n: F (α,m) < F (β,m).”

(vii) “D is a club subset of the model and ∀δ ∈ D, C(δ, ·) is good, i.e., C(δ, ·) is a club
subset of δ and S(δ, ·, ·) is a function with domain C(δ, ·) and range ω such that
∀α < β both in C(δ, ·): ∀k > max(S(δ, α), S(δ, β))(F (α, k) < F (β, k)).”

Then ϕgood is as desired. For (vii), note that we can express that, for example, D is club
by saying:

∀x∃y(D(y) ∧ xEy) (“D is unbounded”)
∀x(∀y(yEx→ ∃z(yEz ∧ zEx ∧D(z)) → D(x)) (“D is closed”)

Lemma 3.5.11. If for every κ < δ = comp(L(QWF, I)) there is λ ≥ κ of cofinality ω
such that there is a good sequence (fα : α < λ+) of functions fα : ω → λ, then there are
unboundedly many such λ in the ordinals.
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Proof. Let ρ be any cardinal. It suffices to show that there is γ ≥ ρ of cofinality ω
such that there is a good sequence of functions (fα ∈ γω : α < γ+). Consider the theory
{ϕgood} ∪ {ci 6= cj : i < j < ρ+}, where the ci are new constants. Let T0 ⊆ T be of
size |T0| < δ. Then for some κ < δ, there are κ-many sentences of the form “ci 6= cj”
appearing in T0. By the assumption take λ ≥ κ such that there is a good sequence
(fα ∈ λω : α < λ+). Then by Lemma 3.5.10, ϕgood has a model of with universe λ+,
so of size > κ. Clearly, this can be expanded to a model of T0. We showed that T is
< δ-satisfiable. Hence, T has a model, which gives rise to a model M of ϕgood of size
≥ ρ+. Then with |M | = γ+, γ is as desired, by Lemma 3.5.10.

Corollary 3.5.12. If there is an extendible cardinal, then it is consistent that comp(L(I))
is larger than the first supercompact cardinal.

Proof. Let η be the smallest extendible cardinal and ν the smallest supercompact one. We
can use Magidor’s forcing from [Mag76, Section 4] to go to a model N in which ν becomes
simultaneously the smallest supercompact and the smallest strongly compact cardinal,
by introducing unboundedly many points (λi)i<ν below ν of cofinality cof(λi) = ω such
that SCH fails at λi. Because the forcing used has size < η, η remains extendible in N .
Let us work in N . Recall Theorem 1.3.14 that the smallest supercompact ν = LST(L2).
In particular, LST(L(I)) ≤ L2 ≤ ν. Thus, by Lemma 3.5.8, for no λ ≥ ν of cofinality
ω there is a good sequence (fα : α < λ+) of functions fα : ω → λ. Furthermore, by
Lemma 3.5.9, for all λi, i < ν, there is such a good sequence. Thus, using Lemma 3.5.11,
it is impossible that comp(L(QWF, I)) ≤ ν. Because there is an extendible cardinal,
comp(L2) exists by Theorem 1.3.28. Therefore also comp(L(QWF, I)) ≤ comp(L2) exists
and is thus larger than ν. But it follows from Theorem 6.2.2 and Proposition 6.2.4 that
comp(L(QWF, I)) = comp(L(I)). Thus, comp(L(I)) > ν.

For a cardinal δ, the logic Lδδ(I) is obtained by adding conjunctions and disjunctions
and first-order quantifiers of size < δ to L(I). Considering strong compactness cardinals
of this logic gives us a sharper version of Corollary 3.5.3.

Theorem 3.5.13. If δ is a strong compactness cardinal for Lδδ(I), then δ is cardinal
correctly extendible. Moreover, the embeddings witnessing cardinal correct extendibility
also witness the strong compactness of δ.

Proof. Since every ordinal <δ is definable in the logic Lδδ(I), we can use the same
argument as in the proof of Theorem 3.5.2 to show that for every γ > δ there is α > γ,
a transitive set M and an elementary embedding j : Vα → M such that M is cardinal
correct, crit(j) = δ and there exists d ∈M such that j“γ ⊆ d and M |= |d| < j(δ).

Question 3.5.14. If δ is cardinal correctly extendible, then is δ a strong compactness
cardinal for Lδδ(I)?
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4. Upward Löwenheim-Skolem-
Tarski Numbers

Remarks on co-authorship. The results of this chapter are joint with Victoria Gitman
and appear in [GO24]. Exceptions are Sections 4.5 and 4.6 whose results are joint with
Will Boney, and Section 4.9 which is solely due to the author.

4.1. Introduction
Galeotti, Khomskii and Väänänen recently introduced the notion of the upward Löwen-
heim-Skolem-Tarski number for a logic, strengthening the classical notion of a Hanf
number. A cardinal κ is the upward Löwenheim-Skolem-Tarski number (ULST) of a
logic L if it is the least cardinal with the property that whenever M is a model of size at
least κ satisfying a sentence ϕ in L, then there are arbitrarily large models satisfying ϕ
and having M as a substructure. The substructure requirement is what differentiates
the ULST number from what is known as the Hanf number and gives the notion large
cardinal strength. While it is a theorem of ZFC that every logic has a Hanf number,
Galeotti, Khomskii and Väänänen showed that the existence of the ULST number for
second-order logic implies the existence of a partially extendible cardinal. We answer
positively their conjecture that the ULST number for second-order logic is the least
extendible cardinal.

We define the strong ULST number of L by strengthening the substructure requirement
to L-elementary substructure. We investigate the ULST and strong ULST numbers
for several strong logics. We show that the ULST and the strong ULST numbers are
characterised in some cases by classical large cardinals and in some cases by natural new
large cardinal notions. We show that for some logics the notions of the ULST number,
strong ULST number and compactness number coincide, while for others, it is consistent
that they can be separated.

The chapter is structured as follows. Section 4.2 reviews the definition of the ULST
number, as well as some related notions and some known results, and introduces the
strong ULST number. Section 4.3 discusses the technical device of truth predicates, we
will use throughout the other sections. The following sections each discuss one logic and
the relations of their ULST and strong ULST numbers to large cardinals. The logics we
consider are the well-foundedness logic (Section 4.4), second-order logic (Section 4.5),
sort logics (Section 4.6), infinitary logics (Section 4.7), and the equicardinality logic
(Section 4.8). We will see that they are related, respectively, to measurable cardinals,
supercompact cardinals, C(n)-extendible cardinals and VP, tall cardinals, and cardinal
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correctly extendible cardinals. Finally, Section 4.9 introduces a general notion of L-
extendible cardinals for an arbitrary logic L and shows that they are systematically
related to ULST numbers of L.

4.2. Motivation and definitions
In the previous chapters, our attention was focused on compactness properties of logics.
We further saw that downward Löwenheim-Skolem numbers are similarly able to give
rise to a wide range of large cardinal notions. Another of the most important results
from first-order model theory is the upward Löwenheim-Skolem Theorem: Any infinite
structure A has arbitrarily large elementary superstructures. For strong logics, the
following weak version of such a property is a classic realm of study.
Definition 4.2.1. Let L be a logic. The Hanf number of L is the smallest cardinal κ
such that any sentence ϕ ∈ L that has a model of size at least κ has arbitrarily large
models.

While it can be challenging to compute Hanf numbers of logics, the following fact is
well-known and shows that Hanf numbers do not carry any large cardinal strength (cf.,
e.g., [BF85, Chapter II, Theorem 6.1.4]).
Proposition 4.2.2. Every logic has a Hanf number.

Proof. Let L be a logic. By definition, L has a strong dependence number dep∗(L) = λ.
Then every sentence of L is equivalent up to renaming to a member of L ∩ Hλ. To
analyse the size of models of sentences of L it is thus sufficient to restrict attention to
sentences coming from Hλ. For every ϕ ∈ L ∩Hλ such that ϕ does not have arbitrarily
large models, let δϕ be

δϕ = sup{|A| : A |= ϕ}.
Clearly, for the ϕ considered, δϕ is a cardinal. Now let

κ = sup{δϕ : ϕ ∈ L ∩Hλ and ϕ does not have arbitrarily large models}.

Then κ is the supremum of a set of cardinals, and thus a cardinal. Clearly, L has Hanf
number at most κ+.

Recall that the LS number of logics does not carry any large cardinal strength either, but
that adding a substructure requirement to obtain the LST number brings large cardinals
into the fray (cf. Proposition 1.2.10 and Theorem 1.3.14). This provided motivation
for Galeotti, Khomskii, and Väänänen to strengthen the notion of the Hanf number in
a similar vein to study certain upwards directed set-theoretic reflection principles (cf.
[Gal19,GKV20]).
Definition 4.2.3 (Galeotti, Khomskii & Väänänen [GKV20]). Fix a logic L. The upward
Löwenheim-Skolem-Tarski number ULST(L) of L, if it exists, is the least cardinal δ such
that for any vocabulary τ and ϕ ∈ L[τ ], if a τ -structure A |=L ϕ and has size |A| ≥ δ,
then for every cardinal γ ≥ |A|, there is a τ -structure B of size at least γ such that
B |=L ϕ and A ⊆ B is a substructure of B.
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Similar to this gain in strength that occurs when switching attention from LS numbers
to LST numbers, Galeotti, Khomskii and Väänänen showed that the existence of the
ULST number for second-order logic, ULST(L2), implies the existence of very strong
large cardinals.

Theorem 4.2.4 (Galeotti, Khomskii & Väänänen [GKV20, Theorem 7.4]). If ULST(L2)
exists, then for every n ∈ ω there is an n-extendible cardinal λ ≤ ULST(L2).

They further conjectured that the strength of the existence of ULST(L2) is exactly
that of an extendible cardinal (cf. [GKV20, Conjecture 7.7]). We will confirm their
conjecture.

Theorem 4.2.5. Let κ be a cardinal. Then ULST(L2) = κ iff κ is the least extendible
cardinal.

We can further strengthen the notion of the ULST number to capture the full power
of the upward Löwenheim-Skolem Theorem.

Definition 4.2.6. Fix a logic L. The strong upward Löwenheim-Skolem-Tarski number
SULST(L) of L, if it exists, is the least cardinal δ such that for any vocabulary τ and
any τ -structure A of size |A| ≥ δ, for every cardinal γ ≥ |A|, there is a τ -structure B of
size at least γ such that A ≺L B is an L-elementary substructure of B.

Note that we could equivalently define the strong upward Löwenheim-Skolem-Tarski
number analogously to the upward Löwenheim-Skolem-Tarski number but preserving
theories instead of single sentences, as being an L-elementary substructure simply comes
down to being a model of an L-elementary diagram. Clearly, ULST(L) ≤ SULST(L).

Note that Theorem 4.2.5 shows that ULST(L2) is the same as the compactness number
of L2 (cf. Theorem 1.3.28). In general, SULST numbers are bounded by compactness
numbers.

Proposition 4.2.7. Let L be a logic which has a compactness number comp(L) = κ.
Then SULST(L) exists and SULST(L) ≤ κ.

Proof. The proof goes exactly like the proof of the upward Löwenheim-Skolem Theorem
from the Compactness Theorem for first-order logic. Suppose that κ = comp(L).
Fix a τ -structure A of size γ ≥ κ and a cardinal γ̄ > γ. Consider the theory T =
ElDiagL(A) ∪ {ci 6= cj : i < j < γ̄}, where {ci : i < γ̄} is a set of new, distinct constant
symbols. Clearly, T is < κ-satisfiable because it holds true in A (with the distinct
constants ci interpreted by distinct elements of A). Thus, T has a model B. By
construction, B has size at least γ̄ and is an L-elementary superstructure of A.

In particular, together with Theorems 1.3.34 and 4.2.5 this shows that comp(L2) =
ULST(L2) = SULST(L2) and that all these cardinals, should they exist, are equal to the
first extendible cardinal.
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4.3. Truth predicates
A central ingredient to extract large cardinal strength from the existence of a ULST
number of a logic L is L’s potential ability to define well-foundedness, combined with the
availability of truth predicates for transitive models. Suppose that (M,∈) is a transitive
set which is a model of some finite fragment ZFC∗

b of ZFC including the extensionality,
pairing and union axioms and which is large enough such that any transitive model of
ZFC∗

b can carry out the usual definition of the syntax of first-order logic.1 The essentials of
the following construction were obtained by Magidor in [Mag71]. We say that TrM ⊆M
is a truth predicate for M if for all first-order formulas ϕ(x1, . . . , xn) ∈ Lωω[{∈}] and all
tuples (a1, . . . , an):

(M,∈) |= ϕ(a1, . . . , an) if and only if (ϕ, (a1, . . . , an)) ∈ TrM .

Note that there is a sentence ϕTruth of first-order logic in the expanded language {∈, T}
such that for any T ⊆M2,

(M,∈, T ) |= ϕTruth if and only if T = TrM .

The sentence ϕTruth can be obtained by taking the conjunction of the following sentences,
which go through Tarski’s truth definition in the usual way and fix that the model
satisfies a sufficient part of ZFC:

(i) ZFC∗
b .

(ii) ∀x(x = (pxi ∈ xjq, a1, . . . , an) → (T (x) ↔ ai ∈ aj)).

(iii) ∀x(x = (pxi = xjq, a1, . . . , an) → (T (x) ↔ ai = aj)).

(iv) ∀x(x = (pψ ∧ χq, a1, . . . , an) →
(T (x) ↔ [T ((pψq, a1, . . . , an)) ∧ T ((pχq, a1, . . . , an))]).

(v) ∀x(x = (p¬ψq, a1, . . . , an) → (T (x) ↔ ¬T ((pψq, a1, . . . , an)))).

(vi) ∀x(x = (p∃xψq, a1, . . . , an) → (T (x) ↔ ∃yT ((pψq, a1, . . . , an, y)))).

We show that in specific situations, embeddings between transitive sets including a
truth predicate, are already elementary embeddings for the structure without the truth
predicate. We work in the vocabulary {∈, c, T, S, P}, where c is a constant symbol, and
T , S, and P are unary, binary, and ternary relation symbols, respectively. Consider the
following sentences:

(vii) ϕ∅ = ¬∃x(x ∈ c).

(viii) ϕSucc = ∀x, y(S(x, y) ↔ ∀z(z ∈ y ↔ x = z ∨ x ∈ z)).

1We use the index b to distinguish ZFC∗
b from ZFC∗

a considered in Chapter 3, and in Section 4.8
below.
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(ix) ϕPair = ∀x, y, z(P (x, y, z) ↔ ∃v, w(v, w ∈ z ∧ ∀v0(v0 ∈ v ↔ v0 = x) ∧
∀v0(v0 ∈ w ↔ v0 = x ∨ v0 = y) ∧ ∀v1(v1 ∈ z → v1 = v ∨ v1 = w))),

Let M = (M,∈, cM , TM , SM , PM) be transitive. We already noted that ϕTruth codes
that TM = TrM . The sentence ϕ∅ codes that c is the emptyset, i.e., M |= cM iff
cM = ∅. Further, ϕSucc expresses that SM codes the successor function, i.e., (a, b) ∈ SM

iff b = a∪{a}, and ϕPair expresses that PM codes the pairing function, i.e., (a, b, c) ∈ PM

iff c = (a, b).

Lemma 4.3.1. Let (M,∈, cM , TM , SM , PM) and (N,∈, cN , TN , SN , PN) be transitive
and assume both structures satisfy ϕTruth, ϕ∅, ϕSucc and ϕPair. Suppose there is an
embedding

j : (M,∈, cM , TM , SM , PM) → (N,∈, cN , TN , SN , PN).

Then j is an elementary embedding between the structures (M,∈) and (N,∈).

Proof. Let (M,∈) |= ϕ(a1, . . . , an). Then (ϕ, (a1, . . . , an)) ∈ TrM by ϕTruth. Because
j is an embedding, j((ϕ, (a1, . . . , an))) ∈ TrN . We claim that j((ϕ, (a1, . . . , an))) =
(ϕ, (j(a1), . . . , j(an))). Then, again by ϕTruth,

(N,∈) |= ϕ(j(a1), . . . , j(an)),

which is sufficient. To prove our claim, let us first argue that j(n) = n for all n ∈ ω.
We have j(0) = 0, as j is an embedding and so j(∅) = j(cM) = cN = ∅. Suppose
that j(n) = n. Then (n, n + 1) ∈ SM . Because j is an embedding, we get (n, j(n +
1)) = (j(n), j(n + 1)) ∈ SN . Since N satisfies that SN is the successor function, and
transitive sets are correct about this, therefore j(n + 1) = n + 1. Now let us argue
that j((a1, . . . , an)) = (j(a1), . . . , j(an)) for all a1, . . . , an ∈ M . Because (a1, . . . , an) =
(a1, (a2, . . . , an)) it is sufficient to argue that j((a, b)) = (j(a), j(b)) for all a, b ∈ M ,
since the claim then follows inductively. We have that (a, b, (a, b)) ∈ PM . This implies
(j(a), j(b), j((a, b))) ∈ PN , as j is an embedding. Because N believes that PN codes the
pairing function, therefore N |= j((a, b)) = (j(a), j(b)). The model N is correct about
this as a transitive set. Thus j((ϕ, (a1, . . . , an))) = (j(ϕ), j(a1), . . . , j(an)). It is thus
sufficient to argue that j(ϕ) = ϕ. Recall that we assume that any first-order formula
ϕ ∈ Lωω[{∈}] is coded as a finite tuple of natural numbers (cf. Appendix A). But then
j(ϕ) = ϕ, because j respects pairing and j(n) = n for all n ∈ ω, as just argued.

We will use this observation repeatedly in the following situation to extract large
cardinal strength from the existence of ULST numbers.

Lemma 4.3.2. Let M = (M,∈, cM , TM , SM , PM) be transitive. Suppose there is a
superstructureN = (N,E, cN , TN , SN , PN) ofM and assume that bothM andN satisfy
ϕTruth, ϕ∅, ϕSucc, and ϕPair. Further assume that E is well-founded and extensional. Fix
the transitive collapse π : N → N̄ . Then π �M : (M,∈) → (N̄ ,∈) is elementary.

Proof. We may define a τ = {∈, c, T, S, P}-structure N̄ on N̄ by letting cN̄ = π(cN),
and further T N̄ = {π(x) : x ∈ TN}, SN̄ = {(π(x), π(y)) : (x, y) ∈ S} and PN =
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{(π(x), π(y), π(z)) : (x, y, z) ∈ TN}. Then π is an isomorphism of N and N̄ as τ -
structures. In particular, N̄ satisfies ϕTruth, ϕ∅, ϕSucc and ϕPair. Because N is a
superstructure of M, then π ◦ id = π �M is an embedding between transitive structures
satisfying ϕTruth, ϕ∅, ϕSucc, and ϕPair. Hence, by Lemma 4.3.1, π �M is an elementary
embedding (M,∈) → (N̄ ,∈).

4.4. The well-foundedness logic
In this section we show that ULST(L(QWF)) = SULST(L(QWF)) is the least measurable
cardinal, and then consider how both these numbers relate to comp(L(QWF)).
Theorem 4.4.1. If there is a measurable cardinal κ, then SULST(L(QWF)) exists and
is at most κ.
Proof. Suppose that κ is a measurable cardinal. Let A be a τ -structure of size γ ≥ κ. Let
γ̄ > γ be any cardinal. Let j : V →M be an elementary embedding with crit(j) = κ and
j(κ) > γ̄+. We can obtain such an embedding by iterating the ultrapower construction
with a κ-complete ultrafilter enough times (cf., e.g., [Jec03, Section 19]). Note that
j“A provides a renaming of A to a j“τ -structure. Further, j“τ ⊆ j(τ), j(A) is a j(τ)-
structure, and it is easy to see that j“A is a substructure of j(A) � j“τ . Also |A| ≥ γ ≥ κ,
so |j(A)|M ≥ j(κ) > γ̄+, and therefore in particular in V , |j(A)| > γ̄. Hence, if we can
show that j“A is an L(QWF)-elementary substructure of j(A) � j“τ , we are done, as then
we can rename j(A) � j“τ to an L(QWF)-elementary superstructure of A of size > γ̄.

To this end suppose that ψ(x) ∈ L(QWF)[j“τ ] - for simplicity in one free variable - and
j“A |=L(QWF) ψ(b) for some b ∈ j“A. Recall that j as an elementary embedding restricts
to a renaming j : L(QWF)[τ ] → L(QWF)[j“τ ] (cf. Section 1.3.2). Therefore ψ = j(ϕ) for
some ϕ ∈ L(QWF)[τ ], and further b = j(a) for some a ∈ A. So this means that

j“A |=L(QWF) j(ϕ)(j(a)).

Pulling satisfaction of j(ϕ)(j(a)) back along the renaming j : A → j“A we get that
A |=L(QWF) ϕ(a). But then by elementarity of j,

M |= “j(A) |=L(QWF) j(ϕ)(j(a))”.

BecauseM is transitive, it is correct about L(QWF)-satisfaction and so really j(A) |=L(QWF)

j(ϕ)(j(a)). As j(ϕ) = ψ ∈ L(QWF)[j“τ ], then j(A) � j“τ |=L(QWF) ψ(j(a)), which is
what we promised.
Theorem 4.4.2. If ULST(L(QWF)) = δ, then there is a measurable cardinal ≤δ.
Proof. Suppose ULST(L(QWF)) = δ. Consider the model

M = (Vδ+ ,∈, ∅, δ,Tr, S, P ),

where Tr is a truth predicate for (Vδ+ ,∈), ∅ and δ are added as constants, S codes the
successor function and P codes the pairing function. Then M satisfies the sentence ϕ in
the logic L(QWF) over the vocabulary τ = {∈, c, d, T, S, P}, which is the conjunction of
the sentences:
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(i) QWFxy(x ∈ y) ∧ Ext.

(ii) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(iii) “d is the largest cardinal”: Card(d) ∧ ∀x(Card(x) → x ≤ d).

Since ULST(L(QWF)) = δ, there is a structure

N = (N,E, cN , dN , TN , SN , PN)

of size larger than iδ+ having M as a substructure and which is a model of the above
sentences (i) to (iii). Because E is well-founded and extensional by (i), we may assume
that N is given by its transitive collapse and that E =∈. Because N satisfies (ii), by
Lemma 4.3.2 the transitive collapse is an elementary embedding j : Vδ+ → N . Notice
that j(δ) = j(dVδ+ ) = dN and, by (iii), the latter is the largest N -cardinal. Because
|N | > iδ+ , N has to contain a cardinal larger than δ and so j(δ) > δ. In particular, j
has a critical point κ = crit(j) ≤ δ. Notice that P(κ) ⊆ Vδ+ and so we can define for
X ⊆ κ:

X ∈ U iff κ ∈ j(X).

It is standard to check that U is a κ-complete ultrafilter and hence κ is measurable.

Corollary 4.4.3. The following are equivalent for a cardinal κ.

(1) κ is the least measurable cardinal.

(2) κ = ULST(L(QWF)).

(3) κ = SULST(L(QWF)).

Next, we would like to understand the relationship between the compactness number
of L(QWF) and SULST(L(QWF)). Recall that comp(L(QWF)) is the smallest ω1-strongly
compact cardinal (cf. Theorem 1.3.21). Note that the proof of this result shows that
if δ is ω1-strongly compact, then there is a measurable cardinal ≤ δ. Magidor showed
in [Mag76] that it is consistent, relative to a supercompact cardinal, that the least
measurable cardinal is the least strongly compact cardinal, and hence, in particular, the
least measurable cardinal can be the least ω1-strongly compact cardinal. Bagaria and
Magidor in [BM14a] showed that it is consistent, relative to a supercompact cardinal,
that the least ω1-strongly compact cardinal is singular of cofinality greater than or equal
to the least measurable cardinal. In this situation, comp(L(QWF)) exists, but is greater
than the least measurable cardinal.

Further, consider the canonical model L[U ] for a normal ultrafilter over a measurable
cardinal (cf., e.g., [Jec03, Chapter 19]). This model cannot have an ω1-strongly compact
cardinal δ: If δ is ω1-strongly compact, then by Theorem 1.3.20 for every γ > δ there
is an ω1-complete fine ultrafilter W over Pδγ. Consider the ultrapower jW : V →MW .
Then with id : Pδγ → V , we have that j“γ ⊆ [id]W , as for every α < γ, by fineness, {s ∈
Pδγ : cα(s) = α ∈ s = id(s)} ∈ W . Further, {s ∈ Pδγ : |s| = |id(s)| < |cδ(s)| = δ} ∈ W
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and therefore jW (δ) > |[id]W | ≥ γ. Furthermore, MW is closed under ω1-sequences, as
the ultrapower by an ω1-complete ultrafilter (cf. [Ham09, Theorem 2.11]). Thus, for
every ordinal γ there is an elementary embedding j : V → M such that j(δ) > γ and
Mω1 ⊆ M . But in L[U ], the only elementary embeddings of the universe are iterates
of the ultrapower by the unique measure on the unique measurable cardinal and only
finite iterates have a target that is closed under ω-sequences. Thus, L[U ] does not
have a compactness nuber of L(QWF), while it has a measurable cardinal, and thus
SULST(L(QWF)) exists. Combining Corollary 4.4.3 with the above results, we get the
following corollary.

Corollary 4.4.4. The consistency of the existence of a supercompact cardinal implies
the consistency of the following situations:

(1) ULST(L(QWF)) = SULST(L(QWF)) = comp(L(QWF)).

(2) ULST(L(QWF)) = SULST(L(QWF)) < comp(L(QWF)).

(3) ULST(L(QWF)) = SULST(L(QWF)) exists, but comp(L(QWF)) does not exist.

Thus, we have an example of a logic for which the ULST number is always equal to
the strong ULST number, but consistently it is possible that either the compactness
number does not exist, or it exists and is larger than the the strong ULST number, or it
exists and is equal to the strong ULST number.

4.5. Second-order logic
Recall that the least extendible cardinal is the compactness number of L2 and thus,
SULST(L2) is bounded by the least extendible cardinal by Proposition 4.2.7. In this
section, we show that ULST(L2) = SULST(L2) is precisely the least extendible cardinal.

Theorem 4.5.1. Let δ be a cardinal. Then δ = ULST(L2) iff δ is the least extendible
cardinal.

We will use the following version of Fodor’s Lemma for definable classes.

Lemma 4.5.2 (The very weak class Fodor principle (definable version); Gitman, Hamkins
& Karagila [GHK19]). Let S ⊆ Ord be a definable stationary class and F : S → Ord a
definable regressive function. Then there is an unbounded class A ⊆ S such that F is
constant on A.

Gitman, Hamkins and Karagila proved a version of this statement in a weak version of
GBC class theory. We check that their proof carries over to the present ZFC setting.

Proof. Let S be a stationary class of ordinals and F : S → Ord a function such that
F (γ) ∈ γ for all γ ∈ S. Suppose for any unbounded class A ⊆ S that F is not constant
on A. Then for every ordinal γ there is a least βγ > γ such that F (α) > γ for all
α ≥ β: If this would not be the case, there would be a γ such that for all β > γ there
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is some α ≥ β such that F (α) ≤ γ. Then we could define α0 as the least α > γ such
that F (α) ≤ γ and, recursively for β > 0, αβ the least α > sup{αi : i < β} such that
F (α) ≤ γ. Then αβ is an increasing proper class sequence of ordinals with F (αβ) ≤ γ for
all β and then, by the pigeon hole principle, there is a fixed δ < γ such that F (αβ) = δ
for unboundedly many of those.

Note that the function β 7→ βγ is definable. Consider the class C of closure points of
this function, i.e., C = {θ : γ < θ → βγ < θ}. We claim that C is club. For closedness,
if (θi)i<δ ⊆ C is some increasing sequence and θ = sup{θi : i < δ}. Then if γ < θ,
then γ < θi for some i. So βγ < θi and thus βγ < θ. And for unboundedness, if γ is
any ordinal, define η0 = βγ and, recursively for n + 1 ∈ ω, let βn+1 = βηn . Consider
η = sup{βn : n ∈ ω}. If δ < η, then δ < βn for some n. But then βδ < βn < η. So η ∈ C
and clearly η > γ.

As C is club, stationarity of S gives us some θ ∈ C ∩ S. But then for any γ < θ, also
βγ < θ and so F (θ) 6= γ. This contradicts that F is regressive.

Proof of Theorem 4.5.1. 2 Let ULST(L2) = δ. By Proposition 4.2.7 and the leastness
property of δ, it suffices to show that there is an extendible cardinal ≤ δ. Consider any
ordinal α ≥ δ of cofinality ω. Fix a function fα with domain ω that is cofinal in α, a
truth predicate Tα for (Vα,∈) and relations Sα and Pα coding the successor and pairing
functions. Then the structure (Vα,∈, fα, Tα, ∅, Sα, Pα) is a model of the conjunction of
the following sentences in the language {∈, f, T, c, S, P}, where f is a two place predicate

(i) Magidor’s Φ (cf. Lemma 1.2.4).

(ii) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(iii) “f is a function with domain ω which is cofinal in the ordinals”:

∀x, y, z(f(x, y) ∧ f(x, z) → y = z ∧Ord(y))∧
∀x(x ∈ ω ↔ ∃yf(x, y)) ∧ ∀α(Ord(α) → ∃x, β(α < f(x, β))).

Because δ = ULST(L2) we find a superstructure Aα = (Aα, Eα, f
∗
α, T

∗
α) of size > |Vα|

satisfying the above sentences (i) to (iii). By Φ, we can collapse Aα to a structure of
the form (Vβα ,∈, fβα , Tβα). By (ii) and Lemma 4.3.2, the collapse isomorphism gives an
elementary embedding jα : (Vα,∈) → (Vβα ,∈). By (iii), fβα is a function with domain
ω which is cofinal in βα. Notice that jα(fα(n)) = fβα(jα(n)) = fβα(n). Thus for some
n, jα(fα(n)) > fα(n) and so jα has some critical point crit(jα) < α. Therefore, the
function F which sends α to the smallest value of a critical point crit(jα) of some
elementary embedding jα : Vα → Vγ is a definable function on the stationary class
S = {α > δ : cof(α) = ω}. By the very weak class Fodor principle 4.5.2, F is constant

2The presented proof is due to Will Boney and the author. Independently, Yair Hayut provided a
different proof of this result, which remains unpublished, and Victoria Gitman and the author in
[GO24, Theorem 6.1] provide yet another proof.
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on an unbounded subclass of S, say with value κ. Then κ is the critical point of
jα : (Vα,∈) → (Vγ,∈) for a proper class of α and therefore extendible.

Hence, we can let η be the smallest extendible cardinal. We claim η ≤ δ. Suppose
η > δ. Notice that the assertion that δ is a ULST number of L2 can be formalised by
the following Π3 formula:

∀A∀ϕ∀γ̄∃B(|A| ≥ δ ∧ A |=L2 ϕ→ A ⊆ B ∧ |B| ≥ γ̄ ∧ B |=L2 ϕ).

This is a Π3-statement as |=L2 is ∆2-definable (cf., e.g., [GKV20, Proposition 3.6]). By
extendibility, η ∈ C(3) and so η satisfies that δ = ULST(L2). Then we can repeat our
argument in Vη and find a cardinal ν < η such that Vη |= “ν is extendible”. Because
also being extendible is a Π3-statement, Vη is correct about this fact, and so ν is really
extendible. But this contradicts minimality of η.

Corollary 4.5.3. The following are equivalent for a cardinal κ.

(1) κ is the least extendible cardinal.

(2) κ = comp(L2).

(3) κ = SULST(L2).

(4) κ = ULST(L2).

We further get a characterisation of extendibility by varying the above proof:

Theorem 4.5.4. The following are equivalent for a cardinal κ:

(1) κ is extendible.

(2) κ = comp(L2
κω).

(3) κ = comp(L2
κκ).

(4) κ = SULST(L2
κω).

(5) κ = SULST(L2
κκ).

(6) κ = ULST(L2
κω).

(7) κ = ULST(L2
κκ).

Proof. Because extendibility of κ implies that κ = comp(L2
κκ) by Magidor’s Theorem

1.3.28, it is sufficient to show that if κ = ULST(L2
κω), then for any β < κ there is an

extendible cardinal η such that β < η ≤ κ. To show this, we can use the same proof
as for Theorem 4.5.1, only changing that for α of cofinality ω we consider an expanded
structure (Vα,∈, fα, Tα, ∅, Sα, Pα, ci)i≤β with constants ci interpreted as ci = i for i ≤ β.
Recall that Lκω has for every ordinal i < κ the formula σi(x) defining i (cf. Lemma 1.2.4).
Then adding the sentence
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(iv)
∧
i≤β σi(ci),

to the sentences (i) to (iii) from the previous proof results in an elementary embedding
jα : Vα → Vβα with crit(j) < α and additionally fixing all ordinals ≤ β. Thus crit(jα) > β.
The analogous argument using the very weak class Fodor principle gives us an extendible
cardinal > β. Then we can show that the smallest extendible cardinal which is larger
than β has to be at most κ, using that the fact that κ = ULST(L2

κω) is Π3-expressible
with κ as a parameter.

Thus, we have an example of logics stronger than first-order logic for which the ULST
number is same as the strong ULST number and the same as the compactness number.

4.6. Sort logics
In this section we show that analogously to how the C(n)-extendible cardinals are
equivalent to the existence of compactness numbers of Ls,n (see Boney’s Theorem 1.3.34),
they are related to ULST numbers of Ls,n. ULST numbers hence provide yet another
stratification of VP.

Theorem 4.6.1. The following are equivalent for every natural number n and every
cardinal κ:

(1) κ is the least C(n)-extendible cardinal.

(2) κ = comp(Ls,n).

(3) κ = SULST(Ls,n).

(4) κ = ULST(Ls,n).

Proof. 3 Because κ being the least C(n)-extendible implies that κ = comp(Ls,n), by
minimality of the ULST number it is sufficient to show that if κ = ULST(Ls,n), there is
a C(n)-extendible cardinal ≤ κ. The proof goes mostly analogously to that of Theorem
4.5.1. Let α > κ be an ordinal in C(n) and of cofinality ω. Consider again the structure
(Vα,∈, fα, Tα, ∅, Sα, Pα) where fα is a cofinal function in α with domain ω, Tα is a truth
predicate, Sα codes the successor function and Pα codes the pairing function. This
structure satisfies the sentences

(i) Φ(n)

(ii) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(iii) “f is a function with domain ω which is cofinal in the ordinals”.

3As with Theorem 4.5.1, the same result was obtained by Gitman and the author using different
methods (cf. [GO24, Corollary 7.2].
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Here Φ(n) is the sentence of Ls,n axiomatising the class of models (M,E) isomorphic to
some (Vλ,∈) where λ ∈ C(n) (cf. Corollary 1.2.17). The same argument as in the proof
of Theorem 4.5.1 gives us an elementary embedding

jα : (Vα,∈) → (Vβα ,∈),
but using Φ(n) we may assume that βα ∈ C(n). Then the function F which sends α to the
smallest value of a critical point crit(jα) of some elementary embedding jα : Vα → Vβα
with βα ∈ C(n) is a definable regressive function on the stationary class S = {α : cof(α) =
ω ∧ α ∈ C(n)}. By the very weak class Fodor principle, F is constant on an unbounded
class A ⊆ S, say with value κ. Then κ is C(n)-extendible, using the characterisation of
Theorem 1.3.23.

Let η be the smallest C(n)-extendible cardinal. If η > κ, because η ∈ C(n+2) as a
C(n)-extendible cardinal (cf. Theorem 1.3.26), it satisfies the Πn+2 formula

∀A∀ϕ∀γ̄∃B(|A| ≥ κ ∧ A |=Ls,n ϕ→ A ⊆ B ∧ |B| ≥ γ̄ ∧ B |=Ls,n ϕ).

This is Πn+2 because |=Ls,n is ∆n+1-definable (cf. Corollary 1.2.22). Therefore η believes
that κ = ULST(Ls,n). We can therefore repeat our argument in Vη to get a cardinal
ν which Vη believes to be C(n)-extendible. Because being C(n)-extendible is a Πn+2-
statement (cf. Section 1.3.5), η is correct about this, contradicting minimality of η.

Adapting the proof exactly as the adaptation needed between Theorems 4.5.1 and
4.5.4, we get the following results.
Theorem 4.6.2. The following are equivalent any natural number n and any cardinal κ:
(1) κ is extendible.

(2) κ = comp(Ls,n
κω).

(4) κ = SULST(Ls,n
κω).

(6) κ = ULST(Ls,n
κω).

Because of the stratification of Vopěnka’s Principle by C(n)-extendible cardinals (cf.
Theorem 1.3.30), we further get:
Corollary 4.6.3. The following are equivalent for every natural number n:
(1) VP(Πn+1)

(2) Ls,n has a ULST number.

(3) Ls,n has an SULST number.
Corollary 4.6.4. The following are equivalent:
(1) VP.

(2) Every logic has a ULST number.

(3) Every logic has an SULST number.
Figure 4.1 summarises the relation of ULST and SULST numbers to the notions

considered in Chapters 1 and 2.
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Figure 4.1.: Relations between VP, C(n)-extendible cardinals, (S)ULST numbers, com-
pactness numbers, SCH numbers, and LST numbers.

4.7. Infinitary logics
In this section, we consider infinitary logics Lηη with η an uncountable regular cardinal.
We will see that ULST and SULST numbers are related to variations of tall cardinals. In
Section 4.7.1, we first review this notion and show that the existence of tall cardinals can
be witnessed by set-sized embeddings. We then proceed to analyse SULST numbers in
Section 4.7.2. Our main results about SULST numbers are that SULST(Lηη) = η if and
only if η is tall (Corollary 4.7.9), and further a general description of SULST(Lηη) by a
variation of tall cardinals (Corollary 4.7.20). Again, we will need the existence of these
variations to be witnessed by set-sized embeddings (Corollary 4.7.16). In Section 4.7.3,
to analyse ULST numbers we introduce the notion of supreme for tallness, and show
that ULST(Lηη) = η if and only if η is supreme for tallness (Corollary 4.7.24). Finally,
in Section 4.7.4, we show that the existence ULST numbers and SULST numbers of Lηη
can consistently be separated (Theorems 4.7.25 and 4.7.26).

Before considering tall cardinals, let us start with an easy observation: that ULST(Lηη)
is bound by η. Recall that for every ordinal α < η there is the formula σα(x) ∈ Lηω such
that in any transitive model (M,∈) we have M |= σα(a) iff α = a. Recall further that for
every α < η, there is a sentence ψα in Lηη, which over a transitive model of set theory N ,
expresses closure under α-sequences, Nα ⊆ N , and that Lηη can define well-foundedness
by the sentence ϕWF = ¬∃(xi : i ∈ ω)

∧
i<ω xi+1 ∈ xi (cf. Lemma 1.2.4).
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Proposition 4.7.1. If ULST(Lηη) exists, then ULST(Lηη) ≥ η.

Proof. Suppose that ULST(Lηη) = δ < η. Consider the model M = (δ,∈) and let
ϕ = ¬∃xσδ(x) ∧ Ext ∧ ϕWF ∧ “ ∈ is a linear order”. Then M satisfies ϕ. But, by
ULST(Lηη) = δ, take a superstructure (N,∈) of M of size |N | > δ satisfying ϕ. By
collapsing we can without loss of generality assume N to be transitive. Then N is
well-ordered by ∈ and therefore an ordinal. Because |N | ≥ δ+, it follows that δ ∈ N .
Thus N |= ∃xσδ(x) and (N,∈) |= ¬ϕ. Contradiction.

4.7.1. Tall cardinals
Let us introduce the basic large cardinal notion relevant for ULST(Lηη) and SULST(Lηη).
A cardinal κ is θ-tall, for θ > κ, if there exists an elementary embedding j : V →M with
crit(j) = κ, j(κ) > θ and Mκ ⊆M , and a cardinal κ is tall if it is θ-tall for every θ > κ.
The difference between a tallness embedding and an iterated measurability embedding
is the closure of the target model M . More generally, for some λ with ω ≤ λ ≤ κ, the
cardinal κ is θ-tall with closure λ if there exists an elementary embedding j : V → M
with crit(j) = κ, j(κ) > θ and Mλ ⊆ M , and a cardinal κ is tall with closure λ if it is
θ-tall with closure λ for every θ > κ. If the target model M has closure M<λ ⊆M , then
we say that κ is (θ-)tall with closure <λ. All these cardinals were introduced by Hamkins
in [Ham09]. Closure of size <κ is sufficient for full tallness:

Proposition 4.7.2 (Hamkins [Ham09, Theorem 5.1]). If a cardinal κ is tall with closure
<κ, then κ is tall.

We will use that tallness with closure λ < κ can already be witnessed by set-sized
embeddings. Before we show this, let us first argue that it is witnessed by extender
embeddings. This was shown for full tallness in [Ham09, Lemma 2.9] and our argument
is similar. Suppose j : V → M is elementary with crit(j) = κ, j(κ) > θ and Mλ ⊆ M ,
witnessing that κ is θ-tall with closure λ < κ. Note that for any α > κ, j restricts to an
elementary embedding j : Vα → V M

j(α). Let us derive a (κ, j(κ))-extender E = (Ea : a ∈
[j(κ)]<ω) by letting for X ⊆ [κ]|a|:

X ∈ Ea iff a ∈ j(X).

Let ME be the extender power of V by E. By Theorem 1.3.36 this comes with the
canonical elementary embedding jE : V → ME such that crit(jE) = κ and jE(κ) ≥
j(κ) > θ. We show the following assertion.

Claim 4.7.3. The map jE witnesses that κ is θ-tall with closure λ.

Proof. The only thing left to check is the closure. Recall that ME = {jE(f)(a) : a ∈
[j(κ)]<ω, f : [κ]|a| → V }. So fix

{jE(fα)(aα) : α < λ} ⊆ME,
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where each aα ∈ [j(κ)]<ω and fα : [κ]|a| → V . Note that because λ < κ = crit(jE),

jE((fα : α < λ)) = (jE(fα) : α < λ) ∈ME.

So if we can show that (aα : α < λ) ∈ ME we are done with the proof of Claim 4.7.3,
as then the pointwise evaluation (jE(fα)(aα) : α < λ) will also be in ME. To this end,
fix the canonical factor map k :ME →M such that j = k ◦ jE and with crit(κ) > j(κ)
(cf. Theorem 1.3.36). Recall that k is the inverse collapsing isomorphism. Since M is
closed under λ-sequences, λ([j(κ)]<ω) ⊆M and so M ’s version of λ([j(κ)]<ω) is the real
λ([j(κ)]<ω). Because crit(k) > j(κ), we have λ, j(κ) ∈ ran(k). Because λ([j(κ)]<ω) is
definable from λ and j(κ), by elementarity of k, we have λ([j(κ)]<ω) ∈ ran(k). Further,M
has an enumeration g of λ([j(κ)]<ω) ∈ ran(k) and g has domain (j(κ)λ)M . Note that as κ is
inaccessible inM , (j(κ)λ)M = j(κ). So g has domain j(κ). Again, by elementarity, ran(k)
also has such an enumeration with domain j(κ), say h. Because j(κ) ⊆ ran(k), we get that
the evaluation of h(β) at any β < j(κ) is in ran(k). Thus, as (aα : α < λ) ∈ λ([j(κ)]<ω),
we have that (aα : α < λ) = h(β) ∈ ran(k) for some β < j(κ). So we can consider
k−1((aα : α < λ)) = (k−1(aα) : α < λ) = (aα : α < λ), where the equalities hold because
crit(k) > j(κ) and aα ∈ [j(κ)]<ω. Therefore (aα : α < λ) ∈ME.

We thus know that being θ-tall with closure λ is witnessed by extender embeddings.
Towards our goal of witnessing this by set-sized embeddings, we use this fact to prove
the following lemma.

Lemma 4.7.4. Let κ be a cardinal, θ > λ and λ < κ. Suppose for some α > κ, which
is a successor ordinal or of cofinality cof(α) > κ, there is an elementary embedding
j : Vα → N such that crit(j) = κ, j(κ) > θ and such that the set of all functions
λ→ [j(κ)]<ω is contained in N , i.e., λ([j(κ)]<ω) ⊆ N . Then κ is θ-tall with closure λ.

Proof. We can use j to derive an extender E = (Ea : a ∈ [j(κ)]<ω) by letting for
X ⊆ [κ]|a|:

X ∈ E iff a ∈ j(X).

We again claim that the extender power jE : V → ME witnesses that κ is θ-tall with
closure λ. By Theorem 1.3.40, crit(jE) = κ and jE(κ) ≥ j(κ) > θ. So again, left to show
is closure of ME under λ-sequences. As in the proof of Claim 4.7.3, it is sufficient to
argue that any sequence (aα : α < λ) belongs to ME, where aα ∈ [j(κ)]<ω. We would like
to argue as in that proof, but we do not have the factor map k around, as j is not into a
proper class target. Nevertheless, we can argue nearly analogously: By Theorem 1.3.40,
jE restricts to the canonical map jE,m : Vα → mE into the extender power mE of Vα by
E, and further mE ⊆ ME. For jE,m, we have the canonical map kE,m : mE → N such
that crit(j) = kE,m ◦ jE,m with kE,m(β) = β for all β ≤ j(κ). We did not assume closure
of N under sequences, but by assumption, N has all functions λ → [j(κ)]<ω. So N ’s
version of λ([j(κ)])<ω is the real λ([j(κ)])<ω. Using that λ, κ ∈ ran(k) (as kE,m(β) = β
for all β ≤ j(κ)), we can argue exactly as in the proof of Claim 4.7.3 to show that
λ([j(κ)])<ω ⊆ mE. Because mE ⊆ME, we are done.

Summarising, we get the following characterisation.
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Lemma 4.7.5. The following are equivalent for a cardinal κ, λ < κ and θ > κ.

(1) κ is θ-tall with closure λ.

(2) For some α > κ, which is a successor ordinal or of cof(α) > κ, there is an elementary
embedding h : Vα → N with crit(h) = κ, h(κ) > θ and such that N has all functions
λ→ [j(κ)]<ω.

Further, κ is θ-tall with closure < κ iff for some α > κ, which is a successor ordinal or of
cof(α) > κ, there is an elementary embedding h : Vα → N with crit(h) = κ, h(κ) > θ
and such that N has, for all λ < κ, all functions λ→ [j(κ)]<ω.

Proof. That (2) implies (1) is exactly the assertion of Lemma 4.7.4. In particular, for
the backward direction of the further part, if there is such an embedding j : Vα → N
such that N has all functions λ→ [j(κ)]<ω for all λ < κ, then κ is θ-tall with closure λ
for all λ < κ, so θ-tall with closure < κ. On the other hand, if (1) holds, so κ is θ-tall
with closure λ, as, say, witnessed by j : V → M such that Mλ ⊆ M . Then clearly, M
has all functions λ→ [j(κ)]<ω ⊆ V M

j(α) for any α > j(κ) as assumed. Because j restricts
to an elementary embedding j : Vα → V M

j(α), this shows (2). If M has closure < κ, then
V M
j(α) has all functions λ→ [j(κ)]<ω for all λ < κ and so the further part follows.

We can therefore witness tallness by embeddings between set-sized structures.

4.7.2. SULST numbers of infinitary logics
We proceed to consider the relationship of SULST(Lηη) with tall cardinals.

Theorem 4.7.6. If there is a tall cardinal κ ≥ η with closure <η, then SULST(Lηη)
exists and is at most κ. In particular, if κ is tall, then

SULST(Lκκ) = ULST(Lκκ) = κ.

Proof. Suppose that A is a τ -structure of size |A| ≥ κ. Let γ̄ > |A| be a cardinal. By
tallness, let j : V → M be an elementary embedding with crit(j) = κ, j(κ) > γ̄+ and
M<η ⊆ M . We now argue as in the proof of Theorem 4.4.1. In M , j(A) is a j(τ)-
structure of size |j(A)|M ≥ j(κ) > γ̄+. In particular, in V , |j(A)| ≥ γ̄+ > γ̄. Further,
in V we see that j(A) restricts to a j“τ -structure j(A) � j“τ which is a superstructure
of j“A. It is therefore sufficient to show that j“A is an Lηη-elementary substructure of
j(A) � j“τ . Note that j : Lηη[τ ] → Lηη[j“τ ] is a renaming (cf. Proposition 1.3.8). So
suppose j“A |= j(ϕ)(j(a)). Then via the renaming, we get A |= ϕ(a). And then by
elementarity of j,

M |= “j(A) |= j(ϕ)(j(a))‘”.

By M ’s closure, it is correct about Lηη-satisfaction. In particular, in V we get that
j(A) � j“τ |= j(ϕ)(j(a)), as j(ϕ) ∈ Lηη[j“τ ].
We just argued that SULST(Lηη) ≤ κ. By Proposition 4.7.1, ULST(Lηη) ≥ η. Thus,

in particular, if κ is tall, then SULST(Lκκ) = ULST(Lκκ) = κ.
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Recall that L(QWF) ≤ Lω1ω1 . In particular, a ULST number of Lω1ω1 must be greater
or equal than the least measurable cardinal. Since strongly compact cardinals are tall
(cf. [Ham09, Theorem 2.11]) and it is consistent that the least measurable is the least
strongly compact cardinal (cf. [Mag76]), we get the following:

Theorem 4.7.7. It is consistent that the following are equivalent for a cardinal κ:

(1) κ is the least measurable cardinal.

(2) κ = comp(L(QWF)).

(3) κ is the least cardinal such that κ = comp(Lκκ).

(4) κ = SULST(L(QWF)).

(5) κ = SULST(Lηη) for all uncountable regular η ≤ κ.

(6) κ = ULST(L(QWF))

(7) κ = ULST(Lηη) for all uncountable regular η ≤ κ.

Theorem 4.7.8. If SULST(Lκκ) = κ, then κ is tall.

Proof. By Proposition 4.7.2, it suffices to show that κ is tall with closure <κ. We will
show that for every cardinal θ > κ, there is an elementary embedding jθ : Vκ+1 → Nθ

with crit(jθ) = κ, jθ(κ) > θ and such that Nθ has all functions λ→ [j(κ)]<ω for all λ < κ.
This suffices by Lemma 4.7.5. Consider the structure

M = (Hκ+ ,∈, κ).

Fix θ > κ. Since κ = SULST(Lκκ), there is a model N = (N,E, κ) of size larger
than the smallest i-fixed point iρ = ρ > θ and such that M is an Lκκ-elementary
substructure of N . As Hκ+ is well-founded, it satisfies ϕWF and the extensionality axiom.
Thus, also (N,E) satisfies these sentences and so we can collapse (N,E, κ) to a model
N̄ = (N̄ ,∈, κ̄). Then the collapse isomorphism restricts to an Lκκ-elementary embedding
j : (H+

κ ,∈, κ) → (N̄ ,∈, κ̄). Because Hκ+ satisfies that κ is the largest cardinal, κ̄ is the
largest N̄ -cardinal, and in particular j(κ) = κ̄. By size of N̄ , we have j(κ) = κ̄ ≥ ρ > θ.
In particular, j has a critical point crit(j) ≤ κ. Using that Lκκ can define all ordinals
< κ, we see that crit(j) = κ. Furthermore, notice that Hκ+ is closed under κ-sequences,
and in particular, M |= ψα, witnessing that Hα

κ+ ⊆ Hκ+ for every α < κ. Thus also N̄
satisfies these sentences, and thus N̄<κ ⊆ N̄ . Further, N̄ believes that V N̄

j(κ)+1 has all
functions λ→ [j(κ)]<ω for any λ < κ (as j(κ) is regular in N̄). By its own closure, it is
correct about this. Thus the restriction j � Vκ+1 : Vκ+1 → V N̄

j(κ)+1 has all the required
properties.

Corollary 4.7.9. A cardinal κ is tall if and only if ULST(Lκκ) = SULST(Lκκ) = κ.
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Since consistency strength-wise strongly compact cardinals are much stronger than tall
cardinals (which are equiconsistent with strong cardinals (see [Ham09, Corollary 3.14])),
it is consistent to have a tall cardinal that is not strongly compact.

Corollary 4.7.10. It is consistent that ULST(Lκκ) = SULST(Lκκ) = κ, but κ is not a
compactness number for Lκκ.

Next, we introduce a version of tall cardinals κ, where the defining embeddings, instead
of mapping κ as high as desired, map some fixed ordinal δ ≥ κ as high as desired. Note
the similarity to our Definition 3.2.4.

Definition 4.7.11. A cardinal κ ≤ δ is θ-tall pushing up δ with closure λ ≤ κ if there
is an elementary embedding j : V → M with crit(j) = κ, Mλ ⊆ M , and j(δ) > θ. A
cardinal κ ≤ δ is tall pushing up δ with closure λ if it is θ-tall pushing up δ with closure
λ for all θ > κ. If the target model M has closure M<λ ⊆ M , then we say that κ is
(θ-)tall pushing up δ with closure <λ.

Observe that a θ-tall cardinal κ with closure λ is θ-tall pushing up κ with closure λ.
But in our more general definition it might be a larger ordinal than κ that gets mapped
beyond θ.

We would like to thank Joel David Hamkins for pointing out the following result
separating tall cardinals from tall cardinal pushing up some δ.

Proposition 4.7.12 (Hamkins). It is consistent that there is a cardinal κ which is not
tall, but for which there is an ordinal δ > κ such that κ is tall pushing up δ.

Proof. Suppose we have a model in which κ is measurable but not tall and δ > κ is
tall. Let us argue that κ is tall pushing up δ. Fix an ordinal θ and let j : V → M
be an elementary embedding with M δ ⊆ M , crit(j) = δ, and j(δ) > θ, witnessing the
θ-tallness of δ. Let h : V → N be the ultrapower embedding by a κ-complete ultrafilter
on κ, so that we have crit(h) = κ. Recall that for any such ultrapower, Nκ ⊆ N (cf., e.g.,
[Kan03, Proposition 5.7(d)]). Let j : N → N̄ be the restriction of j to N . Since Nκ ⊆ N ,
by elementarity, we get that N̄ j(κ) ⊆ N̄ in M . By the closure of M , we get that N̄κ ⊆ N̄ .
The composition j ◦ h : V → N̄ now witnesses that κ is θ-tall pushing up δ.

Question 4.7.13. Is the existence of a tall cardinal κ pushing up some δ > κ equicon-
sistent with a tall cardinal?

We want to show that κ being tall pushing up δ with closure <η is witnessed by
extenders and, thus, by set-sized embeddings. This can be shown by similar arguments
as for the case of being tall with closure < κ, but the technical details are somewhat
more involved, so let us give the argument. We assume that δ is a strong limit cardinal,
η ≤ κ is regular, and θω > θ (for example, by assuming cof(θ) = ω). Suppose we
have an embedding j : V → M with crit(j) = κ, j(δ) > θ and such that M is <η-
closed witnessing that κ is θ-tall pushing up δ with closure <η. By the closure of
M , for any β < η we get that βθ = (βθ)M and thus θβ ≤ (θβ)M . Further, we have
that θβ ≤ (θβ)M < j(δ), because M believes that j(δ) is a strong limit cardinal and
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β < θ < j(δ). Let γ = sup{(θβ)M : β < η}. Notice that by our remarks we have that
γ ≤ j(δ). We can therefore fix a smallest ordinal ζ ≤ δ such that j(ζ) ≥ γ and derive an
extender E from j by letting for a ∈ [γ]<ω and X ⊆ [ζ]|a|:

X ∈ Ea iff a ∈ j(X).

Let Ma be the ultrapower of V by Ea and let ME be the direct limit of the Ma. By
Theorem 1.3.36 we get the canonical embeddings jE : V →ME and k :ME →M such
that j = k ◦ jE and with crit(jE) = κ, jE(δ) ≥ jE(ζ) ≥ γ ≥ θω > θ and crit(k) ≥ γ,
where k is the inverse transitive collapse. Further

ME = {jE(f)(a) : a ∈ [γ]<ω, f : [ζ]|a| → V }

and
ran(k) = {j(f)(a) : a ∈ [γ]<ω, f : [ζ]|a| → V }.

Note that ran(k) is an elementary substructure of M . Again, we want to show the
following claim.

Claim 4.7.14. The map jE : V → ME witnesses that κ is θ-tall pushing up δ with
closure <η.

Proof. It remains to check the closure of ME. So let ν < η. Exactly as in the proof of
Claim 4.7.3, it is sufficient to show for any {aα : α < ν} ⊆ ME where each aα ∈ [γ]<ω,
that the sequence (aα : α < λ) belongs to ME. Because

crit(k) ≥ γ ≥ (θν)M ≥ θν

we know that γ ⊆ ran(k) and as we assumed θν ≥ θω > θ > η > ν, we have θ, η, ν ∈
ran(k). Because M is closed under ν-sequences, ν([γ]<ω) ⊆ M , and so M ’s version of
ν([γ]<ω) is the real ν([γ]<ω). Now note that γ is definable from η and θ in M and, thus,
by elementarity, γ must be in ran(k). Similarly, ν([γ]<ω) is definable from ν and γ and
so again by elementarity we get that ν([γ]<ω) has to be in ran(k) as well. Further, M
believes that there is an enumeration g of ν([γ]<ω) and g has domain (γν)M . Thus, ran(k)
also has such an enumeration, say h. We claim that (γν)M = γ. Note that by definition
of γ and regularity of η, we either have that γ = (θβ)M = (θµ)M for some β < η and any
β ≤ µ < η, or cof(γ) = η. In the first case, in M , we have γν = (θβ)ν = θβ = γ. So let
us assume that cof(γ) = η. Thus, because ν < η, if f : ν → γ is a function in M , then
ran(f) ⊆ (θβ)M for some β < η. Then we have

(γν)M ≤ sup{((θβ)ν)M : β < η} = sup{(θβ)M : β < η} = γ.

Thus (γν)M = γ. Therefore h is an enumeration of ν([γ]<ω) with domain γ ⊆ ran(k) and
we get that the evaluation h(α) at any α < γ ⊆ ran(k) is in ran(k). So ν([γ]<ω) ⊆ ran(k).
In particular, (aα : α < ν) ∈ ran(k). Fix f ∈ ν([γ]<ω) ⊆ ran(k). Our argument above
also shows that f : ν → [(θβ)M ]<ω for some β < η. Since k fixes β and θ, it follows
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that k(θβ) = (θβ)M . If (θβ)M < γ, then f ∈ Vγ and so k−1(f) = f . And if θβ = γ, then
γ ∈ ran(k), hence crit(k) > γ, and so also, k−1(f) = f . It follows that

(aα : α < ν) = k−1((aα : α < ν})) ∈ME.

Note that in the above argument, the fact that V M
j(δ)+1 has all functions f : ν → [γ]<ω

is sufficient to show that ME is <η-closed. Thus, analogously to how we showed Lemma
4.7.4, we can conclude that θ-tallness pushing up δ with closure <η is, under the above
conditions, already witnessed by set-sized embeddings:

Lemma 4.7.15. Suppose that δ is a strong limit cardinal, η ≤ κ is regular and θ > δ
is such that θω > θ. Assume that for some α > δ, which is a successor ordinal or
of cof(α) > δ, there is an elementary embedding j : Vα → N with crit(j) = κ and
j(δ) > θ. Further let γ = sup{(θβ)N : β < η} and assume that N has, for all ν < η, all
functions ν → [γ]<ω. Let E = (Ea : a ∈ [γ]<ω) be the extender derived from j consisting
of ultrafilters over [ζ]|a|, where ζ is the smallest ordinal such that j(ζ) ≥ γ. Then the
canonical embedding jE : V →ME witnesses that κ is θ-tall pushing up δ with closure
<η.

Because the extender embedding jE from Claim 4.7.14 restricts to an embedding
jE : Vδ+1 → V ME

j(δ)+1, we therefore get:

Corollary 4.7.16. Suppose that δ is a strong limit cardinal, η ≤ κ is regular and θ > δ
is such that θω > θ. Then the following are equivalent:

(1) κ is θ-tall pushing up δ with closure <η.

(2) For some α > δ, which is a successor ordinal or of cof(α) > δ, there is an elementary
embedding h : Vα → N with crit(h) = κ, h(δ) > θ, and such that for all ν < η, N
has all functions ν → [γ]<ω, where γ = sup{(θβ)N : β < η}.

Note that the following characterisation follows as a special case, letting η = λ+.

Corollary 4.7.17. Suppose that δ is a strong limit cardinal, λ < κ and θ > δ is such
that θω > θ. Then the following are equivalent:

(1) κ is θ-tall pushing up δ with closure λ.

(2) For some α > δ, which is a successor ordinal or of cof(α) > δ, there is an elementary
embedding h : Vα → N with crit(h) = κ, h(δ) > θ, and such thatN has all functions
λ→ [(θλ)N ]<ω.

We will use these results to get more general versions of Theorems 4.7.6 and 4.7.8 as
well as results about the ULST numbers.

Theorem 4.7.18. If there is a tall cardinal κ pushing up δ with closure <η for some
δ ≥ κ and regular η ≤ κ, then SULST(Lηη) exists and is at most δ.
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The proof of the result above is completely analogous to the proof of Theorem 4.7.6
and indeed, Theorem 4.7.6 can be derived as a corollary.

Theorem 4.7.19. If SULST(Lηη) = δ, then there is a cardinal κ with η ≤ κ ≤ δ and
such that κ is tall pushing up δ with closure <η.

Proof. Let ρ be the first i-fixed point above δ. We first argue that for any i-fixed
point θ > δ there is an elementary embedding jθ : Vρ+1 → Nθ with η ≤ crit(jθ) ≤ δ,
jθ(δ) > θ, and such that Nθ has all functions f : ν → [α]<ω for all ν < η and all ordinals
α < jθ(ρ). We consider the structure M = (Vρ,∈, δ). Fix ϑ1, the first i-fixed point
above θ, and ϑ2, the first i-fixed point above ϑ1. Since SULST(Lηη) = δ, there is a
model N = (N,E, δ̄), with |N | > ϑ2, and such that M ≺Lηη N . Because M satisfies the
Lηη-sentence asserting well-foundedness, we can assume that N is transitive, E =∈ and
j :M → N is Lηη-elementary with j(δ) = δ̄. Write largest(x) for the formula expressing
that x is the largest ordinal. The model M satisfies, for every ν < η, the following
sentence χν of Lηη, truthfully asserting that Vρ+1 has all functions ν → [α]<ω for all
ordinals α < ρ:

χν =∀α∀(xβ : β < ν)[∃x(largest(x) ∧ α < x ∧
∧
β<ν

(xβ ∈ [α]<ω))

→ ∃f∃y(func(f) ∧ dom(f) = y ∧ σν(y) ∧
∧
β<ν

(∀z(σβ(z) → f(z) = xβ)))].

Because |N | > ϑ2 and ϑ2 = iϑ2 , we get that ϑ2 ∈ N . By elementarity, N believes that
there is exactly one i-fixed point above δ̄, so since N sees that ϑ1 and ϑ2 are i-fixed
points, it follows that δ̄ ≥ ϑ1 > θ > δ. In particular, crit(j) ≤ δ. Since every ordinal
β < η is definable in the logic Lηη, we must have η ≤ crit(j). Because N satisfies the
sentences χν for all ν < η, it has all the required functions. So j is how we promised.

As there are unboundedly many θ > δ but boundedly many κ ≤ δ, we can fix a
single κ with η ≤ κ ≤ δ and such that for any θ > δ, there is an elementary embedding
jθ : Vρ+1 → Nθ with crit(jθ) = κ, jθ(δ) > θ, and such that Nθ has all functions ν → [α]<ω

for all ν < η and all ordinals α < jθ(ρ). Let δ∗ be the least cardinal with κ ≤ δ∗ ≤ δ and
such that for any θ > δ∗, there is an elementary embedding jθ : Vρ∗+1 → Nθ, where ρ∗ is
the least i-fixed point above δ∗, with crit(jθ) = κ, jθ(δ∗) > θ, and such that Nθ has all
functions ν → [α]<ω for all ν < η and all ordinals α < jθ(ρ

∗). Let us argue that δ∗ is a
strong limit. If δ∗ is not a strong limit, then there is γ < δ∗ with ρ∗ > 2γ ≥ δ∗. Note that
ρ∗ is the least i-fixed point above γ. Consider any strong limit θ > ρ∗. By assumption,
there is an elementary embedding j : Vρ∗+1 → Nθ with crit(j) = κ and j(δ∗) > θ. Now
because 2γ ≥ δ∗, by elementarity we get,

Nθ |= 2j(γ) ≥ j(δ∗) > θ.

But then because θ is a strong limit, also Nθ |= j(γ) ≥ θ. Because this works for any θ,
this is a contradiction to the minimality of δ∗, verifying that δ∗ is a strong limit cardinal.
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We claim that κ is tall pushing up δ∗ with closure < η. Then in particular κ is tall
pushing up δ∗ > δ and so we showed what we promised. By Corollary 4.7.16, it is sufficient
to show that for θω > θ > η, if jθ : Vρ∗+1 → Nθ is one of the embeddings we produced,
then Nθ has, for any ν < η, all functions ν → [γ]<ω, where γ = sup{(θβ)Nθ : β < η}. We
know that Nθ has all functions ν → α for all α < jθ(ρ

∗), so it suffices to argue γ < jθ(ρ
∗).

By assumption on the embedding jθ, we have θ < jθ(δ
∗) < jθ(ρ

∗). As δ∗ is a strong limit,
jθ(δ

∗) is a strong limit in the sense of Nθ. Thus (θβ)Nθ < jθ(δ
∗) for any β < η. It follows

that γ ≤ jθ(δ
∗) < j(ρ∗), and so we are done.

Corollary 4.7.20. SULST(Lηη) = δ if and only if δ is the smallest cardinal ≥ η such
that there is a tall cardinal η ≤ κ ≤ δ pushing up δ with closure < η.

Observe that in the canonical model L[U ], there are no tall cardinals γ ≤ δ pushing
up δ with closure ω for the same reason that there are no ω1-strongly compact cardinals
(cf. the discussion after Corollary 4.4.3). Thus, in particular, it is consistent that there is
a measurable cardinal, but there is no pair γ ≤ δ such that γ is a tall cardinal pushing
up δ with closure ω. In particular, by Theorem 4.7.19, if SULST(Lω1ω1) exists, we must
already have a pair κ ≤ δ such that κ is a tall cardinal pushing up δ with closure ω.
So having an SULST number for Lω1ω1 is stronger than having an SULST number for
L(QWF).

4.7.3. ULST numbers of infinitary logics
To consider situations where ULST(Lηη) = η, we introduce the following concept.

Definition 4.7.21. We say that a cardinal δ is supreme for tallness iff for all λ < δ and
ordinals θ, there is a cardinal κ with λ < κ ≤ δ and such that κ is θ-tall pushing up δ
with closure λ.

Observe that a cardinal δ is supreme for tallness if and only if for every λ < δ, there
is a cardinal λ < κ ≤ δ that is tall pushing up δ with closure λ. This follows because
there are proper class many θ and the cardinals κ are bounded by δ. Observe also that
a tall cardinal is trivially supreme for tallness. A non-tall cardinal that is a limit of
tall cardinals is also supreme for tallness. Thus, a supreme for tallness cardinal can
be singular. On the other hand, a regular supreme for tallness cardinal is inaccessible
because it is a limit of measurable cardinals. But we show below that it need not be
weakly compact (Theorem 4.7.25).

Theorem 4.7.22. If δ is supreme for tallness, then for every regular η ≤ δ, ULST(Lηη)
exists and is at most δ. In particular, if δ is regular, then ULST(Lδδ) = δ.

Proof. Suppose that A is a τ -structure of size |A| ≥ δ, η ≤ δ, and ϕ is a sentence in
Lηη[τ ] such that A |=Lηη ϕ. Since η is regular, there is λ < η such that the length of all
conjunctions and quantifiers in ϕ is smaller than λ. Let γ̄ > |A| be any cardinal. By our
assumption there exists a cardinal κ with λ < κ ≤ δ such that κ is γ̄+-tall pushing up δ
with closure λ. Let j : V →M be an elementary embedding with crit(j) = κ, j(δ) > γ̄+,
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and Mλ ⊆ M . Consider the j(τ)-structure j(A). This restricts to a j“τ -structure
j(A) � j“τ , which is a superstructure of j“A, which in turn is a renamed version of
A via the renaming j : τ → j“τ . Because |j(A)|M ≥ j(δ) > γ̄+, we get |j(A)| ≥ γ̄+.
Since crit(j) = κ > λ and ϕ ∈ Lλλ, we get that j(ϕ) ∈ Lλλ[j“τ ]. By elementarity, M
satisfies that j(A) |= j(ϕ). Because M is closed under λ-sequences, it is correct about
Lλλ-satisfaction and so really j(A) � j“τ |= j(ϕ). Then by renaming j(A) � j“τ to a
τ -structure, we found a superstructure of A of size |A| > γ̄ satisfying ϕ.

Theorem 4.7.23. If ULST(Lηη) = η, then η is supreme for tallness.

Proof. Because Lηη can define well-foundedness and all ordinals < η, it is easy to see
that η is either measurable or a limit of measurables. In particular it follows that η is
a strong limit cardinal. Now let λ < η and let θ > η be an ordinal with θω > θ. We
need to find a cardinal λ < κ ≤ η that is θ-tall pushing up η with closure λ. We produce
an embedding j : Vη+ → N with λ < crit(j) ≤ η, j(η) > θ, and such that Nλ ⊆ N . By
Corollary 4.7.17 this is sufficient. For α ≤ λ take constant symbols cα, let cMα = α and
consider the structure M = (Vη+ ,∈, η, cMα ,Tr, ∅, S, P )α≤λ, where Tr is a truth predicate
for (Vη+ ,∈), S codes the successor function, and P codes the pairing function. Note
that because η+ has cofinality greater than λ, Vν is closed under λ-sequences. Then M
satisfies the sentence ϕ of Lηη which is the conjunction of the following sentences:

(i) ϕWF ∧ Ext.

(ii) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(iii) “η is the largest cardinal.”

(iv) ψλ.

(v)
∧
α≤λ σα(cα).

Since η = ULS(Lηη), there is a model N = (N,E, η̄, cNξ , T̄r)ξ≤λ, with |N | > iϑ, where
ϑ > θ and iϑ = ϑ, satisfying the above sentences and having M as a substructure.
It follows that E is well-founded, so we can, by collapsing, assume that ∈= E and
N is transitive. By (ii) and Lemma 4.3.2, the collapse isomorphism restricts to an
elementary embedding j :M → N . Because η̄ is the largest N -cardinal, j(η) = η̄. Since
|N | > iϑ, we have that η < θ < ϑ ≤ j(η) = η̄. In particular, crit(j) ≤ η. Because
N |=Lηη

∧
α≤λ σα(cα), it follows that cNα = α, and so j(α) = α for all α ≤ λ. It follows

that crit(j) > λ. Finally, N |= ψλ and therefore Nλ ⊆ N .

Corollary 4.7.24. For regular cardinals η, ULST(Lηη) = η if and only if η is supreme
for tallness.

4.7.4. Separating ULST and SULST numbers
Finally, we consistently separate the existence of ULST(Lηη) and SULST(Lηη). Note
that this differentiates Lηη from the other logics we considered.
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Theorem 4.7.25. It is consistent that η is an inaccessible cardinal, ULST(Lηη) exists,
but SULST(Lηη) does not exist.

Proof. Let η be a supercompact cardinal with an inaccessible cardinal ν above it, and
assume that ν is the least such inaccessible. Then η is a limit of strong cardinals, and
hence a limit of tall cardinals (as strong cardinals are tall by [Ham09, Theorem 2.10]). In
Vν , η is also a supercompact limit of tall cardinals. Thus, we can assume without loss of
generality that V = Vν , so that there are no inaccessible cardinals above η. First, we go
to a forcing extension V [c] by Cohen forcing. Since small forcing preserves tall cardinals
(cf. [Ham09, Theorem 2.13]) and supercompact cardinals (cf., e.g., [Jec03, Theorem 21.2])
by standard embedding lifting arguments, η is still a supercompact limit of tall cardinals
in V [c]. Next, we go to a forcing extension V [c][G] by Add(η, 1). The forcing Add(η, 1)
is <η-closed and hence, in particular, ≤κ-distributive for every tall cardinal κ < η in
V [c][G]. Thus, every tall cardinal κ < η remains tall in V [c][G] by [Ham09, Theorem
3.1]. The cardinal η remains inaccessible by the closure of Add(η, 1), but since the
Cohen forcing makes η super destructible, it is not even weakly compact in V [c][G] (cf.
[Ham98, Main Theorem]). In particular, η is not tall. Thus, in V [c][G], η cannot be
SULST(Lηη), and since there are no inaccessible cardinals above η, SULST(Lηη) does
not exist. But since η is a limit of tall cardinals in V [c][G], it is, in particular, supreme
for tallness there, and hence, in V [c][G], η = ULST(Lηη).

Next, we show that consistently we can have ULST(Lηη) < SULST(Lηη).

Theorem 4.7.26. It is consistent that η is an inaccessible cardinal, ULST(Lηη) and
SULST(Lηη) both exists, and ULST(Lηη) < SULST(Lηη).

Proof. We will argue as in the proof of Theorem 4.7.25, but start with a model in which
there is a supercompact η and a tall cardinal ν above the supercompact cardinal. We
again go to the forcing extension V [c][G], in which η = ULST(Lηη), but SULST(Lηη) 6= η.
Next, observe that since tall cardinals are preserved by small forcing and Add(η, 1) is
small relative to ν, the latter remains a tall cardinal in V [c][G]. Thus, SULST(Lηη) ≤
SULST(Lνν) = ν exists.

4.8. The equicardinality logic
Recall the notion of cardinal correctly extendible cardinals and its variants from Chapter
3, and that the models of the sentence ZFC∗

a ∧ϕCard are well-founded (cf. Theorem 3.5.1)
and cardinal correct. We show that if there is a pair κ ≤ δ such that κ is cardinal
correctly extendible pushing up δ, then SULST(L(I)) exists and is bounded by δ. Almost
conversely, we show that if ULST(L(I)) exists, then there is a pair κ ≤ γ such that κ is
cardinal correctly extendible pushing up γ. We further show that a strongly compact
cardinal is a lower bound on the consistency strength of the existence of a ULST(L(I))
(Theorem 4.8.6), and that ULST(L(I)) may be above the least supercompact cardinal
(Theorem 4.8.5).
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Theorem 4.8.1. If there exists a pair κ ≤ δ such that κ is cardinal correctly extendible
pushing up δ, then SULST(L(I)) exists and is at most δ.

Proof. Let A be a τ -structure of size |A| ≥ δ and δ̄ > δ. Take α > δ̄+ with A ∈ Vα
and an elementary embedding j : Vα → M with crit(j) = κ and j(δ) > α such that
M is cardinal correct. Consider the j(τ)-structure j(A) ∈ M . Since j“τ ⊆ j(τ), j(A)
is a τ -structure modulo the renaming which takes τ to j“τ and contains j“A as a
j“τ -substructure. Note that j also restricts to a renaming j : L(I)[τ ] → L(I)[j“τ ] (cf.
Section 1.3.2). If j“A |= j(ϕ)(j(a)) for some a ∈ A, then A |= ϕ(a) via the renaming
j. Then by elementarity, M satisfies that j(A) |= j(ϕ)(j(a)), and is correct about this
by cardinal correctness. This shows that j“A is an L(I)-elementary substructure of
j(A) � j“τ . We can therefore rename the latter to an L(I)-elementary superstructure of
A. Since |A| ≥ δ, in M , by elementarity, we have |j(A)| ≥ j(δ) > α > δ̄+, as desired,
and all these computations are correct by cardinal correctness.

Theorem 4.8.2. If ULST(L(I)) exists, then there is a pair κ ≤ γ such that κ is cardinal
correctly extendible cardinal pushing up γ.

Note that the following proof goes similar to that of Theorem 4.5.1. We will generalise
the argument in Section 4.9 to show a general correspondence between ULST numbers
and large cardinals for arbitrary logics.

Proof. Let δ = ULST(L(I)). Suppose α > δ is a cardinal of cofinality ω, as witnessed by
a cofinal function f . Let ρα be the least ℵ-fixed point above α. Consider the structure

M = (Vρα ,∈, f, α,Tr, ∅, S, P ),

where Tr is a truth predicate, S codes the successor function and P codes the pairing
function. Then M satisfies the sentence ϕ in the logic L(I), which is the conjunction of
the sentences:

(i) ZFC∗
a.

(ii) ϕCard.

(iii) There are no ℵ-fixed points above α.

(iv) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(v) “f is a function with domain omega which is cofinal in α”.

Since δ = ULST(L(I)), there is a model

N = (N,E, f̄ , ᾱ, T̄r, ∅̄, S̄, P̄ )

of size larger than the smallest i-fixed point above ρα with M as a substructure. It
follows, by Theorem 3.5.1, that E is well-founded. We can therefore assume that N is
given by its transitive collapse and that E =∈, and further, by (iv) and Lemma 4.3.2,
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that the collapse restricts to an elementary embedding j : Vρα → N . Note that N satisfies
that there are no ℵ-fixed points above ᾱ and so by its size, we get that j(α) = ᾱ > α.
We have j(f(n)) = f̄(j(n)) = f̄(n) for all n ∈ ω and further, f is cofinal in ᾱ and thus
there is n ∈ ω such that j(f(n)) > α > f(n). In particular crit(j) < α.

By what we showed, we can define the proper class function F on the stationary class
S = {α : Card(α) and cof(α) = ω} such that F (α) is the least (ordinal coding a) pair
(κα, γα) such that for ρα the least ℵ-fixed point above α, κα is the least critical point
< α of any elementary embedding j : Vρα → N such that N is cardinal correct and there
is β < α such that j(β) > α and γα is the least such β. Since the (ordinal coding the)
pair (κα, γα) is smaller than α, F is regressive on the stationary class S. Thus, by the
very weak class Fodor principle 4.5.2, F is constant on a proper class. Let (κ, γ) be this
constant value. Then κ is cardinal correctly extendible pushing up γ.

Corollary 4.8.3. The following are equivalent:

(1) There is a pair κ ≤ δ such that κ is cardinal correctly extendible pushing up δ.

(2) ULST(L(I)) exists.

(3) SULST(L(I)) exists.

Question 4.8.4. If ULST(L(I)) = δ exists, is there a cardinal κ ≤ δ such that κ is
cardinal correctly extendible pushing up δ?

Theorem 4.8.5. It is consistent, relative to an extendible cardinal, that ULST(L(I)) is
above the least supercompact cardinal.

Proof. We work in the model V [G][g] from the proof of Theorem 3.3.6, where ν was the
least supercompact cardinal, χ > ν was extendible, 2γ = γ++ for a cardinal ν < γ < χ,
and the GCH held above γ. Note that since we have an extendible cardinal in this
model, ULST(L(I)) exists. Suppose that ULST(L(I)) ≤ ν. Consider the model (Vρ,∈, γ),
where ρ is the least ℵ-fixed point above γ. Then by our usual arguments, there is a
model N = (N,∈, γ̄) of size much larger than ρ that is cardinal correct and we have an
elementary embedding j : Vρ → N such that j(γ) = γ̄ � γ. It follows, by elementarity,
that N satisfies that 2γ̄ > γ̄+ and it must be correct about this by cardinal correctness.
Thus, we have reached a contradiction showing that ULST(L(I)) > γ > ν.

It follows from combining Proposition 3.3.4 and Theorem 4.8.2 that if ULST(L(I))
exists, then either there is a strongly compact cardinal or there is an inaccessible α such
that Vα satisfies that there is strongly compact cardinal. Below we slightly improve
this result by showing that if ULST(L(I)) = δ, then either there is a strongly compact
cardinal ≤δ or there is an inaccessible α such that Vα satisfies that there is a strongly
compact cardinal. This appears to be a step in the direction of getting a positive answer
to Question 4.8.4.

We will use the following observations. Suppose that j : V →M is the ultrapower by
a fine, κ-complete ultrafilter U over Pκλ. Consider the restriction j : Vλ+2 → V M

j(λ)+2, and
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observe that it suffices to recover U since P(Pκ(λ)) ⊆ Vλ+2. Using a flat pairing function,
we may assume that Vλ+2 is closed under functions f : Pκλ→ Vλ+2, as was carried out
in Section 1.3.7. We can thus conclude that all the information about a λ-compactness
embedding is already captured by the restriction of the embedding to Vλ+2. Further,
suppose that α = β + 1 is some successor ordinal ≥ λ + 2. Recall that building the
ultrapower m of Vα by U we get that m = V M

j(α). Then m = {[f ]U : f : Pκλ→ Vα}, and
by coding, we can assume that every f ∈ Vα. Thus |V M

j(α)| = |m| ≤ |Vα|.

Theorem 4.8.6. If ULST(L(I)) = δ, then there is a strongly compact cardinal κ ≤ δ or
there is an inaccessible cardinal α such that Vα satisfies that there is a strongly compact
cardinal.

Proof. First, let us suppose that no cardinal κ ≤ δ is δ+-compact. Consider the structure

M = (Vρ,∈, δ,Tr, ∅, S, P ),

where ρ is the least ℵ-fixed point above δ, Tr is a truth predicate for (Vρ,∈), S codes the
successor function and P codes the pairing function. Then M satisfies the sentence ϕ in
the logic L(I), which is the conjunction of the sentences:

(i) ZFC∗
a.

(ii) ϕCard.

(iii) There are no ℵ-fixed points above δ.

(iv) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

Since ULST(L(I)) = δ, there is a model

N = (N,E, δ̄, T̄r, ∅̄, S̄, P̄ ) |=L(I) ϕ

of size much larger than ρ with M as a substructure. It follows by Theorem 3.5.1 that
E is well-founded. Hence by collapsing and our usual argument using (iv) and Lemma
4.3.2, we can assume without loss of generality that E =∈, N is transitive, and we get
an elementary embedding

j : Vρ → N

such that j(δ) = δ̄ and N is cardinal correct. Since |N | is much larger than ρ and N
believes that there are no ℵ-fixed points above δ̄, it follows that δ̄ > δ, which means
j has a critical point and crit(j) = κ ≤ δ. If crit(j) = δ, then j(δ) > δ, and by
cardinal correctness we get that j(δ) is some limit cardinal. Hence δ+ < j(δ) < j(δ+) =
j(δ)+, again using cardinal correctness. Thus, j(δ+) is a successor cardinal and in
particular regular. Then as in the proof of Proposition 3.3.2, j is discontinuous at δ+,
i.e., sup(j“δ+) < δ+, and we can use sup(j“δ+) to obtain a uniform δ-complete ultrafilter
on δ+, letting X ∈ U iff sup(j“δ+) ∈ j(δ+). By Theorem 3.3.1, this means that δ is
δ+-compact, contradicting our assumption. Thus, crit(j) = κ < δ.
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First, suppose that j(κ) ≥ δ, and let us argue that κ is δ+-compact, which would again
contradict our assumption. By Theorem 3.3.1, it suffices to show that every successor
cardinal β+ in the interval [κ, δ+] carries a uniform κ-complete ultrafilter. And again, for
this it suffices to show that β+ < j(β+) = j(β)+: then j is discontinuous at β+, namely
j“β+ is bounded in j(β+), and we can argue as before. This is clearly true for β = δ.
So fix κ ≤ β < δ and consider β+. Since j(β) ≥ j(κ) ≥ δ, it follows that j(β) > β,
and hence j(β)+ = j(β+) > β+. This concludes the argument that κ is δ+-compact,
which is the desired contradiction, showing that j(κ) < δ. This means we can apply j to
j(κ) = γ to get j2(κ) = j(γ). Again, assuming that j(γ) ≥ δ, we will argue that κ must
be δ+-compact, and so will be able to conclude that j(γ) < δ. By the same argument
as before, we get a discontinuity for successors of γ ≤ β ≤ δ. But if κ ≤ β < γ, then
β < γ = j(κ) ≤ j(β). Repeating this argument, we get that jn(κ) < δ for all n < ω.
Thus, by Lemma 3.3.3, we get that j(κ) is inaccessible and Vj(κ) satisfies that there is a
strongly compact cardinal. Thus, we proved what we promised.

We assumed that there is no cardinal κ ≤ δ which is δ+ compact. So let us now
suppose that for some κ ≤ δ, κ is δ+-compact. So we can let λ > δ+ be the least successor
cardinal such that no κ ≤ δ is λ-compact. Let ρ be the least ℵ-fixed point above |Vλ+2|.
In particular, for every successor cardinal θ with δ+ ≤ θ < λ, Vρ will have an embedding
jθ : Vλ+2 → Mθ by a fine κθ-complete ultrafilter over Pκθ(θ) for some κθ ≤ δ. This is
the case because each Mθ has size at most |Vλ+2|, and thus Mθ ∈ H|Vλ+2|+ ⊆ Hρ ⊆ Vθ.
Consider the structure

M = (Vρ,∈, δ, λ,Tr, ∅, S, P ),
where Tr is a truth predicate for (Vρ,∈), S codes the successor function and P the pairing
function. Then M satisfies the sentence ϕ in the logic L(I), which is the conjunction of
the sentences:

(i) ZFC∗
a.

(ii) ϕCard.

(iii) There are no ℵ-fixed points above |Vλ+2|.

(iv) For every successor δ+ ≤ θ < λ, there is an elementary embedding jθ : Vλ+2 →Mθ

with crit(jθ) = κθ ≤ δ, and jθ“θ ⊆ d with |d|M < j(κθ).

(v) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

Since δ = ULST(L(I)), there is a model

N = (N,E, δ̄, λ̄, T̄r) |=L(I) ϕ

of size much larger than ρ with M as a substructure. It follows by Theorem 3.5.1 that E
is well-founded. Hence by collapsing, (v), and Lemma 4.3.2, we can assume without loss
of generality that E =∈, N is transitive and cardinal correct, and we get an elementary
embedding

j : Vρ → N
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such that j(δ) = δ̄ and j(λ) = λ̄. Since |N | is much larger than ρ and N believes that
there are no ℵ-fixed points above |Vλ̄+2|, it follows that λ̄ > λ, and thus crit(j) ≤ λ.

Let us suppose that crit(j) = λ. Then N is correct about P(λ) and j(κ) = κ for every
κ ≤ δ. By elementarity, N satisfies that λ̄ > λ is the least successor cardinal that is
a counterexample for compactness for cardinals κ ≤ δ. Thus, N satisfies that there is
κ ≤ δ that is λ-compact, so that it has a fine, κ-complete ultrafilter over Pκλ. But since
N has the correct powerset of λ, this object really is a fine, κ-complete ultrafilter over
Pκλ which contradicts that κ is not λ-compact. Thus, χ = crit(j) < λ. The rest of the
argument splits into two cases based on whether χ > δ.

We first suppose that δ < χ < λ. In this case, δ is not moved by j and so there is κ ≤ δ
such that N thinks that κ is λ-compact and, by (iv), N has an elementary embedding

jλ̄ : V
N
λ̄+2 →Mλ̄

with crit(jλ̄) = κ and jλ̄“λ ⊆ d in Mλ̄ with |d|Mλ̄ < jλ(κ). Consider the composition

jλ̄ ◦ j : Vλ+2 →Mλ̄.

This makes sense as j(Vλ+2) = V N
λ̄+2

. Observe that crit(jλ̄ ◦ j) = κ by our assumption
that δ < χ.

The argument splits into two further cases. Let us consider the case that j“λ ⊆ λ. If
β < λ, then jλ̄◦j(β) = jλ̄(j(β)), where j(β) = β′ < λ by our assumption. So (jλ̄◦j)(β) =
jλ̄(β

′) for some β′ < λ. Thus (jλ̄ ◦ j)“λ ⊆ jλ̄“λ ⊆ d and |d|Mλ̄ < jλ̄(κ) = (jλ̄ ◦ j)(κ).
Thus, we can use the embedding jλ̄ ◦ j to derive a fine, κ-complete ultrafilter over Pκλ,
contradicting our assumption that κ is not λ-compact.

In the other case, there is a least γ < λ such that j(γ) ≥ λ. Again, we will aim
to show that κ is λ-compact, deriving a contradiction. For γ ≤ β+ ≤ λ, we have
β < j(β) ≤ (jλ̄ ◦ j)(β) and so we get a discontinuity of jλ̄ ◦ j. As above, this gives rise to
a uniform, κ-complete ultrafilter over β+. So it remains to show that we have a uniform,
κ-complete ultrafilters on successors κ < β+ < γ. For this it suffices to show that κ is
β+-compact, but this follows, by using jλ̄ ◦ j and observing that (jλ̄ ◦ j)“β+ ⊆ jλ̄“λ ⊆ d.
So we have again derived a contradiction. This ends the case where χ > δ.

So let us finally assume that χ ≤ δ < λ. Then it follows that χ is not λ-compact.
Now if j(χ) ≥ λ, we get for χ ≤ β+ ≤ λ that β < j(β) and thus a discontinuity of j at
β+, allowing us to derive a uniform, κ-complete ultrafilter over β+. In particular, χ is
λ-strongly compact, which is again a contradiction. And if j(χ) < λ, we can reason as
before to show that jn(χ) < λ for all n ∈ ω. Thus, with γ = sup{jn(χ) : n ∈ ω} ≤ λ, we
have that j restricts to j : Vγ → V N

γ and the latter is cardinal correct by correctness of
N and hence, by Lemma 3.3.3, we get that j(χ) is inaccessible and Vj(χ) believes that χ
is a strongly compact cardinal.
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4.9. A meta-result on ULST numbers and large
cardinals

Note that our results indicate that the ULST numbers of logics are related to large
cardinal notions which are witnessed by elementary embeddings which have targets that
are correct about the logic in question. The ULST number of L(QWF) gives rise to
measurable cardinals, which have as targets transitive models, which are in turn correct
about L(QWF)-satisfaction; ULST(L2) amounts to extendible cardinals, which involve
levels of the von Neumann hierarchy Vα, which are in turn correct about L2-satisfaction;
C(n)-extendible cardinals involve some Vα for α ∈ C(n), which are correct about Ls,n-
satisfaction; and cardinal correctly extendible cardinals have as targets cardinal correct
sets, which compute L(I)-satisfaction correctly. In this section we want to build on this
observation to show a general result, connecting some template large cardinal notion to
the existence of the ULST number of a given logic.

For this we introduce the new large cardinal notion of L-extendible cardinals pushing
up some δ (cf. Definition 4.9.1). We restrict attention to logics that behave well under
elementary embeddings, and which can pick out their own correct models, two notions
we will motivate and introduce shortly. For logics with these properties, we then relate
the existence of L-extendible cardinals to ULST numbers of L. The main results are
summarised by Corollary 4.9.6. Our result will further show that for such logics, the
existence of ULST and SULST numbers is equivalent.

As suggested by our informal comments above, the relevant large cardinal notions in
play involve transitive sets which are correct about the logic in question itself. Recall
from Section 1.2 that our logics L involve a definable satisfaction relation, i.e., |=L is a
formula in the language of set theory. Let us say that a transitive set M is L-correct if
for every vocabulary τ ∈M , every ϕ ∈ L[τ ] ∩M and every τ -structure A ∈M :

A |=L ϕ iff M |= “A |=L ϕ”.

Here we implicitly assume that if M is L-correct and |=L is defined via some parameter
p, then p ∈ M (as otherwise, even stating M |= “A |=L ϕ” does not make any sense).
Let us consider the following variation of extendibility.

Definition 4.9.1. Let L be a logic. A cardinal κ is L-extendible iff for every α > κ, if
Vα is L-correct, then there is an elementary embedding j : Vα → M such that M is a
transitive and L-correct set, crit(j) = κ and j(κ) > α.

If δ is some ordinal, we further say κ is L-extendible pushing up δ iff for every α > κ,
if Vα is L-correct, then there is an elementary embedding j : Vα →M such that M is an
L-correct set, crit(j) = κ and j(δ) > α.

Recall that a copy S of some L-theory T is simply the image S = f“T under some
renaming f (cf. Definition 1.2.1). For the concrete logics we considered before, we
frequently used that their syntax interacts well with elementary embeddings j, in the
sense that copies of theories are provided by the images of elementary embeddings (cf.
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Section 1.3.2). To make L-extendible cardinals fruitful, we restrict ourselves to logics
which share this property.

To make this precise, let L be a logic. Suppose we have an elementary embedding
j : Vα → M with a critical point crit(j) ≥ dep∗(L), and a vocabulary τ ∈ Vα. Then
j : τ → j“τ is a renaming and further we can turn any τ -structure A into a j“τ -structure
A∗ with universe A and interpreting, for instance, j(r)A∗ as rA. Recall that as a renaming,
j comes with a bijection f : L[τ ] → L[j“τ ] such that for any ϕ ∈ L[τ ]:

A |= ϕ iff A∗ |= f(ϕ).

Let us say that L syntactically behaves well under elementary embeddings if for any
elementary embedding as above, j � L[τ ] ∩ Vα itself is the restriction of such a map f ,
i.e., for any ϕ ∈ L[τ ] ∩ Vα, we have j(ϕ) ∈ L[j“τ ] and

A |= ϕ iff A∗ |= j(ϕ).

For logics with this property, the existence of ULST numbers of any logic L is implied
by the existence of L-extendible cardinals.

Theorem 4.9.2. Let L be a logic which syntactically behaves well under elementary
embeddings. If there is a cardinal κ which is L-extendible pushing up some δ, then
SULST(L) ≤ δ.

Proof. Let A be a τ -structure of size |A| ≥ δ and let δ̄ > δ. Take, by the Reflection
Theorem, some cardinal α = iα such that Vα is L-correct, α > δ̄, A ∈ Vα and L[τ ] ∈ Vα.
There is an elementary embedding j : Vα → M with crit(j) = κ, j(δ) > α and such
that M is L-correct. Consider the j(τ)-structure j(A) ∈M , and the j“τ -structure j“A.
We can rename j(A) � j“τ back along j to a τ -structure B. Let us argue that A is an
L-elementary substructure of B. Fix ϕ ∈ ElDiagL(A). Note that ϕ is an L[τ ∗]-sentence
for τ ∗ = τ ∪ {cx : x ∈ A} with constants cx and that A∗ = (A, cx)x∈A |= ϕ, with the
standard interpretation of the cx by x itself. We may assume τ ∗ ∈ Vα and because Vα
is L-correct, it believes that A∗ |= ϕ. By elementarity and because M is L-correct,
j(A∗) |= j(ϕ). Furthermore, because L behaves well under elementary embeddings,
j(ϕ) ∈ L[j“τ ∗]. In particular, j(A∗) � j“τ ∗ |= j(ϕ). Note that B naturally expands
to a j“τ ∗-structure B∗, interpreting cB∗

x = j(cx)
A∗ and then B∗ is simply the induced

renamed version of j(A∗) � j“τ ∗. Then using syntactical well-behaviour under elementary
embeddings, we get that B∗ |= ϕ. This shows that B∗ satisfies ElDiagL(A), and therefore
that B is an L-elementary superstructure of A. Because |B| = |j(A)| ≥ |j(δ)| ≥ α > δ̄,
this shows what we promised.

To show a converse of this result, we have to restrict the class of logics we are considering
further.
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Definition 4.9.3. Let L be a logic, possibly defined using a parameter p. We say that
L can pick out its own correct models iff there is a sentence ϕ ∈ L[{∈}] such that:

(i) Vα |= ϕ for a club class of ordinals α.

(ii) For any structure (N,E), if (N,E) |= ϕ, then N is well-founded and extensional
and its transitive collapse N̄ is L-correct.

The first condition of the above definition ensures that ϕ is a not a trivial statement,
for example, a contradiction. The second statement is the relevant one. Notice that the
notion further implies that the logic can define any parameter used in its own definition.
A logic being able to pick out its own correct models resembles the classically studied
notion of adequacy to truth in itself (cf. [BF85, Chapter XVII]). It is, however, much
simpler and adequate for our purposes, so we will employ it here.

Most of the logics we are typically considering in this thesis can pick out their own
correct models:

Example 4.9.4. The logics L(QWF), L(I), L2, Ls,n, and Lηη for any successor cardinal
η, can all pick out their own correct models.

Proof. For L(QWF), let ϕ = QWFxy(x ∈ y). For L(I), let ϕ = ZFC∗
a ∧ ϕcard (cf. Section

3.5). For L2, let ϕ be Magidor’s Φ (cf. Lemma 1.2.4). For Ls,n, let ϕ = Φ(n) (cf. Corollary
1.2.17). For Lηη, if η = ν+, let ϕ be a sentence that expresses well-foundedness and
furthermore, that ν exists, i.e., ∃xσν(x) and that for any set x, the model has all functions
ν → x:

∀x∀(xβ : β < ν)[
∧
β<ν

(xβ ∈ x) →

∃f∃y(func(f) ∧ dom(f) = y ∧ σν(y) ∧
∧
β<ν

(∀z(σβ(z) → f(z) = xβ)))].

However, we will see that for η weakly inaccessible, Lηη need not be able to pick out
its own correct models.

Theorem 4.9.5. Let L be a logic that can pick out its own correct models. If ULST(L)
exists, then there is a pair κ ≤ γ such that κ is L-extendible pushing up γ.

Proof. The proof is a generalisation of by now familiar arguments, used, for example, for
the proof of Theorem 4.5.1. Let δ = ULST(L) and ϕ be the sentence that witnesses that
L can pick out its own correct models. Suppose α > δ is an ordinal of cofinality ω such
that Vα |= ϕ. Note that Vβ |= ϕ for a club class of β and thus there are many such α.
Consider the structure

M = (Vα,∈, f,Tr, ∅, S, P )
where f : ω → α is cofinal, Tr is a truth predicate for (Vα,∈), S codes the successor
function and P codes the pairing function. Then M satisfies the conjunction of the
following sentences:
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(i) ϕ.

(ii) ϕTruth ∧ ϕ∅ ∧ ϕSucc ∧ ϕPair.

(iii) “f is a function with domain ω that is cofinal in the ordinals.”

By δ = ULST(L) there is a superstructure

(N,E, f̄ , T̄r, ∅̄, S̄, P̄ ) = N ⊇ M

satisfying (i) to (iii) and such that |N | > |Vα|. Because N satisfies ϕ, we know that E is
well-founded and extensional and thus by collapsing, we can assume that E =∈. Using
(ii) and Lemma 4.3.2, the collapse restricts to an elementary embedding j : M → N . By
(i), N is L-correct. Further by (iii), f̄ is a function with domain ω which is cofinal in the
ordinals of N . Because of N ’s size, α ∈ N and there is therefore an n such that f̄(n) > α.
Because j(f(n)) = f̄(j(n)) = f̄(n) > α, we get that j has some critical point κα < α
and there is a δα < α such that j(δα) > α. Now define the proper class function F on
the ordinals α of cofinality ω with Vα |= ϕ such that F (α) is the least (ordinal coding a
pair) (κα, δα) where κα is the critical point of an elementary embedding j : Vα → N with
N an L-correct transitive model and δα the smallest ordinal such that j(δα) > α. Our
argument above shows that F is a regressive function on a stationary class of ordinals
S = {α : cof(α) = ω ∧ Vα |= ϕ}. This is stationary because the α such that Vα |= ϕ
form a club class. Hence, by the very weak class Fodor principle 4.5.2, the function F is
constant on an unbounded subclass of S. Let (κ, δ) be the constant value. Then κ is
L-extendible pushing up δ.

Corollary 4.9.6. Let L be a logic which syntactically behaves well under elementary
embeddings and which is able to pick out its own correct models. Then the following are
equivalent:

(1) There exists a pair κ ≤ δ such that κ is L-extendible pushing up δ.

(2) ULST(L) exists.

(3) SULST(L) exists.

Recall Theorem 4.7.25, that it is consistent for η to be weakly inaccessible and that
ULST(Lηη) exists but SULST(Lηη) does not exist. As Lηη syntactically behaves well
under elementary embeddings, this shows that Lηη need not be able to pick out its own
correct models.

To demonstrate the usefulness of the above corollary, let us collect some more logics
for which it finds application.

Proposition 4.9.7. The following logics behave syntactically well under elementary
embeddings and are able to pick out their own correct models.

(a) L(I,QWI) which expands L(I) by the quantifier with the semantics:

A |= QWIxϕ(x) iff |{a ∈ A : A |= ϕ(a)}| is weakly inaccessible.
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(b) L(I,QRg) which expands L(I) by the quantifier with the semantics:

A |= QRgx, yϕ(x, y) iff {(a, b) ∈ A2 : A |= ϕ(a, b)}
has the order type of a regular cardinal.

(c) L(QWF,Q1) which expands L(QWF) by the quantifier with the semantics:

A |= Q1xϕ(x) iff {a ∈ A : A |= ϕ(a)} is uncountable.

Proof. Because these logics are finitary, they all behave syntactically well under elemen-
tary embeddings. For ability to pick out correct models, for (a), let ϕ be the conjunction
of ZFC∗

a and ϕCard as well as the following sentence:

∀x(Card(x) ∧ “x is weakly inaccessible” ↔ QWIy(y ∈ x)).

For (b), let ϕ be the conjunction of ZFC∗
a and ϕCard as well as the following sentence:

∀x(Card(x) ∧ “x is regular” ↔ QRgyz(y ∈ x ∧ z ∈ x ∧ y ∈ z)).

For (c), let ϕ be the sentence

QWFxy(x ∈ y) ∧ Ext ∧ ∀x(“there is no surjection f : ω → x” ↔ Q1y(y ∈ x)).
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5. Model Theory of Class Logics
Remarks on co-authorship. The results of this chapter are joint with Trevor Wilson.

5.1. Introduction
In this chapter we consider logics which have a proper class of sentences over set-sized
vocabularies. The most straightforward example of such a logic is L∞∞, and it is easy to
see that it is inconsistent for L∞∞ to have much of a meaningful model theory. However,
considering some restricted sublogics of L∞∞, we will see that properties of class logics
have varying consistency strengths, and sometimes can even be proven to hold in ZFC.

The chapter is structured as follows. In Section 5.2, we give the definitions of the class
logics we will study. Section 5.3 has three parts, which in turn analyse compactness
properties of class extensions of first-order logic, infinitary logics, and second-order logic
and sort logics. In Section 5.4 we will show that Πn-strong cardinals are characterised
by Löwenheim-Skolem numbers of class versions of sort logics, and therefore provide a
second stratification of WVP in terms of model-theoretic properties. In Section 5.5, we
will provide a characterisation of Shelah cardinals by properties of second-order class
logic.

5.2. Motivation and definitions
Recall that L∞∞ =

⋃
κ∈Card Lκκ and that, while L∞∞ is an abstract logic in the sense of

Definition 1.2.1, it is not a logic in the formal sense of our definition, as for any vocabulary
τ , the collection of sentences L∞∞[τ ] forms a proper class. As all the abstract logics we
will consider in the current chapter have this characteristic, to emphasise this fact we
will also use the term class logic to refer to abstract logics. Recall that we also dub class
logics L for which L[τ ] really can form a proper class proper class logics.

It is easy to see that already for L∞∞ – arguably the simplest proper class logic
available – it is inconsistent to have any of the model-theoretic properties we are usually
considering. Recall that the Hanf number of a logic (cf. Definition 4.2.1) describes a
weak upward Löwenheim-Skolem property, and that ZFC proves the existence of the
Hanf number of any (set-sized) logic (cf. Proposition 4.2.2). Similarly, ZFC proves the
existence of a Löwenheim-Skolem number of any strong logic (cf. Proposition 1.2.10).
For L∞∞ however, already these weak properties are inconsistent.

Proposition 5.2.1. The logic L∞∞ has neither a compactness number, nor a Hanf
number, nor an LS number.
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Proof. Notice that for any cardinal κ, the sentence

ϕ≥κ = ∃(xi : i < κ)
∧

i<j<κ

xi 6= xj.

holds in a structure A iff |A| ≥ κ. As ϕ≥κ ∈ L∞∞ for all cardinals κ, L∞∞ cannot have
an LS number.

Consider further the sentence

ϕ<κ = ∀(xi : i < κ)
∨

i<j<κ

xi = xj,

which holds in a structure A iff |A| < κ. Because ϕ<κ ∈ L∞∞ for all cardinals κ, L∞∞
cannot have a Hanf number. This means that L∞∞ also cannot have a compactness
number, as the existence of a compactness number implies the existence of a Hanf
number.

We will consider fragments of L∞∞ and its extensions like L2
∞∞. Notice that the

sentences ϕ≥κ showing that L∞∞ cannot have an LS number use both infinite conjunctions
and existential quantification, but neither infinite disjunctions nor universal quantification.
And dually, this holds for the sentences ϕ<κ witnessing that L∞∞ cannot have a Hanf
number. This is no coincidence. In fact, we will see that banning the combination of
infinite conjunctions and existential quantification can lead to proper class logics that
do have Löwenheim-Skolem properties. Similarly, banning the combination of infinite
disjunctions and universal quantification can lead to proper class logics that do have
upward Löwenheim-Skolem and compactness properties.

To make this more precise, let us introduce some notation. Let us call a formula
χ ∈ L∞∞ negated iff χ = ¬χ0 for some χ0 ∈ L∞∞. Let us say χ is an infinite disjunction
iff χ =

∨
T for some set T of formulas such that |T | ≥ ω. And let us say that χ is an

infinite universal quantification iff χ = ∀(xi : i ∈ X)ψ for some set X of size |X| ≥ ω.
We call |T | and |X| the size of the disjunction or universal quantification, respectively.
Analogously, define infinite conjunctions and infinite existential quantifications. Recall
that every sentence ϕ ∈ L∞∞ is equivalent to a sentence ψ which is in negation normal
form, i.e., in which no non-atomic subformula of ψ is negated. Let λ be a cardinal. Let
us write L(∧λ, ∃λ) for the sublogic of Lλλ such that for any vocabulary τ , the set of
sentences L(∧λ,∃λ)[τ ] consists of all sentences ψ ∈ Lλλ[τ ] such that:

(1) ψ is in negation normal form, and

(2) no subformula of ψ is an infinite disjunction, and

(3) no subformula of ψ is an infinite universal quantification.

The satisfaction relation of L(∧λ, ∃λ) is simply defined as the one of Lλλ, restricted
to formulas in L(∧λ,∃λ). Now let L(∧∞,∃∞) =

⋃
λ∈Card L(∧λ,∃λ). Intuitively, this is

the the sub-proper-class-logic of L∞∞ which allows arbitrary infinite conjunctions and
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arbitrary infinite existential quantifications, but only finitary disjunctions and universal
quantification. Note that L(∧∞,∃∞) is not closed under negation.

We will also consider class versions of stronger logics than first-order: we can define
L2(∧∞, ∃∞) as the sublogic of L2

∞∞ which allows arbitrary infinite conjunctions and
infinite existential (first- and second-order) quantification, but only finitary disjunctions
and universal quantification, in a similar way making use of negation normal form.
Further we will consider the class logics L(∨∞,∀∞) and L2(∨∞,∀∞) which are dually
defined excluding infinite conjunctions and infinite existential quantification but allowing
arbitrary disjunctions and universal quantification. Note that these class logics are dual:
for every ϕ ∈ L(∧∞,∃∞) there is a ψ ∈ L(∨∞,∀∞) such that A |= ϕ iff A 6|= ψ. More
precisely, ψ can be constructed by considering ¬ϕ ∈ L∞∞ and then building its negation
normal form by pushing the negation through all quantifiers and boolean connectives.
We will further want to consider class logics such as L(∧∞,∃∞,∀∞) which are similarly
build as L(∧∞,∃∞), simply omitting clause (3) above. And similarly, omitting clause
(3) and changing clause (2) to only exclude infinite disjunctions of size ≥ λ for some
cardinal λ gives the class logic L(∧∞,∃∞,∀∞,∨λ) for some cardinal λ, which allows for
arbitrarily sized conjunctions, existential- and universal quantification, and additionally
disjunctions of size < λ (but not any larger sizes of disjunctions). It should be obvious
how these definitions and notations can be varied to consider class logics which allow for
various combinations of infinite boolean connectives and quantifiers of different sizes.

We will also consider class versions of sort logic. We construct this in the following way.
For κ a regular cardinal and λ > κ, consider Ls,n

κω(∧λ,∃λ) which expands our usual sort
logic Ls,n

κω – which, to recall, is based on L(QWF) – by adding conjunctions of size < λ
and first- and second-order quantifiers of size < λ. Again, we impose some restriction
and only consider formulas ψ which adhere to the following rules:

(1) If Q̃ ∈ {∃̃, ∀̃} and Q̃Xχ is a subformula of ψ, then χ ∈ Ls,n
κω , and

(2) if QWFxyχ is a subformula of ψ, then χ ∈ Ls,n
κω , and

(3) if ¬χ is a subformula of ψ, then χ ∈ Ls,n
κω .

These restrictions mean that sort quantifiers cannot take any formulas that contain
any disjunctions of size ≥ κ, nor any infinite quantification, nor any second-order
quantification. And the same is true for QWF and negations. In particular, also the
formulas of Ls,n

κω(∧λ,∃λ) are in some sort of negation normal form, only that the negation
is allowed to stand in front of any χ ∈ Ls,n

κω , and is not restricted to atomic formulas.
We obtain the proper class version by letting Ls,n

κω(∧∞,∃∞) =
⋃
λ∈Card Ls,n

κω(∧λ,∃λ). The
satisfaction relation is defined in the obvious way. Again, dually we define the class logic
Ls,n
κω(∨∞,∀∞).
That, consistently up to large cardinals, proper class logics can have some interesting

model theory was first noted by Trevor Wilson. The results were presented, for example,
in [Wil22a], but remain unpublished. Wilson noted the following:
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Theorem 5.2.2 (Wilson). Let κ be a cardinal.

(i) κ is the smallest supercompact cardinal iff κ = LST(L(∨∞,∀∞,∃∞)).

(ii) κ is huge with target λ iff for every vocabulary τ of size < κ and every ϕ ∈
L(∨∞,∀∞,∃∞)[τ ], if A is a τ -structure of size |A| = λ, then there is a substructure
B ⊆ A such that |B| = κ and B |= ϕ.

Recall Magidor’s Theorem, that the first supercompact cardinal is the LST number
of second-order logic (cf. Theorem 1.3.14). Item (i) of Wilson’s result gives another
characterisation of supercompact cardinals in terms of LST numbers, but note that here
the LST number of a first-order class logic is sufficient. For item (ii), recall that a cardinal
is huge with target λ if there is an elementary embedding j : V →M with crit(j) = κ,
Mλ ⊆M , and j(κ) = λ. It is well known that the existence of a huge cardinal exceeds
VP in consistency strength (cf., e.g., [Jec03, Lemma 20.27]). Thus, item (ii) shows that
even large cardinals whose existence has consistency strength stronger than VP can be
characterised by Löwenheim-Skolem properties of first-order class logics.

Let us make some further remarks about notation. We will consider proofs by induction
on the structure of some formula ϕ. We consider the semantics of A |=L ϕ for the class
logics L described above to be given via variable assignments, analogously to how we
presented the semantics of sort logic in Section 1.2.4. In particular, recall the notion
of a variable assignment presented right before Definition 1.2.12. Then, for instance, if
ϕ = ∃Wψ ∈ L(∧∞,∃∞, ∀∞), whereW is some set of variables and the set of variables used
in ϕ is given by X, then given some structure A and a variable assignment f : X → A,
we say that

A |=L(∧∞,∃∞,∀∞) ϕ[f ] iff there is some W -variant g of f such that
A |=L(∧∞,∃∞,∀∞) ψ[g].

It should be clear, given our treatment of sort logic, how the semantics of any of the
logics of interest in this chapter can be stated in these terms. Note that for second-order
logic, we have to consider free relational variables x, so a variable assignment f might
take a value f(x) ⊆ An for a structure A, i.e., ran(f) ⊆

⋃
n∈ω P(An). For simplicity, we

will restrict attention to structures in a relational vocabulary (but note that we can code
function and constant symbols by relation symbols).

5.3. Compactness of class logics

5.3.1. Class versions of first-order logic
In this section, we will show, in ZFC, that the compactness number of L(∧∞,∃∞,∀∞) is
ω. Note that this means that switching from first-order logic to this class logic does have
no effect on the compactness number. The proof of this theorem is a refinement of the
ultraproduct proof of first-order logic’s Compactness Theorem. To obtain this, we show
that the relevant usage of Łos’ Theorem carries over to L(∧∞,∃∞,∀∞), and afterwards
derive our theorem.
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Lemma 5.3.1. Suppose τ is a vocabulary, U is an ultrafilter over some set I, and for each
i ∈ I, there is a τ -structure Mi. Let ϕ be a formula of L(∧∞,∃∞, ∀∞) over τ with free
variables among a set X, and for i ∈ I, let fi : X →Mi be variable assignments. Consider
f : X →

∏
i∈IMi/U , the variable assignment into the ultraproduct of the Mi given by

x 7→ [i 7→ fi(x)]U . Then if {i ∈ I : Mi |= ϕ[fi]} ∈ U , then M =
∏

i∈IMi/U |= ϕ[f ].

Proof. We proceed by induction on the structure of ϕ. The cases in which ϕ is an
atomic formula, or a negation of an atomic formula simply follow by the definition of the
ultraproduct. The case in which ϕ is a finitary disjunction is simply the usual step from
Łos Theorem.

So suppose that S is some set of formulas and ϕ =
∧
S is an infinite conjunction

such that {i ∈ I : Mi |= ϕ[fi]} ∈ U . Let ψ ∈ S. Then U 3 {i ∈ I : Mi |= ϕ[fi]} ⊆ {i ∈
I : Mi |= ψ[fi]} and so the latter is in U . By induction hypothesis, therefore M |= ψ[f ].

And now let us consider ϕ = ∃Wψ, whereW is a set of variables of any size and assume
for U -many i, that we have Mi |= ∃Wψ[fi], where the fi are assignments on the set X of
variables of ϕ. Then for U -many i there is a W -variant gi of fi with Mi |= ψ[gi]. Define g
as the function that sends v ∈ X to [i 7→ gi(v)]U . By induction hypothesis it follows that
M |= ψ[g]. Now if v ∈ X \W , then g(v) = [i 7→ gi(v)]U = [i 7→ fi(v)]U = f(v), because
the gi are W -variants of the fi. This shows that g is a W -variant of f and therefore
M |= ∃Wψ[f ].

And finally, let ϕ = ∀Wψ and assume for U -many i that Mi |= ∀Wψ[fi]. For those
U -many i thus for allW -variants gi of fi it holds thatMi |= ψ[gi]. Let g be anyW -variant
of f . We want to show that M |= ψ[g]. Note that by induction hypothesis it is sufficient
to show that for U -many i we have

Mi |= ψ[v 7→ hv(i)], (∗)

where hv : I →
⋃
i∈IMi is the function representing g(v), i.e. with [hv]U = g(v). Now

if v ∈ X \W , then [hv]U = g(v) = f(v) = [i 7→ fi(v)]U , because g is a W -variant of
f . So for v ∈ X \W we can without loss of generality assume that hv is given by the
function i 7→ fi(v). Then the functions defined by v 7→ hv(i) are W -variants of the fi. In
particular, for U -many i, we get Mi |= ψ[v 7→ hv(i)], so (∗) holds and we are done.

Recall that a filter F over PωX is called fine iff for any x ∈ X, {s ∈ PωX : x ∈ s} ∈ F .
For every non-empty set X there is a fine ultrafilter over PωX. It is straightforward to
check that for any set X there is a fine filter F over PωX, defined by:

Y ∈ F iff Y ⊆ PωX and ∃x1, . . . , xn ∈ X : {s ∈ PωX : x1, . . . , xn ∈ s} ⊆ Y

It is a well known theorem by Tarski that any filter can be expanded to an ultrafilter
over the same set (cf., e.g., [Jec03, Theorem 7.5]). Expanding F as above to an ultrafilter
U over PωX results in a fine ultrafilter.
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Theorem 5.3.2. comp(L(∧∞,∃∞,∀∞)) = ω.

Proof. Let T ⊆ L(∧∞,∃∞,∀∞) be finitely satisfiable. Then for every s ∈ PωT there is
a model Ms |= s. Let U be any fine ultrafilter over PωT . Then for every ϕ ∈ T , the
set {s ∈ PωT : ϕ ∈ s} ∈ U . But {s ∈ PωT : ϕ ∈ s} ⊆ {s ∈ PωT : Ms |= ϕ}, and so the
latter is in U . Therefore by Lemma 5.3.1,

∏
s∈PωT

Ms/U |= ϕ and so this ultraproduct is
a model of T .

Recall that the weak compactness number of a logic, if it exists, is the smallest cardinal
κ such that any <κ-satisfiable L-theory T of size |T | = κ has a model. Also recall the
notions of ULST and SULST number from Chapter 4.

Corollary 5.3.3. The weak compactness number, the Hanf number, the ULST number,
and the SULST number of L(∧∞,∃∞,∀∞) are all ω.

5.3.2. Class versions of infinitary logics
In the last section we saw that adding arbitrary conjunctions, existential- and universal
quantifiers to first-order logic does not change its compactness properties. In this section
we will see that a similar assertion is true for infinitary first-order logic Lκκ. Recall that
a regular uncountable cardinal κ is strongly compact iff comp(Lκκ) = κ. Further, this is
equivalent to the assertion that every κ-complete filter over any set can be expanded to a
κ-complete ultrafilter (cf., e.g., [Kan03, Proposition 4.1]). Completeness of an ultrafilter
lets us extend Lemma 5.3.1 to cover proper class expansions of Lκκ in the to be expected
way, expanding the usual Łos-like theorem for Lκκ.

Lemma 5.3.4. Suppose τ is a vocabulary, κ is a regular cardinal, U is a κ-complete
ultrafilter over some set I, and for each i ∈ I, there is a τ -structure Mi. Let ϕ be
a formula of L(∧∞, ∃∞,∀∞,∨κ) over τ with free variables among a set X, and for
i ∈ I, let fi : X → Mi be variable assignments. Consider f : X →

∏
i∈IMi/U , the

variable assignment into the ultraproduct of the Mi given by x 7→ [i 7→ fi(x)]U . Then if
{i ∈ I : Mi |= ϕ[fi]} ∈ U , then M =

∏
i∈IMi/U |= ϕ[f ].

Proof. Exactly like in the proof of Lemma 5.3.1, proceed by induction on ϕ. The only
case not covered there is ϕ =

∨
S for some set of formulas S of size < κ. This is taken care

of by κ-completeness: If {i ∈ I : Mi |=
∨
S[fi]} ∈ U , note that {i ∈ I : Mi |=

∨
S[fi]} =⋃

ψ∈S{i ∈ I : Mi |= ψ[fi]}. By κ-completeness of U , there is thus a fixed ψ ∈ S such that
{i ∈ I : Mi |= ψ[fi]} ∈ U . By induction hypothesis therefore

∏
i∈IMi/U |= ψ[f ] and

hence
∏

i∈IMi/U |=
∨
S[f ].

Theorem 5.3.5. Let κ be a regular uncountable cardinal. Then κ is strongly compact
iff comp(L(∧∞,∃∞,∀∞,∨κ)) = κ.

Proof. Clearly, if comp(L(∧∞,∃∞,∀∞,∨κ)) = κ, then comp(Lκκ) = κ, and thus κ is
strongly compact. On, the other hand, if κ is strongly compact and T ⊆ L(∧∞,∃∞,∀∞,∨κ)
is <κ-satisfiable, then for any s ∈ PκT there is a model Ms |= s. Note that

Y ∈ F iff Y ⊆ PκT and ∃t ∈ PκT : {s ∈ PκT : t ⊆ s} ⊆ Y
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defines a κ-complete, fine filter over PκT . By strong compactness of κ, there is a κ-
complete, fine ultrafilter U over PκT extending F . Then Lemma 5.3.4 implies that∏

s∈PκT
Ms/U |= T .

5.3.3. Class versions of second-order logic and sort logics
Magidor’s Theorem 1.3.28 shows that the compactness number of second-order logic is
the first extendible cardinal. Again, as for first-order logic, we show that switching to
appropriate proper class versions of second-order logic does not increase the compactness
number. Contrastingly though, we show that the switch drastically increases the Hanf
and weak compactness numbers. Recall that ZFC proves the existence of Hanf numbers
of any set-sized strong logic. Further, the existence of weak compactness numbers of
any set-sized strong logic is weaker than a measurable cardinal.1 Our theorem therefore
shows that the existence of a weak compactness number, and of a Hanf number of
L2(∧∞, ∃∞,∀∞), are both much stronger than the existence of the respective numbers
for L2.

Theorem 5.3.6. The following are equivalent for a cardinal κ:

(1) κ is the smallest extendible cardinal.

(2) κ is the compactness number of L2.

(3) κ is the compactness number of L2(∧∞,∃∞,∀∞).

(4) κ is the weak compactness number of L2(∧∞,∃∞,∀∞).

(5) κ is the Hanf number of L2(∧∞,∃∞,∀∞).

(6) κ is the ULST number of L2(∧∞,∃∞, ∀∞).

(7) κ is the SULST number of L2(∧∞,∃∞,∀∞).

Proof. The first two items are equivalent by Magidor’s theorem 1.3.28. If λ is a compact-
ness number of L2(∧∞,∃∞,∀∞) it is a bound on the weak compactness number, ULST
number, and SULST number of the same logic. Further, if κ is an SULST number, then
it is a ULST number, and if it is a ULST number, then it is a Hanf number. So it is
sufficient to show (1) ⇒ (3), (4) ⇒ (1), and (5) ⇒ (1).

For these implications it suffices to show that if κ is the first extendible cardinal, then
κ is a strong compactness cardinal for L2(∧∞,∃∞,∀∞) and that if κ is either the weak
compactness cardinal or the Hanf number of L2(∧∞,∃∞, ∀∞), then there is an extendible
cardinal ≤ κ. Then by minimality of the properties we are considering, our theorem
follows.

1This was shown by Philipp Lücke. The results remain unpublished as of yet, but were, for example,
part of a talk at the XVII International Luminy Workshop in Set Theory [Lüc23].
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So first assume that κ is the weak compactness cardinal of L2(∧∞,∃∞,∀∞). We aim to
show that there is an extendible cardinal λ ≤ κ. For this purpose let α > κ be any limit
ordinal. We want to show that there is a δα and an elementary embedding jα : Vα → Vδα
with crit(jα) ≤ κ. If we showed this, as there are class many ordinals above κ but at
most κ many cardinals below κ, there is then a fixed λ ≤ κ that is the critical point of
jα for unboundedly many α. This λ is then extendible. To this end, let γ = |Vα| and
(ai : i < γ) be an enumeration of Vα. Assume without loss of generality that a0 = κ.
Take a constant symbol c and consider the following sentence ψ of L2(∧∞, ∃∞,∀∞):

ψ = ∃(bi : i < γ)
∧

n∈ω,ϕ(x1,...,xn)∈Lωω [{∈}],
i1,...,in<γ,

Vα|=ϕ(ai1 ,...,ain )

ϕ(bi1 , . . . , bin) ∧ b0 = c.

Note that the big conjunction above codes the elementary diagram of (Vα,∈) into a single
sentence of L2(∧∞,∃∞,∀∞). Hence, if M |= ψ, then a sequence (bMi : i < γ) witnessing
this gives rise to an elementary embedding j : Vα → M by letting ai 7→ bMi . Note
that j(κ) = bM0 = cM . Recall Magidor’s Φ, axiomatising the class of structures (M,E)
isomorphic to some (Vα,∈) for a limit ordinal α (cf. Lemma 1.2.4). Take additional
constants cα for α ≤ κ and consider the theory

T = {ψ} ∪ {Φ} ∪ {ci < cj < c : i < j ≤ κ} ∪ {Ord(ci) : i ≤ κ}.

If T is satisfiable, say by (M,EM , cM , cMi )i≤κ |= T , we have that without loss of generality
it is of the form (Vδ,∈, cVδ , cVδi )i≤κ for some δ by the usage of Magidor’s Φ. Further,
because ψ ∈ T , there is an elementary embedding j : Vα → Vδ as described above.
In particular, j(κ) = cVδ . Now because cVδi < cVδj < cVδ = j(κ) for all i < j ≤ κ, we
have that j(κ) > κ. In particular, j has a critical point ≤ κ. So to show satisfiability
of T suffices. Now clearly T has size exactly κ and is <κ-satisfiable (by Vκ). By our
assumption, it is therefore satisfiable.

Now let κ be the Hanf number of L2(∧∞,∃∞,∀∞). Again, we want to show that there
is an extendible cardinal ≤ κ. The proof goes similar to that of Theorem 4.5.1. Let α > κ
be an ordinal of cofinality ω. Fix a function Fα with domain ω that is cofinal in α. Let
ψ be defined similarly to above, but this time using formulas over the language {∈, F}
where F is a binary relation symbol. Then (Vα,∈, Fα) is a model of the conjunction of
the sentences ψ, Magidor’s Φ and a formula χ saying “F is a function with domain ω
that is cofinal in the ordinals”. Since |Vα| ≥ κ, the sentence ψ ∧ Φ ∧ χ has a model M
of size > |Vα|. Because of the usage of Φ, M is without loss of generality of the form
(Vβα ,∈, Fβα) for some ordinal βα > α. As M |= ψ, there is an elementary embedding
j : (Vα,∈, Fα) → (Vβα ,∈, Fβα). And because Fβα is a function with domain ω which is
cofinal in βα by χ, j has a critical point κα. This shows that the function α 7→ κα is
regressive on the stationary class {α ∈ Ord : cof(α) = ω}. Then by the very weak class
Fodor principle (Theorem 4.5.2) this function is constant on an unbounded class, say with
value δ. Then δ is extendible. We can therefore take the smallest extendible cardinal η.
Now if η ≤ κ we are done. If η > κ, then because η is extendible it is in C(3) (cf. Theorem
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1.3.26). It follows that Vη |= “κ is the Hanf number of L2(∧∞, ∃∞,∀∞)” (note that this is
a Π3-statement). Thus we can repeat our argument to get, in Vη, an extendible cardinal
ν < η. Being extendible is Π3-definable (cf. Section 1.3.5), and thus, as η ∈ C(3), it is
correct about extendibility. So ν is really extendible. But this contradicts that η is the
smallest extendible cardinal.

Finally, assume (1) and let T ⊆ L2(∧∞,∃∞,∀∞) be a <κ-satisfiable theory over some
vocabulary τ . For simplicity, let us assume that τ contains only relation symbols and
only a single sort symbol. Let iα = α > κ be such that Vα verifies the satisfiability of all
T0 ∈ PκT . Note that T ⊆ L2(∧λ,∃λ,∀λ) for some λ < α. By extendibility find some β
such that j : Vα → Vβ with crit(j) = κ and j(κ) > α. Then by elementarity Vβ |= “j(T )
is a <j(κ)-satisfiable theory” and further j“T ⊆ j(T ) and |j“T | = |T | < α < j(κ). Thus
Vβ |= “j“T has a model B”. Now let B′ be the τ -structure with universe B and with
RB′

= j(R)B for all R ∈ τ . We will show that B′ |= T . For this it is sufficient to show
that Vβ |= “B |= j(ϕ)” implies B′ |= ϕ for all ϕ ∈ L2

∧λ,∃λ,∀λ . We will show this by proving
the following claim:

Claim 5.3.7. For every ϕ ∈ L2(∧λ,∃λ,∀λ) and every variable assignment f : j(S) →
B ∪

⋃
n∈ω P(Bn) where S is the set of variables in ϕ:

Vβ |= “B |= j(ϕ)[f ]” implies B′ |= ϕ[f ◦ j].

Note that j � S is a map S → j(S), so f ◦ j is a sensible assignment on S, and that
because Vβ is a rank initial segment, any assignment f : j(S) → B∪

⋃
n∈ω P(Bn) belongs

to it.
For the base case, if ϕ = R(x1, . . . , xn) for some R ∈ τ and variables x1, . . . , xn ∈ S,

then j(ϕ) = j(R)(j(x1), . . . , j(xn)). We assume that

Vβ |= “M |= j(R)(f(j(x1)), . . . , f(j(xn)))”,

which by definition means (f(j(x1)), . . . , f(j(xn))) ∈ j(R)B. But then, by definition of
RB′ , we have (f(j(x1)), . . . , f(j(xn))) ∈ RB′ , which, again by definition, means B′ |=
R(x1, . . . , xm)[f ◦ j]. The case of negated atomic formulas goes similar. The case of finite
applications of ∨ is trivial.

Consider ϕ =
∧
i<γ χi and assume Vβ |= “B |= j(ϕ)[f ]”. We have that j(ϕ) =∧

i<j(γ) χ
∗
i for some formulas χ∗

i . Further, for any i < γ, j(χi) = χ∗
j(i). We get that

Vβ |= “B |= j(χi)[f ]” and therefore by induction hypothesis B′ |= χi[f ◦ j], for any of the
χi. Thus, B′ |= ϕ[f ◦ j].

If ϕ = ∃Wχ, then j(ϕ) = ∃j(W )j(χ). Because Vβ |= “B |= ∃j(W )j(χ)[f ]”, there is a
j(W )-variant g of f such that Vβ |= “B |= j(χ)[g]”. By induction hypothesis, B′ |= χ[g◦j].
We claim that g ◦ j is a W -variant of f ◦ j, and so B′ |= ∃Wχ[f ◦ j]. For x ∈ S \W , we
have j(x) ∈ j(W ). Since g is a j(W )-variant of f , thus g(j(x)) = f(j(x)).

Finally, if ϕ = ∀Wχ, then j(ϕ) = ∀j(W )j(χ). We assume that

Vβ |= “B |= ∀j(W )j(χ)[f ]”,
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and want to show that B′ |= ∀Wχ[f ◦ j]. So let g be a W -variant of f ◦ j. Define
h : j(S) → B by

h(y) =

{
g(x), if y ∈ j“S and j(x) = y

f(y), otherwise.

We claim that h is a j(W )-variant of f . Let y ∈ j(S)\j(W ). If y /∈ j“S, then h(y) = f(y)
by definition. And if y ∈ j“S, let j(x) = y. Then h(y) = g(x). Because y /∈ j(W ),
x /∈ W , so h(y) = g(x) = f ◦ j(x) = f(y) where the middle equality holds because g is
a W -variant of f ◦ j. So in any case, h(y) = f(y) and h is thus an j(W )-variant of f .
Thus, Vβ |= “B |= j(χ)[h]”. Hence, by induction hypothesis, B′ |= χ[h ◦ j]. But h ◦ j = g.
Therefore B′ |= χ[g].

By a similar proof to that of Theorem 5.3.6, we can also give a characterisation of
extendibility. The only things in need to be changed are that usage of Lκκ can force
critical points to be precisely κ and that embeddings with critical point κ fix formulas of
Lκκ up to renaming.

Theorem 5.3.8. The following are equivalent for a cardinal κ.

(1) κ is extendible.

(2) κ is the compactness number of L2
κκ.

(3) κ is the compactness cardinal of L2(∧∞, ∃∞,∀∞,∨κ).

(4) κ is the weak compactness number of L2(∧∞,∃∞,∀∞,∨κ).

(5) κ is the Hanf number of L2(∧∞,∃∞,∀∞,∨κ).

(6) κ is the ULST number of L2(∧∞,∃∞, ∀∞,∨κ).

(7) κ is the SULST number of L2(∧∞,∃∞,∀∞,∨κ).

Finally, adding the power of sort logic to express that some α is in C(n), a similar
argument shows:

Theorem 5.3.9. The following are equivalent for a cardinal κ:

(1) κ is C(n)-extendible.

(2) κ is the compactness number of Ls,n
κω .

(3) κ is the compactness number of Ls,n
κω(∧∞,∃∞,∀∞).

(4) κ is the weak compactness number of Ls,n
κω(∧∞,∃∞, ∀∞).

(5) κ is the Hanf number of Ls,n
κω(∧∞,∃∞,∀∞).

(6) κ is the ULST number of Ls,n
κω(∧∞,∃∞,∀∞).

(7) κ is the SULST number of Ls,n
κω(∧∞, ∃∞,∀∞).
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5.4. Weak Vopěnka’s Principle and
Löwenheim-Skolem properties

We saw in Chapter 2 that there are two analogous stratifications of VP and WVP in
terms of strong- and weak-Henkin-compactness properties (cf. Corollaries 2.2.12 and
2.3.11). On the other hand, VP is not only characterised by compactness properties,
but it has a further stratification by downward Löwenheim-Skolem-Tarski properties of
sort logics, which also correspond to the C(n)-extendible cardinals (cf. Theorem 1.3.35).
It is therefore natural to ask whether a similar statement is true for the hierarchy of
Πn-strong cardinals below WVP. In this section we will show that this is indeed the
case, pushing the analogy of the structure of model-theoretic assumptions below VP and
WVP further. We will consider certain Löwenheim-Skolem numbers of the class logic
Ls,n(∨∞,∀∞) and show that their existence is equivalent to that of Πn-strong cardinals
(cf. Theorem 5.4.3). We will first state our main results in Section 5.4.1. The main proof
is then presented in Section 5.4.2.

5.4.1. Statement of the main results
Recall that if LST(L) = κ for some logic L, we demand that for any ϕ ∈ L and any
A |= ϕ, there is some substructure B |= ϕ such that |B| < κ, provided A is a τ -structure
for some vocabulary τ of size |τ | < κ. For the LS number, we usually do not need such
a restriction in the size of vocabularies, as for set-sized strong logics, the amount of
non-logical symbols that a sentence can use is bounded anyway. But for class logics this
is not the case.

We therefore consider the following version of the LS number.

Definition 5.4.1. Let L be an abstract logic and λ a cardinal. A cardinal κ is an LSλ
number of L iff any satisfiable sentence of L over a vocabulary of size < λ has a model of
size < κ. Should such a cardinal exist, we call the smallest such LSλ(L).

We first mention the following unpublished result by Wilson. We omit the proof, as it
can be carried out with similar arguments as that of Theorem 5.4.3.

Theorem 5.4.2 (Wilson). The following are equivalent for a cardinal κ:

(1) κ is the smallest strong cardinal.

(2) κ = LSω(L2(∨∞, ∀∞)).

(3) κ is the smallest cardinal such that κ = LSκ(L2(∨∞,∀∞)).

We will show the following theorem that connects LS numbers of class logics of the form
Ls,n(∨∞,∀∞) to local forms of “Ord is Woodin”. For the large cardinal notions involved,
and also for the definition of weak Vopěnka’s Principle referred to in the corollaries below,
recall Section 2.3.1.
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Theorem 5.4.3. The following are equivalent for every natural number n ≥ 1 and a
cardinal κ:

(1) κ is the smallest Πn-strong cardinal.

(2) κ is the smallest C(n)-strong cardinal, i.e., the smallest A-strong cardinal with
A = C(n).

(3) κ = LSω(Ls,n(∨∞,∀∞)).

(4) κ is the smallest cardinal such that κ = LSκ(Ls,n(∨∞,∀∞)).

Proof. Cf. Proof 5.4.10.

In particular, by Theorem 2.3.4, the above implies that we get a local equivalence of
the existence of LSω(Ls,n(∨∞,∀∞)) to fragments of WVP.

Corollary 5.4.4. The following are equivalent:

(1) WVP(Πn).

(2) Ls,n(∨∞,∀∞) has an LSω number.

As for the case of compactness numbers of L2(∧∞,∃∞, ∀∞), by minor adaptations to
the proof of Theorem 5.4.3, we obtain the following result.

Theorem 5.4.5. The following are equivalent for a cardinal κ:

(1) κ is Πn-strong.

(3) κ = LSκ(Ls,n
κω(∨∞,∀∞)).

Combining this with Corollary 2.3.20, we get a characterisation of WVP in terms of
Löwenheim-Skolem properties.

Corollary 5.4.6. The following are equivalent.

(1) WVP.

(2) Every class logic L with L ≤ Ls,n
κω(∨∞,∀∞) for some κ has an LSω number.

(3) Every class logic L with L ≤ Ls,n
κω(∨∞,∀∞) for some κ has an LSλ number for every

λ.

Proof. Clearly (3) implies (2). By Corollary 2.3.20, WVP is equivalent to the existence
of a Πn-strong cardinal for every n, and of a proper class of Πn-strong cardinals for every
n. In particular, (2) implies (1) by Theorem 5.4.3. So left to show is that (1) implies (3).
Assume (1) and take any cardinal λ and a class logic L ≤ Ls,n

κω(∨∞, ∀∞) for some κ. By
WVP, we get a Πn-strong cardinal γ > κ+λ. By Theorem 5.4.5, γ = LSγ(Ls,n

γω(∨∞,∀∞)).
Then LSλ(L) ≤ LSλ(Ls,n

κω(∨∞,∀∞)) ≤ LSγ(Ls,n
γω(∨∞, ∀∞)).

We update Figure 2.2 from Section 2.3.2 by the Löwenheim-Skolem characterisations
of WVP and its fragments.
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Figure 5.1.: Relations between WVP, Πn-strong cardinals, HCC numbers, and
Löwenheim-Skolem properties of class logics.

5.4.2. Proof of the main theorem
In this section, we give a proof of Theorem 5.4.3. We will need the framework of P-
structures, which we will present first. It constitutes an alternative approach to extenders
and similarly allows to approximate elementary embeddings of the universe.

P-structures as an alternative to extenders

The technicalities of the framework presented below are due to Wilson [Wil22b], and
similar constructions can already be found in [Nee04] and [Zem02]. Instead of sequences
of ultrafilters as for extenders, this approach constructs elementary embeddings from
homomorphism of certain Boolean algebras called P-structures. For a set X, we write
X<ω for the set

{(a1, . . . , ak) : k ∈ ω and a1, . . . , ak ∈ X}
of finite sequences of members of X. We write ( for the proper initial segment relation,
i.e., (a1, . . . , ak) ( (b1, . . . , bl) iff k < l and ai = bi for all i ≤ k. We further write ) for
the reverse of the relation (.

Definition 5.4.7 (Wilson [Wil22b]). Let X be a transitive set. A P-structure is a
structure

PX = (P(X<ω),∩, \, Xk,WF, π−1
k,(i1,...,ij)

,BPk)j,k<ω,1≤i1,...,ij≤k.
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such that

(1) ∩ is intersection, interpreted as a binary operation.

(2) \ is complementation, interpreted as a unary operation.

(3) Xk ∈ P(X<ω) is a constant.

(4) WF is a unary relation such that A ∈ WF iff A ⊆ P (X<ω) and (A,)) is well-
founded.

(5) π−1
k,(i1,...,ij)

is a function P(Xj) → P(Xk) defined by

π−1
k,(i1,...,ij)

(A) = {(a1, . . . , ak) ∈ Xk : (xi1 , . . . , xij) ∈ A}.

(6) BPk is a function P(Xk+1) → P(Xk+1) defined by

BPk(A) = {(a1, . . . , ak+1) ∈ Xk : ∃z ∈ xk+1((x1, . . . , xk, z) ∈ A)}.

If further the structure is of the following form, for an additional constant c<ω where
c ⊆ X, we call PX,c a pointed P-structure.

PX,c = (P(X<ω),∩, \, Xk,WF, π−1
k,(i1,...,ij)

,BPk, c<ω)j,k<ω,1≤i1,...,ij≤k.

A homomorphism of P-structures h : PX → PY is simply a homomorphism in the
usual model-theoretic sense, i.e., a map preserving the relations, constants and functions
defined on PX . For instance, h(A∩B) = h(A)∩h(B), or A ∈ WFPX implies A ∈ WFPY .
A homomorphism of pointed P-structures h : PX,c → PY,d additionally preserves the
constant c<ω, i.e., h(c<ω) = d<ω.

The way in which we will use P-structures is by the following theorem, which shows
how they give rise to elementary embeddings.

Theorem 5.4.8 (Wilson [Wil22b]). If X and Y are transitive, c ⊆ X, d ⊆ Y and h :
PX,c → PY,d a homomorphism of pointed P-structures. Then there is a transitive class
M and an elementary embedding j : V →M such that Y ⊆ j(X), h(A) = j(A) ∩ Y <ω

for all A ⊆ X<ω and j(c) ∩ Y = d.

Let us further note that there is a trivial homomorphism PX → PY if Y ⊆ X.

Proposition 5.4.9 (Wilson [Wil22b]). LetX and Y be transitive such that Y ⊆ X. Then
h : P(X<ω) → P(Y <ω) defined by A 7→ A ∩ Y <ω is a homomorphism of P-structures
h : PX → PY .
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Main proof

Proof 5.4.10 (Proof of Theorem 5.4.3). The first two items are equivalent by Lemma
2.3.12. It suffices to show that (3) implies (2), and that (2) implies (4). This holds,
because if (4) is true, and κ is the smallest cardinal such that κ = LSκ(Ls,n(∨∞,∀∞)),
then in particular, γ = LSω(Ls,n(∨∞,∀∞)) ≤ LSκ(Ls,n(∨∞,∀∞)) exists. But if (3) implies
(2), then this means that γ is the smallest C(n)-strong cardinal. And if (2) implies (4),
then γ is the smallest cardinal such that γ = LSγ(Ls,n(∨∞,∀∞)). But this implies κ = γ
and so (4) implies (3).

So let us first show that (3) implies (2). The following claim suffices for this.

Claim 5.4.11. If κ = LSω(Ls,n(∨∞, ∀∞)), then for all λ > κ which are limits of C(n),
there is a λ-C(n)-strong cardinal ≤ κ.

If we showed Claim 5.4.11, then we showed that (3) implies (2): as there are set many
cardinals ≤ κ but a proper class of λ > κ, there then has to be such a cardinal that is
λ-C(n)-strong for arbitrarily large λ and hence C(n)-strong.

So we can let λ > κ be a limit of C(n), and assume that κ = LSω(Ls,n(∨∞,∀∞)).
To show that κ is λ-C(n)-strong, it is sufficient to show that there is a homorophism
h : PVκ,C(n)∩Vκ → PVλ,C(n)∩Vλ of pointed P-structures. For then, Wilson’s Theorem 5.4.8
implies that there is j : V → M such that Vλ ⊆ M and j(C(n) ∩ Vκ) ∩ Vλ = C(n) ∩ Vλ.
In particular, as λ is a limit of C(n), there is some α > κ such that α ∈ C(n) and
α ∈ j(C(n)∩Vκ)∩Vλ. This implies that j(κ) > κ and so j has a critical point crit(j) ≤ κ.
Then j witnesses that crit(j) is λ-C(n)-strong. So we showed that it is sufficient to find a
homomorphism h : PVκ,C(n)∩Vκ → PVλ,C(n)∩Vλ of pointed P-structures. To obtain this,
it is sufficient to show the following claim.

Claim 5.4.12. There is a sentence ϕ ∈ Ls,n(∨∞,∀∞) such that for any limit ordinal α:

(Vα,∈) |= ϕ iff there is no homomorphism h : PVκ,C(n)∩Vκ → PVα,C(n)∩Vα .

Let us argue that showing Claim 5.4.12 is sufficient to derive the existence of a
homomorphism h : PVκ,C(n)∩Vκ → PVλ,C(n)∩Vλ . Suppose there is no such homomorphism.
Let ϕ be the sentence from Claim 5.4.12 and let ϕ∗ be the conjunction of ϕ and
Magidor’s Φ (cf. Lemma 1.2.4). Then Vλ |= ϕ∗. Therefore, by κ being LSω(Ls,n(∨∞,∀∞))
there is a structure (M,EM) of size < κ with (M,EM) |= ϕ∗. As (M,EM) |= Φ,
we can without loss of generality assume that (M,EM) = (Vα,∈) for some α < κ,
for which in particular Vα ⊆ Vκ. But by this fact and Proposition 5.4.9, the map
A 7→ A ∩ V <ω

α is a (trivial) homomorphism h : PVκ → PVα of P-structures. Because
h((C(n) ∩ Vκ)<ω) = (C(n) ∩ Vκ)<ω ∩ V <ω

α = (C(n) ∩ Vα)<ω, this is also a homomorphism
of pointed P-structures PVκ,C(n)∩Vκ → PVα,C(n)∩Vα . Thus Vα 6|= ϕ. Contradiction.

So we reduced our aim to proving Claim 5.4.12. For this, we may instead show the
following assertion.

Claim 5.4.13. There is a sentence ψ ∈ Ls,n(∧∞,∃∞) such that for any limit ordinal α:

(Vα,∈) |= ψ iff there is a homomorphism PVκ,C(n)∩Vκ → PVα,C(n)∩Vα
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Given Claim 5.4.13, taking ϕ = ¬ψ (and pushing negations through the infinitary
quantifiers and conjunctions) proves Claim 5.4.12. To show Claim 5.4.13, we let

ψ = ∃(XA : A ∈ P(V <ω
κ ))(

7∧
i=1

ψi),

where each XA is a unary second-order variable and each ψi will be specified below.
The purpose of the sentences is the following. If for some Vα there is a sequence
(XVα

A : A ∈ P(V <ω
κ )) witnessing that Vα satisfies ψi, then the map h : P(V <ω

κ ) → P(V <ω
α )

defined by A 7→ XVα
A shall preserve the clause of Definition 5.4.7 corresponding to ψi.

Then if Vα |= ψ, this map is a full homomorphism. Let us go through the conjuncts of ψ,
each time arguing why the map h is a homomorphism with respect to the intended part
of the structure.

ψ1 =
∧

A,B,C∈P(V <ω
κ )

A∩B=C

∀x((XA(x) ∧XB(x)) ↔ XC(x)).

ψ2 =
∧

A,B∈P(V <ω
κ )

V <ω
κ \A=B

∀x(XV <ω
κ

(x) ∧ ¬XA(x) ↔ XB(x)).

Clearly, ψ1 codes that XVα
A ∩XVα

B = XVα
C . Because V <ω

κ \ V <ω
κ = ∅, by ψ2 we get that

h(∅) = ∅ and h(V <ω
κ ) = V <ω

κ . Using this, satisfaction of ψ2 implies preservation of
complements.

ψ3 =
∨
k∈ω

∀x(“x is a sequence of length k” ↔ XV k
κ
(x)).

Here we take that x is a sequence of length k simply written out in first-order logic. As
Vα knows of all sequences of length k, this implies that h(V k

κ ) = V k
α . The sentence ψ4 is

a conjunction
ψ4 =

∧
A⊆X<ω

(A,)) well-founded

χA1 ,

where each χA1 is given by

χA1 = ¬∃F (dom(F ) = ω ∧ ∀n ∈ ω(XA(F (n))) ∧ ∀n ∈ ω(F (n) ( F (n+ 1))).

Note that (A,)) is well-founded iff there is a function f with domain ω and and
ran(f) ⊆ A such that f(n) ( f(n+1) for all n ∈ ω. This is coded by the above sentence,
using a binary second-order variable F which we implicitly assume to be functional (note
that we could express this).

In the formula below, for some k ∈ ω and 1 ≤ i1, . . . , ij ≤ k, and further A ∈ P(V <ω
κ ),

we write ϕk,i1,...,ij(x) for the formula ∃y1, . . . , yk(x = (y1, . . . , yk) ∧ XA((yi1 , . . . , yij))),
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expressing that x is some k-tuple x = (y1, . . . , yk) and (yi1 , . . . , yij) is a member of XA.
Then let

ψ5 =
∧

A,B∈P(V ω
κ ),

B={(x1,...,xk) : (xi1 ,...,xij )∈A)},
k∈ω,1≤i1,...,ij≤k

∀x(XB(x) ↔ ϕAk,i1,...,ij(x)).

Then ψ5 simply codes the defining conditions of π−1
k,(i1,...,ij)

(A) = B.

Now write χAk for the formula

∃y1, . . . , yk+1(x = (y1, . . . , yk+1) ∧ ∃z(E(z, xk+1) ∧XA((y1, . . . , yk, z)))),

expressing that x = (y1, . . . , yk+1) is some (k + 1)-tuple and there is some z ∈ yk+1 such
that (y1, . . . , yk, z) is a member of XA, and let

ψ6 =
∧

B={(x1,...,xk+1) :
∃z∈xk+1(x1,...,xk,z)∈A}

A,B∈P(V ω
κ ),k∈ω

∀x(XB(x) ↔ χAk (x)).

Again, ψ6 simply codes the defining conditions of BPk(A) = B. Finally, let

ψ7 = ∀x(XC(n)∩Vκ(x) ↔ (Φ(n)){y : E(y,Vx)}).

Here (Φ(n)){y : E(y,Vx)} is the relativisation of Φ(n) to Vx, i.e., the rank initial segment
cut off at some ordinal x, truthfully coding that Vx ∈ K(n), i.e., that x ∈ C(n) (recall
Corollary 1.2.17). Then ψ7 uses that Vα is correct about Vβ for β < α and the sentence
Φ(n) to express that XVα

C(n)∩Vκ
is actually Vα ∩ C(n). This ends the construction of ψ and

we thus showed what we promised. This ends the proof that (3) implies (2).
And now we show that (4) implies (2), i.e., if κ is C(n)-strong, then it is an LSκ

number of Ls,n(∨∞,∀∞). So let τ be some vocabulary of size < κ, A a τ -structure and
ϕ ∈ Ls,n(∨∞,∀∞)[τ ] such that A |= ϕ. Without loss of generality we can assume that
τ ∈ Hκ. Our goal is to show that there is a structure of size < κ satisfying ϕ. For this
purpose take a λ > κ which is a limit point of C(n) with A, ϕ ∈ Vλ. By C(n)-strength
of κ there is an elementary embedding j : V → M with crit(j) = κ, j(κ) > λ, Vλ ⊆ M
and C(n) ∩ Vλ = j(C(n) ∩ Vκ) ∩ Vλ. Note that A ∈M and that j(τ) = τ . We will show
that M |= “A |= j(ϕ)”. This makes sense, because j(ϕ) is a τ -sentence, as j(τ) = τ .
Furthermore, this is sufficient, because then M |= “|A| < λ < j(κ) ∧ A |= j(ϕ)”, and so
by elementarity of j, in V there has to be some model of ϕ of size < κ. We show the
following claim, which will be sufficient. Let S be the set of variables appearing in ϕ.
Note that the set of variables used in j(ϕ) is j(S).

Claim 5.4.14. For every structure B ∈ Vλ and for every subformula ψ of ϕ and
any variable assignment f : j(S) → Vλ with f ∈ M , if B |= ψ[f ◦ (j � S)], then
M |= “B |= j(ψ)[f ]”.
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Note that j � S is a map S → j(S), so f ◦ (j � S) is a sensible assignment on S.
Furthermore, ϕ is a sentence and so concrete assignments do not play a role in its
evaluation. Thus we get that A |= ϕ implies that M |= “A |= j(ϕ)” by the claim, by
just taking f to be any assignment and B to be A.

Before we show Claim 5.4.14, we show the following stronger assertion for formulas of
Ls,n, which gives us the base case for our induction for Claim 5.4.14.

Claim 5.4.15. For every structure B ∈ Vλ and for every subformula ψ of ϕ such that
ψ ∈ Ls,n, and every f : j(S) → Vλ with f ∈ M , we have B |= ψ[f ◦ (j � S)] iff
M |= “B |= j(ψ)[f ]”.

To show Claim 5.4.15, notice that because ψ ∈ Ls,n and τ ∈ Hκ, the only difference
between ψ and j(ψ) is a possible renaming of variables, so, for example, application
of j to ψ = R(x1, . . . , xn) gives us j(ψ) = R(j(x1), . . . , j(xn)). This means that if y
is some variable appearing in j(ψ) it is of the form j(x) for some x ∈ S. But then
(f ◦ (j � S))(x) = f(j(x)) = f(y) and so

B |= R(f(j(x1)), . . . , f(j(xn))) iff M |= “B |= R(f(y), . . . , f(y))”.

These calculations of how sentences of the form j(ψ) for ψ ∈ Ls,n look like carry over to
all sentences from Ls,n. Thus for Claim 5.4.15 to hold, we only have to check whether M
is correct about B’s satisfaction of Ls,n-formulas. But this is the case: Because λ ∈ C(n),
Vλ and V agree about Ls,n-satisfaction (cf. Corollary 1.2.21). Further, λ is a limit point of
C(n) and M is correct about C(n) below λ (as it is the image of an embedding witnessing
C(n)-strength). ThusM sees that it is a limit point of C(n) and so λ ∈ (C(n))M . Therefore
also V M

λ and M agree about Ls,n-satisfaction. But also V M
λ = Vλ and therefore V , Vλ,

and M all agree on Ls,n-satisfaction.
Now let us start our induction to prove Claim 5.4.14. Recall that we do not allow sort

quantifiers, QWF or negation to take infinitary formulas and so the base case and the
cases of application of sort quantifiers, QWF and negation follow from Claim 5.4.15. The
case for ∧ is trivial.

So let us consider the case ψ = ∃xχ and B |= ∃xχ[f ◦ (j � S)], where x is a single
(possibly second-order) variable. Then there is an x-variant g of f ◦ (j � S) such that
B |= χ[g]. Further j(ψ) = ∃j(x)j(χ). Fix a = g(x). In M , we have to find a j(x)-variant
h of f with M |= “B |= j(χ)[h].” Let h be defined by

h(y) =

{
a, if y = j(x)

f(y), otherwise.

For the case that x is a second-order variable, note that B ∈ Vλ ⊆M and so M contains
all subsets of B. Clearly, h is a j(x)-variant of f . Further, h ∈M as it was defined from
f ∈M . Also for x 6= y ∈ S, j(y) 6= j(x), so g(y) = f◦(j � S)(y) = f(j(y)) = h(j(y)) and,
by definition, h(j(x)) = a = g(x). Hence h ◦ (j � S) = g. In particular B |= χ[h ◦ (j � S)]
and thus, by induction hypothesis, M |= “B |= j(χ)[h]”, as desired.
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If ψ =
∨
i<γ χi and B |= ψ[f ◦ (j � S)], there is some i < γ such that B |= χi[f ◦ (j � S)].

By induction hypothesis, M |= “B |= j(χi)[f ].” Now j(ψ) =
∨
k<j(γ) χ

∗
k for some χ∗

k.
Because χi appears as a disjunct in ψ, j(χi) is one of the disjuncts of j(ψ). In particular,
then M |= “B |= j(ψ)[f ]”.

If ψ = ∀Tχ and B |= ∀Tχ[f ◦ (j � S)]. Then for any T -variant g of f ◦ (j � S), we have
B |= χ[g]. Note that j(ψ) = ∀j(T )j(χ). Now to show thatM |= “B |= ∀j(T )j(χ)[f ]”, we
let h be any j(T )-variant of f with h ∈M . This means h � (j(S)\j(T )) = f � (j(S)\j(T )).
Consider h′ = h ◦ (j � S). Then if x ∈ (S \ T ), we have j(x) ∈ (j(S) \ j(T )). And then
h′(x) = h(j(x)) = f(j(x)), where the latter equality holds because h is a j(T )-variant of
f . But this shows that h′ is a T -variant of f ◦ (j � S). Thus B |= χ[h′], which just means
B |= χ[h ◦ (j � S)]. Then by induction hypothesis M |= “B |= j(χ)[h]”. As h was an
arbitrary j(T )-variant of f from M we thus showed that M |= “B |= ∀j(T )j(χ)[f ].”

5.5. Characterising Shelah cardinals
As a last note on proper class logics, let us show that we can give the following compactness
characterisation of Shelah cardinals. To our best knowledge, this is the first known model-
theoretic characterisation of Shelah cardinals.
Theorem 5.5.1. The following are equivalent for a cardinal κ:
(1) κ is Shelah, i.e., for all f : κ → κ, there is an elementary embedding j : V → M

with crit(j) = κ and Vj(f)(κ) ⊆M .

(2) κ is inaccessible and if T ⊆ L2(∧∞,∃∞,∨κ,∀κ)[τ ] is a theory of size κ such that
for every ϕ ∈ T there is τϕ ⊆ τ such that |τϕ| < κ and ϕ ∈ L2(∧∞,∃∞,∨κ, ∀κ)[τϕ]
and all < κ-sized subsets of T have a model of size < κ, then T has a model.

Proof. First assume (1). Clearly, a Shelah cardinal is measurable, so in particular
inaccessible. To show the second part of (2), let T = {ϕi : i < κ} ⊆ L2(∧∞,∃∞,∨κ, ∀κ)
be a theory over a vocabulary τ such that every ϕi only uses < κ many symbols from
τ and such that all its < κ-sized subsets are satisfiable by a model of size < κ. Then
writing Tα = {ϕi : i < α} for α < κ, every Tα is a theory of size < κ over a vocabulary
τα of size < κ which we can assume to be in Vκ. This implies that |τ | ≤ κ and further we
can write τ =

⋃
α<κ τα as an increasing union. Further, every Tα has a model Mα of size

< κ and hence without loss of generality we can assume that Mα ∈ Vκ. Then we can let
f : κ→ κ be a function such that Mα ∈ Vf(α). Because κ is Shelah, there is j : V →M
with crit(j) = κ and Vj(f)(κ) ⊆ M . Then in M , j(T ) is of the form {ϕ∗

i : i < j(κ)} for
some formulas ϕ∗

i , and T ∗
κ = {ϕ∗

i : i < κ} is satisfiable by a model B ∈ Vj(f)(κ). Further
j“T = {j(ϕi) : i < κ} ⊆ {ϕ∗

i : i < κ} = T ∗
κ , so M |= “B |= j(ϕ)” for all ϕ ∈ T . Note

that j(τ) ⊇ j“τ = τ and so B � τ makes sense. We show that B � τ |= T by showing the
following claim:

Claim 5.5.2. For any formula ϕ ∈ L2(∧∞,∃∞,∨κ,∀κ)[τ ] with a set of free variables S
and any assignment f : j(S) → B ∪

⋃
n∈ω P(Bn) in M , if M |= “B |= j(ϕ)[f ]”, then

B � τ |= ϕ[f ◦ j].
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We show this by induction on the complexity of ϕ. If ϕ = R(x1, . . . , xn) for some
R ∈ τ , then R ∈ Vκ and so j(ϕ) = R(j(x1), . . . , j(xn)). Then the claim is clear by
definition.

If ϕ =
∨
i<γ ψi for some γ < κ, then j(ϕ) =

∨
i<γ j(ψi). So if M |= “B |= j(ϕ)[f ]”,

thenM |= “B |= j(ψi)[f ]” for some i < γ. Then by induction hypothesis B � τ |= ψi[f ◦j],
so also B � τ |=

∨
i<γ ψi[f ◦ j].

If ϕ = ∀Qψ for some set of variables Q of size < κ, we can without loss of generality
assume that Q ∈ Vκ and so j(Q) = Q. Then j(ϕ) = ∀Qj(ψ). We assume M |= “B |=
∀Qj(ψ)[f ]”. Let g′ be any Q-variant of f ◦ j. We have to show B � τ |= ψ[g′]. Note that
g′ � Q : Q→ B ∪

⋃
n∈ω P(Bn) is in M because Q,B ∈ Vj(f)(κ) ⊆M . So we can define an

assignment g on j(S) in M by letting

g(x) =

{
g′(x), if x ∈ Q

f(x), if x ∈ j(S) \Q.

Then g is a Q-variant of f , so M |= “B |= j(ψ)[g]”. Then by induction hypothesis,
B � τ |= ψ[g ◦ j]. Thus it is sufficient to show that g ◦ j = g′. But for v ∈ Q,
j(v) = v, so g′(v) = g(v) = g(j(v)). And if v ∈ S \ Q, then j(v) ∈ j(S) \ Q, so
g(j(v)) = f(j(v)) = g′(v) where the latter holds because g′ is a Q-variant of f ◦ j.

If ϕ =
∧
i<δ ψi for δ any ordinal, then j(ϕ) =

∧
i<j(δ) ψ

∗
i for some ψ∗

i . We assume
M |= “B |=

∧
i<j(δ) ψ

∗
i [f ]”. Then if k < δ, we have that j(ψk) is among the ψ∗

i , so
M |= “B |= j(ψk)[f ]”. Then by induction hypothesis, B � τ |= ψk[f ◦ j]. So overall,
B � τ |=

∧
i<δ ψi[f ◦ j].

Finally, if ϕ = ∃Qψ, where Q is a set of variables of any size, then j(ϕ) = ∃j(Q)j(ψ).
We assume M |= “∃j(Q)j(ψ)[f ]”. Then there is a j(Q)-variant g of f such that M |=
“B |= j(ψ)[g]”. By induction hypothesis B � τ |= ψ[g ◦ j]. Now if x ∈ S \ Q, then
j(x) ∈ j(S)\ j(Q), so g(j(x)) = f(j(x)). So g ◦ j is a Q-variant of f ◦ j with B |= ψ[g ◦ j].
Therefore B |= ∃Qψ[f ◦ j].

And now assume (2) and let f : κ→ κ. Without loss of generality, we can assume that
f is increasing. We want to produce j : V →M with crit(j) = κ and Vj(f)(κ) ⊆M . For
this purpose consider the sentence ψ = ∃(XA : A ∈ P(V <ω

κ ))(
∧8
i=1 ψi) where ψ1 to ψ6 are

as in the proof of Theorem 5.4.3 and where ψ7 = ∀x, y(F (x, y) ↔ Xf (x, y)) with F a
new 2-place predicate symbol and Xf the variable corresponding to f ⊆ V 2

κ . Further,
take for α < κ the σα(x) of Lκω that defines α (cf. Lemma 1.2.4) and let

ψ8 =
∧
α<κ

∀x(Xα(x) ↔
∨
β<α

σβ(x)).

Then if (M,∈, FM) |= ψ is a transitive model, then there is a homomorphism of P-
structures h : PVκ → PM such that h(f) = FM by letting h(A) = XM

A for A ∈ P(V <ω
κ )

where (XM
A : A ∈ P(V <ω

κ )) is the sequence witnessing that (M,∈, FM) |= ψ. Equipped
with ψ, take for every α ≤ κ a new constant symbol cα and consider the theory

T = {ψ} ∪ {Φ} ∪ {“cα and cβ are ordinals with cα < cβ”: α < β ≤ κ},
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where Φ is Magidor’s Φ (cf. Lemma 1.2.4). Then any model of T can without loss
of generality be assumed to be of the form (Vδ,∈, f ′, cVδα )α≤κ. Any model of T has to
contain an ordinal of order type ≥ κ by the last part of the theory and so δ > κ. Since
(Vδ,∈, f ′, cVδα )α≤κ |= ψ, it gives rise to a homomorphism h : PVκ → PVδ in the manner
pointed out above. Note that by ψ7 we have h(f) = f ′. By Theorem 5.4.8, this gives rise
to an elementary embedding j : V → M such that Vδ ⊆ j(Vκ) and h(A) = j(A) ∩ V <ω

δ

for all A ⊆ V <ω
κ . In particular f ′ = h(f) = j(f) ∩ V 2

δ and so j(f)(κ) = f ′(κ) < δ. Thus
Vj(f)(κ) ⊆ Vδ ⊆ j(Vκ) ⊆ M . So we only have to show that crit(j) = κ to see that κ is
Shelah. By our choice of T , Vδ contains an ordinal of order type κ+ 1 and so we have
δ > κ. Because Vδ ⊆ j(Vκ) we have to have crit(j) ≤ κ. And further, for α < κ, we have
by usage of ψ8 that α = h(α) = j(α) ∩ Vδ and so crit(j) = κ.

Left to show is that T is satisfiable. Clearly T is of size κ and every sentence in T only
uses finitely many symbols from T ’s vocabulary. So by our assumption it is sufficient to
show that every < κ sized subset T0 of T has a model of size < κ. So let T0 be such a
subset and γ = sup{β < κ : cα < cβ ∈ T0} < κ and take any ordinal η with γ < η < κ
such that η is closed under f . Note that such an η exists because κ is regular. Then
let cVηα = α for α ≤ γ and cVηκ = γ + 1. Then (Vη,∈, f � η, cVηα , c

Vη
κ )α≤γ |= T0, because by

Proposition 5.4.9, Vη ⊆ Vκ implies that A 7→ A ∩ V <ω
η for A ⊆ V <ω

κ defines a (trivial)
homomorphism PVκ → PVη and the rest of T0 is satisfied by our choice of the constants.
Finally, |Vη| < κ, as κ is inaccessible.
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6. Symbiosis and Reflection
Properties

Remarks on co-authorship. The results of Section 6.3 are joint with Will Boney. The
results of Section 6.4 are joint with Lorenzo Galeotti and Yurii Khomskii.

6.1. Introduction
Väänänen studied situations in which definability in a logic and definability in set theory
conincide, and dubbed this phenomenon symbiosis (cf. [Vää79]). Recently, first Bagaria
and Väänänen [BV16], and then Galeotti, Khomskii, and Väänänen [Gal19,GKV20]
showed that in case a logic is symbiotic, there is a systematic equivalence between LST
and ULST numbers, respectively, and certain set-theoretic reflection principles. In his
Master’s Thesis [Osi21], the author considered whether the same is true for compactness
properties, and while a partial result was given, showing that compactness properties of
symbiotic logics give rise to reflection principles in certain classes of partial orders, this
did not lead to an equivalence. In this chapter, we will refine these results and show a
full equivalence (Theorem 6.3.12).

The chapter is structured as follows. Section 6.2 reviews the basic notions relevant in
the context of symbiosis and the known results about how symbiosis mediates transfer
between Löwenheim-Skolem properties of logics and set-theoretic reflection principles.
Section 6.3 discusses the interaction between symbiosis and compactness properties of
logics, and proves the main theorem 6.3.12. Finally, for purposes of completeness, Section
6.4 gives proofs of some statements about weak forms of LST numbers and weak reflection
principles (cf. Corollary 6.4.16 and Theorem 6.4.13), which were partially stated before
by Bagaria and Väänänen in [BV16,Bag23].

6.2. Motivation and definitions
We saw already that certain large cardinals can be characterised by certain reflection
principles. For example, the existence of a supercompact cardinal is equivalent to the
existence of a cardinal κ witnessing VP(κ,Σ2) (cf. Theorem 1.3.32). In a series of articles,
Bagaria motivated axioms all over the large cardinal hierarchy by similar properties,
so-called structural reflection principles (cf. the survey paper [Bag23]). Note that the
above cited result about supercompact cardinals gives us a reflection property for all
classes definable by a Σ2 formula. In [BV16], Bagaria and Väänänen studied reflection
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principles for classes of structures which are situated lower in the Lévy hierarchy. For
this purpose, in this chapter we will denote by R a set-theoretic predicate, i.e., simply
a formula in the language of set theory. A formula Φ is called ∆0(R) if it is formed
using the usual rules for ∆0 formulas, but additionally is allowed to use R as a primitive
formula, i.e., Φ is allowed to form boolean combinations and bounded quantification over
formulas involving R. The formula Φ is called Σ1(R) if it is of the form Φ = ∃xΨ, and
it is called Π1(R) if Φ = ∀xΨ for some ∆0(R) formula, respectively. It is ∆1(R) if it is
provably equivalent to both a Σ1(R) and a Π1(R) formula.

Recall from Section 1.2.1 that by a model class we mean a class of structures in some
fixed vocabulary τ . Bagaria and Väänänen studied reflection principles for model classes
defined by some Σ1(R) formula for some Π1-predicate R. Concretely they considered the
following statement, which they abbreviated as SRR(κ) (cf. [BV16, §3]):

For every proper model class K such that K is definable by a Σ1(R) formula
without parameters, for any A ∈ K there exists B ∈ K with |B| < κ and an
elementary embedding e : B → A.

If SRR holds of some cardinal, the least such δ is called the structural reflection number
of R and we write SRR = δ. Bagaria and Väänänen showed that under assumption of
symbiosis between R and a logic L, the structural reflection number of R is precisely the
LST number of L (recall Definition 1.2.9). Let us next introduce the definitions on the
logics’ side needed to define the notion of symbiosis.

Recall that sort logic Ls,n can define the model classes which are Σn ∪ Πn definable in
the Lévy hierarchy. Research on symbiosis, initiated by Väänänen in [Vää79] is interested
in similar connections between definability by a logic and in set theory (and in fact,
Väänänen’s results on sort logic were obtained in the context of studying symbiosis). For
many classical logics, the relevant level of the Lévy hierarchy is situated between ∆1 and
∆2, or more concretely, coinciding with the ∆1(R) level for some Π1-predicate R.

Intuitively, symbiosis is then said to hold between a logic L and the predicate R if the
model classes definable in the logic are precisely the ∆1(R) definable ones (which are
closed under isomorphism).1 It turns out that for logics relevant in this context, like L(I),
this cannot literally be true. Instead, the logics that achieve this kind of equidefinability
are what is known as ∆-closures of logics.

Definition 6.2.1. Let L be a logic, τ a vocabulary. A class K of τ -structures is said
to be Σ(L), or Σ(L)-definable iff there is an expansion τ ∗ ⊇ τ by finitely many symbols
and a ϕ ∈ L[τ ∗] such that

{A � τ : A |=L ϕ} = K.

K is called ∆(L) or ∆(L)-definable iff both K and the complement of K are Σ(L).

Intuitively, a model class K of τ -structures is Σ(L) if it can be axiomatised by a
sentence ϕ ∈ L[τ ∗] using some expanded vocabulary τ ∗ ⊇ τ . This is not literally true,

1Note that we cannot do without the restriction to classes closed under isomorphism by point (iii) of
Definition 1.2.1.
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as models of ϕ are τ ∗-structures, but instead, K as required by the definition is the
collection of reducts of τ ∗-structures which satisfy ϕ.

Based on this definition, one can define the ∆-closure ∆(L) of L as the logic which is
able to define all model classes which are ∆(L)-definable, i.e., both K and its complement
are definable by some sentence using additional symbols. This is a classic construction
(cf., e.g., [BF85, Chapter II, Section X]). The logic ∆(L) has for every ∆(L)-definable
model class K of τ -structures a sentence ϕ ∈ ∆(L)[τ ] axiomatising K.

To be precise, for our official definition of the logic ∆(L) we refer the reader to
[Osi21, Section 2.8], where the construction is carried out, including a concrete syntax.
This makes sure that ∆(L) has the following folklore properties (cf. e.g., [BF85, Chapter
II, Theorem 7.2.4] and [Osi21, Section 2.8]; for property (6), cf., e.g., [Osi21, Lemma
4.1.9] for a proof).

Theorem 6.2.2. Let L be a strong logic with dep∗(L) = κ. Then the following hold:

(1) ∆(L) is a strong logic.

(2) For every τ , the logic ∆(L) can define precisely the model classes of τ -structures
which are ∆(L) definable.

(3) dep∗(∆(L)) = κ.

(4) L ≤ ∆(L).

(5) ∆(∆(L)) ≡ ∆(L).

(6) If comp(L) exists, then comp(L) = comp(∆(L)).

When considering definability in set theory, we have to pay attention to whether we are
allowing the use of parameters. In our context, if τ is a vocabulary which is not ∆1(R)
definable, then we cannot hope to find a ∆1(R) definition without parameters for a model
class K of τ -structures. Symbiosis therefore naturally splits into the cases considering
set-theoretic definability with and set-theoretic definability without parameters. To track
which of the two settings we are operating with, following [Osi21, Chapter 3], we will
consider the two notions of r-symbiosis and p-symbiosis (for restricted and parametrised,
respectively). For this, we say that a vocabulary τ is restricted iff it is finite and definable
by a ∆1 formula without parameters. The unparametrised version of symbiosis is then
formulated for model classes over these types of vocabularies.

Definition 6.2.3. Let L be a logic and R a predicate of set theory. We say that L and
R are r-symbiotic iff the following two conditions are satisfied:

(i) For any restricted vocabulary τ , if K is an L-definable model class of τ -structures,
then K is ∆1(R) definable without parameters.

(ii) For any restricted vocabulary τ , if K is a model class of τ -structures which is ∆1(R)
definable without parameters, then K is ∆(L)-definable.

We collect the prime examples of symbiosis.
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Proposition 6.2.4 (Väänänen (cf., e.g., [BV16, Proposition 5.4])). The following pairs
of logics L and predicates R are r-symbiotic.

(1) L2 and the power set predicate Pow(x, y), true of sets x and y iff x = P(y).

(2) L(I) and Card.

(3) L(QWF) and ∅.

Note that item (3) means that ∆(L(QWF))-definability corresponds to ∆1 definability.
The following lemma is useful when checking whether some logic L and a predicate R
are symbiotic. We will further base the definition of p-symbiosis on it. To fix some
notation, let us say that for some predicate R, a transitive model (N,∈) is R-correct if
RN = R ∩N . We fix the class of (models isomorphic to) R-correct models as

QR = {(M,E) : there is some transitive R-correct model (N,∈) with (M,E) ∼= (N,∈)}.

Lemma 6.2.5 (Väänänen (cf., e.g., [BV16, Proposition 5.1])). The following are equiva-
lent:

(1) Condition (ii) of the notion of r-symbiosis.

(2) The class QR is ∆(L)-definable.

Let us further state some useful properties of R-correct models: If (N,∈) is transitive
and R-correct, then it is easy to see that the usual absoluteness results for formulas in
the language of set theory carry over to formulas involving R. Thus, ∆0(R) formulas
are absolute between N and V ; and similarly, Σ1(R), Π1(R), and ∆1(R) formulas are
upward absolute, downward absolute, and absolute, respectively.

It turns out that for transfer results between LST properties of logics on the one side,
and principles of the form SRR(κ) on the other side, the notion of r-symbiosis is sufficient.

Theorem 6.2.6 (Bagaria & Väänänen [BV16, Theorem 5.5]). Let L be a logic and R a
set-theoretic predicate such that L and R are r-symbiotic and let κ be a cardinal. Then
LST(L) = κ iff SRR = κ.

Motivated by this result, Galeotti, Khomskii and Väänänen were interested in whether
a similar transfer result holds between ULST numbers and some type of upward reflection
principles. Note that for the ∆-closure of a logic, expanding the vocabulary of a sentence
is essential. In particular, we are allowed to add additional sorts to the vocabulary, and
so a sentence ϕ witnessing that a class K of τ -structures is Σ(L) might involve sort
symbols not included in τ . In particular, a structure expanding A and satisfying ϕ might
have additional domains that make it larger than |A|. It is for this reason that in general,
the ∆-closure of a logic L does not preserve ULST(L). To obtain their result, Galeotti,
Khomskii and Väänänen therefore used a stronger version of symbiosis called bounded
symbiosis, which includes an adaption of the ∆-closure called bounded ∆-operation ∆B

(cf. [Vä83]). The symbiotic logics mentioned in Proposition 6.2.4 are also boundedly
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symbiotic (cf. [GKV20, Section 5]). The operation ∆B involves bounds on how large a
structure can get when enlarging the vocabulary by possible additional sort symbols. To
make up for this change, on the set-theoretic side, bounded symbiosis includes reference
to the concepts of definably bounding functions and ΣF

1 (R) formulas, which binds the size
of witnesses to a Σ1(R) formula by some definable function F (cf. [GKV20, Definitions
4.3 and 4.5]). With this they could show the following transfer result:

Theorem 6.2.7 (Galeotti, Khomskii & Väänänen [GKV20, Theorem 6.3]). Let L be
a logic with dep∗(L) = ω and ∆0-definable syntax. Let R be a Π1 predicate. Further,
let κ be a cardinal. If L and R are boundedly symbiotic, then ULST(L) = κ iff κ is the
smallest cardinal such that the following upward reflection principle holds:

For every definably bounding function F and every model class K of structures
in a restricted vocabulary such that K is ΣF

1 (R) definable without parameters,
if there is A ∈ K such that |A| ≥ κ then for every λ ≥ κ there is B ∈ K with
|B| ≥ λ and an elementary embedding e : A → B.

6.3. Symbiosis and compactness properties
The results of Bagaria, Galeotti, Khomskii, and Väänänen left open whether similar
results could be obtained for transfer between compactness properties of logics and some
set-theoretic reflection principles, and in fact, this was stated as an open problem in
[GKV20, Question 8.4]. This question was considered by the author in his Master’s
Thesis in [Osi21], but only partially answered.

We first discuss the notion of p-symbiosis, the reflection principle for classes of partial
orders introduced in [Osi21], and why it fails to give rise to an equivalence to compactness
properties. We proceed by introducing a framework of local definability in Section 6.3.1.
Finally, in Section 6.3.2, we will use local definability to refine the reflection principle from
[Osi21] and prove our main result (Theorem 6.3.12), which provides a full equivalence to
standard compactness properties, mediated by symbiosis.

Notice that for interesting compactness properties of strong logics, considering large
vocabularies is essential. For instance, as comp(L2) is the smallest extendible cardinal κ,
the compactness property is only useful for theories over vocabularies of size ≥ κ. For
that reason, a notion of symbiosis that relates definability in a logic and in set theory has
to make reference to large vocabularies as well. On the set-theoretic side, we therefore
have to deal with parameters to be able to talk about any such vocabularies. This is
where p-symbiosis comes into play.

Definition 6.3.1 (Osinski [Osi21, Definition 3.2.1]). Let L be a logic and R a predicate
of set theory. We say that L and R are p-symbiotic iff the following two conditions are
fulfilled:

(i) If K is a model class over the vocabulary τ and definable by ϕ ∈ L[τ ], then K is
∆1(R) definable with parameters in {ϕ, τ}.

(ii) QR is ∆(L)-definable.
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Other variations of symbiosis that allow for the usage of parameters were considered in
[Vää79], namely A-symbiosis for some class A. The notion allowed to connect definability
in a logic to definability with parameters in A. However, this required to restrict the
syntax of the logic to consider only vocabularies and sentences of L which are contained
in A. The main result on p-symbiosis is the following:

Theorem 6.3.2 (Osinski [Osi21, Theorem 3.2.2]). Let L be a logic such that L ≥ Lκω
and dep∗(L) = κ. Let R be a predicate of set theory. If L and R are p-symbiotic
and τ ∈ Hκ is a vocabulary then the following are equivalent for any model class K of
τ -structures closed under isomorphism:

(1) K is ∆(L)-definable.

(2) K is ∆1(R) definable with parameters in Hκ.

Notice the similarity between this theorem and the main results about definablitity in
sort logic (cf. Corollary 1.2.23). The author’s Master’s thesis [Osi21] related compactness
of a logic L symbiotic to a predicate R to the existence of specific embeddings, called
(R, λ)-embeddings for a cardinal κ, in certain classes of partial orders. We will consider
a similar notion below (cf. Definition 6.3.8) and so we will refrain from giving a precise
definition of (R, λ)-embedding here. To state the result, we need to fix some (standard)
conventions on naming properties of partial orders.

Definition 6.3.3. Suppose τ is a vocabulary including a binary relation symbol < and
(A, <A) and (B, <B) are τ -structures such that <A and <B are partial orders. We say:

(1) A subset X ⊆ A has an upper bound iff there is a ∈ A such that x <A a for all
x ∈ X.

(2) For a cardinal κ, <A is <κ-directed iff every X ∈ PκA has an upper bound.

(3) If f : A → B is an embedding, we say that (B, <B) contains an upper bound for
(A, <A) iff f“A has an upper bound b ∈ B.

The result proved in [Osi21] is then:

Theorem 6.3.4 (Osinski [Osi21, Corollary 5.1.3]). Let L be a logic such that L ≥ Lλω
and dep∗(L) = λ. Let κ ≥ λ be a regular cardinal and assume L to be p-symbiotic with
a predicate R. Assume that L is κ-compact. Then the following holds:

For every model class K of structures in a vocabulary τ ∈ Hλ containing a
binary relation symbol <, if K is Σ1(R) definable with parameters in Hλ and
A = (A,<A, . . . ) ∈ K is such that <A is a <κ-directed partial order, then
there is B ∈ K and an embedding f : A → B such that:
(i) f is an (R, λ)-embedding.
(ii) (B, <B) contains an upper bound for (A, <A).
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We call this an end extension principle, and also write EEPλκ(R) for this statement.

The problem when trying to prove a converse result that would show κ-compactness
of a logic L under the assumption of EEPλκ(R) for some set-theoretic predicate symbiotic
to R is that we are missing the ability to argue about large vocabularies (note that
EEPλκ(R) restricts attention to classes of structures over vocabularies from Hλ). On the
other hand, directly strengthening the statement leads to inconsistency. To be precise,
let EEPλκ(R)∗ be the statement:

For every model class K of structures in an arbitrary vocabulary τ containing
a binary relation symbol <, if K is Σ1(R) definable with parameters in {τ}
and A = (A,<A, . . . ) ∈ K is such that <A is a <κ-directed partial order,
then there is B ∈ K and an embedding f : A → B such that:
(i) f is an (R, λ)-embedding.
(ii) (B, <B) contains an upper bound for (A, <A).

Proposition 6.3.5 (Osinski [Osi21, Proposition 5.5.2]). EEPλκ(R)∗ is inconsistent for all
cardinals λ and κ and any R.

In fact, allowing any vocabularies of size > κ leads to inconsistency:

Proposition 6.3.6 (Osinski [Osi21, Proposition 5.5.3]). EEPλκ(R) is inconsistent for all
cardinals λ > κ and any R.

6.3.1. Local definability
We will define the principle EEPλκ(R)+, stronger than EEPλκ(R), that can deal with
additional classes of structures, but Propositions 6.3.5 and 6.3.6 show that we have to be
careful with this to not run into inconsistencies. We achieve an appropriate definability
notion for structures in a large vocabulary τ by considering small bits of τ , which each
come with a separate Σ1(R) definition. In this section, we discuss this definability notion.

To state this notion of definability, we have to fix a class of canonical renamings
of vocabularies. For this purpose, note that if τ is a vocabulary of size |τ | < λ, then
there is a renaming f : τ → τ ∗ to some vocabulary τ ∗ ∈ Hλ. Let us fix for any
vocabulary τ , every cardinal λ and every τ0 ∈ Pλτ such a vocabulary τ ∗0 ∈ Hλ and such
a renaming fτ0 : τ0 → τ ∗0 . Let us further fix a set of pairwise distinct constant symbols
Cλ = {ci : i < λ} ⊆ Hλ such that the set {c ∈ Hλ : c is a constant symbol and c /∈ Cλ}
still has size |Hλ|. We may choose Cλ in a way that Cλ ⊆ Cµ for λ < µ. We may further
assume the following:

(i) If ci ∈ τ0 for any i, then fτ0(ci) = ci.

(ii) If x 6= ci, then for no fτ0 we have fτ0(x) = ci.

(iii) If γ < λ, then fτ0∪{ci : i<γ} � τ0 = fτ0 .
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Let us further call a vocabulary τ amenable if τ ∩Cλ = ∅ for all λ. The purpose of Cλ is
to have a fixed set of constant symbols which we do not have to worry about interfering
with, when we rename some amenable vocabulary via some fτ0 . Note that any vocabulary
may be renamed to an amenable one.

We can now consider the notion of definability we will operate with. Recall that for a
renaming f : τ → τ ∗ and a τ -structure A we write f(A) for the renamed version of A to
a τ ∗-structure.

Definition 6.3.7. Let R be a set-theoretic predicate, λ a cardinal and τ a vocabulary.
Let K be a class of τ -structures. We say that K is locally-λ-Σ1(R) definable iff there is a
collection {Kτ0 : τ0 ∈ Pλτ} such that for any τ0 ∈ Pλτ , Kτ0 is a Σ1(R) definable class of
τ ∗0 -structures and for all τ -structures A:

A ∈ K iff ∀τ0 ∈ Pλτ(fτ0(A � τ0) ∈ Kτ0)

Note that because the global satisfaction relation for Σ1(R) formulas is definable by a
single formula in the language of set theory, also the above definition can be cast as a
definition by a single formula of ZFC.

The idea behind a class being locally-λ-Σ1(R) definable is the following. When studying
whether some class is definable in a logic L, we distinguish between definability by a
sentence ϕ ∈ L or by a theory T ⊆ L. These two notions can differ, and it can happen that
Mod(T ) is not definable by a single sentence. When studying definability in set theory,
we are usually only concerned with definability by a single formula Φ(x, p), potentially
with a parameter p. But note that for compactness properties of a logic L, considering
L-theories is crucial. Local definability as above allows us to consider classes which are
defined by a collection of formulas in the language of set theory, mirroring definability by
a theory in a logic. It is this property that will make the notion fruitful when studying
transfer between compactness properties of logics and set-theoretic reflection principles.

We can now introduce the notion of (R, λ)+-embeddings, which we will need alongside
Lemma 6.3.9 for the statement and proof of our main result (Theorem 6.3.12), respectively.
Lemma 6.3.9 also shows that the introduced notion is natural by showing that for a
logic L symbiotic to R, (R, λ)+-embeddings correspond precisely to ∆(L)-elementary
embeddings.

Definition 6.3.8. Let R be a set-theoretic prediacte, λ a cardinal and τ an amenable
vocabulary. Consider τ -structures A and B and an embedding e : A → B. We say that e
is an (R, λ)+-embedding iff for every τ0 ∈ Pλτ and every γ < λ, if K is a model class of
τ ∗0 ∪ {ci : i < γ}-structures which is ∆1(R) definable with parameters in Hλ, then for all
possible interpretations cAi of the constants ci by elements of A:

(fτ0(A � τ0), c
A
i )i<γ ∈ K iff (fτ0(B � τ0), e(c

A
i ))i<γ ∈ K.

Lemma 6.3.9. Let A and B be τ -structures for some amenable vocabulary τ and
e : A → B a map. Let L be a logic with dep∗(L) = λ, L ≥ Lλω, R a set-theoretic
predicate and assume that R and L are p-symbiotic. Then the following are equivalent:
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(1) e is an (R, λ)+-embedding.

(2) e is a ∆(L)-elementary embedding.

For its proof, we will use the following lemma, which immediately follows as a special
case of [Osi21, Lemma 4.2.3].

Lemma 6.3.10 (Osinski). Let L be a logic such that dep∗(L) ≤ λ. Let A and B be
τ -structures for some amenable vocabulary τ and e : A→ B a map. Then the following
are equivalent:

(1) e is an L-elementary embedding.

(2) For all γ < λ, if cAi is an interpretation of the constants {ci : i < γ} by elements of
A, then for all ϕ ∈ L[τ ∪ {ci : i < γ}]:

(A, cAi )i<γ |= ϕ iff (B, e(cAi ))i<γ |= ϕ.

Proof of Lemma 6.3.9. Suppose e is an (R, λ)+-embedding. By Lemma 6.3.10, it is
sufficient to show that for any interpretation cAi of the constants {ci : i < γ} for some
γ < λ, and any ∆(L)-sentence ϕ over τ ∪ {ci : i < γ}:

(A, cAi )i<γ ∈ Mod(ϕ) iff (B, e(cAi ))i<γ ∈ Mod(ϕ).

Recall that by dep∗(L) = λ, also dep∗(∆(L)) = λ (cf. Theorem 6.2.2), and so ϕ is really
a sentence over τ1 = τ0 ∪ {ci : i < γ} for a τ0 ∈ Pλτ . Thus, it is sufficient to show:

(A � τ0, c
A
i )i<γ ∈ Mod(ϕ) iff (B � τ0, e(c

A
i ))i<γ ∈ Mod(ϕ).

We may rename ϕ via fτ1 to a sentence ψ ∈ ∆(L)[τ ∗1 ], where τ ∗1 ∈ Hλ. Then applying
the renaming to the above equivalence, it suffices to show:

fτ1((A � τ0, c
A
i )i<γ) ∈ Mod(ψ) iff fτ1((B � τ0, e(c

A
i ))i<γ) ∈ Mod(ψ).

Because τ1 = τ0∪{ci : i < γ}, by assumption on the renamings fσ, we have fτ1 � τ0 = fτ0 ,
and fτ1(ci) = ci. Therefore fτ1((A � τ0, cAi )i<γ) = (fτ0(A � τ0), cAi )i<γ, and analogously
for B. Again, applying this to the equivalence above, it is sufficient to show:

(fτ0(A � τ0), c
A
i )i<γ ∈ Mod(ψ) iff (fτ0(B � τ0), e(c

A
i ))i<γ ∈ Mod(ψ).

But by p-symbiosis, Theorem 6.3.2, and because τ ∗1 ∈ Hλ, Mod(ψ) is ∆1(R) definable
with parameters in Hλ. Hence, since e is an (R, λ)+-embedding, the above equivalence
holds.

We can argue for the other direction by reversing the above argument. So assume that
e is a ∆(L)-embedding. Let τ0 ∈ Pλτ and fix some interpretation cAi of the constants
{ci : i < γ} for some γ < λ. Let τ ∗1 be the renamed version of τ1 = τ0 ∪ {ci : i < γ}
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via fτ1 and K some ∆1(R)-definable, with parameters in Hλ, class of τ1-structures. By
definition, for e to be an (R, λ)+-embedding, we want to show:

(fτ0(A � τ0), c
A
i )i<γ ∈ K iff (fτ0(B � τ0), e(c

A
i ))i<γ ∈ K.

Again, by p-symbiosis and Theorem 6.3.2, K = Mod(ψ) for some ψ ∈ ∆(L)[τ ∗1 ]. Thus
we get that it suffices to show:

(fτ0(A � τ0), c
A
i )i<γ ∈ Mod(ψ) iff (fτ0(B � τ0), e(c

A
i ))i<γ ∈ Mod(ψ).

By the same argument as before, using the properties of the renamings, this is equivalent
to:

fτ1((A � τ0, c
A
i )i<γ) ∈ Mod(ψ) iff fτ1((B � τ0, e(c

A
i ))i<γ) ∈ Mod(ψ).

Let ϕ be f−1
τ1

(ψ). Then ϕ ∈ ∆(L)[τ1]. Then pulling the above equivalence back along
the renaming fτ1 , the following is sufficient to show:

(A � τ0, c
A
i )i<γ ∈ Mod(ϕ) iff (B � τ0, e(c

A
i ))i<γ ∈ Mod(ϕ).

But this holds because of Lemma 6.3.10 and because e is a ∆(L)-embedding.

6.3.2. Upward reflection in classes of partial orders and
compactness

We consider the following strengthening of EEPλκ(R).

Definition 6.3.11. Let R be a set-theoretic predicate and λ and κ be cardinals.
EEPλκ(R)+ is the statement:

For every model class K of structures in an amenable vocabulary τ containing
a binary relation symbol < such that K is locally-λ-Σ1(R) definable, if A ∈ K
and <K is a <κ-directed partial order, then there is B ∈ K such that:
(i) f is an (R, λ)+-embedding.
(ii) (B, <B) contains an upper bound for (A, <A).

Notice that every class of structures in a vocabulary τ ∈ Hλ, which is Σ1(R) definable
with parameters in Hλ, is also locally-λ-Σ1(R) definable. In particular, EEPλκ(R)+ implies
EEPλκ(R).

This principle gives the desired equivalence:

Theorem 6.3.12. Let L be a logic and R a set-theoretic predicate. Assume L ≥ Lλω,
dep∗(L) = λ and that L and R are p-symbiotic. Then the following are equivalent for a
regular cardinal κ:

(1) L is κ-compact.

(2) EEPλκ(R)+.
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For the proof, we will use the following lemma by Väänänen, proven in [Osi21, Theorem
4.4.3].

Lemma 6.3.13 (Väänänen). Let L be a logic and κ a regular cardinal. Then the
following are equivalent:

(1) L is κ-compact.

(2) If τ is a vocabulary including a binary relation symbol < and A is a τ -structure
such that <A is a <κ-directed partial order, then there is a τ -structure B and an
L-elementary embedding f : A → B such that (B, <B) contains an upper bound
for (A, <A).

Proof of Theorem 6.3.12. The direction from (2) to (1) is pretty much immediate, so let
us start with it. Assume that EEPλκ(R)+ holds. To get κ-compactness of L, by Lemma
6.3.13, it is sufficient to find, given a τ -structure A with <A a <κ-directed partial order,
an L-elementary embedding f : A → B into a structure that contains an upper bound for
<A. We may assume that τ is amenable, as we can achieve this by renaming. Consider
any class K containing A that is locally-λ-Σ1(R) definable, say the class where < is
interpreted as a partial order. By EEPλκ(R)+, then K contains a structure B such that
there is an (R, λ)+-embedding f : A → B and B has an upper bound for <A. By Lemma
6.3.9, f is also a ∆(L)- and thus an L-elementary embedding.
And now suppose that L is κ-compact. Then also ∆(L) is κ-compact (cf. Theorem

6.2.2). Take a set up of EEPλκ(R)+, where that K is locally-λ-Σ1(R) definable is witnessed
by a collection {Φτ0(x, pτ0) : τ0 ∈ Pλτ} of Σ1(R) formulas Φτ0 and parameters pτ0 ∈ Hλ.
Assume without loss of generality that <∈ Hλ and that fτ0(<) =< for all τ0 ∈ Pλτ .
Take new binary relation symbols E and ≺. For every τ0 ∈ Pλτ construct a sentence ϕτ0
of ∆(L) in the following way, using E to write down all set-theoretic expressions. Let
χτ0(x) be an Lλω-formula that says that x is an fτ0(τ0)-structure (where fτ0(τ0) ∈ Hλ is
hard coded into the sentence by usage of Lλω). Add a constant cτ0 . By p-symbiosis, take
a sentence ϕR of ∆(L) that axiomatises the class of (models isomorphic to) transitive
R-correct models. Let ϕτ0 be the conjunction of the following sentences:

(i) ϕR.

(ii) χτ0(cτ0).

(iii) Φτ0(cτ0 , pτ0).

For (iii), note that pτ0 ∈ Hλ so is definable by a ∆(L)-formula. If <∈ τ0 add the following
conjuncts to ϕτ0 .

(iv) ≺ is a partial order such that {x : x ∈ cτ0} is cofinal in it.

(v) ≺� cτ0 =<
cτ0 .

Further, for every pair τ0, τ1 ∈ Pλτ , let ψτ0,τ1 be the ∆(L)-sentence that is the conjunct
of the following:
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(vi) “The universe of cτ0 and cτ1 coincide.”

(vii)
∧
r∈τ0∩τ1 “the interpretation of (fτ0(r))cτ0 and (fτ1(r))

cτ1 coincide.”

For (vii), note that for any r, fτi(r) ∈ Hλ and so is Lλω-definable.
Now let T = {ϕτ0 : τ0 ∈ Pλτ} ∪ {ψτ0,τ1 : τ0, τ1 ∈ Pλτ}. Take m large enough such that

every Σ1(R) formula is Σm. By the Reflection Theorem, take α > max(rk(A), λ) such
that Vα ≺Σm V . Note that the Σ1(R) formulas are then absolute between V and Vα and,
in particular, Vα is R-correct. Take the structure M with universe Vα and interpret cMτ0
as fτ0(A � τ0) and ≺M as any <κ-directed partial order extending <A in which <A is
cofinal. Then clearly M |= T .

By Lemma 6.3.13 and κ-compactness of ∆(L), there is a structure N and a ∆(L)-
elementary embedding e : M → N such that (N,≺N) contains an upper bound for
(M,≺M). Because e is a ∆(L)-elementary embedding, N |= T . Then N |= ϕR, so it
is well-founded and by collapsing we can without loss of generality assume that N is
transitive and R-correct. As ∆(L) ≥ Lλω, e fixes all ordinals < λ and so e �M ∩Vλ = id.
By ψτ0,τ1 , the universes of the structures cNτ0 for τ0 ∈ Pλτ are all the same set B and
the interpretations of the symbols in τ0 ∩ τ1 coincide, so we can define a τ -structure B
on B by interpreting r ∈ τ by (fτ0(r))

cNτ0 for any τ0 ∈ Pλτ with r ∈ τ0. Clearly, then
fτ0(B � τ0) = cNτ0 . Now because N |= Φτ0(c

N
τ0
, pτ0), as N is R-correct, Φτ0 is upwards

absolute from N to V as a Σ1(R) formula, and so Φτ0(c
N
τ0
, pτ0) really holds. This shows

by local-λ-Σ1(R) definability of K that B ∈ K. Because by (iv) and (v) of ϕτ0 , <B is
cofinal in ≺N , and further ≺N contains an upper bound for ≺M⊇<A, we have that <B

contains an upper bound for <A.
We further claim that e � A : A → B is a ∆(L)-elementary embedding of the

τ -structures A and B. This will finish the proof as then by Lemma 6.3.9, e is an (R, λ)+-
embedding, as τ is amenable by assumption. Because dep∗(L) ≤ λ, every τ -formula ϕ(x̄)
of ∆(L) comes from ∆(L)[τ0] for a τ0 ∈ Pλτ . Furthermore,

A |= ϕ(ā) iff fτ0(A � τ0) |= fτ0(ϕ)(ā), (∗)

where fτ0 is the canonical renaming of ϕ to a fτ0(τ0)-formula in Hλ and similar for B.
Note that e fixes fτ0(ϕ) ∈ Hλ, since e �M ∩ Vλ = id. Now

A |= ϕ(ā) iff fτ0(A � τ0) |= fτ0(ϕ)(ā)

iff M |= “cτ0 |= fτ0(ϕ)(ā)”

iff N |= “cτ0 |= fτ0(ϕ)(e(ā))”

iff fτ0(B � τ0) |= fτ0(ϕ)(e(ā))

iff B |= ϕ(e(ā)).

The first and last “iff” hold by the comment about renamings above (cf. (∗)). For
the second “iff” recall that fτ0(A � τ0) = cMτ0 , and further, by p-symbiosis, the model
class Mod(fτ0(ϕ)) is ∆1(R). Because M is R-correct, satisfaction of fτ0(ϕ) is therefore
absolute between M and V . The argument for the fourth “iff” is completetely analogous.
The middle “iff” holds because e is a an elementary embedding between M and N .
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6.4. Weak structural reflection principles and SLST
numbers

Bagaria and Väänänen also considered weaker structural reflection principles than SRR.
In particular, again for some set-theoretic predicate R, they considered the principle
SR−

R(κ) (cf. [BV16, Section 3.2]):

For every proper model class K such that K is definable by a Σ1(R) formula
without paramters, for any A ∈ K of size exactly κ, there exists B ∈ K with
|B| < κ and an elementary embedding e : B → A.

We also write SR−
R to indicate that SR−

R(κ) is true for some cardinal κ. Bagaria and
Väänänen further defined a Löwenheim-Skolem property that is designed to match SR−

R(κ)
on the logics’ side.

Definition 6.4.1 (Bagaria & Väänänen [BV16, Definition 8.2]). Let L be a logic. A
cardinal κ is called the strict Löwenheim-Skolem-Tarski (SLST) number of L iff it is the
smallest cardinal such that for any ϕ ∈ L[τ ], where τ is a vocabulary of size < κ, if A is
a τ -structure of size exactly κ such that A |=L ϕ, then there is a substructure B ⊆ A
such that B |=L ϕ and |B| < κ.

However, a precise correspondence between SR−
R and the existence of SLST(L) for

symbiotic L and R is not possible (as noted in [Bag23, Footnote 6, p. 55]). For example,
Lücke showed in [Lüc22, Theorem 1.5] that SR−

Card is equiconsistent to the existence of a
shrewd cardinal (see Definition 6.4.2). On the other hand, Bagaria and Väänänen show
that if κ is weakly inaccessible, then κ is an SLST number of L(I) (cf. [BV16, Theorem
8.4] or Theorem 6.4.8 below). Because shrewd cardinals are, for instance, weakly compact,
SR−

Card has higher consistency strength than a weakly inaccessible cardinal, and thus, in
particular, cannot be equivalent to the existence of SLST(L(I)).

In [Bag23] though, Bagaria considers what he calls Σ1(R)
∗ classes, which are Σ1(R)

definable classes with the additional requirement that membership in them can be
witnessed by transitive sets which are bounded in their size (cf. Definition 6.4.9). He
states that for symbiotic L and R, an equivalence can be shown between the existence of
an SLST number of L and the statement of SR−

R restricted to Σ1(R)
∗-classes, but omits

a proof (cf. [Bag23, Section 6.2]).
Our aim in this section is to give a proof of Bagaria’s statement under an additional

assumption that the logic L can define the predicate R in a similarly strong sense (cf.
Theorem 6.4.13). This proof will be given in Section 6.4.2. To give some background why
SR−

R is stronger than the existence of SLST(L), in Section 6.4.1 we first present some of
the machinery on shrewd cardinals Lücke developed to deal with the principle SR−

R. We
will employ this (cf. Proposition 6.4.8) to show how it can be used in a new proof that
weakly inaccessibles are SLST numbers of L(I).

6.4.1. Weak forms of shrewdness
The basic notion is as follows.
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Definition 6.4.2 (Rathjen [Rat05]). A cardinal κ is called shrewd if for every formula
ϕ(x, y) in the language of set theory, every ordinal α > 0 and every A ⊆ Vκ such that
Vκ+α |= ϕ(A, κ), there exist ordinals κ̄ < ᾱ < κ such that Vκ̄+ᾱ |= ϕ(A ∩ Vκ̄, κ̄).

The definition directly implies that shrewd cardinals are totally indescribable (cf.
[Kan03, Section 6]) and therefore in particular weakly compact (cf. [Kan03, Theorem
6.4]). They are thus stronger than weakly inaccessible cardinals. Consider the following
result of Lücke already mentioned.

Theorem 6.4.3 (Lücke [Lüc22, Theorem 1.5]). ZFC+ “there exists a shrewd cardinal”
is equiconsistent to ZFC+ ∃κSR−

Card(κ).

Lücke introduced the following weakening of shrewd cardinals:

Definition 6.4.4 (Lücke [Lüc22, Definition 1.6]). A cardinal κ is called weakly shrewd
if for every formula ϕ(x, y) in the language of set theory, every cardinal θ > κ and
every A ⊆ κ such that Hθ |= ϕ(A, κ), there exist cardinals κ̄ < θ̄ such that κ̄ < κ and
Hθ̄ |= ϕ(A ∩ κ̄, κ̄).

Lücke showed that shrewd cardinals are weakly shrewd (cf. [Lüc22, Corollary 3.2]),
and that the two notions are equiconsistent (cf. [Lüc22, Corollary 1.8]), but that weakly
shrewd cardinals do not need to be shrewd (cf. [Lüc22, Theorem 1.9]). Weakly shrewd
cardinals are directly related to the principle SR−

R.

Theorem 6.4.5 (Lücke [Lüc22, Theorem 1.7]). The following are equivalent for every
cardinal κ:

(1) κ is the least weakly shrewd cardinal.

(2) κ is the smallest cardinal such that for every proper class K of structures in the
same vocabulary, if K is Σ2 definable with parameters in Hκ, then for any A ∈ K
of size |A| = κ, there exists B ∈ κ with |B| < κ and an elementary embedding
e : B → A.

Note that item (2) implies that SR−
R holds for every Π1 predicate R. Combining

Lücke’s results, the consistency of SR−
Card thus implies the consistency of SR−

R for any Π1

predicate R. And for predicates R such that Card is Σ1(R) definable, the consistency
strength of SR−

R is precisely given by that of the existence of a shrewd cardinal. In
particular, we get that the consistency strength of SR−

Card is higher than that of, e.g., a
weakly compact cardinal. Theorem 6.4.8 below shows though that a weakly inaccessible
implies the existence of SLST(L(I)). In particular, the existence of SLST(L(I)) and
SR−

Card cannot be equivalent.
SLST numbers of symbiotic logics, are closely related to much weaker forms of weakly

shrewd cardinals. We consider the special case L(I). In the following we consider an
expanded language {∈, Ṙ} which has an additional predicate Ṙ with the same arity as
a given set-theoretic predicate R. We say that a formula is Σ1(Ṙ) if it is a Σ1 formula
in this expanded language. Note that the difference to Σ1(R) formulas is, that the
latter uses R written out as a formula in the language of set theory. The weak form of
shrewdness we will consider is the following.
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Definition 6.4.6 (Lücke [Lüc22, Definition 5.1]). Let R be a set-theoretic predicate and θ
a cardinal. A cardinal κ < θ is called weakly (Σ1, R, θ)-shrewd iff for every Σ1(Ṙ) formula
ϕ(x, y) and every A ⊆ κ such that (Hθ,∈, R∩Hθ) |= ϕ(A, κ), there exist cardinals κ̄ < θ̄
such that κ̄ < κ and (Hθ̄,∈, R ∩Hθ̄) |= ϕ(A ∩ κ, κ).

We will use the following two facts about weakly (Σ1, R, θ)-shrewd cardinals. Note that
the first one is a weak analogue of Magidor’s characterisation of supercompact cardinals
(cf., e.g., [Kan03, Theorem 22.10]).

Theorem 6.4.7 (Lücke [Lüc22]). Let R be a set-theoretic predicate and κ < θ cardinals.

(i) A cardinal κ is weakly (Σ1, R, θ)-shrewd iff for every z ∈ Hθ there are cardinals
κ̄ < θ̄ and X ⊆ Hθ̄ such that there is an elementary embedding j : (X,∈, X∩R) →
(Hθ,∈, Hθ ∩R) and (X,∈, X ∩R) ≺∆0 (Hθ̄,∈, R∩Hθ̄) with κ̄+1 ⊆ X, j � κ̄ = id,
j(κ̄) = κ > κ̄ and z ∈ ran(j).

(ii) κ is weakly inaccessible iff it is weakly (Σ1,Card, κ+)-shrewd.

Note that the X (and Hθ and Hθ̄) from (i) is closed under pairing, so if R is an
n-ary predicate, then X ∩ R = Xn ∩ R. Combining the above facts gives a new proof
of Bagaria’s and Väänänen’s result about weakly inaccessibles being SLST numbers of
L(I) (cf. [BV16, Theorem 8.4]). In fact, we give a slight improvement of Bagaria’s and
Väänänen’s result by showing that a weakly inaccessible gives rise to the following a
priori slightly stronger version of the SLST number.

Let L be a logic. A cardinal κ is called the SLST+ number of L iff it is the
smallest cardinal such that for any ϕ ∈ L[τ ], where τ is a vocabulary of size
< κ, if A is a τ -structure of size exactly κ such that A |=L ϕ, then there is a
first-order elementary substructure B ⊆ A such that B |=L ϕ and |B| < κ.

The difference to the SLST number is the requirement that B is an elementary sub-
structure. We will see below that our main result Theorem 6.4.13 implies that actually
SLST(L) = SLST+(L) for a large class of logics.

Proposition 6.4.8. If κ is weakly inaccessible, then SLST+(L(I)) ≤ κ.

Proof. Let ϕ ∈ L(I)[τ ] and A |= ϕ with |A| = κ for κ weakly inaccessible. We can assume
that τ ∈ Hκ. Because κ is a limit, then τ ∈ Hγ for some γ < κ. By definition of the
syntax of L(I) (cf. Appendix A), this implies that L(I)[τ ] ⊆ Hγ, and so tcl({ϕ}) ∈ Hγ.
Therefore, we get subf(ϕ) ∈ Hγ , where subf(ϕ) is the set of subformulas of ϕ. Note that
subf(ϕ) is finite. We can further assume that the domain A = κ. In particular, then
A ∈ Hκ+ . By item (ii) of Lemma 6.4.7, κ is weakly (Σ1,Card, κ+)-shrewd, and thus
in particular weakly (Σ1, ∅, κ+)-shrewd. Then item (i) gives us cardinals κ̄ < θ̄ and a
set X with X ≺∆0 Hθ̄ and an elementary embedding j : (X,∈) → (Hκ+ ,∈) such that
κ̄+ 1 ⊆ X, j � κ̄ = id, j(κ̄) = κ > κ̄ and A, τ ∈ ran(j) and subf(ϕ) ⊆ ran(j).
We claim that X is correct about cardinals: If α ≤ κ̄, then X |= “α is a cardinal” iff

Hκ+ |= “j(α) is a cardinal”. Then as j is the identity on κ̄ and Hκ+ is correct about
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cardinals, X is correct for cardinals < κ̄. Now for κ̄ itself, it is actually a cardinal, and
X also believes so, as j(κ̄) = κ. Furthermore, X believes that κ̄ is the largest cardinal
by elementarity of j. As κ̄+ 1 ⊆ X, the only elements of X that it can possibly believe
to be cardinals are ordinals ≤ κ̄. For those we just argued, that X is correct about them
being cardinals or not. So X really is correct about cardinals.

Recall that ϕ ∈ ran(j). Let x ∈ X such that j(x) = ϕ. We claim that x = ϕ.
Note that X |= rk(x) = α iff Hκ+ |= rk(ϕ) = j(α). Because really rk(ϕ) < γ, we get
j(α) < γ < κ. But this together with j(κ̄) = κ implies that α < κ̄ and so j(α) = α.
Therefore X |= rk(x) = α < κ̄. But as j � κ̄ = id, this implies that x = j(x) = ϕ.
Now note that because Hκ+ is correct about cardinals, it is correct about |=L(I), and so
Hκ+ |= “A |= ϕ”. As A ∈ ran(j), we may let B = j−1(A), and using that j(ϕ) = ϕ,
elementarity of j implies that X |= “B |= ϕ”. We claim that B is a τ -structure. An
analogous argument as above shows that j(τ) = τ and so X |= “B is a τ -structure”. Since
X ≺∆0 Hθ̄, this assertion is upward absolute to Hθ̄ and clearly the latter is correct about
B being a τ -structure. Because A = κ, by elementarity of j we get that the domain of B
is B = κ̄. In particular |B| < κ. Using that subf(ϕ) ⊆ ran(j) an analogous argument to
before shows that subf(ϕ) ⊆ X. Also B ⊆ X, and so, as X |= “B |= ϕ”, even though X
may not be transitive, X can perform the computation whether B |= ϕ. As X is correct
about cardinals, it is correct about this. Therefore really B |= ϕ.

We showed that B is a τ -structure of size |B| < κ satisfying ϕ. We are done if we can
show that j � B : B → A is an elementary embedding. We invoke the Tarski-Vaught test.
Let ψ(x, x1, . . . , xn) be a first order-formula and suppose A |= ∃xψ(x, j(b1), . . . , j(bn))
for b1, . . . , bn ∈ B. Then Hκ+ |= ∃x ∈ A(A |= ψ(x, j(b1), . . . , j(bn))). By elementarity
of j, thus X |= ∃x ∈ B(B |= ψ(x, b1, . . . , bn)). So there is b ∈ B with X |= “B |=
ψ(b, b1, . . . , bn)”. Then Hκ+ |= “A |= ψ(j(b), j(b1), . . . , j(bn))”. But then really A |=
ψ(j(b), j(b1), . . . j(bn)). So j � B : B → A really is an elementary embedding.

6.4.2. Stronger notions of definability
We have seen that SLST numbers of logics L generally do not imply SR−

R via symbiosis.
For example, for the symbiotic pair L(I) and Card, the existence of an SLST number
of L(I) is weaker than SR−

Card. With stronger notions of definability, both on the set-
theoretic, as well as on the logics side, such a transfer result is possible. We consider the
following more restrictive case of definability by Σ1(R) formulas.

Definition 6.4.9 (Bagaria [Bag23, Definition 6.10]). For a predicate of set theory R,
a model class of structures K is Σ∗

1(R) iff it is closed under isomorphism and there is a
Σ1(Ṙ) formula ϕ(x) such that the following holds:

A ∈ K iff there is a transitive set M such that |M | = |A| and an A∗ ∼= A
with (M,∈, R ∩M) |= ϕ(A∗).

Let us explain how this notion aims to solve some of the problems that occur when
trying to transfer the proof of the equivalence of LST(L) and SRR (cf. [BV16, Theorem
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5.5]) to the case of SLST(L) and SR−
R. In the proof, assuming κ = LST(L), one starts

with a class K of structures definable by some Σ1(R) formula containing some structure
A, and one wants to find a small submodel of A belonging to K. One shows that (1) in
∆(L) (remember we work with symbiosis) one can define a class of set-theoretic structures
that are able to witness membership in K. One then (2) takes a model of set theory M
belonging to this witnessing class and containing A. LST(L) gives a small submodel N
of M and one can show that N contains a small submodel of A, as desired. The problem
when applying this to the case in which SLST(L) = κ is that we have to make sure that
the witnessing model of set theory has size exactly κ to be able to use the SLST number.
Without additional assumptions, both in step (1) and (2), this size requirement might
get violated. In step (2), when choosing a witnessing model, M ’s size might be larger
than κ. And in step (1), the ∆-closure might bring in additional sorts which increase
model sizes. Bagaria’s notion of Σ∗

1(R) definability deals with the problem from step (2).
To deal with the problem from step (1), we introduce the following notion, aimed at size
restrictions on the logics’ side.

Definition 6.4.10. Let L be a logic and R a set-theoretic predicate.

(i) IfM is a transitive set andX ⊆M , the model (M,∈, X) is said to have R-awareness
iff X = R ∩M .

(ii) We say that L captures R iff there is an expansion τ ∗ ⊇ {∈, Ṙ} and a ϕ ∈ L[τ ∗]
such that the following holds:

Any transitive {∈, Ṙ}-structure (M,∈, X) has R-awareness iff there is an
expansion M∗ = (M,∈, X, . . . ) of M to a τ ∗-structure with |M∗| = |M |
and M∗ |= ϕ.

We also say that ϕ captures R.

Note that if R is n-ary, we implicitly assume here that for M to have R-awareness, it
needs to be the case that R ∩Mn ⊆M .

The main examples of symbiotic logics we stated earlier (cf. Proposition 6.2.4) capture
the respective predicates associated to them. Our transfer Theorem 6.4.13 can therefore
be applied to them.

Proposition 6.4.11. The following hold:

(1) L2 captures Pow.

(2) L(I) captures Card.

(3) L(QWF) captures ∅.

Proof. For (1), let ϕ be the sentence

∀x, y( ˙Pow(x, y) ↔ (∀X[∀w(X(w) → w ∈ y) → ∃z(z ∈ x ∧ ∀w(X(w) ↔ w ∈ z))]

∧ ∀z(z ∈ x→ z ⊆ y) ∧ ∃z(“z = (x, y)”))),
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codifying that ˙Pow(x, y) is true of exactly those sets x, y in some transitive M such that
x = P(y) and M has the pair (x, y). Then (M,∈, P ) |= ϕ iff P = Pow ∩M . For (2), let
ψ be the usual sentence expressing that some ordinal is really a cardinal:

∀x( ˙Card(x) ↔ (Ord(x) ∧ ∀y(y ∈ x→ ¬Izz(z ∈ x, z ∈ y)))).

Note that for ϕ and ψ we do not need to expand the respective vocabularies {∈, ˙Pow}
and {∈, ˙Card} at all to express Pow- and Card-awareness, so the condition on the size of
the witnessing model is trivially fulfilled. That L(QWF) captures ∅ is trivial.

The transfer result is now possible under assumptions of symbiosis between R and L
and the additional assumption that L captures R. The transfer is between SLST(L) and
the statement of SR− restricted to Σ∗

1(R) classes as stated below. The proof additionally
yields that for the logics considered, the SLST and SLST+ numbers conicide.2

Definition 6.4.12. Let R be a set-theoretic predicate and κ a cardinal. We write
Σ∗

1(R)-SR
−(κ) for the statement:

The cardinal κ is minimal with the property such that for every proper class
K of structures in a joint vocabulary of size < κ such that K is Σ∗

1(R), for any
A ∈ K of size exactly κ, there exists B ∈ K with |B| < κ and an elementary
embedding e : B → A.

Theorem 6.4.13. Let L be a logic and R a set-theoretic predicate. Assume that L
and R are r-symbiotic and that L captures R. Then for a cardinal κ the following are
equivalent:

(1) κ is the smallest cardinal such that Σ∗
1(R)-SR

−(κ).

(2) SLST(L) = κ.

(3) SLST+(L) = κ.

Note that to prove the result it is sufficient to show that

(a) if Σ∗
1(R)-SR

−(κ) holds, then SLST+(L) ≤ κ, and

(b) if SLST(L) = κ, then Σ∗
1(R)-SR

−(κ) holds.

Proof of (b). Assume that SLST(L) = κ. Let K be Σ∗
1(R) and A ∈ K such that |A| = κ.

Then there is a Σ1(Ṙ) formula ϕ(x) such that B ∈ K iff there is a transitive set M such
that |M | = |B|, and a B∗ ∼= B such that (M,∈, R ∩M) |= ϕ(B∗). In particular, there is
a transitive M such that |M | = κ = |A| and A∗ ∼= A such that (M,∈, R ∩M) |= ϕ(A∗).
We need to find B ∈ K such that |B| < κ and there is an elementary embedding

2Note that one can similarly strengthen the LST number (cf. Definition 1.2.9) of a logic to include a
condition that the small substructure provided is an elementary substructure. It is folklore that these
two ways to define the LST number are for many logics equivalent. For the SLST number, we are not
aware of a strengthening in the spirit of the SLST+ number having been discussed previously.
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e : B → A. Note that it is sufficient to find some B∗ ∈ K of size |B∗| < κ and an
elementary embedding B∗ → A∗, as A∗ ∼= A.

For this, let χ ∈ L[τ ∗] be a sentence that captures R, where τ ∗ ⊇ {∈, Ṙ}. Further, let
S be the set of additional sorts of τ ∗ and assume that ϕ and {∈, Ṙ} are in sort s0 /∈ S,
so that s0 is the sort of the model (M,∈, R ∩M). We construct a sentence ψ in the
language τ ∗∗ = {∈, c, Ṙ, f, (gs)s∈S} ∪ τ ∗, where c is a constant symbol with conf(c) = s0,
f is a function symbol with conf(f) = (s0, s0), and the gs are function symbols with
conf(gs) = (s, s0), respectively. We let ψ be the conjunction of the following sentences:

(i) ϕ(c).

(ii) The extensionality axiom Ext.

(iii) “f is a bijection with ran(f) = {x : xEc}.”

(iv) χ.

(v) For every s ∈ S: “gs is an injection.”

By definition of χ, for a transitive set N and X ⊆ N , the model (N,∈, X) has R-
awareness, i.e., X = R ∩N , iff there is an expansion N ∗ of (N,∈, X) such that N ∗ |= χ
and |N∗| = |N |. Now (M,∈, R ∩M) has R-awareness and χ captures R. So there is an
expansion of (M,∈, R ∩M) to a τ ∗-structure M∗ with |M∗| = |M | and M∗ |= χ. In,
particular, the additional sorts in M∗ cannot have larger domain Ms than the size of
M , so there are injections gMs : Ms → M . Thus, if fM is any bijection f : M → A∗,
then there is an expansion M of (M,∈,A∗, R∩M, fM , gs)s∈S to a τ ∗∗-structure M such
that M |= ψ. We further expand M to a structure that for every ∆0 first-order formula
θ(x, ȳ) in the language {∈, c} contains a Skolem function fMθ(x,ȳ) :M →M for (M,∈,A∗),
i.e., for every b̄ ∈ M , if (M,∈,A∗) |= ∃xθ(x, b̄), then (M,∈,A∗) |= ψ(fMθ(x,ȳ)(b̄), b̄). For
simplicity, we denote this expansion again by M. As |M| = |M | = κ, by SLST(L)
holding at κ, there is a substructure N = (N,∈,A∗, ṘN , fN , (gNs )s∈S, . . . ) of M such
that |N | < κ and N |= ψ. Then N is well-founded by being a substructure of the well-
founded model M and it is extensional by (ii), so we can consider the transitive collapse
N̄ = (N̄ ,∈, cN̄ , ṘN̄ , f N̄ , (gN̄s )s∈S, . . . ). Because N̄ |= ψ, the function gs : N̄s → N̄ is an
injection for every s ∈ S and therefore |N̄ | = |N̄ |. Further, ṘN̄ = N̄ ∩R, because N̄ is
transitive and N̄ |= χ, as χ captures R. By (iii), we have |N̄ | = |cN̄ |. Thus, using (i), by
N̄ |= ϕ(c) and K being Σ∗

1(R), we get that cN̄ ∈ K and indeed |cN̄ | ≤ |N̄ | = |N | < κ.

If we can show that there is an elementary embedding e : cN̄ → A∗, then we are
done. Because N̄ is transitive, we have cN̄ ⊆ N̄ . Thus we can consider π−1 � cN̄ , the
inverse of the transitive collapse restricted to cN̄ . We claim that this is our elementary
embedding. Note that if b ∈ cN̄ , then π−1(b) ∈ cN = A∗, so π−1 is indeed a map cN̄ → A∗.
Remember that we added Skolem functions for every ∆0 formula in the language {∈, c}.
Thus, (N,∈,A∗) is a Σ1-elementary substructure of (M,∈,A∗). Further, if ψ(x̄i) (with

176



x̄i = (x1, . . . , xn)) is any first-order formula and C is any structure with c̄i ∈ C, we have
that “C |= ψ(c̄i)” is ∆1. Hence,

cN̄ |= ψ(b̄i) iff N̄ |= “cN̄ |= ψ(b̄i)”

iff N |= “π−1(cN̄) |= ψ(π−1(b̄i))”

iff M |= “A∗ |= ψ(π−1(b̄i))”

iff A∗ |= ψ(π−1(b̄i)).

The first and last “iff” hold by absoluteness of first-order satisfaction. The second
one holds as π−1 is an isomorphism and the third because π−1(cN̄) = A∗ and because
(N,∈,A∗) is a Σ1-elementary substructure of (M,∈,A∗).

For the other direction (a), we will use the following, parameter-free version, of a
notion by Lücke.

Definition 6.4.14 (Lücke [Lüc22, Definition 1.12]). For a predicate of set theory R,
a model class K of structures over a vocabulary τ is called a local Σ1(R) class iff it is
closed under isomorphisn and there is a Σ1(Ṙ) formula ϕ(x) in the language {∈, Ṙ} such
that for all infinite cardinals κ:

Hκ+ ∩ K = {x ∈ Hκ+ : (Hκ+ ,∈, R ∩Hκ+) |= ϕ(x)}.

As Bagaria remarks (cf. [Bag23, p. 54]), this coincides with being a Σ∗
1(R) class. We

want to present a proof of this fact, before we finish the proof of (a).

Proposition 6.4.15. Let R be a predicate of set theory and K a model class. Then K
is a local Σ1(R) class iff it is Σ∗

1(R).

Proof. First assume that K is Σ∗
1(R) and that this is witnessed by a Σ1(Ṙ) formula ψ(x).

Then consider the formula

ϕ(x) = ∃y∃f(“y = (M,∈, R ∩M) is transitive”
∧ “f :M → x is a bijection” ∧ y |= ψ(x)).

Note that ϕ(x) is Σ1(Ṙ) as well. We claim that ϕ(x) witnesses that K is a local Σ1(Ṙ)
class. If A ∈ Hκ+ ∩ K. Then as K is Σ∗

1(R), there is a transitive (M,∈, R ∩M) such
that |M | = |A| and an A∗ ∼= A with (M,∈, R ∩M) |= ψ(A∗). Then because M is
transitive, M,A∗ ∈ Hκ+ . Further, Hκ+ knows about the isomorphism between A and
A∗, and thus also (Hκ+ ,∈, R ∩ Hκ+) |= “(M,∈, R ∩M) |= ψ(A)”. We also have that
Hκ+ knows about the bijection between M and A. Therefore (Hκ+ ,∈, R ∩Hκ+) |= ϕ(A).
If on the other hand (Hκ+ ,∈, R ∩Hκ+) |= ϕ(A), then this is witnessed by some triple
(M,∈, R ∩M) ∈ Hκ+ such that (Hκ+ ,∈, R ∩ Hκ+) |= “(M,∈, R ∩M) |= ψ(A)”. By
virtue of ϕ, Hκ+ knows about a bijection M → A, and also it is correct about first-order
satisfaction. Thus it really holds that (M,∈, R∩M) is a transitive model of the same size
as A that has R-awareness and which believes ψ(A). Therefore A ∈ K by ψ witnessing
Σ∗

1(R)-ness of K.
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For the other direction let K be a local Σ1(R) class, as witnessed by a formula ϕ(x).
Given a model in K we can assume that it has a transitive universe, by closure of K
under isomorphism. So let A be a transitive structure of size κ. Then by locality, A ∈ K
iff (Hκ+ ,∈, R ∩Hκ+) |= ϕ(A). Let (X,∈, R ∩X) be an elementary submodel of Hκ+ of
size κ with A, κ ∈ X and κ ⊆ X. Notice that such a model is automatically transitive.3
Then A ∈ K iff (X,∈, R ∩X) |= ϕ(A). Because X is of the same size as A, this shows
that K is Σ1(R)

∗.

Proof of (a). Let ϕ ∈ L and A |= ϕ such that |A| = κ. As Mod(ϕ) is ∆1(R) definable
by r-symbiosis, it is absolute for all the Hκ+ ’s. Further, it is closed under isomorphism,
therefore a local Σ1(R) class and thus Σ∗

1(R) by Proposition 6.4.15. By Σ∗
1(R)-SR

−(κ), we
thus find a B ∈ Mod(ϕ) such that |B| < κ and an elementary embedding e : B → A.

Note, as observed in [Bag23, p. 55], that Theorem 6.4.13 recovers the fact that
κ = SLST(L(I)) iff κ is the smallest weakly inaccessible cardinal, which was stated in
[BV16, Section 8]. Moreover, our results imply that this can be slightly improved to a
characterisation of SLST+(κ):

Corollary 6.4.16. The following are equivalent for a cardinal κ:

(1) κ is the least weakly inaccessible cardinal.

(2) κ = SLST(L(I)).

(3) κ = SLST+(L(I)).

Proof. As L(I) captures Card and the two are r-symbiotic, the equivalence of (2) and
(3) follows from Theorem 6.4.13. The equivalence to (1) can be seen as follows. If κ is
weakly inaccessible, then SLST+(L(I)) ≤ κ by Proposition 6.4.8. And if κ = SLST(L(I)),
then by Theorem 6.4.13 it is the least cardinal such that Σ∗

1(Card)-SR
−(κ) holds. Then

as Σ∗
1(Card) classes are local Σ1(Card) (cf. Proposition 6.4.15), results by Lücke imply

that κ is weakly (Σ1,Card, κ+)-shrewd (cf. [Lüc22, Corollary 6.5]). Then by Theorem
6.4.7, κ is weakly inaccessible.

3Let x ∈ X. As Hκ+ knows about a surjection from κ to x, X has this property as well. So let f ∈ X
such that X |= “f : κ → x is a surjection.” Then because κ ⊆ X we have α ∈ X for every α ∈ κ.
Thus f(α) ∈ X for every α ∈ κ. Therefore x = f“κ ⊆ X.
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7. Some Notes on Compactness for
Type Omission

Remarks on co-authorship. The results of Section 7.3 are joint with Will Boney. The
results of Section 7.4 are joint with Will Boney and Victoria Gitman.

7.1. Introduction
Supercompact cardinals can be characterised by a compactness principle that provides
models of a theory such that the model simultaneously omits a type. In [Bon20], Boney
expanded on this result and achieved a very general result which gives an equivalence
between the existence of certain ultrafilters and similar compactness for type omission
principles for the logic Lκκ. In particular, he was able to characterise huge cardinals in
this way, and thus showed that model-theoretic properties can have higher consistency
strength than that of VP. In this chapter, we extend these results by positively answering
a question by Wilson whether there is some property of a finitary logic with consistency
strength exceeding that of VP. More concretely, we will show that huge cardinals can be
characterised by a type omission compactness property of L(QWF) (cf. Section 7.3). We
further show how a natural notion in between extendibility and supercompactness arises
from type omission compactness for Lκκ(I) (cf. Section 7.4).

7.2. Motivation and definitions
In this section, we give the necessary definitions to formulate our theorems and state
some of the known results on compactness for type omission. Recall the theorem going
back to Benda we already stated in Chapter 1 (Theorem 1.3.18), as well as the discussion
on type omission preceding it.

Theorem 7.2.1 (Benda, Boney [Ben78, Bon20]). The following are equivalent for a
cardinal κ:

(1) κ is supercompact.

(2) For any λ ≥ κ, if T ⊆ Lκκ is a theory that can be written as an increasing
union T =

⋃
s∈Pκλ

Ts and p(x) = {ϕi(x) : i < λ} ⊆ Lκκ is a type such that with
ps = {ϕi(x) : i ∈ s} there is a club subset X of Pκλ such that for s ∈ X, Ts has a
model omitting ps, then T has a model omitting p.
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Motivated by this result, Boney considered how to characterise large cardinals witnessed
by ultrafilters living on other sets than Pκλ. He found a very general result for the
existence of ultrafilters over some set I ⊆ P(λ). Even though we will restrict attention
to special cases of I, let us state his general definitions, as it lets us treat all cases we
will be concerned with uniformly.

Definition 7.2.2 (Boney [Bon20, Definition 3.1]). Let κ be a cardinal, κ ≤ λ and
I ⊆ P(λ).

(i) I is κ-robust iff for every α < λ, we have I ⊆ {s ∈ P(λ) : |s ∩ κ| < κ} and
{s ∈ I : α ∈ s} 6= ∅.

(ii) C ⊆ I contains a strong κ-club iff there is a function F : [λ]2 → Pκλ such that

C(F ) = {s ∈ I : |s| ≥ ω ∧ ∀x, y ∈ s(F (x, y) ⊆ s)} ⊆ C.

It is a classical result of Menas (cf. [Men74] and [Kan03, Proposition 25.3]) that if Cκ,λ
is the filter generated by the club subsets of Pκλ, then for any X ⊆ Pκλ,

X ∈ Cκ,λ iff there is F : [λ]2 → Pκλ such that C(F ) ⊆ X.

Containing a strong κ-club is therefore a generalisation to the case of arbitrary I ⊆ P(λ)
of being a member of the club filter generated by the club subsets of Pκλ. As for
ultrafilters over Pκλ, if U is an ultrafilter over I ⊆ P(λ), let us say that U is fine if
for all α < λ, {s ∈ I : α ∈ s} ∈ U and that U is normal if for all F : I → λ such that
{s ∈ I : F (s) ∈ s} ∈ U , there is α < λ such that {s ∈ I : F (s) = α} ∈ U . Recall that any
fine, normal, κ-complete ultrafilter over Pκλ contains Cκ,λ (cf., e.g., [Kan03, Proposition
25.4]). Boney showed that the notion of containing a strong κ-club extends this result in
the following way:

Proposition 7.2.3 (Boney [Bon20, Fact 3.2]). Let I ⊆ P(λ) be κ-robust. If U is a fine,
normal, κ-complete ultrafilter over I, then C(F ) ∈ U for all F : [λ]2 → Pκλ.

We further need the following technical condition on how some union indexed by s ∈ I
is determined by the members of s.

Definition 7.2.4 (Boney [Bon20, Definition 3.3]). Let I ⊆ P(λ) and let X be a set that
is written as an increasing union X =

⋃
s∈I Xs. We say that the union respects the index

iff there is a collection {Xα : α ∈ λ} such that for each s ∈ I:

Xs =
⋃
α∈s

Xα.

We can now state Boney’s general version of compactness for type omission.
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Definition 7.2.5 (Boney [Bon20, Definition 3.4]). Let L be a logic, κ a cardinal, κ ≤ λ,
and I ⊆ P(λ) be κ-robust. We say that L is I-κ-compact for type omission iff the
following holds: For any theory T ⊆ L which can be written as an increasing union
T =

⋃
s∈I Ts that respects the index, and any type p(x) = {ϕi(x) : i < λ} with subsets

ps = {ϕi(x) : i ∈ s} ⊆ L for s ∈ I, if the set

{s ∈ I : Ts has a model omitting ps}

contains a strong κ-club, then T has a model omitting p.

Note that Boney’s original definition comes with a collection of types instead of a
single one, but for the applications we will consider, having one type around will be
sufficient.

Recall that a cardinal κ is huge iff there is an elementary embedding j : V → M
such that crit(j) = κ and M j(κ) ⊆ M . Note that this implies that j(κ) is a cardinal.
If j(κ) = λ, we also say that κ is huge with target λ. It is well-known (cf., e.g.,
[Kan03, Theorem 24.8]) that κ is huge with target λ iff there is a fine, normal, κ-complete
ultrafilter U over P(λ) such that

I = {s ∈ P(λ) : ot(s) = κ} ∈ U.

If κ is huge, then (Vκ,∈, Vκ+1) satisfies a second-order version of Vopěnka’s Principle
(cf., e.g., [Jec03, Lemma 20.27]). In particular, the existence of a huge cardinal exceeds
Vopěnka’s Principle in consistency strength.

Note that the I above is not κ-robust, as, for example, κ ∈ I, and |κ ∩ κ| = κ. But
note that if U is a fine, normal, κ-complete ultrafilter over I, then

[λ]κ∗ = {s ∈ P(λ) : ot(s) = κ and s \ κ 6= ∅} ∈ U,

as, for example, for any κ < α < λ, by fineness {s ∈ I : α ∈ s} ∈ U and further
{s ∈ I : α ∈ s} ⊆ [λ]κ∗ . But [λ]κ∗ is κ-robust, and κ is huge with target λ iff there is
a fine, normal, κ-complete ultrafilter W over [λ]κ∗ (the forward direction follows from
the argument above, the backward direction can be shown exactly as the proof of
[Kan03, Theorem 24.8] by checking that taking jW : V → Ult(V,W ) witnesses that κ is
huge with target λ).

Let us summarise some of Boney’s results relevant for us.

Theorem 7.2.6 (Boney [Bon20]). The following hold.

(1) κ is λ-supercompact iff Lκκ is Pκλ-κ-compact for type omission.

(2) κ is extendible iff for every λ, L2
κκ is Pκλ-κ-compact for type omission.

(3) κ is huge with target λ iff Lκκ is [λ]κ∗-κ-compact for type omission.

Note that item (1) is simply Theorem 7.2.1, as for I = Pκλ we may ignore the condition
that an increasing union T =

⋃
s∈Pκλ

Ts respects the index: letting Tα = T{α}, because
our fixed union is increasing, we get Ts =

⋃
α∈s T

α, and so every increasing union indexed
by Pκλ respects the index.
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7.3. Huge cardinals from omitting types for finitary
logics

Recall Wilson’s result Theorem 5.2.2, which characterised huge cardinals by certain
Löwenheim-Skolem properties of class logics. Above we saw that huge cardinals are
certain omitting types compactness cardinals for Lκκ. Wilson noted that both these
known characterisations of huge cardinals utilise infinitary logics and therefore asked in
a talk at the European Set Theory Conference 2022:

Question 7.3.1 (Wilson [Wil22a]). Is there a property P of a finitary logic such that L
having P exceeds Vopěnka’s Principle in consistency strength?

We give an affirmative answer.

Theorem 7.3.2. Let κ and λ be cardinals such that λ > κ. Then κ is huge with target
λ iff L(QWF) is [λ]κ∗-κ-compact for type omission.

The forward direction directly follows from Boney’s Theorem 7.2.6, as L(QWF) ≤
Lω1ω1 ≤ Lκκ. For the backward direction, we use the following lemma.

Lemma 7.3.3. Let κ and λ be cardinals such that λ > κ. If for all transitive sets M
with λ ∈ M and Mκ ⊆ M there is a transitive set N and an elementary embedding
j :M → N such that crit(j) = κ, λ = j(κ) and j“λ ∈ N , then κ is huge with target λ.

Proof. Take some cardinal γ > λ such that Vγ is closed under κ-sequences and Vλ+1 ∈ Vγ .
Then by our assumption, we have that there is a transitive N and an elementary
embedding j : Vγ → N such that crit(j) = κ, j(κ) = λ and j“λ ∈ N . Now define an
ultrafilter U over [λ]κ∗ by letting for X ⊆ [λ]κ∗ :

X ∈ U iff j“λ ∈ j(X).

Using that crit(j) = κ it is easy to see that U is a κ-complete ultrafilter. We check that
U is fine, normal, and that the condition on the order types is fulfilled.

For fineness, clearly for α < λ we have j(α) ∈ j“λ and therefore we get that j“λ ∈
{s ∈ ([j(λ)]

j(κ)
∗ )N : j(α) ∈ s}. Thus {s ∈ [λ]κ∗ : α ∈ s} ∈ U .

For normality, let F : [λ]κ∗ → λ be a function such that {s ∈ [λ]κ∗ : F (s) ∈ s} ∈ U . We
show that F is constant on a set in U . We have j“λ ∈ {s ∈ ([j(λ)]

j(κ)
∗ )N : j(F )(s) ∈ s}.

So j(F )(j“λ) ∈ j“λ. But this means that there is an α ∈ λ such that j(α) = j(F )(j“λ)
and then {s ∈ [λ]κ : F (s) = α} ∈ U .

For the condition on the order types, note that the order type of j“λ∩ j(λ) = λ = j(κ)

and N knows about this. Thus j“λ ∈ {s ∈ ([j(λ)]
j(κ)
∗ )N : N |= ot(s ∩ j(λ)) = j(κ)}. By

definition of U , this means {s ∈ [λ]κ : ot(s ∩ λ) = κ} ∈ U .
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Proof of the backwards direction of Theorem 7.3.2. Assume that L(QWF) is [λ]κ∗-κ-compact
for type omission and take a transitive M with λ ∈ M and such that Mκ ⊆ M . We
will show that there is an elementary embedding j : M → N such that crit(j) = κ,
j(κ) = λ and j“λ ∈ N . Let {ci : i ∈M} be the collection of variables used to formulate
the elementary diagram of M and let c and d be new constants. Then let

T = ElDiagL(QWF)(M) ∪ {cα < c < cκ : α < κ} ∪ {cα ∈ d ∧ |d| = cκ : α < λ}

and
p(x) = {x ∈ d ∪ c} ∪ {x 6= cα : α < λ}.

Let us argue that if N is a model of T omitting p, then N has all required properties by
letting j :M → N , cMx 7→ cNx .

Because cN has order type at least κ and is smaller than cNκ = j(κ), we have to have
j(κ) > κ. In particular, crit(j) ≤ κ. To see that crit(j) = κ, the type p comes into play.
Assume that α = crit(j) < κ and consider α + 1. Clearly cNβ = β = j(β) < α + 1 < cN

for all β < α. But also j(α) > α + 1 and so cNβ > α + 1 for all β ≥ α. This means that
α + 1 realises p, which is a contradiction. So crit(j) = κ.

We also have that dN = j“λ and so j“λ ∈ N : Because cNα ∈ dN for all α < λ we have
j“λ ⊆ dN . And now if x ∈ dN and x 6= j(α) = cNα for every α < λ, then x would realise
p. Thus also dN ⊆ j“λ.

Finally, N knows that dN = j“λ is a set of ordinals and thus has an order type. But
clearly ot(j“λ) = λ, thus N |= ot(dN) = λ and further N |= j(κ) = cκ = |d| = λ and
thus j(κ) = λ.

So we are done if we can show that T has a model omitting p. For this purpose we
show the following claim.

Claim 7.3.4. For every s ∈ [λ]κ∗ , if s∩ κ is a limit ordinal < κ, then M can be expanded
to a model of Ts omitting ps, where

Ts = ElDiag(M)L(QWF) ∪ {cα < c < cκ : α ∈ κ ∩ s} ∪ {cα ∈ d ∧ |d| = cκ : α ∈ s}

and
ps(x) = {x ∈ d ∪ c} ∪ {x 6= cα : α ∈ s}.

To show the claim, suppose s ∈ [λ]κ∗ such that s ∩ κ is a limit ordinal s ∩ κ = β < κ.
Let cM = β and dM = s. Note that s ∈ M by closure of M under κ sequences, so the
definition of cM and dM make sense. Then (M, cM , dM) |= Ts: Clearly cM = β < κ = cMκ .
And if α ∈ κ ∩ s = β, then cMα = α ∈ β. Further α = cMα ∈ s = dM for all α ∈ s and
|dM | = |s| = κ = cMκ . Also, we get that (M, cM , dM) omits ps. For if x ∈ cM = s ∩ κ,
then x = α = cMα for some α ∈ s. And if x ∈ dM , then x = α = cMα for some α ∈ dM = s.
So any x omits p.

Therefore, to get a model of T omitting p, by [λ]κ∗-κ-type-omission and the claim, it is
sufficient to find a function F : [λ]2 → Pκλ such that for any s ∈ [λ]κ∗ with the property
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that for all x, y ∈ s we have F (x, y) ⊆ s, it holds that s ∩ κ is a limit ordinal < κ. Such
an F is given by

F (x, y) =

{
x+ 2, if x ∈ κ

∅, otherwise.

If s ∈ [λ]κ∗ is given such that for all x, y ∈ s we have F (x, y) ⊆ s. Then if α ∈ s ∩ κ, by
assumption, F (α, α) = α + 2 ⊆ s. Thus β ∈ s ∩ κ for all β ≤ α + 1. This shows that
s∩κ is a limit ordinal. By definition of [λ]κ∗ , ot(s∩κ) < κ. Hence, s∩κ is a limit ordinal
less than κ.

Let us mention some related results. In [HM22], Hayut and Magidor show that
supercompact cardinals can be characterised as Pκλ-κ-compactness for type omission
cardinals of L(QWF). Our result is the analogue for type omission compactness indexed
by [λ]κ∗ . They further show that their result about supercompactness even holds when
substituting L(QWF) by first-order logic. We do not know whether the same is true for
huge type omission.

Question 7.3.5. If Lωω is [λ]κ∗-κ-compact for type omission, is κ huge with target λ?

7.4. Compactness for type omission for infinitary
equicardinality logics

Supercompactness and extendibility are characterised by Pκλ-compactness for type
omission for Lκκ and L2

κκ, respectively. Considering Pκλ-compactness for type omission
for Lκκ(I) gives rise to a large cardinal notion in between supercompactness and cardinal
correct extendibility both as lower bounds, and extendibility as an upper bound.

Recall the class of Σ1(Card) formulas introduced in Section 6.2. Let us write C(1Card) =
{α : Vα ≺Σ1(Card) V } for the class of all ordinals α such that Vα is an elementary sub-
structure of V with respect to the Σ1(Card) formulas. Note that C(1) ⊆ C(1Card) ⊆ C(2).
We show the following theorem.

Theorem 7.4.1. The following are equivalent:

(1) Lκκ(I) is Pκλ-κ-compact for type omission for every λ ∈ C(1Card), λ > κ.

(2) For every λ > κ, λ ∈ C(1Card), there is a fine, normal, κ-complete ultrafilter U over
Pκλ such that {s ∈ Pκλ : ot(s) ∈ C(1Card)} ∈ U .

(3) For every λ > κ, λ ∈ C(1Card), there is an elementary embedding j : V →M with
crit(j) = κ, j(κ) > λ, Mλ ⊆M and M |= λ ∈ C(1Card).

Proof. Assume (1) and let λ > κ be in C(1Card). We show (2). Take γ, some strong limit
of cofinality cof(γ) > |Pκλ|, new constants c and d, and consider the theory:

T = ElDiagLκκ(I)
(Vγ,∈) ∪ {|d| < cκ ∧ ci ∈ d : i < λ},
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along with the type:
p(x) = {x ∈ d} ∪ {x 6= ci : i < λ}.

If s ∈ Pκλ, letting Ts = ElDiagLκκ(I)(Vγ,∈) ∪ {|d| < cκ ∧ ci ∈ d : i ∈ s} and ps be the
type ps(x) = {x ∈ d}∪ {x 6= ci : i ∈ s}, then any Ts has a model omitting ps by using Vγ ,
and s itself for the interpretation of d. So by assumption, there is some model M such
that M |= T and omits p. Because the sentence of Lκκ axiomatising well-foundedness is
in T , M is well-founded and by collapsing we may assume that it is transitive. There
is an elementary embedding j : Vγ → M given by x 7→ cMx . By usage of Lκκ and the
theory T , j has critical point crit(j) = κ. Because M omits p, dM = j“λ. Further,
λ = |dM | ≤ |dM |M < j(κ). It is then standard to check that for X ⊆ Pκλ,

X ∈ U iff dM ∈ j(X)

defines a κ-complete, fine, normal ultrafilter over Pκλ. We have to check that the set
{s ∈ Pκλ : ot(s) ∈ C(1Card)} ∈ U , i.e., by definition of U , that V M

λ ≺Σ1(Card) M . Because
M believes that V M

λ is cardinal correct, Σ1(Card) formulas are upwards absolute from
V M
λ to M . We have to check downwards absoluteness. Note that the sentence ϕCard

(cf. Lemma 1.2.4) is in T , and thus M is correct about cardinals. Therefore Σ1(Card)
formulas are upwards absolute fromM to V . Hence, ifM |= Φ(a) for a Σ1(Card) formula
Φ(x) and some a ∈ V M

λ , then Φ(a) holds in V . Now λ ∈ C(1Card) and so this implies
Vλ |= Φ(a). We are done if we can show that Vλ = V M

λ . This basically follows from
the fact that j“λ ∈ M . To give the details: Build the ultrapower MU = Ult(Vγ, U).
We get the standard elementary maps jU : Vγ → MU , x 7→ [cx]U , and k : MU → M ,
[f ]U 7→ j(f)(j“λ). It is standard to show that j = k ◦ jU , crit(k) > λ and Mλ

U ⊆MU (cf.,
e.g., [Jec03, Chapter 20]). That MU is closed under λ-sequences implies Vλ ⊆MU and
crit(k) > λ means that k � Vλ is the identity. Thus Vλ ⊆M and hence V M

λ = Vλ.

And now assume (2) as witnessed for some λ > κ, λ ∈ C(1Card), by an ultrafilter U .
Let us show that (3) holds for λ. Take M = Ult(V, U) with the standard elementary
map j : V → M , x 7→ [cx]U . Because U is a fine, normal, κ-complete ultrafilter,
crit(j) = κ, j(κ) > λ and Mλ ⊆ M . Left to show is that M |= λ ∈ C(1Card). It is
standard to show that X ∈ U iff j“λ ∈ j(X) (cf., e.g., [Jec03, Lemma 20.13]). So because
{s ∈ Pκλ : ot(s) ∈ C(1Card)}, we get that M |= λ = ot(j“λ) ∈ C(1Card).

Finally assume (3) and let us show (1). Suppose T =
⋃
s∈Pκλ

Ts is an increasing union
of theories and p(x) = {ϕi(x) : i < λ} a type both in the logic Lκκ(I) and over some
vocabulary τ such that for all s ∈ X for some club X in Pκλ, Ts has a model omitting
ps = {ϕi(x) : i ∈ s}. Take a γ ∈ C(1Card) with cof(γ) ≥ κ such that T, p ∈ Vγ and Vγ has
models of Ts omitting ps wherever possible. Let j : V →M be an elementary embedding
with crit(j) = κ, j(κ) > γ, Mγ ⊆ M and M |= γ ∈ C(1Card). We may assume that j
comes from an ultrafilter U over Pκγ as in (2), and so for Y ⊆ Pκγ, Y ∈ U iff j“γ ∈ j(Y ).
It is standard to check that then

U∗ = {Y ⊆ Pκλ : {s ∈ Pκγ : s ∩ λ ∈ Y } ∈ U},
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is a κ-complete, fine, normal ultrafilter over Pκλ. In particular, U∗ extends the club filter
over Pκλ, and therefore X ∈ U∗. Thus, {s ∈ Pκγ : s ∩ λ ∈ X} ∈ U , which implies that
j“λ = j“γ ∩ λ ∈ j(X), by definition of U .

Computing j(T ) and j(p), we get that j(T ) =
⋃
s∈Pj(κ)j(λ)

T ∗
s and that j(p)(x) =

{ϕ∗
i (x) : i < j(λ)} for some theories T ∗

s and formulas ϕ∗
i . By elementarity, for every

s ∈ j(X), M believes that T ∗
s has a model omitting p∗s. In particular, this is true for

s = j“λ ∈ j(X). We claim j“T ⊆ T ∗
j“λ. If ϕ ∈ T , then ϕ ∈ Ts for some s ∈ Pκλ.

Now because s ∈ Pκλ, s = {αi : i < β} for some β < κ and αi ∈ λ. Therefore
j(s) = {j(αi) : i < β} ⊆ j“λ. Then j(ϕ) ∈ j(Ts) = T ∗

j(s) ⊆ T ∗
j“λ. Further, p∗j“λ =

{ϕ∗
i (x) : i ∈ j“λ} = j“p.

Summarising, M has a model A∗ |= j“T omitting j“p. Note that because M is closed
under γ-sequences, it knows that A∗ � j“τ can be renamed to a τ -structure A and it
believes that A satisfies T and omits p. Further, also A ∈ V M

j(γ). Because V M
j(γ) and M

agree on Lκκ(I)-satisfaction, V M
j(γ) thus satisfies the sentence

∃B(B |=Lκκ(I) T and B omits p).

Because Lκκ(I)-satisfaction is Σ1(Card) definable using κ as a parameter, the above is
a Σ1(Card) statement. By elementarity, M |= j(γ) ∈ C(1Card) and by assumption also
M |= γ ∈ C(1Card). Therefore, Vγ ≺Σ1(Card) V

M
j(γ). Hence, also Vγ satisfies the above

statement and has a model B ∈ Vγ which it believes to satisfy T and to omit p. Clearly,
Vγ is correct about this.

Note that when in (2) of the above theorem we substitute C(1Card) for C(1), we
get supercompact cardinals, while substituting for C(2) gives extendible cardinals by
Bagaria’s and Goldberg’s Theorem 2.2.6, and so the notion (2) naturally lies in between
supercompactness and extendibility. Moreover, property (1) above implies that in
particular κ = comp(Lκκ(I)). By Theorem 3.5.13, then κ is cardinal correctly extendible.
Thus, to answer Question 3.4.17 negatively, it would be sufficient to answer negatively:

Question 7.4.2. Can the smallest cardinal witnessing (2) of Theorem 7.4.1 be the
smallest extendible cardinal?
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A. Syntaxes of Logics
In this appendix, we carry out the formal definition of the syntax of the logics used
throughout the thesis. For this, recall the coding of non-logical symbols from Definition
1.1.1. The syntax of our logics is coded similarly. Throughout, let us assume that κ ≥ λ
are regular cardinals. First, let us fix (first- and second-order) variables.

Definition A.1. We define the following notions.

(i) For each set a and n ∈ ω, we call x = (4, (n, a)) an individual or first-order variable
(of sort n). We also write s(x) = n to denote the sort of x.

(ii) For each set a and n1, . . . , nk ∈ ω, we call X = (5, (n1, . . . , nk, a)) a second-
order or relation variable (of arity k between the sorts n1, . . . , nk). We also write
conf(X) = (n1, . . . , nk) to denote the configuration of X, and s(X) = {n1, . . . , nk}
to denote the set of sorts appearing in X.

We also simply say variables to denote both first- and second-order variables.

First, let us fix the syntax of infinitary logics Lκλ. In particular, first-order logic results
from considering κ = λ = ω.

Definition A.2. Let τ be a vocabulary. The set of formulas Lκλ is defined recursively
in the following way.

(i) If r ∈ τ is a relation symbol with conf(r) = (n1, . . . , nk) and x1, . . . , xk each are
either individual variables in Hκ, or constant symbols in τ of sort s(xi) = ni, then
ϕ = (6, r, x1, . . . , xk) ∈ Lκλ[τ ]. We also write ϕ as r(x1, . . . , xk).

(ii) If f ∈ τ is a function symbol with conf(f) = (n1, . . . , nk+1) and x1, . . . , xk+1 ∈ Hκ

each are either individual variables inHκ, or constant symbols in τ of sort s(xi) = ni,
then ϕ = (7, f, n1, . . . , nk+1) ∈ Lκλ[τ ]. We also write ϕ as f(x1, . . . , xk) = xnk+1

.

(iii) If x and y each are variable symbols in Hκ or constant symbols of a sort s(x), s(y) ∈
s(τ), then ϕ = (8, x, y) ∈ Lκλ[τ ]. We also write ϕ as x = y.

(iv) If ψ ∈ Lκλ[τ ], then ϕ = (9, ϕ) ∈ Lκλ[τ ]. We also write ϕ as ¬ψ.

(v) If T ⊆ Lκλ[τ ] and T = {ϕi : i < γ} for some γ < κ, then ϕ = (10, T ) ∈ Lκλ[τ ]. We
also write ϕ as

∧
T .

(vi) If ψ ∈ Lκλ[τ ], Z ∈ Hλ, and (xi : i ∈ Z) is a sequence of first-order variables in Hκ

each of a sort s(xi) ∈ s(τ), then ϕ = (11, (xi : i ∈ Z), ψ) ∈ Lκλ[τ ]. We also write ϕ
as ∃(xi : i ∈ Z)ψ.
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We further let L∞∞[τ ] =
⋃
κ∈Card Lκκ[τ ].

We may consider finite conjunctions ∧ as special cases of (v), considering singletons
T , and finite existential quantifications as special cases of (vi), considering singletons Z.
We can further define the other boolean connectives ∨, →, and ↔, as well as infinite
disjunctions

∨
, and (finite or infinite) universal quantification ∀ in the usual way as

abbreviations. Thus, the above develops the syntax of Lκλ satisfactorily.
Note that our definition makes sure that for formulas of Lκλ only variables in Hκ are

used. In particular, if τ ∈ Hκ, this makes sure that Lκλ[τ ] ⊆ Hκ, and thus dep∗(Lκλ) = κ.
For the other strong logics we consider, let us indicate how to adopt the above definition

by adding additional conditions.

(1) For second-order logic L2
κλ, use an analogous recursion as above, but add a condition

dealing with atomic formulas given by relation variables, and one dealing with
second-order quantification.
(i*) If X ∈ Hκ is a relation variable with configuration conf(X) = (n1, . . . , nk) for

n1, . . . , nk ∈ s(τ) and x1, . . . , xk each are either individual variables in Hκ,
or constant symbols in τ , of sort s(xi) = ni, then ϕ = (6, 0, X, x1, . . . , xk) ∈
L2
κλ[τ ]. We also write ϕ as X(x1, . . . , xk).

(vi*) If ψ ∈ L2
κλ[τ ], Z ∈ Hλ, and (Xi : i ∈ Z) is a sequence of second-order variables

in Hκ each of a configuration s(Xi) = (ni1, . . . , n
i
ki
) such that each nij ∈ s(τ),

then ϕ = (12, (Xi : i ∈ Z), ψ) ∈ L2
κλ[τ ]. We also write ϕ as ∃(Xi : i ∈ Z)ψ.

Further, L2[τ ] = L2
ωω[τ ].

(2) For Lκλ(QWF), use an analogous recursion as above, but add as a condition:
(vii) If ψ ∈ Lκλ(QWF)[τ ] and x, y ∈ Hκ are individual variables each of a sort

s(x), s(y) ∈ s(τ), then ϕ = (13, x, y, ψ) ∈ Lκλ(QWF)[τ ]. We also write ϕ as
QWFxyψ.

Then L(QWF)[τ ] = Lωω(QWF)[τ ].

(3) For Lκλ(I), use an analogous recursion as above, but add as a condition:
(viii) If ψ, χ ∈ Lκλ(I)[τ ] and x, y ∈ Hκ are individual variables each of a sort

s(x), s(y) ∈ s(τ), then ϕ = (14, x, y, ψ, χ) ∈ Lκλ(I)[τ ]. We also write ϕ as
Ixyψχ.

Then L(I)[τ ] = Lωω(I)[τ ].

For sort logic, as we have extra conditions on where sort quantifiers can appear, let us
state the full recursion separately. It is sufficient to define the class of formulas Ls

∞ω, as
this contains all formulas of Ls,n

κω for any n and any κ.

Definition A.3. Let τ be a vocabulary. The class of formulas of Ls
∞ω is defined

recursively in the following way.
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(i) If r ∈ τ is a relation symbol with conf(r) = (n1, . . . , nk) and x1, . . . , xk each are
either individual variables, or constant symbols in τ , of sort s(xi) = ni, then
ϕ = (6, r, x1, . . . , xk) ∈ Ls

∞ω[τ ]. We also write ϕ as r(x1, . . . , xk).

(ii) If X is a relation variable with configuration conf(X) = (n1, . . . , nk) and x1, . . . , xk
each are either individual variables, or constant symbols in τ , of sort s(xi) = ni,
then ϕ = (6, 0, X, x1, . . . , xk) ∈ Ls

∞ω[τ ]. We also write ϕ as X(x1, . . . , xk).

(iii) If f ∈ τ is a function symbol with conf(f) = (n1, . . . , nk+1) and x1, . . . , xk+1 ∈ Hκ

each are either individual variables inHκ, or constant symbols in τ of sort s(xi) = ni,
then ϕ = (7, f, x1, . . . , xk+1) ∈ Lκλ[τ ]. We also write ϕ as f(x1, . . . , xk) = xnk+1

.

(iv) If x and y each are variable symbols or constant symbols of a sort s(x), s(y) ∈ s(τ),
then ϕ = (8, x, y) ∈ Ls

∞ω[τ ]. We also write ϕ as x = y.

(v) If ψ ∈ Ls
∞ω[τ ], then ϕ = (9, ϕ) ∈ Ls

∞ω[τ ]. We also write ϕ as ¬ψ.

(vi) If T ⊆ Ls
∞ω[τ ] is a set, then ϕ0 = (10, 0, T ), ϕ1 = (10, 1, T ) ∈ Ls

∞ω[τ ]. We also
write ϕ0 as

∧
T and ϕ1 as

∨
T .

(vii) If ψ ∈ Ls
∞ω[τ ] and ψ contains no sort quantifiers, then if x, y are individual variables,

then ϕ = (13, x, y, ψ) ∈ Lsκω[τ ]. We also write ϕ as QWFxyψ.

(viii) If ψ ∈ Ls
∞ω[τ ] and ψ contains no sort quantifiers, then if x is an individual variable,

then ϕ0 = (15, x, ψ), ϕ1 = (16, x, ψ) ∈ Ls
κω[τ ]. We also write ϕ0 as ∃xϕ and ϕ1 as

∀xϕ.

(ix) If ψ ∈ Lsκω[τ ] and X is a relation symbol such that s(X) ∩ s(τ) = ∅ and no free
variable of ϕ involves a sort n ∈ s(X), then ϕ0 = (17, X, ϕ), ϕ1 = (18, X, ϕ) ∈
Ls

∞ω[τ ]. We also write ϕ0 as ∃̃Xϕ and ϕ1 as ∀̃Xϕ.
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English Summary
We study connections between large cardinal axioms, and statements that extensions of
first-order logic, also known as strong logics, exhibit certain model-theoretic properties.
The properties we consider can be separated into three types: compactness properties,
upward Löwenheim-Skolem properties, and downward Löwenheim-Skolem properties.
Each of these three types generalises an important theorem for first-order logic to
stronger logics, namely the Compactness Theorem, and the upward and downward
Löwenheim-Skolem Theorems.

An important large cardinal axiom intimately connected to model theory of strong
logics is Vopěnka’s Principle (VP). It was known before that VP stratifies naturally into
a hierarchy of stronger and stronger assumptions along the C(n)-extendible cardinals, and
along compactness and downward Löwenheim-Skolem properties of logics.

In Chapter 2, we consider the notion of a (weak) Henkin model for an abstract logic L
introduced in [BDGM24]. It was known that Henkin chain compactness (HCC) properties
involving weak Henkin models characterise strong and Woodin cardinals [Bon20,BDGM24].
We introduce a natural strengthening of the notion of Henkin models considered in these
characterisations called strong Henkin models. This comes with a natural strengthening
of HCC properties to strong Henkin compactness (SHC) properties. We show that
SHC properties of second-order logic can characterise stronger large cardinals, namely
supercompact cardinals (Theorem 2.2.4). We further show that the known stratification
of VP in terms of C(n)-extendible cardinals has an entirely analogous one in terms of
SHC properties of sort logics (Theorem 2.2.8). We get:

Corollary 2.2.12. The following are equivalent.

(1) VP.

(2) For every logic L and every natural number n, there is an n-SHC number.

We also continue the study of HCC properties and consider weak Vopěnka’s Principle
(WVP), a weakening of VP arising from category theory (cf. [ART88] and [AR94, Chapter
6]). It was known that WVP stratifies analogously to VP into a hierarchy of axioms
along the Πn-strong cardinals. Whether WVP also has a model-theoretic characterisation
was open. We positively answer this question by showing that HCC properties of sort
logics characterise the Πn-strong cardinals (Theorem 2.3.6).1 We get:

Corollary 2.3.11. The following are equivalent:

(1) WVP.

(2) For every logic L and every natural number n, there is an n-HCC number of L.

1Note that Holy, Lücke, and Müller provide an independent positive answer (cf. [HLM24]). The
model-theoretic properties they consider are entirely different from ours.
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We further characterise other large cardinals, namely jointly Πn-strong and strongly
compact, and superstrong cardinals by HCC properties of logics

Chapter 3 introduces a new large cardinal notion called cardinal correctly extendible
cardinals. They are a natural weakening of extendible cardinals, and we show that they
arrive naturally from compactness properties for the logic L(I). Further, we study their
relations to other large cardinal properties. We show that they are strongly compact,
and separate them from supercompact cardinals. We prove a theorem that under certain
assumptions on the relation of the universe of sets V to the inner model HOD, extendible
cardinals preserve their cardinal correct extendibility in HOD:

Theorem 3.4.10. Suppose that there is a smallest extendible cardinal δ, that the HOD
Hypothesis holds, and that every HOD-cardinal is a cardinal. Then δ is cardinal correctly
extendible in HOD.

This separates the notion from extendibility (Corollary 3.4.15).
Chapter 4 studies upward Löwenheim-Skolem-Tarski (ULST) numbers of strong logics.

We answer a question from [Gal19,GKV20] positively whether the ULST number of
second-order logic is the smallest extendible cardinal (Theorem 4.5.1). We strengthen
the notion and consider strong ULST numbers. We show that VP has yet another
stratification by the ULST and strong ULST numbers of sort logics (Theorem 4.6.1). We
get:

Corollary 4.6.4. The following are equivalent:

(1) VP.

(2) Every logic has a ULST number

(3) Every logic has a strong ULST number.

We determine the ULST and strong ULST numbers of several other logics, including
the well-foundedness logic, the equicardinality logic, and infinitary logics. Their existence
is, in turn, equivalent to that of measurable cardinals, variations of cardinal correctly
extendible cardinals, and variations of tall cardinals. We show that for some logics, the
ULST and strong ULST numbers are necessarily the same, while for others they may be
separated. For an abstractly given logic L, we introduce L-extendible cardinals and show
that their existence is equivalent to the existence of ULST numbers and strong ULST
numbers of L for a large class of logics.

Chapter 5 considers class logics, which are logics that have a proper class of sentences
over a mere set of non-logical symbols. We determine compactness numbers of class
extensions of first-order logics, infinitary logics, second-order logic, and sort logics. A new
compactness property of second-order class logics gives the first known model-theoretic
characterisation of Shelah cardinals (Theorem 5.5.1). We show that certain downward
Löwenheim-Skolem properties of class extensions of sort logics characterise Πn-strong
cardinals (Theorem 5.4.3). We therefore get a second stratification of WVP by entirely
different model-theoretic properties:
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Corollary 5.4.6. The following are equivalent.

(1) WVP.

(2) Every class logic L with L ≤ Ls,n
κω(∨∞,∀∞) for some κ has an LSω number.

Chapter 6 continues some work from the author’s Master’s thesis [OP24]. Bagaria
and Väänänen [BV16], and then Galeotti, Khomskii, and Väänänen [Gal19,GKV20]
studied equivalences between model-theoretic properties of logics and reflection principles
mediated by symbiosis between a logic and a set-theoretic predicate. They considered
downward and upward Löwenheim-Skolem properties, respectively. In [Gal19,GKV20],
the question was asked whether there is an analogous equivalence between compactness
properties and reflection properties. We show that this is the case and formulate the
reflection principle EEPλκ(R)+ for classes of partial orders defined via some set-theoretic
predicate R. Our result is:

Theorem 6.3.12. Let L be a logic and R a set-theoretic predicate. Assume L ≥ Lλω,
dep∗(L) = λ and that L and R are p-symbiotic. Then the following are equivalent for a
regular cardinal κ:

(1) L is κ-compact.

(2) EEPλκ(R)+.

Further, we give proofs of some results stated by Bagaria in [Bag23] how weak
downward Löwenheim-Skolem properties of logics are equivalent to weak reflection
principles, mediated by symbiosis and some additional assumption introduced by us
about L’s ability to define R (Theorem 6.4.13).

Finally, Chapter 7 considers compactness for type omission properties, which were first
introduced by Benda [Ben78] and then recently studied by Boney [Bon20]. Wilson in
[Wil22a] asked the question whether it is possible to have a property P of a finitary logic
L such that the statement that L has P exceeds VP in consistency strength. It was first
proven by Boney [Bon20] and Wilson [Wil22a] that there are such properties at all, but
the logics they considered were infinitary. We prove a theorem showing that a property
of a finitary logic can achieve this:

Theorem 7.3.2. Let κ and λ be cardinals such that λ > κ. Then κ is huge with target
λ iff L(QWF) is [λ]κ∗-κ-compact for type omission.

We also show how a large cardinal notion which naturally sits in between supercom-
pactness and extendibility can be characterised by compactness for type omission of
infinitary versions of L(I) (Theorem 7.4.1).
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Deutsche Zusammenfassung
Diese Dissertation untersucht Verbindungen zwischen großen Kardinalzahlaxiomen und
Aussagen über modelltheoretische Eigenschaften starker Logiken, d.h., von Erweiterung-
en der Prädikatenlogik erster Stufe. Wir untersuchen drei Arten von Eigenschaften:
Kompaktheitseigenschaften, sowie aufwärts- und abwärtsgerichtete Löwenheim-Skolem
Eigenschaften. Jeder dieser drei Typen von Eigenschaften verallgemeinert einen wichtigen
Satz über die Prädikatenlogik erster Stufe: den Kompaktheitssatz, sowie den aufwärts-
und den abwärtsgerichteten Satz von Löwenheim-Skolem.

Ein wichtiges großes Kardinalzahlaxiom mit engen Verbindungen zur Modelltheorie
starker Logiken ist Vopěnkas Prinzip (VP). Es war bekannt, dass VP eine natürliche
Stratifizierung durch immer stärker werdende Annahmen durch die C(n)-erweiterbaren
Kardinalzahlen aufweist, sowie analoge Stratifizierungen durch Kompaktheits- und ab-
wärtsgerichtete Löwenheim-Skolem Eigenschaften von Logiken.

In Kapitel 2 untersuchen wir den Begriff eines (schwachen) Henkin-Modells für eine ab-
strakte Logik L aus [BDGM24]. Es war bekannt, dass Henkin-Ketten-Kompaktheitseigen-
schaften (HKK-Eigenschaften) mit schwachen Henkin-Modellen starke und Woodin Kar-
dinalzahlen charakterisieren [Bon20,BDGM24]. Wir führen mit starken Henkin-Modellen
eine natürliche Verstärkung der schwachen Henkin-Modelle ein. Diese führen mit dem
Begriff der starken Henkin-Kompaktheit (SHK) zu einer natürlichen Verstärkung von
HKK-Eigenschaften. Wir zeigen, dass SHK-Eigenschaften der Prädikatenlogik zweiter
Stufe superkompakte, und damit stärkere große Kardinalzahlen charakterisieren (Satz
2.2.4). Weiterhin führen SHK-Eigenschaften von Sortenlogiken zu den C(n)-erweiterbaren
Kardinalzahlen (Satz 2.2.8). Wir erhalten das folgende Resultat:

Korollar 2.2.12. Die folgenden Aussagen sind äquivalent.

(1) VP.

(2) Jede Logik hat für jede natürliche Zahl n eine n-SHK-Zahl.

Weiterhin untersuchen wir das schwache Vopěnka-Prinzip (SVP), eine natürliche Ab-
schwächung von VP, die durch Kategorientheorie motiviert ist (s. [AR94, Kapitel 6]). Es
war bekannt, dass SVP eine zu VP analoge Stratifizierung durch große Kardinalzahlen
aufweist, die sogenannten Πn-starken Kardinalzahlen. Ob SVP ebenfalls durch modellthe-
oretische Eigenschaften charakterisiert werden kann, war offen. Wir beantworten dies
positiv und zeigen, dass HKK-Eigenschaften von Sortenlogiken Πn-starke Kardinalzahlen
charakterisieren.2 Es folgt:

Satz 2.3.11. Die folgenden Aussagen sind äquivalent:

(1) SVP.

(2) Jede Logik hat für jede natürliche Zahl n eine n-HKK-Zahl.
2Holy, Lücke und Müller haben diese Frage unabhängig durch andere modelltheoretische Eigenschaften
beantwortet (s. [HLM24]).
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Wir charakterisieren außerdem gleichzeitig Πn-stark und stark kompakte, sowie super-
starke Kardinalzahlen durch HKK-Eigenschaften von Logiken.

Kapitel 3 führt einen neuen großen Kardinalzahlbegriff ein: kardinalzahlkorrekt-
erweiterbare Kardinalzahlen. Diese stellen eine natürliche Abschwächung von erweiter-
baren Kardinalzahlen dar, und wir zeigen, dass sie auf natürliche Weise aus Kompaktheits-
eigenschaften der Logik L(I) hervorgehen. Wir zeigen weiterhin, dass sie stark kompakt
sind und separieren sie von superkompakten Kardinalzahlen. Wir zeigen, dass unter
bestimmten Annahmen über das Verhältnis des Universums V zum inneren Modell
HOD, die kardinalzahlkorrekte Erweiterbarkeit von erweiterbaren Kardinalzahlen in
HOD erhalten bleibt:
Satz 3.4.10. Sei δ die kleinste erweiterbare Kardinalzahl. Wenn die HOD-Hypothese gilt
und jede HOD-Kardinalzahl eine Kardinalzahl ist, dann ist δ eine kardinalzahlkorrekt-
erweiterbare Kardinalzahl in HOD.

Dies separiert unseren Begriff vom Begriff der Erweiterbarkeit (Korollar 3.4.15).
Kapitel 4 untersucht aufwärtsgerichtete Löwenheim-Skolem-Tarski-Zahlen (ALST-

Zahlen) starker Logiken. Wir geben eine positive Antwort auf eine Frage aus [Gal19,
GKV20], ob die ALST-Zahl der Prädikatenlogik zweiter Stufe die erste erweiterbare
Kardinalzahl ist (Satz 4.5.1). Wir führen außerdem den Begriff der starken ALST-Zahl
ein. Wir zeigen, dass ALST- und starke ALST-Zahlen von Sortenlogiken eine weitere
Stratifizierung von VP ergeben (Satz 4.6.1). Es folgt:
Satz 2.3.11. Die folgenden Aussagen sind äquivalent:
(1) VP.

(2) Jede Logik hat eine ALST-Zahl.

(3) Jede Logik hat eine starke ALST-Zahl.
Wir bestimmen die ALST- und starken ALST-Zahlen von weiteren Logiken, nämlich

der Fundiertheitslogik L(QWF), der Härtig-Logik L(I), und von infinitären Logiken. Ihre
Existenz ist, der Reihe nach, äquivalent zu der von messbaren Kardinalzahlen, Abwand-
lungen von kardinalzahlkorrekt-erweiterbaren Kardinalzahlen, sowie Abwandlungen von
hohen Kardinalzahlen. Wir zeigen, dass für einige Logiken die Existenz von ALST-
und starken ALST-Zahlen äquivalent ist, während diese für andere Logiken voneinander
separiert werden können. Für eine beliebige abstrakte Logik L führen wir den Begriff der
L-erweiterbaren Kardinalzahl ein und zeigen, dass ihre Existenz für eine große Klasse
von Logiken zur Existenz von ALST-Zahlen von L äquivalent ist.

Kapitel 5 untersucht Klassenlogiken. Wir bestimmen Kompaktheitszahlen von Klassen-
erweiterungen der Prädikatenlogik erster und zweiter Stufe, sowie von infinitären Logiken
und Sortenlogiken. Wir beweisen, dass Shelah Kardinalzahlen eine modelltheoretische
Charakterisierung durch eine Kompaktheitseigenschaft von Klassenerweiterungen der
Prädikatenlogik zweiter Stufe aufweisen (Satz 5.5.1). Wir zeigen weiterhin, dass Πn-starke
Kardinalzahlen durch bestimmte abwärtsgerichtete Löwenheim-Skolem Eigenschaften von
Sortenlogiken charakterisiert werden (Satz 5.4.3). Wir erhalten eine zweite Stratifizierung
von SVP durch andere modelltheoretische Eigenschaften:
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Theorem 5.4.6. Die folgenden Aussagen sind äquivalent.

(1) SVP.

(2) Jede Klassenlogik L, sodass L ≤ Ls,n
κω(∨∞,∀∞) für ein κ, hat eine LSω-Zahl.

Kapitel 6 führt die Ergebnisse der Masterarbeit [Osi21] des Autors fort. Bagaria
und Väänänen [BV16], sowie Galeotti, Khomskii und Väänänen [Gal19,GKV20] haben
Äquivalenzen zwischen modelltheoretischen Eigenschaften von Logiken und Reflexions-
prinzipien untersucht, die durch das Phänomen der Symbiose zwischen einer Logik und
einem mengentheoretischen Prädikat vermittelt werden. Ihre Ergebnisse betrafen abwärts-
und aufwärtsgerichtete Löwenheim-Skolem Eigenschaften. In [Gal19, GKV20] wurde
die Frage gestellt, ob eine analoge Äquivalenz zwischen Kompaktheitseigenschaften und
Reflexionsprinzipien besteht. Wir zeigen, dass dies der Fall ist. Für Klassen partieller
Ordnungen, die mittels eines Prädikates R definiert sind, führen wir das Reflexionsprinzip
EEPλκ(R)+ ein. Wir zeigen:

Satz 6.3.12. Sei L eine Logik und R ein mengentheoretisches Prädikat, die p-symbiotisch
zueinander sind, und sodass L ≥ Lλω und dep∗(L) = λ. Dann sind die folgenden Aussagen
für eine reguläre Kardinalzahl κ äquivalent:

(1) L ist κ-kompakt.

(2) EEPλκ(R)+.

Weiterhin führen wir Beweise für einige von Bagaria [Bag23] erwähnte Resultate, dass
schwache abwärtsgerichtete Löwenheim-Skolem Eigenschaften von Logiken äquivalent zu
schwachen Reflexionsprinzipien sind, wiederum unter der Annahme von Symbiose, sowie
einer zusätzlichen Annahme darüber, dass R in einem starken Sinne durch L definierbar
ist (Satz 6.4.13).

Kapitel 7 betrachtet Kompaktheitseigenschaften für Typenauslassung, die zuerst von
Benda [Ben78], sowie jüngst von Boney [Bon20] untersucht wurden. Wilson hat in
[Wil22a] die Frage gestellt, ob Eigenschaften endlicher Logiken eine Konsistenzstärke
aufweisen können, die die von Vopěnkas Prinzip übersteigt. Zunächst hatten Boney
[Bon20] und Wilson [Wil22a] gezeigt, dass es überhaupt solche Eigenschaften von Logiken
gibt, jedoch untersuchten beide infinitäre Logiken. Wir zeigen, dass es auch für endliche
Logiken solch starke Resultate gibt:

Satz 7.3.2. Seien κ und λ Kardinalzahlen, sodass λ > κ. Dann ist κ genau dann riesig
mit Ziel λ, wenn L(QWF) [λ]κ∗-κ-kompakt für Typenauslassung ist.

Wir zeigen außerdem, dass eine in natürlicher Weise zwischen Superkompaktheit und
Erweiterbarkeit liegende Kardinalzahleigenschaft durch Kompaktheitseigenschaften für
Typenauslassung von infinitären Versionen von L(I) charakterisiert wird (Satz 7.4.1).
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